

Frank Emmert-Streib, Salissou Moutari, and Matthias Dehmer
Mathematical Foundations of Data Science Using R

Also of Interest
Multivariable and Vector Calculus
Fehribach, Joseph D., 2020
ISBN 978-3-11-066020-3, e-ISBN (PDF) 978-3-11-066060-9,
e-ISBN (EPUB) 978-3-11-066057-9

Numerical Analysis.
An Introduction
Heister, Timo / Rebholz, Leo G. / Xue, Fei, 2019
ISBN 978-3-11-057330-5, e-ISBN (PDF) 978-3-11-057332-9,
e-ISBN (EPUB) 978-3-11-057333-6

Numerical Analysis of Stochastic Processes
Beyn, Wolf-Jürgen / Kruse, Raphael, 2020
ISBN 978-3-11-044337-0, e-ISBN (PDF) 978-3-11-044338-7,
e-ISBN (EPUB) 978-3-11-043555-9

Signal Processing and Data Analysis
Qiu, Tianshuang / Guo, Ying, 2018
ISBN 978-3-11-046158-9, e-ISBN (PDF) 978-3-11-046508-2,
e-ISBN (EPUB) 978-3-11-046513-6

Computational Methods for Data Analysis
Karaca, Yeliz / Cattani, Carlo, 2018
ISBN 978-3-11-049635-2, e-ISBN (PDF) 978-3-11-049636-9,
e-ISBN (EPUB) 978-3-11-049360-3

Frank Emmert-Streib, Salissou Moutari, and
Matthias Dehmer

Mathematical
Foundations of Data
Science Using R

|

Mathematics Subject Classification 2010
05C05, 05C20, 05C09, 05C50, 05C80, 60-06, 60-08, 60A-05, 60B-10, 26C05, 26C10, 49K15,
62R07, 62-01, 62C10

Authors
Prof. Dr. Frank Emmert-Streib
Tampere University
Faculty of Information Technology and
Communication Sciences
PO Box 527
Fin-33101 Tampere
Finnland
frank.emmert-streib@tuni.fi

Dr. Salissou Moutari
Queens University Belfast
School of Mathematics and Physics
University Road
Belfast BT7 1NN
United Kingdom
s.moutari@qub.ac.uk

Prof. Dr. Matthias Dehmer
UMIT Private Universität für
Gesundheitswissenschaften
Medizinische Informatik und Technik
Eduard Wallnöfer-Zentrum 1
6060 Hall i. Tirol
Austria
and
The Swiss Distance University of Applied
Sciences
Department of Computer Science
Überlandstraße 12
3900 Brig
Switzerland
and
College of Artificial Intelligence
Nankai University
300350 Tianjin
P.R. China
matthias.dehmer@umit.at

ISBN 978-3-11-056467-9
e-ISBN (PDF) 978-3-11-056499-0
e-ISBN (EPUB) 978-3-11-056502-7

Library of Congress Control Number: 2020936390

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available on the Internet at http://dnb.dnb.de.

© 2020 Walter de Gruyter GmbH, Berlin/Boston
Cover image: gremlin/E+/Getty Images
Typesetting: VTeX UAB, Lithuania
Printing and binding: CPI books GmbH, Leck

www.degruyter.com

Preface

In recent years, data science has gained considerable popularity and established itself
as a multidisciplinary field. The goal of data science is to extract information from
data and use this information for decision making. One reason for the popularity
of the field is the availability of mass data in nearly all fields of science, industry,
and society. This allowed moving away from making theoretical assumptions, upon
which an analysis of a problem is based on toward data-driven approaches that are
centered around these big data. However, to master data science and to tackle real-
world data-based problems, a high level of a mathematical understanding is required.
Furthermore, for a practical application, proficiency in programming is indispens-
able. The purpose of this book is to provide an introduction to the mathematical
foundations of data science using R.

The motivation for writing this book arose out of our teaching and supervising
experience over many years. We realized that many students are struggling to under-
stand methods from machine learning, statistics, and data science due to their lack
of a thorough understanding of mathematics. Unfortunately, without such a mathe-
matical understanding, data analysis methods, which are based on mathematics, can
only be understood superficially. For this reason, we present in this book mathemat-
ical methods needed for understanding data science. That means we are not aiming
for a comprehensive coverage of, e. g., analysis or probability theory, but we provide
selected topics from such subjects that are needed in every data scientist’s mathe-
matical toolbox. Furthermore, we combine this with the algorithmic realization of
mathematical method by using the widely used programming language R.

The present book is intended for undergraduate and graduate students in the
interdisciplinary field of data science with a major in computer science, statistics, ap-
plied mathematics, information technology or engineering. The book is organized in
three main parts. Part 1: Introduction to R. Part 2: Graphics in R. Part 3: Mathemat-
ical basics of data science. Each part consists of chapters containing many practical
examples and theoretical basics that can be practiced side-by-side. This way, one
can put the learned theory into a practical application seamlessly.

Many colleagues, both directly or indirectly, have provided us with input, help,
and support before and during the preparation of the present book. In partic-
ular, we would like to thank Danail Bonchev, Jiansheng Cai, Zengqiang Chen,
Galina Glazko, Andreas Holzinger, Des Higgins, Bo Hu, Boris Furtula, Ivan Gutman,
Markus Geuss, Lihua Feng, Juho Kanniainen, Urs-Martin Künzi, James McCann,
Abbe Mowshowitz, Aliyu Musa, Beatrice Paoli, Ricardo de Matos Simoes, Arno
Schmidhauser, Yongtang Shi, John Storey, Simon Tavaré, Kurt Varmuza, Ari Visa,
Olli Yli-Harja, Shu-Dong Zhang, Yusen Zhang, Chengyi Xia, and apologize to all
who have not been named mistakenly. For proofreading and help with various chap-
ters, we would like to express our special thanks to Shailesh Tripathi, Kalifa Manjan,

https://doi.org/10.1515/9783110564990-201

VI | Preface

and Nadeesha Perera. We are particularly grateful to Shailesh Tripathi for helping
us preparing the R code. We would like also to thank our editors Leonardo Milla,
Ute Skambraks and Andreas Brandmaier from DeGruyter Press who have been al-
ways available and helpful. Matthias Dehmer also thanks the Austrian Science Fund
(FWF) for financial support (P 30031).

Finally, we hope this book helps to spread the enthusiasm and joy we have for
this field, and inspires students and scientists in their studies and research questions.

Tampere and Brig and Belfast, March 2020
F. Emmert-Streib, M. Dehmer, and Salissou Moutari

Contents

Preface | V

1 Introduction | 1
1.1 Relationships between mathematical subjects and data science | 2
1.2 Structure of the book | 4
1.2.1 Part one | 4
1.2.2 Part two | 4
1.2.3 Part three | 5
1.3 Our motivation for writing this book | 5
1.4 Examples and listings | 6
1.5 How to use this book | 7

Part I: Introduction to R

2 Overview of programming paradigms | 11
2.1 Introduction | 11
2.2 Imperative programming | 12
2.3 Functional programming | 13
2.4 Object-oriented programming | 15
2.5 Logic programming | 17
2.6 Other programming paradigms | 18
2.6.1 The multiparadigm language R | 18
2.7 Compiler versus interpreter languages | 20
2.8 Semantics of programming languages | 21
2.9 Further reading | 22
2.10 Summary | 22

3 Setting up and installing the R program | 23
3.1 Installing R on Linux | 23
3.2 Installing R on MAC OS X | 24
3.3 Installing R on Windows | 24
3.4 Using R | 24
3.5 Summary | 24

4 Installation of R packages | 27
4.1 Installing packages from CRAN | 27
4.2 Installing packages from Bioconductor | 27
4.3 Installing packages from GitHub | 28
4.4 Installing packages manually | 28

VIII | Contents

4.4.1 Terminal and unix commands | 28
4.4.2 Package installation | 29
4.5 Activation of a package in an R session | 30
4.6 Summary | 30

5 Introduction to programming in R | 31
5.1 Basic elements of R | 31
5.1.1 Navigating directories | 32
5.1.2 System functions | 32
5.1.3 Getting help | 33
5.2 Basic programming | 34
5.2.1 If-clause | 34
5.2.2 Switch | 35
5.2.3 Loops | 36
5.2.4 For-loop | 36
5.2.5 While-loop | 36
5.2.6 Logic behind a For-loop | 37
5.2.7 Break | 40
5.2.8 Repeat-loop | 40
5.3 Data structures | 41
5.3.1 Vector | 41
5.3.2 Matrix | 43
5.3.3 List | 46
5.3.4 Array | 47
5.3.5 Data frame | 48
5.3.6 Environment | 49
5.3.7 Removing variables from the workspace | 50
5.3.8 Factor | 50
5.3.9 Date and Time | 51
5.3.10 Information about R objects | 52
5.4 Handling character strings | 52
5.4.1 The function nchar() | 52
5.4.2 The function paste() | 53
5.4.3 The function substr() | 53
5.4.4 The function strsplit() | 54
5.4.5 Regular expressions | 55
5.5 Sorting vectors | 57
5.6 Writing functions | 58
5.6.1 One input argument and one output value | 58
5.6.2 Scope of variables | 61
5.6.3 One input argument, many output values | 61
5.6.4 Many input arguments, many output values | 62

Contents | IX

5.7 Writing and reading data | 62
5.7.1 Writing data to a file | 63
5.7.2 Reading data from a file | 64
5.7.3 Low level reading functions | 66
5.7.4 Summary of writing and reading functions | 68
5.7.5 Other data formats | 68
5.8 Useful commands | 69
5.8.1 The function which() | 69
5.8.2 The function apply() | 70
5.8.3 Set commands | 71
5.8.4 The function unique() | 72
5.8.5 Testing arguments and converting variables | 72
5.8.6 The function sample() | 73
5.8.7 The function try() | 74
5.8.8 The function system() | 75
5.9 Practical usage of R | 76
5.9.1 Advantage over GUI software | 76
5.10 Summary | 77

6 Creating R packages | 79
6.1 Requirements | 79
6.1.1 R base packages | 79
6.1.2 R repositories | 80
6.1.3 Rtools | 80
6.2 R code optimization | 81
6.2.1 Profiling an R script | 81
6.2.2 Byte code compilation | 81
6.2.3 GPU library, code, and others | 82
6.2.4 Exception handling | 82
6.3 S3, S4, and RC object-oriented systems | 83
6.3.1 The S3 class | 84
6.3.2 The S4 class | 85
6.3.3 Reference class (RC) system | 86
6.4 Creating an R package based on the S3 class system | 87
6.4.1 R program file | 87
6.4.2 Building an R package | 90
6.5 Checking the package | 90
6.6 Installation and usage of the package | 90
6.7 Loading and using a package | 91
6.7.1 Content of the files edited when generating the package | 91
6.8 Summary | 94

X | Contents

Part II: Graphics in R

7 Basic plotting functions | 97
7.1 Plot | 97
7.1.1 Adding multiple curves in one plot | 99
7.1.2 Adding horizontal and vertical lines | 101
7.1.3 Opening a new figure window | 102
7.2 Histograms | 102
7.3 Bar plots | 103
7.4 Pie charts | 104
7.5 Dot plots | 105
7.6 Strip and rug plots | 108
7.7 Density plots | 109
7.8 Combining a scatterplot with histograms: the layout function | 112
7.9 Three-dimensional plots | 114
7.10 Contour and image plots | 114
7.11 Summary | 115

8 Advanced plotting functions: ggplot2 | 117
8.1 Introduction | 117
8.2 qplot() | 117
8.3 ggplot() | 121
8.3.1 Simple examples | 121
8.3.2 Multiple data sets | 123
8.3.3 geoms() | 125
8.3.4 Smoothing | 128
8.4 Summary | 131

9 Visualization of networks | 133
9.1 Introduction | 133
9.2 igraph | 133
9.2.1 Generation of regular and complex networks | 135
9.2.2 Basic network attributes | 136
9.2.3 Layout styles | 139
9.2.4 Plotting networks | 140
9.2.5 Analyzing and manipulating networks | 141
9.3 NetBioV | 141
9.3.1 Global network layout | 142
9.3.2 Modular network layout | 142
9.3.3 Layered network (multiroot) layout | 144
9.3.4 Further features | 144
9.3.5 Examples: Visualization of networks using NetBioV | 146

Contents | XI

9.4 Summary | 149

Part III: Mathematical basics of data science

10 Mathematics as a language for science | 153
10.1 Introduction | 153
10.2 Numbers and number operations | 155
10.3 Sets and set operations | 157
10.4 Boolean logic | 159
10.5 Sum, product, and Binomial coefficients | 162
10.6 Further symbols | 164
10.7 Importance of definitions and theorems | 167
10.8 Summary | 168

11 Computability and complexity | 171
11.1 Introduction | 171
11.2 A brief history of computer science | 172
11.3 Turing machines | 173
11.4 Computability | 174
11.5 Complexity of algorithms | 175
11.5.1 Bounds | 176
11.5.2 Examples | 178
11.5.3 Important properties of the 𝑂-notation | 179
11.5.4 Known complexity classes | 179
11.6 Summary | 180

12 Linear algebra | 181
12.1 Vectors and matrices | 181
12.1.1 Vectors | 181
12.1.2 Vector representations in other coordinates systems | 193
12.1.3 Matrices | 202
12.2 Operations with matrices | 205
12.3 Special matrices | 208
12.4 Trace and determinant of a matrix | 210
12.5 Subspaces, dimension, and rank of a matrix | 211
12.6 Eigenvalues and eigenvectors of a matrix | 214
12.7 Matrix norms | 216
12.8 Matrix factorization | 217
12.8.1 LU factorization | 217
12.8.2 Cholesky factorization | 220
12.8.3 QR factorization | 220

XII | Contents

12.8.4 Singular value decomposition | 222
12.9 Systems of linear equations | 224
12.10 Exercises | 227

13 Analysis | 229
13.1 Introduction | 229
13.2 Limiting values | 229
13.3 Differentiation | 232
13.4 Extrema of a function | 236
13.5 Taylor series expansion | 239
13.6 Integrals | 243
13.6.1 Properties of definite integrals | 244
13.6.2 Numerical integration | 244
13.7 Polynomial interpolation | 245
13.8 Root finding methods | 247
13.9 Further reading | 251
13.10 Exercises | 251

14 Differential equations | 253
14.1 Ordinary differential equations (ODE) | 253
14.1.1 Initial value ODE problems | 253
14.2 Partial differential equations (PDE) | 258
14.2.1 First-order PDE | 259
14.2.2 Second-order PDE | 259
14.2.3 Boundary and initial conditions | 260
14.2.4 Well-posed PDE problems | 260
14.3 Exercises | 265

15 Dynamical systems | 267
15.1 Introduction | 267
15.2 Population growth models | 269
15.2.1 Exponential population growth model | 269
15.2.2 Logistic population growth model | 269
15.2.3 Logistic map | 271
15.3 The Lotka–Volterra or predator–prey system | 275
15.4 Cellular automata | 278
15.5 Random Boolean networks | 281
15.6 Case studies of dynamical system models with complex attractors | 288
15.6.1 The Lorenz attractor | 288
15.6.2 Clifford attractor | 290
15.6.3 Ikeda attractor | 291
15.6.4 The Peter de Jong attractor | 292

Contents | XIII

15.6.5 Rössler attractor | 293
15.7 Fractals | 294
15.7.1 The Sierpińsky carpet and triangle | 294
15.7.2 The Barnsley fern | 296
15.7.3 Julia sets | 298
15.7.4 Mandelbrot set | 300
15.8 Exercises | 302

16 Graph theory and network analysis | 305
16.1 Introduction | 305
16.2 Basic types of networks | 306
16.2.1 Undirected networks | 306
16.2.2 Geometric visualization of networks | 307
16.2.3 Directed and weighted networks | 308
16.2.4 Walks, paths, and distances in networks | 310
16.3 Quantitative network measures | 311
16.3.1 Degree and degree distribution | 311
16.3.2 Clustering coefficient | 312
16.3.3 Path-based measures | 312
16.3.4 Centrality measures | 313
16.4 Graph algorithms | 314
16.4.1 Breadth-first search | 315
16.4.2 Depth-first search | 315
16.4.3 Shortest paths | 317
16.4.4 Minimum spanning tree | 321
16.5 Network models and graph classes | 323
16.5.1 Trees | 323
16.5.2 Generalized trees | 324
16.5.3 Random networks | 325
16.5.4 Small-world networks | 326
16.5.5 Scale-free networks | 328
16.6 Further reading | 329
16.7 Summary | 330
16.8 Exercises | 330

17 Probability theory | 331
17.1 Events and sample space | 331
17.2 Set theory | 332
17.3 Definition of probability | 334
17.4 Conditional probability | 335
17.5 Conditional probability and independence | 336
17.6 Random variables and their distribution function | 337

XIV | Contents

17.7 Discrete and continuous distributions | 338
17.7.1 Uniform distribution | 339
17.8 Expectation values and moments | 340
17.8.1 Expectation values | 340
17.8.2 Variance | 341
17.8.3 Moments | 341
17.8.4 Covariance and correlation | 342
17.9 Bivariate distributions | 343
17.10 Multivariate distributions | 343
17.11 Important discrete distributions | 344
17.11.1 Bernoulli distribution | 345
17.11.2 Binomial distribution | 345
17.11.3 Geometric distribution | 348
17.11.4 Negative binomial distribution | 348
17.11.5 Poisson distribution | 349
17.12 Important continuous distributions | 350
17.12.1 Exponential distribution | 350
17.12.2 Beta distribution | 350
17.12.3 Gamma distribution | 351
17.12.4 Normal distribution | 353
17.12.5 Chi-square distribution | 355
17.12.6 Student’s 𝑡-distribution | 355
17.12.7 Log-normal distribution | 357
17.12.8 Weibull distribution | 357
17.13 Bayes’ theorem | 358
17.14 Information theory | 361
17.14.1 Entropy | 362
17.14.2 Kullback–Leibler divergence | 364
17.14.3 Mutual information | 365
17.15 Law of large numbers | 366
17.16 Central limit theorem | 369
17.17 Concentration inequalities | 369
17.17.1 Hoeffding’s inequality | 370
17.17.2 Cauchy–Schwartz inequality | 370
17.17.3 Chernoff bounds | 371
17.18 Further reading | 372
17.19 Summary | 372
17.20 Exercises | 372

18 Optimization | 375
18.1 Introduction | 375
18.2 Formulation of an optimization problem | 376

Contents | XV

18.3 Unconstrained optimization problems | 377
18.3.1 Gradient-based methods | 377
18.3.2 Derivative-free methods | 385
18.4 Constrained optimization problems | 390
18.4.1 Constrained linear optimization problems | 390
18.4.2 Constrained nonlinear optimization problems | 394
18.4.3 Lagrange multiplier method | 394
18.5 Some applications in statistical machine learning | 396
18.5.1 Maximum likelihood estimation | 397
18.5.2 Support vector classification | 398
18.6 Further reading | 399
18.7 Summary | 399
18.8 Exercises | 400

Bibliography | 403

Index | 411

1 Introduction
We live in a world surrounded by data. Whether a patient is visiting a hospital for
treatment, a stockbroker is looking for an investment on the stock market, or an
individual is buying a house or apartment, data are involved in any of these decision
processes. The availability of such data results from technological progress during the
last three decades, which enabled the development of novel data generation, data
measurement, data storage, and data analysis means. Despite the variety of data
types stemming from different application areas, for which specific data generating
devices have been developed, there is a common underlying framework that unites
the corresponding methodologies for analyzing them. In recent years, the main tool-
box or the process of analyzing such data has come to be referred to as data science
[73].

Despite its novelty, data science is not really a new field on its own as it draws
heavily on traditional disciplines [61]. For instance, machine learning, statistics, and
pattern recognition are playing key roles when dealing with data analysis problems
of any kind. For this reason, it is important for a data scientist to gain a basic under-
standing of these traditional fields and how they fuel the various analysis processes
used in data science. Here, it is important to realize that harnessing the aforemen-
tioned methods requires a thorough understanding of mathematics and probability
theory. Without such an understanding, the application of any method is done in
a blindfolded way, a manner lacking deeper insights. This deficiency hinders the
adequate usage of the methods and the ability to develop novel methods. For this
reason, this book aims to introduce the mathematical foundations of data science.

Furthermore, in order to exploit machine learning and statistics practically, a
computational realization needs to be found. This necessitates the writing of algo-
rithms that can be executed by computers. The advantage of such a computational
approach is that large amounts of data can be analyzed using many methods in an
efficient way. However, this requires proficiency in a programming language. There
are many programming languages, but one of the most suited programming lan-
guages for data science is R [154]. Therefore, we present in this book the mathemat-
ical foundations of data science using the programming language R.

That means we will start with the very basics that are needed to become a data
scientist with some understanding of the used methods, but also with the ability to
develop novel methods. Due to the difficulty of some of the mathematics involved,
this journey may take some time since there is a wide range of different subjects to
be learned. In the following sections, we will briefly summarize the main subjects
covered in this book as well as their relationship to and importance for advanced
topics in data science.

https://doi.org/10.1515/9783110564990-001

2 | 1 Introduction

1.1 Relationships between mathematical subjects and data
science

In Fig. 1.1, we show an overview of the relationships between several mathematical
subjects on the left-hand side and data science subjects on the right-hand side.
First, we would like to emphasize that there are different types of mathematical
subjects. In Fig. 1.1, we distinguish three different types. The first type, shown in
green, indicates subjects that are essential for every topic in data science, regardless
of the specific purpose of the analysis. For this reason, the subjects linear algebra,
analysis, probability theory and optimization can be considered the bare backbone to
understand data science. The second type, shown in orange, indicates a subject that
requires the data to have an additional structural property. Specifically, graph theory
is very useful when discrete relationships between variables of the system are present.
An example of such an application is a random forest classifier, or a decision tree that
utilizes a tree-structure between variables for their representation and classification
[26]. The third subject type, shown in blue, is fundamentally different to the previous

Figure 1.1: Visualization of the relationship between several mathematical subjects and data
science subjects. The mathematical subjects shown in green are essentially needed for every topic
in data science, whereas graph theory is only used when the data have an additional structural
property. In contrast, differential equations and dynamical systems assume a special role used to
gain insights into the data generation process itself.

1.1 Relationships between mathematical subjects and data science | 3

types. To emphasize this, we drew the links with dashed lines. Dynamical systems
are used to gain insights into the data-generation process itself rather than to analyze
the data. In this way, it is possible to gain a deeper understanding of the system to
be analyzed. For instance, one can simulate the regulation between genes that leads
to the expression of proteins in biological cells, or the trading behavior of investors
to learn about the evolution of the stock market. Therefore, dynamical systems can
also be used to generate benchmark data to test analysis methods, which is very
important when either developing a new method or testing the influence of different
characteristics of data.

The diagram in Fig. 1.1 shows the theoretical connection between some mathe-
matical subjects and data science. However, it does not show how this connection
is realized practically. This is visualized in Fig. 1.2. This figure shows that program-
ming is needed to utilize mathematical methods practically for data science. That
means programming, or computer science more generally, is a glue skill/field that
(1) enables the practical application of methods from statistics, machine learning,
and mathematics, (2) allows the combination of different methods from different
fields, and (3) provides practical means for the development of novel computer-based
methods (using, e. g., Monte Carlo or resampling methods). All of these points are
of major importance in data science, and without programming skills one cannot
unlock the full potential that data science offers. For the sake of clarity, we want to
emphasize that we mean scientific and statistical programming rather than general
purpose programming skills when we speak about programming skills.

Due to these connections, we present in this book the mathematical foundations
for data science along with an introduction to programming. A pedagogical side-
effect of presenting programming and mathematics side-by-side is that one learns

Figure 1.2: The practical connection between mathematics and methods from data science is
obtained by means of algorithms, which require programming skills. Only in this way mathemati-
cal methods can be utilized for specific data analysis problems.

4 | 1 Introduction

naturally to think about a problem in an algorithmic or computational way. In
our opinion, this has a profound influence on the reader’s analytical problem-solving
capabilities because it enables thinking in a guided way that can be computationally
realized in a practical manner. Hence, learning mathematics in combination with a
computational realization is more helpful than learning only the methods, since it
leads to a systematic approach for problem solving. This is especially important
for us since the end goal of mastering the mathematical foundations is for their
application to problems in data science.

1.2 Structure of the book

This book is structured into three main parts. In the following, we discuss the content
of each part briefly:

1.2.1 Part one

In Part one, we start with a general discussion on different programming paradigms
and programming languages as well as their relationship. Then, we focus on the
introduction of the programming language R. We start by showing how to install R
on your computer and how to install additional packages from external repositories.
The programming language itself and the packages are freely available and work
for Windows, Mac, and Linux computers. Afterward, we discuss key elements of
the programming language R in detail, including control and data structures and
important commands. As an advanced topic, we discuss how to create an R package.

1.2.2 Part two

In Part two, we focus on the visualization of data by utilizing the graphical capa-
bilities of R. First, we discuss the basic plotting functions provided by R and then
present advanced plotting functionalities that are based on external packages, e. g.,
ggplot. These sections are intended for data of an arbitrary structure. In addition,
we also present visualization functions that can be used for network data.

The visualization of data is very important because it presents actually a form
of data analysis. In the statistics community, such an approach is termed exploratory
data analysis (EDA). In the 1950s, John Tukey advocated widely the idea of data
visualization as a means to generate novel hypothesis about the underlying data
structure, which would otherwise not come to the mind of the analyst [97, 189].
Then, these hypotheses can be further analyzed by means of quantitative analysis
methods. EDA uses data visualization techniques, e. g., box plots, scatter plots, and

1.3 Our motivation for writing this book | 5

also summary statistics, e. g., mean, variance, and quartiles to get either an overview
of the characteristics of the data or to generate a new understanding. Therefore, a
first step in formulating a question that can be addressed by any quantitative data
analysis method consists often in the visualization of the data. The Chapters 7, 8
and 9 present various visualization methods that can be utilized for the purpose of
an exploratory data analysis.

1.2.3 Part three

In Part three, we start with a general introduction of mathematical preliminaries and
some motivation about the merit of mathematics as the language for science. Then
we provide the theoretical underpinning for the programming in R, discussed in the
first two parts of the book, by introducing mathematical definitions of computabil-
ity, complexity of algorithms, and Turing machines. Thereafter, we focus on the
mathematical foundations of data science. We discuss various methods from linear
algebra, analysis, differential equations, dynamical systems, graph theory, probabil-
ity theory, and optimization. For each of these subjects, we dedicate one chapter.
Our presentation will cover these topics on a basic and intermediate level, which is
enough to understand essentially all methods in data science.

In addition to the discussion of the above topics, we also present worked exam-
ples, including their corresponding scripts in R. This will allow the reader to practice
the mathematical methods introduced. Furthermore, at the end of some chapters, we
will provide exercises that allow gaining deeper insights. Throughout the chapters,
we also discuss direct applications of the methods for data science problems from,
e. g., economy, biology, finance or business. This will provide answers to questions of
the kind, ‘what are the methods for?’.

1.3 Our motivation for writing this book

From our experience in supervising BSc, MSc, and PhD students as well as postdoc-
toral researchers, we learned over the years that a common problem among many
students is their lack of basic knowledge and understanding of the mathematical
foundations underpinning methods used in data science. This causes difficulties in
particular when tackling more advanced data analysis problems. Unfortunately, this
deficiency is typically too significant to be easily compensated, e. g., by watching few
YouTube videos or attending some of the many available online courses on platforms
like Coursera, EdX or Udacity. The problem is actually twofold. First, it is the spe-
cific lack of knowledge and understanding of mathematical methods and, second, it
is an inability to ‘think mathematically’. As already mentioned above, both prob-
lems are related with each other, and the second one is even more severe because it

6 | 1 Introduction

Figure 1.3: A typical approach in data science in order to analyze a ‘big question’ is to reformu-
late this question in a way that makes it practically analyzable. This requires an understanding of
the mathematical foundations and mathematical thinking (orange links).

has more far-reaching consequences. From analyzing this situation, we realized that
there is no shortcut in learning data science than to gain, first, a deep understanding
of its mathematical foundations.

This problem is visualized in Fig. 1.3. In order to answer a big question of interest
for an underlying problem, frequently, one needs to reformulate the question in a way
that the data available can be analyzed in a problem-oriented manner. This requires
also to either adapt existing methods to the data or to invent a new method, which
can then be used to analyze the data and obtain results. The adaption of methods
requires a technical understanding of the mathematical foundations of the methods,
whereas the reformulation of the big question requires some mathematical thinking
skills. This should clarify our approach, which consists of starting to learn data
science from its mathematical foundations.

Lastly, our approach has the additional side-effect that the learner has an im-
mediate answer to the question, ‘what is this method good for?’. Everything we
discuss in this book aims to prepare the reader for learning the purpose and appli-
cation of data science.

1.4 Examples and listings

In order to increase the practical usability of the book, we included many examples
throughout and at the end of the chapters. In addition, we provided many worked
examples by using R. These R examples are placed into a dedicated environment
indicated by a green header, see, e. g., Listing 1.1.

Listing 1.1: Example script for R

print("hallo world")

In addition, we provided also an environment for pseudo code in blue, see Pseu-
docode 1.2, and a bash environment in gray, see example 1.3 below.

1.5 How to use this book | 7

Pseudocode 1.2: Example for pseudocode

begin loop
print("hallo world)

end loop

Bash 1.3: Bash environment (terminal)

pwd #print working directory

1.5 How to use this book

Our textbook can be used in many different areas related to data science, including
computer science, information technology, and statistics. The following list gives
some suggestions for different courses at the undergraduate and graduate level, for
which selected chapters of our book could be used:
– Artificial intelligence
– Big data
– Bioinformatics
– Business analytics
– Chemoinformatics
– Computational finance
– Computational social science
– Data analytics
– Data mining
– Data science
– Deep learning
– Information retrieval
– Machine learning
– Natural language processing
– Neuroinformatics
– Signal processing

The target audience of the book is advanced undergraduate students in computer
science, information technology, applied mathematics and statistics, but newcomers
from other fields may also benefit at a graduate student level, especially when their
educational focus is on nonquantitative subjects. By using individual chapters of the
book for the above courses, the lack of a mathematical understanding of the students
can be compensated so that the actual topic of the courses becomes more clear.

For beginners, we suggest, first, to start with learning the basics of the program-
ming language R from part one of this book. This will equip them with a practical

8 | 1 Introduction

way to do something hands-on. In our experience, it is very important to get involved
right from the beginning rather than first reading through only the theory and then
start the practice. Readers with already some programming skills can proceed to
part three of the book. The chapters on linear algebra and analysis should be stud-
ied first, thereafter the order of the remaining chapters can be chosen in arbitrary
order because these are largely independent.

When studying the topics in part three of this book, it is recommended to return
to part two for the graphical visualization of data. This will help to gain a visual
understanding of the methods and fosters the mathematical thinking in general.

For more advanced students, the book can be used as a lookup reference for
getting a quick refresher of important mathematical concepts in data science and
for the programming language R.

Finally, we would like to emphasize that this book is not intended to replace
dedicated textbooks for the subjects in part three. The reason for this is two-fold.
First, we do not aim for a comprehensive coverage of the mathematical topics, but
follow an eclectic approach. This allows us to have a wide coverage that gives broad
insights over many fields. Second, the purpose for learning the methods in the book
is to establish a toolbox of mathematical methods for data science. This motivates
the selection of topics.

|
Part I: Introduction to R

2 Overview of programming paradigms

2.1 Introduction

Programming paradigms form the conceptual foundations of practical programming
languages used to control computers [79, 122]. Before the 1940s, computers were
programmed by wiring several systems together [122]. Moreover, the programmer
just operated switches to execute a program. In a modern sense, such a procedure
does not constitute a programming language [122]. Afterwards, the von Neumann
computer architecture [79, 122, 136] heavily influenced the development of program-
ming languages (especially those using imperative programming, see Section 2.2). The
von Neumann computer architecture is based on the assumption that the machine’s
memory contains both commands and data [110]. As a result of this development,
languages that are strongly machine-dependent, such as Assembler, have been intro-
duced. Assembler belongs to the family of so-called low-level programming languages
[122]. By contrast, modern programming languages are high-level languages, which
possess a higher level of abstraction [122]. Their functionality comprises simple, stan-
dard constructions, such as loops, allocations, and case differentiations. Nowadays,
modern programming languages are often developed based on a much higher level of
abstraction and novel computer architectures. An example of such an architecture
is parallel processing [122]. This development led to the insight that programming
languages should not be solely based on a particular machine or processing model,
but rather describe the processing steps in a general manner [79, 122].

The programming language concept has been defined as follows [79, 122]:

Definition 2.1.1. A programming language is a notational system for communicat-
ing computations to a machine.

Louden [122] pointed out that the above definition evokes some important con-
cepts, which merit brief explanation here. Computation is usually described using
the concept of Turing machines, where such a machine must be powerful enough to
perform computations any real computer can do. This has been proven true and,
moreover, Church’s thesis claims that it is impossible to construct machines which
are more powerful than a Turing machine.

In this chapter, we examine the most widely-used programming paradigms
namely, imperative programming, object-oriented programming, functional pro-
gramming, and logic programming. Note that so-called “declarative” programming
languages are also often considered to be a programming paradigm. The defining
characteristic of an imperative program is that it expresses how commands should
be executed in the source code. In contrast, a declarative program expresses what
the program should do. In the following, we describe the most important features
of these programming paradigms and provide examples, as an understanding of

https://doi.org/10.1515/9783110564990-002

12 | 2 Overview of programming paradigms

Figure 2.1: Programming paradigms and some examples of typical programming languages. R is
a multiparadigm language because it contains aspects of several pure paradigms.

these paradigms will assist program designers. Figure 2.1 shows the classification of
programming languages into the aforementioned paradigms.

2.2 Imperative programming

Many programming languages in current use belong to the imperative programming
paradigm. Examples (see Figure 2.1) include Pascal, C, COBOL, and Fortran, see
[110, 122]. A programming language is called imperative [122] if it meets the following
criteria:
1. Commands are evaluated sequentially.
2. Variables represent memory locations that store values.
3. Allocations exist to change the values of variables.

We emphasize that the term “imperative” stems from the fact that a sequence of
commands can modify the actual state when executed. A typical elementary opera-
tion performed by an imperative program is the allocation of values. To explain the
above-mentioned variable concept in greater detail, let us consider the command

x:=x+1.

Now, one must distinguish two cases of x, see [136]. The l-value relates to the
memory location, and the r-value relates to its value in the memory. Those vari-
ables can be then used in other commands, such as control-flow structures. The
most important control-flow structures and other commands in the composition of
imperative programs are [136, 168]:
– Command sequences (C1; C1; ...; C𝑘).
– Conditional statements (if, else, switch, etc.).

2.3 Functional programming | 13

– Loop structures (while, while ... do, for, etc.).
– Jumps and calling subprograms (goto, call)).

A considerable disadvantage of imperative programming languages is their strong
dependence on the von Neumann model (i. e., the sequence of commands operates
on a single data item and, hence, parallel computing becomes impossible [122]).
Thus, other nonimperative programming paradigms (that are less dependent on the
von Neumann model) may be useful in program design. Direct alternatives include
functional and logic programming languages, which are rooted in mathematics. They
will be discussed in the sections that follow.

2.3 Functional programming

The basic mechanism of a functional programming language is the application and
evaluation of functions [110, 122]. This means that functions are evaluated and the
resulting value serves as a parameter for calling another function.

The key feature that distinguishes functional and imperative programming lan-
guages is that variables, variable allocations, and loops (which require control vari-
ables to terminate) are not available in functional programming [110, 122]. For in-
stance, the command x:=x+1 is invalid in functional programming, as the above-
mentioned terms, memory location, l-value, and r-value (see Section 2.2) do not
carry any meaning in mathematics. Consequently, variables in functional program-
ming are merely identifiers that are bound to values. An example that illustrates this
concept is the command x=5 as in functional programming (and in mathematics),
variables stand for actual values only. In this example, the actual value equals 5. The
command x=6 would change the value of x from 5 to 6. In summary, variables (as
explained in Section 2.2) do not exist in functional programming, but rather con-
stants, parameters (which can be functions) and values [122] are used. The exclusive
application of this concept is also referred to as pure functional programming.

We emphasize that loop structures, which are a distinctive feature of imperative
programming, are here replaced by recursive functions. A weak point thereof is that
recursive programs may be less efficient than imperative programs. However, they
also have clear advantages, as functional programming languages are less machine-
dependent and functional programs may be easier to analyze due to their declarative
character (see Section 2.1). It is important to mention, however, that some functional
programming languages, such as LISP or Scheme, nonetheless, allow variables and
value allocations. These languages are called multiparadigm programming languages
as they support multiple paradigms. In the case of LISP or Scheme, either purely
functional or exclusively imperative features may be implemented.

14 | 2 Overview of programming paradigms

The following examples further illustrate the main features of functional pro-
gramming in comparison with equivalent imperative programs. The first example
shows two programs for adding two integer numbers.

Using (pseudo-)imperative programming, this may be expressed as follows:

Pseudocode 2.1: Imperative version for adding two numbers

Proc sum (a, b);
VAR a, b, sum : Int;
begin
sum:=a+b;
end

In LISP or Scheme, the program is simply (+ a b), but a and b needs to be prede-
fined, e. g., as

Pseudocode 2.2: Defining constants in Scheme

(define a 4)
(define a 5)

The first program declares two variables a and b, and stores the result of the com-
putation in a new variable sum. The second program first defines two constants, a
and b, and binds them to certain values. Next, we call the function (+) (a func-
tion call is always indicated by an open and closed bracket) and provide two input
parameters for this function, namely a and b. Note also that define is already a
function, as we write (define ...). In summary, the functional character of the
program is reflected by calling the function (+) instead of storing the sum of the
two integer numbers in a new variable using the elementary operation “+”. In this
case, the result of the purely functional program is (+ 4 5)=9.

Another example is the square function for real values expressed by

Pseudocode 2.3: Imperative version for squaring a number

Proc square (a);
VAR a, square : real;
begin
square:=a*a;
end

and

Pseudocode 2.4: Functional version for squaring a number

(define (square x)
(* x x))

2.4 Object-oriented programming | 15

The imperative program square works similarly to sum. We declare a real variable a,
and store the result of the calculation in the variable square. In contrast to this, the
functional program written using Scheme defines the function (square) with a
parameter x using the elementary function (*). If we define x as (define (x 4)),
we yield (square 4)=16.

A more advanced example to illustrate the distinction between imperative and
functional programming is the calculation of the factorial, 𝑛! := 𝑛 · (𝑛 − 1) · · · 2 · 1.
The corresponding imperative program in pseudocode is given by

Pseudocode 2.5: Imperative version for factorial of n

Proc factorial (n);
VAR b, n, square : natural;
begin
b:= 1;
while n > 0 do;
b:=n*b;
n:=n-1;
end

This program is typically imperative, as we use a loop structure (while ... do) and
the variables b and n change their values to finally compute 𝑛! (state change). As
loop structures do not exist in functional programming, the corresponding program
must be recursive. In purely mathematical terms, this can be expressed as follows:
𝑛! = 𝑓(𝑛) = 𝑛 · 𝑓(𝑛 − 1) if 𝑛 > 1, else 𝑓(𝑛) = 0 if 𝑛 = 0. The implementation of 𝑛!
using Scheme writes as follows [1]:

Pseudocode 2.6: Functional version for factorial of n

(define (factorial n)
(if (= n 0) 1
(* n (factorial (- n 1))))))

Calling the function (factorial n) (see 𝑓(𝑛)) can be interpreted as a process of ex-
pansion followed by contraction (see [1]). If the expansion is being executed, we then
observe the creation of a sequence of so-called deferred operations [1]. In this case,
the deferred operations are multiplications. This process is called a linear recursion
as it is characterized by a sequence of deferred operations. Here, the resulting se-
quence grows linearly with 𝑛. Therefore, this recursive version is relatively inefficient
when calling a function with large 𝑛 values.

2.4 Object-oriented programming

The development of object-oriented programming languages began during the 1960s,
with Simula among the first to be developed. The basic idea in developing such a

16 | 2 Overview of programming paradigms

language was to establish the term object as an entity that has certain properties
and can react to events [122]. This programming style has been developed to model
real-world processes, as real-world objects must interact with one another. This is
exemplified in Figure 2.2. Important properties of object-oriented programs include
the reusability of software components and their independence during the design
process. Classical and purely object-oriented programming languages that realize
the above-mentioned ideas include, for example, Simula67, Smalltalk, and Eiffel
(see [122]). Other examples include the programming languages C++ or Modula 2.
We emphasize that they can be purely imperative or purely object-oriented and,
hence, they also support multiple paradigms. As mentioned above (in Section 2.3),
LISP and Scheme also support multiple paradigms.

Figure 2.2: Interaction between objects.

When explaining object-oriented programming languages, concepts such as objects,
classes to describe objects, and inheritance must be discussed (see [47, 111]). Objects
that contain both data (relating to their properties) and functions (relating to their
abilities) can be described as entities (see Figure 2.2). A class defines a certain
type of object while also containing information about these objects’ properties
and abilities. Finally, such objects can communicate with each other by exchanging
messages [47, 111]. We only explain the idea of inheritance in brief [47, 111]. To create
new classes, the basic idea is to inherit data and methods from an already existing
class. Advantages of this concept include the abstraction of data (e. g., properties
can be subsumed under more abstract topics) and the reusability of classes (i. e.,
existing classes can be used in further programs and easily modified), see [47, 111].

The above-mentioned concepts are in contrast to imperative programming be-
cause the latter classifies data and functions into two separate units. Moreover,
imperative programming requires that the user of the program must define the data
before it is used (e. g., by defining starting values) and that they ensure that the
functions receive the correct data when they are called. In summary, the advantages
of object-oriented programming can be briefly summarized as follows [47, 111]:
– The error rate is less than that of, for example, imperative languages, as the

object itself controls the data access.
– The maintenance effort can be increased compared to other programming

paradigms as the objects can modify data for new requirements.

2.5 Logic programming | 17

– This programming paradigm has high reusability as the objects execute them-
selves.

2.5 Logic programming

Before sketching the basic principles of logic programming, a short history of this
programming paradigm will be provided here. We note that formal logic [175] serves
as a basis for developing logic programming. Methods and results from formal logic
have been used extensively in computer science. In particular, formal logic has been
used to design computer systems and programming languages. Examples include the
design of computer circuits and control-flow structures, which are often embedded
in programming languages using Boolean expressions [122].

Another area in which the application of formal logic has proven useful is the
description of the semantics of programming languages (see Section 2.8; [122, 126]).
Using formal logic together with axiomatic semantics (see Section 2.8) has been also
essential in proving the correctness of program fragments [122].

Moreover, seminal work has been conducted in theoretical computer science
when implementing methods and rules from formal logic using real computers. An
example thereof is automated theorem proving [175] which places the emphasis on
proving mathematical theorems using computer programs. Interestingly, extensive
research in this area led to the opposite insight, that the results of computation can
be interpreted as proof of a particular problem [122]. This has triggered the devel-
opment of programming languages, which are based logic expressions. A prominent
example of a logic and declarative programming language is Prolog, developed in
the seventies [95]. A concrete example is provided in the paragraph that follows.

To express logical statements formally, the so-called first-order predicate calculus
[175], a mathematical apparatus that is embedded in mathematical or formal logic, is
required. For in-depth analysis of the first-order predicate calculus and its method,
see, for example, [35, 175]. A simple example of the application of the first-order
predicate calculus is to prove the statement naturalnumber(1). We assume the
logical statements

naturalnumber(1)
for all n, naturalnumber(n) → naturalnumber(successor(n))

to be true (see also the Peano axioms [12]). Here, the symbol → stands for the logical
implication. Informally speaking, this means that if 1 is a natural number and if n
is a natural number (for all n), and that, therefore, the successor is also a natural
number, then 3 is a natural number. To prove the statement, we apply the last two
logical statements as so-called axioms [35, 175], and obtain

18 | 2 Overview of programming paradigms

naturalnumber(1) → naturalnumber(successor(1))
→ naturalnumber(successor(successor(1)))

Logic programming languages often use so-called Horn clauses to implement and
evaluate logical statements [35, 175]. Using Prolog, the evaluation of these state-
ments is given by the following:

Listing 2.7: Logic version for natural(3) in Prolog

natural(0).
natural(s(X)) :- natural(X).
natural(X) :- integer(X), X >= 0.
natural(3).
yes

Further details of Prolog and the theoretical background of programming languages
in general can be found in [34, 95, 122, 152].

2.6 Other programming paradigms

In this section, we sketch other programming paradigms and identify some typical
examples thereof. To classify them correctly, we emphasize that they form sub-
paradigms of those already discussed.

We begin by mentioning so-called languages for distributed and parallel program-
ming, which are often used to simplify the design of distributed or parallel programs.
An example thereof is the language OCCAM, which is imperative [5]. The unique fea-
ture of so-called script languages, such as Python and Perl, is their simplicity and
compactness. Both languages support imperative, object-oriented, and functional
programming. Furthermore, programs written using script languages are often em-
bedded into other programs implemented using structure-oriented languages. Exam-
ples of the latter include HTML and XML, see [60]. Statistical programming languages,
such as S and R, have been developed to perform statistical calculations and data
analysis on a large scale [14, 153]. A successor of S, called the New S language, has
strong similarities to S-PLUS and R, while R supports imperative, object-oriented,
and functional programming. The last paradigm we want to mention are declarative
query languages, which have been used extensively for database programming [166].
A prominent example thereof is SQL [166].

2.6.1 The multiparadigm language R

As already discussed in the last section, R is a so-called statistical programming
language that supports multiple paradigms. In fact, it incorporates features from

2.6 Other programming paradigms | 19

imperative, functional, and objective-oriented programming. In the following, we
give some code examples to demonstrate this. The R-statements in Listing 2.8

Listing 2.8: Variable declaration in R

a <- 0
a <- a + 5

a
5

prove the existence of variables (see Section 2.2). That means, this part is imperative.
Another way to demonstrate this is the procedure in Listing 2.9.

Listing 2.9: Imperative version of a sum in R

x=0
fun_sum_imperative <- function(n){

for(i in 1:n){x=x+i}
return(x)

}

fun_sum_imperative(4)
10

The function fun_sum_imperative computes the sum of the first n natural numbers,
and is here written in a procedural way. By inspecting the code, one sees that there is
a state change of the declared variable, again underpinning its imperative character.
In contrast, the functional approach (see Section 2.3) to express this problem is
shown in Listing 2.10.

Listing 2.10: Functional version of a sum in R

fun_sum_functional <- function(n){
if(n==0){return(0)}
else{return(n + fun_sum_functional(n-1))}

}

fun_sum_functional(4)
10

This version uses the concept of recursion for representing the following formula:
sum(n)=n+sum(n-1) (see also Section 2.3). As mentioned in Section 2.3, recursive
solutions may be less efficient especially when calling a function with large values
than iterative ones by using variables in the sense of imperative programming.

To conclude this section, we demonstrate the object-oriented programming
paradigm in R. For this, we employ the object-oriented programming system S4
[129] and implement the same problem as above. The result is shown in Listing 2.11.

20 | 2 Overview of programming paradigms

Listing 2.11: Object-oriented version of a sum in R

setClass("series_operation", representation(n = "numeric"))
setGeneric("fun_sum_object_oriented",
function(n, ...)standardGeneric("fun_sum_object_oriented"))
setMethod("fun_sum_object_oriented",

signature=c(n="series_operation"),
function(n) {t=0;for(i in 1:n at n){t=t+i }; return(t)})
k <- new("series_operation", n=4)
fun_sum_object_oriented(k)
10

First, we use the predefined class series_operation with a predefined data- type.
Then, we define a prototype of the method fun_sum_object_oriented using the
standard class series_operation. Using the setMethod command, we define the
method fun_sum_object_oriented concretely, and also create a new object from
series_operation with a concrete value. Finally, calling the method gives the de-
sired result.

2.7 Compiler versus interpreter languages

In the preceding sections, we discussed programming paradigms and distinct features
thereof. We also demonstrated these paradigms by giving some examples using pro-
gramming languages such as Scheme or Prolog.

In general, the question as to how a programming language can be implemented
concretely on a machine arises. Two main approaches exist to tackle this problem,
namely by means of an interpreter or compiler (see [122, 167, 202]). We start by
explaining the basic principle of an interpreter. Informally speaking, an interpreter
ℐ receives a program and input symbols as its input and computes an output. In
mathematical terms, this can be expressed by a mapping ℐ : 𝐿 × 𝐼 −→ 𝑂, where
𝐿 is an arbitrary programming language and 𝐼 and 𝑂 are sets corresponding to the
input and output, respectively [202]. Figure 2.3 shows the principle of an interpreter
schematically.

Figure 2.3: The basic principle of an interpreter (left) and compiler (right) [122].

2.8 Semantics of programming languages | 21

A distinct property of an interpreter is that the program 𝑝 ∈ 𝐿 and the sequence
of input symbols are executed simultaneously without using any prior information
[202]. Typical interpreter languages include functional programming languages, such
as Lisp and Miranda, but other examples include Python and Java (see [122, 168]).
A key advantage of interpreter languages is that the debugging process is often more
efficient compared to that of a compiler, as the code is executed at the runtime only.
The frequent inefficiency of interpreter programs may be identified as a weakness be-
cause all fragments of the program, such as loops, must be translated when executing
the program again.

Next, we sketch the compiler approach to translate computer programs. A com-
piler translates an input program as a preprocessing step into another form, which
can then be executed more efficiently. This preprocessing step can be understood as
follows: A program written in a programming language (source language) is trans-
lated into machine language (target language) [202]. In mathematical terms, this
equals a mapping 𝐶 : 𝐿1 −→ 𝐿2 that maps programs of a programming language
𝐿1 to other programs of programming language 𝐿2. After this process, a target pro-
gram can be then executed directly. Typical compiler languages include C, Pascal,
and Fortran (see [122, 168]). We emphasize that compiler languages are extremely
efficient compared to interpreter languages. However, when changing the source code,
the program must be compiled again, which can be time consuming and resource
intensive. Figure 2.3 shows the principle of a compiler schematically.

2.8 Semantics of programming languages

Much research has been conducted exploring the effect and behavior of programs
using programming languages [122, 126, 168]. For example, a program’s correctness
can be proven mathematically using methods from so-called formal semantics [126].
Besides their extensive use in theory [122, 126], they have also proven useful in
practice as they have positively stimulated the development of modern programming
languages. Moreover, such methods have been developed as it is required to describe
the effect of programming languages independently from concrete machines.

Below, we briefly sketch the three main approaches to formally describe the
semantics of programming languages [122, 126, 168]:
– Operational semantics describes a programming language by operations of a

concrete or hypothetical machine.
– Denotational semantics is based on the use of semantical functions to describe

the effect of programs. This can be done by defining functions that assign se-
mantical values to the syntactical constructions of a programming language.

– Axiomatic semantics uses logical axioms to describe the semantics of program-
ming languages’ phrases.

22 | 2 Overview of programming paradigms

2.9 Further reading

For readers interested in more details about the topics presented in this chapter, we
recommend [122, 126, 168].

2.10 Summary

The study of programming paradigms has a long history and is relatively complex.
Nevertheless, we considered it important to introduce this fundamental aspect to
show that programming is much more than writing code. Indeed, although pro-
gramming is generally perceived as practical, it has a well-defined mathematical
foundation. As such, programming is less practical than it may initially appear,
and this knowledge can be utilized by programmers in their efforts to enhance their
coding skills.

3 Setting up and installing the R program
In this chapter, we show how to install R on three major operating systems that are
widely used: Linux, MAC OS X, and Windows. As a note, we would like to remark
that this order reflects our personal preference of the operating systems based on
the experience we gained over the years making maximum use of computers.

From our experience, Linux is the most stable and reliable operating system of
these three and is also freely available. An example of such a Linux-operating system
is Ubuntu, which can be obtained from the web page http://www.ubuntu.com/. We
are using Ubuntu since many years and can recommend it to anyone, no matter
whether it is for a professional or a private usage. Linux is in many ways similar
to the famous operating system Unix, developed by the AT&T Bell Laboratories
and released in 1969, however, without the need of acquiring a license. Typically,
a research environment of professional laboratories has a computer infrastructure
consisting of Linux computers, because of the above-mentioned advantages in ad-
dition to the free availability of all major programming languages (e. g., C/C++,
python, perl, and Java) and development tools. This makes Linux an optimal tool
for developers.

Interestingly, the MAC OS X system is Unix-based like Linux, and hence, shares
some of the same features with Linux. However, a crucial difference is that one
requires a license for many programs because it is a commercial operating system.
Fortunately, R is freely available for all operating systems.

3.1 Installing R on Linux

Most Linux distributions have a centralized package repository and a package man-
ager. The easiest installation for Ubuntu is to open a terminal and type:

Bash 3.1: Installing R using the terminal

sudo apt-get install r-base

Alternatively, one can install R by using the Ubuntu software center, which is
similar to an App store. For other Linux distributions the installation is similar,
but details change. For instance, for Fedora, the installation via terminal uses the
command:

Bash 3.2: Installing R using Ubuntu Software Center

yum install -y R

https://doi.org/10.1515/9783110564990-003

24 | 3 Setting up and installing the R program

3.2 Installing R on MAC OS X

There are two packages available to install R on a MAC OS X operating system. The
first is a binary package and the second contains all source files. In the following we
focus on the first type, because the second is not needed for the regular user, but
the developer.

From the R web page (or CRAN), locate the newest version of R for your MAC
OS X operating system. It is important to decide if you need a 64-bit or a 32-bit
version. At the time of writing this book, the current R version is R 3.6.1. The
installation is quite simple by double-clicking the Installer package.

3.3 Installing R on Windows

The installation for Windows is very similar to MAC OS X as described above and
all files can also be found at CRAN.

3.4 Using R

The above installation, regardless for which operating system, allows you to execute
R in a terminal. This is the most basic way to use the programming language.
That means one needs, in addition, an editor for writing the code. For Linux, we
recommend emacs and for MAX OS X Sublime (which is similar to emacs). Both
are freely available. However, there are many other editors that can be used. Just try
to find the best editor for your needs (e. g., nice command highlighting or additional
tools for writing or debugging the code) that allows you to comfortably write code.

Some people like this vi-feeling1 of programming, however, others prefer to have
a graphical-user interface that offers some utilities. In this case, RStudio (https:
//www.rstudio.com/) might be the right choice for you. In Fig. 3.1, we show an
example how an RStudio session looks. Essentially, the window is split into four
parts. A terminal for executing commands (bottom-left), an editor (top-left) to write
scripts, a help window showing information about R (bottom-right) or for displaying
plots, and a part displaying variables available in the working space (top-right).

3.5 Summary

For using the base functionality of R, the installation shown in this chapter is suffi-
cient. That means essentially everything we will discuss in Chapter 5 regarding the

1 Vi is a very simple yet powerful and fast editor used on Unix or Linux computers.

3.5 Summary | 25

Figure 3.1: Window of an Rstudio session.

introduction to programming can be done with this installation. For this reason, we
suggest to skip the next chapter discussing the installation of external packages and
come back to it when it is needed to install such packages.

4 Installation of R packages

After installing the base version of R, the program is fully functional. However,
one of the advantages of using R is that we are not limited to the functionality
that comes with the base installation, but we can extend it easily by installing
additional packages. There are two major sources from which such packages are
available. One is the Comprehensive R Archive Network (CRAN) and the
other is Bioconductor. Recently, GitHub has been emerging as a third major
repository. In what follows, we explain how to install packages from these and other
sources.

4.1 Installing packages from CRAN

The simplest way to install packages from CRAN is via the install.packages function.

Listing 4.1: Package installation from CRAN: general syntax

install.packages(pkgs = package.name)

Here, package.name is the name of the package of interest. In order to find the
name of a package we want to install, one can go the CRAN web page (http://cran.r-
project.org/) and browse or search the list of available packages. If such a package
is found, then we just need to execute the above command within an R session and
the package will be automatically installed. It is clear that in order for this to work
properly, we need to have a web connection.

As an example, we install the bc3net package that enables infering networks
from gene expression data [45].

Listing 4.2: Package installation from CRAN: bc3net

install.packages(pkgs = "bc3net")

At the time of writing this book CRAN provided 14435 available packages. This
is an astonishing number, and one of the reasons for the widespread use of R since
all of these packages are freely available.

4.2 Installing packages from Bioconductor

Installing packages from Bioconductor is also straightforward. We just need to go to
the web page of Bioconductor (http://www.bioconductor.org/) and search for the
packages of interest. Then, on each page there is some information about how to in-

https://doi.org/10.1515/9783110564990-004

28 | 4 Installation of R packages

stall the package. For example, if we want do install the package graph that provides
functions to manipulate networks, one needs to execute the following commands:

Listing 4.3: Package installation from Bioconductor

if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")

BiocManager::install("graph")

The first command sets the source from where to download the package, and the
second command downloads the package of interest.

4.3 Installing packages from GitHub

GitHub is a website providing a home for git repositories, whereas git is a freely
available and open source distributed version control system that supports software
development. The general way to install a package is

Listing 4.4: Package installation from GitHub: general syntax

install.packages("devtools")
devtools::install_github("ID/packagename")

That means, first, the package devtools from CRAN needs to be installed and
then a package from GitHub with the name ID/packagename can be installed. For
instance, in order to install ggplot2 one uses the command

Listing 4.5: Package installation from GitHub: ggplot2

devtools::install_github("tidyverse/ggplot2")

4.4 Installing packages manually

4.4.1 Terminal and unix commands

For the manual installation of packages, described below, on a Windows system, it is
necessary to install first the freely available program Cygwin. Cygwin is an interface
enabling a Unix-like environment similar to a terminal for Linux or MAC, which has
this available right out of the box. In general, a terminal enables entering commands
textually via the keyboard and provides the most basic means to communicate with
your computer. It is interesting to note that when using your mouse and clicking
a button, this action is internally converted into commands that are fed to the

4.4 Installing packages manually | 29

Table 4.1: Essential unix commands that can be entered via a terminal.

Unix Command Description

cd path change to directory
clear clear the terminal screen
cp source destination copy files and directories
df display used and available disk space
du shows how much space each file uses
file filename determine what type of data is within a file
head filename display the beginning of a file
history displays the last commands typed
kill pid Stop a process
ls list directory contents
man [command] display help information for the specified command
mkdir directory create a new directory.
mv [options] source destination rename or move file(s) or directories
ps [options] display a snapshot of the currently running processes
pwd display the pathname for the current directory
rm [options] directory remove file(s) and/or directories
rmdir [options] directory delete only empty directories
top displays the resources being used (Press q to exit)
wc file count number of words in file

computer processor for execution. The problem is that, for what we describe below,
there are no buttons available that could be clicked with your mouse. The good
thing is that this is not really a problem as long as we have a terminal that allows
us to enter the required commands directly.

Before we proceed, we would like to encourage the reader to get at least a basic
understanding of unix commands because this gives you a much better understand-
ing about the internal organization of a computer and its directory structure. In
Table 4.1, we provide a list of the most basic and essential unix commands that can
be entered via a terminal.

4.4.2 Package installation

The most basic method to install packages is to download a package to your local
hard drive and then install it. Suppose that you downloaded such a package to the
directory “home/new.files”. Then you need to execute the following command within
a terminal (and not within an R session!) from the home directory:

R CMD INSTALL package.name

30 | 4 Installation of R packages

4.5 Activation of a package in an R session

In order to use the functions provided by a package in R, first, one needs to activate
a package. This is done by the library function:

Listing 4.6: Syntax for package activation in an R session

library(package.name)

Only after the execution of the above command the content of the package
package.name is available. For instance we activate the package bc3net as follows:

Listing 4.7: Package activation in an R session: bc3net

library("bc3net")

To see what functions are provided by a package we can use the function help:

Listing 4.8: Help function for packages

help(package.name)

4.6 Summary

In this chapter, we showed how to install external packages from different package
repositories. Such packages are optional and are not needed for utilizing the base
functionality of R. However, there are many useful packages available that make pro-
gramming more convenient and efficient. For instance, in an academic environment
it is common to provide an R package when publishing a scientific article that allows
reproducing the conducted analysis. This makes the replication of such an analysis
very easy because one does not need to rewrite such scripts.

5 Introduction to programming in R

This chapter will provide an introduction to programming in R. We will discuss key
commands, data structures, and basic functionalities for writing scripts. R has been
specifically developed for the statistical analysis of data. However, here we focus on
its general purpose functionalities that are common to many other programming
languages. Knowledge of these functionalities is necessary for utilizing its advanced
capabilities discussed in later chapters.

5.1 Basic elements of R

In R a value is assigned to a parameter by the “< −” operator:

Listing 5.1: Value assignment

a <- 4

In principle also, the symbol “=” can be used for an assignment, but there are cases
where this leads to problems, and for this reason we suggest using always the “< −”
operator, because it can be used in all cases.

The basic elements of R, to which different values can be assigned, are called
objects. There are different types of objects and some of them are listed in Table 5.1.

Table 5.1: Information about basic object types in R.

Object type Example Description

NULL NULL place holder (initialized but empty)
NA NA missing value (non-available)
environment a <- new.env(hash=TRUE) an environment
logical TRUE, FALSE logical values
integer 1, 2, 3, . . . integer values
double 1.3452 real values
character ’hallo’ a string of character values
expression exp <- parse(text=c(”x <- 2”)) an expression object
list x <- list(3, c(5,3)) a list

The command typeof() provides information about the type of an object. An inter-
esting type is NULL, which is not an actual object-type, but serves more as a place
holder allowing an empty initialization. In Section 5.3.1, we will show how this can
be useful. Another interesting type is NA, indicating missing values.

https://doi.org/10.1515/9783110564990-005

32 | 5 Introduction to programming in R

5.1.1 Navigating directories

When opening an R session, it may be unclear in which directory we actually are. In
order to find this out one can use the get working directory function getwd():

Listing 5.2: Getting the current working directory

getwd()

This will result in a character string showing the full path to the current working
directory of the R session. In case one would like to change the directory, one can
use the set working directory function setwd():

Listing 5.3: Setting a new working directory

setwd(new.dir)

Here, new.dir is a character string containing a valid name of a directory you would
like to set as your current working directory.

5.1.2 System functions

An important part of R and any programming language is a system function. A sys-
tem function has a name followed by a list of arguments in parentheses. A simple
example for such a function is sqrt(). In order to use such a function appropriately,
one needs to know:
– the name of the function
– the arguments of the function
– the meaning of the function and its arguments

Let us assume that we know the name of the function, but not of its arguments. In
R, there are two ways to find this out. First, one can use the function args() and, as
an argument for this function, the name of the function with unknown arguments:

Listing 5.4: Getting arguments of a function

args(sqrt)

The information resulting from args() is usually only informative if one is already
familiar with the function of interest, but just forgot details about its arguments. For
more information, we need to use the function help(), which is described in detail in
the next section.

5.1 Basic elements of R | 33

In the following, we use the term “function” and “command” interchangeably,
although a command has a more general meaning than a function.

5.1.3 Getting help

When there is a command that we want to use, but we are unfamiliar with its syntax,
e. g., sqrt(), R provides a help function, which is evoked by either help(sqrt) or ?sqrt:

Listing 5.5: Using the function help()

help(sqrt)
?sqrt

The output of either of these commands is a textual information, providing infor-
mation about this function (see Figure 5.1).

Figure 5.1: Help information provided by R for the sqrt() function.

At this early stage in the book, we would like to highlight the fact that R provides
helpful information about functions, but this does not necessarily mean that this
information will be to the extend you expect or would wish for. Instead, usually, the
provided help information is rather short and not sufficient (or intended) to fully
understand the very details of the complexity of the function of interest.

However, most help information comes with R examples at the end of the help
file. This allows you to reproduce, at least parts, of the capabilities of the described

34 | 5 Introduction to programming in R

functions by using the provided example code. It is not necessary to type these
examples manually but there is a useful function available, called example(), that
executes the provided example code automatically:

Listing 5.6: Using the function example()

example(sqrt)

That means you do not need to manually copy-and-paste (or type) the example
code, but just apply the example() command to the function you wish to learn more
about.

5.2 Basic programming

5.2.1 If-clause

A basic element of every programming language is an if-clause. An if-clause can be
used to test the truth of a logical statement. For instance, the logical statement in
the example below is: 𝑎 > 2. If the variable 𝑎 is larger than 2, then this statement
is true, and the code in the first {} brackets is executed. However, if this statement
is false, then the code that follows the brackets {} after else will be executed.

Listing 5.7: Using the If-clause

a <- 3
if(a > 2){

print("a is larger than 2")
}
else{

print("a is not larger than 2")
}
[1] "a is larger than 2"

The general form of an if-clause is given by the following structure. Here, a gen-
eral logical statement is the argument of the if-clause. Depending on if this statement
is true or false, the commands in part 1 or 2 are executed. That means, the outcome
of the test of the provided logical statement selects the commands to be executed.

Listing 5.8: Syntax of the If-clause

if(logical statement){
...commands in part 1... # if the logical statement is true
}else{
...commands in part 2... # if the logical statement is false
}

5.2 Basic programming | 35

The usage of an if-clause is very flexible, allowing the removal of the else clause,
but also to include further conditional statements by means of the else if com-
mand.

Listing 5.9: Using the If-clause

a <- 3
if(a > 4){

print("a is larger than 2")
}

Listing 5.10: Using the If-clause

a <- 3
if(a == 2){

print("a is 2")
}else if(a==3){

print("a is 3")
}else if(a==4){

print("a is 4")
}else{

print("a is something else")
}
[1] "a is 3"

We would like to note that, e. g., the statement “a=4” is not a logical statement, but
an assignment, and will for this reason not work as an argument for an if-clause.

5.2.2 Switch

The switch() command is conceptually similar to an if-clause. However, the difference
is that one can test more than one condition at the same time. For instance, in the
example below, the switch() command tests 3 conditions, because it has 3 executable
components, indicated by the “{ }” environments. If the variable “a” is 1, the first
commands are executed, if “a” is 2 the second, and so on.

Listing 5.11: Using the switch() command

a <- 2
switch(a, {print("A"); print("B")},

{print("C")},
{print("D")})

For all other values of “a”, there will be no true condition and, hence, none of the
above commands will be executed.

For clarity, we just want to mention that for reasons of a better readability, we
split the switch() command in the above example into three different lines. This way

36 | 5 Introduction to programming in R

one can see that it consists of 3 executable components. When you write your own
programs, you will see that such a formatting is in general very helpful to get a quick
overview of a program, because this increases the readability of the code.

5.2.3 Loops

In R, there are two different ways to realize a looping behavior. The first is by using
a for-loop, and the second by using a while-loop. A looping behavior means the
consecutive execution of the same procedure for a number of steps. The number of
steps can be fixed, or variable.

5.2.4 For-loop

A for-loop repeats a statement for a predefined number of times. In the following
example, 𝑖 is successively assigned the values 1 to 3, and the command print(i) is
executed 3 times, for three different values of 𝑖:

Listing 5.12: Using the For-loop

for(i in 1:3){
print(i)

}
[1] 1
[1] 2
[1] 3

5.2.5 While-loop

Another looping function is while(). Its syntax is

Listing 5.13: Syntax of the While-loop

while(argument)
{

statement
}

In contrast with a for-loop, which executes a loop a predefined number of times, a
while-loop repeats a statement as long as the argument of while() is logically true:

Listing 5.14: Using the While-loop

i <- 0

5.2 Basic programming | 37

while(i<3){
i <- i + 1
print(i)
}
[1] 1
[1] 2
[1] 3

One needs to make sure that the argument of the while() function becomes at some
time during the looping process logically false, because otherwise the function is
iterated infinitely. This is a frequent programming bug.

5.2.6 Logic behind a For-loop

Before we continue, we want to present a look behind the curtains of the logic behind
a for-loop. The reader who has already some familiarity with programming can skip
this section, but in our experience the following information is helpful for beginners
to see in detail how a for-loop works.

The general form of a for-loop consists of a for() function that executes the body
of the for-loop comprised of individual R commands, depending on the argument of
the for-loop.

Listing 5.15: Inner working of the For-loop

for(argument)
{

body
}

In the following, we will discuss each of the three components of the for-loop and
their connections.

5.2.6.1 Argument of the For-loop
In order to keep the logic simple, let us assume that the argument of the for-loop is

argument = i in 1:N (5.1)

This argument contains one variable and one parameter. Here i is the variable,
because its value changes systematically with every loop that is executed, and N is
a parameter, because its value is fixed throughout the whole loop. The values that
can be assumed to i are determined by 1:N, because the argument says i in 1:N.
If you define N=4 and execute 1:N in an R session, you get

38 | 5 Introduction to programming in R

Listing 5.16: Inner working of the For-loop: example

N <- 4
1:N
[1] 1 2 3 4

That means 1:N is a vector of integers of length N. To see this, you can define a <-
1:N and access the components of vector a by a[1], e. g., for the first component.

The values that i can assume are systematically assigned according to the order
of the vector 1:N, i. e., in loop 1, i is equal to 1; in loop 2, i is equal to 2; until
finally in loop N, i is equal to N. For this reason, the “argument” of a for-loop is—in
our example—dependent on the variable i, i. e.,

argument(i), (5.2)

and in general it is dependent on the number of the loop step, i. e.,

argument(loop step). (5.3)

Note that this is just a symbolic writing to emphasize that the argument of a loop
is connected to the step of the loop. Here, it is important to realize that the variable
of the “argument” changes its value in every loop step.

5.2.6.2 Body of the For-loop
The body of the for-loop is just a list of commands provided between the curled
“{}” brackets. In principle, the body can consist of one or more commands—zero
commands are allowed as well, but this does not result in a meaningful action—
that are executed consecutively (see the next section). In order to be precise, one
needs to realize that the body is a function of the argument, i. e., symbolically we
can write,

body(argument). (5.4)

Due to the fact that the argument itself is a function of the loop step, we have the
following dependency chain:

body(argument(loop step)). (5.5)

5.2.6.3 For-function
The third part is an actual R function. In R, you can always recognize a function
by its name, followed by round brackets “()” containing, optionally, an argument.
In the case of the for-function, it contains an argument, as discussed above. The
purpose of the for-function is to execute the body consecutively.

To make this clear, especially with respect to the argument of the body, which
depends on the number of the loop step, let us consider the following example:

5.2 Basic programming | 39

Listing 5.17: Inner working of the For-loop

for(i in 1:3){
a <- i + 2
print(a)

}

The for-function converts this into the following consecutive execution of the body,
as a function of the argument:

Listing 5.18: Inner working of the For-loop

#loop 1: i = 1 - change of the workspace
a <- 1 + 2
print(a)

#loop 2: i = 2 #change of the workspace
a <- 2 + 2
print(a)

#loop 3: i = 3 #change of the workspace
a <- 3 + 2
print(a)

First, the value of the variable i changes with every loop, according to the argument.
In our case “i” just assumes the values 1, 2, 3. Then the concrete value of i is
used in every loop, leading to different values of a. From a more general point
of view, this means that the for-function does not only execute the body of the
function consecutively, but it changes also the content of the workspace, which is
the memory of an R session, with every loop step. This is the exact meaning of
body(argument(loop step)).

In Fig. 5.2, we visualize the general working mechanism of a for-loop by unrolling
it in time. Overall, if one wants to understand what a particular For-loop does,
one just needs to unroll its “body” in the way depicted in Fig. 5.2, considering the
influence of the “argument” on it.

Figure 5.2: Unrolling the functional work-
ing mechanism in time of a for-loop.

40 | 5 Introduction to programming in R

This discussion demonstrates that a for-loop, or any other R function, can be
quite complicated if we want to understand in more detail how it works. However,
once we understand its principle working mechanism, we can fade-out these details
focusing on key factors only. For the for-loop this is the systematic modification
of the variable in the argument of the loop, and the consecutive execution of its
body.

5.2.7 Break

Both loop functions can be interrupted at any time during the execution of the loop
using the break() command. Frequently, this is used in combination with an if-clause
within a loop to test for a specific decision that shall lead to the interruption of the
loop.

Listing 5.19: Inner working of the For-loop: example for break()

for(i in 1:3){
print(i)
if(i==2) break

}

Combining loops with if-clauses and the break() function allows creating very flexible
constructs that can exhibit a rich behavior.

5.2.8 Repeat-loop

For completeness, we want to mention that there is actually a third type of loop
in R, the repeat-loop. However, in contrast with a for-loop and a while-loop, this
does not come with an interruption condition, but is in fact an infinite loop that
does never stop. For this reason, the repeat() command needs to be used always in
combination with the break() statement:

Listing 5.20: Using the Repeat-loop: example

i <- 0
repeat {

i <- i + 1
print(i)
if(i > 10) break

}

5.3 Data structures | 41

5.3 Data structures

5.3.1 Vector

A vector is a 1-dimensional data structure. As the example below shows, a vector
can be easily defined by using the combine function c(). This function concatenates
its elements forming a vector. Individual elements can be accessed in various ways,
using squared brackets.

There are many functions to obtain properties of a vector, e. g., its length or
the sum of its elements. In order to make sure that the sum of its elements can be
computed, the function mode() or typeof() allows determining the data-type of the
elements. Examples of different types are character, double, logical, or NULL.

Listing 5.21: Vectors

a <- c(3,4,1,7,12)
a
[1] 3 4 1 7 12

a[3]
[1] 1

a[c(2,5)]
[1] 4 12

a[2:4]
[1] 4 1 7

length(a)
[1] 5

sum(a)
[1] 27

mode(a)
[1] "numeric"

Accessing elements of a vector can be done either individually (a[3] gives the
third element of vector a) or collectively by specifying the indices of the elements
(a[c(2,5)] gives the second and fifth element).

One can also assign names to elements of a vector using the command names().
When assessing an element with its name, one needs to make sure to use the same
index. In the below example, one needs to use "C" and not C, because the latter
indicates a variable rather than the capital letter itself.

Listing 5.22: Vectors

a <- seq(2,16,4)
a
[1] 2 6 10 14

42 | 5 Introduction to programming in R

names(a) <- LETTERS[1:4]
a
A B C D
2 6 10 14

a["C"]
C

10

There are also several functions available to generate vectors by using predefined
functions, e. g., the sequence (seq()) of numbers or letters (letters()). A general char-
acteristic of a vector is that whatever the type its elements, they need to be all of
the same type. This is in contrast with lists, discussed in Section 5.3.3.

Listing 5.23: Vectors

a <- seq(2,16,2)
a
[1] 2 4 6 8 10 12 14 16

b <- letters[1:4]
b
[1] "a" "b" "c" "d"

typeof(b)
[1] "character"

It is also possible to define a vector of a given length and mode initiated by zeros. For
example, vector(mode = "numeric", length = 10) results in a numeric vector of
length 10, whereas each element is initialized with a 0.

It is also possible to apply a function element-wise to a vector without the need
to access its elements, e. g., in a for-loop.

Listing 5.24: Vectors

a <- c(4,9,81,64)

sqrt(a)
[1] 2 3 9 8

a * a
[1] 16 81 6561 4096

Other useful functions that can be either applied to a vector or used to generate
vectors are provided in Table 5.2.

If we want to add an element to a vector, we can use the command append():

Listing 5.25: Vectors

a <- 1:3
a <- append(a, 7, after = length(a))

5.3 Data structures | 43

a
[1] 1 2 3 7

Table 5.2: Examples of functions that can be applied to vectors or can be used to generate vec-
tors.

Command name Description

LETTERS capital letters
letters lower case letters
month.name month names
rep("hello", times=3) repeats the first argument n-times
sum sum of all elements in the vector
length length of vector
rev reverse order of elements

Here the option after allows specifying a subscript, after which the values are to be
appended.

This command allows us also to demonstrate the usefulness of the NULL object
type, introduced in Section 5.1.

Listing 5.26: Vectors

a <- c()
a <- append(a, 7, after = length(a))
a
[1] 7

Although the variable a does not contain an element with a value, it contains one
initialized element as a place holder of type NULL. Repeating the above example with
an uninitialized object would result in an error message.

A simplified form of the above can be written as follows:

Listing 5.27: Vectors

a <- c()
a <- c(a, 7)
a
[1] 7

5.3.2 Matrix

A matrix is a 2-dimensional data structure. It can be constructed with the command
matrix(), see Listing 5.28.

44 | 5 Introduction to programming in R

Listing 5.28: Matrix

a <- matrix(c(1,2,3,4,5,6), nrow = 3, ncol = 2, byrow = TRUE)
a

[,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6

a[1,2]
[1] 2

a[1,]
[1] 1 2

a[c(1,3),]
[,1] [,2]

[1,] 1 2
[2,] 5 6

Here, the option byrow allows controlling how a matrix is filled. Specifically, by
setting it to “FALSE” (default), the matrix is filled by columns, otherwise the matrix
is filled by rows. Accessing the elements of a matrix is similar to a vector by using
the squared brackets. Again, this can be done either individually (a[1,2] giving
the element in row 1 and column 2) or collectively by specifying the indices of the
elements (a[c(1,3),] gives all the elements of row 1 and 3). It is interesting to note
that by not specifying element, i. e., by using “,”, all elements are selected.

There are several commands available to obtain the properties of a matrix. Some
of these commands are provided in Table 5.3.

Table 5.3: Examples of functions that can be applied to matrices.

Command name Description

dim dimension of a matrix: c(nrow, ncol)
ncol number of columns
nrow number of rows
length total number of elements

Sometimes, it is useful to assign names to rows and columns. This can be achieved
by the commands rownames() and colnames().

Listing 5.29: Matrix

rownames(a) <- letters[1:3]
colnames(a) <- c("white", "black")
a

white black
a 1 2
b 3 4
c 5 6

5.3 Data structures | 45

Once these attributes are set, they can be retrieved by using the same command,
e. g., rownames(a) would give you a vector of length nrow, including the names of
the rows. The names of the rows or columns can also be used to access the rows and
columns:

Listing 5.30: Matrix

a[,"white"]
[1] 1 3 5

There are alternative ways to create a matrix. For instance, by using the commands
cbind(), rbind(), or dim():

Listing 5.31: Matrix

rbind(c(2,5,3), c(4,3,4))
[,1] [,2] [,3]

[1,] 2 5 3
[2,] 4 3 4

a <- c(2,5,6,2)
dim(a) <- c(2,2)
a

[,1] [,2]
[1,] 2 6
[2,] 5 2

Also, functions can be applied to a matrix element-wise. For example, sqrt() calcu-
lates the square root of each element.

All basic operations known from linear algebra can be performed with a matrix,
e. g., addition, multiplication, or matrix multiplication.

Listing 5.32: Matrix

a + a
[,1] [,2]

[1,] 4 12
[2,] 10 4

a * a # aˆ2
[,1] [,2]

[1,] 4 36
[2,] 25 4

a %*% a
[,1] [,2]

[1,] 34 24
[2,] 20 34

For mathematical calculations, it is frequently necessary to “swap” the rows and the
columns of a matrix. This can be conveniently achieved by the transpose function t().

46 | 5 Introduction to programming in R

5.3.3 List

A list is a more complex data structure than the previous ones, because it can
contain elements of different types. This was not allowed for either of the previous
data structures. Formally, a list is defined using the function list(), see Listing 5.33.

Listing 5.33: Using a list

a <- matrix(c(1,2,3,4), nrow = 2, ncol = 2, byrow = TRUE)
b <- list(a, "hello", 3, c(4,2))
b
[[1]]

[,1] [,2]
[1,] 1 2
[2,] 3 4

[[2]]
[1] "hello"

[[3]]
[1] 3

[[4]]
[1] 4 2

In the above example, the list b consists of 4 elements, which are different data
structures. In order to access an element of a list, the double-squared brackets can
be used, e. g., b[[2]], to access the second element. This appears similar to a vector,
discussed in Section 5.3.1. In fact, there are many commands for vectors that can
also be applied to lists, e. g., length() or names(). If name attributes are assigned to
the elements of a list, then these can be accesses by the “$” operator.

Listing 5.34: Accessing an element of a list

names(b) <- LETTERS[1:4]
b$C
[1] 3

In this case, the usage of double-squared brackets or the “$” operator provide the
same results. It is also possible to assign names to the elements when defining a list.
The following example shows that even a partial assignment is possible. In this case,
the first two elements could be accessed by their name, whereas the latter two can
only be accessed by using indices, e. g., b[[3]] for the third element.

Listing 5.35: Mixed assignment of list elements

a <- matrix(c(1,2,3,4), nrow = 2, ncol = 2, byrow = TRUE)
b <- list(ind1=a, ex="hello", 3, c(4,2))
> names(b)
[1] "ind1" "ex" "" ""
> b

5.3 Data structures | 47

$ind1
[,1] [,2]

[1,] 1 2
[2,] 3 4

$ex
[1] "hello"

[[3]]
[1] 3

[[4]]
[1] 4 2

5.3.4 Array

Arrays are a generalization of vectors, matrices, and lists in the sense that they can
be of arbitrary dimension and type.

Listing 5.36: Arrays

array(1:8, dim = c(2,2,2))
, , 1

[,1] [,2]
[1,] 1 3
[2,] 2 4

, , 2

[,1] [,2]
[1,] 5 7
[2,] 6 8

Elements of an array can be accessed using squared brackets, and the number of
indices corresponds to the number of dimensions.

Listing 5.37: Arrays

a <- array(1:8, dim = c(2,2,2))
a[2,2,1]
[1] 4

a[,,1]
[,1] [,2]

[1,] 1 3
[2,] 2 4

The components of an array can assume any type, like a list.

48 | 5 Introduction to programming in R

Listing 5.38: Arrays

a <- array(list("one", 1:3, matrix(0,2,2)), dim = c(2,2,2))
a
, , 1

[,1] [,2]
[1,] "one" Numeric,4
[2,] Integer,3 "one"

, , 2

[,1] [,2]
[1,] Integer,3 "one"
[2,] Numeric,4 Integer,3

5.3.5 Data frame

A data frame is a generalization of a matrix and a list, allowing inheriting some
of their properties. Briefly, a data frame is a rectangle data structure that allows
columns (or rows) to be of a different data-type.

Listing 5.39: Data frame

df <- data.frame(x=1:3, y=month.name[1:3])
df

x y
1 1 January
2 2 February
3 3 March

df$x
[1] 1 2 3

dim(df)
[1] 3 2

Again the command names() can be used to identify the names of the elements in a
data frame. Interestingly, the “$” operator can be used with "x" as well as x to access
elements. Table 5.4 provides an overview of further commands for data frames.

Table 5.4: Some examples of commands that can be used with data frames.

Command name Description

dim dimension of a matrix: c(nrow, ncol)
ncol number of columns
nrow number of rows
length total number of elements
names names of the elements

5.3 Data structures | 49

5.3.6 Environment

An environment is similar to a list, however, it needs named elements. That means,
the name of an element needs to be a character string. The command ls() provides
a list of the names of all elements in an environment.

Listing 5.40: Environment

a <- new.env(hash=TRUE)
a$x <- c(3,4,2)

a$x
[1] 3 4 2

a$"x"
[1] 3 4 2

a[["x"]]
[1] 3 4 2

ls(a)
[1] "x"

Alternatively, one can use the function assign() to assign a new element to an envi-
ronment:

Listing 5.41: Setting an element of an environment with assign()

assign("y", "hello", envir = a)

a$y
[1] "hello"

Correspondingly, the function get() can be used to obtain elements of an environ-
ment:

Listing 5.42: Obtaining elements from an environment with get()

get("y", envir = a)
[1] "hello"

When we are unsure about the names of elements, we can use the function exists()
to perform a logical test, resulting in either a true or a false depending on whether
the element exists in the environment or not:

Listing 5.43: Test the existence of elements in an environment

exists("z", envir=a)
[1] FALSE

exists("y", envir=a)
[1] TRUE

50 | 5 Introduction to programming in R

In order to delete elements of an environment the command remove() can be used:

Listing 5.44: Remove elements from an environment

remove(list = "y", envir = a)

5.3.7 Removing variables from the workspace

Sometimes it is necessary to delete variables that have been defined. In contrast
to the above example for an environment, this will delete the variable from the
workspace of R. This can be done by using the remove function rm():

Listing 5.45: Deleting variables from the workspace

> a <- 4
> rm(a)
> a
Error: object 'a' not found

If we want to delete many variables, we need to specify the “list” argument of the
command rm() providing a character vector naming the objects to be removed. We
can also delete all variables in the current working space in the following way:

Listing 5.46: Deleting all variables in the working space

rm(list = ls())

5.3.8 Factor

For analyzing data containing categorial variables, a data structure called factor is
frequently encountered. A factor is like a label or a tag that is assigned to a certain
category to represent it. In principle, one could define a list containing the same
information, however, the R implementation of the data structure factor is more
efficient. An example for defining a factor is given below.

Listing 5.47: Defining a factor

height <- factor(c("small", "normal", "tall", "normal"))
height
[1] small normal tall normal
Levels: normal small tall

5.3 Data structures | 51

Here, we assign 4 different factors to height, but only three “values” are different.
In the case of a factor, different values are actually called levels. The different levels
of a factor can also be obtained with the command levels().

In the above example, the factors were categorial variables, meaning that the
levels have no particular ordering. An extension to this is to define such an ordering
between the levels. This can be done implicitly or explicitly.

Listing 5.48: Defining a factor

height <- factor(c("small", "normal", "tall", "normal"),
ordered=T)
height
[1] small normal tall normal
Levels: normal < small < tall

height <- factor(c("small", "normal", "tall", "normal"),
levels=c("tall", "normal", "small"), ordered=T)
height
[1] small normal tall normal
Levels: tall < normal < small

The first example above, defines ordered factors by setting “ordered=T”. As a result,
there is an ordering between the three levels despite the fact that we did not specify
this order explicitly. However, this order is not due to any semantic meaning of these
words, but this is just an alphabetic ordering of the words.

If we would like defining a different order between the levels, we can include the
levels option. Then, the resulting order will follow the order of the levels specified
by this option.

5.3.9 Date and Time

For assessing the date and time of the computer system, we can use the following
functions:

Listing 5.49: Date and Time

Sys.time()
Sys.Date()

Each of these functions results in an R object of a specific type. The first function
returns an object of class POSIXct and the second of class Date. The reason for this
is that objects of the same type can be manipulated in a convenient way, e. g., using
subtraction, we can get the time difference between two time points or dates.

52 | 5 Introduction to programming in R

5.3.10 Information about R objects

In the above sections, we showed how to define basic R objects of different types. In
all these cases, we knew the type of these object, because we defined them explicitly.
However, when using packages, we may not always have this information. For such
cases, R provides various commands to get information about the types of objects.

5.3.10.1 The functions attributes() and class()
The function attributes() gives information about different attributes an R object
can have, including information about class, dim, dimnames, names, row.names,
or levels. In case the attributes() function does not provide information about the
class of an R object, one can obtain this information with the command class().

5.3.10.2 The functions summary() and str()
In Chapter 2, discussed programming paradigms in detail, but we want to repeat
here that every R object is a member of a certain class. Classes are powerful data
structures that do not only have attributes, but come also with specific functions.
Here, it is only important to know that this implies that behind a simple variable
can be a complex structure that is not recognizable without help. R provides the
functions summary() and str() to get information about the structure of an object,
where the latter is a simplified version of the former.

5.3.10.3 The function typeof()
Sometimes it is important to know how an R object is stored internally, because
this gives information about the amount of bytes that are required. The func-
tion typeof() gives this information and its possible outputs are logical, integer,
double, complex, character, or S4.

5.4 Handling character strings

5.4.1 The function nchar()

There is a variety of commands available in R to manipulate character strings. One
of the simplest functions is nchar(), which returns the length of a string:

Listing 5.50: Character strings

s <- "Hallo world!"
nchar(s)
[1] 12

5.4 Handling character strings | 53

If we use the function length() instead, it would not return the number of characters,
but count the whole string as 1.

5.4.2 The function paste()

For concatenating strings together one can use the function paste():

Listing 5.51: Character strings: paste

paste("Hallo", "world")
[1] "Hallo world"

paste("Hallo", "world", sep="")
"Halloworld"

The sep option allows specifying what separator is used for concatenating the strings;
the default introduces a blank between two strings.

It is also possible to include a variable to form a new string.

Listing 5.52: Character strings: paste

i <- 3
paste("file", i, ".txt", sep="")
[1] "file3.txt"

This is useful if we want to read many files from a directory within a loop and
their names vary in a systematic way, e. g., by an enumeration. It can also be used
to create names for an environment (see Sec. 5.3.6), because an environment needs
strings as indices for elements.

Furthermore, the function paste() can be used to connect more than just two
strings:

Listing 5.53: Character strings: paste

paste("This", "is", "another", "example")
[1] "This is another example"

5.4.3 The function substr()

A substring of a certain length can be extracted from a string by the command
substr(x, start, stop):

54 | 5 Introduction to programming in R

Listing 5.54: Character strings: substr()

s <- "ABCDEFGHIJKL"
substr(s, start=3, stop=5)
[1] "CDE"

substring(s, 3) <- c("abc")
s
[1] "ABabcFGHIJKL"

If we want to overwrite parts of a string s with another string, we need to use the
function substring() with start, specifying where to start overwriting. In case we
just want to insert a new string without overwriting parts of the string s, we need
to use the function substr():

Listing 5.55: Character strings: substr()

s <- "ABCDEFGHIJKL"
substr(s, start=3, stop=5) <- c("abc")
s
[1] "ABabcFGHIJKL"

5.4.4 The function strsplit()

Splitting a string in one or more substrings can be done using the function strsplit():

Listing 5.56: Character strings: strsplit()

s <- "A-B-C"
strsplit(s, split="-")
[[1]]
[1] "A" "B" "C"

The command is a bit tricky if one uses certain symbols as a split:

Listing 5.57: Character strings: strsplit()

s <- "A.B.C"
strsplit(s, split="[.]")
[[1]]
[1] "A" "B" "C"

The reason why a ''.'' does not work as a split symbol, but ''[.]'' does, is due
to the fact that the argument split is a regular expression (see Section 5.4.5).

5.4 Handling character strings | 55

5.4.5 Regular expressions

R provides very powerful functions to search strings for matching patterns:

Listing 5.58: Regular expressions

match-object <- regexpr(pattern, text)
match-object <- gregexpr(pattern, text)

The first argument of the above function characterizes the pattern we try to find
and text is the string to be searched.

Listing 5.59: Examples for regular expressions

txt <- c("This","is","just","a","test")
regexpr("is", txt)
[1] 3 1 -1 -1 -1
attr(,"match.length")
[1] 2 2 -1 -1 -1
attr(,"useBytes")
[1] TRUE

gregexpr("is", txt)
[[1]]
[1] 3
attr(,"match.length")
[1] 2
attr(,"useBytes")
[1] TRUE

[[2]]
[1] 1
attr(,"match.length")
[1] 2
attr(,"useBytes")
[1] TRUE

[[3]]
[1] -1
attr(,"match.length")
[1] -1
attr(,"useBytes")
[1] TRUE

[[4]]
[1] -1
attr(,"match.length")
[1] -1
attr(,"useBytes")
[1] TRUE

[[5]]
[1] -1
attr(,"match.length")
[1] -1
attr(,"useBytes")
[1] TRUE

56 | 5 Introduction to programming in R

Both functions result in similar outputs, but displayed in different ways. While
regexpr() returns an integer vector of the same length as text, whose components
provide information about the position of a match or no match, resulting in −1,
grepexpr() returns a list of this information. Furthermore, both functions have the
attribute match.length that indicates the number of elements that are actually
matched. One may wonder how is it possible that the length of a match could not
correspond to the length of pattern. This is where (nontrivial) regular expression
come into play.

A regular expression is a pattern that can include special symbols, as listed in
Table 5.5 below.

Table 5.5: Some special symbols that can be used in regular expressions.

Symbols Meaning of the symbols

* an asterisk matches zero or more of the preceding character
. a dot matches any single character
+ a plus sign matches one or more of the preceding character
[...] the square brackets enclose a list of characters that can be matched alternatively
{min, max} the preceding element is matched between min and max times
∖s matches any single whitespace character
| the vertical bar separates two or more alternatives
∖t match a tab
∖r match a carriage return
∖n match a linefeed
0 − 9 match any number between 0 and 9
A-Z match any upper letter between A and Z
a-z match any lower letter between a and z

For example, the regular expression x+ matches any of the following within a string:
"x", "xx", "xxx", etc. This means that the length of the regular expression is not
equal to the length of the matched pattern. By using special symbols, it is possible to
generate quite flexible search patterns, and the resulting patterns are not necessarily
easy to recognize from the regular expression.

To demonstrate the complexity of regular expressions, let us consider the fol-
lowing example. Suppose that we want to identify a pattern in a string, of which
we do not know the exact composition. However, we know certain components. For
example, we know that it starts with a “G” and is followed either by none or several
letters or numbers, but we do not know by how many. After this, there is a sequence
of number, which is between 1 and 4 elements long:

Listing 5.60: Regular expressions

txt <- c("ACTGGA023423GGGTGC")

5.5 Sorting vectors | 57

m <- regexpr("G*.[0-9]{1,4}", txt)
m
[1] 4
attr(,"match.length")
[1] 7
attr(,"useBytes")
[1] TRUE

The above code realizes such a search and it finds at position 4 of txt a match that
is 7 elements long.

In order to extract the matched substring of txt, the function regmatches() can
be used. It expects as arguments the original string used to match a pattern and the
result from the function regexpr():

Listing 5.61: Regular expressions

regmatches(text, match-object)

For our above example the matched substring is “GGA0234”:

Listing 5.62: Regular expressions

regmatches(txt, m)
[1] "GGA0234"

This example demonstrates that with regular expressions it is not only possible to
match substrings that are exactly known, but also to match substrings that are only
partially known. This flexibility is very powerful.

5.5 Sorting vectors

The elements of numerical vectors can be sorted according their size using the func-
tion sort():

Listing 5.63: Sorting vectors

x <- sort(x, decreasing)

The option decreasing enables specifying whether the sorting should be in decreas-
ing (TRUE) or nondecreasing (FALSE-default) order. It is important to note that
the result of sort(x) does not directly affect the input vector x. For this reason, we
need to assign the result of sort(x) to x, if we want to overwrite the input vector.

Listing 5.64: Sorting vectors

x <- c(22, 3, 7, 12, 9)
x <- sort(x)

58 | 5 Introduction to programming in R

x
[1] 3 7 9 12 22

If we are interested in the positions of the sorted elements in the original vector x
we can get these indices by using the function order().

Listing 5.65: Sorting vectors

x <- c(22, 3, 7, 12, 9)
order(x)
[1] 2 3 5 4 1

A somewhat related function to order() is rank(). However, rank(x) gives the rank
numbers (in increasing order) of the elements of the input vector x:

Listing 5.66: Sorting vectors

rank(x)
[1] 5 1 2 4 3

In the case of ties, there are several options available to handle the situation, and
one of them is ties.method.

5.6 Writing functions

So far, we learned how to use R functions either provided in the base package or in
additional packages, evoked by the command library(). In this section, we will see
how to write our own functions. First, we will focus on the definition of a function
with exactly one argument and one return value. Later, we will extend this to more
arguments and return variables.

5.6.1 One input argument and one output value

To write a new function, one needs to define the name, the argument, and the content
of the function. The general syntax is shown in Listing 5.67.

Listing 5.67: Syntax of a function

fct.name <- function(argument){
body

}

5.6 Writing functions | 59

Here, fct.name is the name of the new function you want to define, argument
is the argument you submit to this function, and body is a list of commands that
are executed, applied to argument.

A new definition for a function utilizes itself an R function called function.
If the body of the new function consists merely of one command, one can use the
simplified syntax:

Listing 5.68: Simplified syntax of a function

fct.name <- function(argument) body

However, for reasons of clarity and readability of the code, we recommend always
to define the body of the function, starting with a “{” and ending with a “}”.

Let us consider an example defining a new function that adds 1 to a real number
given by the argument x:

Listing 5.69: Example of function

add.one <- function(x){
y <- x + 1
return(y)

}

In this example, the name of the new function is add.one(). One should always
pay attention to the name to not accidentally overwrite some existing function. For
instance, if we would call the new function sqrt(), then the square root function,
part of the R base package, will be overwritten.

It is good practice to finish the body with the command return() that contains
as its argument the variable we would like to get as a result from the application of
the new function. However, the following will result in the exact same behavior as
the function add.one():

Listing 5.70: Example of function

add.one.short <- function(x){
x + 1

}

Here, it is important not to write y <- x + 1, but instead x+1, without assignment
to a variable. We do not recommend this syntax, especially not for beginners, because
it is less explicit in its meaning.

We would like to note that the above-defined function is just a simple example
that does not include checks in order to avoid errors. For instance, one would like to
ensure that the argument of the function, x, is actually a number, because otherwise
operations in the body of the function may result in errors. This can be done, for
instance, using the command is.numeric().

60 | 5 Introduction to programming in R

The usage of such a self-defined function is the same as for a systems function,
namely fct.name(x). The following is an example:

Listing 5.71: Example of function

add.one(4)
[1] 5

In general, the choice of the name of a function is arbitrary as long as it consists of
alphanumeric symbols, starting with a letter. Even the name of an existing function
can be chosen. However, as mentioned above, in this case, this function is overwritten
and no longer available in the current R season.

5.6.1.1 Merits of writing functions
Some reasons for writing your own functions are to help you to
– organize your programs
– make your programs more readable
– limit the scope of variables

The last point is very important and shall be visualized with the following example.
Start a new R session (this is important!) and copy the following code into the R
workspace:

Listing 5.72: Scope of a function

fct.test <- function(x){
yzxv <- 2*x
z <- 3*x
return(z)

}

x <- 1
fct.test(x)
print(yzxv)

What will be the output of print(yzxv)? It will result in an error message, because
the variable yzxv is defined within the scope of the function fct.test(), and as such,
it is not directly accessible from outside the function. This is actually the reason
why we need to specify with the return() function the variables we want to return
from the function. If we could just access all variables defined within the body of a
function, there would be no need to do this.

The rationale behind our recommendation to start a new R session is to clear any
variable in the session, already defined yzxv; since, in this case, print(yzxv) would
output that existing variable rather than the value calculated inside the function
fct.test(). For the specific choice of our variable name, this may be unlikely (that is

5.6 Writing functions | 61

why we used yzxv), but for more common variable names, such as a, i or m, there
is a real possibility that this could happen.

In general, functions allow us to separate our R workspace into different parts,
each containing their own variables. For this reason, it is also possible to reuse the
same variable name in different functions without the danger of collisions.

This point addresses the so-called scope of a variable, which is an important
issue, because it is the source of common bugs in programs.

5.6.2 Scope of variables

In order to understand the full complexity of the scope of variables, let us consider
the following situation. Suppose that we have just one function, then we can have
three different scopes of variables depending on where and how they have been
defined.

First, all variables that are defined outside the function are global variables.
This means that the value of these variables is accessible inside the function and
outside the function. Second, all variables that are defined inside the function are
local variables, because they are only accessible inside the function, but not outside.
Finally, all variables that are defined inside a function by using the super-assignment
operator “<< −” are also global variables.

The following script provides an example:

Listing 5.73: Scope of a function

fct.test <- function(x){
yzxv <- 2*x
z <<- 3*x + y
return(z)

}

x <- 1
y <- 5
fct.test(x)
print(yzxv)
print(z)

5.6.3 One input argument, many output values

In order to return more than one output variable, we need to apply a little trick,
because an R function does not directly permit returning more than one variable with
the return command. Instead, we need to define a single variable, which contains all
the variables we want to return. The script below shows an example, utilizing a list.

62 | 5 Introduction to programming in R

Listing 5.74: Function with many output values

new.fct <- function(x){
a <- matrix(c(1,2,3,4), nrow = 2, ncol = 2, byrow = TRUE)
y <- list(a, "hello", x, c(1,2,3), 2*x)
return(y)

}

y <- new.fct(2)

In this case, the list variable y serves as a container to transmit all desired variables.
That means, formally, one has just one output variable, but this variable contains
additional output variables that can be accessed via the components of the list. For
example, we can access its third component by y[[3]].

5.6.4 Many input arguments, many output values

The case of multiple input arguments of a function is considerably easier, because
R allows calling a function with more than one argument. Consider the following
example:

Listing 5.75: Function with many output values

new.fct <- function(x1, x2, x3){
a <- c(x1, x2)
y <- list(a, "hello", x3)
return(y)

}

R provides the useful command args(), which gives some information on the input
arguments of a function. Try, for example, args(matrix).

5.7 Writing and reading data

Writing and reading data from and to files is important in order to populate vari-
ables and data structures with, e. g., information from experiments, and to store the
obtained results, as an outcome from the application of a program to such data. In
some sense, this completes a programming language by providing an interface to the
outside world, whereas the “world” is represented by the data.

In general, writing data to a file is much easier than reading data from a file.
The reason for this asymmetry is that when writing data to a file, we do have the
entire control over the format of the data to save them. In contrast, when reading
data from an existing file, we need to deal with the given data format as it is, which
can be very laborious and frustrating, as we will illustrate below. For reasons of
simplicity, we start by discussing functions to write data to a file.

5.7 Writing and reading data | 63

5.7.1 Writing data to a file

The easiest way to save one or more R objects from the workspace to a file is to use
the function save():

Listing 5.76: Saving data to a file

save(a, file = "filename")

Here, the option file defines the name of the file in which we want to save the data.
In principle, any name is allowed, with or without extension. However, it is helpful
to name this file filename.RData, where the extension RData indicates that it is a
binary R data file. Here, binary file means that if we open this file within any text
editor, its content is not visible because of its coding format. Hence, in order to view
its content, we need to load this file again in an R workspace.

If we want to save more than one R object, two different syntax variations exist
that can be used. The first way to save more than one R object is to just name these
objects, separated by a comma:

Listing 5.77: Saving data to a file

save(a, b, c, d, file = "filename")

The second way is to define a list that contains the variable names as character
elements:

Listing 5.78: Saving data to a file

e <- c("a", "b", "c", "d")
save(list=e, file = "filename")

If we want to save all the variables in the current workspace and not just the selected
ones, we can use the function save.image():

Listing 5.79: Saving data to a file

save.image(file = "filename")

This function is a short cut for the following script, which accomplishes the same
task:

Listing 5.80: Saving data to a file

save(list=ls(all), file = "filename")

64 | 5 Introduction to programming in R

For the above examples, we did not need to care about the formatting of the file
to which we save the data, but R makes essentially a copy of the workspace, either
for selected variables or for all variables. This is a very convenient and fast way to
save variables to a file. One disadvantage of this way is that these files can only be
loaded with R itself, but not with other programs or programming languages. This
is a problem if we plan to exchange data with other people, friends, or collaborators
and we are unsure whether they either have access to R or do not want to use it,
for some reason. Therefore, R provides additional functions that are more generic in
this respect. In the following, we discuss three of them in detail.

There are 3 functions in the base package, namely, write.table(), write.csv(), and
write.csv2(), that allow saving tables as a text file. All of these functions have the
following syntax:

Listing 5.81: Saving data to a file

write.table(M, file = "filename", sep=" ")

Here, M is a matrix or a data frame, and the option sep specifies the symbol used to
separate elements in M from each other. As a result, the data saved in file can be
viewed by any text editor, because the information is saved as a text rather than a
binary file as the one generated, for example, by the function save(). The functions
write.csv() and write.csv2() provide a convenient interface to Microsoft EXCEL,
because the resulting file format is directly recognized by this program. This means
we can load these files directly in EXCEL.

A potential disadvantage of these 3 functions appears when the output of an R
program is not just one table, but several tables of different size and additional data
structures in the form of, e. g., lists, environments, or scalar variables. In such cases,
a function like write.table() would not suffice, because you can only save one table.
On the other hand, the functions save() or save.image() can be used without the
need to combine all data structures into just one table.

5.7.2 Reading data from a file

At the beginning of this section we said that, in general, it is more difficult to read
data than to save them. This is true with the exception of binary files saved with
the functions save() or save.image(). Because in this case, the counterpart to read
data from a file is the function load():

Listing 5.82: Reading data from a file

load(file = "filename")

5.7 Writing and reading data | 65

Since the function save() makes essentially a copy of the workspace, or parts of it,
and saves it to a file, then the function load() just pastes it back into the workspace.
Hence, there are no formatting problems that we need to take care of.

In contrast, if tabular data are provided in a text file, we need to read this file
differently. R provides 5 functions to read such data, namely, read.table(), read.csv(),
read.csv2(), read.delim(), and read.delim2(). For example, the function read.table()
has the following syntax:

Listing 5.83: Reading data from a file

read.table(file = "filename", sep=" ", header=FALSE, skip=0)

The option header is a logical value that indicates whether the file contains the
names of the variables as its first line. The option skip is an integer value indicating
the number of lines that should be skipped when we start reading the file. This is
useful when the file contains at the beginning some explanations about its content
or general comments.

Let us consider an example:

Listing 5.84: Reading data from a file

infile <- "tabular_data_example.txt"
dat <- read.table(file=infile, sep=",", header=TRUE, skip=1)

The content of the file infile is shown in Fig. 5.3. This file contains a comment
at its beginning spanning one row. For this reason, we skip this line with the op-
tion skip=1. Furthermore, this file contains a header giving information about the
columns it contains. By using “header=TRUE” this information is converted into the
column names of the table we are creating using the function read.table(). Using
colnames(dat) will give us this information. Most importantly, we need to specify
the symbol that is used to separate the numbers in the input file. This is accom-
plished by setting “sep=","”.

Figure 5.3: File content of infile and the effect the options in the command read.table() have
on its content.

As a result, the variable dat will be a data frame containing the tabular data in the
input file having the information about the corresponding columns as column names.

66 | 5 Introduction to programming in R

We can access the information in the individual columns by using either dat[[1]],
e. g., for the first column or dat$names. Try to access the information in the second
column. Is there a problem?

5.7.3 Low level reading functions

All the functions discussed so far, for reading data from a file, can be considered as
high-level functions, because they assume a certain structural organization of a file
that makes it relatively easy for a user to read these data into an R session. That
means, the structural organization can be captured by the supplied options of these
functions, e. g., by setting sep, skip etc. appropriately.

In case there is a text file that has a more complex format that cannot be
read with one of the above functions, R provides a very powerful, low-level reading
function called readLines(). This function allows reading a specified number of lines,
n, from a given file:

Listing 5.85: Reading data from a file

readLines(con = "filename", n = -1)

If n is a negative value, the whole file will be read. Otherwise, the exact number of
lines will be read. The advantage of this way of reading a file is that the formatting
of the file can change, but does not need to be fixed.

For text files with a complex, irregular formatting it is necessary to read these
files line-by-line in order to adopt the formatting separately for each line. This can
be done in the following way:

Listing 5.86: Reading data from a file

f <- file(description = "filename", open = "r")
readLines(con = f, n = 1)

The function file() opens a connection to the file specified by the option description
and the option open that we want to read the information from. Then calling read-
Lines() reads exactly one line from the file. That means, if called repeatedly, for
example within a for-loop, it gives one line after the other, and these can be pro-
cessed individually. In this way, arbitrarily formatted files can be read and stored in
variables so that the information provided by the file can be used in an R session. If
we want to restart reading from this file, we just need to apply the function file()
again.

To demonstrate the usage of the function readLines(), let us consider the follow-
ing example reading data from the file shown in Fig. 5.4. In this case, our file contains
some irregular rows, and we would either like to entirely omit some of them, such

5.7 Writing and reading data | 67

Figure 5.4: File content of infile and the effect the options in the command read.table() have
on its content.

as row 5, or only use them partially, e. g., row 4. The following code reads the file
and accomplishes this task:

Listing 5.87: Reading data from a file: example

infile <- "complex_data_example.txt"
f <- file(description = infile, open = "r")
L <- 6
cc <- 1
dat <- matrix(0, nrow=3, ncol=3)
for(i in 1:L){

aux <- readLines(con = f, n = 1)
aux2 <- strsplit(aux, split=",")[[1]]
if(i==2){

colnames(dat) <- aux2
}
LS <- length(aux2)
if(i>2 & LS==3){

dat[cc,] <- as.numeric(aux2)
cc <- cc + 1

}
}

As a result, we receive a data frame “dat” containing the following information:

Listing 5.88: Content of the read file

dat
number property 1 property 2

[1,] 1 23 45
[2,] 2 NA 7
[3,] 4 9 14

This corresponds to the information in the input file, skipping row 5 and omitting
the second element in row 4. From this example, we can see that “low-level func-
tions” offers some degree of flexibility, which translates into a considerable amount
of additional coding that we need to do to process an input file.

There is another function similar to readLines(), called scan(). The function
scan() does not result in a data frame, but a list or vector object. Another difference
with readLines() is that it allows specifying the data-types to be read by setting the

68 | 5 Introduction to programming in R

what option. Possible values of this options are, e. g., double, integer, numeric,
character, or raw. The following code shows an example for its usage:

Listing 5.89: Reading data from a file: example

infile <- "complex_data_example.txt"
dat <- scan(file=infile, what=character(), sep=",", skip=0)
dat
[1] "This is an example for the function readLines."
[2] "number"
[3] " property 1"
[4] " property 2"
[5] "1"
[6] " 23"
[7] " 45"
[8] "2"
[9] " C"

[10] " 7"
[11] "3"
[12] " data are missing"
[13] "4"
[14] " 9"
[15] " 14"
length(dat)
[1] 15

As one can see, the object dat is a vector and the components of the input file,
separated according to sep, form the components of this vector. In our experience,
the function readLines() is the better choice for complex data files.

We just would like to mention without discussion that the function writeLines
allows a similar functionality and flexibility for writing data to a file in a line-by-line
manner.

5.7.4 Summary of writing and reading functions

In Table 5.6, we provide a brief overview of some R functions discussed in the previous
sections. Column three indicates the difficulty level in using these functions, which
is directly proportional to the flexibility of the corresponding functions.

5.7.5 Other data formats

In addition to the R functions discussed above, which are included in the base pack-
age, there are some additional packages available that allow importing data files
from other programs. In Table 5.7, we list some of the most common formats pro-
vided by other software and the corresponding package name, where one can find
the functions. This list is not intended to be exhaustive and it is recommended, if

5.8 Useful commands | 69

Table 5.6: Brief overview of R functions to read and write data.

Command name File type Usage level

save binary file easy
save.image binary file easy
write.table text file intermediate
write.csv text file intermediate
writeLines text file difficult

load binary file easy
read.table text file intermediate
read.csv text file intermediate
read.delim text file intermediate
readLines text file difficult

Table 5.7: Reading data files from other programs.

Command name File type Package name

read.spss SPSS file foreign
read.dta Stata file foreign
read.systat Systat file foreign
sasxport.get SAS file Hmisc
readMat Matlab file R.matlab
read.octave Octave file foreign

one has a data file from a well-established software or program, to search first if
there is an R package available to read such data before one tries to implement a
program from scratch.

5.8 Useful commands

In this section, we discuss some commands that we find particularly useful for the
day-to-day applications of R.

5.8.1 The function which()

For identifying the indices, in a vector or a matrix, whose components have certain
values, we can use the function which(). This function expects a logical vector or
a matrix and returns the indices of the TRUE elements. A logical vector from a
numerical vector v can be, e. g., obtained by an expression like v==3. This results

70 | 5 Introduction to programming in R

into a logical vector that has the same length as the vector v, but its components
are either TRUE or FASLE depending on whether the component equals 3 or not.

Listing 5.90: Using the function which()

v <- c(4,3,5,1)
which(v==3)
[1] 2

When we are interested in identifying the indices of a matrix that have a certain
value, one can use the option arr.ind=TRUE to get the matrix indices:

Listing 5.91: Using the function which()

m <- matrix(c(1,2,3,4), nrow=2, ncol=2)
which(m==2, arr.ind=T)

row col
[1,] 2 1

If we would set this option to FALSE (which is the default value), the result is just
the number of TRUE elements, but not their indices.

5.8.2 The function apply()

The function apply() enables applying a certain function to a matrix or array along
the provided dimension. Its syntax is:

Listing 5.92: Using the function apply

apply(X, MARGIN, FUN)

Here, X corresponds to a matrix or array, FUN is the function that should be applied
to X, and MARGIN indicates the dimension of X to which FUN will be applied. The
following example, calculates the sum of the rows for a matrix:

Listing 5.93: Using the function apply()

x <- 1:16
A <- matrix(x, nrow = 4, ncol = 4)
apply(A, 1, sum)
[1] 28 32 36 40

A similar result could be obtained by using a for-loop over the rows of the matrix A.

5.8 Useful commands | 71

In the case where the variable X is a vector, there exists a similar function called
sapply(). This function has the following syntax:

Listing 5.94: Using the function sapply()

sapply(X, FUN, simplify = TRUE)

There are two differences compared to apply(). First, no MARGIN argument is needed,
because the function FUN will be applied to each component of the vector X. Second,
there is an option called simplify resulting in a simplified output of the function
sapply(). If set to TRUE, the result will have the form of a vector, whereas if set to
FALSE the result will be a list. It depends on the intended usage, i. e., which form
one might prefer, but a vector is usually most suitable for visual inspections. These
results can also be obtained with the command lapply().

The next example results in a vector, where each element is the third power of
the components of the vector X.

Listing 5.95: Using the function sapply()

x <- 1:5
sapply(x, function(x) xˆ3, simplify = TRUE)
[1] 1 8 27 64 125

5.8.3 Set commands

A (mathematical) set is a collection of elements without duplications. This is different
to a vector, which may contain duplicated elements:

Listing 5.96: Set operations

x <- c(1,1,2,3,3,4)
union(x, x)
[1] 1 2 3 4
unique(x)
[1] 1 2 3 4

The function union() results in a set containing all elements, without duplication,
provided in the two sets of its argument.

Other commands for sets include intersect(), which returns only elements that
are in both sets, and setdiff() gives only elements, which are in the first, but not in
the second set, i. e., if X = setdiff(Y, Z), then all the elements in the set X are also
in the set Y, but not in the set Z. Table 5.8 provides an overview of set operations.

72 | 5 Introduction to programming in R

Table 5.8: Each of these commands will discard any duplicated values in its arguments.

Command name Description

union(x,y) combines the values in x and y
interest(x,y) finds the common elements in x and y
setdiff(x,y) removes the elements in x that are also in y
setequal(x,y) returns the logical value true if x is equal to y and false otherwise
is.element(x, y) returns the logical value true if x is a element in y and false otherwise

5.8.4 The function unique()

When we have a vector x that may contain multiple duplications of serval elements,
we can use the function unique() to remove all such duplications:

Listing 5.97: Using the function unique()

x <- c(3,2,4,3,1,1,3)
unique(x)
[1] 3 2 4 1

This can be useful if we want to use the values in the vector x as indices, and we
want to use each index only once.

5.8.5 Testing arguments and converting variables

When discussing the definition of functions in Section 5.6, we mentioned the im-
portance of making sure that the provided arguments are of the required type. In
general, R provides several useful comments for testing the nature of arguments. In
Table 5.9, we give an overview of the most useful ones.

Table 5.9: Each of these commands allows testing its argument and returns a logical value.

Command name Description

is.numeric(x) returns TRUE if argument is numerical value (double or integer)
is.character(x) returns TRUE if argument is of character type
is.logical(x) returns TRUE if argument is of logical type
is.list(x) returns TRUE if argument is a list
is.matrix(x) returns TRUE if argument is a matrix
is.environment(x) returns TRUE if argument is an environment
is.na(x) returns TRUE if argument is NA
is.null(x) returns TRUE if argument is of null type (NULL)

5.8 Useful commands | 73

Table 5.10: Each of these commands allows to convert its argument to a specific type.

Command name Description

as.numeric(x) converts the argument in a numerical value (double or integer)
as.character(x) converts the argument in a character-type
as.logical(x) converts the argument in a logical-type
as.list(x) converts the argument in a list
as.matrix(x) converts the argument in a matrix
as.na(x) converts the argument to NA
as.null(x) converts the argument to NULL

The above commands are complemented by conversion functions that transform
arguments into a specific type. Some examples are given in Table 5.10.

5.8.6 The function sample()

In order to sample elements from a given vector x, we can use the function sample().
To sample just means that the vector x contains a certain number of elements, i. e.,
its components, from which we can draw a certain number according to some rules.

Listing 5.98: Using the function sample()

sample(x, size, replace = FALSE, prob = NULL)

Here, x is a vector, from which elements will be sampled. The option size indicates
the number of elements that will be sampled, and replace indicates if the sampling
is with (TRUE), or without (FALSE) replacement. In the case replace = FALSE,
the option size needs to be smaller than the number of elements (length of the
vector) in vector x.

In Figure 5.5, we visualize the two different sampling strategies. The column x
(before) indicates the possible values that can be sampled, and the column x (after)
contains the elements that are “left” after drawing a certain number of elements
from it. In the case of sampling with replacement, there is no difference since each
element that is “removed” from x is replaced with the same element. However, for
sampling without replacement, the number of elements in x decreases. It is important
to note that in the case of sampling with replacement, we can sample the same
element multiple times (see green ball in Figure 5.5). This is not possible without
replacement.

The option prob allows assigning a probability distribution to the elements of
the vector x. By default, a uniform distribution is assumed, i. e., selecting all elements
in x with the same probability.

74 | 5 Introduction to programming in R

Figure 5.5: Visualization of dif-
ferent sampling strategies. A:
Sampling with replacement. B:
Sampling without replacement.

Listing 5.99: Using the function sample()

sample(1:5, 20, replace = TRUE)
[1] 5 4 5 4 1 1 4 5 4 1 1 5 2 5 1 4 3 2 5 2

In the case where we just want to sample all integer values from 1 to n, the following
version of the function sample() can be used:

Listing 5.100: Using the function sample()

sample.int(n, size, replace = FALSE, prob = NULL)

For n=5, this realizes the same sampling function as above.
In summary, the function sample() allows sampling from a one-dimensional dis-

tribution prob with elements in x.

5.8.7 The function try()

In some cases, it may be possible that there is a command, whose execution might
cause an error leading to the interruption of a program. If such a command is used
within a larger program, this will of course result in the crash of the whole program.
To prevent this, there is the command try(), which is a wrapper function to run an
expression in a protected manner. That means, an expression will be evaluated and
in case it would result in an error, it will capture this error, but without leading to
a formal error causing the crash of a program. For example, executing sqrt("two")
results in an error, because the function sqrt() expects a numeric argument and
not a character string. However, using the following, by setting silent=T does not
generate a formal error, but captures it in the object ms:

5.8 Useful commands | 75

Listing 5.101: Using the function try()

ms <- try(sqrt("two"), silent=T)

In order to get the error message, one can execute either of the following commands:

Listing 5.102: Using the function try()

print(ms)

geterrmessage()

The difference between both commands is that the function geterrmessage() gives
only the last error message in the current R session. That means, if you execute
further commands that also result in an error, you cannot go back in the history of
crashed functions.

In order to use the functionality of the function try() within a program, one can
test if the output of try() is as expected or not. For our example above, this can be
done as follows:

Listing 5.103: Using the function try()

is.numeric(ms)

In this way, a numeric output can be used in some way, whereas an error message,
resulting in a FALSE for this test, can be handled in a different manner.

One may wonder how could it be possible that a command within a “functional”
program can result in an error. The answer is that before a program is functional, it
needs to be tested. And during the testing stage, there may be some irregularities,
and using the function try() may help to find these. Aside from this, R may use
an external input, e. g., provided by an input file, containing information that is
outside the definition of the program. Hence, it may contain information that is not
as expected in a certain context.

In addition to the function try(), R provides the function tryCatch(), which is a
more advanced version for handling errors and warning events.

5.8.8 The function system()

There is an easy way to invoke operating system (OS) specific commands by using
the command system(). This command allows the execution of OS commands like
pwd or ls as if they would be executed from a terminal. However, the real utility of
the function system() is that it can also be used to execute scripts.

76 | 5 Introduction to programming in R

5.9 Practical usage of R

In the previous sections, we discussed many important base functions of R. All of
these can be directly executed within an R session. This works fine for exploring these
functions and for playing around with their options in order to get to know them.
However, this is not a good way to use R when doing serious work. Instead, it is
recommended to write all the functions within a script, and then either execute the
whole script, or copy-and-paste parts of the script into an R session for its execution.

In order to execute a script containing an R program, we can use the function
source() as follows:

Listing 5.104: Using the function source()

source(file)

The input of the function source() is a character string containing the name of the
file.

The advantage of writing an R program in a file and then executing it is that
the results are easily reproducible in the future. This is particularly important if we
are writing a scientific paper or a report and we would like to make sure that no
detail about the generation of the results is lost. In this respect, it can be considered
a good practice to store all of our programs in files.

Aside from this, it is also very helpful since we do not need to remember every
detail of a program, which is anyway hardly possible if a program is getting more
and more complex and lengthy. In this way, we can create over time our own library
of programs, which we can use to look up how we solved certain problems, in case
we cannot remember.

5.9.1 Advantage over GUI software

The script-wise execution of programs is actually a very important advantage of R,
and any other programming language, over softwares that are based on graphical-
user-interfaces (GUI). In order to understand this argument, that may even seem
counterintuitive at first, let us remember how such GUI-based software, e. g., Excel or
Partek, work. Usually, one selects sequentially commands from a menu and executes
them. This can be seen as the sequential execution of commands directly written
in an R session with exactly the same disadvantages. That means, if one would like
to execute the same sequence of commands again, one needs to select them again
manually from the menu. However, in contrast to R, it is not possible to save the
sequence of commands so that it can be invoked automatically in an iterative manner
for a future application. On the other hand, one can easily convert an R script into
an R function to make it executable in any R program.

5.10 Summary | 77

This is one argument that demonstrates the advantage of R over general GUI-
based software. For fairness, we would like to add that this is only an advantage if
you make use of this capability, for example when you are a developer for designing
new data analysis software. If you are only interested in the application of “standard”
solution methods for problems, then the usage of a GUI-based software can be very
well justified.

In Chapter 2, more details about this have been presented when we introduced
different programming paradigms.

5.10 Summary

In this chapter, we provided an introduction to programming with R that covered all
base elements of programming. This is sufficient for the remainder of the book and
should also allow you to write your own programs for a large number of different
problems. A very good free online resource for getting more details about func-
tions, options, and packages is STHDA http://www.sthda.com/english developed
by Alboukadel Kassambara. For unlocking advanced features of R, we recommend
the book by [46]. This is not a cookbook, but provides in-depth explanations and
discussions.

6 Creating R packages
R is an open-source interpreted language with the purpose to conduct statistical anal-
ysis. Nowadays it is widely used for statistical software development, data analysis
and machine learning applications in multiple scientific areas. R is easy to implement
and has a large number of packages available, which allows users to extend their code
easily and efficiently.

In this chapter, we show how you can create your own R package for functions
you implemented. This makes your code reusable and portable. An R package is not
only the most appropriate way to achieve this, but it also enables a convenient use of
these functions and ensures the reproducibility of results. Furthermore, R packages
enable us to easily integrate our code with other R packages.

6.1 Requirements

6.1.1 R base packages

Installation of the R environment: the first step for programming in R and developing
R packages is the installation of the R software environment itself. R is an open-source
programming environment, which can be downloaded free from the following address
https://cran.r-project.org/.

The basic R environment provides the following core packages: base, stats,
utils, and graphics.
– base: This package contains all the basic functions (including instructions and

syntax), which allow a user to write code in R. It contains functions, e. g., for
basic arithmetic operations, matrix operations, data structure, input/output,
and for programming instructions.

– utils: This package contains all utility functions for creating, installing, and
maintaining packages and many other useful functions.

– stats: This package contains the most basic functions for statistical analysis.
– graphics: This package provides functions to visualize different types of data

in R.

A user can utilize the functions available in the R-based environment to create their
packages rather than creating functions or objects from scratch. Below are examples
to get a list of all functions in these packages.

Listing 6.1: Getting the list of functions in R-base

library(help = "base")
library(help = "utils")
library(help = "stats")
library(help = "graphics")

https://doi.org/10.1515/9783110564990-006

80 | 6 Creating R packages

6.1.2 R repositories

R repositories provide a large number of packages for statistical analysis, machine
learning, modeling, visualization, web mining, and web applications. A list of cur-
rently available R repositories is shown in Table 6.1.

Table 6.1: A table of repositories in R.

Repository URL Description Installation

cran cran.org R packages for all
purpose

install.packages
("[package name]")

Bioconductor https://bioconductor.org/
packages/

Bioconductor provides
a large number of
packages for high
throughput genomic
data analysis

Installation details are at
https://bioconductor.org/
install

Neuroconductor https://neuroconductor.org Provides packages for
image analysis

source("https://neuro
conductor.org
/neurocLite.R")
neuro_install("aal")

Github https://github.com/
trending/r

Githhub also provides
a large number of
packages.
Additionally, it is also
an alternative source
of R packages
available in other R
repositories.

install_github ("github
package url")

Omegahat http://www.omegahat.net/ Provides different
packages for
statistical analysis

install.packages
(packageName, repos =
"http://www.omegahat.net/
R")

6.1.3 Rtools

Rtools is required for building R packages. It is installed with R-base for Linux and
MacOs, but for windows, it needs to be installed. The ".exe" file of Rtools for
installation can be obtained at the following address: http://cran.r-project.org/bin/
windows/Rtools/.

6.2 R code optimization | 81

6.2 R code optimization

For an efficient R functioning, a developer should provide code that is efficient and
fast. It is always advised to developers to perform profiling on their code to check
about memory size taken by the code, execution time, and performance of each
instruction in the code for making some performance improvement. The function
debug() in R-base allows a user to test the code execution, line by line. Furthermore,
the function traceback() helps a user to find the line where the code crashed.

6.2.1 Profiling an R script

The following Listing provides an illustration of script profiling in R:

Listing 6.2: Profiling an R script

sinx <- function(x, radian=T){
if(is.null(x)){

stop("please input numeric or integer values")
}
if((class(x)!="numeric") && (class(x)!="integer")){

stop("please input numeric or integer values")
}
if(radian){

x <- x*pi/180
}
sin(x)

}

xx <- rnorm(10000000)
Rprof(tmp <- tempfile())
y = sinx(xx)
Rprof()
summaryRprof(tmp)

6.2.2 Byte code compilation

From version 2.13.0, R includes the byte code compiler, which allows users to speedup
their codes. In order to use the byte code compiler, the user needs to install the
package compiler, which is available in CRAN. For the byte compilation of the
whole package during the installation a user must add ByteCompile: true to the
Description file of the package. This will avoid the use of ”cmp-fun” for each function.

The following listing provides an illustration of the byte code compilation in R:

Listing 6.3: Byte code compilation in R

sinx <- function(x, radian=T){

82 | 6 Creating R packages

if(is.null(x)){
stop("please input numeric or integer values")

}
if((class(x)!="numeric") && (class(x)!="integer")){

stop("please input numeric or integer values")
}
if(radian){

x <- x*pi/180
}
sin(x)

}

xx <- rnorm(100000000)
y = sinx(xx)

@

<<>>=
library(rbenchmark)
library(compiler)

xx <- rnorm(5000)
cmp_sinx <- cmpfun(sinx)

zz <- benchmark(sin(1:10),sin(xx),cmp_sinx(xx), sinx(xx),
columns=c("test", "elapsed", "relative"),
order="relative", replications=5000)

zz

6.2.3 GPU library, code, and others

Using GPU libraries, such as gpuR, h2o4gpu, gmatrix, provides an R interface to use
GPU devices for computationally expensive analysis. Users can also parallelize their
R code using either of the following packages: parallel, foreach, and doParallel.
Furthermore, users can write scripts in C or C++ and run them in R using the package
Rcpp for a faster execution of their overall code.

6.2.4 Exception handling

For a package development in R, it is essential to use error handling. R allows various
error handling functions to deal with various unusual conditions, errors, and warnings
that can occurred during the execution of a function or a package. Error handling
provides a crisp and efficient code execution, which has the following advantages:
– Separating the main code from error-handling routines.
– Allows the complete execution of the code when the exceptions are identified

and handled.
– Describing relevant errors, error types, and warnings when an error occurs.

6.3 S3, S4, and RC object-oriented systems | 83

– Preventing code or a package from crashing and recover from errors when un-
expected error occured.

This makes the debugging and profiling of complex code and packages easy. R pro-
vides two types of error handling mechanisms; the first one is try() or tryCatch(),
and the second is withCallingHandlers(). The command tryCatch() registers existing
handlers. When the condition is handled the control returns to the context where
tryCatch() was called. Thus, it causes code to exit when a condition is signaled. The
tryCatch() command is suitable to handle error conditions. The command withCall-
ingHandlers() defines local handlers which are called in the same context where the
condition is signaled and the control returns to the same context where the condi-
tion was signaled. Hence, it resumes the execution of the code after handling the
condition. It maintains a full call stack to the code line or the segment that signals
the condition. The command withCallingHandlers() is specifically useful to handle
non-error conditions [201].

An example of exception handling is shown in the following Listing.

Listing 6.4: Exception handling

trgval.default <- function(x, inv=F, ...){
tryCatch({
tmp <- NULL
xrd <- x*pi/180
if(inv){

tmp <- sinh(xrd)
names(tmp) <- paste0("sinh", x)

}
else{

tmp <- sin(xrd)
names(tmp) <- paste0("sin", x)

}
res <- list(x =x, xrd=xrd, inv=inv, val=tmp)
}, error=function(e){

print(e)
})
class(res) <- "trg"
res

}

6.3 S3, S4, and RC object-oriented systems

R utilizes functional and object-oriented features of programming. R has multiple
object-oriented programming (OOP) systems, which are S3, S4, RC, and R6. However,
most packages in R have been developed using the S3 OOP system.

84 | 6 Creating R packages

6.3.1 The S3 class

In a S3 system, methods belong to generic functions instead of the objects of a class.
A generic function checks the class of the first input object in the function argument
and then dispatches a relevant method of that class. For example, plot() is a generic
function to visualize data. Different packages inherit plot functions and develop
their own functions. For instance, plot.hclust() is a member function, which provides
visualization for dendrograms of the hclust class object. In the example given below,
we create a generic trigonometric value (trgval()) function, with a default definition
described by trgval.default() when the class of the object is unknown. To create a
new function trgval() for the class cosx, we can leverage this generic function.

Listing 6.5: Illustration of the use of class S3

trgval <- function(x, ...)UseMethod("trgval")

Defaul function function
trgval.default <- function(x, rd=T, inv=F){

tmp <- NULL
if(rd){

x <- x*pi/180
}
if(inv){

tmp <- sinh(x)
names(tmp) <- "sinh"

}
else{

tmp <- sin(x)
names(tmp) <- "sin"

}
tmp

}

Extending function for class objects
trgval.cosx <- function(..., rd=T, inv=F){

tmp <- NULL
if(rd){

x <- x*pi/180
}
if(inv){

tmp <- cosh(x)
names(tmp) <- "cosh"

}
else{

tmp <- cos(x)
names(tmp) <- "cos"

}
tmp

}

6.3 S3, S4, and RC object-oriented systems | 85

Example 1
x <- 90
trgval(x)

Example 2
x <- 90
class(x) <- "cosx"
trgval(x)

6.3.2 The S4 class

S4 works similarly to S3, but it provides a stricter definition of the object-oriented
concept of programming, Hence, S3 classes allow the representation of complex data
more simplistically. Below, we provide an example of class inheritance with the use
of constructor and accessing a method:

Listing 6.6: Illustration of the use of class S4

An example of generic function which is used by
trg class objects.
trgval <- function(object) {

}
create a new generic function
setGeneric”(”trgval)
#class definition and return a generator
#function to create objects from the "trg" class
setClass("trg", representation(ag = "numeric",

inv="logical", rd="logical"))
#class definition to create objects from the
#"sinx" class which inherits the class "trg".
setClass("sinx", contains = "trg")
#class definition to create objects from the
#"cosx" class which inherits the class "trg"
setClass("cosx", contains = "trg")

setMethod("trgval", signature(object = "sinx"),
function(x) {

tmp <- NULL
if(object@rd){

x@ag <- x@ag*pi/180
}
if(object@inv){

tmp <- sinh(x@ag)
}
else{

tmp <- sin(x@ag)
}
tmp

})
setMethod("trgval", signature(object = "cosx"),

function(x) {
tmp <- NULL
if(object@rd){

86 | 6 Creating R packages

x@ag <- x@ag*pi/180
}
if(object@inv){

tmp <- cosh(x@ag)
}
else{

tmp <- cos(x@ag)
}
tmp

})

aa1 <- new("sinx",ag=1, inv=F, rd=T)
aa2 <- new("cosx",ag=1, inv=F, rd=T)
trgval(aa1)
trgval(aa2)

6.3.3 Reference class (RC) system

The classes in the RC system provide reference semantics and support public and
private methods, active bindings, and inheritance. In this system, methods belong
to objects, not to generic functions. The objects are mutable. Creating RC objects
is similar to creating S4 objects. The methods library available in R implements
RC-based OOP. Also, the library R6 provides functionalities to implement RC-based
OOP. An example of object mutability in the RC system is shown below.

Listing 6.7: Illustration of the use of RC

Creating "trg" class using RC system
trg <- setRefClass("trg", fields=

list(ang="numeric",
rdn="logical", inv="logical", val="numeric"),
methods=list(
sinx = function(){

if(rdn){
ang <<- ang*pi/189

}
if(inv){

val <<- sinh(ang)
}
else{val <<- sin(ang)}

}
))

creating an object of trg class
s1 <- trg$new(ang = 60, rdn=F, inv=F)
s1$sinx()

update the instace variable ””val of object s2
s2 <- s1
s2$sinx()
print(s2$val)
s2$sinx()

6.4 Creating an R package based on the S3 class system | 87

In the above example, S2 is not the copy of S1, but provides a reference of S1 so any
changes on S2 will reflect on S1, and vice versa.

6.4 Creating an R package based on the S3 class system

In order to start a package generation, we first write our R program in a file with
.R extension. In the next step, we call the function package.skeleton() with different
arguments required for the package creation. Different files and folders in a package
skeleton are shown in Figure 6.1.

Figure 6.1: Schematic view of the file hierarchy in an R package.

6.4.1 R program file

We create an R program file named trg.R with the S3 system, as shown in the
example below. This function creates a basic R skeleton with all the necessary folders
and files required for building a package. In our example, we create a method for
values of the sin() function. We start with our main function with a generic name
trgval(), which calls the function UseMethod(). In the next step, we create a default
function trgval.default() as well as the function plot.trg().

6.4.1.1 The file trg.R

Listing 6.8: Content of the file trg.R

trgval <- function(x, ...)UseMethod("trgval")

Defaul function function
trgval.default <- function(x, inv=F){

tmp <- NULL

88 | 6 Creating R packages

xrd <- x*pi/180
if(inv){

tmp <- sinh(xrd)
names(tmp) <- "sinh"

}
else{

tmp <- sin(xrd)
names(tmp) <- "sin"

}
res <- list(x =x, xrd=xrd, inv=inv, val=tmp)
class(res) <- "trg"
res

}

Creating plot function for plotting the "trg" class

plot.trg <- function(trg, wave=T,minang=-450,maxang=450,...){
theta <- trg$x

if(!wave){

x <- sort(runif(10000, min=-1, max=1))
r = 1
y <- sqrt(1-xˆ2)
tmp <-cbind(x = c(x,rev(x)), y=c(y,rev(-y)))
plot(tmp, type="l", lwd=2, cex=.1)
points(cos(theta*pi/180), sin(theta*pi/180),

pch=20, col=20, cex=2)
segments(0, 0, x1 = cos(theta*pi/180),

y1 = sin(theta*pi/180))
segments(-1, 0, x1 = 1, y1 = 0)
segments(0, -1, x1 = 0, y1 = 1)
segments(0, -1, x1 = 0, y1 = 1)
segments(cos(theta*pi/180), sin(theta*pi/180),

cos(theta*pi/180), 0, col="blue")
segments(0, 0, cos(theta*pi/180),0, col="blue")

rin <- .1
for(i in theta){

x1 <- rin*cos(c(0:i)*pi/180)
y1 <- rin*sin(c(0:i)*pi/180)

mn1 <- mean(x1)
mn2 <- mean(y1)

x11 <- cos(i*pi/180)/2
y11 <- sin(i*pi/180)/2
lb1 <- parse(text=(paste0("theta[",i,"]")))
lb2 <- parse(text=(paste0("theta[",i,"]")))

text(cos(i*pi/180)-.12, sin(i*pi/180)/2, "sin")
text(cos(i*pi/180), sin(i*pi/180)/2, lb1)

text(cos(i*pi/180)/2-.12,-.1, "cos")
text(cos(i*pi/180)/2, -.1, lb2)

lb <- parse(text=(paste0("theta[",i,"]")))
points(x1, y1, pch=20, col=20, cex=.1)
text(mn1, mn2, lb)
if(rin!=1){

6.4 Creating an R package based on the S3 class system | 89

rin = rin+.1
}

}
}
else{
plot(sin(c(minang:maxang)*pi/180), type="l",
lwd=2, xaxt="n", ylab="sin (x)", xlab="")
abline(h=0,lwd=2)
tmp <- c(minang:maxang)
k <- which(tmp==0)
points(theta+k, sin(theta*pi/180), col="blue", pch=20, cex=2)
abline(v=theta+k)

tt <- which(abs(tmp)%%90==0)
aa <- tmp[tt]/90
lbn <- sapply(1:length(tt),

function(x)parse(text=(paste0("pi"))))
axis(1, at=which(abs(tmp)%%90==0), labels=lbn, tick=TRUE)
axis(1, at=which(abs(tmp)%%90==0)-15, labels=aa/2, cex=.5,

tick=FALSE)
}

}

6.4.1.2 Package skeleton

Listing 6.9: Generating the package skeleton

R function to create package skeleton
#package.skeleton("trgpkg",code_files = ["path to the R file"])
package.skeleton("trgpkg",code_files = "trg.R")

Once the package skeleton is created, we need to edit the DESCRIPTION,
NAMESPACE, and the package description files in the folder man. The content of
the edited files are shown in Section 6.7.1. The folder trgpkg contains the following
files and folders:
Description: This file contains some basic information of the package, for example:

version, author, description, and package dependency.
Man: This folder contains documentation of functions and data of the package in

.Rd format; the developer needs to edit these files to describe their function’s
inputs, output, and examples.

Data: If a package contains any data-set, those files should be kept in the data
folder. These data files should be R-objects such as matrix, vector, data frame,
and saved in the folder Data.

90 | 6 Creating R packages

6.4.2 Building an R package

Now we need to check, compile, and build the package. First, we go to the command
prompt and change to the directory, where the package is kept and run the command
R CMD build [package name] to build the package tarball. We can also use the
same command in R calling it inside the system function of R. Below we provide an
example.

Listing 6.10: Building an R package

if(dir.exists("trgpkg")){
system("R CMD build trgpkg")

}

Now we get the tarball of package, which is named trgpkg_1.0.tar.gz.

6.5 Checking the package

In order to check errors and warnings before installing a package, it needs to be
debugged properly. A package is checked by the commands shown below.

Bash 6.11: Checking an R package from the terminal

R CMD check [package name]
Example
R CMD check trgpkg_1.0.tar.gz

The check command creates a folder with the package name and .Rcheck extension.
All the error logs and warning files are created inside this folder. The user can check
all these files to evaluate the package.

Listing 6.12: Checking an R package from R

if(dir.exists("trgpkg")){
system("R CMD check trgpkg_1.0.tar.gz")

}

6.6 Installation and usage of the package

When a package is built and checked properly, and all errors and warnings have been
addressed, then it is ready for installation in R. The following command is used to
install a package in R:

6.7 Loading and using a package | 91

Bash 6.13: Installing an R package from the terminal

R CMD INSTALL [package name] #general syntax
R CMD INSTALL trgpkg_1.0.tar.gz

Listing 6.14: Installing an R package from R

if(file.exists("trgpkg_1.0.tar.gz")){
system("R CMD INSTALL trgpkg_1.0.tar.gz")

}

6.7 Loading and using a package

When the package is installed, we can easily load it, call its functions and load data
associated with the package.

Below, we provide some examples of using functions in the package built in the
previous section (i. e., the package trgpkg.)

Listing 6.15: Using an R package

library("trgpkg") #loading the library

data(angls) #loading the data in the package
angls

calculating sin value of the data
data(angls)
zz <- trgval(angls)

plotting the output values
rm(trgval)
library("trgpkg")
data(angls)
zz <- trgpkg::trgval.default(angls)
plot(zz)

library("trgpkg")

data(angls)
zz <- trgpkg::trgval.default(c(30,60))

plotting on a circle of unit radius
plot.trg(zz, wave=FALSE)

6.7.1 Content of the files edited when generating the package

Content of the file ”DESCRIPTION”
Package: trgpkg
Type: Package

92 | 6 Creating R packages

Title: Example package for package creation
Version: 1.0
Date: 2019-01-20
Author: Shailesh Tripathi and Frank Emmert Streib
Maintainer: Shailesh Tripathi <shailesh.tripathy@gmail.com>
Description: This provides simple example for package creation in R
License: GPL (>= 2)
LazyLoad: yes

Content of the file ”NAMESPACE”
exportPattern("^[[:alpha:]]+")
export(plot.trg, trgval)
importFrom("graphics", "abline", "axis", "plot",

"points", "segments", "text")
importFrom("stats", "runif")

Content of the file ”man/plot.trg.Rd”
\name{plot.trg}
\alias{plot.trg}
\title{

Plots the sin function and the input value of "trg" class.
}

\description{
Plots the sin function and the input value of "trg" class.

}
\usage{

plot.trg(trg, wave = T, minang = -450,
maxang = 450, ...)

}
\arguments{
\item{trg}{
this is a "trg" class object generated using "trgval" function.

}
\item{wave}{
It is a logical value. If true gives a wave plot of sin function.

}
\item{minang}{
the minimum value of the domain of sin function for visualizing
sin function on the x-axis.

}
\item{maxang}{

6.7 Loading and using a package | 93

maximum value of domain of sin function for
visulaizing sin function on x- axis.

}
\item{\dots}{
all other input type as availavle in "plot" function

}
}
\value{

Provides a graphic view of the sin function
}

\author{
Shailesh Tripathi and Frank Emmert Streib}

\seealso{
\code{\link{plot}}

}

\examples{
zz <- trgval(90)
plot(zz)
plot(zz, wave=FALSE)

}

Content of the file ”man/trgval.Rd”
\name{trgval}
\alias{trgval}
%- Also NEED an '\alias' for EACH other topic documented here.
\title{

A generic function which is used to calculate
trignometric values.

}
\description{

A generic function which is used to calculate
trigonometric values.}

\usage{
trgval(x, ...)

}
\arguments{

\item{x}{
is a numeric value or vector}

94 | 6 Creating R packages

\item{\dots}{
}
}

\value{
returns a "trg" class object

}

\author{
Shailesh Tripathi and Frank Emmert-Streib}

\seealso{
plot.trg, trgval.default}

\examples{
zz <- trgval(c(30, 60, 90))

plot(zz)
plot(zz, wave=FALSE)

}

6.8 Summary

In this chapter, we provided a brief introduction how to create an R package. This
topic can be considered advanced and for the remainder of this book it is not re-
quired. However, in a professional context the creation of R packages is necessary
for simplifying the usage and exchange of a large number of individually created
functions.

Nowadays, many published scientific articles provide accompanying R packages
to ensure that all obtained results can be reproduced. Despite the intuitive clarity of
this, the reproducability of results has recently sparked heated discussions, especially
regarding provisioning the underlying data [70].

|
Part II: Graphics in R

7 Basic plotting functions

In this chapter, we introduce plotting capabilities of R that are part of the base
installation. We will see that there is a large number of different plotting functions
that allow a multitude of different visualizations.

7.1 Plot

The most basic plotting tool in R is provided by the plot() function, which allows
visualizing 𝑦 as a function of 𝑥. The following script gives two simple examples (see
Figure 7.1 (A) and (B)):

Listing 7.1: Examples for basic plotting, see Fig. 7.1

A
x <- seq(from=0, to=2*pi, length.out = 50)
y <- sin(x)
plot(x, y)

B
x <- seq(from=0, to=2*pi, length.out = 50)
y <- sin(x)
plot(x, y, type="l")

In this example, we first define the elements of vector x as a sequence of points
ranging from 0 to 2𝜋 with 50 intermediate values. That means, vector x contains 50
equally-spaced points from 0 to 2𝜋. The elements of vector y correspond to a sinus
evaluated at the 50 points provided by x.

The first example, shown in Figure 7.1 (A), plots each element in the vector
x against each element in the vector y. That means, the plot function visualizes
always pairs of elements in x and y, i. e., (𝑥𝑖, 𝑦𝑖) for all 𝑖 ∈ {1, . . . , 50}. In contrast,
Figure 7.1 (B) shows the same result, but with the line option for the type of the
visualization. The difference is that in this case, the 50 pairs of points are connected
by smooth line segments that result in a smooth line visualization.

At first glance, Figure 7.1 (B) may appear as the natural visualization of a sinus
function, because we know it is a smooth function. However, it is important to realize
that a computer graphics is always pixel-based, i. e., a line is always a sequence of
points. But what is then the difference to a point-based graphics? It is the spacing
between consecutive points (and their size). In this sense, Figure 7.1 (B) is realized,
internally by R, as a sequence of points that are very close to each other so that the
resulting plot appears as a continuous line.

For instance, change the value of the option length.out in the seq command
to see what consequence this has on the resulting plot.

https://doi.org/10.1515/9783110564990-007

98 | 7 Basic plotting functions

Figure 7.1: Examples for the basic plotting function plot().

The two examples shown in Figure 7.1 (A) and (B) demonstrate just a quick visual-
ization of the functional relation between 𝑥 and 𝑦. However, in order to improve the
visual appearance of these plots, usually, it is advised to utilize additional options.
Below we show two further examples, see Figure 7.1 (C) and (D), that use different
options.

Listing 7.2: Examples of basic plotting see Fig. 7.1

C
x <- seq(from=0, to=2*pi, length.out = 50)
y <- sin(x)
par(mar=c(5,5,1,1))
plot(x, y, type="b", cex.axis=1.6, cex.lab=2.2, font.lab=2,
lwd=4.0)

D
x <- seq(from=0, to=2*pi, length.out = 50)
y <- sin(x)
par(mar=c(5,5,1,1))
plot(x, y, type="l", cex.axis=1.6, cex.lab=2.2, font.lab=2,
lwd=8.0, col="blue")

7.1 Plot | 99

The type option allows specifying if we want points (p), lines (l), or both (b) options,
to be used simultaneously. The option cex allows changing the font size of the axis
(cex.axis) and the labels (cex.lab), and font.lab leads to a bold face of the labels.
Finally, the line width can be adjusted by setting the lwd to a positive numerical
value, and col specifies the color of the lines or points.

There is one further command in the above examples (par) that appears unim-
pressive at first. However, it allows adjusting the margins of the figure by setting mar.
Specifically, we need to set a four-dimensional vector to set the margin values for
(bottom, left, top, right) (in this order). This command is important, because
when setting the font size labels larger than a certain value, it can happen that the
labels are cut-off. For preventing this, the mar option needs to be set appropri-
ately.

In the following, we will always modify a basic plot by setting additional options
to improve its visual appearance.

7.1.1 Adding multiple curves in one plot

There are two functions available that enable adding multiple lines or points into
the same figure, namely lines and points. Two examples for the script below are
shown in Figure 7.2 (A) and (B). In order to distinguish different lines or points from
each other, we can specify the line-type (lty) or point-type (pch) option.

Listing 7.3: Multiple curves in one plot, see Fig. 7.2

A
x <- seq(from=0, to=2*pi, length.out = 50)
y1 <- sin(x)
y2 <- sin(x+0.4)
par(mar=c(5,5,1,1))
plot(x, y1, type="l", cex.axis=1.6, cex.lab=2.2, font.lab=2,
lwd=4.0, lty=1)
lines(x, y2, lwd=4.0, lty=2)

B
x <- seq(from=0, to=2*pi, length.out = 50)
y1 <- sin(x)
y2 <- sin(x+0.4)
par(mar=c(5,5,1,1))
plot(x, y1, type="p", cex.axis=1.6, cex.lab=2.2, font.lab=2,
lwd=4.0, pch=1)
points(x, y2, lwd=4.0, pch=2)

This can be extended to multiple lines or points commands as shown for the
next examples; see Figure 7.2 (C) and (D). Here, we add in a legend to the figures
that allows a better identification of the different lines with the parameters that
have been used. The legend command allows specifying the position of the legend

100 | 7 Basic plotting functions

Figure 7.2: Examples for multiple plots in one figure.

within the figure. Here, we used bottomright so that the legend does not overlap
with the lines or points. Further, we need to specify the text that shall appear in
the legend and the symbol, e. g., lty or pch. There are more options available, but
these provide the basic functionality of a legend.

For the above example, we used the xlab and ylab option to change the ap-
pearance of the labels of the 𝑥- and 𝑦-axis. In the previous examples, we did not
specify them explicitly. For this reason, R uses as default names for the labels the
names of the variables that have been used in the function plot().

Listing 7.4: Multiple curves in one plot, see Fig. 7.2

C
n <- 6
x <- seq(from=0, to=2*pi, length.out = 50)
y <- matrix(0, nrow = n, ncol = 50)
for(i in 1:n){

y[i,] <- x + (i-1)/2
}
par(mar=c(5,5,1,1))
plot(x, y[1,], type="l", cex.axis=1.6, cex.lab=2.2,
font.lab=2, lwd=4.0, lty=1, ylim=c(0,8.5), ylab="y", xlab="x")

7.1 Plot | 101

for(i in 2:n){
lines(x, y[i,], lwd=4.0, lty=i)

}
legend("bottomright", paste("x + (", 1:n, "- 1)/2"),
lty=1:n, lwd = 2)

D
n <- 10
x <- seq(from=0, to=2*pi, length.out = 20)
y <- matrix(0, nrow = n, ncol = 20)
for(i in 1:n){

y[i,] <- x + (i-1)/2
}
par(mar=c(5,5,1,1))
plot(x, y[1,], type="p", cex.axis=1.6, cex.lab=2.2,
font.lab=2, lwd=2, pch=1, ylim=c(0,10.5), ylab="y", xlab="x")
for(i in 2:n){

points(x, y[i,], lwd=2.0, pch=i)
}
legend("bottomright", paste("x + (", 1:n, "- 1)/2"), pch=1:n)

7.1.2 Adding horizontal and vertical lines

We can also add straight horizontal and vertical lines on the graph using the function
abline(). Depending on the option used, i. e., h or v, horizontal or vertical lines are
added to a figure at the provided values. Also this command allows changing the
line-type (lty) or color (col). In Figure 7.3, we show an example that includes one
horizontal and one vertical line.

Figure 7.3: Example for adding horizontal and verti-
cal lines to a plot using the function abline().

Listing 7.5: Add horizontal and vertical lines to a plot, see Fig. 7.3
x <- seq(from=0, to=2*pi, length.out = 50)
y <- sin(x)
par(mar=c(5,5,1,1))
plot(x, y, type="l", cex.axis=1.6, cex.lab=2.2, font.lab=2,

102 | 7 Basic plotting functions

lwd=4.0)
abline(v=pi/2)
abline(h=0.5, lty=2)

7.1.3 Opening a new figure window

In order to plot a function in a new figure by keeping a figure that is already created,
one needs to open a new plotting window using one of the following commands:
– X11(), for Linux and Mac if using R within a terminal
– macintosh(), for a Mac operating system
– windows(), for a Windows operating system

If these commands are not executed, then every new plot() command executed will
overwrite the old figure created so far.

7.2 Histograms

An important graphical function to visualize the distribution of data is hist(). The
command hist() shows the histogram of a data set. For instance, we are drawing 𝑛 =
200 samples from a normal distribution with a mean of zero, a standard deviation of
one, and saving the resulting values in a vector called x, see the code below. The left
Figure 7.4 shows a histogram of the data with 25 bars of an equal width, set by the
option breaks. Here, it is important to realize that the data in x are raw data. That
means, the vector x does not provide directly the information displayed in Figure 7.4
(Left), but indirectly. For this reason, the number of occurrences of values in x, e. g.,
in the interval 0.5 ≤ 𝑥 ≤ 0.6, need to be calculated by the hist() function. However,
in order to do that one needs to specify what are the boundaries of the intervals to
conduct such calculations. The function hist() supports two different ways to do that.
The first one is to just set the total number of bars the histogram should contain.
The second one is by providing a vector containing the boundary values explicitly.

Listing 7.6: Plotting histograms, see Fig. 7.4

Left
n <- 200
x <- rnorm(n, mean=0, sd=1)
hist(x, breaks=25, col="lavender", main="", cex.lab=2.0,
cex.axis=1.4)

Right
b <- c(-5,-2,-1.5,-1,-0.5,seq(-0.4, 0.4, 0.2),0.5,1,1.5,2,5)
hist(x, breaks=b, col="lavender", main="", cex.lab=2.0,
cex.axis=1.4, freq=F)

7.3 Bar plots | 103

Figure 7.4: Examples for histograms. Left: Providing the total number of bars. Right: Providing
the boundary values.

An example for the second way is shown in Figure 7.4 (Right). Here, the boundary
values are provided by the vector b. Also, in this case we set the option freq to
TRUE, which results in a histogram of densities. In contrast, Figure 7.4 (Left) shows
the frequencies for each bar corresponding to the number of 𝑥-values that fall in the
boundaries of one bar.

7.3 Bar plots

If the bin information of the individual cells is already available, one can use the
command barplot(). In the following example, we assign to each of the 𝑛 = 10
bars a color randomly. We do that by using the command color(), which provides
a vector of 667 defined color names available in R. In order to select the colors
randomly, we use the sample() command to sample 𝑛 integer values between 1 and
667 randomly without replacement. Here, randomly means that each element has
the same probability to be selected, namely 𝑝 = 1/667.

Listing 7.7: Plotting bar charts, see Fig. 7.5

Left
n <- 10
x <- runif(n, 0, 10)
ind <- sample(1:667, n, replace=F)
barplot(x, xlab="x", ylab="Frequency", legend=1:n,
names.arg=1:n, cex.axis=1.4, cex.lab=2.0, font.lab=2,
col=colors()[ind])

In Figure 7.5 (Right), we show a second example for a bar plot that splits
each bar into individual contributing components. Such plots are called stacked bar
charts. For instance, suppose we have 3 factors that contribute to the outcome of

104 | 7 Basic plotting functions

Figure 7.5: Examples for a normal bar chart (Left) and a stacked bar chart (Right).

a variable that is measured for 5 different conditions indexed by the letters A–E.
Then, for each condition, the outcome of a variable can be broken down into its
constituting 3 values.

In the example below, we use two new options. The first one is space allowing
to adjust the spacial distance between adjacent bars. The second one is names.arg,
which allows specifying the labels that appear below each bar. For specifying the
labels, we use the function LETTERS() to conveniently assign the first 5 capital
letters of the alphabet to names.arg. Alternatively, the function letters() can be
used to generate lowercase letters.

Listing 7.8: Plotting stacked bar charts, see Fig. 7.5

Right
n <- 5; m <- 3
par(mar=c(5,5,1,1))
mat <- matrix(runif(m*n), nrow=m, ncol=n)
barplot(mat, main="", ylab="fraction", xlab="conditions",
col=c("blue","green","red"), space=0.1, cex.axis=1.4, las=1,
names.arg=LETTERS[1:5], cex.lab=2, font.lab=2, cex.names=1.4)

7.4 Pie charts

An alternative visualization to a bar plot is a pie chart, also called circle chart. In
a pie chart, the arc length of each slice is proportional to the quantity which it
represents.

Listing 7.9: Plotting pie charts, see Fig. 7.6

n <- 5
x <- runif(n, 0, 10)
pie(x, col = gray(seq(0.0,1.0,length=n)), cex=2)

7.5 Dot plots | 105

Figure 7.6: A simple pie chart.

7.5 Dot plots

For the visualization of a large number of single-valued entities, a dot plot can be
useful. A dot plot is like a graphical version of a table that makes it easier to recognize
the relative differences between the values of the different entities.

In Figure 7.7, we show an example visualizing the mortality of cancer in Euro-
pean countries normalized per 100,000 people. The information is taken from the
World Health Organization (WHO) data for the year 2013. These data are provided
in the file WHO.RData.

In Figure 7.7, the average number of cancer deaths (averaged over gender) is
alphabetically ordered according the country names. Overall, the information about
the 53 countries and the range of all possible values is easy to grasp, making a dot
plot an attractive graphical alternative to a table.

In the following code, we first identify all European countries in the data frame
dat.who.ave, because it contains also information about non-european countries.
Then, we use the dotchart() function specifying the entries which shall be visualized
dat.who.ave$deaths[ind] and the labels (dat.who.ave[ind,1]) that should be
used to identify the corresponding rows in the dot plot.

Listing 7.10: Example of dot plots, see Fig. 7.7

aux <- "Europe"
ind <- which(dat.who.ave[,3]==aux)
dotchart(dat.who.ave$deaths[ind], labels=dat.who.ave[ind,1],
cex=0.5, cex.lab=2.0, cex.main=2.0, font.lab=2,
main="Mortality by european country",
xlab="Cancer deaths per 100,000")

As usually, there is more than one way to visualize a data set in a meaningful
way, depending on the perspective. In the following, we present just one alternative
representation of the same data set by sorting the mortality values of the countries.

In Figure 7.8, we ordered the mortality values and grouped the countries into
three categories. Each of these categories is highlighted in a different color by spec-
ifying the option color. The category of a country is specified with the groups

106 | 7 Basic plotting functions

Figure 7.7: Information about cancer mortality in Europe taken from the World Health Organi-
zation (WHO) data for the year 2013.

option by providing a vector of factors. If visualized in this way, subgroups within
the data set can be highlighted additionally. Of course, there are further modifi-
cation one could conduct, e. g., the alphabetic organization of the countries within
the subgroups or subdividing the subgroups, e. g., highlighted by specifying different
symbols using the gpch option.

Listing 7.11: Example of dot plots, see Fig. 7.8

aux <- "Europe"
ind <- which(dat.who.ave[,3]==aux)
ind2 <- order(dat.who.ave[ind,2])
L <- length(ind)
n <- round(L/3)
country.col <- c(rep("blue2", n), rep("green3", n),

7.5 Dot plots | 107

Figure 7.8: Ordered information about the cancer mortality in Europe. Same data as in Fig-
ure 7.7.

rep("purple2", (n-1)))
country.g <- factor(c(rep("3", n), rep("2", n),
rep("1", (n-1))))

dotchart(dat.who.ave$deaths[ind[ind2]],
labels=dat.who.ave[ind[ind2],1], cex=0.5, cex.lab=2.0,
cex.main=2.0, font.lab=2,
main="Mortality by european country - ordered",
xlab="Cancer deaths per 100,000",
groups=country.g, color=country.col)

Finally, we would like to note that a dot plot is also called a Cleveland dot plot,
because William Cleveland pioneered this kind of visualization.

108 | 7 Basic plotting functions

7.6 Strip and rug plots

Another plotting style, which is also due to Cleveland, is called a strip plot. It can
be used to visualize one-dimensional data along a line, plotting each data point to
its corresponding spot. In R, the stripchart() function allows the application of this
style, and in Figure 7.9 we show three examples (corresponding to the green, red,
and blue data points).

Figure 7.9: Examples for strip plots (corre-
sponding to the green, red, and blue data
points) and a rug plot.

For these examples, we generated 100 integer values from the interval 1 to 100.
The example shown by the red data points corresponds to the base form of this
plot function that overwrites the data points, as specified by the option method.
Alternatively, the data points can be stacked leading to a kind of histogram (in
blue), although the height does not exactly reflect the count values, but is merely
proportional to the relative density of the x values within a certain region. Finally,
the data points can be jittered by applying a small offset between data points of the
same x-value.

Listing 7.12: Example of strip and rug plots, see Fig. 7.9

n <- 100
x <- round(runif(n, 1, 100))

par(mar=c(5,5,1,1))
stripchart(x, method="stack", at=0.2, cex=2, offset=0.5,
xlab="x values", ylab="'at' option", font.lab=2, cex.lab=2.0,
cex.axis=1.4, col = "blue", ylim=c(0,1.8))
stripchart(c, method="overplot", at=0.75, col="red", pch=1,
add=T)
stripchart(c, method="jitter", at=1.5, col = "green3", pch=2,
add=T)
rug(c, lwd=2.5)

7.7 Density plots | 109

In addition to a strip plot, there is the rug() function available in R, which we
included also in Figure 7.9. The function rug is similar to the function stripchart();
however, the difference is that the rug function does not provide an option similar
to at for stripchart(), allowing to shift the rug of data points along the 𝑦-axis. Also,
there is no option to specify the symbol to be displayed as a data point, instead,
data points are shown as vertical lines.

7.7 Density plots

The next visualization style we will discuss is the density plot. A density plot can
be seen as an extension of strip plots and histograms. The idea of a density plot is
to convert the density of the data points within certain sensible regions into relative
height values so that a summation over all density values adds up to one.

The example in the previous section for stripchart(), with the option
method="stack", is almost a density plot, according to the above description.
However, instead of converting regions of x-values into relative height values, in-
dividual data points are stacked if they are identical. Furthermore, height values
are merely the number of identical data points and, hence, these values would not
sum up to one. However, summation over all data points and division of the stacked
heights normalizes the resulting values giving, in principle, a valid density plot. Also,
if we are creating a histogram with a certain bin size and normalize the resulting
height values by the total sum over all bins, we obtain another valid density plot.

Despite the fact that these simple modifications of a strip plot and a histogram
lead to density plots, there are two characteristics missing that enable general den-
sity plots. These characteristics are (1) to average over overlapping regions, and
(2) weighted regions of the data points by application of a sliding window.

In order to understand these two characteristics, we show in Figure 7.10 some
examples. The data in these examples are again the average cancer mortalities from
the WHO, however, this time also for non-European countries. In the top row,
we show an example that averages over overlapping regions, but does not apply
a weighting to these regions. This corresponds to a sliding window of a fixed size
that counts for each position of the window the number of data points within this
window, and discards all other data points outside. In R, this can be obtained by
using the function density() and specifying rectangular for the option kernel. The
size of the window is specified by the option bw (band width). One can see that for
bw=0.5, the resulting density plot is much more rugged than for bw=5, hence, this
option allows a smoothing of the plot.

In the bottom row in Figure 7.10, we show examples, which additionally invoke
a weighting of the data points. For these examples, we used a normal distribution
(kernel="gaussian"). In Figure 7.11, we depict the principle idea that underlies
the weighted averaging. In this figure, a normal distribution with a mean value of

110 | 7 Basic plotting functions

Figure 7.10: Density plots for cancer mortality worldwide. Data are from the WHO. Top row:
Averaged over overlapping regions. Bottom row: Averaged and weighted over overlapping re-
gions.

𝜇 = 𝑚.𝑘 = 175 and a standard deviation of 𝜎 = 𝑠𝑑.𝑘 = 10 (given formally by

𝑓(𝑥) = 1√
2𝜋𝜎

exp
(︂

− (𝑥 − 𝜇)2

2𝜎2

)︂
, −∞ ≤ 𝑥 ≤ ∞, (7.1)

and discussed in detail in Chapter 17) is shown. The mean value 𝑚.𝑘 is highlighted by
the red vertical line to indicate the current position of the averaging. The averaging
itself involves all data points, however, the weight is proportional to the density of
the normal distribution for the given values of 𝑚.𝑘 and 𝑠𝑑.𝑘.

Listing 7.13: Example of density plots, see Fig. 7.10

num <- dat.who.ave[,2]
Top row, Left
d <- density(num, kernel="rectangular", bw=0.5)
h <- hist(num, 20, plot=F)
par(mar=c(5,5,1,1))

7.7 Density plots | 111

plot(d, main="", xlab="cancer deaths per 100,000", font.lab=2,
cex.lab=2.0, cex.axis=1.4, lwd=4)
rug(num, lwd=2, col="blue")
Top row, Right
d <- density(num, kernel="rectangular", bw=5)
h <- hist(num, 20, plot=F)
par(mar=c(5,5,1,1))
plot(d, main="", xlab="cancer deaths per 100,000", font.lab=2,
cex.lab=2.0, cex.axis=1.4, lwd=4)
rug(num, lwd=2, col="blue")
Bottom row, Left
num <- dat.who.ave[,2]
d <- density(num, kernel="gaussian", bw=1)
par(mar=c(5,5,1,1))
plot(d, main="", xlab="cancer deaths per 100,000", font.lab=2,
cex.lab=2.0, cex.axis=1.4, lwd=4)
polygon(d, col="green", border="gray50")
Bottom row, Right
num <- dat.who.ave[,2]
d <- density(num, kernel="gaussian", bw=16)
par(mar=c(5,5,1,1))
plot(d, main="", xlab="cancer deaths per 100,000", font.lab=2,
cex.lab=2.0, cex.axis=1.4, lwd=4)
polygon(d, col="green", border="gray50")

Figure 7.11: Principle idea of the sliding window
assigning weights to data points.

In order to emphasize that different data points contribute differently, we added
vertical lines of different length, according to the density values above these data
points. Hence, the value for 𝑚.𝑘 is proportional to the sum of all values weighted by
the density at the data points, resulting in

𝑣(𝑚.𝑘) =
𝐿∑︁
𝑖

𝑓
(︀
num(𝑖); 𝑚.𝑘, 𝑠𝑑.𝑘

)︀
. (7.2)

112 | 7 Basic plotting functions

Here, 𝐿 is the total number of data points and 𝑛𝑢𝑚(𝑖) is the number of data points
in window 𝑖. In this way, for each position along the 𝑥-axis, the value 𝑣(𝑚.𝑘) is
evaluated by changing the values of 𝑚.𝑘.

The corresponding results are shown in the Figure 7.10 (bottom row). Again,
depending on the value of the band width (bw), the obtained density plots can
be smoothed. For the normal distribution, the parameter bw changes the standard
deviation, making the normal distribution broader for larger values.

We would like to finish this section by mentioning that the above discussion
focused on the graphical meaning of density plots and their underlying idea. However,
it is important to note that the quantitative estimation of the probability density of
a given data set is an important statistical problem in its own right.

Listing 7.14: Example of density plots, see Fig. 7.11

num <- dat.who.ave[,2]
L <- length(num)
x <- seq(50, 250, 1)
m.k <- 175
sd.k <- 10
y <- dnorm(x, m.k, sd.k)
d.rnorm <- dnorm(num, m.k, sd.k)

plot(x, y, type="l", lwd=4, ylim=c(0,0.05),
ylab="density - weights", font.lab=2, cex.lab=2.0,
cex.axis=1.4)
for(i in 1:L){

lines(c(num[i],num[i]), c(0,d.rnorm[i]), type="b")
}
abline(v=m.k, lwd=4, col="red")
rug(num, lwd=2, col="blue")

7.8 Combining a scatterplot with histograms: the layout
function

R provides a very powerful command that allows to combine different plot functions
with each other. This command is the layout() function. Basically, the function
layout() enables the partition of a figure into different sections where different plots
can be places. The option mat allows to define such a separation by choosing an
integer number for each section where we want to place a plot in. In the example
below, we split the whole figure into 4 regions, but we would like to put plots in only
3 of them. The integer number corresponds to the order in which these regions are
plotted. In our example, the first plot is placed in the bottom-left region.

In addition to the partitioning of the figure itself, we need also to specify what
width and height these regions should have. For instance, in the example below,
we use a relative width of 3 to 1 for regions (2, 1) to (0, 3). By using the function

7.8 Combining a scatterplot with histograms: the layout function | 113

layout.show(lla), we can display the defined regions explicitly in order to see if the
ratios are as desired.

Finally, we needs to make sure that the different plots we uses do actually go
over the same range of the 𝑥-axis. Here, we guarantee this by providing the break
points of the histograms explicitly.

Figure 7.12: Combining a scatterplot with histograms of its x- and y-components.

Listing 7.15: Combining a scatterplot with histograms, see Fig. 7.12
n <- 1000; v1 <- -3.1; v2 <- 6;nb <- seq(v1,v2,0.2)
x <- rnorm(n,1,1); y <- x + rnorm(n,0,0.4)
hx <- hist(x, breaks=nb, plot=F)
hy <- hist(y, breaks=nb, plot=F)
mc <- max(c(hx$density, hy$density))
lla <- layout(mat=matrix(c(2,1,0,3),ncol=2,nrow=2),
widths=c(3,1), heights=c(1,3), respect=T)
plot(x, y, xlim=range(x), ylim=c(v1,v2), xlab="x", ylab="y",
cex.lab=2.2, cex.axis=1.4, font.lab=2)
par(mar=c(1,3,0,0))
barplot(hx$density, axes=F, ylim=c(0,mc), space=0, col="blue")
par(mar=c(3,1,1,1))
barplot(hy$density, axes=F, xlim=c(0,mc), space=0, horiz=T)

In this way, we can create very complex figures that carry a lot of information.

114 | 7 Basic plotting functions

7.9 Three-dimensional plots

The visualization capability of R is not limited to one- and two-dimensional plots. It is
also possible to create three-dimensional visualizations. The example below shows an
application of the command persp() for visualizing the density of a two-dimensional
normal distribution.

Listing 7.16: Three-dimensional basic plot, see Fig. 7.13

n <- 2; L <- 50; v <- 1.5
S <- matrix(0, nrow=n, ncol=n)
diag(S) <- vˆ2
S.i <- solve(S)
x <- seq(-5, 5, length = L); y <- x
z <- matrix(0, nrow=L, ncol=L)
for(i in 1:L){

for(j in 1:L){
z[i,j] <- 1/(sqrt((2*pi)ˆ2 * det(S))) *

exp(- c(x[i],y[j]) %*% S.i %*% c(x[i],y[j])/2)
}

}
par(mar=c(3,3,0,0))
persp(x, y, z, theta = 30, phi = 30, expand = 0.5,
col = "purple", ltheta = 120, shade = 0.75,
ticktype = "detailed", xlab = "X", ylab = "Y",
zlab = "Z - density", cex.lab=1.9, font.lab=2)

Figure 7.13: A three-dimensional visu-
alization of the two-dimensional normal
distribution.

7.10 Contour and image plots

Alternatives to three-dimensional plots, available in R, include contour maps and
image plots. Such plots are projects of thee-dimensional plots to a two-dimensional
canvas.

7.11 Summary | 115

Listing 7.17: Contour and image plots, see Fig. 7.14

Left
z2 <- z + matrix(rnorm(L*L, 0, 0.001), nrow=L, ncol=L)
par(mar=c(5,5,1,1))
contour(x, y, z2, xlab = "X", ylab = "Y", cex.lab=1.9,
font.lab=2, levels=seq(0, 1, by=0.01), col=rainbow(10))

Right
par(mar=c(5,5,1,1))
image(x, y, z2, col=terrain.colors(10), xlab = "X",
ylab = "Y", cex.lab=1.9, font.lab=2)

Figure 7.14: Examples for a contour (Left) and an image plot (Right) of a normal distribution.

7.11 Summary

Despite the fact that all of the commands discussed in this chapter are part of the
base installation of R, they provide a vast variety of options for the visualization
of data, as we have seen in the last sections. All extension packages either address
specific problems, e. g., for the visualization of networks, or for providing different
visual aestatics.

8 Advanced plotting functions: ggplot2

8.1 Introduction

The package ggplot2 was introduced by Hadley Wickham [200]. The difference of
this package to many others is that it does not only provide a set of commands for the
visualization of data, but it implements Leland Wilkinson’s idea of the Grammar of
Graphics [204]. This makes it more flexible, allowing to create many different kinds
of visualizations that can be tailored in a problem-specific manner. In addition, its
aesthetic realizations are superb.

The ggplot2 package is available from the CRAN repository and can be installed
and loaded into an R session by

Listing 8.1: Installing the package ggplot2

install.packages("ggplot2")
library("ggplot2")

There are two main plotting functions provided by the ggplot2 package:
– qplot(): for quick plots
– ggplot(): allows the control of everything (grammar of graphics)

In this chapter, we discuss both of these plotting functions.

8.2 qplot()

The function qplot() is similar to the basic plot function in R. The q in front of
plot stands for “quick”, in the way that it does not allow getting access to the
full potential provided by the package ggplot2. The full potential is accessible via
ggplot, discussed in Section 8.3.

To demonstrate the functionality of qplot(), we use the penguin data provided
in the package FlexParamCurve.

Listing 8.2: Installing the package FlexParamCurve and loading the data

install.packages("FlexParamCurve")
library("FlexParamCurve")
data(penguin.data)

The penguin.data data frame has 2244 rows and 11 columns of the measured
masses for little penguin chicks between 13 and 74 days of age (see [33]).

In Figure 8.1, we show the basic functionality of qplot(), generating a scatter
plot using the following script:

https://doi.org/10.1515/9783110564990-008

118 | 8 Advanced plotting functions: ggplot2

Figure 8.1: Example of a scatter plot for multiple data sets using qplot().

Listing 8.3: Simple example for qplot(), see Fig. 8.1

qplot(ckage, weight, data = penguin.data, geom=c("point"),
color=factor(year))

Similar to the base plot function in R, we first specify the values for the x and y
coordinates using the column names in the data file penguin.data. The geom option
defines the geometry of the object. Here, we chose “point” to produce a scatter plot
for all data points (𝑥𝑖, 𝑦𝑖). Other options are given in Table 8.1. The last option we

Table 8.1: Examples for different options for qplot.

Option for geom Description

point scatterplot
line connects ordered data points by a line
smooth smoothed line between data points
path connects data point by a line in the order provided by data
step step function
histogram histogram
boxplot boxplot

8.2 qplot() | 119

use is color to allow different colors for the observation points depending on the
year the observation has been made. We use the function “factor” to indicate that
the values of the variable “year” are only used as categorical variable. The aesthetics
command I() can be used to set the color of the data points manually.

In order to further distinguish data points from each other, one can use the
shape option using the factor ck for the hatching order. Because this can lead to a
crowded visualization, qplot() offers the additional option facets. The effect of this
option is shown in Figure 8.2.

Listing 8.4: An example for the usage of facets, see Fig. 8.2

qplot(ckage, weight, data =penguin.data, geom=c("point"),
color=factor(year), facets = ˜ck)

Figure 8.2: An example for the usage of facets.

The two columns in Figure 8.2 are labeled A and B, corresponding to the factors of
the ck variable indicating first hatched (A), and second hatched (B).

Next, we visualize the effect of the option value smooth for geom.

120 | 8 Advanced plotting functions: ggplot2

Listing 8.5: An example for smoothing data, see Fig. 8.3

qplot(ckage, weight, data =penguin.data[1:10,], geom=c("point",
"smooth"))

Figure 8.3: An example for smoothing data with qplot().

For this, we use only the first 10 observation points. As we can see in Fig. 8.3, in
addition to these 10 data points, there is a smooth curve added as a result from the
smoothing function. We would like to note that here, we used a vector to define the
option geom, because we wanted to show the data points in addition to the smooth
curve.

Similar to the base plot function in R, there are options available to enhance
the visual appearance of a plot. Table 8.2 shows some additional options to enhance
plots.

Table 8.2: Further options to improve the visual appearance of a plot for qplot().

Option Description

xlim, ylim limits for the axes, e. g., xlim=c(-5, 5)
log character vector indicating logged axes, e. g., log=”x” or log=”xy”
main main title for the plot
xlab, ylab labels for the x- and y-axes

8.3 ggplot() | 121

8.3 ggplot()

The underlying idea of the function ggplot() is to construct a figure according to a
certain grammar that allows adding the desired components, features, and aspects
to a figure and then generate the final plot. Each of such components is added as a
layer to the plot.

The base function ggplot() requires two input arguments:
– data: a data frame of the data set to be visualized
– aes(): a function containing aesthetic settings of the plot

8.3.1 Simple examples

In the following, we study some simple examples by using the Orange data set
containing data about the growth of orange trees. To get an overview of these data,
we show the first lines.

> head(Orange)
Grouped Data: circumference ~ age | Tree
Tree age circumference

1 1 118 30
2 1 484 58
3 1 664 87
4 1 1004 115
5 1 1231 120
6 1 1372 142

The data set contains only three variables (tree, age, and circumference), whereas
the variable “Tree” is an indicator variable for a particular tree.

Listing 8.6: Example of a data plot with ggplot, see Fig. 8.4 (Left)

data(Orange)
ggplot(data=Orange, aes(age, circumference)) + geom_point()

In order to plot any figure, we need to use the ggplot() command, and specify
how we want to plot these data by providing information about the geometry. In
the above case, we just want to plot the circumference of the trees as a function of
their age by means of points, see Figure 8.4 (Left). The same result can be obtained
by splitting the whole command into separate parts as follows:

Listing 8.7: A simple point plot with ggplot(), see Fig. 8.4 (Left)

p <- ggplot(data=Orange, aes(age, circumference))
p + geom_point()

122 | 8 Advanced plotting functions: ggplot2

Figure 8.4: Examples for point plots. Left: Base functionality without setting options. Right:
Modified point size.

In order to demonstrate the working principle of the different layers, we improve the
visual appearance of the above plot by setting a variety of different options.

Listing 8.8: Improved point plot with ggplot, see Fig. 8.4 (Right)

p <- ggplot(Orange, aes(age, circumference))
p <- p + geom_point(size=3) + scale_x_continuous(name="age of

trees")
p <- p + theme(axis.text.x=element_text(size=12),

axis.title.x=element_text(size=15, face="bold"))
p <- p + theme(axis.text.y=element_text(size=12),

axis.title.y=element_text(size=15, face="bold"))
p

The corresponding result is shown in Figure 8.4 (Right). For this plot we involved
three different layers, namely
– geoms: controls the geometrical objects
– scales: controls the mapping between data and aesthetics
– themes: controls nondata components of the plot

by setting options for the following functions:
– geom_point()
– scale_x_continuous()
– theme()

The meaning of the available options is rather intuitive, if we know all options
available. This information can be acquired from the manual of ggplot(), which is
quite extensive.

8.3 ggplot() | 123

8.3.2 Multiple data sets

Beyond the simple usage of ggplot() demonstrated above, the combination of many
options within different layers becomes quickly involved. In Figure 8.5, we show two
additional examples that highlight the presence of multiple data sets.

Listing 8.9: A plot with multiple points, see Fig. 8.5 (Left)

p <- ggplot(Orange, aes(age, circumference, color=Tree))
p <- p + geom_point(size=3, aes(shape=Tree)) +

scale_x_continuous(name="age of trees")
p <- p + theme(axis.text.x=element_text(size=12),

axis.title.x=element_text(size=15, face="bold"))
p <- p + theme(axis.text.y=element_text(size=12),

axis.title.y=element_text(size=15, face="bold"))
p

By adding the option color to the function aes() in ggplot(), different colors will be
assigned to different factors, as given by Orange$Tree, and a figure legend will be
automatically generated. Specifying the types of the shape for the data points will,
in addition, assign different point shapes corresponding to the different trees.

Figure 8.5: Examples of multiple data sets plotted using ggplot().

In Figure 8.5 (Right), we provide an example using geom_line() instead of
geom_point(). This displays the connected points in form of different lines for
the different trees.

Listing 8.10: A plot with multiple lines, see Fig. 8.5 (Right)

ind <- order(as.numeric(levels(Orange$Tree)))

124 | 8 Advanced plotting functions: ggplot2

Tree2 <- factor(Orange$Tree, levels=levels(Orange$Tree)[ind],
ordered=T)

df <- data.frame(Orange, Tree2)
p <- ggplot(df, aes(age, circumference, color=Tree2))
p <- p + geom_line(size=2, aes(shape=Tree2))
p <- p + scale_x_continuous(name="age of trees")
p <- p + theme(axis.text.x=element_text(size=12),

axis.title.x=element_text(size=15, face="bold"))
p <- p + theme(axis.text.y=element_text(size=12),

axis.title.y=element_text(size=15, face="bold"))
p <- p + scale_colour_manual("", values = c("1" = "olivedrab3", "2"

= "dodgerblue1", "3" = "indianred2", "4" = "purple", "5" =
"mediumseagreen"))

p

Furthermore, we rearranged the 5 trees in the legend in their numerical order. This
is a bit tricky, because there is no option available that would allow to do this
directly. Instead, it is necessary to provide this information for the different factors,
by generating a new factor Tree2 that contains this information.

Before we continue, we would like to comment on the logic behind ggplot()
used to add either multiple points or lines to a plot. In contrast to the basic plotting
function plot() discussed in Chapter 7.1.1, which adds multiple data sets successively
by, e. g., using the lines() command, ggplot() can accomplish this by setting an option
(shape). However, this requires the data frame to contain information about this in
the form of an indicator variable (in our case “Tree”). Hence, the simplification in
the commands for multiple lines needs to be compensated by a more complex data
frame. This can be in fact nontrivial.

The good news is that it is possible to use ggplot() in the same logical way as
the basic plotting function. An example for this is shown in Listing 8.11.

Listing 8.11: Using multiple data frames to plot multiple lines.

df1 <- data.frame(X = Orange[1:7,2], Y = Orange[1:7,3])
df2 <- data.frame(X = Orange[8:14,2], Y = Orange[8:14,3])

gg <- ggplot()
gg <- gg + geom_line(data=df1, aes(x=X,y=Y), size=1.5,

color='purple')
gg <- gg + geom_line(data=df2, aes(x=X,y=Y), size=1.5,

color='green')

print(gg)

For the shown example in Listing 8.11, there is certainly no advantage in using
ggplot() in this way, because a data frame with the required information exists
already. However, if one has two separate pairs of data in the form 𝐷𝑖 = {(𝑥𝑖, 𝑦𝑖)}
available, the advantage becomes apparent.

8.3 ggplot() | 125

8.3.3 geoms()

There is a total of 37 different geom() functions available to specify the geometry of
plotted data. So far, we used only geom_point() and geom_line(). In the following,
we will discuss some additional functions listed below.

In Table 8.3, we list geom() functions with their counterpart in the R base pack-
age.

Table 8.3: Functions associated with ggplot() and geom() and their corresponding counter parts
in the R base package.

ggplot function Base plot function

geom_point() points()
geom_line() lines()
geom_curve() curve()
geom_hline() hline()
geom_vline() vline()
geom_rug() rug()
geom_text() text()
geom_smooth(method = ”lm”) abline(lm(y x))
geom_density() lines(density(x))
geom_smooth() lines(loess(x, y))
geom_boxplot() boxplot()

Additional geom functions include:
– geom_bar()
– geom_dotplot()
– geom_errorbar()
– geom_jitter()
– geom_raster()
– geom_step()
– geom_tile()

For adding straight lines into a plot, we can use the functions geom_abline() and
geom_vline(), see Figure 8.6 (Left). Because a straight line is fully specified by an
intercept and a slop, these two options need to be set for geom_abline(). If we
use a zero slop, we obtain a horizontal line. For adding vertical lines, the function
geom_vline() can be used, specifying the option xintercept. In addition, both func-
tions allow setting a variety of additional options, to change the visual appearance
of the lines. For example, valid linetype values include solid, dashed, dotted,
dashdot, longdash, and twodash.

126 | 8 Advanced plotting functions: ggplot2

Figure 8.6: Examples using geom_abline() and geom_vline() (Left) and geom_step() (Right).

Listing 8.12: Additional modifications of a multiline plot, see Fig. 8.6 (Left)

p <- ggplot(Orange, aes(age, circumference, color=Tree))
p <- p + geom_line(size=3) + scale_x_continuous(name="age of trees")
p <- p + theme(axis.text.x=element_text(size=12),

axis.title.x=element_text(size=15, face="bold"))
p <- p + theme(axis.text.y=element_text(size=12),

axis.title.y=element_text(size=15, face="bold"))
p <- p + geom_abline(intercept=70, slope=0.1, size=1,

linetype="dotted")
p <- p + geom_abline(intercept=50, slope=0, size=1,

linetype="dashed")
p <- p + geom_vline(xintercept=1200, size=1, linetype="longdash")
p

In Figure 8.6 (Right), we show an example for the geom_step() function. This
function connects the data points by horizontal and vertical lines making it easier
to recognize horizontal and vertical jumps.

Listing 8.13: An example for step functions, see Fig. 8.6 (Right)

p <- ggplot(Orange, aes(age, circumference, color=Tree))
p <- p + geom_step(size=3) + scale_x_continuous(name="age of trees")
p <- p + theme(axis.text.x=element_text(size=12),

axis.title.x=element_text(size=15, face="bold"))
p <- p + theme(axis.text.y=element_text(size=12),

axis.title.y=element_text(size=15, face="bold"))
p

In Figure 8.7, we show examples for boxplots using the function geom_boxplot().
For these examples, we do not distinguish the different trees, but we are rather
interested in the distribution of the circumferences of the trees at the 7 different
time points of their measurement.

8.3 ggplot() | 127

Figure 8.7: Different examples for boxplots.

In Figure 8.7 (Top row, Right), we added the original data points, for which the
boxplots are assessed. In order to avoid a potential overlap between the data points,
the function geom_jitter() can be used to introduce a slight horizontal shift to the
data points. These shifts are randomly generated and, hence, different executions of
this function lead to different visual arrangements of the data points.

Listing 8.14: Examples for boxplots shown in Fig. 8.7 (Top row)

Top-Left
p <- ggplot(Orange, aes(factor(age), circumference))
p <- p + geom_boxplot() + scale_x_discrete(name="age of trees")
p <- p + theme(axis.text.x=element_text(size=12),

axis.title.x=element_text(size=15, face="bold"))
p <- p + theme(axis.text.y=element_text(size=12),

axis.title.y=element_text(size=15, face="bold"))
p

128 | 8 Advanced plotting functions: ggplot2

Top-Right
p <- p + geom_jitter()
p

Furthermore, it can be informative to add projections of the data points next
to the coordinate axes. By using the function geom_rug(), this information can be
added. Specifying the option sides allows to include these projections in form of
dashed lines to the left (l), right (r), bottom (b) or the top (t) of the plot; see
Figure 8.7 (bottom-left). Also, it is possible to color these lines according to the
color of the boxplots; see Figure 8.7 (bottom-right).

Listing 8.15: Examples for boxplots shown in Fig. 8.7 (Bottom row)

Bottom-Left
p <- ggplot(Orange, aes(factor(age), circumference))
p <- p + geom_boxplot(aes(fill=factor(age))) +

scale_x_discrete(name="age of trees")
p <- p + geom_jitter()
p <- p + geom_rug(sides="l")
p <- p + theme(axis.text.x=element_text(size=12),

axis.title.x=element_text(size=15, face="bold"))
p <- p + theme(axis.text.y=element_text(size=12),

axis.title.y=element_text(size=15, face="bold"))
p

Bottom-Right
p <- ggplot(Orange, aes(factor(age), circumference,

color=factor(age)))
p <- p + geom_boxplot() + scale_x_discrete(name="age of trees")
p <- p + geom_jitter(color="black")
p <- p + geom_rug(sides="bl", position='jitter')
p <- p + theme(axis.text.x=element_text(size=12),

axis.title.x=element_text(size=15, face="bold"))
p <- p + theme(axis.text.y=element_text(size=12),

axis.title.y=element_text(size=15, face="bold"))
p

8.3.4 Smoothing

In this section, we demonstrate the application of statistical functions for data
smoothing. In Figure 8.8 (Top), we show two examples using the function
stat_smooth(). For both figures, we used the “loess” method as the smoothing
method. This method averages over a sliding window along the 𝑥-axis to obtain
averaged values for the outcome variable, depicted by the blue line. The purpose of
the application of a smoothing function is to provide a graphical regression, which
summarizes data points. The option se corresponds to the standard error, which we
disable in the left figure by setting se=F.

8.3 ggplot() | 129

Figure 8.8: Examples for smoothing functions.

On the right figure, we add the information of the standard error in form of a gray
band that underlies the loess curve. Furthermore, we set the color of this band with
the fill option. We want to point out that by not specifying this option, the default
value is to use a transparent background. Unfortunately, our experience is that this
can cause problems, depending on the operating system. For this reason, setting this
option explicitly is a trick to circumvent potential problems.

Listing 8.16: Some examples for data smoothing, see Fig. 8.8 (Top row)

Top-Left
p <- ggplot(Orange, aes(age, circumference))
p <- p + geom_point(size=2) + scale_x_continuous(name="age of

trees")
p <- p + stat_smooth(method = "loess", se=F, size=2)
p <- p + theme(axis.text.x=element_text(size=12),

axis.title.x=element_text(size=15, face="bold"))

130 | 8 Advanced plotting functions: ggplot2

p <- p + theme(axis.text.y=element_text(size=12),
axis.title.y=element_text(size=15, face="bold"))

p

Top-Right
p <- ggplot(Orange, aes(age, circumference))
p <- p + geom_point(size=2) + scale_x_continuous(name="age of

trees")
p <- p + stat_smooth(method = "loess", se=T, fill="grey60", size=2)
p <- p + theme(axis.text.x=element_text(size=12),

axis.title.x=element_text(size=15, face="bold"))
p <- p + theme(axis.text.y=element_text(size=12),

axis.title.y=element_text(size=15, face="bold"))
p

Next, in Figure 8.8 (bottom-left), we add to the color band explicit error bars
by using the geom option for stat_smooth(). Since we have a continuous 𝑥-axis,
we need to specify the number n of error bars we want to add to the smoothed
curve.

Finally, in Figure 8.8 (bottom-right), we show an example for a different smooth-
ing function. In ggplot2, the available options are lm (linear model), glm (general-
ized linear model), gam (generalized additive model), loess and rlm (robust linear
model) and in this figure we use lm. A linear model means that the resulting curve
will be restricted to a straight line obtained from a least-squared fit.

Listing 8.17: Some examples for data smoothing, see Fig. 8.8 (Bottom row)

Bottom-Left
p <- ggplot(Orange, aes(age, circumference))
p <- p + geom_point(size=2) + scale_x_continuous(name="age of

trees")
p <- p + stat_smooth(method = "loess", fill="grey60", size=2)
p <- p + stat_smooth(method="loess", geom = "errorbar", size=0.75,

n = 10)
p <- p + theme(axis.text.x=element_text(size=12),

axis.title.x=element_text(size=15, face="bold"))
p <- p + theme(axis.text.y=element_text(size=12),

axis.title.y=element_text(size=15, face="bold"))
p

Bottom-Right
p <- ggplot(Orange, aes(age, circumference))
p <- p + geom_point(size=2) + scale_x_continuous(name="age of

trees")
p <- p + stat_smooth(method = "glm", fill="grey60", size=2)
p <- p + stat_smooth(method="glm", geom = "errorbar", size=0.75, n =

10)
p <- p + theme(axis.text.x=element_text(size=12),

axis.title.x=element_text(size=15, face="bold"))
p <- p + theme(axis.text.y=element_text(size=12),

axis.title.y=element_text(size=15, face="bold"))
p

8.4 Summary | 131

8.4 Summary

The purpose of this chapter was to introduce the base capabilities offered by ggplot2
and to highlight some aesthetic extensions it offers over the basic R plotting functions.
It is clear that the Grammar of Graphics offers a very rich framework with incredibly
many aspects that is continuously evolving. For this reason, the best way to learn
further capabilities is by following online resources, e. g., https://ggplot2.tidyverse.
org/ or http://moderngraphics11.pbworks.com/f/ggplot2-Book09hWickham.pdf.

9 Visualization of networks

9.1 Introduction

In this chapter, we discuss two R packages, igraph and NetBioV [42, 187]. Both
have been specifically designed to visualize networks. Nowadays, network visu-
alization plays an important role in many fields, as they can be used to vi-
sualize complex relationships between a large number of entities. For instance,
in the life sciences, various types of biological, medical, and gene networks,
e. g., ecological networks, food networks, protein networks, or metabolic net-
works serve as a mathematical representation of ecological, molecular, and dis-
ease processes [9, 71]. Furthermore, in the social sciences and economics, networks
are used to represent, e. g., acquaintance networks, consumer networks, trans-
portation networks, or financial networks [74]. Finally, in chemistry and physics,
networks are used to encode molecules, rational drugs, and complex systems
[20, 55].

All these fields, and many more, benefit from a sensible visualization of networks,
which enables gaining an intuitive understanding of the meaning of structural re-
lationships between the entities within the network. Generally, such a visualization
precedes a quantitative analysis and informs further research hypotheses.

9.2 igraph

In Chapter 16, we will provide a detailed introduction to networks, their definition,
and their analysis. Here, we will only restate that a network consists of two basic
elements, nodes and edges, and the structure of a network can be defined in two
ways, by means of:
– an edge list or
– an adjacency matrix

An edge list is a two-dimensional matrix that provides, in each row, information
about the connection of nodes. Specifically, an edge list contains exactly two columns
and its elements correspond to the labels of the nodes. The following script provides
an example:

Listing 9.1: Basic network generation

library(igraph)
el <- matrix(c(1,2,2,3), nrow=2, ncol=2, byrow=T)
g <- graph.edgelist(el, directed=F)

V(g)
Vertex sequence:
[1] 1 2 3

https://doi.org/10.1515/9783110564990-009

134 | 9 Visualization of networks

E(g)
Edge sequence:
[1] 2 -- 1
[2] 3 -- 2

The second command defines an edge list (el). The function graph.edgelist()
converts the matrix el into an igraph object g representing a graph. Calling the
functions V and E, with g as argument, provides information about the vertices and
the edges in the graph g. This is an example of a simple graph consisting of merely
three nodes, labeled as 1, 2, and 3. This graph contains only two edges between the
nodes 1 and 2, and nodes 2 and 3. By using the function plot(), the igraph object
g can be visualized.

Listing 9.2: Basic network visualization, see Fig. 9.1 (Top-left)

plot(g)

In Figure 9.1 (Top-left), the output of the above plot function is shown. In order
to understand the effect of the option directed in the function graph.edgelist(), we
show in Figure 9.1 (Top-right) an example for setting this option TRUE.

Listing 9.3: Basic network visualization, see Fig. 9.1 (Top-right)

g <- graph.edgelist(el, directed=T)
plot(g)

E(g)
Edge sequence:
[1] 1 -> 2
[2] 2 -> 3

The result is that the edges have now arrows, pointing from one node to another.
Specifically, for directed=T, the first column of the edge list contains information
about the nodes from which an edge points toward the nodes contained in the second
column.

An alternative definition of a graph can be obtained by an adjacency matrix.
The following script produces exactly the same result as in Figure 9.1 (Top-left):

Listing 9.4: Basic network generation and visualization

am <- matrix(c(0,1,0,1,0,1,0,1,0), nrow=3, ncol=3, byrow=T)
g <- graph.adjacency(am, mode="undirected")
plot(g)

By setting the option mode="directed", we obtain the graph in Figure 9.1 (Top-
right).

9.2 igraph | 135

Figure 9.1: Some examples for network visualizations with igraph.

Here, an adjacency matrix is a binary matrix containing only zeros and ones. If node
𝑖 is connected with node 𝑗, then the corresponding element (𝑖, 𝑗) is one, otherwise
it is zero. The adjacency matrix is a square matrix, meaning that the number of
rows is the same as the number of columns. The number of rows corresponds to the
number of nodes of the graph.

9.2.1 Generation of regular and complex networks

For the examples above, we defined the structure of a graph manually, either by
defining an edge list or its adjacency matrix. However, the igraph package pro-
vides also a large number of functions to generate networks with certain structural
properties. In Table 9.1 and 9.2, we list some of these.

In Figure 9.1 (Bottom), we show two such examples.

136 | 9 Visualization of networks

Table 9.1: Examples of different regular network-types provided by igraph.

Type Syntax

star graph.star(n, mode = c("in", "out", "mutual", "undirected"))
lattice graph.lattice(length, dim, nei = 1, directed = F, mutual = F,

circular = F)
ring graph.ring(n, directed = F, mutual = F, circular=T)
tree graph.tree(n, children = 2, mode="out")

Table 9.2: Examples of different complex network-types provided by igraph.

Type Syntax

random network erdos.renyi.game(n, p.or.m, type=c("gnp", "gnm"),
directed = F, loops = F)

scale-free network barabasi.game(n, power = 1, m)
small-world network watts.strogatz.game(dim, size, nei, p, loops = F,

multiple = F)
geometric random network grg.game(nodes, radius, torus = F, coords = F)

This functionality for generating such networks is very convenient because imple-
menting network generation algorithms can be tedious.

9.2.2 Basic network attributes

There is a variety of options to change the attributes of vertices and edges. In
Table 9.3 and 9.4, we list the most important ones. Basically, the appearance of
each vertex and edge can be set independently for most options. This gives a large
flexibility with respect to the graphical appearance of networks, allowing to adjust
a network individually.

Table 9.3: Basic vertex attributes that can be modified.

Option Data structure Description

vertex.size numeric vector components set the size of each vertex
vertex.label character vector components set the lable of each vertex
vertex.label.dist numeric vector components set the distance of the labels from

the vertex
vertex.color character vector components set the color of each vertex
vertex.shape character vector components set the shape of each vertex

9.2 igraph | 137

Table 9.4: Basic edge attributes that can be modified.

Option Data structure Description

edge.color character vector components set the color of each edge
edge.width numeric value same width for every edge
edge.lty numeric vector 0 (“no line”), 1 “solid”, 2 (“dashed”),

3 (“dotted”), 4 (“dotdash”), 5 (“longdash”),
6 (“twodash”)

edge.label character vector components set the label of each edge
edge.label.cex numeric value size of the edge labels
edge.label.color character vector components set the color of each edge
edge.curved logic or numeric vector if logic values, ”true” draws curved edges; if

numeric values specify the curvature of the
edge, zero curvature means straight edges,
negative values mean the edge bends clockwise,
whereas positive values mean the opposite

edge.arrow.mode numeric vector 0 (no arrow), 1 (backward arrow), 2 (forward
arrow), 3 (both)

Figure 9.2 illustrates the outputs from network visualization when modifying the
vertex and edge attributes.

Although, in principle, the attributes for each vertex and edge can be set inde-
pendently by specifying a numeric or character vector, this is not necessary in the
case where the attributes have to be identical for all vertices or edges. Then, it is
sufficient to provide a scalar numeric or character value to set the option throughout
the network.

Listing 9.5: Advanced network visualization, see Fig. 9.2

L <- 10 # length(shapes())
g <- graph.ring(L)

Top-left
vs <- round(seq(1, 2*L, length.out=L))
vc <- heat.colors(L)
plot(g, vertex.size=vs, vertex.label=as.character(vs),

vertex.label.dist=1.3, vertex.color=vc)

Top-right
vsh <- c(rep("circle", L-2), rep("pie", 2))
v.pie <- as.pairlist(rep(0, L))
v.pie[[L-1]] <-c(3,2,6); v.pie[[L]] <- c(5,3,5,2,5)
v.pie.col <- list(c("black", "blue", "red", "green", "yellow"))
plot(g, vertex.size=vs, vertex.label=as.character(vs),

vertex.label.dist=1.3, vertex.color=vc, vertex.shape=vsh,
vertex.pie=v.pie, vertex.pie.color=v.pie.col)

Bottom-left
v.shapes <- vertex.shapes()

138 | 9 Visualization of networks

plot(g, vertex.shape=v.shapes, vertex.label=v.shapes,
vertex.label.dist=1.2,
vertex.size=20, vertex.color="green",
vertex.pie=lapply(shapes(), function(x) if (x=="pie") c(1,4,2)

else 0), vertex.pie.color=list(heat.colors(5)))

Bottom-right
el <- as.character(1:L)
elc <- seq(1,5, length.out=L)
elcol <- terrain.colors(L)
ec <- sample(c(0,-0.5, 0.5), replace=T, L)
eam <- sample(c(0,1,2,3), replace=T, L)
plot(g, vertex.label="", edge.label=el, edge.label.cex=elc,

edge.label.color=elcol, edge.curved=ec, edge.arrow.mode=eam)

Figure 9.2: Examples demonstrating vertex and edge attributes.

9.2 igraph | 139

9.2.3 Layout styles

It is important to realize that a network is a topological object, and not a geometric
one. That means, by defining an edge list or an adjacency matrix of a network,
its structure is defined. However, this does not provide any information regarding
the graphical visualization of the networks. Therefore, for a given adjacency matrix,
the spacial coordinates of the nodes of a network are not part of the definition
of a network, but they are part of its graphical visualization. In order to make
this important point more clear, we provide, in Figure 9.3, four different graphical
visualizations of the same network.

Figure 9.3: Effect of different layout functions to generate the cartesian coordinates of the nodes
of a network. Importantly, for all cases the same network is used.

140 | 9 Visualization of networks

Specifically, we generate a scale-free network with 𝑛 = 500 nodes and use four
different layout functions to generate the cartesian coordinates for the nodes of this
network.

Listing 9.6: Effect of network layouts, see Fig. 9.3

n <- 500
m <- 1
g <- barabasi.game(n, power = 1, m, directed=F)

la1 <- layout.random(g)
plot(g, vertex.size=2, vertex.label=NA, layout=la1)

la2 <- layout.fruchterman.reingold(g)
plot(g, vertex.size=2, vertex.label=NA, layout=la2)

la3 <- layout.kamada.kawai(g)
plot(g, vertex.size=2, vertex.label=NA, layout=la3)

la4 <- layout.lgl(g)
plot(g, vertex.size=2, vertex.label=NA, layout=la4)

It is clear from Figure 9.3, that depending on the used algorithm to generate
the cartesian coordinates, the same network “looks” quite different. The coordinates,
contained in la1 to la4, are represented in the form of a matrix with 𝑛 rows (the
number of nodes) and 2 columns (corresponding to the x and y coordinates of a
node). That means, the 𝑥- and 𝑦-coordinates of the nodes are used to place the
nodes of the network onto a 2-dimensional plane, as shown in Figure 9.3.

The reason why all four layout styles result in different coordinates is that any
layout style is in fact an optimization algorithm. And each of these optimization al-
gorithms uses a different optimization function. For example, layout.fruchterman.
reingold and layout.kamada.kawai are two force-based algorithms proposed by
Fruchterman & Reingold and Kamada & Kawai [82, 106] that optimize the distance
between the nodes in a way similar to spring forces. In contrast, layout.random
chooses random positions for the 𝑥- and 𝑦-coordinates. Hence, it is the only layout
style among those illustrated that is not based on an optimization algorithm.

An important lesson from the above examples is that for a given network, the
graphical visualization is not trivial, but requires additional work to select a layout
style that corresponds best to the intended expectations of the user.

9.2.4 Plotting networks

There are two possible ways to plot an igraph object g representing a graph. The
first option is to use the function plot(). This option has been used in the previous
examples. The second option is to use the function tkplot(). In contrast with the
function plot(), the function tkplot() allows the user to change the position of the

9.3 NetBioV | 141

vertices interactively by providing a graphical user interface (GUI). Hence, this can
be done by means of the computer mouse.

Listing 9.7: Alternative plotting functions

plot(g)
tkplot(g)

At first glance, the function tkplot() function may appear superior, because of
its interactive capability. However, for large networks, i. e., networks with more than
50 vertices, it is hardly possible to adjust the position for each vertex manually.
That means, practically, the utility of tkplot() is rather limited because only small
networks can be adjusted. A second argument against the usage of tkplot() is that
due to the involvement of a graphical user interface, there may be operating system
specific problems caused by the usage of TK libraries. Basically, such TK libraries
are freely available for all common operating systems, however, some systems may
require these libraries to be installed when they are not available.

9.2.5 Analyzing and manipulating networks

In addition to the visualization of networks, the igraph package offers a variety
of functions to analyze and manipulate networks quantitatively. For instance, one
can easily find shortest paths, the minimum spanning tree or study the modularity
of a community structure of a graph. In Chapter 16, we will discuss some of these
methods, e. g., finding shortest paths or the depth-first search, in more detail.

9.3 NetBioV

NetBioV is another package for visualization networks. It provides three main lay-
out architectures, namely global, modular, and layered layouts [187]. These layouts
can be used either separately or in combination with each other. The rationale
behind this functionality is motivated by the fact that a network should be visual-
ized not only using one layout, but through many perspectives. Furthermore, since
many real-world networks are generally acknowledged to have a scale-free, modular,
and hierarchical structure, these three categories of layouts enable the highlighting
of, e. g., specific biological aspects of the network. Moreover, NetBioV includes an
additional layout category, which enables a spiral-view of the network. In the spi-
ral view, the nodes’ placement can be made using force-based algorithm, or using
network measures for nodes. Overall, this provides a more abstract view on net-
works.

142 | 9 Visualization of networks

The NetBioV package has been implemented in the R programming environment
and is based on the igraph library. For this reason, it can be seen as complementing
igraph by providing more advanced visualization capabilities.

A list of its main functions used for different layout architectures available in
NetBioV is shown in Table 9.5. In the subsequent sections, we provide a brief de-
scription of the different types of layouts offered by NetBioV.

9.3.1 Global network layout

Real-world networks, e. g., biological or social networks are usually not planar.
That means, they have edges crossing each other if a graph is displayed in a two-
dimensional plane. However, for a more effective visualization, the crossing of edges
should be minimized. The global network layouts of NetBioV aim to minimize such
crossings.

The most important features that can be highlighted via a global layout include
the backbone of the network, the spread of information within the network, and
the properties of the nodes, e. g., using various network measures. For instance,
for highlighting the backbone structure of a network NetBioV applies the following
strategy. In the first step, we define the backbone of a network. For this, we use
the minimum spanning tree (MST) algorithm to extract a subnetwork from a given
network. In the second step, we obtain the coordinates for the nodes by applying a
force-based algorithm to the subnetwork consisting of the MST. In the third step,
we assign a unique color to the MST edges whereas the remaining edges are colored
according to the distance between the nodes.

9.3.2 Modular network layout

Most networks have a modular characteristics, that means there are groups of nodes
that are more strongly connected with each other than the rest of the nodes. De-
pending on the origin of the network, such modules serve a different purpose. For
instance, in biology, these modules can be thought of as performing a specific bio-
logical function for the organism.

The modular network layouts in NetBioV allow to highlight the individual mod-
ules by using standard graph-layout algorithms. The principle approach to this works
as follows. In the first step, we determine the relative coordinates of the nodes within
each module. In the second step, we optimize the coordinates for each module us-
ing standard-layout algorithms, and then we place the modules according to these
positions. In general, modules can be identified with module detection algorithms.

9.3 NetBioV | 143

Table 9.5: An overview of different layouts provided by NetBioV.

Layout categories Functions in R

Global layout mst.plot, mst.plot.mod

Modular layout plot.modules,
plot.abstract.modules,
plot.abstrat.nodes,
splitg.mst

Layered layout level.plot

Spiral layout plot.spiral.graph

However, in specific application areas also other approaches are possible. For instance
in biology, modules can be defined by gene-sets defined via biological databases, such
as gene ontology [6] or KEGG [107].

144 | 9 Visualization of networks

As an additional feature, the nodes in a module can be colored based on the
rank assigned to the nodes, e. g., ranks assigned according to their node degree.
Alternatively for biological networks one could utilize, e. g., gene expression val-
ues.

9.3.3 Layered network (multiroot) layout

In order to emphasize the hierarchy in a network, NetBioV provides a layered network
layout. This algorithm organizes the nodes by hierarchy levels that are directly
obtained from the distance between nodes. The layered network layout function
assumes an initial subset, 𝑁 , of nodes in a graph 𝐺. That means the resulting
hierarchical graph does not need to have a unique root node but can have multiple
roots. Starting from this initial set, the distances to all other nodes are determined
and the nodes are plotted on their corresponding hiearchy level.

9.3.4 Further features

9.3.4.1 Information flow
For visualizing the spread of information within a network, NetBioV provides an
algorithm which highlights either the shortest paths between modules or the nodes in
the modular and layered network layouts. Highlighting such information is useful for
visualizing key connections between nodes or modules that may play an important
role in exchanging information. More specific interpretations depend on the nature
of the underlying network.

9.3.4.2 Spiral view
The spiral layout included in the NetBioV package provides the user with some
options to visualize networks in different spiral forms. The aestetics of the spirals can
be influenced by setting a tuning parameter for the angle of the spiral. In addition,
a wide range of color options is provided as an input to highlight, e. g., the degrees
of nodes. In addition, the placement of nodes can be either determined by standard
layout functions or by a user-defined function.

9.3.4.3 Color schemes, node labeling
NetBioV provides many options to color edges, vertices, and modules either based
on different properties of the network, or based on user input. For the global net-
work layouts, the edges corresponding to the backbone of the network (MST) are
shown in one color, and the remaining edges are colored according to a range of
colors reflecting the distance between nodes. The vertices or nodes of the network

9.3 NetBioV | 145

can be highlighted using a range of colors and sizes. For instance, the expression
values of nodes representing genes or proteins can be shown with shades of colors
from high- to low-expression values or vice versa. One can also assign ranks to the
nodes based on network-related measures, which are visualized by the size of the
nodes.

Also for the modular graph layout functions a variety of color options are avail-
able. The default color scheme for modules is a heat map of colors, where nodes with
a high degree are assigned dark colors, whereas low-degree nodes are represented by
light colors in a module. The nodes in a graph can also be colored individually in two
ways. The first coloring option is based on the global rank in the network, whereas
the second coloring option is based on local ranks in the modules. The ranks are
determined by the different properties of nodes, such as the degree or expression
value observed from, e. g., experimental data. The global rank describes the rank of
an individual node with respect to all other nodes in the network, whereas the local
rank of a node in a module is obtained with respect to the nodes from the same
module. Edges for different modules can be colored differently so that the connec-
tivity of individual modules can be highlighted. Additionally, the node-size can be
used to highlight the rank of the nodes in the network. Moreover, for each module,
an individual graph layout can be defined as a parameter vector as argument for a
modular layout function.

For the layered network layout, the color scheme is defined as follows. For a
directed network, the levels of the network are divided into three sections, namely
the lower, the initial, and the upper section. Importantly, only the initial section
and the upper section are used for undirected networks. A user can assign different
colors to different levels. For a directed network, if edges connect nodes with a level
difference greater than one, then edges are colored using two colors for two opposite
directions (up and down). If edges connect nodes on the same level, then the edges
are shown in a curved shape and in a unique color.

9.3.4.4 Interface to R and customization
The availability of NetBioV in R enables it to make use of various additional packages
to enhance a visualization. For instance, various biological packages related to gene
ontology (GO, TopGO) can be utilized to include information about the enrichment
of biological pathways. Such information is particulary useful for the visualization
of modules.

Furthermore, information obtained about genes, proteins, and their interactions,
as well as network measures from many external R libraries, e. g., available in CRAN
and Bioconducor, can be used as a part of the visualization of a network.

146 | 9 Visualization of networks

9.3.5 Examples: Visualization of networks using NetBioV

In this section, we demonstrate the capabilities of NetBioV by visualizing various
networks with different layout and plotting options. The applications of the NetBioV
functions are provided for some example networks. Some details about the investi-
gated networks are shown in Table 9.6.

Table 9.6: Examples of networks available in the NetBioV package.

Networks Number of vertices Number of edges

Artificial network 5000 23878
B-Cell lymphoma network 2498 2654
PPI (Arabidopsis thaliana) 1212 2574

Listing 9.8: Loading network data for the examples
#Loading the NetBioV package
library("netbiov")

#Loading the artificial network with $5,000$ nodes
data("artificial2.graph")

#Loading the B-Cell lympoma network and module information
data("gnet_bcell")
data("modules_bcell")

#Loading the Arabidopsis Thaliana network and module information
data("PPI_Athalina")

data("modules_PPI_Athalina")

Listing 9.9: Global network layouts, see Fig. 9.4

Left
data("gnet_bcell")
mec <- "white"
ecls <- rgb(r=0, g=1, b=1, alpha=.2)
exp <- abs(rnorm(vcount(g1)))
xx <- mst.plot(g1,layout.function=layout.fruchterman.reingold,
mst.edge.col=mec,colors=ecls,expression=exp, v.size=1.75)

Right
mec <- "green"
vc <- rgb(r=1, g=0, b=0, alpha=.7)
ecls= rgb(r=.5, g=.5, b=1, alpha=.3)
id<-mst.plot.mod(g1,layout.function=layout.fruchterman.reingold,
mst.edge.col=mec,vertex.color=vc,colors=ecls, v.size=1.5)

9.3 NetBioV | 147

Figure 9.4: Global network layouts using different options available in NetBiov. Left: Coloring
vertices of the B-cell lymphoma network based on external information, such as expression value
(red to blue—smaller to higher expression value). Right: Edges of the MST are shown in ”green”
and the remaining edges in ”blue”.

Figure 9.5: Modular layouts using different options available in NetBiov: Left: Abstract modular
view of A. thaliana; each module is labeled with the most significant enriched GO-pathway. Edge
width is proportional to the number of connections between modules. Right: Information flow in
A. thaliana network by highlighting shortest paths between nodes of modules 1, 5, 17 and 21.

Listing 9.10: Modular network layouts, see Fig. 9.5
Left
data("PPI_Athalina")
data("modules_PPI_Athalina")
cl <-rgb(r=0, g=0, b=1, alpha=.55)

148 | 9 Visualization of networks

lc <- "white"
ecl <- "gold"
xx <- plot.abstract.nodes(g1,mod.list=lm,nodes.color=cl,
edge.colors=ecl,layout.function=layout.fruchterman.reingold,
v.sf=-30,lab.color=lc, lab.cex=1, lab.dist=5)

Right
data("PPI_Athalina")
data("modules_PPI_Athalina")
clx <- rgb(red=0,green = .6, blue = .6, alpha = 0.4)
cl <- rep(clx, 28);
lb <- names(lm)
lb[c(1:24)[-c(1,5,17,21)]] <- ""
names(lm) <- lb
id <- plot.modules(g1,mod.list=lm,layout.function =
layout.fruchterman.reingold,
modules.color =cl,mod.edge.col=c(clx),ed.color= c(clx),sf=-20,
nodeset=c(1,5,17,21),col.s1="blue", col.s2="purple",
nodes.on.path="red", mod.lab=TRUE,lab.color="white",
v.size.path=1.5, v.size=1.2)

Figure 9.6: Layered network layouts. Left: The B-cell lymphoma network is shown. Right: The
protein-protein interaction (PPI) network of Arabidopsis thaliana is shown.

Listing 9.11: Layered network layouts, see Fig. 9.6
Left
data(gnet_bcell)
clx <- rgb(red=1,green = 0, blue = 0, alpha = 0.5)
cl1 <- rgb(r=.5, g=.5, b=.5, alpha=.3)
cl2 <- rgb(r=0,g=1, b=0, alpha=1)
ec = c(cl1, cl1, cl2, cl1)
id <- level.plot(gnet, layout=layout.fruchterman.reingold,
vertex.colors=c(clx,clx,clx),edge.col=ec,e.size=.3,e.curve=1.2,
init_nodes=20,order_degree=NULL)

9.4 Summary | 149

Right
data(PPI_Athalina)
clx <- rgb(red=.3,green = .3, blue = 1, alpha = 0.2)
id <- level.plot(g1, layout.function=layout.reingold.tilford,
vertex.colors=c(clx,clx,clx),edge.col=c(clx,clx,clx,clx),
e.size=.3,e.curve=.4, initial_nodes=c(1,5,7,12,101,125),
nodeset=list(c(1,5,7,101), c(501, 701, 801,901,1001)),
order_degree=NULL,)

9.4 Summary

Networks from biology, chemistry, economy or the social sciences can be seen as
a data-type. For the visualization of such networks, we provided in this chapter
an introduction for igraph and NetBioV. Overall, igraph provides many helpful
base commands for the generation, manipulation, but also visualization of graphs,
whereas NetBioV focuses on high-level visualizations from a global, modular, and
layered perspective.

In contrast to conventional data-types from measurements, e. g., from sensors
that provide direct numerical data, network data are considerably different. For this
reason dedicated plots for their visualization have been developed that allow to gain
a more intuitive understanding of the meaning of the provided networks.

|
Part III: Mathematical basics of data science

10 Mathematics as a language for science

10.1 Introduction

In data science, all problems will be approached computationally. For this reason,
we started this book with an introduction to the programming language R. The next
step consists in the understanding of mathematical methods needed for the data
analysis models, because all analysis models are based on mathematics and statistics.
However, before we present in the subsequent chapters the mathematical basis of
data science, we want to emphasize in this chapter a more general point concerning
the mathematical language itself. This point refers to the abstract nature of data
science.

In Figure 10.1, we show a very general visualization that holds for every data
analysis problem. The key point here is that every data analysis is conducted via a
computer program that represents methodological ideas from statistics and machine
learning, and every computer program consists of instructions (commands) that en-
able the communication with the processor of a computer to perform computations
electronically. Due to the fact that every data analysis is conducted via a computer
program that contains instructions in a programming language, a good data scien-
tist needs to “speak” fluently a programming language. However, the base of any
programming language for data analysis is mathematics, and its key characteristics
is abstractness. For this reason, a simplified message from the above discussion can
be summarized as follows:

Thinking in abstract mathematical terms makes you a better programmer and, hence, a
better data scientist.

This is also the reason why mathematics is sometimes called the language of science
[185, 188] (as already pronounced by Galileo).

Before we proceed, we would like to add a few notes for clarification. First, by
a programmer we mean actually a scientific programmer that is concerned with the
conversion of statistical and machine learning ideas into a computer program rather
than a general programmer that implements graphical user interfaces (GUIs) or web
sites. The crucial difference is that the level of mathematics needs for, e. g., the
implementation of a GUI is minimal comparable to the implementation of a data
analysis method. Also, such a way of programming is usually purely deterministic
and not probabilistic. However, the nature of a data analysis is to deal with measure-
ment errors and other imperfections of the data. Hence, probabilistic and statistical
methods cannot be avoided in data science but are integral pillars.

Second, it is certainly not necessary to implement every method for conducting a
data analysis, however, a good data scientist could implement every method. Third,
the natural language we are speaking, e. g., English, does not translate equally well

https://doi.org/10.1515/9783110564990-010

154 | 10 Mathematics as a language for science

Figure 10.1: Generic visualization of any data analysis problem. Data analysis is conducted via
a computer program that has been written based on statistical- and machine-learning methods
informed with domain-specific knowledge, e. g., from biology, medicine, or the social sciences.

into a computer language like R, but there are certain terms and structures that
translate better. For instance, when we speak about a “vector” and its components,
we will not have a problem to capture this in R, because in Chapter 5 we have
seen how to define a vector. Furthermore, in Chapter 12, we will learn much more
about vectors in the context of linear algebra. This is not a coincidence, but the
meaning of a vector is informed by its mathematical concept. Hence, whenever we
use this term in our natural language, we have an immediate correspondence to
its mathematical concept. This implies that the more we know about mathemat-
ics, the more we become familiar with terms that are well defined mathematically,
and such terms can be swiftly translated into a computer program for data analy-
sis.

We would like to finish by adding one more example that demonstrates the im-
portance of “language” and its influence on the way humans think. Suppose, you
have a twin sibling and you both are separated right after birth. You grow up in the
way you did, and your twin grows up on a deserted island without civilization. Then,
let us say after 20 years, you both are independently asked a series of questions and
given tasks to solve. Given that you both share the same DNA, one would expect
that both of you have the same potential in answering these questions. However,
practically it is unlikely that your twin will perform well, because of basic commu-
nication problems in the first place. In our opinion the language of “mathematics”
plays a similar role with respect to “questions” and “tasks” from a data analysis
perspective.

In the remainder of this chapter, we provide a discussion of some basic abstract
mathematical symbols and operations we consider very important to (A) help for-
mulating concise mathematical statements, and (B) shape the way of thinking.

10.2 Numbers and number operations | 155

10.2 Numbers and number operations

In mathematics, we distinguish five main number systems from each other:
– natural numbers: N
– integers: Z
– rational numbers: Q
– real numbers: R
– complex numbers: C

Each of the above symbols represents a set of all numbers that belong to the cor-
responding number system. For instance, N represents all natural numbers, i. e.,
1, 2, 3, . . . ; Z represents all integer number, i. e., . . . , −2, −1, 0, +1, +2, . . . ; Q repre-
sents all rational numbers 𝑎

𝑏 with 𝑎 and 𝑏 being any integer number; and R is the
set of all real numbers, e. g., 1.4271.

There is a natural connection between these number systems in the way that

N ⊂ Z ⊂ Q ⊂ R ⊂ C. (10.1)

That means, e. g., that every integer number is also a real number, but not every
integer number is a natural number. Furthermore, the special sets Z+ and R+ denote
the set of all positive integers and positive reals.

Intervals
When defining functions, it is common to limit the value of numbers to specific
intervals. One distinguishes finite from infinite intervals. Specifically, finite intervals
can be defined in four different ways:

[𝑎, 𝑏] = {𝑥 | 𝑎 ≤ 𝑥 ≤ 𝑏} open interval, (10.2)
[𝑎, 𝑏) = {𝑥 | 𝑎 ≤ 𝑥 < 𝑏} half-closed interval, (10.3)
(𝑎, 𝑏] = {𝑥 | 𝑎 < 𝑥 ≤ 𝑏} half-closed interval, (10.4)
(𝑎, 𝑏) = {𝑥 | 𝑎 < 𝑥 < 𝑏} open interval. (10.5)

Similarly, for infinite intervals one defines the following:

[𝑎, ∞) = {𝑥 | 𝑎 ≤ 𝑥 < ∞}, (10.6)
(𝑎, ∞) = {𝑥 | 𝑎 < 𝑥 < ∞}, (10.7)

(−∞, 𝑏] = {𝑥 | −∞ < 𝑥 ≤ 𝑏}, (10.8)
(−∞, 𝑏) = {𝑥 | −∞ < 𝑥 < 𝑏}, (10.9)

(−∞, ∞) = R. (10.10)

The difference between a closed interval and an open interval is that for a closed
interval the end point(s) belong to the interval, whereas this is not the case for an
open interval.

156 | 10 Mathematics as a language for science

Modulo operation
The modulo operation gives the remainder of a devision of two positive numbers 𝑎

and 𝑏. It is defined for 𝑎 ∈ R+ and 𝑏 ∈ R+ ∖ {0} by

𝑎 mod 𝑏 = modulo(𝑎, 𝑏) = 𝑎 − 𝑛 · 𝑏 = 𝑟. (10.11)

Here, 𝑛 ∈ N is a natural number, and 𝑟 ∈ R+ is the remainder of the division of 𝑎

by 𝑏. For programming, the modulo operation is frequently used for integer numbers
𝑎 and 𝑏, because a cyclic mapping can be easily realized, i. e., 𝑁 + 1 → 1 can be
obtained by

modulo(𝑁 + 1, 𝑁). (10.12)

In R, the module operation is obtained by the following code:

Listing 10.1: Modulo Operation

a %% b # modulo(a, b)

Example 10.2.1. We calculate 17 mod 4 = modulo(17, 4) and 3 mod 7 =
modulo(3, 7). In these examples, 𝑎 and 𝑏 are integers. Therefore, we use the fact
that in case we determine 𝑎

𝑏 , we always find 𝑞, 𝑟 ∈ Z such that 𝑎 = 𝑏𝑞 + 𝑟, see [199].
We start with 17 mod 4 and see that 17 = 𝑞 · 4 + 𝑟. Hence, 𝑞 = 4, and 𝑟 = 1.

Thus, 17 mod 4 = 1. If we consider 3 mod 7, we find 3 = 𝑞 · 7 + 𝑟. Thus, 𝑞 = 0,
and 𝑟 = 3. This yields to 3 mod 7 = 3.

Rounding operations
The floor and ceiling operations round a real number to its nearest integer value up
or down. The corresponding functions are denoted by

⌊𝑥⌋ floor function, (10.13)
⌈𝑥⌉ ceiling function. (10.14)

As an example, the value of 𝑥 = 1.9 results in ⌊𝑥⌋ = 1 and ⌈𝑥⌉ = 2.
In contrast, the command round(𝑥), rounds the value of the real number 𝑥 to its

nearest integer value. For instance, round(0.51) = 1. In R, the value 0.5 is rounded
toward the lower integer value, e. g., round(−3.5) = −4.

Finally, the truncation function, trunc(𝑥), of a real number 𝑥 is just the in-
teger part of the number 𝑥 without the “after comma” numbers. For instance,
trunc(3.91) = 3.

10.3 Sets and set operations | 157

Listing 10.2: Rounding operations, sign function and absolute value

floor(x) # ⌊𝑥⌋
ceiling(x) # ⌈𝑥⌉
round(x) # round(x)
trunc(x) # truncation(x)
sign(x) # sign of x
abs(x) # absolute value of x

Sign function
For any real number 𝑥 ∈ R, the sign function, sign(𝑥), gives

sign(𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
+1 if 𝑥 > 0;
0 if 𝑥 = 0;
−1 if 𝑥 < 0.

(10.15)

Absolute value
The absolute value of a real number 𝑥 ∈ R is

abs(𝑥) = |𝑥| =

{︃
+𝑥 if 𝑥 ≥ 0;
−𝑥 if 𝑥 < 0.

(10.16)

10.3 Sets and set operations

In the following, we introduce sets and some of their basic operations. In general,
a set is a well-defined collection of objects. For instance, 𝒜 = {1, 2, 3} contains the
three natural numbers 1, 2, and 3, ℬ = {△, ∘} is a set consisting of two geometric
objects,

𝒞 = {K, Q, N, B, p} (10.17)

is the set containing chess pieces, and 𝒟 = {𝒜, 𝒞} is a set of sets. From these
examples, one can see that an object is something very generic, and a set is just a
container for objects. Usually, the objects of a set are enclosed by the brackets “{”
and “}”.

The symbol ∈ denotes the membership relation to indicate that an object is
contained in a set. For instance, 2 ∈ 𝒜, and ∘ ∈ ℬ. Here, the objects 2 and ∘ are also
called elements of their corresponding sets. The symbol ∈ is a relation, because it
establishes a connection between an object and a set and, hence, relates both with
each other.

If we have two sets, 𝐴1 and 𝐴2, and every element in 𝐴1 is also contained in
𝐴2, but there are also elements in 𝐴2 that are not in 𝐴1, we write 𝐴1 ⊂ 𝐴2. In this

158 | 10 Mathematics as a language for science

case 𝐴1 is called a subset of 𝐴2. In contrast, if every element in 𝐴1 is also contained
in 𝐴2, and there are no additional elements in 𝐴2, we write 𝐴1 = 𝐴2, because both
sets contain the same elements. Finally, if every element in 𝐴1 is also contained in
𝐴2, and there is at least one additional element in 𝐴2, we write 𝐴1 ⊆ 𝐴2. In this
case 𝐴1 is a proper subset of 𝐴2.

A special set is the empty set, denoted by ∅, which does not contain any element.
|𝐴| is the cardinality of 𝐴, i. e., the number of its elements. It is possible that a set
contains a finite or infinite number of elements. For instance, for the above set ℬ,

we have |ℬ| = 2, and for the set of natural numbers |N| = ∞.
The set 𝐴1 ∪ 𝐴2 = {𝑥 : 𝑥 ∈ 𝐴1 ∨ 𝑥 ∈ 𝐴2} is called the union of 𝐴1, and 𝐴2.

𝐴1 ∩ 𝐴2 = {𝑥 : 𝑥 ∈ 𝐴1 ∧ 𝑥 ∈ 𝐴2} is called the cut set of 𝐴1 and 𝐴2. For the
definition of these sets, we used the colon symbol “:” within the curled brackets.
This symbol means “with the property’’. Hence, the set {𝑥 : 𝑥 ∈ 𝐴1 ∨𝑥 ∈ 𝐴2} can be
read explicitly as every 𝑥 that is element in 𝐴1 or every 𝑥 that is element of 𝐴2 is a
member of the set 𝐴1 ∪ 𝐴2. Alternatively, sometimes the symbol “|” is used instead
of “:”.

In Figure 10.2, we show a visualization of the union and the cut set. It is im-
portant to realize that both operations create new sets, i. e., 𝐵 = 𝐴1 ∪ 𝐴2, and
𝐶 = 𝐴1 ∩ 𝐴2 are two new sets. If 𝐴1 ∩ 𝐴2 = ∅, then 𝐴1, 𝐴2 are called disjoint sets.

Figure 10.2: Visualization of set operations. Left: The union of two sets. Right: The cut set of
𝐴1 and 𝐴2.

An alphabet Σ is a finite set of atomic symbols, e. g., Σ = {𝑎, 𝑏, 𝑐}. That means, Σ
contains all elements for a given setting. No other elements can exist.

Σ⋆ is the set of all words over Σ. For example if Σ = {𝑏}, then Σ⋆ = {𝜖, 𝑏, 𝑏𝑏, 𝑏𝑏𝑏,

𝑏𝑏𝑏𝑏 . . .}. Here 𝜖 is the empty word.
There are three quantifiers from predicate logic that allow a concise description

of properties of elements of sets.

Definition 10.3.1. The expression ∀ means for all. For example if 𝐴 = {𝑎1, 𝑎2, 𝑎3},
then by ∀ 𝑥 ∈ 𝐴, we mean all elements in set 𝐴, i. e., 𝑎1, 𝑎2, 𝑎3.

10.4 Boolean logic | 159

Definition 10.3.2. The expression ∃ means there exits. For example if 𝐵 =
{−1, 2, 3}, then by ∃ 𝑥 ∈ 𝐵 : 𝑥 < 3, we mean that in set 𝐵 there exists an el-
ement, which is less than 3. Possibly, there is more than one such element, as is the
case for 𝐵.

Definition 10.3.3. The expression ∃! means there exits only one. For example: ∃! 𝑥 ∈
𝐵 : 𝑥 < 2 means that in the set 𝐵 there exists only one element, which is less than 2.

10.4 Boolean logic

The operators ∧ and ∨ are the logical or and and, respectively. They form logical
operators to combine logical variables 𝑣, 𝑞 ∈ {1, 0}. Sometimes the logical variables
are expressed as {true, false}. By using operations from the set

𝒪 :=
{︀

¬, ∧, ∨, ()
}︀

, (10.18)

of logical operators, we can easily construct logical formulas. For instance, the for-
mulas

𝑣 ∨ 𝑞, (𝑣 ∨ 𝑞), (𝑣 ∨ 𝑞) ∧ ¬(𝑣 ∨ 𝑞) (10.19)

represent valid logical formulas as they are derived by using the operators in (10.18).
However, according to this definition, the formulas

(𝑣 ∨ 𝑞)𝑞𝑞, (𝑣 𝑞) (10.20)

are not valid (their meaning is undefined).
Suppose that 𝑆1, 𝑆2, 𝑆3 are logical expressions (statements) derived by using

the elements of the set operators 𝒪, similar to the ones given in equation (10.19).
The following statements about logical formulas hold:

Theorem 10.4.1 (Commutative laws [98]).

𝑆1 ∧ 𝑆2 ⇐⇒ 𝑆2 ∧ 𝑆1 (10.21)
𝑆1 ∨ 𝑆2 ⇐⇒ 𝑆2 ∨ 𝑆1 (10.22)

Theorem 10.4.2 (Associative laws [98]).

(𝑆1 ∧ 𝑆2) ∧ 𝑆3 ⇐⇒ 𝑆1 ∧ (𝑆2 ∧ 𝑆3) (10.23)
(𝑆1 ∨ 𝑆2) ∨ 𝑆3 ⇐⇒ 𝑆1 ∨ (𝑆2 ∨ 𝑆3) (10.24)

Theorem 10.4.3 (Distributive laws [98]).

𝑆1 ∨ (𝑆2 ∧ 𝑆3) ⇐⇒ (𝑆1 ∨ 𝑆2) ∧ (𝑆1 ∨ 𝑆3) (10.25)
𝑆1 ∧ (𝑆2 ∨ 𝑆3) ⇐⇒ (𝑆1 ∧ 𝑆2) ∨ (𝑆1 ∧ 𝑆3) (10.26)

160 | 10 Mathematics as a language for science

Theorem 10.4.4 (Rules of de Morgan [98]).

¬(𝑆1 ∨ 𝑆2) ⇐⇒ ¬𝑆1 ∧ ¬𝑆2 (10.27)
¬(𝑆1 ∧ 𝑆2) ⇐⇒ ¬𝑆1 ∨ ¬𝑆2 (10.28)

Theorem 10.4.1 says that the logical arguments can be switched for the logical
operators and and or. Theorem 10.4.2 says that we may successively shift the brack-
ets to the right. Similarly, when expanding expressions over the reals, for instance
𝑥(𝑥 + 1) = 𝑥2 + 𝑥, Theorem 10.4.3 gives a rule for expanding logical expressions.

The rules of de Morgan given by Theorem 10.4.4 state that a negation applied
to the single expressions flips the logical operator. Note that these rules can be
formulated for sets accordingly.

Theorem 10.4.5 (Rules of de Morgan for sets [100]).

𝐴 ∪ 𝐵 = 𝐴 ∩ 𝐵 (10.29)
𝐴 ∩ 𝐵 = 𝐴 ∪ 𝐵 (10.30)

The resulting statements (or forms) are called normal forms, and important
examples thereof are the disjunctive normal form and conjunctive normal form of
logical expressions, see [98].

Definition 10.4.1 (Disjunctive normal form (DNF) [98]). A logical expression 𝑆 is
given in disjunctive normal form if

𝑆 = 𝑆1 ∨ 𝑆1 ∨ · · · ∨ 𝑆𝑘, (10.31)

where

𝑆𝑖 = 𝑆𝑗1 ∧ 𝑆𝑗2 ∧ · · · ∧ 𝑆𝑗𝑘𝑗
. (10.32)

The terms 𝑆𝑗𝑖 are literals, i. e., logical variables or the negation thereof.

Two examples for logical formulas given in disjunctive normal form are

(𝑣 ∧ 𝑞) ∨ (¬𝑣 ∧ ¬𝑞) (10.33)

or

𝑣 ∨ (𝑣 ∧ 𝑞). (10.34)

Here we denote the literals by using the notations 𝑣 and 𝑞 for logical variables.

Definition 10.4.2 (Conjunctive normal form (DNF) [98]). A logical expression 𝑆 is
given in conjunctive normal form if

𝑆 = 𝑆1 ∧ 𝑆1 ∧ · · · ∧ 𝑆𝑘, (10.35)

10.4 Boolean logic | 161

where

𝑆𝑖 = 𝑆𝑗1 ∨ 𝑆𝑗2 ∨ · · · ∨ 𝑆𝑗𝑘𝑗
. (10.36)

The terms 𝑆𝑗𝑖 are literals.

Examples for logical formulas given in conjunctive normal form are

(𝑣 ∨ 𝑞) ∧ (¬𝑣 ∨ ¬𝑞) (10.37)

or

𝑣 ∧ (𝑣 ∨ 𝑞). (10.38)

In practice, the application of Boolean functions [98] has been important to de-
velop electronic chips for computers, mobile phones, etc. A logic gate [98] represents
an electronic component that realizes (computes) a Boolean function 𝑓(𝑣1, . . . , 𝑣𝑛) ∈
{0, 1}; 𝑣𝑖 are logical variables. These logic gates use the logical operators ∧, ∨, ¬
and transform input signals into output signals. Figure 10.3 shows the elementary
logic gates and their corresponding truth tables.

Figure 10.3: Elementary logic gates of Boolean functions and their corresponding truth table.
The top symbol corresponds to the IEC, and the bottom to the US standard symbols.

We see in Figure 10.3 that the OR-gate is based on the functionality of the operator
∨. That means, the output signal of the OR-gate equals 1 as soon as one of its input
signals is 1.

162 | 10 Mathematics as a language for science

The output signal of the AND-gate equals 1 if and only if all input signals
equal 1. As soon as one input signal equals 0, the value of the Boolean function
computed by this gate is 0.

The NOT-gate computes the logical negation of the input signal. If the input
signal is 1, the NOT-gate gives 0, and vice versa.

10.5 Sum, product, and Binomial coefficients

For a given set 𝐴 = {𝑎1, . . . , 𝑎𝑛}, the sum and product of its components can be
conveniently summarized by the sum operation (

∑︀
) and the product operation (

∏︀
).

Sum
The sum,

∑︀
, is defined for numbers 𝑎𝑖 involving all integer indices 𝑖𝑙, 𝑖𝑢 ∈ N from

𝑖𝑙, 𝑖𝑙 + 1 . . . , 𝑖𝑢, i. e.,

𝑖𝑢∑︁
𝑖=𝑖𝑙

𝑎𝑖 = 𝑎𝑖𝑙 + 𝑎𝑖𝑙+1 + · · · + 𝑎𝑖𝑢 . (10.39)

Here “l” indicates “lower”, whereas “u” means “upper”, to denote the beginning and
ending of the indices. For 𝑖𝑙 = 1, and 𝑖𝑢 = 𝑛, we obtain the sum over all elements of
𝐴,

∑︀𝑛
𝑖=1 𝑎𝑖 = 𝑎1 + · · ·+𝑎𝑛. Alternatively, the sum can also be written by a different

notation for the index of the sum symbol,∑︁
𝑖∈{𝑖𝑙,𝑖𝑙+1,...,𝑖𝑢}

𝑎𝑖 = 𝑎𝑖𝑙 + 𝑎𝑖𝑙+1 + · · · + 𝑎𝑖𝑢 . (10.40)

The latter form needs to be used if only selected indices should be used for the
summation. For instance, suppose, 𝐼 = {2, 4, 5} is an index set containing the desired
indices for the summation then∑︁

𝑖∈𝐼

𝑎𝑖 =
∑︁

𝑖∈{2,4,5}

𝑎𝑖 = 𝑎2 + 𝑎4 + 𝑎5. (10.41)

Product
Similar to the sum, the product,

∏︀
, is also defined for numbers 𝑎𝑖 involving all

integer indices 𝑖𝑙, 𝑖𝑢 ∈ N from 𝑖𝑙, 𝑖𝑙 + 1 . . . , 𝑖𝑢, i. e.,

𝑖𝑢∏︁
𝑖=𝑖𝑙

𝑎𝑖 = 𝑎𝑖𝑙 · 𝑎𝑖𝑙+1 · · · · · 𝑎𝑖𝑢 ; (10.42)

∏︁
𝑖∈{𝑖𝑙,𝑖𝑙+1...,𝑖𝑢}

𝑎𝑖 = 𝑎𝑖𝑙 · 𝑎𝑖𝑙+1 · · · · · 𝑎𝑖𝑢 . (10.43)

10.5 Sum, product, and Binomial coefficients | 163

Remark 10.5.1. In the above discussions of the sum and product, we assumed inte-
ger indices for the identification of the numbers 𝑎𝑖, i. e., 𝑖 ∈ N. However, we would
like to remark that, in principle, this can be generalized to arbitrary “labels”. For
instance, for the set 𝐴 = {𝑎△, 𝑎∘, 𝑎⊗}, we can define the sum and product over its
elements as ∑︁

𝑖∈{△,∘,⊗}

𝑎𝑖 = 𝑎△ + 𝑎∘ + 𝑎⊗; (10.44)

∏︁
𝑖∈{△,∘,⊗}

𝑎𝑖 = 𝑎△ · 𝑎∘ · 𝑎⊗. (10.45)

Hence, from a mathematical point of view, the nature of the indices is flexible.
However, whenever we implement a sum or a product with a programming language,
integer values for the indices are advantageous, because, e. g., the indexing of vectors
or matrices is accomplished via integer indices.

In R, the most flexible way to realize sums and products is via loops. However,
if one just wants a sum or a product over all elements in a vector 𝐴, from 𝑖𝑙 = 1 to
𝑖𝑢 = 𝑁 , one can use the following commands:

Listing 10.3: Sum and product

sum(A) # sum of all elements in vector A
prod(A) # product of all elements in vector A

Binomial coefficients
For all natural numbers 𝑘, 𝑛 ∈ N with 0 ≤ 𝑘 ≤ 𝑛, the binomial coefficient, denoted
𝐶(𝑛, 𝑘), is defined by

𝐶(𝑛, 𝑘) =
(︂

𝑛

𝑘

)︂
= 𝑛!

𝑘!(𝑛 − 𝑘)! . (10.46)

It is interesting to note that a binomial coefficient is a natural number itself, i. e.,
𝐶(𝑛, 𝑘) ∈ N.

For the definition of a binomial coefficient the factorial “!” of a natural number
is used. The factorial of 𝑛 is just the product of the numbers from 1 to 𝑛, i. e.,

𝑛! =
𝑛∏︁

𝑖=1
𝑖 = 1 · 2 · · · · · 𝑛. (10.47)

The binomial coefficient has the combinatorial meaning that from 𝑛 objects, there
are 𝐶(𝑛, 𝑘) ways to select 𝑘 objects without considering the order in which the
objects have been selected. In Figure 10.4, we show an urn with 𝑛 = 4 objects. From
this urn, we can draw 𝑘 = 2 objects in 6 different ways.

164 | 10 Mathematics as a language for science

Figure 10.4: Visualization of the meaning of the Binomial coefficient 𝐶(4, 2).

Also, the factorial 𝑛! has a combinatorial meaning. It gives the number of different
arrangements of 𝑛 objects by considering the order. For instance, the objects {1, 2, 3}
can be arranged in 3! = 6 different ways:

(1, 2, 3) − (1, 3, 2) − (2, 3, 1) − (2, 1, 3) − (3, 1, 2) − (3, 2, 1). (10.48)

Listing 10.4: Factorial and Binomial coefficients

factorial(k) # factorial of the natural number k
choose(n, k) # binomical coefficient 𝐶(𝑛, 𝑘)

Properties of Binomial coefficients
The binomial coefficients have interesting properties. Some of these are listed below.

𝐶(𝑛, 0) =
(︂

𝑛

0

)︂
= 1, (10.49)

𝐶(𝑛, 𝑛) =
(︂

𝑛

𝑛

)︂
= 1, (10.50)(︂

𝑛

𝑘

)︂
=

(︂
𝑛

𝑛 − 𝑘

)︂
, (10.51)

∀𝑛 ∈ N, and 0 ≤ 𝑘 ≤ 𝑛.
The following recurrence relation for binomial coefficients is called Pascal’s rule:(︂

𝑛 + 1
𝑘 + 1

)︂
=

(︂
𝑛

𝑘

)︂
+

(︂
𝑛

𝑘 + 1

)︂
. (10.52)

In Figure 10.5, we visualize the result of Pascal’s rule for 𝑛 ∈ {0, . . . , 6}. The resulting
object is called Pascal’s triangle.

10.6 Further symbols

Let us again assume we have a given set 𝐴 = {𝑎1, . . . , 𝑎𝑛}, where its elements 𝑎𝑖 are
numbers.

10.6 Further symbols | 165

Figure 10.5: Pascal’s triangle for Binomial coefficients. Visualized is the recurrence relation for
Binomial coefficients in equation (10.52).

Minimum and maximum
The minimum and the maximum of the set 𝐴 are defined by

𝑎*
min = min

𝑖=1,...,𝑛
{𝐴} = {𝑎𝑖 | 𝑎𝑖 ∈ 𝐴 and 𝑎𝑖 ≤ 𝑎𝑗∀𝑗 ̸= 𝑖}; (10.53)

𝑎*
max = max

𝑖=1,...,𝑛
{𝐴} = {𝑎𝑖 | 𝑎𝑖 ∈ 𝐴 and 𝑎𝑖 ≥ 𝑎𝑗∀𝑗 ̸ =𝑖}. (10.54)

If there is more than one element that is minimum or maximum, then the corre-
sponding sets 𝑎*

min and 𝑎*
max contain more than one element.

Argmin and Argmax
There are two related functions to the minimum and maximum that return the
indices of the minimal/maximal elements instead of their values:

𝑖*
min = argmin

𝑖=1,...,𝑛
{𝐴} = {𝑖 | 𝑎𝑖 ∈ 𝐴 and 𝑎𝑖 ≤ 𝑎𝑗∀𝑗 ̸ =𝑖}; (10.55)

𝑖*
max = argmax

𝑖=1,...,𝑛
{𝐴} = {𝑖 | 𝑎𝑖 ∈ 𝐴 and 𝑎𝑖 ≥ 𝑎𝑗∀𝑗 ̸ =𝑖}. (10.56)

Logical statements
A logical statement may be defined verbally or mathematically, and has the values
true or false. For simplicity, we define the Boolean value 1 for true, and 0 for false.
One can show that the set {true, false} is isomorphic to the set {0, 1}.

166 | 10 Mathematics as a language for science

The Boolean value of the statement “The next autumn comes for sure” equals
1 and, hence, the statement is true. From a probabilistic point of view, this event is
certain and its probability equals one. Therefore, we may conclude that this state-
ment does not contain any information, see also [169]. The following inequalities and
equations

𝑖 = −5, (10.57)
100 = 50 + 20 + 30, (10.58)
−1 ≥ 5, (10.59)

1 < 2, (10.60)
𝑛∑︁

𝑗=1
𝑗 = 𝑛(𝑛 + 1)

2 , 𝑛 ∈ N, (10.61)

are mathematical statements, which are true or false. The first equation is false, as
𝑖 =

√
−1, where 𝑖 is the imaginary unit of a complex number 𝑧 = 𝑎 + 𝑖𝑏. The second

equation is obviously true, as 50 + 20 + 30 equals 100. For the third statement,
a negative number cannot be greater or equal, as then a positive number and its
Boolean value is therefore false. The fourth statement represents an inequality too,
and is true. Strictly speaking, the fifth equation is a statement form (Sf) over the
natural numbers, as it contains the variable 𝑛 ∈ N.

In general, statement forms contain variables and are true or false. In case of
equation (10.61), we can write ⟨Sf(𝑛)⟩ = ⟨

∑︀𝑛
𝑗=1 𝑗 = 𝑛(𝑛+1)

2 ⟩. This statement form is
true for all 𝑛 ∈ N and can be proven by induction. Another example of a statement
form is ⟨︀

Sf(𝑥)
⟩︀

= ⟨𝑥 + 5 = 15⟩. (10.62)

For 𝑥 = 10, ⟨Sf(𝑥)⟩ is true. For 𝑥 ̸ = 10, ⟨Sf(𝑥)⟩ is false.
Generally, we can see that the statement changes if the variable of the statement

form (Sf) changes. Once we define statements (or statement forms), they can be
combined by using logical operations. We demonstrate these operations by first
assuming that 𝑆1 and 𝑆2 are logical statements. The statement 𝑆1 ∧ 𝑆2 means that
𝑆1 and 𝑆2 hold. This statement may have the value true or false, see Fig. 10.3.
For instance, 𝑆1 := 2 + 2 = 4 ∧ 𝑆2 := 3 + 3 = 6 is true, but 𝑆1 := 2 + 2 =
4 ∧ 𝑆3 := 3 + 3 = 9 is false. Similarly, 𝑆1 ∨ 𝑆2 means that 𝑆1 or 𝑆2 holds. Here,
𝑆1 := 2 + 2 = 4 ∨ 𝑆2 = 3 + 3 = 6 is true, but 𝑆1 := 2 + 2 = 4 ∨ 𝑆3 := 3 + 3 = 9 is
true as well. The logical negation of the statement 𝑆 is usually denoted by ¬𝑆. The
well-known triangle equation,

|𝑥1 + 𝑥2| ≤ |𝑥1| + |𝑥2|, 𝑥1, 𝑣2 ∈ R, (10.63)

holds true, but not

¬(|𝑥1 + 𝑥2| ≤ |𝑥1| + |𝑥2|). (10.64)

10.7 Importance of definitions and theorems | 167

This means

|𝑥1 + 𝑥2| > |𝑥1| + |𝑥2| (10.65)

is generally false.

Statement: ⇒
The logical implication 𝑆1 =⇒ 𝑆2 means that 𝑆1 implies 𝑆2. Verbally, one can say
𝑆1 “logically implies” 𝑆2, or if 𝑆1 holds, then follows 𝑆2.

Statement ⇔
The statement 𝑆1 ⇐⇒ 𝑆2 is stronger, because 𝑆1 holds if and only if 𝑆2 holds.

For the above statements, it is important to note that to go from the left state-
ment to the right one, or vice versa, one needs to apply logical operators (¬, ∧, ∨)
or algebraic operations (+, −, /, etc.). For instance, by assuming the true statement
𝑛2 ≥ 2𝑛, 𝑛 > 1, we obtain the implications

𝑛2 ≥ 2𝑛 =⇒ 𝑛2 − 2𝑛 ≥ 0 =⇒ 𝑛2 − 2𝑛 + 1 = (𝑛 − 1)2 ≥ 0. (10.66)

Finally, we want to remark that a false statement may imply a true statement; 𝑖2 = 1
(false as 𝑖2 = −1) implies 0 · 𝑖2 = 0 · 1 (true).

10.7 Importance of definitions and theorems

In order to develop and formulate mathematical concepts and ideas precisely, we
need a concise language. For instance, if we want to define a mathematical term, we
first need to understand what a mathematical definition is. A definition is a concept
formation of a mathematical term that is (possibly) based on other (mathematical)
terms, which are either immediately clear or which have already been defined. It is
important not to confuse the terms definition and theorem. As mentioned above, a
definition is just a concept formation, and not a statement and, therefore, it cannot
be proven, but it is assumed to be true. In contrast, a theorem is a mathematical
statement that needs to be proven by using other statements. In the following, we
give some examples of definitions:

Definition 10.7.1. Let 𝑎, 𝑏 ∈ R. The sum of these two real numbers are defined by

sum(𝑎, 𝑏) := 𝑎 + 𝑏. (10.67)

Definition 10.7.1 defines the sum of two real numbers based on the trivial defi-
nition of the symbol “+”.

168 | 10 Mathematics as a language for science

Definition 10.7.2. Let 𝑎, 𝑏 ∈ R. The function 𝑓𝐿 : R −→ R, given by

𝑓𝐿(𝑥) := 𝑎𝑥 + 𝑏, (10.68)

defines a linear function or a linear mapping.

The next statement can be formulated as a theorem based on the previous
definition.

Theorem 10.7.1. The unique solution of the equation

𝑓𝐿(𝑥) = 0 (10.69)

is given by 𝑥 = − 𝑏
𝑎 .

The proof of Theorem 10.7.1 is very simple, as 𝑓𝐿(𝑥) := 𝑎𝑥+𝑏 = 0 leads directly
to 𝑥 = − 𝑏

𝑎 by performing elementary calculations. Specifically, the first elementary
calculation is subtracting 𝑏 from 𝑎𝑥+𝑏 = 0. Second, we divide the resulting equation
by 𝑎 and obtain the result.

Another example is the famous binomial theorem.

Theorem 10.7.2. Let 𝑎, 𝑏 ∈ R and 𝑛 ≥ 1. Then,

(𝑎 + 𝑏)𝑛 =
𝑛∑︁

𝑘=1

(︂
𝑛

𝑘

)︂
𝑎𝑛−𝑘 𝑏𝑘. (10.70)

Theorem 10.7.2 can be proven by induction over 𝑛.
Sometimes, one uses the term lemma instead of theorem. Also a lemma is a

statement that needs to be proven, however, it is not as important as a theorem.
An example of an important theorem is the well-known fundamental theorem of
Algebra [127], stating that any complex-valued polynomial with degree 𝑛 has exactly
𝑛 zeros. To give a function-theoretic proof, one needs several lemmas to conclude
this theorem, see, e. g., [49].

Another term of a statement is a corollary. Also a corollary is a theorem (state-
ment), but it follows immediately from a theorem proven before. The following
corollary follows from Theorem 10.7.2 straightforwardly:

Corollary 10.7.1.

(𝑎 + 𝑏)2 = 𝑎2 + 2𝑎𝑏 + 𝑏2. (10.71)

10.8 Summary

In general, the mathematical language is meant to help with the precise formulation
of problems. If one is new to the field, such formulations can be intimidating at first

10.8 Summary | 169

and verbal formulations may appear as sufficient. However, with a bit of practice one
realizes quickly that this is not the case, and one starts to appreciate and to benefit
from the power of mathematical symbols. Importantly, the mathematical language
has a profound implication on the general mathematical thinking capabilities, which
translate directly to analytical problem-solving strategies. The latter skills are key
for working successfully on data science projects, e. g., in business analytics, because
the process of analyzing data requires a full comprehension of all involved aspects,
and the often abstract relations.

11 Computability and complexity
This chapter provides a theoretical underpinning for the programming in R that we
introduced in the first two parts of this book. Specifically, we introduced R practi-
cally by discussing various commands for computing solutions to certain problems.
However, computability can be defined mathematically in a generic way that is in-
dependent of a programming language. This paves the way for determining the
complexity of algorithms. Furthermore, we provide a mathematical definition of a
Turing machine, which is a mathematical model for an electronic computer. To place
this in its wider context, this chapter also provides a brief overview of several major
milestones in the history of computer science.

11.1 Introduction

Nowadays, the use of information technologies and the application of computers
are ubiquitous. Almost everyone uses computer applications to store, retrieve, and
process data from various sources. A simple example is a relational database system
for querying financial data from stock markets, or finding companies’ telephone
numbers. More advanced examples include programs that facilitate risk management
in life insurance companies or the identification of chemical molecules that share
similar structural properties in pharmaceutical databases [54, 170].

The foundation of computer science is based on theoretical computer science
[163, 164]. Theoretical computer science is a relatively young discipline that, put
simply, deals with the development and analysis of abstract models for information
processing. Core topics in theoretical computer science include formal language the-
ory and compilers [121, 160], computability [22], complexity [37], and semantics of
programming languages [122, 126, 167] (see also Section 2.8). More recent topics
include the analysis of algorithms [37], the theory of information and communica-
tion [40], and database theory [124]. In particular, the mathematical foundations of
theoretical computer science have influenced modern applications tremendously. For
example, results from formal language theory [160] have influenced the construction
of modern compilers [121]. Formal languages have been used for the analysis of au-
tomata. The automata model of a Turing machine has been used to formalize the
term algorithm, which plays a central role in computer science. When dealing with
algorithms, an important question is whether they are computable (see Section 2.2).
Another crucial issue relates to the analysis of algorithms’ complexity, which pro-
vides upper and lower bounds on their time complexity (see Section 11.5.1). Both
topics will be addressed in this chapter.

https://doi.org/10.1515/9783110564990-011

172 | 11 Computability and complexity

11.2 A brief history of computer science

In this section, we briefly sketch the history of computer science with respect to the
most important milestones for its theoretical foundations [32, 89, 146]. As early as
1100 BC, the first mechanical calculators were constructed. The abacus, for example,
is over 3000 years old. In approximately 300 BC, Euclid contributed to the develop-
ment of computational methods by calculating the greatest common divisor (GCD).
Another milestone was achieved in approximately 820 AD by Al-Khwarizmi, who
explored the fundamental aspects of computing methods. The term algorithm is de-
rived from the Latinization of his name: Algorithmi. From about 1518, the scientist
Adam Riese developed algorithms with the aim of establishing the decimal system.

Further milestones in computer science were achieved in the seventeenth century
(see [32, 89]). Pascal (approx. 1641) developed a patent for his calculator, Pascaline,
which was used for accounting and tax calculations. Leibniz (approx. 1673) developed
a calculating machine to perform the four fundamental arithmetic operations. In
1679, Leibniz was also the first to develop the dual system, which uses only the
digits 0 and 1. Its development had a fundamental influence on modern computers,
as well as processors.

The development of mechanic calculating machines controlled by programs was
advanced in the nineteenth century [32, 89]. The idea was to use control-based pro-
gramming to perform more complex calculations than were possible using the simple
machines described above. A highlight was the seminal work by Babbage (1822), who
developed the concept of a computer called the analytical engine. A contribution with
significant impact on modern computer science was achieved by Boole in 1854. He
developed the mathematical foundations of so-called Boolean logic, based on logic
operations. Another breakthrough, attributable to Hollerith in 1886, was the devel-
opment of a system for data processing using card-to-tape calculations. This system
was used until the second half of the twentieth century, and contributed greatly to
modern information processing.

Turing developed the concept of the so-called Turing machine in the 1930s
[32, 89]. This automaton-based model has had a considerable influence on mod-
ern (theoretical) computer science, and nowadays serves as a theoretical foundation
for computers. Zuse, in 1941, was among the pioneers who contributed to the de-
velopment of electronic calculating machines. He developed the program-controlled
computer Z3 together with a programming language called Plankalkül. The first fully
electronic computer, developed by Eckert and Mauchly (1946), was called ENIAC
(for electronic numerical integrator and computer), and industrial production of
computers started since the 1950s.

Another computer science pioneer was John von Neumann, who developed the
so-called Von Neumann architecture published in 1945, as a basis for computing
machines that are programmable from memory. We wish to emphasize that, besides

11.3 Turing machines | 173

the above-mentioned developments and findings, mathematical principles from in-
formation theory, signal processing, computer linguistics, and cybernetics have also
influenced the development of modern electronic computers.

11.3 Turing machines

The search for a precise definition of an algorithm has challenged mathematicians for
several decades [37]. In fact, the quest to resolve this problem began at the beginning
of the twentieth century during the search for solutions to complex computational
problems. Hilbert’s tenth problem, which addressed the question of whether an ar-
bitrary diophantine equation [30] possesses a solution, is an example of this. Various
methods were developed in the attempt to solve this problem; however, it was dis-
proven in 1970. Interestingly, the quest to solve such computational problems also
led to questions about the computability of algorithms (or functions). This will be
discussed in greater detail in Section 11.4.

Turing machines constituted an important contribution to the above-mentioned
developments. A Turing machine is a mathematical machine with relatively primitive
operations and constraints that mimics a real computer. Since a Turing machine is
a mathematical model, its memory can be infinite (e. g., given by an infinite strip or
tape that is sub-divided into fields; see Figure 11.1). Formally, a Turing machine is
defined as follows:

Definition 11.3.1 (Turing machine). A deterministic Turing machine is a tuple
TM = (𝑆, Σ, Γ, 𝛿, 𝑠0, $, 𝐹) consisting of the following:

𝑆, |𝑆| < ∞ is a set of states. (11.1)
Σ ⊂ Γ is the input alphabet. (11.2)
Γ is the alphabet of the strip (tape). (11.3)

𝛿 : 𝑆 × Γ −→ 𝑆 × Γ × {𝑙, 𝑟} is called the transition function, where
𝑙 and 𝑟 denote left shift and right shift, respectively

(11.4)

𝑠0 ∈ 𝑆 is the initial state. (11.5)
$ ∈ Γ − Σ is the blank symbol. (11.6)
𝐹 ⊂ 𝑍 is the set of final states. (11.7)

Given an alphabet Σ, one can print only one character 𝑐 ∈ Γ in each field. A special
character (e. g., $) is used to fill the empty fields (blank symbol).

Figure 11.1: Illustration of the principle behind a Turing ma-
chine.

174 | 11 Computability and complexity

The transition function 𝛿 is crucial for the control unit, and encodes the program
of the Turing machine (see Figure 11.1). The Turing table conveys information about
the current and subsequent stages of the machine after it reads a character 𝑐 ∈ Γ.
This initiates certain actions of the read/write head, namely
– 𝑙: moving the head exactly one field to the left.
– 𝑟: moving the head exactly one field to the right.
– 𝑥: overwriting the content of a field with 𝑥 ∈ Γ ∪ {$} without moving the head.

A fundamental question of theoretical computer science concerns the types of func-
tions that are computable using Turing machines. For example, it emerged that
functions defined on words (e. g., 𝑓 : Σ⋆ −→ Σ⋆) are Turing-computable if there is
at least one Turing machine that stops after a finite number of steps in the final
state. We wish to emphasize that this also holds for other functions (e. g., multivari-
ate functions over several variables).

We conclude this section with an important observation regarding Turing com-
pleteness. This term is relevant for basic paradigms of programming languages (see
Chapter 2). A programming language is deemed Turing-complete if all functions that
are computable with this language can be computed by a universal Turing machine.
For example, most modern programming languages (from different paradigms), such
as Java, C++, and Scheme, are Turing-complete [122].

11.4 Computability

We now turn to a fundamental problem in theoretical computer science: the deter-
mination as to whether or not a function is computable [164]. This problem can be
discussed intuitively as well as mathematically. We begin with the intuitive discus-
sion, and then provide its mathematical formulation. It is generally accepted that
function 𝑓 : N −→ N is computable if an algorithm to compute 𝑓 exists. There-
fore, assuming an arbitrary 𝑛 ∈ N as input, the algorithm should stop after a finite
number of computation steps with output 𝑓(𝑛). When discussing this simple model,
we did not take into account any considerations regarding a particular processor
or memory. Evidently, however, it is necessary to specify such steps to implement
an algorithm. In practical terms, this is complex, and can only be accomplished
by a general mathematical definition to decide whether a function 𝑓 : N −→ N is
computable.

A related problem is whether any arbitrary problem can be solved using an
algorithm, and, if not, whether the algorithm can identify the problem as noncom-
putable. This is known as the decision problem formulated by Hilbert, which turned
out to be invalid [36]. A counter-example is Godel’s well-known incompleteness the-
orem [36]. Put simply, it states that no algorithm exists that can verify whether an
arbitrary statement over N is true or false. To explore Gödel’s statement in depth,

11.5 Complexity of algorithms | 175

several formulations of the term algorithm as a computational procedure have been
proposed. A prominent example thereof was proposed by Church, who explored the
well-known Lambda calculus, which can be understood as a mathematical program-
ming language (see [122]). It was in this context also that Turing developed the
concept of a Turing machine [36, 122] (see Section 11.3). Another contribution by
Gödel is an alternative computational procedure based on the definition of complex
mathematical functions composed of simple functions. The result of all these develop-
ments was that the Church-Turing thesis, which states that all the above-mentioned
computational processes (algorithms) are equivalent, was proven.

Furthermore, it has been proven that computability does not depend on a specific
programming language (see [122]). In other words, most programming languages
are equipotent [122]. For example, suppose that we solve a problem by using an
imperative programming language, such as Fortran (see Section 2.2). Then, an
equivalent algorithm exists that can be implemented using a functional language,
such as Scheme (see Section 2.3).

A mathematical definition of computable can be formulated as follows:

Definition 11.4.1 (Computable function). A function 𝑓 : N𝑘 −→ N is called com-
putable if an algorithm exists that computes 𝑓(𝑛1, 𝑛2, . . . , 𝑛𝑘). That means 𝑛1, 𝑛2,

. . . , 𝑛𝑘 is the input of 𝑓 such that the algorithm stops after a finite number of com-
putation steps in the case where 𝑓 is defined for 𝑛1, 𝑛2, . . . , 𝑛𝑘. In the case where 𝑓

is not defined on 𝑛1, 𝑛2, . . . , 𝑛𝑘, the algorithm does not terminate.

We wish to note that a similar definition can be given for functions defined on words
(e. g., 𝑓 : Σ⋆ −→ Σ⋆, see [36, 164]). Examples of computable functions include the
following:
– The functions 𝑓1 : N2 −→ N, 𝑓1 := 𝑎 · 𝑏 and 𝑓2 : N2 −→ N, 𝑓2 := 𝑎 + 𝑏.
– The (successor) function 𝑓 : N −→ N, 𝑓(𝑛) := 𝑛 + 1.
– The recursive function sum : N −→ N defined by sum(𝑛) := 𝑛 + sum(𝑛 − 1),

sum(0) := 0.

11.5 Complexity of algorithms

Algorithms play a central role not only in mathematics and computer science, but
also in machine learning and data science [37]. The term algorithm may be under-
stood intuitively as a description of a general method for solving a class of problems.
Mathematically speaking, an algorithm is defined by a set of rules that are executed
sequentially, some of which may be repeated under certain conditions. Program-
ming languages are excellent tools for implementing algorithms. For example, the
class of recursive algorithms has been often used to implement recursive problems.
A prominent example is the well-known Ackermann function [122], which can easily
be coded using functional programming languages (see Section 2.3). By contrast,

176 | 11 Computability and complexity

iterative algorithms have been used to compute problems efficiently. The imperative
implementation (see Section 2.2) of the shortest path problem, proposed by Dijkstra
[58], is a standard case study in computer science, which is frequently used to illus-
trate iterative algorithms. Examples of typical algorithms in mathematics include
the GCD-algorithm proposed by Euclid [122] and the Gaussian elimination method
for solving linear equation systems [27].

It seems plausible that many algorithms exist to address a particular problem.
For example, the square of a real number can be computed using either a func-
tional or an imperative algorithm (see Sections 2.2 and 2.3). However, this raises the
question as to what type of algorithm is most suited to solving a given problem.

Listing important properties/questions in the context of algorithm design offers
insight into the complexity of the latter problem. Such properties and questions
include
– What level of effort is required to implement a particular algorithm?
– How can the algorithm be simplified as far as possible?
– How much memory is required?
– What is the time complexity (i. e., execution time) of an algorithm?
– What is the correctness of the algorithm?
– Does the algorithm terminate?

In attempting to define a reasonable measure for assessing algorithms, time com-
plexity has emerged as crucial. This measure should be rather abstract and general,
as an algorithm’s execution time depends on several factors, including (i) the style of
programming, (ii) the particular programming language used, (iii) processor speed,
and (iv) whether a compiler or interpreter is used. It would be unreasonable to de-
fine a cost function to judge each algorithm’s time complexity separately, as it is not
clear what kind of data structure should be used. For example, a list depends on the
number of elements, whereas a matrix depends on the number of rows and columns.
Hence, it is impossible to estimate the parameters of an algorithm in advance and,
consequently, the evaluation of its time complexity is an intricate process.

11.5.1 Bounds

Let 𝑛 be the input size of an algorithm (i. e., the number of data elements to be
processed). The time complexity of an algorithm is determined by the maximal
number of steps (e. g., value assignments, arithmetic operations, memory allocations,
etc.) in relation to input size required to obtain a specific result.

In the following, we describe how to measure the time complexity of an algorithm
asymptotically, and describe several forms thereof. First, we state an upper bound
for the time complexity that will be attained in the worst case (𝑂-notation). To

11.5 Complexity of algorithms | 177

begin, we provide a definition of real polynomials, as they play a crucial role in the
asymptotic measurement of algorithms’ time complexity.

Definition 11.5.1 ([151]). The function 𝑓 : R −→ R, defined by

𝑓(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + · · · + 𝑎0 , 𝑎𝑛 ̸ = 0, 𝑎𝑘 ∈ R , 𝑘 = 0, 1, . . . , 𝑛, (11.8)

is a real polynomial of degree 𝑛.

By definition, the input variable 𝑥 and the value of the function 𝑓(𝑥) are real num-
bers. By taking only real coefficients 𝑐𝑘 into account, the polynomial 𝑓 : N −→ N
(see equation (11.8)) is also a real polynomial. Generally speaking, a polynomial is
called real if its coefficients are real.

To define an asymptotic upper bound for the time complexity of an algorithm,
the 𝑂-notation is required.

Definition 11.5.2 (𝑂-notation [37]). Let 𝑓, 𝑔 : N −→ N be two polynomials. We
define

𝑓(𝑛) = 𝑂(𝑛) ⇐⇒ ∃𝑐 ∈ R, 𝑐 > 0, 𝑛0 ∈ N : 𝑓(𝑛) ≤ 𝑐 · 𝑔(𝑛) ∀𝑛 ≥ 𝑛0. (11.9)

Definition 11.5.2 means that 𝑔(𝑛) is an asymptotic upper bound of 𝑓(𝑛) if a constant
𝑐 > 0 exists and a natural number 𝑛0 such that 𝑓(𝑛) is less or equal 𝑐·𝑔(𝑛) for 𝑛 ≥ 𝑛0.

In contrast to the worst case, described by the 𝑂-notation, we now define an
asymptotic lower bound that describes the “least” complexity. This is provided by
the Ω-notation.

Definition 11.5.3 (Ω-notation [37]). Let 𝑓, 𝑔 : N −→ R+ be two polynomials. We
define

𝑓(𝑛) = Ω(𝑛) ⇐⇒ ∃𝑐 ∈ R, 𝑐 > 0, 𝑛0 ∈ N : 𝑓(𝑛) ≥ 𝑐 · 𝑔(𝑛) ∀𝑛 ≥ 𝑛0. (11.10)

According to Definition 11.5.3, 𝑔(𝑛) is an asymptotic lower bound of 𝑓(𝑛) if a con-
stant 𝑐 > 0 exists and a natural number 𝑛0 such that 𝑓(𝑛) ≥ 𝑐 · 𝑔(𝑛) for 𝑛 ≥ 𝑛0.

To simultaneously define upper and lower bounds for the time complexity, the
Θ-notation is used.

Definition 11.5.4 (Θ-notation [37]). Let 𝑓, 𝑔 : N −→ R+ be two polynomials. We
define

𝑓(𝑛) = Θ(𝑛) ⇐⇒ ∃𝑐1, 𝑐2 ∈ R+, 𝑐1, 𝑐2 > 0, 𝑛0 ∈ N : (11.11)
𝑐1 · 𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐2 · 𝑔(𝑛) ∀𝑛 ≥ 𝑛0.

According to Definition 11.5.4, 𝑔(𝑛) is an exact asymptotic bound of 𝑓(𝑛) if two
constants 𝑐1, 𝑐2 > 0 exist, and a natural number 𝑛0 such that 𝑓(𝑛) lies in between
𝑐1 · 𝑔(𝑛), and 𝑐2 · 𝑔(𝑛) if 𝑛 ≥ 𝑛0.

178 | 11 Computability and complexity

11.5.2 Examples

In this section, some examples are given to illustrate the definitions of the asymptotic
bounds. In practice, the 𝑂-notation is the most important and widely used. Hence,
the following examples will focus on it.

To simplify the notation, we denote the number of calculation steps in an algo-
rithm by 𝑓(𝑛). Let 𝑓(𝑛) := 𝑛2 +3𝑛. To determine the complexity class 𝑂(𝑛𝑘), 𝑘 ∈ N,
the constants 𝑐 and 𝑛0 must be determined. Using Definition 11.5.2, setting 𝑐 = 4
and 𝑔(𝑛) = 𝑛2, the following inequalities can be verified:

𝑛2 + 3𝑛 ≤ 4𝑛2 or 3𝑛 ≤ 3𝑛2. (11.12)

This gives 1 ≤ 𝑛. That means, with 𝑐 = 4 and 𝑛0 = 1, we have

𝑛2 + 3𝑛 ≤ 𝑐 · 𝑛2. (11.13)

Thus, we obtain 𝑛2 + 3𝑛 ∈ 𝑂(𝑛2).
A second example is the function

𝑓(𝑛) := 𝑐5𝑛5 + 𝑐4𝑛4 + 𝑐3𝑛3 + 𝑐2𝑛2 + 𝑐1𝑛 + 𝑐0. (11.14)

If 𝑛 goes to infinity, we can disregard the terms 𝑐4𝑛4 + 𝑐3𝑛3 + 𝑐2𝑛2 + 𝑐1𝑛+ 𝑐0 as well
as the constant 𝑐5, and obtain 𝑓(𝑛) ∈ 𝑂(𝑛5). We see that the 𝑂-notation always
emphasizes the dominating power of the polynomial (here 𝑛5).

To demonstrate the general case, we use the polynomial

𝑓(𝑛) = 𝑎𝑘𝑛𝑘 + 𝑎𝑘−1𝑛𝑘−1 + · · · + 𝑎1𝑛 + 𝑎0, 𝑎𝑘 ̸ = 0, (11.15)

and obtain

𝑓(𝑛) = |𝑎𝑘𝑛𝑘 + 𝑎𝑘−1𝑛𝑘−1 + · · · + 𝑎1𝑛 + 𝑎0|

= 𝑛𝑘

⃒⃒⃒⃒⃒⃒
𝑎𝑘 + 𝑎𝑘−1

𝑛
+ 𝑎𝑘−2

𝑛2 + · · · + 𝑎0
𝑛𝑘

⃒⃒⃒⃒⃒⃒
≤ 𝑛𝑘

(︂
|𝑎𝑘| + |𝑎𝑘−1|

𝑛
+ |𝑎𝑘−2|

𝑛2 + · · · + |𝑎0|
𝑛𝑘

)︂
≤ 𝑛𝑘(|𝑎𝑘| + |𝑎𝑘−1| + |𝑎𝑘−2| + · · · + |𝑎0|) = 𝑐𝑛𝑘. (11.16)

Inequality (11.16) has been obtained using the triangle inequality [178]. By setting
𝑐 := |𝑎𝑘| + |𝑎𝑘−1| + |𝑎𝑘−2| + · · · + |𝑎0|, inequality (11.16) is satisfied for 𝑛 ≥ 1. That
means, 𝑓(𝑛) ≤ 𝑐𝑛𝑗 for 𝑗 ≥ 𝑘 and 𝑛 ∈ N. Finally, we obtain 𝑓(𝑛) ∈ 𝑂(𝑛𝑗) for 𝑗 ≥ 𝑘.

In the final example, we use a simple imperative program (see Section 2.2) to
calculate the sum of the first 𝑛 natural numbers (sum = 1 + 2 · · · + 𝑛). Basically, the
pseudocode of this program consists of the initialization step, sum = 0, and a for-
loop with variable 𝑖 and body sum = 𝑖 + 1 for 1 ≤ 𝑖 ≤ 𝑛. The first value assignment

11.5 Complexity of algorithms | 179

requires constant costs, say, 𝑐1. In each step of the for-loop to increment the value of
the variable sum, constant costs 𝑐2 are required. Then we obtain the upper bound
for the time complexity

𝑓(𝑛) = 𝑐1 + 𝑐2 · 𝑛, (11.17)

and finally, 𝑓(𝑛) ∈ 𝑂(𝑛).

11.5.3 Important properties of the 𝑂-notation

In view of the importance of the 𝑂-notation for practical use, several of its properties
are listed below:

𝑐 = 𝑂(1), (11.18)
𝑐 · 𝑂

(︀
𝑓(𝑛)

)︀
= 𝑂

(︀
𝑓(𝑛)

)︀
, (11.19)

𝑂
(︀
𝑓(𝑛)

)︀
+ 𝑂

(︀
𝑓(𝑛)

)︀
= 𝑂

(︀
𝑓(𝑛)

)︀
, (11.20)

𝑂
(︀
log𝑏(𝑛)

)︀
= 𝑂

(︀
log(𝑛)

)︀
, (11.21)

𝑂
(︀
𝑓(𝑛) + 𝑔(𝑛)

)︀
= 𝑂

(︀
max

{︀
𝑓(𝑛), 𝑔(𝑛)

}︀)︀
, (11.22)

𝑂
(︀
𝑓(𝑛)

)︀
· 𝑂

(︀
𝑔(𝑛)

)︀
= 𝑂

(︀
𝑓(𝑛) · 𝑔(𝑛)

)︀
. (11.23)

An algorithm with a constant number of steps has time complexity 𝑂(1) (see equa-
tion (11.18)). The second rule given by equation (11.19) means that constant factors
can be neglected. If we execute a program with time complexity 𝑂(𝑓(𝑛)) sequentially,
the final program will have the same complexity (see equation (11.20)). According to
equation (11.21), the logarithmic complexity does not depend on the base 𝑏. More-
over, the sequential execution of two programs with different time complexities has
the complexity of the program with higher time complexity (see equation (11.22)).
Finally, the overall complexity of a nested program (for example, two nested loops)
is the product of the individual complexities (see equation (11.23)).

11.5.4 Known complexity classes

Finally, we list some examples of algorithm complexity classes:
– 𝑂(1) consists of programs with constant time complexity (e. g., value assign-

ments, arithmetic operations, Hashing).
– 𝑂(𝑛) consists of programs with linear time complexity (e. g., calculating sums

and linear searching procedures).
– 𝑂(𝑛2) consists of programs with quadratic time complexity (e. g., a simple sort-

ing algorithm, such as Bubblesort [37]).

180 | 11 Computability and complexity

– 𝑂(𝑛3) consists of programs with cubic time complexity (e. g., a simple algorithm
to solve the shortest path problem proposed by Dijkstra [58] where, 𝑛 is the
number of vertices in a network).

– 𝑂(𝑛𝑘) generally consists of programs with polynomial time complexity. Obvi-
ously, 𝑂(𝑛), 𝑂(𝑛2) and 𝑂(𝑛3) are also polynomial.

– 𝑂(log(𝑛)) consists of programs with logarithmic time complexity (e. g., binary
searching [37]).

– 𝑂(2𝑛) consists of programs with exponential time complexity (e. g., enumeration
problems and recursive functions [37]).

Algorithms with complexity 𝑂(1) are highly desirable in practice. Logarithmic and
linear time complexity are also favorable for practical applications as long as log(𝑛) <

𝑛, 𝑛 > 1. Quadratic and cubic time complexity remain sufficient when 𝑛 is relatively
small. Algorithms with complexity 𝑂(2𝑛) can only be used under certain constraints,
since 2𝑛 grows significantly compared to 𝑛𝑘. Such algorithms could possibly be used
when searching for graph isomorphisms or cycles, whose graphs have bounded vertex
degrees, for example (see [130]).

11.6 Summary

At this juncture, it is worth reiterating that, despite the apparent novelty of the
term data science, the fields on which it is based have long histories, among them
theoretical computer science [61]. The purpose of this chapter has been to show
that computability, complexity, and the computer, in the form of a Turing machine,
are mathematically defined. This aspect can easily be overlooked in these terms’
practical usage.

The salient point is that data scientists should recognize that all these concepts
possess mathematical definitions which are neither heuristic nor ad-hoc. As such,
they may be revisited if necessary (e. g., to analyze an algorithm’s runtime). Our
second point is that not every detail about these entities must be known. Given
the intellectual complexity of these topics, this is encouraging, because acquiring
an in-depth understanding of these is a long-term endeavor. However, even a basic
understanding is preferable and helps in improving practical programming and data
analysis skills.

12 Linear algebra
One of the most important and widely used subjects of mathematics is linear algebra
[27]. For this reason, we begin this part of the book with this topic. Furthermore,
linear algebra plays a pivotal role for the mathematical basics of data science.

This chapter opens with a brief introduction to some basic elements of lin-
ear algebra, e. g., vectors and matrices, before discussing advanced operations,
transformations, and matrix decompositions, including Cholesky factorization, QR
factorization, and singular value decomposition [27].

12.1 Vectors and matrices

Vectors and matrices are fundamental objects that are used to study problems in
many fields, including mathematics, physics, engineering, and biology (see e. g. [21,
27, 186]).

12.1.1 Vectors

Vectors define quantities, which require both a magnitude, i. e., a length, and a
direction to be fully characterized. Examples of vectors in physics are velocity or
force. Hence, a vector extends a scalar, which defines a quantity fully described by
its magnitude alone. From an algebraic point of view, a vector, in an 𝑛-dimensional
real space, is defined by an ordered list of 𝑛 real scalars, 𝑥1, 𝑥2, . . . , 𝑥𝑛 arranged in
an array.

Definition 12.1.1. A vector is said to be a row vector if its associated array is
arranged horizontally, i. e.,

(𝑥1, 𝑥2, . . . , 𝑥𝑛),

whereas a vector is called a column vector when its array is arranged vertically, i. e.,⎛⎜⎜⎜⎜⎝ ..

𝑥1
𝑥2
.

𝑥𝑛

⎞⎟⎟⎟⎟⎠ .

Geometrically, a vector can be regarded as a displacement between two points
in space, and it is often denoted using a symbol surmounted by an arrow, e. g.,

−→
𝑉 .

https://doi.org/10.1515/9783110564990-012

182 | 12 Linear algebra

Definition 12.1.2. Let
−→
𝑉 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) be an 𝑛-dimensional real vector. Then,

the p-norm of
−→
𝑉 , denoted ‖

−→
𝑉 ‖𝑝, is defined by the following quantity

‖
−→
𝑉 ‖𝑝 =

(︃
𝑛∑︁

𝑖=1
|𝑥𝑖|𝑝

)︃ 1
𝑝

, (12.1)

where |𝑥𝑖| denotes the modulus or the absolute value of 𝑥𝑖.
In particular,

1. the 1-norm of the vector
−→
𝑉 is defined by

‖
−→
𝑉 ‖1 =

𝑛∑︁
𝑖=1

|𝑥𝑖|,

2. the 2-norm of the vector
−→
𝑉 is defined by

‖
−→
𝑉 ‖2 =

(︃
𝑛∑︁

𝑖=1
|𝑥𝑖|2

)︃ 1
2

,

3. when 𝑝 = ∞, the 𝑝-norm, also called the maximum norm, is defined by

‖
−→
𝑉 ‖∞ = max

𝑖∈1,...,𝑛
|𝑥𝑖|.

Definition 12.1.3. Let 𝐸𝑛 denote an 𝑛-dimensional space. Let 𝑑 be a function de-
fined by

𝑑 : 𝐸𝑛 × 𝐸𝑛 −→ R,

such that for any 𝑥, 𝑦, 𝑧 ∈ 𝐸𝑛 the following relations hold:
1. 𝑑(𝑥, 𝑦) ≥ 0;
2. 𝑑(𝑥, 𝑦) = 0 ⇐⇒ 𝑥 = 𝑦;
3. 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥);
4. 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)

Such a function, 𝑑, is called a metric, and the pair (𝐸𝑛, 𝑑) is called a metric space.
When 𝐸𝑛 = R𝑛 and 𝑑(𝑥, 𝑦) = (

∑︀𝑛
𝑖=1(𝑥𝑖 − 𝑦𝑖)2)1/2, then the pair (𝐸𝑛, 𝑑) =

(R𝑛, 𝑑) is called an 𝑛-dimensional Euclidean space, also referred to as an 𝑛-
dimensional Cartesian space.

From Definition 12.1.3, it is clear that R, the set of real numbers (or the real line),
is a 1-dimensional Euclidean space, whereas R2, the real plane, is a 2-dimensional
Euclidean space.

Remark 12.1.1. The 𝑝-norm, with 𝑝 = 2, of a vector in an 𝑛-dimensional Euclidean
space is referred to as the Euclidean norm.

12.1 Vectors and matrices | 183

Let 𝐴 =
(︀ 𝑥𝐴

𝑦𝐴

)︀
and 𝐵 =

(︀ 𝑥𝐵
𝑦𝐵

)︀
be two points in a 2-dimensional Euclidean space.

Then, the vector
−−→
𝐴𝐵 = −→

𝑉 is the displacement from the point 𝐴 to the point 𝐵,
which can be specified in a cartesian coordinates system by

−−→
𝐴𝐵 = −→

𝑉 =
(︂

𝑥𝐵 − 𝑥𝐴

𝑦𝐵 − 𝑦𝐴

)︂
.

This is illustrated in Figure 12.1 (a).

Figure 12.1: (a) Vector representation in a two-dimensional space. (b) Decomposition of a stan-
dard vector in a 2-dimensional space.

Definition 12.1.4. The magnitude of a vector
−−→
𝐴𝐵 is defined by the non-negative

scalar given by its Euclidean norm, denoted ‖
−−→
𝐴𝐵‖2 or simply ‖

−−→
𝐴𝐵‖.

Specifically, the magnitude of a 2-dimensional vector
−−→
𝐴𝐵 is given by

‖
−−→
𝐴𝐵‖ =

√︀
(𝑥𝐵 − 𝑥𝐴)2 + (𝑦𝐵 − 𝑦𝐴)2.

In applications, the Euclidean norm is sometimes also referred to as the Eu-
clidean distance.

Using R, the norm of a vector can be computed as illustrated in Listing 12.1.

Listing 12.1: Definition of a vector and computation of its norm

#Defining a 3-dimensional row vector from a given list of 3 numbers
listnb <- c(3, 2, -5)
V <- matrix(listnb, nrow=1)
V

[,1] [,2] [,3]
[1,] 3 2 -5

184 | 12 Linear algebra

#Defining a 3-dimensional column vector from a given list of 3
numbers

listnb <- c(12, 1, -3)
W<- matrix(listnb, ncol=1)
W

[,1]
[1,] 12
[2,] 1
[3,] -3
Norm of the vector V
NormV<-sqrt(sum(Vˆ2))
NormV
[1] 6.164414
Norm of the vector W
NormW<-sqrt(sum(Wˆ2))
NormW
[1] 12.40967

Definition 12.1.5. Two 𝑛-dimensional vectors
−→
𝑉 and

−→
𝑊 are said to be parallel if

they have the same direction.

Definition 12.1.6. Two 𝑛-dimensional vectors
−→
𝑉 and

−→
𝑊 are said to be equal if they

have the same direction and the same magnitude.

Various transformations and operations can be performed on vectors, and some
of the most important will be presented in the following sections.

Example 12.1.1. For supervised learning, 𝑘-NN (𝑘 nearest neighbors) [96] is a simple
yet efficient way to classify data. Suppose that we have a high-dimensional data set
with two classes, whose data points represent vectors. Let 𝑥 be a point that we wish
to assign to one of these two classes. To predict the class label of a point 𝑥, we
calculate the Euclidean distance, introduced above (see Remark 12.1.1), between 𝑥

and all other points 𝑥𝑖, i. e., 𝑑𝑖 = ‖𝑥 − 𝑥𝑖‖. Then, we order these distances 𝑑𝑖 in
an increasing order. The 𝑘-NN classifier now uses the nearest 𝑘 distances to obtain
a majority vote for the prediction of the label for the point 𝑥. For instance, in
Figure 12.2, a two-dimensional example is shown for 𝑘 = 4. Among the four nearest

Figure 12.2: An example where the Euclidean dis-
tance ‖𝑥 − 𝑥𝑖‖ is used for the classifier 𝑘-NN.
A point 𝑥 is assigned the label 𝑖 based on a major-
ity vote, considering its nearest 𝑘 neighbors. In this
example, 𝑘 = 4.

12.1 Vectors and matrices | 185

neighbors of 𝑥 are three red points and one blue point. This means the predicted
class label of 𝑥 would be “red”. In the extreme case 𝑘 = 1, the point 𝑥 would be
assigned to the class with the single nearest neighbor.

The 𝑘-NN method is an example of an instance-based learning algorithm. There
are many variations of the 𝑘-NN approach presented here, e. g., considering weighted
voting to overcome the limitations of majority voting in case of ties.

12.1.1.1 Vector translation
Let

−→
𝑉 = −−→

𝐴𝐵 denote the displacement between two points 𝐴 and 𝐵. The same
displacement

−→
𝑉 , starting from a point 𝐴′ to another point 𝐵′, defines a vector−−−→

𝐴′𝐵′.
The vector

−−−→
𝐴′𝐵′ is called a translation of the vector

−−→
𝐴𝐵, and the two vectors

−−→
𝐴𝐵

and
−−−→
𝐴′𝐵′ are equal, when they have the same direction, and ‖

−−→
𝐴𝐵‖ = ‖

−→
𝑉 ‖ = ‖

−−−→
𝐴′𝐵′‖.

Hence, the translation of a vector
−−→
𝐴𝐵 is a transformation that maps a pair of points

𝐴 and 𝐵 to another pair of points 𝐴′ and 𝐵′, such that the following relations hold:
1.

−−→
𝐴𝐴′ =

−−→
𝐵𝐵′;

2.
−−→
𝐴𝐴′ and

−−→
𝐵𝐵′ are parallel.

In a two-dimensional space, the vector
−−→
𝐴𝐵 and its translation

−−−→
𝐴′𝐵′ form opposite

sides of a parallelogram, as illustrated in Figure 12.3 (a). Thus,

𝐴′ =
(︂

𝑥𝐴′

𝑦𝐴′

)︂
=
(︂

𝑥𝐴 + 𝑘𝑥

𝑦𝐴 + 𝑘𝑦

)︂
and 𝐵′ =

(︂
𝑥𝐵′

𝑦𝐵′

)︂
=
(︂

𝑥𝐵 + 𝑘𝑥

𝑦𝐵 + 𝑘𝑦

)︂
,

where 𝑘𝑥 and 𝑘𝑦 are scalars.

Definition 12.1.7. A vector
−→
𝑉 =

−−−→
𝐴′𝐵′ is called a standard vector if its initial point

(i. e., the point 𝐴′) coincides with the origin of the coordinate system. Hence, using
vector translation, any given vector can be transformed into a standard vector, as
illustrated in Figure 12.3 (a).

12.1.1.2 Vector rotation
A vector transformation, which changes the direction of a vector while its initial point
remains unchanged, is called a rotation. This results in an angle between the original
vector and its rotated counterpart, called the rotation angle. Let

−→
𝑉 = (𝑥𝐴, 𝑦𝐴)

be a 2-dimensional vector, and
−→
𝑉 ′ = (𝑥𝐴′ , 𝑦𝐴′) its rotation by an angle 𝜃 (see

Figure 12.3 (b)). Then, the following properties of the vector rotation should be
noted:

𝑥𝐴′ = 𝑥𝐴 cos(𝜃) − 𝑦𝐴 sin(𝜃);
𝑦𝐴′ = 𝑥𝐴 sin(𝜃) + 𝑦𝐴 cos(𝜃);

‖
−→
𝑉 ‖ =

⃦⃦⃦−→
𝑉 ′⃦⃦⃦. (12.2)

186 | 12 Linear algebra

Figure 12.3: Vector transformation in a 2-dimensional space: (a) Translation of a vector. (b) Ro-
tation of a vector.

Various operations can be carried out on vectors, including the product of a vector
by a scalar, the sum, the difference, the scalar or dot product, the cross product,
and the mixed product. In the following sections, we will discuss such operations.

12.1.1.3 Vector scaling
Let

−→
𝑉 = (𝑣1, 𝑣2, . . . , 𝑣𝑛) be an 𝑛-dimensional vector, and let 𝑘 be a scalar. Then,

the product of 𝑘 with
−→
𝑉 , denoted 𝑘 ×

−→
𝑉 , is a vector

−→
𝑈 defined as follows:

−→
𝑈 = (𝑘 × 𝑣1, 𝑘 × 𝑣2, . . . , 𝑘 × 𝑣𝑛).

Geometrically, the vector
−→
𝑈 is aligned with

−→
𝑉 , but 𝑘 times longer or shorter.

Definition 12.1.8. If
−→
𝑉 is non-null (i. e., not all of its components are zero), then

−→
𝑉 and

−→
𝑈 = 𝑘

−→
𝑉 are said to be parallel if 𝑘 > 0, and anti-parallel if 𝑘 < 0. In the

particular case where 𝑘 = −1, then
−→
𝑉 and

−→
𝑈 are said to be opposite vectors (see

Figure 12.4 (b) for an illustration).

Definition 12.1.9. For any scalar 𝑘, the vectors
−→
𝑉 and

−→
𝑈 = 𝑘 ×

−→
𝑉 are said to be

collinear.

12.1.1.4 Vector sum
Let

−→
𝑉 = (𝑣1, 𝑣2, . . . , 𝑣𝑛) and

−→
𝑊 = (𝑤1, 𝑤2, . . . , 𝑤𝑛) be two 𝑛-dimensional vectors.

Then, the sum of
−→
𝑉 and

−→
𝑊 , denoted

−→
𝑉 + −→

𝑊 , is a vector
−→
𝑆 defined as follows:

−→
𝑆 = −→

𝑉 + −→
𝑊 = (𝑣1 + 𝑤1, 𝑣2 + 𝑤2, . . . , 𝑣𝑛 + 𝑤𝑛).

12.1 Vectors and matrices | 187

Figure 12.4: Vector transformation in a 2-dimensional space: (a) Orthogonal projection of a
vector. (b) Vector scaling.

Figure 12.5: Vector operations in a two-dimensional space: (a) Sum of two vectors. (b) Differ-
ence between two vectors.

In a two-dimensional space, the vector sum
−→
𝑆 can be obtained geometrically, as

illustrated in Figure 12.5 (a); i. e., we translate the vector
−→
𝑊 until its initial point

coincides with the terminal point of
−→
𝑉 . Since translation does not change a vector,

the translated vector is identical to
−→
𝑊 . Then, the vector

−→
𝑆 is given by the dis-

placement from the initial point of
−→
𝑉 to the terminal point of the translation of the

translation of
−→
𝑊 . Note that the sum of vectors is commutative, i. e.,

−→
𝑉 + −→

𝑊 = −→
𝑊 + −→

𝑉 .

188 | 12 Linear algebra

This means that if
−→
𝑉 has been translated instead of

−→
𝑊 , the result will be the

same sum vector
−→
𝑆 . This is illustrated in Figure 12.5 (a).

12.1.1.5 Vector difference
Let

−→
𝑉 = (𝑣1, 𝑣2, . . . , 𝑣𝑛), −→

𝑊 = (𝑤1, 𝑤2, . . . , 𝑤𝑛) be two 𝑛-dimensional vectors. Then,
the difference between

−→
𝑉 and

−→
𝑊 , denoted

−→
𝑉 −

−→
𝑊 , is the a vector

−→
𝐷 defined by the

sum of
−→
𝑉 and the opposite of

−→
𝑊 , i. e.,

−→
𝐷 = −→

𝑉 + (−−→
𝑊) = (𝑣1 − 𝑤1, 𝑣2 − 𝑤2, . . . , 𝑣𝑛 − 𝑤𝑛).

This is illustrated geometrically in a 2-dimensional space in Figure 12.5 (b). Note
that, in contrast with the sum, the difference between two vectors is not commuta-
tive, i. e.,

−→
𝑉 −

−→
𝑊 ̸ =−→

𝑊 −
−→
𝑉 .

12.1.1.6 Vector decomposition
It is often convenient to decompose a vector

−→
𝑉 into the vector components

−→
𝑉 || and

−→
𝑉 ⊥, which are respectively parallel and perpendicular to the direction of another
vector

−→
𝑊 , and such that

−→
𝑉 = −→

𝑉 || + −→
𝑉 ⊥.

In this case, the vector components of
−→
𝑉 are given by

−→
𝑉 || =

−→
𝑉 ·

−→
𝑊

−→
𝑊 ·

−→
𝑊

−→
𝑊,

−→
𝑉 ⊥ = −→

𝑉 −
−→
𝑉 ||.

In a two-dimensional orthonormal space, the standard components of a vector
−→
𝑉 = −→

𝑂𝐴, where 𝑂 denotes the origin of the coordinate system, with respect to the
𝑥-axis and the 𝑦-axis, are simply the coordinates of the point 𝐴, i. e.,

−→
𝑉 = −→

𝑂𝐴 =
(︂

𝑥𝐴 − 𝑥𝑂

𝑦𝐴 − 𝑦𝑂

)︂
=
(︂

𝑥𝐴 − 0
𝑦𝐴 − 0

)︂
=
(︂

𝑥𝐴

𝑦𝐴

)︂
.

If 𝛼 denotes the angle between the vector
−→
𝑉 and the 𝑥-axis, as illustrated in Fig-

ure 12.1 (b), then we have the following relationships:

𝑥𝐴 = cos(𝛼) × ‖
−→
𝑉 ‖,

𝑦𝐴 = sin(𝛼) × ‖
−→
𝑉 ‖,

𝑥𝐴

𝑦𝐴
= tan(𝛼). (12.3)

12.1 Vectors and matrices | 189

12.1.1.7 Vector projection
The projection of an 𝑛-dimensional vector

−→
𝑉 onto the direction of a vector

−→
𝑊 , in

an 𝑚-dimensional space, is a transformation that maps the terminal point of the
vector

−→
𝑉 to a point in the space associated with the direction of

−→
𝑊 . This results in

a vector
−→
𝑃 that is collinear to

−→
𝑊 .

Definition 12.1.10. Let 𝜃 denote the angle between
−→
𝑉 and

−→
𝑊 . If the magnitude of

the vector
−→
𝑃 is given by

‖
−→
𝑃 ‖ = cos(𝜃) × ‖

−→
𝑉 ‖,

then the projection of
−→
𝑉 onto the direction of

−→
𝑊 is said to be orthogonal.

Clearly, in a two-dimensional space, as depicted in Figure 12.4 (a), the vector
−→
𝑃 , the orthogonal project of

−→
𝑉 onto the direction of

−→
𝑊 , is nothing but the vector

component of 𝑉 parallel to 𝑊 . Thus,

−→
𝑃 =

(︂
𝑥𝑃

𝑦𝑃

)︂
=

−→
𝑉 ·

−→
𝑊

−→
𝑊 ·

−→
𝑊

(︂
𝑥𝑊

𝑦𝑊

)︂
.

12.1.1.8 Vector reflection
The reflection of an 𝑛-dimensional vector

−→
𝑉 with respect to the direction of a vector

−→
𝑊 , in an 𝑚-dimensional space, is a transformation that maps the vector

−→
𝑉 to an

𝑛-dimensional vector
−→
𝑈 , such that (see Figure 12.6)

−→
𝑈 = −→

𝑉 − 2
−→
𝑉 ·

−→
𝑊

‖
−→
𝑊‖2

−→
𝑊.

In a two-dimensional orthonormal space, the components of the vector
−→
𝑈 are given

by

−→
𝑈 =

(︂
𝑥𝑈

𝑦𝑈

)︂
=
(︂

𝑥𝑉

𝑦𝑉

)︂
− 𝑘

(︂
𝑥𝑊

𝑦𝑊

)︂
, with 𝑘 = 2

−→
𝑉 ·

−→
𝑊

‖
−→
𝑊‖2

.

12.1.1.9 Dot product or scalar product
Let

−→
𝑉 = (𝑣1, 𝑣2, . . . , 𝑣𝑛) and

−→
𝑊 = (𝑤1, 𝑤2, . . . , 𝑤𝑛) be two 𝑛-dimensional vectors.

The dot product, also called the scalar product, of
−→
𝑉 and

−→
𝑊 , denoted

−→
𝑉 ·

−→
𝑊 , is a

scalar 𝑝, defined as follows:

𝑝 = −→
𝑉 ·

−→
𝑊 = 𝑣1𝑤1 + 𝑣2𝑤2 + · · · + 𝑣𝑛𝑤𝑛.

Geometrically, the dot product, can be defined through the orthogonal projection of
a vector onto another. Let 𝛼be the angle between two vectors

−→
𝑉 and

−→
𝑊 . Then,

−→
𝑉 ·

−→
𝑊 = cos(𝛼) × ‖

−→
𝑉 ‖ × ‖

−→
𝑊‖, with cos(𝛼) =

−→
𝑉 ·

−→
𝑊

‖
−→
𝑉 ‖ × ‖

−→
𝑊‖

.

190 | 12 Linear algebra

Figure 12.6: Vector reflection in a two-
dimensional space.

In Figure 12.4 (a), the norm of the projected vector
−→
𝑃 can be interpreted as the dot

product between the vectors
−→
𝑉 and

−→
𝑊 .

Definition 12.1.11. When the angle 𝛼 between two vectors,
−→
𝑉 and

−→
𝑊 , is 𝜋

2 + 𝑘𝜋,
where 𝑘 is an integer, then the two vectors are said to be perpendicular or orthogonal
to each other, and their dot product is given by

cos
(︂

𝜋

2 + 𝑘𝜋

)︂
× ‖

−→
𝑉 ‖ × ‖

−→
𝑊‖ = 0 × ‖

−→
𝑉 ‖ × ‖

−→
𝑊‖ = 0.

Furthermore, the dot product has the following properties:
1. For any vector

−→
𝑉 :

−→
𝑉 ·

−→
𝑉 = ‖

−→
𝑉 ‖2;

2. For any two vectors
−→
𝑉 and

−→
𝑊 :

−→
𝑉 ·

−→
𝑊 = −→

𝑊 ·
−→
𝑉 ;

3. For any two vectors
−→
𝑉 and

−→
𝑊 : (−→𝑉 ·

−→
𝑊)2 ≤ (−→𝑉 ·

−→
𝑉)(−→𝑉 ·

−→
𝑉). (This is referred to

as the Cauchy–Schwarz inequality [27]);
4. For any two vectors

−→
𝑉 and 𝑊 and a scalar 𝑘: 𝑘 × (−→𝑉 ·

−→
𝑊) = (𝑘 ×

−→
𝑉) ·

−→
𝑊 ;

5. For any three vectors
−→
𝑈 ,

−→
𝑉 , and

−→
𝑊 : (−→𝑈 + −→

𝑉) ·
−→
𝑊 = (−→𝑈 ·

−→
𝑊) + (−→𝑉 ·

−→
𝑊).

12.1.1.10 Cross product
The cross product is applicable to vectors in an 𝑛-dimensional space, with 𝑛 ≥ 3.
To illustrate this, let

−→
𝑉 and

−→
𝑊 be two three-dimensional standard vectors defined

as follows:

−→
𝑉 = −→

𝑂𝐴 =

⎛⎝𝑥𝐴

𝑦𝐴

𝑧𝐴

⎞⎠ and
−→
𝑊 = −−→

𝑂𝐵 =

⎛⎝𝑥𝐵

𝑦𝐵

𝑧𝐵

⎞⎠ .

12.1 Vectors and matrices | 191

Then, the cross product of the vector
−→
𝑉 by the vector

−→
𝑊 , denoted

−→
𝑉 ×

−→
𝑊 , is a

vector
−→
𝐶 perpendicular to both

−→
𝑉 and

−→
𝑊 , defined by

−→
𝐶 =

⎛⎝𝑥𝐶

𝑦𝐶

𝑧𝐶

⎞⎠ =

⎛⎝ 𝑦𝐴 × 𝑧𝐵 − 𝑦𝐵 × 𝑧𝐴

−𝑥𝐴 × 𝑧𝐵 + 𝑥𝐵 × 𝑧𝐴

𝑥𝐴 × 𝑦𝐵 − 𝑥𝐵 × 𝑦𝐴

⎞⎠ ,

or
−→
𝐶 = ‖

−→
𝑉 ‖ × ‖

−→
𝑊‖ × sin(𝜃) × −→𝑢 ,

where, −→𝑢 is the unit vector1 normal to both
−→
𝑉 and

−→
𝑊 , and 𝜃 is the angle between

−→
𝑉 and

−→
𝑊 .

Thus,

‖
−→
𝐶 ‖ = ‖

−→
𝑉 ‖ × ‖

−→
𝑊‖ × sin(𝜃) = 𝒜,

where 𝒜 denotes the area of the parallelogram spanned by
−→
𝑉 and

−→
𝑊 , as illustrated

in Figure 12.7.

Figure 12.7: Cross product of two vec-
tors in a three-dimensional space.

The cross product has the following properties:
1. For any vector

−→
𝑉 , we have:

−→
𝑉 ×

−→
𝑉 = 0;

2. For any two vectors
−→
𝑉 and

−→
𝑊 , we have:

−→
𝑉 ×

−→
𝑊 = −(−→𝑊 ×

−→
𝑉);

3. For any two vectors
−→
𝑉 and 𝑊 and a scalar 𝑘, we have: (𝑘 ×

−→
𝑉) ×

−→
𝑊 = −→

𝑉 ×
(𝑘 ×

−→
𝑊) = 𝑘 × (−→𝑉 ×

−→
𝑊);

4.
−→
𝑉 × (−→𝑈 + −→

𝑊) = −→
𝑉 ×

−→
𝑈 + −→

𝑉 ×
−→
𝑊 ;

5.
−→
𝑉 × (−→𝑈 ×

−→
𝑊) ̸ = (−→𝑉 ×

−→
𝑈) ×

−→
𝑊 .

1 Note that the direction of the vector −→𝑢 for the cross product
−→
𝑉 ×

−→
𝑊 is determined by the

right-hand rule, i. e., it is given by the direction of the right-hand thumb when the other four
fingers are rotated from

−→
𝑉 to

−→
𝑊 .

192 | 12 Linear algebra

12.1.1.11 Mixed product
This is an operation on vectors, which involves both a cross and a scalar product.
To illustrate this, let

−→
𝑉 ,

−→
𝑈 , and

−→
𝑊 denote three three-dimensional vectors. Then,

the mixed product between
−→
𝑉 ,

−→
𝑈 , and

−→
𝑊 is a scalar 𝑝, defined by

𝑝 = (−→𝑉 ×
−→
𝑈) ·

−→
𝑊 = (−→𝑈 ×

−→
𝑊) ·

−→
𝑉 = (−→𝑊 ×

−→
𝑉) ·

−→
𝑈

= −→
𝑉 · (−→𝑈 ×

−→
𝑊) = −→

𝑈 · (−→𝑊 ×
−→
𝑉) = −→

𝑊 · (−→𝑉 ×
−→
𝑈)

= ±𝒱, (12.4)

where 𝒱 denotes the volume of the parallelepiped spanned by
−→
𝑉 ,

−→
𝑈 , and

−→
𝑊 .

In R, the above operations can be carried out using the scripts in Listing 12.2.

Listing 12.2: Vector operations

#Defining two 2-dimensional row vectors V and W
V <- matrix(c(2, -5), nrow=1)
V

[,1] [,2]
[1,] 2 -5
W<- matrix(c(12, 1), nrow=1)
W

[,1] [,2]
[1,] 12 1
#Rotation of vector V by an angle theta=pi/2
theta<-pi/2
xVp<-V[1,1]*cos(theta) - V[1,2]*sin(theta)
yVp<-V[1,1]*sin(theta) + V[1,2]*cos(theta)
Vprime<- matrix(c(xVp, yVp), nrow=1)
Vprime

[,1] [,2]
[1,] 5 2
#V and Vprime have the same norm
sqrt(sum(Vˆ2))
[1] 5.385165
sqrt(sum(Vprimeˆ2))
[1] 5.385165
#Product of a vector by a scalar k
k <- 5
U<-k*V
U

[,1] [,2]
[1,] 10 -25
#Sum of the vectors V and W: S=V+W
S<-V+W
S

[,1] [,2]
[1,] 14 -4
#Difference of the vectors V and W: D=V-W
D<-V-W
D

[,1] [,2]
[1,] -10 -6
#Dot product of V and W
p<- sum(V*W)

12.1 Vectors and matrices | 193

p
[1] 19
#Finding the angle theta between V and W
NormV<-sqrt(sum(Vˆ2))
NormW<-sqrt(sum(Wˆ2))
theta<-acos(p/(NormV*NormW)) # p is the dot product of V and W
theta
[1] 1.273431 # This value of theta is in radian
theta<- theta*180/pi
theta
[1] 72.96223 # This is the value of theta in degree
#Orthogonal projection of V onto the direction of W
P<-(p/sum(Wˆ2))*W # p is the dot product of V and W
P

[,1] [,2]
[1,] 1.572414 0.1310345
NormP<- sqrt(sum(Pˆ2))
[1] 1.577864
p/NormW # Norm of the vector P using the dot product of V and W
[1] 1.577864
#Defining two 3-dimensional row vectors V and W
V <- matrix(c(3, 1, 0), nrow=1)
W <- matrix(c(2, 4, 0), nrow=1)
xC<-V[1, 2]*W[1,3] - W[1,2]*V[1,3]
yC<- -(V[1, 1]*W[1,3] - W[1,1]*V[1,3])
zC<-xC<-V[1, 1]*W[1,2] - W[1,1]*V[1,2]
C<-matrix(c(xC, yC, zC), nrow=1)
C

[,1] [,2] [,3]
[1,] 0 0 10
sum(C*V)
[1] 0 #C and V are orthogonal since their dot product is zero
sum(C*W)

[1] 0 #C and W are orthogonal since their dot product is zero
#Norm of the vector C
NormC<-sqrt(sum(Cˆ2))
NormC
[1] 10
#Computing the area, A, of the parallelogram spanned by V and W
NormV<-sqrt(sum(Vˆ2))
NormW<-sqrt(sum(Wˆ2))
p<- sum(V*W)
theta<-acos(p/(NormV*NormW))
A<-NormV*NormW*sin(theta)
A
[1] 10 # A equal the norm of the vector C

12.1.2 Vector representations in other coordinates systems

For various problems, the quantities characterized by vectors must be described in
different coordinate systems [27]. Depending on the dimension of its space, a vector
can be represented in different ways. For instance, in a two-dimensional space, a
standard vector

−→
𝑉 = −→

𝑂𝐴, where 𝑂 denotes the origin point, can be specified either
by:

194 | 12 Linear algebra

1. The pair (𝑥𝐴, 𝑦𝐴), where 𝑥𝐴 and 𝑦𝐴 denote the coordinates of the point 𝐴, the
terminal point of

−→
𝑉 , in a two-dimensional Euclidean space. The pair (𝑥𝐴, 𝑦𝐴)

defines the representation of the vector
−→
𝑉 in cartesian coordinates.

2. The pair (𝑟, 𝜃), where 𝑟 = ‖
−→
𝑉 ‖ is the magnitude of

−→
𝑉 and 𝜃 is the angle between

the vector
−→
𝑉 and a reference axis in a cartesian system, e. g., the 𝑥-axis. The

pair (𝜌, 𝜃) defines the representation of the vector
−→
𝑉 in polar coordinates.

The polar coordinates can be recovered from cartesian coordinates, and vice versa.
Let

−→
𝑉 = −→

𝑂𝐴 =
(︀ 𝑥𝐴

𝑦𝐴

)︀
be a standard vector in a two-dimensional cartesian space,

as depicted in Figure 12.8. Then, the polar coordinates of
−→
𝑉 can be obtained as

follows:

𝑟 =
√︁

𝑥2
𝐴 + 𝑦2

𝐴,

𝜃 = tan−1
(︂

𝑦𝐴

𝑥𝐴

)︂
. (12.5)

Conversely, the cartesian coordinates can be recovered as follows:

𝑥𝐴 = 𝑟 cos(𝜃),
𝑦𝐴 = 𝑟 sin(𝜃). (12.6)

Figure 12.8: Representation of a 2-dimensional
vector in a polar coordinates system.

In R, the above coordinate transformations can be carried out using the commands
in Listing 12.3.

Listing 12.3: Coordinate system transformations of a 2-dimensional vector

#Defining a 2-dimensional row vector V in a cartesian coordinates
system

V <- matrix(c(2, -5), nrow=1)

12.1 Vectors and matrices | 195

#Coordinates of the vector V in polar coordinates
rV<- sqrt(sum(Vˆ2))
thetaV<-acos(V[1,1]/r)*180/pi
rV
[1] 5.385165
thetaV
[1] 68.19859
#Recovering cartesian coordinates
xV<-rV*cos(thetaV*pi/180)
yV<-rV*sin(thetaV*pi/180)
xV
[1] 2
yV
[1] 5

In a three-dimensional space, a standard vector
−→
𝑉 = −→

𝑂𝐴, where 𝑂 denotes the
origin point, can be specified either by one of the following:
1. The triplet (𝑥𝐴, 𝑦𝐴, 𝑧𝐴), where 𝑥𝐴, 𝑦𝐴 and 𝑧𝐴 denote the coordinates of the

point 𝐴, the terminal point of
−→
𝑉 , in a three-dimensional Euclidean space. The

triplet (𝑥𝐴, 𝑦𝐴, 𝑧𝐴) defines the representation of the vector
−→
𝑉 in cartesian co-

ordinates (see Figure 12.9 (a) for illustration).
2. The triplet (𝜌, 𝜃, 𝑧𝐴), where 𝜌 is the magnitude of the projection of

−→
𝑉 on the

𝑥-𝑦 plane, 𝜃 is the angle between the projection of the vector
−→
𝑉 on the 𝑥-𝑦

plane and the 𝑥-axis, and 𝑧𝐴 is the third coordinate of 𝐴 in a cartesian system.
The triplet (𝜌, 𝜃, 𝑧𝐴) defines the representation of the vector

−→
𝑉 in cylindrical

coordinates (see Figure 12.9 (b) for illustration).
3. The triplet (𝑟, 𝜃, 𝜙), where 𝑟 = ‖

−→
𝑉 ‖ is the magnitude of

−→
𝑉 , 𝜃 is the angle

between the projection of the vector
−→
𝑉 on the 𝑥-𝑦 plane and the 𝑥-axis, and 𝜙

is angle between the vector
−→
𝑉 and the 𝑥-𝑧 plane. The triplet (𝜌, 𝜃, 𝜙) defines

the representation of the vector
−→
𝑉 in spherical coordinates (see Figure 12.9 (c)

for illustration).

Mutual relationships exist between cartesian, cylindrical and spherical coordinates.
Let

−→
𝑉 = −→

𝑂𝐴 =

⎛⎝𝑥𝐴

𝑦𝐴

𝑧𝐴

⎞⎠
be a standard vector in a three-dimensional cartesian space. Then we have the fol-
lowing relationships between the different coordinate systems:
1. The cylindrical coordinates of

−→
𝑉 can be obtained as follows:

𝜌 =
√︁

𝑥2
𝐴 + 𝑦2

𝐴,

𝜃 = tan−1
(︂

𝑦𝐴

𝑥𝐴

)︂
,

𝑧𝐴 = 𝑧𝐴. (12.7)

196 | 12 Linear algebra

Figure 12.9: Representation of a point in a three-dimensional space in different coordinate sys-
tems: (a) cartesian coordinates system; (b) cylindrical coordinates systems; (c) spherical coordi-
nates system.

Conversely, the cartesian coordinates can be recovered as follows:

𝑥𝐴 = 𝜌 cos(𝜃),
𝑦𝐴 = 𝜌 sin(𝜃),
𝑧𝐴 = 𝑧𝐴. (12.8)

2. The spherical coordinates of
−→
𝑉 can be obtained as follows:

𝑟 =
√︁

𝑥2
𝐴 + 𝑦2

𝐴 + 𝑧2
𝐴,

𝜃 = tan−1
(︂

𝑦𝐴

𝑥𝐴

)︂
,

𝜙 = cos−1
(︂

𝑧𝐴

𝑟

)︂
. (12.9)

12.1 Vectors and matrices | 197

Conversely the cartesian coordinates can be recovered as follows:

𝑥𝐴 = 𝑟 sin(𝜙) cos(𝜃),
𝑦𝐴 = 𝑟 sin(𝜙) sin(𝜃),
𝑧𝐴 = 𝑟 cos(𝜙). (12.10)

Relationships between cylindrical and spherical coordinates also exist. From cylin-
drical coordinates, spherical coordinates can be obtained as follows:

𝑟 =
√︁

𝜌2 + 𝑧2
𝐴,

𝜃 = 𝜃,

𝜙 = tan−1
(︂

𝜌

𝑧𝐴

)︂
. (12.11)

Conversely, the cylindrical coordinates can be recovered as follows:

𝜌 =
√︁

𝑟2 − 𝑧2
𝐴,

𝜃 = 𝜃,

𝑧𝐴 = 𝑟 cos(𝜙). (12.12)

In R, the above coordinate system transformations can be carried out using the
scripts in Listing 12.4.

Listing 12.4: A three-dimensional vector in different coordinate systems

#Defining a 3-dimensional row vector W in a cartesian coordinates
system

W <- matrix(c(3, -2, 7), nrow=1)
#Coordinates of the vector W in cylindrical coordinates
rhoW<-sqrt(W[1,1]ˆ2 + W[1,2]ˆ2)
thetaW<-atan(W[1,2]/W[1,1])*180/pi
zW<-W[1, 3]
rhoW
[1] 3.605551
thetaW
[1] -33.69007
zW
[1] 7
#Recovering cartesian coordinates
xW<-rhoW*cos(thetaW*pi/180)
yW<-rhoW*sin(thetaW*pi/180)
xW
[1] 3
yW
[1] -2
zW
[1] 7
#Vector W in spherical coordinates
rW<- sqrt(sum(Wˆ2))

198 | 12 Linear algebra

thetaW<- atan(W[1,2]/W[1,1])*180/pi
phiW<- atan(sqrt(W[1,1]ˆ2 + W[1,2]ˆ2)/W[1,3])*180/pi
rW
[1] 7.874008
thetaW
[1] -33.69007
phiW
[1] 27.25203
#Recovering cartesian coordinates
xW<-rW*sin(phiW*pi/180)*cos(thetaW*pi/180)
yW<-rW*sin(phiW*pi/180)*sin(thetaW*pi/180)
zW<-rW*cos(phiW*pi/180)
xW
[1] 3
yW
[1] -2
zW
[1] 7
#From cylindrical to spherical coordinates
rW<-sqrt(rhoWˆ2 + zWˆ2)
phiW<-atan(rhoW/zW)*180/pi
rW
[1] 7.874008
thetaW
[1] -33.69007
phiW
[1] 27.25203
#From spherical to cylindrical coordinates
rhoW<-sqrt(rWˆ2-zWˆ2)
zW=rW*cos(phiW*pi/180)
rhoW
[1] 3.605551
thetaW
[1] -33.69007
zW
[1] 7

Example 12.1.2. Classification methods are used extensively in data science [41, 64].
An important classification technique for high-dimensional data is referred to as
support vector machine (SVM) classification [41, 64] (see also Section 18.5.2).

For high-dimensional data, the problem of interest is to classify the (labeled)
data by determining a separating hyperplane. When using linear classifiers, it is
necessary to construct a hyperplane for optimal separation of the data points. To
this end, it is necessary to determine the distance between a point representing a
vector and the hyperplane.

Let 𝐻 : 𝛿1 · 𝑥 + 𝛿2 · 𝑦 + 𝛿3 · 𝑧 − 𝑎 = 0 be a three-dimensional hyperplane, and
let

𝛿 =

⎛⎝𝛿1
𝛿2
𝛿2

⎞⎠

12.1 Vectors and matrices | 199

be a three-dimensional point with

‖𝛿‖ =
√︀

(𝛿1)2 + (𝛿2)2 + (𝛿3)2. (12.13)

The distance between 𝛿 and 𝐻 is given by

𝑑𝑎,𝐻 = 𝛿1 · 𝑥 + 𝛿2 · 𝑦 + 𝛿3 · 𝑧 − 𝑎

‖𝛿‖
. (12.14)

A two-dimensional hyperplane is shown in Figure 12.10 to illustrate the SVM con-
cept for a two-class classification problem. The data points represented by rect-
angles and circles represent the two classes, respectively. Figure 12.10 illustrates
a case of a two-class problem, where a linear classifier represented by a hyper-
plane, can be used to separate the two classes. The optimal hyperplane is the one
whose distance from the points representing the support vectors (SV) is maximal.

Figure 12.10: Constructing a two-dimensional hyperplane for SVM-classification.

12.1.2.1 Complex vectors
A complex number is a number of the form 𝑥 + 𝑖𝑦, where 𝑥 and 𝑦 are real numbers
and 𝑖 is the imaginary unit, such that 𝑖 =

√
−1, see [158]. Specifically, the number

𝑥 is called the real part of the complex number 𝑥 + 𝑖𝑦, whereas the part 𝑖𝑦 is called
the imaginary part. The set of complex numbers is commonly denoted by C; R is a
subset of C, since any real number can be viewed as a complex number, for which
the imaginary part is zero, i. e. 𝑦 = 0. Any complex number 𝑧 = 𝑥𝑧 + 𝑖𝑦𝑧 can be
represented by the pair of reals (𝑥𝑧, 𝑦𝑧); thus, a complex number can be viewed as
a particular two-dimensional standard real vector. Let 𝜃𝑧 denote the angle between
the vector 𝑧 = (𝑥𝑧, 𝑦𝑧) and the 𝑥-axis. Then, using the vector decomposition in a
two-dimensional space, we have

𝑥𝑧 = 𝑟𝑧 cos(𝜃𝑧), 𝑦𝑧 = 𝑟𝑧 sin(𝜃𝑧), where 𝑟𝑧 =
√︀

𝑥2
𝑧 + 𝑦2

𝑧 . (12.15)

200 | 12 Linear algebra

The number 𝑟𝑧 is called the modulus or the absolute value of 𝑧, whereas 𝜃is called
the argument of 𝑧.

From (12.15), we can deduce the following alternative description of a complex
number 𝑧 = 𝑥𝑧 + 𝑖𝑦𝑧:

𝑧 = 𝑥𝑧 + 𝑖𝑦𝑧

= 𝑟𝑧 cos(𝜃𝑧) + 𝑖𝑟𝑧 sin(𝜃𝑧)
= 𝑟𝑧

[︀
cos(𝜃𝑧) + 𝑖 sin(𝜃𝑧)

]︀
= 𝑟𝑧𝑒𝑖𝜃𝑧 . (12.16)

This representation of a complex number is referred to as the Euler formula [158].
A complex number 𝑧 = 𝑥𝑧 + 𝑖𝑦𝑧 can be represented either by the pair (𝑥𝑧, 𝑦𝑧)

or the pair (𝑟𝑧, 𝜃𝑧), as illustrated in Figure 12.11.

Figure 12.11: Vector representation of a complex number.

Let 𝑧 = 𝑥𝑧 + 𝑖𝑦𝑧, and let 𝑤 = 𝑥𝑤 + 𝑖𝑦𝑤 be two complex numbers and 𝑛 an inte-
ger. Then, the following elementary operations can be performed on these complex
numbers [158]:
– Complex conjugate: The complex number 𝑧 = 𝑥𝑧 − 𝑖𝑦𝑧 is called the complex

conjugate of 𝑧.
– Power of a complex number: 𝑧𝑛 = 𝑟𝑛

𝑧 [cos(𝑛𝜃) + 𝑖 sin(𝑛𝜃)];
– Complex addition: 𝑧 + 𝑤 = (𝑥𝑧 + 𝑖𝑦𝑧) + (𝑥𝑤 + 𝑖𝑦𝑤) = (𝑥𝑧 + 𝑥𝑤) + 𝑖(𝑦𝑧 + 𝑦𝑤).
– Complex subtraction: 𝑧 − 𝑤 = (𝑥𝑧 + 𝑖𝑦𝑧) − (𝑥𝑤 + 𝑖𝑦𝑤) = (𝑥𝑧 − 𝑥𝑤) + 𝑖(𝑦𝑧 − 𝑦𝑤).
– Complex multiplication: 𝑧 × 𝑤 = (𝑥𝑧 + 𝑖𝑦𝑧) × (𝑥𝑤 + 𝑖𝑦𝑤) = (𝑥𝑧𝑥𝑤 − 𝑦𝑧𝑦𝑤) +

𝑖(𝑥𝑧𝑦𝑤 + 𝑦𝑧𝑥𝑤).
– Complex division: 𝑧

𝑤 = 𝑥𝑧+𝑖𝑦𝑧

𝑥𝑤+𝑖𝑦𝑤
= (𝑥𝑧𝑥𝑤+𝑦𝑧𝑦𝑤)+𝑖(𝑦𝑧𝑥𝑤−𝑥𝑧𝑦𝑤)

𝑥2
𝑤+𝑦2

𝑤
.

– Complex exponentiation: 𝑧𝑤 = (𝑥𝑧 + 𝑖𝑦𝑧)𝑥𝑤+𝑦𝑤 = (𝑥2
𝑧 + 𝑦2

𝑧)
𝑥𝑤+𝑖𝑦𝑤

2 𝑒𝑖𝑟𝑧(𝑥𝑧+𝑖𝑦𝑧),
where 𝑟𝑧 is the complex modulus of 𝑧.

12.1 Vectors and matrices | 201

In R, the above basic operations on complex numbers can be performed using the
script in Listing 12.5.

Listing 12.5: Basic operations on complex numbers

#Defining tow complex numbers z and w
z<- -3+ 8i
z
[1] -3+8i
w<- -5 - 2i
w
[1] -5-2i
#the imaginary number i is the square root of -1
sqrt(as.complex(-1)) #as.complex enables R to recognize -1 as a

complex number
[1] 0+1i
#Complex conjugate of z and w
zbar<- Conj(z)
zbar
[1] -3-8i
wbar<- Conj(w)
wbar
[1] -5+2i
#Getting the real part of the complex number z
Re(z)
[1] -3
#Getting the imaginary part of the complex number z
Im(z)
[1] 8
#Modulus of the complex number z
rz<-Mod(z)
rz
[1] 8.544004
#Argument of the complex number z in degree
thetaz<-Arg(z)*180/pi
thetaz
[1] 110.556
#Power of a complex number
n<-3
zn<-zˆn
zn
[1] 549-296i
rzˆn*(cos(n*thetaz*pi/180) + 1i*sin(n*thetaz*pi/180))
[1] 549-296i # This is equivalent to zn
#Sum of the complex numbers z and w
s<-z+w
s
[1] -8+6i
#Difference of the complex numbers z and w
d<-z-w
d
[1] 2+10i
#Product of the complex numbers z and w:
p<-z*w
p
[1] 31-34i
#Division of the complex numbers z and w
q<-z/w
q

202 | 12 Linear algebra

[1] -0.034483-1.586207i
#Exponentiation t=zˆw
t<-zˆw
t
[1] 0.000205779-0.001021052i

An 𝑛-dimensional complex vector is a vector of the form
−→
𝑉 = (𝑥1, 𝑥2, . . . , 𝑥𝑛),

whose components 𝑥1, 𝑥2, . . . , 𝑥𝑛 can be complex numbers. The concept of vector
operations and vector transformations, previously introduced in relation to real
vectors, can be generalized to complex vectors using the elementary operations on
complex numbers.

12.1.3 Matrices

In the two foregoing sections, we have presented some basic concepts of vector anal-
ysis. In this section, we will discuss a generalization of vectors also known as matri-
ces.

Let 𝑚 and 𝑛 be two positive integers. We call 𝐴 an 𝑚 × 𝑛 real matrix if it
consists of an ordered set of 𝑚 vectors in an 𝑛-dimensional space. In other words,
𝐴 is defined by a set of 𝑚 × 𝑛 scalars 𝑎𝑖𝑗 ∈ R, with 𝑖 = 1, . . . , 𝑚 and 𝑗 = 1, . . . , 𝑛,
represented in the following rectangular array

𝐴 =

⎛⎜⎜⎜⎜⎝
𝑎11 𝑎12 · · · 𝑎1𝑛

𝑎21 𝑎22

..

· · · 𝑎2𝑛

. ...
. . .

...
𝑎𝑚1 𝑎𝑚2 · · · 𝑎𝑚𝑛

⎞⎟⎟⎟⎟⎠ . (12.17)

The matrix 𝐴, defined by (12.17), has 𝑚 rows and 𝑛 columns. For any entry 𝑎𝑖𝑗 ,
with 𝑖 = 1, . . . , 𝑚 and 𝑗 = 1, . . . , 𝑛, of the matrix 𝐴, the index 𝑖 is called the row
index, whereas the index 𝑗 is the column index. The set of entries (𝑎𝑖1, 𝑎𝑖2, . . . , 𝑎𝑖𝑛)
is called the 𝑖th row of 𝐴, and the set (𝑎1𝑗 , 𝑎2𝑗 , . . . , 𝑎𝑚𝑗) is the 𝑗th column of 𝐴.
When 𝑛 = 𝑚, 𝐴 is called a squared matrix, and the set of entries (𝑎11, 𝑎22, . . . , 𝑎𝑛𝑛)
is called its main diagonal.

In the case 𝑚 = 1 and 𝑛 > 1, the matrix 𝐴 is reduced to one row, and it is
called a row vector ; likewise, when 𝑚 > 1 and 𝑛 = 1, the matrix 𝐴 is reduced to a
single column, and it is called a column vector. In the case 𝑚 = 𝑛 = 1, the matrix 𝐴

is reduced to a single value, i. e., a real scalar. An 𝑚 × 𝑛 matrix 𝐴 can be viewed as
a list of 𝑚 𝑛-dimensional row vectors or a list of 𝑛 𝑚-dimensional column vectors.
If the entries 𝑎𝑖𝑗 are complex numbers, then 𝐴 is called a complex matrix.

The R programming environment provides a wide range of functions for matrix
manipulation and matrix operations. Several of these are illustrated in the three
listings below.

12.1 Vectors and matrices | 203

Listing 12.6: Defining a matrix

#Defining a matrix from a given dimension (m, n)
listnb <- c(3, 2, -5, 12, 1, -3, 2, -13, 5, -1, 4, 10)
A<- matrix(listnb, nrow=3, ncol=4, byrow=TRUE)
A

[,1] [,2] [,3] [,4]
[1,] 3 2 -5 12
[2,] 1 -3 2 -13
[3,] 5 -1 4 10
#Getting the dimension of a matrix
dim(A)
[1] 3 4
#Defining a diagonal matrix given a vector of its diagonal entries
diagonal<-c(3, 2, 12)
diag(diagonal)
[,1] [,2] [,3]
[1,] 3 0 0
[2,] 0 2 0
[3,] 0 0 12
#Defining an m by m identity matrix
diag(1, 3)

[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1
#Defining an m by n matrix of the same element
array(1, dim=c(3, 4))

[,1] [,2] [,3] [,4]
[1,] 1 1 1 1
[2,] 1 1 1 1
[3,] 1 1 1 1

Listing 12.7: Searching elements in a matrix

#Accessing a component of a matrix at the position (i, j)
A[2, 3]
[1] 2
#Accessing the components of the ith row of a matrix i
A[2,]
[1] 1 -3 2 -13
#Accessing the components of the jth column of a matrix
A[,3]
[1] -5 2 4
#Finding the minimum entry in a matrix
min(A)
[1] -13
#Accessing the position the minimum entry of a matrix
which(A == min(A), arr.ind = TRUE)

row col
[1,] 2 4
#Finding the maximum entry in a matrix
max(A)
[1] 12
Accessing the position of the maximum entry of a matrix
which(A == max(A), arr.ind = TRUE)

row col

204 | 12 Linear algebra

[1,] 1 4
#Accessing the positions of some specific entries of a matrix
which(A == 10, arr.ind = TRUE)

row col
[1,] 3 4
#Finding the positions in a matrix satisfying a given criterion ,

e.g. greater than 3
indices <- which(A > 3, arr.ind = TRUE)
indices

row col
[1,] 3 1
[2,] 3 3
[3,] 1 4
[4,] 3 4
A[indices]
[1] 5 4 12 10

Listing 12.8: Extracting and binding submatrices

#Extracting a submatrix of a matrix
SubA1<-A[1:2,1:2]
SubA1

[,1] [,2]
[1,] 3 2
[2,] 1 -3
SubA2<-A[,2:3]
SubA2

[,1] [,2]
[1,] 2 -5
[2,] -3 2
[3,] -1 4
SubA3<-A[,1]
SubA3
[1] 3 1 5
#Binding matrices , with the same number of rows, by columns
cbind(SubA2, SubA3)

SubA3
[1,] 2 -5 3
[2,] -3 2 1
[3,] -1 4 5
#Binding matrices , with the same number of columns, by rows
> rbind(SubA2, SubA1)

[,1] [,2]
[1,] 2 -5
[2,] -3 2
[3,] -1 4
[4,] 3 2
[5,] 1 -3

Example 12.1.3. In this example, we demonstrate the utility of computing powers
of adjacency matrices of networks, see Definition 16.2.2 in Section 16.2.1. They can
be used to determine the number of walks with a certain length from 𝑣𝑖 to 𝑣𝑗 ; 𝑣𝑖

to 𝑣𝑗 are two vertices ∈ 𝑉 , and 𝐺 = (𝑉, 𝐸) is a connected network. The application
of Definition 16.2.2 in Section 16.2.1 to the graph shown in Figure 12.12 yields the

12.2 Operations with matrices | 205

following matrix:

𝐴(𝐺) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0 1 1 0 0
1 0 0 0 0
1 0 0 1 1
0 0 1 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (12.18)

If we square this matrix, we obtain

𝐴2(𝐺) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
2 0 0 1 1
0 1 1 0 0
0 1 2 0 0
1 0 0 1 1
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (12.19)

The power of the adjacency matrix (12.18) (here 2) gives the length of the walk.
The entry 𝑎𝑖𝑗 of 𝐴2(𝐺) gives the number of walks of length 2 from 𝑣𝑖 to 𝑣𝑗 . For
instance, 𝑎11 = 2 means there exist two walks of length 2 from vertex 1 to vertex 1.
Moreover, 𝑎14 means there exists only one walk of length 2 from vertex 1 to ver-
tex 4. These numbers can be understood by inspection of the network, 𝐺, shown in
Figure 12.12.

Figure 12.12: Walks in an example graph 𝐺 for 𝐴2(𝐺).

12.2 Operations with matrices

Let 𝐴 be an 𝑚 × 𝑛 matrix. Then, 𝐴𝑇 , the transpose of 𝐴, is the matrix obtained
by interchanging the rows and columns of 𝐴. Consequently, 𝐴𝑇 is an 𝑛 × 𝑚 matrix.
A matrix 𝐴 is called symmetric if 𝐴 = 𝐴𝑇 . The transposition may be regarded as
a particular rotation of a matrix. Using R, the transposition of a matrix 𝐴 can be
performed as follows:

Listing 12.9: Matrix manipulation

#Transposing a matrix

206 | 12 Linear algebra

t(A)
[,1] [,2] [,3]

[1,] 3 1 5
[2,] 2 -3 -1
[3,] -5 2 4
[4,] 12 -13 10
#Flipping a matrix
apply(A, 1, rev)

[,1] [,2] [,3]
[1,] 12 -13 10
[2,] -5 2 4
[3,] 2 -3 -1
[4,] 3 1 5
apply(A, 2, rev)

[,1] [,2] [,3] [,4]
[1,] 5 -1 4 10
[2,] 1 -3 2 -13
[3,] 3 2 -5 12

Let 𝐴 and 𝐵 be two 𝑚 × 𝑛 real matrices. Some mathematical operations, which
require the matrices to have the same dimensions (i. e., having the same number of
rows and the same number of columns) include:
– Matrix addition: The sum of the matrices 𝐴 and 𝐵 is an 𝑚 × 𝑛 real matrix,

𝐶, whose entries are 𝑐𝑖𝑗 = 𝑎𝑖𝑗 + 𝑏𝑖𝑗 for 𝑖 = 1, . . . , 𝑚, 𝑗 = 1, . . . , 𝑛. In R, this
operation is carried out using the command C <- A+B.

– Matrix subtraction: The difference 𝐴 − 𝐵 is an 𝑚 × 𝑛 real matrix, 𝐶, whose
entries are 𝑐𝑖𝑗 = 𝑎𝑖𝑗 − 𝑏𝑖𝑗 for 𝑖 = 1, . . . , 𝑚, 𝑗 = 1, . . . , 𝑛. In R, this operation is
carried out using the command C <- A-B.

– Matrix element-wise multiplication: The element-wise product of the matrices 𝐴

and 𝐵 is an 𝑚×𝑛 real matrix, 𝐶, whose entries are 𝑐𝑖𝑗 = 𝑎𝑖𝑗 ×𝑏𝑖𝑗 for 𝑖 = 1, . . . , 𝑚

and 𝑗 = 1, . . . , 𝑛. In R, this operation is performed using the command C <- A*B.
– Matrix comparison: The matrix 𝐴 is equal to 𝐵 if 𝑎𝑖𝑗 = 𝑏𝑖𝑗 for 𝑖 = 1, . . . , 𝑚, 𝑗 =

1, . . . , 𝑛.

Listing 12.10: Operations with matrices of the same dimension

listnb<-c(3, 2, -5, 12, 1, -3, 2, -13, 5, -1, 4, 10)
A <- matrix(listnb, nrow=3, ncol=4, byrow=TRUE)
A

[,1] [,2] [,3] [,4]
[1,] 3 2 -5 12
[2,] 1 -3 2 -13
[3,] 5 -1 4 10
listnb<-c(1, -3, 5, 0, 2, 9, 1, 5, 7, 3, -2, 6)
B <- matrix(listnb, nrow=3, ncol=4, byrow=TRUE)
B

[,1] [,2] [,3] [,4]
[1,] 1 -3 5 0
[2,] 2 9 1 5
[3,] 7 3 -2 6
#Sum of two matrices

12.2 Operations with matrices | 207

A+B
[,1] [,2] [,3] [,4]

[1,] 4 -1 0 12
[2,] 3 6 3 -8
[3,] 12 2 2 16
#Difference between two matrices
A-B

[,1] [,2] [,3] [,4]
[1,] 2 5 -10 12
[2,] -1 -12 1 -18
[3,] -2 -4 6 4
#Element wise product of two matrices
A*B

[,1] [,2] [,3] [,4]
[1,] 3 -6 -25 0
[2,] 2 -27 2 -65
[3,] 35 -3 -8 60
#Comparing two matrices
all.equal(A, A)
[1] TRUE
all.equal(A, B)
[1] "Mean relative difference: 1.262295"

An important operation on matrices is matrix multiplication. Let 𝐴 and 𝐵 be two
matrices; the matrix multiplication, 𝐴 × 𝐵, requires the number of columns of the
matrix 𝐴 to be equal to the number of rows of the matrix 𝐵, i. e., if 𝐴 is an 𝑚 × 𝑛

real matrix, then 𝐵 must be an 𝑛 × 𝑙 real matrix. The result of this operation is an
𝑚 × 𝑙 real matrix, 𝐶, whose entries 𝑐𝑖𝑘 for 𝑖 = 1, . . . , 𝑚, 𝑘 = 1, . . . , 𝑙, are obtained as
follows:

𝑐𝑖𝑘 =
1∑︁

𝑗=1
𝑎𝑖𝑗 × 𝑏𝑗𝑘. (12.20)

When 𝑚 = 1, then, the result is a product between a row vector and a matrix.
Note that, even if both products 𝐴 × 𝐵 and 𝐵 × 𝐴 are defined, i. e., if 𝑙 = 𝑚,

𝐴 × 𝐵 generally differs from 𝐵 × 𝐴.

Definition 12.2.1. Let 𝐴 be an 𝑛 × 𝑛 matrix, and let 0𝑛 denote the 𝑛-dimensional
null vector.
– 𝐴 is said to be positive definite if and only if 𝑥𝑇 𝐴𝑥 > 0, for all 𝑥 ∈ R𝑛, 𝑥 ̸ = 0𝑛.
– 𝐴 is said to be positive semidefinite if and only if 𝑥𝑇 𝐴𝑥 ≥ 0, for all 𝑥 ∈ R𝑛.
– 𝐴 is said to be negative definite if and only if 𝑥𝑇 𝐴𝑥 < 0, for all 𝑥 ∈ R𝑛, 𝑥 ̸= 0𝑛.
– 𝐴 is said to be negative semidefinite if and only if 𝑥𝑇 𝐴𝑥 ≤ 0, for all 𝑥 ∈ R𝑛.
– 𝐴 is said to be indefinite if and only if there exist 𝑥 and 𝑦 ∈ R𝑛 such that

𝑥𝑇 𝐴𝑥 > 0 and 𝑦𝑇 𝐴𝑦 < 0.

Using R, matrix multiplications can be carried out as follows:

208 | 12 Linear algebra

Listing 12.11: Matrix multiplications

listnb <- c(3, 2, -5, 1, -3, 2, 5, -1, 4)
A <- matrix(listnb, nrow=3, ncol=3, byrow=TRUE)
A

[,1] [,2] [,3]
[1,] 3 2 -5
[2,] 1 -3 2
[3,] 5 -1 4
listnb <- c(1, -3, 5, 0, 2, 9, 1, 5, 7, 3, -2, 6)
B <- matrix(listnb, nrow=3, ncol=4, byrow=TRUE)
B

[,1] [,2] [,3] [,4]
[1,] 1 -3 5 0
[2,] 2 9 1 5
[3,] 7 3 -2 6
Vector <- matrix(c(5, 3, 5), nrow=1, ncol=3, byrow=TRUE)
Vector

[,1] [,2] [,3]
[1,] 5 3 5
#Product of two matrices
A%*%B

[,1] [,2] [,3] [,4]
[1,] -28 -6 27 -20
[2,] 9 -24 -2 -3
[3,] 31 -12 16 19
#Product of a vector and a matrix
V%*%A

[,1] [,2] [,3]
#Product of a scalar and a matrix
5*A

[,1] [,2] [,3]
[1,] 15 10 -25
[2,] 5 -15 10
[3,] 25 -5 20

12.3 Special matrices

Special matrices are characterized by their patterns, which can be used to define
matrix classes. Examples of such special matrices include [27]:
– Diagonal matrix: A matrix 𝐴 is called diagonal, if and only if its entries 𝑎𝑖𝑗 = 0

for all 𝑖 ̸ =𝑗.
– Identity matrix: If the nonzero entries of a diagonal matrix are all equal to unity,

then the matrix is called an identity matrix, and it is often denoted 𝐼.
– Upper trapezoidal matrix: An 𝑚×𝑛 matrix, 𝐴, is said to be upper trapezoidal if

and only if its entries 𝑎𝑖𝑗 = 0 for all 𝑖 > 𝑗. If 𝑚 = 𝑛, i. e., 𝐴 is a square matrix,
then an upper trapezoidal matrix is referred to as an upper triangular matrix.

– Lower trapezoidal matrix: An 𝑚 × 𝑛 matrix, 𝐴, is said to be lower trapezoidal if
and only if its entries, 𝑎𝑖𝑗 , for all 𝑗 > 𝑖 are zeros. If 𝑚 = 𝑛, i. e., 𝐴 is a squared
matrix, then a lower trapezoidal matrix is referred to as a lower triangular
matrix.

12.3 Special matrices | 209

– Tridiagonal matrix: A matrix, 𝐴, is said to be tridiagonal if and only if its entries
𝑎𝑖𝑗 = 0 for all 𝑖, 𝑗 such that |𝑖 − 𝑗| > 1.

– Orthogonal matrix: A matrix, 𝐴, is said to be orthogonal if and only if 𝐴𝑇 𝐴 = 𝐼.
– Symmetric matrix: A matrix, 𝐴, is said to be symmetric if and only if 𝐴𝑇 = 𝐴.
– Skew-symmetric matrix: A matrix, 𝐴, is said to be skew-symmetric if and only

if 𝐴𝑇 = −𝐴.
– Sparse matrix: A matrix is called sparse if it has relatively few nonzero entries.

The sparsity of an 𝑛 × 𝑚 matrix, generally expressed in %, is given by

𝑟

𝑛𝑚
%, where 𝑟 is the number of nonzero entries in 𝐴.

Diagonal and tridiagonal matrices are typical examples of sparse matrices.

Definition 12.3.1. Let 𝐴 be an 𝑛×𝑛 squared matrix, and let 𝐼𝑛 be the 𝑛×𝑛 identity
matrix. If there exists an 𝑛 × 𝑛 matrix 𝐵 such that

𝐴𝐵 = 𝐼𝑛 = 𝐵𝐴, (12.21)

then 𝐵 is called the inverse of 𝐴. If a squared matrix, 𝐴, has an inverse, then 𝐴 is
called an invertible or nonsingular matrix; otherwise, 𝐴 is called a singular matrix.

The inverse of the identity matrix is the identity matrix, whereas the inverse of
a lower (respectively, upper) triangular matrix is also a lower (respectively, upper)
triangular matrix.

Note that for a matrix to be invertible, it must be a squared matrix.
Using R, the inverse of a squared matrix, 𝐴, can be computed as follows:

Listing 12.12: Inverse of a matrix

A <- matrix(c(3, 2, -5, 1, -3, 2, 5, -1, 4), nrow=3, ncol=3,
byrow=TRUE)

A
[,1] [,2] [,3]

[1,] 3 2 -5
[2,] 1 -3 2
[3,] 5 -1 4
#Computing the inverse of the nonsingular matrix
B=solve(A)
B

[,1] [,2] [,3]
[1,] 0.11363636 0.03409091 0.125
[2,] -0.06818182 -0.42045455 0.125
[3,] -0.15909091 -0.14772727 0.125
B%*%A

[,1] [,2] [,3]
[1,] 1.000000e+00 0 0.000000e+00
[2,] 0.000000e+00 1 -1.110223e-16
[3,] 1.110223e-16 0 1.000000e+00

210 | 12 Linear algebra

12.4 Trace and determinant of a matrix

Let 𝐴 be an 𝑛 × 𝑛 real matrix. The trace of 𝐴, denoted tr(𝐴), is the sum of the
diagonal entries of 𝐴, that is,

tr(𝐴) =
𝑛∑︁

𝑖=1
𝑎𝑖𝑖.

The determinant of 𝐴, denoted det(𝐴), can be computed using the following
recursive relation [27]:

det(𝐴) =

{︃
𝑎11, if 𝑛 = 1,∑︀𝑛

𝑖=1(−1)𝑖+𝑗𝑎𝑖𝑗 det(𝑀𝑖𝑗), if 𝑛 > 1,

where, 𝑀𝑖𝑗 is the (𝑛 − 1) × (𝑛 − 1) matrix obtained by removing the 𝑖th row and the
𝑗th column of 𝐴.

Let 𝐴 and 𝐵 be two 𝑛 × 𝑛 matrices and 𝑘 a real scalar. Some useful properties
of the determinant for 𝐴 and 𝐵 include the following:
1. det(𝐴𝐵) = det(𝐴) det(𝐵);
2. det(𝐴𝑇) = det(𝐴);
3. det(𝑘𝐴) = 𝑘𝑛 det(𝐴);
4. det(𝐴) ̸ = 0 if and only if 𝐴 is nonsingular.

Remark 12.4.1. If an 𝑛 × 𝑛 matrix, 𝐴, is a diagonal, upper triangular, or lower
triangular matrix, then

det(𝐴) =
𝑛∏︁

𝑖=1
𝑎𝑖𝑖,

i. e., the determinant of a triangular matrix is the product of the diagonal entries.
Therefore, the most practical means of computing a determinant of a matrix is to
decompose it into a product of lower and upper triangular matrices.

Using R, the trace and the determinant of a matrix are computed as follows:

Listing 12.13: Trace and determinant of a matrix

A <- matrix(c(3, 2, -5, 1, -3, 2, 5, -1, 4), nrow=3, ncol=3,
byrow=TRUE)

A
[,1] [,2] [,3]

[1,] 3 2 -5
[2,] 1 -3 2
[3,] 5 -1 4
#Computing the trace of the matrix A
sum(diag(A))
[1] 4

12.5 Subspaces, dimension, and rank of a matrix | 211

#Computing the determinant of the matrix A
det(A)
[1] -88

12.5 Subspaces, dimension, and rank of a matrix

The dimension and rank of a matrix are essential properties for solving systems of
linear equations.

Definition 12.5.1. Consider 𝑚 vectors {𝐴𝑖, 𝑖 = 1, 2, . . . , 𝑚}, whereas 𝐴𝑖 ∈ R𝑛. If
the only set of scalars 𝜆𝑖 for which

𝑚∑︁
𝑖=1

𝜆𝑖𝐴𝑖 = 0𝑛

is 𝜆1 = 𝜆2 = . . . = 𝜆𝑚 = 0, then the vectors 𝐴𝑖, 𝑖 = 1, 2, . . . , 𝑚 are said to be
linearly independent.

Otherwise, the vectors are said to be linearly dependent.

Definition 12.5.2. A subspace of R𝑛 is a nonempty subset of R𝑛, which is also a
vector space.

Definition 12.5.3. The set of all linear combinations of a set of 𝑚 vectors {𝐴𝑖, 𝑖 =
1, 2, . . . , 𝑚} in R𝑛 is a subspace called the span of {𝐴𝑖, 𝑖 = 1, 2, . . . , 𝑚}, and defined
as follows:

span{𝐴𝑖, 𝑖 = 1, 2, . . . , 𝑚} =
{︀

𝑉 ∈ R𝑛
}︀

, such that

𝑉 =
𝑚∑︁

𝑖=1
𝜆𝑖𝐴𝑖 with 𝜆𝑖 ∈ R ∀ 𝑖 = 1, . . . , 𝑚}.

If the vectors {𝐴𝑖, 𝑖 = 1, 2, . . . , 𝑚} are linearly independent, then any vector
𝑉 ∈ span{𝐴𝑖, 𝑖 = 1, 2, . . . , 𝑚} is a unique linear combination of the vectors {𝐴𝑖, 𝑖 =
1, 2, . . . , 𝑚}.

Definition 12.5.4. A linearly independent set of vectors, which spans a subspace 𝑆

is called a basis of 𝑆.

All the bases of a subspace 𝑆 have the same number of components, and this
number is called the dimension of 𝑆, denoted dim(𝑆).

Two key subspaces are associated with any 𝑚 × 𝑛 matrix 𝐴, i. e., 𝐴 ∈ R𝑚×𝑛:
1. the subspace

im(𝐴) =
{︀

𝑏 ∈ R𝑚 : 𝑏 = 𝐴𝑥 for some 𝑥 ∈ R𝑛
}︀

,

referred to as the range or the image of 𝐴; and

212 | 12 Linear algebra

2. the subspace

ker(𝐴) =
{︀

𝑥 ∈ R𝑛 : 𝐴𝑥 = 0
}︀

,

called the null space or the kernel of 𝐴.

If the matrix, 𝐴, is defined by a set of 𝑛 vectors {𝐴𝑖, 𝑖 = 1, 2, . . . , 𝑛}, where 𝐴𝑖 ∈ R𝑚,
then

im(𝐴) = span{𝐴𝑖, 𝑖 = 1, 2, . . . , 𝑛}.

Definition 12.5.5. The rank of a matrix, 𝐴, denoted rank(𝐴), is the maximum num-
ber of linearly independent rows or columns of the matrix 𝐴, and it is defined as
follows:

rank(𝐴) = dim
(︀
im(𝐴)

)︀
.

Let 𝐴 be an 𝑚 × 𝑛 real matrix. Then, the following properties should be noted:
– If 𝑚 = 𝑛, then

1. if rank(𝐴) = 𝑛, then 𝐴 is said to have a full rank;
2. 𝐴 is a nonsingular matrix if and only if it has a full rank, i. e., rank(𝐴) = 𝑛;

– If 𝑚 ≤ 𝑛, then 𝐴 has a full rank if the rows of 𝐴 are linearly independent.

Let 𝐴 be an 𝑚 × 𝑛 real matrix and 𝐵 an 𝑛 × 𝑝 real matrix, then the following
relationships hold;
– rank(𝐴𝑇 𝐴) = rank(𝐴𝐴𝑇) = rank(𝐴) = rank(𝐴𝑇);
– rank(𝐴𝐵) ≤ min(rank(𝐴), rank(𝐵));
– If rank(𝐴) = 𝑛, then rank(𝐴𝐵) = rank(𝐴);
– rank(𝐴) + rank(𝐵) − 𝑛 ≤ rank(𝐴𝐵) (this is known as the Sylvester’s rank

inequality).

Definition 12.5.6. Let 𝐴 be an 𝑚 × 𝑛 real matrix, i. e., 𝐴 ∈ R𝑚×𝑛, and 𝑢 ∈ R𝑚

and 𝑣 ∈ R𝑛. Then, the matrix 𝐵 ∈ R𝑚×𝑛 such that

𝐵 = 𝐴 + 𝑢𝑣𝑇 (12.22)

is called the rank-1 modification of 𝐴.

Let 𝐴 ∈ R𝑛×𝑛, and 𝑈, 𝑉 ∈ R𝑛×𝑝 such that
1. 𝐴 is nonsingular, and
2. (𝐼𝑛𝑉 𝑇 𝐴−1𝑈), where 𝐼𝑛 denotes the 𝑛 × 𝑛 identity matrix, is nonsingular.

Then, (︀
𝐴 + 𝑈𝑉 𝑇

)︀−1 = 𝐴−1 − 𝐴−1𝑈
(︀
𝐼𝑛 + 𝑉 𝑇 𝐴−1𝑈

)︀−1
𝑉 𝑇 𝐴−1. (12.23)

12.5 Subspaces, dimension, and rank of a matrix | 213

The above equation (12.23) is referred to as the Sherman–Morrison–Woodbury for-
mula.

If 𝑝 = 1, then the above matrices 𝑈 and 𝑉 reduce to two vectors 𝑢, 𝑣 ∈ R𝑛.
Then, the Sherman–Morrison–Woodbury formula simplifies to

(︀
𝐴 + 𝑢𝑣𝑇

)︀−1 = 𝐴−1 − 𝐴−1𝑢𝑣𝑇 𝐴−1

1 + 𝑣𝑇 𝐴−1𝑢
. (12.24)

Since 𝐵 = 𝐴 + 𝑢𝑣𝑇 , due to (12.22), then if the inverse of 𝐴 is known, the Sherman–
Morrison–Woodbury formula provides the easiest way to compute the inverse of the
matrix 𝐵, the rank-1 change of 𝐴. Thus,

𝐵−1 =
(︂

𝐼𝑛 − 1
1 + 𝑣𝑇 (𝐴−1𝑢)

(︀
𝐴−1𝑢

)︀
𝑣𝑇

)︂
𝐴−1.

Using R, the rank of a matrix can be determined as follows:

Listing 12.14: Trace and determinant of a matrix

library(Matrix)
listnb<-c(1, 0, 0, 0, -1, 1, 0, 0, 2, 0, 1, 0, 0, 1, -1, -1)
A<-matrix(listnb, nrow=4, ncol=4, byrow=TRUE)
A

[,1] [,2] [,3] [,4]
[1,] 1 0 0 0
[2,] -1 1 0 0
[3,] 2 0 1 0
[4,] 0 1 -1 -1
#Determining the rank of the matrix A
rankMatrix(A)

[1] 4
attr(,"method")
[1] "tolNorm2"
attr(,"useGrad")
[1] FALSE
attr(,"tol")
[1] 8.881784e-16
#Determining the inverse of the matrix A
invA<-solve(A) #Since A is a lower triangular matrix then it is

easy to invert
#Computing a matrix B=A+u transpose(v)
u<-matrix(c(1, -2, -1, 0), nrow=4)
v<-matrix(c(0, 0, 0, -1), nrow=4)
B<-A+u%*%t(v)
B

[,1] [,2] [,3] [,4]
[1,] 1 0 0 -1
[2,] -1 1 0 2
[3,] 2 0 1 1
[4,] 0 1 -1 -1
invB<-(diag(4) - as.numeric(1/(1+t(v)%*%(invA%*%u)))*(invA%*%u)%*%

t(v))%*%invA
invB
[,1] [,2] [,3] [,4]
[1,] -2 -1 1 1

214 | 12 Linear algebra

[2,] 4 2 -1 -1
[3,] 7 3 -2 -3
[4,] -3 -1 1 1
#This is identical to the costly inverse of B obtained using the

function solve()
solve(B)

[,1] [,2] [,3] [,4]
[1,] -2 -1 1 1
[2,] 4 2 -1 -1
[3,] 7 3 -2 -3
[4,] -3 -1 1 1

12.6 Eigenvalues and eigenvectors of a matrix

In this section, we introduce the eigenvalues of a matrix as zeros of a graph poly-
nomial. Eigenvalues have various applications in many scientific disciplines. For in-
stance, eigenvalues are used extensively in mathematical chemistry [90, 186] and
computer science [28]. Let 𝐴 be an 𝑛 × 𝑛 matrix. The eigenvalues of 𝐴, denoted
𝜆𝑖(𝐴), 𝑖 = 1, 2, . . . , 𝑛 or 𝜆 = {𝜆𝑖, 𝑖 = 1, 2, . . . , 𝑛}, are the 𝑛 zeros of the polynomial
in 𝜆 of degree 𝑛 defined by det(𝐴 − 𝜆𝐼), i. e., the eigenvalues are solutions to the
following equation: [27]

det(𝐴 − 𝜆𝐼) = 0.

The polynomial det(𝐴 − 𝜆𝐼) is called the characteristic polynomial.
If 𝐴 is a real matrix, then the eigenvalues of 𝐴 are either real or pairs of complex

conjugates. If 𝐴 is a symmetric matrix, then all its eigenvalues are real.
The following properties hold for eigenvalues:

1. det(𝐴) =
∏︀𝑛

𝑖=1 𝜆𝑖(𝐴)
2. tr(𝐴) =

∑︀𝑛
𝑖=1 𝑎𝑖𝑖 =

∑︀𝑛
𝑖=1 𝜆𝑖(𝐴)

A squared matrix, 𝐴, is called nonsingular if and only if all its eigenvalues are
nonzero.

Definition 12.6.1. The spectral radius of a squared matrix 𝐴, denoted 𝜌(𝐴), is given
by

𝜌(𝐴) = max
𝑖=1,2,...,𝑛

⃒⃒⃒
𝜆𝑖(𝐴)

⃒⃒⃒
.

Definition 12.6.2. A non-null vector 𝑥, such that

𝐴𝑥 = 𝜆𝑖(𝐴)𝑥, (12.25)

is called the right eigenvector associated with the eigenvalue 𝜆𝑖(𝐴).

12.6 Eigenvalues and eigenvectors of a matrix | 215

For each eigenvalue 𝜆𝑖(𝐴), its right eigenvector 𝑥 is found by solving the system
(𝐴 − 𝜆𝑖(𝐴)𝐼)𝑥 = 0.

Let 𝐴 be an 𝑛 × 𝑛 real matrix. The following properties hold:
– If 𝐴 is diagonal, upper triangular or lower triangular, then its eigenvalues are

given by its diagonal entries, i. e.,

𝜆𝑖(𝐴) = 𝑎𝑖𝑖, for 𝑖 = 1, 2, . . . , 𝑛.

– If 𝐴 is orthogonal, then |𝜆𝑖(𝐴)| = 1 for all 𝑖 = 1, 2, . . . , 𝑛.
– If 𝐴 is symmetric, then there exists an orthogonal matrix 𝑄 ∈ R𝑛×𝑛 such that

𝑄𝑇 𝐴𝑄 = 𝐷,

where 𝐷 is an 𝑛 × 𝑛 diagonal matrix, whose diagonal entries are 𝜆1(𝐴), 𝜆2(𝐴),
. . . , 𝜆𝑛(𝐴).
If 𝐴 is nonsingular, i. e., 𝜆𝑖(𝐴) ̸ = 0for 𝑖 = 1, . . . , 𝑛, then

𝜆𝑖

(︀
𝐴−1)︀ = 1

𝜆𝑖(𝐴) , for 𝑖 = 1, . . . , 𝑛.

Eigenvalues can be used to determine the definiteness of symmetric matrices. Let 𝐴

be an 𝑛 × 𝑛 symmetric real matrix and 𝜆𝑖(𝐴), 𝑖 = 1, 2, . . . , 𝑛 its eigenvalues. Then
we have the following relationships:
– 𝐴 is said to be positive definite if and only if 𝜆𝑖(𝐴) > 0 for all 𝑖 = 1, . . . , 𝑛.
– 𝐴 is said to be positive semidefinite if and only if 𝜆𝑖(𝐴) ≥ 0 for all 𝑖 = 1, . . . , 𝑛.
– 𝐴 is said to be negative definite if and only if 𝜆𝑖(𝐴) < 0 for all 𝑖 = 1, . . . , 𝑛.
– 𝐴 is said to be negative semidefinite if and only if 𝜆𝑖(𝐴) ≤ 0 for all 𝑖 = 1, . . . , 𝑛.
– 𝐴 is said to be indefinite if and only if 𝜆𝑖(𝐴) > 0 for some 𝑖 and 𝜆𝑗(𝐴) < 0 for

some 𝑗.

Remark 12.6.1. If a nonsingular 𝑛×𝑛 symmetric matrix, 𝐴, is positive semi-definite
(respectively negative semidefinite), then 𝐴 is positive definite (respectively negative
definite).

Using R, the eigenvalues for a matrix, 𝐴, and their associated eigenvectors, as
well as the spectral radius of the matrix 𝐴, can be computed as follows:

Listing 12.15: Eigenvalues and Eigenvectors of a matrix

A <- matrix(c(7, 0, -3, -9, -2, 3, 18, 0, -8), nrow=3, ncol=3,
byrow=TRUE)

A
[,1] [,2] [,3]

[1,] 7 0 -3
[2,] -9 -2 3
[3,] 18 0 -8
#Computing eigenvalues and eigenvectors of the matrix A

216 | 12 Linear algebra

Eigv<-eigen(A)
Eigv
$values #Eigenvalues
[1] -2 -2 1
$vectors # Eigenvectors

[,1] [,2] [,3]
[1,] 0 0.3162278 0.4082483
[2,] 1 0.0000000 -0.4082483
[3,] 0 0.9486833 0.8164966
#Getting the spectral radius of the matrix A
rho<-max(abs(Eigv$values))
rho
[1] 2

12.7 Matrix norms

The concept of a vector norm discussed earlier can be generalized to a matrix [86,
134].

Definition 12.7.1. A matrix norm, denoted by ‖·‖, is a scalar function defined from
R𝑚×𝑛 to R, such that
1. ‖𝐴‖ ≥ 0 for all 𝐴 ∈ R𝑚×𝑛;
2. ‖𝐴‖ = 0 ⇐⇒ 𝐴 = 0𝑚×𝑛, where 0𝑚×𝑛 denotes an 𝑚 × 𝑛 null matrix;
3. ‖𝐴 + 𝐵‖ ≤ ‖𝐴‖ + ‖𝐵‖ for all 𝐴, 𝐵 ∈ R𝑚×𝑛;
4. ‖𝑘𝐴‖ = |𝑘| × ‖𝐴‖, for all 𝑘 ∈ R and 𝐴 ∈ R𝑚×𝑛.

Furthermore, if

‖𝐴𝐵‖ ≤ ‖𝐴‖ × ‖𝐵‖, for all 𝐴 ∈ R𝑚×𝑛 and 𝐵 ∈ R𝑛×𝑞,

then the matrix norm is said to be consistent.

Definition 12.7.2. Let 𝐴 ∈ R𝑚×𝑛 and 𝑥 ∈ R𝑛. Then, the subordinate matrix 𝑝-norm
of 𝐴, denoted ‖𝐴‖𝑝, is defined in terms of vector norms as follows:

‖𝐴‖𝑝 = max
𝑥 ̸ =0𝑛

‖𝐴𝑥‖𝑝

‖𝑥‖𝑝
.

In particular,
1. the subordinate matrix 1-norm of 𝐴 is defined by

‖𝐴‖1 = max
𝑥 ̸ =0𝑛

‖𝐴𝑥‖1
‖𝑥‖1

= max
𝑗=1,2,...,𝑛

𝑚∑︁
𝑖=1

|𝑎𝑖𝑗 |.

2. the subordinate matrix 2-norm of 𝐴 is defined by

‖𝐴‖2 = max
𝑥 ̸ =0𝑛

‖𝐴𝑥‖2
‖𝑥‖2

;

12.8 Matrix factorization | 217

if 𝑚 = 𝑛, then

‖𝐴‖2 = 𝜌(𝐴) = max
𝑖=1,2,...,𝑛

⃒⃒⃒
𝜆𝑖(𝐴)

⃒⃒⃒
,

where 𝜌(𝐴) denotes the spectral radius of 𝐴.
3. in the case where 𝑝 = ∞, the subordinate matrix ∞-norm of 𝐴 is defined by

‖𝐴‖∞ = max
𝑥 ̸ =0𝑛

‖𝐴𝑥‖∞
‖𝑥‖∞

= max
𝑖=1,2,...,𝑚

𝑛∑︁
𝑗=1

|𝑎𝑖𝑗 |.

Furthermore, if 𝑚 = 𝑛, we have

‖𝐴‖2 ≤
√︀

‖𝐴‖1 × ‖𝐴‖∞ ≤
√

𝑛 × ‖𝐴‖2.

Remark 12.7.1. The subordinate matrix 𝑝-norm is consistent and, for any 𝐴 ∈
R𝑚×𝑛 and 𝑥 ∈ R𝑛,

‖𝐴𝑥‖𝑝 = ‖𝐴𝑥‖𝑝‖𝑥‖𝑝.

Definition 12.7.3. The Frobenius norm of a matrix 𝐴 is defined by

‖𝐴𝑥‖𝐹 =

(︃
𝑚∑︁

𝑖=1

𝑛∑︁
𝑗=1

|𝑎𝑖𝑗 |2
)︃ 1

2

= tr
(︀
𝐴𝐴𝑇

)︀
.

Listing 12.16: Matrix norms

#The package "Matrix" is required here
require(Matrix)

12.8 Matrix factorization

Matrix factorization is an essential tool for solving systems of linear equations [27].
The most commonly used factorization methods are the 𝐿𝑈 factorization for a
squared matrix, and the 𝑄𝑅 factorization for a rectangular matrix, i. e., squared
or not.

12.8.1 LU factorization

Let 𝐴 ∈ R𝑛×𝑛. The 𝐿𝑈 factorization of 𝐴 consists of the decomposition of 𝐴 into a
product of a unit lower triangular matrix 𝐿 and an upper triangular matrix 𝑈 , that
is,

𝐴 = 𝐿𝑈,

218 | 12 Linear algebra

where

𝐿 =

⎡⎢⎢⎢⎢⎣
1 0 0 · · · 0

𝑙21 1 0
..

· · · 0
. ...

...
. . .

...
𝑙𝑛1 𝑙𝑛2 𝑙𝑛3 · · · 1

⎤⎥⎥⎥⎥⎦ and 𝑈 =

⎡⎢⎢⎢⎢⎣
𝑢11 𝑢12 𝑢13 · · · 𝑢1𝑛

0 𝑢22 𝑢23

..

· · · 𝑢2𝑛

. ...
...

. . .
...

0 0 0 · · · 𝑢𝑛𝑛

⎤⎥⎥⎥⎥⎦ .

Therefore, the determinants of 𝐿 and 𝑈 are det(𝐿) = 1 and det(𝑈) =
∏︀𝑛

𝑖=1 𝑢𝑖𝑖,
respectively. Consequently,

det(𝐴) = det(𝐿𝑈) = det(𝐿) × det(𝑈) =
𝑛∏︁

𝑖=1
𝑢𝑖𝑖.

However, when a principal submatrix of 𝐴 is singular, then a permutation, i. e., the
reordering of the columns of 𝐴, is required. If 𝐴 is nonsingular, then there exists a
permutation matrix 𝑃 ∈ R𝑛×𝑛 such that

𝑃𝐴 = 𝐿𝑈. (12.26)

An equivalent formulation of the 𝐿𝑈 factorization (12.26) is

𝑃𝐴 = 𝐿𝐷�̂�,

where 𝐷 ∈ R𝑛×𝑛 is a diagonal matrix, whose diagonal entries are 𝑢𝑖𝑖 and �̂� ∈ R𝑛×𝑛

is a unit upper triangular matrix; i. e., 𝑈 = 𝐷�̂� .
Computing the 𝐿𝑈 factorization of 𝐴 is formally equivalent to solving the follow-

ing nonlinear system of 𝑛2 equations where the unknowns are the 𝑛2 + 𝑛 coefficients
of the triangular matrices 𝐿 and 𝑈 :

𝑎𝑖𝑗 =
min(𝑖,𝑗)∑︁

𝑘=1

𝑙𝑖𝑘𝑢𝑘𝑗 .

Using R, the 𝐿𝑈 factorization of a matrix, 𝐴, is performed using the command
expand(lu(A)), which outputs three matrices 𝐿, 𝑈 , and 𝑃 . The matrices 𝐿 and 𝑈

are the lower and upper triangular matrices we are looking for, whereas the matrix
𝑃 contains all the row permutation operations that have been carried out on the
original matrix 𝐴 for the purpose of obtaining 𝐿 and 𝑈 . Therefore, the product 𝐿𝑈

gives a row-permuted version of 𝐴, whereas the product 𝑃𝐿𝑈 enables the recovery
of the original matrix 𝐴.

Listing 12.17: LU Factorization

#The package "Matrix" is required here
require(Matrix)

12.8 Matrix factorization | 219

A <- matrix(-c(3, 2, -5, 1, -3, 2, 5, -1, 4), nrow=3, ncol=3,
byrow=TRUE)

A
[,1] [,2] [,3]

[1,] 3 2 -5
[2,] 1 -3 2
[3,] 5 -1 4
#Getting the unit lower triangular matrix L
L<-expand(lu(A))$L
L
3 x 3 Matrix of class "dtrMatrix" (unitriangular)

[,1] [,2] [,3]
[1,] 1.0000000 . .
[2,] 0.2000000 1.0000000 .
[3,] 0.6000000 -0.9285714 1.0000000
#Getting the upper triangular matrix U
U<-expand(lu(A))$U
U
3 x 3 Matrix of class "dtrMatrix"

[,1] [,2] [,3]
[1,] 5.000000 -1.000000 4.000000
[2,] . -2.800000 1.200000
[3,] . . -6.285714
#Getting the permutation matrix P
P<-expand(lu(A))$P
P
3 x 3 sparse Matrix of class "pMatrix"
[1,] . . |
[2,] . | .
[3,] | . .
#Getting a row-permuted version of the matrix A
L%*%U
3 x 3 Matrix of class "dgeMatrix"

[,1] [,2] [,3]
[1,] 5 -1 4
[2,] 1 -3 2
[3,] 3 2 -5
#Getting the original matrix A
P%*%L%*%U
3 x 3 Matrix of class "dgeMatrix"

[,1] [,2] [,3]
[1,] 3 2 -5
[2,] 1 -3 2
[3,] 5 -1 4

Let 𝐴 be an 𝑛×𝑛 symmetric matrix. If 𝐴 has an 𝐿𝑈 factorization, then there exists
a unit lower triangular matrix 𝐿 ∈ R𝑛×𝑛, and a diagonal matrix 𝐷 ∈ R𝑛×𝑛 such
that

𝐴 = 𝐿𝐷𝐿𝑇 . (12.27)

If a principal submatrix of 𝐴 is singular, then a permutation, i. e., a reordering of
both rows and columns of 𝐴 is required, and this results in the following factorization:

𝑃𝐴𝑃 𝑇 = 𝐿𝐷𝐿𝑇 , (12.28)

where 𝑃 ∈ R𝑛×𝑛 is a permutation matrix.

220 | 12 Linear algebra

12.8.2 Cholesky factorization

If an 𝑛×𝑛 real matrix, 𝐴, is positive definite, then there exists a unit lower triangular
matrix 𝐿 ∈ R𝑛×𝑛 and a diagonal matrix 𝐷 ∈ R𝑛×𝑛 with 𝑑𝑖𝑖 > 0 for 𝑖 = 1, 2, . . . , 𝑛

such that

𝐴 = 𝐿𝐷𝐿𝑇 = �̃��̃�𝑇 , (12.29)

where �̃� = 𝐿𝐷
1

2 , with 𝐷
1

2 a diagonal matrix, whose diagonal entries are
√

𝑑𝑖𝑖 for
𝑖 = 1, 2, . . . , 𝑛. The factorization (12.29) is referred to as the Cholesky factorization.

An illustration of Cholesky factorization, using R, is provided in Listing 12.18.

Listing 12.18: Cholesky factorization

#The package "Matrix" is required here
require(Matrix)
A <- matrix(c(1, 1, 1, 1, 2, 3, 1, 3, 6), nrow=3, ncol=3,

byrow=TRUE)
A #Note that A needs to be a squared symmetric matrix

[,1] [,2] [,3]
[1,] 1 1 1
[2,] 1 2 3
[3,] 1 3 6
LtildeT<-chol(A)
LtildeT #This is the matrix LtildeT, the transpose of Ltilde

[,1] [,2] [,3]
[1,] 1 1 1
[2,] 0 1 2
[3,] 0 0 1
#The original matrix A can be recovered as follows
t(LtildeT)%*%LtildeT

[,1] [,2] [,3]
[1,] 1 1 1
[2,] 1 2 3
[3,] 1 3 6

12.8.3 QR factorization

Let 𝐴 ∈ R𝑚×𝑛. Then,
1. if 𝑚 = 𝑛, and 𝐴 is nonsingular, then there exits an orthogonal matrix 𝑄 ∈ R𝑛×𝑛

and a nonsingular upper triangular matrix 𝑅 such that the 𝑄𝑅 factorization of
𝐴 is defined by

𝐴 = 𝑄𝑅 ⇐⇒ 𝑄𝑇 𝐴 = 𝑅,

since 𝑄 is orthogonal, i. e., 𝑄𝑇 𝑄 = 𝐼𝑛;
2. if 𝑚 > 𝑛 and rank(𝐴) = 𝑛, then there exists an orthogonal matrix 𝑄 ∈ R𝑚×𝑚

and a nonsingular upper triangular matrix 𝑅 ∈ R𝑛×𝑛 such that the 𝑄𝑅 factor-

12.8 Matrix factorization | 221

ization of 𝐴 is defined by

𝐴 = 𝑄

[︂
𝑅

0𝑚−𝑛,𝑛

]︂
⇐⇒ 𝑄𝑇 𝐴 =

[︂
𝑅

0𝑚−𝑛,𝑛

]︂
, (12.30)

since 𝑄 is orthogonal, i. e., 𝑄𝑇 𝑄 = 𝐼𝑚. Here, 0𝑚−𝑛,𝑛 denotes the (𝑚 − 𝑛) × 𝑛

matrix of zeros.
When rank(𝐴) < 𝑛, i. e., a principal submatrix of 𝐴 is singular, then a per-
mutation, i. e., the reordering, of the columns of 𝐴, is introduced, and the 𝑄𝑅

factorization of 𝐴 is defined by

𝑄𝑇 𝐴𝑃 = 𝑄

[︂
𝑅

0𝑚−𝑛,𝑛

]︂
,

where 𝑃 ∈ R𝑛×𝑛 is a permutation matrix for reordering the columns of 𝐴.

Let 𝑉 ∈ R𝑚×𝑛 and 𝑊 ∈ R𝑚×(𝑚−𝑛) denote the 𝑛 first columns and (𝑚 − 𝑛) last
columns of the orthogonal matrix 𝑄 ∈ R𝑚×𝑚, respectively; that is, 𝑄 = [𝑉, 𝑊].
Then, the submatrices 𝑉 and 𝑊 are also orthogonal. Indeed,

𝑄𝑇 𝑄 =
[︂

𝑉 𝑇

𝑊 𝑇

]︂ [︀
𝑉 𝑊

]︀
=
[︂

𝑉 𝑇 𝑉 𝑉 𝑇 𝑊

𝑊 𝑇 𝑉 𝑊 𝑇 𝑊

]︂
.

Since 𝑄 is orthogonal, then 𝑄𝑇 𝑄 = 𝐼𝑚 =
[︀ 𝐼𝑛 0

0 𝐼𝑚−𝑛

]︀
, and therefore[︂

𝑉 𝑇 𝑉 𝑌 𝑇 𝑌

𝑊 𝑇 𝑉 𝑊 𝑇 𝑊

]︂
=
[︂
𝐼𝑛 0
0 𝐼𝑚−𝑛

]︂
,

i. e., 𝑉 𝑇 𝑉 = 𝐼𝑛, 𝑊 𝑇 𝑊 = 𝐼𝑚 𝑉 𝑇 𝑊 = 0𝑛,𝑚−𝑛 and 𝑊 𝑇 𝑉 = 0𝑚−𝑛,𝑛 (that is, 𝑉 and
𝑊 are orthogonal). Substituting 𝑄 with

[︀
𝑉 𝑊

]︀
in (12.30) gives

𝑄𝑇 𝐴 =
[︂

𝑅

0𝑚−𝑛,𝑛

]︂
⇐⇒

[︂
𝑉 𝑇

𝑊 𝑇

]︂
𝐴 =

[︂
𝑅

0𝑚−𝑛,𝑛

]︂
,

and therefore

𝑉 𝑇 𝐴 = 𝑅 ⇐⇒ 𝐴 = 𝑉 𝑅, (12.31)
𝑊 𝑇 𝐴 = 0𝑚−𝑛,𝑛. (12.32)

Equations (12.31) and (12.32) yield several important results, which link the 𝑄𝑅

factorization of a matrix, 𝐴, to its subspaces im(𝐴) (i. e., the range of 𝐴) and ker(𝐴)
(i. e. the kernel or the null space of 𝐴). In particular,

222 | 12 Linear algebra

1. since 𝑉 is an orthogonal matrix, then, thanks to (12.31), the columns of 𝑉 form
an orthogonal basis for the subspace im(𝐴), that is, 𝐴 is uniquely determined
by the linear combination of the column of 𝑉 through 𝐴 = 𝑉 𝑅. Consequently,
the matrix 𝑉 𝑉 𝑇 provides an orthogonal projection onto the subspace im(𝐴).

2. also, since 𝑊 is an orthogonal matrix, then, thanks to (12.32), the columns of
𝑊 form an orthogonal basis for the subspace ker(𝐴), and the matrix 𝑊𝑊 𝑇

provides an orthogonal projection on to the subspace ker(𝐴).

Listing 12.19: QR Factorization

#The package "Matrix" is required here
require(Matrix)
A<- matrix(c(1, -1, 4, 1, 4, -2, 1, 4, 2, 1, -1, 0), nrow=4,

byrow=TRUE)
[,1] [,2] [,3]
[1,] 1 -1 4
[2,] 1 4 -2
[3,] 1 4 2
[4,] 1 -1 0
QRfact<-qr(A)
#Getting the rank of the matrix A
QRfact$rank
#Getting the orthogonal matrix Q
Q<-qr.Q(QRfact)
Q

[,1] [,2] [,3]
[1,] -0.5 0.5 -0.5
[2,] -0.5 -0.5 0.5
[3,] -0.5 -0.5 -0.5
[4,] -0.5 0.5 0.5
#Getting the upper triangular matrix R
R<-qr.R(QRfact)
R

[,1] [,2] [,3]
[1,] -2 -3 -2
[2,] 0 -5 2
[3,] 0 0 -4
#If no permutations have been performed , then the original matrix A

can be recovered exactly as via Q%*%R, otherwise this product
will yield an A with some permuted columns

Q%*%R
[,1] [,2] [,3]

[1,] 1 -1 4
[2,] 1 4 -2
[3,] 1 4 2
[4,] 1 -1 0

12.8.4 Singular value decomposition

The singular value decomposition (SVD) is another type of matrix factorization that
generalizes the eigendecomposition of a square normal matrix to any matrix. It is a

12.8 Matrix factorization | 223

popular methods because it has widespread applications for recommender systems
and the determination of a pseudoinverse. Let 𝐴 ∈ R𝑚×𝑛. Then,
– if 𝑚 ≥ 𝑛, then the SVD of 𝐴 is given by

𝐴 = 𝑈

[︂
𝐷

0𝑚−𝑛,𝑛

]︂
𝑉 𝑇 ,

where 𝑈 ∈ R𝑚×𝑚 and 𝑉 ∈ R𝑛×𝑛 are orthogonal matrices, i. e., 𝑈𝑇 𝑈 = 𝐼𝑚 and
𝑉 𝑇 𝑉 = 𝐼𝑛, and 𝐷 ∈ R𝑛×𝑛 is a diagonal matrix whose diagonal entries, 𝑑𝑖𝑖 or
simply denoted 𝑑𝑖 for 𝑖 = 1, 2, . . . , 𝑛, are ordered in descending order, that is,

𝑑1 ≥ 𝑑2 ≥ . . . ≥ 0.

– if 𝑛 > 𝑚, then the SVD of 𝐴 is given by

𝐴 = 𝑈
[︀
𝐷 0𝑚,𝑛−𝑚

]︀
,

where 𝐷 ∈ R𝑚×𝑚 is a diagonal matrix, whose diagonal entries 𝑑𝑖𝑖 = 𝑑𝑖 for
𝑖 = 1, 2, . . . , 𝑚, are rearranged in descending order.

Definition 12.8.1. The singular values of a matrix 𝐴 ∈ R𝑚×𝑛, denoted 𝜎𝑖(𝐴), are
given by the diagonal entries of the matrix 𝐷, that is,

𝜎𝑖(𝐴) = 𝑑𝑖, for 𝑖 = 1, 2, . . . , 𝑝,

where 𝑝 = min(𝑚, 𝑛).
The columns of 𝑈 are called the left singular vectors, whereas the columns of 𝑉

are called the right singular vectors.

The following relationships should be noted:
– The singular values of a matrix 𝐴 ∈ R𝑚×𝑛 are given by

𝜎𝑖(𝐴) =
√︁

𝜆𝑖

(︀
𝐴𝑇 𝐴

)︀
for 𝑖 = 1, 2, . . . , 𝑝,

where 𝑝 = min(𝑚, 𝑛) and 𝜆𝑖(𝐴𝑇 𝐴), 𝑖 = 1, 2, . . . , 𝑝, are the nonzero eigenvalues
of the matrix 𝐴𝑇 𝐴, rearranged in descending order.

– Let 𝑟 denote the rank of a matrix 𝐴 ∈ R𝑚×𝑛, then

𝜎1(𝐴) ≥ · · · ≥ 𝜎𝑟(𝐴) > 𝜎𝑟+1 = 𝜎𝑟+2 = · · · = 𝜎max(𝑚,𝑛) = 0;

that is, the rank of the matrix is the number of its nonzero singular values.
However, due to rounding errors, this approach to determine the rank is not
straightforward in practice, as it is unclear how small the singular value should
be to be considered as zero.
Furthermore, if 𝐴 has a full rank, i. e., 𝑟 = min(𝑚, 𝑛), then the condition number
of 𝐴, denoted 𝜅(𝐴), is given by

𝜅(𝐴) = 𝜎1(𝐴)
𝜎𝑟(𝐴) .

224 | 12 Linear algebra

Listing 12.20: Singular Value Decomposition

#The package "Matrix" is required here
require(Matrix)
A<- matrix(c(1, -1, 4, 1, 4, -2, 1, 4, 2, 1, -1, 0), nrow=4,

byrow=TRUE)
[,1] [,2] [,3]
[1,] 1 -1 4
[2,] 1 4 -2
[3,] 1 4 2
[4,] 1 -1 0
SVDA<-svd(A)
#Getting the matrix U
U<-SVDA$u
U

[,1] [,2] [,3]
[1,] -0.3132791 0.771564156 -0.2377918
[2,] 0.7480871 -0.146888948 -0.4108397
[3,] 0.5693222 0.618934107 0.2068642
[4,] -0.1345142 0.005741101 -0.8554957
#Getting the matrix V
V<-SVDA$v
V

[,1] [,2] [,3]
[1,] 0.1448567 0.2543877 -0.9561922
[2,] 0.9523837 0.2261920 0.2044564
[3,] -0.2682942 0.9402787 0.2095093
#Getting the diagonal matrix D
D<-diag(SVDA$d)

[,1] [,2] [,3]
[1,] 6.003285 0.000000 0.000000
[2,] 0.000000 4.911206 0.000000
[3,] 0.000000 0.000000 1.356697
#Getting the singular values of A
singv<-SVDA$d
singv
[1] 6.003285 4.911206 1.356697
#The original matrix A can be recovered as follows:
round(U%*%D%*%t(V))

[,1] [,2] [,3]
[1,] 1 -1 4
[2,] 1 4 -2
[3,] 1 4 2
[4,] 1 -1 0

12.9 Systems of linear equations

A system of 𝑚 linear equations in 𝑛 unknowns consists of a set of algebraic relation-
ships of the form

𝑛∑︁
𝑗=1

𝑎𝑖𝑗𝑥𝑗 = 𝑏𝑖, 𝑖 = 1, . . . , 𝑚, (12.33)

12.9 Systems of linear equations | 225

where 𝑥𝑗 are the unknowns, whereas 𝑎𝑖𝑗 , the coefficients of the system, and 𝑏𝑖, the
entries of the right-hand side, are assumed to be known constants.

The system (12.33) can be rewritten in the following matrix form:

𝐴𝑥 = 𝑏, (12.34)

where 𝐴 is an 𝑚×𝑛 matrix with entries 𝑎𝑖𝑗 , 𝑖 = 1, . . . , 𝑚, 𝑗 = 1, . . . , 𝑛, 𝑏 is a column
vector of size 𝑚 with entries 𝑏𝑖, 𝑖 = 1, . . . , 𝑚 and 𝑥 is a column vector of size 𝑛 with
entries 𝑥𝑗 , 𝑗 = 1, . . . , 𝑛.

Theoretically, the system (12.34) has a solution if and only if 𝑏 ∈ im(𝐴). If, in
addition, ker(𝐴) = {0}, then the solution is unique. When a solution exists for the
system (12.34), then it is given by Cramer’s method, as follows:

𝑥 =
det(𝑀𝑗)
det(𝐴) , (12.35)

where 𝑀𝑗 is the matrix obtained by substituting the 𝑗th column of 𝐴 with the
right-hand side term 𝑏.

However, when the size of the matrix 𝐴 is large, Cramer’s method is not sus-
tainable, and computing the solution, 𝑥, requires several efficient numerical methods.
More often, the efficiency with which these methods work depends on the patterns
or structure of the matrix 𝐴. Depending on the form of the matrix 𝐴, the systems
of the form (12.34) can be categorized as follows:

1. Triangular linear systems: If 𝐴 ∈ R𝑛×𝑛 is either a nonsingular lower or an upper
triangular matrix, then the system (12.34) can be solved efficiently.
For instance, if 𝐴 is a nonsingular lower triangular matrix, i. e., 𝐴 = 𝐿 ∈ R𝑛×𝑛,
then the solution to the system (12.34) can be readily obtained using the fol-
lowing method, known as forward substitution:

𝑥1 = 𝑏1
𝑙11

, (12.36)

𝑥𝑖 =
(𝑏𝑖 −

∑︀𝑖−1
𝑗=1 𝑙𝑖𝑗𝑥𝑗)
𝑙𝑖𝑖

for 𝑖 = 2, 3, . . . , 𝑛. (12.37)

If 𝐴 = 𝐿 is a unit lower triangular matrix, then 𝑙𝑖𝑖 = 1 for all 𝑖 = 1, 2, . . . , 𝑛.
Therefore, the denominators in (12.36) and (12.37) simplify.
However, if 𝐴 is a nonsingular upper triangular matrix, i. e., 𝐴 = 𝑈 ∈ R𝑛×𝑛,
then the solution to the system (12.34) can easily be obtained using the following
method, known as backward substitution:

𝑥𝑛 = 𝑏𝑛

𝑢𝑛𝑛
, (12.38)

𝑥𝑖 =
(𝑏𝑖 −

∑︀𝑛
𝑗=𝑖+1 𝑢𝑖𝑗𝑥𝑗)
𝑢𝑖𝑖

for 𝑖 = 𝑛 − 1, 𝑛 − 2, . . . , 1. (12.39)

226 | 12 Linear algebra

2. Well-determined linear systems: If 𝐴 ∈ R𝑛×𝑛, then the system (12.34) has 𝑛

linear equations in 𝑛 variables, and a such system is said to be well-determined.
If 𝐴 is nonsingular, then the solution to the system is given by

𝑥 = 𝐴−1𝑏.

Since factorization methods, such as 𝐿𝑈 factorization, are efficient ways to cal-
culate the inverse of a squared matrix, they can be purposely used here. Let
𝐿 be a unit lower triangular matrix, 𝑈 an upper triangular matrix, and 𝑃 a
permutation matrix such that 𝑃𝐴 = 𝐿𝑈 . Then 𝐴 = 𝑃 −1𝐿𝑈 , and the system
(12.34) can be rewritten as follows

𝑃 −1𝐿𝑈𝑥 = 𝑏 ⇐⇒ 𝐿𝑈𝑥 = 𝑃𝑏, (12.40)

where the right-hand side term 𝑃𝑏 is a permutation of 𝑏, i. e., the reordering of
the entries of 𝑏.
The system (12.40) can be solved in two stages, as follows: First, solve for 𝑦 the
system 𝐿𝑦 = 𝑃𝑏 using forward substitution, and then use the obtained values
of 𝑦 to solve for 𝑥 the system 𝑈𝑥 = 𝑦.
Furthermore, if 𝐴 is symmetric, then it is more convenient to use the 𝐿𝐷𝐿𝑇

factorization (12.27)–(12.28) to solve the system (12.34). If 𝐴 is symmetric pos-
itive definite, then the Cholesky factorization (12.29), i. e., 𝐴 = �̃��̃�𝑇 , is likely
to be the most efficient method to solve the system (12.34).

3. Over-determined linear systems: If 𝐴 ∈ R𝑚×𝑛 with 𝑚 > 𝑛, then the system
(12.34) has more equations than variables, and such a system is said to be over-
determined. When 𝑏 ∈ im(𝐴), then the system (12.34) has a solution, and so
does

𝐴𝑇 𝐴𝑥 = 𝐴𝑇 𝑏.

If 𝐴 is a full rank matrix, that is rank(𝐴) = 𝑛, then the matrix 𝐴𝑇 𝐴 is nonsin-
gular and therefore invertible. Thence,

𝑥 =
(︀
𝐴𝑇 𝐴

)︀−1
𝐴𝑇 𝑏.

The matrix 𝐴+ = (𝐴𝑇 𝐴)−1𝐴𝑇 is referred to as the pseudoinverse of 𝐴 or the
Moore–Penrose generalized inverse of 𝐴. Note that when 𝐴 is a squared matrix,
that is, 𝑚 = 𝑛, then 𝐴+ = 𝐴−1.
If 𝑏 /∈ im(𝐴), then the system (12.34) has no solution.

4. Under-determined linear systems: If 𝐴 ∈ R𝑚×𝑛 with 𝑚 < 𝑛, then the system
(12.34) has fewer equations than variables, and such a system is said to be under-
determined. If the equations in (12.34) are consistent, then the system has an
infinite number of solutions. If 𝐴 is a full rank matrix, that is, rank(𝐴) = 𝑚,

12.10 Exercises | 227

then the matrix 𝐴𝐴𝑇 is a nonsingular matrix. Thus, one of the solutions to the
system (12.34) is given by

�̄� = 𝐴𝑇
(︀
𝐴𝐴𝑇

)︀−1
𝑏.

Consider the following linear system:⎧⎨⎩
3𝑥 + 2𝑦 − 5𝑧 = 12
𝑥 − 3𝑦 + 2𝑧 = −13
5𝑥 − 𝑦 + 4𝑧 = 10

(12.41)

Thus,

𝐴 =

⎛⎝3 2 −5
1 −3 2
5 −1 4

⎞⎠ and 𝑏 =

⎛⎝ 12
−13
10

⎞⎠ .

Using R, the linear system (12.41) can be solved as follows:

Listing 12.21: Solving a well-determined linear system

A <- matrix(c(3, 2, -5, 1, -3, 2, 5, -1, 4), nrow=3, ncol=3,
byrow=TRUE)

A
[,1] [,2] [,3]

[1,] 3 2 -5
[2,] 1 -3 2
[3,] 5 -1 4
b <- matrix(c(12, -13, 10), nrow=3, ncol=1, byrow=TRUE)
b

[,1]
[1,] 12
[2,] -13
[3,] 10
#Solving the system Ax=b
x<-solve(A,b)
> x

[,1]
[1,] 2.170455
[2,] 5.897727
[3,] 1.261364

12.10 Exercises

1. Let
−→
𝑈 =

(︀
−1, −2, 4

)︀
, and let

−→
𝑉 =

(︀
2, 3, 5

)︀
be two 3-dimensional vec-

tors:
(a) Compute the Euclidean norms of

−→
𝑈 and

−→
𝑉 .

(b) Compute the dot product of
−→
𝑈 and

−→
𝑉 .

(c) Compute the orthogonal projection of
−→
𝑈 onto the direction of

−→
𝑉 .

228 | 12 Linear algebra

(d) Compute the reflection of
−→
𝑉 with respect to the direction of

−→
𝑈 .

(e) Compute the cross product of
−→
𝑈 and

−→
𝑉 .

(f) Compute the components of
−→
𝑈 and

−→
𝑉 in cylindrical and spherical coordi-

nates.
2. Let 𝑧 = 5 + 2𝑖 and 𝑤 = 7 + 4𝑖 be two complex numbers.

(a) Compute the conjugates of 𝑧 and 𝑤, the sum of 𝑧 and 𝑤, and difference
𝑧 − 𝑤.

(b) Compute the product 𝑧 × 𝑤 and the divisions 𝑧
𝑤 and 𝑤

𝑧 .
3. Let

𝐴 =

⎛⎝ 1 3 0
2 −2 1

−4 1 −1

⎞⎠ and 𝐵 =

⎛⎝ 7 2 1
0 3 −1

−3 4 −2

⎞⎠
be two 3 by 3 matrices, and let 𝑉 =

(︀
17, 9, 6

)︀
.

(a) Compute the sum of 𝐴 and 𝐵.
(b) Compute the difference 𝐵 − 𝐴.
(c) Compute the transpose and the inverse matrices of 𝐴 and 𝐵.
(d) Compute the following matrix products: 𝐴 × 𝐵, 𝑉 × 𝐴 and 𝑉 × 𝐵.
(e) Compute the trace and determinant of 𝐴 and 𝐵.
(f) Find the rank of 𝐴 and 𝐵.
(g) Compute the eigenvalues and eigenvectors of 𝐴 and 𝐵.
(h) Compute the spectral radius of 𝐴 and 𝐵.
(i) Compute the subordinate matrices 1-norm of 𝐴 and 𝐵.
(j) Compute the subordinate matrices 2-norm of 𝐴 and 𝐵.
(k) Compute the subordinate matrices ∞-norm of 𝐴 and 𝐵.
(l) Compute the Frobenius norm of 𝐴 and 𝐵.
(m) Compute the 𝐿𝑈 , Cholesky and 𝑄𝑅 factorization of 𝐴 and 𝐵.

4. Use the appropriate R functions to solve the following linear systems:⎧⎨⎩
2𝑥 + 3𝑧 = 3
4𝑥 − 3𝑦 + 7𝑧 = 5
8𝑥 − 9𝑦 + 15𝑧 = 10⎧⎨⎩
2𝑥 − 𝑦 + 𝑧 = 8
𝑥 + 2𝑦 + 3𝑧 = 9
3𝑥 − 𝑧 = 3

.

13 Analysis

Similar to linear algebra, also analysis [158] is omnipresent in nearly all applications
of mathematics. In general, analysis deals with examining convergence, limits of
functions, differentiation, integration as well as metrics. In this chapter, we provide
an introduction to these topics and demonstrate how to conduct a numerical analysis
using R.

13.1 Introduction

Differentiation and integration are fundamental mathematical concepts, having a
wide range of applications in many areas of science, particularly in physics, chemistry,
and engineering [158]. Both concepts are intimately connected, as integration is
the inverse process of differentiation, and vice versa. These concepts are especially
important for descriptive models, e. g., providing information about the position of
an object in space and time (physics) or the temporal evolution of the price of a stock
(finance). Such models require the precise definition of the functional, describing the
system of interest, and related mathematical objects defining the dynamics of the
system.

13.2 Limiting values

The concept of limiting values forms the basis of many areas in mathematics [158].
For instance, limiting values are important for investigating the values of functions.
For a given function, 𝑓(𝑥), we can distinguish two types of limiting values:
– If 𝑥 goes to ±∞
– If 𝑥 goes to a finite value 𝑥0

Before we begin investigating limiting values, we introduce a class of functions,
namely, real sequences. For limiting values of complex sequences or functions, we
refer to the reader to [158].

Definition 13.2.1. A real sequence is a function 𝑎𝑛 : N −→ R.

We also write (𝑎𝑛)𝑛∈N = (𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑛, . . .). Typical examples of sequences
include:

(𝑎𝑛)𝑛∈N =
(︂

1
2 ,

1
4 ,

1
6 , . . .

)︂
, (13.1)

(𝑏𝑛)𝑛∈N =
(︀
13, 23, 33 . . .

)︀
. (13.2)

https://doi.org/10.1515/9783110564990-013

230 | 13 Analysis

From the above sequences, it can be observed that 𝑎𝑛 and 𝑏𝑛 have the closed forms:
𝑎𝑛 = 1

2𝑛 and 𝑏𝑛 = 𝑛3, respectively. Now, we are ready to define the limiting value
of a real sequence.

Definition 13.2.2. A number 𝑙 is called the limiting value or limes of a given real
sequence (𝑎𝑛)𝑛∈N, if for all 𝜀 > 0 exists 𝑁0(𝜀) such that |𝑎𝑛−𝑙| < 𝜀, for all 𝑛 > 𝑁0(𝜀).
In this case, the sequence, (𝑎𝑛)𝑛∈N, is said to converge to 𝑙, and the following short-
hand notation is used to summarize the previous statement: lim𝑛−→∞ 𝑎𝑛 = 𝑙.

Example 13.2.1. Let us consider the sequence 𝑎𝑛 = 1 − 1
𝑛 . We want to show that

(𝑎𝑛)𝑛∈N converges to 1. By setting 𝑙 = 1 in Definition 13.2.2, we obtain

|𝑎𝑛 − 1| =
⃒⃒⃒⃒⃒⃒(︂

1 − 1
𝑛

)︂
− 1

⃒⃒⃒⃒⃒⃒
=

⃒⃒⃒⃒⃒⃒
1
𝑛

⃒⃒⃒⃒⃒⃒
= 1

𝑛
< 𝜀. (13.3)

Thus, we find 𝑛 > 1
𝜀 =: 𝑁0(𝜀). In summary, for all 𝜀 > 0, there exists a number

𝑁0(𝜀) := 1
𝜀 such that |𝑎𝑛 − 1| < 𝜀 for all 𝑛 > 𝑁0(𝜀) := 1

𝜀 . For example, if we
set 𝜀 = 1

10 , then 𝑛 ≥ 11. This means that for all elements of the given sequence
𝑎𝑛 = 1 − 1

𝑛 , starting from 𝑛 = 11, |𝑎𝑛 − 1| < 1
10 holds.

In Figure 13.1, we visualize the concept introduced in Definition 13.2.2.

Figure 13.1: Elements of the sequence 𝑎𝑛 = 1 − 1
𝑛

are shown as points. The elements that lie in
the 𝜀-strip are indicated by green points.

Before we give some examples of basic limiting values of sequences, we provide the
following proposition, which is necessary for the calculations that follow [158].

Proposition 13.2.1. Let (𝑎𝑛)𝑛∈N and (𝑏𝑛)𝑛∈N be two convergent sequences with
lim𝑛−→∞ 𝑎𝑛 = 𝑎 and lim𝑛−→∞ 𝑏𝑛 = 𝑏. Then, the following relationships hold:

lim
𝑛→∞

(𝑎𝑛 + 𝑏𝑛) = lim
𝑛→∞

𝑎𝑛 + lim
𝑛→∞

𝑏𝑛 = 𝑎 + 𝑏, (13.4)

13.2 Limiting values | 231

lim
𝑛→∞

(𝑎𝑛 · 𝑏𝑛) = lim
𝑛→∞

𝑎𝑛 · lim
𝑛→∞

𝑏𝑛 = 𝑎 · 𝑏, (13.5)

lim
𝑛→∞

𝑎𝑛

𝑏𝑛
= lim𝑛→∞ 𝑎𝑛

lim𝑛→∞ 𝑏𝑛
= 𝑎

𝑏
. (13.6)

Example 13.2.2. Let us examine the convergence of the following two sequences:

𝑎𝑛 = 3𝑛 + 1
𝑛 + 5 , (13.7)

𝑏𝑛 = (−1)𝑛. (13.8)

For 𝑎𝑛, we have

lim
𝑛→∞

3𝑛 + 1
𝑛 + 5 = lim

𝑛→∞

𝑛(3 + 1
𝑛)

𝑛(1 + 5
𝑛)

=
lim𝑛→∞(3 + 1

𝑛)
lim𝑛→∞(1 + 5

𝑛)

=
3 + lim𝑛→∞(1

𝑛)
1 + lim𝑛→∞(5

𝑛)
= 3 + 0

1 + 0 = 3. (13.9)

Note that the sequences lim𝑛→∞(1
𝑛) and lim𝑛→∞(5

𝑛) converge to 0. By examining
the values of 𝑏𝑛, we observe that its values alternate, i. e., they always flip between
−1 and 1. According to Definition 13.2.2, the sequence 𝑏𝑛 is not convergent and,
hence, does not have a limiting value.

In the following, we generalize the concept of limiting values of sequences to
functions.

Definition 13.2.3. Let 𝑓(𝑥) be a real function and 𝑥𝑛 a sequence that belongs to
the domain of 𝑓(𝑥). If all sequences of the values 𝑓(𝑥𝑛) converge to 𝑙, then 𝑙 is called
the limiting value for 𝑥 → ±∞, and we write lim𝑥→±∞ = 𝑙.

For a general function, 𝑓 : 𝑋 → 𝑌 , we call the set 𝑋 domain and 𝑌 the co-
domain of function 𝑓 .

Example 13.2.3. Let us determine the limiting value of the function 𝑓(𝑥) = 2𝑥−1
𝑥

for large and positive 𝑥. This means, we examine lim𝑥→∞
2𝑥−1

𝑥 and find

lim
𝑥→∞

2𝑥 − 1
𝑥

= lim
𝑥→∞

(︂
2 − 1

𝑥

)︂
= 2 − lim

𝑥→∞

(︂
1
𝑥

)︂
= 2. (13.10)

Here, we used Proposition 13.2.1 for functions as it can be formulated accordingly
(see [158]).

The limiting value of 𝑓(𝑥) = 2𝑥−1
𝑥 for large 𝑥 can be seen in Figure 13.2.

We conclude this section by stating the definition for the convergence of a func-
tion, 𝑓(𝑥), if 𝑥 tends to a finite value 𝑥0.

Definition 13.2.4. Let 𝑓(𝑥) be a real function defined in a neighborhood of 𝑥0. If
for all sequences 𝑥𝑛 in the domain of 𝑓(𝑥) with 𝑥𝑛 → 𝑥0, 𝑥𝑛 ̸ = 𝑥0 the equation

232 | 13 Analysis

Figure 13.2: Limiting value for 𝑓(𝑥) = 2𝑥−1
𝑥

with 𝑙 = 2.

lim𝑛→∞ 𝑓(𝑥𝑛) = 𝑙 holds, we call 𝑙 the limiting value of 𝑓(𝑥) at 𝑥0. Symbolically, we
write lim𝑥→𝑥0 𝑓(𝑥) = 𝑙.

Example 13.2.4. Let us calculate the limiting value of lim𝑥→−2
2𝑥3−8𝑥

𝑥+2 . Note that
the function 𝑓(𝑥) = 2𝑥3−8𝑥

𝑥+2 is not defined at 𝑥 = −2. However, if we factorize
2𝑥3 − 8𝑥, we obtain 2𝑥3 − 8𝑥 = 2𝑥(𝑥 + 2)(𝑥 − 2). Hence, we obtain

lim
𝑥→−2

2𝑥3 − 8𝑥

𝑥 + 2 = lim
𝑥→−2

2𝑥(𝑥 + 2)(𝑥 − 2)
𝑥 + 2 = lim

𝑥→−2
2𝑥(𝑥 − 2) = 16. (13.11)

The following sections will utilize the concepts introduced here to define differenti-
ation and integration.

13.3 Differentiation

Let 𝑓 : R −→ R be a given continuous function. Then, 𝑓 is called differentiable at
the point 𝑥0 if the following limit exists:

lim
ℎ−→0

𝑓(𝑥0 + ℎ) − 𝑓(𝑥0)
ℎ

. (13.12)

If 𝑓 is differentiable at the point 𝑥0, the derivative of 𝑓 denoted d𝑓(𝑥)
d𝑥 or 𝑓 ′(𝑥) is

finite at 𝑥0, and can be approximated by

𝑓 ′(𝑥0) = d𝑓(𝑥0)
d𝑥

≈ 𝑓(𝑥0 + ℎ) − 𝑓(𝑥ℎ)
ℎ

, for ℎ −→ 0. (13.13)

Therefore, the derivative of a function 𝑓 at a point 𝑥0 can be viewed as the slope of
the tangent line of 𝑓(𝑥) at the point 𝑥0, as illustrated geometrically in Figure 13.3.
The tangent line in Figure 13.3 (left) corresponds to the limit of the displacement

13.3 Differentiation | 233

of the secant line in Figure 13.3 (left) when ℎ tends to zero, i. e., when 𝑥0 + ℎ is
getting closer to 𝑥0. The intermediate dashed lines correspond to the different po-
sitions of the secant line as ℎ decreases to 0. Figure 13.3 (right) shows the tangent
line when ℎ ≈ 0, i. e., 𝑥0 ≈ 𝑥0 + ℎ, which corresponds approximately to equa-
tion (13.13).

Figure 13.3: Geometric interpretation of the derivative.

The above approximation can be extended to multivariate real functions as follows:
Let 𝑓 be a scalar valued multivariable real function, i. e., 𝑓 : R𝑛 −→ R. Then, the
first-order partial derivative of 𝑓 at a point 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) with respect to the
variable 𝑥𝑖, generally denoted 𝜕𝑓(𝑥)

𝜕𝑥𝑖
or 𝜕𝑥𝑖𝑓(𝑥), is defined as follows:

𝜕𝑓(𝑥)
𝜕𝑥𝑖

= lim
ℎ−→0

𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑖 + ℎ, . . . , 𝑥𝑛) − 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑖, . . . , 𝑥𝑛)
ℎ

. (13.14)

Definition 13.3.1. The differential of 𝑓 is given by

𝑑𝑓 = 𝜕𝑓

𝜕𝑥1
𝑑𝑥1 + 𝜕𝑓

𝜕𝑥2
𝑑𝑥2 + · · · + 𝜕𝑓

𝜕𝑥𝑖
𝑑𝑥𝑖 + · · · + 𝜕𝑓

𝜕𝑥𝑛
𝑑𝑥𝑛.

Definition 13.3.2. The gradient of a function 𝑓 , denoted ∇𝑓 , is defined, in Cartesian
coordinates, as follows:

∇𝑓 = 𝜕𝑓

𝜕𝑥1
𝑒1 + 𝜕𝑓

𝜕𝑥2
𝑒2 + · · · + 𝜕𝑓

𝜕𝑥𝑖
𝑒𝑖 + · · · + 𝜕𝑓

𝜕𝑥𝑛
𝑒𝑛,

where the 𝑒𝑘, 𝑘 = 1, . . . , 𝑛, are the orthogonal unit vectors pointing in the coordinate
directions. Thus, in (R𝑛, ‖ · ‖2), where ‖𝑥‖2 =

√︀
⟨𝑥, 𝑥⟩ is the Euclidian norm, the

234 | 13 Analysis

gradient of 𝑓 can be rewritten as follows:

∇𝑓 = 𝑑𝑓𝑇 =
(︂

𝜕𝑓

𝜕𝑥1
,

𝜕𝑓

𝜕𝑥2
, . . . ,

𝜕𝑓

𝜕𝑥𝑛

)︂𝑇

.

When 𝑓 is a function of a single variable, i. e., 𝑛 = 1, then ∇𝑓 = 𝑓 ′.

The orthogonal unit vectors 𝑒𝑖 are explicitly given by

𝑒𝑖 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

..

..

0
0
.

0
1
0
.

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(13.15)

with a 1 at the 𝑖th component and zeros otherwise.

Definition 13.3.3. The Hessian of 𝑓 , denoted ∇2𝑓 , is an 𝑛×𝑛 matrix of second-order
partial derivatives of 𝑓 , if these exist, organized as follows:

∇2𝑓 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝜕2𝑓

𝜕𝑥1𝜕𝑥1
𝜕2𝑓

𝜕𝑥1𝜕𝑥2
. . . 𝜕2𝑓

𝜕𝑥1𝜕𝑥𝑛

𝜕2𝑓
𝜕𝑥2𝜕𝑥1

𝜕2𝑓
𝜕𝑥2𝜕𝑥2

. . . 𝜕2𝑓
𝜕𝑥2𝜕𝑥𝑛

..

. ...
. . .

...
𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥1
𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥2
. . . 𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎦ .

Thus, the Hessian matrix describes the local curvature of the function 𝑓 .

Example 13.3.1. Let 𝑓 : R3 ↦→ R defined by 𝑓(𝑥) = 𝑓(𝑥1, 𝑥2, 𝑥3) = 𝑥3
1+𝑥2

2+log(𝑥3).
Then,

∇𝑓(𝑥) =
(︁

3𝑥2
1, 2𝑥2, 1

𝑥3

)︁𝑇

,

and

∇2𝑓(𝑥) =

⎛⎜⎝6𝑥1 0 0
0 2 0
0 0 − 1

𝑥2
3

⎞⎟⎠ .

At the point �̄� = (1, 1/2, 1), we have ∇𝑓(�̄�) = (3, 1, 1) and

∇2𝑓(�̄�) =

⎛⎝6 0 0
0 2 0
0 0 −1

⎞⎠ .

13.3 Differentiation | 235

Definition 13.3.4. Let 𝑓 be a multivalued function, i. e., 𝑓 : R𝑛 −→ R𝑚. Then, the
Jacobian of 𝑓 , denoted 𝐽𝑓 , is an 𝑚×𝑛 matrix of the first-order partial derivatives, if
they exist, of the 𝑚 real-valued component functions (𝑓1, 𝑓2, . . . , 𝑓𝑚) of 𝑓 , organized
as follows:

𝐽𝑓 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝜕𝑓1
𝜕𝑥1

𝜕𝑓1
𝜕𝑥2

. . . 𝜕𝑓1
𝜕𝑥𝑛

𝜕𝑓2
𝜕𝑥1

𝜕𝑓2
𝜕𝑥2

. . . 𝜕𝑓2
𝜕𝑥𝑛

..

. ...
. . .

...
𝜕𝑓𝑚

𝜕𝑥1
𝜕𝑓𝑚

𝜕𝑥2
. . . 𝜕𝑓𝑚

𝜕𝑥𝑛

⎤⎥⎥⎥⎥⎥⎥⎦ .

The Jacobian generalizes the gradient of a scalar-valued function of several variables
to 𝑚 real-valued component functions. Therefore, the Jacobian for a scalar-valued
multivariable function, i. e., when 𝑚 = 1, is the gradient.

Example 13.3.2. Let 𝑓 : R3 ↦→ R2 defined by

𝑓(𝑥) = 𝑓(𝑥1, 𝑥2, 𝑥3) =
(︀ 𝑓1(𝑥1,𝑥2,𝑥3)

𝑓2(𝑥1,𝑥2,𝑥3)
)︀

=
(︀ 𝑥1𝑥2

2
𝑥2

3+2𝑥1𝑥2

)︀
.

Then,

𝐽𝑓 (𝑥) =
[︂

𝑥2
2 2𝑥1𝑥2 0

2𝑥2 2𝑥1 2𝑥3

]︂
.

At the point �̄� = (1, 1/2, 1), we have

𝐽𝑓 (�̄�) =
[︂
1/4 1 0
1 2 2

]︂
.

Using R, the gradient of a function 𝑓 at a point 𝑥 is computed using the command
grad(f, x). Since the gradient of a function of a single variable is nothing but the
first derivative of the function, then the same command is used to compute the
derivative of a function of one variable at a given point. By contrast, the Hessian
and the Jacobian of a function 𝑓 at a point 𝑥 are computed using the command
hessian(f, x) and jacobian(f, x), respectively.

For example, the gradient, the Hessian, and the Jacobian of the following func-
tion 𝑓(𝑥, 𝑦, 𝑧) = 𝑥2𝑦 + sin(𝑧) at the point (𝑥 = 2, 𝑦 = 2, 𝑧 = 5) can be computed
using R as follows:

Listing 13.1: Numerical differentiation

#The package "numDeriv" is required here
library(numDeriv)
f <- function(x){x[1]ˆ2*x[2]+ sin(x[3])}
#Computing the gradient of f at the point (2, 2, 5)
grad(f, c(2,2,5))
[1] 8.0000000 4.0000000 0.2836622

236 | 13 Analysis

#Computing the Hessian of f at the point (2, 2, 5)
hessian(f, c(2,2,5))

[,1] [,2] [,3]
[1,] 4.000000e+00 4.000000e+00 -1.800931e-16
[2,] 4.000000e+00 1.684171e-13 -3.068900e-17
[3,] -1.800931e-16 -3.068900e-17 9.589243e-01
#Computing the Jacobian of f at the point (2, 2, 5)
jacobian(f, c(2,2,5))

[,1] [,2] [,3]
[1,] 8 4 0.2836622

Let us consider the following example, from economics, for determining extreme
values of economic functions [182] (see also Example 13.8.1). In this example, the
economic functions of interest are real polynomials [135].

Example 13.3.3. Let

𝐶(𝑥) = 1
3𝑥3 − 3

2𝑥2 + 7 (13.16)

be an economic cost function [182] describing the costs depending on a quantity unit
𝑥. To find the minima of 𝐶(𝑥), we use its derivative, i. e.,

𝐶′(𝑥) = 𝑥2 − 3𝑥. (13.17)

By solving

𝐶′(𝑥) = 𝑥2 − 3𝑥 = 0, (13.18)

we find 𝑥 = 0, and 𝑥 = 3. To check whether 𝑥 = 3 corresponds to a minimum or
maximum, we determine

𝐶′′(𝑥) = 2𝑥 − 3. (13.19)

This yields 𝐶′′(3) = 3 > 0. Hence, we found a minimum of 𝐶(𝑥) at 𝑥 = 3. This can
also be observed, graphically, in Figure 13.4.

In the following section, we provide some formal definitions of extrema of a
function.

13.4 Extrema of a function

The extrema of a function refer to the largest (i. e., maximum) and smallest (i. e.,
minimum) values of a function, either on its entire domain (global or absolute ex-
trema) or within a given range (local extrema). Therefore, we can distinguish four
types of extrema: global maxima, global minima, local maxima, and local minima.
These are illustrated in Figure 13.5.

13.4 Extrema of a function | 237

Figure 13.4: An example of an economic cost function 𝐶(𝑥) with its minimum located at 𝑥 = 3.

Figure 13.5: The four different types of extrema of a function.

In the following, we provide mathematical definitions for the four extrema:

Definition 13.4.1. Let 𝒟 denote the domain of a function 𝑓 . A point 𝑥* ∈ 𝒟 is
called a global maximum of 𝑓 if 𝑓(𝑥*) ≥ 𝑓(𝑥) for all 𝑥 ∈ 𝒟. Then 𝑓(𝑥*) is referred
to as the maximum value of 𝑓 in 𝒟.

Definition 13.4.2. Let 𝒟 denote the domain of a function 𝑓 . A point 𝑥* ∈ 𝒟 is
called a global minimum of 𝑓 if 𝑓(𝑥*) ≤ 𝑓(𝑥) for all 𝑥 ∈ 𝒟. Then 𝑓(𝑥*) is referred
to as the minimum value of 𝑓 in 𝒟.

238 | 13 Analysis

Definition 13.4.3. Let 𝒟 denote the domain of a function 𝑓 , and let ℐ ⊂ 𝒟. A point
𝑥* ∈ ℐ is called a local maximum of 𝑓 if 𝑓(𝑥*) ≥ 𝑓(𝑥) for all 𝑥 ∈ ℐ. Then 𝑓(𝑥*) is
referred to as the maximum value of 𝑓 in ℐ.

Definition 13.4.4. Let 𝒟 denote the domain of a function 𝑓 , and let ℐ ⊂ 𝒟. A point
𝑥* ∈ ℐ is called a local minimum of 𝑓 if 𝑓(𝑥*) ≤ 𝑓(𝑥) for all 𝑥 ∈ ℐ. Then 𝑓(𝑥*) is
referred to as the minimum value of 𝑓 in ℐ.

To characterize extrema of continuous functions, we invoke the well-known
Weierstrass extreme value theorem.

Theorem 13.4.1 (Weierstrass extreme value theorem). Let 𝒟 denote the domain of a
function 𝑓 , and let ℐ = [𝑎, 𝑏] ⊂ 𝒟. If 𝑓 is continuous on ℐ, then 𝑓 achieves both its
maximum value, denoted 𝑀 , and its minimum value, denoted 𝑚. In other words,
there exist 𝑥*

𝑀 and 𝑥*
𝑚 in ℐ such that

– 𝑓(𝑥*
𝑀) = 𝑀 and 𝑓(𝑥*

𝑚) = 𝑚,
– 𝑚 ≤ 𝑓(𝑥) ≤ 𝑀 .

We want to emphasize that extrema of functions possess horizontal tangents.
These extrema can be calculated using basic calculus. Suppose that we have a real
and a continuous function on a domain 𝒟. The points 𝑥 ∈ 𝒟, satisfying the equation
𝑓 ′(𝑥) = 0, are candidates for extrema (maximum or minimum). In Section 13.3,
we explained that the first derivative of a function at a point 𝑥 corresponds to the
slope of the tangent at 𝑥. Therefore, after solving the equation 𝑓 ′(𝑥) = 0 and after
calculating 𝑓 ′′(𝑥), it is necessary to distinguish the following cases:
– 𝑓 ′′(𝑥0) > 0 =⇒ 𝑓(𝑥) has a minimum at 𝑥0 ∈ 𝒟
– 𝑓 ′′(𝑥0) < 0 =⇒ 𝑓(𝑥) has a maximum at 𝑥0 ∈ 𝒟
– 𝑓 ′(𝑥0) = 0, 𝑓 ′′(𝑥0) = 0 and 𝑓 ′′′(𝑥0) ̸ = 0 =⇒ 𝑓(𝑥) has a saddle point at 𝑥0 ∈ 𝒟

For a numerical solution to this problem, the package ggpmisc in R can be used to
find extrema of a function, as illustrated in Listing 13.2. The plot from the output of
the script is shown in Figure 13.6, where the colored dots correspond to the different
extrema of the function

𝑓(𝑥) = 23.279 − 29.3598 exp(−0.00093393𝑥) sin(0.00917552𝑥 + 20.515),

for 𝑥 ∈ [0, 1500].

Listing 13.2: Finding extrema of a function (see Figure 13.6)

#Finding Extrema
library(ggpmisc)
set.seed(10)
x <- 1:1500
f <- function(x) {

23.279 - 29.3598*exp(-0.00093393*x)*sin(0.00917552*x + 20.515)

13.5 Taylor series expansion | 239

}
fx = f(x)
Finding maxima of f(x)
x[ggpmisc:::find_peaks(fx)]
fx[ggpmisc:::find_peaks(fx)]
Finding minima of f(x)
x[ggpmisc:::find_peaks(-fx)]
fx[ggpmisc:::find_peaks(-fx)]
Plotting f(x) and its extrema
ggplot(data = data.frame(x, fx), aes(x = x, y = fx)) + geom_line() +

scale_x_continuous('x') +
scale_y_continuous('f(x)') +
stat_peaks(col = "red") +
stat_valleys(col = "blue")

Figure 13.6: Finding extrema of a function using R, see Listing 13.2.

13.5 Taylor series expansion

A Taylor series expansion is an expression that approximates a smooth function 𝑓(𝑥)
in the neighborhood of a certain point 𝑥 = 𝑥0. In simple terms, this approximation
breaks the nonlinearity of a function down into its polynomial components. This
yields a function that is more linear than 𝑓(𝑥). The simplest, yet most frequently
used approximation, is the linearization of a function. Taylor series expansions have
many applications in mathematics, physics, and engineering. For instance, they are
used to approximate solutions to differential equations, which are otherwise difficult
to solve.

240 | 13 Analysis

Definition 13.5.1. A one-dimensional Taylor series expansion of an infinitely differ-
entiable function 𝑓(𝑥), at a point 𝑥 = 𝑥0, is given by

𝑓(𝑥) =
∞∑︁

𝑛=0

𝑓 (𝑛)(𝑥0)
𝑛! (𝑥 − 𝑥0)𝑛

= 𝑓(𝑥0) + 𝑓 ′(𝑥0)
1! (𝑥 − 𝑥0) + 𝑓 ′′(𝑥0)

2! (𝑥 − 𝑥0)2 + 𝑓 (3)(𝑥0)
3! (𝑥 − 𝑥0)3 + · · ·

where 𝑓 (𝑛) denotes the 𝑛th derivative of 𝑓 .
If 𝑥0 = 0, then the expansion may also be called a Maclaurin series.

Below, we provide examples of Taylor series expansions for some common func-
tions, at a point 𝑥 = 𝑥0:

exp(𝑥) = exp(𝑥0)
[︂
1 + (𝑥 − 𝑥0) + 1

2(𝑥 − 𝑥0)2 + 1
6(𝑥 − 𝑥0)3 + · · ·

]︂
ln(𝑥) = ln(𝑥0) + 𝑥 − 𝑥0

𝑥0
− (𝑥 − 𝑥0)2

2𝑥2
0

+ (𝑥 − 𝑥0)3

3𝑥3
0

− · · ·

cos(𝑥) = cos(𝑥0) − sin(𝑥0)(𝑥 − 𝑥0) − 1
2 cos(𝑥0)(𝑥 − 𝑥0)2 + 1

6 sin(𝑥0)(𝑥 − 𝑥0)3 + · · ·

sin(𝑥) = sin(𝑥0) + cos(𝑥0)(𝑥 − 𝑥0) − 1
2 sin(𝑥0)(𝑥 − 𝑥0)2 − 1

6 cos(𝑥0)(𝑥 − 𝑥0)3 + · · ·

The accuracy of a Taylor series expansion depends on both the function to be
approximated, the point at which the approximation is made, and the number of
terms used in the approximation, as illustrated in Figure 13.7 and Figure 13.8.

Several packages in R can be used to obtain the Taylor series expansion of a
function. For instance, the library Ryacas can be used to obtain the expression of
the Taylor series expansion of a function, which can then be evaluated. The library
pracma, on the other hand, provides an approximation of the function at a given
point using its corresponding Taylor series expansion. The scripts below illustrate
the usage of these two packages.

Listing 13.3: Taylor Series Expression with Ryacas

library(Ryacas)
yacas("texp := Taylor(x,0,5) Exp(x)")
expression(x + xˆ2/2 + xˆ3/6 + xˆ4/24 + xˆ5/120 + 1)
yacas("texp := Taylor(x,0,5) Cos(x)")
expression(1 - xˆ2/2 + xˆ4/24)
yacas("texp := Taylor(x,0,5) Sin(x)")
expression(x - xˆ3/6 + xˆ5/120)

Listing 13.4: Taylor Series Approximation with pracma, see Figure 13.7

Taylor Series Expansion Using pracma
library(pracma)

13.5 Taylor series expansion | 241

library(ggplot2)

fx <- function(x) {
e <- exp(1)
return(eˆx)

}
fxts <- taylor(fx, 0, 5)

x <- seq(-1.0, 1.0, length.out=100)
fxval <- fx(x)
fxapprox <- polyval(fxts, x)

pdata <- data.frame(x, fxval, fxapprox)
ggplot(data = pdata, aes(x = x))+

geom_line(aes(y = fxval, colour = "blue"), size = 1) +
geom_line(aes(y = fxapprox, colour = "red"))+
labs(y= "f(x)") +
scale_color_discrete(name = " ", labels = c("f(x)=exp(x)",

"Taylor series approximation of f(x)"))+
theme(legend.position="top")

Figure 13.7, produced using Listing 13.4, shows the graph of the function 𝑓(𝑥) =
exp(𝑥) alongside its corresponding Taylor approximation of order 𝑛 = 5, for 𝑥 ∈
[−1, 1]. It is clear that this Taylor series approximation of the function 𝑓(𝑥) is quite
accurate for 𝑥 ∈ [−1, 1], since the graphs of the both functions match in this inter-
val.

Figure 13.7: Taylor series approximation of the function 𝑓(𝑥) = exp(𝑥). The approximation
order is 𝑛 = 5.

On the other hand, Figure 13.8, produced using Listing 13.5, shows the graph of
the function 𝑓(𝑥) = 1

1−𝑥 alongside its corresponding Taylor approximation of order
𝑛 = 5, for 𝑥 ∈ [−1, 1]. The Taylor series approximation of the function 𝑓(𝑥) is

242 | 13 Analysis

accurate on most of the interval 𝑥 ∈ [−1, 1], except nearby 1, where the function
𝑓(𝑥) and its Taylor approximation diverge. In fact, when 𝑥 tends to 1, 𝑓(𝑥) tends
to ∞, and the corresponding Taylor series approximation cannot keep pace with the
growth of the function 𝑓(𝑥).

Listing 13.5: Taylor Series Approximation (see Figure 13.8)

Taylor Series Expansion Using pracma
library(pracma)
library(ggplot2)

fx <- function(x) (1/(1-x))
fxts <- taylor(fx, 0, 5)

x <- seq(-1.0, 1.0, length.out=100)
fxval <- fx(x)
fxapprox <- polyval(fxts, x)

pdata <- data.frame(x, fxval, fxapprox)
ggplot(data = pdata, aes(x = x))+

geom_line(aes(y = fxval, colour = "blue"), size = 1) +
geom_line(aes(y = fxapprox, colour = "red"))+
labs(y= "f(x)") +
scale_color_discrete(name = " ", labels = c("f(x)=exp(x)",

"Taylor series approximation of f(x)"))+
theme(legend.position="top")

Figure 13.8: Taylor series approximation of the function 𝑓(𝑥) = 1
1−𝑥

. The approximation order
is 𝑛 = 5.

13.6 Integrals | 243

13.6 Integrals

The integral of a function 𝑓(𝑥) over the interval [𝑎, 𝑏], denoted
∫︀ 𝑏

𝑎
𝑓(𝑥)d𝑥, is given

by the area between the graph of 𝑓(𝑥) and the line 𝑓(𝑥) = 0, where 𝑎 ≤ 𝑥 ≤ 𝑏.

Definition 13.6.1 (Definite integral). The definite integral of a function 𝑓(𝑥) from 𝑎

to 𝑏 is denoted
𝑏∫︁

𝑎

𝑓(𝑥)d𝑥.

Definition 13.6.2 (Indefinite integral). The indefinite integral of a function 𝑓(𝑥) is a
function 𝐹 (𝑥) such that its derivative is 𝑓(𝑥), i. e., 𝐹 ′(𝑥) = 𝑓(𝑥), and it is denoted∫︁

𝑓(𝑥)d𝑥 = 𝐹 (𝑥) + 𝐶.

The function 𝐹 is also referred to as the antiderivative of 𝑓 , whereas 𝐶 is the called
the integration constant.

Theorem 13.6.1 (Uniqueness Theorem). If two functions, 𝐹 and 𝐺, are antideriva-
tives of a function 𝑓 on an interval 𝐼, then there exists a constant 𝐶 such that

𝐹 (𝑥) = 𝐺(𝑥) + 𝐶.

This result justifies the integration constant 𝐶 for the indefinite integral.

Theorem 13.6.2 (First fundamental theorem of calculus). Let 𝑓 be a bounded func-
tion on the interval [𝑎, 𝑏] and continuous on (𝑎, 𝑏). Then, the function

𝐹 (𝑥) =
𝑥∫︁

𝑎

𝑓(𝑧)d𝑧, 𝑎 ≤ 𝑥 ≤ 𝑏.

has a derivative at each point in (𝑎, 𝑏) and

𝐹 ′(𝑥) = 𝑓(𝑥), 𝑎 < 𝑥 < 𝑏.

Theorem 13.6.3 (Second fundamental theorem of calculus). Let 𝑓 be a bounded func-
tion on the interval [𝑎, 𝑏] and continuous on (𝑎, 𝑏). Let 𝐹 be a continuous function
on [𝑎, 𝑏] such that 𝐹 ′(𝑥) = 𝑓(𝑥) on (𝑎, 𝑏). Then,

𝑏∫︁
𝑎

𝑓(𝑥)d𝑥 = 𝐹 (𝑏) − 𝐹 (𝑎).

The results from the above theorems demonstrate that the differentiation is
simply the inverse of integration.

244 | 13 Analysis

13.6.1 Properties of definite integrals

The following properties are useful for evaluating integrals.
1. Order of integration:

∫︀ 𝑏

𝑎
𝑓(𝑥)d𝑥 = −

∫︀ 𝑎

𝑏
𝑓(𝑥)d𝑥.

2. Zero width interval:
∫︀ 𝑎

𝑎
𝑓(𝑥)d𝑥 = 0.

3. Constant multiple:
∫︀ 𝑏

𝑎
𝑘𝑓(𝑥)d𝑥 = 𝑘

∫︀ 𝑏

𝑎
𝑓(𝑥)d𝑥.

4. Sum and difference:
∫︀ 𝑏

𝑎
(𝑓(𝑥) ± 𝑔(𝑥))d𝑥 =

∫︀ 𝑏

𝑎
𝑓(𝑥)d𝑥 ±

∫︀ 𝑏

𝑎
𝑔(𝑥)d𝑥.

5. Additivity:
∫︀ 𝑏

𝑎
𝑓(𝑥)d𝑥 +

∫︀ 𝑐

𝑏
𝑓(𝑥)d𝑥 =

∫︀ 𝑐

𝑎
𝑓(𝑥)d𝑥.

13.6.2 Numerical integration

The antiderivative, 𝐹 (𝑥), is not always easy to obtain analytically. Therefore, the
integral is often approximated numerically. The numerical estimation is generally
carried out as follows: The interval [𝑎, 𝑏] is subdivided into 𝑛 ∈ N subintervals. Let
Δ𝑥𝑖 = 𝑥𝑖+1 − 𝑥𝑖 denote the length of the 𝑖th subinterval, 𝑖 = 1, 2, 3 . . . , 𝑛, and let �̃�𝑖

be a value in the subinterval [𝑥𝑖, 𝑥𝑖+1]. Then,

𝑏∫︁
𝑎

𝑓(𝑥)d𝑥 ≈
𝑛∑︁

𝑖=1
𝑓(�̃�𝑖)Δ𝑥𝑖. (13.20)

The last term in equation (13.20) is known as the Riemann sum. When 𝑛 tends to
∞, then Δ𝑥𝑖 tends to 0, for all 𝑖 = 1, 2, 3 . . . , 𝑛, and, consequently, the Riemann
sum tends toward the real value of the integral of 𝑓(𝑥) over the interval [𝑎, 𝑏], as
illustrated in Figure 13.9.

Figure 13.9: Geometric interpretation of the integral. Left: Exact form of an integral. Right:
Numerical approximation.

13.7 Polynomial interpolation | 245

Using R, a one-dimensional integral over a finite or infinite interval is computed
using the command integrate(f, lowerLimit, upperLimit), where f is the func-
tion to be integrated, lowerLimit and upperLimit are the lower and upper limits
of the integral, respectively.

The integral
∫︀ +∞

−∞
1√
2𝜋

𝑒− (𝑥−5)2
2 𝑑𝑥 can be computed as follows:

Listing 13.6: One-dimensional numerical integration

f <- function(x) {1/sqrt(2*pi)*exp(-(x-5)ˆ2/2)}
#Computing the integral of f
integrate(f, lower = -Inf, upper = Inf)
1 with absolute error < 2e-06
#This means that the numerical estimation of the integral is 1 with

an absolute error less than 2e-6

Using R, an 𝑛-fold integral over a finite or infinite interval is computed using the
command adaptIntegrate(f, lowerLimit, upperLimit).

The integral
∫︀ 3

0
∫︀ 5

1
∫︀ −1

−2
5
2 sin(𝑥) cos(𝑦𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧 can be computed as follows:

Listing 13.7: Example of 𝑛-dimensional numerical integration

#The package "cubature" is required here
library(cubature)
#Let us pose "x[1]=x", "x[2]=y", "x[3]=z"
f<-function(x){5/2*sin(x[1])*cos(x[2]*x[3])}
#Lower limits of the integral
lb <- c(0,1,-2)
#Upper limits of the integral
ub <- c(3,5,-1)
adaptIntegrate(f,lowerLimit=lb,upperLimit=ub)
$integral
[1] -2.740785 #Numerical estimation of the integral
$error
[1] 2.732541e-05 #Relative error of the numerical estimation

13.7 Polynomial interpolation

In many applications, results of experimental measurements are available in the
form of discrete data sets. However, efficient exploitation of these data requires their
synthetic representation by means of elementary (continuous) functions. Such an
approximation, also termed data fitting, is the process of finding a function, generally
a polynomial, whose graph will pass through a given set of data points.

Let (𝑥𝑖, 𝑦𝑖), 𝑖 = 0, . . . , 𝑚 be 𝑚 + 1, given pairs of data. Then, the problem of
interest is to find a polynomial function of degree 𝑛, 𝑃𝑛(𝑥), such that 𝑃𝑛(𝑥𝑖) = 𝑦𝑖

for 𝑖 = 0, . . . , 𝑚, i. e.,

𝑃𝑛(𝑥𝑖) = 𝑎𝑛𝑥𝑛
𝑖 + 𝑎𝑛−1𝑥𝑛−1

𝑖 + · · · + 𝑎1𝑥𝑖 + 𝑎0 = 𝑦𝑖, 𝑖 = 0, . . . , 𝑚. (13.21)

246 | 13 Analysis

Note that this approach was developed by Lagrange, and the resulting interpola-
tion polynomial is referred to as the Lagrange polynomial [99, 131]. When 𝑛 = 1
and 𝑛 = 2, the process is called a linear interpolation and quadratic interpolation,
respectively.

Let us consider the following data points:

𝑥𝑖 1 2 3 4 5 6 7 8 9 10

𝑦𝑖 −1.05 0.25 1.08 −0.02 −0.27 0.79 −1.02 −0.17 0.97 2.06

Using R, the Lagrange polynomial interpolation for the above pairs of data points
(𝑥, 𝑦) can be carried out using Listing 13.8. In Figure 13.10 (left), which is an output
of Listing 13.8, the interpolation points are shown as dots, whereas the corresponding
Lagrange polynomial is represented by the solid line.

Figure 13.10: Left: Polynomial interpolation of the data points in blue. Right: Roots of the in-
terpolation polynomial.

Listing 13.8: Polynomial interpolation, see Fig. 13.10
#The packages "polynom" and "ggplot2" are required here
library(polynom)
library(ggplot2)
x <- 1:10
y <- c(-1.05, 0.25, 1.08, -0.02, -0.27, 0.79, -1.02,-0.17, 0.97,

2.06)
poly.calc(x, y)
-229 + 641.943*x - 728.7627*xˆ2 + 445.0133*xˆ3 - 162.3738*xˆ4 +

36.9856*xˆ5 - 5.29601*xˆ6 + 0.4626149*xˆ7 - 0.02249529*xˆ8 +
0.0004662423*xˆ9

#Plotting the interpolation polynomial and the data
Px<-function(x)

13.8 Root finding methods | 247

{
-229 + 641.943*x - 728.7627*xˆ2 + 445.0133*xˆ3 - 162.3738*xˆ4 +

36.9856*xˆ5 - 5.29601*xˆ6 + 0.4626149*xˆ7 -
0.02249529*xˆ8 + 0.0004662423*xˆ9
}
xy<-data.frame(x, y)
ggplot(data.frame(x=c(1, 10)), aes(x))+ stat_function(fun=Px,

colour="red") + geom_point(data=xy, aes(x, y),colour = "blue",
size=3)+

scale_x_continuous('x') + scale_y_continuous('y=P(x)') +
theme(legend.position = "none") + theme_bw()

13.8 Root finding methods

One of the fundamental problems in applied mathematics concerns the identification
of roots of complex and real functions [135]. Given a function 𝑓 , a root of 𝑓 is a
value of 𝑥 such that 𝑓(𝑥) = 0. In this case, 𝑥 is also called a zero of 𝑓 . In cases
where 𝑓 is considered to be an algebraic polynomial with real or complex-valued
coefficients, established results are available to determine the roots analytically by
closed expressions. Let

𝑓(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + · · · + 𝑎1𝑥 + 𝑎0 (13.22)

be a real polynomial, i. e., its coefficients are real numbers, and 𝑛 is the degree of
this polynomial.

Then we write deg(𝑓(𝑥)) = 𝑛.
If 𝑛 = 2,

𝑓(𝑥) = 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0 = 0 (13.23)

yields the following (see [135] for more detail):

𝑥1,2 =
−𝑎1 ±

√︀
𝑎2

1 − 4𝑎2𝑎0
2𝑎2

. (13.24)

For 𝑛 = 3,

𝑓(𝑥) = 𝑎3𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0 = 0, (13.25)

leads to the formulas due to Cardano [135]. For some special cases where 𝑛 = 4,
analytical expressions are also known. In general, the well-known theorem due to
Abel and Ruffini [184] states that general polynomials with deg(𝑓(𝑥)) ≥ 5 are not
solvable by radicals. Radicals are 𝑛th root expressions that depend on the polynomial
coefficients. Another classical theorem proves the existence of a zero of a continuous
function.

248 | 13 Analysis

Theorem 13.8.1 (Intermediate value theorem). Let 𝑓 : R −→ R be a continuous
function, and let 𝑎 and 𝑏 ∈ R with 𝑎 < 𝑏 and such that 𝑓(𝑎) and 𝑓(𝑏) are nonzero
and of opposite signs. Then, there exists 𝑥* with 𝑎 < 𝑥* < 𝑏 such that 𝑓(𝑥*) = 0.

Using R, the root(s) of a function, within a specified interval, can be obtained
via the package rootSolve.

Let us consider the following function:

𝑓(𝑥) = 𝑎0 +𝑎1𝑥+𝑎2𝑥2 +𝑎3𝑥3 +𝑎4𝑥4 +𝑎5𝑥5 +𝑎6𝑥6 +𝑎7𝑥7 +𝑎8 *𝑥8 +𝑎9𝑥9, (13.26)

where 𝑎0 = −229, 𝑎1 = 641.943, 𝑎2 = −728.7627, 𝑎3 = 445.0133, 𝑎4 = −162.3738,
𝑎5 = 36.9856, 𝑎6 = −5.29601, 𝑎7 = 0.4626149, 𝑎8 = −0.02249529, 𝑎9 =
0.0004662423.

Using the function uniroot.all from the package rootSolve, the root(s) of
the function (13.26) within the interval [1, 10] can be obtained using Listing 13.9.
In Figure 13.10 (right), which is an output of Listing 13.9, the function 𝑓(𝑥) is
represented by the solid line, whereas its corresponding roots in the interval [0, 10]
are shown as dots. Obviously, all the roots lie on the horizontal line 𝑓(𝑥) = 0.

Listing 13.9: Finding root(s) of a function, see Fig. 13.10

#The packages "rootSolve" and "ggplot2" are required here
library(rootSolve)
library(ggplot2)
fx <- function (x)
{
-229 + 641.943*x - 728.7627*xˆ2 + 445.0133*xˆ3 - 162.3738*xˆ4 +

36.9856*xˆ5 - 5.29601*xˆ6 + 0.4626149*xˆ7 - 0.02249529*xˆ8 +
0.0004662423*xˆ9

}
#Getting the roots of the function f, if they exist
roots <- uniroot.all(fx, c(1, 10))
roots
[1] 1.045204 3.987667 5.189483 6.551222 8.061845 9.112360

9.959951
#The values of f evaluated at the roots rounds to zero
froots<-round(fx(roots))
froots
[1] 0 0 0 0 0 0 0
#Plotting the function f and its roots in the interval [1, 10]
rootsdata<-data.frame(roots, froots)
ggplot(data.frame(x=c(1, 10)), aes(x)) + stat_function(fun=fx,

colour="purple") + geom_point(data=rootsdata, aes(roots,
froots), colour="sienna1", size=3) + scale_x_continuous('x') +
scale_y_continuous('f(x)') + theme(legend.position = "none") +
theme_bw()

Example 13.8.1. In economics, for example, root-finding methods and basic deriva-
tives find frequent application [182]. For instance, these are used to explore profit and
revenue functions (see [182]). Generally, the revenue function 𝑅(𝑥) and the profit

13.8 Root finding methods | 249

function 𝑃 (𝑥) are defined by

𝑅(𝑥) = 𝑝𝑥, (13.27)

and

𝑃 (𝑥) = 𝑅(𝑥) − 𝐶(𝑥), (13.28)

respectively [182]. Here, 𝑥 is a unit of quantity, 𝑝 is the sales price per unit of
quantity, and 𝐶(𝑥) is a cost function. The unit of quantity 𝑥 is the variable and 𝑝

is a parameter, i. e., a fixed number. Suppose that we have a specific profit function
defined by

𝑃 (𝑥) = − 1
10𝑥2 + 50𝑥 − 480. (13.29)

This profit function 𝑃 (𝑥) is shown in Figure 13.11, and to find its maximum, we
need to find the zeros of its derivative:

𝑃 ′(𝑥) = − 2
10𝑥 + 50 = 0. (13.30)

From this, we find 𝑥 = 250. Using this value, we obtain the maximizing unit of
quantity for 𝑃 (𝑥), i. e., 𝑃 (250) = 5770. To find the so-called break-even points, it is
necessary to identify the zeros of 𝑃 (𝑥), i. e.,

𝑃 (𝑥) = − 1
10𝑥2 + 50𝑥 − 480 = 0. (13.31)

Between the two zeros of 𝑃 (𝑥), we make a profit. Outside this interval, we make
a loss. Therefore,

𝑥2 − 500𝑥 + 4800 = 0 (13.32)

yields to

𝑥1,2 = 500
2 ±

√︃(︂
500
2

)︂2
− 4800. (13.33)

Specifically, 𝑥1 = 480.02, and 𝑥2 = 9.79. This means that the profit interval of 𝑃 (𝑥)
corresponds to [9.79, 480.02]. Graphically, this is also evident in Figure 13.11.

When the zeros of polynomials cannot be calculated explicitly, techniques for
estimating bounds are required. For example, various bounds have been proven for
real zeros (positive and negative), as well as for complex zeros [50, 135, 155]. For the
latter case, bounds for the moduli of a given polynomial are sought. Zero bounds
have proven useful in cases where the degree of a given polynomial is large and,
therefore, numerical techniques may fail.

250 | 13 Analysis

Figure 13.11: An example of a profit function. The profit interval of the profit function is its
positive part between the zeros 9.79 and 480.02.

The following well-known theorems are attributed to Cauchy [155]:

Theorem 13.8.2. Let

𝑓(𝑧) = 𝑎𝑛𝑧𝑛 + 𝑎𝑛−1𝑧𝑛−1 + · · · + 𝑎0 , 𝑎𝑛 ̸ = 0, 𝑎𝑘 ∈ C , 𝑘 = 0, 1, . . . , 𝑛, (13.34)

be a complex polynomial. All the zeros of 𝑓(𝑧) lie in the closed disk |𝑧| ≤ 𝜌. Here, 𝜌

is the positive root of another equation, namely

|𝑎0| + |𝑎1|𝑧 + · · · + |𝑎𝑛−1|𝑧𝑛−1 − |𝑎𝑛|𝑧𝑛 = 0. (13.35)

Theorem 13.8.3. Let 𝑓(𝑧) be a complex polynomial given by equation (13.34). All
the zeros of 𝑓(𝑧) lie in the closed disk

|𝑧| ≤ 1 + max
0≤𝑗≤𝑛−1

⃒⃒⃒⃒⃒⃒
𝑎𝑗

𝑎𝑛

⃒⃒⃒⃒⃒⃒
. (13.36)

Below, we provide some examples, which illustrate the results from these two
theorems.

Example 13.8.2. Let 𝑓(𝑧) := 𝑧3 +4𝑧2 +1000𝑧 +99 be a polynomial, whose real and
complex zeros are as follows:

𝑧1 = −0.099 , (13.37)
𝑧2 = −1.950 − 31.556𝑖 , (13.38)

13.9 Further reading | 251

𝑧3 = −1.950 + 31.556𝑖 , (13.39)
|𝑧1| = 0.099, (13.40)
|𝑧2| = |𝑧3| = 31.616. (13.41)

Using Theorem 13.8.2 and Theorem 13.8.3 gives the bounds 𝜌 = 33.78 and 1001,
respectively. Considering that the largest modulus of 𝑓(𝑧) is max(𝑧𝑖) = 31.616,
Theorem 13.8.2 gives a good result. The bound given by Theorem 13.8.3 is useless
for 𝑓(𝑧). This example demonstrates the complexity of the problem of determining
zero bounds efficiently (see [50, 135, 155]).

13.9 Further reading

One of the best, most thorough and yet very readable introduction to analysis, at
the time of writing, is [78]. Another excellent, but more practical textbook is [148].
Unfortunately, both books are only available in German or Russian.

13.10 Exercises

1. Evaluate the gradient, the Hessian, and the Jacobian matrix of the following
functions using R:

𝑓(𝑥, 𝑦) = 𝑦 cos
(︀
𝑥2)︀

+
√︀

𝑥𝑦2 at the point (𝑥 = 𝜋, 𝑦 = 5)

𝑔(𝑥, 𝑦, 𝑧) = 𝑒sin(𝑥*𝑦) + 𝑧 * 𝑦 cos(𝑥 * 𝑦) + 𝑥2 * 𝑦3 +
√

𝑧 at the point
(𝑥 = 5, 𝑦 = 3, 𝑧 = 21)

2. Use R to find the extremum of the function 𝑓(𝑥) = 3𝑥𝑥, and determine whether
it is a minimum or a maximum.

3. Use R to find the global extrema of the function 𝑔(𝑦) = 𝑦3 − 6𝑦2 − 15𝑦 + 100 in
the interval [−3, 6].

4. Use R to find the points, where the function 𝑓(𝑥) = 2𝑦3 − 3𝑦2 achieves its global
minimum and global maximum and the corresponding extreme values.

5. Use R to find the global maximum and minimum of the function 𝑓(𝑥) = 2𝑥2 −
4𝑥 + 6 in the interval [−3, 6]. Calculate the difference between the maximal and
minimal values of 𝑓(𝑥).

6. Use R to find the extrema of the function 𝑓(𝑦) = 𝑦
2
3 (𝑦 + 1)2 on the interval

[−1, 1].
Find the critical numbers of the function 𝑓 .

7. Use R to find the Taylor series expansion of the function 𝑓(𝑥) = ln(1 + 𝑥). Plot
the graph of the function 𝑓 and the corresponding Taylor series approximation
for 𝑥 ∈ [−1; 1].

252 | 13 Analysis

8. Evaluate the following integral using R:

𝐼1 =
𝜋∫︁

−𝜋

sin3 𝑥

cos2 𝑥 + 1 .

9. Use R to find the polynomial interpolation of the following pairs of data points:

𝑥𝑖 1 2 3 4 5 6 7 8 9 10

𝑦𝑖 −2.05 0.75 1.8 −0.02 −0.75 1.71 −2.12 −0.25 1.70 3.55

10. Find the real roots of the following functions using R:

𝑓(𝑥) = 2𝑥 − 1
𝑔(𝑥) = 23𝑥2 − 3𝑥 − 1
ℎ(𝑥) = 23𝑥8 − 3𝑥7 + 𝑥4 − 𝑥2 − 20

14 Differential equations
Differential equations can be seen as applications of the methods from analysis,
discussed in the previous chapter. The general aim of differential equations is to
describe the dynamical behavior of functions [78]. This dynamical behavior is the
result of an equation that contains derivatives of a function. In this chapter, we
introduce ordinary differential equations and partial differential equations [3]. We
discuss the general properties of such equations and demonstrate specific solution
techniques for selected differential equations, including the heat equation and the
wave equation. Due to the descriptive nature of differential equations, physical laws
as well as biological and economical models are often formulated with such models.

14.1 Ordinary differential equations (ODE)

Problems from many fields, such as physics, biology, engineering, and economics can
be modeled using ordinary differential equations (ODEs) or systems of ODEs [3, 78].
A general formulation of a first-order ODE problem is given by

𝑑𝑦(𝑡)
𝑑𝑡

= 𝑦′(𝑡) = 𝑓
(︀
𝑦(𝑡), 𝑡, 𝑘

)︀
, (14.1)

where 𝑡 is the independent variable, 𝑦 : R −→ R𝑛 is called the state vector, 𝑓 :
R𝑛+1 −→ R𝑛 is referred to as the vector-valued function, which controls how 𝑦

changes over 𝑡, and 𝑘 is a vector of parameters. When 𝑛 = 1, the problem is called
a single scalar ODE.

By itself, the ODE problem (14.1) does not provide a unique solution function
𝑦(𝑡). If, in addition to equation (14.1), the initial state at 𝑡 = 𝑡0, 𝑦(𝑡0), is known,
then the problem is called an initial value ODE problem. On the other hand, if some
conditions are specified at the extremes (“boundaries”) of the independent variable
𝑡, e. g., 𝑦(𝑡0) = 𝐶1 and 𝑦(𝑡max) = 𝐶2 with 𝐶1 and 𝐶2 given, then the problem is
called a boundary value ODE problem.

14.1.1 Initial value ODE problems

Initial value ODE problems govern the evolution of a system from its initial state
𝑦(𝑡0) = 𝐶 at 𝑡0 onward, and we are seeking a function 𝑦(𝑡), which describes the
state of the system as a function of 𝑡. Thus, a general formulation of a first-order
initial value ODE problem can be written as follows:

𝑑𝑦(𝑡)
𝑑𝑡

= 𝑦′(𝑡) = 𝑓
(︀
𝑦(𝑡), 𝑡, 𝑘

)︀
for 𝑡 > 𝑡0, (14.2)

𝑦(𝑡0) = 𝐶, (14.3)

where 𝐶 is given.

https://doi.org/10.1515/9783110564990-014

254 | 14 Differential equations

Figure 14.1: Examples of initial value ODE problems. Left: Solutions of the ODE 𝑦′(𝑡) =
2𝑡

1+𝑡 2 (𝑦(𝑡) + 1). Right: Solutions of the ODE 𝑦′(𝑡) = (𝑦(𝑡))2 + 𝑡2 − 1.

Some examples of initial value ODE problems, depicted in Figure 14.1, illustrate the
evolution of the ODE’s solution, depending on its initial condition.

Equation (14.2) may represent a system of ODEs, where

𝑦(𝑡) =
(︀
𝑦1(𝑡), . . . , 𝑦𝑛(𝑡)

)︀𝑇 and 𝑓
(︀
𝑦(𝑡), 𝑡, 𝑘

)︀
=

(︀
𝑓1

(︀
𝑦(𝑡), 𝑡, 𝑘

)︀
, . . . , 𝑓𝑛

(︀
𝑦(𝑡), 𝑡, 𝑘

)︀)︀
,

and each entry of 𝑓(𝑦(𝑡), 𝑡, 𝑘) can be a nonlinear function of all the entries of 𝑦.
The system (14.2) is called linear if the function 𝑓(𝑦(𝑡), 𝑡, 𝑘) can be written as

follows:

𝑓
(︀
𝑦(𝑡), 𝑡, 𝑘

)︀
= 𝐺(𝑡, 𝑘)𝑦 + ℎ(𝑡, 𝑘), (14.4)

where 𝐺(𝑡, 𝑘) ∈ R𝑛×𝑛, and ℎ(𝑡, 𝑘) ∈ R𝑛.
If 𝐺(𝑡.𝑘) is constant and ℎ(𝑡, 𝑘) ≡ 0, then the system (14.4) is called homoge-

neous. The solution to the homogeneous system, 𝑦′(𝑡) = 𝐺𝑦(𝑡) with data 𝑦(𝑡0) = 𝐶,
is given by 𝑦(𝑡) = 𝐶𝑒𝐺(𝑡−𝑡0).

An ODE’s order is determined by the highest-order derivative of the solution
function 𝑦(𝑡) appearing in the ODEs or the systems of ODEs. Higher-order ODEs
or systems of ODEs can be transformed into equivalent first-order system of ODEs.

Let

𝑦(𝑛) = 𝑓
(︀
𝑡, 𝑦, 𝑦′, 𝑦′′, . . . , 𝑦(𝑛−1))︀ (14.5)

be an ODE of order 𝑛. Then, by making the following substitutions:

𝑦1(𝑡) = 𝑦(𝑡), 𝑦2(𝑡) = 𝑦′, . . . , 𝑦𝑛(𝑡) = 𝑦(𝑛−1)(𝑡), (14.6)

14.1 Ordinary differential equations (ODE) | 255

..

Equation (14.5) can be rewritten in the form of a system of 𝑛 first-order ODEs as
follows:

𝑦′
1(𝑡) = 𝑦2(𝑡),

𝑦′
2(𝑡) = 𝑦3(𝑡),

𝑦′
3(𝑡) = 𝑦4(𝑡),

.

𝑦′
𝑛(𝑡) = 𝑓

(︀
𝑡, 𝑦1(𝑡), 𝑦2(𝑡), . . . , 𝑦𝑛(𝑡)

)︀
.

Analytical solutions to ODEs consist of closed-form formulas, which can be
evaluated at any point 𝑡. However, the derivation of such closed-form formulas is
generally nontrivial. Thus, numerical methods are generally used to approximate
values of the solution function at a discrete set of points. Since higher-order ODEs
can be reduced to a system of first-order ODEs, most numerical methods for solving
ODEs are designed to solve first-order ODEs.

In R, numerical methods for solving ODE problems are implemented within the
package deSolve, and the function ode() from the package deSolve is dedicated
to solving initial value ODE problems. Further details about solving differential
equations using R can be found in [177] and [176].

Let us use the function ode() to solve the following ODE problem:

𝑦′ = 𝑘𝑡𝑦 (14.7)

with the initial condition 𝑦(0) = 10, and where 𝑘 = 1/5.
In R, this problem can be solved using Listing 14.1. Figure 14.2 (left), which is

an output of Listing 14.1, shows the evolution of the solution 𝑦(𝑡) to the problem
(14.7), for 𝑡 ∈ [0, 4].

Listing 14.1: Solving an ODE, see Fig. 14.2 (left)

#The packages "deSolve" and "ggplot2" are required here
library(deSolve)
library(ggplot2)
#Defining the parameter in the ODE
k<-1/5
#Defining the initial condition of the ODE
InitialState<-c(y=10)
#Specifying the ODE to be solved
EqODE<-function(t, y, parms) list(k*t*y)
#Defining the time limits and steps
t <- seq(0, 4, by = 0.05)
#Solving the ODE
SolODE <- ode(y = InitialState, times = t, func = EqODE, parms =

NULL)
#Snapshot of the solution
head(SolODE)

time y

256 | 14 Differential equations

[1,] 0.00 10.00000
[2,] 0.05 10.00250
[3,] 0.10 10.01001
#Plotting the solution of the ODE
dSolODE<-data.frame(SolODE)
ggplot(dSolODE, aes(time, y)) + geom_line(color="firebrick4") +

xlab("t")

Let us consider the following system of ODEs:

𝑑𝑦1
𝑑𝑡

= 𝑘1𝑦2𝑦3, (14.8)

𝑑𝑦2
𝑑𝑡

= 𝑘2𝑦1𝑦3, (14.9)

𝑑𝑦3
𝑑𝑡

= 𝑘3𝑦1𝑦2, (14.10)

with the initial conditions 𝑦1(0) = −1, 𝑦2(0) = 0, 𝑦3 = 1, and where 𝑘1, 𝑘2 and 𝑘3
are parameters, with values of 1, −1, and −1/2, respectively.

The system (14.8)–(14.10), known as the Euler equations, can be solved in R
using Listing 14.2. Figure 14.2 (center), which is an output of Listing 14.2, shows
the evolution of the solution (𝑦1(𝑡), 𝑦2(𝑡), 𝑦3(𝑡)) to the problem (14.8)–(14.10), for
𝑡 ∈ [0, 15].

Listing 14.2: Solving Euler equations, see Fig. 14.2 (center)

#The packages "deSolve" and "ggplot2" are required here
library(deSolve)
library(ggplot2)
#Defining parameters in the ODEs
Parameters<-c(k1=1, k2=-1, k3=-1/2)
#Defining initial conditions of the ODE
InitialState<-c(y1=0, y2=1, y3=1)
#Specifying the system of ODEs to be solved
EulerODEs <- function(t, InitialState, Parameters)
{

with(as.list(c(InitialState, Parameters)),{
dy1<-k1*y2*y3
dy2<-k2*y1*y3
dy3<-k3*y1*y2
list(c(dy1, dy2, dy3))

})
}
#Defining the time limits and steps
t <- seq(0, 15, by = 0.05)
#Solving the system of ODEs
SolEulerODEs <- ode(y = InitialState, times = t, func = EulerODEs,

parms = Parameters)
#Snapshot of the solution
head(SolEulerODEs)
time y1 y2 y3

[1,] 0.00 0.00000000 1.0000000 1.0000000
[2,] 0.05 0.04996781 0.9987509 0.9993756
[3,] 0.10 0.09975152 0.9950130 0.9975097

14.1 Ordinary differential equations (ODE) | 257

#Plotting the solution of the system of ODEs
dSolEulerODEs <- data.frame(SolEulerODEs)
ggplot(dSolEulerODEs, aes(t)) + geom_line(aes(y=y1, colour="y1")) +

geom_line(aes(y=y2, colour="y2")) + geom_line(aes(y=y3,
colour="y3")) + scale_colour_manual(" ",
breaks=c("y1","y2","y3"), labels=c(expression(y[1]),
expression(y[2]), expression(y[3])),
values=c("firebrick3","seagreen3","slateblue1")) + ylab("y") +
xlab("t")

Figure 14.2: Left: Numerical solution of the ODE (14.7) with the initial condition 𝑦(0) = 10 and
the parameter 𝑘 = 1/5, Center: Numerical solution of the Euler equations (14.8)–(14.10) with
initial conditions 𝑦1(0) = 1, 𝑦2(0) = 𝑦3(0) = 1. Right: Numerical solution of BV ODEs system
(14.13) with the boundary conditions 𝑦(−1) = 1/4, 𝑦(1) = 1/3.

14.1.1.1 Boundary Value ODE problems
A very simplistic formulation of a boundary value ODE problem can be written as
follows:

𝑑𝑦(𝑡)
𝑑𝑡

= 𝑦′(𝑡) = 𝑓
(︀
𝑦(𝑡), 𝑡, 𝑘

)︀
for 𝑡 > 𝑡0, (14.11)

𝑦(𝑡0) = 𝐶1, 𝑦(𝑡max) = 𝐶2, (14.12)

where 𝐶1 and 𝐶2 are given constants or functions.
In R, the function bvpshoot() from the package deSolve is dedicated to solving

boundary value ODE problems.
Let us use the function bvpshoot() to solve the following boundary value ODE

problem:

𝑦′′(𝑡) − 2𝑦2(𝑡) − 4𝑡𝑦(𝑡)𝑦′(𝑡) with 𝑦(−1) = 1/4, 𝑦(1) = 1/3. (14.13)

Since the problem (14.13) is a second-order ODE problem, it is necessary to write
its equivalent first-order ODE system. Using the substitution (14.6), the second-order

258 | 14 Differential equations

ODE (14.13) can be rewritten in the following form:

𝑦′
1(𝑡) = 𝑦2(𝑡), (14.14)

𝑦′
2(𝑡) = 2𝑦2

1(𝑡) + 4𝑡𝑦1(𝑡)𝑦2(𝑡), (14.15)

with the boundary conditions 𝑦1(−1) = 1/4, and 𝑦2(1) = 1/3.
Then, the problem (14.14)–(14.15) can be solved in R using Listing 14.3. Fig-

ure 14.2 (right), which is an output of Listing 14.3, shows the evolution of the solution
(𝑦1(𝑡), 𝑦2(𝑡)) to the problem (14.14)–(14.15), for 𝑡 ∈ [−1, 1].

Listing 14.3: Solving a system of Boundary Value ODE, see Fig. 14.2 (right)

#The packages "deSolve" and "bvpSolve" are required here
library(rootSolve)
library(bvpSolve)
#Specifying the BV ODEs to be solved
SystBVODEs <- function(t,y,k)
{ list(c(

y[2],
k*y[1]*y[1] +2*k*t*y[1]*y[2]

))
}
#Defining the boundary values
yb1<-c(1/4,NA)
yb2<-c(NA, 1/3)
#Defining the time limits and steps
t <- seq(-1, 8, by = 0.05)
#Solving the BV ODEs
SolBVODEs<-bvptwp(yini=yb1, yend=yb2, x=t, parms=2, func=SystBVODEs)
#Snapshot of the solution

x 1 2
[1,] -1.00 0.2500000 -0.08075594
[2,] -0.99 0.2492027 -0.07871783
[3,] -0.98 0.2484255 -0.07671780
#Changing the names of the columns of SolBVODEs
colnames(SolBVODEs)[1] <- "t"
colnames(SolBVODEs)[2] <- "y1"
colnames(SolBVODEs)[3] <- "y2"
dSolBVODEs <- data.frame(SolBVODEs)
ggplot(dSolBVODEs, aes(t)) + geom_line(aes(y=y1, colour="y1")) +

geom_line(aes(y=y2, colour="y2")) + scale_colour_manual(" ",
breaks=c("y1","y2"), labels=c(expression(y[1]),
expression(y[2])), values=c("darkmagenta","orange2")) +
ylab("y") + xlab("t") + theme_bw()

14.2 Partial differential equations (PDE)

Partial differential equations (PDEs) arise in many fields of engineering and science.
In general, most physical processes are governed by PDEs [102]. In many cases, sim-
plifying approximations are made to reduce the governing PDEs to ODEs or even to
algebraic equations. However, because of the ever-increasing requirement for more

14.2 Partial differential equations (PDE) | 259

accurate modeling of physical processes, engineers and scientists are increasingly re-
quired to solve the actual PDEs that govern the physical problem being investigated.
A PDE is an equation stating a relationship between a function of two or more inde-
pendent variables, and the partial derivatives of this function with respect to these
independent variables. For most problems in engineering and science, the indepen-
dent variables are either space (𝑥, 𝑦, 𝑧) or space and time (𝑥, 𝑦, 𝑧, 𝑡). The dependent
variable, i. e., the function 𝑓 , depends on the physical problem being modeled.

14.2.1 First-order PDE

A general formulation of a first-order PDE with 𝑚 independent variables can be
written as follows:

𝐹
(︀
𝑥, 𝑢(𝑥), ∇𝑢(𝑥)

)︀
= 0, (14.16)

where 𝑥 ∈ R𝑚, 𝑢(𝑥) = 𝑢(𝑥1, 𝑥2, . . . , 𝑥𝑚) is the unknown function, and 𝐹 is a given
function.

A first-order PDE, with two independent variables, 𝑥, 𝑦 ∈ R and the dependent
variable 𝑢(𝑥, 𝑦), is called a first-order quasilinear PDE if it can be written in the
following form:

𝑓
(︀
𝑥, 𝑦, 𝑢(𝑥, 𝑦)

)︀ 𝜕

𝜕𝑥
𝑢(𝑥, 𝑦) + 𝑔

(︀
𝑥, 𝑦, 𝑢(𝑥, 𝑦)

)︀ 𝜕

𝜕𝑦
𝑢(𝑥, 𝑦) = ℎ

(︀
𝑥, 𝑦, 𝑢(𝑥, 𝑦)

)︀
, (14.17)

where 𝑓 , 𝑔, and ℎ are given functions.
The equation (14.17) is said to be

– linear, if the functions 𝑓 , 𝑔, and ℎ are independent of the unknown 𝑢;
– nonlinear, if the functions 𝑓 , 𝑔, and ℎ depend further on the derivatives of the

unknown 𝑢.

14.2.2 Second-order PDE

The general formulation of a linear second-order PDE, in two independent variables
𝑥, 𝑦 and the dependent variable 𝑢(𝑥, 𝑦), can be written as follows:

𝐴
𝜕2𝑢

𝜕𝑥2 + 𝐵
𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝐶

𝜕2𝑢

𝜕𝑦2 + 𝐷
𝜕𝑢

𝜕𝑥
+ 𝐸

𝜕𝑢

𝜕𝑦
+ 𝐹𝑢 + 𝐺 = 0, (14.18)

where 𝐴, 𝐵, 𝐶, 𝐷, 𝐹 are functions of 𝑥, 𝑦.
If 𝐺 = 0, the equation (14.18) is said to be homogeneous, and it is nonhomoge-

neous if 𝐺 ̸ = 0.
The PDE (14.18) can be classified according to the values assumed by 𝐴, 𝐵,

and 𝐶 at a given point (𝑥, 𝑦). The PDE (14.18) is called

260 | 14 Differential equations

– an elliptic PDE, if 𝐵2 − 4𝐴𝐶 < 0,
– a parabolic PDE, if 𝐵−4𝐴𝐶 = 0,
– a hyperbolic PDE, if 𝐵2 − 4𝐴𝐶 > 0.

14.2.3 Boundary and initial conditions

There are three types of boundary conditions for PDEs. Let 𝑅 denote a domain and
𝜕𝑅 its boundary. Furthermore, let 𝑛 and 𝑠 denote the coordinates normal (outward)
and along the boundary 𝜕𝑅, respectively, and let 𝑓 , 𝑔 be some functions on the
boundary 𝜕𝑅. Then, the three boundary conditions, for PDEs, are:
– Dirichlet conditions, when 𝑢 = 𝑓 on the boundary 𝜕𝑅,
– Neumann conditions, when 𝜕𝑢

𝜕𝑛 = 𝑓 or 𝜕𝑢
𝜕𝑠 = 𝑔 on the boundary 𝜕𝑅,

– Mixed (Robin) conditions, when 𝜕𝑢
𝜕𝑛 + 𝑘𝑢 = 𝑓 , 𝑘 > 0 on the boundary 𝜕𝑅.

Dirichlet conditions can only be applied if the solution is known on the boundary
and if the function 𝑓 is analytic. These are frequently used for the flow (velocity)
into a domain. Neumann conditions occur more frequently [102].

14.2.4 Well-posed PDE problems

A mathematical PDE problem is considered well-posed, in the sense of Hadamard,
if
– the solution exists,
– the solution is unique,
– the solution depends continuously on the auxiliary data (e. g., boundary and

initial conditions).

Parabolic PDE
In this section, we will illustrate the solution to the heat equation, which is a pro-
totype parabolic PDE . The heat equation, in a one-dimensional space with zero
production and consumption, can be written as follows:

𝜕𝑢(𝑥, 𝑡)
𝜕𝑡

− 𝐷
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2 , 𝑥 ∈ (𝑎, 𝑏). (14.19)

Let us use R to solve the equation (14.19) with 𝑎 = 0, 𝑏 = 1, i. e., 𝑥 ∈ [0, 1], and
the following boundary and initial conditions:

𝑢(𝑥, 0) = cos
(︂

𝜋

2 𝑥

)︂
, 𝑢(0, 𝑡) = sin(𝑡), 𝑢(1, 𝑡) = 0. (14.20)

14.2 Partial differential equations (PDE) | 261

The heat equation (14.19)–(14.20) can be solved using Listing 14.4. The correspond-
ing solution, 𝑢(𝑥, 𝑡), is depicted in Figure 14.3 for color levels (left) and a contour
plot (right).

Listing 14.4: Solving the Heat Equation, see Fig. 14.3

#The package "ReacTran" is required here
library(ReacTran)
#Mesh setup
GridPts <- 100
xgrid <- setup.grid.1D(x.up = 0, x.down = 1, N = GridPts)
x <- xgrid$x.mid
#Defining the time limits and steps
Timesteps <- seq(from = 0, to = 15, by = 0.03)
#Definition of the coefficient D
Dconst<-0.02
#Specifying the PDE to be solved
HeatEq <- function (t, u, parms) {
tran <- tran.1D(C = u, C.up = sin(t), C.down = 0, D = Dconst, dx =

xgrid)
list(du = tran$dC, flux.up = tran$flux.up, flux.down =

tran$flux.down)
}
#Initial condition
InitialCond <- cos(pi*x/2)
#Solving the PDE
SolHEq <-ode.1D(y = InitialCond, times = Timesteps, func = HeatEq,

parms = NULL, dimens = GridPts)
#Graphs of the solution
image(SolHEq, grid = x, mfrow = NULL, xlab = "t", ylab = "x",

legend = TRUE, main = "u(x, t)")
#Graphs of the solution with contour plot
image(SolHEq, grid = x, mfrow = NULL, xlab = "t", ylab = "x",

add.contour = TRUE, main = "u(x, t)")

Figure 14.3: Solution to the heat equation in equation (14.19) with the boundary and initial
conditions provided in equation (14.20).

262 | 14 Differential equations

Hyperbolic PDE
A prototype of hyperbolic PDEs is the wave equation, defined as follows:

𝜕2𝑢

𝜕𝑡2 = ∇ ·
(︀
𝑐2∇𝑢

)︀
. (14.21)

Let us consider the following wave equation in a two-dimensional space:

𝜕2𝑢(𝑡, 𝑥, 𝑦)
𝜕𝑡2 = 𝛾1

𝜕2𝑢(𝑡, 𝑥, 𝑦)
𝜕𝑥2 + 𝛾2

𝜕2𝑢(𝑡, 𝑥, 𝑦)
𝜕𝑦2 , 𝑥 ∈ (𝑎, 𝑏), 𝑦 ∈ (𝑐, 𝑑). (14.22)

We use R to solve Equation (14.22) with 𝑎 = 𝑐 = −4, 𝑏 = 𝑑 = −4, 𝛾1 = 𝛾2 = 1, and
the following boundary and initial conditions:

𝑢(𝑡, 𝑥 = −4, 𝑦) = 𝑢(𝑡, 𝑥 = 4, 𝑦) = 𝑢(𝑡, 𝑥, 𝑦 = −4) = 𝑢(𝑡, 𝑥, 𝑦 = 4) = 0,

𝜕

𝜕𝑡
𝑢(𝑡 = 0, 𝑥, 𝑦) = 0,

𝑢(𝑡 = 0, 𝑥, 𝑦) = 𝑒−(𝑥2+𝑦2). (14.23)

The wave equation (14.22)–(14.23) can be solved using Listing 14.5. The correspond-
ing solution, 𝑢(𝑡, 𝑥, 𝑦), is depicted in Figure 14.4, for 𝑡 = 0, 𝑡 = 1, 𝑡 = 2 and 𝑡 = 3,
respectively.

Listing 14.5: Solving the Wave Equation, see Fig. 14.4

#The packages "ReacTran" is required here
library(ReacTran)
#Mesh setup
Nx <- 100
Ny <- 100
xgrid <- setup.grid.1D (x.up = -4, x.down = 4, N = Nx)
ygrid <- setup.grid.1D (x.up = -4, x.down = 4, N = Ny)
x <- xgrid$x.mid
y <- ygrid$x.mid
#Defining the time limits and steps
t <- 0:3
#Specifying the PDE to be solved
WaveEq2D<-function(t, C, params) {

u <- matrix(nrow = Nx, ncol = Ny, data = C[1 : (Nx*Ny)])
v <- matrix(nrow = Nx, ncol = Ny, data = C[(Nx*Ny+1) : (2*Nx*Ny)])
dv <- tran.2D (C = u, C.x.up = 0, C.x.down = 0, D.x = 1, D.y = 1,

C.y.up = 0, C.y.down = 0, dx = xgrid, dy = ygrid)$dC
list(c(v, dv))

}
#Initial condition
peak <- function (x, y, x0, y0) exp(-((x-x0)ˆ2 + (y-y0)ˆ2))
uinitial <- outer(x, y, FUN = function(x, y) peak(x, y, 0,0))
vinitial <- rep(0, Nx*Ny)
#Solving the PDE
SolWEq <- ode.2D (y = c(uinitial, vinitial), times = t, parms =

NULL, func = WaveEq2D, names = c("u", "v"), dimens = c(Nx, Ny),
method = "ode45")

#Plotting the solution

14.2 Partial differential equations (PDE) | 263

mr <- par(mar = c(0, 0, 1, 0))
image(SolWEq, main = paste("t =", t), which = "u", grid = list(x =

x, y = y), method = "persp", border = NA, box = FALSE,
legend=TRUE, shade = 0.5, theta = 30, phi = 60, mfrow = c(2,
2), ask = FALSE)

Figure 14.4: Solution to the wave equation in equation (14.22) with the boundary and initial
conditions provided in equation (14.23).

Elliptic PDE
A prototype of elliptic PDEs is the Poisson’s equation. Let us use R to solve the
following Poisson’s equation in a two-dimensional space:

𝛾1
𝜕2𝑢(𝑥, 𝑦)

𝜕𝑥2 + 𝛾2
𝜕2𝑢(𝑥, 𝑦)

𝜕𝑦2 = 𝑥2 + 𝑦2, 𝑥 ∈ (𝑎, 𝑏), 𝑦 ∈ (𝑐, 𝑑), (14.24)

with 𝑎 = 𝑐 = 0, 𝑏 = 𝑑 = 2, 𝛾1 = 𝛾2 = 1 and the following boundary and initial
conditions:

𝑢(𝑥 = 0, 𝑦) = sin(𝑦), 𝑢(𝑥 = 2, 𝑦) = 1,

𝑢(𝑥, 𝑦 = 0) = cos(𝑥), 𝑢(𝑥, 𝑦 = 2) = 1. (14.25)

264 | 14 Differential equations

The Poisson’s equation (14.24)–(14.25) can be solved using Listing 14.6. The cor-
responding solution, 𝑢(𝑥, 𝑦), is depicted in Figure 14.5 for color levels (left) and a
contour plot (right).

Listing 14.6: Solving the Poisson’s Equation, see Fig. 14.5

#The package "ReacTran" is required here
library(ReacTran)
#Mesh setup
Nx <- 100
Ny <- 100
xgrid <- setup.grid.1D (x.up = 0, x.down = 2, N = Nx)
ygrid <- setup.grid.1D (x.up = 0, x.down = 2, N = Ny)
x <- xgrid$x.mid
y <- ygrid$x.mid
#Specifying the PDE to be solved
PoissonEq <- function(t, U, parms) {

u <- matrix(nrow = Nx, ncol = Ny, data = U)
du <- tran.2D(C = u, C.x.up = sin(y), C.x.down = 1, C.y.up =

cos(x), C.y.down = 1, D.x=1, D.y=1,
dx = xgrid, dy = ygrid)$dC+xˆ2+yˆ2
list(du)

}
Solving the PDE
SolPEq <- steady.2D(y = runif(Nx*Ny), func = PoissonEq, parms =

NULL, nspec = 1, dimens = c(Nx, Ny), lrw = 1e7)
#Plotting the graph of the solution with legend
image(SolPEq, grid = list(x, y), main = "u(x,y)", legend = TRUE)
#Plotting the graph the solution with contour plot
image(SolPEq, grid = list(x, y), main = "u(x,y)", add.contour =

TRUE)

Figure 14.5: Solution to the Poisson’s equation in equation (14.24) with the boundary and initial
conditions provided in equation (14.25).

14.3 Exercises | 265

14.3 Exercises

Use R to solve the following differential equations:
1. Solve the heat equation (14.19) with 𝑎 = 0, 𝑏 = 1, i. e., 𝑥 ∈ [0, 1], and the

following boundary and initial conditions:
(a) 𝑢(𝑥, 0) = 6 sin(𝜋𝑥

2), 𝑢(0, 𝑡) = cos(𝑡), 𝑢(1, 𝑡) = 0.
(b) 𝑢(𝑥, 0) = 12 sin(9𝜋𝑥

5) − 7 sin(4𝜋𝑥
3), 𝑢(0, 𝑡) = cos(𝜋𝑡), 𝑢(1, 𝑡) = 0.

2. Solve the wave equation (14.22) with 𝑎 = 𝑐 = −4, 𝑏 = 𝑑 = 4, 𝛾1 = 𝛾2 = 1, and
the following boundary and initial conditions:
(a)

𝑢(𝑡, 𝑥 = −4, 𝑦) = 𝑢(𝑡, 𝑥 = 4, 𝑦) = 𝑢(𝑡, 𝑥, 𝑦 = −4) = 𝑢(𝑡, 𝑥, 𝑦 = 4) = 0,

𝜕

𝜕𝑡
𝑢(𝑡 = 0, 𝑥, 𝑦) = 0,

𝑢(𝑡 = 0, 𝑥, 𝑦) = 𝑒−(2𝑥3+3𝑦2).

(b)

𝑢(𝑡, 𝑥 = −4, 𝑦) = 𝑢(𝑡, 𝑥 = 4, 𝑦) = 𝑢(𝑡, 𝑥, 𝑦 = −4) = 𝑢(𝑡, 𝑥, 𝑦 = 4) = 0,

𝜕

𝜕𝑡
𝑢(𝑡 = 0, 𝑥, 𝑦) = 0,

𝑢(𝑡 = 0, 𝑥, 𝑦) = 𝑒−(5𝑥2+7𝑦3).

3. Solve the Poisson’s equation (14.24) with 𝑎 = 𝑐 = −0, 𝑏 = 𝑑 = 2, 𝛾1 = 𝛾2 = 1,
and the following boundary and initial conditions:
(a)

𝑢(𝑥 = 0, 𝑦) = cos(𝑦); 𝑢(𝑥 = 2, 𝑦) = 1,

𝑢(𝑥, 𝑦 = 0) = sin(𝑥); 𝑢(𝑥, 𝑦 = 2) = 1.

(b)

𝑢(𝑥 = 0, 𝑦) = cos(𝑦) sin(𝑦); 𝑢(𝑥 = 2, 𝑦) = 1,

𝑢(𝑥, 𝑦 = 0) = sin(𝑥) cos(𝑥); 𝑢(𝑥, 𝑦 = 2) = 1.

15 Dynamical systems

Dynamical systems [179] may be regarded as specific types of the differential equa-
tions discussed in the previous chapter. Generally speaking, a dynamical system is a
model in which a function describes the time evolution of a point in space. This evo-
lution can be continuous or discrete, and it can be linear or nonlinear. In this chapter,
we discuss general dynamical systems and define their key characteristics. Then, we
discuss some of the most important dynamical systems that find widespread appli-
cations in physics, chemistry, biology, economics and medicine, including the logistic
map, cellular automata or random Boolean networks [108, 181]. We will conclude
this chapter with case studies of dynamical system models with complex attractors
[165].

15.1 Introduction

The theory of dynamical systems can be viewed as the most natural way of describing
the behavior of an integrated system over time [56, 109]. In other words, a dynamical
system can be cast as the process by which a sequence of states is generated on the
basis of certain dynamical laws. Generally, this behavior is described through a
system of differential equations describing the rate of change of each variable as
a function of the current values of the other variables influencing the one under
consideration. Thus, the system states form a continuous sequence, which can be
formulated as follows. Let 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) be a point in C𝑛 that defines a curve
through time, i. e.,

𝑥 = 𝑥(𝑡) =
(︀
𝑥1(𝑡), 𝑥2(𝑡), . . . , 𝑥𝑛(𝑡)

)︀
, −∞ < 𝑡 < ∞.

Suppose that the laws, which describe the rate and direction of the change of 𝑥(𝑡),
are known and defined by the following equations:

𝑥(𝑡)
𝑑𝑡

= 𝑓
(︀
𝑥(𝑡)

)︀
, 𝑡 ∈ R, 𝑥 ∈ C𝑛, 𝑥(𝑡0) = 𝑥0, (15.1)

where 𝑓(·) = (𝑓1(𝑥), . . . , 𝑓𝑛(𝑥))𝑇 is a differentiable vector function.
However, when those states form a discrete sequence, a discrete time formulation

of the systems (15.1) can be written as follows:

𝑥(𝑘 + 1) = 𝑓
(︀
𝑥(𝑘)

)︀
, 𝑘 ∈ Z, 𝑥(𝑘) ∈ C𝑛 ∀ 𝑘, 𝑥(0) = 𝑥0. (15.2)

Definition 15.1.1. A sequence, 𝑥(𝑡), is called a dynamical system if it satisfies the
set of ordinary differential equations (15.1) (respectively (15.2)) for a given time
interval [𝑡0, 𝑡].

https://doi.org/10.1515/9783110564990-015

268 | 15 Dynamical systems

Definition 15.1.2. A curve 𝒞 = {𝑥(𝑡)}, which satisfies the equations (15.1) (respec-
tively (15.2)), is called the orbit of the dynamical system 𝑥(𝑡).

Definition 15.1.3. A point 𝑥* ∈ C𝑛 is said to be a fixed point, also called a critical
point, or a stationary point, if it satisfies 𝑓(𝑥*) = 0.

Definition 15.1.4. A critical point 𝑥* is said to be stable if every orbit, originating
near 𝑥*, remains near 𝑥*, i. e., ∀ 𝜀 > 0, ∃ 𝜉 > 0 such that⃦⃦⃦

𝑥(0) − 𝑥*⃦⃦⃦
< 𝜉 =⇒

⃦⃦⃦
𝑥(𝑡) − 𝑥*⃦⃦⃦

≤ 𝜀, ∀ 𝑡 > 0.

A critical point 𝑥* is said to be asymptotically stable if every orbit, originating
sufficiently near 𝑥*, converges to 𝑥* when 𝑡 −→ +∞, i. e., if for some 𝜀 > 0, ‖𝑥(0) −
𝑥*‖ < 𝜉, then ‖𝑥(𝑡) − 𝑥*‖ −→ 0 as 𝑡 −→ +∞.

Definition 15.1.5. A point �̄� ∈ C𝑛 is said to be a periodic point for a dynamical
system 𝑥(𝑡) if ∃ 𝑘 ∈ N such that 𝑓𝑘(�̄�) = �̄� and 𝑓 𝑗(�̄�) ̸ =𝑥 for 𝑗 = 1, . . . , 𝑘 − 1. The
integer 𝑘 is called the period of the point �̄�.

Definition 15.1.6. An attractor is a minimal set of points 𝐴 ⊂ C𝑛 such that every
orbit originating within its neighborhood converges asymptotically towards the set
𝐴. A stable fixed point is an attractor known as a map sink. A dynamical system
may have more than one attractor. The set of states that lead to an attractor is
called the basin of the attractor.

Depending on the form of the functions 𝑓𝑖 and the initial conditions 𝑥0, in
(15.1) (respectively (15.2)), the evolution of a dynamical system can lead to one of
the following regimes:
1. steady state: In such a regime, in response to any change in the initial condition,

the dynamical system restores itself and resumes its original course again, leading
to the formation of relatively stable patterns; thus, the system is wholly or largely
insensitive to the alteration of its initial conditions.

2. periodic: In this regime, in response to any change in the initial condition, the
trajectory of the system will eventually stabilize and alternate periodically be-
tween relatively stable patterns.

3. chaotic: In such a regime, in response to any change in the initial condition, the
dynamical system generates a totally different orbit, i. e., any small perturbations
can lead to different trajectories. Hence, the system is highly sensitive to the
alteration of its initial conditions.

In the subsequent sections, we will illustrate the use of R to simulate and visualize
some basic dynamical systems, including population growth models, cellular au-
tomata, Boolean networks, and other “abstract” dynamical systems, such as strange
attractors and fractal geometries. These dynamical systems are well known for their
sensitivity to initial conditions, which is the defining feature of chaotic systems.

15.2 Population growth models | 269

15.2 Population growth models

Population growth models are among the simplest dynamical system models used
to describe the evolution of a population in a specified environment.

15.2.1 Exponential population growth model

The exponential growth model describes the evolution of a population or the concen-
tration (number of organisms per area unit) of an organism living in an environment,
whose resources and conditions allow them to grow indefinitely. Supposing that the
growth rate of the organism is 𝑟, then the evolution of the population number of
organisms 𝑥(𝑡) over time is governed by the following equation:

𝑑𝑥

𝑑𝑡
= 𝑟𝑥. (15.3)

If 𝑟 is constant, then the solution of (15.3) is given by

𝑥(𝑡) = 𝑥(0)𝑒𝑟𝑡. (15.4)

The solution (15.4) can be plotted in R using Listing 15.1, and the corresponding
output, which shows the evolution of the population for 𝑥(0) = 2, 𝑟 = 0.03 and
𝑡 ∈ [0, 100], is depicted in Figure 15.1 (left).

Listing 15.1: Exponential growth model, see Fig. 15.1 (left)

library(ggplot2)
ExpoGrowth <- function(t, r, x0)
{

x0*exp(r*t)
}
x<-ExpoGrowth(t = 0:100, r = 0.03, x0 = 2)
#Plotting the solution
t<-0:100
datatx<-data.frame(cbind(t, x))
ggplot(datatx, aes(t, x)) + geom_line(color="orangered2") +

xlab("Time (t)") + ylab("Population (x)") +theme_bw()

15.2.2 Logistic population growth model

In contrast with the exponential growth model, the logistic population model as-
sumes that the availability of resources restricts the population growth. Let 𝐾 be
the “carrying capacity” of the living environment of the population, i. e., the popu-
lation number or the concentration (number of organisms per area unit) such that

270 | 15 Dynamical systems

Figure 15.1: Left: Exponential population growth for 𝑟 = 0.03 and 𝑥0 = 2. Center: Logistic
population growth model for 𝑟 = 0.1, 𝑥0 = 0.1 < 𝐾 = 10. Right: Logistic population growth
model for 𝑟 = 0.1, 𝑥0 = 20 > 𝐾 = 10.

the growth rate of the organism population is zero. In this situation, a larger popu-
lation results in fewer resources, and this leads to a smaller growth rate. Hence, the
growth rate is no longer constant. When the growth rate is assumed to be a linearly
decreasing function of 𝑥 of the form

𝑟

(︂
1 − 𝑥(𝑡)

𝐾

)︂
,

with positive 𝐾 and 𝑟, we obtain the following logistic equation

𝑑𝑥

𝑑𝑡
= 𝑟𝑥

(︂
1 − 𝑥

𝐾

)︂
, (15.5)

where the expression 𝑑𝑥
𝑑𝑡 represents the growth rate of the organism’s population

over time.
The growth rate 𝑑𝑥

𝑑𝑡 is zero if 𝑥 = 0, or 𝑥+𝐾. Thus, the solution to the equation
(15.5) is given by

𝑥(𝑡) = 𝐾𝑥(0)𝑒𝑟𝑡

𝐾 + 𝑥(0)(𝑒𝑟𝑡 − 1) . (15.6)

The solution (15.6) can be plotted in R using Listing 15.2. The corresponding
output, which shows the evolution of the population over the time interval [0, 100], is
depicted in Figure 15.1 (center) for 𝑥(0) = 0.1, 𝑟 = 0.1, 𝐾 = 10, and in Figure 15.1
(right) for 𝑥(0) = 20, 𝑟 = 0.1, 𝐾 = 10.

Listing 15.2: Logistic growth model, see Fig. 15.1 (center)

library(ggplot2)
LogGrowth <- function(t, r, x0, K)
{

K *x0*exp(r * t) / (K + x0 * (exp(r * t) - 1))
}

15.2 Population growth models | 271

x<-LogGrowth(t = 0:100, r = 0.1, K = 10, x0 = 0.1)
#Plotting the solution
t<-0:100
datatx<-data.frame(cbind(t, x))
ggplot(datatx, aes(t, x)) + geom_line(color="orangered2") +

xlab("Time (t)") + ylab("Population (x)") +theme_bw()

15.2.3 Logistic map

The logistic map is a variant of the logistic population growth model (15.5) with
nonoverlapping generations. Let 𝑦𝑛 denote the population number of the current
generation and 𝑦𝑛+1 denote the population number of the next generation. When
the growth rate is assumed to be a linearly decreasing function of 𝑦𝑛, then we get
the following logistic equation:

𝑦𝑛+1 = 𝑟𝑦𝑛

(︂
1 − 𝑦𝑛

𝐾

)︂
. (15.7)

Substituting 𝑦𝑛 for 𝐾𝑥𝑛 and 𝑦𝑛+1 for 𝐾𝑥𝑛+1 in Equation (15.7) gives the following
recurrence relationship, also known as the logistic map:

𝑥𝑛+1 = 𝑟𝑥𝑛(1 − 𝑥𝑛), (15.8)

where, 𝑥𝑛+1 denotes the population size of the next generation, whereas 𝑥𝑛 is the
population size of the current generation; and 𝑟 is a positive constant denoting the
growth rate of the population between generations.

The graph 𝑥𝑛 versus 𝑥𝑛+1 is called the cobweb graph of the logistic map.
For any initial condition, over time, the population 𝑥𝑛 will settle into one of the

following types of behavior:
1. fixed, i. e., the population approaches a stable value
2. periodic, i. e., the population alternates between two or more fixed values
3. chaotic, i. e., the population will eventually visit any neighborhood in a subin-

terval of (0, 1).

15.2.3.1 Stable and unstable fixed points
When 0 ≤ 𝑟 ≤ 4, the map

𝑥 ↦→ 𝑓(𝑥) = 𝑟𝑥(1 − 𝑥) (15.9)

defines a dynamical system on the interval [0, 1].
The point 𝑥 = 0 is a trivial fixed point of the dynamical system defined by

(15.9). Furthermore, when 𝑟 ≤ 1, we have 𝑓(𝑥) < 𝑥 for all 𝑥 ∈ (0, 1); thus, the

272 | 15 Dynamical systems

system converges to the fixed point 𝑥 = 0. However, when 𝑟 > 1, the graph of the
function 𝑓(𝑥) is a parabola achieving its maximum at 𝑥 = 1/2 and 𝑓(0) = 𝑓(1) = 0.

The intersection between the graph of 𝑓 and the straight line of equation 𝑦 = 𝑥

defines a point 𝑆, whose abscissa, 𝑥*, satisfies 𝑥* = 𝑟𝑥*(1 − 𝑥*).
Hence, the point 𝑥* = 𝑟−1

𝑟 is another fixed point of the system.
When 1 < 𝑟 < 3, the point 𝑥* is asymptotically stable, i. e., for any 𝑥 in the

neighborhood of 𝑥*, the sequence generated by the map (15.9)—the orbit of 𝑥—
remains close to or converges to 𝑥*. In R, such a dynamics of the system can be
illustrated using the scripts provided in Listing 15.3 and Listing 15.4.

Figure 15.2 (left), produced using Listing 15.4, shows the cobweb graph of the
logistic map for 𝑟 = 2.5, which corresponds to a stable fixed point. When 𝑟 = 3 the
logistic map has an asymptotically stable fixed point, and the corresponding cobweb
graph and the graph of the population dynamics are depicted in Figure 15.2 (center)
(produced using Listing 15.4) and Figure 15.2 (right) (produced using Listing 15.3),
respectively.

Listing 15.3: Logistic map model, see Fig. 15.2 (right)

LogisticMap<-function(r, x0, N)
{

x<-array(dim=N)
x[1]<-x0
for(i in 2:N)

x[i]<- r*x[i-1]*(1-x[i-1])
t<-seq(1,N)
x<-cbind(t,x)
return(x)

}
#Plotting the population dynamics over time
datatx1<-LogisticMap(r=3, x0=0.2, N=100)
datatx2<-LogisticMap(r=2.5, x0=0.2, N=100)
plot(datatx1[,1], datatx1[,2], xaxt="n", yaxt="n", type="l",

xlab="Time",ylab="Population", col = "orangered", lwd=0.35)
lines(datatx2[,1], datatx2[,2], col="purple4", lwd=0.35)
legend("bottomright", legend=c("r=3","r=2.5"),

col=c("orangered","purple4"), lwd=c(1,1), cex=1, inset = .02)

Listing 15.4: Cobweb of the logistic map, see Fig. 15.2 (left & center)

Cobweb<-function(r, x0, N)
{

xn<-seq(0,1,length.out=N)
xn1<-r*xn*(1-xn)
plot(xn,xn1, xaxt="n", yaxt="n", type='l', xlab=expression(x[n]),

ylab=expression(x[n+1]), col="orangered", lwd=0.8)
lines(x=c(0,1), y=c(0,1), col="orangered",lwd=0.8)

xn<-x0
xn1<-r*x0*(1-x0)

for (i in 1:N)
{

15.2 Population growth models | 273

s<-r*xn1*(1 - xn1)
lines(x=c(xn, xn), y=c(xn, xn1), col="purple4", lwd=0.08)
lines(x=c(xn, xn1), y=c(xn1, xn1), col="purple4", lwd=0.08)
lines(x=c(xn1, xn1), y=c(xn1, s), col="purple4", lwd=0.08)
lines(x=c(xn1, s), y=c(s, s), col="purple4", lwd=0.2)
xn<-xn1
xn1<-s

}
}
#Plotting the cobweb graphs
Cobweb(r=3, x0=0.2,N=100)

Figure 15.2: Left: Cobweb graph of a stable fixed point for 𝑟 = 2.5. Center: Cobweb graph of an
asymptotically stable fixed point for 𝑟 = 3; Right: Population number dynamics over time.

15.2.3.2 Periodic fixed points: bifurcation
Due to its discrete nature, regulation of the growth rate in the logistic map (15.8)
operates with a one period delay, leading to overshooting of the dynamical sys-
tem. Beyond the value 𝑟 = 3, the dynamical system (15.8) is no longer asymptot-
ically stable, but exhibits some periodic behavior. The parameter value 𝑟 = 3 is
known as a bifurcation point. This behavior can be illustrated, in R, using List-
ing 15.5.

Figure 15.3 (left) and Figure 15.3 (center), produced using Listing 15.4, show the
cobweb graphs of the logistic map for 𝑟 = 3.2 and 𝑟 = 3.4, which both correspond

Figure 15.3: Left: Cobweb graph of periodic fixed points for 𝑟 = 3.2. Center: Cobweb graph of
periodic fixed points for 𝑟 = 3.4; Right: Dynamics of the population number over time.

274 | 15 Dynamical systems

to periodic fixed points. Figure 15.3 (right), produced using Listing 15.3, illustrates
the dynamics of the populations over time for both cases.

15.2.3.3 Chaotic motion
For larger values of 𝑟 in the logistic map (15.8), further bifurcations occur, and
the number of periodic points explodes. For instance, for 𝑟 ≥ 3, the structure of the
orbits of the dynamical system becomes complex and, hence, chaotic behavior ensues.
Such behavior can be illustrated in R, using the scripts provided in Listing 15.3 and
Listing 15.4.

Figure 15.4 (left) and Figure 15.4 (center), produced using Listing 15.4, show the
cobweb graphs of the logistic map for 𝑟 = 3.8 and 𝑟 = 3.9, which both correspond
to chaotic motions. Figure 15.4 (right), produced using Listing 15.3, illustrates the
dynamics of the populations over time for both cases, where the chaotic evolution
of the populations can be clearly observed.

Figure 15.4: Left: Cobweb graph of a chaotic motion for 𝑟 = 3.8. Center: Cobweb graph of a
chaotic motion for 𝑟 = 3.9; Right: Dynamics of the population number over time.

Figure 15.5 (left), (center), and (right), produced using Listing 15.5, illustrates the
bifurcation phenomenon, which can be visualized through the graph of the growth
rate, 𝑟, versus the population size, 𝑥. Such a graph is also known as the bifurcation
diagram of a logistic map model. Figure 15.5 (left) depicts the bifurcation diagram
for 0 ≤ 𝑟 ≤ 4, whereas Figure 15.5 (center) and Figure 15.5 (right) show the zoom
corresponding to the ranges 3 ≤ 𝑟 ≤ 4 and 3.52 ≤ 𝑟 ≤ 3.92, respectively.

Listing 15.5: Bifurcation of the logistic map, see Fig. 15.5

fxn<-function(x,r)
fxr<-r*x*(1-x)

bifurcation <-function(x0,N,rmin,rmax,MaxIter,fxn)
{

xmat <-array(dim=c(N,MaxIter))
rvect = seq(rmin,rmax,length.out=N)
for (i in 1:N)
{

15.3 The Lotka–Volterra or predator–prey system | 275

r <- rvect[i]
for (j in 1:MaxIter)
{

if (j == 1)
{

xn = x0
for (k in 1:400)
{

xn1 = fxn(xn,r)
xn = xn1

}
}
xn1 = fxn(xn,r)
xmat[i,j] = xn1
xn = xn1

}
}
return(xmat)

}
x0<-0.2; rmin<-3; rmax<-4; N<-500; MaxIter<-1000;
Matx<-bifurcation(x0,N, rmin, rmax, MaxIter, fxn)
Lab.palette <- colorRampPalette(c("firebrick","red","orange"),

space = "Lab")
matplot(Matx,pch = "17", col =Lab.palette(256), cex=0.035, axes=F,

ann=F)

Figure 15.5: Bifurcation diagram for the logistic map model—growth rate 𝑟 versus population
size 𝑥: Left 0 ≤ 𝑟 ≤ 4. Center: zoom for 3 ≤ 𝑟 ≤ 4. Right: zoom for 3.52 ≤ 𝑟 ≤ 3.92.

15.3 The Lotka–Volterra or predator–prey system

The Lotka–Volterra equations, also known as the predator–prey system, are among
the earliest dynamical system models in mathematical ecology, and were derived
independently by Vito Volterra [193], and Alfred Lotka [120]. The model involves two
species: the first (the prey), whose population number or concentration at time 𝑡 is
𝑥1(𝑡) and the second (the predator), which feeds on the preys, and whose population
number or concentration at time 𝑡 is 𝑥2(𝑡). Furthermore, the model is based on
the following assumptions about the environment, as well as the evolution of the
populations of the two species:
1. The prey population has an unlimited food supply, and it grows exponentially

in the absence of interaction with the predator species.

276 | 15 Dynamical systems

2. The rate of predation upon the prey species is proportional to the rate at which
the predator species and the prey meet.

The model describes the evolution of the population numbers 𝑥1 and 𝑥2 over time
through the following relationships:

𝑑𝑥1
𝑑𝑡

= 𝑥1(𝛼 − 𝛽𝑥2),

𝑑𝑥2
𝑑𝑡

= −𝑥2(𝛾 − 𝛿𝑥1), (15.10)

where, 𝑑𝑥1
𝑑𝑡 and 𝑑𝑥2

𝑑𝑡 denote the growth rates of the two populations over time; 𝛼 is
the growth rate of the prey population in the absence of interaction with the predator
species; 𝛽 is the death rate of the prey species caused by the predator species; 𝛾 is
the death (or emigration) rate of the predator species in the absence of interaction
with the prey species; and 𝛿 is the growth rate of the predator population.

The predator–prey model (15.10) is a system of ODEs. Thus, it can be solved
using the function ode() in R. When the parameters 𝛼, 𝛽, 𝛾, and 𝛿 are set to 0.2,
0.002, 0.1, and 0.001, respectively, the system (15.10) can be solved in R, using the
scripts provided in Listing 15.6 and Listing 15.7.

The corresponding outputs are shown in Figure 15.6, where the solution in
the phase plane (𝑥1, 𝑥2) for 𝑥2(0) = 25, the evolution of the population of the
species over time for 𝑥2(0) = 25, and the solution in the phase plane (𝑥1, 𝑥2) for
10 ≤ 𝑥1(0) ≤ 150 are depicted in Figure 15.6 (left), Figure 15.6 (center), and
Figure 15.6 (right), respectively.

Listing 15.6: Lotka-Volterra model, see Fig. 15.6

library(deSolve)
Building the model
LotVolt <- function(t, state, parameters)
{

with(as.list(c(state)),
{

dx1 <- 0.2*x1 - 0.002*x1*x2
dx2 <- -0.1*x2 + 0.001*x1*x2
list(c(dx1, dx2))
})

}
Initial condition
xinitial <-c(x1=100,x2=25)
Time steps
t <- seq(0, 100, 0.02)
Solving the model
sol <- ode(y = xinitial, times = t, func = LotVolt, parms = 0)
#Snapshot of the solution
head(sol)
time x1 x2
[1,] 0.00 100.0000 25.00000
[2,] 0.02 100.3005 25.00008

15.3 The Lotka–Volterra or predator–prey system | 277

Plotting the solution in the phase plane
plot(sol[, 2], sol[,3], xaxt="n", yaxt="n", col="purple4",

type="l", xlab = "Prey population", ylab = "Predator
population", lwd=0.35)

#Plot population evolution over time
plot(sol[,1], sol[, 2], xaxt="n", yaxt="n", type="l",

xlab="Time",ylab="Population", col = "seagreen3", lwd=0.35)
lines(sol[,1], sol[, 3], col="orangered3", lwd=0.35)
legend("topright", legend=c("Prey","Predator"),

col=c("seagreen3","orangered3"), lwd=c(1,1), cex=1, inset = .02)

Listing 15.7: Lotka-Volterra model for various initial prey populations

library(deSolve)
#Plotting solution of Lotka-Volterra model
for various initial prey populations
x<-10
sol <- ode(y = c(x1=x, x2=25), times = t, func = LotVolt, parms =

0)

plot(sol[, 2], sol[,3], xaxt ="n", yaxt="n", col="red", type="l",
xlab = "Prey population", ylab = "Predator population",
lwd=0.35)

while (x< 150)
{

x<-x+7
sol <- ode(y =c(x1=x, x2=25), times = t, func = LotVolt, parms =

0)
lines(sol[,2], sol[, 3], col=x, lwd=0.35)

}

Figure 15.6: Solutions of the system (15.10) with 𝛼 = 0.2, 𝛽 = 0.002, 𝛾 = 0.1, 𝛿 = 0.001,
and the initial conditions 𝑥1(0) = 100. Left: Solution in the phase plane (𝑥1, 𝑥2) for 𝑥2(0) = 25.
Center: evolution of the population of the species over time for 𝑥2(0) = 25. Right: solution in
the phase plane (𝑥1, 𝑥2) for 10 ≤ 𝑥1(0) ≤ 150.

278 | 15 Dynamical systems

15.4 Cellular automata

A cellular automaton (CA) is a model used to describe the behaviors and the physics
of discrete dynamical systems [62, 194, 205, 206]. A CA is characterized by the
following features:
– An 𝑛-dimensional grid of cells;
– Each cell has a state, which represents its current status;
– Each cell has a neighborhood, which consists of the cell itself and all its imme-

diate surroundings.

The most elementary and yet interesting cellular automaton consists of a one-
dimensional grid of cells, where the set of states for the cells is 0 or 1, and the
neighborhood of a cell is the cell itself, as well as its immediate successor and pre-
decessor, as illustrated below:

A one-dimensional CA 0 1 1 0 1 0 0 0 0 1

At each time point, the state of each cell of the grid is updated according to a
specified rule, so that the new state of a given cell depends on the state of its neigh-
borhood, namely the current state of the cell under consideration and its adjacent
cells, as illustrated below:

A cell (in red) and its neighborhood 000 001 010 011 100 101 110 111
Rule for updating the cell in red 1 0 0 0 1 1 0 1

The cells at the boundaries do not have two neighbors, and thus require special
treatments. These cells are called the boundary conditions, and they can be handled
in different ways:
– The cells can be kept with their initial condition, i. e., they will not be updated

at all during the simulation process.
– The cells can be updated in a periodic way, i. e., the first cell on the left is a

neighbor of the last cell on the right, and vice versa.
– the cells can be updated using a desired rule.

Depending on the rule specified for updating the cell and the initial conditions,
the evolution of elementary cellular automata can lead to the following system
states:
– Steady state: The system will remain in its initial configuration, i. e., the initial

spatiotemporal pattern can be a final configuration of the system elements.

15.4 Cellular automata | 279

– Periodic cycle: The system will alternate between coherent periodic stable pat-
terns.

– Self-organization: The system will always converge towards a coherent stable
pattern.

– Chaos: The system will exhibit some chaotic patterns.

For a finite number of cells 𝑁 , the number of possible configurations for the sys-
tem is also finite and is given by 2𝑁 . Hence, at a certain time point, all config-
urations will be visited, and the CA will enter a periodic cycle by repeating it-
self indefinitely. Such a cycle corresponds to an attractor of the system for the
given initial conditions. When a cellular automaton models an orderly system, then
the corresponding attractor is generally small, i. e., it has a cycle with a small pe-
riod.

Using the R Listing 15.8, we illustrate some spatiotemporal evolutions of an ele-
mentary cellular automaton using both deterministic and random initial conditions,
whereby the cells at the boundaries are kept to their initial conditions during the
simulation process.

Figure 15.7 shows the spatiotemporal patterns of an elementary cellular au-
tomaton with a simple deterministic initial condition, i. e., all the cells are set to 0,
except the middle one, which is set to 1. Complex localized stable structures (us-
ing Rule 182), self-organization (using Rule 210) and chaotic patterns (using Rule
89) are depicted in Figure 15.7 (left), Figure 15.7 (center), and Figure 15.7 (right),
respectively.

Figure 15.8 shows spatiotemporal patterns of an elementary cellular automaton
with a random initial condition, i. e., the states of the cells are allocated randomly.
Complex localized stable structures (using Rule 182), self-organization (using Rule
210) and chaotic patterns (using Rule 89) are depicted in Figure 15.8 (left), Fig-
ure 15.8 (center), and Figure 15.8 (right), respectively.

Listing 15.8: Implementation of an elementary cellular automaton

library(HapEstXXR)

This function returns the cell update for a given rule number
RuleCA<-function(l, m, r, RuleNb)
{

RuleBin=dec2bin(RuleNb, npos=8)
InvRuleBin=rev(RuleBin)
n=paste(c(l,m,r), collapse="")
index=strtoi(n, 2)
newval=InvRuleBin[index+1]
return(newval)

}

CA<-function(InitialCd, MaxIter, RuleNb)
{ Ncells<-length(InitialCd)

cellMat<-array(0, dim=c(MaxIter, Ncells))

280 | 15 Dynamical systems

for (i in 1:Ncells)
cellMat[1,i]<-InitialCd[i]

for (i in 2:MaxIter)
{

for (j in 2:(Ncells-1))
{

l=cellMat[i-1,j-1]
m=cellMat[i-1,j]
r=cellMat[i-1,j+1]
cellMat[i,j]=RuleCA(l,m,r, RuleNb)

}
}

cellMat<-apply(cellMat, 1, rev)
return(cellMat)

}

#Visualizing the spatio-temporal patterns
Ncell=500
MaxIter=500
RuleNb=182

#Deterministic initial condition
InitialCd<-array(0, dim=Ncell)
ind<-round(dim(InitialCd)/2)
InitialCd[ind]<-1
xy<-CelAuto(InitialCd, MaxIter, RuleNb)
Lab.palette <- colorRampPalette(c("oldlace","lightsalmon1"), space =

"Lab")
image(xy, col=Lab.palette(256), frame.plot=FALSE, xaxt='n',

yaxt='n', xlab="Cells", ylab="Time")

#Random initial condition
InitialCd<-replicate(Ncell,sample(0:1,1))
xy<-CelAuto(InitialCd, MaxIter, RuleNb)
image(xy, col=Lab.palette(256), frame.plot=FALSE, xaxt='n',

yaxt='n', xlab="Cells", ylab="Time")

Figure 15.7: Spatiotemporal patterns of an elementary cellular automaton with a simple deter-
ministic initial condition, i. e., all the cells are set to 0 except the middle, one which is set to 1.
Left: complex localized stable structures (Rule 182). Center: self-organization (Rule 210). Right:
chaotic patterns (Rule 89).

15.5 Random Boolean networks | 281

Figure 15.8: Spatiotemporal patterns of an elementary cellular automaton with a random ini-
tial condition, i. e., the states of the cells are allocated randomly. Left: complex localized stable
structures (Rule 182). Center: self-organization (Rule 210). Right: chaotic patterns (Rule 89).

15.5 Random Boolean networks

Random Boolean networks (RBNs) were first introduced in the late 1960s to model
the genetic regulation in biological cells [109], and since then have been widely used
as a mathematical approach for modeling complex adaptive and nonlinear biological
systems. A Random Boolean network is usually represented as a directed graph,
defined by a pair (𝒳 , ℱ), where 𝒳 = {𝑥1, . . . , , 𝑥𝑁 } is a finite set of nodes, and
ℱ = 𝑓1, . . . , 𝑓𝑁 is a corresponding set of Boolean functions, called transition or
regulation functions. Let 𝑥𝑖(𝑡) represent the state of the node 𝑥𝑖 at time 𝑡, which
takes the value of either 1 (on) or 0 (off). Then, the vector 𝑥(𝑡) = (𝑥1(𝑡), . . . , 𝑥𝑁 (𝑡))
represents the state of all the nodes in 𝒳 , at the time step 𝑡. The total number of
possible states for each time step is 2𝑁 . The state of a node 𝑥𝑖 at the next time step
𝑡+1 is determined by 𝑥𝑖(𝑡+1) = 𝑓𝑖(𝑥𝑗(𝑡), . . . , 𝑥𝑘(𝑡)), where {𝑥𝑗 , . . . , 𝑥𝑘} is the set of
the immediate predecessors (or input nodes) of 𝑥𝑖. If all the 𝑁 nodes have the same
number of input nodes, 𝐾, then the RBN is referred to as an 𝑁𝐾 network, and 𝐾 is
also called the number of connections of the network. Like most dynamical systems,
RBNs also enjoy three main regimes which, for an 𝑁𝐾 network, are correlated with
the number of connections 𝐾 [109]. In particular,
– if 𝐾 < 2 the evolution of the RBN leads to stable (ordered) dynamics,
– if 𝐾 = 2 the evolution of the RBN leads to periodic (critical) dynamics,
– if 𝐾 ≥ 3 the evolution of the RBN leads to a chaotic regime.

RBNs can be viewed as a generalization of cellular automata, in the sense that, in
Boolean networks,
– a cell neighborhood is not necessarily restricted to its immediate adjacent cells,
– the size of the neighborhood of a cell and the position of the cells within the

neighborhood are not necessarily the same for every cell of the grid,
– the state transition rules are not necessarily identical or unique for every cell of

the grid,
– the updating process of the cells is not necessarily synchronous.

282 | 15 Dynamical systems

The updating process of the nodes in a Boolean network can be synchronous or asyn-
chronous, deterministic or nondeterministic. According to the specified update pro-
cess, Boolean networks can be cast in different categories [85], including the following:
1. Classical random Boolean networks (CRBNs): In RBNs of this type, at each

discrete time step, all the nodes in the network are updated synchronously in
a deterministic manner, i. e., the nodes are updated at time 𝑡 + 1, taking into
account the state of the network at time 𝑡.

2. Asynchronous random Boolean networks (ARBNs): In RBNs of this type, at
each time step, a single node is chosen at random and updated, and thus the
update process is asynchronous and nondeterministic.

3. Deterministic asynchronous random Boolean networks (DARBNs): For this class
of Boolean networks, each node is labeled with two integers 𝑢, 𝑣 ∈ N (𝑢 < 𝑣). Let
𝑚 denote the number of time steps from the beginning of the simulation to the
current time. Then, the only nodes to be updated during the current time step
are those such that 𝑢 = (𝑚 mod 𝑣). If several nodes have to be updated at the
same time step, then the changes, made in the network by updating one node,
are taken into account during the updating process of the next node. Hence, the
update process is asynchronous and deterministic.

4. Generalized asynchronous random Boolean networks (GARBNs): For this class
of Boolean networks, at each time step, a random number of nodes are selected
and updated synchronously; i. e., if several nodes have to be updated at the same
time step, then the changes, made in the node-states by updating one node, are
not taken into account during the updating process of the next node. Thus, the
update process is semi-synchronous and nondeterministic.

5. Deterministic generalized asynchronous random Boolean networks (DGARBNs):
This type of Boolean networks is similar to the DARBN, except that, in this
case, if several nodes have to be updated at the same time step, the changes,
made in the node-states by updating one node, are not taken into account
during the updating process of the next node. Thus, the update process is
semi-synchronous and deterministic.

In the context of genomics, a gene regulatory network (GRN) can be modeled as a
Boolean network, where the status of a given gene (active/expressed or inactive/not
expressed) is represented as a Boolean variable, whereas the interactions/dependen-
cies between genes are described through the transition functions, and the input
nodes for a gene 𝑥𝑖 consist of genes regulating 𝑥𝑖. Let us consider the following
simple GRN with three genes 𝐴, 𝐵, 𝐶, i. e., 𝒳 = {𝑥1, 𝑥2, 𝑥3}, where 𝐴 = 𝑥1,
𝐵 = 𝑥2, and 𝐶 = 𝑥3 and ℱ = {𝑓1, 𝑓2, 𝑓2} with⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑓1 = 𝑓1(𝑥1, 𝑥3) = 𝑥1 ∨ 𝑥3,

𝑓2 = 𝑓2(𝑥1, 𝑥3) = 𝑥1 ∧ 𝑥3,

𝑓3 = 𝑓3(𝑥1, 𝑥2) = ¬𝑥1 ∨ 𝑥2,

15.5 Random Boolean networks | 283

where ∨, ∧, and ¬ are the logical disjunction (OR), conjunction (AND), and negation
(NOT), respectively.

At a given time point 𝑡, the state-vector is 𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡)) and the
state evolution at the time point 𝑡 + 1 is given by⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑥1(𝑡 + 1) = 𝑓1(𝑥1(𝑡), 𝑥3(𝑡)) = 𝑥1(𝑡) ∨ 𝑥3(𝑡),
𝑥2(𝑡 + 1) = 𝑓2(𝑥1(𝑡), 𝑥3(𝑡)) = 𝑥1(𝑡) ∧ 𝑥3(𝑡),
𝑥3(𝑡 + 1) = 𝑓3(𝑥1(𝑡), 𝑥2(𝑡)) = ¬𝑥1(𝑡) ∨ 𝑥2(𝑡).

(15.11)

The corresponding truth table, i. e., the nodes-state at time 𝑡 + 1 for any given
configuration of the state vector 𝑥 at time 𝑡, is as follows:

𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡)) 000 001 010 011 100 101 110 111
𝑥(𝑡 + 1) = (𝑥1(𝑡 + 1), 𝑥2(𝑡 + 1), 𝑥3(𝑡 + 1)) 001 101 001 101 100 110 101 111

An RBN with 𝑁 nodes can be represented by an 𝑁 by 𝑁 matrix, known as the
adjacency matrix, for which the value of the component (𝑖, 𝑗) is 1 if there is an
edge from node 𝑖 to node 𝑗, and 0 otherwise. If we substitute the nodes 𝑥1, 𝑥2, 𝑥3
with their associated gene labels 𝐴, 𝐵, and 𝐶, respectively, then the corresponding
adjacency matrix is written as follows:

A B C

A 1 1 1
B 0 0 1
C 1 1 0

To draw the corresponding network using the package igraph in R, we can save the
adjacency matrix as a csv (comma separated values) or a text file and then load
the file in R. The corresponding text or csv file, which we will call here “Exam-
pleBN1.txt”, will be in the following format:

Nodes, A, B, C
A, 1, 1, 1
B, 0, 0, 1
C, 1, 1, 0

Listing 15.9: Visualization of a Random Boolean Network

#Load the graph package (install if needed)
library(igraph)
library(BoolNet)

284 | 15 Dynamical systems

#Load the adjacency matrix in the file "ExampleBN1.txt"
adjMat=read.csv(file.choose(), header=TRUE, row.names=1,

check.names=FALSE)

#Converting the data to matrix
Mat=as.matrix(adjMat)

#Converting the data matrix into an graph object
BNet=graph.adjacency(Mat, mode="directed", weighted=TRUE, diag=TRUE)

#Visualization of the Boolean network
plot(BNet, layout=layout.fruchterman.reingold,

vertex.label.color="purple", edge.color="firebrick3",
vertex.color="oldlace", vertex.label.cex=1.5,
vertex.frame.color="seashell1", edge.arrow.size=0.7,
edge.curved=TRUE)

Using the R package Boolnet [140], we can also draw a given Boolean network,
generate an RBN and analyze it, e. g., find the associated attractors and plot them.
However, the dependency relations of the network must be written into a text file
using an appropriate format. For instance, the dependency relations (15.11) can be
written in a textual format as follows:

targets, factors
A, A | C
B, A & C
C, ! A | B

Here, the symbols |, & and ! respectively denote the logical disjunction (OR), con-
junction (AND) and negation (NOT). Let us call the corresponding text file “Ex-
ampleBN1p.txt”, and this must be in the current working R directory.

Figure 15.9, produced using Listing 15.10, shows the visualization and analysis
of the Boolean network represented in the text file “ExampleBN1p.txt”. The network
graph, the state transition graph as well as attractor basins, and the state transition
table when the initial state is (010) i. e., (𝐴 = 0, 𝐵 = 1, 𝐶 = 0), are depicted
in Figure 15.9 (top), Figure 15.9 (bottom left) and Figure 15.9 (bottom right),
respectively.

Listing 15.10: Visualization and analysis of a Boolean network - Example 1

#Load the graph package (install if needed)
library(igraph)
library(BoolNet)

#Load the network data in the file "ExampleBN1p.txt"
BNet1<-loadNetwork("ExampleBN1p.txt")

#Plotting the network
plotNetworkWiring(BNet1, edge.color="firebrick3",

vertex.label.cex=1.5, vertex.color="oldlace",
edge.arrow.size=0.7, vertex.frame.color="purple",
vertex.label.color="purple", edge.curved=TRUE)

15.5 Random Boolean networks | 285

Figure 15.9: Visualization and analysis of a Boolean network—Example 1. Top: network graph.
Bottom left: state transition graph and attractor basins. Bottom right: state transition table
when the initial state is (010), i. e., (𝐴 = 0, 𝐵 = 1, 𝐶 = 0).

#Identification of attractors
AttractorsBNet1 <- getAttractors(BNet1)

#Visualizing state transitions and all attractor basins
plotStateGraph(AttractorsBNet1, layout=layout.fruchterman.reingold,

vertex.size=4, edge.arrow.size=0.7, vertex.label.cex=1,
vertex.frame.color="seashell1",
colorSet=c("slateblue3","seagreen3", "firebrick3"),
edge.curved=TRUE, drawLabels=TRUE)

#Visualizing state transition graph to an attractor for a given
initial state

plotSequence(network=BNet1, startState=c(0,1,0),
includeAttractorStates="all", mode="graph", drawLabels=TRUE,
vertex.size=7, edge.arrow.size=0.7, vertex.label.cex=1,

286 | 15 Dynamical systems

vertex.frame.color=c("moccasin"),
vertex.label.color="firebrick4",edge.color="slateblue",
vertex.color="oldlace")

#Visualizing state transition table to an attractor for a given
initial state

InitialState<-c(0,1,0) # A=0, B=0, C=0
plotSequence(network=Data, startState=InitialState,

includeAttractorStates="all", mode="table",
onColor="lightsalmon",offColor="oldlace", drawLegend=TRUE)

Figure 15.10, produced using Listing 15.11, shows the visualization and analysis
of an RBN generated within the listing. The network graph, the state transition
graph, as well as attractor basins, and the state transition table when the initial
state is (11111111) are depicted in Figure 15.10 (top), Figure 15.10 (bottom left),
and Figure 15.10 (bottom right), respectively.

Listing 15.11: Visualization and analysis of a Boolean network—Example 2

#Load the graph package (install if needed)
library(igraph)
library(BoolNet)

#Generating a random Boolean network with 10 nodes and each with 3
degrees

BNet2<-generateRandomNKNetwork(n=10, k=3)

#Plotting the network
plotNetworkWiring(BNet2,edge.color="firebrick3", vertex.size=18,

vertex.color="oldlace", edge.arrow.size=0.7,
vertex.frame.color="purple")

#Identification of attractors
AttractorsBNet2 <- getAttractors(BNet2)

#Visualizing state transitions and all attractor basins
plotStateGraph(AttractorsBNet2, layout=layout.fruchterman.reingold,

vertex.size=4, edge.arrow.size=0.7, vertex.label.cex=1,
vertex.frame.color=c("seashell1"),
colorSet=c("slateblue3","seagreen3", "firebrick3"))

#Visualizing state transition table to an attractor for a given
initial state

InitialState<-rep(1,8) # i.e. all the 8 nodes are set to 1
plotSequence(network=BNet2, startState=InitialState,

includeAttractorStates="all", mode="table",
onColor="lightsalmon",offColor="oldlace", plotFixed=FALSE)

Figure 15.11, produced using Listing 15.12, shows spatiotemporal patterns of
RBNs with 𝑁 = 1000. Critical dynamics (for 𝐾 = 2) and chaotic patterns (for
𝐾 = 7) are shown in Figure 15.11 (left) and Figure 15.11 (right), respectively.

15.5 Random Boolean networks | 287

Figure 15.10: Visualization and analysis of a Boolean network—Example 2. Top: network graph.
Bottom left: state transition graph and attractor basins. Bottom right: state transition table
when the initial state is (11111111).

Figure 15.11: Spatiotemporal patterns of RBNs with 𝑁 = 1000. Left: critical dynamics (𝐾 = 2).
Right: chaotic patterns (𝐾 = 7).

288 | 15 Dynamical systems

Listing 15.12: Visualizing different regimes of RNBs

library(igraph)
library(BoolNet)
N=1000
#Generating a random Boolean network with N=500 and k=2
RBNK2 <-generateRandomNKNetwork(n=N, k=2)
#Generating a random Boolean network with N=500 and k=7
RBNK7 <-generateRandomNKNetwork(n=N, k=7)

Tmax=200
STransK2=array(dim=c(Tmax, N))
STransK7=array(dim=c(Tmax, N))

#Generating random initial states
InitialState<-replicate(N,sample(0:1,1))
STransK2[1,]<-InitialState
STransK&[1,]<-InitialState

#Simulation of state transitions of the networks
for (i in 2:Tmax)
{

STransK2[i,]<-stateTransition(RBNK2, STransK2[i-1,])
STransK7[i,]<-stateTransition(RBNK7, STransK7[i-1,])

}

#Flipping the state-transition matrices
STransK2<-apply(STransK2, 1, rev)
STransK7<-apply(STransK7, 1, rev)

#Visualizing state transition table for a given initial state
Lab.palette <- colorRampPalette(c("oldlace","lightsalmon1"), space =

"Lab")
image(STransK2, col=Lab.palette(256), frame.plot=FALSE, xaxt='n',

yaxt='n', xlab="Nodes state", ylab="Time")
image(STransK7, col=Lab.palette(256), frame.plot=FALSE, xaxt='n',

yaxt='n', xlab="Nodes state", ylab="Time")

15.6 Case studies of dynamical system models with complex
attractors

In this section, we will provide implementations, in R, for some exemplary dynamical
system models, which are known for their complex attractors.

15.6.1 The Lorenz attractor

The Lorenz attractor is a seminal dynamical system model due to Lorenz Edward
[119], a meteorologist who was interested in modeling weather and the motion of
air as it heats up. The state variable in the system, 𝑥(𝑡), is in R3, i. e., 𝑥(𝑡) =

15.6 Case studies of dynamical system models with complex attractors | 289

(𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡)), and the system is written as:

𝑑𝑥1
𝑑𝑡

= 𝑎(𝑥2 − 𝑥1),

𝑑𝑥2
𝑑𝑡

= 𝑟𝑥1 − 𝑥2 − 𝑥1𝑥3,

𝑑𝑥3
𝑑𝑡

= 𝑥1𝑥2 − 𝑏𝑥3, (15.12)

where, 𝑎, 𝑟, and 𝑏 are constants.
The chaotic behavior of the Lorenz system (15.12) is often termed the Lorenz

butterfly. In R, the Lorenz attractor can be simulated using Listing 15.13.
Figure 15.12, produced using Listing 15.13, shows some visualizations of the

Lorenz attractor for 𝑎 = 10, 𝑟 = 28, 𝑏 = 8/3, (𝑥0, 𝑦0, 𝑧0) = (0.01, 0.01, 0.01), 𝑑𝑡 =
0.02 after 106 iterations. Representations of the attractor in the plane (𝑥, 𝑦), in the
space (𝑥, 𝑦, 𝑧) and in the plane (𝑥, 𝑧) are given in Figure 15.12 (left), Figure 15.12
(center), and Figure 15.12 (right), respectively.

Listing 15.13: Lorenz attractor, see Fig. 15.12

library(scatterplot3d)
lorenz<-function(a, b, r, x0, y0, z0, MaxIter, dt)
{

x<-array(dim=MaxIter); y<-array(dim=MaxIter);
z<-array(dim=MaxIter)

x[1]<-x0; y[1]<-y0; z[1]<-z0
for(i in 2:MaxIter)
{

x[i]=x[i-1]+(-a*x[i-1]+a*y[i-1])*dt
y[i]=y[i-1]+(-x[i-1]*z[i-1]+r*x[i-1]-y[i-1])*dt
z[i]=z[i-1]+(x[i-1]*y[i-1]-b*z[i-1])*dt

}
xyz<-cbind(x, y, z)
return(xyz)

}

a<-10; r<-28; b<- 8/3; x0<-0.01; y0<-0.01
z0<-0.01; MaxIter<-1e6; dt<-0.002

xyz<-lorenz(a, b, r, x0, y0, z0, MaxIter,dt)
scatterplot3d(xyz, highlight.3d=TRUE, xlab=expression(x[n]),

ylab=expression(y[n]),zlab=expression(z[n]), col.axis="purple",
angle=55, col.grid="skyblue", scale.y=0.7, pch=17,
cex.symbols=0.03, lty.axis=3, lty.grid=3, col.lab="white")

Lab.palette <- colorRampPalette(c("firebrick", "red", "orange"),
space = "Lab")

plot(xyz[,1], xyz[,2], pch=17, cex=.035, col=Lab.palette(256),
axes=F, ann=F)

plot(xyz[,1], xyz[,3], pch=17, cex=.035, col=Lab.palette(256),
axes=F, ann=F)

290 | 15 Dynamical systems

Figure 15.12: Lorenz attractor for 𝑎 = 10, 𝑟 = 28, 𝑏 = 8/3, (𝑥0, 𝑦0, 𝑧0) = (0.01, 0.01, 0.01),
𝑑𝑡 = 0.02 after 106 iterations: Left in the plane (𝑥, 𝑦). Center in the space (𝑥, 𝑦, 𝑧). Right in the
plane (𝑥, 𝑧).

15.6.2 Clifford attractor

The Clifford attractor is defined by the following recurrence equations:{︃
𝑥𝑛+1 = sin(𝑎𝑦𝑛) + 𝑐 cos(𝑎𝑥𝑛),
𝑦𝑛+1 = sin(𝑏𝑥𝑛) + 𝑑 cos(𝑏𝑦𝑛),

(15.13)

where, 𝑎, 𝑏, 𝑐, and 𝑑 are the parameters of the attractor.
In R, the system (15.13) can be solved using Listing 15.14.
Figure 15.13 shows some visualizations of the Clifford’s attractor for different

values of the parameters and initial conditions: Figure 15.13 (left) displays the output
of Listing 15.14 when 𝑎 = −1.4, 𝑏 = 1.6, 𝑐 = 1, 𝑑 = 0.3, (𝑥0, 𝑦0,) = (𝜋/2, 𝜋/2) after
1.5 × 106 iterations; Figure 15.13 (center) shows the output of Listing 15.14 when
𝑎 = −1.4, 𝑏 = 1.6, 𝑐 = 1, 𝑑 = 0.7, (𝑥0, 𝑦0,) = (𝜋/2, 𝜋/2) after 1.5 × 106 iterations;
Figure 15.13 (right) shows output of Listing 15.14 when 𝑎 = −1.4, 𝑏 = 1.6, 𝑐 = 1,
𝑑 = 0. − 1, (𝑥0, 𝑦0,) = (𝜋/2, 𝜋/2) after 2 × 106 iterations.

Listing 15.14: Clifford attractor, see Fig. 15.13

clifford<-function(a,b,c,d,x0, y0,MaxIter){
x<-array(dim=MaxIter); y<-array(dim=MaxIter)
x[1]<-x0; y[1]<-y0
for (k in 2:MaxIter)
{

x[k]<-sin(a*y[k-1])+c*cos(a*x[k-1])
y[k]<-sin(b*x[k-1])+d*cos(b*y[k-1])

}
xy<-cbind(x,y)
return(xy)

}

a<--1.4; b<-1.6; c<-1; d<-0.3
x0<-pi/2; y0<-pi/2; MaxIter<-1.5e6
xy<-clifford(a,b,c,d,x0, y0, MaxIter)
plot(xy[,1], xy[,2], pch=17, cex=.02, col="gold", axes=F, ann=F)

15.6 Case studies of dynamical system models with complex attractors | 291

Figure 15.13: Clifford attractor. Left: 𝑎 = −1.4, 𝑏 = 1.6, 𝑐 = 1, 𝑑 = 0.3, (𝑥0, 𝑦0,) = (𝜋/2, 𝜋/2)
after 1.5 × 106 iterations. Center: 𝑎 = −1.4, 𝑏 = 1.6, 𝑐 = 1, 𝑑 = 0.7, (𝑥0, 𝑦0,) = (𝜋/2, 𝜋/2)
after 1.5 × 106 iterations. Right: 𝑎 = −1.4, 𝑏 = 1.6, 𝑐 = 1, 𝑑 = 0. − 1, (𝑥0, 𝑦0,) = (𝜋/2, 𝜋/2)
after 2 × 106 iterations.

15.6.3 Ikeda attractor

The Ikeda attractor is a dynamical system model that is used to describe a mapping
in the complex plane, corresponding to the plane-wave interactivity in an optical
ring laser. Its discrete-time version is defined by the following complex map:

𝑧𝑛+1 = 𝑎 + 𝑏𝑧𝑛𝑒
𝑖 𝑘−𝑝

1+‖𝑧𝑛‖2 , (15.14)

where, 𝑧𝑘 = 𝑥𝑘 + 𝑖𝑦𝑘.
The resulting orbit of the map (15.14) is generally visualized by plotting 𝑧 in the

real-imaginary plane (𝑥, 𝑦), also called the phase-plot. In R, the orbit of the Ikeda
attractor can be obtained using Listing 15.15. Figure 15.14 (left), produced using
Listing 15.15, shows a representation of the Ikeda’s attractor in the plane (𝑥, 𝑦).

Listing 15.15: Ikeda attractor, see Fig. 15.14

ikeda<-function(a,b,p,k,MaxIter)
{

x<-array(dim=MaxIter); y<-array(dim=MaxIter);
z<-array(dim=MaxIter)

z[1]<-0; x[1]<-0; y[1]<-0
for (i in 2:MaxIter)
{

z[i]<- a +b*z[i-1]*exp(1i*k -1i*p/(1+abs(z[i-1]ˆ2)))
x[i]<-Re(z[i])
y[i]<-Im(z[i])

}
xy<-cbind(x,y)
return(xy)

}

a<-0.85; b<-0.9; k<-0.4; p<-7.7; MaxIter<-5e5
xy<-ikeda(a,b,p,k,MaxIter)
plot(xy[,1], xy[,2], pch=17, cex=.015, col="violetred", axes=F,

ann=F)

292 | 15 Dynamical systems

Figure 15.14: Left: Ikeda attractor for 𝑎 = 0.85, 𝑏 = 0.9, 𝑘 = 0.4, 𝑝 = 7.7, 𝑧0 = 0 after
1.5 × 106 iterations. Center: de Jong attractor (15.16) for 𝑎 = 1.4, 𝑏 = 1.56, 𝑐 = 1.4, 𝑑 = −6.56,
(𝑥0, 𝑦0,) = (0, 0) after 1.5 × 106 iterations. Right: de Jong attractor (15.15) for 𝑎 = 2.01,
𝑏 = −2, 𝑐 = 2, 𝑑 = −2, (𝑥0, 𝑦0,) = (0, 0) after 1.5 × 106 iterations.

15.6.4 The Peter de Jong attractor

The Peter de Jong attractor is a well-known strange attractor, and its time-discrete
version is defined by the following system:

𝑥𝑛+1 = sin(𝑎𝑦𝑛) − cos(𝑏𝑥𝑛),
𝑦𝑛+1 = sin(𝑐𝑥𝑛) − cos(𝑑𝑦𝑛), (15.15)

where, 𝑎, 𝑏, 𝑐, and 𝑑 are the parameters of the attractor.
A variant of Peter de Jong attractor is given by

𝑥𝑛+1 =𝑑 sin(𝑎𝑥𝑛) − sin(𝑏𝑦𝑛),
𝑦𝑛+1 =𝑐 cos(𝑎𝑥𝑛) + cos(𝑏𝑦𝑛). (15.16)

In R, the orbit of Peter de Jong attractor can be obtained using Listing 15.16. Figure
15.14 (center), produced using Listing 15.16, shows a representation of the de Jong
attractor (15.16), in the plane (𝑥, 𝑦), for 𝑎 = 1.4, 𝑏 = 1.56, 𝑐 = 1.4, 𝑑 = −6.56,
(𝑥0, 𝑦0,) = (0, 0) after 1.5 × 106 iterations. Figure 15.14 (right), produced also using
Listing 15.16, shows a representation of the de Jong attractor (15.15) for 𝑎 = 2.01,
𝑏 = −2, 𝑐 = 2, 𝑑 = −2, (𝑥0, 𝑦0,) = (0, 0) after 1.5 × 106 iterations.

Listing 15.16: de Jong attractor, see Fig. 15.14

deJong1<-function(a,b,c,d,x0, y0,MaxIter)
{

x<-array(dim=MaxIter); y<-array(dim=MaxIter)
x[1]<-x0; y[1]<-y0
for (k in 2:MaxIter)
{

x[k]<-sin(a*y[k-1])- cos(b*x[k-1])
y[k]<-sin(c*x[k-1])- cos(d*y[k-1])

}
xy<-cbind(x,y)
return(xy)

}

15.6 Case studies of dynamical system models with complex attractors | 293

deJong2<-function(a,b,c,d,x0, y0,MaxIter)
{

x<-array(dim=MaxIter); y<-array(dim=MaxIter)
x[1]<-x0; y[1]<-y0
for (k in 2:MaxIter)
{

x[k]<-d*sin(a*x[k-1])- sin(b*y[k-1])
y[k]<-c*cos(a*x[k-1])+ cos(b*y[k-1])

}
xy<-cbind(x,y)
return(xy)

}

a<- 1.4; b<- -2.3; c<-2.4; d<- - 2.1; x0<-0; y0<-0; MaxIter<-1.5e6
xy<-deJong1(a,b,c,d,x0, y0, MaxIter)
plot(xy[,1], xy[,2], pch=17, cex=.015, col="royalblue1", axes=F,

ann=F)

a<- 1.4; b<-1.56; c<-1.40; d<- - 6.56; x0<-0; y0<-0; MaxIter<-1.5e6
xy<-deJong2(a,b,c,d,x0, y0, MaxIter)
plot(xy[,1], xy[,2], pch=17, cex=.02, col="gold", axes=F, ann=F)

15.6.5 Rössler attractor

The Rössler attractor [157] is a dynamical system that has some applications in the
field of electrical engineering [113]. It is defined by the following equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑑𝑥
𝑑𝑡 = −𝑦 − 𝑧,
𝑑𝑦
𝑑𝑡 = 𝑥 + 𝑎𝑦,
𝑑𝑧
𝑑𝑡 = 𝑏 + 𝑧(𝑥 − 𝑐),

(15.17)

where, 𝑎, 𝑏, and 𝑐 are the parameters of the attractor. This attractor is known to
have some chaotic behavior for certain values of the parameters.

In R, the system (15.17) can be solved and its results visualized using List-
ing 15.17. Figure 15.15, produced using Listing 15.17, shows some visualizations of
the Rössler attractor for different values of its parameters and initial conditions.
Figure 15.15 (left) shows the output of Listing 15.17 when 𝑎 = 0.5, 𝑏 = 2, 𝑐 = 4,
(𝑥0, 𝑦0, 𝑧0) = (0.3, 0.4, 0.5), 𝑑𝑡 = 0.03 after 2 × 106 iterations. Figure 15.15 (cen-
ter) shows the output of Listing 15.17 when 𝑎 = 0.5, 𝑏 = 2, 𝑐 = 4, (𝑥0, 𝑦0, 𝑧0) =
(0.03, 0.04, 0.04), 𝑑𝑡 = 0.03. after 2 × 106 iterations. Figure 15.15 (right) shows the
output of Listing 15.17 when 𝑎 = 0.2, 𝑏 = 0.2, 𝑐 = 5.7, (𝑥0, 𝑦0, 𝑧0) = (0.03, 0.04, 0.04),
𝑑𝑡 = 0.08. after 2 × 106 iterations.

Listing 15.17: Rössler attractor, see Fig. 15.15

library(scatterplot3d)
rossler<-function(a,b,c,x0,y0,z0,MaxIter,dt)
{

294 | 15 Dynamical systems

x<-array(dim=MaxIter); y<-array(dim=MaxIter);
z<-array(dim=MaxIter)

x[1]<-x0; y[1]<-y0; z[1]<-z0
for (i in 2:MaxIter)
{

x[i]<-x[i-1]-dt*(y[i-1]+z[i-1])
y[i]<-y[i-1]+dt*(x[i-1]+a*y[i-1])
z[i]<-z[i-1]+dt*(b+z[i-1]*(x[i-1]-c))

}
xyz<-cbind(x,y,z)
return(xyz)

}

a<-0.5; b<-2; c<-4; x0<-0.3; y0<-0.4;
z0<-0.5; dt<-0.03; MaxIter<-2e6
xyz<-rossler(a,b,c,x0,y0,z0,MaxIter,dt)
scatterplot3d(xyz, highlight.3d=TRUE, xlab=expression(x[n]),

ylab=expression(y[n]),zlab=expression(z[n]), col.axis="purple",
angle=55, col.grid="skyblue", scale.y=0.7, pch=17,
cex.symbols=0.02, lty.axis=3, lty.grid=3, col.lab="white")

Figure 15.15: Rössler’s attractor. Left: 𝑎 = 0.5, 𝑏 = 2, 𝑐 = 4, (𝑥0, 𝑦0, 𝑧0) = (0.3, 0.4, 0.5), 𝑑𝑡 =
0.03 after 2 × 106 iterations. Center: 𝑎 = 0.5, 𝑏 = 2, 𝑐 = 4, (𝑥0, 𝑦0, 𝑧0) = (0.03, 0.04, 0.04), 𝑑𝑡 =
0.03. after 2 × 106 iterations. Right: 𝑎 = 0.2, 𝑏 = 0.2, 𝑐 = 5.7, (𝑥0, 𝑦0, 𝑧0) = (0.03, 0.04, 0.04),
𝑑𝑡 = 0.08. after 2 × 106 iterations.

15.7 Fractals

There exist various definitions of the word “fractal”, and the simplest of these is the
one suggested by Benoit Mandelbrot [125], who refers to a “fractal” as an object,
which possesses self-similarity. In this section, we will provide examples of imple-
mentations for some classical fractal objects, using R.

15.7.1 The Sierpińsky carpet and triangle

The Sierpińsky carpet and triangle are geometry fractals named after Wacław Sier-
pińsky, who introduced them in the early nineteenth century [172]. The Sierpińsky
carpet can be constructed using the following iterative steps:

15.7 Fractals | 295

Step 1: Set 𝑥0 = 0, 𝑛 = 1, and choose the number of iterations 𝑁 .
Step 2: If 𝑛 ≤ 𝑁 , then the following applies:

– Set

𝑥𝑛 =

⎛⎝𝑥𝑛−1 𝑥𝑛−1 𝑥𝑛−1
𝑥𝑛−1 𝐼𝑛−1 𝑥𝑛−1
𝑥𝑛−1 𝑥𝑛−1 𝑥𝑛−1

⎞⎠ ,

where, 𝐼𝑛−1 is a 3𝑛−1 by 3𝑛−1 matrix of unity elements.
– Set 𝑛 = 𝑛 + 1 and go to Step 2.
Otherwise, go to Step 3.

Step 3: Plot the points in the final matrix 𝑥𝑁 .

The construction and visualization of the Sierpińsky carpet can be carried out, in R,
using Listing 15.18. Figure 15.16 (left), which is an output of Listing 15.18, shows
the visualization of the Sierpińsky carpet after six iterations.

Listing 15.18: The Sierpińsky carpet, see Fig. 15.16 (left)

sierpinskycarpet<-function(MaxIter)
{

x<-0
for (i in 1:MaxIter)
{

xi<- array(1, dim=c(3ˆ(i-1),3ˆ(i-1)))
c1<-cbind(x,x,x)
c2<-cbind(x,xi,x)
x<-rbind(c1,c2,c1)

}
return(x)

}
MaxIter<-6
xn<-sierpinskycarpet(MaxIter)
Lab.palette <- colorRampPalette(c("burlywood","seashell1"), space =

"Lab")
image(xn, col=Lab.palette(256), axes=F)

The Sierpińsky triangle can be constructed using the following iterative steps:
Step 1: Select three points (vertices of the triangle) in a two-dimensional plane. Let

us call them 𝑥𝑎, 𝑥𝑏, 𝑥𝑐;
Plot the points 𝑥𝑎, 𝑥𝑏, 𝑥𝑐;
Choose the number of iterations 𝑁 ;

Step 2: Select an initial point 𝑥0. Set 𝑛 = 1;
Step 3: If 𝑛 ≤ 𝑁 then do the following:

– Select one of the three vertices {𝑥𝑎, 𝑥𝑏, 𝑥𝑐} at random, and let us call this
point 𝑝𝑛;

– Calculate the point 𝑥𝑛 = (𝑥𝑛−1+𝑝𝑛−)
2 , and plot 𝑥𝑛;

296 | 15 Dynamical systems

– Set 𝑛 = 𝑛 + 1 and go to Step 3;
Otherwise go to Step 4;

Step 4: Plot the points of the sequence 𝑥0, 𝑥1, . . . , 𝑥𝑁 .

In R, the construction and the visualization of the Sierpińsky triangle can be achieved
using Listing 15.19. Figure 15.16 (center), which is an output of Listing 15.19, shows
the visualization of the Sierpińsky triangle after 5e+5 iterations.

Listing 15.19: The Sierpińsky triangle, see Fig. 15.16 (center)

sierpinskytriangle<-function(MaxIter)
{

x<-array(0,dim=MaxIter); y<-x
for (i in 2:MaxIter)
{

c=sample(1:3,1)
if (c==1)
{

x[i]<-0.5*x[i-1]
y[i]<-0.5*y[i-1]

}
if (c==2)
{

x[i]<-0.5*x[i-1]+.25
y[i]<-0.5*y[i-1]+sqrt(3)/4

}
if (c==3)
{

x[i]<-0.5*x[i-1]+.5
y[i]<-0.5*y[i-1]

}
}
xy<-cbind(x,y)
return(xy)

}
MaxIter<-0.5e6
xy<-sierpinskytriangle(MaxIter)
plot(xy[,1], xy[,2], pch=17, cex=.04, col="firebrick", axes=F,

ann=F)

15.7.2 The Barnsley fern

Named after the mathematician who introduced it, the Barnsley fern [11] is a fractal,
which can be constructed using the following iterative process:
Step 1: Set 𝑎 = (0, 0.85, 0.2, −0.15), 𝑏 = (0, 0.04, −0.26, 0.28), 𝑐 = (0, −0.04, 0.23,

0.26), 𝑑 = (0.16, 0.85, 0.22, 0.24), 𝑒 = (0, 0, 0, 0), 𝑓 = (0, 1.6, 1.6, 0.44);
Chose the number of iterations 𝑁 .

Step 2: Set 𝑥0 = 0, 𝑦0 = 0, and 𝑛 = 1;
Step 3: If 𝑛 ≤ 𝑁 , then do the following:

– Select at random a value 𝑟 ∈ (0, 1),

15.7 Fractals | 297

– If 𝑟 < 0.01 then set 𝑗 = 1 and go to Step 4,
– If 0.01 < 𝑟 < 0.86 the set 𝑗 = 2 and go to Step 4,
– If 0.86 < 𝑟 < 0.93 the set 𝑗 = 3 and go to Step 4,
– If 0.93 < 𝑟 the set 𝑗 = 4 and go to Step 4,

Step 4: Set 𝑥𝑛 = 𝑎𝑗 ×𝑥𝑛−1 +𝑏𝑗 ×𝑦𝑛−1 +𝑒𝑗 , 𝑦𝑛 = 𝑐𝑗 ×𝑥𝑛−1 +𝑑𝑗 ×𝑦𝑛−1 +𝑓𝑗 , where,
𝑎𝑗 , 𝑏𝑗 , 𝑐𝑗 , 𝑑𝑗 , 𝑒𝑗 , 𝑓𝑗 denote the 𝑖th component of the vectors 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 and 𝑓 ,
respectively.
Set 𝑛 = 𝑛 + 1 and go to Step 3;

Step 5: Plot the points of the sequence (𝑥0, 𝑦0), (𝑥1, 𝑦1), . . . , (𝑥𝑁 , 𝑦𝑁).

In R, the construction and the visualization of the Barnsley fern can be achieved
using Listing 15.20. Figure 15.16 (right), which is an output of Listing 15.20, shows
the visualization of the Barnsley fern after 1e+6 iterations.

Listing 15.20: The Barnsley fern, see Fig. 15.16 (right)

barnsleyfern<-function(MaxIt)
{

a<-c(0, 0.85, 0.2, -0.15); b<-c(0, 0.04, -0.26, 0.28)
c<-c(0, -0.04, 0.23, 0.26); d<-c(0.16, 0.85, 0.22, 0.24)
e<-c(0, 0, 0, 0); f<-c(0, 1.6, 1.6, 0.44)
x<-array(0,dim=MaxIt); y<-x
x[1]<-0; y[1]<-0
for (i in 1:MaxIt)
{

r<-sample(0:1000,1)/1000
if (r<0.01)

j=1
if ((r>0.01)&(r<0.86))

j=2
if ((r>0.86)&(r<0.93))

j=3
if (r>0.93)

j=4

x[i+1]=a[j]*x[i]+b[j]*y[i]+e[j];
y[i+1]=c[j]*x[i]+d[j]*y[i]+f[j];

}
xy<-cbind(x,y)
return(xy)

}
MaxIt<-1e6
xy<-barnsleyfern(MaxIt)
Lab.palette <- colorRampPalette(c("firebrick","red","orange"),

space = "Lab")
plot(xy[,1], xy[,2], pch=17, cex=.09, col=Lab.palette(256),

axes=F, ann=F)

298 | 15 Dynamical systems

Figure 15.16: Left: The Sierpińsky carpet. Center: The Sierpińsky triangle. Right: The Barnsley
fern.

15.7.3 Julia sets

Let 𝑧𝑛 be a sequence defined by the following recurrence relationship:

𝑧𝑛+1 = 𝑧𝑚
𝑛 + 𝑐 (15.18)

with 𝑐 and 𝑧0 ∈ C and 𝑚 ∈ N.
For a given value of 𝑐, the associated Julia set [103] is defined by the boundary

between the set of 𝑧0 values that have bounded orbits, and those which do not. For
instance, when 𝑚 = 2, for any 𝑐 ∈ C the recurrence relationship 𝑧2 + 𝑐 defines a
quadratic Julia set.

In R, the construction and the visualization of the Julia set can be done using
Listing 15.21 and Listing 15.22. Figures 15.17, 15.18, 15.19, which have all been pro-
duced using Listing 15.21, illustrate the evolution of the quadratic Julia set according
to the value of the complex parameter 𝑐.

Listing 15.21: Julia sets

fzn<-function(z, c, n)
{

fz<-zˆn+c
return(fz)

}

JuliaSet<-function(n, c, Nx, Ny, MaxIter)
{

Matz<-array(0, dim=c(Nx,Ny,2)); MatzColor<-array(0,
dim=c(Nx,Ny,3))

scalexy<-5/4; xmin <- -scalexy*4/3; xmax <- scalexy*4/3
ymin <- -scalexy; ymax <- scalexy;
for (k in 1:MaxIter)
{

for (j in 1:Ny)
{

y <- ymin + j*(ymax - ymin)/(Ny - 1)
for (i in 1:Nx)
{

x <- xmin + i*(xmax - xmin)/(Nx - 1)

15.7 Fractals | 299

if (k==1)
z<- complex(real=x,imaginary=y)

else
z<- complex(real=Matz[i,j,1], imaginary=Matz[i,j,2])

z<-fzn(z, c, n)
Matz[i,j,1]=Re(z);
Matz[i,j,2]=Im(z);
#Examples of coloring patterns
scalecolor<-20;
MatzColor[i,j,1] <- abs(cos(scalecolor*abs(z)));
MatzColor[i,j,2] <- abs(cos(scalecolor*Arg(z)));
MatzColor[i,j,3] <- abs(cos(scalecolor*sqrt(abs(z))));

}
}

}
return(MatzColor)

}

Listing 15.22: Plotting some Julia sets

#Plotting Julia sets
c<--0.67319+1i*0.34442; n=2;
MaxIter<-50; Nx<- 800; Ny<- 600
zn<-JuliaSet(n, c, Nx, Ny, MaxIter)
#Plots with various colouring patterns
rgb.palette <- colorRampPalette(c("lightslateblue", "slateblue4",

"oldlace"), space = "rgb")
image(zn[, ,1], col=rgb.palette(256), axes=F)
rgb.palette <- colorRampPalette(c("skyblue1", "slateblue4",

"oldlace"), space = "rgb")
image(zn[, ,2], col=rgb.palette(256), axes=F)
rgb.palette <- colorRampPalette(c("turquoise1", "slateblue4",

"oldlace"),space = "rgb")
image(zn[, ,3], col=rgb.palette(256), axes=F)

Figure 15.17: Quadratic Julia sets. Left: 𝑐 = 0.7; Center: 𝑐 = −0.074543 + 0.11301𝑖; Right:
𝑐 = 0.770978 + 0.08545𝑖.

300 | 15 Dynamical systems

Figure 15.18: Quadratic Julia sets. Left: 𝑐 = 0.7. Center: 𝑐 = −0.74543 + 0.11301𝑖. Right:
𝑐 = 0.770978 + 0.08545𝑖.

Figure 15.19: Quadratic Julia sets. Left: 𝑐 = −1.75. Center: 𝑐 = −𝑖. Right: 𝑐 = −0.835 −
0.2321𝑖.

15.7.4 Mandelbrot set

The Mandelbrot set [125] is the set of all 𝑐 ∈ C, such that the sequence 𝑧𝑛 defined
by the recurrence relationship (15.19) is bounded.{︃

𝑧0 = 0,

𝑧𝑛+1 = 𝑧𝑚
𝑛 + 𝑐, 𝑚 ∈ N,

(15.19)

Formally, the Mandelbrot set can be defined as follows:

ℳ =
{︀

𝑐 ∈ C : 𝑧0 = 0 and |𝑧𝑛| ↛ ∞, as 𝑛 −→ ∞
}︀

. (15.20)

The Mandelbrot system (15.19) can be reformulated in R2 by substituting 𝑧𝑛 =
𝑥𝑛 + 𝑖𝑦𝑛 and 𝑐 = 𝑎 + 𝑖𝑏 with their real and imaginary parts, respectively. For
instance, when 𝑚 = 2, the system (15.19) is called the quadratic Mandelbrot set,
and it can be reformulated in R2 as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑥0 = 𝑦0 = 0,

𝑥𝑛+1 = 𝑥2
𝑛 − 𝑦2

𝑛 + 𝑎,

𝑦𝑛+1 = 2𝑥𝑛𝑦𝑛 + 𝑏.

(15.21)

In R, the construction and the visualization of the quadratic Mandelbrot set
can be done using the scripts in Listing 15.23 and Listing 15.24. The graphs in
Figure 15.20, produced using Listing 15.23 and Listing 15.24, illustrate some visual-
ization of the quadratic Mandelbrot set depending on the values of its parameters.

15.7 Fractals | 301

Listing 15.23: Mandelbrot sets

fz2<-function(z, c)
{

fz<-zˆ2+c
return(fz)

}
fz3<-function(z, c)
{

fz<-zˆ3- z + c-2/3/sqrt(3)
return(fz)

}
fzcos<-function(z, c)
{

fz<-c*cos(z)/sqrt(0.8)
return(fz)

}

MandelbrotSet<-function(fz, Nx, Ny, MaxIter, scalexy)
{

Matz<-array(0, dim=c(Nx,Ny,2))
MatzColor<-array(0, dim=c(Nx,Ny,2))
xmin = -scalexy*4 - 0.5; xmax = scalexy*4 - 0.5
ymin = -scalexy*3; ymax = scalexy*3

for (k in 1:MaxIter)
{

for (j in 1:Ny)
{

y <- ymin + j*(ymax - ymin)/(Ny - 1)
for (i in 1:Nx)
{

x <- xmin + i*(xmax - xmin)/(Nx - 1)
if (k==1)

z<- complex(real=x,imaginary=y)
else

z<- complex(real=Matz[i,j,1], imaginary=Matz[i,j,2])

scalecolor<-20;
MatzColor[i,j,1] <- abs(cos(scalecolor*abs(z+1/sqrt(3))));
MatzColor[i,j,2] <- abs(cos(scalecolor*sqrt(abs(z))));
z0<- complex(real=x,imaginary=y)
z<-fz(z, z0)
Matz[i,j,1]=Re(z);
Matz[i,j,2]=Im(z);

}
}

}
return(MatzColor)

}

Listing 15.24: Plotting some Mandelbrot sets

#Plotting Mandelbrot sets
Nx<-800; Ny<-600;
zn<-MandelbrotSet(fz2, Nx, Ny, MaxIter=26, scalexy=0.38)
rgb.palette <- colorRampPalette(c("red1", "orangered4", "oldlace"),

space = "rgb")
image(zn[, ,2], col=rgb.palette(256), axes=F)

302 | 15 Dynamical systems

zn<-MandelbrotSet(fz3, Nx, Ny, MaxIter=23, scalexy=0.38)
rgb.palette <- colorRampPalette(c("lightslateblue", "slateblue4",

"oldlace"), space = "rgb")
image(zn[, ,1], col=rgb.palette(256), axes=F)

zn<-MandelbrotSet(fzcos, Nx, Ny, MaxIter=6, scalexy=1.5)
rgb.palette <- colorRampPalette(c("oldlace", "turquoise"), space =

"rgb")
image(zn[, , 2], col=rgb.palette(256), axes=F)

Figure 15.20: Left: 𝑧𝑛+1 = 𝑧2
𝑛 + 𝑐. Center: 𝑧𝑛+1 = 𝑐 * cos(𝑧𝑛)/

√︀
(0.8). Right: 𝑧𝑛+1 =

𝑧3
𝑛 − 𝑧𝑛 + 𝑐 − (2/3)/

√︀
(3).

15.8 Exercises

1. Consider the following dynamical system:

𝑥𝑛+1 = 𝑥2
𝑛 for 𝑛 = 0, 1, 2, 3, . . .

Use R to simulate the dynamics of 𝑥𝑛 using the initial conditions 𝑥0 = 1 and
𝑥0 = 3, for 𝑛 = 1, . . . , 500.
Plot the corresponding cobweb graph, as well as the graph of the evolution of
𝑥𝑛, over time.

2. Consider the following dynamical system:

𝑧𝑡+1 − 𝑧𝑡 = 𝑧𝑡(1 − 𝑧𝑡) for 𝑡 = 0, 1, 2, 3, . . .

Use R to simulate the dynamics of 𝑥𝑛 using the initial conditions 𝑧0 = 0.2 and
𝑧0 = 5 for 𝑛 = 1, . . . , 500.
Plot the corresponding cobweb graph, as well as the graph of the evolution of
𝑥𝑛, over time.

3. Let 𝑥𝑛 be the number of fish in generation 𝑛 in a lake. The evolution of the fish
population can be modeled using the following model:

𝑥𝑛+1 = 8𝑥𝑛𝑒−𝑥𝑛 .

15.8 Exercises | 303

Use R to simulate the dynamics of the fish population using the initial conditions
𝑥0 = 1 and 𝑥0 = log(8) for 𝑛 = 1, . . . , 500.
Plot the corresponding cobweb graph, as well as the graph of the dynamics of
the population number, over time.

4. Consider the following predator–prey model 𝑥 and 𝑦:

𝑑𝑥

𝑑𝑡
= 𝐴𝑥 − 𝐵𝑥𝑦,

𝑑𝑦

𝑑𝑡
= −𝐶𝑦 + 𝐷𝑥𝑦. (15.22)

Use R to solve the system (15.22) using the following initial conditions and values
of the parameters for 𝑡 ∈ [0, 200]:
(a) 𝑥(0) = 81, 𝑦(0) = 18, 𝐴 = 1.5, 𝐵 = 1.1, 𝐶 = 2.9, 𝐷 = 1.2;
(b) 𝑥(0) = 150, 𝑦(0) = 81, 𝐴 = 5, 𝐵 = 3.1, 𝐶 = 1.9, 𝐷 = 2.1.
Plot the corresponding solutions in the phase plane (𝑥, 𝑦), and the evolution of
the population of both species over time.

5. Use R to plot, in 3D, the following Lorenz system (15.12) using the parameters
𝑎 = 15, 𝑟 = 32, 𝑏 = 3, and the following initial conditions: 𝑥1(0) = 0.03,
𝑥2(0) = 0.03, 𝑥3(0) = 0.03; 𝑥1(0) = 0.5, 𝑥2(0) = 0.21, 𝑥3(0) = 0.55.

16 Graph theory and network analysis

This chapter provides a mathematical introduction to networks and graphs. To facili-
tate this introduction, we will focus on basic definitions and highlight basic properties
of defining components of networks. In addition to quantify network measures for
complex networks, e. g., distance- and degree-based measures, we survey also some
important graph algorithms, including breadth-first search and depth-first search.
Furthermore, we discuss different classes of networks and graphs that find widespread
applications in biology, economics, and the social sciences [10, 23, 53].

16.1 Introduction

A network 𝐺 = (𝑉, 𝐸) consists of nodes 𝑣 ∈ 𝑉 and edges 𝑒 ∈ 𝐸, see [94]. Often,
an undirected network is called a graph, but in this chapter we will not distinguish
between a network and a graph and use both terms interchangeably. In Figure 16.1,
we show some examples for undirected and directed networks. The networks shown
on the left-hand side are called undirected networks, whereas those on the right-
hand side are called directed networks since each edge has a direction pointing from
one node to another. Furthermore, all four networks, depicted in Figure 16.1, are
connected [94], i. e., none of them has isolated vertices. For example, removing the
edge between the nodes from an undirected network with only two vertices, leaves
merely two isolated nodes.

Weighted networks are obtained by assigning weights to each edge. Figure 16.2
depicts two weighted, undirected networks (left) and two weighted, directed networks
(right). A weight between two vertices, 𝑤𝐴𝐵 , is usually a real number. The range
of these weights depends on the application context. For example, 𝑤𝐴𝐵 could be a
positive real number indicating the distance between two cities, or two goods in a
warehouse [156].

From the examples above, it becomes clear that there exist a lot of different
graphs with a given number of vertices. We call two graphs isomorphic if they have
the same structure, but they might look differently [94].

In general, graphs or networks can be analyzed by using quantitative and qual-
itative methods [52]. For instance, a quantitative method to analyze graphs is a
graph measure to quantify structural information [52]. In this chapter, we focus on
quantitative techniques and in Section 16.3 we present important examples thereof.

Figure 16.1: Two undirected (left) and two directed
(right) networks with two nodes.

https://doi.org/10.1515/9783110564990-016

306 | 16 Graph theory and network analysis

Figure 16.2: Weighted undirected and directed graphs
with two vertices.

16.2 Basic types of networks

In the previous section, we discussed the basic units of which networks are made
of. In this section, we construct larger networks, which can consist of many vertices
and edges. In Section 16.1, we just discussed the graphical visualization of networks
without providing a formal characterization thereof. In the following, we will provide
such a formal characterization because it is crucial for studying and visualizing
graphs.

16.2.1 Undirected networks

To define a network formally, we specify its set of vertices or nodes, 𝑉 , and its set
of edges, 𝐸. That means, any vertex 𝑖 ∈ 𝑉 is a node of the network. Similarly,
any element 𝐸𝑖𝑗 ∈ 𝐸 is an edge of the network, which means that the vertices 𝑖

and 𝑗 are connected with each other. Figure 16.3 shows an example of a network
with 𝑉 = {1, 2, 3, 4, 5} and 𝐸 = {𝐸12, 𝐸23, 𝐸34, 𝐸14, 𝐸35}. For example, node 3 ∈ 𝑉

and edge 𝐸34 are part of the network shown by Figure 16.3. From Figure 16.3, we
further see that node 3 is connected with node 4, but also, node 4 is connected with
node 3. For this reason, we call such an edge undirected. In fact, the graph shown
by Figure 16.3 is an undirected network. It is evident that in an undirected network
the symbol 𝐸𝑖𝑗 has the same meaning as 𝐸𝑗𝑖, because the order of the nodes in this
network is not important.

Definition 16.2.1. An undirected network 𝐺 = (𝑉, 𝐸) is defined by a vertex set 𝑉

and an edge set 𝐸 ⊆
(︀

𝑉
2
)︀
.

𝐸 ⊆
(︀

𝑉
2
)︀

means that all edges of 𝐺 belong to the set of subsets of vertices
with 2 elements. The size of 𝐺 is the cardinality of the node set 𝑉 , and is often
denoted by |𝑉 |. The notation |𝐸| stands for the number of edges in the network.
From Figure 16.3, we see that this network has 5 vertices (|𝑉 | = 5) and 5 edges
(|𝐸| = 5).

In oder to encode a network by utilizing a mathematical representation, we use a
matrix representation. The adjacency matrix 𝐴 is a squared matrix with |𝑉 | number
of rows and |𝑉 | number of columns. The matrix elements 𝐴𝑖𝑗 , of the adjacency matrix
provide the connectivity of a network.

16.2 Basic types of networks | 307

Figure 16.3: An undirected network.

Definition 16.2.2. The adjacency matrix 𝐴 for an undirected network 𝐺 is defined
by

𝐴𝑖𝑗 =

{︃
1 if 𝑖 is connected with 𝑗 in 𝐺,

0 otherwise,
(16.1)

for 𝑖, 𝑗 ∈ 𝑉 .

As an example, let us consider the graph in Figure 16.3. The corresponding
adjacency matrix is

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
0 1 0 1 0
1 0 1 0 0
0 1 0 1 1
1 0 1 0 0
0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (16.2)

Since this network is undirected, its adjacency matrix is symmetric, that means
𝐴𝑖𝑗 = 𝐴𝑗𝑖 holds for all 𝑖 and 𝑗.

16.2.2 Geometric visualization of networks

From the previous discussions, we see that the graphical visualization of a network
is not determined by its definition. This is illustrated in Figure 16.4, where we show
the same network as in Figure 16.3, but with different positions of the vertices.
When comparing their adjacency matrix (16.2), one can see that these networks are
identical. In general, a network represents a topological object instead of a geometrical
one. This means that we can arbitrarily deform the network visually as long as 𝑉

and 𝐸 remain changed as shown in Figure 16.4. Therefore, the formal definition
of a given network does not include any geometric information about coordinates,
where the vertices are positioned in a plane as well as features, such as edge length
and bendiness. In order to highlight this issue, we included to the right figure of
Figure 16.4 a Cartesian coordinate system when drawing the graph. The good news
is as long as we do not require a visualization of a network the topological information
about it is sufficient to conduct any analysis possible.

308 | 16 Graph theory and network analysis

Figure 16.4: Two different
visualizations of the network
depicted in Figure 16.3.

In contrast, from Figure 16.3 and Figure 16.4, we can see that the visualization of
a network is not unique and for a specific visualization often additional information
is utilized. This information could either be motivated by certain structural aspects
of the network we are trying to visualize, e. g., properties of vertices or edges (see
Section 16.3.1) or even from domain specific information (e. g., from biology or econ-
omy). An important consequence of the ”arbitrariness” of a network visualization is
that there is no formal mapping from 𝐺 to its visualization.

16.2.3 Directed and weighted networks

We will start this section with some basic definitions for directed networks.

Definition 16.2.3. A directed network, 𝐺 = (𝑉, 𝐸), is defined by a vertex set 𝑉 and
an edge set 𝐸 ⊆ 𝑉 × 𝑉 .

𝐸 ⊆ 𝑉 × 𝑉 means that all directed edges of 𝐺 are subsets of all possible com-
binations of directed edges. The expression 𝑉 × 𝑉 is a cartesian product and the
corresponding result is a set of directed edges. If 𝑢, 𝑣 ∈ 𝑉 , then we write (𝑢, 𝑣) to
express that there exists a directed edge from 𝑢 to 𝑣.

The definition of the adjacency matrix of a directed graph is very similar to the
definition of an undirected graph.

Definition 16.2.4. The components of an adjacency matrix, 𝐴, for a directed net-
work, 𝐺, are defined by

𝐴𝑖𝑗 =

{︃
1 if there is a connection from 𝑖 to 𝑗 in 𝐺

0 otherwise
(16.3)

for 𝑖, 𝑗 ∈ 𝑉 .

In contrast with equation (16.1), here, we choose the start vertex (𝑖) and the
end vertex (𝑗) of a directed edge. Figure 16.5 presents a directed network with the

16.2 Basic types of networks | 309

following adjacency matrix:

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
0 0 0 0 0
1 0 1 0 0
0 0 0 1 1
1 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (16.4)

Here, we can see that 𝐴𝑡 ̸ =𝐴. Therefore, the transpose of the adjacency matrix, 𝐴,
of a directed graph is not always equal to 𝐴.

Figure 16.5: A directed network.

For example, the edge set of the directed network, depicted in Figure 16.5, is 𝐸 =
{(2, 1), (2, 3), (4, 1), (3, 4), (3, 5)}.

Now, we define a weighted, directed network.

Definition 16.2.5. The components of an adjacency matrix, 𝑊 , for a directed net-
work, 𝐺, are defined by

𝑊𝑖𝑗 =

{︃
𝑤𝑖𝑗 if there is a connection from 𝑖 to 𝑗 in 𝐺,

0 otherwise,
(16.5)

for 𝑖, 𝑗 ∈ 𝑉 .

In equation (16.5), 𝑤𝑖𝑗 ∈ R denotes the weight associated with an edge from
vertex 𝑖 to vertex 𝑗.

Figure 16.6 depicted the weighted direct network with the following adjacency
matrix:

𝑊 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
0 0 0 0 0
2 0 1 0 0
0 0 0 3 3
1 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (16.6)

From the adjacency matrix 𝑊 , we can identify the following (real) weights: 𝑤21 = 2,
𝑤23 = 1, 𝑤34 = 3, 𝑤35 = 3, 𝑤41 = 1.

310 | 16 Graph theory and network analysis

Figure 16.6: Example of a weighted and directed network.

16.2.4 Walks, paths, and distances in networks

We start this section with some basic definitions.

Definition 16.2.6. A walk 𝑤 of length 𝜇 in a network is a sequence of 𝜇 edges, which
are not necessarily different. We write 𝑤 = 𝑣1𝑣2, 𝑣2𝑣3, . . . , 𝑣𝜇−1𝑣𝜇. We also call the
walk 𝑤 closed if 𝑣1 = 𝑣𝜇.

Definition 16.2.7. A path 𝑃 is a special walk, where all the edges and all the vertices
are different.

In a directed graph, the close path is also called a cycle.

Let us illustrate these definitions by way of the network examples depicted in
Figure 16.7. If we consider the upper graph on the left hand side, we see that 12,
23, 34 is an undirected path, as all vertices and edges are different. This path has a
length of 3. On the other hand, in the upper graph of the right hand side, 12, 23, 32
is a walk of length 3. By considering the same graph, we also find that 14, 43, 34,
41 is a closed walk, as it starts and ends in vertex 1. This closed walk has a length
of 4.

Now, let us consider the lower graph on the left hand side of Figure 16.7. In this
graph, 12, 23, 34 is a directed path of length 3 as the underlying graph is directed.

Figure 16.7: Undirected and
directed path.

In the lower graph below on the right hand side, the path 23, 34, 41 has a length 3,
but does not represent a cycle, as its start and end vertices are not the same.

Now, we define the term distance between vertices in a network.

16.3 Quantitative network measures | 311

Definition 16.2.8. A shortest path is the minimum path connecting two vertices.

Also, we define the topological distance between two vertices in a network.

Definition 16.2.9. The number of edges in the shortest path connecting the vertices
𝑢 and 𝑣 is the topological distance 𝑑(𝑢, 𝑣).

Again, we consider the upper graph on the right hand side of Figure 16.7. For
instance, the path 12, 23, 34, for going from vertex 1 to vertex 4 has length 3 and is
obviously not the shortest one. Calculating the shortest path yields 𝑑(1, 4) = 1.

16.3 Quantitative network measures

Many quantitative network measures, also called network scores or indices, have been
developed to characterize structural properties of networks, see, e. g., [19, 43, 67].
These measures have often been used for characterizing network classes discussed
in section (16.5), or to identify distinct network patterns, such as linear and cyclic
subgraphs. In the following, we discuss the most important measures to characterize
networks structurally. In case no remark is made, we always assume that the networks
are undirected.

In general, we distinguish between global and local graph measures. A global
measure maps the entire network to a real number. A local measure maps a com-
ponent of the graph, e. g., a vertex, an edge, or a subgraph to a real number. The
design of these measures depends on the application domain.

16.3.1 Degree and degree distribution

Definition 16.3.1. Let 𝐺 = (𝑉, 𝐸) be a network. The degree 𝑘𝑖 of the vertex 𝑣𝑖 is
the number of edges, which are incident with the vertex 𝑣𝑖.

In order to characterize complex networks by their degree distributions [23, 128],
we utilize the following definition:

Definition 16.3.2. Let 𝐺 = (𝑉, 𝐸) be a network. We define the degree distribution
as follows:

𝑃 (𝑘) := 𝛿𝑘

𝑁
, (16.7)

where |𝑉 | := 𝑁 and 𝛿𝑘 denotes the number of vertices in the network, 𝐺, of degree 𝑘.

It is clear that equation (16.7) represents the proportion of vertices in 𝐺 pos-
sessing degree 𝑘.

Degree-based statistics have been used in various application areas in computer
science. For example, it has been known that the vertex degrees of many real-world

312 | 16 Graph theory and network analysis

networks, such as www-graphs and social networks [2, 23, 24], are not Poisson dis-
tributed. However, the following power law always holds:

𝑃 (𝑘) ∼ 𝑘−𝛾 , 𝛾 > 1. (16.8)

16.3.2 Clustering coefficient

The clustering coefficient, 𝐶𝑖, is a local measure [198] defined, for a particular vertex
𝑣𝑖, as follows:

𝐶𝑖 = 2𝑒𝑖

𝑛𝑖(𝑛𝑖 − 1) = 𝑒𝑖

𝑡𝑖
. (16.9)

Here, 𝑛𝑖 is the number of neighbors of vertex 𝑖, and 𝑒𝑖 is the number of adjacent
pairs between all neighbors of 𝑣𝑖. Because 0 ≤ 𝑒𝑖 ≤ 𝑡𝑖, 𝐶𝑖 is the probability that two
neighbors of node 𝑖 are themselves connected with each other. Figure 16.8 depicts
an example of graph as well as the calculation of the corresponding local clustering
coefficient.

Figure 16.8: Local clustering coefficient.

16.3.3 Path-based measures

Path- and distance-based measures have been proven useful, especially when charac-
terizing networks [64, 104]. For example, the average path length and the diameter
of a network have been used to characterize classes of biological and technical net-
works, see [64, 104, 196]. An important finding is that the average path lengths and
diameters of certain biological networks are rather small compared to the size of a
network, see [115, 128, 143].

In the following, we briefly survey important path and distance-based network
measures, see [29, 31, 93, 94, 174]. Starting from a network 𝐺 = (𝑉, 𝐸), we define
the distance matrix as follows:

16.3 Quantitative network measures | 313

Definition 16.3.3. The distance matrix is defined by(︀
𝑑(𝑣𝑖, 𝑣𝑗)

)︀
𝑣𝑖,𝑣𝑗∈𝑉

, (16.10)

where 𝑑(𝑣𝑖, 𝑣𝑗) is the topological distance between 𝑣𝑖 and 𝑣𝑗 .

Similarly, the mean or characteristic distance of a network, 𝐺 = (𝑉, 𝐸), can be
defined as follows:

Definition 16.3.4.

𝑑(𝐺) := 1(︀
𝑁
2
)︀ ∑︁

1≤𝑖<𝑗≤𝑁

𝑑(𝑣𝑖, 𝑣𝑗). (16.11)

We also define other well-known distance-based graph measures [94] that have
been used extensively in various disciplines [57, 197].

Definition 16.3.5. Let 𝐺 = (𝑉, 𝐸) be a network. The eccentricity of a vertex 𝑣 ∈ 𝑉

is defined by

𝜎(𝑣) = max
𝑢∈𝑉

𝑑(𝑢, 𝑣). (16.12)

Definition 16.3.6. Let 𝐺 = (𝑉, 𝐸) be a network. The diameter of the network, 𝐺,
is defined by

𝜌(𝐺) = max
𝑣∈𝑉

𝜎(𝑣). (16.13)

Definition 16.3.7. Let 𝐺 = (𝑉, 𝐸) be a network. The radius of the network, 𝐺, is
defined by

𝑟(𝐺) = min
𝑣∈𝑉

𝜎(𝑣). (16.14)

16.3.4 Centrality measures

These graph measures have been investigated extensively by social scientists for
analyzing the communication within groups of people [80, 81, 197]. For instance, it
could be interesting to know how important or distinct vertices, e. g., representing
persons, in social networks are [197]. In the context of social networks, importance
can be seen as centrality. Following this idea, numerous centrality measures [92, 197]
have been developed to determine whether vertices, e. g., representing persons, may
act distinctly with respect to the communication ability in these networks. In this
section, we briefly review the most important centrality measures, see [80, 81, 197].

314 | 16 Graph theory and network analysis

Definition 16.3.8. Let 𝐺 = (𝑉, 𝐸) be a network. The so-called degree centrality of
a vertex 𝑣 ∈ 𝑉 is defined by

𝐶𝐷(𝑣) = 𝑘𝑣, (16.15)

where 𝑘𝑣 denotes the degree of the vertex 𝑣.

When analyzing directed networks, the degree centrality can be defined straight-
forwardly by utilizing the definition of the in-degree and out-degree [94]. Now, let
us define the well-known betweeness centrality measure [80, 81, 159, 197].

Definition 16.3.9. Let 𝐺 = (𝑉, 𝐸) be a network. The betweenness centrality is de-
fined by

𝐶𝐵(𝑣𝑘) =
∑︁

𝑣𝑖,𝑣𝑗∈𝑉,𝑣𝑖 ̸ =𝑣𝑗

𝜎𝑣𝑖𝑣𝑗 (𝑣𝑘)
𝜎𝑣𝑖𝑣𝑗

, (16.16)

where, 𝜎𝑣𝑖𝑣𝑗 stands for the number of shortest paths from 𝑣𝑖 to 𝑣𝑗 , and 𝜎𝑣𝑖𝑣𝑗 (𝑣𝑘)
for the number of shortest paths from 𝑣𝑖 to 𝑣𝑗 that include 𝑣𝑘.

In fact, the quantity

𝜎𝑣𝑖𝑣𝑗 (𝑣𝑘)
𝜎𝑣𝑖𝑣𝑗

(16.17)

can be seen as the probability that 𝑣𝑘 lies on a shortest path connecting 𝑣𝑖 with 𝑣𝑗 .
A further well-known measure of centrality is called closeness centrality.

Definition 16.3.10. Let 𝐺 = (𝑉, 𝐸) be a network. The closeness centrality is defined
by

𝐶𝐶(𝑣𝑘) = 1∑︀𝑁
𝑖=1 𝑑(𝑣𝑘, 𝑣𝑖)

, (16.18)

where 𝑑(𝑣𝑘, 𝑣𝑖) is the number of edges on a shortest path between 𝑣𝑘 and 𝑣𝑖.
When there exist more than one shortest paths connecting 𝑣𝑘 with 𝑣𝑖, 𝑑(𝑣𝑘, 𝑣𝑖)

remains unchanged.

The measure 𝐶𝐶(𝑣𝑘) has often been used to determine how close is a vertex to
other vertices in a given network [197].

16.4 Graph algorithms

In this section, we discuss some important graph algorithms. Graph algorithms are
frequently used for search problems on graphs. In general, search problems on a graph
require to find/visit certain distinct vertices. An example thereof is to find all vertices

16.4 Graph algorithms | 315

of an input graph, which manifest a tree-like hierarchy in a graph by selecting an
arbitrary root vertex in the input graph. The two most prominent examples of graph
algorithms for performing graph-based searches are the breadth-first and depth-first
algorithms, see [38].

16.4.1 Breadth-first search

Breadth-first search (BFS) is a well-known and simple graph algorithm [38]. The
underlying principle of this algorithm relates to discovering all reachable vertices
and touching all edges systematically, starting from a given vertex 𝑠. After selecting
𝑠, all neighbors of 𝑠 are discovered, and so forth. Here, discovering vertices in a graph
involves determining the topological distance (see Definition 16.2.9) between 𝑠 and
all other reachable vertices.

Starting with a graph 𝐺 = (𝑉, 𝐸), the algorithm BFS uses colors in order to
symbolize the state of the vertices as follows:
– white: the unseen vertices are white; initially, all vertices are white;
– grey: the vertex is seen, but it needs to be determined whether it has white

neighbors;
– black: the vertex is processed, i. e., this vertex and all of its neighbors were seen.

Figure 16.9 shows an example by using a stack approach, where the colors are omit-
ted. The first graph in Figure 16.9 is the input graph. The start vertex is vertex 2.
The two stacks on the left hand side in each situation show the vertices, which have
already been visited along with their parents. For instance, we see that after four
steps of the algorithm (the fifth graph in the first row of Figure 16.9), we have
discovered 3 vertices, whose topological distance equals 1. Also, we see in the fifth
graph in the first row of Figure 16.9 that the vertices 1, 4, and 5 have been visited
together with their parent relations. Finally, all vertices have been visited in the last
graph in Figure 16.10 and, hence, BFS ends.

16.4.2 Depth-first search

Depth-first search (DFS) is another graph algorithm for searching graphs [38]. Sup-
pose we start at a certain vertex. In case a vertex we visit has a still unexplored
neighbor, we visit this neighbor and pursue going in the depth to find another un-
explored neighbor, if it exists. We continue recursively with this procedure, until we
cannot go into the depth. Then, we perform backtracking to find an edge, which go
into the depth.

We explain the basic steps as follows: To start, we highlight all vertices as not
found (white). The basic strategy of DFS is as follows:

316 | 16 Graph theory and network analysis

Figure 16.9: The first graph is the input graph to run BFS. The start vertex is vertex 2. The
steps are shown together with a stack showing the visited and parent vertices.

– Highlight the actual vertex 𝑣 as found (grey)
– Whereas there exists an edge {𝑢, 𝑣} with a not found successor 𝑢:

– Perform the search recursively from 𝑢. That is
– Explore {𝑢, 𝑤} and visit 𝑤. Explore from 𝑤 in the depth until it ends
– Highlight 𝑢 as finished (black)
– Perform backtracking from 𝑢 to 𝑣

– Highlight 𝑣 as finished (black)

16.4 Graph algorithms | 317

Figure 16.10: The last two graphs when running BFS on the input graph shown in Figure 16.9.

Finally, we obtain all vertices, starting from the start vertex. Figure 16.11 shows an
input graph to run DFS. Then, Figure 16.11 shows the steps to explore the vertices
in the depth, starting from vertex 0. Figure 16.12 shows the last five graphs before
DFS ends.

16.4.3 Shortest paths

Determining the shortest paths in networks has been a long-standing problem in
graph theory [38, 58]. For instance, finding the flight with the earliest arrival time in
a given aviation network [117] requires the determination of all shortest paths. Other
examples for the application of shortest paths are graph optimization problems, e. g.,
for transportation networks of production processes [156].

A classical algorithm for determining the shortest paths within networks is due
to Dijkstra [58]. It is interesting to note that many problems in algorithmic graph
theory, e. g., determining minimum spanning trees (see Section 16.4.4) and breadth
first search also utilize Dijkstra’s method, see [38].

Dijkstra’s method can be described as follows. Given a network 𝐺 = (𝑉, 𝐸) and
a starting vertex 𝑣 ∈ 𝑉 the algorithms finds the shortest paths to all other vertices
in 𝐺. In this case, Dijkstra’s algorithm [58] generates a so-called shortest path tree
containing all the vertices that lie on the shortest path.

We describe the basic steps of the algorithm of Dijkstra in order to determine
the shortest paths starting from a given vertex to all other vertices in 𝐺. Here, we
assume that the input graph has vertex labels and real edge labels [38, 58]:

318 | 16 Graph theory and network analysis

Figure 16.11: The first graph is the input graph to run DFS. The start vertex is vertex 0. The
steps are shown together with a stack showing the visited and parent vertices.

– We create the set of shortest path trees (SPTS), containing the vertices that
are in a shortest path tree. These vertices have the property that they have
minimum distance from the starting vertex. Before starting, it holds SPTS = ∅.

– We assign initial distance values ∞ in the input graph. Also, we set the distance
value for the starting vertex equal to zero.

– Whereas the vertex set of SPTS does not contain all vertices of the input graph,
the following apply:

16.4 Graph algorithms | 319

Figure 16.12: The last five graphs when running DFS on the input graph shown in Figure 16.11.

– Select a vertex 𝑣 ∈ 𝑉 that is not contained in the vertex set of SPTS with
minimum distance

– We put 𝑣 ∈ 𝑉 into the vertex set of SPTS
– We update the distance value of all vertices that are adjacent with 𝑣 ∈ 𝑉 .

In order to update the distances, we iterate among all adjacent vertices. For
all the adjacent vertices 𝑢 ∈ 𝑉 with 𝑣 ∈ 𝑉 we perform the following: If the
sum of the assigned distance value of the vertex 𝑣 (from the starting vertex)
and the weight of the edge {𝑣, 𝑢} is less than the distance value of 𝑢, update
the distance value of 𝑢.

Now we demonstrate the application of this algorithm for an example. The input
graph in A is given in Figure 16.13. Because the vertex set of SPTS is initially
empty, and we choose vertex 1 as start node. The initial distance values can be
seen in Figure 16.13 (B). We perform some steps to see how the set of shortest
paths is emerging; see Figure 16.14. The vertices highlighted in red are the ones in
the shortest path tree. The graph shown in Figure 16.14 in situation D is the final
shortest path tree consisting all vertices of the input graph in Figure 16.13. That
means, the set of shortest path trees gives all shortest paths from vertex 1 to all
other vertices.

As a remark, we would like to note that the graph shown in Figure 16.13 is a
weighted, undirected graph (see Section 16.2.3). So, using the algorithm of Dijkstra
[58] makes sense for edge-weighted graphs, as the shortest path between two vertices

Figure 16.13: (A) The input graph. (B) The graph with initial vertex weights.

320 | 16 Graph theory and network analysis

Figure 16.14: Steps when
running Dijkstra’s algorithm
for the graph in (A) shown in
Figure 16.13.

of a graph depends on these weights. Interestingly, the shortest path problem be-
comes more simple if we consider unweighted networks. If all edges in a network are
unweighted, we may set all edge weights to 1. Then, Dijkstra’s algorithm reduces to
the search of the topological distances between vertices, see Definition 16.2.9.

Let us consider the graph A in Figure 16.15. In case we determine all shortest
paths from vertex 1 to vertex 4, we see that there exist more than one shortest
path between these two vertices. We find the shortest paths 1-3-4 and 1-2-4. So,
the shortest path problem does not possess a unique solution. The same holds when
considering the shortest paths between vertex 1 and vertex 5. The calculations yield
the two shortest paths 1-3-4-5 and 1-2-4-5.

Figure 16.15: Calculating shortest paths in unweighted networks.

Another example when calculating shortest paths in unweighted networks gives the
graph in B shown by Figure 16.15. The shown graph 𝑃𝑛 is referred to as the path
graph [186] with 𝑛 vertices. We observe that there exist 𝑛 − 1 pairs of vertices with
𝑑(𝑢, 𝑣) = 1, 𝑛−2 pairs of vertices with 𝑑(𝑢, 𝑣) = 2, and so forth. Finally, we see that
there exists only 𝑛 − (𝑛 − 1) = 1 pair with 𝑑(𝑢, 𝑣) = 𝑛 − 1. Here, 𝑑(𝑢, 𝑣) = 𝑛 − 1 is
just the diameter of 𝑃𝑛.

16.4 Graph algorithms | 321

In Listing 16.1, we shown an example how shortest paths can be found by us-
ing R. For this example, we use a small-world network with 𝑛 = 25 nodes. The
command distances() gives only the length of paths, whereas the command short-
est_paths() provides one shortst path. In contrast, all_shortest_paths() returns all
shortest paths.

Listing 16.1: Finding shortes paths with the Dijkstra’s method

library(igraph)
n <- 25
g <- watts.strogatz.game(dim=1, size=n, nei=3, p=0.10)

distances(g, 1, to=V(g), algorithm="dijkstra") # only the length
shortest_paths(g, from=5, to=23) # gives one shortest path
all_shortest_paths(g, from=5, to=23) # gives all shortest path

16.4.4 Minimum spanning tree

In Section 16.5, we will provide Definition 16.5.1, formally introducing what a tree
is. Informally, it is an acyclic and connected graph [94]. In this section, we discuss
spanning trees and the minimum spanning tree problem [15, 38].

Suppose, we start with an undirected input graph 𝐺 = (𝑉𝐺, 𝐸𝐺). A spanning
tree 𝑇 = (𝑉𝑇 , 𝐸𝑇) of 𝐺 is a tree, where 𝑉𝑇 = 𝑉𝐺. In this case, we say that the tree
𝑇 spans 𝐺, as the vertex set of the two graphs are the same and every edge of 𝑇

belongs to 𝐺.
Figure 16.16 shows an input graph 𝐺 with a possible spanning tree 𝑇 . It is

obvious, by definition, that there often exists more than one spanning tree of a
given graph 𝐺. The problem of determining spanning trees gets more complex if we
consider weighted networks. In case we start with an edge-labeled graph, one could
determine the so-called minimum spanning tree [38]. This can be achieved by adding
up the costs of all edge weights and, finally, searching for the tree with minimum cost
among all existing spanning trees. Again, the minimum spanning tree for a given
network is not unique. For instance, well-known algorithms to determine the mini-
mum spanning tree are due to Prim and Kruskal, see, e. g., [38]. We emphasize that
the application of those methods may result in different minimum spanning trees.

Figure 16.16: The graph 𝐺 and a spanning tree 𝑇 .

322 | 16 Graph theory and network analysis

Figure 16.17: The input graph 𝐺 and some sub-
graphs to achieve a minimum spanning tree in E.

Here, we just demonstrate Kruskal’s algorithm [38] representing a greedy approach.
Let 𝐺 = (𝑉, 𝐸) be a connected graph with real edge weights. The main steps are
the following:
– We arrange the edges according to their weights in ascending order
– We add edges to the resulting minimum spanning tree as follows: we start with

the smallest weight and end with the largest weight by consecutively adding
edges according to their weight costs

– We only add the described edges if the process does not create a cycle

Figure 16.17 shows the sequence of steps when applying Kruskal’s algorithm to
the shown input graph 𝐺. We choose any subgraph with the smallest weight as
depicted in situation A. In B, we choose the next smallest edge, and so on. We
repeat this procedure according to the algorithmic steps above until it does not
create a cycle. Note, intermediate trees can be disconnected (see C). One possible
minimum spanning tree is shown in situation E. Differences between the algorithms
due to Kruskal and Prim are explained in, e. g., [38].

In Listing 16.2, we shown an example how the minimum spanning tree can be
found by using R. For this example, we use a small-world network with 𝑛 = 25 nodes.
The command mst() gives the underlying minimal spanning tree.

Listing 16.2: Minimum spanning tree

library(igraph)
n <- 25

16.5 Network models and graph classes | 323

g <- watts.strogatz.game(dim=1, size=n, nei=3, p=0.10)
mst(g)

16.5 Network models and graph classes

In this section, we introduce important network models and classes, which have been
used in many disciplines [25, 94]. All of these modeles are characterized by specific
structural properties.

16.5.1 Trees

We start with the formal definition of a tree [94], already briefly introducted in
Section 16.4.4.

Definition 16.5.1. A tree is a graph 𝐺 = (𝑉, 𝐸) that is connected and acyclic.
A graph is acyclic if it does not contain any cycle.

In fact, there exist several characterizations for trees which are equivalent [100].

Theorem 16.5.1. Let 𝐺 = (𝑉, 𝐸) be a graph, and let |𝑉 | := 𝑁 . The following
assertions are equivalent:
1. 𝐺 = (𝑉, 𝐸) is a tree.
2. Each two vertices of 𝐺 are connected by a unique path.
3. 𝐺 is connected, but for each edge 𝑒 ∈ 𝐸, 𝐺∖{𝑒} is disconnected.
4. 𝐺 is connected and has exactly 𝑁 − 1 edges.
5. 𝐺 is cycle free and has exactly 𝑁 − 1 edges.

Special types of trees are rooted trees [94]. Rooted trees often appear in graph
algorithms, e. g., when performing a search or sorting [38].

Definition 16.5.2. A rooted tree is a tree containing one designated root vertex.
There is a unique path from the root vertex to all other vertices in the tree, and all
other vertices are directed away from the root.

Figure 16.18 presents a rooted tree, in which the root is at the very top of a tree,
whereas all other vertices are placed on some lower levels. The tree in Figure 16.18
is an unordered tree, that means, the order of the vertices is arbitrary. For instance,
the order of the green and orange vertex can be swapped.

Classes of rooted trees include ordered and binary-rooted trees [94].

Definition 16.5.3. An ordered tree is a rooted tree assigning a fixed order to the
children of each vertex.

324 | 16 Graph theory and network analysis

Figure 16.18: A rooted tree with its desig-
nated root vertex.

Definition 16.5.4. A binary tree is an ordered tree, where each vertex has exactly
two children.

16.5.2 Generalized trees

Undirected and directed rooted trees can be generalized by so-called generalized
trees [51, 132]. A generalized tree is also hierarchical like an ordinary rooted tree,
but its edge set allows a richer connectivity among the vertices. Figure 16.19 shows
an undirected generalized tree with four levels, including the root level.

Figure 16.19: A generalized tree.

We now give a formal definition of an undirected generalized tree [63].

Definition 16.5.5. A generalized tree 𝐺𝑇 is defined by a vertex set 𝑉 , an edge set
𝐸, a level set 𝐿, and a multilevel function ℒ. The edge set 𝐸 will be defined in
Definition 16.5.7. The vertex and edge set define the connectivity and the level set
and the multilevel function induces a hierarchy between the nodes of 𝐺𝑇 . The index
𝑟 ∈ 𝑉 indicates the root.

16.5 Network models and graph classes | 325

The multilevel function is defined as follows [63].

Definition 16.5.6. The function ℒ : 𝑉 ∖ {𝑟} → 𝐿 is called a multilevel function.

The multilevel function ℒ assigns to all nodes, except 𝑟, an element 𝑙 ∈ 𝐿, which
corresponds to the level they possess.

Definition 16.5.7. A generalized tree as defined by Definition 16.5.5 has three edges
types [63]:
– Edges with |ℒ(𝑚) − ℒ(𝑛)| = 1 are called kernel edges (𝐸1).
– Edges with |ℒ(𝑚) − ℒ(𝑛)| = 0 are called cross edges (𝐸2).
– Edges with |ℒ(𝑚) − ℒ(𝑛)| > 1 are called up edges (𝐸3).

Note that for an ordinary rooted tree as defined by Definition 16.5.2, we always
obtain |ℒ(𝑚) − ℒ(𝑛)| = 1 for all pairs (𝑚, 𝑛). From the above given definitions and
the visualization in Figure 16.19, it is clear that a generalized tree is a tree-like graph
with a hierarchy, and may contain cycles.

16.5.3 Random networks

Random networks have also been studied in many fields, including computer science
and network physics [183]. This class of networks are based on the semimal work of
Erdös and Rényi, see [76, 77].

By definition, a random graph with 𝑁 vertices can be obtained by connecting
every pair of vertices with probability 𝑝. Then, the expected number of edges for an
undirected random graph is given by

𝐸(𝑛) = 𝑝
𝑁(𝑁 − 1)

2 . (16.19)

In what follows, we survey important properties of random networks [59]. For
instance, the degree distribution of a vertex 𝑣𝑖 follows a binomial distribution,

𝑃 (𝑘𝑖 = 𝑘) =
(︂

𝑁 − 1
𝑘

)︂
𝑝𝑘(1 − 𝑝)𝑁−1−𝑘, (16.20)

since the maximum degree of the vertex 𝑣𝑖 is at most 𝑁 − 1; in fact, the probability
that the vertex has 𝑘 edges equals 𝑝𝑘(1−𝑝)𝑁−1−𝑘 and there exist

(︀
𝑁−1

𝑘

)︀
possibilities

to choose 𝑘 edges from 𝑁 − 1 vertices.
Considering the limit 𝑁 → ∞, Equation (16.20) yields

𝑃 (𝑘𝑖 = 𝑘) ∼ 𝑧𝑘 exp(−𝑧)
𝑘! . (16.21)

We emphasize that 𝑧 = 𝑝(𝑁 − 1) is the expected number of edges for a vertex. This
implies that if 𝑁 goes to infinity, the degree distribution of a vertex in a random

326 | 16 Graph theory and network analysis

network can be approximated by the Poisson distribution. For this reason, random
networks are often referred to as Poisson random networks [142].

In addition, one can demonstrate that the degree distribution of the whole ran-
dom network also follows approximatively the following Poisson distribution:

𝑃 (𝑋𝑘 = 𝑟) ∼ 𝑧𝑟 exp(−𝑧)
𝑟! . (16.22)

This means that there exist 𝑋𝑘 = 𝑟 vertices in the network that possess degree 𝑘

[4].
As an application, we recall the already introduced clustering coefficient 𝐶𝑖, for

a vertex 𝑣𝑖, represented by equation (16.9). In general, this quantity has been defined
as the ratio |𝐸𝑖| of existing connections among its 𝑘𝑖 nearest neighbors divided by
the total number of possible connections. This consideration yields the following:

𝐶𝑖 = 2|𝐸𝑖|
𝑘𝑖(𝑘𝑖 − 1) . (16.23)

Therefore, 𝐶𝑖 is the probability that two neighbors of 𝑣𝑖 are connected with each
other in a random graph, and 𝐶𝑖 = 𝑝. This can be approximated by

𝐶𝑖 ∼ 𝑧

𝑁
, (16.24)

as the average degree of a vertex equals 𝑧 = 𝑝(𝑁 − 1) ∼ 𝑝𝑁 .
The two examples of random networks shown in Figure 16.20 can be generated

using the following R code:

Listing 16.3: Generating random networks, see Fig. 16.20

#Left graph
n <- 50
pc <- 0.01
la <- layout.circle(g)
g <- erdos.renyi.game(n, pc, type="gnp", directed = FALSE,
loops = FALSE)
plot(g, layout = la, vertex.color = "blue", vertex.size = 4,

vertex.label = "")

#Right graph
n <- 50
pc <- 0.1
la <- layout.circle(g)
g <- erdos.renyi.game(n, pc, type="gnp", directed = FALSE,
loops = FALSE)
plot(g, layout = la, vertex.color = "blue", vertex.size = 4,
vertex.label = "")

16.5.4 Small-world networks

Small-world networks were introduced by Watts and Strogatz [198]. These networks
possess two interesting structural properties. Watts and Strogatz [198] found that

16.5 Network models and graph classes | 327

Figure 16.20: Random networks
with 𝑝 = 0.01 (left) and 𝑝 = 0.1
(right).

small-world networks have a high clustering coefficient and also a short (average)
distance among vertices. Small-world networks have been explored in several disci-
plines, such as network science, network biology, and web mining [190, 195, 203].

In the following, we present a procedure developed by Watts and Strogatz [198]
in order to generate small-world networks.
– To start, all vertices of the graph are arranged on a ring and connect each vertex

with its 𝑘/2 nearest neighbors. Figure 16.21 (left) shows an example using 𝑘 = 4.
For each vertex, the connection to its next neighbor (1st neighbor) is highlighted
in blue and the connection to its second next neighbor (2nd neighbor) in red.

– Second, start with an arbitrary vertex 𝑖 and rewire its connection to its nearest
neighbor on, e. g., the right side with probability 𝑝𝑟𝑤 to any other vertex 𝑗 in
the network. Then, choose the next vertex in the ring in a clockwise direction
and repeat this procedure.

– Third, after all first-neighbor connections have been checked, repeat this proce-
dure for the second and all higher-order neighbors, if present, successively.

This algorithm guarantees that each connection occurring in the network is chosen
exactly once and rewired with probability 𝑝𝑟𝑤. Hence, the rewiring probability, 𝑝𝑟𝑤,
controls the disorder of the resulting network topology. For 𝑝𝑟𝑤 = 0, the regular
topology is conserved, whereas 𝑝𝑟𝑤 = 1 results in a random network. Intermediate
values 0 < 𝑝𝑟𝑤 < 1 give a topological structure that is between these two extremes.

Figure 16.21 (right) shows an example of a small-world network generated with
the following R code:

Listing 16.4: Generating the right random network in Fig. 16.21

Right
n <- 50
g <- watts.strogatz.game(dim=1, size=n, nei=2, p=0.10)
la <- layout.circle(g)
plot(g, layout = la, vertex.color = "blue", vertex.size = 4,
vertex.label="")

The generation of a small-world network by using the Watts–Stogatz algorithm
consists of two main parts:

328 | 16 Graph theory and network analysis

Figure 16.21: Small-world networks with 𝑝𝑟𝑤 = 0.0 (left) and 𝑝𝑟𝑤 = 0.10 (right). The two
rewired edges are shown in light blue and red.

– First, the adjacency matrix is initialized in a way that only the nearest 𝑘/2
neighbor vertices are connected. The order of the vertices is arbitrarily induced
by the labeling of the vertices from 1 to 𝑁 . This allows identifying, e. g., 𝑖 + 𝑓

as the 𝑓th neighbor of vertex 𝑖 with 𝑓 ∈ N. For instance, 𝑓 = 1 corresponds to
the next neighbor of 𝑖. The module function is used to ensure that the neighbor
indices 𝑓 remain in the range of {1, . . . , 𝑁}. Due to this fact the vertices can be
seen as organized on a ring. We would like to emphasize that for the algorithm
to work, the number of neighbors 𝑘 needs to be an even number.

– Second, each connection in the network is tested once if it should be rewired with
probability 𝑝𝑟𝑤. To do this, a random number, 𝑐, between 0 and 1 is uniformly
sampled and tested in an if-clause. Then, if 𝑐 ≤ 𝑝𝑟𝑤, a connection between vertex
𝑖 and 𝑖 + 𝑓 is rewired. In this case, we need first to remove the old connection
between these vertices and then draw a random integer, 𝑑, from {1, . . . , 𝑁}∖{𝑖}
to select a new vertex to connect with 𝑖. We would like to note that in order to
avoid a self-connection of vertex 𝑖, we need to remove the index 𝑖 from the set
{1, . . . , 𝑁}.

16.5.5 Scale-free networks

Neither random nor small-world network have a property frequently observed in real
world networks, namely a scale-free behavior of the degrees [4],

𝑃 (𝑘) ∼ 𝑘−𝛾 . (16.25)

To explain this common feature Barabási and Albert introduced a model [8], now
known as Barabási–Albert (BA) or preferential attachment model [142]. This model
results in so called scale-free networks, which have a degree distribution following a
power law [8]. A major difference between the preferential attachment model and the
other algorithms, described above, for generating random or small-world networks is

16.6 Further reading | 329

that the BA model does not assume a fixed number of vertices, 𝑁 , and then rewires
them iteratively with a fixed probability, but in this model 𝑁 grows. Each newly
added vertex is connected with a certain probability (which is not constant) to other
vertices already present in the network. The attachment probability defined by

𝑝𝑖 = 𝑘𝑖∑︀
𝑗 𝑘𝑗

(16.26)

is proportional to the degree 𝑘𝑗 of these vertices, explaining the name of the model.
This way, each new vertex is added to 𝑒 ∈ N existing vertices in the network.

Figure 16.22 presents two examples of random networks generated using the
following R code:

Listing 16.5: Generating random networks, see Fig. 16.22

Left
n <- 200
g <- barabasi.game(n, m = 1, directed = FALSE)
la <- layout.fruchterman.reingold(g)
plot(g, layout = la, vertex.color = "blue", vertex.size = 4,

vertex.label = "")

Right
n <- 1000
g <- barabasi.game(n, m = 1, directed = FALSE)
la <- layout.fruchterman.reingold(g)
plot(g, layout = la, vertex.color = "blue", vertex.size = 4,
vertex.label = "")

Figure 16.22: Scale-free
networks with 𝑛 = 200 (left)
and 𝑛 = 1000 (right).

16.6 Further reading

For a general introduction to graph theory, we recommend [88, 141]. For graph
algorithms the book by [38] provides a cornucopia of useful algorithms that can
be applied to many graph structures. An introduction to the usage of networks in
biology, economics, and finance can be found in [67, 74]. As an initial reading about
network science, the article [75] provides an elementary overview.

330 | 16 Graph theory and network analysis

16.7 Summary

Despite the fact that graph theory is a mathematical subject, similar to linear alge-
bra and analysis, it has a closer connection to practical applications. For this reason
many real-world networks have been studied in many disciplines, such as chemistry,
computer science, economy [64, 65, 143]. A possible explanation for this is provided
by the intuitive representation of many natural networks, e. g., transportation net-
works of trains and planes, acquaintance networks between friends or social networks
in twitter or facebook. Also many attributes of graphs, e. g., paths or the degrees of
nodes, have a rather intuitive meaning. This motivates the widespread application
of graphs and networks in nearly all application areas. However, we have also seen in
this chapter that the analysis of graphs can be quite intricate, requiring a thorough
understanding of the previous chapters.

16.8 Exercises

1. Let 𝐺 = 𝑉, 𝐸 be a graph with 𝑉 = {1, 2, 3, 4, 5} and 𝐸 = {{1, 2}, {2, 4}, {1, 3},

{3, 4}, {4, 5}}. Use R to obtain the following results:
– Calculate all vertex degrees of 𝐺.
– Calculate all shortest paths of 𝐺.
– Calculate diam(𝐺).
– Calculate the number of circles of 𝐺.

2. Generate 5 arbitrary trees with 10 vertices. Calculate their number of edges by
using R, and confirm 𝐸 = 10 − 1 = 9 for all 5 generated trees.

3. Let 𝐺 = 𝑉, 𝐸 be a graph with 𝑉 = {1, 2, 3, 4, 5, 6} and 𝐸 = {{1, 2}, {2, 4}, {1, 3},

{3, 4}, {4, 5}, {5, 6}}. Calculate the number of spanning trees for the given
graph, 𝐺.

4. Generate scale-free networks with the BA algorithm. Specifically, generate two
different networks, one for 𝑛 = 1000 and 𝑚 = 1 and one for 𝑛 = 1000 and 𝑚 = 3.
Determine for each network the degree distribution of the resulting network and
compare them with each other.

5. Generate small-word networks for 𝑛 = 2500. Determine the rewiring probability
𝑝𝑟𝑤 which separates small-word networks from random networks. Hint: Inves-
tigate the behavior of the clustering coefficient and the average shortest paths
graphically.

6. Identify practical examples of generalized trees by mapping real-world observa-
tions to this graph structure. Are the directories in a computer organized as a
tree or a generalized tree? Starting from your desktop and considering shortcuts,
does this change this answer?

17 Probability theory
Probability theory is a mathematical subject that is concerned with probabilistic
behavior of random variables. In contrast, all topics of the previous chapters in
Part III were concerned with deterministic behavior of variables. Specifically, the
meaning of a probability is a measure quantifying the likelihood that events will
occur. This significant difference between a deterministic and probabilistic behavior
of variables indicates the importance of this field for statistics, machine learning, and
data science in general, as they all deal with the practical measurement or estimation
of probabilities and related entities from data.

This chapter introduces some basic concepts and key characteristics of proba-
bility theory, discrete and continuous distributions, and concentration inequalities.
Furthermore, we discuss the convergence of random variables, e. g., the law of large
numbers or the central limit theorem.

17.1 Events and sample space

To learn about a phenomenon in science, it is common to perform an experiment.
If this experiment is repeated under the same conditions, then it is called a random
experiment. The result of an experiment is called an outcome, and the collection of
all outcomes constitutes the sample space, Ω. A subset of the sample space, 𝐴 ⊂ Ω,
is called an event.

Example 17.1.1. If we toss a coin once, there are two possible outcomes. Either we
obtain a “head” (𝐻) or a “tail” (𝑇). Each of these outcomes is called an elementary
event, 𝜔𝑖 (or a sample point). In this case, the sample space is Ω = {𝐻, 𝑇} =
{(𝐻), (𝑇)}, or abstractly {𝜔1, 𝜔2}. Points in the sample space 𝜔 ∈ Ω correspond to
an outcome of a random experiment, and subsets of the sample space, 𝐴 ⊂ Ω, e. g.,
𝐴 = {𝑇}, are events.

Example 17.1.2. If we toss a coin three times, the sample space is Ω = {(𝐻, 𝐻, 𝐻),
(𝑇, 𝐻, 𝐻), (𝐻, 𝑇, 𝐻), . . . , (𝑇, 𝑇, 𝑇)}, and the elementary outcomes are triplets com-
posed of elements in {𝐻, 𝑇}. It is important to note that the number of triplets in
Ω is the total number of different combinations. In this case the number of different
elements in Ω is 23 = 8.

From the second example, it is clear that although there are only two elementary
outcomes, i. e. 𝐻 and 𝑇 , the size of the sample space can grow by repeating such
base experiments.

https://doi.org/10.1515/9783110564990-017

332 | 17 Probability theory

17.2 Set theory

Before we proceed with the definition of a probability, we provide some necessary
background information about set theory. As highlighted in the examples above, a
set is a basic entity on which the following rests on.

Definition 17.2.1. A set, 𝐴, containing no elements is called an empty set, and it is
denoted by ∅.

Definition 17.2.2. If for every element 𝑎 ∈ 𝐴 we also have 𝑎 ∈ 𝐵, then 𝐴 is a subset
of 𝐵, and this relationship is denoted by 𝐴 ⊂ 𝐵.

Definition 17.2.3. The complement of a set 𝐴 with respect to the entire space Ω,
denoted 𝐴𝑐 or 𝐴, is such that if 𝑎 ∈ 𝐴𝑐, then 𝑎 ∈ Ω, but not in 𝐴.

There is a helpful graphical visualization of sets, called Venn diagram, that allows
an insightful representation of set operations. In Figure 17.1 (left), we visualize the
complement of a set 𝐴. In this figure, the entire space Ω is represented by the large
square, and the set 𝐴 is the inner circle (blue), whereas its complement 𝐴 is the area
around it (white). In contrast, in Figure 17.1 (right), the set 𝐴 is the outer shaded
area, and 𝐴 is the inner circle (white).

Figure 17.1: Visualization of a set
𝐴 and its complement 𝐴. Here
Ω = 𝐴 ∪ 𝐴.

Definition 17.2.4. Two sets 𝐴 and 𝐵 are called equivalent if 𝐴 ⊂ 𝐵 and 𝐵 ⊂ 𝐴. In
this case 𝐴 = 𝐵.

Definition 17.2.5. The intersection of two sets 𝐴 and 𝐵 consists only of the points
that are in 𝐴 and in 𝐵, and such a relationship is denoted by 𝐴 ∩ 𝐵, i. e., 𝐴 ∩ 𝐵 =
{𝑥 | 𝑥 ∈ 𝐴 and 𝑥 ∈ 𝐵}.

Definition 17.2.6. The union of two sets 𝐴 and 𝐵 consists of all points that are
either in 𝐴 or in 𝐵, or in 𝐴 and 𝐵, and this relationship is denoted by 𝐴 ∪ 𝐵, i. e.,
𝐴 ∪ 𝐵 = {𝑥 | 𝑥 ∈ 𝐴 or 𝑥 ∈ 𝐵}.

Figure 17.2 provides a visualization of the intersection (left) and the union (right)
of two sets 𝐴 and 𝐵.

17.2 Set theory | 333

Figure 17.2: Venn diagrams of two sets. Left: Intersection of 𝐴 and 𝐵, 𝐴 ∩ 𝐵. Right: Union of
𝐴 and 𝐵, 𝐴 ∪ 𝐵.

Definition 17.2.7. The set difference between two sets, 𝐴 and 𝐵, consists of the
points that are only in 𝐴, but not in 𝐵, and this relationship is denoted by 𝐴 ∖ 𝐵,
i. e., 𝐴 ∖ 𝐵 = {𝑥 | 𝑥 ∈ 𝐴 and 𝑥 ̸∈ 𝐵}.

Using R, the four aforementioned set operations can be carried out as follows:

Listing 17.1: Set operations

setequal(A, B) #Equivalence
intersect(A, B) #Intersection
union(A, B) #Union
setdiff(A, B) #Difference

These commands represent the computational realization of the above Defini-
tions 17.2.4 to 17.2.7, which describe the equivalence, intersection, union, and set
difference of sets.

Theorem 17.2.1. For three given sets 𝐴, 𝐵, and 𝐶, the following relations hold:
1. Commutativity: 𝐴 ∪ 𝐵 = 𝐵 ∪ 𝐴, and 𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐴.
2. Associativity: 𝐴 ∪ (𝐵 ∪ 𝐶) = (𝐴 ∪ 𝐵) ∪ 𝐶, and 𝐴 ∩ (𝐵 ∩ 𝐶) = (𝐴 ∩ 𝐵) ∩ 𝐶.
3. Distributivity: 𝐴∪(𝐵∩𝐶) = (𝐴∪𝐵)∩(𝐴∪𝐶), and 𝐴∩(𝐵∪𝐶) = (𝐴∩𝐵)∪(𝐴∩𝐶).
4. (𝐴𝑐)𝑐 = 𝐴.

For the complement of a set, a bar over the symbol is frequently used instead of
the superscript “𝑐”, i. e., 𝐴 = 𝐴𝑐.

Definition 17.2.8. Two sets 𝐴1 and 𝐴2 are called mutually exclusive if the following
holds: 𝐴1 ∩ 𝐴2 = ∅.

If 𝑛 sets 𝐴𝑖 with 𝑖 ∈ {1, . . . , 𝑛} are mutually exclusive, then 𝐴𝑖 ∩ 𝐴𝑗 = ∅ holds
for all 𝑖 and 𝑗 with 𝑖 ̸ =𝑗.

334 | 17 Probability theory

Theorem 17.2.2 (De Morgan’s Laws). For two given sets, 𝐴 and 𝐵, the following
relations hold:

(𝐴 ∪ 𝐵) = 𝐴 ∩ 𝐵, (17.1)
(𝐴 ∩ 𝐵) = 𝐴 ∪ 𝐵. (17.2)

From, the above relationship, a negation of a union leads to an intersection, and
vice versa. Therefore, De Morgan’s Laws provides a mean for interchanging a union
and an intersection via an application of a negation.

17.3 Definition of probability

The definition of a probability is based on the following three axioms introducted
by Kolmogorov [48]:

Axiom 17.3.1. For every event 𝐴,

Pr(𝐴) ≥ 0. (17.3)

Axiom 17.3.2. For the sample space Ω,

Pr(Ω) = 1. (17.4)

Axiom 17.3.3. For every infinite set of independent events {𝐴1, . . . , 𝐴∞},

Pr(𝐴1 ∪ 𝐴2 ∪ . . . 𝐴∞) =
∞∑︁

𝑖=1
Pr(𝐴𝑖). (17.5)

Definition 17.3.1. We call Pr(𝐴) a probability of event 𝐴 if it fulfills all the three
axioms above.

Such a probability is also called a probability measure on sample space Ω. For
clarity, we repeat that Ω contains the outcomes of all possible events. There are
different conventions to denote such a probability and frequent choices are “Pr” or
“𝑃”. In the following we use for brievity the latter one.

These three axioms form the basis of probability theory, from which all other
properties can be derived.

From the definition of a probability and the three above axioms, follow a couple
of useful identities, including:
1. If 𝐴 ⊂ 𝐵, then 𝑃 (𝐴) ≤ 𝑃 (𝐵).
2. For every event 𝐴, 0 ≤ 𝑃 (𝐴) ≤ 1.
3. For every event 𝐴, 𝑃 (𝐴𝑐) = 1 − 𝑃 (𝐴).
4. 𝑃 (∅) = 0.

17.4 Conditional probability | 335

5. For every finite set of disjoint events {𝐴1, . . . , 𝐴𝑘},

𝑃 (𝐴1 ∪ 𝐴2 ∪ . . . 𝐴𝑘) =
𝑘∑︁

𝑖=1
𝑃 (𝐴𝑖). (17.6)

6. For two events 𝐴 and 𝐵,

𝑃 (𝐴 ∪ 𝐵) = 𝑃 (𝐴) + 𝑃 (𝐵) − 𝑃 (𝐴 ∩ 𝐵). (17.7)

Probabilities are called coherent if they obey the rules from the three axioms above.
Examples for the contrary will be given below.

We would like to note that the above definition of probability does not give a de-
scription about how to quantify it. Classically, Laplace provided such a quantification
for equiprobable elementary outcomes, i. e., for 𝑝(𝜔𝑖) = 1/𝑚 for Ω = {𝜔1, . . . , 𝜔𝑚}.
In this case, the probability of an event 𝐴 is given by the number of elements in
𝐴 divided by the total number of possible events, i. e., 𝑝(𝐴) = |𝐴|/𝑚. In practice,
not all problems can be captured by this approach, because usually the probabil-
ities, 𝑝(𝜔𝑖), are not equiprobable. For this reason a frequentist quantification or a
Bayesians quantification of probability, which hold for general probability values, is
used [91, 161].

17.4 Conditional probability

Definition 17.4.1 (Conditional probability). For two events 𝐴 and 𝐵 with 𝑃 (𝐵) > 0,
the conditional probability of 𝐴, given 𝐵, is defined by

𝑃 (𝐴|𝐵) = 𝑃 (𝐴 ∩ 𝐵)
𝑃 (𝐵) . (17.8)

In the case 𝑃 (𝐵) = 0, the conditional probability 𝑃 (𝐴|𝐵) is not defined.

Definition 17.4.2 (Partition of the sample space). Suppose that the events {𝐴1, . . . ,

𝐴𝑘} are disjoint, i. e., 𝐴𝑖 ∩𝐴𝑗 = ∅ for all 𝑖, and 𝑗 ∈ {1, . . . , 𝑘} and Ω = 𝐴1 ∪· · ·∪𝐴𝑘.
Then, the sets {𝐴1, . . . , 𝐴𝑘} form a partition of the sample space Ω.

Theorem 17.4.1 (Law of total probability). Suppose that the events {𝐵1, . . . , 𝐵𝑘} are
disjoint and form a partition of the sample space Ω and 𝑃 (𝐵𝑖) > 0. Then, for an
event 𝐴 ∈ Ω,

𝑃 (𝐴) =
𝑘∑︁

𝑖=1
𝑃 (𝐴|𝐵𝑖)𝑃 (𝐵𝑖). (17.9)

Proof. From the identity

𝐴 = 𝐴 ∩ Ω (17.10)

336 | 17 Probability theory

we have

𝐴 = 𝐴 ∩ (𝐵1 ∪ · · · ∪ 𝐵𝑘), (17.11)

since {𝐵1, . . . , 𝐵𝑘} is a partition of Ω.
From De Morgan’s Laws, it follows that

𝐴 = (𝐴 ∩ 𝐵1) ∪ · · · ∪ (𝐴 ∩ 𝐵𝑘). (17.12)

Since every pair of terms in equation (17.12) is disjoint, i. e., (𝐴∩𝐵𝑖)∩ (𝐴∩𝐵𝑗) = ∅,
because of 𝐴 ∩ (𝐵𝑖 ∩ 𝐵𝑗) = 𝐴 ∩ ∅ = ∅, the probability expression in equation (17.12)
can be deduced as follows:

𝑃 (𝐴) = 𝑃
(︀
(𝐴 ∩ 𝐵1) ∪ · · · ∪ (𝐴 ∩ 𝐵𝑘)

)︀
(17.13)

= 𝑃 (𝐴 ∩ 𝐵1) + · · · + 𝑃 (𝐴 ∩ 𝐵𝑘) (17.14)
= 𝑃 (𝐴|𝐵1)𝑃 (𝐵1) + · · · + 𝑃 (𝐴|𝐵𝑘)𝑃 (𝐵𝑘) (17.15)

=
𝑘∑︁

𝑖=1
𝑃 (𝐴|𝐵𝑖)𝑃 (𝐵𝑖). (17.16)

17.5 Conditional probability and independence

The definition of joint probability and conditional probability allows us to connect
two or more events. However, the question is, when are two events said to be inde-
pendent? This is specified in the next definition.

Definition 17.5.1. Two events 𝐴 and 𝐵 are called independent, or statistically in-
dependent, if one of the following conditions hold:
1. 𝑃 (𝐴𝐵) = 𝑃 (𝐴)𝑃 (𝐵)
2. 𝑃 (𝐴|𝐵) = 𝑃 (𝐴) if 𝑃 (𝐵) > 0
3. 𝑃 (𝐵|𝐴) = 𝑃 (𝐵) if 𝑃 (𝐴) > 0

Theorem 17.5.1. If two events 𝐴 and 𝐵 are independent, then the following state-
ments hold:
1. 𝐴 and 𝐵 are independent
2. 𝐴 and 𝐵 are independent
3. 𝐴 and 𝐵 are independent

The extension to more than two events deserves attention, because it requires
independence among all subsets of the events.

Definition 17.5.2. The 𝑛 events 𝐴1, 𝐴2, . . . , 𝐴𝑛 ∈ 𝒜 are called independent if the
following condition holds for all subsets 𝐼 of {1, . . . , 𝑛}:

𝑃 (𝐴1, . . . , 𝐴𝑛) =
∏︁
𝑖∈𝐼

𝑃 (𝐴𝑖). (17.17)

17.6 Random variables and their distribution function | 337

17.6 Random variables and their distribution function

Definition 17.6.1. For a given sample space Ω, a random variable 𝑋 is a function
that assigns to each event 𝐴 ∈ Ω a real number, i. e., 𝑋(𝐴) = 𝑥 ∈ R with 𝑋 : Ω → R.
The codomain of the function 𝑋 is 𝐶 = {𝑥 | 𝑥 = 𝑋(𝐴), 𝐴 ∈ Ω} ⊂ R.

In the above definition, we emphasized that a random variable is a function,
assigning real numbers to events. For brevity this is mostly neglected when one
speaks about random variables . However, it should not be forgotten.

Furthermore, we want to note that the probability function has not been used
explicitly in the definition. However, it can be used to connect a random variable to
the probability of an event. For example, given a random variable 𝑋 and a subset
of its codomain 𝑆 ⊂ 𝐶, we obtain

𝑃 (𝑋 ∈ 𝑆) = 𝑃
(︀{︀

𝑎 ∈ Ω | 𝑋(𝑎) ∈ 𝑆
}︀)︀

, (17.18)

since {𝑎 ∈ Ω | 𝑋(𝑎) ∈ 𝑆} ⊂ Ω.
Similarly, for a single element 𝑆 = 𝑥, we obtain

𝑃 (𝑋 = 𝑥) = 𝑃
(︀{︀

𝑎 ∈ Ω | 𝑋(𝑎) = 𝑥
}︀)︀

. (17.19)

In this way, the probability values for events are clearly defined.

Definition 17.6.2. The cumulative distribution function of a random variable 𝑋 is
a function 𝐹𝑋 : ℛ → [0, 1] defined by

𝐹𝑋(𝑥) = 𝑃 (𝑋 ≤ 𝑥). (17.20)

In this definition, the right-hand side term is interpreted as in equation (17.18)
and (17.19) by

𝑃 (𝑋 ≤ 𝑥) = 𝑃
(︀{︀

𝑎 ∈ Ω | 𝑋(𝑎) ≤ 𝑥
}︀)︀

. (17.21)

Frequently, a cumulative distribution function is just called a distribution function.

Example 17.6.1. Suppose that we have a fair coin and define a random variable by
𝑋(𝐻) = 1 and 𝑋(𝑇) = 0 for a probability space with Ω = {𝐻, 𝑇}. We can find a
piecewise definition of the corresponding distribution function as follows:

𝐹𝑋(𝑥) = 𝑃
(︀{︀

𝑎 ∈ Ω | 𝑋(𝑎) ≤ 𝑥
}︀)︀

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑃 (∅) = 0 for 𝑥 < 0;
𝑃 ({𝑇}) = 1/2 for 0 ≤ 𝑥 < 1;
𝑃 ({𝑇, 𝐻}) = 1 for 𝑥 ≥ 1.

(17.22)

The circle at the end of the steps in Fig. 17.3 means that the end points are not
included, but all points up to the end points themselves are. Mathematically, this
corresponds to an open interval indicated by “)”, e. g., [0, 1) for the second step in
Fig. 17.3.

338 | 17 Probability theory

Figure 17.3: Distribution function 𝐹 (𝑥) for equation (17.22).

Theorem 17.6.1. The cumulative distribution function, 𝐹 (𝑥), has the following
properties:
1. 𝐹 (−∞) = lim𝑥→−∞ 𝐹 (𝑥) = 0 and 𝐹 (∞) = lim𝑥→∞ 𝐹 (𝑥) = 1;
2. 𝐹 (𝑥+) = 𝐹 (𝑥) is continuous from the right;
3. 𝐹 (𝑥) is monotone and nondecreasing; if 𝑥1 ≤ 𝑥2 ⇒ 𝐹 (𝑥1) ≤ 𝐹 (𝑥2);
4. 𝑃 (𝑋 > 𝑥) = 1 − 𝐹 (𝑥);
5. 𝑃 (𝑥1 < 𝑥 ≤ 𝑥2) = 𝐹 (𝑥2) − 𝐹 (𝑥1);
6. 𝑃 (𝑋 = 𝑥) = 𝐹 (𝑥) − 𝐹 (𝑥−);
7. 𝑃 (𝑥1 ≤ 𝑥 ≤ 𝑥2) = 𝐹 (𝑥2) − 𝐹 (𝑥1−).

17.7 Discrete and continuous distributions

From the connection between a random variable and its probability value, given by
equation (17.18), we can now introduce the definition of discrete and continuous
random variables as well as their corresponding distributions.

Definition 17.7.1. If a random variable, 𝑋, can only assume a finite number of
different values, e. g., 𝑥1, . . . , 𝑥𝑛, then 𝑋 is called a discrete random variable. Fur-
thermore, the collection, 𝑃 (𝑋 = 𝑥𝑖) for all 𝑖 ∈ {1, . . . , 𝑛}, is called the discrete
distribution of 𝑋.

Definition 17.7.2. Let 𝑋 be a discrete random variable. The probability function of
𝑋, denoted 𝑓(𝑥), is defined for every real number, 𝑥, as follows:

𝑓(𝑥) = 𝑃 (𝑋 = 𝑥). (17.23)

17.7 Discrete and continuous distributions | 339

Given these two definitions and the properties of probability values, it can be
shown that the following conditions hold:
1. 𝑓(𝑥) = 0, if 𝑥 is not a possible value of the random variable 𝑋;
2.

∑︀𝑛
𝑖=1 𝑓(𝑥𝑖) = 1, if the 𝑥𝑖 are all the possible values for the random variable 𝑋.

Definition 17.7.3. If a random variable, 𝑋, can assume an infinite number of values
in an interval, e. g., between 𝑎 and 𝑏 ∈ R, then 𝑋 is called a continuous random
variable. The probability of 𝑋 being within an interval [𝑎, 𝑏] is given by the integral

𝑃 (𝑎 ≤ 𝑋 ≤ 𝑏) =
𝑏∫︁

𝑎

𝑓(𝑥)𝑑𝑥. (17.24)

Here, the nonnegative function 𝑓(𝑥) is called the probability density function of 𝑋.

It can be shown that

∞∫︁
−∞

𝑓(𝑥)𝑑𝑥 = 1. (17.25)

It is important to note that the probability for a single point 𝑥0 ∈ R is zero,
because

𝑃 (𝑥0 ≤ 𝑋 ≤ 𝑥0) =
𝑥0∫︁

𝑥0

𝑓(𝑥)𝑑𝑥 = 0. (17.26)

In Section 17.12, we will discuss some important continuous distributions. How-
ever, here we want to give an example for such a distribution.

17.7.1 Uniform distribution

The simplest continuous distribution is the uniform distribution. It has a constant
density function within the range [𝑎, 𝑏], with 𝑎, 𝑏 ∈ R, and it is defined by

𝑓(𝑥) =

{︃
1

𝑏−𝑎 if 𝑥 ∈ [𝑎, 𝑏];
0 otherwise.

(17.27)

The notation Unif([𝑎, 𝑏]) is often used to denote a uniform distribution in the interval
[𝑎, 𝑏].

340 | 17 Probability theory

17.8 Expectation values and moments

In the previous sections, we discussed discrete and continuous distributions for ran-
dom variables. In principle, such distributions contain all information about a ran-
dom variable 𝑋. Practically, there are specific properties of such distributions that
are of great importance, and these are related to expectation values.

17.8.1 Expectation values

The following definition specifies what is meant by an expectation value of a random
variable.

Definition 17.8.1. The expectation value of a random variable 𝑋, denoted E[𝑋], is
defined by

E[𝑋] =
∑︁

𝑖

𝑥𝑖𝑓(𝑥𝑖), for a discrete random variable 𝑋, (17.28)

E[𝑋] =
∫︁

𝑥𝑓(𝑥)𝑑𝑥, for a continuous random variable 𝑋. (17.29)

The expectation value of 𝑋 is also called the mean of 𝑋.
A generalization of the above definition can be given, leading to the expectation

value of a function 𝑔(𝑋) for a random variable 𝑋:

E
[︀
𝑔(𝑋)

]︀
=
∑︁

𝑖

𝑔(𝑥𝑖)𝑓(𝑥𝑖), for a discrete random variable 𝑋, (17.30)

E
[︀
𝑔(𝑋)

]︀
=
∫︁

𝑔(𝑥)𝑓(𝑥)𝑑𝑥, for a continuous random variable 𝑋. (17.31)

From the definition of the expectation values of a random variable follows several
important properties that hold for discrete and continuous random variables.

Theorem 17.8.1. Suppose that 𝑋 and 𝑋1, . . . , 𝑋𝑛 are random variables. Then the
following results hold:

E[𝑌] = 𝑎E[𝑋] + 𝑏, (17.32)

for 𝑌 = 𝑎𝑋 + 𝑏, with 𝑎 and 𝑏 finite constants in R.

E[𝑋1 + · · · + 𝑋𝑛] =
𝑛∑︁

𝑖=1
E[𝑋𝑖]. (17.33)

If 𝑋1, . . . , 𝑋𝑛 are independent random variables and E[𝑋𝑖] is finite for every 𝑖, then

E

[︃
𝑛∏︁

𝑖=1
𝑋𝑖

]︃
=

𝑛∏︁
𝑖=1

E[𝑋𝑖]. (17.34)

17.8 Expectation values and moments | 341

17.8.2 Variance

An important special case for an expectation value of a function is given by

𝑔(𝑥) = (𝑋 − 𝜇)2 (17.35)

with 𝜇 = E[𝑋]. In this case, we write

Var(𝑋) = E
[︀
𝑔(𝑥)

]︀
= E

[︀
(𝑋 − 𝜇)2]︀. (17.36)

Due to the importance of this expression, it has its own name. It is called the variance
of 𝑋. If the mean of 𝑋, 𝜇, is not finite, or if it does not exist, then Var(𝑋) does not
exist.

There is a related measure, called the standard deviation, which is just the square
root of the variance of 𝑋, denoted 𝑠𝑑(𝑋) =

√︀
Var(𝑋). Frequently, the Greek symbol

𝜎2 is used to denote the variance, i. e.,

𝜎2(𝑋) = Var(𝑋). (17.37)

In this case, the standard deviation assumes the form, 𝑠𝑑(𝑋) =
√︀

Var(𝑋) = 𝜎.
The variance has the following properties:

1. For 𝑌 = 𝑎 + 𝑏𝑋: Var(𝑌) = 𝑏2 Var(𝑋).
2. If 𝑋1, . . . , 𝑋𝑛 are independent random variables: Var(𝑋1+· · ·+𝑋𝑛) = Var(𝑋1)+

· · · + Var(𝑋𝑛).
3. If �̄� = 1

𝑛

∑︀𝑛
𝑖=1 𝑋𝑖 and Var(𝑋𝑖) = Var(𝑋) for all 𝑖: Var(�̄�) = Var(𝑋)

𝑛 .

Property (3) has important practical implications, because it says that the variance
of the mean of a sample of size 𝑛 for random variables that have all the same
variance has a variance that is reduced by the factor 1/𝑛. If we take the square root
of Var(�̄�) = Var(𝑋)

𝑛 , we get the standard deviation of �̄� given by

𝑆𝐸 = 𝑠𝑑(�̄�) = 𝑠𝑑(𝑋)√
𝑛

. (17.38)

This is another important quantity called the standard error (𝑆𝐸).
A frequent error observed in applications is the usage of 𝑠𝑑(𝑋) when the stan-

dard error, 𝑆𝐸, should be used. For instance, if one performs a repeated analysis
leading to ten error measures, 𝐸𝑖 for 𝑖 ∈ {1, . . . , 10}, e. g., when performing a 10-fold
cross validation [68], one is interested in the standard error of 𝐸tot = 1

10
∑︀10

𝑖=1 𝐸𝑖,
and not in the variance of the individual errors 𝐸𝑖.

17.8.3 Moments

Along the same principle, as for the definition of the variance of a random variable
𝑋, one can define further expectation values.

342 | 17 Probability theory

Definition 17.8.2. For a random variable 𝑋 and a function

𝑔(𝑥) = (𝑋 − 𝜇), (17.39)

with 𝜇 = E[𝑋], the 𝑘th central moment of 𝑋, denoted 𝑚′
𝑘, is defined by

𝑚′
𝑘 = E

[︀
𝑔(𝑥)𝑘

]︀
= E

[︀
(𝑋 − 𝜇)𝑘

]︀
. (17.40)

For 𝑘 = 2, the central moment of 𝑋 is just the variance of 𝑋. Analogously, one
defines the 𝑘th moment of a random variable.

Definition 17.8.3. For a random variable 𝑋 and a function

𝑔(𝑥) = 𝑋, (17.41)

the 𝑘th moment of 𝑋, denoted 𝑚𝑘, is defined by

𝑚𝑘 = E
[︀
𝑔(𝑥)𝑘

]︀
= E

[︀
𝑋𝑘
]︀
. (17.42)

17.8.4 Covariance and correlation

The covariance between two random variables 𝑋 and 𝑌 is defined by

Cov(𝑋, 𝑌) = E
[︀(︀

𝑋 − E[𝑋]
)︀(︀

𝑌 − E[𝑌]
)︀]︀

. (17.43)

The covariance has the following important properties:
1. Symmetry: Cov(𝑋, 𝑌) = Cov(𝑌, 𝑋);
2. If 𝑌 = 𝑎 + 𝑏𝑋: Cov(𝑋, 𝑌) = 𝑏 Var(𝑋);
3. Cov(𝑋, 𝑌) ≤

√︀
Var(𝑋) Var(𝑌).

Definition 17.8.4. The linear correlation, often referred to as simply correlation,
between two random variables 𝑋 and 𝑌 is defined by

Cor(𝑋, 𝑌) = E
[︀(︀

𝑋 − E[𝑋]
)︀(︀

𝑌 − E[𝑌]
)︀]︀

/
√︀

Var(𝑋) Var(𝑌) (17.44)

= Cov(𝑋, 𝑌)/
√︀

Var(𝑋) Var(𝑌). (17.45)

The linear correlation has the following properties:
1. It is normalized: −1 ≤ Cor(𝑋, 𝑌) ≤ 1;
2. Cov(𝑋, 𝑌) ≤

√︀
Var(𝑋) Var(𝑌).

We call 𝑋 and 𝑌 positively correlated if Cor(𝑋, 𝑌) > 0, and negatively correlated if
Cor(𝑋, 𝑌) < 0. When Cor(𝑋, 𝑌) = 0, 𝑋 and 𝑌 are said to be linearly uncorrelated.
Frequently, the correlation is denoted by the Greek letter 𝜌(𝑋, 𝑌) = Cor(𝑋, 𝑌).

The above correlation has been introduced by Karl Pearson. For this reason it
is also called Pearson’s correlation coefficient.

17.9 Bivariate distributions | 343

17.9 Bivariate distributions

Now we generalize the distribution of one random variable to the joint distribution
of two random variables.

Definition 17.9.1 (Discrete joint distributions). The joint cumulative distribution
function 𝐹 : R2 → [0, 1] for the discrete random variables 𝑋 and 𝑌 is given by

𝐹 (𝑥, 𝑦) = 𝑃 (𝑋 ≤ 𝑥 and 𝑌 ≤ 𝑦). (17.46)

The corresponding joint probability function 𝑓 : R2 → [0, 1] is given by

𝑓(𝑥, 𝑦) = 𝑃 (𝑋 = 𝑥 and 𝑌 = 𝑦). (17.47)

Theorem 17.9.1. Let 𝑋 and 𝑌 be two discrete random variables with joint prob-
ability function 𝑓(𝑥, 𝑦). If (𝑥𝑎, 𝑦𝑎) is not in the definition range of (𝑋, 𝑌), then
𝑓(𝑥𝑎, 𝑦𝑎) = 0. Furthermore ∑︁

∀ 𝑖

𝑓(𝑥𝑖, 𝑦𝑖) = 1, (17.48)

and

𝑃
(︀
(𝑋, 𝑌) ∈ 𝑍

)︀
=

∑︁
(𝑥,𝑦)∈𝑍

𝑓(𝑥, 𝑦). (17.49)

For evaluating such a discrete joint probability function, the corresponding prob-
abilities can be presented in a form of table. In Table 17.1, we present an example of
a discrete joint probability function 𝑓(𝑥, 𝑦) with 𝑋 ∈ {𝑥1, 𝑥2} and 𝑌 ∈ {𝑦1, 𝑦2, 𝑦3}.

Table 17.1: An example of a discrete joint probability function 𝑓(𝑥, 𝑦) with 𝑋 ∈ {𝑥1, 𝑥2} and
𝑌 ∈ {𝑦1, 𝑦2, 𝑦3}.

𝑌

𝑦1 𝑦2 𝑦3

𝑋
𝑥1 𝑓(𝑥1, 𝑦1) 𝑓(𝑥1, 𝑦2) 𝑓(𝑥1, 𝑦3)
𝑥2 𝑓(𝑥2, 𝑦1) 𝑓(𝑥2, 𝑦2) 𝑓(𝑥2, 𝑦3)

17.10 Multivariate distributions

For multivariate distributions, i. e., for 𝑓(𝑥1, . . . , 𝑥𝑛) with 𝑛 > 2, the above defi-
nitions generalize naturally. However, the practical characterization of such distri-
butions, e. g., in form of tables like Table 17.1 causes problems, because 3, 4, or

344 | 17 Probability theory

100-dimensional tables are not manageable. Fortunately, for random variables that
have a dependency structure that can be represented by a directed acyclic graph
(DAG), there is a simple representation.

By application of the chain rule, one can show that every joint probability dis-
tribution factorizes in the following way:

𝑃 (𝑋1, . . . , 𝑋𝑛) =
𝑛∏︁

𝑖=1
𝑝
(︀
𝑋𝑖| pa(𝑋𝑖)

)︀
. (17.50)

Here, pa(𝑋𝑖) denotes the “parents” of variable 𝑋𝑖. In Figure 17.4 (left), we show an
example for 𝑛 = 5. The joint probability distribution 𝑃 (𝑋1, . . . , 𝑋5) factorizes in

𝑃 (𝑋1, . . . , 𝑋5) = 𝑝(𝑋1)𝑝(𝑋2)𝑝(𝑋3|𝑋1)𝑝(𝑋4|𝑋1, 𝑋2)𝑝(𝑋5|𝑋1, 𝑋2). (17.51)

Similarly, the joint probability distribution, for Figure 17.4 (right), can be written
as follows

𝑃 (𝑋1, . . . , 𝑋5) = 𝑝(𝑋1)𝑝(𝑋2)𝑝(𝑋3)𝑝(𝑋4|𝑋1, 𝑋2, 𝑋3)𝑝(𝑋5|𝑋4). (17.52)

The advantage of such factorization is that the numerical specification of the
joint probability distribution is distributed over the terms 𝑝(𝑋𝑖| pa(𝑋𝑖)). Impor-
tantly, each of these terms can be represented by a simple table, similar to Table 17.1.

Figure 17.4: Examples of factorization of
a joint probability distribution that can be
represented by a DAG.

The shown DAGs in Figure 17.4, together with the factorizations of their joint proba-
bility distributions, are examples of so called Bayesian networks [114, 149]. Bayesian
networks are special examples of probabilistic models called graphical models [116].

17.11 Important discrete distributions

In this section, we discuss some important distributions that arise from random vari-
ables that are discrete, which can be found frequently in data science applications.
For example, flipping a coin or tossing a dice leads to discrete outcomes. In the case
of a coin, we observe either a “head” or a “tail”. For a dice, we observe different faces

17.11 Important discrete distributions | 345

with the number 1 to 6 on them. In general, a random variable, 𝑋, has a discrete
distribution if the sample space of 𝑋 is either finite or countable. For convenience,
in the following, we label these discrete values by integers. For instance, by defining
“head” = 1 and “tail” = 0.

17.11.1 Bernoulli distribution

One of the most simple discrete distributions and yet very important is the Bernoulli
distribution. For this distribution, the sample space consists of only two outcomes
{0, 1}. The probabilities for these events are defined by

𝑃 (𝑋 = 1) = 𝑝, (17.53)

𝑃 (𝑋 = 0) = 1 − 𝑝. (17.54)

As a short notation, we write 𝑋 ∼ Bern(𝑝) for a random variable, 𝑋, drawn from a
Bernoulli distribution with parameter 𝑝. Hence, the symbol ∼ means “is drawn from”
or “is sampled from”. The R-package Rlab provides the Bernoulli distribution. With
the help of the command rbern, we can draw 10 random variables from a distribution
with 𝑝 = 0.5.

Listing 17.2: Generate Bernoulli random variables

rbern(10, 0.5)
[1] 1 1 0 1 0 1 1 1 1 0

An alternative is to use the sample command. Here it is important to sample
with replacement.

Listing 17.3: Alternative way to sample from a Bernoulli distribution

sample(c(0,1), size=10, replace = TRUE, prob = c(0.5,0.5))
[1] 1 0 0 0 0 1 0 0 1 0

A simple example for a discrete random variable with a Bernoulli distribution
is a coin toss.

17.11.2 Binomial distribution

A Binomial distribution is based on Bernoulli distributed random variables. Suppose
that we observe 𝑁 indepdendently drawn random variables 𝑋𝑖 ∼ Bern(𝑝) with
𝑖 ∈ {1, . . . , 𝑁} and 𝑃 (𝑋𝑖 = 1) = 𝑝. Then the probability to observe 𝑛 “1s” (e. g.

346 | 17 Probability theory

heads) from the 𝑁 tosses is given by

𝑃 (𝑋 = 𝑛) =
(︂

𝑁

𝑛

)︂
𝑝𝑛(1 − 𝑝)𝑁−𝑛. (17.55)

As a short notation, we write 𝑋 ∼ Binom(𝑁, 𝑝). For example, Binom(6, 0.2) is
obtained in R as shown in Listing 17.4.

Listing 17.4: Binomial distributions, see Fig. 17.5

rbinom(10, size=6, prob=0.2)
[1] 1 2 0 0 2 3 1 1 0 1

In Figure 17.5, we visualize two Binomial distributions with different parameter.
Each bar corresponds to 𝑃 (𝑋 = 𝑛) for a specific value of 𝑛.

Figure 17.5: Binomial distribution, Binom(𝑁 = 6, 𝑝 = 0.3) (left) and Binom(𝑁 = 6, 𝑝 = 0.1)
(right).

For 𝑁 → ∞ and large values of 𝑝, the Binomial distribution can be approximated
by a normal distribution (discussed in detail in Sec. 17.12.4). In this case, one can
set the mean value to 𝜇 = 𝑁𝑝, and the standard deviation to 𝜎 =

√︀
𝑁𝑝(1 − 𝑝) for

the normal distribution. The advantage of such approximation is that the normal
distribution is computationally easier to handle than the Binomial distribution. As
a rule of thumb, this approximation can be used if 𝑁𝑝(1 − 𝑝) > 9. Alternatively, it
can be used if 𝑁𝑝 > 5 (for 𝑝 ≤ 0.5) or 𝑁(1 − 𝑝) > 5 (for 𝑝 > 0.5).

To illustrate how to generate figures such as Figure 17.5 (right), we provide below
a listing, using ggplot, for producing such figure.

17.11 Important discrete distributions | 347

Listing 17.5: Plot for a Binomial distributions, see Fig. 17.5 (right)

n <- 0:6
d <- dbinom(n, size=6, prob=0.3)

df <- data.frame(n = n, prob = d)
p <- ggplot(df, aes(x = n, y = prob))
p + geom_segment(aes(xend = n, yend = 0), size=4, color="blue") +

ylab(expression(P(X == n))) + theme(axis.text.x =
element_text(colour="grey20",size=10,face="plain"),

axis.text.y = element_text(colour="grey20", size=10, angle=0,
hjust=1, vjust=0, face="plain"),
axis.title.x = element_text(colour="grey20", size=15, angle=0,

hjust=.5,
vjust=0, face="bold"),
axis.title.y = element_text(colour="grey20", size=15, angle=90,

hjust=.5,
vjust=.5, face="bold"))
+ theme(legend.position="none")

Figure 17.6: Binomial distribution, pbinom(n, size=6, prob=0.6) (left) and qbinom(p, size=6,
prob=0.6) (right).

In the following, we do not provide the scripts for the visualizations of similar figures,
but only for the values of the distributions. However, by following the example in
Listing 17.5, such visualizations can be generated easily.

So far we have seen that R provides for each available distribution a function
to sample random variables from this distribution, and a function to obtain the
corresponding probability density. For the Binomial distribution, these functions
are called rbinom and dbinom. For other distributions, the following pattern for the
names apply:
– r'name-of-the-distribution': draw random samples from the distribution;
– d'name-of-the-distribution': density of the distribution.

348 | 17 Probability theory

There are two more standard functions available that provide useful information
about a distribution. The first one is the distribution function, also called cumulative
distribution function, because it provides 𝑃 (𝑋 ≤ 𝑛), i. e., the probability up to a
certain value of 𝑛, which is given by

𝑃 (𝑋 ≤ 𝑛) =
𝑚=𝑛∑︁
𝑚=0

𝑃 (𝑋 = 𝑚). (17.56)

The second function is the quantile function, which provides information about the
value of 𝑛, for which 𝑃 (𝑋 ≤ 𝑛) = 𝑝 holds. In R, the names of these functions follow
the pattern:
– p'name-of-the-distribution': distribution function;
– q'name-of-the-distribution': quantile function.

17.11.3 Geometric distribution

Suppose that we observe an infinite number of independent and identically dis-
tributed (iid) random variables 𝑋𝑖 ∼ Bern(𝑝). Then, the probability to observe in
the first 𝑛 consecutive observations a tail, is given by the geometric distribution
defined by

𝑃 (𝑋 = 𝑛) = (1 − 𝑝)𝑛𝑝. (17.57)

For example, if we observe 0001 . . . then the first 𝑛 = 3 observations show consecu-
tively tail, and the probability for this to happen is given by 𝑃 (𝑋 = 3) = (1 − 𝑝)3𝑝.

Using R, sampling from 𝑋 ∼ Geom(𝑝 = 0.4) is obtained as shown in Listing 17.6.

Listing 17.6: Generation of Geometric random variables

rgeom(10, 0.4)
[1] 0 0 7 5 2 2 9 0 0 0

17.11.4 Negative binomial distribution

Suppose that we observe an infinite number of independent and identically dis-
tributed random variables 𝑋𝑖 ∼ Bern(𝑝). Then the probability to observe 𝑛 tails
before we observe 𝑟 “heads” is given by the negative binomial distribution, defined
by

𝑃 (𝑋 = 𝑛) =
(︂

𝑟 + 𝑛 − 1
𝑛

)︂
𝑝𝑟(1 − 𝑝)𝑛. (17.58)

For instance, sampling from 𝑋 ∼ nbinom(𝑟 = 6, 𝑝 = 0.2) using R can be done as
follows:

17.11 Important discrete distributions | 349

Listing 17.7: Generation of Negative Binomial random variables

rnbinom(10, size=6, prob=0.2)
[1] 22 23 41 36 12 32 42 39 12 18

17.11.5 Poisson distribution

The Poisson distribution expresses the probability of a given number of independent
events occurring in a fixed time interval. The Poisson distribution is defined by

𝑃 (𝑋 = 𝑛) = 𝜆𝑛 exp(−𝜆)
𝑛! . (17.59)

For example, sampling from 𝑋 ∼ pois(𝜆 = 3) using R can be done as follows:

Listing 17.8: Generation of Poisson random variables

rpois(10, lambda = 3)
[1] 1 4 2 4 3 1 2 1 4 5

Figure 17.7 provides some visualization of some Poisson distributions.

Figure 17.7: Poisson distribution, pois(𝜆 = 3) (left) and pois(𝜆 = 1) (right).

Listing 17.9: Poisson distribution, see Fig. 17.7
n <- 0:10
d <- dpois(n, lambda = 3) #Figure17.7 Left

d <- dpois(n, lambda = 1) #Figure17.7 Right

350 | 17 Probability theory

It is worth noting that the Poisson distribution can be obtained from a Binomial
distribution for 𝑁 → ∞ and 𝑝 → 0, assuming that 𝜆 = 𝑁𝑝 remains constant.
This means that for large 𝑁 and small 𝑝 we can use the Poisson distribution with
𝜆 = 𝑁𝑝 to approximate a Binomial distribution, because the former is easier to
handle computationally. Two rules of thumb say that this approximation is good if
𝑁 ≥ 20 and 𝑝 ≤ 0.05, or if 𝑁 ≥ 100 and 𝑁𝑝 ≤ 10.

This approximation explains also why the Poisson distribution is used to describe
rare events that have a small probability to occur, e. g., radioactive decay of chemical
elements. Other examples of rare events include spelling errors on a book page,
the number of visitors of a certain website, or the number of infections due to a
virus.

17.12 Important continuous distributions

Similar to discrete distributions, there are also important continuous distributions,
i. e. for continuous random variables, which will be discussed in the following.

17.12.1 Exponential distribution

The density or the probability function of the exponential distribution is defined by

𝑓(𝑥) =

{︃
𝜆 exp(−𝜆𝑥) if 𝑥 ≥ 0
0 otherwise.

(17.60)

The parameter 𝜆 of the exponential distribution must be strictly positive, i. e., 𝜆 > 0.

Listing 17.10: Exponential distribution, see Fig. 17.8

x <- seq(0,6,0.1)
d <- dexp(x, rate = 1) #Figure17.8 Left

p <- pexp(x, rate = 1) #Figure17.8 Right

17.12.2 Beta distribution

The density or the probability function of the Beta distribution is defined by

𝑓(𝑥) = 1
𝐵(𝛼, 𝛽)𝑥𝛼−1(1 − 𝑥)𝛽−1, 𝑥 ∈]0, 1[. (17.61)

17.12 Important continuous distributions | 351

Figure 17.8: Exponential distribution. Left: dexp(rate = 1) (left) and pexp(rate = 1) (right).

In the denominator of the definition of the Beta distribution appears the Beta func-
tion, which is defined by

𝐵(𝛼, 𝛽) =
1∫︁

0

𝑥𝛼−1(1 − 𝑥)𝛽−1𝑑𝑥. (17.62)

The parameters 𝛼 and 𝛽 in the Beta function must be strictly positive.

Listing 17.11: Beta distribution, see Fig. 17.9

x <- seq(0.015, 0.985,length.out=1000)
d <- pbeta(x, shape1=1, shape2=3) #Figure17.9 Left

p <- pbeta(x, shape1=1, shape2=3) #Figure17.9 Right

17.12.3 Gamma distribution

The density function of the gamma distribution is defined by

𝑓(𝑥) =

{︃
1

Γ(𝛼)𝛽𝛼 𝑥−𝛼−1 exp(−𝑥/𝛽) if 𝑥 ≥ 0
0 otherwise

(17.63)

The parameters 𝛼 and 𝛽 must be strictly positive. In the denominator of the density
appears the gamma function, Γ, which is defined as follows:

Γ(𝛼) =
∞∫︁

0

𝑡𝛼−1 exp(−𝑡)𝑑𝑡. (17.64)

352 | 17 Probability theory

Figure 17.9: Beta distribution. Left: dbeta(𝛼 = 2, 𝛽 = 2) (left) and pbeta(𝛼 = 2, 𝛽 = 2) (right).

Listing 17.12: Gamma distribution, see Fig. 17.10

x <- seq(0,7.5,0.1)
d <- dgamma(x,shape = 1, rate = 2) #Figure17.10 Left

p <- pgamma(x,shape = 1, rate = 2) #Figure17.10 Right

Figure 17.10: Gamma distribution. Left: dgamma(𝛼 = 2, 𝛽 = 2) (left) and pgamma(𝛼 = 2, 𝛽 =
2) (right).

17.12 Important continuous distributions | 353

17.12.4 Normal distribution

The normal distribution is the most important probability distribution in statistics,
because it is the appropriate way to describe many natural phenomena. The normal
distribution is also known as the Gaussian distribution or the bell-shape distribution.

17.12.4.1 One-dimensional normal distribution
The density function of the one-dimensional normal distribution is defined by

𝑓(𝑥) = 1√
2𝜋𝜎

exp
(︂

− (𝑥 − 𝜇)2

2𝜎2

)︂
, −∞ ≤ 𝑥 ≤ ∞. (17.65)

An important special case of the normal distribution is the standard normal
distribution defined by

𝑓(𝑥) = 1√
2𝜋

exp
(︂

−𝑥2

2

)︂
, −∞ ≤ 𝑥 ≤ ∞. (17.66)

The standard normal distribution has a mean of 0, and a variance of 1.

Listing 17.13: One-dimensional normal distribution, see Fig. 17.11

x <- seq(-10,10,0.1)
d <- dnorm(x, mean=0, sd=1/2) # Figure17.11 Left

d <- dnorm(x, mean=-1, sd=2) # Figure17.11 Right

Figure 17.11: One-dimensional normal distribution. Left: Different values of 𝜎 ∈ {0.5, 1, 3} for
a constant mean of 𝜇 = 0. Right: Different values of 𝜇 ∈ {−1, 1, 3} for a constant standard
deviation of 𝜎 = 2.

354 | 17 Probability theory

17.12.4.2 Two-dimensional normal distribution
The density function of the normal distribution in R2 is defined by

𝑓(𝑥) = 𝑐 exp
(︂

− 1
2(1 − 𝜌2)

[︂
(𝑥1 − 𝜇1)2

𝜎2
1

+ (𝑥2 − 𝜇2)2

𝜎2
2

− 2𝜌
(𝑥1 − 𝜇1)(𝑥2 − 𝜇2)

𝜎1𝜎2

]︂)︂
,

(17.67)

𝑥 = (𝑥1, 𝑥2) ∈ R2,

whereas 𝜌 is the correlation between 𝑋1 and 𝑋2 and the factor 𝑐 is given by

𝑐 = 1
2𝜋𝜎1𝜎2

√︀
(1 − 𝜌2)

. (17.68)

Figure 17.12: Two-dimensional nor-
mal distribution. In addition, pro-
jections on the 𝑥1- and 𝑥2-axis are
shown presenting a perspective view.

A visualization of a two-dimensional normal distribution is shown in Figure 17.12.
This figure shows also projections on the 𝑥1- and 𝑥2-axis resulting in one-dimensional
projections. In contrast, Figure 17.13 shows a contour plot of this distribution. Such
a plot shows parallel slices of the 𝑥1 − 𝑥2 plane.

17.12.4.3 Multivariate normal distribution
The density function of the multivariate normal distribution is defined by

𝑓(𝑥) = 1√︀
(2𝜋)𝑛|Σ|

exp
(︂

− (𝑥 − 𝜇)Σ−1(𝑥 − 𝜇)𝑡

2

)︂
, 𝑥 ∈ R𝑛. (17.69)

Here, 𝑥 ∈ R𝑛 is a 𝑛-dimensional random variable and the parameters of the density
are its mean, 𝜇 ∈ R𝑛, and the 𝑛 × 𝑛 covariance matrix Σ. |Σ| is the determinate
of Σ. For 𝑛 = 2, we obtain the two-dimensional normal distribution given in Eqn.
17.67.

17.12 Important continuous distributions | 355

Figure 17.13: Two-dimensional normal distribution:
heat map and contour plot.

17.12.5 Chi-square distribution

The density function of the chi-square distribution is defined by

𝑓(𝑥) = 1
2𝑘/2Γ(𝑘/2)

𝑥
𝑘
2 −1 exp

(︂
−𝑥

2

)︂
, 0 ≤ 𝑥 < ∞. (17.70)

It is worth noting that for 𝑘 iid random variables 𝑋𝑖 ∼ 𝑁(0, 1), 𝑌 =
∑︀𝑘

𝑖+1 𝑋2
𝑖

follows a chi-square distribution with 𝑘 degrees of freedom, 𝑌 ∼ 𝜒2
𝑘.

Listing 17.14: Chi-square distribution – for one parameter pair, see Fig. 17.14

x <- seq(0,30,0.1)
d1 <- dchisq(x, df=2) #Figure17.14 Left

An example of the application of the Chi-square distribution is the sampling
distribution for a Chi-square test, which is a statistical hypothesis test that can be
used to study the variance or the distribution of data [171].

17.12.6 Student’s 𝑡-distribution

The density function of the 𝑡-distribution with 𝜈 degrees of freedom is defined by

𝑓(𝑥) = Γ((𝜈 + 1)/2)√
𝜈𝜋Γ(𝜈/2)

(︂
1 + 𝑥2

𝜈

)︂− 𝜈+1
2

, −∞ ≤ 𝑥 ≤ ∞. (17.71)

Here 𝜈 can assume integer values.
If 𝑍 ∼ 𝑁(0, 1) and 𝑌 ∼ 𝜒2

𝜈 (Chi-square distribution with 𝜈 degrees of freedom)
are two independent random variables, then

𝑋 = 𝑍√︁
𝑌
𝜈

, (17.72)

356 | 17 Probability theory

Figure 17.14: Chi-square distribution. Left: Different values of the degree of freedom 𝑘 ∈
{2, 7, 20}. Right: Cumulative distribution function.

Figure 17.15: Student’s 𝑡-distribution. Left: Different values of the degree of freedom 𝑘 ∈
{2, 7, 20}. Right: QQnormal plot for t-distribution with 𝑘 = 100.

follows a Student’s t distribution, i. e., 𝑋 ∼ 𝑡𝜈 .

Listing 17.15: Student’s t-distribution – for one parameter pair, see Fig. 17.15

x <- seq(-5,5,0.1)
d <- dt(x, df=2) #Figure17.15 Left

The Student’s 𝑡-distribution is also used as a sampling distribution for hypothesis
tests. Specifically, it is used for a t-test that can be used to compare the mean value
of one or two populations, i. e., groups of measurements, each with a certain number
of samples [171].

17.12 Important continuous distributions | 357

17.12.7 Log-normal distribution

The log-normal distribution is defined by

𝑓(𝑥) = 1√
2𝜋𝜎𝑥

exp
(︂

− (ln 𝑥 − 𝜇)2

2𝜎2

)︂
, 0 < 𝑥 < ∞. (17.73)

Figure 17.16: Log-normal distribution. Left: Constant 𝜇 = 0.0 and varying 𝜎 ∈
{1.25, 0.75, 0.25}. Right: Constant 𝜎 = 0.75 and varying 𝜇 ∈ {3.0, 2.0, 1.0}.

The log-normal distribution, shown in Figure 17.16, has the following location mea-
sures:

mean: exp
(︂

𝜇 + 𝜎2

2

)︂
, (17.74)

variance: exp
(︀
2𝜇 + 𝜎2)︀(︀exp

(︀
𝜎2)︀− 1

)︀
, (17.75)

mode: exp
(︀
𝜇 − 𝜎2)︀. (17.76)

17.12.8 Weibull distribution

The Weibull distribution is defined by

𝑓(𝑥) = 𝛽

𝜆

(︂
𝑥

𝜆

)︂𝛽−1
exp
(︂

−
(︂

𝑥

𝜆

)︂𝛽)︂
, 0 < 𝑥 < ∞. (17.77)

The Weibull distribution, shown in Figure 17.17, has the following location measures:

mean: 𝜆Γ(1 + 1/𝛽), (17.78)

358 | 17 Probability theory

Figure 17.17: Weibull distribution. Left: Constant value of 𝜆 = 1.0 and varying 𝛽 ∈
{1.0, 2.0, 3.5}. Right: Constant value of 𝛽 = 2.0 and varying 𝜆 ∈ {0.9, 2.0, 4.0}.

variance: 𝜆2[︀Γ(1 + 2/𝛽) −
(︀
Γ(1 + 1/𝛽)

)︀2]︀
, (17.79)

mode: 𝜆

(︂
𝛽 − 1

𝛽

)︂1/𝛽

, 𝛽 > 1, (17.80)

where Γ denotes the Gamma function.
In biostatistics, the log-normal distribution and the Weibull distribution find

their applications in survival analysis [112]. Specifically, these distributions are used
as a parametric model for the baseline hazard function of a Cox proportional hazard
model, which can be used to model time-to-event processes by considering covariates.

17.13 Bayes’ theorem

The Bayes’ theorem provides a systematic way to calculate the inverse for a given
conditional probability [114]. For instance, if the conditional probability 𝑃 (𝐷|𝐻) for
two events 𝐷 and 𝐻 is given, but we are interested in 𝑃 (𝐻|𝐷), which can be viewed
as the inverse conditional probability of 𝑃 (𝐷|𝐻); and Bayes’ theorem provides a
way to achieve this.

In its simplest form, the Bayes’ theorem can be stated as follows:

𝑃 (𝐻|𝐷) = 𝑃 (𝐷|𝐻)𝑃 (𝐻)
𝑃 (𝐷) . (17.81)

Its proof follows directly from the definition of conditional probabilities and the
commutativity of the intersection.

The terms in the above equation have the following names:
– 𝑃 (𝐻) is called the prior probability, or prior.

17.13 Bayes’ theorem | 359

– 𝑃 (𝐷|𝐻) is called the likelihood.
– 𝑃 (𝐷) is just a normalizing constant, sometimes called marginal likelihood.
– 𝑃 (𝐻|𝐷) is called the posterior probability or posterior.

The letters denoting the above variables, i. e., 𝐷 and 𝐻, are arbitrary, but by using
𝐷 for “data” and 𝐻 for “hypothesis”, one can interpret equation 17.81 as the change
of the probability for a hypothesis (given by the prior) after considering new data
about this hypothesis (given by the posterior).

Bayes’ theorem can be generalized to more variables.

Theorem 17.13.1 (Bayes’ theorem). Let the events 𝐵1 . . . 𝐵𝑘 be a partition of the
space 𝑆 such that 𝑃 (𝐵𝑖) > 0 for all 𝑖 ∈ {1, . . . , 𝑘} and 𝑃 (𝐴) > 0. Then, for
𝑖 ∈ {1, . . . , 𝑘}, we have

𝑃 (𝐵𝑖|𝐴) = 𝑃 (𝐴|𝐵𝑖)𝑃 (𝐵𝑖)∑︀𝑘
𝑗=1 𝑃 (𝐴|𝐵𝑗)𝑃 (𝐵𝑗)

. (17.82)

To understand the utility of the Bayes’ theorem, let us consider the following
example: Suppose that a medical test for a disease is performed on a patient, and
this test has a reliability of 90 %. That means, if a patient has this disease, the test
will be positive with a probability of 90 %. Furthermore, assume that if the patient
does not have the disease, the test will be positive with a probability of 10 %. Let
us assume that a patient tests positive for this disease. What is the probability that
this patient has this disease? The answer to this question can be obtained using
Bayes’ theorem.

In order to make the usage of Bayes’ theorem more intuitive, we adopt the
formulation in equation (17.82). Specifically, let us denote a positive test by 𝐴 = 𝑇 +,
a sick patient that has the disease (D) by 𝐵1 = 𝐷+, and a healthy patient that does
not have the disease by 𝐵2 = 𝐷−. Then, equation (17.82) becomes

𝑃
(︀
𝐷+|𝑇 +)︀ = 𝑃 (𝑇 +|𝐷+)𝑃 (𝐷+)

𝑃 (𝑇 +|𝐷−)𝑃 (𝐷−) + 𝑃 (𝑇 +|𝐷+)𝑃 (𝐷+) . (17.83)

Note that 𝐷+ and 𝐷− provide a partition of the sample space, because 𝑃 (𝐷+) +
𝑃 (𝐷−) = 1 (either the patient is sick or healthy). From the provided information
about the medical test, see above, we can identify the following entities:

𝑃
(︀
𝑇 +|𝐷+)︀ = 0.9, (17.84)

𝑃
(︀
𝑇 +|𝐷−)︀ = 0.1. (17.85)

At this point, the following observation can be made: the knowledge about the
medical test is not enough to calculate the probability 𝑃 (𝐷+|𝑇 +), because we also
need information about 𝑃 (𝐷+) and 𝑃 (𝐷−).

360 | 17 Probability theory

These probabilities correspond to the prevalence of the disease in the population
and are independent from the characteristics of the performed medical test. Let us
consider two different diseases: one is a common disease and one is a rare disease. For
the common (𝑐) disease, we assume 𝑃𝑐(𝐷+) = 1/1000, and for the rare (𝑟) disease
𝑃𝑟(𝐷+) = 1/1000000. That means, for the common disease, one person from 1000
is, on average, sick, whereas, for the rare disease, only one person from 1000000 is
sick. This gives us

Common disease 𝑃𝑐

(︀
𝐷+)︀ = 1/103, 𝑃𝑐

(︀
𝐷−)︀ = 1 − 1/103, (17.86)

Rare disease 𝑃𝑟

(︀
𝐷+)︀ = 1/106, 𝑃𝑟

(︀
𝐷−)︀ = 1 − 1/106. (17.87)

Using these numbers in equation (17.83) yields

Common disease 𝑃𝑐

(︀
𝐷+|𝑇 +)︀ = 0.0089, (17.88)

Rare disease 𝑃𝑟

(︀
𝐷+|𝑇 +)︀ = 8.99 · 10−6. (17.89)

It is worth noting that although the used medical test has the exact same character-
istics, given by 𝑃 (𝑇 +|𝐷+) and 𝑃 (𝑇 +|𝐷−) (see equation (17.84) and (17.85)), the
resulting probabilities are different from each other. More precisely,

𝑃𝑐

(︀
𝐷+|𝑇 +)︀ = 991.1 · 𝑃𝑟

(︀
𝐷+|𝑇 +)︀, (17.90)

which makes it almost 1000 times more likely to suffer from the common disease
than the rare disease, if tested positive.

The above example demonstrates that the context, as provided by 𝑃 (𝐷+) and
𝑃 (𝐷−), is crucial in order to obtain a sensible result.

Finally, in Figure 17.18, we present some results for repeated analysis of the
above example, using different values for 𝑃 (𝐷+) from the full range of possible
prevalence probabilities, i. e., from [0, 1]. We can see that for any probability value
of 𝑃 (𝐷+) below 80 %, the probability to have a disease, if tested positive, is always
below 5 %. Furthermore, we can see that the functional relation between 𝑃 (𝐷+)
and 𝑃 (𝐷+|𝑇 +) is strongly nonlinear. Such a functional behavior makes it difficult
to make good guesses for the values of 𝑃 (𝐷+|𝑇 +) without doing the underlying
mathematics properly.

After this example, demonstrating the use of the Bayes’ theorem, we will now
provide the proof of the theorem.

Proof. From the definition of a conditional probability for two events 𝐴 and 𝐵,

𝑃 (𝐴|𝐵) = 𝑃 (𝐴 ∩ 𝐵)
𝑃 (𝐵) , (17.91)

follows the identity

𝑃 (𝐴 ∩ 𝐵𝑖) = 𝑃 (𝐵𝑖|𝐴)𝑃 (𝐴) = 𝑃 (𝐴|𝐵𝑖)𝑃 (𝐵𝑖), (17.92)

since 𝑃 (𝐴 ∩ 𝐵𝑖) = 𝑃 (𝐵𝑖 ∩ 𝐴).

17.14 Information theory | 361

Figure 17.18: 𝑃 (𝐷+|𝑇 +) as a function of
the prevalence probability 𝑃 (𝐷+) for a
common disease. The horizontal lines cor-
responds to 5 %.

Rearranging equation (17.92) leads to

𝑃 (𝐵𝑖|𝐴) = 𝑃 (𝐴|𝐵𝑖)𝑃 (𝐵𝑖)
𝑃 (𝐴) . (17.93)

Using the law of total probability and assuming that {𝐵1, . . . , 𝐵𝑘} is a partition of
the sample space, we can write

𝑃 (𝐴) =
𝑘∑︁

𝑗=1
𝑃 (𝐴|𝐵𝑗)𝑃 (𝐵𝑗). (17.94)

Substituting this in equation (17.93) gives

𝑃 (𝐵𝑖|𝐴) = 𝑃 (𝐴|𝐵𝑖)𝑃 (𝐵𝑖)∑︀𝑘
𝑗=1 𝑃 (𝐴|𝐵𝑗)𝑃 (𝐵𝑗)

, (17.95)

which is Bayes’ theorem.

It is because of the simplicity of this “proof” that the Bayes’ theorem is some-
times also referred to as the Bayes’ rule.

17.14 Information theory

Information theory is based on the application of probability theory concerned with
the quantification, storage, and communication of information. It builds upon the
fundamental work of Claude Shannon [169]. In this chapter, we introduce the key
concept of entropy and related entities, e. g., conditional entropy, mutual informa-
tion, and Kullback–Leibler divergence.

362 | 17 Probability theory

17.14.1 Entropy

Shannon defined the entropy for a discrete random variable 𝑋, assuming values in
{𝑋1, . . . , 𝑋𝑛} with probability density 𝑝𝑖 = 𝑃 (𝑋𝑖), as follows:

Definition 17.14.1 (Entropy). The entropy, 𝐻(𝑋), of a discrete random variable 𝑋

is given by

𝐻(𝑋) = E
[︀
− log

(︀
𝑃 (𝑋)

)︀]︀
= −

𝑛∑︁
𝑖=1

𝑝𝑖 log(𝑝𝑖). (17.96)

Usually, the logarithm is base 2, because the entropy is expressed in bits (that
means its unit is a bit). However, sometimes, other bases are used, hence, attention
to this is required.

The entropy is a measure of the uncertainty of a random variable. Specifically, it
quantifies the average amount of information needed to describe the random variable.

Properties of the entropy
The entropy has the following properties:
– Positivity: 𝐻(𝑋) ≥ 0
– Symmetry: Let Π be a permutation of the indices 1, . . . , 𝑛 of the probability mass

function 𝑃 (𝑋𝑖) in the form that 𝑃 (𝑋Π(𝑖)) is a new probability mass function
for the discrete random variable 𝑋 ′

𝑖 = 𝑋Π(𝑖). Then,

𝐻(𝑋) = 𝐻
(︀
𝑋 ′)︀. (17.97)

– Maximum: The maximum of the entropy is assumed for 𝑃 (𝑋𝑖) = 1/𝑛 = const.
∀𝑖, for {𝑋1, . . . , 𝑋𝑛}.

The definition of the entropy can be extended to a continuous random variable, 𝑋,
with probability mass function 𝑓(𝑋) and 𝑋 ∈ 𝐷 as follows:

𝐻(𝑋) = E
[︀
− log

(︀
𝑓(𝑋)

)︀]︀
= −

∫︁
𝑥∈𝐷

𝑓(𝑥) log
(︀
𝑓(𝑥)

)︀
𝑑𝑥. (17.98)

In this case, the entropy is also called differential entropy.
In Figure 17.19, we present an example of the entropy for a random variable 𝑋

that can assume two values, i. e.,

𝑋 =

{︃
0, with probability 1 − 𝑝

1, with probability 𝑝
(17.99)

Clearly, the entropy is positive for all values of 𝑝, and assumes its maximum for
𝑝 = 0.5 with 𝐻(𝑝 = 0.5) = 1 bit. In order to plot the entropy, we used 𝑛 =

17.14 Information theory | 363

Figure 17.19: Visualization of the entropy 𝐻(𝑝) for different values of 𝑝. The vertical dashed
line (red) indicates the maximum of 𝐻(𝑝).

50 different values for 𝑝 obtained with the R command p <- seq(from=0, to=1,
length.out=n).

Similar to the joint probability and the conditional probability, there are also
extensions of the entropy along these lines.

Definition 17.14.2 (Joint entropy). Let 𝑋 and 𝑌 be two random variables assuming
values in 𝑋1, . . . , 𝑋𝑛 and 𝑌1, . . . , 𝑌𝑚. Furthermore, let 𝑝𝑖𝑗 = 𝑃 (𝑋𝑖, 𝑌𝑗) be their joint
probability distribution. Then, the joint entropy of 𝑋 and 𝑌 , denoted 𝐻(𝑋, 𝑌), is
given by

𝐻(𝑋, 𝑌) = −
𝑛∑︁

𝑖=1

𝑚∑︁
𝑗=1

𝑝𝑖𝑗 log(𝑝𝑖𝑗). (17.100)

Definition 17.14.3 (Conditional entropy). Let 𝑋 and 𝑌 be two random variables
assuming values in 𝑋1, . . . , 𝑋𝑛 and 𝑌1, . . . , 𝑌𝑚 with probability distribution 𝑝𝑖 =
𝑃 (𝑋𝑖) for 𝑋.

Furthermore, let 𝑝𝑗𝑖 = 𝑃 (𝑌𝑗 |𝑋𝑖) be their conditional probability distribution
and 𝐻(𝑌 |𝑋 = 𝑥𝑖) the entropy of 𝑌 , conditioned on 𝑋 = 𝑥𝑖. Then, the conditional
entropy of 𝑌 given 𝑋, denoted 𝐻(𝑌 |𝑋), is given by

𝐻(𝑌 |𝑋) =
𝑛∑︁

𝑖=1
𝑝𝑖𝐻(𝑌 |𝑋 = 𝑥𝑖) =

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑝𝑖𝑝𝑗𝑖 log(𝑝𝑗𝑖). (17.101)

Properties of the conditional entropy
The joint and conditional entropy have the following properties:
– Chain rule: 𝐻(𝑌 |𝑋) = 𝐻(𝑋, 𝑌) − 𝐻(𝑋);
– Symmetry: 𝐻(𝑋, 𝑌) = 𝐻(𝑋) + 𝐻(𝑌 |𝑋) = 𝐻(𝑌) + 𝐻(𝑋|𝑌)

364 | 17 Probability theory

17.14.2 Kullback–Leibler divergence

The Kullback–Leibler divergence, also called relative entropy, is a measure of the
distance between two probability distributions [39].

Definition 17.14.4 (Kullback–Leibler divergence). Let 𝑋 and 𝑌 be two random vari-
ables assuming values in 𝑋1, . . . , 𝑋𝑛 and 𝑌1, . . . , 𝑌𝑛 with the probability distribu-
tions 𝑝𝑖 = 𝑃 (𝑋𝑖) and 𝑞𝑗 = 𝑃 (𝑌𝑗). Then the Kullback–Leibler divergence for 𝑋 and
𝑌 , denoted KL(𝑃 ‖ 𝑄), is given by

KL
(︀
𝑃 ‖ 𝑄

)︀
=

𝑛∑︁
𝑖=1

𝑝𝑖 log
(︂

𝑝𝑖

𝑞𝑗

)︂
. (17.102)

Properties of the Kullback–Leibler divergence
The Kullback–Leibler divergence has the following properties:
– The Kullback–Leibler divergence KL(𝑃 ‖ 𝑄) is nonsymmetric;
– Gibbs’ inequality: KL(𝑃 ‖ 𝑄) ≥ 0;
– KL(𝑃 ‖ 𝑄) = 0 if and only if both distributions are identical, i. e., 𝑃 = 𝑄.

Figure 17.20 presents an example of the Kullback–Leibler divergence. On the left-
hand side is depicted the probability distribution 𝑝(𝑥), which is a gamma distri-
bution, and 𝑞(𝑥) which is a normal distribution. On the right-hand side is shown
only the logarithm, log(𝑝

𝑞), of both distributions. The vertical dashed lines indicate
the intersection points between both distributions. At these points the sign of the

Figure 17.20: An example for the Kullback–Leibler divergence. On the left-hand side, we show
the probability distribution 𝑝(𝑥) (a gamma distribution) and 𝑞(𝑥) (a normal distribution). On the
right-hand side, we show only the logarithm, log(𝑝

𝑞
), of both distributions.

17.14 Information theory | 365

logarithm changes, as shown on the right-hand side, since for log(𝑥) with 𝑥 > 1 the
logarithm is positive, and for 𝑥 < 0 the logarithm is negative.

17.14.3 Mutual information

Another measure, called mutual information, follows from the definition of the
Kullback–Leibler divergence by the transformation 𝑝(𝑥) → 𝑝(𝑥, 𝑦) and 𝑞(𝑥) →
𝑝(𝑥)𝑝(𝑦). It measures the amount of information of one random variable, 𝑋, from
another random variable 𝑌 .

Definition 17.14.5 (Mutual information). Let 𝑋 and 𝑌 be two random variables
assuming values in 𝑋1, . . . , 𝑋𝑛 and 𝑌1, . . . , 𝑌𝑚 with the probability distributions
𝑝𝑖 = 𝑃 (𝑋𝑖) and 𝑞𝑗 = 𝑃 (𝑌𝑗).

Furthermore, let 𝑝𝑖𝑗 = 𝑃 (𝑋𝑖, 𝑌𝑗) be their joint probability distribution. Then,
the mutual information of 𝑋 and 𝑌 , denoted 𝐼(𝑋, 𝑌), is given by

𝐼(𝑋, 𝑌) =
𝑛∑︁

𝑖=1

𝑚∑︁
𝑗=1

𝑝𝑖𝑗 log
(︂

𝑝𝑖𝑗

𝑝𝑖𝑞𝑗

)︂
. (17.103)

Properties of the mutual information
The mutual information has the following properties:
– Symmetry: 𝐼(𝑋, 𝑌) = 𝐼(𝑌, 𝑋)
– If 𝑋 and 𝑌 are two independent random variables, 𝐼(𝑋, 𝑌) = 0
– 𝐼(𝑋, 𝑌) = 𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌)
– 𝐼(𝑋, 𝑌) = 𝐻(𝑋, 𝑌) − 𝐻(𝑋|𝑌) − 𝐻(𝑌 |𝑋)
– 𝐼(𝑋|𝑋) = 𝐻(𝑋)
– 𝐼(𝑋, 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌)

From the last relationship above follows a further property of the conditional entropy:

𝐻(𝑋|𝑌) ≤ 𝐻(𝑋). (17.104)

In Figure 17.21, we visualize the relationships between entropies and mutual in-
formation. This graphical representation of the abstract relationships helps in sum-
marizing these nontrivial dependencies and in gaining an intuitive understanding.

In contrast with the correlation discussed in Section 17.8.4, mutual information
measures linear and nonlinear dependencies between 𝑋 and 𝑌 . This extension makes
this measure a popular choice for practical applications. For instance, the mutual
information has been used to estimate the regulatory effects between genes [44] to
construct gene regulatory networks [69, 72, 139]. It has also been used to estimate
finance networks representing the relationships between stocks from, e. g., the New
York stock exchange [66] or investor trading networks [7].

366 | 17 Probability theory

Figure 17.21: Visualization of the nontrivial relationships
between entropies and mutual information.

17.15 Law of large numbers

The law of large numbers is an important result, because it provides a systematic
connection between the sample mean from a distribution and its population mean.
In other words, the law of large numbers provides a theoretical foundation for using
a finite sample from a distribution to make a statement about the underlying (un-
known) population mean. However, before we are in a position to state and prove
the law of large numbers, we need to introduce some inequalities between probability
values and expectation values.

Theorem 17.15.1. For a given random variable 𝑋 with 𝑃 (𝑋 ≥ 0) and every real
𝑡 ∈ R with 𝑡 > 0, the following inequality holds:

𝑃 (𝑋 ≥ 𝑡) ≤ E[𝑋]
𝑡

. (17.105)

This inequality is called the Markov inequality.

Theorem 17.15.2. For a given random variable 𝑋 with finite Var(𝑋) and every real
𝑡 ∈ R with 𝑡 > 0, the following inequality holds:

𝑃
(︀⃒⃒⃒

𝑋 − E[𝑋]
⃒⃒⃒

≥ 𝑡
)︀

≤ Var(𝑋)
𝑡2 . (17.106)

This inequality is called the Chebyshev inequality.

Proof. To prove the Chebyshev inequality, we set 𝑌 = |𝑋 −E[𝑋]|2. This guarantees
𝑃 (𝑌 ≥ 0), because 𝑌 is nonnegative. Furthermore, E[𝑌] = Var(𝑋) per definition of
the variance. Now, application of the Markov inequality and setting 𝑠 = 𝑡2 gives

𝑃
(︀⃒⃒⃒

𝑋 − E[𝑋]
⃒⃒⃒

≥ 𝑡
)︀

= 𝑃
(︀⃒⃒⃒

𝑋 − E[𝑋]
⃒⃒⃒2 ≥ 𝑡2)︀, (17.107)

= 𝑃 (𝑌 ≥ 𝑠) ≤ E[𝑌]
𝑠

, (17.108)

= Var(𝑋)
𝑠

. (17.109)

17.15 Law of large numbers | 367

It is important to emphasize that the two above inequalities hold for every
probability distribution with the required conditions. Despite this generality, it is
possible to make a specific statement about the distance of a random sample from
the mean of the distribution. For example, for 𝑡 = 4𝜎, we obtain

𝑃
(︀⃒⃒⃒

𝑋 − E[𝑋]
⃒⃒⃒

≥ 4𝜎
)︀

≤ 1
16 = 0.063. (17.110)

That means, for every distribution, the probability that the distance between a
random sample 𝑋 and E[𝑋] is larger than four standard derivations is less than
6.3 %.

At the beginning of this chapter, we stated briefly the result of the law of large
numbers. Before we formulate it formally, we have one last point that requires some
clarification. This point relates to the mean of a sample. Suppose that we have a
random sample of size 𝑛, given by 𝑋1, . . . , 𝑋𝑛, and each 𝑋𝑖 is drawn from the same
distribution with mean 𝜇 and variance 𝜎2. Furthermore, each 𝑋𝑖 is drawn indepen-
dently from the other samples. We call such samples independent and identically
distributed (iid) random variables.1 Then,

E[𝑋1] = · · · = E[𝑋𝑛] = 𝜇, (17.111)

and

Var(𝑋1) = · · · = Var(𝑋𝑛) = 𝜎2. (17.112)

The question of interest here is the following: what is the expectation value of the
sample mean?

The sample mean of the sample 𝑋1, . . . , 𝑋𝑛 is given by

�̄�𝑛 = 1
𝑛

𝑛∑︁
𝑖=1

𝑋𝑖. (17.113)

Here, we emphasize the dependence on 𝑛 by the subscript of the mean value. From
this, we can obtain the expectation value of �̄�𝑛 by applying the rules for the expec-
tation values discussed in Section 17.8, giving

E[�̄�𝑛] = E

[︃
1
𝑛

𝑛∑︁
𝑖=1

𝑋𝑖

]︃
= 1

𝑛

𝑛∑︁
𝑖=1

E[𝑋𝑖] = 𝜇. (17.114)

Similarly, we can obtain the variance of the sample mean, i. e., Var(�̄�𝑛), by

Var(�̄�𝑛) = Var

(︃
1
𝑛

𝑛∑︁
𝑖=1

𝑋𝑖

)︃
, (17.115)

1 When we speak about a random sample, we mean an iid sample.

368 | 17 Probability theory

= 1
𝑛2 Var

(︃
𝑛∑︁

𝑖=1
𝑋𝑖

)︃
, (17.116)

= 1
𝑛2

𝑛∑︁
𝑖=1

Var(𝑋𝑖), (17.117)

= 1
𝑛2 𝑛𝜎2 = 𝜎2

𝑛
. (17.118)

These results are interesting, because they demonstrate that the expectation value
of the sample mean is identical to the mean of the distribution, but the sample
variance is reduced by a factor of 1/𝑛 compared to the variance of the distribution.
Hence, the sampling distribution of �̄�𝑛 becomes more and more peaked around 𝜇

with increasing values of 𝑛, and also having a smaller variance than the distribution
of 𝑋 for all 𝑛 > 1.

Furthermore, application of the Chebyshev inequality for 𝑋 = �̄�𝑛, gives

𝑃
(︀⃒⃒⃒

�̄�𝑛 − E[�̄�𝑛]
⃒⃒⃒

≥ 𝑡
)︀

≤ Var(�̄�𝑛)
𝑡2 . (17.119)

Hence,

Pr
(︀
|�̄�𝑛 − 𝜇| ≥ 𝑡

)︀
≤ 𝜎2

𝑛𝑡2 . (17.120)

This is a precise probabilistic relationship between the distance of the sample mean
�̄�𝑛 from the mean 𝜇 as a function of the sample size 𝑛. Hence, this relationship
can be used to get an estimate for the number of samples required in order for the
sample mean to be “close” to the population mean 𝜇.

We are now in a position to finally present the result known as the law of
large numbers, which adds a further component to the above considerations for the
sample mean. Specifically, so far, we know that the expectation of the sample mean
is the mean of the distribution (see equation (17.114)) and that the probability of
the minimal distance between �̄�𝑛 and 𝜇, given by 𝑡, decreases systematically for
increasing 𝑛 (see equation (17.120)). However, so far, we did not assess the opposite
behavior of equation (17.120), namely what is 𝑃 (|�̄�𝑛 − 𝜇| < 𝑡)?

Using the previous results, we obtain

𝑃
(︀
|�̄�𝑛 − 𝜇| < 𝑡

)︀
= 1 − 𝑃

(︀
|�̄�𝑛 − 𝜇| ≥ 𝑡

)︀
≥ 1 − 𝜎2

𝑛𝑡2 . (17.121)

Taking the limit 𝑛 → ∞, the above equation yields

lim
𝑛→∞

𝑃
(︀
|�̄�𝑛 − 𝜇| < 𝑡

)︀
= 1. (17.122)

This last expression is the result of the law of large numbers. That means, the law
of large numbers provides evidence that the distance between �̄�𝑛 and 𝜇 stays with
certainty, i. e., with a probability of 1, below any arbitrary small value of 𝑡 > 0.

17.16 Central limit theorem | 369

Formally, in statistics there is a special symbol that is reserved for the type of
convergence presented in equation (17.122), which is written as

�̄�𝑛
𝑝→ 𝜇. (17.123)

The “𝑝” over the arrow means that the sample mean converges in probability to 𝜇.

Theorem 17.15.3 (Law of large numbers). Suppose that we have an iid sample of
size 𝑛, 𝑋1, . . . , 𝑋𝑛, where each 𝑋𝑖 is drawn from the same distribution with mean
𝜇 and variance 𝜎2. Then, the sample mean �̄�𝑛 converges in probability to 𝜇,

�̄�𝑛
𝑝→ 𝜇. (17.124)

17.16 Central limit theorem

In the previous section, we saw that the expected sample mean and the variance of
a random sample are 𝜇 and 𝜎2/𝑛, respectively, if the distribution from which the
samples are drawn has a mean of 𝜇 and a variance of 𝜎2. What we did not discuss,
so far, is the distributional form of this random sample. This is the topic addressed
by the central limit theorem.

Theorem 17.16.1 (Central limit theorem). Let 𝑋1, . . . , 𝑋𝑛 be an iid sample from a
distribution with mean 𝜇 and variance 𝜎2. Then,

lim
𝑛→∞

Pr
(︂

𝑋𝑛 − 𝜇√︀
𝜎2/𝑛

≤ 𝑥

)︂
= 𝐹 (𝑥). (17.125)

Here, 𝐹 is the cumulative distribution function of the standard normal distribution,
and 𝑥 is a fixed real number.

To understand the importance of the central limit theorem, we would like to
emphasize that equation (17.125) holds for a large sample from any distribution,
whether discrete or continuous. In this case, 𝑋𝑛−𝜇

𝜎/𝑛1/2 can be approximated by a stan-
dard normal distribution. This implies that 𝑋𝑛 can be approximated by a normal
distribution with mean 𝜇 and variance 𝜎2/𝑛.

The central limit theorem is one of the reasons why the normal distribution
plays such a prescind role in statistics, machine learning, and data science. Even
when individual random variables do not come from a normal distribution (i. e., they
are not sampled from a normal distribution), their sum is normally distributed.

17.17 Concentration inequalities

In Section 17.15, we discussed already the Markov and Chebyshev inequalities, be-
cause they are needed to prove the law of large numbers. In general, such inequalities,

370 | 17 Probability theory

also called concentration inequalities or probabilistic inequalities, are playing an im-
portant role in proving theorems about random variables, since they provide bounds
on the behavior of random variable and their deviates, e. g., for expectation val-
ues. However, aside from this, they provide also insights into the laws of probability
theory. For this reason, we present, in the following, some additional concentration
inequalities.

17.17.1 Hoeffding’s inequality

Theorem 17.17.1 (Hoeffding’s inequality). Let 𝑋1, . . . , 𝑋𝑛 be some iid random vari-
ables with finite mean, 𝑎𝑖 ≤ 𝑋𝑖 ≤ 𝑏𝑖 ∀𝑖, sample mean �̄� = 1/𝑛

∑︀𝑛
𝑖=1 𝑋𝑖 and

𝜇 = E[�̄�]. Then, for any 𝜖 > 0, the following inequalities hold:

𝑃 (�̄� − 𝜇 ≥ 𝜖) ≤ exp
(︂

− 2𝑛2𝜖2∑︀𝑛
𝑖=1(𝑏𝑖 − 𝑎𝑖)2

)︂
, (17.126)

𝑃
(︀
|�̄� − 𝜇| ≥ 𝜖

)︀
≤ 2 exp

(︂
− 2𝑛2𝜖2∑︀𝑛

𝑖=1(𝑏𝑖 − 𝑎𝑖)2

)︂
. (17.127)

By setting 𝜖′ = 𝑛𝜖, one obtains inequalities for 𝑆 =
∑︀𝑛

𝑖=1 𝑋𝑖,

𝑃
(︀
𝑆 − E[𝑆] ≥ 𝜖′)︀ ≤ exp

(︂
− 2𝜖′ 2∑︀𝑛

𝑖=1(𝑏𝑖 − 𝑎𝑖)2

)︂
, (17.128)

𝑃 (|𝑆 − E[𝑆]| ≥ 𝜖′) ≤ 2 exp
(︂

− 2𝜖′ 2∑︀𝑛
𝑖=1(𝑏𝑖 − 𝑎𝑖)2

)︂
. (17.129)

As an application of Hoeffding’s inequality, we consider the following example:

Example 17.17.1. Suppose 𝑋1, . . . , 𝑋𝑛 are independent and identically distributed
random variables with 𝑋𝑖 ∼ Bernoulli(𝑝) and 𝑎 ≤ 𝑋𝑖 ≤ 𝑏, ∀𝑖. Then, from the
Hoeffding’s inequality we obtain the following inequality:

𝑃
(︀
|�̄� − 𝑝| ≥ 𝜖

)︀
≤ 2 exp

(︀
−2𝑛𝜖2)︀. (17.130)

The Hoeffding’s inequality finds its applications in statistical learning theory
[192]. Specifically, it can be used to estimate a bound for the difference between the
in-sample error 𝐸in and the out-of-sample error 𝐸out. More generally, it is used for
deriving learning bounds for models [138].

17.17.2 Cauchy–Schwartz inequality

Let us define the scalar product for two random variables 𝑋 and 𝑌 by

𝑋 · 𝑌 = E[𝑋𝑌]. (17.131)

17.17 Concentration inequalities | 371

Then, we obtain the following probabilistic version of the Cauchy–Schwartz inequal-
ity for expectation values

E[𝑋𝑌]2 ≤ E
[︀
𝑋2]︀E[︀𝑌 2]︀. (17.132)

Using the Cauchy–Schwartz inequality, we can show that the correlation between
two linearly dependent random variables 𝑋 and 𝑌 is 1, i. e.,⃒⃒⃒

𝜌(𝑋, 𝑌)
⃒⃒⃒

= 1 if 𝑌 = 𝑎𝑋 + 𝑏 with 𝑎, 𝑏 ∈ R. (17.133)

17.17.3 Chernoff bounds

Chernoff bounds are typically tighter than Markov’s inequality and Chebyshev
bounds, but they require stronger assumptions [137].

In a general form, Chernoff bounds are defined by

𝑃 (𝑋 ≥ 𝑎) ≤ E[exp (𝑡𝑋)]
exp (𝑡𝑎) for 𝑡 > 0, (17.134)

𝑃 (𝑋 ≤ 𝑎) ≤ E[exp (𝑡𝑋)]
exp (𝑡𝑎) for 𝑡 < 0. (17.135)

Here, E[exp (𝑡𝑋)] is the moment-generating function of 𝑋. There are many different
Chernoff bounds for different probability distributions and different values of the
parameter 𝑡. Here, we provide a bound for Poisson trails, which is a sum of iid
Bernoulli random variables, which are allowed to have different expectation values,
i. e., 𝑃 (𝑋𝑖 = 1) = 𝑝𝑖.

Theorem 17.17.2. Let 𝑋1, . . . , 𝑋𝑛 be iid Bernoulli random variables with 𝑃 (𝑋𝑖 =
1) = 𝑝𝑖, and let �̄�𝑛 =

∑︀𝑛
𝑖=1 𝑋𝑖 be a Poisson trial with 𝜇 = E[�̄�𝑛] =

∑︀𝑛
𝑖=1 𝑝𝑖. Then

∀𝛿 ∈ (0, 1]

Pr
(︀
𝑋 ≤ (1 − 𝛿)𝜇

)︀
<

(︂
exp(−𝛿)

(1 − 𝛿)(1−𝛿)

)︂𝜇

, (17.136)

whereas for 𝛿 > 0

Pr
(︀
𝑋 ≥ (1 + 𝛿)𝜇

)︀
<

(︂
exp(𝛿)

(1 + 𝛿)(1+𝛿)

)︂𝜇

. (17.137)

Example 17.17.2. As an example, we use this bound to estimate the probability
when tossing a fair coin 𝑛 = 100 times to observe 𝑚 = 40, or less heads. For this
𝜇 = 50, and from (1 − 𝛿)𝜇 = 30 follows 𝛿 = 0.2. This gives 𝑃 (𝑋 ≤ 𝑚) = 0.34.

372 | 17 Probability theory

17.18 Further reading

For readers interested in advanced reading material about the topics of this chapter,
we recommend for probability theory [17, 18, 48, 87, 105, 147, 150], Bayesian analysis
[84, 101, 180], and for information theory [39, 83]. An excellent tutorial on Bayesian
analysis can be found in [173], and a thorough introduction to information theory,
with focus on machine learning, is provided by [123]. For developing a better and
intuitive understanding of the terms discussed in this chapter, we recommend the
textbooks [118, 145]. Finally, for a historical perspective on the development of
probability, the book by [91] provides a good overview.

17.19 Summary

Probability theory plays a pivotal role when dealing with data, because essentially
every measurement contains errors. Hence, there is an accompanied uncertainty that
needs to be quantified probabilistically when dealing with data. In this sense, prob-
ability theory is an important extension of deterministic mathematical fields, e. g.,
linear algebra, graph theory and analysis, which cannot account for such uncer-
tainties. Unfortunately, such methods are usually more difficult to understand and
require, for this reason, much more practice. However, once mastered, they add con-
siderably to the analysis and the understanding of real-world problems, which is
essential for any method in data science.

17.20 Exercises

1. In Section 17.11.2, we discussed that under certain conditions a Binomial distri-
bution can be approximated by a Poisson distribution. Show this result numer-
ically, using R. Use different approximation conditions and evaluate these. How
can this be quantified? Hint: See Section 17.14.2 about the Kullback–Leibler
divergence.

2. Calculate the mutual information for the discrete joint distribution 𝑃 (𝑋, 𝑌)
given in Table 17.2.

Table 17.2: Numerical values of a discrete joint distribution 𝑃 (𝑋, 𝑌) with 𝑋 ∈ {𝑥1, 𝑥2} and
𝑌 ∈ {𝑦1, 𝑦2, 𝑦3}.

𝑌

𝑦1 𝑦2 𝑦3

𝑋
𝑥1 0.2 0.3 0.1
𝑥2 0.1 0.1 0.2

17.20 Exercises | 373

Table 17.3: Numerical values of a discrete joint distribution 𝑃 (𝑋, 𝑌) with 𝑋 ∈ {𝑥1, 𝑥2} and
𝑌 ∈ {𝑦1, 𝑦2, 𝑦3} in dependence on the parameter 𝑧.

𝑌

𝑦1 𝑦2 𝑦3

𝑋
𝑥1 𝑧 0.5 − 𝑧 0.1
𝑥2 0.1 0.1 0.2

3. Use R to calculate the mutual information for the discrete joint distribution
𝑃 (𝑋, 𝑌) given in Table 17.3, for 𝑧 ∈ 𝑆 = [0, 0.5), and plot the mutual informa-
tion as a function of 𝑧. What happens for 𝑧 values outside the interval 𝑆?

4. Use the Bayes’ theorem for doping tests in sports. Specifically, suppose that
we have a doping test that identifies with 99 % someone correctly who is using
doping, i. e., 𝑃 (+|doping) = 0.99, and has a false positive probability of 1 %, i. e.,
𝑃 (+|no doping) = 0.01. Furthermore, assume that the percentage of people who
are doping is 1 %. What is the probability that someone who tests positive is
doping?

18 Optimization

Optimization problems consistently arise when we try to select the best element from
a set of available alternatives. Frequently, this consists of finding the best parameters
of a function with respect to an optimization criterion. This is especially difficult if
we have a high-dimensional problem, meaning that there are many such parameters
that must be optimized. Since most models, used in data science, essentially have
many parameters, then optimization (or optimization theory) is necessary to devise
these models.

In this chapter, we will introduce some techniques used to address unconstrained
and constrained, as well as deterministic and probabilistic optimization problems, in-
cluding Newton’s method, simulated annealing and the Lagrange multiplier method.
We will discuss examples and available packages in R that can be used to solve the
aforementioned optimization problems.

18.1 Introduction

In general, an optimization problem is characterized by the following:
– a set of alternative choices called decision variables;
– a set of parameters called uncontrollable variables;
– a set of requirements to be satisfied by both decision and uncontrollable vari-

ables, called constraints;
– some measure(s) of effectiveness expressed in term of both decision and uncon-

trollable variables, called objective-function(s).

Definition 18.1.1. A set of decision variables that satisfy the constraints is called a
solution to the problem.

The aim of an optimization problem is to find, among all solutions to the prob-
lem, a solution that corresponds to either
– the maximal value of the objective function, in which case the problem is referred

to as a maximization problem, e. g. maximizing the profit;
– the minimal value of the objective-function, in which case the problem is referred

to as a minimization problem, e. g. minimizing the cost; or
– a trade-off value of many and generally conflicting objective-functions, in which

case the problem is referred to as a multicriteria optimization problem.

Optimization problems are widespread in every activity, where numerical informa-
tion is processed, e. g. mathematics, physics, engineering, economics, systems biology,
etc. For instance, typical examples of optimization applications in systems biology

https://doi.org/10.1515/9783110564990-018

376 | 18 Optimization

include therapy treatment planning and scheduling, probe design and selection, ge-
nomics analysis, etc.

18.2 Formulation of an optimization problem

Optimization problems are often formulated using mathematical models. Let 𝑥 =
(𝑥1, 𝑥2, . . . , 𝑥𝑛) denote the decision variables; then a general formulation of an opti-
mization problem is written as follows:

Optimize
𝑥∈R𝑛

𝑓(𝑥),

subject to: 𝑥 ∈ 𝑆 ⊆ R𝑛, (18.1)

i. e., the problem is to find the solution 𝑥* ∈ 𝑆, if it exists, such that for all 𝑥 ∈ 𝑆,
we have
– 𝑓(𝑥*) ≤ 𝑓(𝑥), if “Optimize” stands for “minimize”;
– 𝑓(𝑥*) ≥ 𝑓(𝑥), if “Optimize” stands for “maximize”.

The function 𝑓 denotes the objective function or the cost-function, whereas 𝑆 is the
feasible set, and any 𝑥 ∈ 𝑆 is called a feasible solution to the problem.

Definition 18.2.1. A solution �̄� to the problem (18.1) is called a local optimum if
– 𝑓(�̄�) ≤ 𝑓(𝑥) for all 𝑥 in a neighborhood of �̄�, for a minimization-type problem,

or
– 𝑓(�̄�) ≥ 𝑓(𝑥) for all 𝑥 in a neighborhood of �̄�, for a maximization-type problem.

Definition 18.2.2. A solution 𝑥* to the problem (18.1) is called a global optimum
if
– 𝑓(𝑥*) ≤ 𝑓(𝑥) for all 𝑥 ∈ 𝑆, for a minimization-type problem, or
– 𝑓(𝑥*) ≥ 𝑓(𝑥) for all 𝑥 ∈ 𝑆, for a maximization-type problem.

If 𝑆 = ∅, then the problem (18.1) has no solution, otherwise,
1. if 𝑓(𝑥*) is finite, then the problem (18.1) has a finite optimal solution;
2. if 𝑓(𝑥*) = −∞ (for a minimization-type problem) or 𝑓(𝑥*) = ∞ (for a

maximization-type problem), then the problem (18.1) is unbounded, i. e., the
optimal value of the objective function is not a finite number and, therefore,
cannot be achieved.

When 𝑆 = R𝑛 then, the optimal solution, 𝑥*, can be any stationary point of 𝑓

over R𝑛, such that 𝑓(𝑥*) ≤ 𝑓(𝑥) (respectively 𝑓(𝑥*) ≥ 𝑓(𝑥)) for a minimization-
type problem (respectively for a maximization-type problem) for all 𝑥 ∈ R𝑛. In this
case, the problem (18.1) is termed an unconstrained optimization problem. On the

18.3 Unconstrained optimization problems | 377

other hand, if 𝑆 ⊂ R𝑛, then the problem (18.1) is called a constrained optimization
problem, in which case, 𝑆 is determined by a set of constraints. Typically, one can
distinguish three types of constraints:
– Equality constraints: 𝑔(𝑥) = 𝑐, where 𝑔 : R𝑛 −→ R and 𝑐 ∈ R, e. g.,

4𝑥1 + 25𝑥2 − 7𝑥3 + · · · − 5𝑥𝑛 = 59.

– Inequality constraints: ℎ(𝑥) ≤ 𝑐 or ℎ(𝑥) ≥ 𝑐, where ℎ : R𝑛 −→ R, and 𝑐 ∈ R,
e. g.,

4𝑥1 + 25𝑥2
2 − 7𝑥3 + · · · − 5𝑥𝑛 ≤ 59

4𝑥1 + 25𝑥2 − 7𝑥3 + · · · − 5𝑥𝑛 ≥ 59.

– Integrality constraints: e. g., 𝑥 ∈ Z𝑛, 𝑥 ∈ N𝑛.

Remark 18.2.1. If all the decision variables, 𝑥𝑖, in the problem (18.1) take only
discrete values (e. g. 0, 1, 2, . . .), then the problem is called a discrete optimization
problem, otherwise it is called a continuous optimization problem. When there is
a combination of discrete and continuous variables, the problem is called a mixed
optimization problem.

Remark 18.2.2. Any minimization problem can be rewritten as a maximization
problem, and vice versa, by substituting the objective function 𝑓(𝑥) with 𝑧(𝑥) =
−𝑓(𝑥).

Therefore, from now, we will focus exclusively on minimization-type optimiza-
tion problems.

18.3 Unconstrained optimization problems

Unconstrained optimization problems arise in various practical applications, includ-
ing data fitting, engineering design, and process control. Techniques for solving un-
constrained optimization problems form the foundation of most methods used to
solve constrained optimization problems. These methods can be classified into two
categories: gradient-based methods and derivative-free methods.

Typically, the formulation of an unconstrained optimization problem can be
written as follows:

Minimize
𝑥∈R𝑛

𝑓(𝑥). (18.2)

18.3.1 Gradient-based methods

Gradient-based algorithms for solving unconstrained optimization problems assume
that the function to be minimized in (18.1) is twice continuously differentiable, and

378 | 18 Optimization

are based upon the following conditions: a solution 𝑥* ∈ R is said to be a local
optimum of 𝑓 if
1. the gradient of 𝑓 at the point 𝑥*, ∇𝑓(𝑥*), is zero, i. e., 𝜕𝑓(𝑥*)

𝜕𝑥𝑗
= 0, 𝑗 = 1, . . . , 𝑛,

and
2. the Hessian matrix of 𝑓 at the point 𝑥*, ∇2𝑓(𝑥*), is positive definite, i. e.,

𝜂∇2(𝑓(𝑥*))𝜂 > 0 for all nonzero 𝜂 ∈ R𝑛.

The general principle of the gradient-based algorithms can be summarized by the
following steps:
– Step 1: Set 𝑘 = 0, and choose an initial point 𝑥(𝑘) = 𝑥(0) and some convergence

criteria;
– Step 2: Test for convergence: if the conditions for convergence are satisfied, then

we can stop, and 𝑥(𝑘) is the solution. Otherwise, go to Step 3;
– Step 3: Computation of a search direction (also termed a descent direction): find

a vector 𝑑𝑘 ̸ = 0that defines a suitable direction that, if followed, will bring us
as close as possible to the solution, 𝑥*;

– Step 4: Computation of the step-size: find a scalar 𝛼𝑘 > 0 such that

𝑓
(︀
𝑥(𝑘) + 𝛼𝑘𝑑𝑘

)︀
< 𝑓

(︀
𝑥(𝑘))︀.

– Step 5: Updating the variables: set 𝑥(𝑘+1) = 𝑥(𝑘) + 𝛼𝑘𝑑𝑘, 𝑘 = 𝑘 + 1, and go to
Step 2.

The main difference between the various gradient-based methods lies in the compu-
tation of the descent direction (Step 3) and the computation of the step-size (Step 4).

In R, various gradients-based methods have been implemented either as stand-
alone packages or as part of a general-purpose optimization package.

18.3.1.1 The steepest descent method
The steepest descent method, also called the gradient descent method, uses the neg-
ative of the gradient vector, at each point, as the search direction for each iteration;
thus, steps 3 and 4 are performed as follows:
– Step 3: the descent direction is given by 𝑑𝑘 = − ∇𝑓(𝑥(𝑘))

‖∇𝑓(𝑥(𝑘))‖ ;
– Step 4: the step-size is given by 𝛼𝑘 = arg min𝛼 𝑓(𝑥(𝑘) − 𝛼𝑑𝑘).

In R, an implementation of the steepest descent method can be found in the package
pracma.

Let us consider the following problem:

min
(𝑥1,𝑥2)∈R2

𝑓(𝑥1, 𝑥2) = 𝑥2
1 + 𝑥2

2; (18.3)

The contour plot of the functions 𝑓(𝑥1, 𝑥2), depicted in Figure 18.1 (left), is obtained
using the following script:

18.3 Unconstrained optimization problems | 379

Listing 18.1: Contour plot of 𝑓(𝑥1, 𝑥2) in (18.3) (see Figure 18.1 (left))

require(grDevices)
fxy<-function(x, y) xˆ2+yˆ2
x1 <- x2 <- seq(-1.5, 1.5, length=200)
f <- outer(x1, x2, fxy)
rgb.palette <-

colorRampPalette(c("firebrick2","lightsalmon1","oldlace"
),space = "rgb")

image(x1, x2, f, xlab=expression(x[1]), ylab=expression(x[2]),
col=rgb.palette(256))

contour(x1, x2, f, levels = seq(-2, 2, by = 0.1), add=TRUE)

Using the steepest descent method, the problem (18.3) can be solved in R as
follows:

Listing 18.2: Solving the problem (18.3) using the Steepest Descent method

#The package pracma is required here
library(pracma)
#Defining the function f(x1, x2); its only minimum is reached at

x1=0 and x2=0
fx <- function(x) x[1]ˆ2 + x[2]ˆ2
#Defining an initial solution
x0<-c(-1.2,1)
#Calling the Steepest Descent method
sol<-steep_descent(x0, fx)
sol$xmin
[1] 2.220446e-16 0.000000e+00 #These are the obtained optimal

values of x1 and x2, respectively
sol$fmin
[1] 4.930381e-32 #This is the obtained optimal value of f
#Using a new initial solution
x0 <- c(10,10)
sol<-steep_descent(x0, fx)
sol$xmin
[1] 0 0 #These are the obtained optimal values of x1 and x2,

respectively
sol$fmin
[1] -0.6880447 #This is the obtained optimal value of f
#Thus, for any initial solution the method converges towards the

only minimum of f

Let us consider the following problem:

max
(𝑥1,𝑥2)∈R2

𝑔(𝑥1, 𝑥2) = 𝑒(𝑥−2𝑥2−𝑦2) sin
(︀
6
(︀
𝑥 + 𝑦 + 𝑥𝑦2)︀)︀

. (18.4)

The contour plot of the functions 𝑔(𝑥1, 𝑥2), depicted in Figure 18.1 (right), is ob-
tained using the following script:

Listing 18.3: Contour plot of 𝑔(𝑥1, 𝑥2) in (18.4), (see Figure 18.1 (right))

require(grDevices)
gxy<-function(x, y) exp(x-2*xˆ2-yˆ2)*sin(6*(x+y+x*yˆ2))
x1 <- x2 <- seq(-1.5, 1.5, length=200)

380 | 18 Optimization

g <- outer(x1, x2, gxy)
rgb.palette <-

colorRampPalette(c("firebrick2","lightsalmon1","oldlace"
),space = "rgb")

image(x1, x2, g, xlab=expression(x[1]), ylab=expression(x[2]),
col=rgb.palette(256))

contour(x1, x2, g, levels = seq(-2, 2, by = 0.25), add=TRUE)

Figure 18.1: Left: contour plot of the function 𝑓(𝑥1, 𝑥2) in (18.3) in the (𝑥1, 𝑥2) plane; right:
contour plot of the function 𝑔(𝑥1, 𝑥2) in (18.4) in the (𝑥1, 𝑥2) plane.

Most of the optimization methods available in R, including the steepest descent,
are implemented for minimization problems. Since the solution that maximizes a
function ℎ(𝑥) minimizes the function −ℎ(𝑥), we can solve the problem (18.5) to find
the solution to (18.4), and then multiply the value of the objective-function of (18.5)
by −1 to recover the value of the objective-function of (18.4).

min
𝑥1,𝑥2

𝑔(𝑥1, 𝑥2) = −𝑒(𝑥−2𝑥2−𝑦2) sin
(︀
6
(︀
𝑥 + 𝑦 + 𝑥𝑦2)︀)︀

(18.5)

Using the steepest descent method, implemented in R, the problem (18.5) can be
solved as follows:

Listing 18.4: Solving the problem (18.5) using the steepest descent method

#The package pracma is required here
library(pracma)
#Defining the function -g(x1, x2); its global minimum is reached at

x1=0.2538, x2=0.0076
mgx<-function(x) -

exp(x[1]-2*x[1]ˆ2-x[2]ˆ2)*sin(6*(x[1]+x[2]+x[1]*x[2]ˆ2))
#Defining an initial solution
x0<-c(1, 1)
#Calling the Steepest Descent method
sol<-steep_descent(x0, mgx)

18.3 Unconstrained optimization problems | 381

Warning message:
In steep_descent(x0, mgx) :
Maximum number of iterations reached -- not converged.
#Using a new initial solution
x0 <- c(-1.2,1)
sol<-steep_descent(x0, mgx)
sol$xmin
[1] 0.5046936 0.6012042 #These are the obtained optimal values of

x1 and x2, respectively
sol$fmin
[1] -0.6880447 #This is the obtained optimal value of -g
#Using a new initial solution
x0 <- c(0, 0)
sol<-steep_descent(x0, mgx)
sol$xmin
[1] 0.253778741 0.007586204 #These are the obtained optimal

values of x1 and x2, respectively
sol$fmin
[1] -1.133047 #This is the optimal value of -g, hence g=1.133047
#Thus, depending on the initial solution , either the method does

not converge at all, or it converges towards a local or a
global minimum of -g

Note that the convergence and solution given by the steepest descent method depend
on both the form of the function to be minimized and the initial solution.

18.3.1.2 The conjugate gradient method
The conjugate gradient method is a modification to the steepest descent method,
which takes into account the history of the gradients to move more directly towards
the optimum. The computation of the descent direction (Step 3) and the step-size
(Step 4) are performed as follows:
– Step 3: the descent direction is given by

𝑑𝑘 =

{︃
−∇𝑓(𝑥(𝑘)), 𝑘 = 0,

−∇𝑓(𝑥(𝑘)) + 𝛽𝑘𝑑𝑘−1, 𝑘 ≥ 0,

where several types of formulas for 𝛽𝑘 have been proposed. The most known
formulas are those proposed by Fletcher–Reeves (FR), Polak–Ribière–Polyak
(PRP) and Hestenes–Stiefel (HS), and they are defined as follows:

𝛽FR
𝑘 = ‖∇𝑓(𝑥(𝑘))‖2

‖∇𝑓(𝑥(𝑘−1))‖2
, (18.6)

𝛽PRP
𝑘 = (∇𝑓(𝑥(𝑘)))𝑇 𝑦𝑘−1

‖∇𝑓(𝑥(𝑘−1))‖2
, (18.7)

𝛽HS
𝑘 = (∇𝑓(𝑥(𝑘)))𝑇 𝑦𝑘−1

𝑑𝑇
𝑘−1𝑦𝑘−1

, (18.8)

where ‖ · ‖ denotes the Euclidean norm, and 𝑦𝑘−1 = ∇𝑓(𝑥(𝑘))−∇𝑓(𝑥(𝑘−1)).

382 | 18 Optimization

– Step 4: The step-size 𝛼𝑘 is such that

𝑓
(︀
𝑥(𝑘))︀− 𝑓

(︀
𝑥(𝑘) + 𝛼𝑘𝑑𝑘

)︀
≥ −𝛿𝛼𝑘

(︀
∇𝑓

(︀
𝑥(𝑘))︀)︀𝑇

𝑑𝑘, (18.9)⃒⃒⃒(︀
∇𝑓

(︀
𝑥(𝑘) + 𝛼𝑘𝑑𝑘

)︀)︀𝑇 ⃒⃒⃒
≤ −𝜎

(︀
∇𝑓

(︀
𝑥(𝑘))︀)︀𝑇

𝑑𝑘, (18.10)

where 0 < 𝛿 < 𝜎 < 1.

In R, the implementation of the conjugate gradient method can be found in the gen-
eral multipurpose package optimx. This implementation of the conjugate gradient
method can be used to solve the problem (18.3) as follows:

Listing 18.5: Solving the problem (18.3) using the conjugate gradient method

#The package optimx is required here
library(optimx)
#Defining the function f(x1, x2), its only minimum is reached at

x1=0 and x2=0
fx<- function(x) x[1]ˆ2 + x[2]ˆ2
#Defining an initial solution
x0 <- c(-1.2,1)
#Calling the Conjugate Gradient methods (CG)
sol <- optimx(x0, fx, method = "CG")
sol$par
$par
[1] 4.924372e-07, -4.103643e-07 #These are the obtained optimal

values of x1 and x2, respectively
> sol$fvalues
$fvalues
[1] 4.108933e-13 #This is the obtained optimal value of f
#Using a new initial solution
x0<-c(10,10)
sol <- optimx(x0, fx, method = "CG")
sol$par
$par
[1] 2.166724e-07 2.166724e-07 #These are the obtained optimal

values of x1 and x2, respectively
sol$fvalues
$fvalues
[1] 9.389383e-14 #This is the obtained optimal value of f
#Thus, for any initial solution the method converges towards the

only minimum of f

Now, let us use the conjugate gradient method, implemented in the package optimx
to solve the problem (18.4).

Listing 18.6: Solving the problem (18.4) using the conjugate gradient method

#The package optimx is required here
library(optimx)
#Defining the function -g(x1, x2); its global minimum is reached at

x1=0.2538, x2=0.0076
mgx<-function(x)

exp(x[1]-2*x[1]ˆ2-x[2]ˆ2)*sin(6*(x[1]+x[2]+x[1]*x[2]ˆ2))
#Defining an initial solution

18.3 Unconstrained optimization problems | 383

x0<-c(1, 1)
#Calling the Conjugate Gradient methods (CG)
sol<- optimx(x0, mgx, method = "CG")
sol$par
$par
[1] 1.511231 2.016832 #These are the obtained optimal values of

x1 and x2, respectively
sol$fvalues
$fvalues
[1] -0.0008079518
#Using a new initial solution
x0<-c(-1.2,1)
sol<- optimx(x0, mgx, method = "CG")
sol$par
$par
[1] -1.018596 1.491097 #These are the obtained optimal values of

x1 and x2, respectively
sol$fvalues
$fvalues
[1] -0.004766019 #This is the obtained optimal value of -g
#Using a new initial solution
x0<-c(0,0)
sol<- optimx(x0, mgx, method = "CG")
sol$par
$par
[1] 0.253778535 0.007586373 #These are the obtained optimal

values of x1 and x2, respectively
sol$fvalues
$fvalues
[1] -1.133047 #This is the obtained optimal value of -g
#Thus, depending on the initial solution , the method converges

towards either a local or a global minimum of -g

The solution to the problem (18.4) with the initial solution 𝑥(0) = (𝑥(0)
1 , 𝑥

(0)
2) = (1, 1)

is �̄� = (1.5112, 2.016), and 𝑓(�̄�) = −0.0008079518, which is a local minima. How-
ever, in contrast with the steepest descent method, the conjugate gradient method
converges with the initial solution 𝑥(0) = (1, 1).

18.3.1.3 Newton’s method
In contrast with the steepest descent and conjugate gradient methods, which only
use first-order information, i. e., the first derivative (or the gradient) term, Newton’s
method requires a second-order derivative (or the Hessian) to estimate the descent
direction. Steps 3 and 4 are performed as follows:
– Step 3: 𝑑𝑘 = −[∇2𝑓(𝑥(𝑘))]−1∇𝑓(𝑥(𝑘)) is the descent direction, where ∇2𝑓(𝑥) is

the Hessian of 𝑓 at the point 𝑥.
– Step 4: 𝛼𝑘 = arg min𝛼 𝑓(𝑥(𝑘) − 𝛼𝑑𝑘).

Since the computation of the Hessian matrix is generally expensive, several modifi-
cations of Newton’s method have been suggested in order to improve its computa-
tional efficiency. One variant of Newton’s method is the Broyden–Fletcher–Goldfarb–

384 | 18 Optimization

Shanno (BFGS) method, which uses the gradient to iteratively approximate the
inverse of the Hessian matrix 𝐻−1

𝑘 = [∇2𝑓(𝑥(𝑘))]−1, as follows:

𝐻−1
𝑘 =

(︂
𝐼 −

𝑠𝑘𝑦𝑇
𝑘

𝑠𝑇
𝑘 𝑦𝑘

)︂
𝐻−1

𝑘−1

(︂
𝐼 −

𝑠𝑘𝑦𝑇
𝑘

𝑠𝑇
𝑘 𝑦𝑘

)︂
+

𝑠𝑘𝑠𝑇
𝑘

𝑠𝑇
𝑘 𝑦𝑘

,

where, 𝑠𝑘 = 𝑥(𝑘) − 𝑥(𝑘−1) and 𝑦𝑘 = ∇𝑓(𝑥(𝑘))−∇𝑓(𝑥(𝑘−1)).
In R, the implementation of the BFGS variant of Newton’s method can be found

in the general multipurpose package optimx. This implementation of the BFGS
method can be used to solve the problem (18.3), as follows:

Listing 18.7: Solving the problem (18.3) using Newton’s method

#The package optimx is required here
library(optimx)
#Defining the function f(x1, x2); its only minimum is reached at

x1=0 and x2=0
fx<- function(x) x[1]ˆ2 + x[2]ˆ2
#Defining the initial solution
x0<-c(-1.2,1)
#Calling the BFGS function
sol<- optimx(x0, fx, method = "BFGS")
sol$par
$par
[1] -5.520439e-16 6.456213e-16 #These are the obtained optimal

values of x1 and x2, respectively
sol$fvalues
$fvalues
[1] 1.755293e-29 #This is the obtained optimal value of f
Using a new initial solution
x0<-c(10,10)
sol<- optimx(x0, fx, method = "BFGS")
sol$par
$par
[1] 3.583324e-16 3.583324e-16 #These are the obtained optimal

values of x1 and x2, respectively
> sol$fvalues
$fvalues
[1] 6.42035e-30 #This is the obtained optimal value of f
#Thus, for any initial solution the method converges towards the

only minimum of f

Now, let us use the BFGS method, implemented in the package optimx, to solve the
problem (18.4).

Listing 18.8: Solving the problem (18.4) using Newton’s method

#The package optimx is required here
library(optimx)
Defining the function -g(x1, x2); its global minimum is reached at

x1=0.2538 and x2=0.0076
gx<-function(x) -

exp(x[1]-2*x[1]ˆ2-x[2]ˆ2)*sin(6*(x[1]+x[2]+x[1]*x[2]ˆ2))

18.3 Unconstrained optimization problems | 385

#Defining the initial solution
x0<-c(1, 1)
#Calling the BFGS function
sol <- optimx(x0, gx, method = "BFGS")
sol$par
$par
[1] 2.377465 2.812073 #These are the obtained optimal values of x1

and x2, respectively
sol$fvalues
$fvalues
[1] 2.649525e-08 #This is the obtained optimal value of -g
#Using a new initial solution
x0<-c(-1.2,1)
sol<- optimx(x0, gx, method = "BFGS")
sol$par # This gives x1* and x2*, respectively
$par
[1] -0.9961257 1.5270273 #These are the obtained optimal values

of x1 and x2, respectively
> sol$fvalues
$fvalues
[1] -0.004783334 #This is the obtained optimal value of -g
#Using a new initial solution
x0<-c(0,0)
sol<-optimx(x0, gx, method = "BFGS")
sol$par
$par
[1] 0.253780320 0.007584573 #These are the obtained optimal values

of x1 and x2, respectively
> sol$fvalues
$fvalues
[1] -1.133047 #This is the obtained optimal value of -g
#Thus, depending on the initial solution , the method converges

towards either a local or a global minimum of -g

18.3.2 Derivative-free methods

Gradient-based methods rely upon information about at least the gradient of the
objective-function to estimate the direction of search and the step size. Therefore,
if the derivative of the function cannot be computed, because, for example, the
objective-function is discontinuous, these methods often fail. Furthermore, although
these methods can perform well on functions with only one extrema (unimodal
function), such as (18.3), their efficiency in solving problems with multimodal func-
tions depend upon how far the initial solution is from the global minimum, i. e.,
gradient-based methods are more or less efficient in finding the global minimum
only if they start from an initial solution sufficiently close to it. Therefore, the so-
lution obtained using these methods may be one of several local minima, and we
often cannot be sure that the solution is the global minimum. In this section, we
will present some commonly used derivative-free methods, which aim to reduce the
limitations of the gradient-based methods by providing an alternative to the com-
putation of the derivatives of the objective-functions. These methods can be very

386 | 18 Optimization

efficient in handling complex problems, where the functions are either discontinuous
or improperly defined.

18.3.2.1 The Nelder–Mead method
The Nelder–Mead method is an effective and computationally compact simplex al-
gorithm for finding a local minimum of a function of several variables. Hence, it can
be used to solve unconstrained optimization problems of the form:

min
𝑥

𝑓(𝑥), 𝑥 ∈ R𝑛. (18.11)

Definition 18.3.1. A simplex is an 𝑛-dimensional polytope that is the convex hull
of 𝑛 + 1 vertices.

The Nelder–Mead method iteratively generates a sequence of simplices to ap-
proximate an optimal solution to the problem (18.11). At each iteration, the 𝑛 + 1
vertices of the simplex are ranked such that

𝑓(𝑥1) ≤ 𝑓(𝑥2) ≤ · · · ≤ 𝑓(𝑥𝑛+1). (18.12)

Thus, 𝑥1 and 𝑥𝑛+1 correspond to the best and worst vertices, respectively.
At each iteration, the Nelder–Mead method consists of four possible operations:

reflection, expansion, contraction, and shrinking. Each of these operations has a
scalar parameter associated with it. Let us denote by 𝛼, 𝛽, 𝛾, and 𝛿 the parameters
associated with the aforementioned operations, respectively. These parameters are
chosen such that 𝛼 > 0, 𝛽 > 1, 0 < 𝛾 < 1, and 0 < 𝛿 < 1.

Then, the Nelder–Mead simplex algorithm, as described in Lagarias et al. [207],
can be summarized as follows:
– Step 0: Generate a simplex with 𝑛 + 1 vertices, and choose a convergence crite-

rion;
– Step 1: Sort the 𝑛 + 1 vertices according to their objective-function values, i. e.,

so that (18.12) holds. Then, evaluate the centroid of the points in the simplex,
excluding 𝑥𝑛+1, given by: �̄� =

∑︀𝑛
𝑖=1 𝑥𝑖;

– Step 2:
– Calculate the reflection point 𝑥𝑟 = �̄� + 𝛼(�̄�− 𝑥𝑛+1);
– If 𝑓(𝑥1) ≤ 𝑓(𝑥𝑟) ≤ 𝑓(𝑥𝑛), then perform a reflection by replacing 𝑥𝑛+1 with

𝑥𝑟;
– Step 3:

– If 𝑓(𝑥𝑟) < 𝑓(𝑥1), then calculate the expansion point 𝑥𝑒 = �̄� + 𝛽(𝑥𝑟 − �̄�);
– If 𝑓(𝑥𝑒) < 𝑓(𝑥𝑟), then perform an expansion by replacing 𝑥𝑛+1 with 𝑥𝑒;
– otherwise (i. e. 𝑓(𝑥𝑒) ≥ 𝑓(𝑥𝑟)), then perform a reflection by replacing 𝑥𝑛+1

with 𝑥𝑟;

18.3 Unconstrained optimization problems | 387

– Step 4:
– If 𝑓(𝑥𝑛) ≤ 𝑓(𝑥𝑟) < 𝑓(𝑥𝑛 + 1), then calculate the outside contraction point

𝑥oc = �̄� + 𝛾(𝑥𝑟 − �̄�);
– If 𝑓(𝑥oc) ≤ 𝑓(𝑥𝑟), then perform an outside contraction by replacing 𝑥𝑛+1

with 𝑥oc;
– otherwise (i. e. if 𝑓(𝑥oc) > 𝑓(𝑥𝑟)), then go to Step 6;

– Step 5:
– If 𝑓(𝑥𝑟) ≥ 𝑓(𝑥𝑛+1), then calculate the inside contraction point

𝑥ic = �̄�− 𝛾(𝑥𝑟 − �̄�);
– If 𝑓(𝑥ic) < 𝑓(𝑥𝑛+1), then perform an inside contraction by replacing 𝑥𝑛+1

with 𝑥ic;
– otherwise (i. e. if 𝑓(𝑥ic) ≥ 𝑓(𝑥𝑛+1)), then go to Step 6;

– Step 6: Perform a shrink by updating 𝑥𝑖, 2 ≤ 𝑖 ≤ 𝑛 + 1 as follows:

𝑥𝑖 = 𝑥1 + 𝛿(𝑥𝑖 − 𝑥1);

– Step 7: Repeat Step 1 through Step 6 until convergence.

In R, an implementation of the Nelder–Mead method can be found in the general
multipurpose package optimx. The Nelder–Mead method in the package optimx,
can be used to solve the problem (18.3) as follows:

Listing 18.9: Solving the problem (18.3) using the Nelder-Mead method

#The package optimx is required here
library(optimx)
#Defining the function f(x1, x2); its only minimum is reached at

x1=0 and x2=0
fx<- function(x) x[1]ˆ2 + x[2]ˆ2
#Defining an initial solution
x0<-c(-1.2,1)
#Calling the Nelder-Mead method
sol<-optimx(x0, fx, method = "Nelder-Mead")
sol$par
$par
[1] 1.992835e-04, 3.659277e-05 #These are the obtained optimal

values of x1 and x2, respectively
sol$fvalues
$fvalues
[1] 4.105294e-08 #This is the obtained optimal value of f

Now, let us use the Nelder–Mead method, implemented in the package optimx, to
solve the problem (18.4).

Listing 18.10: Solving the problem (18.4) using the Nelder-Mead method

#The package optimx is required here
library(optimx)
#Defining the function -g(x1, x2); its global minima is reached at

x1=0.2538 and x2*=0.0076

388 | 18 Optimization

mgx<-function(x) -
exp(x[1]-2*x[1]ˆ2-x[2]ˆ2)*sin(6*(x[1]+x[2]+x[1]*x[2]ˆ2))

#Defining an initial condition
x0<-c(1, 1)
sol<- optimx(x0, mgx, method = "Nelder-Mead")
sol$par
$par
[1] 0.8007997 1.2758681 #These are the obtained optimal values of

x1 and x2, respectively
sol$fvalues
$fvalues
[1] -0.1201183 #This is the obtained optimal value of -g
#Using a new initial solution
x0<-c(-1.2,1)
sol<- optimx(x0, mgx, method = "Nelder-Mead")
sol$par
$par
[1] -0.9960316 1.5271877 #These are the obtained optimal values

of x1 and x2, respectively
sol$fvalues
$fvalues
[1] -0.004783335 #This is the obtained optimal value of -g
#Using a new initial solution
x0<-c(0,0)
sol<-optimx(x0, mgx, method = "Nelder-Mead")
sol$par
$par
[1] 0.25377876 0.00758619 #These are the obtained optimal values

of x1 and x2, respectively
sol$fvalues
$fvalues
[1] -1.133047 #This is the obtained optimal value of -g
#Thus, depending on the initial solution , the method converges

towards either a local or a global minimum of -g

18.3.2.2 Simulated annealing
The efficiency of the optimization methods, previously discussed, depends on the
proximity of the initial point, from which they started, to the optimum. Therefore,
they cannot always guarantee a global minimum, since they may be trapped in one
of several local minima. Simulated annealing is based on a neighborhood search
strategy, derived from the physical analogy of cooling material in a heath bath,
which occasionally allows uphill moves.

Simulated annealing is based on the Metropolis algorithm [133], which simu-
lates the change in energy within a system when subjected to the cooling process;
eventually, the system converges to a final “frozen” state of a certain energy.

Let us consider a system with a state described by an 𝑛-dimensional vector 𝑥,
for which the function to be minimized is 𝑓(𝑥). This is equivalent to an uncon-
strained minimization problem. Let 𝑇 , denoting the generalized temperature, be a
scalar quantity, which has the same dimensions as 𝑓 . Then, the Metropolis algorithm
description, for a nonatomic system, can be summarized as follows:

18.3 Unconstrained optimization problems | 389

– Step 0:
– Construct an initial solution 𝑥0; set 𝑥 = 𝑥0;
– Set the number of Monte Carlo steps 𝑁MC = 0;
– Set the temperature, 𝑇 , to some high value, 𝑇0.

– Step 1: Choose a transition Δ𝑥 at random.
– Step 2: Evaluate Δ𝑓 = 𝑓(𝑥)− 𝑓(𝑥−Δ𝑥).
– Step 3:

– If Δ𝑓 ≤ 0, then accept the state by updating 𝑥 as follows:

𝑥←− 𝑥 + Δ𝑥.

– Otherwise (i. e., Δ𝑓 > 0) then,
– Generate a random number 𝑢 ∈ [0, 1];
– If 𝑢 < 𝑒−Δ𝑓/𝑇 , then accept the state by updating 𝑥 as follows:

𝑥←− 𝑥 + Δ𝑥;

– Step 4:
– Update the temperature value as follows: 𝑇 ←− 𝑇 − 𝜀𝑇 , where 𝜀𝑇 ≪ 𝑇 is a

specified positive real value.
– Update the number of Monte Carlo steps: 𝑁MC ←− 𝑁MC + 1.

– Step 5:
– If 𝑇 ≤ 0, then stop, and return 𝑥;
– Otherwise (i. e. 𝑇 > 0) then go to Step 1.

In R, an implementation of the simulated annealing method can be found in the
package GenSA, and it can be used to solve the problem (18.3) as follows:

Listing 18.11: Solving the problem (18.3) using Simulated Annealing

#The package GenSA is require here
library(GenSA)
#Defining the function f(x1, x2), its only minimum is reached at

x1=0 and x2=0
fx<- function(x) x[1]ˆ2 + x[2]ˆ2
#Calling the GenSA function - this function requires the definition

of some finite boundaries of the search domain
lb<-c(-5, -5)
ub<-c(5, 5)
sol <-GenSA(fn=fx,lower=lb, upper=ub)
sol$par
[1] 0 0 #These are the obtained optimal values of x1 and

x2, respectively
sol$value
[1] 0 #This is the obtained optimal value of f

Now, let us use the simulated annealing method, implemented in the package GenSA,
to solve the problem (18.4).

390 | 18 Optimization

Listing 18.12: Solving the problem (18.4) using Simulated Annealing

#The package GenSA is require here
library(GenSA)
#Defining the function - g(x1, x2), its global minimum is reached

at x1=0.2538 and x2=0.0076
mgx<-function(x) -

exp(x[1]-2*x[1]ˆ2-x[2]ˆ2)*sin(6*(x[1]+x[2]+x[1]*x[2]ˆ2))
#Calling the GenSA function - this function requires the definition

of some finite boundaries of the search domaine
lb<-c(-5, -5)
ub<-c(5, 5)
sol <-GenSA(fn=mgx,lower=lb, upper=ub)
sol$par
[1] 0.25377876 0.00758618 #These are the obtained optimal

values of x1 and x2, respectively
temp$value
[1] -1.133047 #This is the obtained optimal value of -g

18.4 Constrained optimization problems

Constrained optimization problems describe most of the real-world optimization
problems. Their complexity depends on the properties of the functional relation-
ships between the decision variables in both the objection function and the con-
straints.

18.4.1 Constrained linear optimization problems

A linear optimization problem, also referred to as a linear programming problem,
occurs when the objective function 𝑓 and the equality and inequality constraints are
all linear. The general structure of such a problem can be written as follows:

Optimize 𝑓(𝑥) =
𝑛∑︁

𝑗=1
𝑐𝑗𝑥𝑗

subject to
𝑛∑︁

𝑗=1
𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖, 𝑖 ∈ 𝐼 ⊆ {1, . . . , 𝑚};

𝑛∑︁
𝑗=1

𝑎𝑘𝑗𝑥𝑗 ≥ 𝑏𝑘, 𝑘 ∈ 𝐾 ⊆ {1, . . . , 𝑚};

𝑛∑︁
𝑗=1

𝑎𝑟𝑗𝑥𝑗 = 𝑏𝑟, 𝑟 ∈ 𝑅 ⊆ {1, . . . , 𝑚};

𝑙𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑗 , 𝑗 = 1, . . . , 𝑛.

18.4 Constrained optimization problems | 391

– Optimize = Minimize or Maximize;
– 𝑥 ∈ R𝑛 and 𝑓 : R𝑛 −→ R is a linear function;
– 𝐼, 𝐾, and 𝑅 are disjunct and 𝐼 ∪𝐾 ∪𝑅 = {1, . . . , 𝑚};
– 𝑙𝑗 , 𝑢𝑗 ∈ R ∪ {±∞};
– The coefficients 𝑐𝑗 , 𝑎𝑖𝑗 , 𝑎𝑘𝑗 , 𝑎𝑟𝑗 , 𝑏𝑗 , 𝑏𝑘 and 𝑏𝑟 are given real constants.

Linear constrained optimization problems can be solved using algorithms, such as
the simplex method or the interior point method.

In R, methods for solving linear optimization problems can be found in the
package lpSolveAPI.

Let us consider the following constrained linear optimization problems:

Maximize 𝑓(𝑥1, 𝑥2) = 𝑥1 + 3𝑥2

subject to 𝑥1 + 𝑥2 ≤ 14
(𝑃1) −2𝑥1 + 3𝑥2 ≤ 12

2𝑥1 − 𝑥2 ≤ 12
𝑥1, 𝑥2 ≥ 0

Minimize 𝑓(𝑥1, 𝑥2) = 𝑥2 − 𝑥1

subject to 2𝑥1 − 𝑥2 ≥ −2
(𝑃2) 𝑥1 − 𝑥2 ≤ 2

𝑥1 + 𝑥2 ≤ 5
𝑥1, 𝑥2 ≥ 0

Maximize 𝑓(𝑥1, 𝑥2) = 5𝑥1 + 7𝑥2

subject to 𝑥1 + 𝑥2 ≥ 6
(𝑃3) 𝑥1 ≥ 4

𝑥2 ≤ 3
𝑥1, 𝑥2 ≥ 0

Minimize 𝑓(𝑥1, 𝑥2) = 𝑥2 − 𝑥1

subject to 2𝑥1 − 𝑥2 ≥ −2
(𝑃4) 𝑥1 − 2𝑥2 ≤ −8

𝑥1 + 𝑥2 ≤ 5
𝑥1, 𝑥2 ≥ 0

Since most of the optimization methods available in R are implemented for
minimization-type problems, and the solution which maximizes a function 𝑓(𝑥) min-
imizes the function −𝑓(𝑥), then it is necessary to multiply the objective-functions for
problems (𝑃1) and (𝑃3) by −1, and solve the corresponding minimization problems.

392 | 18 Optimization

Afterwards, we multiply the values of the objective-functions by −1 to recover the
value of the objective functions of (𝑃1) and (𝑃3).

The problem (𝑃1) can be solved using the lpSolveAPI package as follows:

Listing 18.13: Solving the problem (𝑃1)

#The package lpSolveAPI is required here
library(lpSolveAPI)
#Building the model
P1 <- make.lp(0, 2) #Setting the number of variables
set.objfn(P1, c(-1, -3)) #Setting the objective-function -f
add.constraint(P1, c(1, 1), "<=", 14) # Adding the constraints
add.constraint(P1, c(-2, 3), "<=", 12)
add.constraint(P1, c(2, -1), "<=", 12)
#Visualizing the model
P1
Model name:

C1 C2
Minimize -1 -3
R1 1 1 <= 14
R2 -2 3 <= 12
R3 2 -1 <= 12
Kind Std Std
Type Real Real
Upper Inf Inf
Lower 0 0
#Solving the model
solve(P1)
[1] 0 #This indicates that the problem has a finite optimal

solution
get.variables(P1)
[1] 6 8 #These are the obtained optimal values of x1 and x2,

respectively
get.objective(P1)
[1] -30 #This is the obtained optimal value of -f, thus f=30

The problem (𝑃2) can be solved using the lpSolveAPI package as follows:

Listing 18.14: Solving the problem (𝑃2)

#The package lpSolveAPI is required here
library(lpSolveAPI)
#Building the model
P2 <- make.lp(0, 2)
set.objfn(P2, c(-1, 1))
add.constraint(P2, c(2, -1), ">=", -2)
add.constraint(P2, c(1, -1), "<=", 2)
add.constraint(P2, c(1, 1), "<=", 5)
#Solving the model
solve(P2)
[1] 0 #This indicates that the problem has a finite optimal

solution
get.variables(P2)
[1] 2 0 #These are the obtained optimal values of x1 and x2,

respectively
get.objective(P2)
[1] -2 #This is the obtained optimal value of f

18.4 Constrained optimization problems | 393

The problem (𝑃3) can be solved using the lpSolveAPI package as follows:

Listing 18.15: Solving the problem (𝑃3)

#The package lpSolveAPI is required here
library(lpSolveAPI)
#Building the model P3
P3 <- make.lp(0, 2)
set.objfn(P3, c(-5, -7))
add.constraint(P3, c(1, 1), ">=", 6)
#The second constraint is just a lower bound on x2
set.bounds(P3, lower = 4, columns = 1)
#The third constraint is just an upper bound on x1
set.bounds(P3, upper = 3, columns = 2)
#Solving the model
solve(P3)
[1] 3 #This indicates that the problem is unbounded i.e the

optimal solution of P3 is not finite

The problem (𝑃4) can be solved using the lpSolveAPI package as follows:

Listing 18.16: Solving the problem (𝑃4)

#The package lpSolveAPI is required here
library(lpSolveAPI)
#Building the model
P4 <- make.lp(0, 2)
set.objfn(P4, c(-1, 1))
add.constraint(P4, c(2, -1), ">=", -2)
add.constraint(P4, c(1, -2), "<=", -8)
add.constraint(P4, c(1, 1), "<=", 5)
#Solving the model
solve(P4)
[1] 2 # This indicates that the problem is infeasible i.e there are

contradicting constraints in the problem

Suppose that, in the problem (𝑃1), 𝑥1 is a binary variable (i. e., it takes only the
value 0 or 1), and 𝑥2 is an integer variable, then it is necessary to set them to the
appropriate type before solving the problem (𝑃1). This can be done as follows:

Listing 18.17: Solving a binary version of the problem (𝑃1)

set.type(P1, 1, "binary")
set.type(P1, 2, "integer")
solve(P1)
[1] 0 #This indicates that the problem has a finite optimal

solution
get.variables(P1)
[1] 1 4 #These are the obtained optimal values of x1 and x2,

respectively
get.objective(P1)
[1] -13 #This is the obtained optimal value of -f, thus f=13

394 | 18 Optimization

18.4.2 Constrained nonlinear optimization problems

In its general form, a nonlinear constrained optimization problem, with 𝑛 variables
and 𝑚 constraint, can be written as follows:

Optimize 𝑓(𝑥)

subject to 𝑔𝑖(𝑥) = 𝑏𝑖, 𝑖 ∈ 𝐼 ⊆ {1, . . . , 𝑚};

ℎ𝑗(𝑥) ≤ 𝑑𝑗 𝑗 ∈ 𝐽 ⊆ {1, . . . , 𝑚};

ℎ𝑘(𝑥) ≥ 𝑑𝑘 𝑘 ∈ 𝐾 ⊆ {1, . . . , 𝑚};

𝑥 ≤ 𝑢

𝑥 ≥ 𝑙,

(18.13)

where
– Optimize = Minimize or Maximize;
– 𝑓 : R𝑛 −→ R, 𝑔𝑖 : R𝑛 −→ R, ∀ 𝑖 ∈ 𝐼, ℎ𝑟 : R𝑛 −→ R, ∀ 𝑟 ∈ 𝐽 ∪𝐾, with at least

one of these functions being nonlinear;
– 𝐼, 𝐽 , and 𝐾 are disjunct and 𝐼 ∪ 𝐽 ∪𝐾 = {1, . . . , 𝑚};
– 𝑏𝑖, 𝑑𝑗 , 𝑑𝑘 ∈ R ∪ {±∞}, ∀ 𝑖, 𝑗, 𝑘;
– 𝑙, 𝑢 ∈ (R ∪ {±∞})𝑛.

The solution to constrained nonlinear optimization problems, in the form of (18.13),
can be obtained using the Lagrange multiplier method.

18.4.3 Lagrange multiplier method

Without loss of the generality, assume that the problem (18.13) is a minimization
problem, and let us multiply the inequality constraints of type “≥” by −1; then the
problem can be rewritten as:

Minimize 𝑧 = 𝑓(𝑥)

subject to 𝑔𝑖(𝑥) = 𝑏𝑖, 𝑖 = 1, . . . , 𝑝, with 𝑝 ≤ 𝑚;

ℎ𝑗(𝑥) ≤ 𝑑𝑗 𝑗 = 1, . . . , 𝑚− 𝑝.

(18.14)

The Lagrangian of the problem (18.14), denoted 𝐿, is defined as follows:

𝐿(𝑥, 𝜆, 𝜇) = 𝑓(𝑥) +
𝑝∑︁

𝑖=1
𝜆𝑖

(︀
𝑔𝑖(𝑥)− 𝑏𝑖

)︀
+

𝑚−𝑝∑︁
𝑗=1

𝜇𝑗

(︀
ℎ𝑗(𝑥)− 𝑑𝑗

)︀
, (18.15)

where 𝜆𝑖, and 𝜇𝑗 are the Lagrangian multipliers associated with the constraints
𝑔𝑖(𝑥) = 𝑏𝑖, and ℎ𝑗(𝑥) ≤ 𝑑𝑗 , respectively.

18.4 Constrained optimization problems | 395

The fundamental result behind the Lagrangian formulation (18.15) can be sum-
marized as follows: suppose that a solution 𝑥* = (𝑥*

1, 𝑥*
2, . . . , 𝑥*

𝑛) minimizes the
function 𝑓(𝑥) subject to the constraints 𝑔𝑖(𝑥) = 𝑏𝑖, for 𝑖 = 1, . . . , 𝑝 and ℎ𝑗(𝑥) ≤ 𝑑𝑗 ,
for 𝑗 = 1, . . . , 𝑚− 𝑝. Then we have one of the following:
1. Either there exist vectors 𝜆* = (𝜆*

1, . . . , 𝜆*
𝑝) and 𝜇* = (𝜇*

1, . . . , 𝜇*
𝑚−𝑝) such that

∇𝑓
(︀
𝑥*)︀

+
𝑝∑︁

𝑖=1
𝜆*

𝑖∇𝑔𝑖

(︀
𝑥*)︀

+
𝑚−𝑝∑︁
𝑗=1

𝜇*
𝑗∇ℎ𝑗

(︀
𝑥*)︀

= 0; (18.16)

𝜇*
𝑗

(︀
ℎ𝑗

(︀
𝑥*)︀
− 𝑑𝑗

)︀
= 0, 𝑗 = 1, . . . , 𝑚− 𝑝; (18.17)

𝜇*
𝑗 ≥ 0, 𝑗 = 1, . . . , 𝑚− 𝑝; (18.18)

2. Or the vectors ∇𝑔𝑖(𝑥*), for 𝑖 = 1, . . . , 𝑝, ∇ℎ𝑗(𝑥*) for 𝑗 = 1, . . . , 𝑚−𝑝 are linearly
dependent.

The result that is of greatest interest is the first one, i. e., case 1. From the equation
(18.17), either 𝜇𝑗 is zero or ℎ𝑗(𝑥*)−𝑑𝑗 = 0. This provides various possible solutions
and the optimal solution is one of these. For an optimal solution, 𝑥*, some of the
inequalities constraints will be satisfied at equality, and others will not. The latter
can be ignored, whereas the former will form the second equation above. Thus, the
constraints 𝜇*

𝑗 (ℎ𝑗(𝑥*)−𝑑𝑗) = 0 mean that either an inequality constraint is satisfied
at equality, or the Lagrangian multiplier 𝜇𝑗 is zero.

The conditions (18.16)–(18.18) are referred to as the Karush–Kuhn–Tucker
(KKT) conditions, and they are necessary conditions for a solution to a non-
linear constrained optimization problem to be optimal. For a maximization-type
problem, the conditions (KKT) remain unchanged with the exception of the first
condition (18.16), which is written as

∇𝑓
(︀
𝑥*)︀
−

𝑝∑︁
𝑖=1

𝜆*
𝑖∇𝑔𝑖

(︀
𝑥*)︀
−

𝑚−𝑝∑︁
𝑗=1

𝜇*
𝑗∇ℎ𝑗

(︀
𝑥*)︀

= 0.

Note that the KKT conditions (18.16)–(18.18) represent the stationarity, the
complementary slackness and the dual feasibility, respectively. Other supplementary
KKT conditions are the primal feasibiliy conditions defined by constraints of the
problem (18.14).

In R, an implementation of the Lagrange multiplier method, for solving nonlinear
constrained optimization problems, can be found in the package Rsolnp.

396 | 18 Optimization

Let us use the function solnp from the R package Rsolnp to solve the following
constrained nonlinear minimization problem:

Minimize 𝑓(𝑥1, 𝑥2) = 𝑒𝑥1(4𝑥2
1 + 2𝑥2

2 + 4𝑥1𝑥2 + 2𝑥2 + 1)
(𝑃) subject to

𝑥1 + 𝑥2 = 1

𝑥1𝑥2 ≥ −10

Listing 18.18: Solving the problem (𝑃)

#The package Rsolnp is required here
library(Rsolnp)
#Building the model
#Setting the objective function
fobj <- function(x)

exp(x[1])*(4*x[1]ˆ2+2*x[2]ˆ2+4*x[1]*x[2]+2*x[2]+1)
#Setting the left hand side of equality constraints
lhseq <- function(x){

eq1=x[1]ˆ2 + x[2]
return(eq1)

}
#Setting the right hand side of equality constraints
rhseq <- 1
#Setting the variable term in the inequality constraints
vtineq <- function(x){

ineq1=x[1]*x[2]
return(ineq1)

}
#Setting the lower bound of inequality constraints
lbineq <- -10
#Setting the upper bound of inequality constraints: if an

inequality constraint has no upper bound its corresponding
upper bound is set to infinity

ubineq <- Inf
#Solving the model
sol<-solnp(x0, fun = fobj, eqfun = lhseq, eqB =rhseq, ineqfun =

vtineq, ineqLB = lbineq, ineqUB = Iubineq,
control=list(trace=0))

sol$convergence
[1] 0 #This indicates that the problem has a finite optimal

solution
sol$par
[1] -0.7528791 0.4331731 #These are the obtained optimal values

of x1 and x2, respectively
fobj(sol$pars)
[1] 1.509311 #This is the obtained optimal value of f

18.5 Some applications in statistical machine learning

Most of the statistical theory, including statistical machine learning, consists of the
efficient use of collected data to estimate the unknown parameters of a model, which
answers the questions of interest.

18.5 Some applications in statistical machine learning | 397

18.5.1 Maximum likelihood estimation

The likelihood function of a parameter 𝜔 for a given observed data set, 𝒟, denoted
by ℒ, is defined by

ℒ(𝜔) = 𝜅𝑃 (𝒟, 𝜔), 𝜔 ∈ Ω; (18.19)

where 𝜅 is a constant independent of 𝜔, 𝑃 (𝒟, 𝜔) is the probability of the observed
data set and Ω is the feasible set of 𝜔.

When the data set, 𝒟, consists of a complete random sample 𝑥1, 𝑥2, . . . , 𝑥𝑛 from
a discrete probability distribution with probability function 𝑝(𝑥/𝜔), the probability
of the observed dataset is given by

𝑃 (𝒟, 𝜔) = 𝑃 (𝑋1 = 𝑥1, 𝑋2 = 𝑥2, . . . , 𝑋𝑛 = 𝑥𝑛|𝜔), (18.20)

=
𝑛∏︁

𝑖=1
𝑃 (𝑋𝑖 = 𝑥𝑖) =

𝑛∏︁
𝑖=1

𝑝(𝑥𝑖|𝜔). (18.21)

When the data set 𝒟 consists of a complete random sample 𝑥1, 𝑥2, . . . , 𝑥𝑛 from
a continuous probability distribution with probability function 𝑓(𝑥/𝜔), then 𝑥 ∈ R
and the observation 𝑥𝑖 falls within a small interval [𝑥𝑖, 𝑥𝑖 + Δ𝑥𝑖] with approximate
probability Δ𝑥𝑖𝑓(𝑥/𝜔). The probability of the observed data set is then given by

𝑃 (𝒟, 𝜔) ≈
𝑛∏︁

𝑖=1
Δ𝑥𝑖𝑓(𝑥𝑖|𝜔) =

𝑛∏︁
𝑖=1

Δ𝑥𝑖

𝑛∏︁
𝑖=1

𝑓(𝑥𝑖|𝜔). (18.22)

Definition 18.5.1. Without loss of generality, the likelihood function of a sample is
proportional to the product of the conditional probability of the data sample, given
the parameter of interest, i. e.,

ℒ(𝜔) ∝
𝑛∏︁

𝑖=1
𝑓(𝑥𝑖|𝜔), 𝜔 ∈ Ω. (18.23)

Definition 18.5.2. The value of the parameter 𝜔, which maximizes the likelihood
ℒ(𝜔), hence the probability of the observed dataset 𝑃 (𝒟, 𝜔), is known as the maxi-
mum likelihood estimator (MLE) of 𝜔 and is denoted �̂�.

Note that the MLE �̂� is a function of the data sample 𝑥1, 𝑥2, . . . , 𝑥𝑛. The like-
lihood function (18.23) is often complex to manipulate and, in practice, it is more
convenient to work with the logarithm of ℒ(𝜔) (logℒ(𝜔)), which also yields the same
optimal parameter �̂�.

The MLE problem can then be formulated as the following optimization prob-
lem, which can be solved using the numerical methods, implemented in R, presented
in the previous sections.

Maximize
𝜔∈Ω

logℒ(𝜔). (18.24)

398 | 18 Optimization

18.5.2 Support vector classification

Suppose that we are given the following data points: (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛), where
𝑥𝑖 ∈ R𝑚 and 𝑦 ∈ {−1, +1}. The fundamental idea, behind the concept of support
vector machine (SVM) classification [191], is to find a pair (𝑤, 𝑏) ∈ R𝑚×R such that
the hyperplane defined by ⟨𝑤, 𝑥⟩+ 𝑏 = 0 separates the data points labeled 𝑦𝑖 = +1
from those labeled 𝑦𝑖 = −1, and maximizes the distance to the closest points from
either class. If the points (𝑥𝑖, 𝑦𝑖), 𝑖 = 1, . . . , 𝑛 are linearly separable, then such a
pair exists.

Let (𝑥1, 𝑦1) and (𝑥2, 𝑦2), with 𝑦1 = +1 and 𝑦2 = −1, be the closest points on
either sides of the optimal hyperplane defined by ⟨𝑤, 𝑥⟩+ 𝑏 = 0. Then, we have{︃

⟨𝑤, 𝑥1⟩+ 𝑏 = +1,

⟨𝑤, 𝑥2⟩+ 𝑏 = −1.
(18.25)

From (18.25), we have ⟨𝑤, (𝑥1 − 𝑥2)⟩ = 2 =⇒ ⟨ 𝑤
‖𝑤‖ , (𝑥1 − 𝑥2)⟩ = 2

‖𝑤‖ . Hence, for
the distance between the points (𝑥1, 𝑦1) and (𝑥2, 𝑦2) to be maximum, we need the
ratio 2

‖𝑤‖ to be as maximum as possible or, equivalently, we need the ratio ‖𝑤‖
2 to

be as minimum as possible, i. e.

minimize
𝑤∈R𝑚

1
2‖𝑤‖

2. (18.26)

Generalizing (18.25) to all the points (𝑥𝑖, 𝑦𝑖) yields the following:{︃
⟨𝑤, 𝑥𝑖⟩+ 𝑏 ≥ +1, if 𝑦𝑖 = +1
⟨𝑤, 𝑥𝑖⟩+ 𝑏 ≤ −1, if 𝑦𝑖 = −1

=⇒ 𝑦𝑖

(︀
⟨𝑤, 𝑥𝑖⟩+ 𝑏

)︀
≥ 1. (18.27)

Thus, to construct such an optimal hyperplane, it is necessary to solve the following
problem:

minimize
𝑤∈R𝑚, 𝑏∈R

𝑧(𝑤) = 1
2‖𝑤‖

2

subject to 𝑦𝑖

(︀
⟨𝑤, 𝑥𝑖⟩+ 𝑏

)︀
≥ 1, for 𝑖 = 1, . . . , 𝑚 (18.28)

The above problem is a constrained optimization problem with a nonlinear
(quadratic) objective function and linear constraints, which can be solved using
the Lagrange multiplier method.

The Lagrangian associated with the problem (18.28) can be defined as follows:

𝐿(𝑤, 𝑏, 𝜆) = 1
2‖𝑤‖

2 −
𝑚∑︁

𝑖=1
𝜆𝑖

(︀
𝑦𝑖

(︀
⟨𝑤, 𝑥𝑖⟩+ 𝑏

)︀
− 1

)︀
, (18.29)

where 𝜆𝑖 ≥ 0, for 𝑖 = 1, . . . , 𝑚 denote the Lagrange multipliers.

18.6 Further reading | 399

The Lagrangian (18.29) must be minimized with respect to 𝑤 and 𝑏, and maxi-
mized with respect to 𝜆.

Solving {︃
𝜕
𝜕𝑏 𝐿(𝑤, 𝑏, 𝜆) = 0
𝜕

𝜕𝑤 𝐿(𝑤, 𝑏, 𝜆) = 0
(18.30)

yields

𝑚∑︁
𝑖=1

𝜆𝑖𝑦𝑖 = 0, (18.31)

𝑤 =
𝑚∑︁

𝑖=1
𝜆𝑖𝑦𝑖. (18.32)

Substituting 𝑤 into the Lagrangian (18.29) leads to the following optimization prob-
lem, also known as the dual formulation of support vector classifier:

maximize
𝜆∈R𝑚

𝑍(𝜆) =
𝑚∑︁
𝑖

𝜆𝑖 −
1
2

𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗⟨𝑥𝑖, 𝑥𝑗⟩

subject to
𝑚∑︁

𝑖=1
𝜆𝑖𝑦𝑖 = 0,

𝜆𝑖 ≥ 0, for 𝑖 = 1, . . . , 𝑚. (18.33)

Both problems (18.28) and (18.33) can be solved in R using the package Rsolnp, as
illustrated in Listing (18.18). However, since the constraints of (18.28) are relatively
complex, it is computationally easier to solve the problem (18.33) and then recover
the vector 𝑤 through (18.32).

18.6 Further reading

For advanced readings about numerical methods in optimization, we recommend
the following references: [13, 16, 144]. For stochastic optimization, the textbook
[162] provides a good introduction and overview.

18.7 Summary

Optimization is a broad and complex topic. One of the major challenges in opti-
mization is the determination of global optima for nonlinear and high-dimensional
problems. Generally, optimization methods find applications in attempts to optimize
a parametric decision-making process, such as classification, clustering, or regression

400 | 18 Optimization

of data. The corresponding optimization problems either involve complex nonlinear
functions or are based on data points, i. e., the problems include discontinuities.
Knowledge about optimization methods can be helpful in designing analysis meth-
ods, since they usually involve difficult optimization solutions. Hence, a parsimonious
approach for designing such analysis methods will also help to keep optimization
problems tractable.

18.8 Exercises

1. Consider the following unconstrained problem:

max
(𝑥1,𝑥2)∈R2

𝑓(𝑥1, 𝑥2) = −(𝑥1 − 5)2 − (𝑥2 − 3)2. (18.34)

Using R, provide the contour plot of the function 𝑓(𝑥1, 𝑥2) and solve the prob-
lem (18.34) using
– the steepest descent method;
– the conjugate gradient method;
– Newton’s method;
– the Nelder–Mead method;
– Simulated annealing;

2. Consider the following unconstrained problem:

min
(𝑥1,𝑥2)∈R2

𝑧(𝑥1, 𝑥2) = −2𝑥1 − 3𝑥2 + 1
5𝑥2

1 + 2𝑥2
2 − 3𝑥1𝑥2. (18.35)

Using R, provide the contour plot of the function 𝑧(𝑥1, 𝑥2) and solve the prob-
lem (18.35) using
– the steepest descent method;
– the conjugate gradient method;
– Newton’s method;
– the Nelder–Mead method;
– Simulated annealing;

3. Using the R package lpSolveAPI, solve the following linear programming prob-
lems:

Minimize 𝑓(𝑥1, 𝑥2) = 2𝑥1 + 3𝑥2

subject to 1
2𝑥1 + 1

4 𝑥2 ≤ 4

(𝐴) 𝑥1 + 3𝑥2 ≥ 20
𝑥1 + 𝑥2 = 10

𝑥1, 𝑥2 ≥ 0

18.8 Exercises | 401

Maximize 𝑓(𝑥1, 𝑥2) = 3𝑥1 + 𝑥2

subject to 𝑥1 + 𝑥2 ≥ 3
(𝐵) 2𝑥1 + 𝑥2 ≤ 4

𝑥1 + 𝑥2 = 3
𝑥1, 𝑥2 ≥ 0

4. Using the function solnp from the R package Rsolnp, solve the following non-
linear constrained optimization problems:

Minimize 𝑓(𝑥1, 𝑥2) = (𝑥1 − 1)2 + (𝑥2 − 2)2

(𝐴) subject to
−𝑥1 + 𝑥2 = 1

𝑥1 + 𝑥2 ≤ 3

Minimize 𝑓(𝑥1, 𝑥2) = −𝑥2
1 − 𝑥2

2 + 3𝑥1 + 5𝑥2
(𝐵) subject to

𝑥1 + 𝑥2 ≤ 7

𝑥1 ≤ 5

𝑥2 ≤ 6

Bibliography
[1] H. Abelson, G. J. Sussman, and J. Sussman. Structure and Interpretation of Computer

Programs. MIT Press; 2nd edition, 1996.
[2] L. Adamic and B. Huberman. Power-law distribution of the world wide web. Science,

287:2115a, 2000.
[3] W. A. Adkins and M. G. Davidson. Ordinary Differential Equations. Undergraduate Texts

in Mathematics. Springer New York, 2012.
[4] R. Albert and A. L. Barabási. Statistical mechanics of complex networks. Rev. Mod. Phys.,

74:47–97, 2002.
[5] G. R. Andrews. Foundations of Multithreaded, Parallel, and Distributed Programming.

Addison-Wesley, 1999.
[6] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, and H. Butler et al. Gene ontology:

tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet.,
25(1):25–29, May 2000.

[7] K. Baltakys, J. Kanniainen, and F. Emmert-Streib. Multilayer aggregation of investor
trading networks. Sci. Rep., 1:8198, 2018.

[8] A. L. Barabási and R. Albert. Emergence of scaling in random networks. Science,
206:509–512, 1999.

[9] A. L. Barabási and Z. N. Oltvai. Network biology: understanding the cell’s functional
organization, Nat. Rev., 5:101–113, 2004.

[10] Albert-László Barabási. Network science. Philos. Trans. R. Soc. Lond. A,
371(1987):20120375, 2013.

[11] M. Barnsley. Fractals Everywhere. Morgan Kaufmann, 2000.
[12] R. G. Bartle and D. R. Sherbert. Introduction to Real Analysis. Wiley Publishing, 1999.
[13] Mokhtar S Bazaraa, Hanif D Sherali, and Chitharanjan M Shetty. Nonlinear Programming:

Theory and Algorithms. John Wiley & Sons, 2013.
[14] R. A. Becker and J. M. Chambers. An Interactive Environment for Data Analysis and

Graphics. Wadsworth & Brooks/Cole, Pacific Grove, CA, USA, 1984.
[15] M. Behzad, G. Chartrand, and L. Lesniak-Foster. Graphs & Digraphs. International Series.

Prindle, Weber & Schmidt, 1979.
[16] D. P. Bertsekas. Nonlinear Programming. Athena Scientific Optimization and Computation

Series. Athena Scientific, 2016.
[17] Dimitri P Bertsekas and John N Tsitsiklis. Introduction to probability, volume 1, 2002.
[18] Joseph K Blitzstein and Jessica Hwang. Introduction to Probability. Chapman and

Hall/CRC, 2014.
[19] D. Bonchev. Information Theoretic Indices for Characterization of Chemical Structures.

Research Studies Press, Chichester, 1983.
[20] D. Bonchev and D. H. Rouvray. Chemical Graph Theory: Introduction and Fundamentals.

Mathematical Chemistry. Abacus Press, 1991.
[21] D. Bonchev and D. H. Rouvray. Complexity in Chemistry, Biology, and Ecology.

Mathematical and Computational Chemistry. Springer, New York, NY, USA, 2005.
[22] G. S. Boolos, J. P. Burgess, and R. C. Jeffrey. Computability and Logic Cambridge

University Press; 5th edition, 2007.
[23] S. Bornholdt and H. G. Schuster. Handbook of Graphs and Networks: From the Genome

to the Internet. John Wiley & Sons, Inc., New York, NY, USA, 2003.
[24] U. Brandes and T. Erlebach. Network Analysis. Lecture Notes in Computer Science.

Springer, Berlin Heidelberg New York, 2005.

https://doi.org/10.1515/9783110564990-019

404 | Bibliography

[25] A. Brandstädt, V. B. Le, and J. P. Sprinrad. Graph Classes. A Survey. SIAM Monographs
on Discrete Mathematics and Applications, 1999.

[26] L. Breiman. Random forests. Mach. Learn., 45:5–32, 2001.
[27] O. Bretscher. Linear Algebra with Applications. Prentice Hall; 3rd edition, 2004.
[28] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual Web search

engine. Comput. Netw. ISDN Syst., 30(1–7):107–117, 1998.
[29] M. Brinkmeier and T. Schank. Network statistics. In U. Brandes and T. Erlebach,

editors, Network Analysis, Lecture Notes of Computer Science, pages 293–317. Springer,
2005.

[30] I. A. Bronstein, A. Semendjajew, G. Musiol, and H. Mühlig. Taschenbuch der Mathematik.
Harri Deutsch Verlag, 1993.

[31] F. Buckley and F. Harary. Distance in Graphs. Addison Wesley Publishing Company, 1990.
[32] P. E. Ceruzzi. A History of Modern Computing. MIT Press; 2nd edition, 2003.
[33] S. Chiaretti, X. Li, R. Gentleman, A. Vitale, M. Vignetti, F. Mandelli, J. Ritz, and

R. Foa. Gene expression profile of adult t-cell acute lymphocytic leukemia identifies
distinct subsets of patients with different response to therapy and survival. Blood,
103(7):2771–2778, 2003.

[34] W. F. Clocksin and C. S. Mellish. Programming in Prolog: Using the ISO Standard.
Springer, 2002.

[35] S. Cole-Kleene. Mathematical Logic. Dover Books on Mathematics. Dover Publications,
2002.

[36] B. Jack Copeland, C. J. Posy, and O. Shagrir. Elements of Information Theory. The MIT
Press, 2013.

[37] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press,
1990.

[38] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT
Press, 2001.

[39] T. M. Cover and J. A. Thomas. Information Theory. John Wiley & Sons, Inc., 1991.
[40] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley Series in

Telecommunications and Signal Processing. Wiley & Sons, 2006.
[41] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines.

Cambridge University Press, Cambridge, UK, 2000.
[42] Gabor Csardi and Tamas Nepusz. The igraph software package for complex network

research. InterJournal, Complex Systems:1695, 2006, http://igraph.sf.net.
[43] L. da F. Costa, F. Rodrigues, and G. Travieso. Characterization of complex networks: a

survey of measurements. Adv. Phys., 56:167–242, 2007.
[44] R. de Matos Simoes and F. Emmert-Streib. Influence of statistical estimators of mutual

information and data heterogeneity on the inference of gene regulatory networks. PLoS
ONE, 6(12):e29279, 2011.

[45] R. de Matos Simoes and F. Emmert-Streib. Bagging statistical network inference from
large-scale gene expression data. PLoS ONE, 7(3):e33624, 2012.

[46] Pierre Lafaye de Micheaux, Rémy Drouilhet, and Benoit Liquet. The r software. 2013.
[47] J. Debasish. C++ and Object Oriented Programming Paradigm. PHI Learning Pvt. Ltd.,

2005.
[48] Morris H DeGroot and Mark J Schervish. Probability and statistics. Pearson Education,

2012.
[49] M. Dehmer. Die analytische Theorie der Polynome. Nullstellenschranken für

komplexwertige Polynome. Weissensee-Verlag, Berlin, Germany, 2004.

Bibliography | 405

[50] M. Dehmer. On the location of zeros of complex polynomials. J. Inequal. Pure Appl.
Math., 7(1), 2006.

[51] M. Dehmer. Strukturelle Analyse web-basierter Dokumente. Multimedia und
Telekooperation. Deutscher Universitäts Verlag, Wiesbaden, 2006.

[52] M. Dehmer, editor. Structural Analysis of Complex Networks. Birkhäuser Publishing, 2010.
[53] M. Dehmer and F. Emmert-Streib, editors. Analysis of Complex Networks: From Biology

to Linguistics. Wiley-VCH, Weinheim, 2009.
[54] M. Dehmer, K. Varmuza, S. Borgert, and F. Emmert-Streib. On entropy-based molecular

descriptors: statistical analysis of real and synthetic chemical structures. J. Chem. Inf.
Model., 49:1655–1663, 2009.

[55] M. Dehmer, K. Varmuza, S. Borgert, and F. Emmert-Streib. On entropy-based molecular
descriptors: statistical analysis of real and synthetic chemical structures. J. Chem. Inf.
Model., 49(7):1655–1663, 2009.

[56] R. Devaney and M. W. Hirsch. Differential Equations, Dynamical Systems, and an
Introduction to Chaos. Academic Press, 2004.

[57] J. Devillers and A. T. Balaban. Topological Indices and Related Descriptors in QSAR and
QSPR. Gordon and Breach Science Publishers, Amsterdam, The Netherlands, 1999.

[58] E. W. Dijkstra. A note on two problems in connection with graphs. Numer. Math.,
1:269–271, 1959.

[59] S. N. Dorogovtsev and J. F. F. Mendes. Evolution of Networks. From Biological Networks
to the Internet and WWW. Oxford University Press, 2003.

[60] J. Duckett. Beginning HTML, XHTML, CSS, and JavaScript. Wrox, 2009.
[61] F Emmert-Streib and M Dehmer. Defining data science by a data-driven quantification of

the community. Machine Learning and Knowledge Extraction, 1(1):235–251, 2019.
[62] F. Emmert-Streib. Exploratory analysis of spatiotemporal patterns of cellular automata by

clustering compressibility. Phys. Rev. E, 81(2):026103, 2010.
[63] F. Emmert-Streib and M. Dehmer. Topolocial mappings between graphs, trees and

generalized trees. Appl. Math. Comput., 186(2):1326–1333, 2007.
[64] F. Emmert-Streib and M. Dehmer, editors. Analysis of Microarray Data: A Network-based

Approach. Wiley VCH Publishing, 2010.
[65] F. Emmert-Streib and M. Dehmer. Identifying critical financial networks of the djia:

towards a network based index. Complexity, 16(1), 2010.
[66] F. Emmert-Streib and M. Dehmer. Influence of the time scale on the construction of

financial networks. PLoS ONE, 5(9):e12884, 2010.
[67] F. Emmert-Streib and M. Dehmer. Networks for systems biology: conceptual connection of

data and function. IET Syst. Biol., 5:185–207, 2011.
[68] F. Emmert-Streib and M. Dehmer. Evaluation of regression models: model assessment,

model selection and generalization error. Machine Learning and Knowledge Extraction,
1(1):521–551, 2019.

[69] F. Emmert-Streib, M. Dehmer, and B. Haibe-Kains. Untangling statistical and biological
models to understand network inference: the need for a genomics network ontology. Front.
Genet., 5:299, 2014.

[70] F. Emmert-Streib, M. Dehmer, and O. Yli-Harja. Against Dataism and for data sharing of
big biomedical and clinical data with research parasites. Front. Genet., 7:154, 2016.

[71] F. Emmert-Streib and G. V. Glazko. Network biology: a direct approach to study biological
function. Wiley Interdiscip. Rev., Syst. Biol. Med., 3(4):379–391, 2011.

[72] F. Emmert-Streib, G. V. Glazko, Gökmen Altay, and Ricardo de Matos Simoes. Statistical
inference and reverse engineering of gene regulatory networks from observational
expression data. Front. Genet., 3:8, 2012.

406 | Bibliography

[73] F. Emmert-Streib, S. Moutari, and M. Dehmer. The process of analyzing data is the
emergent feature of data science. Front. Genet., 7:12, 2016.

[74] F. Emmert-Streib, S. Tripathi, O. Yli-Harja, and M. Dehmer. Understanding the world
economy in terms of networks: a survey of data-based network science approaches on
economic networks. Front. Appl. Math. Stat., 4:37, 2018.

[75] Frank Emmert-Streib and Matthias Dehmer. Network science: from chemistry to digital
society. Front. Young Minds, 2019.

[76] P. Erdös and A. Rényi. On random graphs. I. Publ. Math., 6:290–297, 1959.
[77] P. Erdös and A. Rényi. On random graphs. Publ. Math. Inst. Hung. Acad. Sci., 5:17,

1960.
[78] G Fichtenholz. Differentialrechnung und Integralrechnung. Verlag Harri Deutsch, 1997.
[79] R. W. Floyd. The paradigms of programming. Commun. ACM, 22(8):455–460, 1979.
[80] L. C. Freeman. A set of measures of centrality based on betweenness. Sociometry, 40,

1977.
[81] L. C. Freeman. Centrality in social networks: conceptual clarification. Soc. Netw.,

1:215–239, 1979.
[82] Thomas M. J. Fruchterman and Edward M. Reingold. Graph drawing by force-directed

placement. Softw. Pract. Exp., 21(11):1129–1164, 1991.
[83] R. G. Gallager. Information Theory and Reliable Communication. Wiley, 1968.
[84] A Gelman, J B Carlin, H S Stern, and D B Rubin. Bayesian Data Analysis. Chapman &

Hall/CRC, 2003.
[85] C. Gershenson. Classification of random boolean networks. In R. K. Standish, M. A. Bedau,

and H. A. Abbass, editors, Artificial Life VIII, pages 1–8. MIT Press, Cambridge, 2003.
[86] G. H. Golub and C. F. Van Loan. Matrix Computation. The Johns Hopkins University,

2012.
[87] Geoffrey Grimmett, Geoffrey R Grimmett, and David Stirzaker. Probability and Random

Processes. Oxford University Press, 2001.
[88] Jonathan L Gross and Jay Yellen. Graph Theory and Its Applications. CRC Press, 2005.
[89] Grundlagen der Informatik für Ingenieure, 2008. Course materials, School of Computer

Science, Otto-von-Guericke-University Magdeburg, Germany.
[90] I. Gutman. The energy of a graph: old and new results. In A. Betten, A. Kohnert, R.

Laue, and A. Wassermann, editors, Algebraic Combinatorics and Applications, pages
196–211. Springer Verlag, Berlin, 2001.

[91] Ian Hacking. The Emergence of Probability: A Philosophical Study of Early Ideas About
Probability, Induction and Statistical Inference. Cambridge University Press, 2006.

[92] P. Hage and F. Harary. Eccentricity and centrality in networks. Soc. Netw., 17:57–63,
1995.

[93] R. Halin. Graphentheorie. Akademie Verlag, Berlin, Germany, 1989.
[94] F. Harary. Graph Theory. Addison Wesley Publishing Company, Reading, MA, USA, 1969.
[95] R. Harrison, L. G. Smaraweera, M. R. Dobie, and P. H. Lewis. Comparing programming

paradigms: an evaluation of functional and object-oriented programs. Softw. Eng. J.,
11(4):247–254, 1996.

[96] T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of Statistical Learning.
Springer, Berlin, New York, 2001.

[97] D. C. Hoaglin, F. Mosteller, and J. W. Tukey. Understanding Robust and Exploratory Data
Analysis. Wiley, New York, 1983.

[98] R. E. Hodel. An Introduction to Mathematical Logic. Dover Publications, 2013.
[99] A. S. Householder. The Numerical Treatment of a Single Nonlinear Equation.

McGraw-Hill, New York, NY, USA, 1970.

Bibliography | 407

[100] T. Ihringer. Diskrete Mathematik. Teubner, Stuttgart, 1994.
[101] Edwin T Jaynes. Probability Theory: The Logic of Science. Cambridge University Press,

2003.
[102] J. Jost. Partial Differential Equations. Springer, New York, NY, USA, 2007.
[103] G. Julia. Mémoire sur l’itération des fonctions rationnelles. J. Math. Pures Appl.,

8:47–245, 1918.
[104] B. Junker, D. Koschützki, and F. Schreiber. Exploration of biological network centralities

with centibin. BMC Bioinform., 7(1):219, 2006.
[105] Joseph B Kadane. Principles of Uncertainty. Chapman and Hall/CRC, 2011.
[106] Tomihisa Kamada, Satoru Kawai, et al. An algorithm for drawing general undirected

graphs. Inf. Process. Lett., 31(1):7–15, 1989.
[107] M. Kanehisa and S. Goto. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic

Acids Res., 28:27–30, 2000.
[108] Daniel Kaplan and Leon Glass. Understanding Nonlinear Dynamics. Springer Science &

Business Media, 2012.
[109] S. A. Kauffman. The Origin of Order: Self Organization and Selection in Evolution. Oxford

University Press, USA, 1993.
[110] S. V. Kedar. Programming Paradigms and Methodology. Technical Publications, 2008.
[111] U. Kirch-Prinz and P. Prinz. C++. Lernen und professionell anwenden. mitp Verlag, 2005.
[112] D. G. Kleinbaum and M. Klein. Survival Analysis: A Self-Learning Text. Statistics for

Biology and Health. Springer, 2005.
[113] V. Kontorovich, L. A. Beltrǹ, J. Aguilar, Z. Lovtchikova, and K. R. Tinsley. Cumulant

analysis of Rössler attractor and its applications. Open Cybern. Syst. J., 3:29–39, 2009.
[114] Kevin B Korb and Ann E Nicholson. Bayesian Artificial Intelligence. CRC Press, 2010.
[115] R. C. Laubenbacher. Modeling and Simulation of Biological Networks. Proceedings of

Symposia in Applied Mathematics. American Mathematical Society, 2007.
[116] S. L. Lauritzen. Graphical Models. Oxford Statistical Science Series. Oxford University

Press, 1996.
[117] M. Z. Li, M. S. Ryerson, and H. Balakrishnan. Topological data analysis for aviation

applications. Transp. Res., Part E, Logist. Transp. Rev., 128:149–174, 2019.
[118] Dennis V Lindley. Understanding Uncertainty. John Wiley & Sons, 2013.
[119] E. N. Lorenz. Deterministic nonperiodic flow. J. Atmos. Sci., 20:130–141, 1963.
[120] A. J. Lotka. Elements of Physical Biology. Williams and Wilkins, 1925.
[121] K. C. Louden. Compiler Construction: Principles and Practice. Course Technology, 1997.
[122] K. C. Louden and K. A. Lambert. Programming Languages: Principles and Practice.

Advanced Topics Series. Cengage Learning, 2011.
[123] D. J. C. MacKay. Information Theory, Inference and Learning Algorithms. Cambridge

University Press, 2003.
[124] D. Maier. Theory of Relational Databases. Computer Science Press; 1st edition, 1983.
[125] B. B. Mandelbrot. The Fractal Geometry of Nature. W. H. Freeman and Company, San

Francisco, 1983.
[126] E. G. Manes and A. A. Arbib. Algebraic Approaches to Program Semantics. Monographs in

Computer Science. Springer, 1986.
[127] M. Marden. Geometry of polynomials. Mathematical Surveys of the American

Mathematical Society, Vol. 3. Rhode Island, USA, 1966.
[128] O. Mason and M. Verwoerd. Graph theory and networks in biology. IET Syst. Biol.,

1(2):89–119, 2007.
[129] N. Matloff. The Art of R Programming: A Tour of Statistical Software Design. No Starch

Press, 2011.

408 | Bibliography

[130] B. D. McKay. Graph isomorphisms. Congr. Numer., 730:45–87, 1981.
[131] J. M. McNamee. Numerical Methods for Roots of Polynomials. Part I. Elsevier, 2007.
[132] A. Mehler, M. Dehmer, and R. Gleim. Towards logical hypertext structure. A

graph-theoretic perspective. In Proceedings of I2CS’04, Lecture Notes, pages 136–150.
Springer, Berlin–New York, 2005.

[133] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, and A. H. Teller. Equations of state
calculations by fast computing machines. J. Chem. Phys., 21(6):1087–1092, 1953.

[134] C. Meyer. Matrix Analysis and Applied Linear Algebra. SIAM, 2000.
[135] M. Mignotte and D. Stefanescu. Polynomials: An Algorithmic Approach. Discrete

Mathematics and Theoretical Computer Science. Springer, Singapore, 1999.
[136] J. C. Mitchell. Concepts in Programming Languages. Cambridge University Press, 2003.
[137] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomization and

Probabilistic Techniques in Algorithms and Data Analysis. Cambridge University Press,
2017.

[138] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine
Learning. MIT Press, 2018.

[139] D. Moore, R. de Matos Simoes, M. Dehmer, and F. Emmert-Streib. Prostate cancer gene
regulatory network inferred from RNA-Seq data. Curr. Genomics, 20(1):38–48, 2019.

[140] C. Müssel, M. Hopfensitz, and H. A. Kestler. Boolnet—an R package for generation,
reconstruction and analysis of Boolean networks. Bioinformatics, 26(10):1378–1380, 2010.

[141] M. Newman. Networks: An Introduction. Oxford University Press, Oxford, 2010.
[142] M. E. J. Newman. The structure and function of complex networks. SIAM Rev.,

45:167–256, 2003.
[143] M. E. J. Newman, A. L. Barabási, and D. J. Watts. The Structure and Dynamics of

Networks. Princeton Studies in Complexity. Princeton University Press, 2006.
[144] Jorge Nocedal and Stephen Wright. Numerical Optimization. Springer Science & Business

Media, 2006.
[145] Peter Olofsson. Probabilities: The Little Numbers That Rule Our Lives. John Wiley &

Sons, 2015.
[146] G. O’Regan. Mathematics in Computing: An Accessible Guide to Historical, Foundational

and Application Contexts. Springer, 2012.
[147] A. Papoulis. Probability, Random Variables, and Stochastic Processes. Mc Graw-Hill,

1991.
[148] Lothar Papula. Mathematik für Ingenieure und Naturwissenschaftler Band 1: Ein Lehr-und

Arbeitsbuch für das Grundstudium. Springer-Verlag, 2018.
[149] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan-Kaufmann, 1988.
[150] J. Pitman. Probability. Springer Texts in Statistics. Springer New York, 1999.
[151] V. V. Prasolov. Polynomials. Springer, 2004.
[152] T. W. Pratt, M. V. Zelkowitz, and T. V. Gopal. Programming Languages: Design and

Implementation, volume 4. Prentice-Hall, 2000.
[153] R, software, a language and environment for statistical computing. www.r-project.org,

2018. R Development Core Team, Foundation for Statistical Computing, Vienna,
Austria.

[154] R Development Core Team. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2008. ISBN 3-900051-07-0.

[155] Q. I. Rahman and G. Schmeisser. Analytic Theory of Polynomials. Critical Points, Zeros
and Extremal Properties. Clarendon Press, Oxford, UK, 2002.

[156] J.-P. Rodrigue, C. Comtois, and B. Slack. The Geography of Transport Systems. Taylor &
Francis, 2013.

Bibliography | 409

[157] O. E. Rössler. An equation for hyperchaos. Phys. Lett., 71A:155–157, 1979.
[158] W. Rudin. Real and Complex Analysis. McGraw-Hill, 3rd edition, 1986.
[159] G. Sabidussi. The centrality index of a graph. Psychometrika, 31:581–603, 1966.
[160] A. Salomaa. Formal Languages. Academic Press, 1973.
[161] Leonard J Savage. The Foundations of Statistics. Courier Corporation, 1972.
[162] J. Schneider and S. Kirkpatrick. Stochastic Optimization. Scientific Computation. Springer

Berlin Heidelberg, 2007.
[163] Uwe Schöning. Algorithmen—kurz gefasst. Spektrum Akademischer Verlag, 1997.
[164] Uwe Schöning. Theoretische Informatik—kurz gefasst. Spektrum Akademischer Verlag,

2001.
[165] H. G. Schuster. Deterministic Chaos. Wiley VCH Publisher, 1988.
[166] K. Scott. The SQL Programming Language. Jones & Bartlett Publishers, 2009.
[167] M. L. Scott. Programming Language Pragmatics. Morgan Kaufmann, 2009.
[168] R. W. Sebesta. Concepts of Programming Languages, volume 9. Addison-Wesley Reading,

2009.
[169] C. E. Shannon and W. Weaver. The Mathematical Theory of Communication. University

of Illinois Press, 1949.
[170] L. Shapiro. Organization of relational models. In Proceedings of Intern. Conf. on Pattern

Recognition, pages 360–365, 1982.
[171] D. J. Sheskin. Handbook of Parametric and Nonparametric Statistical Procedures. RC

Press, Boca Raton, FL; 3rd edition, 2004.
[172] W. Sierpinśki. On curves which contains the image of any given curve. Mat. Sbornik. In

Russian. French translation in Oeuvres Choisies II, 30:267–287, 1916.
[173] Devinderjit Sivia and John Skilling. Data Analysis: A Bayesian Tutorial. OUP Oxford,

2006.
[174] V. A. Skorobogatov and A. A. Dobrynin. Metrical analysis of graphs. MATCH Commun.

Math. Comput. Chem., 23:105–155, 1988.
[175] P. Smith. An Introduction to Formal Logic. Cambridge University Press, 2003.
[176] K. Soetaert, J. Cash, and F Mazzia. Solving Differential Equations in R. Springer-Verlag,

New York, 2012.
[177] K. Soetaert and P. M. J. Herman. A Practical Guide to Ecological Modelling. Using R as a

Simulation Platform. Springer-Verlag, New York, 2009.
[178] D. Ştefănescu. Bounds for real roots and applications to orthogonal polynomials. In

Computer Algebra in Scientific Computing, 10th International Workshop, CASC 2007,
Bonn, Germany, pages 377–391, 2007.

[179] S. Sternberg. Dynamical Systems. Dover Publications, New York, NY, USA, 2010.
[180] James V Stone. Bayes’ Rule: A Tutorial Introduction to Bayesian Analysis. Sebtel Press,

2013.
[181] S. H. Strogatz. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology,

Chemistry, and Engineering. Addison-Wesley, Reading, 1994.
[182] K. Sydsaeter, P. Hammond, and A. Strom. Essential Mathematics for Economic Analysis.

Pearson; 4th edition, 2012.
[183] S. Thurner. Statistical mechanics of complex networks. In M. Dehmer and F.

Emmert-Streib, editors, Analysis of Complex Networks: From Biology to Linguistics, pages
23–45. Wiley-VCH, 2009.

[184] J. P. Tignol. Galois’ Theory of Algebraic Equations. World Scientific Publishing Company,
2016.

[185] Mary Tiles. Mathematics: the language of science? Monist, 67(1):3–17, 1984.
[186] N. Trinajstić. Chemical Graph Theory. CRC Press, Boca Raton, FL, USA, 1992.

410 | Bibliography

[187] S. Tripathi, M. Dehmer, and F. Emmert-Streib. NetBioV: an R package for visualizing
large-scale data in network biology. Bioinformatics, 384, 2014.

[188] S. B. Trust. Role of Mathematics in the Rise of Science. Princeton Legacy Library.
Princeton University Press, 2014.

[189] J. W. Tukey. Exploratory Data Analysis. Addison-Wesley, New York, 1977.
[190] V. van Noort, B. Snel, and M. A. Huymen. The yeast coexpression network has a

small-world, scale-free architecture and can be explained by a simple model. EMBO Rep.,
5(3):280–284, 2004.

[191] V. Vapnik. Statistical Learning Theory. J. Willey, 1998.
[192] Vladimir Naumovich Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.
[193] V. Volterra. Variations and fluctuations of the number of individuals in animal species

living together. In R. N. Chapman, editor, Animal Ecology , McGraw–Hill, 1931.
[194] J. von Neumann. The Theory of Self-Reproducing Automata. University of Illinois Press,

Urbana, 1966.
[195] Andreas Wagner and David A. Fell. The small world inside large metabolic networks. Proc.

R. Soc. Lond. B, Biol. Sci., 268(1478):1803–1810, 2001.
[196] J. Wang and G. Provan. Characterizing the structural complexity of real-world complex

networks. In J. Zhou, editor, Complex Sciences, volume 4 of Lecture Notes of the Institute
for Computer Sciences, Social Informatics and Telecommunications Engineering, pages
1178–1189. Springer, Berlin/Heidelberg, Germany, 2009.

[197] S. Wasserman and K. Faust. Social Network Analysis: Methods and Applications.
Structural Analysis in the Social Sciences. Cambridge University Press, 1994.

[198] D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature,
393:440–442, 1998.

[199] A. Weil. Basic Number Theory. Springer, 2005.
[200] Hadley Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer, 2016.
[201] Hadley Wickham. Advanced R. Chapman and Hall/CRC; 2nd edition, 2019.
[202] R. Wilhelm and D. Maurer. Übersetzerbau: Theorie, Konstruktion, Generierung. Springer,

1997.
[203] Thomas Wilhelm, Heinz-Peter Nasheuer, and Sui Huang. Physical and functional

modularity of the protein network in yeast. Mol. Cell. Proteomics, 2(5):292–298, 2003.
[204] Leland Wilkinson. The grammar of graphics. In Handbook of Computational Statistics,

pages 375–414. Springer, 2012.
[205] S. Wolfram. Statistical mechanics of cellular automata. Phys. Rev. E, 55(3):601–644,

1983.
[206] S. Wolfram. A New Kind of Science. Wolfram Media, 2002.
[207] J. A. Wright, M. H. Wright, P. Lagarias, and J. C. Reeds. Convergence properties of the

nelder-mead simplex algorithm in low dimensions. SIAM J. Optim., 9:112–147, 1998.

Index
adjacency matrix 308
algorithm 172
analysis 229
antiderivative 243
Asynchronous Random Boolean Networks 282
attractor 268
attractors 267
aviation network 317

bar plot 103
basic programming 34
basin of the attractor 268
Bayes’ theorem 358
Bayesian networks 344
Bernoulli distribution 345
Beta distribution 350
betweenness centrality 314
bifurcation 273
bifurcation point 273
binomial coefficient 163
Binomial distribution 345
bivariate distribution 343
boolean functions 161
Boolean logic 159
boolean value 166
Boundary Value ODE 253
Boundary Value ODE problem 257
breadth-first search 315
byte code compilation 81

Cartesian space 182
Cauchy–Schwartz inequality 370
cellular automata 267
central limit theorem 331, 369
centrality 313
chaotic behavior 274
character string 52
Chebyshev inequality 366
Chernoff bounds 371
Chi-square distribution 355
Cholesky factorization 220
Classical Random Boolean Networks 282
closeness centrality 314
clustering coefficient 312
cobweb graph 271
codomain of a function 231
complex number 199

complexity 171
computability 171
concentration inequalities 369
conditional entropy 363
conditional probability 335, 336
conjugate gradient 381
constrained optimization 390
constraints 375
continuous distributions 350
contour plot 114
coordinates systems 193
correlation 342
covariance 342
Cramer’s method 225
critical point 268
cross product 190
cumulative distribution function 337
curvature 234

data science 1
data structures 41
De Morgan’s laws 334
decision variables 375
definite integral 243
degree 311
degree centrality 314
degree distribution 311
density plot 109
dependency structure 344
depth-first search 315
derivative 232
derivative-free methods 385
determinant 210
Deterministic Asynchronous Random Boolean

Networks 282
Deterministic Generalized Asynchronous

Random Boolean Networks 282
diameter 313
differentiable 232
differential equations 253
differentiation 232
directed acyclic graph 344
directed network 308
Dirichlet conditions 260
discrete distributions 344
distance 310
distance matrix 313

412 | Index

distribution function 337
domain of a function 231
dot plot 105
dot product 189
dynamical system 267
dynamical systems 267

eccentricity 313
economic cost function 236
edge 305
Eigenvalues 214
Eigenvectors 214
elliptic PDE 260, 263
entropy 362
error handling 82
Euclidean norm 182
Euclidean space 182
Euler equations 256
exception handling 82
expectation value 340
exponential distribution 350
extrema 236

First fundamental Theorem of calculus 243
first-order PDE 259
fixed point 268
Fletcher–Reeves 381
fractal 294
functional programming 13

Gamma distribution 351
Generalized Asynchronous Random Boolean

Networks 282
generalized tree 324
global maximum 237
global minimum 237
global network layout 142
gradient 233, 235
gradient-based algorithms 377
graph 305
graph algorithms 314
graph measure 305
graphical models 344

Hadamard 260
heat equation 260
Hessian 234, 235
Hestenes–Stiefel 381
histogram 102

Hoeffding’s inequality 370
hyperbolic PDE 260, 262

image plot 114
imperative programming 12
indefinite integral 243
information flow 144
information theory 361
Initial Value ODE 253
Initial Value ODE problem 253
integral 243
Intermediate value theorem 248

Jacobian 235
joint probability 336

Kolmogorov 334
Kullback–Leibler divergence 364

Lagrange multiplier 394
Lagrange polynomial 246
law of large numbers 366
law of total probability 335
layered network layout 144
likelihood 358
likelihood function 397
limes 230
limiting value 229, 230
linear algebra 181
linear optimization 390
linux 23
local maximum 237
local minimum 237
Log-normal distribution 357
logic programming 17
logical statement 165
logistic map 271
Lotka–Volterra equations 275
LU factorization 217

Maclaurin series 240
Markov inequality 366
matrices 202
matrix factorization 217
matrix norms 216
maximization 375
maximum likelihood estimation 397
minimization 375
mixed product 192

Index | 413

modular network layout 142
moment 341
multi-valued function 235
multivariate distribution 343
mutual information 365

Negative binomial distribution 348
Nelder-Mead method 386
NetBioV 141
network 305
network visualization 133
Neumann conditions 260
Newton’s method 383
node 305
non-linear constrained optimization 394
normal distribution 353
numerical integration 244

Object-oriented programming 15
objective-function 375
operations with matrices 205
optimization 375
orbit 268
ordinary differential equations – ODE 253
orthogonal unit vectors 233
over-determined linear system 226

p-norm 182
package 79
parabolic PDE 260
partial derivative 233, 234
partial differential equations – PDE 258
path 310
Pearson’s correlation coefficient 342
periodic behavior 273
periodic point 268
pie chart 104
plot 97
Poisson distribution 349
Poisson’s equation 263
Polak–Ribière–Polyak 381
polynomial interpolation 245
posterior 358
predator–prey system 275
prior 358
probability 334
programming languages 23
programming paradigm 11

QR factorization 220

Qualitative techniques 305
quantitative method 305

radius 313
Random Boolean network 281
random networks 325
random variables 337
rank of a matrix 211
reading data 64
real sequences 229
repositories 80
Riemann sum 244
Robin conditions 260
root finding 247
rug plot 108
Rules of de Morgan 160

sample space 331
scalar product 189
scale-free networks 328
scatterplot 112
scope of variables 61
search direction 378
Second fundamental Theorem of calculus 243
second-order PDE 259
self-similarity 294
sequence 229
set operations 157, 333
sets 157
Sherman–Morrison–Woodbury formula 213
shortest path 317
Sierpińsky’s carpet 294
Simulated Annealing 388
singular value decomposition – SVD 222
small-world networks 326
sorting vectors 57
spanning trees 321
special matrices 208
stable fixed point 268
stable point 268
standard deviation 341
standard error 341
stationary point 268
statistical machine learning 396
steepest descent 378
strip plot 108
Student’s 𝑡-distribution 356
Support Vector Machine 398
systems of linear equations 224

414 | Index

Taylor series expansion 239
trace 210
transportation networks 317
tree 323
triangular linear system 225
Turing completeness 174
Turing machines 173

ubuntu 23
unconstrained optimization 377
uncontrollable variables 375
under-determined linear system 226
undirected network 306
uniform distribution 339
useful commands 69

variance 341

vector decomposition 188
vector projection 189
vector reflection 189
vector rotation 185
vector scaling 186
vector sum 186
vector translation 185
vectors 181
Venn diagram 332

walk 310
wave equation 262
Weibull distribution 357
weighted network 308
well-determined linear system 226
writing data 63
writing functions 58

	Preface
	Contents
	1. Introduction
	Part I: Introduction to R
	2. Overview of programming paradigms
	3. Setting up and installing the R program
	4. Installation of R packages
	5. Introduction to programming in R
	6. Creating R packages
	Part II: Graphics in R
	7. Basic plotting functions
	8. Advanced plotting functions: ggplot2
	9. Visualization of networks
	Part III: Mathematical basics of data science
	10. Mathematics as a language for science
	11. Computability and complexity
	12. Linear algebra
	13. Analysis
	14. Differential equations
	15. Dynamical systems
	16. Graph theory and network analysis
	17. Probability theory
	18. Optimization
	Bibliography
	Index

