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Foreword 
Deep learning, while it has multiple defnitions in the literature, can be defned as 
“inference of model parameters for decision making in a process mimicking the 
understanding process in the human brain”; or, in short: “brain-like model iden-
tifcation”. We can say that deep learning is a way of data inference in machine 
learning, and the two together are among the main tools of modern artifcial intel-
ligence. Novel technologies away from traditional academic research have fueled 
R&D in convolutional neural networks (CNNs); companies like Google, Microsoft, 
and Facebook ignited the “art” of data manipulation, and the term “deep learning” 
became almost synonymous with decision making. 

Various CNN structures have been introduced and invoked in many computer 
vision-related applications, with greatest success in face recognition, autonomous 
driving, and text processing. The reality is: deep learning is an art, not a science. 
This state of affairs will remain until its developers develop the theory behind its 
functionality, which would lead to “cracking its code” and explaining why it works, 
and how it can be structured as a function of the information gained with data. In 
fact, with deep learning, there is good and bad news. The good news is that the indus-
try—not necessarily academia—has adopted it and is pushing its envelope. The bad 
news is that the industry does not share its secrets. Indeed, industries are never inter-
ested in procedural and textbook-style descriptions of knowledge. 

This book, Deep Learning in Computer Vision: Principles and Applications—as 
a journey in the progress made through deep learning by academia—confnes itself 
to deep learning for computer vision, a domain that studies sensory information 
used by computers for decision making, and has had its impacts and drawbacks for 
nearly 60 years. Computer vision has been and continues to be a system: sensors, 
computer, analysis, decision making, and action. This system takes various forms 
and the fow of information within its components, not necessarily in tandem. The 
linkages between computer vision and machine learning, and between it and arti-
fcial intelligence, are very fuzzy, as is the linkage between computer vision and 
deep learning. Computer vision has moved forward, showing amazing progress in 
its short history. During the sixties and seventies, computer vision dealt mainly with 
capturing and interpreting optical data. In the eighties and nineties, geometric com-
puter vision added science (geometry plus algorithms) to computer vision. During 
the frst decade of the new millennium, modern computing contributed to the evolu-
tion of object modeling using multimodality and multiple imaging. By the end of 
that decade, a lot of data became available, and so the term “deep learning” crept 
into computer vision, as it did into machine learning, artifcial intelligence, and other 
domains. 

This book shows that traditional applications in computer vision can be solved 
through invoking deep learning. The applications addressed and described in the 
eleven different chapters have been selected in order to demonstrate the capabilities 
of deep learning algorithms to solve various issues in computer vision. The content 
of this book has been organized such that each chapter can be read independently 



 viii Foreword 

of the others. Chapters of the book cover the following topics: accelerating the CNN 
inference on feld-programmable gate arrays, fre detection in surveillance applica-
tions, face recognition, action and activity recognition, semantic segmentation for 
autonomous driving, aerial imagery registration, robot vision, tumor detection, and 
skin lesion segmentation as well as skin melanoma classifcation. 

From the assortment of approaches and applications in the eleven chapters, the 
common thread is that deep learning for identifcation of CNN provides accuracy 
over traditional approaches. This accuracy is attributed to the fexibility of CNN 
and the availability of large data to enable identifcation through the deep learning 
strategy. I would expect that the content of this book to be welcomed worldwide by 
graduate and postgraduate students and workers in computer vision, including prac-
titioners in academia and industry. Additionally, professionals who want to explore 
the advances in concepts and implementation of deep learning algorithms applied to 
computer vision may fnd in this book an excellent guide for such purpose. Finally, 
I hope that readers would fnd the presented chapters in the book interesting and 
inspiring to future research, from both theoretical and practical viewpoints, to spur 
further advances in discovering the secrets of deep learning. 

Prof Aly Farag, PhD, Life Fellow, IEEE, Fellow, IAPR 
Professor of Electrical and Computer Engineering 

University of Louisville, Kentucky 
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Preface 
Simply put, computer vision is an interdisciplinary feld of artifcial intelligence that 
aims to guide computers and machines toward understanding the contents of digital 
data (i.e., images or video). According to computer vision achievements, the future 
generation of computers may understand human actions, behaviors, and languages 
similarly to humans, carry out some missions on their behalf, or even communicate 
with them in an intelligent manner. One aspect of computer vision that makes it 
such an interesting topic of study and active research feld is the amazing diversity 
of daily-life applications such as pedestrian protection systems, autonomous driving, 
biometric systems, the movie industry, driver assistance systems, video surveillance, 
and robotics as well as medical diagnostics and other healthcare applications. For 
instance, in healthcare, computer vision algorithms may assist healthcare profession-
als to precisely classify illnesses and cases; this can potentially save patients’ lives 
through excluding inaccurate medical diagnoses and avoiding erroneous treatment. 
With this wide variety of applications, there is a signifcant overlap between com-
puter vision and other felds such as machine vision and image processing. Scarcely 
a month passes where we do not hear from the research and industry communities 
with an announcement of some new technological breakthrough in the areas of intel-
ligent systems related to the computer vision feld. 

With the recent rapid progress on deep convolutional neural networks, deep learn-
ing has achieved remarkable performance in various felds. In particular, it has brought 
a revolution to the computer vision community, introducing non-traditional and eff-
cient solutions to several problems that had long remained unsolved. Due to this prom-
ising performance, it is gaining more and more attention and is being applied widely in 
computer vision for several tasks such as object detection and recognition, object seg-
mentation, pedestrian detection, aerial imagery registration, video processing, scene 
classifcation, autonomous driving, and robot localization as well as medical image-
related applications. If the phrase “deep learning for computer vision” is searched in 
Google, millions of search results will be obtained. Under these circumstances, a book 
entitled Deep Learning in Computer Vision that covers recent progress and achieve-
ments in utilizing deep learning for computer vision tasks will be extremely useful. 

The purpose of this contributed volume is to fll the existing gap in the literature 
for the applications of deep learning in computer vision and to provide a bird’s eye 
view of recent state-of-the-art models designed for practical problems in computer 
vision. The book presents a collection of eleven high-quality chapters written by 
renowned experts in the feld. Each chapter provides the principles and fundamentals 
of a specifc topic, introduces reviews of up-to-date techniques, presents outcomes, 
and points out challenges and future directions. In each chapter, fgures, tables, 
and examples are used to improve the presentation and analysis of covered topics. 
Furthermore, bibliographic references are included in each chapter, providing a good 
starting point for deeper research and further exploration of the topics considered in 
this book. Further, this book is structured such that each chapter can be read inde-
pendently from the others as follows: 



 

 
 
 
 

 

 

 
 
 

x Preface 

Chapter 1 presents a state-of-the-art of CNN inference accelerators over FPGAs. 
Computational workloads, parallelism opportunities, and the involved memory 
accesses are analyzed. At the level of neurons, optimizations of the convolutional and 
fully connected layers are explained and the performances of the different methods 
compared, while at the network level, approximate computing and data-path optimi-
zation methods are covered and state-of-the-art approaches compared. The methods 
and tools investigated in this chapter represent the recent trends in FPGA CNN infer-
ence accelerators and will fuel future advances in effcient hardware deep learning. 

Chapter 2 concentrates on object detection problem using deep CNN (DCNN): the 
recent developments of several classical CNN-based object detectors are discussed. 
These detectors signifcantly improve detection performance either through employ-
ing new architectures or through solving practical issues like degradation, gradi-
ent vanishing, and class imbalance. Detailed background information is provided to 
show the progress and improvements of different models. Some evaluation results 
and comparisons are reported on three datasets with distinctive characteristics. 

Chapter 3 proposes three methods for fre detection using CNNs. The frst method 
focuses on early fre detection with an adaptive prioritization mechanism for surveil-
lance cameras. The second CNN-assisted method improves fre detection accuracy with 
a main focus on reducing false alarms. The third method uses an effcient deep CNN 
for fre detection. For localization of fre regions, a feature map selection algorithm that 
intelligently selects appropriate feature maps sensitive to fre areas is proposed. 

Chapter 4 presents an accurate and real-time multi-biometric system for identi-
fying a person’s identity using a combination of two discriminative deep learning 
approaches to address the problem of unconstrained face recognition: CNN and deep 
belief network (DBN). The proposed system is tested on four large-scale challenging 
datasets with high diversity in the facial expressions—SDUMLA-HMT, FRGC V 
2.0, UFI, and LFW—and new state-of-the-art recognition rates on all the employed 
datasets are achieved. 

Chapter 5 introduces a study of the concept of sequence learning using RNN, 
LSTM, and its variants such as multilayer LSTM and bidirectional LSTM for action 
and activity recognition problems. The chapter concludes with major issues of 
sequence learning for action and activity recognition and highlights recommenda-
tions for future research. 

Chapter 6 discuses semantic segmentation in autonomous driving applications, 
where it focuses on constructing effcient and simple architectures to demonstrate 
the beneft of fow and depth augmentation to CNN-based semantic segmentation 
networks. The impact of both motion and depth information on semantic segmenta-
tion is experimentally studied using four simple network architectures. Results of 
experiments on two public datasets—Virtual-KITTI and CityScapes—show reason-
able improvement in overall accuracy. 

Chapter 7 presents a method based on deep learning for geolocalizing drones 
using only onboard cameras. A pipeline has been implemented that makes use of the 
availability of satellite imagery and traditional computer vision feature detectors and 
descriptors, along with renowned deep learning methods (semantic segmentation), to 
be able to locate the aerial image captured from the drone within the satellite imag-
ery. The method enables the drone to be autonomously aware of its surroundings and 
navigate without using GPS. 



 

 
 
 
 
 
 
 
 
 
 
 

xi Preface 

Chapter 8 is intended to be a guide for the developers of robot vision systems, 
focusing on the practical aspects of the use of deep neural networks rather than on 
theoretical issues. 

The last three chapters are devoted to deep learning in medical applications. 
Chapter 9 covers basic information about CNNs in medical applications. CNN 
developments are discussed from different perspectives, specifcally, CNN design, 
activation function, loss function, regularization, optimization, normalization, and 
network depth. Also, a deep convolutional neural network (DCNN) is designed for 
brain tumor detection using MRI images. The proposed DCNN architecture is eval-
uated on the RIDER dataset, achieving accurate detection accuracy within a time of 
0.24 seconds per MRI image. 

Chapter 10 discusses automatic segmentation of skin lesion boundaries from sur-
rounding tissue and presents a novel deep learning segmentation methodology via 
full-resolution convolutional network (FrCN). Experimental results show the great 
promise of the FrCN method compared to state-of-the-art deep learning segmenta-
tion approaches such as fully convolutional networks (FCN), U-Net, and SegNet 
with overall segmentation. 

Chapter 11 is about the automatic classifcation of color skin images, where a 
highly accurate method is proposed for skin melanoma classifcation utilizing two 
modifed deep convolutional neural networks and consisting of three main steps. 
The proposed method is tested using the well-known MED-NODE and DermIS & 
DermQuest datasets. 

It is very necessary to mention here that the book is a small piece in the puzzle 
of computer vision and its applications. We hope that our readers fnd the presented 
chapters in the book interesting and that the chapters will inspire future research 
both from theoretical and practical viewpoints to spur further advances in the com-
puter vision feld. 

The editors would like to take this opportunity to express their sincere grati-
tude to the contributors for extending their wholehearted support in sharing some 
of their latest results and fndings. Without their signifcant contribution, this 
book could not have fulflled its mission. The reviewers deserve our thanks for 
their constructive and timely input. Special profound thanks go to Prof Aly Farag, 
Professor of Electrical and Computer Engineering, University of Louisville, 
Kentucky for writing the Foreword for this book. Finally, the editors acknowledge 
the efforts of the CRC Press Taylor & Francis for giving us the opportunity to edit 
a book on deep learning for computer vision. In particular, we would like to thank 
Dr Rastislav Lukac, the editor of the Digital Imaging and Computer Vision book 
series, and Nora Konopka for initiating this project. Really, the editorial staff 
at CRC Press has done a meticulous job, and working with them was a pleasant 
experience. 

Mahmoud Hassaballah 
Qena, Egypt 

Ali Ismail Awad 
Luleå, Sweden 
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1.1 INTRODUCTION 

The exponential growth of big data during the last decade motivates for innovative 
methods to extract high semantic information from raw sensor data such as videos, 
images, and speech sequences. Among the proposed methods, convolutional neural 
networks (CNNs) [1] have become the de facto standard by delivering near-human 
accuracy in many applications related to machine vision (e.g., classifcation [2], 
detection [3], segmentation [4]) and speech recognition [5]. 

This performance comes at the price of a large computational cost as CNNs 
require up to 38 GOPs to classify a single frame [6]. As a result, dedicated hard-
ware is required to accelerate their execution. Graphics processing units GPUs 
are the most widely used platform to implement CNNs as they offer the best per-
formance in terms of pure computational throughput, reaching up 11 TFLOPs 
[7]. Nevertheless, in terms of power consumption, feld-programmable gate array 
(FPGA) solutions are known to be more energy effcient (vs. GPU). While GPU 
implementations have demonstrated state-of-the-art computational performance, 
CNN acceleration will soon be moving towards FPGAs for two reasons. First, 
recent improvements in FPGA technology put FPGA performance within striking 
distance of GPUs with a reported performance of 9.2 TFLOPs for the latter [8]. 
Second, recent trends in CNN development increase the sparsity of CNNs and 
use extremely compact data types. These trends favor FPGA devices, which are 
designed to handle irregular parallelism and custom data types. As a result, next-
generation CNN accelerators are expected to deliver up to 5.4× better computa-
tional throughput than GPUs [7]. 

As an infection point in the development of CNN accelerators might be near, we 
conduct a survey on FPGA-based CNN accelerators. While a similar survey can be 
found in [9], we focus in this chapter on the recent techniques that were not covered 
in the previous works. In addition to this chapter, we refer the reader to the works 
of Venieris et al. [10], which review the toolfows automating the CNN mapping 
process, and to the works of Sze et al., which focus on ASICs for deep learning 
acceleration. 

The amount and diversity of research on the subject of CNN FPGA acceleration 
within the last 3 years demonstrate the tremendous industrial and academic interest. 
This chapter presents a state-of-the-art review of CNN inference accelerators over 
FPGAs. The computational workloads, their parallelism, and the involved memory 
accesses are analyzed. At the level of neurons, optimizations of the convolutional 
and fully connected (FC) layers are explained and the performances of the differ-
ent methods compared. At the network level, approximate computing and data-path 
optimization methods are covered and state-of-the-art approaches compared. The 
methods and tools investigated in this survey represent the recent trends in FPGA 
CNN inference accelerators and will fuel the future advances on effcient hardware 
deep learning. 



 

  

  

   

 
 
 
 

 
 
 
 

   

 

 

 

 

3 Accelerating the CNN Inference on FPGAs 

1.2 BACKGROUND ON CNNS AND THEIR 
COMPUTATIONAL WORKLOAD 

In this frst section, we overview the main features of CNNs, mainly focusing on the 
computations and parallelism patterns involved during their inference. 

1.2.1 GENERAL OVERVIEW 

Deep* CNNs are feed-forward†, sparsely connected‡ neural networks. A typical 
CNN structure consists of a pipeline of layers. Each layer inputs a set of data, known 
as a feature map (FM), and produces a new set of FMs with higher-level semantics. 

1.2.2 INFERENCE VERSUS TRAINING 

As typical machine learning algorithms, CNNs are deployed in two phases. First, 
the training stage works on a known set of annotated data samples to create a model 
with a modeling power (which semantics extrapolates to natural data outside the 
training set). This phase implements the back-propagation algorithm [11], which 
iteratively updates CNN parameters such as convolution weights to improve the pre-
dictive power of the model. A special case of CNN training is fne-tuning. When 
fne-tuning a model, weights of a previously trained network are used to initialize the 
parameters of a new training. These weights are then adjusted for a new constraint, 
such as a different dataset or a reduced precision. 

The second phase, known as inference, uses the learned model to classify new data 
samples (i.e., inputs that were not previously seen by the model). In a typical setup, CNNs 
are trained/fne-tuned only once, on large clusters of GPUs. By contrast, the inference 
is implemented each time a new data sample has to be classifed. As a consequence, 
the literature mostly focuses on accelerating the inference phase. As a result, our dis-
cussion overviews the main methods employed to accelerate the inference. Moreover, 
since most of the CNN accelerators benchmark their performance on models trained for 
image classifcation, we focus our chapter on this application. Nonetheless, the methods 
detailed in this survey can be employed to accelerate CNNs for other applications such 
object detection, image segmentation, and speech recognition. 

1.2.3 INFERENCE, LAYERS, AND CNN MODELS 

CNN inference refers to the feed-forward propagation of B input images across L 
layers. This section details the computations involved in the major types of these 
layers. A common practice is to manipulate layers, parameters, and FMs as multidi-
mensional arrays, as listed in Table 1.1. Note that when it will be relevant, the type 
of the layer will be denoted with superscript, and the position of the layer will be 
denoted with subscript. 

* Includes a large number of layer, typically above three. 
† The information fows from the neurons of a layer ˜ towards the neurons of a layer. ˜ + 1 
‡ CNNs implement the weight sharing technique, applying a small number of weights across all the 

input pixels (i.e., image convolution). 
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TABLE 1.1 
Tensors Involved in the Inference of a Given Layer ˜  with Their Dimensions 

X Input FMs B × C × H × W B Batch size (Number of input frames) 

Y Output FMs B × N × V × U W/H/C Width/Height/Depth of Input FMs 

Θ Learned Filters N × C × J × K U/V/N Width/Height/Depth of Output FMs 

β Learned biases N K/J Horizontal/Vertical Kernel size 

A convolutional layer (conv) carries out the feature extraction process by applying – as 
illustrated in Figure 1.1 – a set of three-dimensional convolution flters Θconv to a set 
of B input volumes Xconv. Each input volume has a depth C and can be a color image 
(in the case of the frst conv layer), or an output generated by previous layers in the 
network. Applying a three-dimensional flter to three-dimensional input results in 
a 2D (FM). Thus, applying N three-dimensional flters in a layer results in a three-
dimensional output with a depth N. 

In some CNN models, a learned offset βconv – called a bias – is added to processed 
feature maps. However, this practice has been discarded in recent models [6]. The 
computations involved in feed-forward propagation of conv layers are detailed in 
Equation 1.1. 

˜{b n u v} ̋ [1, B] × [1, N ] × [ ], , , 1,V ] × [1,U 

conv convY [ ,b n v u] =  b, ,  [ ]n 

C J K (1.1) 
conv Qconv[ ,åååX [ ,b c v j u k, + , + ×] , ,+ n c  j k] 

c=1 j=1 k=1 

One may note that applying a depth convolution to a 3D input boils down to applying 
a mainstream 2D convolution to each of the 2D channels of the input, then, at each 
point, summing the results across all the channels, as shown in Equation 1.2. 

FIGURE 1.1 Feed-forward propagation in conv, act, and pool layers (batch size B =1, bias 
β omitted). 
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1, N˜ °n [ ]

å 
C 

conv conv conv convY n[ ]  = b [n] + conv2D(X[ ]c ,Q[ ]c ) (1.2) 
c=1 

Each conv layer of a CNN is usually followed by an activation layer that applies a 
nonlinear function to all the values of FMs. Early CNNs were trained with TanH 
or Sigmoid functions, but recent models employ the rectifed linear unit (ReLU) 
function, which grants faster training times and less computational complexity, as 
highlighted in Krizhevsky et al. [12]. 

˜{b n u v} ̋ [1, B 1, N ] × [ ], , ,  ] × [ 1,V ] × [1,U 

act actY [ ,  , ,  ] = act(X [ , ,  , ]) |  act:=TanH, Sigmoid, ReLU… (1.3) b n h w  b n h w  

The convolutional and activation parts of a CNN are directly inspired by the 
cells of visual cortex in neuroscience [13]. This is also the case with pooling 
layers, which are periodically inserted in between successive conv layers. As 
shown in Equation 1.4, pooling sub-samples each channel of the input FM by 
selecting either the average, or, more commonly, the maximum of a given neigh-
borhood K. As a result, the dimensionality of an FM is reduced, as illustrated 
in Figure 1.1. 

˜{ , , , } ̋ [1, B] × [1, N ] × [1,V ] × [1,U ]b n u v  

pool poolY [ ,b n v u, ,  ] =  max (X [ ,b n v, + p u, + q]) (1.4) 
, [1:K ]p q˜ 

When deployed for classifcation purposes, the CNN pipeline is often terminated 
by FC layers. In contrast with convolutional layers, FC layers do not implement 
weight sharing and involve as much weight as input data (i.e., W = K, H= J,U = V= 1). 
Moreover, in a similar way as conv layers, a nonlinear function is applied to the 
outputs of FC layers. 

˜{b n, } ̋ [1, B] × [1, N ] 
C H W 

fc fc fc fcY [ ,b n] =  b [ ]n + X [ ,b c h w, ,  ] ×Q [n c h w, , , ]  (1.5) ååå 
c=1 h=1 w=1 
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The Softmax function is a generalization of the Sigmoid function, and “squashes” 
a N-dimensional vector X to Sigmoid(X) where each output is in the range [0,1]. 
The Softmax function is used in various multi-class classifcation methods, espe-
cially in CNNs. In this case, the Softmax layer is placed at the end of the net-
work and the dimension of vector it operates on (i.e., N) represents the number of 
classes in the considered dataset. Thus, the input of the Softmax is the data gener-
ated by the last fully connected layer, and the output is the probability predicted 
for each class. 

˜{b n, } ̋ [1, B] × [1, N ] 
exp( [X b n, ]) 

Softmax(X[ ,b n]) = N 
(1.6) 

° exp( [X b c, ]) 
c=1 

Batch normalization was introduced [14] to speed up training by linearly shifting 
and scaling the distribution of a given batch of inputs B to have zero mean and unit 
variance. These layers fnd also their interest when implementing binary neural net-
works (BNNs) as they reduce the quantization error compared to an arbitrary input 
distribution, as highlighted in Hubara et al. [15]. Equation 1.7 details the processing 
of batch norm layers, where the mean μ and the variance σ are statistics collected 
during the training, α and γ are parameters learned during the training, and ϵ is a 
hyper-parameter set empirically for numerical stability purposes (i.e., avoiding divi-
sion by zero). 

˜{b n u v} ̋ [1, B] × [1, N ] × [1,V ] × [ ], , ,  1,U 

BN XBN b n u v  − m (1.7) [ , , , ] 
Y [ , , , ] =  +b n v u g a  

s2 + ̃  

1.2.4 WORKLOADS AND COMPUTATIONS 

The accuracy of CNN models has been increasing since their breakthrough in 2012 
[12]. However, this accuracy comes at a high computational cost. The main challenge 
that faces CNN developers is to improve classifcation accuracy while maintain-
ing a tolerable computational workload. As shown in Table 1.2, this challenge was 
successfully addressed by Inception [16] and ResNet models [17], with their use of 
bottleneck 1 × 1 convolutions that reduce both model size and computations while 
increasing depth and accuracy. 

1.2.4.1 Computational Workload 
As shown in Equations 1.1 and 1.5, the processing of CNN involves an intensive use 
of Multiply Accumulate (MAC) operation. All these MAC operations take place at 
conv and FC layers, while the remaining parts of network are element-wise trans-
formations that can be generally implemented with low-complexity computational 
requirements. 
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TABLE 1.2 
Popular CNN Models with Their Computational Workload* 

Model 
AlexNet 

[12] 
GoogleNet 

[16] 
VGG16 

[6] 
VGG19 

[6] 
ResNet101 

[17] 
ResNet-152 

[17] 

Top1 err (%) 

Top5 err (%) 

42.9% 

19.80% 

31.3% 

10.07% 

28.1% 

9.90% 

27.3% 

9.00% 

23.6% % 

7.1% 

23.0% 

6.7% 

Lc 5 57 13 16 104 155 

666 M 1.58 G 15.3 G 19.5 G 7.57 G 11.3 G˜ Lc 
Cconv 

˜ 
˜=1 

2.33 M 5.97 M 14.7 M 20 M 42.4 M 58 M˜ Lc 
W conv 

˜ 
˜=1 

Act ReLU 

Pool 3 14 5 5 2 2 

Lf 3 1 3 3 1 1 

58.6 M 1.02 M 124 M 124 M 2.05 M 2.05 M˜ L f 
C fc 

˜ 
˜=1 

L f fc 58.6 M 1.02 M 124 M 124 M 2.05 M 2.05 M˜ W̃  
˜=1 

C 724 M 1.58 G 15.5 G 19.6 G 7.57 G 11.3 G 

W 61 M 6.99 M 138 M 144 M 44.4 M 60 M 

* Accuracy Measured on Single-Crops of ImageNet Test-Set 

In this chapter, the computational workload C  of a given CNN corresponds to the 
number of MACs it involves during inference*. The number of these MACs mainly 
depends on the topology of the network, and more particularly on the number of 
conv and FC layers and their dimensions. Thus, the computational workload can be 
expressed as in Equation 1.8, where Lc is the number of conv (fully connected) lay-

convers, and C˜  (C˜ 
fc ) is the number of MACs occurring on a given convolution (fully 

connected) layer ˜. 

Lc L f 

˜ conv + ˜ fcC = C˜ C˜ (1.8) 
˜=1 ˜=1 

convC˜ = N˜ × C˜ × J˜ × K˜ × U˜ × V˜ (1.9) 

C˜ 
fc = N˜ × C˜ × W˜ × H˜ (1.10) 

* Batch size is set to 1 for clarity purposes. 
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In a similar way, the number of weights, and consequently the size of a given CNN 
model, can be expressed as follows: 

Lc L f 

conv + ˜ fcW = ˜W̃  W̃  (1.11) 
˜=1 ˜=1 

W̃  
conv = N˜ × C˜ × J˜ × K˜ (1.12) 

W̃  
fc = N˜ × C˜ × W˜ × H˜ (1.13) 

For state-of-the-art CNN models, Lc, N˜, and C˜ can be quite large. This makes 
CNNs computationally and memory intensive, where for instance, the classifcation 
of a single frame using the VGG19 network requires 19.5 billion MAC operations. 

It can be observed in the same table that most of the MACs occur on the convolu-
tion parts, and consequently, 90% of the execution time of a typical inference is spent 
on conv layers [18]. By contrast, FC layers marginalize most of the weights and thus 
the size of a given CNN model. 

1.2.4.2 Parallelism in CNNs 
The high computational workload of CNNs makes their inference a challenging task, 
especially on low-energy embedded devices. The key solution to this challenge is to 
leverage on the extensive concurrency they exhibit. These parallelism opportunities 
can be formalized as follows: 

• Batch Parallelism: CNN implementations can simultaneously classify 
multiple frames grouped as a batch B in order to reuse the flters in each 
layer, minimizing the number the memory accesses. However, and as 
shown in [10], batch parallelism quickly reaches its limits. This is due to the 
fact that most of the memory transactions result from storing intermediate 
results and not loading CNN parameters. Consequently, reusing the flters 
only slightly impacts the overall processing time per image. 

• Inter-layer Pipeline Parallelism: CNNs have a feed-forward hierarchical 
structure consisting of a succession of data-dependent layers. These layers 
can be executed in a pipelined fashion by launching layer ( )˜  before ending 
the execution of layer (˜ −1). This pipelining costs latency but increases 
throughput. 

Moreover, the execution of the most computationally intensive parts (i.e., conv lay-
ers), exhibits the four following types of concurrency: 

• Inter-FM Parallelism: Each two-dimensional plane of an FM can be pro-
cessed separately from the others, meaning that PN elements of Yconv can be 
computed in parallel (0 < PN < N). 



 

 

          
    

     
   

   
   

        

   

  

  

  

  

 

9 Accelerating the CNN Inference on FPGAs 

• Intra-FM Parallelism: In a similar way, pixels of a single output FM plane 
are data-independent and can thus be processed concurrently by evaluating 
PV × PU values of Yconv[n] (0 < PV × PU < V × U). 

• Inter-convolution Parallelism: Depth convolutions occurring in conv lay-
ers can be expressed as a sum of 2D convolutions, as shown in Equation 
1.2. These 2D convolutions can be evaluated simultaneously by computing 
concurrently Pc elements (0 < Pc < C). 

• Intra-convolution Parallelism: The 2D convolutions involved in the pro-
cessing of conv layers can be implemented in a pipelined fashion such as 
in [76]. In this case PJ × PK multiplications are implemented concurrently 
(0 < PJ × PK < J × K). 

1.2.4.3 Memory Accesses 
As a consequence of the previous discussion, the inference of a CNN shows large vec-
torization opportunities that can be exploited by allocating multiple computational 
resources to concurrently process multiple features. However, this parallelization 
can not accelerate the execution of a CNN if no datacaching strategy is implemented. 
In fact, memory bandwidth is often the bottleneck when processing CNNs. 

In FC parts, the execution can be memory-bounded because of the high number 
of weights that these layers contain, and consequently, the high number of memory 
reads required. 

This is expressed in Equation 1.14, where M˜ 
fc refers to the number of memory 

accesses occurring in an FC layer ˜. This number can be written as the sum of 
memory accesses reading the inputs X˜ 

fc, the memory accesses reading the weights 

(q˜ 
fc), and the number of memory accesses writing the results (Y˜ 

fc ). 

fc fc fc fcM˜ = MemRd(X˜ ) + MemRd(q˜ ) + MemWr(Y˜ ) (1.14) 

= C H W˜ ˜ + N C H˜ W˜ + N (1.15) ˜ ˜ ˜ ˜ 

˜ N C H W  (1.16) ˜ ˜  ˜ ˜  

Note that the fully connected parts of state-of-the-art models involve large values 
of N˜ and C˜ , making the memory reading of weights the most impacting factor, 
as formulated in Equation 1.16. In this context, batch parallelism can signifcantly 
accelerate the execution of CNNs with a large number of FC layers. 

In the conv parts, the high number of MAC operations results in a high number 
of memory accesses, as each MAC requires at least 2 memory reads and 1 memory 
write*. This number of memory accesses accumulates with the high dimensions of 
data manipulated by conv layers, as shown in Equation 1.18. If all these accesses are 
towards external memory (for instance, DRAM), throughput and energy consumption 

* This is the best-case scenario of a fully pipelined MAC, where intermediate results do not need to be 
loaded. 
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will be highly impacted, because DRAM access engenders high latency and energy 
consumption, even more than the computation itself [21]. 

conv conv conv convM˜ = MemRd(X˜ ) + MemRd(q˜ ) + MemWr(Y˜ ) (1.17) 

= C H W  + N C J K˜ ˜ ˜  ˜  (1.18) ˜ ˜ ˜ + N˜  ˜ ˜U V  

The number of these DRAM accesses, and thus latency and energy consumption, can 
be reduced by implementing a memory-caching hierarchy using on-chip memories. 
As discussed in the next sections, state-of-the-art CNN accelerators employ register 
fles as well as several levels of caches. The former, being the fastest, is implemented 
at the nearest of the computational capabilities. The latency and energy consumption 
resulting from these caches is lower by several orders of magnitude than external 
memory accesses, as pointed out in Sze et al. [22]. 

1.2.4.4 Hardware, Libraries, and Frameworks 
In order to catch the parallelism of CNNs, dedicated hardware accelerators are 
developed. Most of them are based on GPUs, which are known to perform well 
on regular parallelism patterns thanks to simd and simt execution models, a dense 
collection of foating-point computing elements that peak at 12 TFLOPs, and high 
capacity/bandwidth on/off-chip memories [23]. To support these hardware accel-
erators, specialized libraries for deep learning are developed to provide the neces-
sary programming abstraction, such as CudNN on Nvidia GPU [24]. Built upon 
these libraries, dedicated frameworks for deep learning are proposed to improve 
productivity of conceiving, training, and deploying CNNs, such as Caffe [25] and 
TensorFlow [26]. 

Beside GPU implementations, numerous FPGA accelerators for CNNs have been 
proposed. FPGAs are fne-grained programmable devices that can catch the CNN 
parallelism patterns with no memory bottleneck, thanks to the following: 

1. A high density of hard-wired digital signal processor (DSP) blocks that are 
able to achieve up to 20 (8 TFLOPs) TMACs [8]. 

2. A collection of in situ on-chip memories, located next to DSPs, that can be 
exploited to signifcantly reduce the number of external memory accesses. 

As a consequence, CNNs can beneft from a signifcant acceleration when running 
on reconfgurable hardware. This has caused numerous research efforts to study 
FPGA-based CNN acceleration, targeting both high performance computing (HPC) 
applications [27] and embedded devices [28]. 

In the remaining parts of this chapter, we conduct a survey on methods and hard-
ware architectures to accelerate the execution of CNN on FPGA. The next section 
lists the evaluation metrics used, then Sections 1.4 and 1.5 respectively study the 
computational transforms and the data-path optimization involved in recent CNN 
accelerators. Finally, the last section of this chapter details how approximate com-
puting is a key in FPGA-based deep learning, and overviews the main contributions 
implementing these techniques. 
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1.3 FPGA-BASED DEEP LEARNING 

Accelerating a CNN on an FPGA-powered platform can be seen as an optimization 
effort that focuses on one or several of the following criteria: 

• Computational Throughput ( ): A large number of the works studied T 
in this chapter focus on reducing the CNN execution times on the FPGA 
(i.e., the computation latency), by improving the computational throughput 
of the accelerator. This throughput is usually expressed as the number of 
MACs an accelerator performs per second. While this metric is relevant in 
the case of HPC workloads, we prefer to report the throughput as the num-
ber of frames an accelerator processes per second (fps), which better suits 
the embedded vision context. The two metrics can be directly related using 
Equation 1.19, where C  is defned in Equation 1.8, and refers to the number 
of computations a CNN involve in order to process a single frame: 

T(MACS)T(FPS) = (1.19) 
C(MAC) 

• Classifcation/Detection Perf. ( )A : Another way to reduce CNN execution 
times is to trade some of their modeling performance in favor of faster exe-
cution timings. For this reason, the classifcation and detection metrics are 
reported, especially when dealing with approximate computing methods. 
Classifcation performance is usually reported as top-1 and top-5 accura-
cies, and detection performance is reported using the mAP50 and mAP75 
metrics. 

• Energy and Power Consumption ( )P : Numerous FPGA-based accelera-
tion methods can be categorized as either latency-driven or energy-driven. 
While the former focus on improving the computational throughput, the 
latter considers the power consumption of the accelerator, reported in watts. 
Alternatively, numerous latency-driven accelerators can be ported to low-
power-range FPGAs and perform well under strict power consumption 
requirements. 

• Resource Utilization ( )R : When it comes to FPGA acceleration, the utili-
zation of the available resources (lut, DSP blocks, sram blocks) is always 
considered. Note that the resource utilization can be correlated to the power 
consumption*, but improving the ratio between the two is a technological 
problem that clearly exceeds the scope of this chapter. For this reason, both 
power consumption and resources utilization metrics will be reported when 
available. 

An FPGA implementation of a CNN has to satisfy to the former requirements. In this 
perspective, the literature provides three main approaches to address the problem 

* At a similar number of memory accesses. These accesses typically play the most dominant role in the 
power consumption of an accelerator. 



 

   

 

 

 

 
      

 

 

 

12 Deep Learning in Computer Vision 

FIGURE 1.2 Main approaches to accelerate CNN inference on FPGAs. 

of FPGA-based deep learning. These approaches mainly consists of computational 
transforms, data-path optimization, and approximate computing techniques, as illus-
trated in Figure 1.2. 

1.4 COMPUTATIONAL TRANSFORMS 

In order to accelerate the execution of conv and FC layers, numerous implementa-
tions rely on computational transforms. These transforms, which operate on the FM 
and weight arrays, aim at vectorizing the implementations and reducing the number 
of operations occurring during inference. 

Three main transforms can be distinguished. The im2col method reshapes the 
feature and weight arrays in a way to transform depth convolutions into matrix mul-
tiplications. The FFT method operates on the frequency domain, transforming con-
volutions into multiplications. Finally, in Winograd fltering, convolutions boil down 
to element-wise matrix multiplications thanks to a tiling and a linear transformation 
of data. 

These computational transforms mainly appear in temporal architectures and are 
implemented by means of variety of linear algebra libraries such OpenBLAS for 
CPUs* or cuBLAS for GPUs†. Besides this, various implementations make use of 
these transforms to effciently map CNNs on FPGAs. 

This section discusses the three former methods, highlighting their use-cases and 
computational improvements. For a better understanding, we recall that for each 
layer ˜: 

• The input feature map is represented as four-dimensional array X, in which 
the dimensions B × C × H × W respectively refer to the batch size, the num-
ber of input channels, the height, and the width. 

* https://www.openblas.net/ 
† https://developer.nvidia.com/cublas 

https://www.openblas.net/
https://developer.nvidia.com/
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• The weights are represented as four-dimensional array Θ, in which the 
dimensions N × C × J × K respectively refer to the depth of the output fea-
ture map, the depth of the input feature map, the vertical, and the horizontal 
kernel size. 

1.4.1 THE IM2COL TRANSFORMATION 

In CPUs and GPUs, a common way to process CNNs is to map conv and FC layers 
as general matrix multiplications (GEMMs). A number of studies generalize this 
approach to FPGA-based implementations. 

For FC layers, in which the processing boils down to a matrix-vector multiplica-
tion problem, the GEMM-based implementations fnd their interest when processing 
a batch of FMs. As mentioned in Section 1.2.4.1, most of the weights of CNNs are 
employed in the FC parts. Instead of loading these weights multiple times to clas-
sify multiple inputs, features extracted from a batch of inputs are concatenated onto 
a CHW × B matrix. In this case, the weights are loaded only one time per batch, 
as depicted in Figure 1.3a. As a consequence, the former Equation 1.16 – which 
expressed the number of memory accesses occurring on FC layers – becomes the 
following: 

fc fc fc fcM˜ = MemRd(q˜ ) + MemRd(X˜ ) + MemWr(Y˜ ) (1.20) 

= N C W H  + BC H W  + BN (1.21) ˜ ˜ ˜ ˜  ˜ ˜ ˜  ̃  

˜ N C H W  (1.22) ˜ ˜  ˜ ˜  

As detailed in Section 1.2.4.2, the vectorization of FC layers is often employed in 
GPU implementations to increase the computational throughput while maintaining 
a constant memory bandwidth utilization. The same concept holds true for FPGA 
implementations [31, 48, 49], which batch the FC layers to map them as GEMMs. 
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FIGURE 1.3 GEMM-based processing of FC layers (a) and conv layers (b). 
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3D convolutions can also be mapped as GEMMs using the so-called im2col 
method introduced in [30]. First, this method fattens all the weights of a given conv 

layer onto an N × CKJ matrix ˜̃ . Second, it rearranges the input feature maps onto a 

CKJ × UV matrix X̃ , squashing each feature map to a column*. With these reshaped 

data, the output feature maps Ỹ  are computed by multiplying of two former matrices, 
as illustrated in Figure 1.3b. 

˜ conv ˜ conv ˜ convY = ˜ × X (1.23) 

Suda et al. [29] and more recently, Zhang et al. [50] and Guan et al. [51] leverage on 
im2col to derive OpenCL-based FPGA accelerators for CNN. However, this method 
introduces redundant data in the input FM matrix, which can lead to either ineff-
ciency in storage or complex memory access patterns. As a result, and as pointed out 
in [22], other strategies to map convolutions have to be considered. 

1.4.2 WINOGRAD TRANSFORM 

Winograd minimal fltering algorithm, introduced in [52], is a computational trans-
form that can be applied to process convolutions with a stride of 1, which is very 
common in CNN topologies. 

This algorithm is particularly effcient when processing small convolutions 
(where K ≤ 3), as advocated in [53]. In this work, authors outperformed the through-
put of the conventional im2col method by a factor of ×7.2 when executing VGG16 
on a TitanX GPU. 

In Winograd fltering (Figure 1.4), data is processed by blocks, referred to as tiles, 
as follows: 

T1. An input FM tile x of size (u × u) is pre-processed: x̃ = A Ax 
2. In a similar way, θ, the flter tile of size (k × k), is transformed into 

˜ ˜  Tq q: =  xB B  

~ 

~ ~ 

Input FM Xconv 

W 

H 

w 

w k 
k 

conv kernel ˜conv 

J 

K 
x 

x ˜ 

Winograd 
transform 

= y 

w+k-1 w+k-1 

u 
u 

Output FM Yconv 

U 

˜ y 

EWMM 

V 

FIGURE 1.4 Winograd fltering F(u × u, k × k). 

* That’s what the im2col name refers to: fattening an image to a column. 
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3. Winograd fltering algorithm, denoted F(u × u, k × k), outputs a tile y of size 
(u × u) that is computed according to Equation 1.24 

y = CT

°̃ q̃ ̃  x̃ ˛̋ C (1.24) 

where A, B, C are transformation matrices defned in the Winograd algorithm [52] 
and ˜ denotes the Hadamard product also known as EWMM. 

While a standard fltering requires u2 × k2 multiplications, Winograd algorithm, 
denoted F(u × u, k × k), requires (u + k − 1)2 multiplications [52]. In the case of tiles 
of a size u = 2 and kernels of size k = 3, this corresponds to an arithmetic complex-
ity reduction of ×2.25 [53], and in this case, transform matrices can be written as 
follows: 

1 0 −1 0 ˙° 
˝
˝
˝
˝ 

ˇ
ˇ
ˇ
ˇ
ˆ0 1 0 −1 

° ˙1 1 1 0 0 1 1 0 
AT = ; BT =˝

˛
ˇ
ˆ− −1 −0 1 1 0 1 1 0 

˛ 

° ˙ 
˝
˝
˝
˝ 

1 0 0 

1 / 2  ˇ
ˇ
ˇ
ˇ 

1 / 2  1 / 2 
C = (1.25) 

−1 / 2  1 / 2  

0 0 1 

1 / 2 

˛ ˆ 

Beside this complexity reduction, implementing Winograd fltering in FPGA-based 
CNN accelerators has two advantages. First, transformation matrices A, B, C can be 
evaluated offine once u and k are determined. As a result, these transforms become 
multiplications with the constants that can be implemented by means of lut and shift 
registers, as proposed in [54]. 

Second, Winograd fltering can employ the loop optimization techniques dis-
cussed in Section 1.5.2 to vectorize the implementation. On one hand, the computa-
tional throughput is increased when unrolling the computation of the ewmm parts 
over multiple DSP blocks. On the other hand, memory bandwidth is optimized using 
loop tiling to determine the size of the FM tiles and flter buffers. 

First, utilization of Winograd fltering in FPGA-based CNN accelerators is inves-
tigated in [32] and delivers a computational throughput of 46 GOPs when executing 
AlexNet convolutional layers. This performance is signifcantly improved by a factor 
of ×42 in [31] when optimizing the data path to support Winograd convolutions (by 
employing loop unrolling and tiling strategies), and storing the intermediate FM in 
on-chip buffers (cf Section 1.4). 

The same method is employed in [54] to derive a CNN accelerator on a Xilinx 
ZCU102 device that delivers a throughput of 2.94 TOPs on VGG convolutional lay-
ers. The reported throughput corresponds to half of the performance of a TitanX 
device, with 5.7× less power consumption [23]*. 

* Implementation in the TitanX GPU employs Winograd algorithm and 32-bit foating point arithmetic. 



 

   

  

  

  

 

   

 
 
 

 
 

   

 

 
 

  

16 Deep Learning in Computer Vision 

1.4.3 FAST FOURIER TRANSFORM 

Fast Fourier Transform (FFT) is a well known algorithm to transform the 2D convo-
lutions into ewmm in the frequency domain, as shown in Equation 1.26: 

conv2D( [X c],˜[ ,  ]) = IFFT FFT( [X c]) ̃  FFT ˜ ,n c  ( ( [n c])) (1.26) 

Using FFT to process 2D convolutions reduces the complexity from O(W2 × K2) to 
O(W2log2(W)), which is exploited to derive FPGA-based accelerators and to infer 
CNN [34]. When compared to standard fltering and Winograd algorithm, FFT fnds 
its interest in convolutions with large kernel size (K > 5), as demonstrated in [53, 
55]. The computational complexity of FFT convolutions can be further reduced to 
O(Wlog2(K)) using the overlap-and-add method [56], which can be applied when 
the signal size is much larger than the flter size, which is typically the case in conv 
layers (W >> K ). Works in [33, 57] leverage on the overlap-and-add to implement 
frequency domain acceleration for conv layers on FPGA, which results in a compu-
tational throughput of 83 GOPs for AlexNet (Table 1.3). 

1.5 DATA-PATH OPTIMIZATIONS 

As highlighted in Section 2.4.2, the execution of CNN exhibits numerous sources 
of parallelism. However, due to the resource limitations of FPGA devices, it might 
be impossible to fully exploit all the concurrency patterns, especially with the 
sheer volume of operations involved in deep topologies. In other words, the execu-
tion of recent CNN models cannot fully be unrolled sometimes, not even for a 
single conv layer. 

To address this problem, the general approach, advocated in state-of-the-art 
implementations, is to map a limited number of processing elements (PEs) on the 
FPGA. These PEs are then reused by temporally iterating data through them. 

1.5.1 SYSTOLIC ARRAYS 

Early FPGA-based accelerators for CNN implemented systolic arrays to accelerate 
the 2D fltering in convolutions layers [58—61]. As illustrated in Figure 1.5a, systolic 
arrays employ a static collection of PE, typically arranged in a 2-dimensional grid. 
These PE operate as a co-processor under the control of a central processing unit. 
The confguration of systolic arrays is agnostic to the CNN model, making them 
ineffcient to process large-scale networks for the following three reasons: 

First, the static collection of PE can support convolutions only up to a given flter 
size Km, where typical values of Km range from 7 in [59] to 10 in [61]. Therefore, in 
convolutional layer ( )˜ , K˜ > Km  is not supported by the accelerator. Second, systolic 
arrays suffer from under-utilization when processing layers in which the kernel size 
K˜ is much smaller then Km. This is for instance the case in [61], where the process-
ing of 3 × 3 convolutions uses only 9% of DSP blocks, while the processing of these 
layers can be further parallelized and thus accelerated. Third and fnally, PE in sys-
tolic arrays do not usually include memory caches and have to fetch their inputs from 
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PE PE PE PE 

PE PE PE PE 

DMA 

Off-chip 
memory 

... 

... 
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... 

...
 

Bottleneck 

+ act 

conv 
+ 

... ...
 

+ 

...
 

xconv 

˜conv 

P 

1 

1 

xconv 

˜conv 

pc 

pc 

yconv 

Previous partial sum 

conv 

conv 

C 

(a) (b) (c) 

FIGURE 1.5 Generic data paths of FPGA-based CNN accelerators: (a) Static systolic array. 
(b) Dedicated SIMD accelerator. (c) Dedicated processing element. 

an off-chip memory. As a result, the performance of systolic arrays can rapidly be 
bounded by memory bandwidth of the device. 

1.5.2 LOOP OPTIMIZATION IN SPATIAL ARCHITECTURES 

Due to the ineffciency of systolic arrays, fexible and dedicated spatial architectures 
for CNN were mapped on FPGA. The general computation fow in these accelerators 
is illustrated in Figure 1.5b. 

First, FMs and weights are fetched from DRAM to on-chip buffers, and are then 
streamed into the PE. At the end of the PE computation, results are transferred back 
to on-chip buffers and, if necessary, to the external memory in order to be fetched in 
their turn to process the next layers. Each PE – as depicted in Figure 1.5c – is con-
fgurable and has its own computational capabilities by means of DSP blocks, and 
its own data caching capabilities by means of on-chip registers. With this paradigm, 
the problem of CNN mapping consists of fnding the optimal architectural and tem-
poral confguration of PE: in other words, the best number of DSP blocks per PE, the 
optimal temporal scheduling of data that maximizes the computational throughput. 

For convolutional layers, in which the processing is described in Listing 1.1, fnd-
ing the optimal PE confguration comes down to a loop optimization problem [28, 
29, 39, 40, 62–64]. 

Listing 1.1: Nested Loops 

// Lb : Batch 
for (int b =0;b<B,l++) { 
// Ll: Layer 
for (int l =0;l<L,l++) { 
// Ln: Y Depth 
for (int n =0;n<N;n++) { 
// Lv: Y Columns 
for (int v =0;v<V,v++) { 
// Lu: Y Raws 



 

 
 

  

   

19 Accelerating the CNN Inference on FPGAs 

for (int u =0;u<U,u++) { 
// Lc: X Depth 
for (int c =0;n<C;c++) { 
// Lj: Theta Columns 
for (int j =0;j<J,j++) { 
// Lk: Theta Raws 
for (int k =0;k<K,k++) { 
Y[b,l,n,v,u] += 
X[b,l,c,v+j,u+k] * 
Theta [l,n,c,j,k] 
}}}}}}} 

Listing 1.2: Loop Tiling in conv layers 

for (int b =0;b<B,l++){ 
for (int n =0;n<N;n+= Tn){ 
for (int v =0;v<V,v+= Tv){ 
for (int u =0;u<U,u+= Tu){ 
for (int c =0;n<C;c+= Tc){ 
// DRAM : Load in on - chip 
buffers the tiles : 
// X[l,c:c+Tc ,v:v+Tv ,u:u+Tu] 
// Theta [l,n:n+Tn ,c:c+Tc ,j,k] 
for (int tn =0; tn <Tn;tn ++){ 
for (int tv =0; tv <Tv ,tv ++){ 
for (int tu =0; tu <Tu ,tu ++){ 
for (int tc =0; tn <Tc;tc ++){ 
for (int j =0;j<J,j++){ 
for (int k =0;k<K,k++){ 
Y[l,tn ,tv ,tu] += 
X[l,tc ,tv+j,tu+k] * 
Theta [l,tn ,tc ,j,k]; 
}}}}}} // DRAM : Store output 
}}}} 

This problem is addressed by applying loop optimization techniques such loop 
unrolling, loop tiling, or loop interchange to the 7 nested loops of Listing 1.1. In 
this case, the unroll and tiling factors (respectively Pi and Ti) determine the number 
of PEs, the computational resources, and the on-chip memory allocated to each PE. 

Loop Unrolling 
Unrolling a loop Li with an unrolling factor Pi (P i i  { , , , , , ,L V U N C J K}) acceler-i ˜ , ° 
ates its execution by allocating multiple computational resources. Each of the par-
allelism patterns listed in Section 1.2.4.2 can be implemented by unrolling one of 
the loops of Listing 1.1, as summarized in Table 1.4. For the confguration given in 
Figure 1.5c, the unrolling factor PN sets the number of PEs. The remaining factors 
– PC, PK, PJ – determine the number of multipliers, as well as the size of buffer con-
tained in each PE (Figure 1.6). 
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Loop Tiling
In general, the capacity of on-chip memory in current FPGA is not large enough to 
store the weights and intermediate FM of all CNN layers*. For example, AlexNet’s 
convolutional layers resort to 18.6 Mbits of weights, and generate a total 70.7 Mbits 
of intermediate feature maps†. In contrast, the highest-end Stratix V FPGA provides 
a maximum of 52 Mbits of on-chip ram.

As a consequence, FPGA-based accelerators resort to external DRAM to store 
these data. As mentioned in Section 1.2.4.3, DRAM accesses are costly in terms of 
energy and latency, and data caches must be implemented by means of on-chip buf-
fers and local registers. The challenge is thus to build a data path in a way that every 
data transferred from DRAM is reused as much as possible.

For conv layers, this challenge can be addressed by tiling the nested loops of 
Listing 1.1. Loop tiling [66] divides the FM and weights of each layer into multiple 
groups that can fit into the on-chip buffers. For the configuration given in Figure 1.5c, 
the size of the buffers containing input FM, weights, and output FM is set according 
to the tiling factors listed in Table 1.4.

 BX C H WT T Tconv = × ×  (1.27)

* Exception can be made for [6666], where a large cluster of FPGAs is interconnected and resorts only 
to on-chip memory to store CNN weights and intermediate data.

† Estimated by summing the number of outputs for each convolution layer.

TABLE 1.4
Loop Optimization Parameters Pi and Ti

Parallelism Intra layer Inter FM Intra FM Inter conv. Intra conv.

Loop LL LN LV LU Lc LJ LK

Unroll Factor PL PN PV PU Pc PJ PK

Tiling Factor TL TN TU TU TC TJ TK

Input FMs Xconv Output FMs Yconv

C N

W
Ms 

U

H
V

TC TN

TH
T

T V
W

TU

conv Weights
ϴconv

TC

...
C

TK

TJ

J

K

TW

PK

PJ

×
×
×

× ×
×
× ×

×

P × J PK 
mult.

+

+

+

+
+...

Adder 
tree

θi

xconv
i

conv

FIGURE 1.6 Loop tiling and unrolling in convolutional layers.



 

  

  

 

  

    

 
 
 

  
  

 

 

 

 

 

21 Accelerating the CNN Inference on FPGAs 

B˜ 
conv = TN × TC × TJ × TK (1.28) 

BY 
conv = TN × TV × TU (1.29) 

With these buffers, the memory accesses occurring in the conv layer (cf Equation 

1.18) are respectively divided by BX 
conv, B˜ 

conv  and BY 
conv , as expressed in Equation 1.30. 

C H W N C J K  ˜ ˜ ˜conv ˜ ˜ ˜  ̃ ˜ ˜  ˜ N U V 
M˜ = + + (1.30) 

T T T T T T T  T T T C H W N C J K N V U  

Since the same hardware is reused to accelerate the execution of multiple conv layers 
with different workloads, the tiling factors are agnostic to the workload of a specifc 
layer, as can be noticed in the denominator of Equation 1.30. As a result, the value 
of the tiling factors is generally set to optimize the overall performance of a CNN 
execution. 

1.5.3 DESIGN SPACE EXPLORATION 

Finding the optimal unrolling and tiling factors for a specifc device is a complex 
problem that is generally solved using brute-force design space exploration [29, 
39, 40, 48, 67, 68]. This exploration is driven by an analytical model, in which the 
inputs are loop factors Pi, Ti and outputs are theoretical predictions of the computa-
tional throughput ( )T , the size of buffers ( )B , and the number of external memory 
accesses ( )M . This model is parametrized by the available resources of a given 
FPGA platform and the workload of the considered CNN. To select feasible solu-
tions for this optimization problem, most literature approaches rely on the Roofine 
method [69] to accept or reject design solutions that do not match with the maxi-
mum computational throughput or the maximum memory bandwidth of a given 
device (Figures 1.7). 

A typical design space exploration driven by the roofine model is illustrated in 
Figure 1.8. In this graph, each point represents the performance of an explored solu-
tion (Pi, Ti). For a given FPGA platform, the attainable bandwidth and computational 
throughput are respectively reported by the diagonal and horizontal lines. Point A is 
an invalid solution, as it is above the bandwidth roof, while point A′ is feasible but 
delivers mediocre computational throughput. Acceptable solutions are represented 
by points C and D, the latter being better than the former since it has lower band-
width requirements. 

FIGURE 1.7 Design space exploration methodology. 
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FIGURE 1.8 Example of a design selection driven by the roofine model. 

1.5.4 FPGA IMPLEMENTATIONS 

Employing loop optimizations to derive FPGA-based CNN accelerator was frst 
investigated in [39]. In this work, Zhang et al. report a computational throughput of 
61.62 GOPs in the execution of AlexNet convolutional layers by unrolling loops LC 

and LN. This accelerator, described with Vivado HLS tools, relies on 32-bit foating-
point arithmetic. Works in [68] follow the same unrolling scheme and feature a 16-bit 
fxed-point arithmetic, resulting in a ×2.2 improvement in terms of computational 
throughput. Finally, the same unrolling and tiling scheme is employed in recent work 
[48], where authors report a ×13.4 improvement, thanks to a deeply pipelined FPGA 
cluster of four Virtex7-XV960t devices. 

In all these implementations, loops LJ and LK are not unrolled because J and K are 
usually small, especially in recent topologies. Works of Motamedi et al. [40] study 
the impact of unrolling these loops in AlexNet, where the frst convolutional layers 
use large 11 × 11 and 5 × 5 flters. Expanding loop unrolling and tiling to loops LJ 

and LK results in a 1.36× improvement in computational throughput vs. [39] on the 
same VX485T device when using 32-bit foating-point arithmetic. Nevertheless, and 
as pointed out in [63], unrolling these loops is ineffective for recent CNN models that 
employ small convolution kernels. 

The values of U, V, N can be very large in CNN models. Consequently, unroll-
ing and tiling loops LU, LV, LN can be effcient only for devices with high computa-
tional capabilities (i.e., DSP blocks). This is demonstrated in works of Rahman et al. 
[67] that report an improvement of ×1.22 over [39] when enlarging the design space 
exploration to loops LU, LV, LN, which comes at the price of very long exploration tim-
ing. In order to keep data in on-chip buffer after the execution of a given layer, works 
of Alwani et al. [62] advocate the use of fused-layer accelerators by tiling across 
layer LL. As a result, authors are able to remove 95% of DRAM accesses at the cost 
of 362 KB of extra on-chip memory. 

In all these approaches, loops LN, LC, LJ, LK are unrolled in a similar way they 
are tiled (i.e., Ti = Pi). By contrast, the works of Ma et al. [63, 70] fully explore all 



 

      
      

  

 
 
 

 
 

     

 

   

 

  
   

       

23 Accelerating the CNN Inference on FPGAs 

the design variables searching for optimal loop unroll and tiling factors. More 
particularly, the authors demonstrate that the input FM and weights are optimally 
reused when unrolling only computations within a single input FM (i.e., when 
PC = PJ = PK = 1). Tiling factors are set in such a way that all the data required to 
compute an element of Y are fully buffered (i.e., TC = C, TK = K, TJ = J). The remain-
ing design parameters are derived after a brute-force design exploration. The same 
authors leverage on these loop optimizations to build an RTL compiler for CNNs 
in [71]. To the best of our knowledge, this accelerator outperforms all the previ-
ous implementations that are based on loop optimization in terms of computational 
throughput (Tables 1.5  through 1.7). 

1.6 APPROXIMATE COMPUTING OF CNN MODELS 

Besides the computational transforms and data-path optimization, the CNN execu-
tion can be accelerated when employing approximate computing, which is known to 
perform effciently on FPGAs [73]. 

In the methods detailed in this section, a minimal amount of the CNN accu-
racy is traded to improve the computational throughput or energy effciency of the 
accelerator. Two main strategies are employed. The frst implements approximate 
arithmetic to process the CNN layers with a reduced precision. The second aims 
at reducing the number of operations occurring in CNN models without criti-
cally affecting the modeling performance. Note that both approaches can resort 
to fne-tuning in order to compensate the accuracy loss introduced by approximate 
computing. 

1.6.1 APPROXIMATE ARITHMETIC FOR CNNS 

Several studies have demonstrated that the precision of both operations and operands 
in CNN, and more generally in neural networks, can be reduced without critically 
affecting their predictive performance. This reduction can be achieved by quantizing 
either or both of the CNN inputs, weights, and/or FM using a fxed-point numerical 
representation. 

1.6.1.1 Fixed-Point Arithmetic 
In a general way, CNN models are deployed in CPU and GPU using the same numer-
ical precision they were trained with, relying on the single-precision foating-point 
representation. This format employs 32 bits, arranged according to the IEEE754 
standard. As current FPGAs support foating operations, various implementations 
[39, 62, 67] employ such data representation. 

Nonetheless, numerous studies such [74–76] demonstrate that the inference of 
CNNs can be achieved with a reduced precision of operands. More particularly, 
works in [77, 78] demonstrate the applicability of fxed-point (F × P) arithmetic to 
train and infer CNNs. The F × P representation encodes numbers with a given bit-
width b, using i bits for the integer part, and f bits for the fractional part (b = i + f). 
Note that the value of i is selected according the desired numerical range, and the 
value of f is selected according to the desired numerical precision. 
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27 Accelerating the CNN Inference on FPGAs 

In the simplest version of fxed-point arithmetic, all the numbers are encoded 
with the same fractional and integer bit-widths. This means that the position of the 
radix point is similar for all the represented numbers. In this chapter, we refer to this 
representation as static F × P. 

When compared to foating point, F × P is known to be more effcient in terms of 
hardware utilization and power consumption. This is especially true in FPGAs [79], 
where – for instance – a single DSP block in Intel devices can either implement one 
32-bit foating-point multiplication or three concurrent F × P multiplications of 9 bits 
[8]. This motivated early FPGA implementations such as [61, 80] to employ fxed-
point arithmetic in deriving CNN accelerators. These implementations mainly use 
a 16-bit Q8.8 format, where 8 bits are allocated to the integer parts, and 8 bits to the 
fractional part. Note that the same Q8.8 format is used for representing the features 
and the weights of all the layers. 

In order to prevent overfow, the former implementations also expand the bit-
width when computing weighted sums of convolutions. Equation 1.31 explains how 
the bit-width is expanded; if bX bits are used to quantize the input FM and bΘ bits are 
used to quantize the weights, an accumulator of bacc bits is required to represent a 

weighted sum of C K 2  elements, where: ˜ ˜ 

˝ 2 ˆbacc = bx + b˘ + max log2 (C˜K˜ ) (1.31) 
˜ ˙ ˇ 

In practice, most FPGA accelerators use 48-bit accumulators, such as in [59, 60] 
(Figure 1.9). 

X + 

bq bits 

bx bits bq + bx bits 

bq + bx + 
log (CK²) bits2 

Accumulate 

convX

convQ

(a) bit-width of accumulators 

Integer part Fractional part {{sign mantissa 

0 0 1 1 0 0 1 0 

 

  
  

 
  

 

  

 

0 0 1 1 0 0 1 0 

(b) Dynamic FxP 

FIGURE 1.9 Fixed-point arithmetic for CNN accelerators. 
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1.6.1.2 Dynamic Fixed Point for CNNs 
In deep topologies, it can be observed that distinct parts of a network can have sig-
nifcantly different ranges of data. In particular, the features of the deep layers tend 
to have a much larger numerical range when compared to the features of the frst 
CNN layers. 

The histograms of Figure 1.10a depict this phenomenon for AlexNet convolu-
tional layers*. While the CNN inputs (data column) are normalized take their values 
between 0 and 1, the outputs of the frst convolutional layer (conv1 column) have a 
wider numerical range, between 2−7 and 22. This is even more salient for the ffth 
convolutional layer, where most of the outputs take their values between 2−1 and 26. 
The same problem appears when comparing the numericals of the CNN weights, 
and CNN activations. In this case, the weights are numerically much smaller when 
compared to the activations, as illustrated in Figure 1.10b†. 

As a consequence, large bit-widths have to be allocated to the integer fractional 
parts in order to keep a uniform precision across the network while preventing over-
fow. This expansion badly increases the resource requirements of a given FPGA 
mapping. As a result, static F × P, with its unique shared fxed exponent, is ill-suited 
to deep learning, as pointed out in. [81] 

To address this problem, works in [77, 81, 82] advocate the use of dynamic F × P 
[83]‡. In dynamic F × P, different scaling factors are used to process different parts 
of the network. In other words, the position of the radix point varies from one layer 

(a) Histogram of the layer outputs 

(b) Histogram of weights and activations. Inputs and weights encoded in 8 bits 

FIGURE 1.10 Distribution of AlexNet activations and weights. 

* Code made available at github.com/KamelAbdelouahab/CNN-Data-Distribution. 
† This fgure deliberately multiplies the weights and activations by a scale factor of 27 − 1 to emulate an 

8-bit quantization. 
‡ Another approach to address this problem is to use custom foating point representations, as detailed 

in [31]. 

http://github.com/KamelAbdelouahab/CNN-Data-Distribution
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to another. More particularly, weights, weighted sums, and outputs of each layer are 
assigned distinct integer and fractional bit-widths. 

The optimal values of these bit-widths (i.e., the ones that deliver the best trade-off 
between accuracy loss and computational load) for each layer can be derived after 
a profling process performed by dedicated frameworks that support F × P. Among 
these frameworks, Ristretto [81] and FixCaffe [84] are compatible with Caffe, while 
TensorFlow natively supports 8-bit computations. Most of these tools can fne-tune a 
given CNN model to improve the accuracy of the quantized network. 

In particular, the works in [85] demonstrate the effciency dynamic of F × P, point-
ing out how the inference of AlexNet is possible using 6 bits in dynamic F × P instead 
of 16 bits with a conventional fxed-point format. 

1.6.1.3 FPGA Implementations 
The FPGA-based CNN accelerator proposed in [29] is built upon this quantization 
scheme and employs different precisions to represent the FM, convolution kernels, 
and FC weights with 16, 8, and 10 bits, respectively. Without fne-tuning, the authors 
report a drop of 1% in the classifcation accuracy of AlexNet. In a similar way, Qiu 
et al. employ F × P to quantize the VGG network with respectively 8 bits for the 
weights, 8 bits for activations, and 4 bits for FC layers, resulting in an accuracy drop 
of 2%. In all these accelerators, dynamic quantization is supported by means of data 
shift modules [28, 82]. Finally, the accelerator in [41] relies on the Ristretto frame-
work [81] to derive an AlexNet model wherein the data is quantized in 16 bits with 
distinct integer bit-widths per layer*. 

1.6.1.4 Extreme Quantization and Binary Networks 
Training and inferring CNNs with extremely compact data representations is an 
area that has recently gained a lot of research interest. Early works of Courbariaux 
et al. in BinaryConnect [86] demonstrate the feasibility of training neural networks 
using binary weights, i.e., weights with either a value of −θ or θ encoded in 1 bit. 
BinaryConnect lowers the bandwidth requirements of a network by a factor of ×32 at 
the price of an accuracy loss, evaluated at 19.2% on ImageNet†. The same authors go 
further in their investigations in [15] and propose BNNs that represent both feature 
maps and weights with only 1 bit. In these networks, negative values are represented 
as 0, while positive values are represented as 1. BNNs greatly simplify the process-
ing of convolutions, boiling down the computations of MACs into bitwise XNOR 
operations followed by a pop-count (see Figure 1.11b). Moreover, the authors use the 
sign function as activation and apply batch normalization before applying the activa-
tion, which reduces the information lost during binarization (see Figure 1.11a). In 
turn, a higher drop in classifcation accuracy occurs when using BNNs, evaluated at 
29.8% for ImageNet. This accuracy drop is then lowered to 11% by Rastegari et al., 
using different scale factors for binary weights (i.e., −θ1 or +θ2). 

* Since the same PEs are reused to process different layers, the same bit width is used with a variable 
radix point for each layer. 

† When compared to an exact 32-bit implementation of AlexNet. 
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˜conv 
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= 
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0 0 1 

0 1 0 
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Count number 

of ones over C,J,K 

˜ conv 

xconv 

(a) Processing Pipeline (b) Binary Convolutions 

FIGURE 1.11 Binary neural networks. 

Beside BNNs, pseudo-binary networks, such as DoReFa-Net [87] and quantized 
neural networks (QNNs) [88], reduce the accuracy drop to 6.5% when employing a 
slightly expanded bit-width (2 bits) to represent the intermediate FM. Similarly, in 
TTQ [89], weights are constrained to three values (2 bits) −θ1, 0, −θ2, but FMs are 
represented in a 32-bit foat scheme. As a consequence, the effciency gain of TTQ is 
not as high as in BNNs. In turn, TTQ achieves comparable accuracy on ImageNet, 
within 0.7% of full-precision. 

In FPGAs, BNNs beneft from a signifcant acceleration, as the processing of 
“binary” convolutions can be mapped on XNOR gates followed by a pop-count oper-
ation, as depicted in Figure 1.11b. Furthermore, and as suggested in [7], a pop-count 
operation can be implemented using lookup tables in a way that convolutions are 
processed only with logical elements. Thus, the DSP blocks can be used to process the 
batch norm calculation (Equation 1.7, which can be formulated as a linear transform 
in order to reduce the number of operations). This approach is followed in the imple-
mentation of [90] to derive an FPGA-based accelerator for BNNs that achieves 207.8 
GOPs while only consuming 4.7 W and 3 DSP blocks to classify the Cifar10 dataset. 

For the same task, works in [45, 91] use a smaller network confguration* and 
reach a throughput of 2.4 TOPs when using a larger Zynq 7Z045 device with 11W 
power consumption. 

For ImageNet classifcation, binary net implementation of [92] delivers an overall 
throughput of 1.9 TOPs on a Stratix V GSD device. In all these works, the frst layer 
is not binarized to achieve better classifcation accuracy. As pointed out in [92], the 
performance in this layer can be improved when using a higher number of DSP 
blocks. Finally, an accelerator for TTQ proposed in [93] achieves a peak perfor-
mance of 8.36 TMACs when classifying the Cifar10 dataset with a 2-bit precision. 

1.6.2 REDUCED COMPUTATIONS 

In addition to approximate arithmetic, several studies attempt to reduce the number 
of operations involved in CNNs. For FPGA-based implementations, two main strate-
gies are investigated: weight pruning, which increases the sparsity of the model, 
and low-rank approximation of flters, which reduces the number of multiplications 
occurring in the inference. 

* The network topology used in this work involves 90% fewer computations and achieves 7% less clas-
sifcation accuracy on Cifar10. 
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1.6.2.1 Weight Pruning 
As highlighted in [94], CNNs as overparametrized networks and a large amount of 
the weights can be removed – or pruned – without critically affecting the classifca-
tion accuracy. In its simplest form, pruning is performed according to the magnitude, 
such that the lowest values of the weights are truncated to zero [95]. In a more recent 
approach, weight removal is driven by energy consumption of a given node of the 
graph, which is 1.74× more effcient than magnitude-based approaches [96]. In both 
cases, pruning is followed by a fne-tuning of the remaining weights in order to 
improve the classifcation accuracy. This is for instance the case in [97], where prun-
ing removes respectively 53% and 85% of the weights in AlexNet conv and FC layers 
for less then 0.5% accuracy loss (Figure 1.12). 

1.6.2.2 Low Rank Approximation 
Another way to reduce the computations occurring in CNNs is to maximize the 
number of separable flters. A 2D-separable flter, denoted θsep, has a unitary rank*†, 

sep sep and can be expressed as two successive 1D flters (qJ 1́ then q1́ K ). Filter decomposi-
tion reduces the number of multiplications from J × K to J + K. This is illustrated in 
Figure 1.13, where the 3 × 3 averaging flter is separable, and can thus be decom-
posed into two successive one-dimensional convolutions. 

FIGURE 1.12 Histogram of conv weights in a compressed AlexNet model†. 

FIGURE 1.13 Example of a separable flter. 

* Meaning that rank(θsep) = 1. 
† Pruned flters treated as zero-valued weights. 
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The same concept expands to depth convolutions, where a separable flter requires 
C + J + K multiplications instead of C × J × K multiplications. 

Nonetheless, only a small proportion of CNN flters are separable. To increase 
this proportion, a frst approach is to force the convolution kernels to be separable by 
penalizing high-rank flters when training the network [98]. Alternatively, and after 
the training, the weights Θ of a given layer can be approximated into a small set of r 
low-rank flters. In this case, r × (C + J + K) multiplications are required to process a 
single depth convolution. 

Finally, CNN computations can be reduced further by decomposing the weight 

matrix ˜̃ through single-value decomposition (SVD). As demonstrated in the early 
works of [99], SVD greatly reduces the resource utilization of a given 2D-flter 
implantation. Moreover, SVD also fnds its interest when processing FC layers and 
convolutions that employ the im2col method (cf Section 1.4.1). In a similar way to 
pruning, low rank approximation or SVD is followed by a fne-tuning in order to 
counterbalance the drop in classifcation accuracy. 

1.6.2.3 FPGA Implementations 
In FPGA implementations, SVD is applied on FC layer to signifcantly reduce the 
number of weights, such as in [28], where the authors derive a VGG16-SVD model 
that achieves 87.96% accuracy on ImageNet with 63% fewer parameters. 

Alternatively, one can take advantage of the numerous research efforts given to 
accelerate Sparse GEMM on FPGA [100]. In this case, the challenge is to deter-
mine the optimal format of matrices that maximizes the chance to detect and skip 
zero computations, such compressed sparse column (CSC) or compressed sparse row 
(CSR) formats*. Based on this, Sze et al. [22] advocate the use of the CRC to pro-
cess CNN. Indeed, this format requires lower memory bandwidths when the output 
matrix is smaller then the input, which is typically the case in CNNs where N < CJK, 
as in Figure 1.3b. 

However, this effciency of CRC format is valid only for extremely sparse matri-
ces (typically with ≤1% of non-zeros), while in practice, pruned CNN matrices are 
not that sparse (typically, ≤4% – 80% of non-zeros). Therefore, works in [7] propose 
a zero skip scheduler that identifes zero elements and skips them in the scheduling 
of the MAC processing. As a consequence, the number of cycles required to compute 
the sparse GEMM is reduced. For AlexNet layers, the zero skip scheduler results in 
a 4× speedup. The same authors project a throughput of 12 TOPs for pruned CNN in 
the next Intel Stratix10 FPGAs, which outperforms the computational throughput of 
state-of-the-art GPU implementations by 10%. 

1.7 CONCLUSIONS 

In this chapter, a number of methods and tools have been compared that aim at 
porting convolutional neural networks onto FPGAs. At the network level, approxi-
mate computing and data-path optimization methods have been covered, while at 

* This format represents a matrix by three one-dimensional arrays, that respectively contain nonzero 
values, row indices, and column indices. 
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the neuron level, the optimizations of convolutional and fully connected layers have 
been detailed and compared. All the different degrees of freedom offered by FPGAs 
(custom data types, local data streams, dedicated processors, etc.) are exploited by 
the presented methods. Moreover, algorithmic and data-path optimizations can and 
should be jointly implemented, resulting in additive hardware performance gains. 

CNNs are by nature overparameterized and support particularly well approxi-
mate computing techniques such as weight pruning and fxed-point computation. 
Approximate computing already constitutes a key to CNN acceleration over hard-
ware and will certainly continue driving the performance gains in the years to come. 
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