
Building Computer
Vision Applications
Using Artificial Neural
Networks

With Step-by-Step Examples in
OpenCV and TensorFlow with Python
—
Shamshad Ansari

Building Computer Vision
Applications Using

Artificial Neural Networks
With Step-by-Step Examples
in OpenCV and TensorFlow

with Python

Shamshad Ansari

Building Computer Vision Applications Using Artificial Neural Networks: With
Step-by-Step Examples in OpenCV and TensorFlow with Python

ISBN-13 (pbk): 978-1-4842-5886-6 ISBN-13 (electronic): 978-1-4842-5887-3
https://doi.org/10.1007/978-1-4842-5887-3

Copyright © 2020 by Shamshad Ansari

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Matthew Moodie
Coordinating Editor: Aditee Mirashi

Cover designed by eStudioCalamar

Cover image designed by Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-5886-6. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Shamshad Ansari
Centreville, VA, USA

https://doi.org/10.1007/978-1-4842-5887-3

In God we trust.

To my wonderful parents, Abdul Samad and
Nazhat Parween, who always corrected my mistakes and

raised me to become a good person.

To my lovely wife, Shazia, and our two beautiful daughters,
Dua and Erum. Without their love and support, this book

would not have been possible.

v

Table of Contents

Chapter 1: Prerequisites and Software Installation �� 1

Python and PIP �� 2

Installing Python and PIP on Ubuntu �� 2

Installing Python and PIP on macOS �� 2

Installing Python and PIP on CentOS 7 �� 3

Installing Python and PIP on Windows ��� 3

virtualenv �� 3

Installing and Activating virtualenv�� 4

TensorFlow �� 5

Installing TensorFlow ��� 5

PyCharm IDE ��� 5

Installing PyCharm �� 6

Configuring PyCharm to Use virtualenv ��� 6

OpenCV�� 7

Working with OpenCV �� 7

Installing OpenCV4 with Python Bindings �� 8

Additional Libraries ��� 8

Installing SciPy �� 8

Installing Matplotlib ��� 8

About the Author ���xv

About the Technical Reviewer ���xvii

Acknowledgments ��xix

Introduction ��xxi

vi

Chapter 2: Core Concepts of Image and Video Processing ��������������������������������������� 9

Image Processing ��� 9

Image Basics ��� 10

Pixels��� 10

Pixel Color �� 10

Coordinate Systems �� 11

Python and OpenCV Code to Manipulate Images �� 14

Program: Loading, Exploring, and Showing an Image ��� 15

Program: OpenCV Code to Access and Manipulate Pixels ��� 17

Drawing ��� 18

Drawing a Line on an Image �� 18

Drawing a Rectangle on an Image �� 21

Drawing a Circle on an Image ��� 25

Summary��� 26

Chapter 3: Techniques of Image Processing ��� 27

Transformation �� 27

Resizing ��� 28

Translation ��� 32

Rotation ��� 34

Flipping �� 37

Cropping �� 40

Image Arithmetic and Bitwise Operations ��� 42

Addition ��� 43

Subtraction �� 46

Bitwise Operations �� 52

Masking �� 58

Splitting and Merging Channels �� 61

Noise Reduction Using Smoothing and Blurring ��� 64

Mean Filtering or Averaging �� 64

Gaussian Filtering �� 67

Table of ConTenTs

vii

Median Blurring ��� 69

Bilateral Blurring ��� 71

Binarization with Thresholding ��� 74

Simple Thresholding �� 74

Adaptive Thresholding ��� 77

Otsu’s Binarization ��� 79

Gradients and Edge Detection ��� 82

Sobel Derivatives (cv2�Sobel() Function) ��� 82

Laplacian Derivatives (cv2�Laplacian() Function) �� 87

Canny Edge Detection ��� 89

Contours �� 90

Drawing Contours �� 93

Summary��� 94

Chapter 4: Building a Machine Learning–Based Computer Vision System ������������� 95

Image Processing Pipeline �� 95

Feature Extraction ��� 97

How to Represent Features ��� 98

Color Histogram ��� 99

Histogram Equalizer �� 106

GLCM ��� 109

HOGs �� 115

LBP �� 121

Feature Selection �� 128

Filter Method ��� 128

Wrapper Method �� 129

Embedded Method �� 130

Model Training ��� 130

How to Do Machine Learning �� 130

Supervised Learning �� 131

Unsupervised Learning �� 132

Table of ConTenTs

viii

Model Deployment �� 133

Summary��� 135

Chapter 5: Deep Learning and Artificial Neural Networks ������������������������������������ 137

Introduction to Artificial Neural Networks ��� 137

Perceptron ��� 140

Multilayer Perceptron �� 141

What Is Deep Learning? �� 143

Deep Learning or Multilayer Perceptron Architecture ��� 143

Activation Functions �� 146

Feedforward �� 154

Error Function �� 154

Optimization Algorithms �� 158

Backpropagation ��� 164

Introduction to TensorFlow �� 165

TensorFlow Installation �� 166

How to Use TensorFlow ��� 166

Tensor �� 166

Variable �� 167

Constant �� 167

Our First Computer Vision Model with Deep Learning: Classification of Handwritten Digits ���� 169

Model Evaluation ��� 178

Overfitting �� 179

Hyperparameters �� 184

TensorBoard �� 185

Experiments for Hyperparameter Tuning ��� 185

Saving and Restoring Model ��� 189

Save Model Checkpoints During Training �� 190

Manually Save Weights�� 193

Load the Saved Weights and Retrain the Model �� 193

Saving the Entire Model �� 193

Table of ConTenTs

ix

Retraining the Existing Model �� 194

Using a Trained Model in Applications ��� 194

Convolution Neural Network ��� 194

Architecture of CNN ��� 195

How Does CNN Work ��� 196

Summary of CNN Concepts ��� 201

Training a CNN Model: Pneumonia Detection from Chest X-rays �� 202

Examples of Popular CNNs �� 213

Summary ��� 217

Chapter 6: Deep Learning in Object Detection �� 219

Object Detection �� 219

Intersection Over Union ��� 220

Region-Based Convolutional Neural Network ��� 222

Fast R-CNN ��� 224

Faster R-CNN �� 225

Region Proposal Network �� 226

Fast R-CNN �� 227

Mask R-CNN �� 227

Backbone ��� 228

RPN �� 229

Output Head ��� 229

What Is the Significance of the Masks? �� 230

Mask R-CNN in Human Pose Estimation ��� 230

Single-Shot Multibox Detection �� 231

SSD Network Architecture ��� 232

Training �� 235

SSD Results ��� 238

YOLO �� 238

YOLO Network Design �� 240

Limitations of YOLO ��� 241

Table of ConTenTs

x

YOLO9000 or YOLOv2 ��� 241

YOLOv3 �� 244

Comparison of Object Detection Algorithms ��� 247

Comparison of Architecture ��� 247

Comparison of Performance �� 248

Training Object Detection Model Using TensorFlow �� 249

TensorFlow on Google Colab with GPU �� 250

Detecting Objects Using Trained Models ��� 274

Installing TensorFlow’s models Project ��� 274

Code for Object Detection �� 277

Training a YOLOv3 Model for Object Detection �� 290

Installing the Darknet Framework ��� 291

Downloading Pre-trained Convolutional Weights �� 292

Downloading an Annotated Oxford-IIIT Pet Dataset ��� 292

Preparing the Dataset �� 293

Configuring the Training Input ��� 297

Configuring the Darknet Neural Network �� 298

Training a YOLOv3 Model ��� 299

How Long the Training Should Run �� 301

Final Model �� 301

Detecting Objects Using a Trained YOLOv3 Model ��� 302

Installing Darknet to the Local Computer �� 302

Python Code for Object Detection �� 303

Summary��� 307

Chapter 7: Practical Example: Object Tracking in Videos ������������������������������������� 309

Preparing the Working Environment ��� 310

Reading a Video Stream �� 312

Loading the Object Detection Model ��� 314

Detecting Objects in Video Frames ��� 315

Creating a Unique Identity for Objects Using dHash ��� 317

Using the Hamming Distance to Determine Image Similarity ��� 319

Table of ConTenTs

xi

Object Tracking ��� 319

Displaying a Live Video Stream in a Web Browser �� 322

Installing Flask �� 322

Flask Directory Structure��� 322

HTML for Displaying a Video Stream ��� 323

Flask to Load the HTML Page �� 324

Flask to Serve the Video Stream ��� 324

Running the Flask Server �� 325

Putting It All Together �� 325

Summary��� 336

Chapter 8: Practical Example: Face Recognition �� 337

FaceNet ��� 338

FaceNet Neural Network Architecture ��� 338

Training a Face Recognition Model ��� 344

Checking Out FaceNet from GitHub ��� 345

Dataset �� 345

Downloading VGGFace2 Data �� 347

Data Preparation �� 349

Model Training ��� 351

Evaluation �� 353

Developing a Real-Time Face Recognition System ��� 354

Face Detection Model �� 354

Classifier for Face Recognition �� 355

Summary��� 360

Chapter 9: Industrial Application: Real-Time Defect Detection in Industrial
Manufacturing �� 361

Real-Time Surface Defect Detection System �� 362

Dataset �� 362

Google Colab Notebook ��� 364

Data Transformation �� 365

Training the SSD Model ��� 374

Table of ConTenTs

xii

Exporting the Model �� 377

Model Evaluation ��� 378

Prediction �� 379

Real-Time Defect Detector �� 380

Image Annotations �� 380

Installing VoTT ��� 381

Create Connections ��� 382

Create a New Project ��� 383

Create Class Labels ��� 384

Label the Images ��� 385

Export Labels ��� 386

Summary��� 387

Chapter 10: Computer Vision Modeling on the Cloud ��� 389

TensorFlow Distributed Training �� 390

What Is Distributed Training? ��� 390

TensorFlow Distribution Strategy �� 393

TF_CONFIG: TensorFlow Cluster Configuration �� 398

Example Code of Distributed Training with a Parameter Server ��� 400

Steps for Running Distributed Training on the Cloud �� 404

Distributed Training on Google Cloud �� 406

Signing Up for GCP Access �� 406

Creating a Google Cloud Storage Bucket ��� 407

Creating the GCS Bucket from the Web UI ��� 407

Creating the GCS Bucket from the Cloud Shell �� 409

Launching GCP Virtual Machines ��� 410

SSH to Log In to Each VMs��� 414

Uploading the Code for Distributed Training or Cloning the GitHub Repository ������������������� 415

Installing Prerequisites and TensorFlow �� 415

Running Distributed Training ��� 416

Distributed Training on Azure �� 417

Table of ConTenTs

xiii

Creating a VM with Multiple GPUs on Azure �� 418

Installing GPU Drivers and Libraries �� 422

Creating virtualenv and Installing TensorFlow ��� 424

Implementing MirroredStrategy �� 424

Running Distributed Training ��� 425

Distributed Training on AWS �� 428

Horovod ��� 428

How to Use Horovod �� 429

Creating a Horovod Cluster on AWS ��� 433

Installing Horovod �� 440

Running Horovod to Execute Distributed Training ��� 441

Summary��� 442

 Index ��� 443

Table of ConTenTs

xv

About the Author

Shamshad (Sam) Ansari is president and CEO of Accure

Inc., an artificial intelligence automation company that he

founded. He has raised Accure from startup to a sustainable

business by building a winning team and acquiring customers

from across the globe. He has technical expertise in the areas

of computer vision, machine learning, AI, cognitive science,

NLP, and big data. He architected, designed, and developed

the Momentum platform that automates AI solution

development. He is an inventor and has four US patents in the

areas of AI and cognitive computing.

Shamshad previously worked as a senior software engineer with IBM, as VP of

engineering with Orbit Solutions, and as principal architect and director of engineering

with Apixio.

xvii

About the Technical Reviewer

James Baldo is an associate professor at George Mason

University in the Volgenau School of Engineering and the

director of the Data Analytics Engineering (DAEN) Program.

His 38 years as a practicing engineer has provided him

with a broad foundation of knowledge and experience

in data analytics and engineering systems. His data

analytics interests span the areas of data engineering, data

science, and data architecture with a focus on data-centric

applications. His software engineering expertise has been

in support of deploying applications to cloud-based environments and microservice

architectures. As director of the DAEN Program, he has been responsible for developing

and coordinating its new online program offering. He holds a BS in chemistry, MS in

chemistry, MS in computer engineering, and PhD in information technology/software

engineering. He enjoys canoeing, hiking, and golf, and he lives in Manassas, Virginia,

with his wife.

xix

Acknowledgments

I decided to write this book because I wanted to achieve two objectives: build the

computer vision concepts from the ground up to an advanced level, and provide a guide

to apply the concepts in building real-world vision systems. I will demonstrate every

single concept with use cases and code examples. I have organized the topics, connected

the contents to meaningful and practical use cases, and made sure the code was working

and fully tested. It all required my undivided attention, and I could not have done it

without the support of my family. I can’t thank my wife enough for taking care of our two

daughters and keeping them occupied while I was busy writing this book. She turned

this into a positive experience for them and for me: The kids started keeping track of my

progress and celebrated every time I finished a section, subsection, or chapter. In turn,

this gave me tremendous energy and motivation that I thoroughly enjoyed while working

on this book. I just don’t know what magic my wife used to do this.

My life is indebted to Anumati Bhagi and Ashok Bhagi, who are no less than parents

to me; their love and support always motivate me.

This book is a collection of my lifetime experiences that I gained by working with

some of the greatest engineers, data scientists, and business professionals. I would

like to thank all my colleagues at Accure and all the past companies I have worked at. I

sincerely thank all my teachers, professors, and mentors who enlightened me with their

knowledge and wisdom.

It has been a great experience working with the Apress editorial team. Aditee

Marashi, the coordinating editor, has been prompt with her responses to any question

I have had. She has also been instrumental in keeping track of the schedule. Hats off to

her. It’s been awesome working with Mathew Moodie, the development editor. Thank

you, Aditee and Matt.

My special thanks go to John Celestine, the senior editor. He is a thorough,

thoughtful, and fast decision-maker. Thank you, John, for believing in me. Thanks to

Apress for publishing this book.

xx

Professor James Baldo was the most valuable contributor to the book. As a technical

reviewer, he executed every single line of code and made sure that they all worked. He

reviewed every single word of the book, cross-checked references, and provided some

key suggestions that made this book much more valuable than I ever imagined. Thank

you, Professor Baldo.

Finally, I would like to thank the readers of this book. I would love to hear from you

all. Please send your comments, suggestions, and questions to ansarisam@gmail.com. As

the technology evolves, some of the code examples of this book may require updating. I

will try my best to keep all the code up-to-date at the book’s GitHub site. I look forward

to hearing from you.

aCknowledgmenTs

xxi

Introduction

For more than 20 years I have had the pleasure of working with some of the greatest

data scientists and computer vision experts. Along the way I have learned a lot,

especially the best practices of building large-scale computer vision systems. In this

book I present the learnings from my own personal experience and the experience of

people I have had opportunities to work with. I also present the work of some of the

greatest contributors and thought leaders of computer vision, even though I have not

had a chance to work with them. I have provided references to their work at appropriate

places throughout the book.

When I hire new engineers and scientists, one of my biggest challenges has been

to provide them with systematic training so that they can start contributing to the

development of vision systems in the shortest possible time. There are a large number of

online resources and books available on various topics related to computer vision, and it

is easy to get lost in the piles of information they present, given that the field of computer

vision is vast and complex. In this book, I attempted to provide a structured and

systematic approach of building the key concepts and working through example code to

develop real-world computer vision systems. I hope this helps you connect the dots as

you read through the chapters. My goal is to keep this book as practical and hands-on as

possible.

This book starts with the introduction of core concepts of computer vision and

provides code examples to aid in the learning of those concepts. The code examples in

the early part of the book are mainly based on OpenCV with Python.

This book also covers the basic concepts of machine learning and gradually develops

the advanced-level concepts of artificial neural networks or deep learning. Every single

concept is followed by working code examples of real-world use cases. All machine

learning–related code examples are written in TensorFlow with Python.

In this book, there are eight real-world use cases of computer vision with working

code. These use cases are from various industries, such as healthcare, security,

surveillance, and manufacturing. I have provided line-by-line explanations to help you

xxii

understand the code. There are three chapters dedicated to practical use cases. These

chapters demonstrate how to build the vision systems from the ground up, starting from

image/video acquisition to building a data pipeline, model training, and deployment.

Training state-of-the-art computer vision models requires a lot of hardware

resources. It is desirable and economically beneficial to train computer vision models on

a cloud infrastructure to leverage the latest hardware resources, such as GPUs, and pay-

as- you-go cost models. The last chapter, Chapter 10, provides step-by-step instructions

for building machine learning–based computer vision applications on the three popular

cloud infrastructures: Google Cloud Platform, Amazon AWS, and Microsoft Azure.

Though the book develops the concepts from one pixel all the way to model training

on the cloud, it has certain prerequisites. You should have a working knowledge of the

Python programming language. This book is intended to help working professionals,

programmers, data scientists, and undergraduate and graduate students gain practical

knowledge of building computer vision applications using artificial neural networks.

InTroduCTIon

1
© Shamshad Ansari 2020
S. Ansari, Building Computer Vision Applications Using Artificial Neural Networks,
https://doi.org/10.1007/978-1-4842-5887-3_1

CHAPTER 1

Prerequisites and
Software Installation
This is a hands-on book that describes how to develop computer vision applications

in the Python programming language. In this book, you will learn how to work with

OpenCV to manipulate images and build machine learning models using TensorFlow.

OpenCV, originally developed by Intel and written in C++, is an open source

computer vision and machine learning library consisting of more than 2,500 optimized

algorithms for working with images and videos. TensorFlow is an open source

framework for high-performance numerical computation and large-scale machine

learning. It is written in C++ and provides native support for GPUs. Python is the most

widely used programming language for developing machine learning applications. It is

designed to work with C++. Both TensorFlow and OpenCV provide Python interfaces

to access their low-level functionality. Although TensorFlow and OpenCV provide

interfaces in other programming languages, such as Java, C++, and MATLAB, we will

use Python as the primary language because of its simplicity and its large community of

support.

The prerequisites for this book are practical knowledge of Python and familiarity

with NumPy and Pandas. The book assumes that you are familiar with built-in data

containers in Python, such as dictionaries, lists, sets, and tuples. Here are some

resources that may be helpful to meet the prerequisites:

• Python: https://www.w3schools.com/python/

• Pandas: https://pandas.pydata.org/docs/getting_started/

index.html

• NumPy: https://numpy.org/devdocs/user/quickstart.html

https://doi.org/10.1007/978-1-4842-5887-3_1#DOI
https://www.w3schools.com/python/
https://pandas.pydata.org/docs/getting_started/index.html
https://pandas.pydata.org/docs/getting_started/index.html
https://numpy.org/devdocs/user/quickstart.html

2

Before we go any further, let’s prepare our working environment and set ourselves up

for the exercises we will be doing as we move along. Here we will start by downloading

and installing the required software libraries and packages.

 Python and PIP
Python is our main programming language. PIP is a package installer for Python and a

de facto standard for installing and managing Python packages. To set up our working

environment, we will begin by installing Python and PIP on our working computer. The

installation steps depend on the operating system (OS) you are using. Make sure you

follow the instructions for your OS. If you already have Python and PIP installed, ensure

that you are using Python version 3.6 or greater and PIP version 19 or greater. To check

the version number of Python, execute the following command on your terminal:

$ python3 --version

The output of this command should be something like this: Python 3.6.5.

To check the version number of PIP, execute the following command on your

terminal:

$ pip3 --version

This command should show a version number of PIP 3, for example, PIP 19.1.

 Installing Python and PIP on Ubuntu
Run the following commands in your Ubuntu terminal:

sudo apt update

sudo apt install python3-dev python3-pip

 Installing Python and PIP on macOS
Run the following commands on macOS:

brew update

brew install python

This will install both Python and PIP.

Chapter 1 prerequisites and software installation

3

 Installing Python and PIP on CentOS 7
Run the following commands on CentOS 7:

sudo yum install rh-python36

sudo yum groupinstall 'Development Tools'

 Installing Python and PIP on Windows
Install the Microsoft Visual C++ 2015 Redistributable Update 3. This comes with Visual

Studio 2015 but can be installed separately by following these steps:

 1. Go to the Visual Studio downloads at https://visualstudio.

microsoft.com/vs/older-downloads/.

 2. Select Redistributables and Build Tools.

 3. Download and install the Microsoft Visual C++ 2015

Redistributable Update 3.

Make sure long paths are enabled on Windows. Here are the instructions to do that:

https://superuser.com/questions/1119883/windows-10-enable-ntfs-long-paths-

policy-option-missing.

Install the 64-bit Python 3 release for Windows from https://www.python.org/

downloads/windows/ (select PIP as an optional feature).

If these installation instructions do not work in your situation, refer to the official

Python documentation at https://www.python.org/.

 virtualenv
virtualenv is a tool to create isolated Python environments. virtualenv creates a directory

containing all the necessary executables to use the packages that a Python project will

need. virtualenv provides the following advantages:

• virtualenv allows you to have two versions of the same library so that

both your programs continue to run. Say you have a program that

requires version 1 of a Python library and another program needs

version 2 of the same library; virtualenv will allow you to run both.

Chapter 1 prerequisites and software installation

https://visualstudio.microsoft.com/vs/older-downloads/
https://visualstudio.microsoft.com/vs/older-downloads/
https://superuser.com/questions/1119883/windows-10-enable-ntfs-long-paths-policy-option-missing
https://superuser.com/questions/1119883/windows-10-enable-ntfs-long-paths-policy-option-missing
https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/
https://www.python.org/

4

• virtualenv creates a useful stand-alone and self-contained

environment for your development work that could be utilized for a

production environment without needing to install dependencies.

Next, we will install virtualenv and configure the environment with all the required

software. For the remainder of the book, we will assume that our reference program

dependencies will be contained in this virtualenv.

Install virtualenv using the following PIP command (the command is the same

on all OSs):

$ sudo pip3 install -U virtualenv

This will install virtualenv system-wide.

 Installing and Activating virtualenv
First, create a directory where you want to set up virtualenv. I have named this directory

cv (short for “computer vision”).

$ mkdir cv

Then create the virtualenv in this directory, cv

$ virtualenv --system-site-packages -p python3 ./cv

The following is a sample output from running this command (on my MacBook):

Running virtualenv with interpreter /anaconda3/bin/python3

Already using interpreter /anaconda3/bin/python3

Using base prefix '/anaconda3'

New python executable in /Users/sansari/cv/bin/python3

Also creating executable in /Users/sansari/cv/bin/python

Installing setuptools, pip, wheel...

done.

Activate the virtual environment using a shell-specific command.

$ source ./cv/bin/activate # for sh, bash, ksh, or zsh

When virtualenv is active, your shell prompt is prefixed with (cv). Here’s an

example:

(cv) Shamshads-MacBook-Air:~ sansari$

Chapter 1 prerequisites and software installation

5

Install packages within a virtual environment without affecting the host system

setup. Start by upgrading PIP (make sure you do not run any command as root or sudo

while in virtualenv).

$ pip install --upgrade pip

$ pip list # show packages installed within the virtual environment

When you are done and you want to exit from virtualenv, do the following:

$ deactivate # don't exit until you're done with your programming

 TensorFlow
TensorFlow is an open source library for numerical computation and large-scale

machine learning. You will learn more about TensorFlow in subsequent chapters. Let’s

first install it and get it ready for our deep learning exercises.

 Installing TensorFlow
We will install the latest version of TensorFlow from PyPI (https://pypi.org/project/

tensorflow/). We will install TensorFlow for CPUs. Make sure you are in virtualenv and

run the following command:

(cv) $ pip install --upgrade tensorflow

Test your TensorFlow installation by running this command:

(cv) $ python -c "import tensorflow as tf"

If TensorFlow is successfully installed, the output should not show any errors.

 PyCharm IDE
You can use your favorite IDE for writing and managing Python code, but for the purpose

of this book, we will use the community version of PyCharm, a Python IDE.

Chapter 1 prerequisites and software installation

https://pypi.org/project/tensorflow/
https://pypi.org/project/tensorflow/

6

 Installing PyCharm
Go to the official website of PyCharm at https://www.jetbrains.com/pycharm/

download/#section=linux, select the appropriate operating system, and click Download

(under Community Version). After the download is completed, click the downloaded

package, and follow the on-screen instructions. Here are the direct links for different

operating systems:

• Linux: https://www.jetbrains.com/pycharm/download/download-

thanks.html?platform=linux&code=PCC

• Mac: https://www.jetbrains.com/pycharm/download/download-

thanks.html?platform=mac&code=PCC

• Windows: https://www.jetbrains.com/pycharm/download/

download-thanks.html?platform=windows&code=PCC

 Configuring PyCharm to Use virtualenv
Follow these steps to use the virtualenv, cv, we created earlier:

 1. Launch the PyCharm IDE and select File ➤ Settings for Windows

and Linux or select PyCharm ➤ Preferences for macOS.

 2. In the Settings/Preferences dialog, select Project <project name> ➤

 Project Interpreter.

 3. Click the icon and click Add.

 4. In the left pane of the Add Python Interpreter dialog, select

Existing Environment.

 5. Expand the Interpreter list and select any of the existing

interpreters. Alternatively, click and specify a path to the

Python executable in your file system, for example, /Users/

sansari/cv/bin/python3.6 (see Figure 1-1).

 6. Select the checkbox “Make available to all projects,” if you want.

Chapter 1 prerequisites and software installation

https://www.jetbrains.com/pycharm/download/#section=linux
https://www.jetbrains.com/pycharm/download/#section=linux
https://www.jetbrains.com/pycharm/download/download-thanks.html?platform=linux&code=PCC
https://www.jetbrains.com/pycharm/download/download-thanks.html?platform=linux&code=PCC
https://www.jetbrains.com/pycharm/download/download-thanks.html?platform=mac&code=PCC
https://www.jetbrains.com/pycharm/download/download-thanks.html?platform=mac&code=PCC
https://www.jetbrains.com/pycharm/download/download-thanks.html?platform=windows&code=PCC
https://www.jetbrains.com/pycharm/download/download-thanks.html?platform=windows&code=PCC

7

 OpenCV
OpenCV is one of the most popular and widely used libraries for image processing. All

code examples in this book are based on OpenCV 4. Therefore, our installation steps are

for version 4 of OpenCV.

 Working with OpenCV
OpenCV is written in C/C++, and because it’s platform dependent, the installation

instructions vary from OS to OS. In other words, OpenCV needs to be built for your

particular platform/OS to run smoothly. We will use Python bindings to call OpenCV for

any image processing needs.

Like any other library, OpenCV is evolving; therefore, if the following installation

instructions do not work in your case, check the official website for the exact

installation process.

Figure 1-1. Selecting an interpreter

Chapter 1 prerequisites and software installation

8

We will take an easy route to install OpenCV 4 and Python 3 bindings using PIP. We

will install the opencv-python-contrib package from PyPI in the virtual environment

that we created previously.

So here we go!

 Installing OpenCV4 with Python Bindings
Make sure you are in your virtual environment. Simply change directory to your virtualenv

directory (the cv directory we created previously) and type the following command:

$ source cv/bin/activate

Install OpenCV in a snap using the following command:

$ pip install opencv-contrib-python

 Additional Libraries
There are some additional libraries that we will need as we work on some of the

examples. Let’s install and keep them in our virtualenv.

 Installing SciPy
Install SciPy with the following:

$ pip install scipy

 Installing Matplotlib
Install Matplotlib with the following:

$ pip install matplotlib

Please note that the libraries installed in this chapter are frequently updated. It

is strongly advised to check the official websites for updates, new versions of these

libraries, and the latest installation instructions.

Chapter 1 prerequisites and software installation

9
© Shamshad Ansari 2020
S. Ansari, Building Computer Vision Applications Using Artificial Neural Networks,
https://doi.org/10.1007/978-1-4842-5887-3_2

CHAPTER 2

Core Concepts of Image
and Video Processing
This chapter introduces the building blocks of an image and describes various methods

to manipulate them. Our learning objectives in this chapter are as follows:

• To understand the smallest unit of an image (a pixel) and how colors

are represented

• To learn how pixels are organized in an image and how to access and

manipulate them

• To draw different shapes, such as lines, rectangles, and circles, on an

image

• To write code in Python and use OpenCV to work with examples to

access and manipulate images

 Image Processing
Image processing is the technique of manipulating a digital image to either get an

enhanced image or extract some useful information from it. In image processing, the

input is an image, and the output may be an image or some characteristics or features

associated with that image. A video is a series of images or frames. Therefore, the

technique of image processing also applies to video processing. In this chapter, I will

explain the core concepts of digital image processing. I will also show you how to work

with images and write code to manipulate them.

https://doi.org/10.1007/978-1-4842-5887-3_2#DOI

10

 Image Basics
A digital image is an electronic representation of an object/scene or scanned document.

The digitalization of an image means converting it into a series of numbers and storing

these numbers in a computer storage system. Understanding how these numbers are

arranged and how to manipulate them is the primary objective of this chapter. In this

chapter, I will explain what makes an image and how to manipulate it using OpenCV and

Python.

 Pixels
Imagine a series of dots arranged in rows and columns, and these dots have different

colors. This is pretty much how an image is formed. The dots that form an image are

called pixels. These pixels are represented by numbers, and the values of the numbers

determine the color of a pixel. Think of an image as a grid of square cells with each cell

consisting of one pixel of a particular color. For example, a 300×400-pixel image means

that the image is organized into a grid of 300 rows and 400 columns. That means our

image has 300×400 = 120,000 pixels.

 Pixel Color
A pixel is represented in two ways: grayscale and color.

 Grayscale

In a grayscale image, each pixel takes a value between 0 and 255. The value 0 represents

black, and 255 represents white. The values in between are varying shades of gray. The

values close to 0 are darker shades of gray, and values closer to 255 are brighter shades of

gray.

 Color

The RGB (which stands for Red, Blue, and Green) color model is one of the most popular

color representations of a pixel. There are other color models, but we will stick to RGB in

this book.

Chapter 2 Core ConCepts of Image and VIdeo proCessIng

11

In the RGB model, each pixel is represented as a tuple of three values, generally

represented as follows: (value for red component, value for green component, value for

blue component). Each of the three colors is represented by integers ranging from 0 to

255. Here are some examples:

(0,0,0) is a black color.

(255,0,0) is a pure red color.

(0,255,0) is a pure green color.

What color is represented by (0,0,255)?

What color is represented by (255,255,255)?

This w3school website (https://www.w3schools.com/colors/colors_rgb.asp) is a

great place to play with different combinations of RGB tuples to explore more patterns.

Explore what color is represented by each of the following tuples:

(0,0,128)

(128,0,128)

(128,128,0)

Let’s try to make yellow. Here is a clue: red and green make yellow. That means a

pure red (255), a pure green (255), and no blue (0) will make yellow. So, our RGB tuple

for yellow is (255,255,0).

Now that we have a good understanding of pixels and their color, let’s understand

how pixels are arranged in an image and how to access them. The following section will

discuss the concept of coordinate systems in image processing.

 Coordinate Systems
Pixels in an image are arranged in the form of a grid that is made of rows and columns.

Imagine a square grid of eight rows and eight columns. This will form an 8×8 or 64-pixel

image. This may be imagined as a 2D coordinate system in which (0,0) is the top-left

corner. Figure 2-1 shows our example 8×8-pixel image.

Chapter 2 Core ConCepts of Image and VIdeo proCessIng

https://www.w3schools.com/colors/colors_rgb.asp

12

The left-top corner is the start or origin of the image coordinate system. The pixel

at the top-right corner is represented by (7,0), the bottom-left corner is (7,0), and the

bottom-right pixel is (7,7). This may be generalized as (x,y), where x is the position of the

cell from the left edge of the image and y is the vertical position down from the top edge

of the image. In Figure 2-1, the red pixel is in the fifth position from the left and fourth

from the top. Since the coordinate system begins at 0, the coordinate of the red pixel

shown in Figure 2-1 is (4,3).

To make it a little clearer, let’s imagine an image that is 8×8 pixels, with the letter H

written on it (as shown in Figure 2-3). Also, for simplicity, assume this is a grayscale

image with the letter H written in black and the rest of the area of the image in white.

Remember, in the grayscale model, a black pixel is represented by 0, and a white one

is represented by 255. Figure 2-3 shows the values of each pixel within the 8×8 grid.

Figure 2-1. Pixel coordinate system

Figure 2-2. Pixel coordinate system example

Chapter 2 Core ConCepts of Image and VIdeo proCessIng

13

So, what’s the value of the pixel at position (1,4)? And at position (2,2)?

I hope you now have a clear picture of how images are represented by numbers

arranged in a grid. These numbers are serialized and stored in the computer’s

storage system and rendered as an image when displayed to the screen. By now you

know how to access pixels using the coordinate system and how to assign colors to

these pixels.

We have established a solid foundation and learned the basic concepts of image

representation. Let’s get ourselves some hands-on practice with some Python and

OpenCV coding. In the following section, I will show you, step-by-step, how to write

code to load images from the computer’s disk, access pixels, manipulate them, and write

them back to the disk. Without further ado, let’s dive in!

Figure 2-3. Pixel matrix and values

Chapter 2 Core ConCepts of Image and VIdeo proCessIng

14

 Python and OpenCV Code to Manipulate Images
OpenCV represents the pixel values of an image as a NumPy array. (Not familiar with

NumPy? You can find a “getting started” tutorial at https://numpy.org/devdocs/user/

quickstart.html). In other words, when you load an image, OpenCV creates a NumPy

array. The pixel values can be obtained from NumPy by simply supplying the (x,y)

coordinates.

When you give the (x,y) coordinates, NumPy will return the values of colors of the

pixel at those coordinates as follows:

For a grayscale image, the returned value from NumPy will be a

single value between 0 and 255.

For a color image, the returned value from NumPy will be a tuple

for red, green, and blue. Note that OpenCV maintains the RGB

sequence in the reverse order. Remember this important feature

of OpenCV to avoid any confusion while working with OpenCV.

In other words, OpenCV stores the colors in BGR sequence and not in RGB

sequence.

Before we write any code, let’s make sure we always use our virtualenv, in the ~/cv

directory, that we already set up with PyCharm.

Launch your PyCharm IDE and make a project (I named my project cviz, short

for “computer vision”). Refer to Figure 2-4 and ensure that you have selected Existing

Interpreter and have our virtualenv Python 3.6(cv) selected.

Chapter 2 Core ConCepts of Image and VIdeo proCessIng

https://numpy.org/devdocs/user/quickstart.html
https://numpy.org/devdocs/user/quickstart.html

15

 Program: Loading, Exploring, and Showing an Image
Listing 2-1 shows the Python code to load, explore, and display an image.

Listing 2-1. Python Code to Load, Explore, and Display an Image

Filename: Listing_2_1.py

1 from __future__ import print_function

2 import cv2

3

4 # image path

5 image_path = "images/marsrover.png"

6 # Read or load image from its path

7 image = cv2.imread(image_path)

8 # image is a NumPy array

9 print("Dimensions of the image: ", image.ndim)

10 print("Image height: ", format(image.shape[0]))

11 print("Image width: ", format(image.shape[1]))

12 print("Image channels: ", format(image.shape[2]))

Figure 2-4. PyCharm IDE, showing the setup of the project with virtualenv

Chapter 2 Core ConCepts of Image and VIdeo proCessIng

16

13 print("Size of the image array: ", image.size)

14 # Display the image and wait until a key is pressed

15 cv2.imshow("My Image", image)

16 cv2.waitKey(0)

The code in Listing 2-1 is explained here.

In lines 1 and 2, we import Python’s print_function from the __future__ package

and cv2 of OpenCV.

Line 5 is simply the path of the image that we are going to load from a directory.

If your input path is in a different directory, you should give either the full or relative

path to the image file.

In line 7, using the cv2.imread() function of OpenCV, we are reading the image into

a NumPy array and assigning to a variable called image (this variable can be anything

you like).

In lines 9 through 13, using NumPy features, we are displaying the dimension of

the image array, height, width, number of channels, and size of the array (which is the

number of pixels).

Line 15 displays the image as is using OpenCV’s imshow() function.

In line 16, the waitKey() function allows the program not to terminate immediately

and wait for the user to press any key. When you see the image window that will display

in line 15, press any key to terminate the program, else the program will block.

Figure 2-5 shows the output of Listing 2-1.

Dimension of the image: 3
Image height: 400
Image width: 640
Image channels: 3
Size of the image array: 768000

Figure 2-5. Output and image display

Chapter 2 Core ConCepts of Image and VIdeo proCessIng

17

The image NumPy array consists of three dimensions: height × width × channel. The

first element of the array is the height, which tells us how many rows our pixel grid has.

Similarly, the second element is the width, which represents the number of columns of

the grid. The three channels represent the BGR (not RBG) color components. The size

of the array is 400×640×3 = 768,000. This actually means that our image has 400×640 =

256,000 pixels, and each pixel has three color values.

 Program: OpenCV Code to Access and Manipulate Pixels
In the next program, we will see how to access and modify pixel values using the

coordinate system that we learned about earlier. Listing 2-2 shows the code example

with the line-by-line explanation after it.

Listing 2-2. Code Example to Access and Manipulate Image Pixels

Filename: Listing_2_2.py
1 from __future__ import print_function
2 import cv2
3
4 # image path
5 image_path = "images/marsrover.png"
6 # Read or load image from its path
7 image = cv2.imread(image_path)
8
9 # Access pixel at (0,0) location
10 (b, g, r) = image[0, 0]
11 print("Blue, Green and Red values at (0,0): ", format((b, g, r)))
12
13 # Manipulate pixels and show modified image
14 image[0:100, 0:100] = (255, 255, 0)
15 cv2.imshow("Modified Image", image)

16 cv2.waitKey(0)

Listing 2-2 is explained here.

Lines 1 through 7 import and read the image from a directory path (as explained

when discussing Listing 2-1).

In line 10, we are getting the BGR (and not RBG) values of the pixel at coordinates

(0,0) and assigning them to the (b,g,r) tuple using the NumPy syntax.

Chapter 2 Core ConCepts of Image and VIdeo proCessIng

18

Line 11 displays the BGR values.

In line 14, we are taking a range of pixels from 0 to 100 along the y-axis and from 0

to 100 along the x-axis to form a 100×100 square and assigning the values (255,255,0) or

pure blue, pure green, and no red to all the pixels within this square.

Line 16 displays the modified image.

Line 17 waits for the user to press any key for the program to exit.

Figure 2-6 shows some sample output of Listing 2-2.

As shown in Figure 2-6, the modified image has a 100×100-pixel square at the top-left

corner in aqua, represented by (255,255,0) of the BGR scheme.

 Drawing
OpenCV provides convenient methods to draw shapes on an image. We will learn how to

draw a line, rectangle, and circle on an image using the following methods:

Line: cv2.line()

Rectangle: cv2.rectangle()

Circle: cv2.circle()

 Drawing a Line on an Image
We will use a simple method of drawing a line on an image, shown here:

 1. Load the image into a NumPy array.

 2. Decide the coordinates of the starting position of the line.

Blue, Green and Red values at (0,0): (40, 55, 134)

Figure 2-6. Output and modified image display

Chapter 2 Core ConCepts of Image and VIdeo proCessIng

19

 3. Decide the coordinates of the end position of the line.

 4. Set the color of the line.

 5. Optionally, set the thickness of the line.

Listing 2-3 demonstrates how to draw a line on an image.

Listing 2-3. Drawing a Line on an Image

Filename: Listing_2_3.py

1 from __future__ import print_function

2 import cv2

3

4 # image path

5 image_path = "images/marsrover.png"

6 # Read or load image from its path

7 image = cv2.imread(image_path)

8

9 # set start and end coordinates

10 start = (0, 0)

11 end = (image.shape[1], image.shape[0])

12 # set the color in BGR

13 color = (255,0,0)

14 # set thickness in pixel

15 thickness = 4

16 cv2.line(image, start, end, color, thickness)

17

18 #display the modified image

19 cv2.imshow("Modified Image", image)

20 cv2.waitKey(0)

Here is the line-by-line explanation of the code.

Lines 1 and 2 are the usual imports. From now on, I will not repeat the imports

unless we have a new one to mention.

Line 5 is the image path.

Line 7 actually loads the image into a NumPy array called image.

Line 10 defines the starting coordinates of the point from where the line will be

drawn. Recall that the location (0,0) is the top-left corner of the image.

Chapter 2 Core ConCepts of Image and VIdeo proCessIng

20

Line 11 specifies the coordinates of the endpoint of the image. You will notice that

the expression (image.shape[1], image.shape[0]) represents the coordinates of the

bottom-right corner of the image.

You have probably guessed by now that we are drawing a diagonal line.

Line 13 sets the color of the line we are going to draw, and line 15 sets its thickness.

The actual line is drawn in line 16. The cv2.line() function takes the following

arguments:

 – Image NumPy. This is the image where we are drawing the line.

 – Start coordinates.

 – End coordinates.

 – Color.

 – Thickness. (This is optional. If you do not pass this argument, our

line will have a default thickness of 1.)

Finally, the modified image is shown on line 19. Line 20 waits for the user to press

any key to terminate the program. Figure 2-7 shows the sample output of the image we

just drew a line on.

Figure 2-7. Image with a diagonal line in blue

Chapter 2 Core ConCepts of Image and VIdeo proCessIng

21

 Drawing a Rectangle on an Image
Drawing a rectangle is easy with OpenCV. Let’s dive into the code directly (Listing 2-4).

We will first load an image and draw a rectangle to it. We will save the modified image to

the disk.

Listing 2-4. Loading an Image, Drawing a Rectangle to It, Saving It, and

Displaying the Modified Image

Filename: Listing_2_4.py

1 from __future__ import print_function

2 import cv2

3

4 # image path

5 image_path = "images/marsrover.png"

6 # Read or load image from its path

7 image = cv2.imread(image_path)

8 # set the start and end coordinates

9 # of the top-left and bottom-right corners of the rectangle

10 start = (100,70)

11 end = (350,380)

12 # Set the color and thickness of the outline

13 color = (0,255,0)

14 thickness = 5

15 # Draw the rectangle

16 cv2.rectangle(image, start, end, color, thickness)

17 # Save the modified image with the rectangle drawn to it.

18 cv2.imwrite("rectangle.jpg", image)

19 # Display the modified image

20 cv2.imshow("Rectangle", image)

21 cv2.waitKey(0)

Here is a line-by-line explanation of Listing 2-4.

Lines 1 and 2 are our usual imports.

Line 5 assigns the image path.

Line 6 reads the image from its path.

Chapter 2 Core ConCepts of Image and VIdeo proCessIng

22

Line 10 sets the starting point of the rectangle we want to draw on the image. The

starting point consists of the coordinates of the top-left corner of the rectangle.

Line 11 sets the endpoint of the rectangle. This represents the coordinates of the

bottom-right corner of the rectangle.

Line 13 sets the color, and line 14 sets the thickness of the outline of the rectangle.

Line 16 actually draws the rectangle. We are using OpenCV’s rectangle() function,

which takes the following parameters:

 – NumPy array that holds the pixel values of the image

 – The start coordinates (top-left corner of the rectangle)

 – The end coordinates (bottom-right of the rectangle)

 – The color of the outline

 – The thickness of the outline

Notice that line 16 does not have any assignment operator. In other words, we did

not assign the return value from the cv2.rectangle() function to any variable. The

NumPy array, image, that is passed as an argument to the cv2.rectangle() function is

modified.

Line 18 saves the modified image, with rectangle drawn on it, to a file on the disk.

Line 20 displays the modified image.

Line 21 calls the waitKey() function to allow the image to remain displayed on the

screen until a key is pressed. The function waitKey() waits for a key event infinitely or

for a certain delay in milliseconds. Since the OS has a minimum time between switching

threads, the waitKey() function will not wait, after a key is pressed, for exactly the delay

time passed as an argument to the waitKey() function. The actual wait time depends on

other programs that your computer might be running at the time when a key is pressed

and waitKey() function is called.

Figure 2-8 shows the output of the image with the rectangle drawn on it.

Chapter 2 Core ConCepts of Image and VIdeo proCessIng

23

In the previous example, we first read an image from the disk and drew a rectangle

on it. We will now slightly modify this example and draw the rectangle on a blank canvas.

We will first create a canvas (as opposed to loading an existing image) and draw a

rectangle on it. We will then save and display the resultant image. See Listing 2-5.

Listing 2-5. Drawing a Rectangle on a New Canvas and Saving the Image

Filename: Listing 2_5.py

1 from __future__ import print_function

2 import cv2

3 import numpy as np

4

5 # create a new canvas

6 canvas = np.zeros((200, 200, 3), dtype = "uint8")

7 start = (10,10)

8 end = (100,100)

9 color = (0,0,255)

10 thickness = 5

11 cv2.rectangle(canvas, start, end, color, thickness)

12 cv2.imwrite("rectangle.jpg", canvas)

13 cv2.imshow("Rectangle", canvas)

14 cv2.waitKey(0)

Figure 2-8. Image with rectangle drawn

Chapter 2 Core ConCepts of Image and VIdeo proCessIng

24

In Listing 2-5, all the lines except lines 3 and 6 are the same as in Listing 2-4.

Line 3 imports the NumPy library that we will use to create the canvas.

Line 6 is where we are creating an image (called the canvas). Our canvas is 200×200

pixels with each pixel holding three channels (to hold BGR values). The variable name,

canvas, is a NumPy array that, in this case, holds a zero value for each pixel. Notice that

the data type of each pixel value of the canvas is an 8-bit unsigned integer (as explained

in Chapter 1).

How would you draw a solid rectangle (meaning, a rectangle filled with a

particular color)?

Clue: set the thickness to -1.

Figure 2-9 shows the output of Listing 2-5. Figure 2-10 shows a canvas with a solid

rectangle drawn on it.

Figure 2-10. Solid rectangle with a thickness of -1

Figure 2-9. Rectangle with border thickness 5

Chapter 2 Core ConCepts of Image and VIdeo proCessIng

25

 Drawing a Circle on an Image
Drawing a circle on an image is equally easy. You create your own canvas or load an

existing image and then set the coordinates of the center, radius, color, and thickness of

the outline of the circle.

Listing 2-6 shows a working piece of code that draws a circle on a blank canvas.

Figure 2-11 shows the output of this code listing.

Listing 2-6. Drawing a Circle on a Canvas

Filename: Listing_2_6.py

1 from __future__ import print_function

2 import cv2

3 import numpy as np

4

5 # create a new canvas

6 canvas = np.zeros((200, 200, 3), dtype = "uint8")

7 center = (100,100)

8 radius = 50

9 color = (0,0,255)

10 thickness = 5

11 cv2.circle(canvas, center, radius, color, thickness)

12 cv2.imwrite("circle.jpg", canvas)

13 cv2.imshow("My Circle", canvas)

14 cv2.waitKey(0)

The code in Listing 2-6 is not very different from that of Listing 2-5 except that line 7

defines the center of the circle.

In addition, line 8 sets the radius, line 9 defines the color, and line 10 sets the

thickness of the circle. Finally, line 11 draws the circle and accepts the following

parameters:

 – The image on which to draw the circle. This is our NumPy array

containing the image pixels.

 – The coordinates of the center of the circle.

 – The radius of the circle.

Chapter 2 Core ConCepts of Image and VIdeo proCessIng

26

 – The color of the outline of the circle.

 – The thickness of the outline.

Here’s an exercise for you:

 1. Draw a solid circle at the center of the canvas.

 2. Draw two concentric circles with the outermost circle having a

radius of 1.5 times the radius of the inner circle.

 Summary
In this chapter, we learned the basics of images, starting with pixels and how they are

represented in different color schemes, namely, gray and color. The coordinate system

helps locate a specific pixel and manipulate their values. We learned how to draw some

basic shapes such as a line, a rectangle, and a circle on an image. Although these are very

basic and easy, they are important concepts to do anything in image processing.

In the next chapter, we will explore different techniques and algorithms used in

image processing.

Figure 2-11. A circle drawn at the center of a black canvas

Chapter 2 Core ConCepts of Image and VIdeo proCessIng

27
© Shamshad Ansari 2020
S. Ansari, Building Computer Vision Applications Using Artificial Neural Networks,
https://doi.org/10.1007/978-1-4842-5887-3_3

CHAPTER 3

Techniques of
Image Processing
In a computer vision application, images are normally ingested from their source, such

as cameras, files stored on a computer disk, or streams from another application. In most

cases, these input images are converted from one form into another. For example, we

may need to resize, rotate, or change their colors. In some cases, we may need to remove

the background pixels or merge two images. In other cases, we may need to find the

boundaries around certain objects within an image.

This chapter explores various techniques of image transformation with examples in

Python and OpenCV. Our learning objectives of this chapter are as follows:

 – To explore most commonly used transformation techniques

 – To learn arithmetic used in image processing

 – To learn techniques of cleaning images, such as noise reduction

 – To learn techniques of merging two or more images or splitting

channels

 – To learn how to detect and draw contours (boundaries) around

objects within an image

 Transformation
While working on any computer vision problem, you will often need to transform images

into different forms. This chapter explores different techniques of transforming images

through a set of Python examples.

https://doi.org/10.1007/978-1-4842-5887-3_3#DOI

28

 Resizing
Let’s start with our first transformation, resizing. To resize an image, we increase or

decrease the height and width of the image. Aspect ratio is an important concept to

remember when resizing an image. The aspect ratio is the proportion of width to height

and is calculated by dividing width by height. The formula for calculating the aspect ratio

is as follows:

aspect ratio = width/height

A square image has an aspect ratio of 1:1, and an aspect ratio of 3:1 means the width

is three times bigger than the height. If an image’s height is 300px and the width is 600px,

its aspect ratio is 2:1.

When resizing, maintaining the original aspect ratio ensures that the resized image

does not look stretched or compressed.

Listing 3-1 shows the following two different techniques of image resizing:

• Resize an image to a desired size in pixels while maintaining the

aspect ratio. In other words, if you know the desired height of the

image, you can compute the corresponding width using the aspect

ratio.

• Resize an image by a factor. For example, enlarge the image width by

a factor of 1.5 or the height by a factor of 2.5.

OpenCV provides a single function, cv2.resize(), to perform these two techniques

of resizing.

Listing 3-1. Code to Calculate Aspect Ratio and Resize the Image

Filename: Listing_3_1.py

1 from __future__ import print_function

2 import cv2

3 import numpy as np

4

5 # Load image

6 imagePath = "images/zebra.png"

7 image = cv2.imread(imagePath)

8

Chapter 3 teChniques of image proCessing

29

9 # Get image shape which returns height, width, and channels as a

tuple. Calculate the aspect ratio

10 (h, w) = image.shape[:2]

11 aspect = w / h

12

13 # lets resize the image to decrease height by half of the original

image.

14 # Remember, pixel values must be integers.

15 height = int(0.5 * h)

16 width = int(height * aspect)

17

18 # New image dimension as a tuple

19 dimension = (height, width)

20 resizedImage = cv2.resize(image, dimension, interpolation=cv2.INTER_

AREA)

21 cv2.imshow("Resized Image", resizedImage)

22

23 # Resize using x and y factors

24 resizedWithFactors = cv2.resize(image, None, fx=1.2, fy=1.2,

interpolation=cv2.INTER_LANCZOS4)

25 cv2.imshow("Resized with factors", resizedWithFactors)

26 cv2.waitKey(0)

Listing 3-1 shows how to resize an image using OpenCV’s cv2.resize() function.

The resize() function takes the following arguments as parameters:

 – The first argument is the original image represented by a NumPy

array.

 – The second argument is the dimension of the intended resizing.

This is a tuple of integers representing the height and width of the

resized image. Pass this argument as None if you want to resize using

horizontal or vertical factors, as explained in a moment.

 – The third and fourth arguments, fx and fy, are the resize factors

in the horizontal (widthwise) and vertical (heightwise) directions.

These two arguments are optional.

Chapter 3 teChniques of image proCessing

30

 – The last argument is the interpolation. This is the algorithm

name that OpenCV internally uses to resize the image. Available

interpolation algorithms are INTER_AREA, INTER_LINEAR, INTER_

CUBIC, and INTER_NEAREST. These algorithms are briefly described in

a moment.

 Interpolation is the process of calculating the pixel values when the

image is resized. The following five algorithms of interpolation are

supported in OpenCV:

 INTER_LINEAR: This is actually a bilinear interpolation in which the

four nearest neighbors (2×2 = 4) are determined and their weighted

average is calculated to determine the value of the next pixel.

 INTER_NEAREST: This uses the nearest-neighbor interpolation

method of approximating the value of a function for a nongiven

point in some space when given the value of that function in points

around (neighboring) that point. In other words, to calculate the

value of a pixel, its nearest neighbor is considered to approximate the

interpolation function.

 INTER_CUBIC: This uses a bicubic interpolation algorithm to

calculate the pixel value. Similar to bilinear interpolation, it uses

4×4 = 16 nearest neighbors to determine the value of the next pixel.

When speed is not a concern, bicubic interpolation gives a better

resized image compared to bilinear.

 INTER_LANCZOS4: This uses the 8×8 nearest neighbor interpolation.

 INTER_AREA: The calculation of the pixel value is performed by

using the pixel area relation (as described by the OpenCV official

documentation). We use this algorithm to create a moiré-free resized

image. When the image size is enlarged, INTER_AREA is similar to the

INTER_NEAREST method.

Let’s examine the code in Listing 3-1.

Lines 1 through 3 are the library imports.

Line 6 assigns the image path, and line 7 reads the image as a NumPy array and

assigns to a variable named image.

Chapter 3 teChniques of image proCessing

31

NumPy’s shape function returns the dimensions of the objects within the array.

Calling the shape function for the image returns the height, width, and number of

channels as a tuple. Line 10 retrieves only the height and width by specifying the index

length 2 (image.shape[,:2]). The height and width are stored in variables h and w.

If we do not specify the index length, it will return the tuple with the height, width,

and channels, like the following one:

(h, w, c) = image.shape[:]

In this example, we want to shrink the size of the image by 50 percent, maintaining

the original aspect ratio. We can simply multiply the original height and width by 0.5 to

obtain the desired height and width. If we know only the desired height, we can calculate

the desired width by multiplying the original new height with the aspect ratio. This is

demonstrated in lines 15 and 16.

Line 19 sets the desired height and width as a tuple.

Line 20 calls the cv2.resize() function of OpenCV and passes the original image

NumPy, the desired dimensions, and the interpolation algorithm (INTER_AREA in this

example) to the resize() function as arguments.

Line 24 demonstrates the resize operation using the second approach when we know

the factors by which the image height or width or both need to increase or decrease. In

this example, both the height and width are enlarged by a factor of 1.2.

Figure 3-1 and Figure 3-2 show the sample output of our resizing program.

Figure 3-1. Original image

Chapter 3 teChniques of image proCessing

32

 Translation
The image translation means moving the image either left, right, up, or down along the

x- and y-axes.

There are two main steps when moving an image: defining a translation matrix

and calling the cv2.warpAffine function. The translation matrix defines the direction

and amount of movement. The warpAffine function is the OpenCV function that does

the actual movement. The cv2.warpAffine function takes three arguments: the image

NumPy, the translation matrix, and the dimension of the image.

Let’s understand this with a code example (see Listing 3-2).

Listing 3-2. Image Translation Along the x- and y-Axes

Filename: Listing_3_2.py

1 from __future__ import print_function

2 import cv2

3 import numpy as np

4

5 #Load image

6 imagePath = "images/soccer-in-green.jpg"

7 image = cv2.imread(imagePath)

8

9 #Define translation matrix

10 translationMatrix = np.float32([[1,0,50],[0,1,20]])

11

12 #Move the image

Figure 3-2. Resized image

Chapter 3 teChniques of image proCessing

33

13 movedImage = cv2.warpAffine(image, translationMatrix, (image.shape[1],

image.shape[0]))

14

15 cv2.imshow("Moved image", movedImage)

16 cv2.waitKey(0)

Listing 3-2 demonstrates the translation operation. The translation matrix is defined

in line 10 where we are defining the movement directions and defining by how many

pixels the image should move. Here is an explanation of this line 10.

In this example, the translation matrix is a 2×3 matrix or a 2D array.

The first row, as defined by [1,0,50], represents the movement along the x-axis by

50 pixels to the right. If the third element of this array is a negative number, the

movement will be to the left.

The second row represented by [0,1,20] defines the movement along the y-axis by

20 pixels down. If the third element of this second row is a negative number, this will

move the image up along the y-axis.

In line 13, we are calling OpenCV’s warpAffine function. This function takes the

following arguments:

 – The NumPy representation of the image we intend to move.

 – The translation matrix that defines the movement direction and the

amount of the movement.

 – The last argument is a tuple that has the width and height of the

canvas within which we want to move our image. In this example, we

are keeping the canvas size the same as the original height and width

of the image.

Figure 3-3 and Figure 3-4 show the results.

Chapter 3 teChniques of image proCessing

34

Here’s an exercise for you: move an image by 50 pixels to the left and 60 pixels up.

 Rotation
To rotate an image by some angle θ, we first define a rotation matrix by using OpenCV’s

cv2.getRotationMatrix2D. I will explain how to create this rotation matrix in Listing 3-3.

To rotate the image, we simply call the same cv2.warpAffine function like we did in the

earlier case of translation . Let’s look at the rotation code line by line.

Figure 3-4. Moved image

Figure 3-3. Original image

Chapter 3 teChniques of image proCessing

35

Listing 3-3. Image Rotation Around the Center of the Image

Filename: Listing_3_3.py

1 from __future__ import print_function

2 import cv2

3 import numpy as np

4

5 # Load image

6 imagePath = "images/zebrasmall.png"

7 image = cv2.imread(imagePath)

8 (h,w) = image.shape[:2]

9

10 #Define translation matrix

11 center = (h//2, w//2)

12 angle = -45

13 scale = 1.0

14

15 rotationMatrix = cv2.getRotationMatrix2D(center, angle, scale)

16

17 # Rotate the image

18 rotatedImage = cv2.warpAffine(image, rotationMatrix, (image.shape[1],

image.shape[0]))

19

20 cv2.imshow("Rotated image", rotatedImage)

21 cv2.waitKey(0)

Listing 3-3 shows how to rotate an image around its center by a 45-degree angle

(clockwise).

Line 11 calculates the center of the image. Notice that we divided the height and

width by using // to get only the integer part of it.

Line 12 simply assigns a value to the angle by which we want to rotate the image.

A negative value will rotate the image clockwise, while the positive angle will rotate

counterclockwise.

Line 13 sets the rotation scale, which is set to resize the image while rotating. A value

of 1.0 keeps the original size after rotation. If we set this to 0.5, the rotated image will be

reduced in size by half.

Chapter 3 teChniques of image proCessing

36

In line 15, we define the rotation matrix by using OpenCV’s function

cv2.getRotationMatrix2D and pass the following arguments:

 – A tuple that represents the point around which the image needs to be

rotated

 – The angle of rotation in degrees

 – Resizing scale

Line 18 does the work of rotating the image as per the definition of a rotation matrix.

We use the same warpAffine function that we used to translate the image. The only

difference is that in the case of rotation, we pass the rotation matrix created in line 15.

Line 20 shows the rotated image, and line 21 waits for the key press before the

displayed image is closed.

Figure 3-5 and Figure 3-6 show the sample outputs of our code.

Figure 3-5. Original image

Chapter 3 teChniques of image proCessing

37

 Flipping
Flipping an image horizontally along the x-axis or vertically along the y-axis can be easily

done by calling OpenCV’s convenient function cv2.flip(). This cv2.flip() function

takes two arguments.

 – The original image

 – The direction of the flip

 – 0 means flip vertically.

 – 1 means flip horizontally.

 – -1 means first flip horizontally and then vertically.

Let’s see our image flipping in different directions with Listing 3-4.

Listing 3-4. Image Flipping Horizontally, Vertically, and Then Horizontally plus

Vertically

Filename: Listing_3_4.py

1 from __future__ import print_function

2 import cv2

3 import numpy as np

4

Figure 3-6. Rotated image

Chapter 3 teChniques of image proCessing

38

5 # Load image

6 imagePath = "images/zebrasmall.png"

7 image = cv2.imread(imagePath)

8

9 # Flip horizontally

10 flippedHorizontally = cv2.flip(image, 1)

11 cv2.imshow("Flipped Horizontally", flippedHorizontally)

12 cv2.waitKey(-1)

13

14 # Flip vertically

15 flippedVertically = cv2.flip(image, 0)

16 cv2.imshow("Flipped Vertically", flippedVertically)

17 cv2.waitKey(-1)

18 # Flip horizontally and then vertically

19 flippedHV = cv2.flip(image, -1)

20 cv2.imshow("Flipped H and V", flippedHV)

21 cv2.waitKey(-1)

Listing 3-4 is self-explanatory. Just in case it does not stand out, here is the

explanation of the lines that are performing the flips.

Line 10 calls the cv2.flip() function and passes the original image and a value of 0

for the horizontal flip.

Similarly, line 15 is flipping the image vertically, while line 19 has an argument of -1

to make the flip first horizontally and then vertically. Figures 3-7 to 3-10 show how these

flips look.

Chapter 3 teChniques of image proCessing

39

Figure 3-7. Original image

Figure 3-8. Flipped horizontally

Chapter 3 teChniques of image proCessing

40

 Cropping
Image cropping means removing the unwanted outer areas of an image. Recall that

OpenCV represents an image as a NumPy array. Cropping an image is achieved by

slicing the image NumPy array. There is no special function in OpenCV to crop an image.

We use the NumPy array features to slice the image. Listing 3-5 shows how to crop an

image.

Figure 3-9. Flipped vertically

Figure 3-10. Flipped horizontally and then vertically

Chapter 3 teChniques of image proCessing

41

Listing 3-5. Image Cropping

Filename: Listing_3_5.py

1 from __future__ import print_function

2 import cv2

3 import numpy as np

4

5 # Load image

6 imagePath = "images/zebrasmall.png"

7 image = cv2.imread(imagePath)

8 cv2.imshow("Original Image", image)

9 cv2.waitKey(0)

10

11 # Crop the image to get only the face of the zebra

12 croppedImage = image[0:150, 0:250]

13 cv2.imshow("Cropped Image", croppedImage)

14 cv2.waitKey(0)

Line 12 shows how to slice the NumPy array. In this example, we are using a

150-pixel height and a 250-pixel width to crop our image to extract only the face portion

of the zebra.

Figure 3-11 shows the original image, and Figure 3-12 shows the cropped images.

Figure 3-11. Original image

Chapter 3 teChniques of image proCessing

42

 Image Arithmetic and Bitwise Operations
When building computer vision applications, you will often need to enhance the

properties of input images. To do that, you may need to do certain arithmetic operations,

such as addition and subtraction, and bitwise operations, such as OR, AND, NOT, and

XOR.

We have learned so far that each pixel in an image can have any integer value

between 0 and 255. What happens when you add a constant to a pixel, making the

resulting value greater than 255 or less than 0 if you subtract a constant from it? For

example, assume that one of the pixels of an image has value 230 and you add 30 to it. Of

course, the pixel cannot have a value of 260. So, what should we do? Should we truncate

the value to keep the pixel to a maximum of 255 or wrap it around to make it 4 (meaning

after 255, go back to 0, and add the remainder after 255)?

There are two methods to handle this situation when the pixel value falls outside the

range [0,255]:

• Saturated operation (or trimming): In this operation, 230 + 30 ⇒ 255.

• Modulo operation: Here it performs a modulo like this: (230+30) %

256 ⇒ 4.

You can perform arithmetic operations by using both OpenCV and NumPy’s built-in

functions. However, they handle the operations differently.

OpenCV’s addition is a saturated operation. On the other hand, NumPy performs a

modulo operation.

Note the difference between NumPy and OpenCV as both these two techniques yield

different results and where you use them depends on your situation and needs.

Figure 3-12. The cropped image

Chapter 3 teChniques of image proCessing

43

 Addition
OpenCV provides two convenient methods to add two images.

• cv2.add(), which takes the two equal-sized images as arguments and

adds their pixel values to produce the result.

• cv2.addWeighted(), which is generally used for blending two

images. More details about this function are provided in a moment.

Note that to add two images, they must be of the same depth and type.

Let’s write some code to understand how these two additions are different. See Listing 3-6.

Listing 3-6. Addition of Two Images

Filename: Listing_3_6.py

1 from __future__ import print_function

2 import cv2

3 import numpy as np

4

5 image1Path = "images/zebra.png"

6 image2Path = "images/nature.jpg"

7

8 image1 = cv2.imread(image1Path)

9 image2 = cv2.imread(image2Path)

10

11 # resize the two images to make them of the same dimension. This is a

must to add two images

12 resizedImage1 = cv2.resize(image1,(300,300),interpolation=cv2.INTER_AREA)

13 resizedImage2 = cv2.resize(image2,(300,300),interpolation=cv2.INTER_AREA)

14

15 # This is a simple addition of two images

16 resultant = cv2.add(resizedImage1, resizedImage2)

17

18 # Display these images to see the difference

19 cv2.imshow("Resized 1", resizedImage1)

20 cv2.waitKey(0)

21

22 cv2.imshow("Resized 2", resizedImage2)

Chapter 3 teChniques of image proCessing

44

23 cv2.waitKey(0)

24

25 cv2.imshow("Resultant Image", resultant)

26 cv2.waitKey(0)

27

28 # This is weighted addition of the two images

29 weightedImage = cv2.addWeighted(resizedImage1,0.7, resizedImage2, 0.3, 0)

30 cv2.imshow("Weighted Image", weightedImage)

31 cv2.waitKey(0)

32

33 imageEnhanced = 255*resizedImage1

34 cv2.imshow("Enhanced Image", imageEnhanced)

35 cv2.waitKey(0)

36

37 arrayImage = resizedImage1+resizedImage2

38 cv2.imshow("Array Image", arrayImage)

39 cv2.waitKey(0)

Lines 8 and 9 load two different images from disk. As I mentioned earlier, the images

must be of the same size and depth for them to be added together; you have probably

already guessed the purpose of lines 12 and 13. Images are resized to be 300×300 pixels.

Line 16 is where these two images are being added. We used OpenCV’s simple

addition function, cv2.add(), that takes the two images as arguments. Refer to the

output image in Figure 3-15 to see the result of simply adding two images.

In line 29, we are doing weighted addition by using OpenCV’s cv2.addWeighted()

function that works as follows:

 ResultantImage = α x image1 + β x image2 + γ (1)

where 𝝰 is the weight of image 1, 𝛃 is the weight of image 2, and 𝛄 is a constant. By

varying the values of these weights, we create the desired effects of additions.

By looking at the previous equation, you can easily guess the arguments you need to

pass to the function cv2.addWeighted(). Here is the argument list:

 – NumPy array of image 1

 – The weight, 𝝰, of image 1 (we passed a value 0.7 in our example code)

Chapter 3 teChniques of image proCessing

45

Figure 3-14. Original image that is added

 – NumPy of array of image 2

 – The weight, 𝛃, of image 2 (we passed the value 0.3 in our example code)

 – The last argument, 𝛄 (we passed a zero value in our example)

Let us examine the inputs and outputs of Listing 3-6. Figure 3-13 and Figure 3-14 are

the original images, resized to 300x300 to make them of equal dimensions.

Figure 3-15 is the output when these two images are added together using the

function add().

Figure 3-16 is the resultant image when the inputs are added using the function

addWeighted().

Figure 3-13. Original image

Chapter 3 teChniques of image proCessing

46

Notice the difference between the simple add and addWeighted functions by

referring to the outputs shown in Figure 3-15 and Figure 3-16.

 Subtraction
Image subtraction means subtracting the pixel values of one image from the

corresponding pixel values of another image. We can also subtract a constant from the

image pixels. When we subtract two images, it is important to note that the two images

must be of the same size and depth.

What happens when you subtract an image from itself? Well, all the pixel values of

the resultant image will be zeros (meaning black). This property is useful in detecting

any change/alteration in an image. If there is no change, the result of subtracting two

images will be a completely black image.

Figure 3-16. Result of cv2.addWeighted()

Figure 3-15. Result of cv2.add()

Chapter 3 teChniques of image proCessing

47

Another reason for subtracting images is to level any uneven sections or shadows.

We will see some interesting results of image subtraction through the code examples.

See Listing 3-7.

Listing 3-7. Image Subtraction

Filename: Listing_3_7.py

1 import cv2

2 import numpy as np

3

4

5 image1Path = "images/cat1.png"

6 image2Path = "images/cat2.png"

7

8 image1 = cv2.imread(image1Path)

9 image2 = cv2.imread(image2Path)

10

11 # resize the two images to make them of the same dimensions. This is a

must to subtract two images

12 resizedImage1 = cv2.resize(image1,(int(500*image1.shape[1]/image1.

shape[0]), 500),interpolation=cv2.INTER_AREA)

13 resizedImage2 = cv2.resize(image2,(int(500*image2.shape[1]/image2.

shape[0]), 500),interpolation=cv2.INTER_AREA)

14

15 cv2.imshow("Cat 1", resizedImage1)

16 cv2.imshow("Cat 2", resizedImage2)

17

18 # Subtract image 1 from 2

19 cv2.imshow("Diff Cat1 and Cat2",cv2.subtract(resizedImage2,

resizedImage1))

20 cv2.waitKey(0)

21

22

23 # subtract images 2 from 1

24 subtractedImage = cv2.subtract(resizedImage1, resizedImage2)

25 cv2.imshow("Cat2 subtracted from Cat1", subtractedImage)

Chapter 3 teChniques of image proCessing

48

26 cv2.waitKey(0)

27

28 # Numpy Subtraction Cat2 from Cat1

29 subtractedImage2 = resizedImage2 - resizedImage1

30 cv2.imshow("Numpy Subracts Images", subtractedImage2)

31 cv2.waitKey(0)

32

33 # A constant subtraction

34 subtractedImage3 = resizedImage1 - 50

35 cv2.imshow("Constant Subtracted from the image", subtractedImage3)

36 cv2.waitKey(0)

Listing 3-7 shows a few interesting behaviors of image subtraction. Here is what we

have in this listing.

Lines 5 through 9 are where we are loading images from disk (from the directory

path). We are loading two images of cats, and we are trying to determine if there is any

difference in these two look-alike cats. Images shown in Figures 3-17 and 3-18 are the

input images used in this example.

Lines 12 and 13 are to resize images to ensure their dimensions are the same.

Remember, this is a must to subtract two image arrays.

In line 19, we are displaying the result of subtracting cat1 from cat2. To determine

the difference, we are using OpenCV’s cv2.subtract() function and passing the NumPy

representations of the two images (resized ones). In this case, we want to subtract cat1

from cat2; hence, we pass the resizedImage2 variable first and resizedImage1 as the

second argument in the function. The order does matter as is evident from the outputs

shown in Figure 3-19 and Figure 3-20.

To demonstrate the effect of the order, line 24 has resizedImage1 first and

resizedImage2 as the second argument in the cv2.subtract() function.

Line 29 does not use OpenCV’s subtraction function. This is a simple NumPy array

subtraction. Notice the difference in the output shown in Figure 3-21.

Line 34 subtracts a constant from the image. The output is shown in Figure 3-22.

Chapter 3 teChniques of image proCessing

49

Figure 3-18. Cat2 image

Figure 3-17. Cat1 image

Chapter 3 teChniques of image proCessing

50

Figure 3-19. Image1 subtracted from Image2

Figure 3-20. Image2 subtracted from Image1

Chapter 3 teChniques of image proCessing

51

Figure 3-21. NumPy subtraction

Figure 3-22. A constant subtracted from an image

Chapter 3 teChniques of image proCessing

52

So far, we have learned the two powerful image arithmetic techniques: addition

and subtraction. Let’s now learn how to perform bitwise logical operations on image

pixels.

 Bitwise Operations
Some of the most useful operations in computer vision are bitwise operations, which

include AND, OR, NOT, and XOR.

If you recall from your Boolean algebra class, these bitwise operations are binary

operations and work with only two states of pixels: on and off. In grayscale images, a

pixel can have any value between 0 and 255. So, what do we call an “on” and what do we

call an “off”? In image processing, for grayscale binary images, the pixel value 0 means

off and a value greater than 0 means on. Based on this concept of pixels being on or off,

we will explore the following bitwise operations.

 AND

The bitwise AND of the two operands “a” and “b” results in 1 if both “a” and “b” are 1;

otherwise, the result is 0.

In image processing, the bitwise AND operation of two image arrays calculates

element-wise conjunction. It is important to note that both the arrays must be of equal

dimensions to perform bitwise AND operations. Bitwise AND can also be performed

with an array and a scalar.

OpenCV provides a convenient function called cv2.bitwise_and(imageArray1,

imageAyyar2) to perform the bitwise AND operation. This function takes the two image

arrays as arguments. Listing 3-8 shows the bitwise AND operation.

 OR

A bitwise OR of the two operands “a” and “b” results in 1 if either or both of “a” and

“b” are 1; otherwise, the result is 0. The bitwise OR operation calculates element-wise

disjunction of two arrays or an array and a scalar. In OpenCV, the function

 cv2.bitwise_or(imageArray1, imageArray2) calculates the bitwise OR of the two

input arrays. Listing 3-8 shows a working example of the OR operation.

Chapter 3 teChniques of image proCessing

53

 NOT

Bitwise NOT inverts the bit values of its operand. OpenCV’s cv2.bitwise_

not(imageArray) function takes only one image array as an argument to perform the

bitwise NOT operation on that image. See Listing 3-8 for an example.

 XOR

A bitwise XOR of the two operands “a” and “b” results in 1 if either but not both “a” or “b”

is 1; otherwise, the result is 0. OpenCV provides a convenient function called

cv2.bitwise_xor(imageArray1, imageArray2) to perform a bitwise XOR. Again, both

the image arrays must be an equal dimension. Listing 3-8 shows a working example of a

bitwise XOR.

The following table summarizes bitwise operations that we will use for various image

processing needs, such as masking:

Operator Usage Description

Bitwise anD a anD b returns a 1 in each bit position for which the corresponding bits of both

operands are 1s

Bitwise or a or b returns a 1 in each bit position for which the corresponding bits of either

or both operands are 1s

Bitwise Xor a Xor b returns a 1 in each bit position for which the corresponding bits of either

but not both operands are 1s

Bitwise not not a inverts the bits of its operand

Let’s understand these bitwise operations with the program in Listing 3-8. We will

first create two images—a circle and a square—and perform bitwise operations to see

their effects.

Listing 3-8. Bitwise Operations

Filename: Listing_3_8.py

1 import cv2

2 import numpy as np

3

Chapter 3 teChniques of image proCessing

54

4 # create a circle

5 circle = cv2.circle(np.zeros((200, 200, 3), dtype = "uint8"),

(100,100), 90, (255,255,255), -1)

6 cv2.imshow("A white circle", circle)

7 cv2.waitKey(0)

8

9 # create a square

10 square = cv2.rectangle(np.zeros((200,200,3), dtype= "uint8"), (30,30),

(170,170),(255,255,255), -1)

11 cv2.imshow("A white square", square)

12 cv2.waitKey(0)

13

14 #bitwise AND

15 bitwiseAnd = cv2.bitwise_and(square, circle)

16 cv2.imshow("AND Operation", bitwiseAnd)

17 cv2.waitKey(0)

18

19 #bitwise OR

20 bitwiseOr = cv2.bitwise_or(square, circle)

21 cv2.imshow("OR Operation", bitwiseOr)

22 cv2.waitKey(0)

23

24 #bitwise XOR

25 bitwiseXor = cv2.bitwise_xor(square, circle)

26 cv2.imshow("XOR Operation", bitwiseXor)

27 cv2.waitKey(0)

28

29 #bitwise NOT

30 bitwiseNot = cv2.bitwise_not(square)

31 cv2.imshow("NOT Operation", bitwiseNot)

32 cv2.waitKey(0)

Chapter 3 teChniques of image proCessing

55

Let’s understand what is going on in Listing 3-8.

Line 5 creates a white color circle at the center of a 200×200 canvas. See Listing 2-5

for how to draw a circle on a canvas.

Similarly, line 10 draws a white square on a 200×200 canvas. See Listing 2-4 for how

to draw a rectangle on a canvas.

Line 15 shows the use of the cv2.bitwise_and() function. The arguments to this

function are the circle and square images (represented by NumPy arrays).

Similarly, lines 20 and 25 show the cv2.bitwise_or() and cv2.bitwise_xor()

operations, respectively.

All these three functions for AND, OR, and XOR take two arrays to operate on.

Line 30 shows the cv2.bitwise_not() function that takes only one argument to

calculate the bitwise NOT.

Figures 3-23 through 3-28 show the outputs of Listing 3-8.

Figure 3-23. White circle

Chapter 3 teChniques of image proCessing

56

Figure 3-24. White square

Figure 3-25. Bitwise AND

Chapter 3 teChniques of image proCessing

57

Figure 3-26. Bitwise OR

Figure 3-27. Bitwise XOR

Chapter 3 teChniques of image proCessing

58

 Masking
Masking is one of the most powerful techniques in computer vision. Masking refers to

the “hiding” or “filtering” of an image.

When we mask an image, we hide a portion of the image with some other image.

In other words, we put our focus on a portion of the image by applying a mask on the

remaining portion of the image. For example, Figure 3-29 has the digits 1, 2, and 3 in

it, while Figure 3-30 is a black image with a white cut-out. When we blend these two

images, digits 1 and 3 will get hidden, and the only digit that will be visible is digit 2. The

result of masking is shown in Figure 3-31 below.

The technique of masking is applied in the smoothing or blurring of an image and in

detecting the edges and contours within the image. The masking technique is also used

in object detection that we will explore later in this book.

Listing 3-9 shows how to perform masking using OpenCV.

1 2 3

Figure 3-29. Original image

1

Figure 3-30. A mask image

Figure 3-28. Bitwise NOT

Chapter 3 teChniques of image proCessing

59

Listing 3-9. Masking Using Bitwise AND Operation

Filename: Listing_3_9.py

1 import cv2

2 import numpy as np

3

4 # Load an image

5 natureImage = cv2.imread("images/nature.jpg")

6 cv2.imshow("Original Nature Image", natureImage)

7

8 # Create a rectangular mask

9 maskImage = cv2.rectangle(np.zeros(natureImage.shape[:2],

dtype="uint8"), (50, 50), (int(natureImage.shape[1])-50,

int(natureImage.shape[0] / 2)-50), (255, 255, 255), -1)

10

11 cv2.imshow("Mask Image", maskImage)

12 cv2.waitKey(0)

13

14 # Using bitwise_and operation perform masking. Notice the

mask=maskImage argument

15 masked = cv2.bitwise_and(natureImage, natureImage, mask=maskImage)

16 cv2.imshow("Masked image", masked)

17 cv2.waitKey(0)

In OpenCV, the image masking is performed by using a bitwise AND operation

(remember bitwise operations?). Listing 3-9 shows a simple example of how to mask

an area of an image. For this example, our goal is to extract a rectangular section of the

cloud shown in Figure 3-32.

Line 5 of Listing 3-9 should be familiar to you by now. All we are doing here is

loading the image (Figure 3-32).

1 2

Figure 3-31. Masking effect

Chapter 3 teChniques of image proCessing

60

In line 9, we are creating a black canvas with a white rectangular section at the top

(with some margin). The size of the canvas is the same as the size of the original image.

Notice in Figure 3-33 that the bigger rectangle has another rectangular white section at

the top and the rest of the area of this rectangle is black.

Line 15 is where the masking is performed. Notice that we are using the

cv2.bitwise_and() function, which takes two mandatory arguments, which in this case

are the original image itself and an optional masking argument (mask=maskImage). What

is happening here is that this function calculates the AND operation of the image with

itself and applies a mask as instructed by the argument mask=maskImage. When OpenCV

sees this mask argument, it will examine only those pixels that are turned on in the mask

(maskImage) array. The output of this masking operation is shown in Figure 3-34.

Figure 3-32. Original image to be masked

Figure 3-33. A mask that will be applied to extract the cloud from Figure 3-32

Chapter 3 teChniques of image proCessing

61

Marking is one of the most commonly used image processing techniques for

computer vision. We will learn more about its practical applications in subsequent

chapters on machine learning and neural networks.

 Splitting and Merging Channels
Recall from Chapter 2 that a color image consists of multiple channels (R,G,B). We have

already learned how to access these channels and represent them as NumPy arrays.

In this section, we will learn how to split these channels and store them as separate

images. OpenCV provides a convenient function, split(), to do that. Using this split()

function, we can split images into respective color components. Here is a working code

example to illustrate this. For this example, we will again take our “nature” image (as

shown in Figure 3-32) and split it into its component colors.

In Listing 3-10, line 5 loads the image. Line 8 splits the image into three components

and stores them in separate NumPy variables (b, g, r). Recall that NumPy stores colors

in blue, green, and red (BGR) sequences and not as RGB sequences. Lines 11, 14, and 17

show these split images. The outputs are shown in Figure 3-35, 3-36, and 3-37.

Listing 3-10. Splitting Channels into Color Components

Filename: Listing_3_10.py

1 import cv2

2 import numpy as np

3

Figure 3-34. Masked image

Chapter 3 teChniques of image proCessing

62

4 # Load the image

5 natureImage = cv2.imread("images/nature.jpg")

6

7 # Split the image into component colors

8 (b,g,r) = cv2.split(natureImage)

9

10 # show the blue image

11 cv2.imshow("Blue Image", b)

12

13 # Show the green image

14 cv2.imshow("Green image", g)

15

16 # Show the red image

17 cv2.imshow("Red image", r)

18

19 cv2.waitKey(0)

Figure 3-35. Red channel

Figure 3-36. Green channel

Chapter 3 teChniques of image proCessing

63

We can merge channels by using OpenCV’s merge() function, which takes arrays in

BGR sequence. Listing 3-11 shows the use of the merge() function.

Listing 3-11. Split and Merge Functions

Filename: Listing_3_11.py

1 import cv2

2 import numpy as np

3

4 # Load the image

5 natureImage = cv2.imread("images/nature.jpg")

6

7 # Split the image into component colors

8 (b,g,r) = cv2.split(natureImage)

9

10 # show the blue image

11 cv2.imshow("Blue Image", b)

12

13 # Show the green image

14 cv2.imshow("Green image", g)

15

16 # Show the red image

17 cv2.imshow("Red image", r)

18

19 merged = cv2.merge([b,g,r])

20 cv2.imshow("Merged Image", merged)

21 cv2.waitKey(0)

Figure 3-37. Blue channel

Chapter 3 teChniques of image proCessing

64

Line 5 loads the image. Lines 8 through 17 are related to our previous split functions.

We did the split so that we have three components to demonstrate the merge() function.

Line 19 is where we are merging the channels. We simply pass the individual

channels as the argument to the merge() function. Notice that the channels are in BGR

sequence. Execute the previous program and observe the final output. Did you get the

original image back?

Splitting and merging are helpful image processing techniques to perform feature

engineering for machine learning. We will apply some of these concepts in the upcoming

chapters.

 Noise Reduction Using Smoothing and Blurring
Smoothing, also called blurring, is an important image processing technique to reduce

noise present in an image. There are generally the following types of noise that we

encounter in an image:

• Salt and pepper noise: Contains random occurrences of black and

white pixels

• Impulse noise: Means random occurrences of white pixels

• Gaussian noise: Where the intensity variation follows a Gaussian

normal distribution

In this section, we will explore the following techniques of blurring/smoothing for

noise reduction.

 Mean Filtering or Averaging
In an averaging technique, we take a small portion of the image, say k×k pixels. This

small portion of the image is called the sliding window. We move this sliding window

from left to right and from top to bottom of the image. The pixel at the center of this k×k

matrix is replaced by the average of all the pixels surrounding it. This k×k matrix is also

called convolution kernel or simply a kernel. Typically, this kernel is taken as an odd

number so a definite center can be calculated. The larger the kernel size, the blurrier the

image will become. For example, a 5×5 kernel will produce a blurrier image compared to

a 3×3 kernel.

Chapter 3 teChniques of image proCessing

65

OpenCV provides a convenient function to blur an image. The function cv2.blur()

is used to blur an image by using mean filtering or averaging technique. This function

takes two arguments.

 – The NumPy representation of the original image that needs to be

blurred

 – The k×k kernel matrix

Listing 3-12 shows a blurring of an image using different kernel sizes.

Listing 3-12. Smoothing/Blurring by Mean Filtering or Averaging

Filename: Listing_3_12.py

1 import cv2

2 import numpy as np

3

4 # Load the image

5 park = cv2.imread("images/nature.jpg")

6 cv2.imshow("Original Park Image", park)

7

8 #Define the kernel

9 kernel = (3,3)

10 blurred3x3 = cv2.blur(park,karnal)

11 cv2.imshow("3x3 Blurred Image", blurred3x3)

12

13 blurred5x5 = cv2.blur(park,(5,5))

14 cv2.imshow("5x5 Blurred Image", blurred5x5)

15

16 blurred7x7 = cv2.blur(park, (7,7))

17 cv2.imshow("7x7 Blurred Image", blurred7x7)

18 cv2.waitKey(0)

As usual, we start with loading the image and assigning it to an array variable (the

park variable in line 5 in Listing 3-12).

Line 9 defines a 3×3 kernel.

In line 10 we are using the cv2.blur() function and passing the park image and

kernel as arguments. This will produce a blurred image using a 3×3 kernel.

Chapter 3 teChniques of image proCessing

66

To compare the effects of kernel size, lines 13 and 16 use kernel sizes 5×5 and 7×7.

Notice the increasing order of blurriness as the kernel size increases in Figures 3-38

through 3-41.

Figure 3-39. Blurring using a 3×3 kernel

Figure 3-40. Blurring using 5×5 kernel

Figure 3-38. Original image

Chapter 3 teChniques of image proCessing

67

Figure 3-41. Blurring using 7×7 kernel

 Gaussian Filtering
Gaussian filtering is one of the most effective blurring techniques in image processing.

This is used to reduce Gaussian noise. This blurring technique gives a more natural

smoothing result compared to the averaging technique. In this filtering, we supply a

Gaussian kernel instead of a boxed fixed kernel.

A Gaussian kernel consists of the height, width, and standard deviations in the X and

Y directions.

OpenCV provides a convenient function, cv2.GaussianBlur(), to perform the

Gaussian filtering. This function, cv2.GaussianBlur(), takes the following arguments:

 – The image represented by the NumPy array.

 – The k×k matrix as the kernel height and width.

 – sigmaX and sigmaY is a standard deviation in the X and Y directions.

Here are a few notes about standard deviation:

 – If only sigmaX is specified, sigmaY is taken the same as sigmaX.

 – If both are taken as zero, the standard deviations are calculated from

the kernel size.

 – OpenCV provides a function, cv2.getGaussianKernel(), to auto-

calculate the standard deviations.

Chapter 3 teChniques of image proCessing

68

For those who are interested in knowing the formula that is used in the Gaussian

filtering, here is the Gaussian equation:

 G x y Ae

x y
x

x

y

y

0
2 2

2

2

2

2

,() =
- -()

+
- -()m

s

m

s

where μ is the mean (the peak) and σ2 is the variance (for each of the variables x and y).

Listing 3-13 is a working example to demonstrate Gaussian blurring.

Listing 3-13. Smoothing Using the Gaussian Technique

Filename: Listing_3_13.py

1 import cv2

2 import numpy as np

3

4 # Load the park image

5 parkImage = cv2.imread("images/park.jpg")

6 cv2.imshow("Original Image", parkImage)

7

8 # Gaussian blurring with 3x3 kernel and 0 for standard deviation to

calculate from the kernel

9 GaussianFiltered = cv2.GaussianBlur(parkImage, (5,5), 0)

10 cv2.imshow("Gaussian Blurred Image", GaussianFiltered)

11

12 cv2.waitKey(0)

Here again we are starting with loading our park image (line 5 of Listing 3-13). Line 9

shows the use of OpenCV’s cv2.GaussianBlur() function. We supplied a 5×5 kernel and

a 0 to tell OpenCV to calculate the standard deviations from the kernel size.

Figure 3-42 shows the original image, and Figure 3-43 shows the effect of Gaussian

blurring.

Chapter 3 teChniques of image proCessing

69

Figure 3-42. Original image

 Median Blurring
Median blurring is an effective technique for reducing salt-and-pepper type of noise.

Median blurring is similar to mean blurring except that the central value of the kernel

is replaced by the median of the surrounding pixels. We use the cv2.medianBlur()

function of OpenCV to reduce the salt-and-pepper noise (see Listing 3-14). This function

takes the following two arguments:

 – The original image that needs to be blurred.

 – The kernel size k. Note that the kernel size k is similar to the k×k

matrix in the case of mean blurring.

Listing 3-14. Salt-and-Pepper Noise Reduction Using Median Blurring

Filename: Listing_3_14.py

1 import cv2

Figure 3-43. Gaussian blurred image with a 5×5 kernel

Chapter 3 teChniques of image proCessing

70

2

3 # Load a noisy image

4 saltpepperImage = cv2.imread("images/salt-pepper.jpg")

5 cv2.imshow("Original noisy image", saltpepperImage)

6

7 # Median filtering for noise reduction

8 blurredImage3 = cv2.medianBlur(saltpepperImage, 3)

9 cv2.imshow("Blurred image 3", blurredImage3)

10

11 # Median filtering for noise reduction

12 blurredImage5 = cv2.medianBlur(saltpepperImage, 5)

13 cv2.imshow("Blurred image 5", blurredImage5)

14

15

16 cv2.waitKey(0)

Listing 3-14 shows the use of the cv2.medianBlur() function. Lines 8 and 12 are

creating the blurred images from the original image loaded in line 4. Notice the kernel

parameter to the function is a scalar and not a tuple or matrix.

Figure 3-44 shows the image with salt-and-pepper noise. Notice the different levels

of noise reduction as we apply different kernel sizes. Figure 3-45 shows the output

image when the kernel size 3 is applied. Notice that Figure 3-45 still has some noise.

Figure 3-45 shows a cleaner output with almost no noise when the kernel size 5 is

applied with median blur.

Figure 3-44. A salt-and-pepper noisy image

Chapter 3 teChniques of image proCessing

71

Figure 3-46. Median blur with kernel size 5 (noise is almost removed)

Figure 3-45. Median blur with kernel size 3 (has some noise)

Figure 3-44 shows a noisy image with a salt-and-pepper type of noise. You will notice

that median blur did a reasonably good job of reducing the noise. Figure 3-45 shows a

blurred image by using a kernel size of 3. A good result is achieved by kernel size 5, as

shown in Figure 3-46.

 Bilateral Blurring
The previous three blurring techniques yield blurred images with the side effect that we

lose the edges in the image. To blur an image while preserving the edges, we use bilateral

blurring, which is an enhancement over Gaussian blurring. Bilateral blurring takes two

Gaussian distributions to perform the computation.

Chapter 3 teChniques of image proCessing

72

The first Gaussian function considers the spatial neighbors (pixels in x and y space

that are close together). The second Gaussian function considers the pixel intensity of

the neighboring pixels. This makes sure that only those pixels that are of similar intensity

to the central pixel are considered for blurring, leaving the edges intact as the edges tend

to have higher intensity compared to other pixels.

Although this is a superior blurring technique, it is slower compared to other techniques.

We use cv2.bilateralFilter() to perform this kind of blurring. The arguments to

this function are as follows:

 – The image that needs to be blurred.

 – The diameter of the pixel neighborhood.

 – Color value. A larger value of the color means that more colors of the

neighborhood pixels will be considered when computing the blur.

 – A space or distance. A larger value of the space means that the pixels

farther from the central pixel will be considered.

Let’s examine Listing 3-15 to understand bilateral filtering.

Listing 3-15. Bilateral Blurring Example

Filename: Listing_3_15.py

1 import cv2

2

3 # Load a noisy image

4 noisyImage = cv2.imread("images/nature.jpg")

5 cv2.imshow("Original image", noisyImage)

6

7 # Bilateral Filter with

8 fileteredImag5 = cv2.bilateralFilter(noisyImage, 5, 150,50)

9 cv2.imshow("Blurred image 5", fileteredImag5)

10

11 # Bilateral blurring with kernal 7

12 fileteredImag7 = cv2.bilateralFilter(noisyImage, 7, 160,60)

13 cv2.imshow("Blurred image 7", fileteredImag7)

14

15 cv2.waitKey(0)

Chapter 3 teChniques of image proCessing

73

Figure 3-47. Original image

As shown in Listing 3-15, lines 8 and 12 are for blurring the input image using cv2.

bilateralFilter(). The first set of arguments (in line 8) is the NumPy-represented

image pixels, the kernel or diameter, the color threshold, and the distance from the

center.

Figures 3-47 through 3-49 show the outputs of Listing 3-15.

Figure 3-48. Bilateral blurring with diameter 5

Figure 3-49. Bilateral blurring with diameter 7

Chapter 3 teChniques of image proCessing

74

We have learned different techniques for the blurring or smoothing of images. We

will use these blurring techniques throughout this book.

In the next section, we will learn how to convert a grayscale image into a binary

image with the help of a technique called thresholding.

 Binarization with Thresholding
Image binarization is the process of converting a grayscale image into a binary—a black-

and- white—image. We apply a technique called thresholding to binarize an image.

We first decide on a threshold value. A pixel value greater than this threshold

is changed to 255, and a pixel with a lesser value than the threshold is set to 0. The

resultant image will have only two values of the pixels—0 and 255—which are black-and-

white color values. Thus, a grayscale image is converted into a black-and-white image

(also called a binary image).

The binarization technique is used to extract prominent information from the

image, e.g., to extract characters in optical character recognition (OCR) from a scanned

document.

OpenCV supports the following types of thresholding techniques.

 Simple Thresholding
In simple thresholding, we manually select a threshold value, T. All pixels greater than

this T are set to 255, and all pixels less than or equal to T are set to 0.

Sometimes it is helpful to do an inverse of binarization, in which case the pixels

greater than the threshold are set to 0, and the pixels less than the threshold are set to 255.

Let’s see an example of how to binarize an image using OpenCV’s cv2.threshold()

function. This function takes the following arguments:

 – The original grayscale image that needs to be binarized

 – The threshold value T

 – The max value that will be set if the pixel value is greater than the

threshold

 – A thresholding method such as cv2.THRESH_BINARY or cv2.THRESH_

BINARY_INV

Chapter 3 teChniques of image proCessing

75

The threshold function returns a tuple containing the threshold value and the

binarized image.

Listing 3-16 converts a grayscale image into a binary image.

Listing 3-16. Binarization Using Simple Thresholding

Filename: Listing_3_16.py

1 import cv2

2 import numpy as np

3

4 # Load an image

5 image = cv2.imread("images/scanned_doc.png")

6 # convert the image to grayscale

7 image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

8 cv2.imshow("Original Grayscale Receipt", image)

9

10 # Binarize the image using thresholding

11 (T, binarizedImage) = cv2.threshold(image, 60, 255, cv2.THRESH_BINARY)

12 cv2.imshow("Binarized Receipt", binarizedImage)

13

14 # Binarization with inverse thresholding

15 (Ti, inverseBinarizedImage) = cv2.threshold(image, 60, 255, cv2.

THRESH_BINARY_INV)

16 cv2.imshow("Inverse Binarized Receipt", inverseBinarizedImage)

17 cv2.waitKey(0)

Listing 3-16 shows the two binarization methods: simple binarization and inverse

binarization. Line 5 loads an image, and line 8 converts the image to a grayscale image

because the input to the threshold function should be a grayscale image.

Line 11 calls OpenCV’s cv2.threshold() function and passes as arguments the

grayscale image, threshold value, maximum pixel value, and thresholding method

cv2.THRESH_BINARY. The threshold() function returns a tuple containing the same

threshold value that we supply in the argument and the binarized image. In the previous

example, the pixel value will be set to a maximum of 255 for all pixels whose value is

greater than 60 and will be set to 0 for those pixels whose value is equal or less than 60.

Chapter 3 teChniques of image proCessing

76

Line 15 is similar to line 11 except that the last argument to the threshold() function

is cv2.THRESH_BINARY_INV. By passing cv2.THRESH_BINARY_INV, we are instructing the

threshold() method to do just the opposite of what the cv2.THRESH_BINARY method

does: set the pixel value to 255 if the pixel intensity is less than 60; otherwise, set it to 0.

Sample outputs of the two threshold methods, along with the original image, are

shown in Figure 3-50 through 3-52.

Figure 3-50. Original grayscale image with dark background patches/stains

Figure 3-52. Binarized image with simple inverse thresholding

Figure 3-51. Binarized image with simple thresholding

Chapter 3 teChniques of image proCessing

77

To demonstrate this example, we took a scanned image of a badly stained document

(Figure 3-50) and binarized it using simple thresholding. The method cv2.THRESH_BINARY

generated the output, which contains black text on a white background. The method cv2.

THRESH_BINARY_INV created the image with white text on a black background.

In simple thresholding, one global threshold value is applied to all pixels in the

image, and you will need to know the threshold up front. If you are processing a large

number of images and you want to adjust the threshold values based on the image type

and intensity variations, the simple threshold may not be the ideal method.

In the following sections, we will examine other thresholding methods: adaptive

thresholding and the Otsu method.

 Adaptive Thresholding
Adaptive thresholding is used to binarize a grayscale image that has a varying degree

of pixel intensity, and one single threshold value may not be suitable to extract the

information from the image. In adaptive thresholding, the algorithm determines the

threshold for a pixel based on a small region around it. This will get us a different

threshold value for different regions in the same image. Adaptive thresholding tends

to give a better result compared to simple thresholding when the pixel intensity varies

within the image.

Listing 3-17 shows the usage of adaptive thresholding to binarize a grayscale image.

Listing 3-17. Binarization Using Adaptive Thresholding

Filename: Listing_3_17.py

1 import cv2

2 import numpy as np

3

4 # Load an image

5 image = cv2.imread("images/boat.jpg")

6 # convert the image to grayscale

7 image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

8

9 cv2.imshow("Original Grayscale Image", image)

10

Chapter 3 teChniques of image proCessing

78

11 # Binarization using adaptive thresholding and simple mean

12 binarized = cv2.adaptiveThreshold(image, 255, cv2.ADAPTIVE_THRESH_

MEAN_C, cv2.THRESH_BINARY, 7, 3)

13 cv2.imshow("Binarized Image with Simple Mean", binarized)

14

15 # Binarization using adaptive thresholding and Gaussian Mean

16 binarized = cv2.adaptiveThreshold(image, 255, cv2.ADAPTIVE_THRESH_

GAUSSIAN_C, cv2.THRESH_BINARY_INV, 11, 3)

17 cv2.imshow("Binarized Image with Gaussian Mean", binarized)

18

19 cv2.waitKey(0)

We have used an example image with varying degrees of shades and color intensity.

Using adaptive thresholding, we want to convert the image to a binary image. Here is the

explanation of what is happening in Listing 3-17.

Line 5, as usual, loads the image. Line 7 converts the image to a grayscale image as

the input to the threshold function is a grayscale image.

Line 12 is actually performing the binarization using OpenCV’s

cv2.adaptiveThreshold() function. This function takes the following arguments:

 – The grayscale image that needs to be binarized

 – The maximum value

 – The method to calculate the threshold (more information in a

moment)

 – Binarization method such as cv2.THRESH_BINARY or

cv2.THRESH_BINARY_INV

 – Neighborhood size to consider for calculating the thresholds

 – A constant value C that will be subtracted from the calculated

thresholds

In our example, on line 12, we used cv2.ADAPTIVE_THRESH_MEAN_C to indicate

that we want to calculate the threshold value of a pixel by taking the mean of pixels

surrounding it. The size of the neighborhood in our example is 7×7. The last argument, 3,

on line 12, is the constant that will be subtracted from the calculated threshold.

Chapter 3 teChniques of image proCessing

79

Figure 3-53. Original image

Line 16 is similar to line 12 except that we are using cv2.ADAPTIVE_GAUSSIAN_C to

indicate that we want to calculate the threshold of a pixel by taking the weighted mean of

all pixels surrounding it.

Figures 3-53 through 3-55 show some sample outputs of Listing 3-17.

 Otsu’s Binarization
In the simple thresholding, we select a global threshold that is arbitrarily selected. It is

difficult to know what the right value of the threshold is, so we may need to do trial-and-

error experiments a few times before you get the right value. Even if you get an ideal

value for one case, it may not work with other images that have different pixel intensity

characteristics.

Figure 3-55. Binarized image using adaptive thresholding with Gaussian mean

Figure 3-54. Binarized image using adaptive thresholding with simple mean

Chapter 3 teChniques of image proCessing

80

Otsu’s method determines an optimal global threshold value from the image

histogram. We will learn more about histograms in the next chapter. For now, just think

of the histogram as the frequency distribution of pixel values.

To perform Otsu’s binarization, we pass cv2.THRESH_OTSU as an extra flag in the

cv2.threshold() function. For example, we pass cv2.THRESH_BINARY+cv2.THRESH_OTSU

in the threshold() function to indicate the use of Otsu’s method. The threshold()

method requires a threshold value. When using Otsu’s method, we pass an arbitrary

value (could be 0), and the algorithm automatically calculates the threshold and returns

as one of the outputs.

Listing 3-18 shows the code example for how to use Otsu’s binarization method.

Listing 3-18. Otsu’s Binarization

Filename: Listing_3_18.py

1 import cv2

2 import numpy as np

3

4 # Load an image

5 image = cv2.imread("images/scanned_doc.png")

6 # convert the image to grayscale

7 image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

8 cv2.imshow("Original Grayscale Receipt", image)

9

10 # Binarize the image using thresholding

11 (T, binarizedImage) = cv2.threshold(image, 0, 255, cv2.THRESH_

BINARY+cv2.THRESH_OTSU)

12 print("Threshold value with Otsu binarization", T)

13 cv2.imshow("Binarized Receipt", binarizedImage)

14

15 # Binarization with inverse thresholding

16 (Ti, inverseBinarizedImage) = cv2.threshold(image, 0, 255, cv2.THRESH_

BINARY_INV+cv2.THRESH_OTSU)

17 cv2.imshow("Inverse Binarized Receipt", inverseBinarizedImage)

18 print("Threshold value with Otsu inverse binazarion", Ti)

19 cv2.waitKey(0)

Chapter 3 teChniques of image proCessing

81

You will notice that the code example in Listing 3-18 is almost the same as the code

in Listing 3-16 with the following exceptions:

 – Line 11 uses an additional flag, cv2.THRESH_OTSU, along with

cv2.THRESH_BINARY, and the threshold value is passed as 0.

 – Line 16 uses the flag cv2.THRESH_OTSU along with cv2.THRESH_

BINARY_INV, and again the threshold value is set to 0.

 – We have print statements in lines 12 and 18 to print the calculated

threshold values. Figure 3-56 shows the sample output of these print

statements.

Figures 3-57 through 3-59 show Otsu’s output samples.

Figure 3-56. Sample output of threshold values calculated from Otsu’s method

Figure 3-57. Original image with varying background shades (stains and dark
patches)

Figure 3-58. Binarization with Otsu’s method

Chapter 3 teChniques of image proCessing

82

Binarization is a useful image processing technique to extract prominent features

from images. In this section, we have learned different binarization techniques and their

usage based on the pixel intensity and their variations. In the following section, we will

learn another powerful image processing technique called edge detection.

 Gradients and Edge Detection
Edge detection involves a set of methods to find points in an image where the brightness

of pixels changes distinctly.

We will learn two methods for finding edges in an image: finding gradients and

Canny edge detection.

OpenCV provides the following two methods for finding gradients.

 Sobel Derivatives (cv2.Sobel() Function)
The Sobel method is a combination of Gaussian smoothing and Sobel differentiation,

which computes an approximation of the gradient of an image intensity function.

Because of the Gaussian smoothing, this method is resistant to noise.

We can perform derivatives either in the horizontal or vertical direction by passing

the arguments xorder and yorder, respectively. The Sobel() function also takes an

argument ksize that we use to define the kernel size. If we set ksize to -1, OpenCV will

internally apply a 3×3 Schar filter, which generally gives a better result compared to the

3×3 Sobel filter.

We will see the Sobel function in action in Listing 3-19.

Figure 3-59. Inverse binarization with Otsu’s method

Chapter 3 teChniques of image proCessing

83

Listing 3-19. Sobel and Schar Gradient Detection

Filename: Listing_3_19.py

1 import cv2

2 import numpy as np

3 # Load an image

4 image = cv2.imread("images/sudoku.jpg")

5 cv2.imshow("Original Image", image)

6 image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

7 image = cv2.bilateralFilter(image, 5, 50, 50)

8 cv2.imshow("Blurred image", image)

9

10 # Sobel gradient detection

11 sobelx = cv2.Sobel(image,cv2.CV_64F,1,0,ksize=3)

12 sobelx = np.uint8(np.absolute(sobelx))

13 sobely = cv2.Sobel(image,cv2.CV_64F,0,1,ksize=3)

14 sobely = np.uint8(np.absolute(sobely))

15

16 cv2.imshow("Sobel X", sobelx)

17 cv2.imshow("Sobel Y", sobely)

18

19 # Schar gradient detection by passing ksize = -1 to Sobel function

20 scharx = cv2.Sobel(image,cv2.CV_64F,1,0,ksize=-1)

21 scharx = np.uint8(np.absolute(scharx))

22 schary = cv2.Sobel(image,cv2.CV_64F,0,1,ksize=-1)

23 schary = np.uint8(np.absolute(schary))

24 cv2.imshow("Schar X", scharx)

25 cv2.imshow("Schar Y", schary)

26

27 cv2.waitKey(0)

A lot of things are happening here. So, let’s try to understand the concept of gradients

by going through the lines of this code listing.

Line 4 is simply loading an image from the disk. We applied a bilateral filter to

reduce noise in line 7. Figure 3-60 shows the original input image and Figure 3-61 shows

the blurred image that is used as an input in the Sobel and Schar gradient detection

functions.

Chapter 3 teChniques of image proCessing

84

Gradient detection starts from line 11. We used the cv2.Sobel() function that takes

the following parameters:

 – The blurred image in which we want to detect gradients.

 – A data type, cv2.CV_64F, which is a 64-bit float. Why? The transition

from black-to- white is considered a positive slope, while the

transition from white-to-black is a negative slope. An 8-bit unsigned

integer cannot hold a negative number. Therefore, we need to use

a 64-bit float; otherwise, we will lose gradients when the transition

from white to black happens.

 – The third argument indicates whether we want to calculate gradients

in the X direction. The value 1 means we want to calculate the

gradient in the X direction.

 – Similarly, the fourth argument indicates whether to calculate

gradients in the Y direction. A 1 means yes, and a 0 means no.

 – The fifth argument, ksize, defines the kernel size. ksize=5 means

the kernel size is 5×5.

Since we want to determine gradients in the X direction on line 11, we set the third

parameter in the cv2.Sobel() function to 1, and we set the fourth parameter to 0.

Line 12 simply takes the absolute value of the gradients and converts them back to

8-bit unsigned integers. Remember, an image is represented as an 8-bit unsigned integer

NumPy array.

Line 13 is similar to line 11 except that the third argument is set to 0 and the fourth

argument is set to 1 to indicate gradient calculation in the Y direction.

Line 14 converts the 64-bit floats to an 8-bit unsigned integer, as explained earlier.

Figure 3-62 and Figure 3-63 show sample outputs of lines 16 and 17. You will notice

that the edge detection in both the X and Y directions is not very sharp. Let’s try a simple

improvement to see the effect on the sharpness of the edges.

Chapter 3 teChniques of image proCessing

85

Figure 3-60. Original image

Figure 3-61. Blurred image

Figure 3-62. Sobel edge detection in the X direction

Chapter 3 teChniques of image proCessing

86

Line 20 through 23 are similar to lines 11 through 14 of Listing 3-19. The difference is

that the value of ksize is -1, which instructs OpenCV to internally call the Schar function

with a kernel size of 3×3. You will notice that the sharpness of the edges is much better

compared to the Sobel function. Figure 3-64 and Figure 3-65 are the results of the Schar

filter of the image shown in Figure 3-61.

Figure 3-63. Sobel edge detection in the Y direction

Figure 3-64. Schar edge detection in the X direction

Chapter 3 teChniques of image proCessing

87

Sobel and Schar calculate gradient magnitudes along the X and Y directions allowing

us to determine edges along the horizontal and vertical directions.

 Laplacian Derivatives (cv2.Laplacian() Function)
The Laplacian operator calculates the second derivative of the pixel intensity function to

determine the edges in the image. The Laplacian operator calculates the gradients based

on the following equation:

Laplace f

f

x

f

y

2

() = ¶
¶

+
¶
¶

2

2 2

OpenCV provides a function, cv2.Laplacian(), to calculate gradients for edge

detection. This function takes the following arguments:

 – The image in which edges need to be detected

 – The data type, which is normally cv2.CV_64F to hold floating-point

values

Listing 3-20 shows a working example of edge detection using the Laplacian function

of OpenCV.

As usual, line 5 loads an image, line 6 converts the image to grayscale, and line 8

blurs the image using bilateral filtering.

Figure 3-65. Schar edge detection in the X direction

Chapter 3 teChniques of image proCessing

88

Line 12 is where the cv2.Laplacian() function is called for gradient calculation to

detect edges in the image. Again, we passed the CV_64F data type to hold the possible

negative values of gradients when the transitions from white to black happen.

Line 13 converts the 64-bit floats to 8-bit unsigned integers.

Listing 3-20. Edge Detection Using Laplacian Derivatives

Filename: Listing_3_20.py

1 import cv2

2 import numpy as np

3

4 # Load an image

5 image = cv2.imread("images/sudoku.jpg")

6 image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

7

8 image = cv2.bilateralFilter(image, 5, 50, 50)

9 cv2.imshow("Blurred image", image)

10

11 # Laplace function for edge detection

12 laplace = cv2.Laplacian(image,cv2.CV_64F)

13 laplace = np.uint8(np.absolute(laplace))

14

15 cv2.imshow("Laplacian Edges", laplace)

16

17 cv2.waitKey(0)

Figure 3-66 shows a sample display of the Laplacian() function.

Chapter 3 teChniques of image proCessing

89

 Canny Edge Detection
Canny edge detection is one of the most popular edge detection methods in image

processing. This is a multistep process. It first blurs the image to reduce noise and

then computes Sobel gradients in the X and Y directions, suppresses the edges where

nonmaxima is calculated, and finally determines whether a pixel is “edge-like” or not by

applying hysteresis thresholding.

OpenCV’s cv2.canny() function encapsulates all these steps into a single function.

Let’s get straight to the code to see an example of edge detection using the Canny

function. See Listing 3-21.

Listing 3-21. Canny Edge Detection

Filename: Listing_3_21.py

1 import cv2

2 import numpy as np

3

4 # Load an image

5 image = cv2.imread("images/sudoku.jpg")

6 image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

7 cv2.imshow("Blurred image", image)

8

Figure 3-66. Edge detection using Laplacian derivatives

Chapter 3 teChniques of image proCessing

90

9 # Canny function for edge detection

10 canny = cv2.Canny(image, 50, 170)

11 cv2.imshow("Canny Edges", canny)

12

13 cv2.waitKey(0)

The important line in Listing 3-21 is line 10, where we are calling the cv2.Canny()

function and passing the minimum and maximum threshold values to the image in

which edges need to be detected. Any gradient value larger than the maximum threshold

value is considered an edge. Any value below the minimum threshold is not considered

an edge. The gradient values in between are considered for edges according to their

intensity variations.

Figure 3-67 shows sample output of the Canny edge detector. Notice that the edges

are very crisp in this case.

 Contours
Contours are curves joining continuous points of the same intensity. Determining

contours is useful for object identification, face detection, and recognition.

Figure 3-67. Canny edge detection

Chapter 3 teChniques of image proCessing

91

To detect contours, we do the following:

 1. Convert the image to grayscale.

 2. Binarize the image by using any of the thresholding methods.

 3. Apply the Canny edge detection method.

 4. Use the findContours() method to find all the contours in the

image.

 5. Finally, use the drawContours() function to draw contours, if

needed.

We will see contour detection and drawing in action in Listing 3-22.

Listing 3-22. Contour Detection and Drawing

Filename: Listing_3_22.py

1 import cv2

2 import numpy as np

3

4 # Load an image

5 image = cv2.imread("images/sudoku.jpg")

6 image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

7 cv2.imshow("Blurred image", image)

8

9 # Binarize the image

10 (T,binarized) = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY_

INV+cv2.THRESH_OTSU)

11 cv2.imshow("Binarized image", binarized)

12

13 # Canny function for edge detection

14 canny = cv2.Canny(binarized, 0, 255)

15 cv2.imshow("Canny Edges", canny)

16

17 (contours, hierarchy) = cv2.findContours(canny,cv2.RETR_EXTERNAL,

cv2.CHAIN_APPROX_SIMPLE)

Chapter 3 teChniques of image proCessing

92

18 print("Number of contours determined are ", format(len(contours)))

19

20 copiedImage = image.copy()

21 cv2.drawContours(copiedImage, contours, -1, (0,255,0), 2)

22 cv2.imshow("Contours", copiedImage)

23 cv2.waitKey(0)

Here is a line-by-line explanation of Listing 3-22.

Line 5 loads the image. Line 6 converts the image to grayscale, and line 10 binarizes

the image using Otsu’s method. Line 14 calculates gradients for edge detection using

Canny’s function.

Line 17 calls OpenCV’s cv2.findContours() function to determine contours. The

arguments to this function are as follows:

 – The first argument is the image in which we want to detect the edges

using Canny’s function.

 – The second argument, cv2.RET_EXTERNAL, determines the type

of contour we are interested in. cv2.RET_EXTERNAL retrieves

the outermost contours only. We can also use cv2.RET_LIST to

retrieve all contours, cv2.RET_COMP and cv2.RET_TREE, to include

hierarchical contours.

 – The third argument, cv2.CHAIN_APPROAX_SIMPLE, removes the

redundant points and compresses the contour, thereby saving

memory. cv2.CHAIN_APPROAX_NONE stores all points of the contour

(which require more memory to store them).

The output of the cv2.findContours() function is a tuple with the following

items in it:

 – The first item of the tuple is a Python list of all the contours in the

image. Each individual contour is a NumPy array of (x,y) coordinates

of boundary points of the object.

 – The second item of the output tuple is the contour hierarchy.

Notice line 18 where we are printing the number of contours identified.

Chapter 3 teChniques of image proCessing

93

 Drawing Contours
We are drawing contours (line 21 of Listing 3-22) by using the cv2.drawContours()

function. The following are arguments to this function:

 – The first argument is the image in which contours are to be drawn.

 – The second argument is the list of all contour points.

 – The third argument is the index of the contour to be drawn. If we

want to draw the first contour, pass a 0. Similarly, pass 1 to draw the

second contour, and so on. If you want to draw all contours, pass -1 to

this argument.

 – The fourth argument is the color of the contour.

 – The fifth and final argument is the thickness of the contour.

Figures 3-68 through 3-70 show some sample outputs of Listing 3-22.

Figure 3-68. Blurred image

Figure 3-69. Contours using the Canny function

Chapter 3 teChniques of image proCessing

94

 Summary
In this chapter, we explored various techniques of image processing that are useful

for building computer vision applications. We learned various methods of image

transformation such as resizing, rotation, flipping, and cropping. We also learned how to

do arithmetic and bitwise operations on images. The latter part of this chapter covered

some powerful and useful image processing functions such as masking, noise reduction,

binarization, edge, and contour detection.

We will use most of these image processing techniques in later chapters, especially

when we learn about feature extraction and engineering for machine learning.

Figure 3-70. Contours drawn on the original image

Chapter 3 teChniques of image proCessing

95
© Shamshad Ansari 2020
S. Ansari, Building Computer Vision Applications Using Artificial Neural Networks,
https://doi.org/10.1007/978-1-4842-5887-3_4

CHAPTER 4

Building a Machine
Learning–Based
Computer Vision System
You learned about various image processing techniques in the previous chapter. In this

chapter, we will discuss the steps to develop machine learning computer vision systems.

This chapter is a primer for the next chapter, which will provide details on various deep

learning algorithms and how to write code with Python to execute on TensorFlow.

 Image Processing Pipeline
Computer vision (CV) is the ability of computers to capture and analyze images and

make interpretations and decisions about it. For example, CV can be used to detect

and recognize images and to identify patterns or objects within them. An artificial

intelligence (AI) system ingests images, processes them, extracts features, and makes

interpretation about them. In other words, images move from one system or component

to another and get transformed into various forms for machines to recognize patterns

and detect objects in them.

Images are processed across a set of components performing various types of

transformations that result in a final product. This process is known as the image

processing pipeline or computer vision pipeline. Figure 4-1 shows a high-level view of the

processing pipeline.

https://doi.org/10.1007/978-1-4842-5887-3_4#DOI

96

As shown in Figure 4-1, real-world objects are captured by sensing devices, such

as cameras, and converted into digital images. These digital images are processed by

computer systems, and final outputs are generated. The outputs may be about the image

itself (image classification) or the detection of some patterns and objects embedded in

the image. For example, in healthcare, an image may have been created from MRI or

X-ray instruments. The image may be input into an image processing pipeline to detect

the presence or absence of a tumor.

This book covers what goes into the computer processing units and how outputs are

generated. Let’s examine the data flow pipeline for processing images within a computer

system (see Figure 4-2).

Here is a brief description of this computer vision pipeline:

 1. The vision pipeline starts with image ingestion. Images are

captured, digitized, and stored on computers’ disks. In the case of

videos, digital frames of images are ingested and stored on disks

from where they are read and analyzed. In some cases, video

frames are ingested live from the camera into the computer.

 2. After the images are ingested, they go through various

transformation stages. The transformation, also referred to

as preprocessing, is necessary to standardize the images. It is

important to ensure that all images for a particular purpose

Real-world objects Sensing devices,
such as cameras

Image processing
devices, such as
computers

Output, such as the
objects in the image

Figure 4-1. Image pipeline

Figure 4-2. Image processing pipeline in computer vision

Chapter 4 Building a MaChine learning–Based CoMputer Vision systeM

97

are of the same size, shape, and color schema. The commonly

used transformations are image resizing, color manipulation,

translation, rotation, and cropping. Other advanced

transformations that help in feature extraction include image

binarization, thresholding, and gradient and edge detection. For a

review of these techniques, please see Chapter 3.

 3. Feature extraction is a core component of the vision pipeline. In

machine learning, we feed a set of features to predict an outcome

or a class. Without a good feature set, we cannot have a good

machine learning outcome. You will learn more about feature

extraction in the following section, “Feature Extraction,” but for

now let’s keep in mind that a good feature set is important for any

machine learning system.

 4. Then comes the machine learning algorithm. There are two stages

of machine learning. In the first stage, we feed a large number of

datasets to a mathematical algorithm to learn from. The outcome

from this learning algorithm is called a trained model or simply a

model. In the second stage, we feed a dataset to the trained model

to predict an outcome or a class. This stage is called the prediction

stage. I will describe some of the most popular and highly effective

machine learning models for computer vision in Chapter 5. I will

introduce Keras and TensorFlow in that chapter, and we will work

through some code examples to train models and predict using

those models.

 5. The final component of the vision pipeline is the output that is the

end goal that you want your vision system to do.

 Feature Extraction
In machine learning, a feature is an individual measurable property of an object or event

being observed. In computer vision, a feature is distinguishing information about the

image. Feature extraction is an important step in machine learning. In fact, everything

about machine learning revolves around features. It is, therefore, crucial to identify and

extract discriminating and independent features for a quality machine learning outcome.

Chapter 4 Building a MaChine learning–Based CoMputer Vision systeM

98

Given an image of a wheel, consider attempting to determine whether the image

is of a motorcycle or a car. In this case, a wheel is not a distinguishing feature. We need

more features, such as the presence of doors, a roof, etc. Furthermore, features extracted

from a single motorcycle or car will not be sufficient for a practical machine learning

usage. We need to establish patterns with the help of the repeated occurrence of events

or characteristics, because, in the real world, an object may not be presented in the same

way the feature was presented. Therefore, repeatability is an important characteristic of a

good feature.

In the wheel example, we had only one feature, but in actual practice, there may be

a large number of features, such as color, contour, edges, corners, angle, light intensity,

and many more. The more distinguishing features you extract, the better your model will

be.

A machine learning model is as good as the features provided for training the model.

The question is, how can you extract a good set of features? There is no one solution

that fits all, but here are some practical approaches that will help you in your feature

extraction tasks. The following is a nonexhaustive list of some approaches:

• Features must be distinguishing or identifiable.

• Features must avoid confusing overlapping features.

• Features must avoid rarely occurring features.

• Features should be consistent across different conditions and viewing

angles.

• Features should be identifiable either directly or with some

processing techniques.

• You should collect a large number of samples to establish patterns.

 How to Represent Features
Features extracted from an image are represented as a vector, called a feature vector. Let’s

understand this with an example. For simplicity, let’s consider a grayscale image. Features

of this image are pixel values. We know that the pixels in a grayscale image are organized

as a two-dimensional matrix, and each pixel has a value between 0 and 255. If these pixel

values are our features, we represent these values as a one-dimensional (1D) row matrix

(which is a vector or a 1D array). Figure 4-3 shows a pictorial representation of this.

Chapter 4 Building a MaChine learning–Based CoMputer Vision systeM

99

For most machine learning algorithms, we will need to extract features and provide

it to the algorithm being considered for model training. Some deep learning algorithms,

such as convolutional neural networks (CNNs), automatically extract features and then

train the models. Chapter 5 provides details about deep learning algorithms and how

to train computer vision models. The following section discusses various methods of

feature extraction from images. We will write code using Python and OpenCV to work

through the examples of feature extraction.

 Color Histogram
A histogram is the distribution of pixel intensities in an image. Typically a histogram is

visualized in the form of a graph (or chart). The x-axis of this graph represents the pixel

values (or a range of values), and the y-axis represents the frequency (or count) of pixels

of a particular value or a range of values. The peak of the graph shows the color with the

highest number of pixels.

We already know that a pixel can have a value between 0 and 255. That means

the histogram will have 256 values on the x-axis, and the y-axis will have the number

of pixels with these values. That’s a lot of numbers on the x-axis. For most practical

purposes, we divide these pixel values into “bins.” For example, we may divide the x-

values into 8 bins where each bin will have 32-pixel colors. We sum up the number of

pixels within each bin to calculate the y-values.

So, why do we care about the histogram? The histogram gives an idea of the

distribution of color, contrast, and brightness within an image. A grayscale image has

only one color channel, but a color image in an RGB scheme will have three channels.

When we plot a histogram of a color image, we generally plot three histograms, one for

each channel, to get a better idea of intensity distribution of each color channel. The

histogram could be used as features for your machine learning algorithms. There is

[row 1 pixels, row 2 pixels, .. row n pixels]

OR

[255,0,255,255,255,0,255,....255,0,255,255,255,0,255]

Figure 4-3. Vector representation of features

Chapter 4 Building a MaChine learning–Based CoMputer Vision systeM

100

another interesting use of histograms, which is to enhance the quality of the image. The

technique to enhance an image by using a histogram is called histogram equalization.

You’ll learn more about histogram equalization later in this chapter.

 How to Calculate a Histogram

We will use Python and OpenCV to calculate a histogram, and we will use pyplot from

the Matplotlib package to plot the histogram graph. (Remember Matplotlib? We installed

and set it up in Chapter 1.)

OpenCV provides an easy-to-use function to calculate the histogram. Here is the

description of the calcHist() function:

calcHist(images, channels, mask, histSize, ranges, accumulate)

This function takes the following arguments:

images: This is a NumPy array of image pixels. If you have only

one image, just wrap the NumPy variable within a pair of square

brackets, e.g., [image].

channels: This is an array of indexes of channels we want to

calculate the histogram for. This will be [0] for grayscale images

and [0,1,2] for RGB color images.

mask: This is an optional argument. If you do not supply a mask,

the histogram will be calculated for all the pixels in the image or

images. If you supply a mask, the histogram will be calculated for

the masked pixels only. Remember masks from Chapter 3?

histSize: This is the number of bins. If we pass this value as

[64,64,64], this means that each channel will have 64 bins. The bin

size may be different for different channels.

ranges: This is the range of pixel values, which is normally [0,255]

for grayscale and RGB color images. This value may be different in

other color schemes, but for now, let’s stick to RGB only.

accumulate: This is the accumulation flag. If it is set, the histogram

is not cleared in the beginning when it is allocated. This feature

enables you to compute a single histogram from several sets of

arrays or to update the histogram in time. The default value is None.

Chapter 4 Building a MaChine learning–Based CoMputer Vision systeM

101

 Grayscale Histogram

Let’s write some code to learn how to calculate the histogram of a grayscale image

and visualize it as a graph (see Listing 4-1). Notice that we imported pyplot from the

Matplotlib package. This is the library we will use to plot the graph that will show our

histogram.

Listing 4-1. Histogram of a Grayscale Image

Filename: Listing_4_1.py

1 import cv2

2 import numpy as np

3 from matplotlib import pyplot as plot

4

5 # Read an image and convert it to grayscale

6 image = cv2.imread("images/nature.jpg")

7 image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

8 cv2.imshow("Original Image", image)

9

10 # calculate histogram

11 hist = cv2.calcHist([image], [0], None, [256], [0,255])

12

13 # Plot histogram graph

14 plot.figure()

15 plot.title("Grayscale Histogram")

16 plot.xlabel("Bins")

17 plot.ylabel("Number of Pixels")

18 plot.plot(hist)

19 plot.show()

20 cv2.waitKey(0)

Line 11 of Listing 4-1 calculates the histogram of our grayscale image. Notice that the

image variable is wrapped within a pair of braces because cv2.calcHist() functions

take an array of NumPy arrays. Even though we have only one image, we still need to

wrap it in an array.

Chapter 4 Building a MaChine learning–Based CoMputer Vision systeM

102

The second argument, [0], denotes that we want to calculate the histogram of the

zeroth color channel. Since we have only one channel, we pass only one index value in

the array: [0].

The third argument, None, means that we do not want to provide any masking. In

other words, we calculate the histogram of all pixels.

[256] is the bin information. This specifies that we want 256 bins, meaning one bin

for each pixel. This may not be useful unless we want to perform a fine-grained analysis

of the image pixel distribution. For the majority of practical purposes, you want to pass

smaller bin sizes such as [32] or [64], etc.

The last argument, [0,255], tells the function that there are pixel values between 0

and 255.

The hist variable holds the calculation output. If you print this variable, you will see

a bunch of numbers that may not be easy to interpret. To make the interpretation easier,

we plot the histogram in the form of a graph.

Line 14 configures a blank plot. Line 15 assigns a name to our plot. Lines 16 and 17

set the x-axis and y-axis labels, respectively. Line 18 actually plots the graph. Finally,

line 19 displays the pretty plot on the screen. Figure 4-4 shows the original image, and

Figure 4-5 shows the output.

Figure 4-4. Original grayscale image

Chapter 4 Building a MaChine learning–Based CoMputer Vision systeM

103

So, what do you see in this histogram? The maximum number of pixels (3,450) has

the color value of 20, which is close to being black. Most pixels are in the color range of

100 and 150.

Here’s an exercise for you: plot a histogram of an image with 32 bins. Try to interpret

the output graph.

 RGB Color Histogram

Let’s review the program in Listing 4-2 and understand how to plot histograms of all

three channels of an RGB-based color image. A color image has three channels in an

RGB scheme. It is important to note that OpenCV maintains color information in BGR

sequence and not in RGB sequence.

In Listing 4-2, line 6 is our usual image read line where we are reading a color image

from the disk.

You will notice that we created a tuple of colors in BGR sequence to hold all our

channel colors (line 10).

Why do we have a for loop in line 12? The second argument of the cv2.calcHist()

function takes an array with value 0, 1, or 2. If we pass the value [0], we actually instruct

the calcHist() function to calculate the histogram of the color channel in the zeroth

index, which is the blue channel. Similarly, a value of [1] instructs the calcHist()

function to calculate the histogram of the red channel, and a value of [2] says to calculate

for the green channel. The first iteration of the for loop is first calculating and plotting

the histogram of the blue color, the second iteration is for green, and the last iteration is

for the green channel.

Figure 4-5. Histogram of the grayscale image in Figure 4-4

Chapter 4 Building a MaChine learning–Based CoMputer Vision systeM

104

Notice again that we have passed [32] as the fourth argument to our calcHist()

function. This is to let the function know that we want to calculate the histogram with 32

bins for each of the channels.

The last argument, [0,256], gives the color range.

Within the for loop in line 15, the plot() function is taking the histogram as the first

argument and an optional color as the second argument.

Listing 4-2. Histogram of Three Channels of RGB Color Image

Filename: Listing_4_2.py

1 import cv2

2 import numpy as np

3 from matplotlib import pyplot as plot

4

5 # Read a color image

6 image = cv2.imread("images/nature.jpg")

7

8 cv2.imshow("Original Color Image", image)

9 #Remember OpenCV stores color in BGR sequence instead of RBG.

10 colors = ("blue", "green", "red")

11 # calculate histogram

12 for i, color in enumerate(colors):

13 hist = cv2.calcHist([image], [i], None, [32], [0,256])

14 # Plot histogram graph

15 plot.plot(hist, color=color)

16

17 plot.title("RGB Color Histogram")

18 plot.xlabel("Bins")

19 plot.ylabel("Number of Pixels")

20 plot.show()

21 cv2.waitKey(0)

Figure 4-6 and Figure 4-7 show the output of Listing 4-2.

Chapter 4 Building a MaChine learning–Based CoMputer Vision systeM

105

In Figure 4-7, the x-axis has only up to 32 values because we used only 32 bins for

each channel.

Here’s an exercise for you: create a histogram of a masked image.

Hint Create a mask numpy array and pass this array as the third argument in
the cv2.calcHist() function. read Chapter 3 to refresh your memory on how to
create a mask.

Figure 4-6. Original color image

Figure 4-7. Histogram of three color channels of the image in Figure 4-6

Chapter 4 Building a MaChine learning–Based CoMputer Vision systeM

106

 Histogram Equalizer
Now that we have a good understanding of what a histogram is, let’s use this concept

to enhance the quality of an image. Histogram equalization is an image processing

technique to adjust the contrast of an image. It is a method of redistributing the pixel

intensities in such a way that the intensities of the under-populated pixels are equalized

to the intensities of over-populated pixel intensities, as depicted in Figure 4-8.

Let’s write some code and see this histogram equalization in action. There is a lot of

code in Listing 4-3, but if you look at the top portion of this listing, from lines 1 through

19, you will notice that these lines are the same as the ones in Listing 4-1. Here we are

just calculating and plotting the histogram of a grayscale image.

In line 21, we are using OpenCV’s cv2.equalizeHist() function that takes the

original image and adjusts its pixel intensity to enhance its contrast.

Lines 22 through 33 calculate and display a histogram of the enhanced (equalized)

image.

Figures 4-9 through 4-12 show the outputs of Listing 4-3 and a comparison of the

histograms for the original and equalized images.

Listing 4-3. Histogram Equalization

Filename: Listing_4_3.py

1 import cv2

2 import numpy as np

3 from matplotlib import pyplot as plot

4

5 # Read an image and convert it into grayscale

6 image = cv2.imread("images/nature.jpg")

Figure 4-8. Histogram equalization (source: Wikipedia)

Chapter 4 Building a MaChine learning–Based CoMputer Vision systeM

107

7 image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

8 cv2.imshow("Original Image", image)

9

10 # calculate histogram of the original image

11 hist = cv2.calcHist([image], [0], None, [256], [0,255])

12

13 # Plot histogram graph

14 #plot.figure()

15 plot.title("Grayscale Histogram of Original Image")

16 plot.xlabel("Bins")

17 plot.ylabel("Number of Pixels")

18 plot.plot(hist)

19 plot.show()

20

21 equalizedImage = cv2.equalizeHist(image)

22 cv2.imshow("Equalized Image", equalizedImage)

23

24 # calculate histogram of the original image

25 histEqualized = cv2.calcHist([equalizedImage], [0], None, [256],

[0,255])

26

27 # Plot histogram graph

28 #plot.figure()

29 plot.title("Grayscale Histogram of Equalized Image")

30 plot.xlabel("Bins")

31 plot.ylabel("Number of Pixels")

32 plot.plot(histEqualized)

33 plot.show()

34 cv2.waitKey(0)

Chapter 4 Building a MaChine learning–Based CoMputer Vision systeM

108

Figure 4-10. Histogram of the image in Figure 4-9

Figure 4-9. Original grayscale image

Chapter 4 Building a MaChine learning–Based CoMputer Vision systeM

109

 GLCM
The gray-level co-occurrence matrix (GLCM) is the distribution of simultaneously

occurring pixel values within a given offset. An offset is the position (distance and

direction) of adjacent pixels. As the name implies, the GLCM is always calculated for a

grayscale image.

The GLCM calculates how many times a pixel value i co-exists either horizontally,

vertically, or diagonally with a pixel value j.

Figure 4-11. Equalized image with enhanced contrast

Figure 4-12. Histogram of equalized image of Figure 4-11

Chapter 4 Building a MaChine learning–Based CoMputer Vision systeM

110

For GLCM calculation, we specify an offset distance d and an angle ϴ (theta). The

angle ϴ (theta) may be 0° (horizontally), 90° (vertically), 45° (diagonally to the right up),

or 135° (diagonally to the left up), as shown in Figure 4-13.

The importance of the GLCM is that it provides information on spatial relationships

over an image. This differs from a histogram because the histogram does not provide any

information about the image size, pixel location, or their relationship.

Although the GLCM is such an important matrix, we do not directly use it as a feature

vector for machine learning. We calculate certain key statistics about the image using the

GLCM, and those statistics are used as features for any machine learning training. We

will learn about these statistics and how to calculate them in this section.

Though OpenCV uses the GLCM internally, it does not directly expose any function

to calculate it. To calculate the GLCM, we will use another Python library: skimage’s

feature package.

Here is a description of the function we are going to use to compute the GLCM:

greycomatrix(image, distances, angles, levels, symmetric,normed)

The greycomatrix() function takes the following arguments:

image: This is the NumPy representation of a grayscale image.

Remember, the image must be grayscale.

distances: This is a list of pixel-pair distance offsets.

angles: This is a list of angles between the pair of pixels. Make

sure the angle is a radian and not a degree.

Figure 4-13. Illustration of adjacent pixel position (distance and angle)

Chapter 4 Building a MaChine learning–Based CoMputer Vision systeM

111

levels: This is an optional parameter and meant for images

having 16-bit pixel values. In most cases, we use 8-bit image pixels

that can have values ranging from 0 to 255. For an 8-bit image, the

max value for this parameter is 256.

symmetric: This is an optional parameter and takes a Boolean.

The value True means the output matrix will be symmetric. The

default is False.

normed: This is also an optional parameter that takes a Boolean.

The Boolean True means that each output matrix is normalized

by dividing by the total number of accumulated cooccurrences for

the given offset. The default is False.

The greycomatrix() function returns a 4D ndarray. This is the gray-level co-

occurrence histogram. The output value P[i,j,d,theta] represents how many times

the gray-level j occurs at a distance d and angle theta from the gray-level j. If the

parameter normed is False (which is the default), the output is of type uint32 (a 32-bit

unsigned integer); otherwise, it is float64 (a 64-bit floating point).

Listing 4-4 shows you how to calculate the GLCM using the skimage library to

compute feature statistics.

Listing 4-4. GLCM Calculation Using the greycomatrix() Function

Filename: Listing_4_4.py

1 import cv2

2 import skimage.feature as sk

3 import numpy as np

4

5 #Read an image from the disk and convert it into grayscale

6 image = cv2.imread("images/nature.jpg")

7 image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

8

9 #Calculate GLCM of the grayscale image

10 glcm = sk.greycomatrix(image,[2],[0, np.pi/2])

11 print(glcm)

Chapter 4 Building a MaChine learning–Based CoMputer Vision systeM

112

Line 10 calculates the GLCM using greycomatrix() by passing the image NumPy

variable and a distance of [2]. The third argument is in radians. np.pi/2 is the radian for

a 90-degree angle. The last line, line 11, simply prints the 4D ndarray.

As mentioned, the GLCM is not directly used as a feature, but we use this to calculate

some useful statistics, which gives us an idea about the texture of the image. The

following table lists the statistics we can derive:

Statistic Description

Contrast Measures the local variations in the glCM.

Correlation Measures the joint probability occurrence of the specified pixel pairs.

energy provides the sum of squared elements in the glCM. also known as uniformity or

the angular second moment.

homogeneity Measures the closeness of the distribution of elements in the glCM to the glCM

diagonal.

Here we provide you with some high-level formulae that are used to calculate

the previous statistics. A formal mathematical treatment of these formulae is outside

the scope of this book; however, you are encouraged to explore the mathematical

underpinnings of these statistics.

Contrast =
i j

levels

i jP i j
,

,
=

-

å -()
0

1
2

Dissimilarity =
i j

levels

i jP i j
,

,
=

-

å -
0

1

Homogeneity =
i j

levels
i jP

i j,

,

=

-

å
+ -()0

1

2
1

ASM =
i j

levels

i jP
,

,
=

-

å
0

1
2

Energy = ASM

Correlation =
i j

levels

i j

i j

i j

P
i j

,
,

=

-

å
-() -()
()()

é

ë

ê
ê
ê

ù

û

ú
ú
ú0

1

2 2

m m

s s

Chapter 4 Building a MaChine learning–Based CoMputer Vision systeM

113

where, P is the GLCM histogram for which to compute the specified property. The

value P[i,j,d,theta] is the number of times that gray-level j occurs at the distance d and at

the angle theta from the grey-level i.

We will use greycoprops() from the skimage package to compute these statistics

from the GLCM. Here is the definition of this function:

greycoprops(P, prop='contrast')

The first argument is the GLCM histogram (see Listing 4-4, line 10).

The second argument is the property we want to calculate. We can pass any of the

following properties for this argument: contrast, dissimilarity, homogeneity, energy,

correlation, and ASM.

If you do not pass the second argument, it will default to contrast.

Listing 4-5 shows how to calculate these statistics.

Listing 4-5. Calculation of Image Statistics from the GLCM

Filename: Listing_4_5.py

1 import cv2

2 import skimage.feature as sk

3 import numpy as np

4

5 #Read an image from the disk and convert it into grayscale

6 image = cv2.imread("images/nature.jpg")

7 image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

8

9 #Calculate GLCM of the grayscale image

10 glcm = sk.greycomatrix(image,[2],[0, np.pi/2])

11

12 #Calculate Contrast

13 contrast = sk.greycoprops(glcm)

14 print("Contrast:",contrast)

15

16 #Calculate 'dissimilarity'

17 dissimilarity = sk.greycoprops(glcm, prop='dissimilarity')

Chapter 4 Building a MaChine learning–Based CoMputer Vision systeM

114

18 print("Dissimilarity: ", dissimilarity)

19

20 #Calculate 'homogeneity'

21 homogeneity = sk.greycoprops(glcm, prop='homogeneity')

22 print("Homogeneity: ", homogeneity)

23

24 #Calculate 'ASM'

25 ASM = sk.greycoprops(glcm, prop='ASM')

26 print("ASM: ", ASM)

27

28 #Calculate 'energy'

29 energy = sk.greycoprops(glcm, prop='energy')

30 print("Energy: ", energy)

31

32 #Calculate 'correlation'

33 correlation = sk.greycoprops(glcm, prop='correlation')

34 print("Correlation: ", correlation)

Listing 4-5 shows how to use the greycoprops() function and pass different

parameters to prop to calculate respective statistics. Figure 4-14 shows the output of

Listing 4-5.

Contrast: [[291.1180688 453.41833488]]

Dissimilarity: [[9.21666213 12.22730486]]

Homogeneity: [[0.32502798 0.23622148]]

ASM: [[0.00099079 0.00055073]]

Energy: [[0.03147683 0.02346761]]

Correlation: [[0.95617083 0.93159765]]

Figure 4-14. GLCM-based output of various statistics

Chapter 4 Building a MaChine learning–Based CoMputer Vision systeM

115

 HOGs
Histograms of oriented gradients (HOGs) are important feature descriptors used

in computer vision and machine learning for object detection. HOGs describe the

structural shape and appearance of an object in an image. The HOG algorithm computes

the occurrences of gradient orientation in localized portions of the image.

The HOG algorithm works in five stages, as described here.

Stage 1: Global image normalization: This is an optional stage and is needed only

to reduce the influence of illumination effects. At this stage, the image is globally

normalized by one of the following methods:

Gamma (power law) compression: Each pixel value, p, is changed

by applying log(p). This compresses the pixels too much and is

not recommended.

Square-root normalization: Each pixel value, p, is changed to

[?][?][?]p (square root of pixel value). This compresses the pixels

less than the gamma compression and is considered a preferred

normalization technique.

Variance normalization: For most machine learning work, I use

this technique and get better results compared to the other two

methods. In this method, we first compute the mean (𝜇) and

standard deviation (σ) of pixel values. Then, each pixel value, p, is

normalized according to the following formula:

Tp = (p − μ)/σ

Stage 2: Compute the gradient image in x and y: The second stage computes the

first-order image gradients to capture contour, silhouette, and some texture information.

If you need to capture bar-like features, such as limbs in humans, you will also need

to include second-order image derivatives. Listings 3-19 and 3-20 (in Chapter 3) show

how to calculate gradients in the X and Y directions. Go ahead and revisit the section

“Gradients and Edge Detection” of Chapter 3, if you need to. Assuming the gradients in

the X direction are Gx and the gradients in the Y direction are Gy, the gradient magnitude

is calculated using the following formula:

G = +G Gx y

2 2

Chapter 4 Building a MaChine learning–Based CoMputer Vision systeM

116

Finally, the gradient orientation is calculated by using the following formula:

Q= ()arctan /G Gy x

Once the value of gradient and orientation is calculated, the histogram is then

computed.

Stage 3: Compute gradient histograms: The image is divided into small spatial

regions, called cells. Using the previous formulae for |G| and Θ, we accumulate a

local 1D histogram of gradient or edge orientations over all the pixels in each cell.

Each orientation histogram divides the gradient angle range into a fixed number of

predetermined bins. The gradient magnitudes of the pixels in the cell are used to vote

into the orientation histogram. The weight of the vote is simply the gradient magnitude

|G| at the given pixel.

Stage 4: Normalizing across blocks: A small number of cells are grouped together

to form a square block. The entire image is now divided into blocks (which consists

of a group of cells). The formation of blocks is typically done by sharing cells between

several blocks. The cell thus appears several times in the final output vector with

different normalizations. Then normalization is performed over these localized blocks.

It is performed by accumulating a measure of local histogram “energy” within the local

blocks. These normalized block descriptors are the HOG. Figure 4-15 shows the block

formation.

Chapter 4 Building a MaChine learning–Based CoMputer Vision systeM

117

Figure 4-15. Block formation by grouping cells (block of 3×3 cells)

Stage 5: Flatten into a feature vector: After all blocks are normalized, we take the

resulting histograms and concatenate them to construct our final feature vector.

If all these details about HOG look overwhelming, don’t worry. We will not need to

write code to implement these on our own; several libraries are available that provide

functions to easily calculate HOG.

We will use the scikit-image library to calculate the HOG of an image. The

subpackage, feature, within the package skimage of the scikit-image library provides a

convenient method to calculate HOG. Here is the function signature:

out, hog_image = hog(image, orientations=9, pixels_per_cell=(8, 8),

cells_per_block=(3, 3), block_norm='L2-Hys', visualize=False,

transform_sqrt=False, feature_vector=True, multichannel=None)

Chapter 4 Building a MaChine learning–Based CoMputer Vision systeM

118

The description of the parameters is as follows:

image: This is the NumPy representation of the input image.

orientation: The number of orientation bins defaults to 9.

pixels_per_cell: This is the number of pixels in each cell as a tuple; it defaults to

(8,8) for an 8×8 cell size.

cells_per_block: This is the number of cells in each block, as a tuple; it defaults to

(3,3), which is for 3×3 cells, not pixels.

block_norm: This is the block normalization method as a string with one of these

values: L1, L1-sqrt, L2, L2-Hys. These normalization strings are explained here:

L1: Normalization using L1-norm using this formula:

L1-norm =
r

n

rX
=
å

1

L1-sqrt: Square root of the L1-normalized value. It uses this formula:

L1-sqrt =
r

n

rX
=
å

1

L2: Normalization using L2-norm using this formula:

L2-norm =
r

n

rX
=
å

1

2

L2-Hys: This is the default normalization for the parameter block_norm. L2-Hys is

calculated by first taking the L2-normalization, limiting the result to a maximum of 0.2,

and then recalculating the L2-normalization.

visualize: If this is set to True, the function also returns an image of the HOG. Its

default value is set to False.

Transform_sqrt: If set to True, the function will apply power law compression to

normalize the image before processing.

feature_vector: The default value of this argument is set to True, which instructs

the function to return the output data as a feature vector.

multichannel: Set the value of this argument to True to indicate the input image

contains multichannels. The dimensions of an image are generally represented as height

× width × channel. If the value of this argument is True, the last dimension (channel) is

interpreted as the color channel, otherwise as spatial.

Chapter 4 Building a MaChine learning–Based CoMputer Vision systeM

119

What does this hog() function return?

out: The function returns an ndarray containing (n_blocks_row, n_blocks_col,

n_cells_row, n_cells_col, n_orient). This is the HOG descriptor for the image. If

the argument feature_vector is True, a 1D (flattened) array is returned.

hog_image: If the argument visualize is set to True, the function also returns a

visualization of the HOG image.

Listing 4-6 shows how to calculate the HOG using the skimage package.

Listing 4-6. HOG Calculation

Filename: Listing_4_6.py

1 import cv2

2 import numpy as np

3 from skimage import feature as sk

4

5 #Load an image from the disk

6 image = cv2.imread("images/obama.jpg")

7 #Resize the image.

8 image = cv2.resize(image,(int(image.shape[0]/5),int(image.shape[1]/5)))

9

10 # HOG calculation

11 (HOG, hogImage) = sk.hog(image, orientations=9, pixels_per_cell=(8, 8),

12 cells_per_block=(2, 2), visualize=True, transform_sqrt=True,

block_norm="L2-Hys", feature_vector=True)

13

14 print("Image Dimension",image.shape)

15 print("Feature Vector Dimension:", HOG.shape)

16

17 #showing the original and HOG images

18 cv2.imshow("Original image", image)

19 cv2.imshow("HOG Image", hogImage)

20 cv2.waitKey(0)

The HOG is important to understand. We will apply the concept of the HOG to

build something real and interesting in Chapters 6, 7, and 8. Although we spent some

time understanding the concept, the calculation of the HOG is accomplished in just

Chapter 4 Building a MaChine learning–Based CoMputer Vision systeM

120

one line of code (line 11, Listing 4-6). We used the hog() function from the feature

subpackage of the skimage package. Parameters passed to the hog() function were

explained earlier.

How do we know that we are passing the right values of the parameters in the hog()

function? Well, there is really no established rule. As a rule of thumb, we should start

with all default parameters and tune them as we analyze the result.

It is worth mentioning that the hog() function generates a histogram of very

high dimensionality. A 32×32 image with pixel_per_cell=(4,4) and cells_per_

block=(2,2) will generate 1,764-dimension results. Similarly, a 128×128 pixel image will

generate 34,596-dimension output. It is, therefore, extremely important to pay attention

to the parameters and resize your image appropriately to reduce the output dimensions.

This will have a huge impact on the memory, storage requirement, and network transfer

time.

Figures 4-16 through 4-18 show the output of Listing 4-6.

Figure 4-17. HOG image

Figure 4-16. Resized image

Chapter 4 Building a MaChine learning–Based CoMputer Vision systeM

121

 LBP
Local binary patterns (LBP) is a type of feature descriptor for image texture classification.

The LBP feature extraction works as follows:

 1. For every pixel in the image, compare the pixel values of the

surrounding pixels. If the value of the surrounding pixel is less

than the central pixel, mark it to 0; otherwise 1. In Figure 4-19, the

central pixel has the value 20 and is surrounded by 8 neighbors.

The middle portion of Figure 4-19 shows the pixel value

conversion to 0 or 1 based on whether they are smaller or greater

than the central pixel (20 in this case).

 2. Starting from any of the neighbor’s pixels and going in any

direction, we assemble the sequence of 0s and 1s to make an 8-bit

binary number. In the following example, we started from the

top-right corner and moved clockwise to assemble digits to form

10101000 binary numbers. This binary number is converted into

a decimal to get the pixel value of the central pixel, as shown in

Figure 4-19.

 3. For each pixel in the image, we repeat the previous steps to obtain

the pixel values based on the neighbors’ pixels. Make sure that for

all pixels the starting position and direction remain consistent.

 4. When all pixels are done, we arrange the pixel values in an LBP

array.

 5. Finally, we calculate a histogram over the LBP array. This

histogram is taken as an LBP feature vector.

Image Dimension (537, 671, 3)

Feature Vector Dimension:
(194832,)

Figure 4-18. Dimension output from the print() statement

Chapter 4 Building a MaChine learning–Based CoMputer Vision systeM

122

This approach of calculating an LBP feature vector allows us to capture finer details

of the image texture. But for most machine learning classification problems, fine-grained

features may not give the desired outcome, especially when the input images are of

varying scales of texture.

To overcome this problem, we have an enhanced version of LBP, as described next.

The enhanced version of LBP allows for variable neighborhood sizes. Now, we have

two additional parameters to work with.

• Instead of a fixed square neighborhood, we can define the number of

points, p, in a circularly symmetric neighborhood.

• The radius of the circle, r, allows us to define different neighborhood

sizes.

Figure 4-20 shows the green dots as the number of points and the dotted circle with

varying radius. The smaller the radius, the finer the texture captured. Increasing the

radius allows us to be able to classify textures of varying scales.

Figure 4-19. LBP pixel value calculation

Figure 4-20. LBP calculation based on neighborhood size and number of points

Chapter 4 Building a MaChine learning–Based CoMputer Vision systeM

123

We are now ready to learn how to implement LBP. We will again use scikit-image

(specifically the feature subpackage from the skimage package). Here is the function

signature we will use for LBP calculation:

local_binary_pattern(image, P, R, method='default')

The parameters are explained here:

image: The NumPy representation of a grayscale image.

P: The number of neighborhood points along the circle surrounding the point for

which LBP is being calculated. This is the number of green dots in Figure 4-20.

R: This is a floating-point number and defines the radius of the circle.

method: This parameter takes any of these string values: default, ror, uniform, or

var. The meaning of these method values is as explained here:

• default: This instructs the function to calculate original LBP

based on grayscale without considering the rotation invariant. The

description of a rotationally invariant binary descriptor is beyond

the scope of this book. To learn more about this, review the paper

“OSRI: A Rotationally Invariant Binary Descriptor” at http://ivg.

au.tsinghua.edu.cn/~jfeng/pubs/Xuetal_TIP14_Descriptor.pdf.

• ror: This method instructs the function to use a rotationally invariant

binary descriptor.

• uniform: This uses an improved rotation invariance with uniform

patterns and finer quantization of the angular space, which is

grayscale and rotation invariant. A binary pattern is considered

uniform if there are at most two 0-1 to 1-0 transitions in the binary

sequence of digits. For example, 00100101 is a uniform pattern as it

has two transitions (shown in red and blue). Similarly, 00010001 is

also a uniform pattern as it has one 0-1 to 1-0 transition. On the other

hand, 01010100 is not a uniform pattern. In the computation of the

LBP histogram, the histogram has a separate bin for every uniform

pattern, and all nonuniform patterns are assigned to a single bin.

Using uniform patterns, the length of the feature vector for a single

cell reduces from 256 to 59.

Chapter 4 Building a MaChine learning–Based CoMputer Vision systeM

http://ivg.au.tsinghua.edu.cn/~jfeng/pubs/Xuetal_TIP14_Descriptor.pdf
http://ivg.au.tsinghua.edu.cn/~jfeng/pubs/Xuetal_TIP14_Descriptor.pdf

124

• nri_uniform: Non rotation-invariant uniform patterns variant, which

is only grayscale invariant.

• var: Rotation invariant variance measures of the contrast of local

image texture, which is rotation but not grayscale invariant.

The output of the function local_binary_pattern() is an ndarray representing an

LBP image.

We have covered enough background to start implementing LBP and see it in action.

Listing 4-7 demonstrates the use of the local_binary_pattern() function.

It starts with loading an image from the disk, resizing it, and converting it to

grayscale.

Line 12 calculates the histogram of the original image. Lines 14 through 16 plot the

original image histogram.

Listing 4-7. LBP Image and Histogram Calculation and Comparison with

Original Image

Filename: Listing_4_7.py

1 import cv2

2 import numpy as np

3 from skimage import feature as sk

4 from matplotlib import pyplot as plt

5

6 #Load an image from the disk, resize and convert to grayscale

7 image = cv2.imread("images/obama.jpg")

8 image = cv2.resize(image, (int(image.shape[0]/5), int(image.shape[1]/5)))

9 image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

10

11 # calculate Histogram of original image and plot it

12 originalHist = cv2.calcHist(image, [0], None, [256], [0,256])

13

14 plt.figure()

15 plt.title("Histogram of Original Image")

16 plt.plot(originalHist, color='r')

17

18 # Calculate LBP image and histogram over the LBP, then plot the histogram

Chapter 4 Building a MaChine learning–Based CoMputer Vision systeM

125

19 radius = 3

20 points = 3*8

21 # LBP calculation

22 lbp = sk.local_binary_pattern(image, points, radius, method='default')

23 lbpHist, _ = np.histogram(lbp, density=True, bins=256, range=(0, 256))

24

25 plt.figure()

26 plt.title("Histogram of LBP Image")

27 plt.plot(lbpHist, color='g')

28 plt.show()

29

30 #showing the original and LBP images

31 cv2.imshow("Original image", image)

32 cv2.imshow("LBP Image", lbp)

33 cv2.waitKey(0)

The calculation of the LBP image is performed on line 22. Notice that we used the

default method for LBP calculation, which takes a radius of 3 and the number of points

as 24. Line 22 uses the local_binary_pattern() function from the feature subpackage

of the skimage package.

Line 23 calculates the histogram over the LBP image. Why did we use NumPy’s

histogram function? If you try to use the cv2.calcHist() function for the LBP image,

you will receive an error message saying “-210 Unsupported format or combination of

formats.” This is because the output format of local_binary_pattern() is different and

not supported by OpenCV’s calcHist() function. For that reason, we are using NumPy’s

histogram() function.

Figure 4-21 shows the original image. Let’s look at the output of Listing 4-7. Figure 4- 22

is the LBP image calculated from an input image (Figure 4-21). Notice how neatly it has

captured the texture of the original image. Compare Figure 4-23 with Figure 4-24 for

histograms plotted from the original image and from the LBP image, respectively.

Chapter 4 Building a MaChine learning–Based CoMputer Vision systeM

126

Figure 4-22. LBP image

Figure 4-21. Original grayscale image

Chapter 4 Building a MaChine learning–Based CoMputer Vision systeM

127

Figure 4-23. Histogram of the original image

Note that sometimes LBP is used with HOG to improve object detection accuracy.

In this section, our focus was on learning different techniques to perform feature

extraction. We focused on learning the concepts of these feature extraction techniques,

which will be helpful in the next chapter when we learn about machine learning and

neural networks. We will utilize these concepts when developing real-world use cases in

Chapters 6 through 9.

The next section of this chapter is about feature selection strategy.

Figure 4-24. Histogram of the LBP image

Chapter 4 Building a MaChine learning–Based CoMputer Vision systeM

128

 Feature Selection
In machine learning, feature selection is the process of selecting variables or attributes

that are relevant and useful in model training. This is a process of eliminating

unnecessary or irrelevant features and selecting a subset of features that are strong

contributors to the learning of the model. The reasons for learning about feature

selection are as follows:

• To reduce the complexity of a model and make it easier to interpret

• To reduce machine learning training time

• To improve the accuracy of a model by feeding it the right set of

variables

• To reduce overfitting

So, how is feature selection different from feature extraction? Feature extraction is

the process of creating features, and feature selection is the process of utilizing a subset

of features or removing unnecessary features. Together, feature extraction and selection

are referred to as feature engineering.

It has been statistically proven that there is an optimum number of features beyond

which the model performance starts degrading. The question is, how do we know what

the optimum number is, and how do we decide which features to use and which not to

use? This section attempts to answer this question.

There are many feature selection techniques. We will explore some of the common

feature selection techniques used for machine learning now.

 Filter Method
You have a feature set, and you want to select a subset to feed to your machine

learning algorithm. In other words, you want to have the features already selected

prior to machine learning being triggered. Filtering is a process that allows you to do

preprocessing to select the feature subset. In this process, you determine a correlation

between a feature and the target variable and determine their relationship based on

statistical scores. Note that the filtering process is independent of any machine learning

algorithm. A feature is selected (or rejected) only on the basis of the relationship

between feature variables and the target variable. Several statistical methods exist to

help us score a feature against the target variable.

Chapter 4 Building a MaChine learning–Based CoMputer Vision systeM

129

The following table provides a practical guide for selecting methods to determine the

feature-target relationship:

Feature Variable Type Target Variable Type Statistical Method Name

Continuous Continuous pearson’s correlation

Continuous Categorical linear discriminant analysis (lda)

Categorical Categorical Chi-square

Categorical Continuous anoVa

Descriptions of these statistical methods are outside of the scope of this book. A wide

variety of books and online resources are available on these age-old methods.

 Wrapper Method
In the wrapper method, you use a subset of features and train the model. Evaluate the

model, and based on the result, either add or remove features and retrain the model.

Repeat this process until you get a model with acceptable accuracy. It’s more like a trial-

and- error approach to finding the right subset of features. Plus, this is computationally

expensive as you have to actually build multiple models (and most likely throw away all

that you are not happy with).

There are a few approaches that are practically used to perform feature selection

under a wrapper method, as shown here:

• Forward selection: Start with one feature and build and evaluate the

model. Iteratively, keep adding features that best improve the model.

• Backward elimination: Start with all features and build and evaluate

the model. Iterate through by eliminating features until you get the

best model. Repeat this until no improvement is observed on feature

removal.

• Recursive feature elimination: In the recursive feature elimination

process, we repeatedly create models and set aside the best or the

worst-performing feature at each iteration. The features are ranked

either by their coefficients or by feature importance, and the least

important features are eliminated. Recursively, we create new models

with the leftover features until all features are exhausted.

Chapter 4 Building a MaChine learning–Based CoMputer Vision systeM

130

 Embedded Method
In an embedded method, the feature selection is done by the machine learning

algorithm while the model is being trained. LASSO and RIDGE regularization methods

for regression algorithms are examples of such algorithms where the best suitable

features contributing to the model accuracy are evaluated.

Lasso regression uses L1 regularization and adds a penalty equivalent to the absolute

value of the magnitude of coefficients.

Ridge regression uses L2 regularization and adds a penalty equivalent to the square

of the magnitude of coefficients.

Since the model itself evaluates the feature importance, this is one of the least

expensive methods of feature selection.

This book is about how to build machine learning and deep learning–based

computer vision applications. Although feature extraction and selection are important

parts of any machine learning algorithm, this book covers only an introductory level of

information about it. This is a huge subject and deserves a separate book on this topic.

 Model Training
Let’s review our image processing pipeline from Figure 4-2. So far, we have learned how

to ingest images and do preprocessing to enhance their quality. This preprocessing

enables us to transform the input image into a format suitable for the next steps in the

pipeline: the feature extraction and selection. In the previous section of this chapter,

we explored various techniques of feature engineering. I hope you have mastered the

concepts presented so far and you are all set to learn machine learning as applied to

computer vision.

 How to Do Machine Learning
Assume you have extracted and selected features from a large number of images. What is

a large number by the way? Well, there is no magic number to answer this question. The

number should be the true (or at least close to true) representation of the actual scenario

we are trying to model. Remember, one of the characteristics of a good feature set is

repeatability. While there is no good way to arrive at a “large” number, the rule of thumb

is “the more the better” for a good model outcome.

Chapter 4 Building a MaChine learning–Based CoMputer Vision systeM

131

These feature sets are fed to mathematical algorithms to determine certain patterns

(we will talk more about these algorithms later). The output of the algorithm is called

a model, and the process of creating this model is called the training model. In other

words, the computer uses an algorithm to learn patterns from the input feature set. The

feature set that is used for training a model is called the training set. See Figure 4-25.

Broadly speaking, there are two types of training set and, hence, two types of

machine learning: supervised and unsupervised learning. These are described next.

 Supervised Learning
Assume you have an 8×8 image and the values of all 64 pixels are your features. Also,

assume that you have several of such images and you have extracted pixel values from

them to make a feature set. All 64 features of one image are arranged as an array (or

vector). The feature set will have as many rows as the number of images in the training

set, with each row representing one distinct image. Now, with this dataset, you want to

train a model that can classify an input image to a certain class. For example, you want

to classify an image based on whether it contains a dog or a cat (let’s keep it simple for

now).

Assume further that these training images are already labeled, meaning that they are

already identified and marked as to which image contains a dog and which one has a cat.

That means we have the correct class identified for each image.

Figure 4-26 shows a sample of a labeled training set. Column 1 of Figure 4-26 is the

image ID that uniquely identifies an image. Columns 2 through 65 show the pixel values

of all 64 columns (because our image dimension is 8×8 in this example). These pixel

values together form our feature vector (X). The last column is the label column (y)

that has the value 0 for a dog or 1 for a cat (labels must be numeric to be fed in machine

learning). The labels are also known as target variables or dependent variables.

Figure 4-25. Illustration of ML model training

Chapter 4 Building a MaChine learning–Based CoMputer Vision systeM

132

When we train a machine learning model by feeding a dataset containing feature

vectors and associated labels to a learning algorithm, it is called supervised learning.

The supervised learning algorithm (see Figure 4-27) learns by optimizing a function

that takes a feature vector as input and generates the label as output. You will learn more

about various optimization functions in the next chapter.

There are several supervised learning algorithms, such as support vector machine

(SVM), linear regression, logistic regression, decision tree, random forest, artificial

neural network (ANN), and convolution neural network (CNN).

This book is about applying deep learning or neural networks (ANN and CNN) to

train models for computer vision. In the next chapter, you will learn details about these

deep learning algorithms and how to train models for computer vision.

 Unsupervised Learning
In the previous example, each feature vector has an associated label. The learning

objective of this kind of labeled dataset is to find a relationship between the feature

vector and the label. What if you do not have the labels associated with feature vectors?

In other words, your inputs to the model are only the feature vectors and no output

Figure 4-26. Example dataset with labeled feature vectors

Figure 4-27. Illustration of supervised learning

Chapter 4 Building a MaChine learning–Based CoMputer Vision systeM

133

or labels, and you want your machine learning algorithm to learn from this input

dataset. The model you will train from a dataset having only the feature vectors is called

unsupervised learning.

Unsupervised learning algorithms (see Figure 4-28) take a dataset containing only

feature vectors as input and determine structure or patterns in the data, such as a

grouping or clustering of data. This means the algorithms learn from a training set that

does not have any labeled data and find commonalities in the data.

Unsupervised learning is used to cluster or group a dataset. Another application of

unsupervised learning is to create labels for your supervised learning algorithms.

Some of the commonly used unsupervised algorithms are K-means clustering, auto-

encoders, deep belief nets, and hebbian learning.

This book covers only the supervised learning used in computer vision.

 Model Deployment
So, what happens after you create a trained machine learning model?

Before we answer this question, let’s understand what we do with a trained model.

In the case of supervised learning, a trained model provides us with a function

that takes a feature set as input and gives us an output. The output is generally known

as prediction. In other words, a model predicts outcomes based on input data. Such

predictions may be continuous values or classes.

Similarly, in the case of unsupervised learning, a trained model takes a feature set

and gives output as the group or cluster that an input feature falls into. The groupings or

clustering may be further used to create labels for supervised learning.

Now, to answer our first question, we deploy a trained model so that we can predict

or classify images (or input dataset) that might be made available by external business

applications. Based on the business use case, these predictions/classes are used in

various analyses and decision-making.

Figure 4-28. Unsupervised learning

Chapter 4 Building a MaChine learning–Based CoMputer Vision systeM

134

Input images may be generated by some external applications. These images are

ingested and processed the same way as the images were processed during the feature

engineering for model training. Features are extracted from the ingested images and

passed to the model function to obtain predictions or classes.

While the model development is an iterative process, once a model gives acceptable

accuracy, we usually version that model and deploy it in production. In practice, models

are not changed or re-trained with new data until the accuracy starts dropping or until

retraining with the new dataset is expected to increase the accuracy.

However, a model is expected to be utilized much more frequently than retraining

the model. In some cases, it may be hundreds or thousands of input images that need

to be predicted or classified per second. In other cases, we may need to classify millions

of images in a batch over a day or at some frequency. Therefore, we need to deploy our

models in such a way that they scale based on the input volume and processing load.

Having the right deployment architecture is essential for us to be able to utilize the

model effectively in production. Let’s explore different ways we serve our models in

production.

• Embedded model: Model artifacts are used as a dependency in the

consuming application code. It is built and deployed along with

the application that calls the model function as an internal library

function. This is a good approach for embedded applications for

edge computing devices (such as in the case of IoT) but not suitable

for enterprise applications where the data volume is large and the

processing needs to scale. Also, deploying new versions of models

is harder in this case; you may have to rebuild the entire application

code and deploy again.

• Model deployed as a separate service: In this approach, the model

is wrapped in a service. The service is independently deployed and

separated from consuming applications. This allows us to update the

models and redeploy them without affecting other applications. The

consuming applications make service calls via remote invocation,

which may introduce some latencies.

Chapter 4 Building a MaChine learning–Based CoMputer Vision systeM

135

• Model deployed as a RESTful web service: This is similar to the

approach described earlier. In this case, models are called via RESTful

API calls using the TCP/IP protocol. This approach provides scalability

and load balancing, but the network latency may be a concern.

• Model deployed for distributed processing: This is a highly scalable

model deployment. In this approach, the input images (dataset)

are stored in a distributed storage that is accessible by all nodes of a

cluster. The models are deployed in all cluster nodes. All participating

nodes take input data from the distributed storage, process them, and

store the prediction outcome to distributed storage for applications

to consume. Some examples of distributed storage are Hadoop

Distributed File System (HDFS), Amazon S3, Google Cloud Storage,

and Azure Blob Storage.

You will learn about how to scale model development and deployment on the cloud

in Chapter 10.

 Summary
This chapter, along with all previous chapters, built a solid foundation for developing

computer vision applications using artificial neural networks. In this chapter, we

explored the image processing pipeline, its components, and their roles in building

machine learning–based computer vision systems. You learned various techniques of

feature extraction and selection. We also explored, at a high level, different machine

learning algorithms, model training, and deployment.

The next chapter, Chapter 5, is the central theme of this book. In that chapter, we will

discuss various machine learning models and implement ANN, CNN, RNN, and YOLO

models as applied to computer vision. We will write Python code using the Keras deep

learning library and execute it on TensorFlow.

This may be a perfect time to go back and review the concepts presented in all

the previous chapters. If you have followed through all the code examples, your

development environment is most likely all set for the next chapter. If not, go back to

Chapter 1 and install all prerequisite software and get your development computer

ready. We are going to do some serious work and learn something really interesting. If

you are all set, let’s go!

Chapter 4 Building a MaChine learning–Based CoMputer Vision systeM

137
© Shamshad Ansari 2020
S. Ansari, Building Computer Vision Applications Using Artificial Neural Networks,
https://doi.org/10.1007/978-1-4842-5887-3_5

CHAPTER 5

Deep Learning and
Artificial Neural Networks
This chapter will cover deep learning and artificial neural networks. The chapter will

explore this topic with working code examples to show how to apply deep learning

concepts in computer vision. Our learning objectives of this chapter are as follows:

• To understand neural networks, their architecture, and various

mathematical functions and algorithms that work behind the scenes.

• To write code in TensorFlow to ingest images, extract features, and

train different types of neural networks.

• To write code and understand how to use pre-trained and our

custom-trained models in image classification. We will also learn

how to retrain an existing model.

• To learn how to evaluate a model and tune parameters to optimize

the model performance in terms of accuracy.

This chapter will include some mathematical concepts and equations. Although it is

not necessary to have a formal understanding of the mathematics of the equations listed

in this chapter, we do provide you with several references to explore the mathematical

treatment of these equations.

 Introduction to Artificial Neural Networks
An artificial neural network (ANN) is a computing system that is designed to work the

way the human brain works. Let’s understand this with a simplistic example.

https://doi.org/10.1007/978-1-4842-5887-3_5#DOI

138

Assume that you see an object you have never seen before. Someone tells you that

it is a car. And then you see many other objects and learn to recognize them. Then you

see another object and you try to guess what it is. You may say something like, “I think I

saw this before.” Or you may say, “I guess it is a car.” That means you are not 100 percent

certain about identifying the object. Now, assume that you see many cars in different

shapes, sizes, orientations, and colors. You are fully trained to identify the “car” object.

Most likely, you will not say “I guess,” but you will say, “It is a car.” That means your

confidence in identifying a car increases as you have trained yourself better by observing

a large number of cars.

What is happening here is that when you see a car just once or a few times, you learn

to recognize it if it is presented in the same or similar ways you saw it before. But when

you see a large number of samples in a wide variety of ways, you learn to recognize the

object with 100 percent (or close to 100 percent) accuracy. Let’s look at the diagrams

in Figure 5-1 to see how information is processed in our brains (a simplified version of

human brain function).

Figure 5-1. Human eyes as sensing device feeding input to the brain that stores
patterns

Our eye works as a sensing device. When we see an object, our eyes capture an image

of that object that is passed to the brain as an input signal. Neurons in our brain do the

computation on the input signals and generate outputs.

As shown in Figure 5-2, dendrites receive input signals (X). The neuron combines

these input signals and performs computations using some function. The output is

transmitted to axon terminals.

A human body has billions of neurons with trillions of interconnections among

them. These interconnected neurons are called a neural network.

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

139

Computer scientists were inspired by the human vision system and tried to mimic

neural networks by creating a computer system that learns and functions the way our

brains do. This learning system is called an artificial neural network (ANN).

Figure 5-3 looks analogous to Figure 5-1. A camera works as a sensing device much

like our eyes capture images of objects. The images are transmitted to an interpreter

system, such as a computer, where they are processed in a similar way as a neuron

processes the input signals. Some examples of other sensing devices are X-ray, CT-scan,

and MRI machines; satellite imaging systems; and document scanners. The interpreting

devices, such as computers, provide the processing of the data acquired by the camera.

Most of the computer vision–related computations, such as feature extraction and

pattern determination, are performed within the computer.

Figure 5-2. Information processing in human neurons

Figure 5-3. Artificial sensing device (a camera) feeding image input to computers

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

140

Figure 5-4 is analogous to the human neuron shown in Figure 5-2. The variables

x1, x2, .. xn are the input signals (e.g., image features) with certain weights w1, w2, ..

wn associated with each input signal. These input signals are processed using some

mathematical functions to generate outputs. The processing unit that combines these

input signals is called a neuron, named after the human neuron. The mathematical

function that computes the output from the neuron is called an activation function. In

Figure 5-4, the circle marked with the function symbol f(x) is the neuron. The output y is

generated from the neuron.

Figure 5-4. Artificial neuron

 Perceptron
A single neuron of a neural network is called a perceptron. A perceptron implements

a mathematical function that operates on the input signals and generates outputs.

Figure 5-4 is an example of a perceptron. A perceptron is the simplest neural network.

We will see later that a typical neural network for machine learning consists of several

neurons. The inputs to the neuron come either from the source (camera or sensing

devices) or from the outputs of other neurons.

 How a Perceptron Learns

The learning objective of a perceptron is to determine the ideal weights for each input

signal. The learning algorithm arbitrarily assigns weights to each input signal. The signal

value is multiplied by its corresponding weight. The product (weight times signal value)

of each signal is added to compute an output. The computation is represented by the

following equations:

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

141

 f(x)=w x +w x +w x + +w x1 1 2 2 3 3 n n¼ (Equation 5-1)

Sometimes a bias, x0, is also added to the equation, as shown here:

 f(x)= x w x +w x +w x + +w x0 1 1 2 2 3 3 n n+ ¼ (Equation 5-2)

Equation 5-2 can also be written as follows:

f x X W Xi i

n

() = +
=

=

å0
1i

i

(Equation 5-3)

The neuron computes using Equation 5-2 over a large number of inputs. An

optimization function optimizes the weights by using certain mathematical algorithms,

called an optimizer, and the computation is repeated with the new weights. This weight

optimization and computation and re-optimization are performed in multiple iterations

until the weights are fully optimized for the given set of inputs. We will learn more about

this optimization function later in this chapter. The fully optimized weights are the actual

learning of the neuron.

 Multilayer Perceptron
Much like the human brain contains billions of neurons, an artificial neural network

contains several neurons or perceptrons. Inputs are processed by a group of neurons.

Each neuron in the group processes the inputs independently. Outputs from this

group of neurons are fed to another neuron or group of neurons for further processing.

You can imagine these neurons arranged as layers where the output from one layer

is fed as inputs to the next layer. You can have as many layers as needed to train your

neural network. This multilayer approach of arranging neurons in a neural network is

commonly known as multilayer perceptron (MLP). Figure 5-5 shows an example MLP.

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

142

 Why MLP?

Let’s consider a single neuron with a single input. Equation 5-1 will look like the

following:

 f(x)= x w x0 1 1+

This represents the equation of a straight line with an intercept as x0 and a slope

(angle with the horizontal or x-axis) that equals to w1.

Don’t worry if you do not understand this math. This is to show you that a single

neuron models a linear relationship of input to output. Machine learning algorithms,

such as linear regression and logistic regression, model linear relationships. Most

real-world problems do not exhibit linear relationships. Multilayer perceptrons model

nonlinearity and can model real-world problems more accurately than single neuron–

based models.

Figure 5-5. Multilayer perceptron

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

143

 What Is Deep Learning?
Deep learning is another name for a multilayer artificial neural network or multilayer

perceptron. We have different types of deep learning systems depending upon the neural

network architecture and its working principles. For example, feed-forward neural

networks, convolutional networks, recurrent neural networks, autoencoders, and deep

beliefs are different types of deep learning systems.

The following sections start with an explanation of the high-level architecture

of the multilayer perceptron. In this book, we will use MLP and deep learning (DL)

interchangeably.

 Deep Learning or Multilayer Perceptron Architecture
A multilayer perceptron consists of at least three types of layers: input layer, hidden

layers, and output layer (as shown in Figure 5-5). You can have more than one hidden

layer. Each layer contains one or more neurons. A neuron performs some computation

on the inputs it gets and generates outputs. The output from the neurons are sent as

input to the next layer except in the case of the output layer, which generates the final

output for applications to consume from.

An MLP architecture consists of the following:

• Input layer: The first layer of a neural network is called the input

layer. This layer takes the input from the external source, such as

images from the sensing devices. The inputs to this layer are the

features (see Chapter 4 for details on features).

 The nodes in the input layer do not do any computation. These nodes

simply pass their inputs to the next layer.

 The number of neurons in the input layer is the same as the number

of features. Sometimes, an additional node is added in each layer.

This additional node is called a bias node. The bias node is added to

have control over the output from the layer. In deep learning, the bias

is not required, but it is a common practice to add one.

 Figure 5-6 shows a neural network architecture with bias nodes. The

nodes shown in orange colors are the biased nodes added in each

layer.

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

144

 Question: What is the total number of neurons in the input layer of a

neural network?

 Answer: The number of input layer neurons = The number of input

features without a bias = (The number of input features + 1) with

a bias

• Hidden layer: The layers of neurons between the input and output

layers are called hidden layers. A neural network must have at least

one hidden layer. This is the layer where the learning happens. The

neurons in this layer do the computations needed for learning. In

most cases, one hidden layer is sufficient for learning, but you can

have as many layers as needed to model the real-world cases. As

the number of hidden layers increases, the computation complexity

increases with a corresponding increase in computation time.

Figure 5-6. Multilayer perceptron with bias nodes

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

145

 How many neurons should we have in the hidden layer? Well, there

is no magic number, and several practical strategies exist. A common

practice is to take two-thirds (or 66 percent) of the number of

neurons in the previous layer. For example, if the number of neurons

in the input layer is 100, the number of neurons in the first hidden

layer will be 66 and in the next hidden layer will be 43 and so on.

Again, there is no magic number, and you should tune the neuron

counts based on the model accuracy.

• Output layer: The final layer of the neural network is the output layer.

The output layer gets its input from the last hidden layer. The number

of neurons in the output layer depends on the type of problem you

want the neural network to solve and is described here:

• For regression problems when the network has to predict a

continuous value, such as the closing price of stocks, the output

node has only one neuron.

• For classification problems when the network has to predict one

of many classes, the output layer has as many neurons as the

number of all possible classes. For example, if the network is

trained to predict one of four classes of animals—cat, dog, lion,

bull—the output layer will have four neurons, one for each class.

• Edges or weight connections: Weights are also referred to as coefficients

or input multipliers. Each input feature to a neuron is multiplied by a

weight. Pictorially, each connection from input to a neuron is linked

with a weighted line. The weighted line signifies the contribution of

the feature in predicting the outcome we are trying to model for. Think

of weight as the contribution or significance of an input feature. The

higher the weight, the more the contribution of the feature. If weight is

negative, the feature has a negative effect. If the weight is zero, the input

feature is not important and can be removed from the training set.

 The training objective of a neural network is to calculate the most

optimized weights for each input feature for each connection to

neurons of each layer. We will learn more in this chapter how a neural

network learns by adjusting the weights. If bias is used, the neural

network learns the bias as well.

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

146

 Activation Functions
The mathematical function that determines the output of a neuron is called the

activation function.

Neurons operate on inputs using the following linear equation:

z X= +

=

=

å0
0i

i n

i iw x

(Equation 5-4)

But the output of a neuron is not the result of Equation 5-4. It is the activation

function that operates on the value of z (calculated from Equation 5-4) and determines

the output from the neuron.

The activation function determines whether the neuron it’s attached to should be

activated (turned on or off), based on whether the neuron’s input is relevant for model

prediction. Actually, the activation function normalized the output of each neuron to a

range between 0 and 1 or between -1 and 1.

There are several mathematical functions that are used as activation for different

usage. We will explore the following activation functions that TensorFlow supports out of

the box. We will learn more about TensorFlow in the next section.

 Linear Activation Function

The linear activation function calculates the neuron output by multiplying weights to

inputs as per the equation f(x) = x0+ w1x1 + w2x2 + w3x3 ++ wnxn. The output of linear

activation function varies from -∞ to +∞, as shown in Figure 5-7. That means linear

activation function is as good as having no activation.

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

147

The linear activation function has the following two main problems and is not used

in deep learning:

• Deep learning uses a method called backpropagation (more on

this later), which uses a technique called gradient descent. The

gradient descent requires calculating a first-order derivative of the

input, which, in the case of linear activation, is a constant. The first

derivative of a constant is a zero. That means it has no relationship

with the input. Therefore, it is not possible to go back and update the

weights of the inputs.

• If you use linear activation function, the last layer will be the linear

function of the first layer, regardless of the number of layers in the

neural network. In other words, a linear activation function turns

your network into just one layer. That means your network can learn

only the linear dependencies of inputs to output, and that is not

suitable for solving complex problems such as computer vision.

Figure 5-7. Linear activation function graph

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

148

 Sigmoid or Logistic Activation Function

The sigmoid activation function calculates the neuron output using the sigmoid

function, as shown here:

s z Z() = +()-1 1/ e (Equation 5-5)

where z is calculated using Equation 5-4.

The sigmoid function always yields a value between 0 and 1. This makes the output

smooth without many jumps as the input value fluctuates. The other advantage is that

this is a nonlinear function and does not generate a constant value from a first-order

derivative. This makes it suitable for deep learning with backpropagation that updates

weights based on gradient descent. See Figure 5-8.

Figure 5-8. Sigmoid activation function graph

The biggest disadvantage of the sigmoid function is that the output does not change

between large or small input values, which make it unsuitable for cases where the

feature vector contains large or small values. One way to overcome this disadvantage is

to normalize your feature vector to have values between -1 and 1 or between 0 and 1.

Another characteristic that you will notice from Figure 5-8 is that the S-shaped curve

is not centered at zero.

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

149

 TanH/Hyperbolic Tangent

TanH is similar to the sigmoid activation function except that TanH is zero-centered. See

Figure 5-9 and notice that the S-shaped curve passes through the origin.

The TanH activation function calculates the neuron output using this formula:

tanh /z() = -() +()e e e ez z z z- -

 (Equation 5-6)

Because the TanH function is zero centered, it models with inputs having small,

large, and neutral values.

 Rectified Linear Unit

The rectified linear unit (ReLu) determines the neuron output based on the value of z

as computed from Equation 5-4. If the value of z is positive, ReLU takes that value as an

output; otherwise, it outputs as zero. The output from ReLU ranges between 0 and +∞.

The ReLU function is represented as shown here (see also Figure 5-10):

 f (z) max(0 z)= , (Equation 5-7)

Figure 5-9. TanH activation function graph (zero-centered)

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

150

The advantage of the ReLU activation function is that it is computationally efficient

and allows the network to converge quickly. Also, ReLU is nonlinear, and it has a

derivative function that makes it suitable for backpropagation for weight adjustment as

the neural network learns.

The biggest disadvantage of the ReLU function is that the gradient of the function

becomes zero for zero or negative inputs. This makes it not suitable for backpropagation

when the input has negative values.

ReLU is widely used for most computer vision model training as the image pixels do

not have negative values.

 Leaky ReLU

Leaky ReLU provides a slight variation of ReLU. Instead of making the negative value of

z (as calculated from Equation 5-3) zero, it multiplies the negative value of z by a small

number such as 0.01. Figure 5-11 depicts the Leaky ReLU outputs.

Figure 5-10. ReLU activation graph (with value ranges between 0 and infinity)

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

151

The leaky ReLU has a small slope in the negative area and allows for

backpropagation for negative inputs.

The disadvantage is that the result of the leaky ReLU is not consistent with negative

values.

 Scaled Exponential Linear Unit

A scaled exponential linear unit (SELU) computes neuron outputs using the following

equation:

f x
e x

x x

x

a
a

,
for

for
() =

-() <

³

ì
í
ï

îï
l

1 0

0
(Equation 5-8)

where the value of λ = 1.05070098 and the value of 𝞪 = 1.67326324. These values are fixed

and do not change during backpropagation.

The graph in Figure 5-12 shows the SELU characteristics.

Figure 5-11. Leaky ReLU graph (modified ReLU by taking negative value
multiplied with a small number)

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

152

SELU has the “self-normalizing” properties (see reference 1 for the original paper on

SELU). The inventors of SELU have proven mathematically that SELU generates output

that is normalized with mean 0 and standard deviation 1.

In TensorFlow or Keras, if you use the weight initialization method as truncated

normal distribution centered around zero by using the method tf.keras.

initializers.lecun_normal, you will get the normalized output of all network

components, such as weights, biases, and activations, at each layer.

So, why do we care about the network generating normalized outputs? The

initialization function lecun_normal initializes the parameters of the network as a

normal distribution or Gaussian distribution. SELU also generates normalized outputs.

That means the entire network exhibits normalized behavior. Therefore, the output in

the last layer is also normalized.

With SELU, the learning is highly robust and allows training networks that have many

layers.

Since with SELU the entire network is self-normalizing, it is efficient in terms of

computation and tends to converge faster. Another advantage is that it overcomes the

problems of exploding or vanishing gradients when the input features are too high or too

low.

Figure 5-12. SELU activation graph

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

153

 Softplus Activation Function

The softplus activation function applies smoothing to the activation function value z (as

calculated by Equation 5-4). It uses the log of exponent as follows:

f x ez() = +()ln 1 (Equation 5-9)

Softplus is also called the SmoothReLU function. The first derivation of the

softplus function is 1/(1+e-z), which is the same as the sigmoid activation function.

See Figure 5- 13.

Figure 5-13. Softplus activation graph

 Softmax

Softmax is a function that takes an input vector of real numbers, normalizes it into a

probability distribution, and generates outputs in the range (0,1) with the sum of output

values equal to 1.

It is most often used as the activation for the last layer (output layer) of a

classification neural network. The result is interpreted as the prediction probability of

each class.

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

154

The softmax transformation is calculated using the following formula:

s z for z , ,() = = ¼ = ()Î
=åi

z

j

K z K
Ke

e
i K z z

i

j

1

11, , and

(Equation 5-10)

The normalized output of the previous equation is always between 0 and 1. When

you add these outputs, the result will be 1.

 Feedforward
A feedforward neural network is an artificial neural network in which the connection

between the neurons does not form a cycle. The network that we learned about so far is a

feedforward neural network.

A feedforward neural network is the simplest neural network. In this network, the

information flows in one direction (forward direction), starting from the input layer to

the hidden layer and all the way to the output layer. In this network, there is no loopback

or feedback mechanism.

The example networks shown in Figures 5-2 and 5-3 are feedforward artificial neural

networks.

For the most part of this book, we will use a feedforward network.

 Error Function
What is an error? An error, in the context of machine learning, is the difference between

expected outcome and the predicted outcome. The equation of error may be written in a

simplified form as follows:

Error = Expected outcome - Predicted outcome

We have already learned that the learning objective of a neural network is to calculate

optimized values of weights. The weights are considered optimized for a given dataset,

when the errors are at a minimum (ideally, zero). We have seen that when the network

starts the learning process, it initializes weights and calculates the output from each neuron

by using one of the activation functions. It then calculates the error, adjusts the weights,

calculates outputs, and re-calculates the errors and compares them with previously

calculated errors, until it finds the minimum error. The weights that give the minimum

errors are taken as the final weights. The network is considered “learned” at this stage.

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

155

From calculus, if the first derivative of a function is zero, the function at that point is

either minimum or maximum. Finding this minimum point where the first derivative is

zero is the goal of the neural network training process. Therefore, a neural network must

have an error function that will calculate the first derivative and find the points (weights

and biases) where the error function is minimum. What this error function should be

depends on the type of model we want to train. Error functions are also known as loss

function, or simply loss.

The mathematics that computes the derivatives and finds the optimum values of

weights is beyond the scope of this book. We will explore a few commonly used error

functions and where they should be applied. We will not get deep into the mathematics

behind these error functions to keep this book focused on our learning objectives:

building computer vision applications. If you do not have any background of calculus, do

not worry about it. Just make sure that you understand what error functions should be

used in solving computer vision problems.

The error functions are broadly divided into the following three categories:

• Regression loss functions are used when we want to train models to

predict continuous value outcomes, such as stock prices and housing

prices.

• Binary classification loss functions are used when we want to train

models to predict a maximum of two classes, such as cat versus dog

or cancer versus no cancer.

• Multiclass classification loss functions are used when our models

need to predict more than two classes, such as object detection.

The following section provides an overview of different error functions, their usages,

and the types of activation functions they are compatible with. Use this section as a

guide to determine the appropriate error functions for your particular modeling work.

 Regression Loss Function

Error function name: Mean squared error (MSE) loss.

Brief description: This is the default error function for regression problems. This is

the preferred loss function if the distribution of the target variable is normal or Gaussian.

Where to use: When the distribution of target variables is normally distributed.

Applicable activation functions: model.add(Dense(1, activation='linear'))

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

156

TensorFlow example: model.compile(loss='mean_squared_error') or model.

compile(loss='mse')

Error function name: Mean squared logarithmic error (MSLE) loss.

Brief description: This function first calculates the logarithm of predicted values and

calculates the mean squared error.

Where to use: When the target variable has a spread of values and when predicting a

large value, you may not want to punish a model as heavily as the mean squared error.

This is normally used when your model is predicting unscaled values.

Applicable activation functions: model.add(Dense(1, activation='linear'))

TensorFlow example: model.compile(loss='mean_squared_logarithmic_error')

Error function name: Mean absolute error loss.

Brief description: This is calculated as the average of the absolute difference between

the expected and predicted values.

Where to use: When the target variable is normally distributed and has some outliers.

Applicable activation functions: model.add(Dense(1, activation='linear'))

TensorFlow example: model.compile(loss='mean_absolute_error')

 Binary Classification Loss Function

Error function name: Binary cross-entropy.

Brief description: This is the default loss function for binary classification problems

and is preferred over other functions. Cross-entropy calculates a score that summarizes

the average difference between the actual and predicted probability distributions for

predicting class 1. The score is minimized, and a perfect cross-entropy value is set to 0.

Where to use: When the target value is in the range (0,1).

Applicable activation functions: model.add(Dense(1, activation='sigmoid'))

TensorFlow example: model.compile(loss='binary_crossentropy',

metrics=['accuracy'])

Error function name: Hinge loss.

Brief description: This is used mainly in support of vector machine–based binary

classification.

Where to use: When the target variable is in the range (-1, 1).

Applicable activation functions: model.add(Dense(1, activation='tanh'))

TensorFlow example: model.compile(loss='hinge', metrics=['accuracy'])

Error function name: Squared hinge loss.

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

157

Brief description: This function calculates the square of the score hinge loss. It

smoothens the surface of the error function and makes it numerically easier to work with.

Where to use: When the target variable is in the range (-1, 1).

Applicable activation functions: model.add(Dense(1, activation='tanh'))

TensorFlow example: model.compile(loss='squared_hinge',

metrics=['accuracy'])

 Multiclass Classification Loss Function

Error function name: Multiclass cross-entropy loss.

Brief description: This is the default loss function for multiclass classification

problems and is preferred over other functions. Cross-entropy calculates a score that

summarizes the average difference between the actual and predicted probability

distributions for predicting class 1. The score is minimized, and a perfect cross-entropy

value is set to 0.

Where to use: When the target values are in the set {0, 1, 3, 4,..., n}, where each class is

assigned a unique integer value.

Applicable activation functions: model.add(Dense(4, activation='softmax'))

TensorFlow example: model.compile(loss='categorical_crossentropy',

metrics=['accuracy'])

Error function name: Sparse multiclass cross-entropy loss.

Brief description: Sparse cross-entropy performs the same cross-entropy calculation

of error, without requiring that the target variable be one hot-encoded prior to training.

Where to use: When you have a large number of classes in the target, for example,

predicting dictionary words.

Applicable activation functions: model.add(Dense(100, activation='softmax'))

TensorFlow example: model.compile(loss='sparse_categorical_crossentropy',

metrics=['accuracy'])

Error function name: Kullback-Leibler divergence (KLD) loss.

Brief description: KLD measures how one probability distribution differs from a

baseline distribution. A KL divergence loss of 0 means the distributions are identical. It

determines how much information is lost (in terms of bits) if the predicted probability

distribution is used to approximate the desired target probability distribution.

Where to use: This is used to solve complex problems such as auto-encoders for

learning dense features. If this is used for multiclass classification, it works as multiclass

cross-entropy.

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

158

Applicable activation functions: model.add(Dense(100, activation='softmax'))

TensorFlow example: model.compile(loss='kullback_leibler_divergence',

metrics=['accuracy'])

 Optimization Algorithms
The learning objective of a neural network is to determine the most optimized weights

(and biases) at which the loss is minimum. When the network starts learning, it assigns

weights to each input connection. Initially, these weights are rarely optimized. How

much the weights are off from optimized is determined by measuring the loss (or error).

To determine the ideal weights, the learning algorithm optimizes the loss function so

that it finds weights that make the loss function have the minimum value. The weights

(and biases) are updated, and the process is repeated until there is no more scope for

optimization. The mathematical function that optimizes the loss function is called the

optimization algorithm or optimizer.

There are several optimization algorithms that offer different degrees of accuracy,

speed, and parallelism. We will explore some of the most popular ones in this

section. We will provide introductory-level information, without going deep into the

mathematics that are used in these algorithms. You will get a good idea of where to use

which optimization algorithms.

 Gradient Descent

Gradient descent is an optimization algorithm that finds weights where the loss function

(also known as cost function) is zero or minimum. Gradient descent is a technique to find

the minimum cost function. This is how it works:

 1. The cost function or error function is represented by the following

equation:

f w

N
y w xi i i() = å -()1

 (Equation 5-11)

where yi is the actual/known value and wi is the weight corresponding

to the feature vector xi of ith sample. wi xi is the predicted value that is

subtracted from the actual value yi to calculate the error or loss.

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

159

From calculus, we know that the first derivative of a function at a

point gives the slope or gradient of the function at that point. If you

plot the cost function f(w), you will see a multidimensional curve (as

shown in Figure 5-14). The derivative is calculated to get the gradient

to determine which direction along the curve to move to get the new

set of weights. Since the goal is to minimize the cost, the algorithm

moves to the direction of the negative gradient.

For example, let’s assume there is only one feature, and hence we

need to compute only one weight (w). The cost function will look like

the left image in Figure 5-14.

The algorithm first calculates the cost or loss for the initial weights,

assuming this loss is f(w) and assuming the loss is calculated at point

1 in Figure 5-14 (left).

Figure 5-14. Cost function with gradient movement toward minimum

 2. The algorithm then computes the gradient (delta) and moves

down the curve; the direction is decided by the negative gradient.

 3. As it descends, the algorithm computes the new weights using the

following formula:

weight =weight +alpha -delta =weight - alpha delta** **() (Equation 5-12)

Here, alpha is called the learning rate. The learning rate determines

the size of the steps through which the gradient descends the curve

to reach the minimum point.

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

160

 4. The error is again computed using the new value of the weight,

and the process is repeated until the algorithm finds the ultimate

minimum cost.

Local and Global Minima

For simplicity, we considered only one feature and hence only one weight. But in

practice, there may be tens or even hundreds of features for which weights need to be

learned. The image on the right of Figure 5-14 shows the error curve when more than

one weight needs to be optimized. In this case, the curve may have multiple points that

would appear as minimums, called local minima. The objective of the gradient descent

algorithm is to find the global minimum to optimize the weights.

Learning Rate

As shown in Equation 5-12, the parameter alpha is called the learning rate. The learning

rate determines how big or small the steps are that the gradient descent algorithm will

take to move down the curve to find the global minimum.

What should be the value of this learning rate? A large value of the learning rate may

miss the minimum point and may oscillate back and forth and never find the minimum.

On the other hand, a small value of the learning rate will require a lot of steps to reach

the minimum point.

Having a small learning rate will make the learning slow. Figure 5-15 shows the effect

of big and small learning rates.

Figure 5-15. Effect of big and small learning rates

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

161

Therefore, we must set the learning rate appropriately. A good practical range for

learning rate is between 0.01 and 0.1. We generally start with a learning rate within this

range and tune as needed.

Regularization

What happens if the weight of one of the features is high compared to all other features?

This feature will have a higher weight and will have significant influence in the overall

prediction. Regularization is a way to control the effect of one or a few large weights.

We add another parameter, called regularization, in the cost function to balance

the excessive weights that may cause our prediction to be heavily impacted. The

regularization parameter penalizes the large weights to reduce its impact.

Let’s keep this simple for now. I will explain the regularization when we write some

code to train our own models.

 Stochastic Gradient Descent

Gradient descent computes the gradients of the entire training examples in every step

and every iteration. This are lots of computations, and they take time to converge.

Depending upon the size of the training set, it may not be computationally feasible to

run the algorithm in a single machine as it has to fit the entire data in memory (RAM).

Also, the processing cannot be distributed for parallelized computing. Stochastic

gradient descent (SGD) overcomes these problems.

SGD computes the gradients of a small subset of a training set that can easily fit in

memory.

This is how SGD works:

 1. Randomize the input dataset to eliminate any biases.

 2. Calculate the gradient of a randomly selected single piece of data

or a small batch of data.

 3. Update the weights using the formula weight = weight - alpha * delta.

Generally, the weight updates in SGD are computed for a few training examples

as opposed to a single example because this reduces the variances in the weights that

lead to stable convergences. A mini batch size of 128 or 256 is a good starting point.

The optimal batch size may vary for different applications, architecture, and computer

hardware capacity.

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

162

SGD for Distributed and Parallel Computing

If you have a large training dataset, you can divide the randomized training set into

small mini batches. These mini batches can be distributed across multiple computers

in a cluster architecture. SGD can independently and in parallel compute weights in

individual computers that have a small batch of data. The results can be combined from

the individual computers to a central computer to get the final and optimized weights.

SGD can also optimize weights by using parallel processing in a single computer that

has multiple CPUs or GPUs.

The distributed and parallel operations to compute optimized weights by using the

SGD algorithm helps converge it faster.

SGD with Momentum

If you plot your cost function and you see ravine-shaped curves, which have steep walls

and narrow bottoms, you should consider using SGD with momentum. Ravines are more

prominent around local minima. In such cases, SGD oscillates around the minimum and

may not reach the target. Standard SGD normally delays the conversion, especially after

a few iterations. See Figure 5-16.

Figure 5-16. SGD with momentum

Momentum is a method that controls the oscillation by controlling the gradient

movement. The momentum update is given by the following equation:

 v = + *ggv alpha delta (Equation 5-13)

where the delta is gradient calculated using SGD and alpha is the learning rate.

𝒗 is the velocity vector having the same dimension as the parameters (or weight).

The value of 𝞬 is in the range (0, 1) and generally taken as 0.9 by default.

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

163

Finally, the weights are updated using the following equation:

 weight =weight +v

 Adaptive Gradient Algorithm (Adagrad)

Gradient descent and SGD require us to manually set and tune the learning rate. If the

learning is too high, the algorithm will miss the minimum point, and if it is too low,

the algorithm will take a lot of time to converge. Finding a perfect learning rate is a

manual process. It is particularly difficult to choose the right learning rate when the

neural network has multidimensionality. One option is to set different learning rates for

each dimension. However, most neural networks have hundreds or even thousands of

dimensions, which makes it almost impossible to choose the learning rate manually.

Adagrad solves this problem by calculating the right learning rate for each parameter

by looking at the past. It generates a larger learning rate for features that are infrequent

and a lower learning rate for higher frequency features. That means each parameter has

its own learning rate that improves performance on problems with sparse gradients.

Adagrad is well-suited for dealing with sparse data, for example, in computer vision

or NLP.

One of the biggest disadvantages of Adagrad is that the adaptive learning rate tends

to get really small over time.

 RMSProp

Remember SGD with momentum? The introduction of momentum controls the

gradient movement in a steeper curve. RMSProp provides an enhancement to SGD

with momentum. It restricts the movement of gradients in the vertical direction. Think

of it this way: if you have a steep curve, a small movement in the horizontal direction

will cause a large movement in the vertical direction. RMSProp controls the vertical

movement so that the movement in both vertical and horizontal directions is not uneven

and it leads to finding the minimum point faster.

 Adaptive Moment (Adam)

The Adam optimization algorithm is designed for deep learning and is a preferred

optimizer. It combines the SGD with momentum and RMSProp. Adam updates network

weights iteratively based on training data.

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

164

Instead of adapting the parameter learning rates based on the average first moment

(the mean) as in RMSProp, Adam makes use of the average of the second moments of

the gradients.

The math behind Adam is out of the scope of this book (again, to stay focused on the

core theme of the book). See the original paper at https://arxiv.org/pdf/1412.6980.pdf

for more detailed information about how gradients are calculated and updated.

The paper describes the following benefits of Adam:

• Straightforward to implement

• Computationally efficient

• Little memory requirements

• Invariant to diagonal rescale of the gradients

• Well-suited for problems that are large in terms of data and/or

parameters

• Appropriate for nonstationary objectives

• Appropriate for problems with noisy/or sparse gradients

• Hyperparameters that have intuitive interpretation and typically

require little tuning

 Backpropagation
To train a neural network, we need the following three things:

• Input data or input features

• A feedforward multilayer neural network

• An error function

The network assigns initial weights to each input feature. Using an optimization

algorithm, such as SGD or Adam, the error function is optimized to compute the

minimum error, and the weights are updated.

A multilayer perceptron contains at least three layers: input, hidden, and output

layers. There can be more than one hidden layer.

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

https://arxiv.org/pdf/1412.6980.pdf

165

In a feedforward network, the neuron’s output is calculated in the forward direction,

starting from the first hidden layer, then the second hidden layer, and so on, and finally

at the output layer.

The next step is to estimate the error so that the weights will be updated. In the

backpropagation method, the gradients of weights are first calculated at the last layer,

and the gradients of the first layer are calculated at the last. The partial computations

of the gradient from one layer are reused in the computation of the gradient for

the previous layer. This backward flow of the error information allows for efficient

computation of the gradient at each layer. In other words, the gradient calculations are

not done independently at each layer.

Why is the error of the last layer computed first? The simple reason is that the hidden

layer has no target variables. It is the output layer that maps to the target variables of

the labeled dataset. Therefore, calculating the errors at the last layer first makes perfect

sense.

This section provided an overview of how neural networks work and what different

algorithms work behind the scenes. We also explored that there are several parameters,

such as learning rates and momentum, that we can control to tune our training. The

parameters that we can set or tune to train a good model are called hyperparameters. We

will learn more about the hyperparameters later in this chapter.

In the following sections, we will write code to implement some of the concepts

covered in the previous sections of this chapter. We will write Python code and use

TensorFlow to work through the examples. We will begin with a high-level introduction

of TensorFlow and cover those features and functions that are relevant to computer

vision. We will use TensorFlow code throughout the remainder of this chapter, and we

will provide relevant explanations while implementing the neural network concepts.

 Introduction to TensorFlow
TensorFlow is an open source platform for end-to-end machine learning. It provides

a high-level and easy-to-use API to create machine learning models. TensorFlow is an

execution engine for Keras, a high-level neural network API written in Python.

At the time of writing this book, TensorFlow version 2 (TF2) is available. But some of

the core concepts covered in this book (such as object detection) work with TensorFlow

version 1 (TF1) only. For the most part, we will use TF2 and use TF1 mostly for object

detection.

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

166

 TensorFlow Installation
If you have followed the instructions in Chapter 1, TensorFlow and Keras should already

be installed in your working environment. If not, check out Chapter 1 and follow the

installation instructions for TensorFlow.

 How to Use TensorFlow
To use TensorFlow in your code, you must import it as follows:

import tensorflow as tf

You can access Keras API by using the following:

tf.keras

Before we deep dive into neural networks, let’s understand some of the terminology

of TensorFlow.

 Tensor
A tensor is a data structure containing n-dimensional arrays of a base data type.

If the value of n is 0, it’s called a scalar, and the rank of the scalar is

0 or 0-dimensional.

If the value of n is 1, it’s called a vector, and the rank of the vector

is 1 or 1-dimensional.

If the value of n is 2, it’s called a matrix, and the rank of the matrix

is 2 or 2-dimensional.

If the value of n is 3 or more, it’s called a tensor. Depending upon

the value of n, its rank is 3 or more.

So, a tensor is a generalization of vectors and matrices to higher dimensions.

Table 5- 1 summarizes the differences between scalar, vector, matrix, and tensor.

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

167

Internally, TensorFlow defines, manipulates, and computes tensors. It provides a

Tensor class that is accessible by using this:

tf.Tensor

The Tensor class has the following properties:

 – A data type, e.g., uint8, int32, float32, or string. Every element of

a tensor must be of the same data type.

 – A shape, which is the number of dimensions and size of each dimension.

 Variable
TensorFlow has a class called Variable, accessible by using tf.Variable. The tf.

Variable class represents a tensor whose values are manipulated by operations such as

read and modify. You will learn, later in this chapter, that tf.keras uses tf.Variable to

store model parameters. Listing 5-1 shows a python example of how to use a Variable.

 Constant
TensorFlow also supports constants, whose values cannot be changed once initialized.

To create a constant, call this function:

tf.constant(value, dtype=None, shape=None, name='Const')

Table 5-1. Definitions of Scalar, Vector, Matrix, and Tensor

Data Structure Dimension or Rank
(the Value of n)

Example

scalar 0 scalar_s = 231

Vector 1 vector_v = [1,2,3,4,5]

Matrix 2 matrix_m = [[1,2,3],[4,5,6],[7,8,9]]

tensor 3 or more tensor_3d = [

[[1,2,3], [4,5,6], [7,8,9]],

[[11,12,13], [14,15,16], [17,18,19]],

[[21,22,23], [24,25,26], [27,28,29]],

]

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

168

where

value is the actual value or a list that is set as the constant.

dtype is the data type of the resulting tensor represented by the

constant.

shape is an optional parameter and represents the dimensions of

the resulting tensor.

name is the name of the tensor.

If you do not specify the data type, tf.constant() will infer it from the value of the

constant.

The function tf.constant() returns a constant tensor.

Listing 5-1 shows a simple code example that creates a tensor variable.

Listing 5-1. Creating a Tensor Variable

Filename: Listing_5_1.py

1 import tensorflow as tf

2

3 # create a tensor variable with zero filled with default datatype float32

4 a_tensor = tf.Variable(tf.zeros([2,2,2]))

5

6 # Create a 0-D array or scalar variable with data type tf.int32

7 a_scalar = tf.Variable(200, tf.int32)

8

9 # Create a 1-D array or vector with data type tf.int32

10 an_initialized_vector = tf.Variable([1, 3, 5, 7, 9, 11], tf.int32)

11

12 # Create a 2-D array or matrix with default data type which is tf.float32

13 an_initialized_matrix = tf.Variable([[2, 4], [5, 25]])

14

15 # Get the tensor's rank and shape

16 rank = tf.rank(a_tensor)

17 shape = tf.shape(a_tensor)

18

19 # Create a constant initialized with a fixed value.

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

169

20 a_constant_tensor = tf.constant(123.100)

21 print(a_constant_tensor)

22 tf.print(a_constant_tensor)

Line 1 of Listing 5-1 imports the TensorFlow package. Line 4 creates a tensor with

shape [2,2,2] filled with zeros. By default, it creates a tensor of data type tf.float32 (if

no data type is specified while creating the tensor, it will default to float32). However,

the data type is inferred from the initial value.

Line 7 creates a scalar data with type int32, line 10 creates a vector with data type

int32, and line 13 creaets a 2×2 matrix with the default data type float32.

Line 16 shows how to get the tensor’s rank (see Table 1-1), and line 17 shows how to

obtain the shape.

Line 20 creates a constant tensor with a value initialized as 123.100. Its data type is

interpreted by the value it is initialized with.

Lines 20 and 21 show two different ways of printing the tensor. Execute the code and

notice the difference between the two print statements.

To evaluate a tensor, use the Tensor.eval() method, which creates an equivalent

NumPy array with the same shape as the tensor. Note that the tensor is evaluated only

when the default tf.Session is active.

This book is not about TensorFlow. We will cover only the features that are relevant

to writing code for building computer vision and deep learning models. You should

visit the official TensorFlow website and learn to work with the Python functions of

TensorFlow. Here is the API specification: https://www.tensorflow.org/api_docs/

python/tf.

We will revisit TensorFlow in almost all of the following sections.

 Our First Computer Vision Model with Deep
Learning: Classification of Handwritten Digits
We are now ready to build and train our first model for computer vision. We will start

with the famous “Hello World” type of deep learning model and learn how to build

a simple multilayer perceptron classifier. By the time you finish this section, you will

have a real working computer vision model. As before, we will provide a line-by-line

explanation of the TensorFlow code that we will write along the way. Before we get into

coding our first model, let’s understand what we are to build and what the steps are.

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

https://www.tensorflow.org/api_docs/python/tf
https://www.tensorflow.org/api_docs/python/tf

170

Our objective is to train a model to classify images of handwritten digits (0 to 9) using

an artificial neural network.

We will build a neural network to perform supervised learning. For any supervised

learning, we need a dataset that contains labeled data. In other words, we need images

that are already marked with the digits they represent. For example, if an image contains

the handwritten digit 5, it will be marked with 5. Similarly, all images we want to use in

the training must be marked with corresponding labels.

Our dataset has ten classes, one class for each digit. The class index starts with 0.

Therefore, our classes are in the range (0,9).

The labeled image dataset is divided into two parts, typically in a 70:30 ratio.

• Training set: The 70 percent labeled images are used for actual

training. For a good result, we should ensure that the training data

is balanced, meaning that it has almost equal representation of all

classes.

 What if your training set does not have a balanced class? The majority

class will have greater influence on the model, and your minority

class may never or rarely be predicted.

 To balance your class, you may do oversampling or undersampling.

In oversampling, you should add more images of the minority class

and bring them close to being equal to the majority classes. In

undersampling, you remove images from the majority class to bring it

close to the minority class in number.

 There are other synthetic methods to balance your classes, but they

are not recommended for computer vision. The synthetic minority

oversampling technique (SMOTE) is one such method but is not

recommended for computer vision. However, the research paper

at https://arxiv.org/pdf/1710.05381.pdf concludes that the

undersampling performs on par with oversampling and therefore

should be preferred for computational efficiency.

• Test set: 30 percent of the labeled data is used as a test set. Images

from the test set are passed through the trained model, and the

predicted results are compared to the labels to assess the model

accuracy.

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

https://arxiv.org/pdf/1710.05381.pdf

171

 It is important to ensure that the test set does not have the same

image that is also present in the training set. Also, it is important that

the test set contains all the classes in equal proportions.

We will perform the following tasks to build the model:

 1. Download the image dataset containing handwritten digits with

their labels from https://storage.googleapis.com/tensorflow/

tf-keras-datasets/mnist.npz.

 2. Configure a multilayer perceptron classifier with four layers: the

input layer, two hidden layers, and the output layer.

 3. Fit the MLP model with the training set. Fitting the model means

training the model.

 4. Evaluate the trained model using the test set.

 5. Predict using the model on a different dataset (not used in the

training or test sets) and display the result.

Finally, we have arrived at a point where we look at the TensorFlow code line by line

to learn how to train a deep learning–based model for computer vision for classifying

handwritten digits.

Let’s explore Listing 5-2, which demonstrates how to train a deep learning–based

computer vision model.

Listing 5-2. Four-Layer MLP for Classification of Images with Handwritten Digits

Filename: Listing_5_2.py

1 import tensorflow as tf

2 import matplotlib.pyplot as plt

3 # Load MNIST data using built-in datasets download function

4 mnist = tf.keras.datasets.mnist

5 (x_train, y_train), (x_test, y_test) = mnist.load_data()

6

7 #Normalize the pixel values by dividing each pixel by 255

8 x_train, x_test = x_train / 255.0, x_test / 255.0

9

10 # Build the 4-layer neural network (MLP)

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz
https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz

172

11 model = tf.keras.models.Sequential([

12 tf.keras.layers.Flatten(input_shape=(28, 28)),

13 tf.keras.layers.Dense(128, activation='relu'),

14 tf.keras.layers.Dense(60, activation='relu'),

15 tf.keras.layers.Dense(10, activation='softmax')

16])

17

18 # Compile the model and set optimizer,loss function and metrics

19 model.compile(optimizer='adam',

20 loss='sparse_categorical_crossentropy',

21 metrics=['accuracy'])

22

23 # Finally, train or fit the model

24 trained_model = model.fit(x_train, y_train, validation_split=0.3, epochs=100)

25

26 # Visualize loss and accuracy history

27 plt.plot(trained_model.history['loss'], 'r--')

28 plt.plot(trained_model.history['accuracy'], 'b-')

29 plt.legend(['Training Loss', 'Training Accuracy'])

30 plt.xlabel('Epoch')

31 plt.ylabel('Percent')

32 plt.show();

33

34 # Evaluate the result using the test set.\

35 evalResult = model.evaluate(x_test, y_test, verbose=1)

36 print("Evaluation", evalResult)

37 predicted = model.predict(x_test)

38 print("Predicted", predicted)

Line 1 imports the TensorFlow package. This package gives access to the Keras deep

learning library and several other deep learning–related functions. Line 2 imports matplotlib.

Line 4 initializes the keras.datasets.mnist module. This module provides a built-

in function to download the Modified National Institute of Standards and Technology

(MNIST) handwritten digit image data. The MNIST database is a large collection of

handwritten digits that is widely used for training various computer vision systems. The

database is available at http://yann.lecun.com/exdb/mnist/.

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

http://yann.lecun.com/exdb/mnist/

173

Line 5 downloads the MNIST dataset. The load_data() function in the mnist

module downloads the digits database and returns a tuple of NumPy arrays. By default,

it will download the database in your home directory location, ~/.keras/datasets, with

a default file name of mnist.npz. You can download to any other location by providing

an absolute file path, for example, in the function load_data(path='/absolute/path/

mnist.npz'). Make sure that the directory already exists.

The load_data() function returns a tuple of NumPy arrays, as described here:

x_train: This NumPy array contains pixel values of images that

we will use for training.

y_train: This NumPy array contains the labels for each image in

x_train.

x_test and y_test: These are the pixel values of images and

corresponding labels for the test dataset.

On line 8, we know that the pixel values of an image range from 0 to 255. We need to

normalize the pixel values so that they are between 0 and 1. Dividing each pixel by 255

will normalize it as shown in line 8. The x_train and x_test NumPy arrays are divided

by a scalar 255 to normalize these arrays.

In this example, we are downloading a publicly available dataset using built-in

functions in TensorFlow. If you have data in your local disk or any distributed file system,

TensorFlow provides functions to load the data. We will demonstrate how to load the file

from the local file system later in this chapter.

On lines 11 through 16, although this is a single statement but broken into multiple

lines for clarity, this is where we are defining our neural network. Let’s look at the

different parts of it.

 – tf.keras.models.Sequential: This is a TensorFlow class that provides a function

to create layers of our neural network. In this example, we are creating four layers

and passing as an array to the constructor of the Sequential class.

 – tf.keras.layers: This module provides APIs to create different types of

neural network layers. In this example:

 – tf.keras.layers.Flatten(input_shape=(28, 28)) defines the input layer by

initializing the Flatten() function. Our input images are 28×28pixels with a

single channel. The argument to this function is the input shape. This flatten

function will create 28×28 = 784 neurons in the input layer. Remember, the

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

174

number of neurons in the input layer is the same as the number of features (plus

1 if a bias is used). Our digit images are of 28×28pixels, and each pixel value is

taken as an input feature; hence, the number of nodes in this layer is 784. We will

see more examples with complex features later in this chapter. Let’s keep things

simple for now.

 – tf.keras.layers.Dense creates a dense layer in the neural network. The

dense layer takes two important parameters: the number of neurons and

the activation function. Notice that we have three dense layersin our

neural network in Listing 5-2.

 – Hidden layer 1: The number of neurons is 128, and the activation function is

relu.

 – Hidden layer 2: The number of neurons is 60, and the activation function

is relu.

 – Output layer (the last layer): The number of neurons is 10, and the activation

function is softmax.

Why is the activation function in the hidden layers relu? Recall from the “Activation

Functions” section and Figure 5-10 that relu always generates output in the range

from 0 to infinity and does not generate any negative number. The pixel values, after

normalization, are in the range (0,1). Therefore, RELU makes perfect sense for this layer.

Why is softmax in the output layer? Remember, softmax generates probability

distributions of the neuron outputs. The output layer generates probabilities of each

class. In this example, for each input image, it will generate 10 probabilities, one for

each class. The sum of these probabilities will be equal to 1. The class with the highest

probability is generally taken as the predicted class for the input image.

Why do we have only ten neurons in the output layer? It’s because we have only ten

digits to be predicted, and the output layer for classification problems should have the

same number of neurons as the number of classes to be predicted.

Lines 19 through 21 call the compile() function to build the neural network with the

configuration we provided earlier. The function compile() takes the following:

 – optimizer = ‘adam': The name of the optimization function that will try to find the

minimum of the loss function.

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

175

 – loss = ‘sparse_categorical_crossentropy': The loss function that will be

optimized. This is a multiclass classification, and the sparse_categorical_

crossentropy loss function is our choice.

 – metrics= [‘accuracy']: A list of metrics to be evaluated by the model during

training and testing. Since we have a single output model and it’s a classification

problem, we pass only one metric, the “accuracy,” in this list.

Line 24 actually fits the model. When this line executes, the model starts learning.

This takes these arguments:

 – x_train: NumPy representation of normalized values of the pixels

 – y_train: NumPy of the labels

 – validation_split = 0.3, which tells the algorithm to hold 30 percent off the

training data to use for validation

 – epochs = 100, number of training iterations

If you want to use your test dataset, or any other dataset that you have access to, for

validation, instead of validation_split, you could use validation_data=(x_test,

y_test).

The question is, how many iterations or epochs should we use to train our model?

Generally, it takes more than one iteration for the neural network to learn. This is one

of those parameters that you will need to tune. When your model starts learning, you

will see the output printed in the console (e.g., the PyCharm console, if you execute the

code in PyCharm). It shows the loss and accuracy for each epoch. With each epoch, the

loss should go down, and the accuracy should go up. If you start noticing that the loss no

longer decreases or the accuracy no longer increases, you should set your epoch value at

that level.

Figure 5-17 shows a sample training output with 100 epochs.

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

176

On lines 27 through 32, we want to plot graphs of loss versus epoch and accuracy

versus epoch to understand how good our training is. Our trained model maintains a

history of losses and accuracy per epoch that is accessible by using history[‘loss']

and history[‘accuracy'].

In Figure 5-18, you will notice that the loss (shown by the red line) is decreasing with

each epoch, and it starts becoming flat at about the tenth epoch. Most likely, any more

iterations will not reduce the loss any further. Therefore, set the epoch at about 10 so that

you avoid any more computation.

Similarly, the accuracy level increases and becomes flat after a few epochs. Both of

these—loss and accuracy—will help you determine the number of iterations for training

your neural network.

Figure 5-17. Sample console output with loss and accuracy per epoch

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

177

Figure 5-18. Plot of training loss and accuracy versus epoch

You can print all the keys within the History object by calling history.keys(). You

may also want to plot the val_acc and val_loss graphs to see how your model evaluates

against the 30 percent validation data.

Line 35 evaluates the model against the test dataset. We use the evaluate() function

that takes these parameters:

 – x_test NumPy containing normalized pixel values of all test images

 – y_test NumPy containing labels for the test dataset

 – verbose =1 as an optional parameter to print the output

As you can see from the sample output, in Figure 5-19, the accuracy of our model on

the test dataset is 0.9787 or 97.87 percent, which is considered a reasonably good model.

Figure 5-19 shows the sample output from the evaluate() function. Our model

evaluated an overall accuracy level of 97.87 percent with loss of 0.2757.

Evaluation [0.2757401464153796, 0.9787]

Figure 5-19. Evaluation output

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

178

If you have a test dataset, like the one we have in this example, you do not need to

hold 30 percent off the training set, as in line 24. The parameter validation_split =

0.3 is optional if you want to perform the evaluation using the test data like we did in

line 35.

On line 37, so far, we built, trained, and evaluated the neural network. Line 37 uses

the trained model to predict the classes of input images that were not used in model

training. Any new image (with a normalized NumPy of pixel values) can be fed to the

model to predict its class.

To predict a class, we use the function model.predict(), which takes the image

NumPy as a parameter.

The output from the predict() function is a NumPy of arrays. The elements of this

array are probabilities of each class. The index of the max probability is the predicted

class of that image.

For example, the input image with a handwritten digit gets the prediction

probabilities, as shown in Figure 5-20. Starting from zero, the sixth index (highlighted in

yellow) has the highest probability of 0.99844. Therefore, the predicted class for the input

image is 7, which matches with the handwritten digits, as shown in the figure.

[1.8943774e-06, 4.848908e-06, 0.00090997526, 0.00060881954, 5.6300826e-07,
1.5920621e-07, 0.998444, 3.4792773e-09, 1.1292449e-05, 1.8514449e-05]

Figure 5-20. Input image and prediction probabilities

Congratulations! You built and trained your first neural network for computer vision.

In the following sections, we will learn how to evaluate whether our model is good or

bad and how to tune parameters to make our model better in terms of lower loss and

higher accuracy.

 Model Evaluation
After we train a model, we perform the evaluation of it by analyzing the loss and

accuracy. This loss and accuracy are calculated based on the training data. Even if the

accuracy is high and the loss is small, we cannot be certain that the model will predict

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

179

with the same accuracy when a new set of data is fed to the model. It is important to

analyze the model’s performance by feeding test data, which must be different from the

training set. Here are a few commonly used evaluation methods that are in practice.

 Overfitting
An overfit model learns so well with the training data that it performs well with the

training data but performs poorly with valuation and test data. For example, if the

accuracy of a model with training data is high (say 97 percent) but the accuracy of the

model with the test set or validation set is lower (say 70 percent), the model is said to be

overfitting. Figure 5-21 depicts a case of overfitting where the test accuracy is lower than

the training accuracy.

Figure 5-21. Example of overfitting

How do you avoid overfitting?

There are a few ways to control or avoid overfitting.

• Regularization: We have already learned what regularization is and

how it affects the model.

• Dropout: Dropout is also a regularization technique. With dropout,

neurons are randomly dropped out, which means the output of

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

180

the dropped-out neurons is not fed as input in the next layer. The

dropout is temporary and applies to a particular pass only. That

means weight updates are not applied to the temporarily removed

neurons during that particular pass.

 In TensorFlow, dropout is implemented by adding a layer, called the

Dropout layer, and specifying dropout rate or probability (e.g., 20

percent). The dropout layer can be added either in the input layer

or in the hidden layer. For most practical purposes, we keep this

dropout probability small to avoid losing important features.

 In Listing 5-2, we could add a dropout layer as shown in Listing 5-3.

Listing 5-3. Code Fragment to Show the Dropout Layer

....

model = tf.keras.models.Sequential([

 tf.keras.layers.Flatten(input_shape=(28, 28)),

 tf.keras.layers.Dense(128, activation='relu'),

 tf.keras.layers.Dropout(0.2),

 tf.keras.layers.Dense(60, activation='relu'),

 tf.keras.layers.Dense(10, activation='softmax')

])

.....

 Underfitting

A model is said to be underfitting when it cannot capture the underlying trend from the

training data. An underfit model simply means that the model does not fit the data well

enough. It usually happens either when we have a small dataset or when the dataset is

not a true representation of the actual scenario we are trying to model. The accuracy of

an underfit model is not good for both training and test sets. This kind of model should

be avoided. A good way to avoid underfitting is to add more data to your training set or

have enough data that has all the variations and trends that you are trying to model. Also,

feature engineering to select the right features helps to reduce underfitting.

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

181

 Evaluation Metrics

There are other important metrics you should look at to assess the quality of your

model. They are described here. These metrics are calculated from the test dataset by

comparing the predicted outcome with the label values.

• True positive rate (TPR) or sensitivity: If the predicted value and the

label value match, it is called a true positive (TP). The TPR is defined

as follows:

 TPR = Total number of all TPs/ Total number of all positive cases

• True negative rate (TNR) or specificity: The TNR is defined as follows:

 TNR = total number of true negatives / total number of negative cases

• False positive rate (FPR) of fallout: The FPR is defined as follows:

 FPR = total number of false positive cases / total number of negative

cases

• False negative rate (FNR) or miss rate: The FNR is defined as follows:

 FNR = total number of false negative cases / total number of positive

cases

• Confusion matrix: A confusion matrix is also called an error matrix.

It shows the number of positives and negatives of each class in a

grid form. For example, if you have two classes, dog and cat, the

confusion matrix may look like this:

cat (predicted) dog (predicted)

cat (actual) 80 10

dog (actual) 8 92

In this example, the cat class has 80 true positives, 10 false positives,

and 8 false negatives. Similarly, for the dog class, there are 92 true

positives, 8 false positives, and 10 false negatives.

Listing 5-4 shows the code sample that calculates a confusion matrix

and displays in array form.

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

182

Listing 5-4. Confusion Matrix Calculation

.....

40 confusion = tf.math.confusion_matrix(y_test, np.argmax(predicted,

axis=1), num_classes=10)

41 tf.print(confusion)

.....

Listing 5-4 is an exztension of Listing 5-2. Line 37 of Listing 5-2 uses

the test dataset to predict from the model. The output is a NumPy

array of probabilities for each input. np.argmax(predicted, axis=1)

gets the index of the max probabilities in the array. The index

represents the predicted class.

In Listing 5-4, tf.math.confusio_matrix() calculates the confusion

matrix. It takes these arguments:

 – x_test: The NumPy of the image features of the test dataset

 – np.argmax(predicted, axis=1): The predicted class

The optional argument num_classes = 10 represents the number of

classes we want our model to predict.

The confusion_matrix() function returns a tensor. If you print this

tensor directly by using print(confusion), it will not show you

the values of the tensor. You will need to execute the tensor so it

calculates all the values before displaying to the console.

Lines 40 and 41 in Listing 5-4 show how to generate a confusion

matrix and print them on the console using the tf.print()

statement.

Figure 5-22 shows a sample confusion matrix from the test set we

used in this example.

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

183

Figure 5-22. Confusion matrix output sample

• Precision: Precision is defined as the ratio of total number of true

positives and total number of predicted positives.

Precision = Number of True Positive / Number of Predicted Positive

= True Positives/ (True Positives + False Positives)

= TP/(TP + FP)

Ideally, your model should not have any false positives, i.e.,

FP = 0. Then, precision = 1, or 100 percent. In other words, the

more precision, the better the model.

• Recall: Recall is the ratio of total number of true positives and total

number of actual positives. Recall is the same as the true positive

rate. The formula to calculate the recall is as follows:

Recalls = Total number of true positives / total number of positives

= total number of true positives / (total number of true

positives + total number of false negatives)

= TP / (TP + FN)

Ideally, your model should not have any false negatives, i.e., FN = 0.

Then, recall = 1, or 100 percent. Therefore, the more recall, the better

the model.

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

184

• F1 score: Looking at both the precision and recall, we see that both of

these metrics should be close to 100 percent for an ideal mode. How

would you judge your model if one of these—precision and recall—is

smaller than the other? The F1 score helps to make the decision. The

F1 score combines both precision and recall to get composite metrics

that help judge how good or bad our model is. The F1 score is the

harmonic mean of precision and recall and is calculated by using the

following formula:

F1-Score = 2 × Precision × Recall / (Precision + Recall)

• Accuracy: Accuracy is defined as follows:

Accuracy = (TP + TN) / Total sample count

= (TP + TN)/ (T + N)

= (TP + TN)/ (TP + TN + FP + FN)

These metrics help us make the decision whether the model is good to deploy in

production or tune parameters and retrain the model.

 Hyperparameters
Hyperparameters are those parameters to the neural network model that we set before

the learning process starts. These are considered external parameters as opposed to

the parameters that the algorithm computes from the training data. Hyperparameters

cannot be inferred by the algorithm while the model is being trained. These

hyperparameters affect the overall performance of the model, including the accuracy

and training execution time.

These are some of the common hyperparameters you may need to tune when

training neural networks for computer vision:

• Number of hidden layers in the network

• Number of neurons in the hidden layers

• Dropout and learning rates

• Optimization algorithms

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

185

• Activation functions

• Loss functions

• Epochs or number of iterations

• Split for validation set

• Batch size

• Momentum

 TensorBoard
Often you will need to understand what is happening while your machine learning

workflow is running. TensorBoard is a tool that will help you visualize your machine

learning measurements and metrics. Using TensorBoard, you will be able to track

experiment metrics such as loss and accuracy, visualize the model graph, project

embeddings to a lower-dimensional space, and much more.

TensorBoard provides an HParams dashboard that helps us identify the best

experiment or most promising sets of hyperparameters. We will take the same neural

network example that we worked out in the previous section and visualize various

hyperparameters to get an idea of how we should tune them.

Before you work through the following example, make sure you have TensorBoard

installed. If you are in your virtualenv command prompt, simply run this command to

check for TensorBoard installation:

(cv) username $: tensorboard --logdir mylogdir

If everything goes well, you should see an output saying something like this:

TensorBoard 2.1.0 at http://localhost:6006/ (Press CTRL+C to quit)

Point your browser to http://localhost:6066, and you should see the TensorBoard

web UI.

 Experiments for Hyperparameter Tuning
The code example in Listing 5-5 demonstrates a simple experiment with only three

hyperparameters for a simple neural network. We kept the example simple for our

learning purposes.

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

186

Our goal is to conduct experiments with the following parameters:

 – Number of neurons in the first hidden layer

 – Optimization functions

 – Dropout rates

After the experiments are complete, we want to visualize the result in the

TensorBoard web UI and use an HParams dashboard to analyze the result.

Listing 5-5 shows the code flow.

Listing 5-5. Hyperparameter Tuning and Visualization on HParams of TensorBoard

1 import tensorflow as tf

2 from tensorboard.plugins.hparams import api as hp

3

4 # Load MNIST data using built-in datasets download function

5 mnist = tf.keras.datasets.mnist

6 (x_train, y_train), (x_test, y_test) = mnist.load_data()

7

8 x_train, x_test = x_train / 255.0, x_test / 255.0

9

10 HP_NUM_UNITS = hp.HParam('num_units', hp.Discrete([16, 32]))

11 HP_DROPOUT = hp.HParam('dropout', hp.RealInterval(0.1, 0.2))

12 HP_OPTIMIZER = hp.HParam('optimizer', hp.Discrete(['adam', 'sgd']))

13

14 METRIC_ACCURACY = 'accuracy'

15

16 with tf.summary.create_file_writer('logs/hparam_tuning').as_default():

17 hp.hparams_config(

18 hparams=[HP_NUM_UNITS, HP_DROPOUT, HP_OPTIMIZER],

19 metrics=[hp.Metric(METRIC_ACCURACY, display_name='Accuracy')],

20)

21

22

23 def train_test_model(hparams):

24 model = tf.keras.models.Sequential([

25 tf.keras.layers.Flatten(),

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

187

26 tf.keras.layers.Dense(hparams[HP_NUM_UNITS], activation=tf.

nn.relu),

27 tf.keras.layers.Dropout(hparams[HP_DROPOUT]),

28 tf.keras.layers.Dense(10, activation=tf.nn.softmax),

29])

30 model.compile(

31 optimizer=hparams[HP_OPTIMIZER],

32 loss='sparse_categorical_crossentropy',

33 metrics=['accuracy'],

34)

35

36 model.fit(x_train, y_train, epochs=5)

37 _, accuracy = model.evaluate(x_test, y_test)

38 return accuracy

39 def run(run_dir, hparams):

40 with tf.summary.create_file_writer(run_dir).as_default():

41 hp.hparams(hparams) # record the values used in this trial

42 accuracy = train_test_model(hparams)

43 tf.summary.scalar(METRIC_ACCURACY, accuracy, step=1)

44

45 session_num = 0

46

47 for num_units in HP_NUM_UNITS.domain.values:

48 for dropout_rate in (HP_DROPOUT.domain.min_value, HP_DROPOUT.domain.

max_value):

49 for optimizer in HP_OPTIMIZER.domain.values:

50 hparams = {

51 HP_NUM_UNITS: num_units,

52 HP_DROPOUT: dropout_rate,

53 HP_OPTIMIZER: optimizer,

54 }

55 run_name = "run-%d" % session_num

56 print('--- Starting trial: %s' % run_name)

57 print({h.name: hparams[h] for h in hparams})

58 run('logs/hparam_tuning/' + run_name, hparams)

59 session_num += 1

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

188

Lines 5 through 8 load the same MNIST digits data that we worked with before.

Line 10 sets the values for the number of neurons or units: 16 and 32.

Line 11 sets the dropout rates: 0.1 and 0.2.

Line 12 sets the optimization functions: adam and sgd.

The rest of the code structure is straightforward and does not need any explanation.

Notice that the model.fit() function is called within a nested for loop (lines 47 through

59) for each combination of the three hyperparameters. The metrics output is written in

a log file logs/hparam_tuning.

After the experiments are executed successfully, launch TensorBoard by using the

following command (ensure you are in the virtualenv called cv that we have been using

throughout this book):

(cv) username $: tensorboard -logdir logs/hparam_tuning

You may have to pass the absolute path to the logs/hparam_tuning directory.

Launch the browser and point to http://localhost:6006. You should see the

TensorBoard web UI. From the top-right drop-down, select HPARAMS. You should see

the dashboard similar to the one in Figure 5-23.

Figure 5-23. TensorBoard showing the HPARAMS view containing accuracies
corresponding to each combination of hyperparameters

From this dashboard, you can see the combination of hyperparameters that gives

the highest accuracy: 96.160 percent accuracy for 32 neurons, 0.1 dropout, and the adam

optimizer.

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

189

Figure 5-24. Parallel combination view of HPARAMS

Alternatively, click the Parallel Coordinates View tab to launch Figure 5-24.

As shown in Figure 5-24, clicking the link to the highest accuracy (or any accuracy

that you want to examine), you will see the green highlighted path that represents the

combination of hyperparameters that generated the accuracy.

 Saving and Restoring Model
More often than not, you will want to save your trained model so that you can use it later

to classify or predict new images. After all, you don’t want to train a model every time

you want to use it.

In practice, model training is a time-consuming process. Depending on your data

size, hardware capacity, and neural network configuration, the training process may take

hours or days. You may want to save the model during and after the training. In the event

that the training is interrupted, you could resume it from where it left off and avoid the

loss of time it took to train before it was interrupted.

In this section, we will explore how to train and save a neural network, load it later,

and use it in our applications.

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

190

 Save Model Checkpoints During Training
Listing 5-6 has pretty much all the lines that we saw in our first model training code

in Listing 5-2. We will highlight the lines that are different, and what they mean in the

context of saving the training weights.

Listing 5-6. Model Weights Are Saved During the Training

Filename: Listing_5_6.py

1 import tensorflow as tf

2 import matplotlib.pyplot as plt

3 import os

4

5 # The file path where the checkpoint will be saved.

6 checkpoint_path = "cv_checkpoint_dir/mnist_model.ckpt"

7 checkpoint_dir = os.path.dirname(checkpoint_path)

8

9 # Create a callback that saves the model's weights.

10 cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_path,

11 save_weights_only=True,

12 verbose=1)

13

14 # Load MNIST data using built-in datasets download function.

15 mnist = tf.keras.datasets.mnist

16 (x_train, y_train), (x_test, y_test) = mnist.load_data()

17

18 # Normalize the pixel values by dividing each pixel by 255.

19 x_train, x_test = x_train / 255.0, x_test / 255.0

20

21 # Build the ANN with 4-layers.

22 model = tf.keras.models.Sequential([

23 tf.keras.layers.Flatten(input_shape=(28, 28)),

24 tf.keras.layers.Dense(128, activation='relu'),

25 tf.keras.layers.Dense(60, activation='relu'),

26 tf.keras.layers.Dense(10, activation='softmax')

27])

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

191

28

29 # Compile the model and set optimizer,loss function and metrics

30 model.compile(optimizer='adam',

31 loss='sparse_categorical_crossentropy',

32 metrics=['accuracy'])

33

34 # Finally, train or fit the model, pass callbacks to save the model weights.

35 trained_model = model.fit(x_train, y_train, validation_split=0.3,

epochs=10, callbacks=[cp_callback])

36

37 # Visualize loss and accuracy history

38 plt.plot(trained_model.history['loss'], 'r--')

39 plt.plot(trained_model.history['accuracy'], 'b-')

40 plt.legend(['Training Loss', 'Training Accuracy'])

41 plt.xlabel('Epoch')

42 plt.ylabel('Percent')

43 plt.show();

44

45 # Evaluate the result using the test set.

46 evalResult = model.evaluate(x_test, y_test, verbose=1)

47 print("Evaluation Result: ", evalResult)

Line 3 imports the os package that provides file system–related functions that are

used in saving the model to a file path.

Line 6 is the file name that will store our model weights.

Line 7 creates the operating system–specific file path object.

Line 10 initializes a TensorFlow callback class called ModelCheckpoint by passing the

following arguments:

 – filepath: This is the file path object that we created in line 7.

 – save_weights_only: Instead of saving the entire model during the training, we

should save the weights only. By default, this is set to False, which means save

the entire model. By setting this to True, we let the neural network know that

we want to save the weights only.

 – verbose = 1 prints the logs and runs the status on the console. Otherwise, the

default 0 means silent.

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

192

There are other arguments that we may want to pass based on what the intent is.

Here is the list of additional arguments:

 – save_best_only: This is False by default. If set to True, the algorithm will

evaluate and save the best weights as determined by the metrics we pass.

 – save_frequency: The default value is epoch, which means we want to save check-

points at the end of every epoch. You can also pass an integer to indicate how

frequently you want to save the checkpoints. For example, if you set save_

frequency = 5, this will mean that the checkpoints will be saved every fifth epoch.

You will notice that in Listing 5-6, all other lines are the same as in Listing 5-2 except

line 35, which fits the model.

Line 35 has an additional argument to the fit() function. The additional argument

callbacks = [cp_callback] is meant to save the checkpoints during the model training.

Notice that we set epoch=10 in Listing 5-6. Figure 5-25 and Figure 5-26 show some

sample output of loss and accuracy of this model. The model accuracy with test data is

0.9775, and the loss is 0.084755.

Figure 5-26. Model evaluation with epoch=2

Figure 5-25. Training loss and accuracy

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

193

 Manually Save Weights
If you want to manually save the weights, instead of saving the checkpoint every epoch

or periodically, you can simply add this function:

Save the model weights

checkpoint_path = "cv_checkpoint_dir/mnist_model.ckpt"

model.save_weights(checkpoint_path)

 Load the Saved Weights and Retrain the Model
If you want to load the saved weights either because you want to resume training after

interruption or because you have more data or for any other reason, simply add the

following line after you have created/configured the neural network:

Load saved weights

model.load_weights(checkpoint_path)

Make sure you have initialized your neural network like you did in lines 22 and 30 of

Listing 5-6. It is important to note that the network architecture must be the same as the

network that stored the checkpoints.

 Saving the Entire Model
Call the model.save() function to save the entire model, including the model

architecture, weights, and training configuration. Make sure that the function model.

save() is called after you call the fit() method. That is, call the save() function after

line 35 of Listing 5-6. Here is the code snippet to save the entire model:

Save the entire model to a file name “my_ann_model.h5”.

You can also give the absolute pass to save the model.

model.save('mv_ann_model.h5')

Saving a fully functional model is useful.

 – You can load and retrain a model from where it left off.

 – You can share the model with other researchers or team members to run on

different systems.

 – You can use the model in any other applications.

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

194

 Retraining the Existing Model
If you want to retrain an existing model with additional data, here is the code snippet

that will help you do that:

Load and create the exact same model, including its weights and the

optimizer

model = tf.keras.models.load_model('mv_ann_model.h5')

Show the model architecture

model.summary()

#Retrain the model

retrained_model = model.fit(x_train, y_train, validation_split=0.3, epochs=10)

 Using a Trained Model in Applications
If you already have a trained model that you save in the file system, you can load the

model and call the predict() function to use the model. Here is an example:

Load and create the exact same model, including its weights and the

optimizer

model = tf.keras.models.load_model('mv_ann_model.h5')

Predict the class of the input image from the loaded model

predicted = model.predict(x_pixel_data)

print("Predicted", predicted)

 Convolution Neural Network
A convolution neural network (CNN) is a special kind of artificial neural network. A

CNN differs from a conventional ANN most in that feature engineering is automatically

performed in CNN.

We will learn the technique that CNN uses to extract and select features from the

input images. Along the way, we will learn some commonly used terminologies related

to CNN. We will write TensorFlow code to train our own CNN model to classify images,

and as before, we will provide a line-by-line explanation of the code. We will work

through an example to classify chest X-rays to detect pneumonia.

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

195

 Architecture of CNN
A conventional ANN or MLP consists of an input layer, one or more hidden layers,

and an output layer. CNN has a set of additional layers, called convolution layers (see

Figure 5-27). The input images are fed to the first layer of this convolution layer. The

output from the convolution layer is fed to the “input” layer of the fully connected

MLP. The convolution layer implements an algorithm that performs feature engineering

of the input images. The MLP implements the traditional deep learning algorithms to

classify images.

Figure 5-27. CNN architecture

The convolution layer has two parts to it.

• Convolution: This layer extracts features from the images (feature

extraction).

• Subsampling: This layer selects from extracted features (feature

selection).

Figure 5-28 depicts a complete CNN.

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

196

Figure 5-29. A black-and-white image (left) is seen as a 2D matrix by a computer
(right)

Figure 5-28. CNN with convolution, subsampling, and fully connected MLP layers

 How Does CNN Work
We saw in Chapter 2 that a computer sees a black-and-white image with a single

channel as a 2D matrix of pixel values (as shown in Figure 5-28). A color image with

RGB channels (three channels) is shown as a stack of these 2D matrices. These stacks

of matrices form a 3D tensor (remember tensors?). Figure 5-29 and Figure 5-30 show a

visual presentation of a 3D image tensor.

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

197

With this background of how images are represented as a tensor, let’s understand the

convolution process.

 Convolution

Imagine that we have an image that we glance over with a magnifying glass, keeping a

note of important patterns we observe. This is a good analogy of how convolution works.

Here are the steps to extract important features from an image using convolution:

 1. Divide the image into grids of size k×k pixels. This is called a

kernel, which is represented as a k×k matrix.

 2. Define one or more filters that are of the same dimensions as the

kernel.

 3. Take the first kernel (starting from the top-left corner of the 2D

matrix) of one of the channels, do element-wise multiplication

with the first filter, and add the multiplication results. Do the same

with other channels and sum the results of all three channels to

get the pixel value of a newly created feature.

Figure 5-30. Tensor representation of a three-channel color image as a stack of 2D
matrices

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

198

This is demonstrated in Figure 5-31. For this example, we take a

7×7×3 image with the kernel size 3×3. We have two sets of filters:

W0 and W1 (shown in red). The filter W0 has a bias of 1, and filter

W1 does not have any bias. The output feature is shown in the

green color grid (shown below on the far right).

Figure 5-31. Convolution (image courtesy of Andrej Karpathy)

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

199

The output is calculated as shown here:

Channel 1 Output = 0x(-1) + 0x(-1) + 0x1 + 0x1 + 2x1 +

1x0 + 0x0 + 0x(-1)+1x(-1) = 2

Channel 2 Output = 0x0 + 0x0 + 0x(-1) + 0x1 + 2x1 + 0x0 +

0x(-1) + 2x(-1) + 0x1 = 0

Channel 3 Output = 0x0 + 0x0 + 0x1 + 0x0 + 0x0 + 2x0 +

0x0 + 2x0 + 2x1 = 1

Feature Value = Channel 1 Output + Channel 2 Output +

Channel 3 Output + bias

Feature Value = 2 + 0 + 1 + 1 = 4

The value 4 is shown highlighted in the top green grid’s top-left

corner.

 4. The kernel is now moved to the right, and the feature value is

calculated as explained earlier. When the kernel is moved all the

way to the right, it is moved down to the next row starting from the

leftmost pixels of that row. The number of steps to the horizontal

and vertical directions the kernel is moved to scan the entire

image is called the stride. The stride is expressed as s (for example,

2 or 3, etc.). A stride of 2 means the kernel will move two steps to

the right, and when it reaches the right edge of the image, it moves

down by 2 pixels.

 5. When the entire image is scanned, a feature matrix is created.

The dimensions of the feature matrix in our example are 3×3 (for

a 7×7×3-pixel image, 3×3 kernel, and 2×2 stride). This feature

matrix, also known as a feature map, is shown in Figure 5-31 in the

top green 3×3 grid (to the right).

 6. The same convolution process is repeated with the next set of

filters, and a feature map is created. The bottom green grid in

Figure 5-31 shows the feature map from the second filter.

 7. This process is repeated for all the filters, and feature maps are

generated from each filter.

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

200

 Pooling/Subsampling/Downsampling

Convolution extracts features from the images. These features are represented as n ×

n matrices. These features or n × n matrices are fed to another layer, called the pooling

layer, which performs “downsampling,” much like feature selection. Max pooling and

average pooling are two popular methods to downsample the features.

Max Pooling

In the pooling layer, much like the convolution stage, the feature matrix is divided into

grids of k×k (e.g., 2×2 pixels in Figure 5-32) kernels with stride s (e.g., stride 1 in the

example). In the max pooling layer, the maximum pixel values from each kernel area is

taken, and a downsampled matrix is generated. This process is repeated for each filter

output from the previous layer.

Figure 5-32. Max pooling to downsample features (image courtesy of Andrej
Karpathy)

Average Pooling

Average pooling works the same way as the max pooling except that on average pooling

the average (not the max) of kernel pixels is taken to create the downsampled matrix.

A CNN typically consists of alternating convolution and pooling layers along with a

multilayer perceptron (as shown in Figure 5-33).

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

201

 Summary of CNN Concepts
Here is what we learned:

• A CNN consists of alternating convolution and pooling layers with

MLP at the end. Every convolution layer does not necessarily have a

downsampling layer.

• Convolution is a feature extraction process in the convolution layer.

• A kernel of dimension k×k is defined to divide input images into grids.

• Filters, of the same dimension as the kernel, are multiplied with

the pixels in the kernel, and the results are summed over each pixel

and each image channel. An optional bias is added to the result to

generate feature matrices.

• The pooling layer implements downsampling algorithms (max

pooling or average pooling) to downsample the features.

• The process is repeated for each pair of convolution-pooling layers

where output from one pooling layer is fed as input to the next

convolution layer.

Figure 5-33. CNN layers, alternating convolution and pooling layers with MLP

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

202

• The last convolution/pooling layer feeds feature matrices to the input

layer of the MLP.

• The MLP part of the network learns as a conventional MLP network.

 Training a CNN Model: Pneumonia Detection from Chest
X-rays
TensorFlow with Keras has made it extremely simple to train a CNN model. With just a

few lines of code, you will be able to implement a CNN.

In this section, we will write code to train a model to detect pneumonia from chest

X-rays. The model presented here is a simple CNN network for academic and learning

purposes and must not be used in diagnosing any medical conditions.

 Chest X-ray Dataset

We have downloaded chest X-ray images from a publicly available dataset located

at Kaggle’s website, https://www.kaggle.com/paultimothymooney/chest-xray-

pneumonia. These images are available under the Creative Commons License, https://

creativecommons.org/licenses/by/4.0/.

The dataset consists of images that represent normal chest X-rays (disease-

free lungs) and pneumonia-infected lungs. These normal and pneumonia images

are separated and stored in separate directories; all normal images are stored in

a directory named as NORMAL, and pneumonia images are stored in the PNEUMONIA

directory. Furthermore, the dataset is divided into training, test, and validation sets.

After downloading the images from Kaggle’s website, we saved them in our local disk.

Figure 5-34 shows a sample directory structure.

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

203

 Code Structure

We will keep our code simple and easy to understand. There are better ways to organize

the code and make it more object-oriented and reusable, which is highly recommended

for production-quality work. You must parameterize your code for flexibility and

maintainability and avoid any hard-codings. However, we have made the following

code simple, and we have used some hard-coded values to maintain simplicity for the

purpose of learning.

 CNN Model Training

Listing 5-7 shows the code sample for training a CNN model for predicting pneumonia

from chest X-rays.

Listing 5-7. Code to Train CNN Model to Predict Pneumonia from Chest X-rays

1 import numpy as np

2 import pathlib

3 import cv2

4 import tensorflow as tf

5 import matplotlib.pyplot as plt

6

Figure 5-34. Directory structure of chest X-ray images

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

204

7

8 # Section1: Loading images from directories for training and test

9 trainig_img_dir ="images/chest_xray/train"

10 test_img_dir ="images/chest_xray/test"

11

12 # ImageDataGenerator class provides a mechanism to load both small and

large dataset.

13 # Instruct ImageDataGenerator to scale to normalize pixel values to

range (0, 1)

14 datagen = tf.keras.preprocessing.image.ImageDataGenerator(resca

le=1./255.)

15 #Create a training image iterator that will be loaded in a small batch

size. Resize all images to a #standard size.

16 train_it = datagen.flow_from_directory(trainig_img_dir, batch_size=8,

target_size=(1024,1024))

17 # Create a training image iterator that will be loaded in a small

batch size. Resize all images to a #standard size.

18 test_it = datagen.flow_from_directory(test_img_dir, batch_size=8,

target_size=(1024, 1024))

19

20 # Lines 22 through 24 are optional to explore your images.

21 # Notice, next() function call returns both pixel and labels values as

numpy arrays.

22 train_images, train_labels = train_it.next()

23 test_images, test_labels = test_it.next()

24 print('Batch shape=%s, min=%.3f, max=%.3f' % (train_images.shape,

train_images.min(), train_images.max()))

25

26 # Section 2: Build CNN network and train with training dataset.

27 # You could pass argument parameters to build_cnn() function to set

some of the values

28 # such as number of filters, strides, activation function, number of

layers etc.

29 def build_cnn():

30 model = tf.keras.models.Sequential()

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

205

31 model.add(tf.keras.layers.Conv2D(32, (3, 3), activation='relu',

strides=(2,2), input_shape=(1024, 1024, 3)))

32 model.add(tf.keras.layers.MaxPooling2D((2, 2)))

33 model.add(tf.keras.layers.Conv2D(64, (3, 3), strides=(2,2),activati

on='relu'))

34 model.add(tf.keras.layers.MaxPooling2D((2, 2)))

35 model.add(tf.keras.layers.Conv2D(128, (3, 3), strides=(2,2),activat

ion='relu'))

36 model.add(tf.keras.layers.Flatten())

37 model.add(tf.keras.layers.Dense(128, activation='relu'))

38 model.add(tf.keras.layers.Dense(2, activation='softmax'))

39 return model

40

41 # Build CNN model

42 model = build_cnn()

43 #Compile the model with optimizer and loss function

44 model.compile(optimizer='adam',

45 loss='categorical_crossentropy',

46 metrics=['accuracy'])

47

48 # Fit the model. fit_generator() function iteratively loads large

number of images in batches

49 history = model.fit_generator(train_it, epochs=10, steps_per_epoch=16,

50 validation_data=test_it, validation_steps=8)

51

52 # Section 3: Save the CNN model to disk for later use.

53 model_path = "models/pneumiacnn"

54 model.save(filepath=model_path)

55

56 # Section 4: Display evaluation metrics

57 print(history.history.keys())

58 plt.plot(history.history['accuracy'], label='accuracy')

59 plt.plot(history.history['val_accuracy'], label = 'val_accuracy')

60 plt.plot(history.history['loss'], label='loss')

61 plt.plot(history.history['val_loss'], label = 'val_loss')

62

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

206

63 plt.xlabel('Epoch')

64 plt.ylabel('Metrics')

65 plt.ylim([0.5, 1])

66 plt.legend(loc='lower right')

67 plt.show()

68 test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)

69 print(test_acc)

The code in Listing 5-7 for CNN model training is logically divided into the following

four sections:

• Loading images (lines 9 through 24): We have our training and test

images stored in directories as described earlier. To load these images

for the purpose of training and validation, we used a powerful class,

ImageDataGenerator, provided by Keras. Here is the line-by-line

explanation of how we used this class:

 Line 9 and 10 are the directories that have training and test images in

their subdirectories.

 Line 14 initializes the ImageDataGenerator class. We passed the

argument rescale = 1/255 because we want to normalize the pixel

values to be in the range between 0 and 1. This normalization is done

by multiplying each pixel of the images by 1/255. We call this line

datagen as indicated by the variable name.

 Line 16 is calling the flow_from_directory() function of the datagen

object. This function loads images from the directory training_img_

directory, in a batch mode (e.g., batch_size = 8), and resizes the

images to a size indicated by target_size (e.g., 1024×1024px). This is

a highly scalable function and will be able to load millions of images

without loading all of them in memory. It will load at a time as many

images as indicated by the batch_size argument. Resizing all images

to a standard size is important for most machine learning exercises.

Note that the default resize value of this function is 256. If you omit

the resize argument, all your input images will be resized to 256×256.

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

207

 Line 17 does the same as line 16 except that it is loading the images

from the test directory. Although we have validation data in our

directory (the dataset downloaded from the Kaggle website contains

validation images), the number is small, and therefore we have

decided to use the test dataset for validation.

 The function flow_from_directory() returns an iterator. If you

iterate over this iterator, you will get a tuple of two NumPy arrays—

arrays of image pixel values and arrays of labels.

 Note that labels are interpreted from the subdirectories the images

are read from. For example, all images from the NORMAL directories

will get the label NORMAL, and similarly images belonging to the

PNEUMONIA subdirectory will get the PNEUMONIA label. But wait. Aren’t

these labels supposed to be numeric? These directory names are

sorted by their names and indexed, starting from 0. In our case,

NORMAL will be indexed as 0 and PNEUMONIA as 1. But, it does not stop

here. The function flow_from_directory() takes an additional

argument called class_mode. By default the value of class_mode is

categorical. You could also pass a value to it as binary or sparse. The

differences between these three are as follows:

 – categorical will return 2D one-hot encoded labels.

 – binary will return 1D binary labels.

 – sparse will return 1D integer labels.

Lines 22 through 24 are optional and not needed for training the

model. We provided them to show you how you could explore

the values from the iterator returned from the flow_from_

directory() function.

• CNN configuration and training (lines 29 through 50): Lines 29

through 39 implement a function to build a CNN. These lines are our

main focus in this section. So, let’s try to understand what is going

on here.

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

208

 Line 30 creates a sequential neural network to which we stack up

layers. Recall that we used the same tf.keras.model.Sequential

class to create the sequential model. The add() function of the model

object is used to add layers in sequential order—the layer added first

is executed first and so on.

 Line 31 adds our first layer to the network. If you recall from our

previous discussion on CNN, our first layer of the CNN must be a

convolution layer that takes the input (image pixel values). Here we

are using the Conv2D class to define our convolution layer. We are

passing five important parameters to Conv2D().

 – filters, which in our example is 64.

 – The kernel dimension, which in this example is 3×3 pixels and passed

as a tuple (3,3).

 – The activation function, which in our case is relu (as the pixel values

range from 0 to 1 and are never negative).

 – The next parameter is to set the strides, which is by default (1,1) if not

set. In our case, we set it to (2,2).

 – The final parameter is to set the input size. Since our images are

resized to 1024×1024 pixels colored (with three channels), therefore,

the input_shape is (1024,1024,3).

Line 32 adds the pooling layer, MaxPooling2D. Recall that the

convolution and pooling layers are alternated and come in pairs,

except for the layer before the MLP layers. We are passing the

argument to set the size of the grid or kernel. In our example, it is

set to be (2,2).

Lines 33, 34, and 35 are again our convolution and pooling layers.

You can have as many convolution and pooling layers as are

required to achieve the desired accuracy levels.

The outputs from the convolution layer, line 35, are fed to the first

layer of the MLP. Recall that the first layer of the MLP is called the

input layer, followed by hidden layers, and finally the output layer.

Line 36 flattens the output from line 35.

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

209

Line 37 is the hidden layer of the MLP and has been explained in

the ANN section.

Line 38 is the final layer, the output layer. As explained previously,

we are using the activation function softmax as we are solving a

classification problem involving two classes.

Line 42 simply calls the build_cnn() function and creates a model

object.

Line 44 compiles the model, as we saw earlier with ANNs.

You will notice the difference between line 44 and line 30 of

Listing 5-6 in the loss function. Here we are using the loss function

 categorical_crossentropy as opposed to sparse_categorical_

crossentropy that we used in Listing 5-6. Can you guess why?

Finally, we are starting the training in line 49. Notice that we are

not calling the function fit() as we called in Listing 5-6. We are

calling the fit_generator() function. This function works with

the ImageDataGenerator to load images in a small batch. If you

use the simple fit() function, it will take the first batch of input

and train the model, and that is clearly not what we want. The

function fit_generator() takes an important parameter called

steps_per_epoch, which is the number of batches it will complete

in each epoch. Here is the official definition:

steps_per_epoch: The total number of steps (batches of samples)

to yield from generator (the data loader) before declaring one

epoch finished and starting the next epoch. It should typically be

equal to the number of samples of your dataset divided by the

batch size. For example, if you have 1,000 files in your training set

and your batch_size is 8, you should set steps_per_epoch equal to

1000/8 = 125.

Another important parameter to this function is validation_

steps, which is defined as follows:

validation_steps: This is relevant only if validation_data is a

generator. It is the total number of steps (batches of samples) to

yield from generator (the data loader) before stopping.

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

210

• Saving the CNN model to disk (lines 53 and 54): Line 54 saves the

trained model to the directory specified in line 53. You could save the

training checkpoints as well.

• Evaluation and visualization (lines 57 through 69): We plot a graph

of training loss, validation loss, training accuracy, and test accuracy

against epochs. Line 68 evaluates the model and simply prints the

accuracy in line 69.

 Figure 5-35 shows a sample output while the model runs. Figure 5- 36

shows a sample plot of training and validation metrics. As the

graph shows, the losses of both training and validation decrease as

the number of epochs increases. Also, the accuracy improves over

epochs.

Epoch 1/10
16/16 [==============================] - 126s 8s/step - loss: 0.6689 - accuracy: 0.6953 - val_loss: 0.6374 - val_accuracy: 0.6719
Epoch 2/10
16/16 [==============================] - 113s 7s/step - loss: 0.4902 - accuracy: 0.7500 - val_loss: 0.5442 - val_accuracy: 0.7344
Epoch 3/10
16/16 [==============================] - 100s 6s/step - loss: 0.3313 - accuracy: 0.8281 - val_loss: 0.2979 - val_accuracy: 0.8438
Epoch 4/10
16/16 [==============================] - 136s 8s/step - loss: 0.3130 - accuracy: 0.8516 - val_loss: 0.2127 - val_accuracy: 0.9219
Epoch 5/10
16/16 [==============================] - 107s 7s/step - loss: 0.2858 - accuracy: 0.8672 - val_loss: 0.3694 - val_accuracy: 0.7656
Epoch 6/10
16/16 [==============================] - 102s 6s/step - loss: 0.2343 - accuracy: 0.9219 - val_loss: 0.2187 - val_accuracy: 0.8906
Epoch 7/10
16/16 [==============================] - 130s 8s/step - loss: 0.3260 - accuracy: 0.8828 - val_loss: 0.1669 - val_accuracy: 0.9531
Epoch 8/10
16/16 [==============================] - 94s 6s/step - loss: 0.1941 - accuracy: 0.9297 - val_loss: 0.4719 - val_accuracy: 0.7812
Epoch 9/10
16/16 [==============================] - 101s 6s/step - loss: 0.3174 - accuracy: 0.8828 - val_loss: 0.1896 - val_accuracy: 0.9375
Epoch 10/10
16/16 [==============================] - 102s 6s/step - loss: 0.2728 - accuracy: 0.8594 - val_loss: 0.3509 - val_accuracy: 0.7969

Figure 5-35. Sample output from the CNN model training

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

211

Figure 5-36. Sample plot of metrics (loss and accuracy over epoch) for training
and valuation

 Pneumonia Prediction

Listing 5-8 shows how to use the previously trained CNN model to predict pneumonia

from a new set of images.

Listing 5-8. Code for Predicting Pneumonia by Using the Trained CNN Model

1 import numpy as np

2 import pathlib

3 import cv2

4 import tensorflow as tf

5 import matplotlib.pyplot as plt

6

7 model_path = "models/pneumiacnn"

8

9 val_img_dir ="images/chest_xray/val"

10 # ImageDataGenerator class provides a mechanism to load both small and

large dataset.

11 # Instruct ImageDataGenerator to scale to normalize pixel values to

range (0, 1)

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

212

12 datagen = tf.keras.preprocessing.image.ImageDataGenerator(resca

le=1./255.)

13 # Create a training image iterator that will be loaded in a small

batch size. Resize all images to a #standard size.

14 val_it = datagen.flow_from_directory(val_img_dir, batch_size=8,

target_size=(1024,1024))

15

16

17 # Load and create the exact same model, including its weights and the

optimizer

18 model = tf.keras.models.load_model(model_path)

19

20 # Predict the class of the input image from the loaded model

21 predicted = model.predict_generator(val_it, steps=24)

22 print("Predicted", predicted)

The code for classifying or predicting images for the presence of pneumonia is

divided into three parts.

• Loading images (lines 9 through 14): Images are loaded from the

disk directory as explained in Listing 5-7. Line 14 uses flow_from_

directory() as we did before.

• Loading saved models (line 18): Recall from Listing 5-7 that we saved

the trained model in the directory, models/pneumiacnn. Line 18 loads

the saved model from the disk directory.

• Predicting pneumonia (line 21): Line 21 uses the model.

predict_generator() function. This function is similar to the

fit_generator() function in the sense that both the functions read

images from the disk in batches. The predict_generator() function

predicts whether the images represent pneumonia or not by loading

images in batches.

 The predicted outcome is printed in line 22.

 Figure 5-37 shows a sample prediction output.

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

213

Figure 5-37. Sample prediction output

The prediction output is a NumPy array consisting of the probabilities of all

classes for each image. In the previous output sample, in the first print output line,

the probability of the second class is the highest. It is about 98 percent, and hence the

prediction class for the first input is 1 (which is the index of the class with the highest

probability).

A CNN is one of the most powerful algorithms used in computer vision. In this section,

you learned about the concepts of CNNs and how they work. We also worked through

some code examples of training our own CNN models for predicting pneumonia.

 Examples of Popular CNNs
The CNN we built in Listing 5-7 is not a production-quality network. We built a simple

network to learn the basics. Let’s look at some of the popular networks that were proven

successful globally.

 LeNet-5

The LeNet-5 CNN architecture was first introduced in 1998 by LeCun et al. in their

paper “Gradient-Based Learning Applied to Document Recognition.” This architecture

was mainly used for recognizing handwritten and machine-generated characters

(optical character recognition [OCR]) from documents. The architecture is simple and

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

214

straightforward and hence used widely in teachings. Here are the salient features of the

LeNet-5 architecture:

• This is a CNN network, and it consists of seven layers.

• Out of these seven layers, there are three convolution layers (C1, C3,

and C5).

• There are two subsampling layers (S2 and S4).

• There is one fully connected layer (F6) and one output layer.

• The convolutional layers use 5×5 convolution kernels with stride 1.

• The subsampling layers are 2×2 average pooling layers.

• The entire network uses the TanH activation function except for the

output layer, which uses softmax.

Figure 5-38 shows the LeNet-5 network.

Figure 5-38. LeNet-5 (image courtesy of http://yann.lecun.com/exdb/publis/
pdf/lecun-01a.pdf)

Here’s an exercise for you: modify the TensorFlow code from Listing 5-7 and

implement LeNet-5.

 AlexNet

AlexNet is a convolutional neural network architecture designed by Alex Krizhevsky

et al. It became popular when AlexNet competed in the ImageNet Large Scale Visual

Recognition Challenge in 2012 and achieved a top-five error of 15.3 percent, more than

10.8 percentage points lower than that of the runner-up. AlexNet is a deep network, and

despite being computationally expensive, it became feasible because of the use of GPUs.

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

215

The features of AlexNet are as follows:

• It is a deep convolutional neural network containing eight layers.

• The input size is 224×224×3 color images.

• The first five layers are a combination of convolutional and max

pooling layers with the following configurations:

• Convolution layer 1: Kernel 11×11, filters 96, strides 4×4,

activation ReLU

• Pooling layer 1: MaxPooling with kernel size 3×3, strides 2×2

• Convolution layer 2: Kernel 5×5, filters 256, strides 1×1,

activation ReLU

• Pooling layer 2: MaxPooling with kernel size 3×3, strides 2×2

• Convolution layer 3: Kernel 3×3, filters 384, strides 1×1,

activation ReLU

• Convolution layer 4: Kernel 3×3, filters 384, strides 1×1,

activation ReLU

• Convolution layer 5: Kernel 3×3, filters 384, strides 1×1,

activation ReLU

• Pooling layer 5: MaxPooling with kernel size 3×3, strides 2×2

• The last three layers are a fully connected MLP.

• All convolution layers used ReLU activation functions.

• The output layer used softmax activation.

• There are 1,000 classes in the output layer.

• The network has 60 million parameters and 650,000 neurons, and it

takes about 3 days to train on a GPU.

Figure 5-39 shows an illustration of AlexNet.

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

216

 VGG-16

The next famous deep neural network we are going to explore is VGG-16, which won the

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) competition in 2014. VGG

was designed by researchers at Oxford Visual Geometry Group (VGG). Their publication

is available at https://arxiv.org/abs/1409.1556.

Figure 5-40 shows the VGG-16 network. Here is a list of its salient features:

• VGG-16 is a convolutional neural network that consists of 16 layers.

• It has 13 convolutional layers and 3 fully connected dense layers.

• The 16 convolutional layers have the following features:

• Convolution layer 1: Input size 224×224x3, kernel 3×3, filters 64,

activation ReLU

• Convolution layer 2: Kernel 3×3, filters 64, activation ReLU

• Pooling layer: MaxPooling, kernel size 2×2 and strides 2×2

• Convolution layer 3: Kernel 3×3, filters 128, activation ReLU

• Convolution layer 4: Kernel 3×3, filters 128, activation ReLU

• Pooling layer: MaxPooling, kernel size 2×2 and strides 2×2

• Convolution layer 5: Kernel 3×3, filters 256, activation ReLU

• Convolution layer 6: Kernel 3×3, filters 256, activation ReLU

• Convolution layer 7: Kernel 3×3, filters 256, activation ReLU

• Pooling layer: MaxPooling, kernel size 2×2 and strides 2×2

Figure 5-39. AlexNet with five convolution layers and three fully connected MLPs

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

https://arxiv.org/abs/1409.1556

217

• Convolution layer 8: Kernel 3×3, filters 512, activation ReLU

• Convolution layer 9: Kernel 3×3, filters 512, activation ReLU

• Convolution layer 10: Kernel 3×3, filters 512, activation ReLU

• Pooling layer: MaxPooling, kernel size 2×2 and strides 2×2

• Convolution layer 11: Kernel 3×3, filters 512, activation ReLU

• Convolution layer 12: Kernel 3×3, filters 512, activation ReLU

• Convolution layer 13: Kernel 3×3, filters 512, activation ReLU

• Pooling layer: MaxPooling, kernel size 2×2 and strides 2×2

• Fully connected layer 14 (MLP input layer): Flatten dense layer

with input size 25088

• Fully connected hidden layer 15: Dense layer with input size 4096

• Fully connected output layer for 1,000 classes.

• This network has 138 million parameters.

Figure 5-40. VGG-16 architecture with 16 layers (13 convolutional layers and 3
dense layers)

Here’s an exercise for you: modify Listing 5-7 and implement the VGG-16 network

using TensorFlow.

 Summary
In this chapter, we learned the basics of artificial neural networks and convolutional

neural networks. We wrote TensorFlow-based code to train our own ANN and CNN

models, evaluated the results, and used the saved models to classify images. We also

learned how to tune hyperparameters and visualize the analysis in the HParams

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

218

dashboard of TensorBoard. In addition, we explored a few popular CNNs: LeNet-5,

AlexNet, and VGG-16.

In this chapter, we solved classification problems. In other words, our models were

trained to tell which class the input images belong to. In the next chapter, we will learn

how to detect objects in images.

Chapter 5 Deep Learning anD artifiCiaL neuraL networks

219
© Shamshad Ansari 2020
S. Ansari, Building Computer Vision Applications Using Artificial Neural Networks,
https://doi.org/10.1007/978-1-4842-5887-3_6

CHAPTER 6

Deep Learning in Object
Detection
In the previous chapter, we discovered how to classify images using a standard

multilayer perceptron (MLP) and a convolutional neural network (CNNs). During

classification tasks, we predict the class of the entire image and do not care what kind of

objects are in the image. In this chapter, we will detect objects and their locations within

the image.

The learning objectives of this chapter are as follows:

 – We will explore some of the popular deep learning algorithms used in object

detection.

 – We will train our own object detection models using TensorFlow on the GPU.

 – We will use trained models to predict objects within images.

The concepts presented in this chapter will be utilized in the next three chapters to

develop real-world computer vision applications.

 Object Detection
Object detection involves two distinct sets of activities: locating objects and classifying

objects. Locating objects within the image is called localization, which is typically

performed by drawing bounding boxes around the objects. Before the deep learning

algorithms became popular, the object localization was performed by marking each pixel

in the image that contained the object. For example, object detection was performed

using techniques such as edge detection, drawing contours, and HOGs (revisit

Chapters 3 and 4). These techniques are compute-intensive, slow, and not accurate.

https://doi.org/10.1007/978-1-4842-5887-3_6#DOI

220

Object detection using deep learning techniques has been shown to be faster and

more accurate compared to non-deep-learning algorithms. The learning process is

usually compute-intensive, but the actual detection is fast and suitable for detecting

objects in real time. For example, deep learning–based object detection is being used in

the following:

 – Driverless cars

 – Airport security

 – Video surveillance

 – Defect detection in industrial production

 – Industrial-quality assurance

 – Facial recognition

Deep learning algorithms for object detection have evolved over time. In this

chapter, we will learn two different variations of convolutional neural networks used in

object detection: two-step convolutions and single-step convolutions. A region-based

convolutional neural network (R-CNN) is a two-step algorithm. You only look once

(YOLO) and single-shot detection (SSD) are examples of single-step algorithms for object

detection.

Before we deep dive into the object detection algorithms, we will define an important

metric, called intersection over union, which is widely used in object detectors.

 Intersection Over Union
Intersection over union (IoU), also known as Jaccard index, is one of the most commonly

used evaluation metrics in object detection algorithms. It is used to measure the identity

of two arbitrary shapes.

In object detection, we create training sets by drawing bounding boxes around

objects for labeling. These bounding boxes in the training set are also known as the

ground truth. During the model learning, the object detection algorithm predicts

bounding boxes and compares them against the ground truth. IoU is used to evaluate

how closely the predicted bounding box overlaps with the ground truth.

The IoU between a predicted bounding box A and a ground truth box B is calculated

by using the formula shown in Figure 6-1.

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

221

When we label an image, we typically draw rectangular boxes around the objects

within the image. This rectangular region surrounding the object is the ground truth. In

Figure 6-2, the ground truth is shown by the green rectangular box.

When the algorithm learns, it predicts the bounding boxes surrounding the object. In

Figure 6-2, the red rectangular region is the predicted bounding box.

=

Intersection Union

Figure 6-1. IoU

Figure 6-2. IoU, predicted bounding box intersecting with ground truth

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

222

The learning algorithm computes the IoU between the ground truth and the

predicted bounding boxes. The match between the predicted and ground truth is

considered poor if the IoU between them is less than 50 percent. If the IoU is between

50 and 95 percent, the match is considered good. An IoU greater than 95 percent is

considered an excellent match.

The learning objective of an object detection algorithm is to optimize the IoU.

Let’s now explore various deep learning algorithms used in object detection. We will

also review their strengths and weaknesses and how they compare with each other.

 Region-Based Convolutional Neural Network
An R-CNN was the first successful model that used a large convolutional neural network

to detect objects in images. The detection method is described by Ross Girshick

et al. in their 2014 paper titled “Rich feature hierarchies for accurate object detection

and semantic segmentation” (https://arxiv.org/pdf/1311.2524.pdf). Figure 6-3

demonstrates the R-CNN method.

R-CNN comprises of the following three modules:

• Region proposal: The R-CNN algorithm first finds regions in the

image that might contain objects. These regions are called region

proposals. They are called proposals because these regions may or

may not contain objects and the objective of the learning function is

to eliminate those regions that do not contain objects. These region

proposals are the bounding boxes around the objects (as shown in

Figure 6-3, diagram 2).

The R-CNN system proposed by Girshick et al. is agnostic to the

algorithm that finds the region proposal. That means you could

use any algorithm, such as HOG, to find the regions. They used

an algorithm known as selective search. The selective search

algorithm looks at the image through grids of different sizes.

For each grid size, the algorithm attempts to group together

adjacent pixels by comparing the texture, color, or pixel values to

identify objects. Using this method, region proposals are created.

In summary, the algorithm creates a set of bounding boxes of

potential target objects.

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

https://arxiv.org/pdf/1311.2524.pdf

223

• Feature extraction: The region proposals are cropped out of the

image and resized. These cropped images are then fed to a standard

CNN to extract features (Figure 6-3, diagram 3). According to the

original paper, the AlexNet deep learning CNN was used for feature

extraction. From each region, 4,096-dimensional feature vectors were

extracted.

• Classifier: The extracted features are classified by using the standard

classification algorithms, such as the linear SVM model (diagram 4 of

Figure 6-3).

Figure 6-3. R-CNN model (image source: Girshick et al.)

R-CNN was the first successful deep learning–based object detection system, but it

suffered a serious issue with respect to performance. Its time performance problem is

because of the following:

• Each region proposal is passed to the CNN for feature extraction.

This may amount to approximately 2,000 passes per image.

• Three different models need to be trained: the CNN for feature

extraction, the classifier model to predict the image class, and the

regression model to tighten the bounding boxes. The training is

compute-intensive and added to the computation time.

• Each of the region proposals needs to be predicted. Because of the

number of regions, the predictions from the CNN will be slow.

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

224

 Fast R-CNN
To overcome the limitations of R-CNNs, Ross Girshick from Microsoft published a paper

in 2015 titled “Fast R-CNN” that proposed a single model to learn and output regions

and classifications directly (https://arxiv.org/pdf/1504.08083.pdf).

A Fast R-CNN also uses an algorithm, for example edge boxes, to generate region

proposals. Unlike an R-CNN, which crops and resizes region proposals, the Fast R-CNN

processes the entire image. Instead of classifying each region, the Fast R-CNN pools the

CNN features corresponding to each region proposal.

Figure 6-4 shows the Fast R-CNN architecture. It takes the entire image as input

and generates a set of region proposals. The last layer of the deep CNN has a special

layer called the region of interest (ROI) pooling layer. The ROI pooling layer extracts a

fixed- length feature vector from the feature map specific for a given input candidate

region.

Figure 6-4. Fast R-CNN architecture (image source: Ross Girshick)

Each ROI feature vector from the ROI pool is fed to a fully connected MLP that

generates two sets of outputs—one for the object class and the other for the bounding

boxes. The softmax activation function predicts the object class, and a linear regressor

generates the bounding boxes corresponding to the predicted class. The process is

repeated for each region of interest from the ROI pool.

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

https://arxiv.org/pdf/1504.08083.pdf

225

As the original paper describes, Ross Girshick applied the Fast R-CNN with VGG-

16 to the Microsoft COCO dataset to establish a preliminary baseline. The COCO

dataset (http://cocodataset.org/) is large-scale object detection, segmentation, and

captioning dataset available in the public domain for free. The Fast R-CNN training set

consists of 80,000 images, and the training was iterated for 240,000 epochs. The model

quality was assessed as follows:

 – The mean average precision (mAP) with the PASCAL object dataset: 35.9 percent

 – The average precision (AP) with the COCO dataset: 19.7 percent

Compared to an R-CNN, the Fast R-CNN is much faster to train and make

predictions. However, it still needs a set of candidate region proposals with each input

image, and a separate model predicts the regions.

 Faster R-CNN
Shaoqing Ren et al. at Microsoft Research published a paper in 2016 titled “Faster

R-CNN: Towards Real-Time Object Detection with Region Proposal Networks” (https://

arxiv.org/pdf/1506.01497.pdf). This paper describes an improved version of the

Fast R-CNN from the training speed and detection accuracy perspectives. Except for the

region proposal method, a Faster R-CNN is architecturally similar to a Fast R-CNN.

A Faster R-CNN architecture consists of a region proposal network (RPN) that shares

the full-image convolutional features with the detection network, thus enabling nearly

cost-free region proposals.

An RPN is a fully convolutional network. It simultaneously predicts object bounds

and objectness scores at each position of the image. The RPN is trained end to end to

generate high-quality region proposals. These region proposals are used by the Fast

R-CNN for detection. This is illustrated in Figure 6-5.

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

http://cocodataset.org/
https://arxiv.org/pdf/1506.01497.pdf
https://arxiv.org/pdf/1506.01497.pdf

226

A Faster R-CNN consists of two parts: the RPN and the Fast R-CNN.

 Region Proposal Network
An RPN is a deep CNN that takes an image input and generates output as a set of

rectangular object proposals. Each rectangular proposal has an “objectness” score.

Figure 6-6 shows how an RPN generates region proposals. We take the convolutional

feature map generated by the last shared convolutional layer and slide a small network.

This small network takes as input an n×n spatial window of the input convolutional

feature map. Each sliding window is mapped to a lower-dimensional feature, for

example a 256-dimensional feature for AlexNet or 5,126-dimensional for VGG-16.

This feature is fed into two sibling fully connected layers—a box-regression layer for

predicting bounding boxes and a box-classification layer for predicting object classes.

Figure 6-5. Faster R-CNN with RPN, a unified network for faster object detection
(image source: Shaoqing Ren et al.)

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

227

Multiple region proposals are predicted at each sliding window location. Assuming

the maximum number of proposals at each window location is k, the total number of

bounding boxes coordinates will be 4k, and the number of object classes will be 2k (one

for the probability of being an object and the other for the probability of not being an

object). These region boxes at each window are called anchors.

 Fast R-CNN
The second part of the Faster R-CNN is the detection network. This part is exactly the

same as the Fast R-CNN (as described earlier). The Fast R-CNN takes input from the RPN

to detect objects in images.

 Mask R-CNN
The Mask R-CNN extends the Faster R-CNN. The Faster R-CNN is widely used for object

detection tasks because of its speed of detection. We have already seen that, for a given

image, Faster R-CNN predicts the class label and bounding box coordinates for each

object in the image. The Mask R-CNN adds an extra branch for predicting an object

mask along with the object class and bounding box coordinates (review the concept of

masking in Chapter 3).

Figure 6-6. Region detection using sliding window and anchor (image source:
Shaoqing Ren, et al.)

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

228

Here is how the Mask R-CNN differs from its predecessor, the Faster R-CNN:

• The Faster R-CNN has two outputs: a class label and bounding box

coordinates.

• The Mask R-CNN has three outputs: a class label, bounding box

coordinates, and object mask.

Ross Girshick et al. explained Mask R-CNN in their 2017 paper titled “Mask R-CNN”

(https://arxiv.org/pdf/1703.06870.pdf). In the Mask R-CNN, each pixel is classified

into a fixed set of categories without differentiating object instances. It introduces a

concept called pixel-to-pixel alignment between the output and input layers of the neural

network. The class of each pixel determines the masks in the ROI.

Figure 6-7 illustrates the Mask R-CNN network architecture.

Class

Backbone:
ResNet 50 or RPN Faster R-CNN

Bbox

Mask

Input
Image

Figure 6-7. Mask R-CNN. Additional mask prediction branch in a Faster R-CNN

As shown in Figure 6-7, the network consists of three modules—backbone, RPN, and

output head.

 Backbone
The backbone is the standard deep neural network. The original paper describes using

ResNet-50 and ResNet-101. The backbone’s main role is the feature extraction.

In addition to ResNet, a feature pyramid network (FPN) is used to extract the finer

feature details of the image.

The FPN consists of decreasing size layers of a CNN in which case each forward layer

has fewer number of neurons.

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

https://arxiv.org/pdf/1703.06870.pdf

229

As shown in Figure 6-8, each higher layer passes the features to the lower layers,

and predictions are done at each layer. The size of the higher layer is smaller, which

means the feature size will be smaller than the previous layers. This approach captures

features of the image at different scales, thus allowing you to detect smaller objects in

the image.

Figure 6-8. FPN (image source: Tsung-Yi Lin, et al.)

FPN is an add-on to the backbone network and is typically performed independently

of the ResNet or other backbone network. FPN can be added not only to the Mask

R-CNN but also to the Fast R-CNN to be able to detect objects of different sizes.

 RPN
As described earlier, the RPN module is used for generating region proposals. The RPN

architecture in the case of Mask R-CNNs is the same as in the case of Faster R-CNNs.

 Output Head
As shown in Figure 6-8, the last module consists of the Faster R-CNN with an additional

output branch. Therefore, a total of three outputs are generated by this module. The

outputs—an object class and bounding box coordinates—are the same as in the case of

Faster R-CNNs. The third output is the object mask, which is a list of pixels defining the

object contours.

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

230

 What Is the Significance of the Masks?
The Mask R-CNN (like the Faster R-CNN) generates object classes and the bounding

boxes. The combination of these two helps us locate the objects within the image.

The mask output from the network is used in object segmentation. This object

segmentation is popularly used in optical character recognition (OCR) to extract text

from documents. Another example of usage of a Mask R-CNN is in airport security

where travelers’ bags are scanned and visualized with masking. Figure 6-9 shows a

typical display of a Mask R-CNN.

Figure 6-9. Display of images with bounding boxes and masks (image source:
Ross Girshick et al.)

 Mask R-CNN in Human Pose Estimation
An interesting use of a Mask R-CNN is in estimating the human pose. The network can

be extended to model locations of keypoints as a one-hot mask. Keypoints are defined as

the points of interest on the image. For humans, these keypoints represent major joints

such as an elbow, shoulder, or knee. The keypoints are selected such that they do not

change with the rotation, movement, shrinkage, translation, and distortion. The Mask

R-CNN is trained to predict K masks, one for each of K keypoint types (e.g., left shoulder,

right elbow). See Figure 6-10.

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

231

To train a network to estimate human pose, the training images are marked with K

keypoints of an instance object. For each keypoint, the training target is a one-hot m×m

binary mask where only a single pixel is labeled as the foreground.

According to the original paper, the authors used a variant of ResNet-FPN

architecture as the feature extraction backbone. The head architecture (or output

module) was similar to the regular Mask R-CNN. The keypoint head consisted of a

stack of eight 3×3 512-D convolution layers, followed by a deconvolutional layer and 2×

bilinear upscaling. This produced an output resolution of 56×56. It was estimated that

a relatively high-resolution output (compared to masks) is required for keypoint-level

localization accuracy.

 Single-Shot Multibox Detection
An R-CNN and its variants are two-stage detectors. They have two dedicated networks:

one network generates the region proposals to predict bounding boxes, and the other

network predicts object classes. These two-stage detectors are fairly accurate, but they

come with a high computational cost. This means these detectors are not suitable for

detecting objects in streaming videos in real time.

A single-shot object detector predicts both the bounding boxes and the object

classes in a single forward pass of the network.

Single-shot multibox detection (SSD) was explained by Wei Liu et al in a 2016 paper

titled “SSD: Single Shot MultiBox Detector” (https://arxiv.org/pdf/1512.02325.pdf).

First we will review how SSD works, and later in this chapter, we will train a custom SSD

model using TensorFlow.

Figure 6-10. Display of human pose estimation using keypoint prediction (image
source: Ross Girshick, et al.)

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

https://arxiv.org/pdf/1512.02325.pdf

232

 SSD Network Architecture
An SSD neural network consists of two components: base network and prediction

network.

• Base network: The base network is a deep convolutional network that

is truncated before any classification layer. For example, remove the

fully connected layer of ResNet or VGG to create the base network for

SSD. The base network is used for feature extraction from the input

images.

• Detection network: To the base network, attach some extra

convolutional layers that will actually do the prediction of bounding

boxes and object classes. The detection network has the following

characteristics.

 Multiscale Feature Maps for Detection

The convolutional layers attached to the end of the base network are designed in such a

way that these layers decrease in size progressively. This allows us to predict objects at

multiple scales. This can be visualized as shown in Figure 6-11.

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

233

Base
network

Last layer of

Ancho

Ancho

Category

Bounding box

Category

Bounding box

Multiscale
features

Ancho

Ancho

Category

Bounding box

Category

Bounding box

Multiscale
features

Ancho

Ancho

Category

Bounding box

Category

Bounding box

Figure 6-11. Convolutional layers of decreasing size to predict object class
categories and bounding boxes at scales

As shown in Figure 6-11, every detection layer and, optionally, the last layer of the

base network predicts offsets of the four coordinates of the bounding boxes and object

class categories. How are bounding boxes and objects predicted? Through anchor boxes.

Let’s understand the concept of anchor boxes.

Anchor Boxes and Convolutional Predictors for Detection

Anchors are one or more rectangular shapes set at each convolution point of the feature

map. In Figure 6-12, there are five rectangular anchors (shown in red outlines) set at a

point (shown in blue).

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

234

In SSD, typically five anchor boxes are selected at each point. Each of these anchors

acts as a detector. That means, there are typically five detectors at each location of the

feature map, and each one of them detects five different objects (or no object). The varying

size of these detectors allows them to detect objects of different sizes. Smaller detectors will

detect smaller objects, and larger detectors are capable of detecting larger objects.

Figure 6-12. Anchor boxes

At each convolution point on the feature map (shown in blue in Figure 6-12), the

algorithm predicts offsets of bounding boxes relative to anchor boxes. It also predicts the

class scores that indicate the presence of a class instance in each of these boxes.

 Default Boxes and Aspect Ratios

It is important to note that these anchors are chosen beforehand as constants. In SSD, a

set of fixed “default anchors” is mapped at each convolution point.

Assume that there are K number of boxes at each location; we compute C class

scores and the four offset coordinates relative to the default box. This will result in a total

of (C+4)×K filters around each convolution point. Assuming the feature size of m×n, the

output tensor size will be (C+4)×K×m×n.

These default anchors are applied at each of the detection convolutional layers (as

shown in Figure 6-11). The size of these convolutional layers decreases progressively,

allowing us to generate several feature maps of different resolutions.

Figure 6-13 shows the overall network architecture.

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

235

Figure 6-13. Truncated VGG backbone with additional convolutional layers for
detection (image source: Liu et al., https://arxiv.org/pdf/1512.02325.pdf)

Ground truth (green box)

Predicted (red box)

IoU < 50%

IoU > 50%

IoU > 95%

Figure 6-14. Matching of default box with ground truth box

 Training
In the following section we will explore how the SSD model learns by optimizing the loss

functions, and the object matching strategy it follows.

 Matching Strategy

During the training, the algorithm determines which default boxes correspond to the

ground truth and then trains the network accordingly. To match the default boxes with

the ground truth, it uses IoU to determine the overlap. This IoU-based overlap is also

called the Jaccard overlap. An IoU threshold of 0.5 is considered to determine whether

the default box overlaps any ground truth. This overlapping using IoU is performed

at each layer, allowing the network to learn at scale. The SSD starts with the default

boxes as predictions and attempts to regress closer to the ground truth bounding boxes.

Figure 6-14 illustrates the concept of overlapping and selection of default boxes.

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

https://arxiv.org/pdf/1512.02325.pdf

236

 Training Objective

SSD’s learning objective is to optimize a loss function, which is the weighted sum of the

localization loss (loc) and the confidence loss (conf) over all matched default boxes.

 Choosing Scales and Aspect Ratios for Default Boxes

The decreasing size of the detection layers of the SSD network allows it to learn different

object scales. As the training moves forward, the size of the feature map decreases. How

does the algorithm determine the size of default boxes for each layer?

For each layer, the algorithm calculates the scale using the following formula:

Sk = Smin + {(Smax − Smin)/(m − 1)} (k − 1), where k ∈ [1, m]

where m is the size of the feature map, Smin = 0.2 for the lowest layer, and Smax = 0.9 for

the highest layer. All other layers in between are evenly spaced. Recall that five default

boxes are used in SSD. These default boxes are set for different aspect ratios: ar ∈ {1, 2,

3, ½, ⅓}. The width and height of each default boxes are calculated using the following

formula:

Width = Sk ar

Height = Sk / ar

For an aspect ratio of 1, another box of scale S’k= S Sk k+()1 is calculated. That means

six default boxes per feature map are determined. The center of the default boxes are set

using this formula: ((i+0.5)/ |fk| , (j+0.5)/ |fk|), where |fk| is the size of the k-th square

feature map, i, j ∈ [0, |fk|).

By combining predictions for all default boxes with different scales and aspect ratios

from all locations of many feature maps, a diverse set of predictions is generated. This

covers various input object sizes and shapes.

You will learn in the next section that YOLO uses K-means clustering to dynamically

select anchor boxes. Also, in YOLO, these anchors are called priors or bounding box

priors.

 Hard Negative Mining

At each layer and for each feature map, many default boxes are created. After matching

with the ground truth (where IoU ≥ 0.5), the majority of these default boxes will not

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

237

overlap with the ground truth. These nonoverlapping default boxes (IoU < 0.5) are called

negative boxes, and those matching with ground truth are positive boxes. In most cases,

the number of negatives is way higher than the number of positives. This causes class

imbalance, which will skew the predictions. To balance the classes, negative boxes are

sorted, the topmost probable negative boxes are taken, and the rest are discarded to

make the negative:positive ratio at most 3:1. It has been found that this ratio leads to

faster optimization.

 Data Augmentation

SDD is robust to various input object sizes and shapes. To make it robust, each training

image is sampled by one of the following options:

• Use the entire original image.

• Sample a patch so that the minimum IoU is 0.1, 0.3, 0.5, 0.7, or 0.9.

• Randomly sample a patch.

The characteristics of each sample are the following:

• The size of each sampled patch is [0.1, 1] of the original image size.

• The aspect ratio is between ½ and 2.

• Keep the overlapped part of the ground truth box if the center of it is

in the sampled patch.

After these sampling steps, each sampled patch is resized to a fixed size and is

horizontally flipped with a probability of 0.5, in addition to applying some photometric

distortions.

 Nonmaximum Suppression

At the time of inference, a large number of boxes are generated during the forward pass

of the SSD. Processing all of these bounding boxes will be compute-intensive and time-

consuming. Therefore, it is important to get rid of those bounding boxes, which have

low confidence of containing objects and have low IoU. Only the top N bounding boxes

having the maximum IoU and confidence are selected, and nonmaximum boxes are

dropped or suppressed. This eliminates duplicates and ensures that only the most likely

predictions are retained by the network.

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

238

 SSD Results
SSD is a fast, robust, and accurate model. With the VGG-16 base architecture, SSD

compares favorably to its state-of-the-art object detector counterparts in terms of both

accuracy and speed. The SSD-512 model (the highest-resolution network using 512×512

input images) is at least three times faster and more accurate compared to the state-

of- the art Faster R-CNN on the PASCAL VOC and COCO datasets. The SSD-300 model

performs real-time object detection more accurately in streaming video at 59 frames per

second speed, which is faster than the first version of YOLO. In Chapter 7, you will learn

how to detect objects in videos using SSD.

 YOLO
YOLO is a fast, real-time, and multi-object detection algorithm. YOLO consists of a single

convolutional neural network that predicts simultaneously the bounding boxes and class

probabilities of objects within them. YOLO trains on the full image, and the network is

set up to solve regression problems to detect objects. Therefore, YOLO does not need a

complex processing pipeline, which makes it extremely fast.

A base network runs 45 frames per second on a Titan X GPU. The speed is higher

with faster versions of GPU, and it could go up to 150 frames per second. This makes

YOLO suitable for detecting objects in streaming videos in real time with less than 25

milliseconds of latency. Furthermore, YOLO achieves more than twice the mean average

precision (mAP) of other real-time systems.

YOLO was created by Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali

Farhadi in 2016 in their paper titled “You Only Look Once: Unified, Real-Time Object

Detection” (https://arxiv.org/pdf/1506.02640.pdf).

The detection process, as illustrated in Figure 6-15 and described in the original

paper, is as follows:

 1. The input image is divided into S×S grids.

 2. If the center of the object falls within a grid, that grid is responsible

for detecting that object.

 3. Each grid cell predicts B number of bounding boxes and a

confidence score for these bounding boxes.

 4. The confidence score is calculated using the following formula:

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

https://arxiv.org/pdf/1506.02640.pdf

239

Confidence score = Probability of objectness x IOU between the
predicted box and the ground truth.

If the bounding box does not contain any object, the confidence

score is zero.

 5. For each bounding box, the network makes five predictions: x, y,

w, h, and confidence where

 – The (x, y) coordinates represent the center of the box relative to

the bounds of the grid cell.

 – w and h are the width and height relative to the whole image.

 – The confidence prediction represents the IOU between the

predicted box and any ground truth box.

 6. At the same time, the network predicts, for each grid cell, a

class conditional probability C conditioned on the grid cell

containing an object. Only one conditional probability per grid

cell is predicted, regardless of how many bounding boxes B are

predicted.

 7. To obtain the class-specific confidence score for each box, the

following formula is applied:

Class confidence score = Pr(Classi|Object) x Pr(Object) x IOU
between prediction and ground truth.

where Pr(Classi|Object) represents the probability of a class

given the object within the grid cell.

 8. These predictions are encoded as an S × S × (B x 5 + C) tensor.

The inventors of YOLO used the following settings for evaluation:

• Dataset: PASCAL Visual Object Classes, http://host.robots.

ox.ac.uk/pascal/VOC/ (PASCAL VOC)

• S = 7

• B = 2

• C = 20 as PASCAL VOC had 20 object classes

The final prediction yielded a 7 × 7 × (2 × 5 + 20) = 7 × 7 × 30 tensor.

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

http://host.robots.ox.ac.uk/pascal/VOC/
http://host.robots.ox.ac.uk/pascal/VOC/

240

 YOLO Network Design
The YOLO network architecture was inspired by GoogLeNet for image classification.

A slightly modified GoogLeNet for YOLO consists of 24 convolutional layers with max

pooling followed by two fully connected layers. Notice the output tensor or dimension

7×7×30 generated from the last layer shown in a full network in Figure 6-16.

Figure 6-15. Illustration of YOLO object detection (image source: Joseph Redmon
et al.)

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

241

Figure 6-16. YOLO neural network architecture. (image source: Joseph Redmon et al.)

 Limitations of YOLO
Although YOLO is one of the fastest object detection algorithms, it has a few limitations.

• It struggles with small objects that come in groups such as flocks of

birds.

• It can predict only one class of objects within a cell grid.

• It does not predict well if the object has an unusual aspect ratio that

was not seen in the training set.

• Its accuracy is less than some of the state-of-the-art algorithms, such

as the Faster R-CNN.

 YOLO9000 or YOLOv2
YOLOv2 is an improved version of YOLO. It improves detection accuracy and speed

compared to YOLO. It was trained to detect more than 9,000 object classes; therefore,

the name YOLO9000 was given to it. This improvement and the detection algorithm

are described in the paper titled “YOLO9000: Better, Faster, Stronger” published

in December 2016 by Joseph Redmon and Ali Farhadi (https://arxiv.org/

pdf/1612.08242.pdf).

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

https://arxiv.org/pdf/1612.08242.pdf
https://arxiv.org/pdf/1612.08242.pdf

242

YOLOv2 was designed to overcome some of the limitations, especially the precision

and recall levels, of YOLO. Furthermore, it is able to detect objects with unseen aspect

ratios.

Here is a list of improvements made in YOLOv2 to achieve a better, faster, and

stronger result:

• Batch normalization: YOLOv2 added batch normalization on all the

convolutional layers in YOLO. Recall that batch normalization helps

regularize the model. By using batch normalization, YOLOv2 showed

a mAP improvement of more than 2 percent.

• High-resolution classifier: YOLOv2 was fine-tuned to learn from

higher-resolution input images. At 448×448 resolution, the network

output improved by 4 percent mAP.

• Convolution with anchor boxes: YOLOv2 removed the fully connected

layers and used fully convolutional layers. It also introduced anchor

boxes to predict bounding boxes. Although there is a slight decrease

in accuracy, by using anchor boxes, YOLOv2 is able to detect more

than 1,000 objects per image compared to 98 in YOLO.

• Dimension cluster: The size of the anchor boxes is determined by

using K-means clustering of the VOC 2017 training set. A value of k=5

provides the best trade-off between average IOU/model complexity.

The average IOU is 61.0 percent.

• Fine-grained features: YOLOv2 uses a pass-through layer that

concatenates the higher-resolution features by stacking adjacent

features into different channels instead of spatial locations. This

approach gives a modest 1 percent performance increase.

• Multiscale training: YOLOv2 is able to detect objects in images

of different sizes. Instead of fixing the input image size, YOLOv2

changes the network on the fly every few iterations. For example,

every 10 batches the network randomly chooses a new image

dimension. This means the same network can predict detections at

different resolutions. At low resolutions, YOLOv2 operates as a cheap

and fairly accurate detector.

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

243

The 288×288 YOLOv2 network runs at more than 90 FPS with mAP

almost as good as Fast R-CNN. This makes it ideal for smaller

GPUs, high frame rate video, or multiple video streams. At high

resolution, YOLOv2 is a state-of-the-art detector with 78.6 mAP on

VOC 2007 while still operating at faster than real-time speeds.

• DarkNet instead of GoogLeNet: YOLOv2 uses a convolutional neural

network called DarkNet-19. This network has 19 convolutional

layers and 5 max pooling layers. Darknet-19 only requires 5.58

billion operations, as opposed to 30.67 billion in VGG or 8.52 billion

in YOLO, to process an image. Yet it achieves 72.9 percent top-one

accuracy and 91.2 percent top-five accuracy on ImageNet.

Figure 6- 17 shows the Darknet-19 network architecture.

Figure 6-17. Darknet-19 (source: Joseph Redmon et al., https://arxiv.org/
pdf/1612.08242.pdf)

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

https://arxiv.org/pdf/1612.08242.pdf
https://arxiv.org/pdf/1612.08242.pdf

244

• Joint classification and detection: YOLOv2 can learn from a dataset

containing labels for both classification and detection. During the

training, when the network sees images labeled for detection, it

performs the full YOLOv2 loss function optimization. And, when

it sees images for classification, it backpropagates losses using

the classification part of the network. The dataset for YOLOv2 was

created by combining datasets from COCO and ImageNet. The

network capable of learning from both classification and detection

dataset makes a stronger model compared to plain YOLO.

The following table summarizes the YOLOv2 improvements and their effect on

accuracy and speed (compared to plain YOLO):

Modifications Effects

better batch normalization 2 percent map improvement

high-resolution classifier 4 percent map improvement

Convolution with anchor boxes Capable of detecting more than 1,000 objects

per image

Dimension cluster 4.8 percent map improvement

Fine-grained features 1 percent map improvement

Multiscale training 1.1 percent map improvement

Faster Darknet-19 33 percent computation decrease, 0.4 percent

map improvement

Convolutional prediction layer 0.3 percent map improvement

Stronger joint classification and detection able to detect more than 9,000 objects

 YOLOv3
The most recent version of YOLO is YOLOv3, which provides some improvements

to YOLOv2. YOLOv3 is described in the paper titled “YOLOv3: An Incremental

Improvement” published in April 2018 by Joseph Redmon and Ali Farhadi (https://

arxiv.org/pdf/1804.02767.pdf).

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

https://arxiv.org/pdf/1804.02767.pdf
https://arxiv.org/pdf/1804.02767.pdf

245

The features and improvements of YOLOv3 are described here:

• Bounding box prediction: There is no change in YOLOv3 compared

to YOLOv2 when it comes to detecting bounding boxes. YOLOv3

uses sum of squared error loss during the training. It also predicts an

objectness score for each bounding box using logistic regression. The

objectness score is taken as 1 if the bounding box prior overlaps a

ground truth object by more than any other bounding box prior. Only

one bounding box prior is assigned for each ground truth object.

If the bounding box prior is not the best but does overlap a ground

truth object by more than some threshold, the prediction is ignored.

The inventors of YOLOv3 used a threshold of 0.5. The system assigns

only one bounding box prior for each ground truth object.

• Object class prediction: The network predicts multiple classes of an

object within a bounding box. The softmax activation function is not

suitable for predicting multilabel classes. Therefore, YOLOv3 uses a

regression classifier instead of softmax.

• Predictions across scales: YOLOv3 predicts bounding boxes at

three different scales. It still uses the K-means cluster to determine

bounding box priors. It has nine clusters and three scales arbitrarily

selected, and then it divides the clusters evenly across scales.

For example, on the COCO dataset, the nine clusters were as

follows: (10×13), (16×30), (33×23), (30×61), (62×45), (59×119),

(116×90), (156×198), (373×326).

• Feature extractor: As a feature extraction backbone, YOLOv3 uses an

improved version of Darknet-19. This network was given the name

Darknet-53. It has 53 convolutional layers. Figure 6-18 shows the

Darknet-53 network architecture.

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

246

• Training: There was no change in the training approach in YOLOv3

compared to YOLOv2. The training was performed on the full image,

with multiscaled data, batch normalization, and mixed classification

and detection labels.

Here are the YOLOv3 results:

 – For the overall mAP, YOLOv3 performance drops significantly due to

a much wider network (53 layers compared to 19 in YOLOv2).

 – YOLOv3 with 608×608-resolution images got 33.0 percent mAP in

51ms inference time, while RetinaNet-101–50–500 only got 32.5

percent mAP in 73ms inference time.

 – YOLOv3’s accuracy level is on par with SSD variants with a 3× faster

detection time.

Figure 6-18. Darknet-53 used in YOLOv3 (source: https://arxiv.org/
pdf/1804.02767.pdf)

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

https://arxiv.org/pdf/1804.02767.pdf
https://arxiv.org/pdf/1804.02767.pdf

247

 Comparison of Object Detection Algorithms
In this section, we have explored three distinct algorithm classes for object detection:

R-CNN and its variants, SSD and YOLO. These algorithms were trained on two popular

datasets—VOC and COCO—and benchmarked for speed and accuracy. The comparison

provided in this section can be used as a guide to decide the suitability and applicability

of one algorithm versus the other in building systems for object detection. The

performance metrics and benchmarking results have been mostly taken from the paper

“Object Detection with Deep Learning: A Review” written by Zhong-Qiu Zhao, Peng

Zheng, Shou-tao Xu, and Xindong Wu and published in April 2019 (https://arxiv.org/

pdf/1807.05511.pdf).

 Comparison of Architecture
Table 6-1 provides a comparison of object detection algorithms in terms of the neural

network architecture they use.

Table 6-1. Comparison or Neural Network Architecture of Object Detectors

Object
Detector

Region
Proposal

Activation
Function

Loss Function Softmax
Layer

r-Cnn Selective

search

SgD hinge loss (classification), bounding box

regression

Yes

Fast r-Cnn Selective

search

SgD Class log loss + bounding box regression Yes

Faster r-Cnn rpn SgD Class log loss + bounding box regression Yes

Masr r-Cnn rpn SgD Class log loss + bounding box regression +

semantic sigmoid loss

Yes

SSD none SgD Class sum-squared error loss + bounding

box regression

no

YOLO none SgD Class sum-squared error loss + bounding

box regression + object confidence +

background confidence

Yes

(continued)

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

https://arxiv.org/pdf/1807.05511.pdf
https://arxiv.org/pdf/1807.05511.pdf

248

Object
Detector

Region
Proposal

Activation
Function

Loss Function Softmax
Layer

YOLOv2 none SgD Class sum-squared error loss + bounding

box regression + object confidence +

background confidence

Yes

YOLOv3 none SgD Class sum-squared error loss + bounding

box regression + object confidence +

background confidence

Logistic

classifier

 Comparison of Performance
Table 6-2 provides a performance comparison of the object detection algorithms trained

on the Microsoft COCO dataset. The training was conducted on an Intel i7-6700K CPU

with a single core and an Nvidia Titan X GPU.

Table 6-2. Performance Comparison of Object Detection Models

Object Detector Trained On mAP Test Speed
(Sec/Image)

Frames per
Second
(FPS)

Suitable
for
Real- Time
Videos?

r-Cnn COCO 2007 66.0% 32.84 0.03 no

Fast r-Cnn COCO 2007 and 2012 66.9% 1.72 0.60 no

Faster r-Cnn (Vgg- 16) COCO 2007 and 2012 73.2% 0.11 9.1 no

Faster r-Cnn

(restnet-101)

COCO 2007 and 2012 83.8% 2.24 0.4 no

SSD300 COCO 2007 and 2012 74.3% 0.02 46 Yes

SSD512 COCO 2007 and 2012 76.8% 0.05 19 Yes

YOLO COCO 2007 and 2012 73.4% 0.02 46 Yes

YOLOv2 COCO 2007 and 2012 78.6% 0.03 40 Yes

YOLOv3 608x608 COCO 2007 and 2012 76.0% 0.029 34 Yes

YOLOv3 416x416 COCO 2007 and 2012 75.9% 0.051 19 Yes

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

249

 Training Object Detection Model Using TensorFlow
We are now ready to write code to build and train our own object detection models. We

will use the TensorFlow API and write code in Python. Object detection models are very

compute-intensive and require both a lot of memory and a powerful processor. Most

general-purpose laptops or computers may not be able to handle the computations

necessary to build and train an object detection model. For example, a MacBook Air with

32GB RAM and an eight-core CPU is not able to run a detection model involving about

7,000 images. Thankfully, Google provides a limited amount of GPU-based computing

for free. It has been proven that these models run many folds faster on a GPU than on a

CPU. Therefore, it is important to learn how to train a model on a GPU. For the purposes

of demonstration and learning, we will use the free version of Google GPU. Let’s first

define what our learning objective is and how we want to achieve it.

• Objective: Learn how to train an object detection model using Keras

and TensorFlow.

• Dataset: The Oxford-IIIT Pet dataset, which is freely available at

robots.ox.ac.uk/~vgg/data/pets/. The dataset consists of 37

categories of pets with roughly 200 images for each class. The images

have large variations in scale, pose, and lighting. They are already

annotated with bounding boxes and labeled.

• Execution environment: We will use Google Colaboratory (colab.

research.google.com), or Colab for short. We will utilize the GPU

hardware accelerator that comes free with Colab. Google Colab is a

free Jupyter notebook environment that requires no setup and runs

entirely in the cloud. Jupyter notebook is an open source web-based

application to write and execute Python programs. To learn more

about how to use a Jupyter notebook, visit https://jupyter.org.

The documentation is available at https://jupyter-notebook.

readthedocs.io/en/stable/. We will learn the Colab notebook as

we work through the code.

• Important note: At the time of writing this book, TensorFlow version 2

does not support the training of custom models for object detection.

Therefore, we will use TensorFlow version 1.15 to train the model.

The TensorFlow team and the open source community are working

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

http://colab.research.google.com
http://colab.research.google.com
https://jupyter.org
https://jupyter-notebook.readthedocs.io/en/stable/
https://jupyter-notebook.readthedocs.io/en/stable/

250

to migrate the version 1 code to support the training of custom object

detection models in version 2. Therefore, some of the steps that we

have here are likely to change in the future. The GitHub location of

this book will have the updated steps for version 2.

We will train the detection model with TensorFlow 1 on Google Colab, and after the

model is trained, we will download and use it with TensorFlow 2. We will learn how to do

that as well.

 TensorFlow on Google Colab with GPU
Google Colab provides a Jupyter notebook for machine learning education and training

for free. It provides about 13GB RAM, 130GB disk, and an Nvidia GPU for 12 hours of

continuous use. You can re-create your runtime if your session expires or the 12-hour

limit is passed. When you execute your code, it is executed on a virtual machine that gets

created specific to your private account. After the session expires, the virtual machine is

terminated, and any data saved in the virtual disk is lost. However, Colab provides a way

to mount your Google Drive directory to the Colab virtual disk. Your data will be stored

on your Google Drive that you can retrieve when you create a Google Colab session.

Let’s start with Google Colab and set up our runtime environment that we will utilize for

executing our TensorFlow code.

 Accessing Google Colab

You must have a Google (or Gmail) account to access Google Colab. If you don’t already

have one, you need to first sign up for an account at https://accounts.google.com.

Using your web browser, access the Google Colab URL at http://colab.research.

google.com. If you are already signed in with your Google account, you will have access

to Colab; otherwise, you will need to sign in to your account to gain access to it.

 Connecting to the Hosted Runtime

Click the Connect button located at the top right of the screen, below the user and

setting icons, and then click “Connect to hosted runtime” (Figure 6-19). At this point,

your Colab session is created.

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

https://accounts.google.com
http://colab.research.google.com
http://colab.research.google.com

251

Figure 6-19. Connecting to a hosted runtime

 Selecting a GPU Hardware Accelerator

Click Edit and then “Notebook settings” (Figure 6-20) to open a modal window. Select

GPU as the hardware accelerator. Make sure you have Python 3 selected for the runtime

type. Click the Save button (Figure 6-21).

Figure 6-20. Accessing notebook settings

Figure 6-21. Selecting GPU as the accelerator

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

252

 Creating a Colab Project

Click File and then “New Python 3 notebook.” Your new notebook will open in a new

browser tab. Give this notebook a meaningful name, such as Object Detection Model

Training. By default, this notebook is saved in your Google Drive.

 Setting the Runtime Environment for TensorFlow and Model
Training

Click +Code to insert a code cell into the notebook. Notice the code block with an empty

cell in the main area of the notebook. You can write any Python code within this cell and

execute it by clicking the execute icon .

Google Colab is an interactive programming environment and does not give direct

access to the underlying operating system. You can invoke the shell using %%shell,

which remains active within a single block of code cells it is invoked from. You can

invoke the shell from as many code blocks as needed.

To set up our environment, we will follow the following steps:

 1. Install the necessary libraries needed to execute our TensorFlow

code and train our model. Listing 6-1 shows the commands to

install the required libraries.

Listing 6-1. Installing the Necessary Libraries and Packages

Filename: Listing_6_1

1 %%shell

2 %tensorflow_version 1.x

3 sudo apt-get install protobuf-compiler python-pil python-lxml python- tk

4 pip install --user Cython

5 pip install --user contextlib2

6 pip install --user pillow

7 pip install --user lxml

8 pip install --user matplotlib

Line 1 invokes the shell within the context of the code block it

belongs to. This allows to run any shell command within this block.

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

253

Line 2 tells the notebook that we want to use TensorFlow version 1.x

and not the latest version 2, which is the default execution engine for

machine learning on Google Colab. If you encounter any issue due

to your Colab instance using TensorFlow 2, install TensorFlow 1.15

using the command: pip install tensorflow==1.15.

Line 3 installs, using the operating system command, the Protobuf

compiler and a few other software. Protobuf is used to compile the

TensorFlow source code. Lines 4 through 8 install the Python libraries.

 2. Download the TensorFlow “models” project from the GitHub

repository, and build and install it in your working environment.

Listing 6-2 shows how to do this.

Listing 6-2. Downloading the TensorFlow Models Project, Building It, and

Setting It Up

1 %%shell

2 mkdir computer_vision

3 cd computer_vision

4 git clone https://github.com/ansarisam/models.git

5 #git clone https://github.com/tensorflow/models.git

6 cd models/research

7

8 protoc object_detection/protos/*.proto --python_out=.

9

10 export PYTHONPATH=$PYTHONPATH:/content/computer_vision/models/research

11 export PYTHONPATH=$PYTHONPATH:/content/computer_vision/models/research/slim

12

13

14 python setup.py build

15 python setup.py install

Line 1 invokes the shell.

Line 2 creates a new directory called computer_vision. This is the

directory we want to organize all our code and data in. Line 3 changes

the current working directory to the new directory we just created.

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

254

Line 4 clones a GitHub repository and downloads the source code of

TensorFlow models project. This repository is forked from the official

TensorFlow models’ repository. The official repository is listed in

line 5 for reference.

The models repository contains a number of models implemented

in TensorFlow. After it downloads the source code, you will see two

subdirectories—official and research—within the models directory.

The “official” directory contains all the models that are officially

supported by TensorFlow and that get installed when you install

TensorFlow. The research directory contains a large number of models

that are created and maintained by researchers and not officially

supported yet. The object detection models that we are interested in are

in the research directory and not part of the official release yet.

Line 6 changes the working directory to the modes/research directory.

Line 8 builds the object detection–related source code using the

Protobuf compiler.

Lines 10 and 11 set the PYTHONPATH environment variable to the

research and research/slim directories.

Line 14 executes a build command using setup.py, a script that is

provided in the Python script directory. Similarly, line 15 installs the

object detection models in our working environment.

To test your code, execute each cell block one by one or execute all

of them by clicking Runtime and then selecting “Run all” from the

top menu context in Colab. If everything goes well, your TensorFlow

version 1.x environment is ready for training object detection models.

 Downloading the Oxford-IIIT Pet Dataset

Let’s insert another code cell into the notebook. We will download the annotated and

labeled pet dataset from the official website to a directory in our Colab workspace.

Listing 6-3 contains the code that downloads the pet dataset and annotations.

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

255

Listing 6-3. Downloading and Uncompressing the Images and Annotations of

the Pet Dataset

1 %%shell

2 cd computer_vision

3 mkdir petdata

4 cd petdata

5 wget http://www.robots.ox.ac.uk/~vgg/data/pets/data/images.tar.gz

6 wget http://www.robots.ox.ac.uk/~vgg/data/pets/data/annotations.tar.gz

7 tar -xvf annotations.tar.gz

8 tar -xvf images.tar.gz

Line 1 invokes the shell. We need to do this in every cell block if we want to use any

shell command.

Line 2 changes our working directory to the computer_vision directory.

Line 3 creates another directory called petdata within the computer_vision

directory. We will download the pet dataset in the petdata directory.

Line 4 changes the working directory to the petdata directory.

Line 5 downloads the pet images, and line 6 downloads the annotations.

Lines 7 and 8 uncompress the downloaded images and annotations files.

If you execute this code block, you will see the images and annotations downloaded

in the petdata directory. Images will be stored in the images subdirectory, and the

annotations will be stored in the annotations subdirectory within the petdata directory.

 Generating TensorFlow TFRecord Files

TFRecord is a simple format for storing a sequence of binary records. The data in TFRecord

is serialized and stored in smaller chunks (e.g., 100MB to 200MB), which makes them more

efficient to transfer across networks and read serially. You will learn more about TFRecord,

its format, and how to convert images and associated annotations in the TFRecord

file format in Chapter 9. For now, we will use a Python script provided in the research

directory of the TensorFlow source code we downloaded from GitHub. The script is located

at the path research/object_detection/dataset_tools/create_pet_tf_record.py.

Object detection algorithms take TFRecord files as input to the neural network.

TensorFlow provides a Python script to convert the Oxford pet image annotation files to

a set of TFRecord files. Listing 6-4 does the conversion of both training and test sets to

TFRecords.

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

256

Listing 6-4. Converting Image Annotation Files to TFRecord Files

1 %%shell

2 cd computer_vision

3 cd models/research

4

5 python object_detection/dataset_tools/create_pet_tf_record.py \

6 --label_map_path=object_detection/data/pet_label_map.pbtxt \

7 --data_dir=/content/computer_vision/petdata \

8 --output_dir=/content/computer_vision/petdata/

Lines 2 and 3 change the working directory to the research directory.

Lines 5 through 8 run the Python script, create_pet_tf_record.py, that takes the

following parameters:

• label_map_path: This file has the mapping of an ID (starting from 1)

and corresponding class name. For the pet dataset, the mapping file

is already available in the object_detection/data/pet_label_map.

pbtxt file. You will learn, in Chapter 9, how to generate this mapping

file. But for now, let’s just use what is already available. This is a JSON-

formatted file. A few sample entries of the mapping file are shown here:

item {

 id: 1

 name: 'Abyssinian'

}

item {

 id: 2

 name: 'american_bulldog'

}

...

• data_dir: This is the parent directory of the images and annotations

subdirectories.

• output_dir: This is the destination directory where the TFRecord

files will be stored. You can give any existing directory name. After

conversion of images and annotations, the TFRecord files will be

saved in this directory.

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

257

After this code block executes, it creates a set of *.record files in the output_directory.

The script, create_pet_tf_record.py, creates both training and evaluation sets.

• Training set: The output directory should now contain 10 training file

and 10 evaluation files. The number of *.record files may be different

depending upon your input size. The *.record files of training set are

named as pet_faces_train.record-?????-of-00010. The regular

expression ????? takes values sequentially from 00001 through 00010.

• Evaluation or test set: The evaluation dataset is named as pet_faces_

eval.record-?????-of-00010.

 Downloading a Pre-trained Model for Transfer Learning

Training a state-of-the-art object detection model from scratch takes several days,

even with GPUs. To speed up the training, we will download an existing model trained

on a different dataset, such as COCO, and reuse some of its parameters, including the

weights, to initialize our new model. Reusing the weights and parameters from a pre-

trained model to train a new model is called transfer learning. We will describe the

transfer learning process in this section.

A collection of object detection models, trained on COCO and other datasets, is

located at “TensorFlow detection model zoo” (https://github.com/tensorflow/

models/blob/master/research/object_detection/g3doc/detection_model_zoo.md).

Here is a list of COCO trained models:

Model Name Speed
(ms)

COCO
mAP[^1]

Outputs

ssd_mobilenet_v1_coco 30 21 boxes

ssd_mobilenet_v1_0.75_depth_coco ☆ 26 18 boxes

ssd_mobilenet_v1_quantized_coco ☆ 29 18 boxes

ssd_mobilenet_v1_0.75_depth_quantized_coco ☆ 29 16 boxes

ssd_mobilenet_v1_ppn_coco ☆ 26 20 boxes

ssd_mobilenet_v1_fpn_coco ☆ 56 32 boxes

ssd_resnet_50_fpn_coco ☆ 76 35 boxes

ssd_mobilenet_v2_coco 31 22 boxes

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md

258

Model Name Speed
(ms)

COCO
mAP[^1]

Outputs

ssd_mobilenet_v2_quantized_coco 29 22 boxes

ssdlite_mobilenet_v2_coco 27 22 boxes

ssd_inception_v2_coco 42 24 boxes

faster_rcnn_inception_v2_coco 58 28 boxes

faster_rcnn_resnet50_coco 89 30 boxes

faster_rcnn_resnet50_lowproposals_coco 64 boxes

rfcn_resnet101_coco 92 30 boxes

faster_rcnn_resnet101_coco 106 32 boxes

faster_rcnn_resnet101_lowproposals_coco 82 boxes

faster_rcnn_inception_resnet_v2_atrous_coco 620 37 boxes

faster_rcnn_inception_resnet_v2_atrous_

lowproposals_coco

241 boxes

faster_rcnn_nas 1833 43 boxes

faster_rcnn_nas_lowproposals_coco 540 boxes

mask_rcnn_inception_resnet_v2_atrous_coco 771 36 Masks

mask_rcnn_inception_v2_coco 79 25 Masks

mask_rcnn_resnet101_atrous_coco 470 33 Masks

mask_rcnn_resnet50_atrous_coco 343 29 Masks

For our training, we will download the ssd_inception_v2_coco model from

http://download.tensorflow.org/models/object_detection/ssd_inception_v2_

coco_2018_01_28.tar.gz. You can download any of the trained models and follow the

rest of the steps to train your own model. The command set in Listing 6-5 downloads the

SSD inception model.

Listing 6-5. Downloading a Pre-trained SSD Inception Object Detection Model

1 %%shell

2 cd computer_vision

3 mkdir pre-trained-model

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

http://download.tensorflow.org/models/object_detection/ssd_inception_v2_coco_2018_01_28.tar.gz
http://download.tensorflow.org/models/object_detection/ssd_inception_v2_coco_2018_01_28.tar.gz

259

4 cd pre-trained-model

5 wget http://download.tensorflow.org/models/object_detection/ssd_

inception_v2_coco_2018_01_28.tar.gz

6 tar -xvf ssd_inception_v2_coco_2018_01_28.tar.gz

We have created a new directory, called pre-trained-model, within the computer_

vision directory and changed the working directory to the new directory (lines 2, 3,

and 4).

Line 5 uses the wget command to download the ssd_inception-v2_coco model as a

compressed file.

Line 6 decompresses the downloaded file into a directory, ssd_inception_v2_

coco_2018_01_28.

In the Google Colab window, expand the left panel and check the Files tab. You

should see something similar to the directory structure shown in Figure 6-22.

Figure 6-22. Pre-trained model directory structure

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

260

 Configuring the Object Detection Pipeline

We need to provide a configuration file to the TensorFlow object detection API to train

our model. This configuration file is called the training pipeline, which has a well-

defined schema. The schema for the training pipeline is available in the location object_

detection/protos/pipeline.proto in the research directory.

The JSON formatted training pipeline is broadly divided into five parts, as shown here:

model: {

 (... Add model config here...)

}

train_config : {

 (... Add train_config here...)

}

train_input_reader: {

 (... Add train_input configuration here...)

}

eval_config: {

 (... Add eval_configuration here...)

}

eval_input_reader: {

 (... Add eval_input configuration here...)

}

• model: This defines the type of model we want to train.

• train_config: This defines the settings for the model parameters.

• eval_config: This determines what set of metrics will be reported for

evaluation.

• train_input_config: This defines what dataset the model should be

trained with.

• eval_input_config: This defines what dataset the model will be

evaluated on.

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

261

In Figure 6-22, notice the file pipeline.config in the model’s directory, ssd_

inception_v2_coco_2018_01_28. Download the pipeline.config file (right-click and

Download) from the Colab, save it in your local computer, and edit it to configure your

pipeline for your model. Here is a sample of the edited file that we will use for our model

training:

model {

 ssd {

 num_classes: 37

 image_resizer {

 fixed_shape_resizer {

 height: 300

 width: 300

 }

 }

 feature_extractor {

 type: "ssd_inception_v2"

 depth_multiplier: 1.0

 min_depth: 16

 conv_hyperparams {

 regularizer {

 l2_regularizer {

 weight: 3.99999989895e-05

 }

 }

 initializer {

 truncated_normal_initializer {

 mean: 0.0

 stddev: 0.0299999993294

 }

 }

 activation: RELU_6

 batch_norm {

 decay: 0.999700009823

 center: true

 scale: true

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

262

 epsilon: 0.0010000000475

 train: true

 }

 }

 override_base_feature_extractor_hyperparams: true

 }

 box_coder {

 faster_rcnn_box_coder {

 y_scale: 10.0

 x_scale: 10.0

 height_scale: 5.0

 width_scale: 5.0

 }

 }

 matcher {

 argmax_matcher {

 matched_threshold: 0.5

 unmatched_threshold: 0.5

 ignore_thresholds: false

 negatives_lower_than_unmatched: true

 force_match_for_each_row: true

 }

 }

 similarity_calculator {

 iou_similarity {

 }

 }

 box_predictor {

 convolutional_box_predictor {

 conv_hyperparams {

 regularizer {

 l2_regularizer {

 weight: 3.99999989895e-05

 }

 }

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

263

 initializer {

 truncated_normal_initializer {

 mean: 0.0

 stddev: 0.0299999993294

 }

 }

 activation: RELU_6

 }

 min_depth: 0

 max_depth: 0

 num_layers_before_predictor: 0

 use_dropout: false

 dropout_keep_probability: 0.800000011921

 kernel_size: 3

 box_code_size: 4

 apply_sigmoid_to_scores: false

 }

 }

 anchor_generator {

 ssd_anchor_generator {

 num_layers: 6

 min_scale: 0.20000000298

 max_scale: 0.949999988079

 aspect_ratios: 1.0

 aspect_ratios: 2.0

 aspect_ratios: 0.5

 aspect_ratios: 3.0

 aspect_ratios: 0.333299994469

 reduce_boxes_in_lowest_layer: true

 }

 }

 post_processing {

 batch_non_max_suppression {

 score_threshold: 0.300000011921

 iou_threshold: 0.600000023842

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

264

 max_detections_per_class: 100

 max_total_detections: 100

 }

 score_converter: SIGMOID

 }

 normalize_loss_by_num_matches: true

 loss {

 localization_loss {

 weighted_smooth_l1 {

 }

 }

 classification_loss {

 weighted_sigmoid {

 }

 }

 hard_example_miner {

 num_hard_examples: 3000

 iou_threshold: 0.990000009537

 loss_type: CLASSIFICATION

 max_negatives_per_positive: 3

 min_negatives_per_image: 0

 }

 classification_weight: 1.0

 localization_weight: 1.0

 }

 }

}

train_config {

 batch_size: 24

 data_augmentation_options {

 random_horizontal_flip {

 }

 }

 data_augmentation_options {

 ssd_random_crop {

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

265

 }

 }

 optimizer {

 rms_prop_optimizer {

 learning_rate {

 exponential_decay_learning_rate {

 initial_learning_rate: 0.00400000018999

 decay_steps: 800720

 decay_factor: 0.949999988079

 }

 }

 momentum_optimizer_value: 0.899999976158

 decay: 0.899999976158

 epsilon: 1.0

 }

 }

 fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/model.ckpt"

 from_detection_checkpoint: true

 num_steps: 100000

}

train_input_reader {

 label_map_path: "PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt"

 tf_record_input_reader {

 input_path: "PATH_TO_BE_CONFIGURED/mscoco_train.record"

 }

}

eval_config {

 num_examples: 8000

 max_evals: 10

 use_moving_averages: false

}

eval_input_reader {

 label_map_path: "PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt"

 shuffle: false

 num_readers: 1

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

266

 tf_record_input_reader {

 input_path: "PATH_TO_BE_CONFIGURED/mscoco_val.record"

 }

}

Since the pipeline.config file was saved at the time of training the model that we

downloaded for transfer learning, we will keep most of the parts as is except for those

highlighted using bold fonts. Here are the parameters that we should change based on

the settings that we have in our Colab environment:

Num_classes: 37, which represents the 37 categories of pets in our

dataset.

fine_tune_checkpoint: /content/computer_vision/pre-

trained- model/ssd_inception_v2_coco_2018_01_28/model.

ckpt, which is the path where we stored the pre-trained model

checkpoint. Notice in Figure 6-22 that the file name of the model

checkpoint is model.ckpt.data-00000-of-00001, but in the fine_

tune_checkpoint configuration we provide only up to model.ckpt

(you must not include the full name of the checkpoint file). To get

the path of this checkpoint fie, in the Colab file browser, right-click

the file name, and click “Copy path.”

num_steps: 100000, which is the number of steps the algorithm

should execute. You may need to tune this number to get a

desirable accuracy level.

Train_input_reader → label_map_path: /content/computer_

vision/models/research/object_detection/data/pet_label_

map.pbtxt, which is the path of the file that contains the mapping

of ID and class name. For the pet dataset, this is available in the

research directory.

Train_input_reader → input_path: /content/computer_

vision/petdata/pet_faces_train.record-?????-of-00010,

which is the path of TFRecord file for training dataset. Notice that

we used a regular expression (?????) in the training set path. This

is important to include all training TFRecord files.

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

267

Eval_input_reader → label_map_path: /content/computer_

vision/models/research/object_detection/data/pet_label_

map.pbtxt, which is the same as the training label map.

Eval_input_reader → input_path: /content/computer_vision/

petdata/pet_faces_eval.record-?????-of-00010, which is the

path of the TFRecord file for evaluation dataset. Notice that we

used a regular expression (?????) in the evaluation set path. This

is important to include all evaluation TFRecord files.

It is important to note that pipeline.config has the parameter override_base_

feature_extractor_hyperparams set to true.

After editing the pipeline.config file, you need to upload it to Colab. You can

upload it to any directory location, but in this case, we are uploading it to its original

location from where we downloaded it. We will first remove the old pipeline.config file

and then upload the updated one.

To delete the old pipeline.config file from the Colab directory location, right-click

it and then click Delete. To upload the updated pipeline.config file from your local

computer, right-click the Colab directory (ssd_inception_v2_coco_2018_01_28), click

Upload, and browse and upload the file from your computer.

 Executing the Model Training

We are ready to start the training. Listing 6-6 triggers the training execution.

Listing 6-6. Executing the Model Training

1 %%shell

2 export PYTHONPATH=$PYTHONPATH:/content/computer_vision/models/research

3 export PYTHONPATH=$PYTHONPATH:/content/computer_vision/models/

research/slim

4 cd computer_vision/models/research/

5 PIPELINE_CONFIG_PATH=/content/computer_vision/pre-trained-model/ssd_

inception_v2_coco_2018_01_28/pipeline.config

6 MODEL_DIR=/content/computer_vision/pet_detection_model/

7 NUM_TRAIN_STEPS=1000

8 SAMPLE_1_OF_N_EVAL_EXAMPLES=1

9 python object_detection/model_main.py \

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

268

10 --pipeline_config_path=${PIPELINE_CONFIG_PATH} \

11 --model_dir=${MODEL_DIR} \

12 --num_train_steps=${NUM_TRAIN_STEPS} \

13 --sample_1_of_n_eval_examples=$SAMPLE_1_OF_N_EVAL_EXAMPLES \

14 --alsologtostderr

TensorFlow provides a Python script, model_main.py, to trigger the model training.

This script is located in the directory models/research/object_detection. This script

takes the following parameters:

• pipeline_config_path: This is the path of the pipeline.config file.

• model_dir: This is the directory where your trained model will be

saved.

• num_train_steps: This is the number of steps we want our network

to train. This will override the num_steps parameter in the pipeline.

config file.

• sample_1_of_n_eval_examples: This determines one out of how

many samples the model should use for evaluation.

Execute the previous code block in Colab and wait for the model to learn from your

image set. While the model is learning, you will see the iteration losses printed in the

Colab console. If everything goes well, you will have a trained object detection model

saved in the model_dir directory.

 Exporting the TensorFlow Graph

After the model is successfully trained, the model along with the checkpoints are saved

in model_dir, which is pet_detection_model in our case. This directory contains all

the checkpoints that were generated during the training. These checkpoints must be

converted into a final model. To use this model in predicting objects and bounding

boxes, we need to export this model. Here are the steps.

First we need to identify the candidate checkpoint to export. This may be the last

checkpoint that we can identify by looking at the sequence number in the file name. The

checkpoints typically consist of the following three files (ignore the rest of the files in the

directory for now):

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

269

• model.ckpt-${CHECKPOINT_NUMBER}.data-00000-of-00001

• model.ckpt-${CHECKPOINT_NUMBER}.index

• model.ckpt-${CHECKPOINT_NUMBER}.meta

Take the checkpoint with the maximum ${CHECKPOINT_NUMBER} value. Our model

ran for 10,000 steps, so our max checkpoint files should look like the following:

• model.ckpt-10000.data-00000-of-00001

• model.ckpt-10000.index

• Model.ckpt-10000.meta

Listing 6-7 exports our object detection–trained model into a user-defined directory.

Listing 6-7. Exporting the TensorFlow Graph

1 %%shell

2 export PYTHONPATH=$PYTHONPATH:/content/computer_vision/models/research

3 export PYTHONPATH=$PYTHONPATH:/content/computer_vision/models/

research/slim

4 cd computer_vision/models/research

5

6 python object_detection/export_inference_graph.py \

7 --input_type image_tensor \

8 --pipeline_config_path /content/computer_vision/pre-trained-model/

ssd_inception_v2_coco_2018_01_28/pipeline.config \

9 --trained_checkpoint_prefix /content/computer_vision/pet_detection_

model/model.ckpt-100 \

10 --output_directory /content/computer_vision/pet_detection_model/

final_model

Lines 6 through 10 export the TensorFlow graph by calling the script export_

inference_graph.py, which is located in the directory models/research/object_

detection. This script takes the following parameters:

• input_type: For our model, it will be image_tensor.

• pipeline_config_path: This is the same pipeline.config file path

that we used before.

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

270

• trained_checkpoint_prefix: This is the path of the candidate

checkpoint that we identified earlier (model.ckpt-ckpt-10000). Do

not use the .index or .meta or anything in the checkpoint prefix.

• output_directory: This is the directory where the exported graph

will be saved. Figure 6-23 shows the output directory structure after

the export script is executed.

Figure 6-23. Model exported in the directory final_model

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

271

 Downloading the Object Detection Model

Google Colab does not allow you to download a directory. You can download a file but

not a directory. Of course, you could download each file from the final_model directory

one by one, but that is not efficient. However, we will learn how to save your fully trained

model to your private Google Drive.

Google Colab will terminate your virtual machine and delete all your data after 12

hours of continuous usage or after your session expires. That means you will lose your

model if you do not download it. You can directly save your models and any data to

Google Drive. If your model is going to run for hours, it is a good idea that you save all

your data and model in Google Drive before you begin the training process.

Here are the steps to do that.

To mount your Google Drive, from the left panel, click Files and then Mount Drive.

Some new code is inserted in the notebook area. Execute the code by clicking the

icon located in the code block.

Click the authorization link to generate an authorization code. You may need to

sign in to your Google account again. Copy the authorization code and paste it in the

notebook and press the Enter key. See Figure 6-24. After the drive is mounted, you will

see a list of directories in the left panel on the Files tab (in Figure 6-25). Notice that the

example Google Drive in Figure 6-25 has a directory called computervision that was

already created in the Drive. Feel free to create any directory you want.

Move the final_model directory to the Google Drive directory.

To save the trained object detection model to the Google Drive directory, simply drag

final_directory from the Colab directory to the Google Drive directory.

You must also copy to the Google Drive the following checkpoint files:

• model.ckpt-10000.data-00000-of-00001

• Model.ckpt-10000.index

• Model.ckpt-10000.meta

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

272

To download model from Google Drive, log in to your Google Drive and download

the trained model to your local computer. You should download the entire final_model

directory.

 Visualizing the Training Result in TensorBoard

To see the training statistics and the model result, launch the TensorBoard dashboard

using the code in Listing 6-8 in Colab. --logdir is the directory where we are saving the

model checkpoints.

Listing 6-8. Launching the TensorBoard Dashboard to See the Training Results

1 %load_ext tensorboard

2 %tensorboard --logdir /content/computer_vision/pet_detection_model

Line 1 loads the TensorBoard notebook extension. This will display the TensorBoard

dashboard embedded within the Colab screen.

Figure 6-26 shows the TensorBoard dashboard showing the Image page.

Figure 6-25. Google dDive directory structure

Figure 6-24. Google Drive mounting

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

273

Figure 6-26. Model training result in TensorBoard dashboard

Alternatively, if you want to evaluate the model offline in your local computer and

not on Colab, you can download the entire pet_detection_model directory where

we saved the model checkpoints. The final_model directory, which we exported

our trained model to, does not contain the full model statistics and training results.

Therefore, you must download the entire pet_detection_model directory.

In your computer terminal (or command prompt), launch TensorBoard by passing

the path to the pet_detection_model directory. Make sure you are in the virtual

environment (as explained in Chapter 1). Here is the command:

(cv) username$ tensorboard --logdir ~/Downloads/pet_detection_model

After the previous command is successfully executed, open your web browser and go

to http://localhost:6006 to see the TensorBoard dashboard. Click the Image tab in the

top menu to see the evaluation output with bounding boxes on the images, as shown in

Figure 6-26.

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

274

 Detecting Objects Using Trained Models
As we learned before, model training is not a frequent activity and, when we have a

reasonably good model (high accuracy or mAP), we may not need to retrain the model

for as long as the model gives accurate predictions. Also, the model training is compute-

intensive, and it takes several hours or days to train a good model even on GPUs. It is

sometimes desirable and economical to train your computer vision models on the cloud

and use GPUs. When the model is ready, download it to use locally in your computer or

application server, which will use this model to detect objects in images.

In this section, we will explain how to develop object detection predictors in your

local computer using the model that we trained on Google Colab. We will use PyCharm,

the IDE that we have been using throughout this book. Of course, you can use Colab

to develop the object detection predictor, but that is not ideal from the production

deployment perspective.

Although the object detection model training is not yet supported in TensorFlow

version 2, the detection code that we are going to write here works on TensorFlow 2.

We will follow this high-level plan to develop our predictor:

 1. Download and install the TensorFlow models project from the

GitHub repository.

 2. Write the Python code that will utilize the exported TensorFlow

graph (exported model) to predict objects within new images that

were not included in the training or test sets.

 Installing TensorFlow’s models Project
The installation process of the TensorFlow models project is the same as we did on

Google Colab. The difference may be in the Protobuf installation as it is platform-

dependent software. Before we start, make sure that your PyCharm IDE is configured

to use the virtual environment we created in Chapter 1. We will execute commands in

PyCharm’s terminal window. If you choose to execute commands using the operating

system’s shell, make sure you have activated the virtual environment for the shell

session. (See Chapter 1 to review virtualenv.) Here is the full set of steps to install and

configure the models project:

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

275

 1. First, let’s install a few necessary libraries that are needed to build

and install the models project. Execute the commands shown in

Table 6-3 in the terminal or at the command prompt (from within

the virtualenv).

Table 6-3. Commands to Install Dependencies

pip install --user Cython

pip install --user contextlib2

pip install --user pillow

pip install --user lxml

 2. Install Google’s Protobuf compiler. The installation process

depends on the operating system you are using. Follow these

instructions for your OS:

 a. On Ubuntu: sudo apt-get install protobuf-compiler

 b. On other Linux OSs:

wget -O protobuf.zip

https://github.com/google/protobuf/releases/download/v3.0.0/

protoc-3.0.0-linux-x86_64.zip

unzip protobuf.zip

Remember the directory location you have installed Protobuf

in, as you will need to provide the full path to bin/protoc when

building the TensorFlow code.

 a. On Mac OS: brew install protobuf

 3. Clone the TensorFlow models project from GitHub using the

following:

git clone https://github.com/ansarisam/models.git

You can also download the models from the TensorFlow official

repository at https://github.com/tensorflow/models.git.

As shown in Figure 6-27, we have downloaded the TensorFlow

models project in a directory called chapter6.

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

https://github.com/tensorflow/models.git

276

 4. Compile the models project using the Protobuf compiler. Run the

following set of commands from the models/research directory:

$ cd models/research

$ protoc object_detection/protos/*.proto --python_out=.

If you installed Protobuf manually and unzipped it in a directory,

provide the full path up to bin/protoc in the previous command.

 5. Set the following environment variables. It’s a standard practice to

set these environment variables in ~/.bash_profile. Here are the

instructions to do that:

 a. Open your command prompt or terminal and type vi ~/.bash_

profile. You can use any other editor such as nano to edit the

.bash_profile file.

 b. Add the following three lines at the end of .bash_profile. Make

sure the paths match with the directory paths you have in your

computer.

Figure 6-27. Example directory structure consisting of TensorFlow model project

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

277

export

PYTHONPATH=$PYTHONPATH:~/cviz_tf2_3/chapter6/models/

research/object_detection

export

PYTHONPATH=$PYTHONPATH:~/cviz_tf2_3/chapter6/models/

research

export

PYTHONPATH=$PYTHONPATH:~/cviz_tf2_3/chapter6/models/

research/slim

 c. Save the file ~/.bash_profile after adding the previous line.

 d. Close your terminal and relaunch it to effect the change. You will need to

close your PyCharm IDE to have the environment variables update in your

IDE. To test the setting, type the command echo $PYTHONPATH in your

PyCharm terminal window. It should print the paths we just set up.

 6. Build and install the research project that we just built using

Protobuf. Execute the following commands from the models/

research directory:

python setup.py build

python setup.py install

If the command successfully runs, it should print, at the end, something like this:

Finished processing dependencies for object-detection==0.1

We are all set with the environment preparation and ready to write code to detect

objects in images. We will use the exported model that we downloaded from Colab. If

you have not done so, it is time to download the final model from Google Colab or Drive

if you saved your models in your Google Drive.

 Code for Object Detection
Now that we have our coding environment ready with GitHub checkouts of the

TensorFlow models project and all the necessary setup done, we are ready to write code

that does object detection in images and draws bounding boxes around them. To keep

the code simple and easy to understand, we have divided it into the following parts:

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

278

• Configuration and initialization: In this section of the code, we

initialize the model path, image input, and output directories.

Listing 6-9 shows the first part of the code that includes the library

imports and path setup.

Listing 6-9. Imports and Path Initialization Part of the Object Detection Code

Filename: Listing_6_9.py

1 import os

2 import pathlib

3 import random

4 import numpy as np

5 import tensorflow as tf

6 import cv2

7 # Import the object detection module.

8 from object_detection.utils import ops as utils_ops

9 from object_detection.utils import label_map_util

10

11 # to make gfile compatible with v2

12 tf.gfile = tf.io.gfile

13

14 model_path = "ssd_model/final_model"

15 labels_path = "models/research/object_detection/data/pet_label_map.pbtxt"

16 image_dir = "images"

17 image_file_pattern = "*.jpg"

18 output_path="output_dir"

19

20 PATH_TO_IMAGES_DIR = pathlib.Path(image_dir)

21 IMAGE_PATHS = sorted(list(PATH_TO_IMAGES_DIR.glob(image_file_pattern)))

22

23 # List of the strings that is used to add the correct label for each box.

24 category_index = label_map_util.create_category_index_from_labelmap

(labels_path, use_display_name=True)

25 class_num =len(category_index)

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

279

Line 1 through 6 are our usual imports. Lines 8 and 9 import the object

detection APIs from the research module of the TensorFlow models

project. Make sure the PYTHONPATH environment variable is correctly

set (as explained earlier).

Line 12 initializes the gfile in the TensorFlow2 compatibility mode.

The gfile provides I/O functionality in TensorFlow.

Line 14 initializes the directory path where our object detection trained

model is located.

Line 15 initializes the mapping file path. We set the same JSON

formatted file containing the class ID and class name mapping that we

used for the training.

Line 16 is the input directory path containing images in which objects

need to be detected.

Line 17 defines the pattern of file names in the input image path. If you

want to load all files from the directory, use *.*.

Line 18 is the output directory path where the images with bounding

boxes around the detected objects will be saved.

Lines 20 and 21 are to create iterable path objects that we will iterate

through to read images one by one and detect objects in each of them.

Line 24 uses the label mapping file to create a category or class index.

Line 25 assigned the number of classes to the class_num variable.

In addition to the previous initialization, we initialize a color table that

we will use when drawing bounding boxes. Listing 6-10 shows the code.

Listing 6-10. Creating a Color Table Based on the Number of Object Classes

27 def get_color_table(class_num, seed=0):

28 random.seed(seed)

29 color_table = {}

30 for i in range(class_num):

31 color_table[i] = [random.randint(0, 255) for _ in range(3)]

32 return color_table

33

34 colortable = get_color_table(class_num)

35

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

280

• Create a model object by loading the trained model. Listing 6-11

shows the function, load_model(), that takes the model path as

input. Line 40 loads the saved model from the directory and creates a

model object that is returned by this function. We will use this model

object to predict the objects and bounding boxes.

Listing 6-11. Loading the Model from a Directory

36 # # Model preparation and loading the model from the disk

37 def load_model(model_path):

38

39 model_dir = pathlib.Path(model_path) / "saved_model"

40 model = tf.saved_model.load(str(model_dir))

41 model = model.signatures['serving_default']

42 return model

43

• Run the prediction and construct the output in a usable form. We

have written a function called run_inference_for_single_image()

that takes two arguments: the model object and image NumPy. This

function returns a Python dictionary. The output dictionary contains

the following key pairs:

 detection_boxes, which is a 2D array consisting of the four corners

of bounding boxes.

detection_scores, which is a 1D array of scores associated with

each bounding box.

detection_classes, which is a 1D array of integer representation

of the object class-index associated with each bounding box.

num_detections, which is a scalar that indicates the number of

predicted object classes.

Listing 6-12 shows the implementation of the function

run_inference_for_single_image().

Let’s examine the code listing line by line.

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

281

The TensorFlow model object takes a batch of image tensors to

predict the object classes and bounding boxes around them. Line

48 converts the image NumPy into a tensor. Since we are processing

one image at a time and the model object takes a batch, we need to

convert our image tensor into a batch of images. Line 50 does that.

The tf.newaxis expression is used to increase the dimension of an

existing array by 1, when used once. Thus, a 1D array will become a

2D array. A 2D array will become a 3D array. And so on.

Listing 6-12. Predicting Objects and Bounding Boxes and Organizing the Output

44 # Predict objects and bounding boxes and format the result

45 def run_inference_for_single_image(model, image):

46

47 # The input needs to be a tensor, convert it using `tf.convert_to_

tensor`.

48 input_tensor = tf.convert_to_tensor(image)

49 # The model expects a batch of images, so add an axis with `tf.newaxis`.

50 input_tensor = input_tensor[tf.newaxis, ...]

51

52 # Run prediction from the model

53 output_dict = model(input_tensor)

54

55 # Input to model is a tensor, so the output is also a tensor

56 # Convert to numpy arrays, and take index [0] to remove the batch

dimension.

57 # We're only interested in the first num_detections.

58 num_detections = int(output_dict.pop('num_detections'))

59 output_dict = {key: value[0, :num_detections].numpy()

60 for key, value in output_dict.items()}

61 output_dict['num_detections'] = num_detections

62

63 # detection_classes should be ints.

64 output_dict['detection_classes'] = output_dict['detection_

classes'].astype(np.int64)

65

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

282

66 # Handle models with masks:

67 if 'detection_masks' in output_dict:

68 # Reframe the the bbox mask to the image size.

69 detection_masks_reframed = utils_ops.reframe_box_masks_to_

image_masks(

70 output_dict['detection_masks'], output_dict['detection_boxes'],

71 image.shape[0], image.shape[1])

72 detection_masks_reframed = tf.cast(detection_masks_reframed > 0.5,

73 tf.uint8)

74 output_dict['detection_masks_reframed'] = detection_masks_

reframed.numpy()

75

76 return output_dict

Line 53 is the one that does the actual object detection. The function

model(input_tensor) predicts the object classes, bounding boxes,

and associated scores. The model(input_tensor) function returns a

dictionary that we will format in a usable form so that it contains the

output corresponding to the input image only.

Since the model takes a batch of images, the function returns output

for the batch. Because we have only one image, we are interested in the

first result of this output dictionary (accessed by the 0th index). Line 59

extracts the first output and reassigns the output_dict variable.

Line 61 stores a number of detections in the dictionary so that we have

this number handy when we work with the result.

Lines 66 through 74 are applicable only for a Mask R-CNN when masks

need to be predicted. For all other predictors, these lines may be omitted.

Line 76 returns the output dictionary, which consists of coordinates

of detected bounding boxes, object classes, scores, and number of

detections. In the case of a Mask R-CNN, it also includes object masks.

Next, we will examine how output_dict is used to draw bounding

boxes around detected objects in the images.

• We will now write code to infer the output, draw bounding boxes

around detected objects, and store the result. The function infer_

object() in Listing 6-13 is used to infer output_dict that was

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

283

returned by the function run_inference_for_single_image(). This

function called infer_object() draws bounding boxes around each

detected object in the image. It also labels the objects with class

names and scores and finally saves the result to the output directory

location. Listing 6-13 is the line-by-line explanation of the code.

Listing 6-13. Drawing Bounding Boxes Around Detected Objects in Input Images

79 def infer_object(model, image_path):

80 # Read the image using openCV and create an image numpy

81 # The final output image with boxes and labels on it.

82 imagename = os.path.basename(image_path)

83

84 image_np = cv2.imread(os.path.abspath(image_path))

85 # Actual detection.

86 output_dict = run_inference_for_single_image(model, image_np)

87

88 # Visualization of the results of a detection.

89 for i in range(output_dict['detection_classes'].size):

90

91 box = output_dict['detection_boxes'][i]

92 classes = output_dict['detection_classes'][i]

93 scores = output_dict['detection_scores'][i]

94

95 if scores > 0.5:

96 h = image_np.shape[0]

97 w = image_np.shape[1]

98 classname = category_index[classes]['name']

99 classid =category_index[classes]['id']

100 #Draw bounding boxes

101 cv2.rectangle(image_np, (int(box[1] * w), int(box[0] * h)),

(int(box[3] * w), int(box[2] * h)), colortable[classid], 2)

102

103 #Write the class name on top of the bounding box

104 font = cv2.FONT_HERSHEY_COMPLEX_SMALL

105 size = cv2.getTextSize(str(classname) + ":" + str(scores),

font, 0.75, 1)[0][0]

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

284

106

107 cv2.rectangle(image_np,(int(box[1] * w), int(box[0] * h-20)),

((int(box[1] * w)+size+5), int(box[0] * h)),

colortable[classid],-1)

108 cv2.putText(image_np, str(classname) + ":" + str(scores),

109 (int(box[1] * w), int(box[0] * h)-5), font, 0.75,

(0,0,0), 1, 1)

110 else:

111 break

112 # Save the result image with bounding boxes and class labels in

file system

113 cv2.imwrite(output_path+"/"+imagename, image_np)

Line 79 defines the function infer_object() that takes two arguments: the model

object and the path of the input image.

Line 82 simply gets the file name of the image that is used in line 110 and stores the

resulting image with the same name to the output directory.

Line 84 reads the image using OpenCV and converts it into a NumPy array.

Line 85 calls the function run_inference_for_single_image() by passing to it the

model object and the image NumPy. Recall that the function run_inference_for_single_

image() returns a dictionary containing the detected objects and bounding boxes.

The output dictionary may contain more than one object and bounding box. We

need to loop through and draw bounding boxes around those objects for which the score

is more than a threshold value. In the previous code example, line 13 loops through each

detected object class. The scores in the output dictionary are sorted in descending order.

Therefore, when the score is less than the threshold value, the loop is exited.

Lines 91 through 93 simply extract the three important output arrays—bounding box

coordinates, detected object class within this bounding box, and associated prediction

score—and assign them to the corresponding variables.

In line 91, the variable box is an array containing the four corners of the bounding

box as described here:

• box[0] is the y-coordinate, and box[0] is the x-coordinate of the left-

top corner of the rectangular bounding box.

• box[1] and box[2] are the y- and x-coordinates of the bottom-right

corner of the bounding box.

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

285

Line 95 checks to see whether the score is greater than the threshold. In this

example, we used a threshold value of 0.5, but you can use a value suitable to your

particular application. The bounding box will be drawn on the image only if the score is

greater than the threshold value; otherwise, it will exit the for loop.

Recall that the images are resized before they are fed into the model for the training.

The images are resized according to the height and width settings in the pipeline.

config that we used for the training. Therefore, the predicted bounding boxes are also

scaled according to the resized images. Hence, we need to re-scale the bounding boxes

according to the original size of the input image used for detection. Multiplying the box

coordinates with the image height and width scales the coordinates for the image size.

Line 101 draws rectangular bounding boxes using OpenCV’s rectangle() function

(review Chapter 2 for the rectangle() function). Notice that we used the colortable to

dynamically get a different color for different classes.

Line 105 writes the predicted class name and corresponding score just above the

bounding box. If you like, you can change the font style in line 104. In our example, the

font color of the text and the borders of the bounding box are the same. You can use a

different color by calling the colortable functions with different values. For example,

add a constant to the class index and call the color table for the text color.

As we mentioned earlier, the scores are sorted with the highest score at the top of the

array. The first case of score after the threshold will break the loop to avoid unnecessary

processing.

Line 113 saves the resulting image, with bounding boxes around detected objects,

into the output directory.

Now that we have all the right settings and functions defined, we need to call them to

trigger the detection process. Listing 6-14 shows you how to trigger the detection.

Listing 6-14. Function Calls to Trigger the Detection Process

116 # Obtain the model object

117 detection_model = load_model(model_path)

118

119 # For each image, call the prediction

120 for image_path in IMAGE_PATHS:

121 infer_object(detection_model, image_path)

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

286

In Listing 6-14, line 117 calls the load_model() function by passing the path to the

trained model. This function returns the model object that will be utilized in subsequent

calls.

Line 120 iterates through each image file and calls infer_object() for each image.

The function infer_object() is invoked for each image, and the final output with

bounding boxes around the detected objects are saved in the output directory.

Let’s put all these together to see the complete source code for object detection.

Listing 6-15 is the fully working code.

Listing 6-15. Fully Working Code for Object Detection Using a Pretrained Model

Filename: Listing_6_15.py

1 import os

2 import pathlib

3 import random

4 import numpy as np

5 import tensorflow as tf

6 import cv2

7 # Import the object detection module.

8 from object_detection.utils import ops as utils_ops

9 from object_detection.utils import label_map_util

10

11 # to make gfile compatible with v2

12 tf.gfile = tf.io.gfile

13

14 model_path = "ssd_model/final_model"

15 labels_path = "models/research/object_detection/data/pet_label_map.pbtxt"

16 image_dir = "images"

17 image_file_pattern = "*.jpg"

18 output_path="output_dir"

19

20 PATH_TO_IMAGES_DIR = pathlib.Path(image_dir)

21 IMAGE_PATHS = sorted(list(PATH_TO_IMAGES_DIR.glob(image_file_pattern)))

22

23 # List of the strings that are used to add the correct label for each box.

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

287

24 category_index = label_map_util.create_category_index_from_labelmap

(labels_path, use_display_name=True)

25 class_num =len(category_index)

26

27 def get_color_table(class_num, seed=0):

28 random.seed(seed)

29 color_table = {}

30 for i in range(class_num):

31 color_table[i] = [random.randint(0, 255) for _ in range(3)]

32 return color_table

33

34 colortable = get_color_table(class_num)

35

36 # # Model preparation and loading the model from the disk

37 def load_model(model_path):

38

39 model_dir = pathlib.Path(model_path) / "saved_model"

40 model = tf.saved_model.load(str(model_dir))

41 model = model.signatures['serving_default']

42 return model

43

44 # Predict objects and bounding boxes and format the result

45 def run_inference_for_single_image(model, image):

46

47 # The input needs to be a tensor, convert it using `tf.convert_to_tensor`.

48 input_tensor = tf.convert_to_tensor(image)

49 # The model expects a batch of images, so add an axis with `tf.newaxis`.

50 input_tensor = input_tensor[tf.newaxis, ...]

51

52 # Run prediction from the model

53 output_dict = model(input_tensor)

54

55 # Input to model is a tensor, so the output is also a tensor

56 # Convert to numpy arrays, and take index [0] to remove the batch

dimension.

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

288

57 # We're only interested in the first num_detections.

58 num_detections = int(output_dict.pop('num_detections'))

59 output_dict = {key: value[0, :num_detections].numpy()

60 for key, value in output_dict.items()}

61 output_dict['num_detections'] = num_detections

62

63 # detection_classes should be ints.

64 output_dict['detection_classes'] = output_dict['detection_

classes'].astype(np.int64)

65

66 # Handle models with masks:

67 if 'detection_masks' in output_dict:

68 # Reframe the the bbox mask to the image size.

69 detection_masks_reframed = utils_ops.reframe_box_masks_to_

image_masks(

70 output_dict['detection_masks'], output_dict['detection_boxes'],

71 image.shape[0], image.shape[1])

72 detection_masks_reframed = tf.cast(detection_masks_reframed > 0.5,

73 tf.uint8)

74 output_dict['detection_masks_reframed'] = detection_masks_

reframed.numpy()

75

76 return output_dict

77

78

79 def infer_object(model, image_path):

80 # Read the image using openCV and create an image numpy

81 # The final output image with boxes and labels on it.

82 imagename = os.path.basename(image_path)

83

84 image_np = cv2.imread(os.path.abspath(image_path))

85 # Actual detection.

86 output_dict = run_inference_for_single_image(model, image_np)

87

88 # Visualization of the results of a detection.

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

289

89 for i in range(output_dict['detection_classes'].size):

90

91 box = output_dict['detection_boxes'][i]

92 classes = output_dict['detection_classes'][i]

93 scores = output_dict['detection_scores'][i]

94

95 if scores > 0.5:

96 h = image_np.shape[0]

97 w = image_np.shape[1]

98 classname = category_index[classes]['name']

99 classid =category_index[classes]['id']

100 #Draw bounding boxes

101 cv2.rectangle(image_np, (int(box[1] * w), int(box[0] * h)),

(int(box[3] * w), int(box[2] * h)), colortable[classid], 2)

102

103 #Write the class name on top of the bounding box

104 font = cv2.FONT_HERSHEY_COMPLEX_SMALL

105 size = cv2.getTextSize(str(classname) + ":" + str(scores),

font, 0.75, 1)[0][0]

106

107 cv2.rectangle(image_np,(int(box[1] * w), int(box[0] *

h-20)), ((int(box[1] * w)+size+5), int(box[0] * h)),

colortable[classid],-1)

108 cv2.putText(image_np, str(classname) + ":" + str(scores),

109 (int(box[1] * w), int(box[0] * h)-5), font, 0.75,

(0,0,0), 1, 1)

110 else:

111 break

112 # Save the result image with bounding boxes and class labels in

file system

113 cv2.imwrite(output_path+"/"+imagename, image_np)

114 # cv2.imshow(imagename, image_np)

115

116 # Obtain the model object

117 detection_model = load_model(model_path)

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

290

118

119 # For each image, call the prediction

120 for image_path in IMAGE_PATHS:

121 infer_object(detection_model, image_path)

Figure 6-28 shows some sample output with the detected objects enclosed within

bounding boxes.

Figure 6-28. Example output images with detected animal faces and surrounding
boxes

 Training a YOLOv3 Model for Object Detection
YOLOv3 is the youngest of all the object detection algorithms we have studied in this

chapter. It has not made it to the TensorFlow object detection API yet. Joseph Redmon

and Ali Farhadi, the authors of YOLOv3, have made their APIs publicly available. They

have also provided weights of a trained model based on the COCO dataset. As described

in the YOLOv3 section of this chapter, YOLOv3 uses the Darknet-53 architecture to train

the model.

We will use the official API and weights of the pretrained model to perform transfer

learning of our YOLOv3 model from the same Oxford-IIIT Pet dataset that we used in the

previous SSD model. We will run the training on Google Colab and use a GPU hardware

accelerator.

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

291

Before we start, sign in to your Google Colab account and create a new project. If

you followed the SSD training process, it should be easy for you. Otherwise, review the

Google Colab section of the previous sections. Let’s begin!

 Installing the Darknet Framework
Darknet is an open source neural network framework written in C and CUDA that runs

on both CPUs and GPUs. First, clone the Darknet GitHub repository and then build the

source. Listing 6-16 shows how to do this in a Google Colab notebook.

Listing 6-16. Cloning a Darknet Repository

1 %%shell

2 git clone https://github.com/ansarisam/darknet.git

3 # Official repository

4 #git clone https://github.com/pjreddie/darknet.git

Line 2 checks out the Darknet project from our GitHub repository that was forked

from the official Darknet repository. If you prefer to download it from the official

repository, uncomment line 4 and comment line 2.

After the repository is cloned, expand the file browser, navigate to the darknet

directory, and download the Makefile to your local computer. Edit the Makefile

(highlighted in bold letters) and change GPU=1 and OPENCV=1, as shown here:

GPU=1

CUDNN=0

OPENCV=1

OPENMP=0

DEBUG=0

Make sure no other change is made to the Makefile, or you may have trouble

building your Darknet code.

After making the previous changes, upload the Makefile to the darknet directory of

Colab.

Now we are ready to build the Darknet framework. Listing 6-17 shows the build

command.

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

292

Listing 6-17. Running the make Command to Build Darknet

1 %%shell

2 cd darknet/

3 make

After the build process successfully completes, run the command in Listing 6-18 to

test your installation. It should print usage: ./darknet <function> if the installation is

successful.

Listing 6-18. Testing the Darknet Installation

1 %%shell

2 cd darknet

3 ./darknet

 Downloading Pre-trained Convolutional Weights
Listing 6-19 downloads pre-trained weights of the COCO dataset trained on the

Darknet-53 framework.

Listing 6-19. Downloading Pre-trained Darknet-53 Weights

1 %%shell

2 mkdir pretrained

3 cd pretrained

4 wget https://pjreddie.com/media/files/darknet53.conv.74

 Downloading an Annotated Oxford-IIIT Pet Dataset
Listing 6-20 downloads the pet dataset with both the images and annotations. This was

already explained in the previous section related to SSD training.

Listing 6-20. Downloading the Pet Dataset Images and Annotations

1 %%shell

2 mkdir petdata

3 cd petdata

4 wget http://www.robots.ox.ac.uk/~vgg/data/pets/data/images.tar.gz

5 wget http://www.robots.ox.ac.uk/~vgg/data/pets/data/annotations.tar.gz

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

293

6 tar -xvf images.tar.gz

7 tar -xvf annotations.tar.gz

Note the images directory contains a few files with the extension .mat, which
causes the training to break. Listing 6-21 removes these .mat files.

Listing 6-21. Deleting the Invalid File Extension .mat

1 %%shell

2 cd /content/petdata/images

3 rm *.mat

 Preparing the Dataset
The YOLOv3 training API expects the dataset to have a certain format and directory

structure. The pet data that we downloaded has two subdirectories: images and

annotations. The images directory contains all the labeled images that we will use for

training and testing. The annotations directory contains annotation files in XML format,

one XML file per image.

YOLOv3 expects the following files:

 – train.txt: This file contains the absolute path of images—one image path

per line—that will be used for training.

 – test.txt: This file contains the absolute path of images—one image path

per line—that will be used for testing.

 – class.data: This file contains a list of names of the object classes—one

name per line.

 – labels: This directory is in the same location where train.txt and test.txt

are located. This labels directory contains annotation files, one file per image.

The file name in this directory must be the same as the image file name, except

that it has the extension .txt. For example, if the image file name is

Abyssinian_1.jpg, the annotation file name in the labels directory must be

Abyssinian_1.txt. Each annotation text file must contain the annotated

bounding box and object class in one single line in the following format:

<object-class> <x_center> <y_center> <width> <height>

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

294

where

<object-class> is the integer class index of the object, from 0 to (num_

class-1).

<x_center> and <y_center> are float values representing the center of

the bounding boxes relative to the image height and width.

<width> <height> are the width and height of bounding boxes relative

to the image height and width.

Note that the entries in this file are separated by blank spaces and not

by commas or any other delimiters.

An example entry of the annotation text file is as follows (ensure the fields are

separated by white space and not comma or any other delimiter.):

10 0.63 0.28500000000000003 0.28500000000000003 0.215

Listing 6-22 converts the pet data annotations into the format YOLOv3 requires. This

is standard Python code and does not really need any explanation.

Listing 6-22. Converting Image Annotations from XML to TXT

1 import os

2 import glob

3 import pandas as pd

4 import xml.etree.ElementTree as ET

5

6

7 def xml_to_csv(path, img_path, label_path):

8 if not os.path.exists(label_path):

9 os.makedirs(label_path)

10

11 class_list = []

12 for xml_file in glob.glob(path + '/*.xml'):

13 xml_list = []

14 tree = ET.parse(xml_file)

15 root = tree.getroot()

16 for member in root.findall('object'):

17 imagename = str(root.find('filename').text)

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

295

18 print("image", imagename)

19 index = int(imagename.rfind("_"))

20 print("index: ", index)

21 classname = imagename[0:index]

22

23 class_index = 0

24 if (class_list.count(classname) > 0):

25 class_index = class_list.index(classname)

26

27 else:

28 class_list.append(classname)

29 class_index = class_list.index(classname)

30

31 print("width: ", root.find("size").find("width").text)

32 print("height: ", root.find("size").find("height").text)

33 print("minx: ", member[4][0].text)

34 print("ymin:", member[4][1].text)

35 print("maxx: ", member[4][2].text)

36 print("maxy: ", member[4][3].text)

37 w = float(root.find("size").find("width").text)

38 h = float(root.find("size").find("height").text)

39 dw = 1.0 / w

40 dh = 1.0 / h

41 x = (float(member[4][0].text) + float(member[4][2].text)) /

2.0 - 1

42 y = (float(member[4][1].text) + float(member[4][3].text)) /

2.0 - 1

43 w = float(member[4][2].text) - float(member[4][0].text)

44 h = float(member[4][3].text) - float(member[4][1].text)

45 x = x * dw

46 w = w * dw

47 y = y * dh

48 h = h * dh

49

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

296

50 value = (class_index,

51 x,

52 y,

53 y,

54 h

55)

56 print("The line value is: ", value)

57 print("csv file name: ", os.path.join(label_path,

imagename.rsplit('.', 1)[0] + '.txt'))

58 xml_list.append(value)

59 df = pd.DataFrame(xml_list)

60 df.to_csv(os.path.join(label_path, imagename.rsplit('.', 1)

[0] + '.txt'), index=None, header=False, sep=' ')

61

62 class_df = pd.DataFrame(class_list)

63 return class_df

64

65

66 def create_training_and_test(image_dir, label_dir):

67 file_list = []

68 for img in glob.glob(image_dir + "/*"):

69 print(os.path.abspath(img))

70

71 imagefile = os.path.basename(img)

72

73 textfile = imagefile.rsplit('.', 1)[0] + '.txt'

74

75 if not os.path.isfile(label_dir + "/" + textfile):

76 print("delete image file ", img)

77 os.remove(img)

78 continue

79 file_list.append(os.path.abspath(img))

80

81 file_df = pd.DataFrame(file_list)

82 train = file_df.sample(frac=0.7, random_state=10)

83 test = file_df.drop(train.index)

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

297

84 train.to_csv("petdata/train.txt", index=None, header=False)

85 test.to_csv("petdata/test.txt", index=None, header=False)

86

87

88 def main():

89 img_dir = "petdata/images"

90 label_dir = "petdata/labels"

91

92 xml_path = os.path.join(os.getcwd(), 'petdata/annotations/xmls')

93 img_path = os.path.join(os.getcwd(), img_dir)

94 label_path = os.path.join(os.getcwd(), label_dir)

95

96 class_df = xml_to_csv(xml_path, img_path, label_path)

97 class_df.to_csv('petdata/class.data', index=None, header=False,

delimiter=r"\s+")

98 create_training_and_test(img_dir, label_path)

99 print('Successfully converted xml to csv.')

100

101

102 main()

 Configuring the Training Input
We need a configuration file that has the path information for the training and test sets.

The format of the config file is as follows:

classes= 37

train = /content/petdata/train.txt

valid = /content/petdata/test.txt

names = /content/petdata/class.data

backup = /content/yolov3_model

where the classes variable takes the number of object classes our training images have

(37 pet classes in our example), the train and valid variables take the path to the training

and validation lists that we created earlier, names takes the path to the file containing class

names, and the backup variable points to the directory path where the trained YOLO model

will be saved. Make sure that this directory exists or the execution will throw an exception.

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

298

Save this text file and give it a name with a .cfg extension. In our case, we save this

file as pet_input.cfg. We will then upload this file to Colab in the directory path

/content/darknet/cfg.

 Configuring the Darknet Neural Network
Download the sample network config file from /content/darknet/cfg/yolov3-voc.cfg

from Colab and save it in your local computer. You may rename this file to something relevant

to your dataset. For example, we have renamed it to yolov3-pet.cfg for this exercise.

We will edit this file to match our data. The most important part of the file that we are

going to edit is the yolo layer.

Search for the section [yolo] in the config file. There should be three yolo layers. We

will edit the number of object classes, which is 37 in our case. In all three places, we will

change the number of classes to 37. In addition, we will change the filters values in the

convolutional layer just before the yolo layer in all three places. The value of filters in

the convolutional layer before the yolo layer is determined by the following formula:

filter = num/3 * (num_class+5)
Filter = (9/3) * (37 + 5) = 126

See the following code for an example of the [yolo] section and [convolutional]

section just before the [yolo] section:

....

[convolutional]

size=1

stride=1

pad=1

filters=126

activation=linear

[yolo]

mask = 0,1,2

anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326

classes=37

num=9

jitter=.3

ignore_thresh = .5

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

299

truth_thresh = 1

random=1

...

Make sure you changed the classes and filters values at three places in the config file.

Other parameters that we will edit are as follows:

width=416, which is the width of the input image. All images will

be resized to this width.

height=416, which is the height of the input image. All images will

be resized to this height.

batch=64, which indicates how frequently we want weights to be

updated.

subdivisions=16, which indicates how many examples will be

loaded in memory if the GPU does not have large enough memory

to load the data examples equal to the batch size. If you see an “out

of memory” exception when you execute the training, tune this

number and gradually decrease it until you see no memory error.

max_batches=74000, which indicates how many batches the training

should run. If you set it too high, the training may take a long time

to complete. If it is too low, the network will not learn enough.

Practically, it has been established that the max_batch size should be

2,000 times the number of classes. In our case, we have 37 classes, so

the max_batch value should be 2,000×37 = 74,000. If you have only

one class, set the max_batches value to a minimum of 4,000.

Save the config file and then upload it to the cfg directory path: /content/darknet/cfg.

 Training a YOLOv3 Model
Execute the YOLOv3 training using the command in Listing 6-23.

Listing 6-23. Training the YOLOv3 Model

1 %%shell

2 cd darknet/

3 ./darknet detector train cfg/pet_input.cfg cfg/yolov3-pet.cfg

/content/pretrained/darknet53.conv.74

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

300

As shown in Listing 6-23, the parameters to the training are the paths to pet_input.

cfg, yolov3-pet.cfg, and the pre-trained darknet model.

If everything goes well, you will have a trained model in the directory path specified

in the config, with backup set to /content/yolov3_model. While the network is learning,

it will save the intermediate weights as checkpoints in the backup directory.

Observe the console output while the training is in progress. You will notice three

important lines that show the Avg IOU of three regions, 82, 94, and 106 (as shown in

Figure 6-29).

Figure 6-29. Sample console output during YOLOv3 training (the output shows
500 iterations only, which is usually not sufficient for a real-life model)

These three regions mean YOLO layer 82, layer 94, and layer 106 in the Darknet

framework. You may also observe that the IOU of some of the regions is -nan, which is

perfectly normal. After a few iterations, the region IOU will start showing the numbers.

Observe that the first number of the sample output in Figure 6-29 is 499, which tells

that the training is completed for 499 batches at a batch level loss of 4.618134, overall

average loss of 4.148183, and learning rate 0.000062, and that it took 13.985329 seconds

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

301

to complete that batch. This will give you an idea of how long the training will take to

complete. The loss value gives an idea of how well the learning is going on.

Notice the last three lines, which are printed at the end when the training is

completely done. It shows the location where the checkpoints, intermediate weights, and

final weights are saved.

You should copy the entire directory containing the final model to your private

Google Drive so that you could use the trained model in your applications.

While the training is on, the console prints a lot of information, which is displayed

in the web browser. After a while, the web browser becomes unresponsive. Clearing the

console output may be a good idea to prevent the browser from getting killed. To clear

the log output, click the X button located just below the Execute button located in the left

corner of the notebook cell block. While the training is running, you will see three dots,

and on hover, it turns into an X button.

 How Long the Training Should Run
Typically the training should run for at least 2,000 iterations per class, but not less than

4,000 iterations in total. In our example with a pet dataset, we have 37 classes. That

means we should set max_batches to 74000.

Observe the output while the training is going on, and notice the losses after each

iteration. If the loss stabilizes and does not change over batches, we should consider

stopping the training. Ideally, the loss should be close to zero. However, for most

practical purposes, our goal should be to have losses stabilized below 0.05.

 Final Model
After the network finishes learning, the final YOLOv3 model will be saved in the directory

/content/yolov3_model. The name of the model file will be yolov3-pet_final.weights.

Download this model or save it to your private Google Drive folder, because Google

Colab deletes all your files when the session expires. We will use this model in object

detection in real time, both in images and in videos.

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

302

 Detecting Objects Using a Trained YOLOv3 Model
We will write some Python code and execute object detection in our local computer,

like we did in the case of SSD. We will use the trained model that we downloaded from

Google Colab (see the “Final Model” section).

Let’s start by setting up our development environment in PyCharm.

 Installing Darknet to the Local Computer
Install and build the Darknet framework on your local computer using the following

steps:

 1. Open a command prompt, shell terminal, or PyCharm’s terminal

and cd to the directory where you want to install the Darknet

framework. Make sure you are in the same virtualenv that we

created in Chapter 1.

 2. Clone the GitHub repository, https://github.com/ansarisam/

darknet.git. This repository was forked from the original darknet

repository, https://github.com/pjreddie/darknet. We made

a few changes in the C code (in src/image.c) to generate the

bounding boxes in the output. In addition, we have provided

a Python script, yolov3_detector.py, to predict objects and

bounding boxes, and then save the output as JSON. See Figure 6-30.

(cv) user$ pwd
/home/user/cviz_tf2_3/chapter6/yolov3

(cv) user$ git clone https://github.com/ansarisam/darknet.git

Figure 6-30. Command to show the directory structure and clone the GitHub
repository

 3. After the source code is cloned, edit the Makefile located in the

darknet directory. If you are using a GPU, set GPU=1 and save

the file. If you are using a CPU, do not make any changes to this

Makefile.

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

https://github.com/ansarisam/darknet.git
https://github.com/ansarisam/darknet.git
https://github.com/pjreddie/darknet

303

 4. Build the C source code using the make command. Simply type the

command from the darknet directory, as shown in Figure 6-31.

(cv) user$ pwd
/home/user/cviz_tf2_3/chapter6/yolov3

(cv) user$ cd darknet
(cv) user$ make

Figure 6-31. Build source code by using the make command

If everything runs successfully, you will have your PyCharm

environment ready for object detection.

 5. Test the installation by typing the command ./darknet from the

darknet directory. The command should print output that looks

something like usage.: ./darknet <function>.

 Python Code for Object Detection
Listing 6-24 provides the Python code to detect objects in images.

Listing 6-24. Object Detection with Results Stored as JSON to Output Location

1 import os

2 import subprocess

3 import pandas as pd

4 image_path="test_images/dog.jpg"

5 yolov3_weights_path="backup/yolov3.weights"

6 cfg_path="cfg/yolov3.cfg"

7 output_path="output_path"

8 image_name = os.path.basename(image_path)

9 process = subprocess.Popen(['./darknet', 'detect', cfg_path, yolov3_

weights_path, image_path],

10 stdout=subprocess.PIPE,

11 stderr=subprocess.PIPE)

12 stdout, stderr = process.communicate()

13

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

304

14 std_string = stdout.decode("utf-8")

15 std_string = std_string.split(image_path)[1]

16 count = 0

17 outputList = []

18 rowDict = {}

19 for line in std_string.splitlines():

20

21 if count > 0:

22 if count%2 > 0:

23 obj_score = line.split(":")

24 obj = obj_score[0]

25 score = obj_score[1]

26 rowDict["object"] = obj

27 rowDict["score"] = score

28 else:

29 bbox = line.split(",")

30 rowDict["bbox"] = bbox

31 outputList.append(rowDict)

32 rowDict = {}

33 count = count +1

34 rowDict["image"] = image_path

35 rowDict["predictions"] = outputList

36

37 df = pd.DataFrame(rowDict)

38 df.to_json(output_path+"/"+image_name.replace(".jpg", ".json").

replace(".png", ".json"),orient='records')

Lines 1 through 3 are our usual imports.

Line 4 sets the path to the location of the image in which the object needs to be

detected.

Line 5 sets the path to the weights of the trained model (downloaded from Colab).

Line 6 sets the Darknet neural network configuration that we used for the training.

Line 7 is the output location where the final results containing the detected objects,

associated scores, and enclosing bounding boxes are saved in JSON format.

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

305

Lines 9 through 12 execute a shell command and pipe the output and error to stdout

and stderr variables. We are using the subprocess package that spawns new processes,

connects to their input/output/error pipes, and obtains their return codes. The output

and errors returned by the subprocess are in bytes. Therefore, we convert the output

bytes into a UTF-8 encoded string in line 13.

Under the hood, this subprocess executes the following shell command:

./darknet detect <cfg_path> <yolov3_model_weights_path> <image_path>

You can execute this command directly in the terminal, from the darknet directory.

This command will print on the console a lot of information, such as the network

configuration, detected objects, detection scores, and bounding boxes.

Lines 15 through 35 parse the output into a structured JSON format. The final output

contains the image path, a list of predictions of object class, the coordinates of bounding

box, and the associated score. The bounding box coordinates are in the format [left,

top, right, bottom].

Line 37 creates a dataframe using Pandas, and line 38 saves the dataframe in JSON

format to the output location.

Figure 6-32 shows a sample output in JSON format created by predicting objects

from the image shown in Figure 6-33.

Figure 6-32. Original image containing objects that are to be detected from the
YOLOv3 model

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

306

[{
"image": "test_images\/dog4.jpg",
"predictions": {

"object": "person",
"score": " 99%",
"bbox": ["585", " 213", " 634", " 318"]

}
}, {

"image": "test_images\/dog4.jpg",
"predictions": {

"object": "person",
"score": " 100%",
"bbox": ["626", " 46", " 1171", " 803"]

}
}, {

"image": "test_images\/dog4.jpg",
"predictions": {

"object": "person",
"score": " 99%",
"bbox": ["491", " 197", " 535", " 307"]

}
}, {

"image": "test_images\/dog4.jpg",
"predictions": {

"object": "bicycle",
"score": " 98%",
"bbox": ["596", " 321", " 992", " 847"]

}
}, {

"image": "test_images\/dog4.jpg",
"predictions": {

"object": "fire hydrant",
"score": " 100%",
"bbox": ["368", " 326", " 568", " 820"]

}
}, {

"image": "test_images\/dog4.jpg",
"predictions": {

"object": "dog",
"score": " 78%",
"bbox": ["588", " 255", " 830", " 374"]

}
}]

Figure 6-33. JSON output from YOLOv3 predictor

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

307

 Summary
In this chapter, we learned about different object detection algorithms and how they

compare to each other with respect to detection speed and accuracy. We trained two

detection models, SSD and YOLOv3, and went through the process end to end from

ingesting data to saving prediction output.

We also learned how to use Google Colab to train detection models on the cloud and

use the power of GPUs.

In this chapter, we mainly focused on detecting objects in images and did not work

on any example involving video. The process of detecting objects in videos is similar to

the detection in images, as videos are simply frames of images. Chapter 7 is dedicated to

that topic. Then we will apply the concepts presented in this chapter to Chapters 9 and 10

to develop real-world use cases of computer vision using deep learning.

Chapter 6 Deep Learning in ObjeCt DeteCtiOn

309
© Shamshad Ansari 2020
S. Ansari, Building Computer Vision Applications Using Artificial Neural Networks,
https://doi.org/10.1007/978-1-4842-5887-3_7

CHAPTER 7

Practical Example: Object
Tracking in Videos
The focus of this chapter is on two critical capabilities of computer vision: object

detection and object tracking. In general and in the context of a set of images, object

detection provides the ability to identify one or more objects in an image, and object

tracking provides the ability to track a detected object across a set of images. In previous

chapters, we explored the technical aspects of training deep learning models to detect

objects. In this chapter, we will explore a simple example of putting that knowledge to

practice in the context of videos.

Object tracking in a video, or simply video tracking, involves detecting and locating

an object and tracking it over time. Video tracking is not only to detect an object in

different frames but also to track it across frames. When an object is first detected, its

unique identity is extracted and then tracked in subsequent frames.

Object tracking has many applications in the real world, such as the following:

 – Autonomous cars

 – Security and surveillance

 – Traffic control

 – Augmented reality (AR)

 – Crime detection and criminal tracking

 – Medical imaging and more

In this chapter, we will learn how to implement video tracking and work through the

code examples. At the end of this chapter, you will have a fully functional video tracking

system.

https://doi.org/10.1007/978-1-4842-5887-3_7#DOI

310

Our high-level plan of implementation is as follows:

 1. Video source: We will use OpenCV to read live streams of video

from a webcam or the built-in camera of the laptop. You can also

read videos from a file or IP camera.

 2. Object detection model: We will use an SSD model pre-trained on

the COCO dataset. You can train your own model for your specific

use cases (review Chapter 6 for information on training the object

detection model).

 3. Prediction: We will predict object classes (detection) and their

bounding boxes (localization) within each frame of the video

(review Chapter 6 for information on detecting objects in images).

 4. Unique identity: We will use a hashing algorithm to create a

unique identity of each object. We will learn more about the

hashing algorithm later in this chapter.

 5. Tracking: We will use the Hamming distance algorithm (more on

this later in this chapter) to track the previously detected objects.

 6. Display: We will stream the output video for display in web

browsers. We will use Flask for this. Flask is a lightweight web

application microframework.

 Preparing the Working Environment
Let’s establish a directory structure so that it is easy to follow the code and work through

the following examples. We will see code fragments of each of the six steps described

earlier. At the end, we will put everything together to make the object tracking system

complete and workable.

We have a directory called video_tracking. Inside this we have a subdirectory called

templates, which has an HTML file called index.html. The subdirectory templates is

the standard place where Flask looks for HTML pages. In the video_tracking directory,

we have four Python files: videoasync.py, object_tracker.py, tracker.py, and video_

server.py. Figure 7-1 shows this directory structure.

Chapter 7 praCtiCal example: ObjeCt traCking in VideOs

311

We will import videoasync as a module in object_tracker.py. Therefore, the

directory video_tracking must be recognized as a source directory in PyCharm.

To make it a source directory in PyCharm, click the PyCharm menu option at the top

left of the screen, then click Preferences, expand Project in the left panel, click Project

Structure, highlight the video_tracking directory, and click Mark as Source (located at

the top of the screen), as shown in Figure 7-2. Finally, click OK to close the window.

Figure 7-1. Code directory structure

Figure 7-2. Marking a directory as a source in PyCharm

Chapter 7 praCtiCal example: ObjeCt traCking in VideOs

312

 Reading a Video Stream
OpenCV provides convenient methods to connect to a video source and read images

from the video frames. The images from these frames are internally converted by

OpenCV into NumPy arrays. These NumPy arrays are further processed to detect and

track objects in them. The detection process is compute-intensive, and it may not be

able to keep up with the speed of reading frames. Therefore, reading the frames and

performing detection operations in the main thread will exhibit slow performance,

especially when dealing with high-definition (HD) videos. In Listing 7-1, we will

implement multithreading for capturing frames. We will call it an asynchronous reading

of video frames.

Listing 7-1. Implementation of Asynchronous Reading of Video Frames

1 # file: videoasync.py

2 import threading

3 import cv2

4

5 class VideoCaptureAsync:

6 def __init__(self, src=0):

7 self.src = src

8 self.cap = cv2.VideoCapture(self.src)

9 self.grabbed, self.frame = self.cap.read()

10 self.started = False

11 self.read_lock = threading.Lock()

12

13 def set(self, key, value):

14 self.cap.set(key, value)

15

16 def start(self):

17 if self.started:

18 print('[Warning] Asynchronous video capturing is already

started.')

19 return None

20 self.started = True

21 self.thread = threading.Thread(target=self.update, args=())

Chapter 7 praCtiCal example: ObjeCt traCking in VideOs

313

22 self.thread.start()

23 return self

24

25 def update(self):

26 while self.started:

27 grabbed, frame = self.cap.read()

28 with self.read_lock:

29 self.grabbed = grabbed

30 self.frame = frame

31

32 def read(self):

33 with self.read_lock:

34 frame = self.frame.copy()

35 grabbed = self.grabbed

36 return grabbed, frame

37

38 def stop(self):

39 self.started = False

40 self.thread.join()

41

42

43

44 def __exit__(self, exec_type, exc_value, traceback):

45 self.cap.release()

The file videoasync.py implements the class VidoCaptureAsync (line 5), which

consists of a constructor and functions to start the thread, read frames, and stop the

thread.

Line 6 defines a constructor that takes the video source as an argument. The default

value of this source, src=0 (also called the device index), represents the input from the

built-in camera on the laptop/computer. If you have a USB camera, set the value of this

src accordingly. There is no standard way to find the device index if you have multiple

cameras attached to your computer ports. One way could be to loop through from a

starting index of 0 until you connect to the device. You can print the device properties to

identify the device you want to connect to. For IP-based cameras, pass the IP address or

the URL.

Chapter 7 praCtiCal example: ObjeCt traCking in VideOs

314

If your video source is a file, pass the path to the video file.

Line 8 uses OpenCV’s VideoCapture() function and passes the source ID to connect

to the video source. The VideoCapture object assigned to the self.cap variable is used

for reading the frames.

Line 9 reads the first frame and occupies the connection to the video camera.

Line 10 is the flag that is used to manage the lock. Line 11 actually acquires the

thread lock.

Lines 13 and 14 implement a function to set properties to the VideoCapture object,

such as frame height, width, and frames per second (FPS).

Lines 16 through 23 implement the function to start the thread for asynchronously

reading frames.

Lines 25 through 30 implement an update() function to read the frame and update

the class-level frame variable. The update function is internally used within the start

function, in line 21, to asynchronously read the video frames.

Lines 32 through 36 implement the read() function. The read() function simply

returns the frame updated in the update() function block. This also returns a Boolean to

indicate whether the frame was successfully read.

Lines 38 through 40 implement the stop() function to stop the thread and return

the control to the main thread. The join() function prevents the shutdown of the main

thread until the child thread completes its execution.

Upon exit, the video source is released (line 45).

We will now write the code to utilize the asynchronous video reading module. In the

same directory, video_tracking, we will create a Python file called object_tracker.py

that implements the following functionality.

 Loading the Object Detection Model
We will use the same pre-trained SSD model that we used in Chapter 6 for detecting

objects in images. If you have trained a model based on your own images, you can use

that model. All you have to do is to provide the path to the model directory. Listing 7-2

shows how to load the trained model from the disk. Recall that this is the same function

that we used in Chapter 6’s Listing 6-11. We will load the model only once and use it for

detecting objects in all frames.

Chapter 7 praCtiCal example: ObjeCt traCking in VideOs

https://doi.org/10.1007/978-1-4842-5887-3_6-11

315

Listing 7-2. load_model() Function to Load Trained Model from the Disk

43 # # Model preparation

44 def load_model(model_path):

45 model_dir = pathlib.Path(model_path) / "saved_model"

46 model = tf.saved_model.load(str(model_dir))

47 model = model.signatures['serving_default']

48 return model

49

50 model = load_model(model_path)

 Detecting Objects in Video Frames
The code for detecting objects is almost the same as the one we used in Chapter 6. The

difference is that here we create an infinite loop inside which we read one image frame

at a time and make a function call to track_object() for tracking objects within that

frame. The track_object() function internally calls the same run_inference_for_

single_image() function that we implemented in Chapter 6’s Listing 6-12.

The output from the run_inference_for_single_image() function is a dictionary

containing detection_classes, detection_boxes, and detection_scores. We will

utilize these values to calculate the unique identity of each object and track their

locations.

Listing 7-3 shows the streamVideo() function that implements the infinite loop to

read streaming frames from the video source.

In Listing 7-3, line 115 starts the block of the streamVideo() function. Line 116 uses

the global keyword with the thread lock.

Line 117 starts the infinite while loop. Inside this loop, the first line, line

118, reads the current video frame (image) by calling the read() function of the

VideoCaptureAsync class. The read() function returns a tuple of a Boolean indicating

whether the frame is read successfully, and a NumPy array of the image frame.

If the frame is successfully retrieved (line 119), acquire the lock (line 120) so that

other threads do not modify the frame NumPy while the current thread’s image is still

being detected for objects.

Chapter 7 praCtiCal example: ObjeCt traCking in VideOs

https://doi.org/10.1007/978-1-4842-5887-3_6-12

316

Line 121 calls the track_object() function by passing the model object and frame

NumPy. We will see later in Listing 7-13 what this track_object() function does. In

line 123, the output NumPy array is converted into the compressed .jpg image so that

it is lightweight and easily transferable over the network. We used cv2.imencode() to

convert the NumPy array to image. This function returns a tuple of a Boolean indicating

whether the conversion is successful and returns the encoded image.

If the image conversion is not successful, skip that frame (line 125).

Finally, on line 127, it yields the byte-encoded image. The yield keyword returns a

read-once iterator from the while loop.

Lines 130 through 137 are cleanup functions when either the program is terminated

or the screen is killed by pressing Q to quit.

Listing 7-3. Implementing Infinite Loop for Reading Streams of Video Frames

and Internally Calling an Object Tracking Function for Each Frame

114 # Function to implement infinite while loop to read video frames and

generate the output #for web browser

115 def streamVideo():

116 global lock

117 while (True):

118 retrieved, frame = cap.read()

119 if retrieved:

120 with lock:

121 frame = track_object(model, frame)

122

123 (flag, encodedImage) = cv2.imencode(".jpg", frame)

124 if not flag:

125 continue

126

127 yield (b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' +

128 bytearray(encodedImage) + b'\r\n')

129

130 if cv2.waitKey(1) & 0xFF == ord('q'):

131 cap.stop()

Chapter 7 praCtiCal example: ObjeCt traCking in VideOs

317

132 cv2.destroyAllWindows()

133 break

134

135 # When everything done, release the capture

136 cap.stop()

137 cv2.destroyAllWindows()

 Creating a Unique Identity for Objects Using dHash
We use perceptual hashing to create a unique identity of an object detected within

the image. Difference hashing, or simply dHash, is one of the most commonly used

algorithms to calculate a unique hash of an image. A dHash provides several advantages

that makes it a suitable choice for identifying and comparing images. The following are

some benefits of using a dHash:

• The image hash does not change if the aspect ratio changes.

• Changes in brightness or contrast will either not change the image

hash or change it slightly. This means the hashes remain close to

others with varying contrasts.

• The computation of a dHash is extremely fast.

We do not use cryptographic hashes, such as MD-5 or SHA-1. The reason is that

for these hashing algorithms, if there is a slight change in the image, the cryptographic

hashes will be totally different. Even for a single-pixel change, it will result in a

completely different hash. Therefore, if two images are perceptually similar, their

cryptographic hashes will be totally different. This makes it not a fit for the application

when we have to compare two images.

The dHash algorithm is simple. The following are the steps to compute the dHash:

 1. Convert the image or snippet of the image into grayscale. This

makes computation much faster, and the dHash will not change

much if there is a slight variation of color. In the object detection,

we crop the detected objects using the bounding boxes and

convert the cropped image into grayscale.

Chapter 7 praCtiCal example: ObjeCt traCking in VideOs

318

 2. Resize the grayscale image. To compute a 64-bit hash, the image

is resized to 9×8 pixels, ignoring its aspect ratio. The aspect ratio is

ignored to ensure that the resulting image hash will match similar

images regardless of their initial spatial dimensions.

Why 9×8 pixels? In a dHash, the algorithm computes the

difference of gradients of adjacent pixels. The difference of nine

rows with adjacent rows will yield only eight rows in the result,

thus making the final output with 8×8 pixels, which will give us a

64-bit hash.

 3. Build the hash by converting each pixel into either 0 or 1 by

applying the “greater than” formula, as shown here:

If P[x=1] > P[x], then 1 else 0.

The binary values are then converted into an integer hash.

Listing 7-4 shows the Python and OpenCV implementation of the dHash.

Listing 7-4. Calculating the dHash from an Image

32 def getCropped(self, image_np, xmin, ymin, xmax, ymax):

33 return image_np[ymin:ymax, xmin:xmax]

34

35 def resize(self, cropped_image, size=8):

36 resized = cv2.resize(cropped_image, (size+1, size))

37 return resized

38

39 def getHash(self, resized_image):

40 diff = resized_image[:, 1:] > resized_image[:, :-1]

41 # convert the difference image to a hash

42 dhash = sum([2 ** i for (i, v) in enumerate(diff.flatten()) if v])

43 return int(np.array(dhash, dtype="float64"))

Lines 32 and 33 implement the cropping function. We pass the NumPy arrays of the

full image frame and the four coordinates of the bounding box that surrounds an object.

The function crops the portion of the image that contains the detected object.

Lines 35 through 37 are for resizing the cropped image into a 9×8 size.

Chapter 7 praCtiCal example: ObjeCt traCking in VideOs

319

Lines 39 through 43 implement the calculation of the dHash. Line 40 finds the

difference of adjacent pixels by applying the greater-than rule described earlier. Line 42

builds the numeric hash from the binary bit values. Line 43 converts the hash to integer

and returns the dhash from the function.

 Using the Hamming Distance to Determine Image
Similarity
The Hamming distance is commonly used to compare two hashes. The Hamming

distance measures the number of different bits in two hashes.

If the Hamming distance of two hashes is zero, it means the two hashes are identical.

The lower the Hamming distance, the more similar the two hashes are.

Listing 7-5 shows how to calculate the Hamming distance between two hashes.

Listing 7-5. Calculation of the Hamming Distance

45 def hamming(self, hashA, hashB):

46 # compute and return the Hamming distance between the integers

47 return bin(int(hashA) ^ int(hashB)).count("1")

The function hamming() in line 45 takes two hashes as input and returns the number

of bits, which are different in these two input hashes.

 Object Tracking
After an object is detected in an image, its unique identity is created by calculating the

dHash of the cropped part of the image that contains the object. The object is tracked

from one frame to the other by calculating the Hamming distance of the object’s dHash.

There are many use cases of tracking. In our example, we created two tracking functions

to do the following:

 1. Track the path of the object from the first occurrence of the

object in a frame to all occurrences in the subsequent frames.

This function tracks the center of the bounding boxes and draws

a line or path connecting all these centers. Listing 7-6 shows

this implementation. The function createHammingDict() takes

Chapter 7 praCtiCal example: ObjeCt traCking in VideOs

320

the current object’s dHash, its center of the bounding box, and

the history of all objects and its centers. The function compares

the dHash of the current object with all dHashes seen so far and

uses the Hamming distance to find similar objects to track its

movements or the path.

Listing 7-6. Tracking the Centers of Bounding Boxes of Detected Objects

Between Multiple Frames

49 def createHammingDict(self, dhash, center, hamming_dict):

50 centers = []

51 matched = False

52 matched_hash = dhash

53 # matched_classid = classid

54

55 if hamming_dict.__len__() > 0:

56 if hamming_dict.get(dhash):

57 matched = True

58

59 else:

60 for key in hamming_dict.keys():

61

62 hd = self.hamming(dhash, key)

63

64 if(hd < self.threshold):

65 centers = hamming_dict.get(key)

66 if len(centers) > self.max_track_frame:

67 centers.pop(0)

68 centers.append(center)

69 del hamming_dict[key]

70 hamming_dict[dhash] = centers

71 matched = True

72 break

73

74 if not matched:

75 centers.append(center)

Chapter 7 praCtiCal example: ObjeCt traCking in VideOs

321

76 hamming_dict[dhash] = centers

77

78 return hamming_dict

 2. Get the unique identifiers of the objects and track the number of

unique objects detected. Listing 7-7 implements a function called

getObjectCounter() that counts the number of unique objects

detected across frames. It compares the dHash of the current

object with all dHashes computed so far across all previous

frames.

Listing 7-7. Function to Track Count of Unique Objects Detected in Video Frames

79

80 def getObjectCounter(self, dhash, hamming_dict):

81 matched = False

82 matched_hash = dhash

83 lowest_hamming_dist = self.threshold

84 object_counter = 0

85

86 if len(hamming_dict) > 0:

87 if dhash in hamming_dict:

88 lowest_hamming_dist = 0

89 matched_hash = dhash

90 object_counter = hamming_dict.get(dhash)

91 matched = True

92

93 else:

94 for key in hamming_dict.keys():

95 hd = self.hamming(dhash, key)

96 if(hd < self.threshold):

97 if hd < lowest_hamming_dist:

98 lowest_hamming_dist = hd

99 matched = True

100 matched_hash = key

101 object_counter = hamming_dict.get(key)

Chapter 7 praCtiCal example: ObjeCt traCking in VideOs

322

102 if not matched:

103 object_counter = len(hamming_dict)

104 if matched_hash in hamming_dict:

105 del hamming_dict[matched_hash]

106

107 hamming_dict[dhash] = object_counter

108 return hamming_dict

109

 Displaying a Live Video Stream in a Web Browser
We will publish our video tracking code to Flask, a lightweight web framework. This

will allow us to view the live stream of the video, with tracked objects, in web browsers

using a URL. You can use other frameworks, such as Django, to publish the video to

be accessible from a web browser. We selected Flask for our example because it is

lightweight, flexible, and easy to implement with just a few lines of code.

Let’s explore how to use Flask in our current context. We will start with installing

Flask to our virtualenv.

 Installing Flask
We will use the pip command to install Flask. Make sure you activate your virtualenv and

execute the command pip install flask, as shown here:

 (cv_tf2) computername:~ username$ pip install flask

 Flask Directory Structure
Refer to the directory structure in Figure 7-1. We have created a subdirectory called

templates in the video_tracking directory. We will create an HTML file, index.html,

that will contain the code to display streaming video. We will save index.html to the

templates directory. The name of the directory must be templates as Flask looks for this

directory to find the HTML files.

Chapter 7 praCtiCal example: ObjeCt traCking in VideOs

323

 HTML for Displaying a Video Stream
Listing 7-8 shows the HTML code that is saved in the index.html page. Line 7 is the

most important line that will display the live video stream. This is a standard tag of

HTML that is typically used to display an image in a web browser. The {{...}} portion

of the code in line 7 is the Flask symbol that instructs Flask to load the image from a

URL. When this HTML page is loaded, it will make a call to the /video_feed URL and

fetch the image from there to display within the tag.

Listing 7-8. HTML Code for Displaying the Video Stream

1 <html>

2 <head>

3 <title>Computer Vision</title>

4 </head>

5 <body>

6 <h1>Video Surveillance</h1>

7

8 </body>

9 </html>

10

Now we need some server-side code that will serve this HTML page. We also need a

server-side implementation to serve images when the /video_feed URL is called.

We will implement these two functions in a separate Python file, video_server.py,

that is saved in the video_tracking directory. Make sure that this video_server.py file

and the templates directory are in the same parent directory.

Listing 7-9 shows a server-side implementation of Flask services. Line 2 imports

Flask and its related packages. Line 3 imports our object_tracker package that has the

implementation of object detection and tracking.

Line 4 creates a Flask application using the constructor app = Flask(__name__),

which takes the current module as an argument. By calling the constructor, we

instantiate the Flask web application framework and assign this to a variable called app.

We will bind all server-side services to this app.

All Flask services are served through URLs, and we have to bind the URL or route to

the service it will serve. The following are the two services we need to implement for our

example:

Chapter 7 praCtiCal example: ObjeCt traCking in VideOs

324

 – Service that will render index.html from the home URL,

e.g., http://localhost:5019/

 – Service that will serve a stream of video from /video_feed URL,

e.g., http://localhost:5019/video_feed

 Flask to Load the HTML Page
Line 6 of Listing 7-9 has a route binding of /, which indicates the home URL. When

the home URL is called from a web browser, the function index() is called to serve the

request (line 7). The index() function simply renders an HTML page from a template,

index.html, that we created in Listing 7-8.

 Flask to Serve the Video Stream
Line 11 of Listing 7-9 binds the /video_feed URL to the Python function video_feed().

This function, in turn, calls the streamVideo() function that we implemented for

detecting and tracking objects in video. Line 15 creates the Response object from the

video frames and sends a multipart HTTP response to the caller.

Listing 7-9. Flask Server-Side Code to Launch index.html and Serve Video

Stream

1 # video_server.py

2 from flask import Flask, render_template, Response

3 import object_tracker as ot

4 app = Flask(__name__)

5

6 @app.route("/")

7 def index():

8 # return the rendered template

9 return render_template("index.html")

10

11 @app.route("/video_feed")

12 def video_feed():

Chapter 7 praCtiCal example: ObjeCt traCking in VideOs

325

13 # return the response generated along with the specific media

14 # type (mime type)

15 return Response(ot.streamVideo(),mimetype = "multipart/x-mixed-

replace; boundary=frame")

16

17 if __name__ == '__main__':

18 app.run(host="localhost", port="5019", debug=True,

19 threaded=True, use_reloader=False)

20

 Running the Flask Server
Execute the video_server.py file from a terminal by typing the command python

video_server.py from the video_tracking directory. Make sure you have your

virtualenv activated.

(cv) computername:video_tracking username$ python video_server.py

This will start the Flask server and run on host="localhost" and port="5019" (line

18 of Listing 7-9). You should change the host and port for your production environment.

Also, turn off the debug mode by setting debug=False in line 18.

When the server starts, point your web browser to the URL http://localhost:5019/

to see the live video streams with object tracking.

 Putting It All Together
We have explored the building blocks of our video tracking system. Let’s put them all

together to have a fully functional system. Figure 7-3 shows the high-level sequence of

function calls of our video tracking system.

Chapter 7 praCtiCal example: ObjeCt traCking in VideOs

326

When the web browser is launched with the URL http://localhost:5019/, the

Flask backend server serves the index.html page, which internally calls the URL

http://localhost:5019/video_feed that invokes the server-side function video_feed().

The rest of the function calls, as shown in Figure 7-3, when completed, send the video

frames with the detected objects with their tracking information to the web browser

for display. Listings 7-10 through 7-14 provide the complete source code of the video

tracking system.

The file path for Listing 7-10 is video_tracking/templates/index.html.

Figure 7-3. Schematic of sequence of function calls of the video tracking system

Chapter 7 praCtiCal example: ObjeCt traCking in VideOs

327

Listing 7-10. index.html

<html>

 <head>

 <title>Computer Vision</title>

 </head>

 <body>

 <h1>Video Surveillance</h1>

 </body>

</html>

The file path for Listing 7-11 is video_tracking/video_server.py.

Listing 7-11. video_server.py

video_server.py

from flask import Flask, render_template, Response

import object_tracker as ot

app = Flask(__name__)

@app.route("/")

def index():

 # return the rendered template

 return render_template("index.html")

@app.route("/video_feed")

def video_feed():

 # return the response generated along with the specific media

 # type (mime type)

 return Response(ot.streamVideo(),mimetype = "multipart/x-mixed-replace;

boundary=frame")

if __name__ == '__main__':

 app.run(host="localhost", port="5019", debug=True,

 threaded=True, use_reloader=False)

The file path for Listing 7-12 is video_tracking/object_tracker.py.

Chapter 7 praCtiCal example: ObjeCt traCking in VideOs

328

Listing 7-12. object_tracker.py

import os

import pathlib

import random

import numpy as np

import tensorflow as tf

import cv2

import threading

Import the object detection module.

from object_detection.utils import ops as utils_ops

from object_detection.utils import label_map_util

from videoasync import VideoCaptureAsync

import tracker as hasher

lock = threading.Lock()

to make gfile compatible with v2

tf.gfile = tf.io.gfile

model_path = "./../model/ssd_inception_v2_coco_2018_01_28"

labels_path = "./../model/mscoco_label_map.pbtxt"

List of the strings that is used to add correct label for each box.

category_index = label_map_util.create_category_index_from_labelmap(labels_

path, use_display_name=True)

class_num =len(category_index)+100

object_ids = {}

hasher_object = hasher.ObjectHasher()

#Function to create color table for each object class

def get_color_table(class_num, seed=50):

 random.seed(seed)

 color_table = {}

 for i in range(class_num):

 color_table[i] = [random.randint(0, 255) for _ in range(3)]

 return color_table

Chapter 7 praCtiCal example: ObjeCt traCking in VideOs

329

colortable = get_color_table(class_num)

Initialize and start the asynchronous video capture thread

cap = VideoCaptureAsync().start()

Model preparation

def load_model(model_path):

 model_dir = pathlib.Path(model_path) / "saved_model"

 model = tf.saved_model.load(str(model_dir))

 model = model.signatures['serving_default']

 return model

model = load_model(model_path)

Predict objects and bounding boxes and format the result

def run_inference_for_single_image(model, image):

 # The input needs to be a tensor, convert it using `tf.convert_to_

tensor`.

 input_tensor = tf.convert_to_tensor(image)

 # The model expects a batch of images, so add an axis with `tf.newaxis`.

 input_tensor = input_tensor[tf.newaxis, ...]

 # Run prediction from the model

 output_dict = model(input_tensor)

 # Input to model is a tensor, so the output is also a tensor

 # Convert to NumPy arrays, and take index [0] to remove the batch dimension.

 # We're only interested in the first num_detections.

 num_detections = int(output_dict.pop('num_detections'))

 output_dict = {key: value[0, :num_detections].numpy()

 for key, value in output_dict.items()}

 output_dict['num_detections'] = num_detections

 # detection_classes should be ints.

 output_dict['detection_classes'] = output_dict['detection_classes'].

astype(np.int64)

 return output_dict

Chapter 7 praCtiCal example: ObjeCt traCking in VideOs

330

Function to draw bounding boxes and tracking information on the image frame

def track_object(model, image_np):

 global object_ids, lock

 # Actual detection.

 output_dict = run_inference_for_single_image(model, image_np)

 # Visualization of the results of a detection.

 for i in range(output_dict['detection_classes'].size):

 box = output_dict['detection_boxes'][i]

 classes = output_dict['detection_classes'][i]

 scores = output_dict['detection_scores'][i]

 if scores > 0.5:

 h = image_np.shape[0]

 w = image_np.shape[1]

 classname = category_index[classes]['name']

 classid =category_index[classes]['id']

 #Draw bounding boxes

 cv2.rectangle(image_np, (int(box[1] * w), int(box[0] * h)),

(int(box[3] * w), int(box[2] * h)), colortable[classid], 2)

 #Write the class name on top of the bounding box

 font = cv2.FONT_HERSHEY_COMPLEX_SMALL

 hash, object_ids = hasher_object.getObjectId(image_np,

int(box[1] * w), int(box[0] * h), int(box[3] * w),

 int(box[2] * h), object_ids)

 size = cv2.getTextSize(str(classname) + ":" + str(scores)+

"[Id: "+str(object_ids.get(hash))+"]", font, 0.75, 1)[0][0]

 cv2.rectangle(image_np,(int(box[1] * w), int(box[0] *

h-20)), ((int(box[1] * w)+size+5), int(box[0] * h)),

colortable[classid],-1)

 cv2.putText(image_np, str(classname) + ":" + str(scores)+

"[Id: "+str(object_ids.get(hash))+"]",

Chapter 7 praCtiCal example: ObjeCt traCking in VideOs

331

 (int(box[1] * w), int(box[0] * h)-5), font, 0.75,

(0,0,0), 1, 1)

 cv2.putText(image_np, "Number of objects detected:

"+str(len(object_ids)),

 (10,20), font, 0.75, (0, 0, 0), 1, 1)

 else:

 break

 return image_np

Function to implement infinite while loop to read video frames and

generate the output for web browser

def streamVideo():

 global lock

 while (True):

 retrieved, frame = cap.read()

 if retrieved:

 with lock:

 frame = track_object(model, frame)

 (flag, encodedImage) = cv2.imencode(".jpg", frame)

 if not flag:

 continue

 yield (b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' +

 bytearray(encodedImage) + b'\r\n')

 if cv2.waitKey(1) & 0xFF == ord('q'):

 cap.stop()

 cv2.destroyAllWindows()

 break

 # When everything done, release the capture

 cap.stop()

 cv2.destroyAllWindows()

The file path for Listing 7-13 is video_tracking/videoasync.py.

Chapter 7 praCtiCal example: ObjeCt traCking in VideOs

332

Listing 7-13. videoasync.py

file: videoasync.py

import threading

import cv2

class VideoCaptureAsync:

 def __init__(self, src=0):

 self.src = src

 self.cap = cv2.VideoCapture(self.src)

 self.grabbed, self.frame = self.cap.read()

 self.started = False

 self.read_lock = threading.Lock()

 def set(self, var1, var2):

 self.cap.set(var1, var2)

 def start(self):

 if self.started:

 print('[Warning] Asynchronous video capturing is already started.')

 return None

 self.started = True

 self.thread = threading.Thread(target=self.update, args=())

 self.thread.start()

 return self

 def update(self):

 while self.started:

 grabbed, frame = self.cap.read()

 with self.read_lock:

 self.grabbed = grabbed

 self.frame = frame

 def read(self):

 with self.read_lock:

 frame = self.frame.copy()

 grabbed = self.grabbed

 return grabbed, frame

Chapter 7 praCtiCal example: ObjeCt traCking in VideOs

333

 def stop(self):

 self.started = False

 # self.cap.release()

 # cv2.destroyAllWindows()

 self.thread.join()

 def __exit__(self, exec_type, exc_value, traceback):

 self.cap.release()

The file path for Listing 7-14 is video_tracking/tracker.py.

Listing 7-14. tracker.py

tracker.py

import numpy as np

import cv2

class ObjectHasher:

 def __init__(self, threshold=20, size=8, max_track_frame=10, radius_

tracker=5):

 self.threshold = 20

 self.size = 8

 self.max_track_frame = 10

 self.radius_tracker = 5

 def getCenter(self, xmin, ymin, xmax, ymax):

 x_center = int((xmin + xmax)/2)

 y_center = int((ymin+ymax)/2)

 return (x_center, y_center)

 def getObjectId(self, image_np, xmin, ymin, xmax, ymax, hamming_

dict={}):

 croppedImage = self.getCropped(image_np,int(xmin*0.8),

int(ymin*0.8), int(xmax*0.8), int(ymax*0.8))

 croppedImage = cv2.cvtColor(croppedImage, cv2.COLOR_BGR2GRAY)

 resizedImage = self.resize(croppedImage, self.size)

 hash = self.getHash(resizedImage)

 center = self.getCenter(xmin*0.8, ymin*0.8, xmax*0.8, ymax*0.8)

Chapter 7 praCtiCal example: ObjeCt traCking in VideOs

334

 # hamming_dict = self.createHammingDict(hash, center, hamming_dict)

 hamming_dict = self.getObjectCounter(hash, hamming_dict)

 return hash, hamming_dict

 def getCropped(self, image_np, xmin, ymin, xmax, ymax):

 return image_np[ymin:ymax, xmin:xmax]

 def resize(self, cropped_image, size=8):

 resized = cv2.resize(cropped_image, (size+1, size))

 return resized

 def getHash(self, resized_image):

 diff = resized_image[:, 1:] > resized_image[:, :-1]

 # convert the difference image to a hash

 dhash = sum([2 ** i for (i, v) in enumerate(diff.flatten()) if v])

 return int(np.array(dhash, dtype="float64"))

 def hamming(self, hashA, hashB):

 # compute and return the Hamming distance between the integers

 return bin(int(hashA) ^ int(hashB)).count("1")

 def createHammingDict(self, dhash, center, hamming_dict):

 centers = []

 matched = False

 matched_hash = dhash

 # matched_classid = classid

 if hamming_dict.__len__() > 0:

 if hamming_dict.get(dhash):

 matched = True

 else:

 for key in hamming_dict.keys():

 hd = self.hamming(dhash, key)

 if(hd < self.threshold):

 centers = hamming_dict.get(key)

 if len(centers) > self.max_track_frame:

 centers.pop(0)

Chapter 7 praCtiCal example: ObjeCt traCking in VideOs

335

 centers.append(center)

 del hamming_dict[key]

 hamming_dict[dhash] = centers

 matched = True

 break

 if not matched:

 centers.append(center)

 hamming_dict[dhash] = centers

 return hamming_dict

 def getObjectCounter(self, dhash, hamming_dict):

 matched = False

 matched_hash = dhash

 lowest_hamming_dist = self.threshold

 object_counter = 0

 if len(hamming_dict) > 0:

 if dhash in hamming_dict:

 lowest_hamming_dist = 0

 matched_hash = dhash

 object_counter = hamming_dict.get(dhash)

 matched = True

 else:

 for key in hamming_dict.keys():

 hd = self.hamming(dhash, key)

 if(hd < self.threshold):

 if hd < lowest_hamming_dist:

 lowest_hamming_dist = hd

 matched = True

 matched_hash = key

 object_counter = hamming_dict.get(key)

 if not matched:

 object_counter = len(hamming_dict)

Chapter 7 praCtiCal example: ObjeCt traCking in VideOs

336

 if matched_hash in hamming_dict:

 del hamming_dict[matched_hash]

 hamming_dict[dhash] = object_counter

 return hamming_dict

 def drawTrackingPoints(self, image_np, centers, color=(0,0,255)):

 image_np = cv2.line(image_np, centers[0], centers[len(centers) - 1],

color)

 return image_np

Run the Flask server by executing the command python video_server.py from a

terminal. To see the live stream of video, launch your web browser and point to the URL

http://localhost:5019.

 Summary
In this chapter, we developed a fully functional video tracking system using a pre-trained

SSD model. We also learned about the difference hashing (dHash) algorithm and used

the Hamming distance to determine image similarity. We deployed our system to the

Flask microweb framework to render real-time video tracking in a web browser.

Chapter 7 praCtiCal example: ObjeCt traCking in VideOs

337
© Shamshad Ansari 2020
S. Ansari, Building Computer Vision Applications Using Artificial Neural Networks,
https://doi.org/10.1007/978-1-4842-5887-3_8

CHAPTER 8

Practical Example:
Face Recognition
Face recognition is a computer vision problem to detect and identify human faces in an

image or video. The first step of facial recognition is to detect and locate the position of the

face in the input image. This is a typical object detection task like we learned about in the

previous chapters. After the face is detected, a feature set, also called a facial footprint or

face embedding, is created from various key points on the face. A human face has 80 nodal

points or distinguishing landmarks that are used to create the feature set (USPTO Patent

Number US7634662B2, https://patents.google.com/patent/US7634662B2/). The face

embedding is then compared against a database to establish the identity of the face.

There are many applications of facial recognition in the real world, such as the

following:

• As the password for access control to high-security areas

• In airport customs and border protection

• In identifying genetic disorders

• As a way to predict the age and gender of individuals (e.g., used in

controlling age-based access, such as alcohol purchases)

• In law enforcement (e.g., police find potential crime suspects and

witnesses by scanning millions of photos).

• In organizing digital photo albums (e.g., photos on social media)

In this chapter, we will explore FaceNet, a popular face recognition algorithm developed

by Google engineers. We will learn how to train a FaceNet-based neural network to develop

a face recognition model. At the end, we will write code to develop a fully functional face

recognition system that can detect faces in real time from a video stream.

https://doi.org/10.1007/978-1-4842-5887-3_8#DOI
https://patents.google.com/patent/US7634662B2/

338

 FaceNet
FaceNet was invented by three Google engineers, Florian Schroff, Dmitry Kalenichenko,

and James Philbin. They published their work in 2015 in a paper titled “FaceNet:

A Unified Embedding for Face Recognition and Clustering” (https://arxiv.org/

pdf/1503.03832.pdf).

FaceNet is a unified system that provides the following capabilities:

• Face verification (is this the same person?)

• Recognition (who is this person?)

• Clustering (are there similar faces?)

FaceNet is a deep neural network that does the following:

• Computes a 128D compact feature vector, called face embedding,

from the input images. Recall from Chapter 4 that a feature

vector contains information that describes an object’s significant

characteristics. The 128D feature vector, which is a list of 128 real-

valued numbers, represents output that attempts to quantify the face.

• Learn by optimizing a triplet loss function. We will explore the loss

function later in this chapter.

 FaceNet Neural Network Architecture
Figure 8-1 shows the FaceNet architecture.

The components of a FaceNet network are described in the following sections.

Deep CNN L2
Em
bed
din
g

Triplet
Loss

Figure 8-1. FaceNet neural network architecture

Chapter 8 praCtiCal example: FaCe reCognition

https://arxiv.org/pdf/1503.03832.pdf
https://arxiv.org/pdf/1503.03832.pdf

339

 Input Images

The training set consists of thumbnails of faces cropped from the images. Other than

translation and scaling, no other alignments to the face crops are needed.

 Deep CNN

FaceNet was trained using deep convolutional neural networks using SGD with

backpropagation and an AdaGrad optimizer. The initial learning rate was taken as 0.05

and decreased with iterations to finalize the model. The training was performed on a

CPU-based cluster for 1,000 to 2,000 hours.

The FaceNet paper describes two different architectures of deep convolutional

neural networks having different trade-offs. The first architecture was inspired by Zeiler

and Fergus, and the second is the inception from Google. The two architectures differ

mainly in two aspects: the number of parameters and the floating-point operations per

second (FLOPS). FLOPS is a standard measure of computer performance that requires

floating-point computations.

The Zeiler and Fergus CNN architecture consists of 22 layers and trains on 140

million parameters at 1.6 billion FLOPS per image. This CNN architecture is referred to

as NN1 that has an input size of 220×220.

Table 8-1 shows the network configuration based on Zeiler and Fergus that is used in

FaceNet.

Chapter 8 praCtiCal example: FaCe reCognition

340

The second type of network is the inception model based on GoogLeNet. This

model has 20× fewer parameters (around 6.6 million to 7.5 million) and 5× fewer FLOPS

(around 500 million to 1.6 billion).

There are a few variants of the inception model based on the input size. They are

briefly described here:

• NN2: This is an inception model that takes images of size 224×224

and trains on 7.5 million parameters at 1.6 billion FLOPS per image.

Table 8-2 shows the NN2 inception model used in FaceNet.

Table 8-1. Deep CNN Based on Zeiler and Fergus Network

Architecture (Source: Schroff et al, https://arxiv.org/

pdf/1503.03832.pdf)

-

Chapter 8 praCtiCal example: FaCe reCognition

https://arxiv.org/pdf/1503.03832.pdf
https://arxiv.org/pdf/1503.03832.pdf

341

• NN3: This is identical in architecture compared to NN2 except that it

uses a 160×160 input size resulting in a smaller network size.

• NN4: This network has a 96×96 input size resulting in drastically

reduced parameters that requires only 285 million FLOPS per image

(compared to 1.6 billion on NN1 and NN2). Because of the reduced

size and lower FLOPS requiring less CPU time, NN4 is suitable for

mobile devices.

• NNS1: This is also called a “mini” inception due to its smaller size. It

has an input size of 165×165 and 26 million parameters that require

only 220 million FLOPS per image.

• NNS2: This is called a “tiny” inception. It has an input size of 140×116

and 4.3 million parameters that require 20 million FLOPS.

NN4, NNS1, and NNS2 are suitable for mobile devices because of the smaller

number of parameters requiring low CPU FLOPS per image.

It is important to mention that the model accuracy is higher with larger FLOPS. In

general, a network with lower FLOPS runs faster and consumes less memory but results

in lower accuracy.

Table 8-2. Inception Model Architecture Based on GoogLeNet (Source: Schroff

et al, https://arxiv.org/pdf/1503.03832.pdf)

-

Chapter 8 praCtiCal example: FaCe reCognition

https://arxiv.org/pdf/1503.03832.pdf

342

Figure 8-2 shows a plot of FLOPS versus accuracy with different types of CNN

architectures.

 Face Embedding

The face embeddings of sizes 1×1×128 are generated from the L2 normalization layer of

the deep CNN (as shown in Figure 8-1 and Tables 8-1 and 8-2).

After the embeddings are calculated, the face verification (or finding similar faces) is

performed by calculating the Euclidean distances between the embeddings and finding

similar faces based on the following:

• The faces of the same person have smaller distances

• The faces of different people have larger distances

The face recognition is performed by the standard K-nearest neighbors (K-NN)

classification.

The clustering is done using algorithms like K-means or agglomerative clustering

techniques.

Figure 8-2. FLOPS versus accuracy (source: FaceNet, https://arxiv.org/
pdf/1503.03832.pdf)

Chapter 8 praCtiCal example: FaCe reCognition

https://arxiv.org/pdf/1503.03832.pdf
https://arxiv.org/pdf/1503.03832.pdf

343

 Triplet Loss Function

The loss function used in FaceNet is known as the triplet loss function.

The embeddings of the same faces are called positives and of different faces are

negatives. The face being analyzed is called the anchor. To calculate the loss, a triplet

consisting of an anchor, a positive, and a negative embedding is formed, and their

Euclidean distances are analyzed. The learning objective of FaceNet is to minimize the

distance between an anchor and a positive and maximize the distance between the

anchor and a negative.

Figure 8-3 illustrates the triplet loss function and the learning process.

Each face image is a feature vector, representing a d-dimensional Euclidean

hypersphere, and represented by a function ||f(x)||2 = 1.

Assume the face image xi
a (anchor) is closer to the face xi

p (hard positive) of the

same person than xi
n (hard negative) faces of different people. Further, assume that there

are N triplets in the training set. The triplet loss function is represented by the following

equation:

L = ()- () - () - () +éë ùûå
i

N

i
a

i
p

i
a

i
nf x f x f x f x|| || || ||2

2
2
2 a ,

where α is a margin of distance between positive and negative embeddings.

If we consider every possible combination of triplets, there will be lots of triplets,

and the previous function may take a lot of time to converge. Also, not every triplet

contributes to the model learning. Therefore, we need a method to select the right

triplets so that our model training is efficient and the accuracy is optimum.

Figure 8-3. The triplet loss minimizes the distance between an anchor and a
positive, both of which have the same identity, and it maximizes the distance
between the anchor and a negative of a different identity. (Source: FaceNet,
https://arxiv.org/pdf/1503.03832.pdf.)

Chapter 8 praCtiCal example: FaCe reCognition

https://arxiv.org/pdf/1503.03832.pdf

344

 Triplet Selection

Ideally, we should select triplets in such a way that || ||f x f xi
a

i
p() ()- 2

2 is minimum and

|| ||f x f xi
a

i
n() ()- 2

2 is maximum. But calculating this min and max across all datasets may

be infeasible. Therefore, we need a method to efficiently calculate the min and max

of distances. This may be done offline and then fed to the algorithm or be determined

online using some algorithms.

In an online method, we divide the embeddings into mini-batches. Each mini-batch

contains a small set of positives and some randomly selected negatives. The inventors of

FaceNet used mini-batches consisting of 40 positives and randomly selected negatives

embeddings. The min and max distances are calculated for each mini-batch to create

triplets.

In the next sections, we will learn how to train our own model based on FaceNet and

build a system for real-time face recognition.

 Training a Face Recognition Model
One of the most popular TensorFlow implementations of FaceNet is by David Sandberg.

This is an open source version and freely available under the MIT License at GitHub

at https://github.com/davidsandberg/facenet. We have forked the original GitHub

repository and committed a slightly modified version to our GitHub repository located at

https://github.com/ansarisam/facenet. We did not modify the core neural network

and triplet loss function implementations. Our modified version of FaceNet, forked

from David Sandberg’s repository, uses OpenCV for reading and manipulating images.

We also upgraded some of the library functions of TensorFlow. This implementation of

FaceNet requires TensorFlow version 1.x and does not currently run on version 2.

In the following example, we will use Google Colab to train our face detection model.

It is important to note that a face detection model is compute-intensive and may take

several days to learn, even on GPUs. Therefore, Colab is not an ideal platform to train

a long-running model, because you will lose all the data and settings after the Colab

session expires. You should consider using a cloud-based GPU environment for training

a production-quality face recognition model. Chapter 10 will show you how to scale your

model training on the cloud. For now, let’s use Colab for the purposes of learning.

Before we start, create a new Colab project and give it a meaningful name, such as

FaceNet Training.

Chapter 8 praCtiCal example: FaCe reCognition

https://github.com/davidsandberg/facenet
https://github.com/ansarisam/facenet

345

 Checking Out FaceNet from GitHub
Check out the source code of the TensorFlow implementation of FaceNet. In Colab,

add a code cell by clicking the +Code icon. Write the command to clone the GitHub

repository, as shown in Listing 8-1. Click the Execute button to run the command. After

the successful execution, you should see the directory facenet in your Colab file browser

panel.

Listing 8-1. Cloning the GitHub Repository of TensorFlow Implementation of

FaceNet

1 %%shell

2 git clone https://github.com/ansarisam/facenet.git

 Dataset
We will use the VGGFace2 dataset for training our face recognition model. VGGFace2

is a large-scale image dataset for face recognition, provided by Visual Geometry Group,

https://www.robots.ox.ac.uk/~vgg/data/vgg_face2/.

The VGGFace2 dataset consists of 3.3 million faces of more than 9,000 people

(referred to as identities). The data sample has 362 images (on an average) per

identity. The dataset is described in the paper at http://www.robots.ox.ac.uk/~vgg/

publications/2018/Cao18/cao18.pdf published in 2018 by Q. Cao, L. Shen, W. Xie,

O. M. Parkhi, and A. Zisserman.

The size of the training set is 35GB, and the test set is 1.9GB. The datasets are

available as compressed (zipped) files. The face images are organized in subdirectories.

The name of each subdirectory is the identity class ID in the format n< classID > .

Figure 8-4 shows a sample directory structure containing training images.

Chapter 8 praCtiCal example: FaCe reCognition

https://www.robots.ox.ac.uk/~vgg/data/vgg_face2/
http://www.robots.ox.ac.uk/~vgg/publications/2018/Cao18/cao18.pdf
http://www.robots.ox.ac.uk/~vgg/publications/2018/Cao18/cao18.pdf

346

A separate metadata file in CSV format is provided. The header of this metadata file

is as follows:

Identity ID, name, sample number, train/test flag and gender

Here is a brief description:

 – Identity ID maps to the subdirectory name.

 – name is the name of the person whose face image is included.

Figure 8-4. Subdirectories containing images

Chapter 8 praCtiCal example: FaCe reCognition

347

 – sample number represents the number of images in the subdirectory.

 – train/test flag indicates whether the identity is in the training set or

test set. The training set is represented by flag 1 and the test set as 0.

 – gender is the gender of the person.

It is important to note that the size of this dataset is too large to fit in the free version

of Google Colab or Google Drive.

If the entire dataset does not fit in the free version of Colab, you could use just a

subset of the data (maybe a few hundred identities) for the purpose of learning.

Of course, you can use your own images if you want to build a custom face

recognition model. All you need to do is to save images of the same person in one

directory, with each person having their own directory, and match the directory

structure to look like Figure 8-4. Make sure your directory names and image file names

do not have any blank spaces.

 Downloading VGGFace2 Data
To download the images, you will need to register at http://zeus.robots.ox.ac.uk/

vgg_face2/signup/. After the registration, log in to download the data directly from

http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/, save the compressed training

and test files to your local drive, and then upload them to Colab.

If you prefer to download the images directly in Colab, you can use the code in

Listing 8-2. Run the program with the correct URLs to download both the training and

test sets.

Listing 8-2. Python Code to Download VGGFace2 Images (Source: https://

github.com/MistLiao/jgitlib/blob/master/download.py)

1 import sys

2 import getpass

3 import requests

4

Chapter 8 praCtiCal example: FaCe reCognition

http://zeus.robots.ox.ac.uk/vgg_face2/signup/
http://zeus.robots.ox.ac.uk/vgg_face2/signup/
http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/
https://github.com/MistLiao/jgitlib/blob/master/download.py
https://github.com/MistLiao/jgitlib/blob/master/download.py

348

5 VGG_FACE_URL = "http://zeus.robots.ox.ac.uk/vgg_face2/login/"

6 IMAGE_URL = "http://zeus.robots.ox.ac.uk/vgg_face2/get_

file?fname=vggface2_train.tar.gz"

7 TEST_IMAGE_URL="http://zeus.robots.ox.ac.uk/vgg_face2/get_

file?fname=vggface2_test.tar.gz"

8

9 print('Please enter your VGG Face 2 credentials:')

10 user_string = input(' User: ')

11 password_string = getpass.getpass(prompt=' Password: ')

12

13 credential = {

14 'username': user_string,

15 'password': password_string

16 }

17

18 session = requests.session()

19 r = session.get(VGG_FACE_URL)

20

21 if 'csrftoken' in session.cookies:

22 csrftoken = session.cookies['csrftoken']

23 elif 'csrf' in session.cookies:

24 csrftoken = session.cookies['csrf']

25 else:

26 raise ValueError("Unable to locate CSRF token.")

27

28 credential['csrfmiddlewaretoken'] = csrftoken

29

30 r = session.post(VGG_FACE_URL, data=credential)

31

32 imagefiles = IMAGE_URL.split('=')[-1]

33

34 with open(imagefiles, "wb") as files:

35 print(f"Downloading the file: `{imagefiles}`")

36 r = session.get(IMAGE_URL, data=credential, stream=True)

37 bytes_written = 0

Chapter 8 praCtiCal example: FaCe reCognition

349

38 for data in r.iter_content(chunk_size=400096):

39 files.write(data)

40 bytes_written += len(data)

41 MegaBytes = bytes_written / (1024 * 1024)

42 sys.stdout.write(f"\r{MegaBytes:0.2f} MiB downloaded...")

43 sys.stdout.flush()

44

45 print("\n Images are successfully downloaded. Exiting the process.")

After you download the training and test sets, uncompress them to get the training

and test directories and subdirectories as per the structure shown in Figure 8-4. To

uncompress, you can execute the commands in Listing 8-3.

Listing 8-3. Commands to Uncompress Files

1 %%shell

2 tar xvzf vggface2_train.tar.gz

3 tar xvzf vggface2_test.tar.gz

 Data Preparation
The training set for FaceNet should be images of the face portion only. Therefore, we

need to crop the images to extract the faces, align them, and resize them, if needed. We

will use an algorithm called multitask cascaded convolutional networks (MTCNNs) that

has proven to outperform many face detection benchmarks while retaining real-time

performance.

The FaceNet source we cloned from the GitHub repository has a TensorFlow

implementation of MTCNN. The implementation of this model is outside the scope of

this book. We will use the Python program align_dataset_mtcnn.py available in the

align module to get the bounding boxes of all the faces detected in the training and test

sets. This program will retain the directory structure and save the cropped images in the

same directory hierarchy, as shown in Figure 8-4.

Listing 8-4 shows the script to perform the face cropping and alignment.

Chapter 8 praCtiCal example: FaCe reCognition

350

Listing 8-4. Code for Face Detection Using MTCNN, Cropping and Alignment

1 %%shell

2 %tensorflow_version 1.x

3 export PYTHONPATH=$PYTHONPATH:/content/facenet

4 export PYTHONPATH=$PYTHONPATH:/content/facenet/src

5 for N in {1..10}; do \

6 python facenet/src/align/align_dataset_mtcnn.py \

7 /content/train \

8 /content/train_aligned \

9 --image_size 182 \

10 --margin 44 \

11 --random_order \

12 --gpu_memory_fraction 0.10 \

13 & done

In Listing 8-4, line 1 activates the shell, and line 2 sets the TensorFlow version to 1.x

to let Colab know that we do not want to use version 2, which is the default version in

Colab.

Lines 3 and 4 set the PYTHONPATH environment variable to the facenet and facenet/

src directories. If you are using a virtual machine or physical machine and have direct

access to the operating system, you should consider setting the environment variable in

the ~/.bash_profile file.

To speed up the face detection and alignment process, we have created ten parallel

processes (line 5), and for each process we are using 10 percent of the GPU memory (line

12). If your dataset is smaller and you want to process the MTCNN in a single process,

simply remove lines 5, 12, and 13.

Line 6 calls the file align_dataset_mtcnn.py and passes the following arguments:

 – The first argument, /content/train, is the directory path where

training images are located.

 – The second argument, /content/train_aligned, is the directory

path where the aligned images will be stored.

 – The third argument, --image_size, is the size of the cropped images.

We set this to 182×182 pixels.

Chapter 8 praCtiCal example: FaCe reCognition

351

 – The argument --margin, which is set to 44, creates a margin around

all four sides of the cropped images.

 – The next parameter, --random_order, if present, will select images in

random order by the parallel processes.

 – The last argument, --gpu_memory_fraction, is used to tell the

algorithm what fraction of the GPU memory to use for each of the

parallel processes.

The cropped image size in the previous script is 182×182 pixels. The input to the

Inception-ResNet-v1 is only 160×160. This gives an additional margin for random crops.

The use of the additional margin 44 is used to add any contextual information to the

model. This additional margin of 44 should be tuned based on your particular situations,

and the cropping performance should be assessed.

Execute the previous script to start the cropping and alignment processes. Note that

this is a compute-intensive process and may take several hours to complete.

Repeat the previous process for the test images.

 Model Training
Listing 8-5 is used to train the FaceNet model with the triplet loss function.

Listing 8-5. Script to Train the FaceNet Model with the Triplet Loss Function

%tensorflow_version 1.x

!export PYTHONPATH=$PYTHONPATH:/content/facenet/src

!python facenet/src/train_tripletloss.py \

--logs_base_dir logs/facenet/ \

--models_base_dir /content/drive/'My Drive'/chapter8/facenet_model/ \

--data_dir /content/drive/'My Drive'/chapter8/train_aligned/ \

--image_size 160 \

--model_def models.inception_resnet_v1 \

--optimizer ADAGRAD \

--learning_rate 0.01 \

--weight_decay 1e-4 \

--max_nrof_epochs 10 \

--epoch_size 200

Chapter 8 praCtiCal example: FaCe reCognition

352

As mentioned previously, the current implementation of FaceNet runs on

TensorFlow version 1.x and is not compatible with TensorFlow 2 (line 1 sets version 1.x).

Line 2 is to set the PYTHONPATH environment variable to the facenet/src directory.

Line 3 executes the FaceNet training with the triplet loss function. There are many

parameters that can be set for the training, but we will list only the important ones here.

For a detailed list of parameters and their explanation, check out the source code of

train_tripletloss.py located in the facenet/src directory.

The following arguments are passed for the model training:

 – --logs_base_dir: This is the directory where training logs are saved.

We will connect TensorBoard to this directory to evaluate the model

using the TensorBoard dashboard.

 – --model_base_dir: This is the base directory where the model

checkpoints will be stored. Notice that we have provided the path /

content/drive/'My Drive'/chapter8/facenet_model/ to store the

model checkpoints to Google Drive. This is to permanently save the

model checkpoints to Google Drive and avoid losing the model

because of Colab’s session termination. If the Colab session termi-

nates, we can relaunch the model to pick up from where it stopped.

Note the single quotations enclosing My Drive because of the space

in the name.

 – --data_dir: This is the base directory of the aligned images for

training.

 – --image_size: The input images for training will be resized based on

this parameter. Inception-ResNet-v1 takes the input image size of

160×160 pixels.

 – --model_def: This is the name of the model. We are using incep-

tion_resnet_v1 in this example.

 – --optimizer: This is the optimization algorithm to use. You could

use any of the optimizers ADAGRAD, ADADELTA, ADAM, RMSPROP, and MOM,

with ADAGRAD being the default one.

 – --learning_rate: We set the learning rate to 0.01. Tune as needed.

Chapter 8 praCtiCal example: FaCe reCognition

353

 – --weight_decay: This prevents the weight from becoming too large.

 – --max_nrof_epochs: The maximum number of epochs that the

training should run.

 – --epoch_size: This is the number of batches per epoch.

Execute the training by clicking the Run button in Colab. Depending upon your

training size and the training parameters, it may take several hours or even days to

complete the model.

After the model is successfully trained, the checkpoints are saved in the directory

--model_base_dir that we configured earlier in Listing 8-5, line 5.

 Evaluation
While the model is running, the losses for each epoch and each batch will print to the

console. This should give you an idea of how the model is learning. Ideally, the losses

should be decreasing and should become stable at a very low value, close to zero.

Figure 8-5 shows a sample output while the training is going on.

You can also evaluate the model performance using TensorBoard. Launch the

TensorBoard dashboard using the command in Listing 8-6.

Figure 8-5. Colab console output while the training is in progress. It shows the loss
per batch per epoch

Chapter 8 praCtiCal example: FaCe reCognition

354

Listing 8-6. Launching TensorBoard by Pointing to the logs Directory

1 %tensorflow_version 2.x

2 %load_ext tensorboard

3 %tensorboard --logdir /content/logs/facenet

 Developing a Real-Time Face Recognition System
A face recognition system will require three important items.

• A face detection model

• A classification model

• Image or video source

 Face Detection Model
We learned how to train a face detection model in the previous section. We can use

the model that we built, or we can use an available pre-trained model that fits our

requirements. Table 8-3 lists the pre-trained models that are publicly available for free.

The models are available at the following locations for free download.

The models were evaluated against the Labeled Faces in the Wild (LFW) dataset,

available at http://vis-www.cs.umass.edu/lfw/. Table 8-4 shows the model

architecture and accuracy.

Table 8-3. Face Recognition Pre-trained Models Provided by David Sandberg

Model Name Training
Dataset

Download Location

20180408-

102900

CaSia-

WebFace

https://drive.google.com/

open?id=1R77HmFADxe87GmoLwzfgMu_HY0IhcyBz

20180402-

114759

VggFace2 https://drive.google.com/open?id=1EXPBSXwTaqrSC0

OhUdXNmKSh9qJUQ55-

Chapter 8 praCtiCal example: FaCe reCognition

http://vis-www.cs.umass.edu/lfw/
https://drive.google.com/open?id=1R77HmFADxe87GmoLwzfgMu_HY0IhcyBz
https://drive.google.com/open?id=1R77HmFADxe87GmoLwzfgMu_HY0IhcyBz
https://drive.google.com/open?id=1EXPBSXwTaqrSC0OhUdXNmKSh9qJUQ55-
https://drive.google.com/open?id=1EXPBSXwTaqrSC0OhUdXNmKSh9qJUQ55-

355

For our example, we will use the VGGFace2 model.

 Classifier for Face Recognition
We will build a model to recognize faces (who the person is). We will train the model to

recognize George W. Bush, Barack Obama, and Donald Trump, the three most recent

U.S. presidents.

To keep this simple, we will download a few images of each of the three presidents

and organize them in subdirectories that will look like Figure 8-6.

Table 8-4. Evaluation Results with Accuracy of FaceNet Models Trained on

the CASIA-WebFace and VGGFace2 Datasets (Information Provided by David

Sandberg)

Model Name LFW accuracy Training Dataset Architecture

20180408-102900 0.9905 CaSia-WebFace inception resnet v1

20180402-114759 0.9965 VggFace2 inception resnet v1

Figure 8-6. Input image directory structure

Chapter 8 praCtiCal example: FaCe reCognition

356

We will develop the face detector on our personal computer/laptop. Before we train

our classifier, we need to clone the FaceNet GitHub repository. Execute the following

command:

git clone https://github.com/ansarisam/facenet.git

After the FaceNet source is cloned, set PYTHONPATH to facenet/src and add it to the

environment variable.

export PYTHONPATH=$PYTHONPATH:/home/user/facenet/src

The path to the src directory must be the actual directory path in your computer.

 Face Alignment

In this section, we will perform the face alignment of the images. We will use the same

MTCNN model as we did in the previous section. Since we have a small set of images,

we will use a single process to align these faces. Listing 8-7 shows the script for face

alignment.

Listing 8-7. Script for Face Alignment Using MTCNN

1 python facenet/src/align/align_dataset_mtcnn.py \

2 ~/presidents/ \

3 ~/presidents_aligned \

4 --image_size 182 \

5 --margin 44

Note on mac-based computers, the image directories may have a hidden file
called .DS_Store. make sure you delete this file from all subdirectories that
contain our input images. also, ensure that the subdirectories contain the images
only and no other files.

Execute the previous scripts to crop and align the faces. Figure 8-7 shows some

sample output.

Chapter 8 praCtiCal example: FaCe reCognition

https://github.com/ansarisam/facenet.git

357

 Classifier Training

With this minimal setup, we are ready to train the classifier. Listing 8-8 shows the script

that launches the classifier training.

Listing 8-8. Script to Launch the Face Classifier Training

1 python facenet/src/classifier.py TRAIN \

2 ~/presidents_aligned \

3 ~/20180402-114759/20180402-114759.pb \

4 ~/presidents_aligned/face_classifier.pkl \

5 --batch_size 1000 \

6 --min_nrof_images_per_class 40 \

7 --nrof_train_images_per_class 35 \

8 --use_split_dataset

In Listing 8-8, line 1 calls classifier.py and passes the parameter TRAIN, which indicates

that we want to train a classifier. Other parameters to this Python script are as follows:

 – The input base directory containing the aligned face images (line 2).

 – The path to the pretrained face detection model that we either built

ourselves or downloaded from the Google Drive link provided in the

previous section (line 3). If you have trained your own model that

saved the checkpoints, provide the path to the directory containing

the checkpoints. In Listing 8-8, we provided the path to the frozen

model (*.pb).

Figure 8-7. Cropped and aligned faces of three U.S. presidents

Chapter 8 praCtiCal example: FaCe reCognition

358

 – Line 4 is the path where our classifier model will be saved. Note that

this is a Pickle file with the .pkl extension. Pickle is a Python serial-

ization and deserialization module.

After the classifier model is successfully executed, the trained classifier is stored in

the file provided in line 4 of Listing 8-8.

 Face Recognition in a Video Stream

In Listing 7-1, we used OpenCV’s convenient function cv2.VideoCapture() to read

video frames from either the built-in camera of the computer or a USB or IP camera. The

argument 0 to the VideoCapture() function is typically used to read frames from the

built-in camera. In this section, we will discuss how to use YouTube as our video source.

To read YouTube videos, we will use a Python library called pafy, which internally

uses the youtube_dl library. Install these libraries using PIP in your development

environment. Simply execute the commands in Listing 8-9 to install pafy.

Listing 8-9. Commands to Install YouTube-Related Libraries

pip install pafy

pip install youtube_dl

The FaceNet repository that we cloned for this exercise provides the source code,

real_time_face_recognition.py in the contributed module, for recognizing faces in a

video. Listing 8-10 shows how to use the Python API to detect and recognize faces from a

video.

Listing 8-10. Script to Call Real-Time Face Recognition API

1 python real_time_face_recognition.py \

2 --source youtube \

3 --url https://www.youtube.com/watch?v=ZYkxVbYxy-c \

4 --facenet_model_checkpoint ~/20180402-114759/20180402-114759.pb \

5 --classfier_model ~/presidents_aligned/face_classifier.pkl

Chapter 8 praCtiCal example: FaCe reCognition

359

In Listing 8-10, line 1 calls real_time_face_recognition.py and passes the

following arguments:

 – Line 2 sets the value of the argument --source, which in this case is

youtube. If you skip this argument, it will default to the built-in

camera with the computer. You can explicitly pass the argument

webcam to read frames from the built-in camera.

 – Line 3 is to pass the YouTube video URL. This argument is not

needed in the case of the camera source.

 – Line 4 provides the path to the pre-trained FaceNet model. You can

supply the path to either the checkpoint directory or the frozen *.pb

model.

 – Line 5 provides the file path of the classifier model that we trained in

the previous section, such as the classifier model for recognizing the

faces of three U.S. presidents.

When you execute Listing 8-10, it will read the YouTube video frames and display the

recognized faces with bounding boxes. Figure 8-8 shows a sample recognition.

Figure 8-8. Sample screenshots taken from videos with faces recognized. The
input source of the video is YouTube

Chapter 8 praCtiCal example: FaCe reCognition

360

 Summary
Face detection is an interesting computer vision problem that involves detecting

classifying facial embeddings to identify, in an image, who the person is. In this chapter,

we explored FaceNet, a popular face recognition algorithm based on ResNet. We learned

the technique to crop the face portion of the image using the MTCNN algorithm. We

also trained our own classifier and worked through an example to classify faces of three

U.S. presidents. Finally, we ingested streams of videos from YouTube and implemented a

real-time face recognition system.

Chapter 8 praCtiCal example: FaCe reCognition

361
© Shamshad Ansari 2020
S. Ansari, Building Computer Vision Applications Using Artificial Neural Networks,
https://doi.org/10.1007/978-1-4842-5887-3_9

CHAPTER 9

Industrial Application:
Real-Time Defect
Detection in Industrial
Manufacturing
Computer vision has many applications in industrial manufacturing. One such

application is in the automation of visual inspection for quality control and assurance.

Most manufacturing companies train their people to manually perform visual

inspection, which is a manual process of inspection that can be subjective, resulting in

accuracy that is dependent on the experience and opinion of the individual inspector. It

should also be noted that this process is labor intensive.

In cases when there are machine calibration issues, environmental settings, or

equipment malfunction, the entire batch of production may become faulty. In such

cases, manual inspection after the fact may prove to be expensive, as the items may

have already been produced and the entire batch of faulty products (maybe hundreds or

thousands) may need to be discarded.

In summary, the manual process of inspection is slow, inaccurate, and expensive.

A computer vision–based visual inspection system can detect surface defects in real

time by analyzing streams of video frames. The system can send alerts, in real time, when

a defect or a series of defects is detected so that the production can be stopped to avoid

any loss.

In this chapter, we will develop a deep learning–based computer vision system to

detect surface defects, such as patches, scratches, pitted surfaces, and crazings.

https://doi.org/10.1007/978-1-4842-5887-3_9#DOI

362

We will work with a dataset containing labeled images of hot-rolled steel strips. We

will first transform the dataset, train an SSD model, and utilize the model to build a defect

detector. We will also learn how to label our own images for any object detection task.

 Real-Time Surface Defect Detection System
In this section, we will first examine the dataset that we will use for training and testing

a surface defect detection model. We will transform the images and annotations into

TFRecord files, and train an SSD model on Google Colab. We will apply the object

detection concepts presented in Chapter 6.

 Dataset
We will utilize a dataset provided by K. Song and Y. Yan at Northeastern University

(NEU). The dataset consists of six types of surface defects of hot-rolled steel strips. These

defects are labeled as follows:

 – Rolled-in scale (RS), which typically occurs when the mill scale is

rolled into metal during the rolling process.

 – Patches (Pa), which may be irregular surface patches.

 – Crazing (Cr), which is a network of cracks on the surface.

 – Pitted surface (PS) consisting of a number of small shallow holes.

 – Inclusion (In), which is compound materials embedded inside steel

 – Scratches (Sc)

Figure 9-1 shows labeled images of steel surfaces with these six defects.

Chapter 9 IndustrIal applICatIon: real-tIme defeCt deteCtIon In IndustrIal manufaCturIng

363

The dataset includes 1,800 grayscale images with 300 samples of each of the defect

classes.

The dataset is available for free download for education and research purposes at

https://drive.google.com/file/d/1qrdZlaDi272eA79b0uCwwqPrm2Q_WI3k/view.

Download the dataset from this link and uncompress it. The uncompressed dataset

is organized in the directory structure shown in Figure 9-2. The images are in the

subdirectory IMAGES. The ANNOTATIONS subdirectory contains XML files of annotations of

bounding boxes and the defect class in PASCAL VOC annotation format.

Figure 9-1. Sample of labeled images of surfaces having six different types of
defects (source: http://faculty.neu.edu.cn/yunhyan/NEU_surface_defect_
database.html)

Chapter 9 IndustrIal applICatIon: real-tIme defeCt deteCtIon In IndustrIal manufaCturIng

https://drive.google.com/file/d/1qrdZlaDi272eA79b0uCwwqPrm2Q_WI3k/view
http://faculty.neu.edu.cn/yunhyan/NEU_surface_defect_database.html
http://faculty.neu.edu.cn/yunhyan/NEU_surface_defect_database.html

364

 Google Colab Notebook
Start with creating a new notebook on Google Colab and give a name (e.g., Surface

Defect Detection v1.0).

Since the NEU dataset is located on Google Drive, we can directly copy it to our

private Google Drive. On Colab, we will mount the private Google Drive, uncompress the

dataset, and set up the development environment (Listing 9-1). Please review Chapter 6

to refresh your understanding of the implementation.

Listing 9-1. Mounting Google Drive, Downloading, Building, and Installing

TensorFlow Models

1 # Code block 1: Mount Google Drive

2 from google.colab import drive

3 drive.mount('/content/drive')

4

5 # Code block 2: uncompress NEU data

6 %%shell

7 ls /content/drive/'My Drive'/NEU-DET.zip

Figure 9-2. NEU-DET dataset directory structure

Chapter 9 IndustrIal applICatIon: real-tIme defeCt deteCtIon In IndustrIal manufaCturIng

365

8 unzip /content/drive/'My Drive'/NEU-DET.zip

9

10 # Code block 3: Clone github repository of Tensorflow model project

11 !git clone https://github.com/ansarisam/models.git

12

13 # Code block 4: Install Google protobuf compiler and other

dependencies

14 !sudo apt-get install protobuf-compiler python-pil python-lxml python- tk

15

16 # Code block 4: Install dependencies

17 %%shell

18 cd models/research

19 pwd

20 protoc object_detection/protos/*.proto --python_out=.

21 pip install --user Cython

22 pip install --user contextlib2

23 pip install --user pillow

24 pip install --user lxml

25 pip install --user jupyter

26 pip install --user matplotlib

27

28 # Code block 5: Build models project

29 %%shell

30 export PYTHONPATH=$PYTHONPATH:/content/models/research:/content/

models/research/slim

31 cd /content/models/research

32 python setup.py build

33 python setup.py install

 Data Transformation
We will transform the NEU dataset into TFRecord format (review the SSD model training

section of Chapter 6). Listing 9-2 is TensorFlow-based code to transform images and

annotations into TFRecord.

Chapter 9 IndustrIal applICatIon: real-tIme defeCt deteCtIon In IndustrIal manufaCturIng

366

Listing 9-2. Transforming Images and Annotations in PASCAL VOC Format into

TFRecord

File name: generic_xml_to_tf_record.py

1 from __future__ import absolute_import

2 from __future__ import division

3 from __future__ import print_function

4

5 import hashlib

6 import io

7 import logging

8 import os

9

10 from lxml import etree

11 import PIL.Image

12 import tensorflow as tf

13

14 from object_detection.utils import dataset_util

15 from object_detection.utils import label_map_util

16 import random

17

18 flags = tf.app.flags

19 flags.DEFINE_string('data_dir', '', 'Root directory to raw PASCAL VOC

dataset.')

20

21 flags.DEFINE_string('annotations_dir', 'annotations',

22 '(Relative) path to annotations directory.')

23 flags.DEFINE_string('image_dir', 'images',

24 '(Relative) path to images directory.')

25

26 flags.DEFINE_string('output_path', '', 'Path to output TFRecord')

27 flags.DEFINE_string('label_map_path', 'data/pascal_label_map.pbtxt',

28 'Path to label map proto')

Chapter 9 IndustrIal applICatIon: real-tIme defeCt deteCtIon In IndustrIal manufaCturIng

367

29 flags.DEFINE_boolean('ignore_difficult_instances', False, 'Whether to

ignore '

30 'difficult instances')

31 FLAGS = flags.FLAGS

32

33 # This function generates a list of images for training and

validation.

34 def create_trainval_list(data_dir):

35 trainval_filename = os.path.abspath(os.path.join(data_dir,"trainval.txt"))

36 trainval = open(os.path.abspath(trainval_filename), "w")

37 files = os.listdir(os.path.join(data_dir, FLAGS.image_dir))

38 for f in files:

39 absfile =os.path.abspath(os.path.join(data_dir, FLAGS.image_dir, f))

40 trainval.write(absfile+"\n")

41 print(absfile)

42 trainval.close()

43

44

45 def dict_to_tf_example(data,

46 dataset_directory,

47 label_map_dict,

48 ignore_difficult_instances=False,

49 image_subdirectory=FLAGS.image_dir):

50 """Convert XML derived dict to tf.Example proto.

51

52 Notice that this function normalizes the bounding box coordinates

provided

53 by the raw data.

54

55 Args:

56 data: dict holding PASCAL XML fields for a single image

57 dataset_directory: Path to root directory holding PASCAL dataset

58 label_map_dict: A map from string label names to integers ids.

Chapter 9 IndustrIal applICatIon: real-tIme defeCt deteCtIon In IndustrIal manufaCturIng

368

59 ignore_difficult_instances: Whether to skip difficult instances in the

60 dataset (default: False).

61 image_subdirectory: String specifying subdirectory within the

62 PASCAL dataset directory holding the actual image data.

63

64 Returns:

65 example: The converted tf.Example.

66

67 Raises:

68 ValueError: if the image pointed to by data['filename'] is not a

valid JPEG

69 """

70 filename = data['filename']

71

72 if filename.find(".jpg") < 0:

73 filename = filename+".jpg"

74 img_path = os.path.join("",image_subdirectory, filename)

75 full_path = os.path.join(dataset_directory, img_path)

76

77 with tf.gfile.GFile(full_path, 'rb') as fid:

78 encoded_jpg = fid.read()

79 encoded_jpg_io = io.BytesIO(encoded_jpg)

80 image = PIL.Image.open(encoded_jpg_io)

81 if image.format != 'JPEG':

82 raise ValueError('Image format not JPEG')

83 key = hashlib.sha256(encoded_jpg).hexdigest()

84

85 width = int(data['size']['width'])

86 height = int(data['size']['height'])

87

88 xmin = []

89 ymin = []

90 xmax = []

91 ymax = []

Chapter 9 IndustrIal applICatIon: real-tIme defeCt deteCtIon In IndustrIal manufaCturIng

369

92 classes = []

93 classes_text = []

94 truncated = []

95 poses = []

96 difficult_obj = []

97 if 'object' in data:

98 for obj in data['object']:

99 difficult = bool(int(obj['difficult']))

100 if ignore_difficult_instances and difficult:

101 continue

102

103 difficult_obj.append(int(difficult))

104

105 xmin.append(float(obj['bndbox']['xmin']) / width)

106 ymin.append(float(obj['bndbox']['ymin']) / height)

107 xmax.append(float(obj['bndbox']['xmax']) / width)

108 ymax.append(float(obj['bndbox']['ymax']) / height)

109 classes_text.append(obj['name'].encode('utf8'))

110 classes.append(label_map_dict[obj['name']])

111 truncated.append(int(obj['truncated']))

112 poses.append(obj['pose'].encode('utf8'))

113

114 example = tf.train.Example(features=tf.train.Features(feature={

115 'image/height': dataset_util.int64_feature(height),

116 'image/width': dataset_util.int64_feature(width),

117 'image/filename': dataset_util.bytes_feature(

118 data['filename'].encode('utf8')),

119 'image/source_id': dataset_util.bytes_feature(

120 data['filename'].encode('utf8')),

121 'image/key/sha256': dataset_util.bytes_feature(key.

encode('utf8')),

122 'image/encoded': dataset_util.bytes_feature(encoded_jpg),

123 'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')),

124 'image/object/bbox/xmin': dataset_util.float_list_feature(xmin),

125 'image/object/bbox/xmax': dataset_util.float_list_feature(xmax),

Chapter 9 IndustrIal applICatIon: real-tIme defeCt deteCtIon In IndustrIal manufaCturIng

370

126 'image/object/bbox/ymin': dataset_util.float_list_feature(ymin),

127 'image/object/bbox/ymax': dataset_util.float_list_feature(ymax),

128 'image/object/class/text': dataset_util.bytes_list_

feature(classes_text),

129 'image/object/class/label': dataset_util.int64_list_

feature(classes),

130 'image/object/difficult': dataset_util.int64_list_

feature(difficult_obj),

131 'image/object/truncated': dataset_util.int64_list_

feature(truncated),

132 'image/object/view': dataset_util.bytes_list_feature(poses),

133 }))

134 return example

135

136 def create_tf(examples_list, annotations_dir, label_map_dict,

dataset_type):

137 writer = None

138 if not os.path.exists(FLAGS.output_path+"/"+dataset_type):

139 os.mkdir(FLAGS.output_path+"/"+dataset_type)

140

141 j = 0

142 for idx, example in enumerate(examples_list):

143

144 if idx % 100 == 0:

145 logging.info('On image %d of %d', idx, len(examples_list))

146 print((FLAGS.output_path + "/tf_training_" + str(j) + ".record"))

147 writer = tf.python_io.TFRecordWriter(FLAGS.output_path +

"/"+dataset_type+"/tf_training_" + str(j) + ".record")

148 j = j + 1

149

150 path = os.path.join(annotations_dir, os.path.basename(example).

replace(".jpg", '.xml'))

151

152 with tf.gfile.GFile(path, 'r') as fid:

Chapter 9 IndustrIal applICatIon: real-tIme defeCt deteCtIon In IndustrIal manufaCturIng

371

153 xml_str = fid.read()

154 xml = etree.fromstring(xml_str)

155 data = dataset_util.recursive_parse_xml_to_dict(xml)

['annotation']

156

157 tf_example = dict_to_tf_example(data, FLAGS.data_dir,

label_map_dict,

158 FLAGS.ignore_difficult_instances)

159 writer.write(tf_example.SerializeToString())

160

161 def main(_):

162

163 data_dir = FLAGS.data_dir

164 create_trainval_list(data_dir)

165

166 label_map_dict = label_map_util.get_label_map_dict(FLAGS.label_map_path)

167

168 examples_path = os.path.join(data_dir,'trainval.txt')

169 annotations_dir = os.path.join(data_dir, FLAGS.annotations_dir)

170 examples_list = dataset_util.read_examples_list(examples_path)

171

172 random.seed(42)

173 random.shuffle(examples_list)

174 num_examples = len(examples_list)

175 num_train = int(0.7 * num_examples)

176 train_examples = examples_list[:num_train]

177 val_examples = examples_list[num_train:]

178

179 create_tf(train_examples, annotations_dir, label_map_dict, "train")

180 create_tf(val_examples, annotations_dir, label_map_dict, "val")

181

182 if __name__ == '__main__':

183 tf.app.run()

184

Chapter 9 IndustrIal applICatIon: real-tIme defeCt deteCtIon In IndustrIal manufaCturIng

372

Listing 9-2 does the following:

 1. First, call the function create_trainval_list() to create a text

file containing a list of absolute paths of all images from the

IMAGES subdirectory.

 2. Split the list of image paths into a 70:30 ratio to generate separate

lists of images for the training and validation sets.

 3. For each image in the training set, create a TFRecord using the

function dict_to_tf_example(). The TFRecord contains the

bytes of the image, bounding boxes, the annotated class name,

and several other metadata about the image. The TFRecord is

serialized and written to a file. Multiple TFRecord files are created,

and the number of files depend on the total number of images and

the number of images to be included in each TFRecord file.

 4. Similarly, TFRecords for each of the validation images are created

and serialized to files.

 5. The training and validation sets are saved into two separate

subdirectories—train and val—inside the output directory.

If you clone the GitHub repository mentioned in Listing 9-1, the Python file generic_

xml_to_tf_record.py is already included. But if you clone the official TensorFlow

model’s repository, then you will need to save the code from Listing 9-2 into generic_

xml_to_tf_record.py and upload it to your Colab environment (for example, to the

/content directory).

We need a mapping file that maps the class index with the class name. This file

contains JSON content and typically has the extension .pbtxt. We have six defect

classes, and we can manually write the label mapping file as shown here:

File name: steel_label_map.pbtxt

item {

 id: 1

 name: 'rolled-in_scale'

}

Chapter 9 IndustrIal applICatIon: real-tIme defeCt deteCtIon In IndustrIal manufaCturIng

373

item {

 id: 2

 name: 'patches'

}

item {

 id: 3

 name: 'crazing'

}

item {

 id: 4

 name: 'pitted_surface'

}

item {

 id: 5

 name: 'inclusion'

}

item {

 id: 6

 name: 'scratches'

}

Upload the steel_label_map.pbtxt file to your Colab environment to the /content

directory (or any other directory you want as long as you provide the correct path in

Listing 9-3).

The script in Listing 9-3 executes generic_xml_to_tf_record.py by providing these

parameters:

 – --label_map_path: The path to the steel_label_map.pbtxt.

 – --data_dir: The root directory where images and annotations

directories are located.

 – --output_path: The path where you want to save the generated

TFRecord files. Ensure that this directory exists. If not, create this

directory before executing this script.

Chapter 9 IndustrIal applICatIon: real-tIme defeCt deteCtIon In IndustrIal manufaCturIng

374

 – --annotations_dir: The subdirectory name where the annotation

XML files are located.

 – --image_dir: The subdirectory name where images are located.

Listing 9-3. Executing generic_xml_to_tf_record.py That Creates TFRecord Files

1 %%shell

2 %tensorflow_version 1.x

3

4 python /content/generic_xml_to_tf_record.py \

5 --label_map_path=/content/steel_label_map.pbtxt \

6 --data_dir=/content/NEU-DET \

7 --output_path=/content/NEU-DET/out \

8 --annotations_dir=ANNOTATIONS \

9 --image_dir=IMAGES

Run the script in Listing 9-3 to create TFRecord files in the output directory. You will

see two subdirectories—train and val—where TFRecords for training and validation

are saved.

Note that the output directory must exist. Otherwise, create one before executing the

code in Listing 9-3.

 Training the SSD Model
We are now ready with the right input set in TFRecord format to train our SSD model.

The training step is exactly the same as we followed in Chapter 6. First download a pre-

trained SSD model for a transfer learning based on the training and validation set we

created earlier.

Listing 9-4 shows the same code that we used in Chapter 6 (Listing 6-5).

Listing 9-4. Downloading a Pre-trained Object Detection Model

1 %%shell

2 %tensorflow_version 1.x

3 mkdir pre-trained-model

4 cd pre-trained-model

Chapter 9 IndustrIal applICatIon: real-tIme defeCt deteCtIon In IndustrIal manufaCturIng

375

5 wget http://download.tensorflow.org/models/object_detection/ssd_

inception_v2_coco_2018_01_28.tar.gz

6 tar -xvf ssd_inception_v2_coco_2018_01_28.tar.gz

We will now edit the pipeline.config file, as explained in the section “Configuring

the Object Detection Pipeline” of Chapter 6. Listing 9-5 shows the sections of the

pipeline.config file edited as per the current configuration.

Listing 9-5. Section of pipeline.config That Must to Be Edited to Point to the

Appropriate Directory Structure

model {

 ssd {

 num_classes: 6

 image_resizer {

 fixed_shape_resizer {

 height: 300

 width: 300

 }

 }

 batch_norm {

 decay: 0.999700009823

 center: true

 scale: true

 epsilon: 0.0010000000475

 train: true

 }

 }

 override_base_feature_extractor_hyperparams: true

 }

 matcher {

 argmax_matcher {

 matched_threshold: 0.5

 unmatched_threshold: 0.5

 ignore_thresholds: false

Chapter 9 IndustrIal applICatIon: real-tIme defeCt deteCtIon In IndustrIal manufaCturIng

376

 negatives_lower_than_unmatched: true

 force_match_for_each_row: true

 }

 }

 fine_tune_checkpoint: "/content/pre-trained-model/ssd_inception_v2_

coco_2018_01_28/model.ckpt"

 from_detection_checkpoint: true

 num_steps: 100000

}

train_input_reader {

 label_map_path: "/content/steel_label_map.pbtxt"

 tf_record_input_reader {

 input_path: "/content/NEU-DET/out/train/*.record"

 }

}

eval_config {

 num_examples: 8000

 max_evals: 10

 use_moving_averages: false

}

eval_input_reader {

 label_map_path: "/content/steel_label_map.pbtxt"

 shuffle: false

 num_readers: 1

 tf_record_input_reader {

 input_path: "/content/NEU-DET/out/val/*.record"

 }

}

As shown in Listing 9-5, we must edit the sections highlighted in yellow in

Listing 9-5.

num_classes: 6

fine_tune_checkpoint: path to pre-trained model checkpoint

label_map_path: path to .pbtxt file

Chapter 9 IndustrIal applICatIon: real-tIme defeCt deteCtIon In IndustrIal manufaCturIng

377

input_path: path to the training TFRecord files.

label_map_path: path to the .pbtxt file

input_path: path to the validation TFRecord files.

Edit the pipeline.config file and upload it to the Colab environment.

Execute the model training using the script shown in Listing 9-6. Review

Listing 6-6 in Chapter 6 to refresh the concepts.

Listing 9-6. Executing the Model Training

1 %%shell

2 %tensorflow_version 1.x

3 export PYTHONPATH=$PYTHONPATH:/content/models/research:/content/

models/research/slim

4 cd models/research/

5 PIPELINE_CONFIG_PATH=/content/pre-trained-model/ssd_inception_v2_

coco_2018_01_28/steel_defect_pipeline.config

6 MODEL_DIR=/content/neu-det-models/

7 NUM_TRAIN_STEPS=10000

8 SAMPLE_1_OF_N_EVAL_EXAMPLES=1

9 python object_detection/model_main.py \

10 --pipeline_config_path=${PIPELINE_CONFIG_PATH} \

11 --model_dir=${MODEL_DIR} \

12 --num_train_steps=${NUM_TRAIN_STEPS} \

13 --sample_1_of_n_eval_examples=$SAMPLE_1_OF_N_EVAL_EXAMPLES \

14 --alsologtostderr

While the model is learning, the logs are printed on the Colab console. Make a note

of the loss per epoch and tune the model’s hyperparameters, if needed.

 Exporting the Model
After the training has successfully completed, the checkpoints are saved in the directory

specified in line 6 of Listing 9-6.

To utilize the model for real-time detection, we need to export the TensorFlow graph.

Review the section “Exporting the TensorFlow Graph” of Chapter 6 for details on this.

Chapter 9 IndustrIal applICatIon: real-tIme defeCt deteCtIon In IndustrIal manufaCturIng

378

Listing 9-7 shows how to export the SSD model that we just trained.

Listing 9-7. Exporting the Model to the TensorFlow Graph

1 %%shell

2 %tensorflow_version 1.x

3 export PYTHONPATH=$PYTHONPATH:/content/models/research

4 export PYTHONPATH=$PYTHONPATH:/content/models/research/slim

5 cd /content/models/research

6

7 python object_detection/export_inference_graph.py \

8 --input_type image_tensor \

9 --pipeline_config_path /content/pre-trained-model/ssd_inception_v2_

coco_2018_01_28/steel_defect_pipeline.config \

10 --trained_checkpoint_prefix /content/neu-det-models/model.

ckpt- 10000 \

11 --output_directory /content/NEU-DET/final_model

After exporting the model, you should save it to Google Drive. Download the final

model from Google Drive to your local computer. We can use this model to detect surface

defects from video frames in real time. Review the concepts presented in Chapter 7.

 Model Evaluation
Launch the TensorBoard dashboard to evaluate the model quality. Listing 9-8 shows

how to launch the TensorBoard dashboard.

Listing 9-8. Launching the TensorBoard Dashboard

1 %tensorflow_version 2.x

2 %load_ext tensorboard

3 %tensorboard --logdir /drive/'My Drive'/NEU-DET-models/

Chapter 9 IndustrIal applICatIon: real-tIme defeCt deteCtIon In IndustrIal manufaCturIng

379

Figure 9-3 shows a sample training output of TensorBoard.

 Prediction
If you have set up your working environment as described in the section “Detecting

Objects Using Trained Models” of Chapter 6, you should have everything needed to

predict surface defects in an image. Simply change the variables in Listing 6-15 and

execute the Python code shown in Listing 9-9.

Listing 9-9. Variable Initialization Portion of Code from Listing 6-15

model_path = "/Users/sansari/Downloads/neu-det-models/final_model"

labels_path = "/Users/sansari/Downloads/steel_label_map.pbtxt"

image_dir = "/Users/sansari/Downloads/NEU-DET/test/IMAGES"

image_file_pattern = "*.jpg"

output_path="/Users/sansari/Downloads/surface_defects_out"

Figure 9-3. TensorBoard output display of surface defect detection model training

Chapter 9 IndustrIal applICatIon: real-tIme defeCt deteCtIon In IndustrIal manufaCturIng

380

Figure 9-4 shows some sample output of predictions for different classes of defects.

 Real-Time Defect Detector
Follow the instructions provided in Chapter 7 and deploy the detection system that

will read video images from the camera and detect surface defects in real time. If you

have multiple cameras connected to the same device, use the appropriate value for the

argument x in the function cv2.VideoCapture(x). By default, x=0 reads video from the

built-in camera of the computer. The values of x=1, x=2, etc., will read videos attached to

computer ports. For an IP-based camera, the value of x should be the IP address.

 Image Annotations
In all previous examples, we used images that were already annotated and labeled.

In this section, we will explore how to annotate images for object detection or face

recognition.

Rolled-in scale Pitted surface Patches Inclusions Crazing

Figure 9-4. Sample prediction output of defective surface with bounding boxes

Chapter 9 IndustrIal applICatIon: real-tIme defeCt deteCtIon In IndustrIal manufaCturIng

381

There are several open source and commercial tools for image labeling. We will

explore the Microsoft Visual Object Tagging Tool (VoTT), which is an open source

annotation and labeling tool for image and video assets. The source code of VoTT is

available at https://github.com/microsoft/VoTT.

 Installing VoTT
VoTT requires NodeJS and NPM.

To install NodeJS, download the executable binaries for your operating system from

the official website at https://nodejs.org/en/download/. For example, download and

install the Windows Installer (.msi) to install NodeJS on Windows OS, download and

install the macOS Installer (.pkg) to install it on a Mac, or choose Linux Binaries (x64) for

Linux.

NPM is installed with NodeJS. To check whether NodeJS and NPM are installed on

your computer, execute the following commands in your terminal window:

node -v

npm -v

VoTT installers for different OSs are maintained at GitHub (https://github.

com/Microsoft/VoTT/releases). Download the installer for your OS. At the time of

writing this book, the latest VoTT is version 2.1.1, which can be downloaded from these

locations:

• Windows: https://github.com/microsoft/VoTT/releases/

download/v2.1.0/vott-2.1.0-win32.exe

• Mac: https://github.com/microsoft/VoTT/releases/download/

v2.1.0/vott-2.1.0-darwin.dmg

• Linux: https://github.com/microsoft/VoTT/releases/download/

v2.1.0/vott-2.1.0-linux.snap

Install VoTT on your computer by running the downloaded executable.

To run VoTT from the source, execute the following commands on your terminal:

git clone https://github.com/Microsoft/VoTT.git

 cd VoTT

 npm ci

 npm start

Chapter 9 IndustrIal applICatIon: real-tIme defeCt deteCtIon In IndustrIal manufaCturIng

https://github.com/microsoft/VoTT
https://nodejs.org/en/download/
https://github.com/Microsoft/VoTT/releases
https://github.com/Microsoft/VoTT/releases
https://github.com/microsoft/VoTT/releases/download/v2.1.0/vott-2.1.0-win32.exe
https://github.com/microsoft/VoTT/releases/download/v2.1.0/vott-2.1.0-win32.exe
https://github.com/microsoft/VoTT/releases/download/v2.1.0/vott-2.1.0-darwin.dmg
https://github.com/microsoft/VoTT/releases/download/v2.1.0/vott-2.1.0-darwin.dmg
https://github.com/microsoft/VoTT/releases/download/v2.1.0/vott-2.1.0-linux.snap
https://github.com/microsoft/VoTT/releases/download/v2.1.0/vott-2.1.0-linux.snap

382

Running VoTT with the npm start command will launch both the electron version

and the browser version. The major difference between the two versions is that the

browser version cannot access the local file system, while the electron version can.

Since our images are on the local file system, we will explore the electron version of

VoTT.

When you launch the VoTT user interface, you will see the home screen to either

create a new project, open a local project, or open a cloud project.

To annotate images, we will follow the steps in the next sections.

 Create Connections
We will create two connections: one for input and the other for output.

The input connection is to the directory where unlabeled images are stored.

The output connection is where the annotations are stored.

Currently, VoTT supports connection to the following:

• Azure Blob Storage

• Bing Image Search

• Local File System

We will create a connection to the local file system. To create a new connection, click

the New Connections icon in the left navigation bar to launch the connection screen.

Click the plus icon corresponding to the label CONNECTIONS, located in the top-left

panel. See Figure 9-5.

Chapter 9 IndustrIal applICatIon: real-tIme defeCt deteCtIon In IndustrIal manufaCturIng

383

Select Local File System for the Provider field. Click Select Folder to open the local

file system directory structure. Select the directory that contains input images that need

to be labeled. Click the Save Connection button.

Similarly, create another connection for storing the output.

 Create a New Project
The tasks of image annotations and labeling are managed under a project. To create a

project, click the home icon and then New Project to open the Project Settings page. See

Figure 9-6.

Figure 9-5. Creating a new connection

Chapter 9 IndustrIal applICatIon: real-tIme defeCt deteCtIon In IndustrIal manufaCturIng

384

The two important fields on the Project Settings page are Source Connection and

Target Connections. Select the appropriate connections that we created in the previous

step for input and output directories. Click the Save Project button.

 Create Class Labels
After saving the project settings, the screen transitions to the main labeling page. To

create the class labels, click the (+) icon corresponding to the label TAGS located in the

top-right corner of the panel on the right (as shown in Figure 9-7). Create all the class

labels, such as crazing, patch, inclusion, etc.

Figure 9-6. Project Settings page to create a new project

Chapter 9 IndustrIal applICatIon: real-tIme defeCt deteCtIon In IndustrIal manufaCturIng

385

 Label the Images
Select an image thumbnail from the left panel, and the image will open in the main

tagging area. Draw rectangles or polygons around the defective areas of the image, and

select the appropriate tag to annotate the image. See Figure 9-8.

Similarly, annotate all images one by one.

Figure 9-8. Drawing rectangles around the defective areas and selecting the class
tag to annotate the image

Figure 9-7. Creating class labels

Chapter 9 IndustrIal applICatIon: real-tIme defeCt deteCtIon In IndustrIal manufaCturIng

386

 Export Labels
VoTT supports the following formats for export:

• Azure Custom Vision Service

• Microsoft Cognitive Toolkit (CNTK)

• TensorFlow (Pascal VOC and TFRecords)

• VoTT (generic JSON schema)

• Comma-separated values (CSV)

We will configure the settings to export our annotations in the TensorFlow TFRecord

file format.

To configure, click the export icon located in the left navigation bar. The export

icon looks like a slanting arrow pointing upward. The Export Settings page opens. For

the Provider field, select TensorFlow Records and click the Save Export Settings button

(Figure 9-9).

Figure 9-9. Export Settings page

Chapter 9 IndustrIal applICatIon: real-tIme defeCt deteCtIon In IndustrIal manufaCturIng

387

Go back to the project page (click the Tag Editor icon). Click the icon located in

the top toolbar to export the annotation to a TensorFlow Records file.

Check the output folder of the local file system. You will notice that a directory with

the name containing TFRecords-export has been created in the output directory.

Exporting to the TFRecord format also generates a tf_label_map.pbtxt file that

contains the class and index mapping.

For up-to-date information and instructions on the image labeling, visit the official

GitHub page of the VoTT project maintained by Microsoft: https://github.com/

microsoft/VoTT.

 Summary
In this chapter, we developed a surface defect detection system. We trained an SSD

model on an already labeled image set of hot-rolled steel strips with six classes of defects.

We used the trained model to predict surface defects in both images and videos. We also

explored an image annotation tool called VoTT that helps annotate images and export

the labels into TFRecord format.

Chapter 9 IndustrIal applICatIon: real-tIme defeCt deteCtIon In IndustrIal manufaCturIng

https://github.com/microsoft/VoTT
https://github.com/microsoft/VoTT

389
© Shamshad Ansari 2020
S. Ansari, Building Computer Vision Applications Using Artificial Neural Networks,
https://doi.org/10.1007/978-1-4842-5887-3_10

CHAPTER 10

Computer Vision
Modeling on the Cloud
Training state-of-the-art convolutional neural networks can require significant computer

resources. It may take several hours or days to train a network depending on the number

of training samples, network configuration, and available hardware resources. A single

GPU may not be feasible to train a complex network involving large numbers of training

images. The models need to be trained on multiple GPUs. Only a limited number of

GPUs can be installed on a single machine. A single machine with multiple GPUs may

not be sufficient for training on a large number of images. It will be faster if the model is

trained on multiple machines with each machine having multiple GPUs.

It is difficult to estimate the number of GPUs and machines needed to train a

model in a certain time frame. In most practical cases, it is not known up front how

many machines are needed for the modeling and how long the training will run. Also,

modeling is not done frequently. A model that predicts with a high degree of accuracy

may not need to be retrained for several days, weeks, months, or as long as it gives

accurate results. Therefore, any hardware procured for the modeling may remain idle

until the model is retrained.

Modeling on the cloud is a good way to scale the training across multiple machines

and GPUs. Most cloud providers offer virtual machines, compute resources, and storage

on a pay-as-you-go model. This means you will be charged only for the cloud resources

used during the period when the model is learning. After the model is successfully

trained, you can export the model to your application server where it will be used for

prediction. At this point, all cloud resources that are no longer required can be deleted,

which will reduce costs.

https://doi.org/10.1007/978-1-4842-5887-3_10#DOI

390

TensorFlow provides APIs to train machine learning models on multiple CPUs and

GPUs installed on either a single machine or multiple machines.

In this chapter, we will explore distributed modeling and train computer vision

models at scale on the cloud.

The learning objectives of this chapter are as follows:

• To explore the TensorFlow APIs for distributed training

• To set up distributed TensorFlow clusters involving multiple virtual

machines and GPUs on the three popular cloud providers: Amazon

Web Services (AWS), Google Cloud Platform (GCP), and Microsoft

Azure

• To train computer vision models on distributed clusters on the cloud

 TensorFlow Distributed Training
This section will cover TensorFlow distributed training.

 What Is Distributed Training?
The state-of-the-art neural network for computer vision computes millions of

parameters from a large number of images. The training is time-consuming if all of the

computations are performed on a single CPU or GPU. In addition, the entire training

dataset is required to be loaded in memory, which may exceed the memory of a single

machine.

In distributed training, computations are performed concurrently on multiple

CPUs or GPUs, and the results are combined to create the final model. Ideally, the

computation should scale linearly with the number of GPUs or CPUs. In other words, if it

takes H hours to train a model on one GPU, it should take H/N hours to train the model

on N number of GPUs.

There are two commonly used methods to implement parallelism in distributed

training: data parallelism and model parallelism. TensorFlow provides APIs to distribute

the training by splitting models over multiple devices (CPUs, GPUs, or computers).

Chapter 10 Computer Vision modeling on the Cloud

391

 Data Parallelism

Large training datasets can be divided into smaller mini batches. The mini batches

can be distributed across multiple computers in a cluster architecture. SGD can

independently and in parallel compute weights on individual computers that have a

small batch of data. The results can be combined from the individual computers to a

central computer to get the final and optimized weights.

SGD can also optimize weights by using parallel processing in a single computer

with multiple CPUs or GPUs. The distributed and parallel operations to compute

optimized weights by using the SGD algorithm helps converge it faster.

Figure 10-1 shows a pictorial view of data parallelism.

Data parallelism can be achieved in the following two ways:

• Synchronous: In this case, all nodes train over different chunks of

input data and aggregate gradients at each step. The synchronization

of gradients is done by an all-reduce method, as illustrated in

Figure 10-2.

Large
number of
images

GPU0

GPU1

GPU2

...

GPU127

64 images

64 images

64 images

64 images

Batch size = 64 x 128 = 8,192 images

Figure 10-1. Data parallelism and batch size calculation

Chapter 10 Computer Vision modeling on the Cloud

392

• Asynchronous: In this case, all nodes independently train over the

input data and update variables asynchronously through a dedicated

server called a parameter server, as shown in Figure 10-3.

GPU0

...

GPU127

Model Updater

2. Update model when all
gradients are received from
all GPUs

3. Fetch new model and
compute with new batch

3. Fetch new model and

1. Submit gradients

compute with new batch

Figure 10-2. Synchronous data parallelism

...

GPU0

GPU127

Parameter Server(s)

2. Update model after
receiving gradients from
each GPU

Figure 10-3. Asynchronous data parallelism using parameter servers

Chapter 10 Computer Vision modeling on the Cloud

393

 Model Parallelism

Deep neural networks, such as Darknet, compute billions of parameters. It is a challenge

to load the entire network in the memory of a single CPU or GPU, even when the batch

size is small. Model parallelism is a method in which the model is broken into different

parts, with each part performing operations on the same set of data in different CPUs,

GPUs, or nodes of the physical computer hardware. The same data batch is copied to all

nodes in the cluster, but the nodes get different parts of the model. These model parts

operate on its input dataset concurrently on different nodes.

When the parts of the model run in parallel, their shared parameters need to be

synchronized. This approach of parallelism works the best in the case of multiple CPUs

or GPUs on the same machine as the devices are connected by a high-speed bus.

We will now explore how TensorFlow distributes the training across multiple GPUs

or machines.

 TensorFlow Distribution Strategy
TensorFlow provides a high-level API to distribute the training across multiple GPUs or

multiple nodes. The API is exposed via the tf.distribute.Strategy class. With just a

few additional lines and minor code changes, we can distribute the neural networks that

we have explored in all prior examples.

We can use tf.distribute.Strategy with Keras to distribute networks built by

using the Keras API. We can also use this to distribute custom training loops. In general,

any computation in TensorFlow can be distributed using this API.

TensorFlow supports the following types of distribution strategies.

 MirroredStrategy

MirroredStrategy supports synchronous distributed training on multiple GPUs on one

machine. All variables of the model are mirrored across all GPUs. These variables collectively

are called MirroredVariables. The computations for the training are performed in parallel on

each GPU. The variables are synchronized with each other by applying identical updates.

The MirroredVariables are updated across all devices by using all-reduce algorithms.

An all-reduce algorithm aggregates tensors across all the devices by adding them up

and makes them available on each device. Figure 10-2 illustrates an example of an all-

reduce algorithm. These algorithms are efficient and do not have much communication

overhead for synchronization.

Chapter 10 Computer Vision modeling on the Cloud

394

There are several all-reduce algorithms. TensorFlow uses NVIDIA NCCL as the

default all-reduce algorithm in MirroredStrategy.

We will explore how to use MirroredStrategy to distribute the training of a deep

neural network. To keep it simple and easy to understand, let’s modify the code from

Listing 5-2 and make it distributed. Refer to lines 11, 19, and 24 of Listing 5-2. Here is

what these lines of code look like:

Line 11, Listing 5-2: model = tf.keras.models.

Sequential([...])

Line 19, Listing 5-2: model.compile(...)

Line 24, Listing 5-2: history = model.fit(...)

The following are the steps to parallelize the training of Listing 5-2:

 1. Create an instance of MirroredStrategy.

 2. Move the creation and compilation of the model

(lines 11 and 19 of Listing 5-2) inside the scope() method of

the MirroredStrategy object.

 3. Fit the model (line 24, without any change).

All other lines of Listing 5-2 remain unchanged.

Listing 10-1 shows this concept.

Listing 10-1. Synchronous Distributed Training Using MirroredStrategy

1 strategy = tf.distribute.MirroredStrategy()

2 with strategy.scope():

3 model = tf.keras.Sequential([...])

4 model.compile(...)

5 model.fit(...)

Thus, with just two additional lines of code and minor adjustments, we can

distribute our training to multiple GPUs on a single machine.

As shown in Listing 10-1, within the scope() method of the MirroredStrategy

object, we create the computation that we want to run in a distributed and parallel

fashion. The MirroredStrategy object takes care of replicating the model’s training on

the available GPUs, aggregating gradients, and more.

Chapter 10 Computer Vision modeling on the Cloud

395

Each batch of the input is divided equally among the replicas. For example, if the

input batch size is 16 and we use MirroredStrategy with two GPUs, each GPU will

get eight input examples in each step. We should tune the batch size appropriately to

effectively utilize the computing power of the GPUs.

The tf.distribute.MirroredStrategy() method creates the default object that

uses all available GPUs that are visible to TensorFlow. If you want to use only some of the

GPUs of the machine, simply do the following:

strategy = tf.distribute.MirroredStrategy(devices=["/gpu:0", "/gpu:1"])

Here’s an exercise for you: modify the code example shown in Listing 5-4 and train

the digit recognition model in distributed mode using MirroredStrategy.

 CentralStorageStrategy

CentralStorageStrategy places the model variables on the CPU and replicates

the computations across all local GPUs on one machine. Except for the

placement of variables on the CPU rather than replicating them on GPUs, the

CentralStorageStrategy is similar to the MirroredStrategy.

At the time of writing this book, the CentralStorageStrategy is experimental and

likely to change in the future. To distribute the training under CentralStorageStrategy,

simply replace line 1 of Listing 10-1 with the following:

strategy = tf.distribute.experimental.CentralStorageStrategy()

 MultiWorkerMirroredStrategy

MultiWorkerMirroredStrategy is similar to MirroredStrategy. It distributes the

training across multiple machines, each having one or more GPUs. It copies all variables

in the model on each device across all machines. These machines where computations

are performed are referred to as workers.

To keep the variables in sync across all workers, it uses CollectiveOps as the all-

reduce communication method. A collective op is a single op in the TensorFlow

graph. It can automatically chooses an all-reduce algorithm in the TensorFlow runtime

according to hardware, network topology, and tensor sizes.

To distribute the training across multiple workers under

MultiWorkerMirroredStrategy, simply replace line 1 of Listing 10-1 with the following:

strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy()

Chapter 10 Computer Vision modeling on the Cloud

396

This creates the default MultiWorkerMirroredStrategy with

CollectiveCommunication.AUTO as the default for CollectiveOps. You can choose one

of the following two implementations of CollectiveOps:

• CollectiveCommunication.RING implements ring-based collectives

using gRPC as the communication layer. gRPC is an open source

implementation of Remote Procedure Call developed by Google.

To use this, call the previous instantiation as follows:

strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy(

 tf.distribute.experimental.CollectiveCommunication.RING)

• CollectiveCommunication.NCCL uses NVIDIA NCCL to implement

collectives. Here is a usage example:

strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy(

 tf.distribute.experimental.CollectiveCommunication.NCCL)

Cluster Configuration

TensorFlow makes it easy to distribute the training across multiple workers. But

how does it know about the cluster configuration? Before we run our code that uses

MultiWorkerMirroredStrategy to distribute the training, we must set the TF_CONFIG

environment variable on all the workers that are going to participate in the model

training. TF_CONFIG is described later in this section.

Dataset Sharding

How is data made available to workers?

When we use model.fit(x=train_datasets, epochs=3, steps_per_epoch=5), we

pass the training set directly to the fit() function. The dataset is sharded automatically

in a multiworker training.

Fault Tolerance

If any of the workers fails, the entire cluster will fail. There is no built-in failure recovery

mechanism in TensorFlow. However, tf.distribute.Strategy with Keras provides a

fault tolerance mechanism by saving the training checkpoints. If any worker fails, all the

other workers will wait for the failed workers to restart. Since the checkpoints are saved,

Chapter 10 Computer Vision modeling on the Cloud

397

the training will start from the point where it stopped as soon as the failed worker comes

back up.

To make your distributed cluster fault tolerant, you must save the training

checkpoints (review Chapter 5 to see how checkpoints are saved using callbacks).

 TPUStrategy

Tensor processing units (TPUs) are specialized application-specific integrated circuits

(ASICs) designed by Google to dramatically accelerate the machine learning workloads.

TPUs are available on Cloud TPU and Google Colab.

In terms of implementation, TPUStrategy is the same as MirroredStrategy except

that the model variables are mirrored to TPUs. Listing 10-2 shows how to instantiate

TPUStrategy.

Listing 10-2. Instantiation of TPUStrategy

1 cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver(

 tpu=tpu_address)

2 tf.config.experimental_connect_to_cluster(cluster_resolver)

3 tf.tpu.experimental.initialize_tpu_system(cluster_resolver)

4 tpu_strategy = tf.distribute.experimental.TPUStrategy(cluster_resolver)

In line 1, specify the TPU address by passing it to the argument tpu=tpu_address.

 ParameterServerStrategy

In ParameterServerStrategy, the model variables are placed on a dedicated machine,

called the parameter server. In this case, some machines are designated as workers and

some as parameter servers. Computations are replicated across all GPUs of all workers

while the variables are updated in the parameter server.

The implementation of ParameterServerStrategy is the same as

MultiWorkerMirroredStrategy. We must set the TF_CONFIG environment variable on

each of the participating machines. TF_CONFIG is explained next.

To distribute the training under ParameterServerStrategy, simply replace line 1 of

Listing 10-1 with the following:

strategy = tf.distribute.experimental.ParameterServerStrategy()

Chapter 10 Computer Vision modeling on the Cloud

398

 OneDeviceStrategy

Sometimes we want to test our distributed code on a single device (GPU) before

moving it to a fully distributed system involving multiple devices. OneDeviceStrategy is

designed for this purpose. When we use this strategy, the model variables are placed on

a specified device.

To use this strategy, simply use the following code and replace line 1 of Listing 10-1:

strategy = tf.distribute.OneDeviceStrategy(device="/gpu:0")

This strategy is only for testing the code. Switch to other strategies before training

your model on a fully distributed environment.

It is important to note that all the previous strategies, except MirroredStrategy, for

distributed training are experimental at this time.

 TF_CONFIG: TensorFlow Cluster Configuration
A TensorFlow cluster for distributed training consists of one or more machines, called

workers. The computations of the model training are performed in each worker. There is

one specialized worker, called the master or chief worker, that has extra responsibilities

in addition to being a normal worker. The additional responsibilities of the chief worker

include saving the checkpoints and writing summary files for TensorBoard.

The TensorFlow cluster may also include dedicated machines for parameter servers.

The parameter server is mandatory in the case of ParameterServerStrategy.

The TensorFlow cluster configuration is specified by a TF_CONFIG environment

variable. We must set this environment variable on all the machines on the cluster.

The format of TF_CONFIG is a JSON file consisting of two components: cluster and

task.

The cluster component provides information about the workers and parameter

servers that participate in the model training. This is a dictionary list of the workers’

hostnames and communication ports (e.g., localhost:1234).

The task component specifies the role of the worker for the current task. It is

customary to specify the first worker, with index 0 in the worker list, as the master or

chief worker.

Table 10-1 describes the key-value pairs of TF_CONFIG .

Chapter 10 Computer Vision modeling on the Cloud

399

 An Example TF_CONFIG

Assume that we have a cluster of three machines that we want to use for distributed

training. The hostnames of these machines are host1.local, host2.local, and host3.

local. Assume that they all communicate via port 8900.

Also, assume the following roles for each machine:

worker: host1.local (chief worker)

worker: host2.local (normal worker)

ps: host3.local (parameter server)

The TF_CONFIG environment variable that needs to be set on all three machines, as

shown in Table 10-2.

Table 10-1. TF_CONFIG Format Description

Key Description Example

cluster a dictionary containing the keys worker, chief, and ps.

each of these keys is a list of hostname:port of all

machines involved in the training.

cluster: {

worker:["host1:12345",

"host2:2345"]

}

task specifies the task a particular machine will perform.

this has the following keys:

type: this specifies the worker type and takes a string

for worker, chief, or ps.

index: the zero-based index of the task. most

distributed training jobs have a single master task, one or

more parameter servers, and one or more workers.

trial: this is used when hyperparameter tuning is

performed. this value sets the number of trials to train.

this helps to identify which trial is currently running.

this takes a string value containing the trial number,

starting from 1.

task: { type: chief,

index:0}

this indicates that

host1:1234 is the chief

node.

job the job parameters you used when you initiated the job.

this is optional and may be ignored in most cases.

Chapter 10 Computer Vision modeling on the Cloud

400

 Example Code of Distributed Training
with a Parameter Server
Listing 10-3, a modified version of Listing 5-2, shows a simple implementation of

ParameterServerStrategy to distribute training to multiple workers. We will explore

how to execute this code on the cloud.

Listing 10-3. Distributing Training Across Multiple Workers Using

ParameterServerStrategy

File name: distributed_training_ps.py

01: import argparse

02: import tensorflow as tf

03: from tensorflow_core.python.lib.io import file_io

04:

05: #Disable eager execution

06: tf.compat.v1.disable_eager_execution()

07:

08: #Instantiate the distribution strategy -- ParameterServerStrategy.

 #This needs to be in the beginning of the code.

09: strategy = tf.distribute.experimental.ParameterServerStrategy()

10:

Table 10-2. Example TF_CONFIG Environment Variable in Three-Node Cluster

That Has Two Workers and One Parameter Server

master worker ps

'cluster': {

 'worker': ["host1.

local:8900", "host2.

local:8900"], "ps":

["host3.local:8900"]

},

 'task': {'type':

worker, 'index': 0}

}

'cluster': {

 'worker': ["host1.

local:8900", "host2.

local:8900"], "ps":

["host3.local:8900"]

},

'task': {'type':

worker, 'index': 1}

}

'cluster': {

 'worker': ["host1.

local:8900", "host2.

local:8900"], "ps":

["host3.local:8900"]

},

'task': {'type': ps,

'index': 0}

}

Chapter 10 Computer Vision modeling on the Cloud

401

11: #Parse the command line arguments

12: parser = argparse.ArgumentParser()

13: parser.add_argument(

14: "--input_path",

15: type=str,

16: default="",

17: help="Directory path to the input file. Could you be cloud storage"

18:)

19: parser.add_argument(

20: "--output_path",

21: type=str,

22: default="",

23: help="Directory path to the input file. Could you be cloud storage"

24:)

25: FLAGS, unparsed = parser.parse_known_args()

26:

27: # Load MNIST data using built-in datasets' download function

28: mnist = tf.keras.datasets.mnist

29: (x_train, y_train), (x_test, y_test) = mnist.load_data()

30:

31: #Normalize the pixel values by dividing each pixel by 255

32: x_train, x_test = x_train / 255.0, x_test / 255.0

33:

34: BUFFER_SIZE = len(x_train)

35: BATCH_SIZE_PER_REPLICA = 16

36: GLOBAL_BATCH_SIZE = BATCH_SIZE_PER_REPLICA * 2

37: EPOCHS = 10

38: STEPS_PER_EPOCH = int(BUFFER_SIZE/EPOCHS)

39:

40: train_dataset = tf.data.Dataset.from_tensor_slices((x_train,

 y_train)).shuffle(BUFFER_SIZE).batch(GLOBAL_BATCH_SIZE)

41: test_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test)).

batch(GLOBAL_BATCH_SIZE)

42:

43:

Chapter 10 Computer Vision modeling on the Cloud

402

44: with strategy.scope():

45: # Build the ANN with 4-layers

46: model = tf.keras.models.Sequential([

47: tf.keras.layers.Flatten(input_shape=(28, 28)),

48: tf.keras.layers.Dense(128, activation='relu'),

49: tf.keras.layers.Dense(60, activation='relu'),

50: tf.keras.layers.Dense(10, activation='softmax')])

51:

52: # Compile the model and set optimizer,loss function and metrics

53: model.compile(optimizer='adam',

54: loss='sparse_categorical_crossentropy',

55: metrics=['accuracy'])

56:

57: #Save checkpoints to the output location--most probably on a cloud

storage, such as GCS

58: callback = tf.keras.callbacks.ModelCheckpoint(filepath=FLAGS.output_path)

59: # Finally, train or fit the model

60: history = model.fit(train_dataset, epochs=EPOCHS, steps_per_

epoch=STEPS_PER_EPOCH, callbacks=[callback])

61:

62: # Save the model to the cloud storage

63: model.save("model.h5")

64: with file_io.FileIO('model.h5', mode='r') as input_f:

65: with file_io.FileIO(FLAGS.output_path+ '/model.h5', mode='w+') as

output_f:

66: output_f.write(input_f.read())

The code in Listing 10-3 can be divided into four logical parts.

• Reading and parsing the command-line arguments (lines 11 through 25).

It accepts two arguments: the training data input path and the output

path for saving checkpoints and the final model.

• Loading the input images and creating the training and test sets (lines

27 through 41). It is important to note that ParameterServerStrategy

does not support last partial batch handling, passing the steps_per_

epoch argument to model.fit() when the dataset is imbalanced on

multiple workers. Notice the calculation of steps_per_epoch in Line 38.

Chapter 10 Computer Vision modeling on the Cloud

403

• Creating and compiling the Keras model within the scope of

ParameterServerStrategy (line 9 and lines 44 through 55). Here are

a few important points to consider:

• Create the instance of ParameterServerStrategy or

MultiWorkerMirroredStrategy at the beginning of the program

and put the code that may create ops after the strategy is

instantiated.

• The portion of the code that needs to be distributed must be

wrapped within the scope of the strategy.

• Line 44 defines the scope() block within which we wrap the

model definition and compilation.

• Lines 45 through 50 create the model within the strategy scope.

• Lines 53 through 55 compile the model within the strategy scope.

• Training the model and saving the checkpoints and final model (lines

57 through 66).

 a. Line 58 creates the model checkpoint object that is passed to

the model’s fit() function to save the checkpoints while the

model trains.

 b. Line 60 triggers the model training by calling the fit()

function. As explained earlier, the train_dataset passed

to the fit() function is automatically distributed by the

distribution strategy (ParameterServerStrategy in this case).

 c. Line 63 saves the complete model in the local directory. Lines

64 through 66 copy the local model to cloud storage, such as

Google Cloud Storage (GCS) or Amazon S3.

 d. Notice that lines 57 through 66 are outside the scope of the

strategy.

We now have the model training code that can be distributed across multiple

workers and trained in parallel mode using a parameter server. Next, we will run this

training on the cloud using the architecture shown in Figure 10-4.

Chapter 10 Computer Vision modeling on the Cloud

404

 Steps for Running Distributed Training on the Cloud
We will deploy a TensorFlow cluster on the cloud based on the architecture shown in

Figure 10-4 and do the following steps to execute the training:

 1. Create a TensorFlow cluster.

 a. Parameter server, chief, and worker nodes: All three cloud providers—AWS,

GCP, Azure—provide a browser-based shell and graphical user interface

(UI) to create and manage virtual machines. We can create either GPU-

based VMs or CPU-based VMs depending on the data size and the neural

network’s complexity.

 2. Install TensorFlow and all the prerequisite libraries on all VMs:

Review Chapter 1 for the instructions on installing prerequisites.

For running the code in Listing 10-3, we will install TensorFlow

only.

Figure 10-4. TensorFlow cluster architecture with the chief, workers, and
parameter server on the cloud VMs. The data and the model are on the scalable
storage system

Chapter 10 Computer Vision modeling on the Cloud

405

 3. Create the cloud storage directory (also called a bucket):

Depending upon the cloud provider, we will create one of the

following:

• AWS S3 bucket

• Google Cloud Storage (GCS) bucket

• Azure container

 4. Upload the Python code and execute the training on each machine:

Using the cloud shell or any other SSH client, log in to each of the

nodes and perform the following:

• Upload the Python package containing the dependencies and

model training code (of Listing 10-3) to each of the nodes. Upload

the code via scp or any other file transfer protocols. Since our

code is committed in GitHub, we can clone the repository and

download the code across all nodes.

 On each machine, clone the GitHub repository as shown in

Listing 10-4.

Listing 10-4. Cloning the GitHub Repository

git clone https://github.com/ansarisam/dist-tf-modeling.git

• We will need to set the machine role–specific TF_CONFIG environment

variable on each machine and execute the Python code for

distributed training, as shown in Listing 10-5.

Listing 10-5. Executing Distributed Training

export TF_CONFIG=$CONFIG;python distributed_training_ps.py --input_path

gs://cv_training_data --output_path gs://cv_distributed_model/output

It is not efficient to manually execute the command in Listing 10-5 on each of the

nodes, especially when there is a large number of workers. We can write scripts to

automate the launch of distributed training on a large cluster. The GitHub repository

shown in Listing 10-4 has a Python script that can be used for automation. To

understand how this works, we will follow the manual steps and launch the training on

each VM one by one.

Chapter 10 Computer Vision modeling on the Cloud

406

 Distributed Training on Google Cloud
Google Cloud Platform (GCP) is a suite of cloud computing services that runs on the

same infrastructure that Google uses internally for its end-user products, such as Google

Search and YouTube.

We will use two GCP services for the purpose of running distributed training. These

two services are Google Cloud Storage (GCS) for saving checkpoints and trained models

and Compute Engine for virtual machines (VMs).

Let’s get started!

 Signing Up for GCP Access
If you already have a GCP account, skip this section. If not, create a GCP account at

https://cloud.google.com. Google offers a $300 credit for education and learning.

We will use this free account for our exercise in this section. You must enable billing for

business and production deployment.

After creating an account, sign in to the Google Cloud Console, at https://console.

cloud.google.com. A successful sign-in will take you to the GCP Dashboard, which looks

like Figure 10-5.

Figure 10-5. Google Cloud Platform Dashboard

Chapter 10 Computer Vision modeling on the Cloud

https://cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com

407

 Creating a Google Cloud Storage Bucket
GCS is a highly durable object storage on Google Cloud. It can scale to store exabytes of

data. A GCS bucket is analogous to a directory in a file system. We can create the GCS

bucket in one of the following two ways.

 Creating the GCS Bucket from the Web UI
To create a bucket using the web UI, follow these steps:

 1. Log in to the Google Cloud Console, at https://cloud.google.com.

From the left- side navigation menu, click Storage and then Browse

to launch the storage browser page (see Figure 10-6).

 2. Click the Create Bucket button at the top of the page.

 3. On the next page, fill in the bucket name (e.g., cv_model) and

click Continue. Select Region for the location type, select the

appropriate location such as “us-east4 (Northern Virginia),” and

then click Continue (see Figure 10-7).

Figure 10-6. Storage menu

Chapter 10 Computer Vision modeling on the Cloud

https://cloud.google.com

408

 4. Select Standard for the default storage class, and click Continue.

 5. Select Uniform for the access control and then click Continue.

 6. Click the Create button to create the bucket.

 7. On the next page, click the Overview tab to see the bucket details

(see Figure 10-8).

Figure 10-7. Form to create a bucket

Chapter 10 Computer Vision modeling on the Cloud

409

 Creating the GCS Bucket from the Cloud Shell
If you have already created the bucket using the web UI, you do not need to follow these

steps. It is easy to create the bucket using the command line.

 1. Activate the Cloud Shell by clicking the icon located in the

top-right corner. In Figure 10-5, this icon is marked with a red

rectangle. The Cloud Shell will open at the bottom of the screen

(within the same browser window).

 2. Execute the command in Listing 10-6 in the Cloud Shell to create

the bucket.

Listing 10-6. gsutil Command to Create GCS Bucket

gsutil mb -c regional -l us-east4 gs://cv_model

Figure 10-8. Bucket detail page

Chapter 10 Computer Vision modeling on the Cloud

410

Provide the appropriate region and bucket name in the command

in Listing 10-6. If you have created the bucket using the web UI,

make sure to use a different bucket name.

gsutil is a Python application that lets us access cloud storage from

the command line.

Figure 10-9 shows the gsutil command execution in the Cloud Shell.

 Launching GCP Virtual Machines
We will launch the following types of virtual machines (VMs) for our exercise:

• One GPU-based VM: Parameter server

• One GPU-based VM: Chief node

• Two GPU-based VMs: Worker nodes

The VMs will be launched in the same region where our GCS bucket is located

(us- east4 in the previous example).

To launch the VMs, follow these steps:

 1. In the main navigation menu, click Compute Engine and then

“VM instances” to launch the page that displays a list of the VMs

previously launched.

 2. Click Create to launch the web form that we need to fill in to create

the instance. Figure 10-10 and Figure 10-11 show the instance

creation form.

Figure 10-9. gsutil command to create a bucket using the Cloud Shell

Chapter 10 Computer Vision modeling on the Cloud

411

Figure 10-10. Form (top portion) to provide information to create a VM

Chapter 10 Computer Vision modeling on the Cloud

412

 3. We will create four GPU-based VMs to create the cluster. In the

instance creation form, click the Change button next to the Image

under “Boot disk” (as shown in Figure 10-12).

On the next screen (as shown in Figure 10-13), select Deep

Learning on Linux for the operating system and Deep Learning

Image: TensorFlow 1.15.0 m45 for the version.

Figure 10-11. Bottom portion of the instance creation form

Figure 10-12. Clicking the Change button to launch the “Boot disk” selection page

Chapter 10 Computer Vision modeling on the Cloud

413

 4. Figure 10-14 shows the screen that lists all four VMs that we

created.

Figure 10-13. CUDA 10–based Linux OS with pre-installed TensorFlow 1.15

Chapter 10 Computer Vision modeling on the Cloud

414

 SSH to Log In to Each VMs
We will use the Cloud Shell and gsutil to log in to all four VMs created earlier. Activate

the Cloud Shell and click the + icon (marked with a red rectangle in Figure 10-15).

To log in via SSH, execute the commands (in each of the four Cloud Shell tabs)

shown in Listing 10-7.

Figure 10-14. List of all VMs created

Figure 10-15. Creating multiple tabs of the Cloud Shell by clicking the + icon

Chapter 10 Computer Vision modeling on the Cloud

415

Listing 10-7. SSH to Log In to All 4VMs Using Cloud Shell

SSH to parameter server gcloud compute ssh parameter-server

SSH to chief gcloud compute ssh chief

SSH to worker-0 gcloud compute ssh worker-0

SSH to worker-1 gcloud compute ssh worker-1

 Uploading the Code for Distributed Training or Cloning
the GitHub Repository
While logged in via SSH, execute the following command to clone the GitHub repository

that contains the distributed model training code (as shown in Listing 10-8). This needs

to be done on all machines.

Listing 10-8. Command to Clone the GitHub Repository

git clone https://github.com/ansarisam/dist-tf-modeling.git

If the git command does not work, install git using the command sudo apt-get

install git.

 Installing Prerequisites and TensorFlow
The image “Deep Learning on Linux” has all the prerequisites and TensorFlow

preinstalled. However, if we want to configure our environment, execute all the

commands of Listing 10-9 (review Chapter 1 for the detailed instructions).

Listing 10-9. Installing Prerequisites Including TensorFlow

sudo apt-get update

sudo apt-get -y upgrade && sudo apt-get install -y python-pip python-dev

sudo apt-get install python3-dev python3-pip

sudo pip3 install -U virtualenv

mkdir cv

virtualenv --system-site-packages -p python3 ./cv

source ./cv/bin/activate

pip install tensorflow==1.15

Chapter 10 Computer Vision modeling on the Cloud

416

 Running Distributed Training
Make sure you have cloned the GitHub repository (as shown in Listing 10-8) on all the

machines. Also, ensure you are logged in to each of the VMs via SSH (using the Cloud

Shell). Execute the following commands on each of the VMs to launch the distributed

training.

Here’s the command for the parameter server:

cd dist_tf_modeling

export TF_CONFIG='{"task": {"index": 0, "type": "ps"},

"cluster": {"chief":["chief:8900"],"worker": ["worker-0:8900",

"worker-1:8900"], "ps":["parameter-server:8900"]}}';python distributed_

training_ps.py --output_path gs://cv_model_v1

Here’s the command for the chief node:

cd dist_tf_modeling

export TF_CONFIG='{"task": {"index": 0, "type": "chief"},

"cluster": {"chief":["chief:8900"],"worker": ["worker-0:8900",

"worker-1:8900"], "ps":["parameter-server:8900"]}}';python distributed_

training_ps.py --output_path gs://cv_model_v1

Here’s the command for the worker-0 node:

cd dist_tf_modeling

export TF_CONFIG='{"task": {"index": 0, "type": "worker"},

"cluster": {"chief":["chief:8900"],"worker": ["worker-0:8900",

"worker-1:8900"], "ps":["parameter-server:8900"]}}';python distributed_

training_ps.py --output_path gs://cv_model_v1

Here’s the command for the worker-1 node:

cd dist_tf_modeling

export TF_CONFIG='{"task": {"index": 1, "type": "worker"},

"cluster": {"chief":["chief:8900"],"worker": ["worker-0:8900",

"worker-1:8900"], "ps":["parameter-server:8900"]}}';python distributed_

training_ps.py --output_path gs://cv_model_v1

Chapter 10 Computer Vision modeling on the Cloud

417

Note that all participating nodes must be able to communicate with the parameter

servers via the port configured in TF_CONFIG. Also, the nodes must have the necessary

read and write permissions to the GCS bucket.

The model checkpoints are saved in GCS at the path gs://cv_model_v1. The trained

model is saved as model.h5 in gs://cv_model_v1.

GCP instances with GPUs are expensive. You should terminate them if they are no

longer used to avoid any charges.

 Distributed Training on Azure
Microsoft Azure is a cloud computing service used for building, testing, deploying, and

managing applications and services through Microsoft-managed data centers.

The distributed training with ParameterServerStrategy in Listing 10-3 will also

work on Azure in almost the same way it worked on GCP. The difference between

GCP and Azure is the way we create VMs nodes. Instead of repeating the process of

distributing the parameter server–based training on an Azure cluster, we will explore a

different strategy for distributed training.

We will distribute the training using MirroredStrategy on a single node that has

multiple GPUs. In this section, we will learn the following:

• How to create a multi-GPU-based virtual machine on Azure using the

web interface

• How to set up TensorFlow to run on GPUs

• What changes are needed to make the code in Listing 10-3 work on

multiple GPUs

• How to execute the training and monitor it

Note that the GPU support for TensorFlow is available for Ubuntu and Windows with

CUDA-enabled cards. In this exercise, we will create a Ubuntu 18.4–based VM with two

GPUs.

Chapter 10 Computer Vision modeling on the Cloud

418

 Creating a VM with Multiple GPUs on Azure
We need to first sign up at https://azure.microsoft.com/ to create a free account.

Then go to https://portal.azure.com/ and log in to your account. The free account

allows you to create a VM with only one GPU. To create a VM with multiple GPUs, you

must activate billing. To activate it, follow these instructions:

 1. Click the main navigation (expand the burger icon located in the

top-left corner).

 2. Select Cost Management + Billing, and click “Azure subscription.”

 3. Click Add.

 4. Follow the on-screen instructions.

To create the virtual machine, do the following:

 1. On the home page, click the icon for “Virtual machines.”

 2. Click the button “Create virtual machine” located at the bottom of

the page or click the + Add icon located in the top-left corner.

 3. Fill in the form to configure the VM. Figure 10-16 shows the top

portion of the basic configuration. For the field Image, select

Ubuntu Server 10.04 LTS.

Chapter 10 Computer Vision modeling on the Cloud

https://azure.microsoft.com/
https://portal.azure.com/

419

 4. We will add GPUs to the VM. Click the link “Change size,” which is

shown enclosed within the red rectangle in Figure 10-16. This will

launch the page that shows a list of all the available devices within

the region that you selected for the Region field in Figure 10-3.

As shown in Figure 10-17, first clear all the filters and search for NC

to find the NC series of GPUs. We will select the NC12_Promo VM

size, which gives us two GPUs, 12 vCPUs, and 112GB of memory.

Highlight the row corresponding to the size NC12_Promo and click

the Select button located at the bottom of the screen.

Figure 10-16. Azure configuration page to create a VM

Chapter 10 Computer Vision modeling on the Cloud

420

Visit https://docs.microsoft.com/en-us/azure/virtual-

machines/linux/sizes-gpu for more information about other VM

sizes.

If the row corresponding to the GPU we want to use is grayed out,

that means either you have not upgraded your subscription or you

do not have sufficient quota to use that VM.

You can ask Microsoft to increase your quota. Visit https://

docs.microsoft.com/en-us/azure/azure-resource-manager/

templates/error-resource-quota for more information on how

to request a quota increase.

On the Basic configuration screen (Figure 10-3), you can select

either of the following (depending on your security policy) for the

authentication type:

• SSH public key: Paste the SSH public key that you will use to

access this VM.

• Password: Create a username and password that you will need to

supply while connecting via SSH. We will use this option for our

exercise.

Figure 10-17. Device size (GPU) selection screen

Chapter 10 Computer Vision modeling on the Cloud

https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-gpu
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-gpu
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/error-resource-quota
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/error-resource-quota
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/error-resource-quota

421

 5. Leave everything else as the default and click the “Review +

create” button at the bottom-left corner of the screen. On the next

page, we will review our configuration to make sure everything

is selected correctly and then finally click the Create button. If

everything goes well, the VM with two GPUs will be created. It

may take a few minutes for our VM to be ready.

In this case, we did not create any disk as the VM comes with a

large enough disk size to run our training. This is not a persistent

disk and will be deleted if the VM is terminated. Therefore, in

production, you must add a persistent disk to avoid losing the

data.

 6. After our VM is ready, we will see an alert indicating that the VM

is ready to use, if we have not left the page we were last on. We can

also go back to the home page and click the “Virtual machines”

icon to see a list of VMs we have created. Click the VM name to

open the details page, as shown in Figure 10-18.

 7. Note the public IP address or copy it, as we will need it to SSH

to our VM. Using an SSH client, such as Putty for Windows

or the Shell terminal in Mac or Linux, log on to the VM using

the authentication method you selected before. Here are the

commands to SSH via the two methods of authentication:

Figure 10-18. VM detail page showing the public IP address

Chapter 10 Computer Vision modeling on the Cloud

422

• Password-based authentication:

$ ssh username@13.82.230.148

username@13.82.230.148's password:

• SSH public key–based authentication:

$ ssh -i ~/sshkey.pem 13.82.230.148

If successfully authenticated, you will be logged in to the VM.

 Installing GPU Drivers and Libraries
To run TensorFlow on a GPU-based machine, we need to install the GPU driver and a

few libraries. Perform the following steps:

 1. Execute all the commands of Listing 10-10 on the terminal (make

sure you are logged in via SSH).

Listing 10-10. Commands to Add NVIDIA Package Repositories

Add NVIDIA package repositories

$ wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/

x86_64/cuda-repo-ubuntu1804_10.1.243-1_amd64.deb

$ sudo dpkg -i cuda-repo-ubuntu1804_10.1.243-1_amd64.deb

sudo apt-key adv --fetch-keys $ https://developer.download.nvidia.com/

compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub

$ sudo apt-get update

$ wget http://developer.download.nvidia.com/compute/machine-learning/repos/

ubuntu1804/x86_64/nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.deb

$ sudo apt install ./nvidia-machine-learning-repo-ubuntu1804_1.0.0- 1_

amd64.deb

sudo apt-get update

 2. If the NVIDIA package repositories are successfully added, install

the NVIDIA driver using the command from Listing 10-11.

Listing 10-11. Installing the NVIDIA Driver

$ sudo apt-get install --no-install-recommends nvidia-driver-418

Chapter 10 Computer Vision modeling on the Cloud

423

 3. You will need to reboot the VM for the previous installation to

take effect. On the SSH terminal shell, execute the command sudo

reboot.

 4. SSH to the VM again.

 5. To test whether the NVIDIA driver was successfully installed,

execute the following command:

$ nvidia-smi

This command should display something like Figure 10-19.

 6. We will now install the development and runtime libraries

(Listing 10-12). This will be around 4GB in size.

Listing 10-12. Installing Development and Runtime Libraries

$ sudo apt-get install --no-install-recommends \

 cuda-10-1 \

 libcudnn7=7.6.4.38-1+cuda10.1 \

 libcudnn7-dev=7.6.4.38-1+cuda10.1

Figure 10-19. Output of the command nvidia-smi

Chapter 10 Computer Vision modeling on the Cloud

424

 7. Install the TensorRT library (Listing 10-13).

Listing 10-13. Installing TensorRT

$ sudo apt-get install -y --no-install-recommends libnvinfer6=6.0.1-

1+cuda10.1 \

 libnvinfer-dev=6.0.1-1+cuda10.1 \

 libnvinfer-plugin6=6.0.1-1+cuda10.1

 Creating virtualenv and Installing TensorFlow
Follow the instructions provided in Chapter 1 to install all the libraries and

dependencies you will need. We will execute the commands in Listing 10-14 to install all

the prerequisites that we need for our current exercise.

Listing 10-14. Installing Python, Creating virtualenv, and Installing TensorFlow

$ sudo apt update

$ sudo apt-get install python3-dev python3-pip

$ sudo pip3 install -U virtualenv

$ mkdir cv

$ virtualenv --system-site-packages -p python3 ./cv

$ source ./cv/bin/activate

(cv) $ pip install tensorflow

(cv) $ pip install tensorflow-gpu

 Implementing MirroredStrategy
Refer to line 9 of Listing 10-3. Instead of instantiating ParameterServerStrategy, we will

create an instance of MirroredStrategy, as shown here:

strategy = tf.distribute.MirroredStrategy()

All the other lines of Listing 10-3 will remain the same.

We have committed to the GitHub repository the modified code that has the

implementation of MirroredStrategy for distributed training. The GitHub repository

location is https://github.com/ansarisam/dist-tf-modeling.git, and the file name

containing the MirroredStrategy code is mirrored_strategy.py.

Chapter 10 Computer Vision modeling on the Cloud

https://github.com/ansarisam/dist-tf-modeling.git

425

 Running Distributed Training
Log on via SSH to the VM we created earlier. Then clone the GitHub repository, as shown

in Listing 10-15.

Listing 10-15. Cloning GitHub Repository

$ git clone https://github.com/ansarisam/dist-tf-modeling.git

Execute the Python code shown in Listing 10-16 to train the distributed model.

Listing 10-16. Executing the MirroredStrategy-Based Distributed Model

$ python dist-tf-modeling/mirrored_strategy.py

If everything goes well, you will see the training progress printed on the terminal

console. Figure 10-20 shows some sample output.

Chapter 10 Computer Vision modeling on the Cloud

426

To check whether the GPUs are being utilized for the distributed training, SSH to the

VM from a different terminal and execute the command shown in Listing 10-17.

Listing 10-17. Checking the GPU Status

$ nvidia-smi

Figure 10-21 and 10-22 show the outputs of this command.

Figure 10-20. Sample screen showing training progress and evaluation outputs

Chapter 10 Computer Vision modeling on the Cloud

427

Figure 10-22. GPU status while training is in progress

Figure 10-21. GPU status before the training starts

Chapter 10 Computer Vision modeling on the Cloud

428

If you no longer need the VM, you should terminate it to avoid any costs as these

GPU-based VMs are very expensive. Before terminating the VM, make sure you

download and store the trained model and checkpoints to permanent storage.

 Distributed Training on AWS
Amazon Web Services (AWS) is a subsidiary of Amazon that provides on-demand

cloud computing platforms and APIs to individuals, companies, and governments, on a

metered pay-as-you-go basis. In this section, we will explore how to train a distributed

model on AWS.

The distributed training of Listing 10-3 will also work on AWS. All we need to do is to

create VMs and follow the steps that we did for training the model of GCP.

Similarly, we can train the MirroredStrategy-based model on AWS VMs that have

multiple GPUs. All the instructions for training on Azure will be the same for AWS, except

the method of creating multi-GPU-based VMs.

Here we will explore yet another technique for training a scalable model on the

cloud. We will learn how to use Horovod to distribute the training on AWS. Let’s first

understand what the Horovod framework is and how to use it in distributed model

training.

 Horovod
The official document describes Horovod as a distributed deep learning training

framework for TensorFlow, Keras, PyTorch, and Apache MXNet. It aims to make

distributed deep learning fast and easy to use. Horovod was developed at Uber and is

hosted by Linux Foundation AI.

The source code with documentation is maintained at the GitHub repository at

https://github.com/horovod/horovod. The official documentation is at https://

horovod.readthedocs.io/en/latest/summary_include.html.

To use Horovod, we will need to make a few minor changes in the TensorFlow

code for model training. We will use the same example code from Listing 5-2 and make

changes to make it Horovod compatible.

Chapter 10 Computer Vision modeling on the Cloud

https://github.com/horovod/horovod
https://horovod.readthedocs.io/en/latest/summary_include.html
https://horovod.readthedocs.io/en/latest/summary_include.html

429

 How to Use Horovod
When we define a neural network, we specify the optimization algorithm, such as AdaGrad,

that we want our network to use to optimize the gradients. In distributed learning, the

gradients are calculated in multiple nodes, averaged using an all-reduce or all-gather

algorithm, and further optimized using the optimization algorithm. Horovod provides a

wrapper function to distribute the optimization to all participating nodes and delegates the

gradient optimization task to the original optimization algorithm that we wrap in Horovod.

We will use Horovod with TensorFlow to distribute the model training to multiple nodes,

each having one or more GPUs. We will work on the same code example from Listing 5-2,

make a few minor changes to it to make it Horovod compatible, and execute the training on

AWS. To use Horovod, we need to make the following changes in the code of Listing 5-2:

 1. Import horovod.tensorflow as hvd.

 2. Initialize Horovod using hvd.init().

 3. Pin the GPU that will process gradients (one GPU per process)

using this:

config = tf.ConfigProto()

config.gpu_options.visible_device_list = str(hvd.local_rank())

 4. Build the model as we normally do in TensorFlow. Define the loss

function.

 5. Define the TensorFlow optimization function, as follows:

opt = tf.train.AdagradOptimizer(0.01 * hvd.size())

 6. Call the Horovod distributed optimization function and pass the

original TensorFlow optimizer from step 5. This is the core of

Horovod.

opt = hvd.DistributedOptimizer(opt)

 7. Create a Horovod hook to broadcast training variables to all

processors.

hooks = [hvd.BroadcastGlobalVariablesHook(0)]

0 means all processors with rank zero (e.g., the first GPU) to all

processors.

Chapter 10 Computer Vision modeling on the Cloud

430

 8. Finally, train the model using this:

train_op = opt.minimize(loss)

Let’s put all these together and convert our code from Listing 5-2 into Horovod-

compatible code that can be distributed across multiple nodes with multiple GPUs.

Listing 10-18 shows the complete code that we can execute on a Horovod cluster

with TensorFlow as an execution engine. Code taken from the examples directory of

the official source code of Horovod is maintained at https.//github.com/horovod/

horovod.git.

Listing 10-18. Distributed Training with Horovod

File name: horovod_tensorflow_mnist.py

01: import tensorflow as tf

02: import horovod.tensorflow.keras as hvd

03:

04: # Horovod: initialize Horovod.

05: hvd.init()

06:

07: # Horovod: pin GPU to be used to process local rank (one GPU per process)

08: gpus = tf.config.experimental.list_physical_devices('GPU')

09: for gpu in gpus:

10: tf.config.experimental.set_memory_growth(gpu, True)

11: if gpus:

12: tf.config.experimental.set_visible_devices(gpus[hvd.local_rank()], 'GPU')

13:

14: # Load MNIST data using built-in datasets download function

15: mnist = tf.keras.datasets.mnist

16: (x_train, y_train), (x_test, y_test) = mnist.load_data()

17:

18: #Normalize the pixel values by dividing each pixel by 255

19: x_train, x_test = x_train / 255.0, x_test / 255.0

20:

21: BUFFER_SIZE = len(x_train)

22: BATCH_SIZE_PER_REPLICA = 16

Chapter 10 Computer Vision modeling on the Cloud

http://github.com/horovod/horovod.git
http://github.com/horovod/horovod.git

431

23: GLOBAL_BATCH_SIZE = BATCH_SIZE_PER_REPLICA * 2

24: EPOCHS = 100

25: STEPS_PER_EPOCH = int(BUFFER_SIZE/EPOCHS)

26:

27: train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train)).

repeat().shuffle(BUFFER_SIZE).batch(GLOBAL_BATCH_SIZE,drop_remainder=True)

28: test_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test)).

batch(GLOBAL_BATCH_SIZE)

29:

30:

31: mnist_model = tf.keras.Sequential([

32: tf.keras.layers.Conv2D(32, [3, 3], activation='relu'),

33: tf.keras.layers.Conv2D(64, [3, 3], activation='relu'),

34: tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),

35: tf.keras.layers.Dropout(0.25),

36: tf.keras.layers.Flatten(),

37: tf.keras.layers.Dense(128, activation='relu'),

38: tf.keras.layers.Dropout(0.5),

39: tf.keras.layers.Dense(10, activation='softmax')

40:])

41:

42: # Horovod: adjust learning rate based on number of GPUs.

43: opt = tf.optimizers.Adam(0.001 * hvd.size())

44:

45: # Horovod: add Horovod DistributedOptimizer.

46: opt = hvd.DistributedOptimizer(opt)

47:

48: # Horovod: Specify `experimental_run_tf_function=False` to ensure

TensorFlow

49: # uses hvd.DistributedOptimizer() to compute gradients.

50: mnist_model.compile(loss=tf.losses.SparseCategoricalCrossentropy(),

51: optimizer=opt,

52: metrics=['accuracy'],

53: experimental_run_tf_function=False)

54:

Chapter 10 Computer Vision modeling on the Cloud

432

55: callbacks = [

56: # Horovod: broadcast initial variable states from rank 0 to all

other processes.

57: # This is necessary to ensure consistent initialization of all

workers when

58: # training is started with random weights or restored from a

checkpoint.

59: hvd.callbacks.BroadcastGlobalVariablesCallback(0),

60:

61: # Horovod: average metrics among workers at the end of every epoch.

62: #

63: # Note: This callback must be in the list before the

ReduceLROnPlateau,

64: # TensorBoard or other metrics-based callbacks.

65: hvd.callbacks.MetricAverageCallback(),

66:

67: # Horovod: using `lr = 1.0 * hvd.size()` from the very beginning

leads to worse final

68: # accuracy. Scale the learning rate `lr = 1.0` ---> `lr = 1.0 *

hvd.size()` during

69: # the first three epochs. See https://arxiv.org/abs/1706.02677 for

details.

70: hvd.callbacks.LearningRateWarmupCallback(warmup_epochs=3, verbose=1),

71:]

72:

73: # Horovod: save checkpoints only on worker 0 to prevent other workers

from corrupting them.

74: if hvd.rank() == 0:

75: callbacks.append(tf.keras.callbacks.ModelCheckpoint('./checkpoint-

{epoch}.h5'))

76:

77: # Horovod: write logs on worker 0.

78: verbose = 1 if hvd.rank() == 0 else 0

79:

Chapter 10 Computer Vision modeling on the Cloud

433

80: # Train the model.

81: # Horovod: adjust the number of steps based on the number of GPUs.

82: mnist_model.fit(train_dataset, steps_per_epoch=500 // hvd.size(),

callbacks=callbacks, epochs=24, verbose=verbose)

The code section that uses the Horovod APIs are marked in the comments with the

label Horovod:. The code is properly commented to help you understand how to use

Horovod. All other lines of code were already explained in Chapter 5.

 Creating a Horovod Cluster on AWS
You must have an AWS account and be able to log in to your AWS web console. If you do

not have an account, create one at https://aws.amazon.com. AWS offers certain types

of resources for free for a year. But the types of resources that we need in order to train

our model on a Horovod cluster may require you to enable billing. Your account may

be charged for the resources you will use to run the distributed training. You may also

need to request to increase quotas for certain resources such as vCPU and GPUs. The

instructions to increase quotas are available at https://aws.amazon.com/about-aws/

whats-new/2019/06/introducing-service-quotas-view-and-manage-quotas-for-

aws-services-from-one-location/.

 Horovod Cluster

AWS provides a convenient way to create a massively scalable Horovod cluster with just

a few clicks. For the purpose of our exercise in this section, we will create a cluster of two

nodes, each having only one GPU. We will perform the following:

 1. Log on to your AWS account to access the AWS management

console; see https://console.aws.amazon.com.

 2. Click Services, then EC2, then Instances, and then Launch

Instance (as shown in Figure 10-23).

Chapter 10 Computer Vision modeling on the Cloud

https://aws.amazon.com
https://aws.amazon.com/about-aws/whats-new/2019/06/introducing-service-quotas-view-and-manage-quotas-for-aws-services-from-one-location/
https://aws.amazon.com/about-aws/whats-new/2019/06/introducing-service-quotas-view-and-manage-quotas-for-aws-services-from-one-location/
https://aws.amazon.com/about-aws/whats-new/2019/06/introducing-service-quotas-view-and-manage-quotas-for-aws-services-from-one-location/
https://console.aws.amazon.com

434

 3. On the next screen, search for deep learning and select “Deep

Learning AMI (Deep Learning AMI (Amazon Linux) Version 26.0 -

ami-02bd97932dabc037b)” from the list of Amazon machine

images (AMIs). See Figure 10-24.

Figure 10-23. AWS instance launch screen

Figure 10-24. AMI selection screen

Chapter 10 Computer Vision modeling on the Cloud

435

 4. On the Choose an Instance Type page, select the GPU instances,

type g2.2xlarge, set the vCPUs to 8, and set the memory to

15GB (as shown in Figure 10-25). You can select any GPU-based

instance to meet your training requirements. Click the Next:

Configuration Instance Details button at the bottom of the screen.

 5. Fill in the Configure Instance Details page (as shown in Figure 10-26).

In the Number of Instances field, we entered 2 to create two nodes

in the cluster. You can create as many nodes as you need to scale

your training.

For the placement group, check the box “Add Instance to

placement group” and create a new group or add to an existing

one. Select “cluster” for the placement group strategy.

We will leave everything else at the default settings on this page.

Click the Next: Add Storage button.

Figure 10-25. Choose an Instance Type selection screen

Chapter 10 Computer Vision modeling on the Cloud

436

 6. On the Add Storage page (as shown in Figure 10-27), provide the

numbers for the disk size as per your needs. In this example, we

will leave everything as is. Click the Next: Add Tags button and

then the Next: Configure Security Groups button.

Figure 10-26. Configuring the instance details

Chapter 10 Computer Vision modeling on the Cloud

437

 7. Either create a new security group or use “Select an existing

security group” if you want an existing security group (see

Figure 10-28). Click Review and Launch followed by the Launch

buttons. This will display a pop-up screen to either create or

select a key pair. This key pair is used to log on to the VM using

SSH. Follow the on-screen instructions (as shown in Figure 10-29).

Figure 10-28. Page to create or select security groups

Figure 10-27. Add Storage page

Chapter 10 Computer Vision modeling on the Cloud

438

 8. After the instances are successfully launched, we will need to

create passwordless SSH to enable every node to communicate

with each other. We create an RSA key on one machine and copy

the public key from the rsa_id.pub file to all nodes’ authorized_

keys file. Here are the steps:

 a. SSH to machine 1, and from its home directory, execute the

command ssh- keygen. Press Enter for every single prompt

until you see the fingerprint printed on the screen. The

terminal output should look like Figure 10-30.

Figure 10-29. Pop-up screen to create or select a key pair

Chapter 10 Computer Vision modeling on the Cloud

439

 b. Copy the content of ~/.ssh/id_rsa.pub to ~/.ssh/

authorized_keys, as shown in Figure 10-31 and Figure 10-32.

Figure 10-30. ssh-keygen output

Figure 10-31. cat ~/.ssh/id_ras.pub output. Copy the entire text starting from ssh- rsa

Figure 10-32. Paste the id_rsa.pub content to the end of the authorized_keys file

Chapter 10 Computer Vision modeling on the Cloud

440

 c. Copy the id_rsa.pub content of one machine to the end of the

authorized_keys files of all nodes.

 d. Repeat the process to create ssh-keygen on the rest of the

machines and copy the contents of id_rsa.pub to the end of

authorized_keys of each of the nodes.

 e. You should verify by logging in via SSH from one machine to

another. It should allow you to log on without any password.

If the SSH prompts for a password, that means you do not

have passwordless communication from one machine to

the other. For Horovod to work, all machines must be able to

communicate without a password to other machines.

 Running Distributed Training

The AMI we used in this example contains scripts to launch the training in distributed

mode. There is a train_synthetic.sh shell script located at /home/ec2-user/examples/

horovod/tensorflow. You can modify this script to point to your code and launch the

training.

This example script launches a RestNet-based training on the Horovod cluster we

just created. Simply execute it as follows:

sh /home/ec2-user/examples/horovod/tensorflow/train_synthetic.sh 2

The 2 argument indicates the number of GPUs in the cluster.

If everything goes well, you will have a trained model that you can download to the

machine where you will host the application that uses this model to predict outcomes.

The AMI we used has Horovod already installed. If you want to use a VM that does

not have Horovod, follow the installation instructions in the next section.

 Installing Horovod
Horovod depends on OpenMPI to run. First we need to install OpenMPI using the

commands shown in Listing 10-19.

Chapter 10 Computer Vision modeling on the Cloud

441

Listing 10-19. Installing OpenMPI

Download Open MPI

$ wget https://download.open-mpi.org/release/open-mpi/v4.0/openmpi- -

4.0.2.tar.gz

Uncompress

$ gunzip -c openmpi-4.0.2.tar.gz | tar xf -

$ cd openmpi-4.0.2

$./configure --prefix=/usr/local

$ make all install

It will take several minutes to install OpenMPI.

After OpenMPI is successfully installed, install Horovod using the pip command, as

shown in Listing 10-20.

Listing 10-20. Installing Horovord

$ pip install horovord

Listings 10-19 and 10-20 must be executed on all machines of the cluster.

 Running Horovod to Execute Distributed Training
To run on a machine with four GPUs, use this:

$ horovodrun -np 4 -H localhost:4 python horovod_tensorflow_mnist.py

To run on four machines with four GPUs each, run this:

$ horovodrun -np 16 -H host1:4,host2:4,host3:4,host4:4 python horovod_

tensorflow_mnist.py

You can also specify host nodes in a host file. Here’s an example:

$ cat horovod_cluster.conf

host1 slots=2

host2 slots=2

host3 slots=2

Chapter 10 Computer Vision modeling on the Cloud

442

This example lists the hostnames (host1, host2, and host3) and how many “slots”

there are for each. Slots indicate how many GPUs the training can potentially execute on

a node.

To run on hosts specified in a file called horovod_cluster.conf, run this:

$ horovodrun -np 6 -hostfile horovod_cluster.conf python horovod_

tensorflow_mnist.py

VMs with GPUs are costly. Therefore, it is advised to terminate the VMs if they are no

longer used. Figure 10-33 shows how to terminate your instances.

 Summary
The chapter started with the introduction of distributed training of computer vision

models. We explored various distribution strategies supported in TensorFlow and

learned how to write code for distributed training.

We trained our handwriting recognition model based on the MNIST dataset on the

GCP, Azure, and AWS cloud infrastructures. We explored three different techniques

of training models on the three cloud platforms. Our example training was based

on TensorFlow-supported distribution strategies: ParameterServerStrategy and

MirroredStrategy. You also learned how to use Horovod for large-scale training of

computer vision models.

Figure 10-33. Terminating AWS VMs

Chapter 10 Computer Vision modeling on the Cloud

443
© Shamshad Ansari 2020
S. Ansari, Building Computer Vision Applications Using Artificial Neural Networks,
https://doi.org/10.1007/978-1-4842-5887-3

Index

A
Accuracy, 184
Accuracy vs. epoch, 177
Activation function, 146
AdaGrad optimizer, 339
Adam optimization algorithm, 163, 164
Adaptive gradient

algorithm (Adagrad), 163
Adaptive thresholding, 77
add() function, 208
AlexNet CNN architecture, 214

features, 215
illustration, 216

Amazon Web Services (AWS)
definition, 428
Horovod, 428
MirroredStrategy, 428

Application-specific integrated circuits
(ASICs), 397

Arithmetic/bitwise operations
addition, 43, 44, 46
AND, 52
methods, 42
NOT, 53
OR, 52
subtraction, 46–51
XOR, 53, 55–57

Artificial intelligence (AI) system, 95
Artificial neural network (ANN), 132, 137
Artificial neuron, 140

Artificial sensing device, 139
Average pooling, 200

B
Backpropagation method, 164, 165
Binarization

adaptive thresholding, 77–79
Otsu’s, 79–82
simple thresholding, 74, 75, 77

Binary cross-entropy, 156
build_cnn() function, 209

C
calcHist() function, 100, 103
Canny edge detection, 89
Cluster configuration, 396
Color histogram

calculate, 100
definition, 99
equalizer, 106, 108, 109
grayscale, 101, 103
RGB-based color image, 103–105

colortable functions, 285
Comma-separated values (CSV), 386
compile() function, 174
Computer Vision modeling, 171

TensorFlow (see TensorFlow
distributed training)

Confidence loss (conf), 236

https://doi.org/10.1007/978-1-4842-5887-3#ESM

444

confusion_matrix() function, 182
Confusion matrix, 181–183
Convolution layers, 195
Convolution neural

network (CNN), 132, 194
AlexNet, 214
architecture, 195
chest X-ray, 202, 203
code structure, 203
features, 197
LeNet-5, 213
MLP layers, 196
output, 199
parts, 195
prediction output, 213
predict pneumonia, 211, 212
training, 203, 206, 210
valuation, 211
VGG-16, 216
working, 196, 197

Cost function, 158, 159
Crazing (Cr), 362
cv2.adaptiveThreshold() function, 78
cv2.addWeighted() function, 44
cv2.bitwise_and() function, 60
cv2.calcHist() function, 103, 125
cv2.equalizeHist() function, 106
cv2.findContours() function, 92
cv2.imread() function, 16
cv2.Laplacian() function, 88
cv2.line() function, 20
cv2.medianBlur()function, 69, 70
cv2.resize() function, 29, 31
cv2.Sobel() function, 84
cv2.THRESH_BINARY method, 76
cv2.threshold() function, 74, 80
cv2.warpAffine function, 32

D
Darknet-19, 243
Darknet-53, 246
Deep convolutional neural networks

(CNN)
FaceNet, 339
FLOPS vs. accuracy, 342
inception model, 340, 341
network configuration, 339

Deep learning, 143
Device index, 313
Difference hashing (dHash), 336

benefits, 317
converting image/snippet, 317
grayscale image, 318
image, calculation, 318
NumPy arrays, 318

Directory structure
object tracking system, 310
PyCharm, 311
structure, 311
templates, 310
video_tracking, 311

Drawing
circle on an image, 25, 26
line on an image, 18, 20
methods, 18
rectangle on an image, 21, 23, 24

Dropout layer, 180

E
Edge detection

canny, 89, 90
laplacian operator, 87–89
Sobel method, 82–86

Embedded model, 134

Index

445

Error functions, 154, 155
Error matrix, 181
evaluate() function, 177
Evaluation methods

metrics, 181
overfit model, 179
underfit model, 180

Existing model retrain, 194

F
Face alignment, 356
Face detection model, 354, 355
Face embeddings, 342
FaceNet

architecture, 338
capabilities, 338
deep CNN, 339–341
face embeddings, 342
input images, 339
neural network, 338
triplet loss function, 343
triplet selection, 344

Face recognition
alignment, MTCNN, 356, 357
application, 337
classifier training, 357, 358
Colab console output, 353
downloading VGGFace2

dataset, 347, 348
GitHub repository, cloning, 345
Google Colab, 344
image directory structure, 355
logs directory, 354
object detection, 337
TensorFlow implementations, 344
triplet loss function,

FaceNet model, 351, 352

uncompress files, commands, 349
VGGFace2 dataset, 345, 346
VideoCapture() function, 358, 359

False negative rate (FNR), 181
False positive rate (FPR), 181
Faster R-CNN architecture, 225, 226
Fast R-CNN architecture, 224, 227
Feature pyramid network (FPN), 228, 229
Feedforward neural network, 154
fit() function, 192, 209, 396
fit_generator() function, 209, 212
Flatten() function, 173
Floating-point operations per second

(FLOPS), 339
flow_from_directory() function, 207
Frames per second (FPS), 314

G
Gaussian filtering, 67
getObjectCounter() function, 321
Google Cloud Platform (GCP)

bucket, 407
Cloud shell, bucket, 409, 410
definition, 406
distributed training, running, 416, 417
GitHub repository, 415
prerequisites/TensorFlow, 415
signing up account, 406
SSH, VMs, 414
VMs, 410, 412–414
Web UI, bucket, 407, 408

Gradient descent, 158
learning rate, 159, 160
local/global minimum, 160
regularization, 161

Gray-level co-occurrence
matrix (GLCM), 109

Index

446

greycomatrix() function, 110, 111
greycoprops() function, 113
Ground truth, 220

H
Hamming distance, 319
hamming() function, 319
Handwritten digits, 170, 171
High-definition (HD), 312
Hinge loss, 156
Histograms of oriented

gradients (HOGs), 115
history.keys() function, 177
hog() function, 119
Horovod

cluster, 430, 431, 433, 435–438, 440
code, 429
definition, 428
installing, 440
neural network, 429
running, 440–442

horovod_cluster.conf, 442
HPARAMS

dashboard, 185
parallel combination, 189

Hyperparameters, 165, 184
goal, 186
training, 184
visualize, 186

I
image NumPy array, 17
Image annotations

class labels, creation, 384, 385
create connections, 382, 383
export labels, 386, 387

label images, 385
project settings page, 384
VoTT installers, 381, 382

ImageNet Large Scale Visual Recognition
Challenge (ILSVRC), 216

Image processing
definition, 9
drawing, 18
pixels, 10
Python/OpenCV code

Load/explore/display image, 15–17
modify pixel values, 17
NumPy, 14
virtualenv, 15

Image processing pipeline, 95–97
Image processing techniques

arithmetic/bitwise operation (see
Arithmetic/bitwise operations)

binarization, 74
contours, 90–94
gradients/edge detection

(see Edge detection)
masking, 58, 60, 61
smoothing and blurring, noise

reduction
bilateral blurring, 72, 73
Gaussian filtering, 67–69
mean filtering/averaging, 64–67
median blurring, 69–71
noise types, 64

splitting/merging channels, 61, 62, 64
Image transformation

cropping, 40, 41
flipping, 37–40
resizing, 28–31
translation, 32–35, 37

Inclusion (In), 362
Industrial manufacturing

Index

447

computer vision system, 361
manual process, 361
visual inspection, 361

infer_ object() function, 282–284, 286
Intersection over union (IoU), 220, 221

J
Jaccard index, 220
join() function, 314

K
keras.datasets.mnist module, 172
Kernel, 197
Kullback-Leibler divergence (KLD)

loss, 157

L
Labeled Faces in the Wild (LFW), 354
Labeled image dataset, 170, 171
Laplacian derivatives (cv2.Laplacian()

function), 87
Leaky ReLU function, 150

disadvantage, 151
graph, 151

Learning rate, 159
LeNet-5 CNN architecture, 213, 214
Linear activation function, 146, 147
Live video stream

directory structure, 322
flask server-side code, 324
HTML code, 323, 324
index() function, 324
install Flask, 322
video_server.py file, 325

load_data() function, 173

load_model() function, 280, 286
Local binary patterns (LBP), 121
Localization loss (loc), 236

M
Machine learning–based computer vision

system
feature extraction

color histogram, 97
histogram (see Color histogram)
nonexhaustive list, 98
representation, 98

feature selection
definition, 128
embedded method, 130
filter method, 128, 129
wrapper method, 129

GLCM, 109–114
HOGs, 115, 117–120
LBP, 121–124, 127
model deployment, 133, 135
model training

machine learning, 130, 131
supervised learning, 131, 132
unsupervised

learning, 133
Manually save weights, 193
Mask R-CNN architecture, 227–231

human pose, 230, 231
Matplotlib, 8
Max pooling, 200
Mean absolute error loss, 156
Mean average precision (mAP), 225
Mean squared logarithmic error (MSLE)

loss, 155, 156
Median blurring, 69
merge() function, 64

Index

448

Microsoft Azure
creating virtualenv, installing

TensorFlow, 424
definition, 417
GPU drivers/libraries, 422, 423
MirroredStrategy, 417, 424
multiple GPUs, 418–422
ParameterServerStrategy, 417
running, 425–427

Microsoft Cognitive Toolkit (CNTK), 386
MirroredVariables., 393
model.fit() function, 188
model(input_tensor) function, 282
Model parallelism, 393
model.predict() function, 178
model.predict_generator() function, 212
model.save() function, 193
Modified National Institute of Standards

and Technology (MNIST), 172
MTCNN algorithm, 360
Multiclass cross-entropy loss, 157
Multilayer perceptron (MLP), 141, 142

architecture, 143, 145
bias nodes, 144

Multitask cascaded convolutional
networks (MTCNNs), 349

N
Neural network, 138
NumPy arrays, 312, 316

O
Object detection, 219, 220, 309

infinite loop for reading streams, video
frames, 316

load trained model, 314
track_object() function, 315

unique identity, dHash (see Difference
hashing (dHash))

Object detectors
comparison, 247
Google Colab, 250

access, 250
creation, 252
hardware accelerator, 251
hosted runtime, 250, 251
pet dataset, 255
pre-trained-model, 259
setting runtime, 252–254
TensorBoard dashboard, 273, 274
TFRecord, 255–257
training pipeline, 260, 261, 263,

265, 266
transfer learning, 257, 258

model training, 274
coding, 277–287, 290
TensorFlow 2, 274
TensorFlow installation, 274–277

performance comparison, 248
TensorFlow, 249, 250

Object tracking
applications, 309
asynchronous reading of video

frames, 312–314
centers of bounding boxes, detected

objects, 320
count, video frames, 321
directory structure, 310, 311
images, 309
live video stream (see Live video

stream)
use cases, 319

OpenCV, 7
installation, 8
working, 7

Index

449

Optimization algorithm, 158
Optimizer, 141

P, Q
Patches (Pa), 362
Perceptron, 140
Pitted surface (PS), 362
Pixels

coordinate systems, 11–13
definition, 10
grayscale image, 10
RGB color model, 10, 11

plot() function, 104
Pooling layer, 200
Precision, 183
predict() function, 178, 194
predict_genetor() function, 212
print_function, 16
PyCharm, 5

configuration, 6, 7
installation, 6

Python and PIP, 2
CentOS 7, 3
macOS, 2
Ubuntu terminal, 2
Windows, 3

R
read() function, 314, 315
Real-time defect detector, 380
Real-time surface defect

detection system
exporting model, 377
generic_xml_to_tf_record.py, 373, 374
Google Colab, 364, 365
labeled images, 363

NEU dataset into TFRecord,
transformation, 365–371

NEU-DET dataset directory structure, 364
prediction, 379, 380
surface defects, 362
TensorBoard dashboard, 378
training SSD model (see SSD model)

rectangle() function, 285
Rectified linear unit (ReLu)

function, 149, 150
Region-based convolutional neural

network (R-CNN), 220, 222
modules, 222, 223
performance problem, 223

Region of interest (ROI), 224
Region proposal network (RPN), 225–227
Region proposals, 222
Regularization, 161
resize() function, 29
RMSProp, 163
Rolled-in scale (RS), 362
run_inference_for_single_image()

function, 280, 283, 284

S
Saved weights, load, 193
Scalar vs. vector vs. matrix vs. tensor., 166
Scaled exponential linear unit (SELU)

function, 151, 152
scope() method, 394
Scratches (Sc), 362
Selective search, 222
Sigmoid activation function, 148
Single-shot multibox

detection (SSD), 220, 231
anchor boxes, 234
choosing scales, 236

Index

450

components, 232
data augmentation, 237
default boxes, 234, 235
hard negative mining, 237
matching, 235
multiple scales, 232, 233
nonmaximum suppression, 237
results, 238
training objective, 236

Single-shot object detector, 231
SmoothReLU function, See Softplus

activation function
Sobel derivatives (cv2.Sobel() function),

82, 87
Softmax activation function, 153, 154
Softplus activation function, 153
Sparse multiclass cross-entropy loss, 157
split() function, 61
Squared hinge loss, 156
SSD model

execution, 377
pipeline.config file, 375, 376
pre-trained object detection model, 374

Stochastic gradient descent (SGD), 161
distributed/parallel compute, 162
momentum, 162
working, 161

stop() function, 314
Supervised learning, 132
Support vector machine (SVM), 132

T
TanH activation function, 149
Tensor, 166

TensorBoard, 185
HPARAMS, 188

Tensor.eval() method, 169
TensorFlow, 5, 165

constants, 167
dense layers, 174
installation, 5
method of use, 166
parts, 173
variable, 167

TensorFlow distributed training
AWs (see Amazon Web Services (AWS))
Azure (see Microsoft Azure)
CentralStorageStrategy, 395
cluster configuration, 398–400
CPU/GPU, 390
data parallelism, 391, 392
MirroredStrategy, 393, 394
model parallelism, 393
MultiWorkerMirroredStrategy, 395, 396
OneDeviceStrategy, 398
parameter server, 400, 402–404
ParameterServerStrategy, 397
running, cloud, 404, 405
TPUStrategy, 397

Tensor processing units (TPUs), 397
tf.constant() function, 168
tf.distribute.MirroredStrategy() method, 395
tf.math.confusio_matrix() function, 182
tf.print() statement, 182
Thresholding, 74
Training model, 131
Training weights, loss/accuracy, 192
Training weights, saving, 190, 192
Transfer learning, 257
Triplet loss function, 343
Triplet selection, 344

Single-shot multibox
detection (SSD) (cont.)

Index

451

True negative rate (TNR), 181
True positive rate (TPR), 181

U
Unsupervised learning, 133
update() function, 314

V
VGG-16 CNN architecture, 216, 217
VideoCapture() function, 314
Video tracking, 309

implementation, 310
index.html, 327
object_tracker.py, 328–330
sequence of function calls, 326
tracker.py, 333, 335, 336
videoasync.py, 332
video_server.py, 327

virtualenv, 3
advantages, 3
installation, 4, 5

Virtual machines (VMs), 410
Visual Geometry Group (VGG), 216
Visual Object Tagging Tool (VoTT), 381

W, X
waitKey() function, 22
warpAffine function, 32, 33

Y, Z
yield keyword, 316
YOLO, 238, 239

limitations, 241
network architecture, 240, 241
object detection, 240
YOLOv2, 241, 242, 244
YOLOv3, 244, 245

YOLOv3 model
annotations, 292, 293
configuration file, 297, 298
Darknet, 291, 292
Darknet neural network, 298, 299
dataset preparation, 293–295
final model, 301
JSON output, 306
local computer, 302, 303
pre-trained weights, 292
Python code, 303–305
training, 299–301

You only look once (YOLO), 220

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Prerequisites and Software Installation
	Python and PIP
	Installing Python and PIP on Ubuntu
	Installing Python and PIP on macOS
	Installing Python and PIP on CentOS 7
	Installing Python and PIP on Windows

	virtualenv
	Installing and Activating virtualenv

	TensorFlow
	Installing TensorFlow

	PyCharm IDE
	Installing PyCharm
	Configuring PyCharm to Use virtualenv

	OpenCV
	Working with OpenCV
	Installing OpenCV4 with Python Bindings

	Additional Libraries
	Installing SciPy
	Installing Matplotlib

	Chapter 2: Core Concepts of Image and Video Processing
	Image Processing
	Image Basics
	Pixels
	Pixel Color
	Grayscale
	Color

	Coordinate Systems
	Python and OpenCV Code to Manipulate Images
	Program: Loading, Exploring, and Showing an Image
	Program: OpenCV Code to Access and Manipulate Pixels

	Drawing
	Drawing a Line on an Image
	Drawing a Rectangle on an Image
	Drawing a Circle on an Image

	Summary

	Chapter 3: Techniques of Image Processing
	Transformation
	Resizing
	Translation
	Rotation
	Flipping
	Cropping

	Image Arithmetic and Bitwise Operations
	Addition
	Subtraction
	Bitwise Operations
	AND
	OR
	NOT
	XOR

	Masking
	Splitting and Merging Channels
	Noise Reduction Using Smoothing and Blurring
	Mean Filtering or Averaging
	Gaussian Filtering
	Median Blurring
	Bilateral Blurring

	Binarization with Thresholding
	Simple Thresholding
	Adaptive Thresholding
	Otsu’s Binarization

	Gradients and Edge Detection
	Sobel Derivatives (cv2.Sobel() Function)
	Laplacian Derivatives (cv2.Laplacian() Function)
	Canny Edge Detection

	Contours
	Drawing Contours

	Summary

	Chapter 4: Building a Machine Learning–Based Computer Vision System
	Image Processing Pipeline
	Feature Extraction
	How to Represent Features
	Color Histogram
	How to Calculate a Histogram
	Grayscale Histogram
	RGB Color Histogram

	Histogram Equalizer
	GLCM
	HOGs
	LBP

	Feature Selection
	Filter Method
	Wrapper Method
	Embedded Method

	Model Training
	How to Do Machine Learning
	Supervised Learning
	Unsupervised Learning

	Model Deployment
	Summary

	Chapter 5: Deep Learning and Artificial Neural Networks
	Introduction to Artificial Neural Networks
	Perceptron
	How a Perceptron Learns

	Multilayer Perceptron
	Why MLP?

	What Is Deep Learning?
	Deep Learning or Multilayer Perceptron Architecture
	Activation Functions
	Linear Activation Function
	Sigmoid or Logistic Activation Function
	TanH/Hyperbolic Tangent
	Rectified Linear Unit
	Leaky ReLU
	Scaled Exponential Linear Unit
	Softplus Activation Function
	Softmax

	Feedforward
	Error Function
	Regression Loss Function
	Binary Classification Loss Function
	Multiclass Classification Loss Function

	Optimization Algorithms
	Gradient Descent
	Local and Global Minima
	Learning Rate
	Regularization

	Stochastic Gradient Descent
	SGD for Distributed and Parallel Computing
	SGD with Momentum

	Adaptive Gradient Algorithm (Adagrad)
	RMSProp
	Adaptive Moment (Adam)

	Backpropagation

	Introduction to TensorFlow
	TensorFlow Installation
	How to Use TensorFlow
	Tensor
	Variable
	Constant

	Our First Computer Vision Model with Deep Learning: Classification of Handwritten Digits
	Model Evaluation
	Overfitting
	Underfitting
	Evaluation Metrics

	Hyperparameters
	TensorBoard
	Experiments for Hyperparameter Tuning

	Saving and Restoring Model
	Save Model Checkpoints During Training
	Manually Save Weights
	Load the Saved Weights and Retrain the Model
	Saving the Entire Model
	Retraining the Existing Model
	Using a Trained Model in Applications

	Convolution Neural Network
	Architecture of CNN
	How Does CNN Work
	Convolution
	Pooling/Subsampling/Downsampling
	Max Pooling
	Average Pooling

	Summary of CNN Concepts
	Training a CNN Model: Pneumonia Detection from Chest X-rays
	Chest X-ray Dataset
	Code Structure
	CNN Model Training
	Pneumonia Prediction

	Examples of Popular CNNs
	LeNet-5
	AlexNet
	VGG-16

	Summary

	Chapter 6: Deep Learning in Object Detection
	Object Detection
	Intersection Over Union
	Region-Based Convolutional Neural Network
	Fast R-CNN
	Faster R-CNN
	Region Proposal Network
	Fast R-CNN

	Mask R-CNN
	Backbone
	RPN
	Output Head
	What Is the Significance of the Masks?
	Mask R-CNN in Human Pose Estimation

	Single-Shot Multibox Detection
	SSD Network Architecture
	Multiscale Feature Maps for Detection
	Anchor Boxes and Convolutional Predictors for Detection

	Default Boxes and Aspect Ratios

	Training
	Matching Strategy
	Training Objective
	Choosing Scales and Aspect Ratios for Default Boxes
	Hard Negative Mining
	Data Augmentation
	Nonmaximum Suppression

	SSD Results

	YOLO
	YOLO Network Design

	Limitations of YOLO
	YOLO9000 or YOLOv2
	YOLOv3

	Comparison of Object Detection Algorithms
	Comparison of Architecture
	Comparison of Performance

	Training Object Detection Model Using TensorFlow
	TensorFlow on Google Colab with GPU
	Accessing Google Colab
	Connecting to the Hosted Runtime
	Selecting a GPU Hardware Accelerator
	Creating a Colab Project
	Setting the Runtime Environment for TensorFlow and Model Training
	Downloading the Oxford-IIIT Pet Dataset
	Generating TensorFlow TFRecord Files
	Downloading a Pre-trained Model for Transfer Learning
	Configuring the Object Detection Pipeline
	Executing the Model Training
	Exporting the TensorFlow Graph
	Downloading the Object Detection Model
	Visualizing the Training Result in TensorBoard

	Detecting Objects Using Trained Models
	Installing TensorFlow’s models Project
	Code for Object Detection

	Training a YOLOv3 Model for Object Detection
	Installing the Darknet Framework
	Downloading Pre-trained Convolutional Weights
	Downloading an Annotated Oxford-IIIT Pet Dataset
	Preparing the Dataset
	Configuring the Training Input
	Configuring the Darknet Neural Network
	Training a YOLOv3 Model
	How Long the Training Should Run
	Final Model

	Detecting Objects Using a Trained YOLOv3 Model
	Installing Darknet to the Local Computer
	Python Code for Object Detection

	Summary

	Chapter 7: Practical Example: Object Tracking in Videos
	Preparing the Working Environment
	Reading a Video Stream
	Loading the Object Detection Model
	Detecting Objects in Video Frames
	Creating a Unique Identity for Objects Using dHash
	Using the Hamming Distance to Determine Image Similarity
	Object Tracking
	Displaying a Live Video Stream in a Web Browser
	Installing Flask
	Flask Directory Structure
	HTML for Displaying a Video Stream
	Flask to Load the HTML Page
	Flask to Serve the Video Stream
	Running the Flask Server

	Putting It All Together
	Summary

	Chapter 8: Practical Example: Face Recognition
	FaceNet
	FaceNet Neural Network Architecture
	Input Images
	Deep CNN
	Face Embedding
	Triplet Loss Function
	Triplet Selection

	Training a Face Recognition Model
	Checking Out FaceNet from GitHub
	Dataset
	Downloading VGGFace2 Data
	Data Preparation
	Model Training
	Evaluation

	Developing a Real-Time Face Recognition System
	Face Detection Model
	Classifier for Face Recognition
	Face Alignment
	Classifier Training
	Face Recognition in a Video Stream

	Summary

	Chapter 9: Industrial Application: Real-Time Defect Detection in Industrial Manufacturing
	Real-Time Surface Defect Detection System
	Dataset
	Google Colab Notebook
	Data Transformation
	Training the SSD Model
	Exporting the Model
	Model Evaluation
	Prediction
	Real-Time Defect Detector

	Image Annotations
	Installing VoTT
	Create Connections
	Create a New Project
	Create Class Labels
	Label the Images
	Export Labels

	Summary

	Chapter 10: Computer Vision Modeling on the Cloud
	TensorFlow Distributed Training
	What Is Distributed Training?
	Data Parallelism
	Model Parallelism

	TensorFlow Distribution Strategy
	MirroredStrategy
	CentralStorageStrategy
	MultiWorkerMirroredStrategy
	Cluster Configuration
	Dataset Sharding
	Fault Tolerance

	TPUStrategy
	ParameterServerStrategy
	OneDeviceStrategy

	TF_CONFIG: TensorFlow Cluster Configuration
	An Example TF_CONFIG

	Example Code of Distributed Training with a Parameter Server
	Steps for Running Distributed Training on the Cloud
	Distributed Training on Google Cloud
	Signing Up for GCP Access
	Creating a Google Cloud Storage Bucket
	Creating the GCS Bucket from the Web UI
	Creating the GCS Bucket from the Cloud Shell
	Launching GCP Virtual Machines
	SSH to Log In to Each VMs
	Uploading the Code for Distributed Training or Cloning the GitHub Repository
	Installing Prerequisites and TensorFlow
	Running Distributed Training

	Distributed Training on Azure
	Creating a VM with Multiple GPUs on Azure
	Installing GPU Drivers and Libraries
	Creating virtualenv and Installing TensorFlow
	Implementing MirroredStrategy
	Running Distributed Training

	Distributed Training on AWS
	Horovod
	How to Use Horovod
	Creating a Horovod Cluster on AWS
	Horovod Cluster
	Running Distributed Training

	Installing Horovod
	Running Horovod to Execute Distributed Training

	Summary

	Index

