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ABSTRACT
Background: Dietary carbohydrate type may influence car-
diometabolic risk through alterations in the gut microbiome and
microbial-derived metabolites, but evidence is limited.
Objectives: We explored the relative effects of an isocaloric
exchange of dietary simple, refined, and unrefined carbohydrate
on gut microbiota composition/function, and selected microbial
metabolite concentrations.
Methods: Participants [n = 11; age: 65 ± 8 y; BMI (in kg/m2):
29.8 ± 3.2] were provided with each of 3 diets for 4.5 wk with
2-wk washout, according to a randomized, crossover design. Diets
[60% of energy (%E) carbohydrate, 15%E protein, and 25%E
fat] differed in type of carbohydrate. Fecal microbial composition,
metatranscriptomics, and microbial-derived SCFA and secondary
bile acid (SBA) concentrations were assessed at the end of each phase
and associated with cardiometabolic risk factors (CMRFs).
Results: Roseburia abundance was higher (11% compared with 5%)
and fecal SBA concentrations were lower (lithocolic acid –50% and
deoxycholic acid –64%) after consumption of the unrefined carbo-
hydrate diet relative to the simple carbohydrate diet [false discovery
rate (FDR): all P < 0.05), whereas Anaerostipes abundance was
higher (0.35% compared with 0.12%; FDR: P = 0.04) after the
simple carbohydrate diet relative to the refined carbohydrate diet.
Metatranscriptomics indicated upregulation of 2 cellular stress genes
(FDR: P < 0.1) after the unrefined carbohydrate diet compared with
the simple carbohydrate or refined carbohydrate diets. The microbial
expression of 3 cellular/oxidative stress and immune response genes
was higher (FDR: P < 0.1) after the simple carbohydrate diet
relative to the refined carbohydrate diet. No significant diet effect
was observed in fecal SCFA concentrations. Independent of diet, we
observed 16 associations (all FDR: P < 0.1) of taxon abundance (15
phylum and 1 genera) with serum inflammatory markers and also
with fecal SCFA and SBA concentrations.
Conclusions: Consuming an unrefined carbohydrate–rich diet had
a modest effect on the gut microbiome and SBAs, resulting in

favorable associations with selected CMRFs. Simple carbohydrate–
and refined carbohydrate–rich diets have distinctive effects on the
gut microbiome, suggesting differential mechanisms mediate their
effects on cardiometabolic health. This trial was registered at clini-
caltrials.gov as NCT01610661. Am J Clin Nutr 2020;112:1631–
1641.
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Introduction
Cardiovascular disease (CVD) affects 48% of adults in the

United States and is closely associated with the clustering
of key risk factors (abdominal obesity, insulin resistance,
hyperglycemia, dyslipidemia, and hypertension) (1). Prospective
cohort studies have consistently reported favorable associations
between diets rich in unrefined carbohydrate (whole grains
and fiber) and rates of CVD and total mortality (2, 3). In
contrast, the consumption of simple and refined carbohydrate,
as part of a Western diet, is generally associated with poor
cardiometabolic health (4–7). Clinical trials indicate that the
impact of carbohydrate quality on CVD is mediated in part
via effects on cardiometabolic risk factors (CMRFs), including
inflammatory markers, blood lipid, and lipoprotein profiles
(8–10). We have previously documented that a diet enriched
in refined compared with simple or unrefined carbohydrate
resulted in higher fasting serum LDL and non-HDL cholesterol
concentrations, suggesting that refined carbohydrate may have
differential effects on CMRFs distinct from simple and unrefined
carbohydrate (7).

The human gut microbiome and microbial-derived metabolites
have emerged as important contributors to poor metabolic health
and CVD development (11). Experimental evidence suggests
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that dietary carbohydrate quality and quantity can rapidly alter
microbial composition and function (12, 13). Dietary fiber
is a main fuel source for distinct microbial taxa (14, 15)
and results in the production of SCFAs, which have a broad
array of favorable physiological effects on the regulation of
host metabolism, gut health, and immune responses (14, 15).
Limited data suggest that dietary carbohydrate-induced changes
in gut microbial composition affect the colonic bile acid pool
and subsequently alter farnesoid X receptor and G protein-
coupled bile acid receptor 1 (TGR5) signaling to influence
host immune and metabolic signaling (16), as well as glucose
homeostasis and inflammation (16, 17). Thus, modulation
of gut microbiome composition and subsequent production
of microbial-derived metabolites may be a potential mecha-
nism mediating associations between carbohydrate quality and
CMRFs.

In a secondary analysis of our prior work (7), we determined
the effect of an isocaloric exchange of different types of
carbohydrate (simple, refined, and unrefined) on gut microbial
composition (16S sequencing) and function (metatranscrip-
tomics) and concentrations of selected fecal microbial-derived
metabolites [SCFAs and secondary bile acids (SBAs)]. In addi-
tion, we explored associations of microbial taxon with microbial-
derived metabolites and serum CMRFs. We hypothesized that
carbohydrate type would differentially affect gut microbial
composition, function, and concentrations of fecal SCFAs and
SBAs. In addition, we hypothesized that microbial composition
would be associated with serum CMFRs.

Methods

Study design and participants

The current study is a secondary analysis of a randomized
clinical trial designed to examine the effect of carbohydrate type

Pilot funds were provided by the Jean Mayer USDA Human Nutrition
Research Center on Aging at Tufts University and Boston Obesity Research
Center to AHL; the US Department of Agriculture (agreement 58-1950-4-
401) to AHL and NRM; and grant NHLBI T32-HL069772 from the National
Heart, Lung, and Blood Institute/NIH to AHL. MEW is supported by grant
5T32-HL125232 from the National Heart, Lung, and Blood Institute/NIH
Multidisciplinary Training Program in Cardiovascular Epidemiology . Any
opinions, findings, conclusions, or recommendations expressed in this
publication are those of authors and do not necessarily reflect the view of
the US Department of Agriculture or the National Institutes of Health.

Data described in the manuscript, code book, and analytic code will be
made available pending review and approval of the request by e-mailing the
corresponding author.

TF and MEW contributed equally to this work.
Supplemental Figures 1–3 are available from the “Supplementary data” link

in the online posting of the article and from the same link in the online table
of contents at https://academic.oup.com/ajcn/.

Address correspondence to NRM (e-mail: nirupa.matthan@tufts.edu).
Abbreviations used: ASV, amplicon sequence variant; CMRF, car-

diometabolic risk factor; CVD, cardiovascular disease; FDR, false discovery
rate; hsCRP, high-sensitivity C-reactive protein; RNA-seq, RNA sequencing;
rRNA, ribosomal RNA; SBA, secondary bile acid.

Received January 24, 2020. Accepted for publication August 14, 2020.
First published online September 16, 2020; doi: https://doi.org/10.1093/

ajcn/nqaa254.

on CMRFs. Results from the primary study have been published,
including details of the study design, inclusion/exclusion criteria,
recruitment, and power calculations for the primary outcomes
(7). The randomization sequence for each participant was
generated by the statistician before the start of the study
according to a block design, and assignment was based on
enrollment date and time. Investigators and laboratory personnel
were blinded to the random order. The study was conducted
between 2012 and 2015, in accordance with the Declaration
of Helsinki guidelines and with approval of the Institutional
Review Board of Tufts University and Tufts Medical Center, and
registered at clinicaltrials.gov as NCT01610661 on November 7,
2011.

Briefly, 11 participants (7 postmenopausal women and 4
men; 64% Caucasian) met all recruitment criteria and completed
all 3 diet phases, following a randomized crossover design
(Supplemental Figure 1). Blood samples were collected at the
end of each diet phase. Three samples were collected following a
12-h fast, and 1 postprandial sample was collected 4 h following
the consumption of a meal consistent with the respective diet
phase.(7) Weight was maintained constant throughout the study.
Average ± SD of baseline characteristics were as follows: age:
65 ± 8 y; systolic blood pressure: 123 ± 10 mm Hg; diastolic
blood pressure: 71 ± 9 mm Hg; BMI (in kg/m2): 29.8 ± 3.2;
glucose: 5.6 ± 0.6 mmol/L; and LDL-C: 3.5 ± 0.7 mmol/L (7).

Study diets

Participants consumed each of 3 diets enriched in simple,
refined, or unrefined carbohydrate-containing foods for 4.5
wk, with a minimum 2-wk washout period between each
diet (Supplementary Figure 1). Each participant visited the
Metabolic Research Unit 3 times per week to consume 1 study
meal on site and received additional meals for consumption
offsite. Diets for each carbohydrate phase were isocaloric,
matched for macronutrients (60% energy total carbohydrate, 15%
energy protein, and 25% energy total fat), and differed only
in carbohydrate type. The simple carbohydrate diet contained
a higher proportion of foods containing sucrose and/or high-
fructose corn syrup. The refined grain carbohydrate diet included
a higher proportion of foods made from refined grains, such as
white rice, white bread, and white pasta. The unrefined grain
carbohydrate diet contained a higher proportion of foods made
from whole grains. Detailed sample study menus have previously
been described (7).

Stool collection

Study participants were given stool sample collection kits after
the end of the third week of each dietary intervention phase along
with instructions for collection and storage during week 4 of
the intervention. Stool collection kits contained an ice pack for
transporting samples back to the Metabolic Research Unit at the
Jean Mayer USDA Human Nutrition Research Center on Aging
within 18 h of production. Samples were aliquoted upon receipt,
with 1 aliquot immediately processed with a PowerMicrobiome
RNA Extraction kit from MoBio in the Phoenix laboratory at
Tufts Medical Center. Remaining aliquots were kept at −80◦C
until the extraction of bacterial DNA using Qiagen’s QIAmp
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DNA Stool minikit and for SCFA analysis. Another aliquot was
freeze-dried for subsequent bile acid analysis.

Sample processing

16S amplification and sequencing.

We used the 515F/806R primers described by Caporaso et al.
(18) (forward primer sequence of GTGCCAGCMGCCGCGGTA
A and reverse primer sequence of GGACTACHVGGGTATCTA
AT) to isolate and amplify the V4 hypervariable region of the
bacterial 16S ribosomal subunit gene in DNA extracted from
stool samples. V4 16S amplicon molecules were sequenced using
an Illumina MiSeq machine at the Tufts University Core Facility.
Reads were automatically demultiplexed into individual paired
forward and reverse FASTq files for each sample. Sequences with
ambiguous, low-quality, mismatched, or unknown barcodes were
discarded.

Metatranscriptomics ribosomal RNA-depleted RNA
sequencing.

We used MoBio’s PowerMicrobome RNA Extraction kit to
isolate RNA from aliquots from each stool sample, and we
used Illumina’s TruSeq Stranded Total RNA kit with Ribo-
Zero to deplete ribosomal RNA (rRNA). These rRNA-depleted
complementary DNA libraries were barcoded, pooled, and run
through an Illumina HiSeq 2500 with 6 samples per lane. To
remove lingering rRNA and human RNA contamination, we
aligned all reads to hg19 and rRNA reference libraries using
Bowtie2 and removed all hits.

Fecal bile acids.

We measured fecal concentrations of bile acids in freeze-
dried stool samples as described previously (19). Extraction
and purification were completed using a chloroform methanol
solution followed by a multistage sample purification process
(19). SBAs were quantified by isotopic dilution using LC–
quadrupole time-of-flight MS. Data were normalized by the dry
weight of fecal samples and are expressed as micrograms per
milligram.

Fecal SCFAs.

Fecal SCFAs were analyzed in frozen stool samples using
the method described previously (20). Samples underwent a
derivatization with 3-nitrophenylhydrazine, and SCFAs were
quantified using quadrupole ion trap 5500 LC-MS/MS. The intra-
assay CVs were <12%.

Serum cardiometabolic risk factors.

We have previously reported assay details and the results of
dietary carbohydrate type on serum concentrations of CMRFs,
including lipids and lipoproteins (total cholesterol, LDL, HDL,
non-HDL, VLDL, triglycerides, and nonesterified fatty acids),
glycemic markers (insulin, glycated hemoglobin, and HOMA-
IR), and inflammatory markers [IL-6 and high-sensitivity C-
reactive protein (hsCRP)] (7). For the current analysis, the

CMRF data were used to explore associations with microbial
taxon.

Bioinformatics analyses

16S amplicon sequencing data analysis.

We processed demultiplexed 16S reads using Qiime2 (version
2018.4) (21). We converted the raw demultiplexed FASTq files
into Qiime artifact format. We then denoised and grouped our
reads into amplicon sequence variants (ASVs) using the DADA2
algorithm (built into Qiime2) (22) and selected parameters to trim
5 bp from the start of each read, but without truncation. Taxonomy
was assigned to each ASV using a naive Bayes classifier built
from the Greengenes database (release 13.8) (23). ASVs that the
classifier failed to identify were given unique labels, marking
them as unassigned but retaining them for analysis.

We performed paired differential analyses (for taxa between
each pair of diets at the phylum and genus taxonomic levels) using
the R package DESeq2 from Bioconductor (24), which applies a
Wald test to a negative binomial generalized linear model. For
microbiome data, DESeq2 has been shown to return lower false
discovery rates (FDRs) compared with other methods (25), and it
is particularly well suited for smaller data sets such as ours (26).
Read counts were normalized using the “estimateSizeFactors()”
function from DESeq2. Models to derive statistical significance
included the host participant as a covariate. We performed an
FDR correction, using the Benjamini–Hochberg procedure (27),
on all P values within each taxonomic level independently. We
considered an FDR P ≤ 0.1 as statistically significant.

Although rarefaction of metagenomic data is not ideal for
many types of analyses, it is still a useful step in generating
meaningful diversity metrics and is used in Qiime2’s standard
operating procedures. For α- and β-diversity calculations only,
we rarefied our data to a depth of 80,000 reads, a depth chosen
based on DADA2’s output table in order to ensure all of our
samples would be included in our diversity analyses with minimal
information loss. We used Qiime2’s α-rarefaction tool to estimate
the α-diversity of each sample using the Shannon index as
our metric, iterating 10 times and taking the average value of
all iterations. We used mafft, fasttree, and Qiime2’s alignment
mask and phylogeny midpoint-root algorithms to construct a
phylogenetic tree from the ASVs generated by DADA2, which
we then used to calculate the β-diversity between each pair of
samples, reported as weighted UniFrac distances. We performed
a principal coordinate analysis on the UniFrac distance matrix.
For all statistical tests involving microbial diversity (α and β),
we considered a P value ≤ 0.05 as statistically significant.

Metatranscriptomic data analysis.

To address limitations in functional annotation of microbial
genes, we examined microbial gene families identified de novo
by clustering genes closely related in both sequence and function
into a single feature. This reduces the effective number of
features under analysis (improving statistical power) and more
clearly identifies changes in community function instead of
community composition. All RNA-sequencing (RNA-seq) reads
(after human and rRNA filtering) were pooled into a single
FASTq file, which was submitted as an input to the Trinity de
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1634 Faits et al.

FIGURE 1 Relative abundance of phyla (A) and the 20 most abundant genera (B), based on 16S rDNA sequencing. Data are depicted as estimated
percentage relative abundance grouped by study participant (n = 11), designated S01–S15, and ordered by carbohydrate type, with simple carbohydrate diet
labeled “S,” refined carbohydrate diet labeled “R,” and unrefined carbohydrate diet labeled “U.” Phyla and genera were assigned using Qiime2 and based on
the Greengenes database. rDNA, ribosomal DNA

novo transcript assembler (28). Trinity builds contigs from input
sequences and then clusters those contigs into putative genes.
The filtered RNA-seq reads from each sample were aligned to
the Trinity-derived transcripts using Bowtie2 (29), and gene and
isoform expression values were calculated using RSEM (30).
We used RSEM’s expected counts output for each assembled
transcript and each sample to derive an expression matrix
for differential expression analysis. All differential expression
calculations were performed with DESeq2 using the same models

as described previously (16S amplicon sequencing data analysis).
We performed pairwise differential expression between diets, and
we report only data where any 1 of the 3 pairwise comparisons
passed an FDR P-threshold ≤ 0.10.

Additional statistical analysis

We used a repeated-measures ANOVA model (PROC
MIXED), built in SAS for Windows (version 9.4; SAS
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Institute), to test potential differences in fecal SBAs and
SCFA concentrations between diet phases. The model used study
participants as a random effect, with main effects including
diet phase, diet sequence, age, BMI, and sex. We applied the
Tukey–Kramer method as a post hoc analysis whenever our
ANOVA model resulted in P values ≤ 0.05. All SCFA and
SBA concentrations were log-transformed to normalize their
distributions prior to analyses. We considered a P value ≤ 0.05
as statistically significant.

In an exploratory analysis, we assessed the associations of
relative taxon abundances with concentrations of fecal SBAs,
fecal SCFAs, and serum CMRF markers. Due to the composi-
tional nature of microbe abundance data, we used the additive
log ratio transform of our relative abundance measurements in
our regression models (31). In order to test the significance of
each pairwise association, we performed a series of mixed-effects
linear regressions between the z scores

Z = x − x̄

sd
(1)

of each measurement. R package lme4 (32), available through
CRAN, was used to produce a mixed model for every taxon–
marker pair, with the abundance of the taxon as a fixed effect and
participant as a random effect. Taxa were only included in this
analysis if they had a mean relative abundance of at least 0.1%
across all samples. We performed FDR correction on P values
derived from these mixed models, and we report the β coefficients
for all models with an FDR P value ≤ 0.1.

Results

Impact of carbohydrate type on microbial composition and
diversity

We obtained 330,000–545,000 16S rRNA reads from each
sample after quality control filtering. Of these, Qiime2 was
able to assign between 12,472 and 139,194 reads per sample to
ASVs with phylum-level (or better) taxonomy annotations (me-
dian = 104,117); 8,511–128,610 of those reads per sample were
annotated all the way to the genus level (median = 87,638). We
found 11 distinct phyla and 73 distinct genera with a minimum
relative abundance of at least 0.01% in at least 1 sample. The 2
most dominant phyla, Bacteroidetes and Firmicutes, represented
93.4% of all estimated abundance (Figure 1A). Bacteroides
and Prevotella were the 2 most abundant genera, collectively
representing 37.8% of all estimated abundance (Figure 1B).

The abundance of 2 genera was significantly altered by
carbohydrate type

Roseburia had a higher abundance after consumption of the
unrefined carbohydrate diet (11.3%) compared with the simple
carbohydrate diet (5.1%) (FDR: P = 0.04; Figure 2A), but due to
larger variance, it was not significantly different from the refined
carbohydrate diet (5.3%). Anaerostipes had a higher abundance
after the simple (0.35%) and unrefined carbohydrate diet (0.27%)
compared with the refined carbohydrate diet (0.12%) (Figure 2B).
However, only the difference in abundance between the simple
and refined carbohydrate diets was significant (FDR: P = 0.04).

FIGURE 2 Relative abundance of the genera Roseburia (A) and
Anaerostipes (B) in response to dietary carbohydrate type at the end of
the study (n = 11 for each diet). Data are depicted as box-and-whisker
plots that display the IQR (box) and extremities (whiskers) and percentage
relative abundance. Differential abundance between dietary carbohydrate
type was estimated using a negative binomial model including adjustment for
participant. Statistical significance was determined using a false discovery
rate P value ≤ 0.1.

Abundance of all microbial taxa examined by carbohydrate
type and participants is presented in the supplementary data
link.

We calculated the Shannon index of α-diversity H′ within each
sample (range: 3.33–6.63; Figure 3A) and found no significant
differences in α-diversity between diets (P = 0.37). However, we
observed a broad range of stability in α-diversity scores; the value
of H′ for several participants remained within a 0.5 window for all
3 diets, whereas that for other participants increased or decreased
by as much as 1.8 between diets (Figure 3B).

We calculated β-diversity metrics among samples using
weighted UniFrac distances, which indicate that most of the
participants’ microbiomes remained relatively stable across
diets and show no evidence of structural ecological shifts in
response to carbohydrate type (P = 0.81; Figure 3C). Princi-
pal coordinate analysis (Figure 3D, Supplemental Figures 2
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FIGURE 3 α-Diversity, within samples grouped by diet (n = 11 for each diet) (A) and each study participant (n = 3 for each participant) (B). α-Diversity
was calculated as the Shannon index, calculated with a rarefaction depth of 80,000 sequencing reads. Data are depicted as box-and-whisker plots that display the
IQR (box) and extremities (whiskers) of α-diversity. (C) β-Diversity between samples, depicted in a heatmap, was calculated as the weighted UniFrac distance
between each pair of samples. (D) The top 2 principal coordinate axes (PC1 and PC2) based on a principal coordinate analysis of the weighted UniFrac distance
matrix depicting the bacterial community by participant and carbohydrate type (n = 33). Each participant is represented by a different color, and the diets are
represented as a circle for simple carbohydrate, triangle for refined carbohydrate, and square for unrefined carbohydrate. The RCE of each principal coordinate
axis indicates the relative portion of total variance within the data set is captured by that axis. Statistical significance was determined using a P value ≤ 0.05.
RCE, relative corrected eigenvalue.

and 3) indicated that samples largely clustered by participants
rather than distinguishing among dietary carbohydrate type.

Impact of carbohydrate type on microbial
metatranscriptomics

We obtained between 15,041,570 and 45,692,257 rRNA-
depleted RNA-seq reads per sample after quality control filtering.
Total reads (769,040,612) across all samples were assembled into
5,124,369 unique bacterial transcripts and subsequently clustered
into 504,115 bacterial gene families, which we used as a reference
library for sequence alignment. As a minimum threshold for
further analysis, we considered only assembled transcript clusters
to which at least 100 reads aligned across all samples, yielding
79,467 assembled transcript clusters with such coverage. After
filtering out human RNA and rRNA, each sample had between
358,314 and 4,963,992 reads align to the assembled transcript
clusters.

We performed differential expression on the 79,467 assembled
transcript families between each pair of diets. Following FDR

correction, 9 transcript families were found to be signifi-
cantly differentially expressed by carbohydrate type (all FDR:
P ≤ 0.10: Figure 4A–E). BLASTn searches on these 9 transcripts
revealed that 4 of them have no known homologs in the National
Center for Biotechnology Information’s nucleotide database (33).
Of the remaining 5 genes, 3 (heat shock protein 60/chaperonin
GroEl, Clp protease, and flavin adenine dinucleotide–containing
oxidoreductase) had higher expression after consumption of the
simple compared with the refined carbohydrate diet (all FDR:
P ≤ 0.1). Notably, these 3 genes also tended to have higher
expression with the simple carbohydrate diet compared with
the unrefined carbohydrate diet, but this was not statistically
significant (Figure 4A–C). Expression of heat shock protein
20/α-crystalin was higher after consumption of the unrefined
carbohydrate diet relative to both refined and simple carbohydrate
diets. However, only the difference between the unrefined and
simple diets was statistically significant (FDR: P = 0.03). Last,
expression of CsbD-like protein was higher after consumption of
the unrefined compared with the refined carbohydrate diet (FDR:
P = 0.08).
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FIGURE 4 Differentially expressed bacterial gene families: (A) heat shock protein 60/chaperon groEl, (B) heat shock protein 20/α-crystalin, (C) Clp
protease, (D) CsbD-like protein, and (E) FAD-containing oxidoreductase. Data are depicted as box-and-whisker plots that display the IQR (box) and extremities
(whiskers) and bacterial gene family expression (read counts per million). Differential expression between dietary carbohydrate type was estimated using a
negative binomial model including adjustment for participant (n = 11 for each diet). Statistical significance was determined using a false discovery rate P
value ≤ 0.1. Asterisk (∗) indicates a significant difference between diets. Points over the individual box plots indicate participant data above the third quartile.

Impact of carbohydrate type on fecal concentrations of
SBAs and SCFAs

Table 1 displays concentrations of CMRFs, as previously
reported (7), and fecal concentrations of microbial-derived
metabolites. Fecal concentrations of SBAs were significantly
lower at the end of the unrefined carbohydrate diet phase com-
pared with the simple carbohydrate diet phase, with intermediate
concentrations at the end of the refined carbohydrate diet (both
P ≤ 0.05; Table 1). Fecal concentrations of lithocholic acid
were 50% lower after the unrefined compared with the simple
carbohydrate diet (2.4 compared with 4.8 μmol/g; P ≤ 0.01),
and deoxycholic acid concentrations were 64% lower (2.0
compared with 5.6 μmol/g; P = 0.03). No significant differences

were observed in fecal concentrations of SCFAs among the 3
carbohydrate diets (Table 1).

Associations of microbial composition with
microbial-derived metabolites and cardiometabolic risk
factors

All associations of microbial composition with microbial-
derived metabolites and CMRFs are displayed in the supple-
mentary data link. We observed 15 phylum-level and 1 genus-
level (Acidaminococcus) associations with serum concentra-
tions of CMRFs and fecal concentrations of microbial-derived
metabolites that remained significant after FDR correction (all
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TABLE 1 Adjusted least-squares means of microbial-derived lipid metabolites and serum cardiometabolic risk factors at the end of each diet phase1

Variables
Simple

carbohydrate
Refined

carbohydrate
Unrefined

carbohydrate P value2

Fecal microbial metabolites
Bile acids3 , μmol/g fecal weight

Lithocholic acid 4.8 (3.5, 6.1)a 3.5 (2.1, 4.8)a,b 2.4 (1.1, 3.7)b 0.005
Deoxycholic acid 5.6 (3.6, 7.6)a 3.8 (1.8, 5.9)a,b 2.0 (0.03, 4.1)b 0.03

SCFAs, μmol/g fecal weight
Acetate 12.7 (9.8, 15.6) 10.8 (7.9, 13.7) 10.4 (7.5, 13.3) 0.81
Propionate 4.5 (3.4, 5.6) 3.8 (2.7, 4.9) 3.7 (2.6, 4.8) 0.74
Butyrate 4.1 (2.9, 5.3) 3.5 (2.29, 4.7) 3.2 (2.0, 4.4) 0.95
Isobutyrate 1.1 (0.7, 1.4) 0.9 (0.5, 1.3) 0.7 (0.3, 1.1) 0.43
2-Methylbutyrate 0.8 (0.5, 1.1) 0.7 (0.4, 1.0) 0.5 (0.2, 0.8) 0.53
Valerate 0.9 (0.7, 1.1) 0.8 (0.6, 1.0) 0.8 (0.6, 1.0) 0.89
Isovalerate 0.5 (0.3, 0.7) 0.4 (0.2, 0.6) 0.3 (0.1, 0.5) 0.49
3-Methylvalerate 0.03 (0.02, 0.04) 0.03 (0.01, 0.04) 0.02 (0.01, 0.04) 0.80
Isocaproate 0.04 (0.02, 0.06) 0.03 (0.01, 0.05) 0.03 (0.01, 0.05) 0.26
Caproate 0.3 (0.1, 0.5) 0.3 (0.2, 0.5) 0.3 (0.1, 0.5) 0.25

Serum cardiometabolic risk factors
Glycemic

Glucose, mmol/L 5.3 (5.0, 5.6) 5.2 (5.0, 5.5) 5.1 (4.8, 5.4) 0.52
Insulin, mU/L 12.4 (9.3, 16.5) 12.0 (9.0, 16.0) 10.7 (8.0, 14.3) 0.36
Glycated hemoglobin, % 5.7 (4.9, 6.6) 5.8 (5.0, 6.7) 5.7 (4.9, 5.7) 0.65
HOMA-IR 2.9 (2.1, 4.0) 2.8 (2.0, 3.9) 2.4 (1.7, 3.4) 0.36

Blood lipids, mmol/L
Total cholesterol 5.2 (3.8, 7.2)b 5.5 (4.0, 7.6)a 5.2 (3.8, 7.1)b <0.01
LDL cholesterol 3.2 (2.2, 4.5)b 3.4 (2.4, 4.8)a 3.1 (2.2, 4.4)b <0.01
Non-HDL cholesterol 4.0 (2.8, 5.7)b 4.3 (3.0, 6.1)a 4.0 (2.8, 5.6)b <0.01
HDL cholesterol 1.2 (1.0, 1.5) 1.2 (1.0, 1.5) 1.2 (1.0, 1.5) 0.32
VLDL cholesterol 0.8 (0.5, 1.3) 0.8 (0.5, 1.4) 0.8 (0.5, 1.3) 0.17
Total cholesterol: HDL cholesterol 4.3 (3.6, 5.1)b 4.5 (3.8, 5.4)a 4.3 (3.6, 5.2)b <0.01
LDL cholesterol: HDL cholesterol 2.6 (2.1, 3.2)b 2.8 (2.2, 3.4)a 2.6 (2.1, 3.2)b 0.01
Triglyceride 1.7 (1.0, 2.9) 1.9 (1.1, 3.1) 1.7 (1.0, 2.9) 0.19

Inflammatory markers
hcCRP, mg/L 1.9 (0.6, 4.4) 2.0 (0.6, 4.6) 2.1 (0.7, 4.7) 0.84
IL-6, pg/mL 0.6 (0.4, 0.7) 0.6 (0.4, 0.8) 0.6 (0.4, 0.8) 0.77

1Values are least-squares means and 95% CIs from the repeated-measures ANOVA model, with the main effect of diet and covariates (phase, sequence,
age, BMI, and sex) and random effect of participant. Bile acids and SCFAs were log-transformed to normalize their distributions. When a diet effect was
significant at P ≤ 0.05, multiple comparisons were carried out with the Tukey–Kramer method. Least-squares means with different letters were significantly
different from each other. hsCRP, high-sensitivity C-reactive protein.

2P values for repeated-measures ANOVA.
3Bile acid analyses were completed on a sample of n = 10.

FDR: P ≤ 0.1; Table 2). The phylum Verrucomicrobia had a
negative association with fecal concentrations of deoxycholic
acid. There was a positive association between the phylum
Lentisphaerae and fecal concentrations of lithocholic acid.
The phyla Lentisphaerae and Cyanobacteria both had positive
associations with individual SCFA concentrations. A negative
association was observed between the phylum Actinobacteria
and serum concentrations of the proinflammatory cytokine IL-6,
and the genus Acidaminococcus was positively associated with
serum concentrations of hsCRP. No significant associations were
observed among the other CMRFs (blood lipids and glycemic
markers) and microbial taxon abundance (see the supplementary
data link).

Discussion
The current study provides novel information about the impact

of dietary carbohydrate type (simple, refined, and unrefined)

on the gut microbiome phylogenetic structure and functional
capacity. In this secondary analysis of a clinical trial with 3
isocaloric dietary intervention phases, we document that different
types of carbohydrate have modest but distinctive effects on
the human gut microbiome (composition and function) and
fecal SBA but not SCFA fecal concentrations. These results
suggest that the favorable effects of diets enriched in unrefined
carbohydrate could be mediated, in part, by the gut microbiome.
Interestingly, consistent with the effects on CMRFs (7), the diet
enriched in simple carbohydrate had unique effects on human gut
microbiota composition and gene expression that were distinct
from refined carbohydrate.

A majority of intervention studies on carbohydrate quality
and gut microbial composition have compared diets enriched
in whole grains to refined grains (34–39). However, simple
and refined carbohydrate may have differential effects on
cardiometabolic health that are mediated by the gut microbiota.
Similar to the current work, some clinical trials comparing
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TABLE 2 Associations of microbial taxon abundance with fecal secondary bile acids, fecal SCFAs, and serum inflammatory markers1

Variables Taxon β coefficient2 SE of β FDR P value3

Bile acids, μmol/g fecal weight
Lithocholic acid Lentisphaerae 0.28 0.17 0.09
Deoxycholic acid Verrucomicrobia − 0.09 0.19 0.03

SCFAs, μmol/g fecal weight
Propionate Cyanobacteria 0.47 0.15 0.03
Isobutyrate Cyanobacteria 0.29 0.17 0.03

Lentisphaerae 0.56 0.15 <0.001
2-Methylbutyrate Cyanobacteria 0.29 0.17 0.03

Lentisphaerae 0.60 0.14 <0.001
Valerate Cyanobacteria 0.41 0.16 0.03

Lentisphaerae 0.31 0.17 0.03
Isovalerate Cyanobacteria 0.25 0.18 0.08

Lentisphaerae 0.63 0.14 <0.001
3-Methylvalerate Cyanobacteria 0.28 0.10 <0.01

Lentisphaerae 0.28 0.13 <0.001
Isocaproate Cyanobacteria 0.58 0.13 <0.01

Inflammatory markers
hcCRP, mg/L Acidaminococcus 0.21 0.15 0.03
IL-6, pg/mL Actinobacteria − 0.20 0.14 0.10

1Linear mixed effects models to examine the associations of taxon abundance with concentrations of serum cardiometabolic risk indicators, fecal
secondary bile acids, and fecal SCFAs. All variables were assessed as standardized z scores. Taxon abundance was modeled as the fixed effect and participant
as a random effect. An FDR P value ≤0.1 was considered statistically significant. FDR, false discovery rate, hsCRP, high-sensitivity C-reactive protein.

2β estimates represent the difference in the respective risk marker z score per SD unit increase in the abundance of the respective taxon.
3FDR P value for linear mixed effect model.

whole to refined grains have found modest changes (≥2 taxa)
in gut microbial composition (34, 35), although other studies
have found no significant changes (36–39). We observed that
the abundance of Roseburia, a butyrate producing genera, was
higher after consumption of the unrefined carbohydrate diet
compared with the simple carbohydrate diet. Results were similar
but nonsignificant when comparing the unrefined carbohydrate
diet with the refined carbohydrate diet. A similar trend of
higher abundance of Roseburia in participants fed whole
grain compared with a refined grain enriched diet has been
reported (35). Roseburia is a dietary fiber fermenting genus that
increases in abundance in response to dietary fiber (17, 40).
We observed that the abundance of the genera Anaerostipes
was lowest after participants consumed the refined carbohydrate
diet compared with the simple carbohydrate and unrefined
carbohydrate diets, although the latter did not reach statistical
significance. Anaerostipes is also a butyrate producer; thus, low
abundance after consumption of the refined carbohydrate diet
may contribute to the unfavorable effects of diets rich in refined
carbohydrate.

Our finding that carbohydrate type had no significant impact
on gut microbial α-diversity (within participants) and β-diversity
(among participants) is in agreement with most (35, 38, 39)
but not all prior work (34). Notably, we observed 2 distinct
patterns of Shannon index shift among participants, suggesting
individual differences in diet induced shifts in microbial diversity.
In addition, we found that the fecal microbial composition at
the end of each intervention phase clustered by participant
rather than carbohydrate type. These results support prior evi-
dence (41) suggesting that diet-induced intraindividual variation
in gut microbial composition may be insufficient to over-
come inherent interindividual variation and long-term dietary
habits.

In addition to using 16S amplicon sequencing to measure
the relative abundances of organisms in microbial commu-
nities, we utilized metatranscriptomics to examine microbial
genes differentially expressed by dietary carbohydrate type.
Metatranscriptomics based on RNA-seq allows us to accurately
measure the expression levels of living bacteria, viruses, and
fungi and may capture the relative abundance of both living and
dead (or quiescent) cells. The 3 annotated genes (heat shock
protein 60/chaperonin GroEl, Clp protease, and flavin adenine
dinucleotide–containing oxidoreductase) with higher expression
after participants consumed the simple compared with the refined
carbohydrate diet have been implicated in stress response and
oxidative stress. Particularly, bacterial heat shock protein 60 has
been implicated in immune response and inflammatory bowel
disease (42, 43). The 2 genes with higher expression levels
after the unrefined compared with refined (csbD-like protein)
or simple (heat shock protein 20/α-crystalin) carbohydrate diets
have also been implicated in bacterial stress response. However,
the expression of csbD-like protein was relatively low in all
groups. Hence, significant differences may be due to the higher
variation in expression with the unrefined carbohydrate diet.

Favorable associations between carbohydrate quality and
chronic disease could be mediated in part by the production
of microbial-derived metabolites. Conjugated primary bile acids
(cholic and chenodeoxycholic acids) are synthesized in the liver
and secreted into the intestine with the release of bile. In
the intestine, bile acids that are not reabsorbed may undergo
microbial deconjugation and dehydroxylation to form SBAs,
which have been considered inflammatory and carcinogenic
(44). Our findings indicate that concentrations of fecal SBAs
(lithocholic and deoxycholic acid) were lowest after participants
consumed the unrefined carbohydrate diet. Consistent with prior
work (45, 46), these data suggest a protective effect that supports
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previous observations of reduced risk for colon cancer by whole
grain–rich and high-fiber diets (47). Despite our finding that
the abundance of butyrate-producing genera (Roseburia and
Anaerostipes) was altered by the dietary carbohydrate type,
there was no significant effect of carbohydrate type on fecal
SCFA concentrations or associations between abundance of these
genera and SCFAs. Similar findings have been reported with
some (34, 39) but not all studies that examined diets enriched in
either whole or refined grains (35). The phylum Actinobacteria
includes the genus Bifidobacterium, which has been shown
to influence systemic concentrations of IL-6 and TNF-α (48).
Bifidobacterium has been reported to inhibit lipopolysaccharide-
induced activation of NF-κB and subsequent secretion of inflam-
matory cytokines (49). It has been suggested that Bifidobacterium
may influence inflammation by accumulating SBAs to reduce
colonic concentrations (50), consistent with our observation that
abundance of the phylum Actinobacteria was inversely associated
with serum concentrations of IL-6. Although the associations
among other microbial taxa with CMRFs and microbial-derived
metabolites are intriguing, they warrant further investigation
because these taxa were present in low abundance.

The current study has several strengths. Foremost, we
conducted a well-controlled dietary intervention, in which all
meals were provided to the study participants. In addition, we
used a crossover study design to reduce interindividual variation,
which is of particular importance in studies of gut microbiota.
We collected a broad array of data on microbial composition and
function and microbial-derived metabolites, targeted due to prior
associations with dietary carbohydrate type. Limitations include
a modest sample size that was originally determined to examine
the effect of carbohydrate type on CMRFs. A larger study, based
on the primary outcome of changes in gut microbial composition
and metabolome, is needed to confirm our findings. Although
metatranscripomics provides novel insight into differentially
expressed microbial genes, current limitations in gene annotation
may limit the clinical interpretation of results. Last, assessment of
the gut microbiome at baseline and postintervention would allow
for a better inference of interindividual variation.

In summary, we observed modest differential effects of
carbohydrate type on microbial composition and function and
fecal concentrations of SBAs. A diet enriched in unrefined
carbohydrate had favorable effects, including higher abundance
of the butyrate-producing genus Roseburia and lowered SBA
fecal concentrations. Although exploratory in nature, our results
suggest distinct effects of simple and refined carbohydrate on gut
microbial composition and function. Last, we noted that the effect
of our carbohydrate intervention was insufficient to overcome
a high degree of synergy within participants’ gut microbial
communities. These findings provide novel information on
potential mechanisms linking carbohydrate quality to human
health and warrant replication in a larger study.
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