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One size doesn’t fit all: postexercise protein requirements for the
endurance athlete
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Dietary protein is a fundamental component of any nutritional
strategy aimed at enhancing postexercise recovery. This is due
to its ability to provide the requisite amino acid building blocks
to support enhanced rates of body and muscle protein synthesis,
which serves to offset any fasted-state losses in protein content
arising from elevations in proteolysis and repair or remodeling
of intracellular components (e.g., myofibrillar and mitochondrial
proteins) to optimize muscle mass and quality in healthy humans.
Research to date has primarily focused on the impact of dietary
protein amount, type, and timing on rates of muscle protein
synthesis (especially of the contractile myofibrillar fraction)
after resistance exercise with relatively little attention paid to
the endurance athlete. Nevertheless, postexercise dietary protein
recommendations for endurance athletes have generally been
based on the observation that ∼20 g or the equivalent of ∼0.25–
0.3 g/kg of high-quality (i.e., essential amino acid– and leucine-
enriched) protein being optimal to maximize myofibrillar protein
synthesis (1, 2). However, in contrast to resistance exercise,
which is inherently anabolic, endurance exercise represents a
more systemic stimulus that can include the degradation of body
proteins into their constituent amino acids, which conservatively
may contribute ∼5% to metabolic fuel use and, in the case of
the nutritionally essential amino acids, must subsequently be
replaced by the diet. Therefore, the recent work by Churchward-
Venne and colleagues (3) represents an overdue and important
contribution to the sports nutrition landscape.

Using a group design in well-trained athletes, Churchward-
Venne et al. (3) demonstrated that myofibrillar protein synthesis
after an acute bout of endurance exercise was enhanced in
a relative dose–response fashion up to a plateau at 30 g of
ingested milk protein, which is consistent with the nutrient
sensitivity of this protein fraction after resistance exercise (2). In
contrast, there was no apparent augmentation of mitochondrial
protein synthesis, which further adds to the evidence that the
remodeling of this essential organelle after exercise is dissociated
from the stimulatory effect of amino acids (4, 5). However, the
application of novel, intrinsically labeled proteins demonstrated
that dietary phenylalanine was incorporated into new proteins in
both muscle protein fractions in proportion to its total intake.
Therefore, while mitochondrial remodeling does not appear to
be dependent on the intracellular amino acid concentration, the
authors clearly demonstrate that dietary amino acids represent
important precursors for the de novo synthesis of all skeletal

muscle proteins, further highlighting the importance of dietary
protein to enhance recovery from all modalities of exercise.

Normalizing protein intakes to body mass, which will aid
in individualized athlete recommendations, revealed that the
requirement for protein ingestion to maximize myofibrillar
remodeling after endurance exercise is ∼60% greater than after
resistance exercise (i.e., ∼0.49 vs. ∼0.31 g protein/kg) (1). Rates
of myofibrillar protein synthesis were broadly similar to those
reported previously after resistance exercise by this research
group (6), suggesting the rightward shift in the dose–response
curve was not related to an increased synthetic capacity (i.e.,
greater ceiling) after endurance exercise. It is equally unlikely
that this increased requirement is related to a blunted response
as the authors report a rapid increase in dietary phenylalanine
availability (i.e., ≤60 min) and early (≤120 min) myofibrillar
fractional synthetic rates that are broadly similar to previous
studies after resistance exercise (6) and consistent with enhanced
mechanistic target of rapamycin complex 1 activity early in
recovery after endurance exercise with protein/carbohydrate
feeding (5). It is worth noting, however, that the efflux of amino
acids from skeletal muscle during endurance exercise in the fasted
state is due to the degradation of muscle proteins (7), which may
preferentially represent myofilament elements (8). The fate of
these amino acids liberated by proteolysis may equate to ∼10
g of endogenous protein oxidation in ∼1 h of moderate-intensity
metabolic work (9). Therefore, the general rightward shift in the
relative protein intake after 90 min of fasted endurance exercise
(3) may represent a requirement to replenish exercise-induced
myofilament proteolysis. While it is likely that dietary protein
consumed outside of this early recovery window could still serve
this purpose, the present research suggests that a strategy aimed
at facilitating the rapid recovery from endurance exercise should
also feature the intake of a high-quality protein that is in excess
of what is generally recommended after resistance exercise.
Additional longer-term research would help elucidate the benefits
of this enhanced myofibrillar remodeling from a performance
perspective.
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The authors also characterized changes in whole-body protein
metabolism, which is arguably more relevant for endurance
athletes than those engaging in more “muscle-centric” resistance
exercise, given the whole-body stimulus of aerobic exercise.
Unlike myofibrillar protein synthesis, there was no apparent
plateau in whole-body net protein balance, which is consistent
with a greater capacity to assimilate dietary proteins at the
whole-body level and the apparent prioritization of skeletal
muscle anabolism after exercise (10). While whole-body net
protein balance is a nonspecific physiological outcome and
could be overestimated if exercise-induced catabolism is not
accounted for (9), potential positive implications for maximizing
this response for the endurance athlete may include other
nutritionally regulated processes such as the replenishment
of labile protein oxidative losses, enhanced plasma volume
expansion secondary to plasma albumin synthesis (11), in-
creased nonmyofibrillar skeletal muscle protein synthesis (e.g.,
metabolic enzymes) (12), and/or increased structural protein
remodeling (e.g., bone collagen synthesis) (13). Therefore,
elucidating nutritional strategies that optimize both muscle
and nonmuscle proteostasis would best serve an athlete’s goal
to optimize his or her postexercise recovery and training
adaptation.

There are undoubtedly additional questions still to be re-
solved with respect to the postexercise protein requirements
for endurance athletes. These could include the impact of the
sex hormone estrogen, training intensity or duration, and/or
carbohydrate availability, all of which can influence amino acid
oxidative losses during exercise. Additional research would also
be warranted to determine whether requirements may be modified
by protein type, micro-/macronutrient co-ingestion, and/or food
matrix, all of which are emerging as important considerations to
optimize the anabolic potential of an ingested protein and would
feature in athletes’ whole-food–based diets (14). However, these
questions may reveal to be merely incremental modifications
to the postexercise nutritional advice for endurance athletes.
The findings of Churchward-Venne et al. (3) on acute protein
requirements, which were generated in endurance athletes, for en-
durance athletes represent the new comparator and will arguably
form the cornerstone for sports nutrition recommendations in the
future.
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