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Introduction

For more than 20 years I have had the pleasure of working with some of the greatest 

data scientists and computer vision experts. Along the way I have learned a lot, 

especially the best practices of building large-scale computer vision systems. In this 

book I present the learnings from my own personal experience and the experience of 

people I have had opportunities to work with. I also present the work of some of the 

greatest contributors and thought leaders of computer vision, even though I have not 

had a chance to work with them. I have provided references to their work at appropriate 

places throughout the book.

When I hire new engineers and scientists, one of my biggest challenges has been 

to provide them with systematic training so that they can start contributing to the 

development of vision systems in the shortest possible time. There are a large number of 

online resources and books available on various topics related to computer vision, and it 

is easy to get lost in the piles of information they present, given that the field of computer 

vision is vast and complex. In this book, I attempted to provide a structured and 

systematic approach of building the key concepts and working through example code to 

develop real-world computer vision systems. I hope this helps you connect the dots as 

you read through the chapters. My goal is to keep this book as practical and hands-on as 

possible.

This book starts with the introduction of core concepts of computer vision and 

provides code examples to aid in the learning of those concepts. The code examples in 

the early part of the book are mainly based on OpenCV with Python.

This book also covers the basic concepts of machine learning and gradually develops 

the advanced-level concepts of artificial neural networks or deep learning. Every single 

concept is followed by working code examples of real-world use cases. All machine 

learning–related code examples are written in TensorFlow with Python.

In this book, there are eight real-world use cases of computer vision with working 

code. These use cases are from various industries, such as healthcare, security, 

surveillance, and manufacturing. I have provided line-by-line explanations to help you 
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understand the code. There are three chapters dedicated to practical use cases. These 

chapters demonstrate how to build the vision systems from the ground up, starting from 

image/video acquisition to building a data pipeline, model training, and deployment.

Training state-of-the-art computer vision models requires a lot of hardware 

resources. It is desirable and economically beneficial to train computer vision models on 

a cloud infrastructure to leverage the latest hardware resources, such as GPUs, and pay- 

as- you-go cost models. The last chapter, Chapter 10, provides step-by-step instructions 

for building machine learning–based computer vision applications on the three popular 

cloud infrastructures: Google Cloud Platform, Amazon AWS, and Microsoft Azure.

Though the book develops the concepts from one pixel all the way to model training 

on the cloud, it has certain prerequisites. You should have a working knowledge of the 

Python programming language. This book is intended to help working professionals, 

programmers, data scientists, and undergraduate and graduate students gain practical 

knowledge of building computer vision applications using artificial neural networks.

InTroduCTIon
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CHAPTER 1

Prerequisites and 
Software Installation
This is a hands-on book that describes how to develop computer vision applications 

in the Python programming language. In this book, you will learn how to work with 

OpenCV to manipulate images and build machine learning models using TensorFlow.

OpenCV, originally developed by Intel and written in C++, is an open source 

computer vision and machine learning library consisting of more than 2,500 optimized 

algorithms for working with images and videos. TensorFlow is an open source 

framework for high-performance numerical computation and large-scale machine 

learning. It is written in C++ and provides native support for GPUs. Python is the most 

widely used programming language for developing machine learning applications. It is 

designed to work with C++. Both TensorFlow and OpenCV provide Python interfaces 

to access their low-level functionality. Although TensorFlow and OpenCV provide 

interfaces in other programming languages, such as Java, C++, and MATLAB, we will 

use Python as the primary language because of its simplicity and its large community of 

support.

The prerequisites for this book are practical knowledge of Python and familiarity 

with NumPy and Pandas. The book assumes that you are familiar with built-in data 

containers in Python, such as dictionaries, lists, sets, and tuples. Here are some 

resources that may be helpful to meet the prerequisites:

• Python: https://www.w3schools.com/python/

• Pandas: https://pandas.pydata.org/docs/getting_started/

index.html

• NumPy: https://numpy.org/devdocs/user/quickstart.html

https://doi.org/10.1007/978-1-4842-5887-3_1#DOI
https://www.w3schools.com/python/
https://pandas.pydata.org/docs/getting_started/index.html
https://pandas.pydata.org/docs/getting_started/index.html
https://numpy.org/devdocs/user/quickstart.html
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Before we go any further, let’s prepare our working environment and set ourselves up 

for the exercises we will be doing as we move along. Here we will start by downloading 

and installing the required software libraries and packages.

 Python and PIP
Python is our main programming language. PIP is a package installer for Python and a 

de facto standard for installing and managing Python packages. To set up our working 

environment, we will begin by installing Python and PIP on our working computer. The 

installation steps depend on the operating system (OS) you are using. Make sure you 

follow the instructions for your OS. If you already have Python and PIP installed, ensure 

that you are using Python version 3.6 or greater and PIP version 19 or greater. To check 

the version number of Python, execute the following command on your terminal:

$ python3 --version

The output of this command should be something like this: Python 3.6.5.

To check the version number of PIP, execute the following command on your 

terminal:

$ pip3 --version

This command should show a version number of PIP 3, for example, PIP 19.1.

 Installing Python and PIP on Ubuntu
Run the following commands in your Ubuntu terminal:

sudo apt update

sudo apt install python3-dev python3-pip

 Installing Python and PIP on macOS
Run the following commands on macOS:

brew update

brew install python

This will install both Python and PIP.

Chapter 1  prerequisites and software installation
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 Installing Python and PIP on CentOS 7
Run the following commands on CentOS 7:

sudo yum install rh-python36

sudo yum groupinstall 'Development Tools'

 Installing Python and PIP on Windows
Install the Microsoft Visual C++ 2015 Redistributable Update 3. This comes with Visual 

Studio 2015 but can be installed separately by following these steps:

 1. Go to the Visual Studio downloads at https://visualstudio.

microsoft.com/vs/older-downloads/.

 2. Select Redistributables and Build Tools.

 3. Download and install the Microsoft Visual C++ 2015 

Redistributable Update 3.

Make sure long paths are enabled on Windows. Here are the instructions to do that: 

https://superuser.com/questions/1119883/windows-10-enable-ntfs-long-paths-

policy-option-missing.

Install the 64-bit Python 3 release for Windows from https://www.python.org/

downloads/windows/ (select PIP as an optional feature).

If these installation instructions do not work in your situation, refer to the official 

Python documentation at https://www.python.org/.

 virtualenv
virtualenv is a tool to create isolated Python environments. virtualenv creates a directory 

containing all the necessary executables to use the packages that a Python project will 

need. virtualenv provides the following advantages:

• virtualenv allows you to have two versions of the same library so that 

both your programs continue to run. Say you have a program that 

requires version 1 of a Python library and another program needs 

version 2 of the same library; virtualenv will allow you to run both.

Chapter 1  prerequisites and software installation
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• virtualenv creates a useful stand-alone and self-contained 

environment for your development work that could be utilized for a 

production environment without needing to install dependencies.

Next, we will install virtualenv and configure the environment with all the required 

software. For the remainder of the book, we will assume that our reference program 

dependencies will be contained in this virtualenv.

Install virtualenv using the following PIP command (the command is the same 

on all OSs):

$ sudo pip3 install -U virtualenv

This will install virtualenv system-wide.

 Installing and Activating virtualenv
First, create a directory where you want to set up virtualenv. I have named this directory 

cv (short for “computer vision”).

$ mkdir cv

Then create the virtualenv in this directory, cv

$ virtualenv --system-site-packages -p python3 ./cv

The following is a sample output from running this command (on my MacBook):

Running virtualenv with interpreter /anaconda3/bin/python3

Already using interpreter /anaconda3/bin/python3

Using base prefix '/anaconda3'

New python executable in /Users/sansari/cv/bin/python3

Also creating executable in /Users/sansari/cv/bin/python

Installing setuptools, pip, wheel...

done.

Activate the virtual environment using a shell-specific command.

$ source ./cv/bin/activate  # for sh, bash, ksh, or zsh

When virtualenv is active, your shell prompt is prefixed with (cv). Here’s an 

example:

(cv) Shamshads-MacBook-Air:~ sansari$

Chapter 1  prerequisites and software installation
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Install packages within a virtual environment without affecting the host system 

setup. Start by upgrading PIP (make sure you do not run any command as root or sudo 

while in virtualenv).

$ pip install --upgrade pip

$ pip list  # show packages installed within the virtual environment

When you are done and you want to exit from virtualenv, do the following:

$ deactivate  # don't exit until you're done with your programming

 TensorFlow
TensorFlow is an open source library for numerical computation and large-scale 

machine learning. You will learn more about TensorFlow in subsequent chapters. Let’s 

first install it and get it ready for our deep learning exercises.

 Installing TensorFlow
We will install the latest version of TensorFlow from PyPI (https://pypi.org/project/

tensorflow/). We will install TensorFlow for CPUs. Make sure you are in virtualenv and 

run the following command:

(cv) $ pip install --upgrade tensorflow

Test your TensorFlow installation by running this command:

(cv) $ python -c "import tensorflow as tf"

If TensorFlow is successfully installed, the output should not show any errors.

 PyCharm IDE
You can use your favorite IDE for writing and managing Python code, but for the purpose 

of this book, we will use the community version of PyCharm, a Python IDE.

Chapter 1  prerequisites and software installation
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 Installing PyCharm
Go to the official website of PyCharm at https://www.jetbrains.com/pycharm/

download/#section=linux, select the appropriate operating system, and click Download 

(under Community Version). After the download is completed, click the downloaded 

package, and follow the on-screen instructions. Here are the direct links for different 

operating systems:

• Linux: https://www.jetbrains.com/pycharm/download/download- 

thanks.html?platform=linux&code=PCC

• Mac: https://www.jetbrains.com/pycharm/download/download- 

thanks.html?platform=mac&code=PCC

• Windows:  https://www.jetbrains.com/pycharm/download/

download-thanks.html?platform=windows&code=PCC

 Configuring PyCharm to Use virtualenv
Follow these steps to use the virtualenv, cv, we created earlier:

 1. Launch the PyCharm IDE and select File ➤ Settings for Windows 

and Linux or select PyCharm ➤ Preferences for macOS.

 2. In the Settings/Preferences dialog, select Project <project name> ➤ 

 Project Interpreter.

 3. Click the  icon and click Add.

 4. In the left pane of the Add Python Interpreter dialog, select 

Existing Environment.

 5. Expand the Interpreter list and select any of the existing 

interpreters. Alternatively, click  and specify a path to the 

Python executable in your file system, for example, /Users/

sansari/cv/bin/python3.6 (see Figure 1-1).

 6. Select the checkbox “Make available to all projects,” if you want.
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 OpenCV
OpenCV is one of the most popular and widely used libraries for image processing. All 

code examples in this book are based on OpenCV 4. Therefore, our installation steps are 

for version 4 of OpenCV.

 Working with OpenCV
OpenCV is written in C/C++, and because it’s platform dependent, the installation 

instructions vary from OS to OS. In other words, OpenCV needs to be built for your 

particular platform/OS to run smoothly. We will use Python bindings to call OpenCV for 

any image processing needs.

Like any other library, OpenCV is evolving; therefore, if the following installation 

instructions do not work in your case, check the official website for the exact 

installation process.

Figure 1-1. Selecting an interpreter

Chapter 1  prerequisites and software installation
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We will take an easy route to install OpenCV 4 and Python 3 bindings using PIP. We 

will install the opencv-python-contrib package from PyPI in the virtual environment 

that we created previously.

So here we go!

 Installing OpenCV4 with Python Bindings
Make sure you are in your virtual environment. Simply change directory to your virtualenv 

directory (the cv directory we created previously) and type the following command:

$ source cv/bin/activate

Install OpenCV in a snap using the following command:

$ pip install opencv-contrib-python

 Additional Libraries
There are some additional libraries that we will need as we work on some of the 

examples. Let’s install and keep them in our virtualenv.

 Installing SciPy
Install SciPy with the following:

$ pip install scipy

 Installing Matplotlib
Install Matplotlib with the following:

$ pip install matplotlib

Please note that the libraries installed in this chapter are frequently updated. It 

is strongly advised to check the official websites for updates, new versions of these 

libraries, and the latest installation instructions.

Chapter 1  prerequisites and software installation
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CHAPTER 2

Core Concepts of Image 
and Video Processing
This chapter introduces the building blocks of an image and describes various methods 

to manipulate them. Our learning objectives in this chapter are as follows:

• To understand the smallest unit of an image (a pixel) and how colors 

are represented

• To learn how pixels are organized in an image and how to access and 

manipulate them

• To draw different shapes, such as lines, rectangles, and circles, on an 

image

• To write code in Python and use OpenCV to work with examples to 

access and manipulate images

 Image Processing
Image processing is the technique of manipulating a digital image to either get an 

enhanced image or extract some useful information from it. In image processing, the 

input is an image, and the output may be an image or some characteristics or features 

associated with that image. A video is a series of images or frames. Therefore, the 

technique of image processing also applies to video processing. In this chapter, I will 

explain the core concepts of digital image processing. I will also show you how to work 

with images and write code to manipulate them.

https://doi.org/10.1007/978-1-4842-5887-3_2#DOI
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 Image Basics
A digital image is an electronic representation of an object/scene or scanned document. 

The digitalization of an image means converting it into a series of numbers and storing 

these numbers in a computer storage system. Understanding how these numbers are 

arranged and how to manipulate them is the primary objective of this chapter. In this 

chapter, I will explain what makes an image and how to manipulate it using OpenCV and 

Python.

 Pixels
Imagine a series of dots arranged in rows and columns, and these dots have different 

colors. This is pretty much how an image is formed. The dots that form an image are 

called pixels. These pixels are represented by numbers, and the values of the numbers 

determine the color of a pixel. Think of an image as a grid of square cells with each cell 

consisting of one pixel of a particular color. For example, a 300×400-pixel image means 

that the image is organized into a grid of 300 rows and 400 columns. That means our 

image has 300×400 = 120,000 pixels.

 Pixel Color
A pixel is represented in two ways: grayscale and color.

 Grayscale

In a grayscale image, each pixel takes a value between 0 and 255. The value 0 represents 

black, and 255 represents white. The values in between are varying shades of gray. The 

values close to 0 are darker shades of gray, and values closer to 255 are brighter shades of 

gray.

 Color

The RGB (which stands for Red, Blue, and Green) color model is one of the most popular 

color representations of a pixel. There are other color models, but we will stick to RGB in 

this book.

Chapter 2  Core ConCepts of Image and VIdeo proCessIng
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In the RGB model, each pixel is represented as a tuple of three values, generally 

represented as follows: (value for red component, value for green component, value for 

blue component). Each of the three colors is represented by integers ranging from 0 to 

255. Here are some examples:

(0,0,0) is a black color.

(255,0,0) is a pure red color.

(0,255,0) is a pure green color.

What color is represented by (0,0,255)?

What color is represented by (255,255,255)?

This w3school website (https://www.w3schools.com/colors/colors_rgb.asp) is a 

great place to play with different combinations of RGB tuples to explore more patterns.

Explore what color is represented by each of the following tuples:

(0,0,128)

(128,0,128)

(128,128,0)

Let’s try to make yellow. Here is a clue: red and green make yellow. That means a 

pure red (255), a pure green (255), and no blue (0) will make yellow. So, our RGB tuple 

for yellow is (255,255,0).

Now that we have a good understanding of pixels and their color, let’s understand 

how pixels are arranged in an image and how to access them. The following section will 

discuss the concept of coordinate systems in image processing.

 Coordinate Systems
Pixels in an image are arranged in the form of a grid that is made of rows and columns. 

Imagine a square grid of eight rows and eight columns. This will form an 8×8 or 64-pixel 

image. This may be imagined as a 2D coordinate system in which (0,0) is the top-left 

corner. Figure 2-1 shows our example 8×8-pixel image.

Chapter 2  Core ConCepts of Image and VIdeo proCessIng
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The left-top corner is the start or origin of the image coordinate system. The pixel 

at the top-right corner is represented by (7,0), the bottom-left corner is (7,0), and the 

bottom-right pixel is (7,7). This may be generalized as (x,y), where x is the position of the 

cell from the left edge of the image and y is the vertical position down from the top edge 

of the image. In Figure 2-1, the red pixel is in the fifth position from the left and fourth 

from the top. Since the coordinate system begins at 0, the coordinate of the red pixel 

shown in Figure 2-1 is (4,3).

To make it a little clearer, let’s imagine an image that is 8×8 pixels, with the letter H  

written on it (as shown in Figure 2-3). Also, for simplicity, assume this is a grayscale 

image with the letter H written in black and the rest of the area of the image in white.

Remember, in the grayscale model, a black pixel is represented by 0, and a white one 

is represented by 255. Figure 2-3 shows the values of each pixel within the 8×8 grid.

Figure 2-1. Pixel coordinate system

Figure 2-2. Pixel coordinate system example

Chapter 2  Core ConCepts of Image and VIdeo proCessIng
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So, what’s the value of the pixel at position (1,4)? And at position (2,2)?

I hope you now have a clear picture of how images are represented by numbers 

arranged in a grid. These numbers are serialized and stored in the computer’s 

storage system and rendered as an image when displayed to the screen. By now you 

know how to access pixels using the coordinate system and how to assign colors to 

these pixels.

We have established a solid foundation and learned the basic concepts of image 

representation. Let’s get ourselves some hands-on practice with some Python and 

OpenCV coding. In the following section, I will show you, step-by-step, how to write 

code to load images from the computer’s disk, access pixels, manipulate them, and write 

them back to the disk. Without further ado, let’s dive in!

Figure 2-3. Pixel matrix and values

Chapter 2  Core ConCepts of Image and VIdeo proCessIng
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 Python and OpenCV Code to Manipulate Images
OpenCV represents the pixel values of an image as a NumPy array. (Not familiar with 

NumPy? You can find a “getting started” tutorial at https://numpy.org/devdocs/user/

quickstart.html). In other words, when you load an image, OpenCV creates a NumPy 

array. The pixel values can be obtained from NumPy by simply supplying the (x,y) 

coordinates.

When you give the (x,y) coordinates, NumPy will return the values of colors of the 

pixel at those coordinates as follows:

For a grayscale image, the returned value from NumPy will be a 

single value between 0 and 255.

For a color image, the returned value from NumPy will be a tuple 

for red, green, and blue. Note that OpenCV maintains the RGB 

sequence in the reverse order. Remember this important feature 

of OpenCV to avoid any confusion while working with OpenCV.

In other words, OpenCV stores the colors in BGR sequence and not in RGB 

sequence.

Before we write any code, let’s make sure we always use our virtualenv, in the ~/cv 

directory, that we already set up with PyCharm.

Launch your PyCharm IDE and make a project (I named my project cviz, short 

for “computer vision”). Refer to Figure 2-4 and ensure that you have selected Existing 

Interpreter and have our virtualenv Python 3.6(cv) selected.

Chapter 2  Core ConCepts of Image and VIdeo proCessIng
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 Program: Loading, Exploring, and Showing an Image
Listing 2-1 shows the Python code to load, explore, and display an image.

Listing 2-1. Python Code to Load, Explore, and Display an Image

Filename: Listing_2_1.py

1    from __future__ import print_function

2    import cv2

3

4    # image path

5    image_path = "images/marsrover.png"

6    # Read or load image from its path

7    image = cv2.imread(image_path)

8    # image is a NumPy array

9    print("Dimensions of the image: ", image.ndim)

10   print("Image height: ", format(image.shape[0]))

11   print("Image width: ", format(image.shape[1]))

12   print("Image channels: ", format(image.shape[2]))

Figure 2-4. PyCharm IDE, showing the setup of the project with virtualenv

Chapter 2  Core ConCepts of Image and VIdeo proCessIng
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13   print("Size of the image array: ", image.size)

14   # Display the image and wait until a key is pressed

15   cv2.imshow("My Image", image)

16   cv2.waitKey(0)

The code in Listing 2-1 is explained here.

In lines 1 and 2, we import Python’s print_function from the __future__ package 

and cv2 of OpenCV.

Line 5 is simply the path of the image that we are going to load from a directory.  

If your input path is in a different directory, you should give either the full or relative 

path to the image file.

In line 7, using the cv2.imread() function of OpenCV, we are reading the image into 

a NumPy array and assigning to a variable called image (this variable can be anything 

you like).

In lines 9 through 13, using NumPy features, we are displaying the dimension of 

the image array, height, width, number of channels, and size of the array (which is the 

number of pixels).

Line 15 displays the image as is using OpenCV’s imshow() function.

In line 16, the waitKey() function allows the program not to terminate immediately 

and wait for the user to press any key. When you see the image window that will display 

in line 15, press any key to terminate the program, else the program will block.

Figure 2-5 shows the output of Listing 2-1.

Dimension of the image:  3
Image height:  400
Image width:  640
Image channels:  3
Size of the image array:  768000

Figure 2-5. Output and image display
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The image NumPy array consists of three dimensions: height × width × channel. The 

first element of the array is the height, which tells us how many rows our pixel grid has. 

Similarly, the second element is the width, which represents the number of columns of 

the grid. The three channels represent the BGR (not RBG) color components. The size 

of the array is 400×640×3 = 768,000. This actually means that our image has 400×640 = 

256,000 pixels, and each pixel has three color values.

 Program: OpenCV Code to Access and Manipulate Pixels
In the next program, we will see how to access and modify pixel values using the 

coordinate system that we learned about earlier. Listing 2-2 shows the code example 

with the line-by-line explanation after it.

Listing 2-2. Code Example to Access and Manipulate Image Pixels

Filename: Listing_2_2.py
1    from __future__ import print_function
2    import cv2
3
4    # image path
5    image_path = "images/marsrover.png"
6    # Read or load image from its path
7    image = cv2.imread(image_path)
8
9    # Access pixel at (0,0) location
10   (b, g, r) = image[0, 0]
11   print("Blue, Green and Red values at (0,0): ", format((b, g, r)))
12
13   # Manipulate pixels and show modified image
14   image[0:100, 0:100] = (255, 255, 0)
15   cv2.imshow("Modified Image", image)

16   cv2.waitKey(0)

Listing 2-2 is explained here.

Lines 1 through 7 import and read the image from a directory path (as explained 

when discussing Listing 2-1).

In line 10, we are getting the BGR (and not RBG) values of the pixel at coordinates 

(0,0) and assigning them to the (b,g,r) tuple using the NumPy syntax.
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Line 11 displays the BGR values.

In line 14, we are taking a range of pixels from 0 to 100 along the y-axis and from 0 

to 100 along the x-axis to form a 100×100 square and assigning the values (255,255,0) or 

pure blue, pure green, and no red to all the pixels within this square.

Line 16 displays the modified image.

Line 17 waits for the user to press any key for the program to exit.

Figure 2-6 shows some sample output of Listing 2-2.

As shown in Figure 2-6, the modified image has a 100×100-pixel square at the top-left 

corner in aqua, represented by (255,255,0) of the BGR scheme.

 Drawing
OpenCV provides convenient methods to draw shapes on an image. We will learn how to 

draw a line, rectangle, and circle on an image using the following methods:

Line: cv2.line()

Rectangle: cv2.rectangle()

Circle: cv2.circle()

 Drawing a Line on an Image
We will use a simple method of drawing a line on an image, shown here:

 1. Load the image into a NumPy array.

 2. Decide the coordinates of the starting position of the line.

Blue, Green and Red values at (0,0):  (40, 55, 134)

Figure 2-6. Output and modified image display
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 3. Decide the coordinates of the end position of the line.

 4. Set the color of the line.

 5. Optionally, set the thickness of the line.

Listing 2-3 demonstrates how to draw a line on an image.

Listing 2-3. Drawing a Line on an Image

Filename: Listing_2_3.py

1    from __future__ import print_function

2    import cv2

3

4    # image path

5    image_path = "images/marsrover.png"

6    # Read or load image from its path

7    image = cv2.imread(image_path)

8

9    # set start and end coordinates

10   start = (0, 0)

11   end = (image.shape[1], image.shape[0])

12   # set the color in BGR

13   color = (255,0,0)

14   # set thickness in pixel

15   thickness = 4

16   cv2.line(image, start, end, color, thickness)

17

18   #display the modified image

19   cv2.imshow("Modified Image", image)

20   cv2.waitKey(0)

Here is the line-by-line explanation of the code.

Lines 1 and 2 are the usual imports. From now on, I will not repeat the imports 

unless we have a new one to mention.

Line 5 is the image path.

Line 7 actually loads the image into a NumPy array called image.

Line 10 defines the starting coordinates of the point from where the line will be 

drawn. Recall that the location (0,0) is the top-left corner of the image.
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Line 11 specifies the coordinates of the endpoint of the image. You will notice that 

the expression (image.shape[1], image.shape[0]) represents the coordinates of the 

bottom-right corner of the image.

You have probably guessed by now that we are drawing a diagonal line.

Line 13 sets the color of the line we are going to draw, and line 15 sets its thickness.

The actual line is drawn in line 16. The cv2.line() function takes the following 

arguments:

 – Image NumPy. This is the image where we are drawing the line.

 – Start coordinates.

 – End coordinates.

 – Color.

 – Thickness. (This is optional. If you do not pass this argument, our 

line will have a default thickness of 1.)

Finally, the modified image is shown on line 19. Line 20 waits for the user to press 

any key to terminate the program. Figure 2-7 shows the sample output of the image we 

just drew a line on.

Figure 2-7. Image with a diagonal line in blue
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 Drawing a Rectangle on an Image
Drawing a rectangle is easy with OpenCV. Let’s dive into the code directly (Listing 2-4). 

We will first load an image and draw a rectangle to it. We will save the modified image to 

the disk.

Listing 2-4. Loading an Image, Drawing a Rectangle to It, Saving It, and 

Displaying the Modified Image

Filename: Listing_2_4.py

1    from __future__ import print_function

2    import cv2

3

4    # image path

5    image_path = "images/marsrover.png"

6    # Read or load image from its path

7    image = cv2.imread(image_path)

8    # set the start and end coordinates

9    # of the top-left and bottom-right corners of the rectangle

10   start = (100,70)

11   end = (350,380)

12   # Set the color and thickness of the outline

13   color = (0,255,0)

14   thickness = 5

15   # Draw the rectangle

16   cv2.rectangle(image, start, end, color, thickness)

17   # Save the modified image with the rectangle drawn to it.

18   cv2.imwrite("rectangle.jpg", image)

19   # Display the modified image

20   cv2.imshow("Rectangle", image)

21   cv2.waitKey(0)

Here is a line-by-line explanation of Listing 2-4.

Lines 1 and 2 are our usual imports.

Line 5 assigns the image path.

Line 6 reads the image from its path.
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Line 10 sets the starting point of the rectangle we want to draw on the image. The 

starting point consists of the coordinates of the top-left corner of the rectangle.

Line 11 sets the endpoint of the rectangle. This represents the coordinates of the 

bottom-right corner of the rectangle.

Line 13 sets the color, and line 14 sets the thickness of the outline of the rectangle.

Line 16 actually draws the rectangle. We are using OpenCV’s rectangle() function, 

which takes the following parameters:

 – NumPy array that holds the pixel values of the image

 – The start coordinates (top-left corner of the rectangle)

 – The end coordinates (bottom-right of the rectangle)

 – The color of the outline

 – The thickness of the outline

Notice that line 16 does not have any assignment operator. In other words, we did 

not assign the return value from the cv2.rectangle() function to any variable. The 

NumPy array, image, that is passed as an argument to the cv2.rectangle() function is 

modified.

Line 18 saves the modified image, with rectangle drawn on it, to a file on the disk.

Line 20 displays the modified image.

Line 21 calls the waitKey() function to allow the image to remain displayed on the 

screen until a key is pressed. The function waitKey() waits for a key event infinitely or 

for a certain delay in milliseconds. Since the OS has a minimum time between switching 

threads, the waitKey() function will not wait, after a key is pressed, for exactly the delay 

time passed as an argument to the waitKey() function. The actual wait time depends on 

other programs that your computer might be running at the time when a key is pressed 

and waitKey() function is called.

Figure 2-8 shows the output of the image with the rectangle drawn on it.
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In the previous example, we first read an image from the disk and drew a rectangle 

on it. We will now slightly modify this example and draw the rectangle on a blank canvas. 

We will first create a canvas (as opposed to loading an existing image) and draw a 

rectangle on it. We will then save and display the resultant image. See Listing 2-5.

Listing 2-5. Drawing a Rectangle on a New Canvas and Saving the Image

Filename: Listing 2_5.py

1    from __future__ import print_function

2    import cv2

3    import numpy as np

4

5    # create a new canvas

6    canvas = np.zeros((200, 200, 3), dtype = "uint8")

7    start = (10,10)

8    end = (100,100)

9    color = (0,0,255)

10   thickness = 5

11   cv2.rectangle(canvas, start, end, color, thickness)

12   cv2.imwrite("rectangle.jpg", canvas)

13   cv2.imshow("Rectangle", canvas)

14   cv2.waitKey(0)

Figure 2-8. Image with rectangle drawn
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In Listing 2-5, all the lines except lines 3 and 6 are the same as in Listing 2-4.

Line 3 imports the NumPy library that we will use to create the canvas.

Line 6 is where we are creating an image (called the canvas). Our canvas is 200×200 

pixels with each pixel holding three channels (to hold BGR values). The variable name, 

canvas, is a NumPy array that, in this case, holds a zero value for each pixel. Notice that 

the data type of each pixel value of the canvas is an 8-bit unsigned integer (as explained 

in Chapter 1).

How would you draw a solid rectangle (meaning, a rectangle filled with a 

particular color)?

Clue: set the thickness to -1.

Figure 2-9 shows the output of Listing 2-5. Figure 2-10 shows a canvas with a solid 

rectangle drawn on it.

Figure 2-10. Solid rectangle with a thickness of -1

Figure 2-9. Rectangle with border thickness 5
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 Drawing a Circle on an Image
Drawing a circle on an image is equally easy. You create your own canvas or load an 

existing image and then set the coordinates of the center, radius, color, and thickness of 

the outline of the circle.

Listing 2-6 shows a working piece of code that draws a circle on a blank canvas. 

Figure 2-11 shows the output of this code listing.

Listing 2-6. Drawing a Circle on a Canvas

Filename: Listing_2_6.py

1    from __future__ import print_function

2    import cv2

3    import numpy as np

4

5    # create a new canvas

6    canvas = np.zeros((200, 200, 3), dtype = "uint8")

7    center = (100,100)

8    radius = 50

9    color = (0,0,255)

10   thickness = 5

11   cv2.circle(canvas, center, radius, color, thickness)

12   cv2.imwrite("circle.jpg", canvas)

13   cv2.imshow("My Circle", canvas)

14   cv2.waitKey(0)

The code in Listing 2-6 is not very different from that of Listing 2-5 except that line 7 

defines the center of the circle.

In addition, line 8 sets the radius, line 9 defines the color, and line 10 sets the 

thickness of the circle. Finally, line 11 draws the circle and accepts the following 

parameters:

 – The image on which to draw the circle. This is our NumPy array 

containing the image pixels.

 – The coordinates of the center of the circle.

 – The radius of the circle.
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 – The color of the outline of the circle.

 – The thickness of the outline.

Here’s an exercise for you:

 1. Draw a solid circle at the center of the canvas.

 2. Draw two concentric circles with the outermost circle having a 

radius of 1.5 times the radius of the inner circle.

 Summary
In this chapter, we learned the basics of images, starting with pixels and how they are 

represented in different color schemes, namely, gray and color. The coordinate system 

helps locate a specific pixel and manipulate their values. We learned how to draw some 

basic shapes such as a line, a rectangle, and a circle on an image. Although these are very 

basic and easy, they are important concepts to do anything in image processing.

In the next chapter, we will explore different techniques and algorithms used in 

image processing.

Figure 2-11. A circle drawn at the center of a black canvas
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CHAPTER 3

Techniques of  
Image Processing
In a computer vision application, images are normally ingested from their source, such 

as cameras, files stored on a computer disk, or streams from another application. In most 

cases, these input images are converted from one form into another. For example, we 

may need to resize, rotate, or change their colors. In some cases, we may need to remove 

the background pixels or merge two images. In other cases, we may need to find the 

boundaries around certain objects within an image.

This chapter explores various techniques of image transformation with examples in 

Python and OpenCV. Our learning objectives of this chapter are as follows:

 – To explore most commonly used transformation techniques

 – To learn arithmetic used in image processing

 – To learn techniques of cleaning images, such as noise reduction

 – To learn techniques of merging two or more images or splitting 

channels

 – To learn how to detect and draw contours (boundaries) around 

objects within an image

 Transformation
While working on any computer vision problem, you will often need to transform images 

into different forms. This chapter explores different techniques of transforming images 

through a set of Python examples.

https://doi.org/10.1007/978-1-4842-5887-3_3#DOI
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 Resizing
Let’s start with our first transformation, resizing. To resize an image, we increase or 

decrease the height and width of the image. Aspect ratio is an important concept to 

remember when resizing an image. The aspect ratio is the proportion of width to height 

and is calculated by dividing width by height. The formula for calculating the aspect ratio 

is as follows:

aspect ratio = width/height

A square image has an aspect ratio of 1:1, and an aspect ratio of 3:1 means the width 

is three times bigger than the height. If an image’s height is 300px and the width is 600px, 

its aspect ratio is 2:1.

When resizing, maintaining the original aspect ratio ensures that the resized image 

does not look stretched or compressed.

Listing 3-1 shows the following two different techniques of image resizing:

• Resize an image to a desired size in pixels while maintaining the 

aspect ratio. In other words, if you know the desired height of the 

image, you can compute the corresponding width using the aspect 

ratio.

• Resize an image by a factor. For example, enlarge the image width by 

a factor of 1.5 or the height by a factor of 2.5.

OpenCV provides a single function, cv2.resize(), to perform these two techniques 

of resizing.

Listing 3-1. Code to Calculate Aspect Ratio and Resize the Image

Filename: Listing_3_1.py

1    from __future__ import print_function

2    import cv2

3    import numpy as np

4

5    # Load image

6    imagePath = "images/zebra.png"

7    image = cv2.imread(imagePath)

8
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9     # Get image shape which returns height, width, and channels as a 

tuple. Calculate the aspect ratio

10   (h, w) = image.shape[:2]

11   aspect = w / h

12

13    # lets resize the image to  decrease height by half of the original 

image.

14   # Remember, pixel values must be integers.

15   height = int(0.5 * h)

16   width =  int(height * aspect)

17

18   # New image dimension as a tuple

19   dimension = (height, width)

20    resizedImage = cv2.resize(image, dimension, interpolation=cv2.INTER_

AREA)

21   cv2.imshow("Resized Image", resizedImage)

22

23   # Resize using x and y factors

24    resizedWithFactors = cv2.resize(image, None, fx=1.2, fy=1.2, 

interpolation=cv2.INTER_LANCZOS4)

25   cv2.imshow("Resized with factors", resizedWithFactors)

26   cv2.waitKey(0)

Listing 3-1 shows how to resize an image using OpenCV’s cv2.resize() function. 

The resize() function takes the following arguments as parameters:

 – The first argument is the original image represented by a NumPy 

array.

 – The second argument is the dimension of the intended resizing. 

This is a tuple of integers representing the height and width of the 

resized image. Pass this argument as None if you want to resize using 

horizontal or vertical factors, as explained in a moment.

 – The third and fourth arguments, fx and fy, are the resize factors 

in the horizontal (widthwise) and vertical (heightwise) directions. 

These two arguments are optional.
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 – The last argument is the interpolation. This is the algorithm 

name that OpenCV internally uses to resize the image. Available 

interpolation algorithms are INTER_AREA, INTER_LINEAR, INTER_

CUBIC, and INTER_NEAREST. These algorithms are briefly described in 

a moment.

 Interpolation is the process of calculating the pixel values when the 

image is resized. The following five algorithms of interpolation are 

supported in OpenCV:

 INTER_LINEAR: This is actually a bilinear interpolation in which the 

four nearest neighbors (2×2 = 4) are determined and their weighted 

average is calculated to determine the value of the next pixel.

 INTER_NEAREST: This uses the nearest-neighbor interpolation 

method of approximating the value of a function for a nongiven 

point in some space when given the value of that function in points 

around (neighboring) that point. In other words, to calculate the 

value of a pixel, its nearest neighbor is considered to approximate the 

interpolation function.

 INTER_CUBIC: This uses a bicubic interpolation algorithm to 

calculate the pixel value. Similar to bilinear interpolation, it uses  

4×4 = 16 nearest neighbors to determine the value of the next pixel. 

When speed is not a concern, bicubic interpolation gives a better 

resized image compared to bilinear.

 INTER_LANCZOS4: This uses the 8×8 nearest neighbor interpolation.

 INTER_AREA: The calculation of the pixel value is performed by 

using the pixel area relation (as described by the OpenCV official 

documentation). We use this algorithm to create a moiré-free resized 

image. When the image size is enlarged, INTER_AREA is similar to the 

INTER_NEAREST method.

Let’s examine the code in Listing 3-1.

Lines 1 through 3 are the library imports.

Line 6 assigns the image path, and line 7 reads the image as a NumPy array and 

assigns to a variable named image.
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NumPy’s shape function returns the dimensions of the objects within the array. 

Calling the shape function for the image returns the height, width, and number of 

channels as a tuple. Line 10 retrieves only the height and width by specifying the index 

length 2 (image.shape[,:2]). The height and width are stored in variables h and w.

If we do not specify the index length, it will return the tuple with the height, width, 

and channels, like the following one:

(h, w, c) = image.shape[:]

In this example, we want to shrink the size of the image by 50 percent, maintaining 

the original aspect ratio. We can simply multiply the original height and width by 0.5 to 

obtain the desired height and width. If we know only the desired height, we can calculate 

the desired width by multiplying the original new height with the aspect ratio. This is 

demonstrated in lines 15 and 16.

Line 19 sets the desired height and width as a tuple.

Line 20 calls the cv2.resize() function of OpenCV and passes the original image 

NumPy, the desired dimensions, and the interpolation algorithm (INTER_AREA in this 

example) to the resize() function as arguments.

Line 24 demonstrates the resize operation using the second approach when we know 

the factors by which the image height or width or both need to increase or decrease. In 

this example, both the height and width are enlarged by a factor of 1.2.

Figure 3-1 and Figure 3-2 show the sample output of our resizing program.

Figure 3-1. Original image
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 Translation
The image translation means moving the image either left, right, up, or down along the 

x- and y-axes.

There are two main steps when moving an image: defining a translation matrix 

and calling the cv2.warpAffine function. The translation matrix defines the direction 

and amount of movement. The warpAffine function is the OpenCV function that does 

the actual movement. The cv2.warpAffine function takes three arguments: the image 

NumPy, the translation matrix, and the dimension of the image.

Let’s understand this with a code example (see Listing 3-2).

Listing 3-2. Image Translation Along the x- and y-Axes

Filename: Listing_3_2.py

1    from __future__ import print_function

2    import cv2

3    import numpy as np

4

5    #Load image

6    imagePath = "images/soccer-in-green.jpg"

7    image = cv2.imread(imagePath)

8

9    #Define translation matrix

10   translationMatrix = np.float32([[1,0,50],[0,1,20]])

11

12   #Move the image

Figure 3-2. Resized image
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13    movedImage = cv2.warpAffine(image, translationMatrix, (image.shape[1], 

image.shape[0]))

14

15   cv2.imshow("Moved image", movedImage)

16   cv2.waitKey(0)

Listing 3-2 demonstrates the translation operation. The translation matrix is defined 

in line 10 where we are defining the movement directions and defining by how many 

pixels the image should move. Here is an explanation of this line 10.

In this example, the translation matrix is a 2×3 matrix or a 2D array.

The first row, as defined by [1,0,50], represents the movement along the x-axis by  

50 pixels to the right. If the third element of this array is a negative number, the 

movement will be to the left.

The second row represented by [0,1,20] defines the movement along the y-axis by  

20 pixels down. If the third element of this second row is a negative number, this will 

move the image up along the y-axis.

In line 13, we are calling OpenCV’s warpAffine function. This function takes the 

following arguments:

 – The NumPy representation of the image we intend to move.

 – The translation matrix that defines the movement direction and the 

amount of the movement.

 – The last argument is a tuple that has the width and height of the 

canvas within which we want to move our image. In this example, we 

are keeping the canvas size the same as the original height and width 

of the image.

Figure 3-3 and Figure 3-4 show the results.
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Here’s an exercise for you: move an image by 50 pixels to the left and 60 pixels up.

 Rotation
To rotate an image by some angle θ, we first define a rotation matrix by using OpenCV’s 

cv2.getRotationMatrix2D. I will explain how to create this rotation matrix in Listing 3-3. 

To rotate the image, we simply call the same cv2.warpAffine function like we did in the 

earlier case of translation . Let’s look at the rotation code line by line.

Figure 3-4. Moved image

Figure 3-3. Original image
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Listing 3-3. Image Rotation Around the Center of the Image

Filename: Listing_3_3.py

1    from __future__ import print_function

2    import cv2

3    import numpy as np

4

5    # Load image

6    imagePath = "images/zebrasmall.png"

7    image = cv2.imread(imagePath)

8    (h,w) = image.shape[:2]

9

10   #Define translation matrix

11   center = (h//2, w//2)

12   angle = -45

13   scale = 1.0

14

15   rotationMatrix = cv2.getRotationMatrix2D(center, angle, scale)

16

17   # Rotate the image

18    rotatedImage = cv2.warpAffine(image, rotationMatrix, (image.shape[1], 

image.shape[0]))

19

20   cv2.imshow("Rotated image", rotatedImage)

21   cv2.waitKey(0)

Listing 3-3 shows how to rotate an image around its center by a 45-degree angle 

(clockwise).

Line 11 calculates the center of the image. Notice that we divided the height and 

width by using // to get only the integer part of it.

Line 12 simply assigns a value to the angle by which we want to rotate the image. 

A negative value will rotate the image clockwise, while the positive angle will rotate 

counterclockwise.

Line 13 sets the rotation scale, which is set to resize the image while rotating. A value 

of 1.0 keeps the original size after rotation. If we set this to 0.5, the rotated image will be 

reduced in size by half.
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In line 15, we define the rotation matrix by using OpenCV’s function  

cv2.getRotationMatrix2D and pass the following arguments:

 – A tuple that represents the point around which the image needs to be 

rotated

 – The angle of rotation in degrees

 – Resizing scale

Line 18 does the work of rotating the image as per the definition of a rotation matrix. 

We use the same warpAffine function that we used to translate the image. The only 

difference is that in the case of rotation, we pass the rotation matrix created in line 15.

Line 20 shows the rotated image, and line 21 waits for the key press before the 

displayed image is closed.

Figure 3-5 and Figure 3-6 show the sample outputs of our code.

Figure 3-5. Original image
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 Flipping
Flipping an image horizontally along the x-axis or vertically along the y-axis can be easily 

done by calling OpenCV’s convenient function cv2.flip(). This cv2.flip() function 

takes two arguments.

 – The original image

 – The direction of the flip

 – 0 means flip vertically.

 – 1 means flip horizontally.

 – -1 means first flip horizontally and then vertically.

Let’s see our image flipping in different directions with Listing 3-4.

Listing 3-4. Image Flipping Horizontally, Vertically, and Then Horizontally plus 

Vertically

Filename: Listing_3_4.py

1    from __future__ import print_function

2    import cv2

3    import numpy as np

4

Figure 3-6. Rotated image
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5    # Load image

6    imagePath = "images/zebrasmall.png"

7    image = cv2.imread(imagePath)

8

9    # Flip horizontally

10   flippedHorizontally = cv2.flip(image, 1)

11   cv2.imshow("Flipped Horizontally", flippedHorizontally)

12   cv2.waitKey(-1)

13

14   # Flip vertically

15   flippedVertically = cv2.flip(image, 0)

16   cv2.imshow("Flipped Vertically", flippedVertically)

17   cv2.waitKey(-1)

18   # Flip horizontally and then vertically

19   flippedHV = cv2.flip(image, -1)

20   cv2.imshow("Flipped H and V", flippedHV)

21   cv2.waitKey(-1)

Listing 3-4 is self-explanatory. Just in case it does not stand out, here is the 

explanation of the lines that are performing the flips.

Line 10 calls the cv2.flip() function and passes the original image and a value of 0 

for the horizontal flip.

Similarly, line 15 is flipping the image vertically, while line 19 has an argument of -1 

to make the flip first horizontally and then vertically. Figures 3-7 to 3-10 show how these 

flips look.
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Figure 3-7. Original image

Figure 3-8. Flipped horizontally
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 Cropping
Image cropping means removing the unwanted outer areas of an image. Recall that 

OpenCV represents an image as a NumPy array. Cropping an image is achieved by 

slicing the image NumPy array. There is no special function in OpenCV to crop an image. 

We use the NumPy array features to slice the image. Listing 3-5 shows how to crop an 

image.

Figure 3-9. Flipped vertically

Figure 3-10. Flipped horizontally and then vertically
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Listing 3-5. Image Cropping

Filename: Listing_3_5.py

1    from __future__ import print_function

2    import cv2

3    import numpy as np

4

5    # Load image

6    imagePath = "images/zebrasmall.png"

7    image = cv2.imread(imagePath)

8    cv2.imshow("Original Image", image)

9    cv2.waitKey(0)

10

11   # Crop the image to get only the face of the zebra

12   croppedImage = image[0:150, 0:250]

13   cv2.imshow("Cropped Image", croppedImage)

14   cv2.waitKey(0)

Line 12 shows how to slice the NumPy array. In this example, we are using a 

150-pixel height and a 250-pixel width to crop our image to extract only the face portion 

of the zebra.

Figure 3-11 shows the original image, and Figure 3-12 shows the cropped images.

Figure 3-11. Original image
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 Image Arithmetic and Bitwise Operations
When building computer vision applications, you will often need to enhance the 

properties of input images. To do that, you may need to do certain arithmetic operations, 

such as addition and subtraction, and bitwise operations, such as OR, AND, NOT, and 

XOR.

We have learned so far that each pixel in an image can have any integer value 

between 0 and 255. What happens when you add a constant to a pixel, making the 

resulting value greater than 255 or less than 0 if you subtract a constant from it? For 

example, assume that one of the pixels of an image has value 230 and you add 30 to it. Of 

course, the pixel cannot have a value of 260. So, what should we do? Should we truncate 

the value to keep the pixel to a maximum of 255 or wrap it around to make it 4 (meaning 

after 255, go back to 0, and add the remainder after 255)?

There are two methods to handle this situation when the pixel value falls outside the 

range [0,255]:

• Saturated operation (or trimming): In this operation, 230 + 30 ⇒ 255.

• Modulo operation: Here it performs a modulo like this: (230+30) % 

256 ⇒ 4.

You can perform arithmetic operations by using both OpenCV and NumPy’s built-in 

functions. However, they handle the operations differently.

OpenCV’s addition is a saturated operation. On the other hand, NumPy performs a 

modulo operation.

Note the difference between NumPy and OpenCV as both these two techniques yield 

different results and where you use them depends on your situation and needs.

Figure 3-12. The cropped image
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 Addition
OpenCV provides two convenient methods to add two images.

• cv2.add(), which takes the two equal-sized images as arguments and 

adds their pixel values to produce the result.

• cv2.addWeighted(), which is generally used for blending two 

images. More details about this function are provided in a moment.

Note that to add two images, they must be of the same depth and type.

Let’s write some code to understand how these two additions are different. See Listing 3-6.

Listing 3-6. Addition of Two Images

Filename: Listing_3_6.py

1    from __future__ import print_function

2    import cv2

3    import numpy as np

4

5    image1Path = "images/zebra.png"

6    image2Path = "images/nature.jpg"

7

8    image1 = cv2.imread(image1Path)

9    image2 = cv2.imread(image2Path)

10

11    # resize the two images to make them of the same dimension. This is a 

must to add two images

12   resizedImage1 = cv2.resize(image1,(300,300),interpolation=cv2.INTER_AREA)

13   resizedImage2 = cv2.resize(image2,(300,300),interpolation=cv2.INTER_AREA)

14

15   # This is a simple addition of two images

16   resultant = cv2.add(resizedImage1, resizedImage2)

17

18   # Display these images to see the difference

19   cv2.imshow("Resized 1", resizedImage1)

20   cv2.waitKey(0)

21

22   cv2.imshow("Resized 2", resizedImage2)
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23   cv2.waitKey(0)

24

25   cv2.imshow("Resultant Image", resultant)

26   cv2.waitKey(0)

27

28   # This is weighted addition of the two images

29   weightedImage = cv2.addWeighted(resizedImage1,0.7, resizedImage2, 0.3, 0)

30   cv2.imshow("Weighted Image", weightedImage)

31   cv2.waitKey(0)

32

33   imageEnhanced = 255*resizedImage1

34   cv2.imshow("Enhanced Image", imageEnhanced)

35   cv2.waitKey(0)

36

37   arrayImage = resizedImage1+resizedImage2

38   cv2.imshow("Array Image", arrayImage)

39   cv2.waitKey(0)

Lines 8 and 9 load two different images from disk. As I mentioned earlier, the images 

must be of the same size and depth for them to be added together; you have probably 

already guessed the purpose of lines 12 and 13. Images are resized to be 300×300 pixels.

Line 16 is where these two images are being added. We used OpenCV’s simple 

addition function, cv2.add(), that takes the two images as arguments. Refer to the 

output image in Figure 3-15 to see the result of simply adding two images.

In line 29, we are doing weighted addition by using OpenCV’s cv2.addWeighted() 

function that works as follows:

  ResultantImage = α x image1 + β x image2 + γ (1)

where 𝝰 is the weight of image 1, 𝛃 is the weight of image 2, and 𝛄 is a constant. By 

varying the values of these weights, we create the desired effects of additions.

By looking at the previous equation, you can easily guess the arguments you need to 

pass to the function cv2.addWeighted(). Here is the argument list:

 – NumPy array of image 1

 – The weight, 𝝰, of image 1 (we passed a value 0.7 in our example code)
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Figure 3-14. Original image that is added

 – NumPy of array of image 2

 – The weight, 𝛃, of image 2 (we passed the value 0.3 in our example code)

 – The last argument, 𝛄 (we passed a zero value in our example)

Let us examine the inputs and outputs of Listing 3-6. Figure 3-13 and Figure 3-14 are 

the original images, resized to 300x300 to make them of equal dimensions.

Figure 3-15 is the output when these two images are added together using the 

function add().

Figure 3-16 is the resultant image when the inputs are added using the function 

addWeighted().

Figure 3-13. Original image
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Notice the difference between the simple add and addWeighted functions by 

referring to the outputs shown in Figure 3-15 and Figure 3-16.

 Subtraction
Image subtraction means subtracting the pixel values of one image from the 

corresponding pixel values of another image. We can also subtract a constant from the 

image pixels. When we subtract two images, it is important to note that the two images 

must be of the same size and depth.

What happens when you subtract an image from itself? Well, all the pixel values of 

the resultant image will be zeros (meaning black). This property is useful in detecting 

any change/alteration in an image. If there is no change, the result of subtracting two 

images will be a completely black image.

Figure 3-16. Result of cv2.addWeighted()

Figure 3-15. Result of cv2.add()
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Another reason for subtracting images is to level any uneven sections or shadows.

We will see some interesting results of image subtraction through the code examples. 

See Listing 3-7.

Listing 3-7. Image Subtraction

Filename: Listing_3_7.py

1    import cv2

2    import numpy as np

3

4

5    image1Path = "images/cat1.png"

6    image2Path = "images/cat2.png"

7

8    image1 = cv2.imread(image1Path)

9    image2 = cv2.imread(image2Path)

10

11    # resize the two images to make them of the same dimensions. This is a 

must to subtract two images

12    resizedImage1 = cv2.resize(image1,(int(500*image1.shape[1]/image1.

shape[0]), 500),interpolation=cv2.INTER_AREA)

13    resizedImage2 = cv2.resize(image2,(int(500*image2.shape[1]/image2.

shape[0]), 500),interpolation=cv2.INTER_AREA)

14

15   cv2.imshow("Cat 1", resizedImage1)

16   cv2.imshow("Cat 2", resizedImage2)

17

18   # Subtract image 1 from 2

19    cv2.imshow("Diff Cat1 and Cat2",cv2.subtract(resizedImage2, 

resizedImage1))

20   cv2.waitKey(0)

21

22

23   # subtract images 2 from 1

24   subtractedImage = cv2.subtract(resizedImage1, resizedImage2)

25   cv2.imshow("Cat2 subtracted from Cat1", subtractedImage)
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26   cv2.waitKey(0)

27

28   # Numpy Subtraction Cat2 from Cat1

29   subtractedImage2 = resizedImage2 - resizedImage1

30   cv2.imshow("Numpy Subracts Images", subtractedImage2)

31   cv2.waitKey(0)

32

33   # A constant subtraction

34   subtractedImage3 = resizedImage1 - 50

35   cv2.imshow("Constant Subtracted from the image", subtractedImage3)

36   cv2.waitKey(0)

Listing 3-7 shows a few interesting behaviors of image subtraction. Here is what we 

have in this listing.

Lines 5 through 9 are where we are loading images from disk (from the directory 

path). We are loading two images of cats, and we are trying to determine if there is any 

difference in these two look-alike cats. Images shown in Figures 3-17 and 3-18 are the 

input images used in this example.

Lines 12 and 13 are to resize images to ensure their dimensions are the same. 

Remember, this is a must to subtract two image arrays.

In line 19, we are displaying the result of subtracting cat1 from cat2. To determine 

the difference, we are using OpenCV’s cv2.subtract() function and passing the NumPy 

representations of the two images (resized ones). In this case, we want to subtract cat1 

from cat2; hence, we pass the resizedImage2 variable first and resizedImage1 as the 

second argument in the function. The order does matter as is evident from the outputs 

shown in Figure 3-19 and Figure 3-20.

To demonstrate the effect of the order, line 24 has resizedImage1 first and 

resizedImage2 as the second argument in the cv2.subtract() function.

Line 29 does not use OpenCV’s subtraction function. This is a simple NumPy array 

subtraction. Notice the difference in the output shown in Figure 3-21.

Line 34 subtracts a constant from the image. The output is shown in Figure 3-22.
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Figure 3-18. Cat2 image

Figure 3-17. Cat1 image
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Figure 3-19. Image1 subtracted from Image2

Figure 3-20. Image2 subtracted from Image1
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Figure 3-21. NumPy subtraction

Figure 3-22. A constant subtracted from an image
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So far, we have learned the two powerful image arithmetic techniques: addition 

and subtraction. Let’s now learn how to perform bitwise logical operations on image 

pixels.

 Bitwise Operations
Some of the most useful operations in computer vision are bitwise operations, which 

include AND, OR, NOT, and XOR.

If you recall from your Boolean algebra class, these bitwise operations are binary 

operations and work with only two states of pixels: on and off. In grayscale images, a 

pixel can have any value between 0 and 255. So, what do we call an “on” and what do we 

call an “off”? In image processing, for grayscale binary images, the pixel value 0 means 

off and a value greater than 0 means on. Based on this concept of pixels being on or off, 

we will explore the following bitwise operations.

 AND

The bitwise AND of the two operands “a” and “b” results in 1 if both “a” and “b” are 1; 

otherwise, the result is 0.

In image processing, the bitwise AND operation of two image arrays calculates 

element-wise conjunction. It is important to note that both the arrays must be of equal 

dimensions to perform bitwise AND operations. Bitwise AND can also be performed 

with an array and a scalar.

OpenCV provides a convenient function called cv2.bitwise_and(imageArray1, 

imageAyyar2) to perform the bitwise AND operation. This function takes the two image 

arrays as arguments. Listing 3-8 shows the bitwise AND operation.

 OR

A bitwise OR of the two operands “a” and “b” results in 1 if either or both of “a” and 

“b” are 1; otherwise, the result is 0. The bitwise OR operation calculates element-wise 

disjunction of two arrays or an array and a scalar. In OpenCV, the function  

 cv2.bitwise_or(imageArray1, imageArray2) calculates the bitwise OR of the two 

input arrays. Listing 3-8 shows a working example of the OR operation.
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 NOT

Bitwise NOT inverts the bit values of its operand. OpenCV’s cv2.bitwise_

not(imageArray) function takes only one image array as an argument to perform the 

bitwise NOT operation on that image. See Listing 3-8 for an example.

 XOR

A bitwise XOR of the two operands “a” and “b” results in 1 if either but not both “a” or “b” 

is 1; otherwise, the result is 0. OpenCV provides a convenient function called  

cv2.bitwise_xor(imageArray1, imageArray2) to perform a bitwise XOR. Again, both 

the image arrays must be an equal dimension. Listing 3-8 shows a working example of a 

bitwise XOR.

The following table summarizes bitwise operations that we will use for various image 

processing needs, such as masking:

Operator Usage Description

Bitwise anD a anD b returns a 1 in each bit position for which the corresponding bits of both 

operands are 1s

Bitwise or a or b returns a 1 in each bit position for which the corresponding bits of either 

or both operands are 1s

Bitwise Xor a Xor b returns a 1 in each bit position for which the corresponding bits of either 

but not both operands are 1s

Bitwise not not a inverts the bits of its operand

Let’s understand these bitwise operations with the program in Listing 3-8. We will 

first create two images—a circle and a square—and perform bitwise operations to see 

their effects.

Listing 3-8. Bitwise Operations

Filename: Listing_3_8.py

1    import cv2

2    import numpy as np

3
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4    # create a circle

5     circle = cv2.circle(np.zeros((200, 200, 3), dtype = "uint8"), 

(100,100), 90, (255,255,255), -1)

6    cv2.imshow("A white circle", circle)

7    cv2.waitKey(0)

8

9    # create a square

10    square = cv2.rectangle(np.zeros((200,200,3), dtype= "uint8"), (30,30), 

(170,170),(255,255,255), -1)

11   cv2.imshow("A white square", square)

12   cv2.waitKey(0)

13

14   #bitwise AND

15   bitwiseAnd = cv2.bitwise_and(square, circle)

16   cv2.imshow("AND Operation", bitwiseAnd)

17   cv2.waitKey(0)

18

19   #bitwise OR

20   bitwiseOr = cv2.bitwise_or(square, circle)

21   cv2.imshow("OR Operation", bitwiseOr)

22   cv2.waitKey(0)

23

24   #bitwise XOR

25   bitwiseXor = cv2.bitwise_xor(square, circle)

26   cv2.imshow("XOR Operation", bitwiseXor)

27   cv2.waitKey(0)

28

29   #bitwise NOT

30   bitwiseNot = cv2.bitwise_not(square)

31   cv2.imshow("NOT Operation", bitwiseNot)

32   cv2.waitKey(0)
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Let’s understand what is going on in Listing 3-8.

Line 5 creates a white color circle at the center of a 200×200 canvas. See Listing 2-5 

for how to draw a circle on a canvas.

Similarly, line 10 draws a white square on a 200×200 canvas. See Listing 2-4 for how 

to draw a rectangle on a canvas.

Line 15 shows the use of the cv2.bitwise_and() function. The arguments to this 

function are the circle and square images (represented by NumPy arrays).

Similarly, lines 20 and 25 show the cv2.bitwise_or() and cv2.bitwise_xor() 

operations, respectively.

All these three functions for AND, OR, and XOR take two arrays to operate on.

Line 30 shows the cv2.bitwise_not() function that takes only one argument to 

calculate the bitwise NOT.

Figures 3-23 through 3-28 show the outputs of Listing 3-8.

Figure 3-23. White circle
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Figure 3-24. White square

Figure 3-25. Bitwise AND
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Figure 3-26. Bitwise OR

Figure 3-27. Bitwise XOR
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 Masking
Masking is one of the most powerful techniques in computer vision. Masking refers to 

the “hiding” or “filtering” of an image.

When we mask an image, we hide a portion of the image with some other image. 

In other words, we put our focus on a portion of the image by applying a mask on the 

remaining portion of the image. For example, Figure 3-29 has the digits 1, 2, and 3 in 

it, while Figure 3-30 is a black image with a white cut-out. When we blend these two 

images, digits 1 and 3 will get hidden, and the only digit that will be visible is digit 2. The 

result of masking is shown in Figure 3-31 below.

The technique of masking is applied in the smoothing or blurring of an image and in 

detecting the edges and contours within the image. The masking technique is also used 

in object detection that we will explore later in this book.

Listing 3-9 shows how to perform masking using OpenCV.

1 2 3

Figure 3-29. Original image

1

Figure 3-30. A mask image

Figure 3-28. Bitwise NOT
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Listing 3-9. Masking Using Bitwise AND Operation

Filename: Listing_3_9.py

1    import cv2

2    import numpy as np

3

4    # Load an image

5    natureImage = cv2.imread("images/nature.jpg")

6    cv2.imshow("Original Nature Image", natureImage)

7

8    # Create a rectangular mask

9     maskImage = cv2.rectangle(np.zeros(natureImage.shape[:2], 

dtype="uint8"), (50, 50), (int(natureImage.shape[1])-50, 

int(natureImage.shape[0] / 2)-50), (255, 255, 255), -1)

10

11   cv2.imshow("Mask Image", maskImage)

12   cv2.waitKey(0)

13

14    # Using bitwise_and operation perform masking. Notice the 

mask=maskImage argument

15   masked = cv2.bitwise_and(natureImage, natureImage, mask=maskImage)

16   cv2.imshow("Masked image", masked)

17   cv2.waitKey(0)

In OpenCV, the image masking is performed by using a bitwise AND operation 

(remember bitwise operations?). Listing 3-9 shows a simple example of how to mask 

an area of an image. For this example, our goal is to extract a rectangular section of the 

cloud shown in Figure 3-32.

Line 5 of Listing 3-9 should be familiar to you by now. All we are doing here is 

loading the image (Figure 3-32).

1 2

Figure 3-31. Masking effect
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In line 9, we are creating a black canvas with a white rectangular section at the top 

(with some margin). The size of the canvas is the same as the size of the original image. 

Notice in Figure 3-33 that the bigger rectangle has another rectangular white section at 

the top and the rest of the area of this rectangle is black.

Line 15 is where the masking is performed. Notice that we are using the  

cv2.bitwise_and() function, which takes two mandatory arguments, which in this case 

are the original image itself and an optional masking argument (mask=maskImage). What 

is happening here is that this function calculates the AND operation of the image with 

itself and applies a mask as instructed by the argument mask=maskImage. When OpenCV 

sees this mask argument, it will examine only those pixels that are turned on in the mask 

(maskImage) array. The output of this masking operation is shown in Figure 3-34.

Figure 3-32. Original image to be masked

Figure 3-33. A mask that will be applied to extract the cloud from Figure 3-32
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Marking is one of the most commonly used image processing techniques for 

computer vision. We will learn more about its practical applications in subsequent 

chapters on machine learning and neural networks.

 Splitting and Merging Channels
Recall from Chapter 2 that a color image consists of multiple channels (R,G,B). We have 

already learned how to access these channels and represent them as NumPy arrays. 

In this section, we will learn how to split these channels and store them as separate 

images. OpenCV provides a convenient function, split(), to do that. Using this split() 

function, we can split images into respective color components. Here is a working code 

example to illustrate this. For this example, we will again take our “nature” image (as 

shown in Figure 3-32) and split it into its component colors.

In Listing 3-10, line 5 loads the image. Line 8 splits the image into three components 

and stores them in separate NumPy variables (b, g, r). Recall that NumPy stores colors 

in blue, green, and red (BGR) sequences and not as RGB sequences. Lines 11, 14, and 17 

show these split images. The outputs are shown in Figure 3-35, 3-36, and 3-37.

Listing 3-10. Splitting Channels into Color Components

Filename: Listing_3_10.py

1    import cv2

2    import numpy as np

3

Figure 3-34. Masked image
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4    # Load the image

5    natureImage = cv2.imread("images/nature.jpg")

6

7    # Split the image into component colors

8    (b,g,r) = cv2.split(natureImage)

9

10   # show the blue image

11   cv2.imshow("Blue Image", b)

12

13   # Show the green image

14   cv2.imshow("Green image", g)

15

16   # Show the red image

17   cv2.imshow("Red image", r)

18

19   cv2.waitKey(0)

Figure 3-35. Red channel

Figure 3-36. Green channel
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We can merge channels by using OpenCV’s merge() function, which takes arrays in 

BGR sequence. Listing 3-11 shows the use of the merge() function.

Listing 3-11. Split and Merge Functions

Filename: Listing_3_11.py

1    import cv2

2    import numpy as np

3

4    # Load the image

5    natureImage = cv2.imread("images/nature.jpg")

6

7    # Split the image into component colors

8    (b,g,r) = cv2.split(natureImage)

9

10   # show the blue image

11   cv2.imshow("Blue Image", b)

12

13   # Show the green image

14   cv2.imshow("Green image", g)

15

16   # Show the red image

17   cv2.imshow("Red image", r)

18

19   merged = cv2.merge([b,g,r])

20   cv2.imshow("Merged Image", merged)

21   cv2.waitKey(0)

Figure 3-37. Blue channel
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Line 5 loads the image. Lines 8 through 17 are related to our previous split functions. 

We did the split so that we have three components to demonstrate the merge() function.

Line 19 is where we are merging the channels. We simply pass the individual 

channels as the argument to the merge() function. Notice that the channels are in BGR 

sequence. Execute the previous program and observe the final output. Did you get the 

original image back?

Splitting and merging are helpful image processing techniques to perform feature 

engineering for machine learning. We will apply some of these concepts in the upcoming 

chapters.

 Noise Reduction Using Smoothing and Blurring
Smoothing, also called blurring, is an important image processing technique to reduce 

noise present in an image. There are generally the following types of noise that we 

encounter in an image:

• Salt and pepper noise: Contains random occurrences of black and 

white pixels

• Impulse noise: Means random occurrences of white pixels

• Gaussian noise: Where the intensity variation follows a Gaussian 

normal distribution

In this section, we will explore the following techniques of blurring/smoothing for 

noise reduction.

 Mean Filtering or Averaging
In an averaging technique, we take a small portion of the image, say k×k pixels. This 

small portion of the image is called the sliding window. We move this sliding window 

from left to right and from top to bottom of the image. The pixel at the center of this k×k 

matrix is replaced by the average of all the pixels surrounding it. This k×k matrix is also 

called convolution kernel or simply a kernel. Typically, this kernel is taken as an odd 

number so a definite center can be calculated. The larger the kernel size, the blurrier the 

image will become. For example, a 5×5 kernel will produce a blurrier image compared to 

a 3×3 kernel.
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OpenCV provides a convenient function to blur an image. The function cv2.blur() 

is used to blur an image by using mean filtering or averaging technique. This function 

takes two arguments.

 – The NumPy representation of the original image that needs to be 

blurred

 – The k×k kernel matrix

Listing 3-12 shows a blurring of an image using different kernel sizes.

Listing 3-12. Smoothing/Blurring by Mean Filtering or Averaging

Filename: Listing_3_12.py

1    import cv2

2    import numpy as np

3

4    # Load the image

5    park = cv2.imread("images/nature.jpg")

6    cv2.imshow("Original Park Image", park)

7

8    #Define the kernel

9    kernel = (3,3)

10   blurred3x3 = cv2.blur(park,karnal)

11   cv2.imshow("3x3 Blurred Image", blurred3x3)

12

13   blurred5x5 = cv2.blur(park,(5,5))

14   cv2.imshow("5x5 Blurred Image", blurred5x5)

15

16   blurred7x7 = cv2.blur(park, (7,7))

17   cv2.imshow("7x7 Blurred Image", blurred7x7)

18   cv2.waitKey(0)

As usual, we start with loading the image and assigning it to an array variable (the 

park variable in line 5 in Listing 3-12).

Line 9 defines a 3×3 kernel.

In line 10 we are using the cv2.blur() function and passing the park image and 

kernel as arguments. This will produce a blurred image using a 3×3 kernel.

Chapter 3  teChniques of image proCessing 



66

To compare the effects of kernel size, lines 13 and 16 use kernel sizes 5×5 and 7×7. 

Notice the increasing order of blurriness as the kernel size increases in Figures 3-38 

through 3-41.

Figure 3-39. Blurring using a 3×3 kernel

Figure 3-40. Blurring using 5×5 kernel

Figure 3-38. Original image
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Figure 3-41. Blurring using 7×7 kernel

 Gaussian Filtering
Gaussian filtering is one of the most effective blurring techniques in image processing. 

This is used to reduce Gaussian noise. This blurring technique gives a more natural 

smoothing result compared to the averaging technique. In this filtering, we supply a 

Gaussian kernel instead of a boxed fixed kernel.

A Gaussian kernel consists of the height, width, and standard deviations in the X and 

Y directions.

OpenCV provides a convenient function, cv2.GaussianBlur(), to perform the 

Gaussian filtering. This function, cv2.GaussianBlur(), takes the following arguments:

 – The image represented by the NumPy array.

 – The k×k matrix as the kernel height and width.

 – sigmaX and sigmaY is a standard deviation in the X and Y directions.

Here are a few notes about standard deviation:

 – If only sigmaX is specified, sigmaY is taken the same as sigmaX.

 – If both are taken as zero, the standard deviations are calculated from 

the kernel size.

 – OpenCV provides a function, cv2.getGaussianKernel(), to auto-

calculate the standard deviations.
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For those who are interested in knowing the formula that is used in the Gaussian 

filtering, here is the Gaussian equation:
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where μ is the mean (the peak) and σ2 is the variance (for each of the variables x and y).

Listing 3-13 is a working example to demonstrate Gaussian blurring.

Listing 3-13. Smoothing Using the Gaussian Technique

Filename: Listing_3_13.py

1    import cv2

2    import numpy as np

3

4    # Load the park image

5    parkImage = cv2.imread("images/park.jpg")

6    cv2.imshow("Original Image", parkImage)

7

8     # Gaussian blurring with 3x3 kernel and 0 for standard deviation to 

calculate from the kernel

9    GaussianFiltered = cv2.GaussianBlur(parkImage, (5,5), 0)

10   cv2.imshow("Gaussian Blurred Image", GaussianFiltered)

11

12   cv2.waitKey(0)

Here again we are starting with loading our park image (line 5 of Listing 3-13). Line 9 

shows the use of OpenCV’s cv2.GaussianBlur() function. We supplied a 5×5 kernel and 

a 0 to tell OpenCV to calculate the standard deviations from the kernel size.

Figure 3-42 shows the original image, and Figure 3-43 shows the effect of Gaussian 

blurring.
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Figure 3-42. Original image

 Median Blurring
Median blurring is an effective technique for reducing salt-and-pepper type of noise. 

Median blurring is similar to mean blurring except that the central value of the kernel 

is replaced by the median of the surrounding pixels. We use the cv2.medianBlur() 

function of OpenCV to reduce the salt-and-pepper noise (see Listing 3-14). This function 

takes the following two arguments:

 – The original image that needs to be blurred.

 – The kernel size k. Note that the kernel size k is similar to the k×k 

matrix in the case of mean blurring.

Listing 3-14. Salt-and-Pepper Noise Reduction Using Median Blurring

Filename: Listing_3_14.py

1    import cv2

Figure 3-43. Gaussian blurred image with a 5×5 kernel
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2

3    # Load a noisy image

4    saltpepperImage = cv2.imread("images/salt-pepper.jpg")

5    cv2.imshow("Original noisy image", saltpepperImage)

6

7    # Median filtering for noise reduction

8    blurredImage3 = cv2.medianBlur(saltpepperImage, 3)

9    cv2.imshow("Blurred image 3", blurredImage3)

10

11   # Median filtering for noise reduction

12   blurredImage5 = cv2.medianBlur(saltpepperImage, 5)

13   cv2.imshow("Blurred image 5", blurredImage5)

14

15

16   cv2.waitKey(0)

Listing 3-14 shows the use of the cv2.medianBlur() function. Lines 8 and 12 are 

creating the blurred images from the original image loaded in line 4. Notice the kernel 

parameter to the function is a scalar and not a tuple or matrix.

Figure 3-44 shows the image with salt-and-pepper noise. Notice the different levels 

of noise reduction as we apply different kernel sizes. Figure 3-45 shows the output 

image when the kernel size 3 is applied. Notice that Figure 3-45 still has some noise. 

Figure 3-45 shows a cleaner output with almost no noise when the kernel size 5 is 

applied with median blur.

Figure 3-44. A salt-and-pepper noisy image
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Figure 3-46. Median blur with kernel size 5 (noise is almost removed)

Figure 3-45. Median blur with kernel size 3 (has some noise)

Figure 3-44 shows a noisy image with a salt-and-pepper type of noise. You will notice 

that median blur did a reasonably good job of reducing the noise. Figure 3-45 shows a 

blurred image by using a kernel size of 3. A good result is achieved by kernel size 5, as 

shown in Figure 3-46.

 Bilateral Blurring
The previous three blurring techniques yield blurred images with the side effect that we 

lose the edges in the image. To blur an image while preserving the edges, we use bilateral 

blurring, which is an enhancement over Gaussian blurring. Bilateral blurring takes two 

Gaussian distributions to perform the computation.
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The first Gaussian function considers the spatial neighbors (pixels in x and y space 

that are close together). The second Gaussian function considers the pixel intensity of 

the neighboring pixels. This makes sure that only those pixels that are of similar intensity 

to the central pixel are considered for blurring, leaving the edges intact as the edges tend 

to have higher intensity compared to other pixels.

Although this is a superior blurring technique, it is slower compared to other techniques.

We use cv2.bilateralFilter() to perform this kind of blurring. The arguments to 

this function are as follows:

 – The image that needs to be blurred.

 – The diameter of the pixel neighborhood.

 – Color value. A larger value of the color means that more colors of the 

neighborhood pixels will be considered when computing the blur.

 – A space or distance. A larger value of the space means that the pixels 

farther from the central pixel will be considered.

Let’s examine Listing 3-15 to understand bilateral filtering.

Listing 3-15. Bilateral Blurring Example

Filename: Listing_3_15.py

1    import cv2

2

3    # Load a noisy image

4    noisyImage = cv2.imread("images/nature.jpg")

5    cv2.imshow("Original image", noisyImage)

6

7    # Bilateral Filter with

8    fileteredImag5 = cv2.bilateralFilter(noisyImage, 5, 150,50)

9    cv2.imshow("Blurred image 5", fileteredImag5)

10

11   # Bilateral blurring with kernal 7

12   fileteredImag7 = cv2.bilateralFilter(noisyImage, 7, 160,60)

13   cv2.imshow("Blurred image 7", fileteredImag7)

14

15   cv2.waitKey(0)
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Figure 3-47. Original image

As shown in Listing 3-15, lines 8 and 12 are for blurring the input image using cv2.

bilateralFilter(). The first set of arguments (in line 8) is the NumPy-represented 

image pixels, the kernel or diameter, the color threshold, and the distance from the 

center.

Figures 3-47 through 3-49 show the outputs of Listing 3-15.

Figure 3-48. Bilateral blurring with diameter 5

Figure 3-49. Bilateral blurring with diameter 7
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We have learned different techniques for the blurring or smoothing of images. We 

will use these blurring techniques throughout this book.

In the next section, we will learn how to convert a grayscale image into a binary 

image with the help of a technique called thresholding.

 Binarization with Thresholding
Image binarization is the process of converting a grayscale image into a binary—a black- 

and- white—image. We apply a technique called thresholding to binarize an image.

We first decide on a threshold value. A pixel value greater than this threshold 

is changed to 255, and a pixel with a lesser value than the threshold is set to 0. The 

resultant image will have only two values of the pixels—0 and 255—which are black-and- 

white color values. Thus, a grayscale image is converted into a black-and-white image 

(also called a binary image).

The binarization technique is used to extract prominent information from the 

image, e.g., to extract characters in optical character recognition (OCR) from a scanned 

document.

OpenCV supports the following types of thresholding techniques.

 Simple Thresholding
In simple thresholding, we manually select a threshold value, T. All pixels greater than 

this T are set to 255, and all pixels less than or equal to T are set to 0.

Sometimes it is helpful to do an inverse of binarization, in which case the pixels 

greater than the threshold are set to 0, and the pixels less than the threshold are set to 255.

Let’s see an example of how to binarize an image using OpenCV’s cv2.threshold() 

function. This function takes the following arguments:

 – The original grayscale image that needs to be binarized

 – The threshold value T

 – The max value that will be set if the pixel value is greater than the 

threshold

 – A thresholding method such as cv2.THRESH_BINARY or cv2.THRESH_

BINARY_INV
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The threshold function returns a tuple containing the threshold value and the 

binarized image.

Listing 3-16 converts a grayscale image into a binary image.

Listing 3-16. Binarization Using Simple Thresholding

Filename: Listing_3_16.py

1    import cv2

2    import numpy as np

3

4    # Load an image

5    image = cv2.imread("images/scanned_doc.png")

6    # convert the image to grayscale

7    image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

8    cv2.imshow("Original Grayscale Receipt", image)

9

10   # Binarize the image using thresholding

11   (T, binarizedImage) = cv2.threshold(image, 60, 255, cv2.THRESH_BINARY)

12   cv2.imshow("Binarized Receipt", binarizedImage)

13

14   # Binarization with inverse thresholding

15    (Ti, inverseBinarizedImage) = cv2.threshold(image, 60, 255, cv2.

THRESH_BINARY_INV)

16   cv2.imshow("Inverse Binarized Receipt", inverseBinarizedImage)

17   cv2.waitKey(0)

Listing 3-16 shows the two binarization methods: simple binarization and inverse 

binarization. Line 5 loads an image, and line 8 converts the image to a grayscale image 

because the input to the threshold function should be a grayscale image.

Line 11 calls OpenCV’s cv2.threshold() function and passes as arguments the 

grayscale image, threshold value, maximum pixel value, and thresholding method 

cv2.THRESH_BINARY. The threshold() function returns a tuple containing the same 

threshold value that we supply in the argument and the binarized image. In the previous 

example, the pixel value will be set to a maximum of 255 for all pixels whose value is 

greater than 60 and will be set to 0 for those pixels whose value is equal or less than 60.
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Line 15 is similar to line 11 except that the last argument to the threshold() function 

is cv2.THRESH_BINARY_INV. By passing cv2.THRESH_BINARY_INV, we are instructing the 

threshold() method to do just the opposite of what the cv2.THRESH_BINARY method 

does: set the pixel value to 255 if the pixel intensity is less than 60; otherwise, set it to 0.

Sample outputs of the two threshold methods, along with the original image, are 

shown in Figure 3-50 through 3-52.

Figure 3-50. Original grayscale image with dark background patches/stains

Figure 3-52. Binarized image with simple inverse thresholding

Figure 3-51. Binarized image with simple thresholding
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To demonstrate this example, we took a scanned image of a badly stained document 

(Figure 3-50) and binarized it using simple thresholding. The method cv2.THRESH_BINARY 

generated the output, which contains black text on a white background. The method cv2.

THRESH_BINARY_INV created the image with white text on a black background.

In simple thresholding, one global threshold value is applied to all pixels in the 

image, and you will need to know the threshold up front. If you are processing a large 

number of images and you want to adjust the threshold values based on the image type 

and intensity variations, the simple threshold may not be the ideal method.

In the following sections, we will examine other thresholding methods: adaptive 

thresholding and the Otsu method.

 Adaptive Thresholding
Adaptive thresholding is used to binarize a grayscale image that has a varying degree 

of pixel intensity, and one single threshold value may not be suitable to extract the 

information from the image. In adaptive thresholding, the algorithm determines the 

threshold for a pixel based on a small region around it. This will get us a different 

threshold value for different regions in the same image. Adaptive thresholding tends 

to give a better result compared to simple thresholding when the pixel intensity varies 

within the image.

Listing 3-17 shows the usage of adaptive thresholding to binarize a grayscale image.

Listing 3-17. Binarization Using Adaptive Thresholding

Filename: Listing_3_17.py

1    import cv2

2    import numpy as np

3

4    # Load an image

5    image = cv2.imread("images/boat.jpg")

6    # convert the image to grayscale

7    image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

8

9    cv2.imshow("Original Grayscale Image", image)

10
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11   # Binarization using adaptive thresholding and simple mean

12    binarized = cv2.adaptiveThreshold(image, 255, cv2.ADAPTIVE_THRESH_

MEAN_C, cv2.THRESH_BINARY, 7, 3)

13   cv2.imshow("Binarized Image with Simple Mean", binarized)

14

15   # Binarization using adaptive thresholding and Gaussian Mean

16    binarized = cv2.adaptiveThreshold(image, 255, cv2.ADAPTIVE_THRESH_

GAUSSIAN_C, cv2.THRESH_BINARY_INV, 11, 3)

17   cv2.imshow("Binarized Image with Gaussian Mean", binarized)

18

19   cv2.waitKey(0)

We have used an example image with varying degrees of shades and color intensity. 

Using adaptive thresholding, we want to convert the image to a binary image. Here is the 

explanation of what is happening in Listing 3-17.

Line 5, as usual, loads the image. Line 7 converts the image to a grayscale image as 

the input to the threshold function is a grayscale image.

Line 12 is actually performing the binarization using OpenCV’s  

cv2.adaptiveThreshold() function. This function takes the following arguments:

 – The grayscale image that needs to be binarized

 – The maximum value

 – The method to calculate the threshold (more information in a 

moment)

 – Binarization method such as cv2.THRESH_BINARY or  

cv2.THRESH_BINARY_INV

 – Neighborhood size to consider for calculating the thresholds

 – A constant value C that will be subtracted from the calculated 

thresholds

In our example, on line 12, we used cv2.ADAPTIVE_THRESH_MEAN_C to indicate 

that we want to calculate the threshold value of a pixel by taking the mean of pixels 

surrounding it. The size of the neighborhood in our example is 7×7. The last argument, 3, 

on line 12, is the constant that will be subtracted from the calculated threshold.
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Figure 3-53. Original image

Line 16 is similar to line 12 except that we are using cv2.ADAPTIVE_GAUSSIAN_C to 

indicate that we want to calculate the threshold of a pixel by taking the weighted mean of 

all pixels surrounding it.

Figures 3-53 through 3-55 show some sample outputs of Listing 3-17.

 Otsu’s Binarization
In the simple thresholding, we select a global threshold that is arbitrarily selected. It is 

difficult to know what the right value of the threshold is, so we may need to do trial-and- 

error experiments a few times before you get the right value. Even if you get an ideal 

value for one case, it may not work with other images that have different pixel intensity 

characteristics.

Figure 3-55. Binarized image using adaptive thresholding with Gaussian mean

Figure 3-54. Binarized image using adaptive thresholding with simple mean
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Otsu’s method determines an optimal global threshold value from the image 

histogram. We will learn more about histograms in the next chapter. For now, just think 

of the histogram as the frequency distribution of pixel values.

To perform Otsu’s binarization, we pass cv2.THRESH_OTSU as an extra flag in the  

cv2.threshold() function. For example, we pass cv2.THRESH_BINARY+cv2.THRESH_OTSU 

in the threshold() function to indicate the use of Otsu’s method. The threshold() 

method requires a threshold value. When using Otsu’s method, we pass an arbitrary 

value (could be 0), and the algorithm automatically calculates the threshold and returns 

as one of the outputs.

Listing 3-18 shows the code example for how to use Otsu’s binarization method.

Listing 3-18. Otsu’s Binarization

Filename: Listing_3_18.py

1    import cv2

2    import numpy as np

3

4    # Load an image

5    image = cv2.imread("images/scanned_doc.png")

6    # convert the image to grayscale

7    image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

8    cv2.imshow("Original Grayscale Receipt", image)

9

10   # Binarize the image using thresholding

11    (T, binarizedImage) = cv2.threshold(image, 0, 255, cv2.THRESH_

BINARY+cv2.THRESH_OTSU)

12   print("Threshold value with Otsu binarization", T)

13   cv2.imshow("Binarized Receipt", binarizedImage)

14

15   # Binarization with inverse thresholding

16    (Ti, inverseBinarizedImage) = cv2.threshold(image, 0, 255, cv2.THRESH_

BINARY_INV+cv2.THRESH_OTSU)

17   cv2.imshow("Inverse Binarized Receipt", inverseBinarizedImage)

18   print("Threshold value with Otsu inverse binazarion", Ti)

19   cv2.waitKey(0)
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You will notice that the code example in Listing 3-18 is almost the same as the code 

in Listing 3-16 with the following exceptions:

 – Line 11 uses an additional flag, cv2.THRESH_OTSU, along with  

cv2.THRESH_BINARY, and the threshold value is passed as 0.

 – Line 16 uses the flag cv2.THRESH_OTSU along with cv2.THRESH_

BINARY_INV, and again the threshold value is set to 0.

 – We have print statements in lines 12 and 18 to print the calculated 

threshold values. Figure 3-56 shows the sample output of these print 

statements.

Figures 3-57 through 3-59 show Otsu’s output samples.

Figure 3-56. Sample output of threshold values calculated from Otsu’s method

Figure 3-57. Original image with varying background shades (stains and dark 
patches)

Figure 3-58. Binarization with Otsu’s method
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Binarization is a useful image processing technique to extract prominent features 

from images. In this section, we have learned different binarization techniques and their 

usage based on the pixel intensity and their variations. In the following section, we will 

learn another powerful image processing technique called edge detection.

 Gradients and Edge Detection
Edge detection involves a set of methods to find points in an image where the brightness 

of pixels changes distinctly.

We will learn two methods for finding edges in an image: finding gradients and 

Canny edge detection.

OpenCV provides the following two methods for finding gradients.

 Sobel Derivatives (cv2.Sobel() Function)
The Sobel method is a combination of Gaussian smoothing and Sobel differentiation, 

which computes an approximation of the gradient of an image intensity function. 

Because of the Gaussian smoothing, this method is resistant to noise.

We can perform derivatives either in the horizontal or vertical direction by passing 

the arguments xorder and yorder, respectively. The Sobel() function also takes an 

argument ksize that we use to define the kernel size. If we set ksize to -1, OpenCV will 

internally apply a 3×3 Schar filter, which generally gives a better result compared to the 

3×3 Sobel filter.

We will see the Sobel function in action in Listing 3-19.

Figure 3-59. Inverse binarization with Otsu’s method
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Listing 3-19. Sobel and Schar Gradient Detection

Filename: Listing_3_19.py

1    import cv2

2    import numpy as np

3    # Load an image

4    image = cv2.imread("images/sudoku.jpg")

5    cv2.imshow("Original Image", image)

6    image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

7    image = cv2.bilateralFilter(image, 5, 50, 50)

8    cv2.imshow("Blurred image", image)

9

10   # Sobel gradient detection

11   sobelx = cv2.Sobel(image,cv2.CV_64F,1,0,ksize=3)

12   sobelx = np.uint8(np.absolute(sobelx))

13   sobely = cv2.Sobel(image,cv2.CV_64F,0,1,ksize=3)

14   sobely = np.uint8(np.absolute(sobely))

15

16   cv2.imshow("Sobel X", sobelx)

17   cv2.imshow("Sobel Y", sobely)

18

19   # Schar gradient detection by passing ksize = -1 to Sobel function

20   scharx = cv2.Sobel(image,cv2.CV_64F,1,0,ksize=-1)

21   scharx = np.uint8(np.absolute(scharx))

22   schary = cv2.Sobel(image,cv2.CV_64F,0,1,ksize=-1)

23   schary = np.uint8(np.absolute(schary))

24   cv2.imshow("Schar X", scharx)

25   cv2.imshow("Schar Y", schary)

26

27   cv2.waitKey(0)

A lot of things are happening here. So, let’s try to understand the concept of gradients 

by going through the lines of this code listing.

Line 4 is simply loading an image from the disk. We applied a bilateral filter to 

reduce noise in line 7. Figure 3-60 shows the original input image and Figure 3-61 shows 

the blurred image that is used as an input in the Sobel and Schar gradient detection 

functions.
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Gradient detection starts from line 11. We used the cv2.Sobel() function that takes 

the following parameters:

 – The blurred image in which we want to detect gradients.

 – A data type, cv2.CV_64F, which is a 64-bit float. Why? The transition 

from black-to- white is considered a positive slope, while the 

transition from white-to-black is a negative slope. An 8-bit unsigned 

integer cannot hold a negative number. Therefore, we need to use 

a 64-bit float; otherwise, we will lose gradients when the transition 

from white to black happens.

 – The third argument indicates whether we want to calculate gradients 

in the X direction. The value 1 means we want to calculate the 

gradient in the X direction.

 – Similarly, the fourth argument indicates whether to calculate 

gradients in the Y direction. A 1 means yes, and a 0 means no.

 – The fifth argument, ksize, defines the kernel size. ksize=5 means 

the kernel size is 5×5.

Since we want to determine gradients in the X direction on line 11, we set the third 

parameter in the cv2.Sobel() function to 1, and we set the fourth parameter to 0.

Line 12 simply takes the absolute value of the gradients and converts them back to 

8-bit unsigned integers. Remember, an image is represented as an 8-bit unsigned integer 

NumPy array.

Line 13 is similar to line 11 except that the third argument is set to 0 and the fourth 

argument is set to 1 to indicate gradient calculation in the Y direction.

Line 14 converts the 64-bit floats to an 8-bit unsigned integer, as explained earlier.

Figure 3-62 and Figure 3-63 show sample outputs of lines 16 and 17. You will notice 

that the edge detection in both the X and Y directions is not very sharp. Let’s try a simple 

improvement to see the effect on the sharpness of the edges.
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Figure 3-60. Original image

Figure 3-61. Blurred image

Figure 3-62. Sobel edge detection in the X direction
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Line 20 through 23 are similar to lines 11 through 14 of Listing 3-19. The difference is 

that the value of ksize is -1, which instructs OpenCV to internally call the Schar function 

with a kernel size of 3×3. You will notice that the sharpness of the edges is much better 

compared to the Sobel function. Figure 3-64 and Figure 3-65 are the results of the Schar 

filter of the image shown in Figure 3-61.

Figure 3-63. Sobel edge detection in the Y direction

Figure 3-64. Schar edge detection in the X direction
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Sobel and Schar calculate gradient magnitudes along the X and Y directions allowing 

us to determine edges along the horizontal and vertical directions.

 Laplacian Derivatives (cv2.Laplacian() Function)
The Laplacian operator calculates the second derivative of the pixel intensity function to 

determine the edges in the image. The Laplacian operator calculates the gradients based 

on the following equation:
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OpenCV provides a function, cv2.Laplacian(), to calculate gradients for edge 

detection. This function takes the following arguments:

 – The image in which edges need to be detected

 – The data type, which is normally cv2.CV_64F to hold floating-point 

values

Listing 3-20 shows a working example of edge detection using the Laplacian function 

of OpenCV.

As usual, line 5 loads an image, line 6 converts the image to grayscale, and line 8 

blurs the image using bilateral filtering.

Figure 3-65. Schar edge detection in the X direction
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Line 12 is where the cv2.Laplacian() function is called for gradient calculation to 

detect edges in the image. Again, we passed the CV_64F data type to hold the possible 

negative values of gradients when the transitions from white to black happen.

Line 13 converts the 64-bit floats to 8-bit unsigned integers.

Listing 3-20. Edge Detection Using Laplacian Derivatives

Filename: Listing_3_20.py

1    import cv2

2    import numpy as np

3

4    # Load an image

5    image = cv2.imread("images/sudoku.jpg")

6    image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

7

8    image = cv2.bilateralFilter(image, 5, 50, 50)

9    cv2.imshow("Blurred image", image)

10

11   # Laplace function for edge detection

12   laplace = cv2.Laplacian(image,cv2.CV_64F)

13   laplace = np.uint8(np.absolute(laplace))

14

15   cv2.imshow("Laplacian Edges", laplace)

16

17   cv2.waitKey(0)

Figure 3-66 shows a sample display of the Laplacian() function.
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 Canny Edge Detection
Canny edge detection is one of the most popular edge detection methods in image 

processing. This is a multistep process. It first blurs the image to reduce noise and 

then computes Sobel gradients in the X and Y directions, suppresses the edges where 

nonmaxima is calculated, and finally determines whether a pixel is “edge-like” or not by 

applying hysteresis thresholding.

OpenCV’s cv2.canny() function encapsulates all these steps into a single function. 

Let’s get straight to the code to see an example of edge detection using the Canny 

function. See Listing 3-21.

Listing 3-21. Canny Edge Detection

Filename: Listing_3_21.py

1    import cv2

2    import numpy as np

3

4    # Load an image

5    image = cv2.imread("images/sudoku.jpg")

6    image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

7    cv2.imshow("Blurred image", image)

8

Figure 3-66. Edge detection using Laplacian derivatives
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9    # Canny function for edge detection

10   canny = cv2.Canny(image, 50, 170)

11   cv2.imshow("Canny Edges", canny)

12

13   cv2.waitKey(0)

The important line in Listing 3-21 is line 10, where we are calling the cv2.Canny() 

function and passing the minimum and maximum threshold values to the image in 

which edges need to be detected. Any gradient value larger than the maximum threshold 

value is considered an edge. Any value below the minimum threshold is not considered 

an edge. The gradient values in between are considered for edges according to their 

intensity variations.

Figure 3-67 shows sample output of the Canny edge detector. Notice that the edges 

are very crisp in this case.

 Contours
Contours are curves joining continuous points of the same intensity. Determining 

contours is useful for object identification, face detection, and recognition.

Figure 3-67. Canny edge detection
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To detect contours, we do the following:

 1. Convert the image to grayscale.

 2. Binarize the image by using any of the thresholding methods.

 3. Apply the Canny edge detection method.

 4. Use the findContours() method to find all the contours in the 

image.

 5. Finally, use the drawContours() function to draw contours, if 

needed.

We will see contour detection and drawing in action in Listing 3-22.

Listing 3-22. Contour Detection and Drawing

Filename: Listing_3_22.py

1    import cv2

2    import numpy as np

3

4    # Load an image

5    image = cv2.imread("images/sudoku.jpg")

6    image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

7    cv2.imshow("Blurred image", image)

8

9    # Binarize the image

10    (T,binarized) = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY_

INV+cv2.THRESH_OTSU)

11   cv2.imshow("Binarized image", binarized)

12

13   # Canny function for edge detection

14   canny = cv2.Canny(binarized, 0, 255)

15   cv2.imshow("Canny Edges", canny)

16

17    (contours, hierarchy) = cv2.findContours(canny,cv2.RETR_EXTERNAL,  

cv2.CHAIN_APPROX_SIMPLE)
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18   print("Number of contours determined are ", format(len(contours)))

19

20   copiedImage = image.copy()

21   cv2.drawContours(copiedImage, contours, -1, (0,255,0), 2)

22   cv2.imshow("Contours", copiedImage)

23   cv2.waitKey(0)

Here is a line-by-line explanation of Listing 3-22.

Line 5 loads the image. Line 6 converts the image to grayscale, and line 10 binarizes 

the image using Otsu’s method. Line 14 calculates gradients for edge detection using 

Canny’s function.

Line 17 calls OpenCV’s cv2.findContours() function to determine contours. The 

arguments to this function are as follows:

 – The first argument is the image in which we want to detect the edges 

using Canny’s function.

 – The second argument, cv2.RET_EXTERNAL, determines the type 

of contour we are interested in. cv2.RET_EXTERNAL retrieves 

the outermost contours only. We can also use cv2.RET_LIST to 

retrieve all contours, cv2.RET_COMP and cv2.RET_TREE, to include 

hierarchical contours.

 – The third argument, cv2.CHAIN_APPROAX_SIMPLE, removes the 

redundant points and compresses the contour, thereby saving 

memory. cv2.CHAIN_APPROAX_NONE stores all points of the contour 

(which require more memory to store them).

The output of the cv2.findContours() function is a tuple with the following 

items in it:

 – The first item of the tuple is a Python list of all the contours in the 

image. Each individual contour is a NumPy array of (x,y) coordinates 

of boundary points of the object.

 – The second item of the output tuple is the contour hierarchy.

Notice line 18 where we are printing the number of contours identified.
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 Drawing Contours
We are drawing contours (line 21 of Listing 3-22) by using the cv2.drawContours() 

function. The following are arguments to this function:

 – The first argument is the image in which contours are to be drawn.

 – The second argument is the list of all contour points.

 – The third argument is the index of the contour to be drawn. If we 

want to draw the first contour, pass a 0. Similarly, pass 1 to draw the 

second contour, and so on. If you want to draw all contours, pass -1 to 

this argument.

 – The fourth argument is the color of the contour.

 – The fifth and final argument is the thickness of the contour.

Figures 3-68 through 3-70 show some sample outputs of Listing 3-22.

Figure 3-68. Blurred image

Figure 3-69. Contours using the Canny function
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 Summary
In this chapter, we explored various techniques of image processing that are useful 

for building computer vision applications. We learned various methods of image 

transformation such as resizing, rotation, flipping, and cropping. We also learned how to 

do arithmetic and bitwise operations on images. The latter part of this chapter covered 

some powerful and useful image processing functions such as masking, noise reduction, 

binarization, edge, and contour detection.

We will use most of these image processing techniques in later chapters, especially 

when we learn about feature extraction and engineering for machine learning.

Figure 3-70. Contours drawn on the original image

Chapter 3  teChniques of image proCessing 



95
© Shamshad Ansari 2020 
S. Ansari, Building Computer Vision Applications Using Artificial Neural Networks,  
https://doi.org/10.1007/978-1-4842-5887-3_4

CHAPTER 4

Building a Machine 
Learning–Based 
Computer Vision System
You learned about various image processing techniques in the previous chapter. In this 

chapter, we will discuss the steps to develop machine learning computer vision systems. 

This chapter is a primer for the next chapter, which will provide details on various deep 

learning algorithms and how to write code with Python to execute on TensorFlow.

 Image Processing Pipeline
Computer vision (CV) is the ability of computers to capture and analyze images and 

make interpretations and decisions about it. For example, CV can be used to detect 

and recognize images and to identify patterns or objects within them. An artificial 

intelligence (AI) system ingests images, processes them, extracts features, and makes 

interpretation about them. In other words, images move from one system or component 

to another and get transformed into various forms for machines to recognize patterns 

and detect objects in them.

Images are processed across a set of components performing various types of 

transformations that result in a final product. This process is known as the image 

processing pipeline or computer vision pipeline. Figure 4-1 shows a high-level view of the 

processing pipeline.

https://doi.org/10.1007/978-1-4842-5887-3_4#DOI
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As shown in Figure 4-1, real-world objects are captured by sensing devices, such 

as cameras, and converted into digital images. These digital images are processed by 

computer systems, and final outputs are generated. The outputs may be about the image 

itself (image classification) or the detection of some patterns and objects embedded in 

the image. For example, in healthcare, an image may have been created from MRI or 

X-ray instruments. The image may be input into an image processing pipeline to detect 

the presence or absence of a tumor.

This book covers what goes into the computer processing units and how outputs are 

generated. Let’s examine the data flow pipeline for processing images within a computer 

system (see Figure 4-2).

Here is a brief description of this computer vision pipeline:

 1. The vision pipeline starts with image ingestion. Images are 

captured, digitized, and stored on computers’ disks. In the case of 

videos, digital frames of images are ingested and stored on disks 

from where they are read and analyzed. In some cases, video 

frames are ingested live from the camera into the computer.

 2. After the images are ingested, they go through various 

transformation stages. The transformation, also referred to 

as preprocessing, is necessary to standardize the images. It is 

important to ensure that all images for a particular purpose 

Real-world objects Sensing devices,
such as cameras 

Image processing
devices, such as
computers 

Output, such as the 
objects in the image

Figure 4-1. Image pipeline

Figure 4-2. Image processing pipeline in computer vision
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are of the same size, shape, and color schema. The commonly 

used transformations are image resizing, color manipulation, 

translation, rotation, and cropping. Other advanced 

transformations that help in feature extraction include image 

binarization, thresholding, and gradient and edge detection. For a 

review of these techniques, please see Chapter 3.

 3. Feature extraction is a core component of the vision pipeline. In 

machine learning, we feed a set of features to predict an outcome 

or a class. Without a good feature set, we cannot have a good 

machine learning outcome. You will learn more about feature 

extraction in the following section, “Feature Extraction,” but for 

now let’s keep in mind that a good feature set is important for any 

machine learning system.

 4. Then comes the machine learning algorithm. There are two stages 

of machine learning. In the first stage, we feed a large number of 

datasets to a mathematical algorithm to learn from. The outcome 

from this learning algorithm is called a trained model or simply a 

model. In the second stage, we feed a dataset to the trained model 

to predict an outcome or a class. This stage is called the prediction 

stage. I will describe some of the most popular and highly effective 

machine learning models for computer vision in Chapter 5. I will 

introduce Keras and TensorFlow in that chapter, and we will work 

through some code examples to train models and predict using 

those models.

 5. The final component of the vision pipeline is the output that is the 

end goal that you want your vision system to do.

 Feature Extraction
In machine learning, a feature is an individual measurable property of an object or event 

being observed. In computer vision, a feature is distinguishing information about the 

image. Feature extraction is an important step in machine learning. In fact, everything 

about machine learning revolves around features. It is, therefore, crucial to identify and 

extract discriminating and independent features for a quality machine learning outcome.
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Given an image of a wheel, consider attempting to determine whether the image 

is of a motorcycle or a car. In this case, a wheel is not a distinguishing feature. We need 

more features, such as the presence of doors, a roof, etc. Furthermore, features extracted 

from a single motorcycle or car will not be sufficient for a practical machine learning 

usage. We need to establish patterns with the help of the repeated occurrence of events 

or characteristics, because, in the real world, an object may not be presented in the same 

way the feature was presented. Therefore, repeatability is an important characteristic of a 

good feature.

In the wheel example, we had only one feature, but in actual practice, there may be 

a large number of features, such as color, contour, edges, corners, angle, light intensity, 

and many more. The more distinguishing features you extract, the better your model will 

be.

A machine learning model is as good as the features provided for training the model. 

The question is, how can you extract a good set of features? There is no one solution 

that fits all, but here are some practical approaches that will help you in your feature 

extraction tasks. The following is a nonexhaustive list of some approaches:

• Features must be distinguishing or identifiable.

• Features must avoid confusing overlapping features.

• Features must avoid rarely occurring features.

• Features should be consistent across different conditions and viewing 

angles.

• Features should be identifiable either directly or with some 

processing techniques.

• You should collect a large number of samples to establish patterns.

 How to Represent Features
Features extracted from an image are represented as a vector, called a feature vector. Let’s 

understand this with an example. For simplicity, let’s consider a grayscale image. Features 

of this image are pixel values. We know that the pixels in a grayscale image are organized 

as a two-dimensional matrix, and each pixel has a value between 0 and 255. If these pixel 

values are our features, we represent these values as a one-dimensional (1D) row matrix 

(which is a vector or a 1D array). Figure 4-3 shows a pictorial representation of this.

Chapter 4  Building a MaChine learning–Based CoMputer Vision systeM



99

For most machine learning algorithms, we will need to extract features and provide 

it to the algorithm being considered for model training. Some deep learning algorithms, 

such as convolutional neural networks (CNNs), automatically extract features and then 

train the models. Chapter 5 provides details about deep learning algorithms and how 

to train computer vision models. The following section discusses various methods of 

feature extraction from images. We will write code using Python and OpenCV to work 

through the examples of feature extraction.

 Color Histogram
A histogram is the distribution of pixel intensities in an image. Typically a histogram is 

visualized in the form of a graph (or chart). The x-axis of this graph represents the pixel 

values (or a range of values), and the y-axis represents the frequency (or count) of pixels 

of a particular value or a range of values. The peak of the graph shows the color with the 

highest number of pixels.

We already know that a pixel can have a value between 0 and 255. That means 

the histogram will have 256 values on the x-axis, and the y-axis will have the number 

of pixels with these values. That’s a lot of numbers on the x-axis. For most practical 

purposes, we divide these pixel values into “bins.” For example, we may divide the x- 

values into 8 bins where each bin will have 32-pixel colors. We sum up the number of 

pixels within each bin to calculate the y-values.

So, why do we care about the histogram? The histogram gives an idea of the 

distribution of color, contrast, and brightness within an image. A grayscale image has 

only one color channel, but a color image in an RGB scheme will have three channels. 

When we plot a histogram of a color image, we generally plot three histograms, one for 

each channel, to get a better idea of intensity distribution of each color channel. The 

histogram could be used as features for your machine learning algorithms. There is 

[row 1 pixels, row 2 pixels, .. row n pixels]

OR 

[255,0,255,255,255,0,255,....255,0,255,255,255,0,255]

Figure 4-3. Vector representation of features
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another interesting use of histograms, which is to enhance the quality of the image. The 

technique to enhance an image by using a histogram is called histogram equalization. 

You’ll learn more about histogram equalization later in this chapter.

 How to Calculate a Histogram

We will use Python and OpenCV to calculate a histogram, and we will use pyplot from 

the Matplotlib package to plot the histogram graph. (Remember Matplotlib? We installed 

and set it up in Chapter 1.)

OpenCV provides an easy-to-use function to calculate the histogram. Here is the 

description of the calcHist() function:

calcHist(images, channels, mask, histSize, ranges, accumulate)

This function takes the following arguments:

images: This is a NumPy array of image pixels. If you have only 

one image, just wrap the NumPy variable within a pair of square 

brackets, e.g., [image].

channels: This is an array of indexes of channels we want to 

calculate the histogram for. This will be [0] for grayscale images 

and [0,1,2] for RGB color images.

mask: This is an optional argument. If you do not supply a mask, 

the histogram will be calculated for all the pixels in the image or 

images. If you supply a mask, the histogram will be calculated for 

the masked pixels only. Remember masks from Chapter 3?

histSize: This is the number of bins. If we pass this value as 

[64,64,64], this means that each channel will have 64 bins. The bin 

size may be different for different channels.

ranges: This is the range of pixel values, which is normally [0,255] 

for grayscale and RGB color images. This value may be different in 

other color schemes, but for now, let’s stick to RGB only.

accumulate: This is the accumulation flag. If it is set, the histogram 

is not cleared in the beginning when it is allocated. This feature 

enables you to compute a single histogram from several sets of 

arrays or to update the histogram in time. The default value is None.
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 Grayscale Histogram

Let’s write some code to learn how to calculate the histogram of a grayscale image 

and visualize it as a graph (see Listing 4-1). Notice that we imported pyplot from the 

Matplotlib package. This is the library we will use to plot the graph that will show our 

histogram.

Listing 4-1. Histogram of a Grayscale Image

Filename: Listing_4_1.py

1    import cv2

2    import numpy as np

3    from matplotlib import pyplot as plot

4

5    # Read an image and convert it to grayscale

6    image = cv2.imread("images/nature.jpg")

7    image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

8    cv2.imshow("Original Image", image)

9

10   # calculate histogram

11   hist = cv2.calcHist([image], [0], None, [256], [0,255])

12

13   # Plot histogram graph

14   plot.figure()

15   plot.title("Grayscale Histogram")

16   plot.xlabel("Bins")

17   plot.ylabel("Number of Pixels")

18   plot.plot(hist)

19   plot.show()

20   cv2.waitKey(0)

Line 11 of Listing 4-1 calculates the histogram of our grayscale image. Notice that the 

image variable is wrapped within a pair of braces because cv2.calcHist() functions 

take an array of NumPy arrays. Even though we have only one image, we still need to 

wrap it in an array.
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The second argument, [0], denotes that we want to calculate the histogram of the 

zeroth color channel. Since we have only one channel, we pass only one index value in 

the array: [0].

The third argument, None, means that we do not want to provide any masking. In 

other words, we calculate the histogram of all pixels.

[256] is the bin information. This specifies that we want 256 bins, meaning one bin 

for each pixel. This may not be useful unless we want to perform a fine-grained analysis 

of the image pixel distribution. For the majority of practical purposes, you want to pass 

smaller bin sizes such as [32] or [64], etc.

The last argument, [0,255], tells the function that there are pixel values between 0 

and 255.

The hist variable holds the calculation output. If you print this variable, you will see 

a bunch of numbers that may not be easy to interpret. To make the interpretation easier, 

we plot the histogram in the form of a graph.

Line 14 configures a blank plot. Line 15 assigns a name to our plot. Lines 16 and 17 

set the x-axis and y-axis labels, respectively. Line 18 actually plots the graph. Finally, 

line 19 displays the pretty plot on the screen. Figure 4-4 shows the original image, and 

Figure 4-5 shows the output.

Figure 4-4. Original grayscale image
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So, what do you see in this histogram? The maximum number of pixels (3,450) has 

the color value of 20, which is close to being black. Most pixels are in the color range of 

100 and 150.

Here’s an exercise for you: plot a histogram of an image with 32 bins. Try to interpret 

the output graph.

 RGB Color Histogram

Let’s review the program in Listing 4-2 and understand how to plot histograms of all 

three channels of an RGB-based color image. A color image has three channels in an 

RGB scheme. It is important to note that OpenCV maintains color information in BGR 

sequence and not in RGB sequence.

In Listing 4-2, line 6 is our usual image read line where we are reading a color image 

from the disk.

You will notice that we created a tuple of colors in BGR sequence to hold all our 

channel colors (line 10).

Why do we have a for loop in line 12? The second argument of the cv2.calcHist() 

function takes an array with value 0, 1, or 2. If we pass the value [0], we actually instruct 

the calcHist() function to calculate the histogram of the color channel in the zeroth 

index, which is the blue channel. Similarly, a value of [1] instructs the calcHist() 

function to calculate the histogram of the red channel, and a value of [2] says to calculate 

for the green channel. The first iteration of the for loop is first calculating and plotting 

the histogram of the blue color, the second iteration is for green, and the last iteration is 

for the green channel.

Figure 4-5. Histogram of the grayscale image in Figure 4-4
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Notice again that we have passed [32] as the fourth argument to our calcHist() 

function. This is to let the function know that we want to calculate the histogram with 32 

bins for each of the channels.

The last argument, [0,256], gives the color range.

Within the for loop in line 15, the plot() function is taking the histogram as the first 

argument and an optional color as the second argument.

Listing 4-2. Histogram of Three Channels of RGB Color Image

Filename: Listing_4_2.py

1    import cv2

2    import numpy as np

3    from matplotlib import pyplot as plot

4

5    # Read a color image

6    image = cv2.imread("images/nature.jpg")

7

8    cv2.imshow("Original Color Image", image)

9    #Remember OpenCV stores color in BGR sequence instead of RBG.

10   colors = ("blue", "green", "red")

11   # calculate histogram

12   for i, color in enumerate(colors):

13      hist = cv2.calcHist([image], [i], None, [32], [0,256])

14      # Plot histogram graph

15      plot.plot(hist, color=color)

16

17   plot.title("RGB Color Histogram")

18   plot.xlabel("Bins")

19   plot.ylabel("Number of Pixels")

20   plot.show()

21   cv2.waitKey(0)

Figure 4-6 and Figure 4-7 show the output of Listing 4-2.
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In Figure 4-7, the x-axis has only up to 32 values because we used only 32 bins for 

each channel.

Here’s an exercise for you: create a histogram of a masked image.

Hint Create a mask numpy array and pass this array as the third argument in 
the cv2.calcHist() function. read Chapter 3 to refresh your memory on how to 
create a mask.

Figure 4-6. Original color image

Figure 4-7. Histogram of three color channels of the image in Figure 4-6
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 Histogram Equalizer
Now that we have a good understanding of what a histogram is, let’s use this concept 

to enhance the quality of an image. Histogram equalization is an image processing 

technique to adjust the contrast of an image. It is a method of redistributing the pixel 

intensities in such a way that the intensities of the under-populated pixels are equalized 

to the intensities of over-populated pixel intensities, as depicted in Figure 4-8.

Let’s write some code and see this histogram equalization in action. There is a lot of 

code in Listing 4-3, but if you look at the top portion of this listing, from lines 1 through 

19, you will notice that these lines are the same as the ones in Listing 4-1. Here we are 

just calculating and plotting the histogram of a grayscale image.

In line 21, we are using OpenCV’s cv2.equalizeHist() function that takes the 

original image and adjusts its pixel intensity to enhance its contrast.

Lines 22 through 33 calculate and display a histogram of the enhanced (equalized) 

image.

Figures 4-9 through 4-12 show the outputs of Listing 4-3 and a comparison of the 

histograms for the original and equalized images.

Listing 4-3. Histogram Equalization

Filename: Listing_4_3.py

1    import cv2

2    import numpy as np

3    from matplotlib import pyplot as plot

4

5    # Read an image and convert it into grayscale

6    image = cv2.imread("images/nature.jpg")

Figure 4-8. Histogram equalization (source: Wikipedia)
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7    image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

8    cv2.imshow("Original Image", image)

9

10   # calculate histogram of the original image

11   hist = cv2.calcHist([image], [0], None, [256], [0,255])

12

13   # Plot histogram graph

14   #plot.figure()

15   plot.title("Grayscale Histogram of Original Image")

16   plot.xlabel("Bins")

17   plot.ylabel("Number of Pixels")

18   plot.plot(hist)

19   plot.show()

20

21   equalizedImage = cv2.equalizeHist(image)

22   cv2.imshow("Equalized Image", equalizedImage)

23

24   # calculate histogram of the original image

25    histEqualized = cv2.calcHist([equalizedImage], [0], None, [256], 

[0,255])

26

27   # Plot histogram graph

28   #plot.figure()

29   plot.title("Grayscale Histogram of Equalized Image")

30   plot.xlabel("Bins")

31   plot.ylabel("Number of Pixels")

32   plot.plot(histEqualized)

33   plot.show()

34   cv2.waitKey(0)
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Figure 4-10. Histogram of the image in Figure 4-9

Figure 4-9. Original grayscale image
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 GLCM
The gray-level co-occurrence matrix (GLCM) is the distribution of simultaneously 

occurring pixel values within a given offset. An offset is the position (distance and 

direction) of adjacent pixels. As the name implies, the GLCM is always calculated for a 

grayscale image.

The GLCM calculates how many times a pixel value i co-exists either horizontally, 

vertically, or diagonally with a pixel value j.

Figure 4-11. Equalized image with enhanced contrast

Figure 4-12. Histogram of equalized image of Figure 4-11
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For GLCM calculation, we specify an offset distance d and an angle ϴ (theta). The 

angle ϴ (theta) may be 0° (horizontally), 90° (vertically), 45° (diagonally to the right up), 

or 135° (diagonally to the left up), as shown in Figure 4-13.

The importance of the GLCM is that it provides information on spatial relationships 

over an image. This differs from a histogram because the histogram does not provide any 

information about the image size, pixel location, or their relationship.

Although the GLCM is such an important matrix, we do not directly use it as a feature 

vector for machine learning. We calculate certain key statistics about the image using the 

GLCM, and those statistics are used as features for any machine learning training. We 

will learn about these statistics and how to calculate them in this section.

Though OpenCV uses the GLCM internally, it does not directly expose any function 

to calculate it. To calculate the GLCM, we will use another Python library: skimage’s 

feature package.

Here is a description of the function we are going to use to compute the GLCM:

greycomatrix(image, distances, angles, levels, symmetric,normed)

The greycomatrix() function takes the following arguments:

image: This is the NumPy representation of a grayscale image. 

Remember, the image must be grayscale.

distances: This is a list of pixel-pair distance offsets.

angles: This is a list of angles between the pair of pixels. Make 

sure the angle is a radian and not a degree.

Figure 4-13. Illustration of adjacent pixel position (distance and angle)
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levels: This is an optional parameter and meant for images 

having 16-bit pixel values. In most cases, we use 8-bit image pixels 

that can have values ranging from 0 to 255. For an 8-bit image, the 

max value for this parameter is 256.

symmetric: This is an optional parameter and takes a Boolean. 

The value True means the output matrix will be symmetric. The 

default is False.

normed: This is also an optional parameter that takes a Boolean. 

The Boolean True means that each output matrix is normalized 

by dividing by the total number of accumulated cooccurrences for 

the given offset. The default is False.

The greycomatrix() function returns a 4D ndarray. This is the gray-level co- 

occurrence histogram. The output value P[i,j,d,theta] represents how many times 

the gray-level j occurs at a distance d and angle theta from the gray-level j. If the 

parameter normed is False (which is the default), the output is of type uint32 (a 32-bit 

unsigned integer); otherwise, it is float64 (a 64-bit floating point).

Listing 4-4 shows you how to calculate the GLCM using the skimage library to 

compute feature statistics.

Listing 4-4. GLCM Calculation Using the greycomatrix() Function

Filename: Listing_4_4.py

1    import cv2

2    import skimage.feature as sk

3    import numpy as np

4

5    #Read an image from the disk and convert it into grayscale

6    image = cv2.imread("images/nature.jpg")

7    image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

8

9    #Calculate GLCM of the grayscale image

10   glcm = sk.greycomatrix(image,[2],[0, np.pi/2])

11   print(glcm)
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Line 10 calculates the GLCM using greycomatrix() by passing the image NumPy 

variable and a distance of [2]. The third argument is in radians. np.pi/2 is the radian for 

a 90-degree angle. The last line, line 11, simply prints the 4D ndarray.

As mentioned, the GLCM is not directly used as a feature, but we use this to calculate 

some useful statistics, which gives us an idea about the texture of the image. The 

following table lists the statistics we can derive:

Statistic Description

Contrast Measures the local variations in the glCM.

Correlation Measures the joint probability occurrence of the specified pixel pairs.

energy provides the sum of squared elements in the glCM. also known as uniformity or 

the angular second moment.

homogeneity Measures the closeness of the distribution of elements in the glCM to the glCM 

diagonal.

Here we provide you with some high-level formulae that are used to calculate 

the previous statistics. A formal mathematical treatment of these formulae is outside 

the scope of this book; however, you are encouraged to explore the mathematical 

underpinnings of these statistics.
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where, P is the GLCM histogram for which to compute the specified property. The 

value P[i,j,d,theta] is the number of times that gray-level j occurs at the distance d and at 

the angle theta from the grey-level i.

We will use greycoprops() from the skimage package to compute these statistics 

from the GLCM. Here is the definition of this function:

greycoprops(P, prop='contrast')

The first argument is the GLCM histogram (see Listing 4-4, line 10).

The second argument is the property we want to calculate. We can pass any of the 

following properties for this argument: contrast, dissimilarity, homogeneity, energy, 

correlation, and ASM.

If you do not pass the second argument, it will default to contrast.

Listing 4-5 shows how to calculate these statistics.

Listing 4-5. Calculation of Image Statistics from the GLCM

Filename: Listing_4_5.py

1    import cv2

2    import skimage.feature as sk

3    import numpy as np

4

5    #Read an image from the disk and convert it into grayscale

6    image = cv2.imread("images/nature.jpg")

7    image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

8

9    #Calculate GLCM of the grayscale image

10   glcm = sk.greycomatrix(image,[2],[0, np.pi/2])

11

12   #Calculate Contrast

13   contrast = sk.greycoprops(glcm)

14   print("Contrast:",contrast)

15

16   #Calculate 'dissimilarity'

17   dissimilarity = sk.greycoprops(glcm, prop='dissimilarity')
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18   print("Dissimilarity: ", dissimilarity)

19

20   #Calculate 'homogeneity'

21   homogeneity = sk.greycoprops(glcm, prop='homogeneity')

22   print("Homogeneity: ", homogeneity)

23

24   #Calculate 'ASM'

25   ASM = sk.greycoprops(glcm, prop='ASM')

26   print("ASM: ", ASM)

27

28   #Calculate 'energy'

29   energy = sk.greycoprops(glcm, prop='energy')

30   print("Energy: ", energy)

31

32   #Calculate 'correlation'

33   correlation = sk.greycoprops(glcm, prop='correlation')

34   print("Correlation: ", correlation)

Listing 4-5 shows how to use the greycoprops() function and pass different 

parameters to prop to calculate respective statistics. Figure 4-14 shows the output of 

Listing 4-5.

Contrast: [[291.1180688  453.41833488]]

Dissimilarity:  [[ 9.21666213 12.22730486]]

Homogeneity:  [[0.32502798 0.23622148]]

ASM:  [[0.00099079 0.00055073]]

Energy:  [[0.03147683 0.02346761]]

Correlation:  [[0.95617083 0.93159765]]

Figure 4-14. GLCM-based output of various statistics
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 HOGs
Histograms of oriented gradients (HOGs) are important feature descriptors used 

in computer vision and machine learning for object detection. HOGs describe the 

structural shape and appearance of an object in an image. The HOG algorithm computes 

the occurrences of gradient orientation in localized portions of the image.

The HOG algorithm works in five stages, as described here.

Stage 1: Global image normalization: This is an optional stage and is needed only 

to reduce the influence of illumination effects. At this stage, the image is globally 

normalized by one of the following methods:

Gamma (power law) compression: Each pixel value, p, is changed 

by applying log(p). This compresses the pixels too much and is 

not recommended.

Square-root normalization: Each pixel value, p, is changed to  

[?][?][?]p (square root of pixel value). This compresses the pixels 

less than the gamma compression and is considered a preferred 

normalization technique.

Variance normalization: For most machine learning work, I use 

this technique and get better results compared to the other two 

methods. In this method, we first compute the mean (𝜇) and 

standard deviation (σ) of pixel values. Then, each pixel value, p, is 

normalized according to the following formula:

Tp = (p − μ)/σ

Stage 2: Compute the gradient image in x and y: The second stage computes the 

first-order image gradients to capture contour, silhouette, and some texture information. 

If you need to capture bar-like features, such as limbs in humans, you will also need 

to include second-order image derivatives. Listings 3-19 and 3-20 (in Chapter 3) show 

how to calculate gradients in the X and Y directions. Go ahead and revisit the section 

“Gradients and Edge Detection” of Chapter 3, if you need to. Assuming the gradients in 

the X direction are Gx and the gradients in the Y direction are Gy, the gradient magnitude 

is calculated using the following formula:

 
G = +G Gx y

2 2
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Finally, the gradient orientation is calculated by using the following formula:

 
Q= ( )arctan /G Gy x  

Once the value of gradient and orientation is calculated, the histogram is then 

computed.

Stage 3: Compute gradient histograms: The image is divided into small spatial 

regions, called cells. Using the previous formulae for |G| and Θ, we accumulate a 

local 1D histogram of gradient or edge orientations over all the pixels in each cell. 

Each orientation histogram divides the gradient angle range into a fixed number of 

predetermined bins. The gradient magnitudes of the pixels in the cell are used to vote 

into the orientation histogram. The weight of the vote is simply the gradient magnitude 

|G| at the given pixel.

Stage 4: Normalizing across blocks: A small number of cells are grouped together 

to form a square block. The entire image is now divided into blocks (which consists 

of a group of cells). The formation of blocks is typically done by sharing cells between 

several blocks. The cell thus appears several times in the final output vector with 

different normalizations. Then normalization is performed over these localized blocks. 

It is performed by accumulating a measure of local histogram “energy” within the local 

blocks. These normalized block descriptors are the HOG. Figure 4-15 shows the block 

formation.
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Figure 4-15. Block formation by grouping cells (block of 3×3 cells)

Stage 5: Flatten into a feature vector: After all blocks are normalized, we take the 

resulting histograms and concatenate them to construct our final feature vector.

If all these details about HOG look overwhelming, don’t worry. We will not need to 

write code to implement these on our own; several libraries are available that provide 

functions to easily calculate HOG.

We will use the scikit-image library to calculate the HOG of an image. The 

subpackage, feature, within the package skimage of the scikit-image library provides a 

convenient method to calculate HOG. Here is the function signature:

out, hog_image = hog(image, orientations=9, pixels_per_cell=(8, 8),  

cells_per_block=(3, 3), block_norm='L2-Hys', visualize=False,  

transform_sqrt=False, feature_vector=True, multichannel=None)

Chapter 4  Building a MaChine learning–Based CoMputer Vision systeM



118

The description of the parameters is as follows:

image: This is the NumPy representation of the input image.

orientation: The number of orientation bins defaults to 9.

pixels_per_cell: This is the number of pixels in each cell as a tuple; it defaults to 

(8,8) for an 8×8 cell size.

cells_per_block: This is the number of cells in each block, as a tuple; it defaults to 

(3,3), which is for 3×3 cells, not pixels.

block_norm: This is the block normalization method as a string with one of these 

values: L1, L1-sqrt, L2, L2-Hys. These normalization strings are explained here:

L1: Normalization using L1-norm using this formula:

L1-norm = 
r

n

rX
=
å

1

L1-sqrt: Square root of the L1-normalized value. It uses this formula:

L1-sqrt = 
r

n

rX
=
å

1

L2: Normalization using L2-norm using this formula:

L2-norm = 
r

n

rX
=
å

1

2

L2-Hys: This is the default normalization for the parameter block_norm. L2-Hys is 

calculated by first taking the L2-normalization, limiting the result to a maximum of 0.2, 

and then recalculating the L2-normalization.

visualize: If this is set to True, the function also returns an image of the HOG. Its 

default value is set to False.

Transform_sqrt: If set to True, the function will apply power law compression to 

normalize the image before processing.

feature_vector: The default value of this argument is set to True, which instructs 

the function to return the output data as a feature vector.

multichannel: Set the value of this argument to True to indicate the input image 

contains multichannels. The dimensions of an image are generally represented as height 

× width × channel. If the value of this argument is True, the last dimension (channel) is 

interpreted as the color channel, otherwise as spatial.
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What does this hog() function return?

out: The function returns an ndarray containing (n_blocks_row, n_blocks_col, 

n_cells_row, n_cells_col, n_orient). This is the HOG descriptor for the image. If 

the argument feature_vector is True, a 1D (flattened) array is returned.

hog_image: If the argument visualize is set to True, the function also returns a 

visualization of the HOG image.

Listing 4-6 shows how to calculate the HOG using the skimage package.

Listing 4-6. HOG Calculation

Filename: Listing_4_6.py

1    import cv2

2    import numpy as np

3    from skimage import feature as sk

4

5    #Load an image from the disk

6    image = cv2.imread("images/obama.jpg")

7    #Resize the image.

8    image = cv2.resize(image,(int(image.shape[0]/5),int(image.shape[1]/5)))

9

10   # HOG calculation

11   (HOG, hogImage) = sk.hog(image, orientations=9, pixels_per_cell=(8, 8),

12        cells_per_block=(2, 2), visualize=True, transform_sqrt=True, 

block_norm="L2-Hys", feature_vector=True)

13

14   print("Image Dimension",image.shape)

15   print("Feature Vector Dimension:", HOG.shape)

16

17   #showing the original and HOG images

18   cv2.imshow("Original image", image)

19   cv2.imshow("HOG Image", hogImage)

20   cv2.waitKey(0)

The HOG is important to understand. We will apply the concept of the HOG to 

build something real and interesting in Chapters 6, 7, and 8. Although we spent some 

time understanding the concept, the calculation of the HOG is accomplished in just 
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one line of code (line 11, Listing 4-6). We used the hog() function from the feature 

subpackage of the skimage package. Parameters passed to the hog() function were 

explained earlier.

How do we know that we are passing the right values of the parameters in the hog() 

function? Well, there is really no established rule. As a rule of thumb, we should start 

with all default parameters and tune them as we analyze the result.

It is worth mentioning that the hog() function generates a histogram of very 

high dimensionality. A 32×32 image with pixel_per_cell=(4,4) and cells_per_

block=(2,2) will generate 1,764-dimension results. Similarly, a 128×128 pixel image will 

generate 34,596-dimension output. It is, therefore, extremely important to pay attention 

to the parameters and resize your image appropriately to reduce the output dimensions. 

This will have a huge impact on the memory, storage requirement, and network transfer 

time.

Figures 4-16 through 4-18 show the output of Listing 4-6.

Figure 4-17. HOG image

Figure 4-16. Resized image
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 LBP
Local binary patterns (LBP) is a type of feature descriptor for image texture classification. 

The LBP feature extraction works as follows:

 1. For every pixel in the image, compare the pixel values of the 

surrounding pixels. If the value of the surrounding pixel is less 

than the central pixel, mark it to 0; otherwise 1. In Figure 4-19, the 

central pixel has the value 20 and is surrounded by 8 neighbors. 

The middle portion of Figure 4-19 shows the pixel value 

conversion to 0 or 1 based on whether they are smaller or greater 

than the central pixel (20 in this case).

 2. Starting from any of the neighbor’s pixels and going in any 

direction, we assemble the sequence of 0s and 1s to make an 8-bit 

binary number. In the following example, we started from the 

top-right corner and moved clockwise to assemble digits to form 

10101000 binary numbers. This binary number is converted into 

a decimal to get the pixel value of the central pixel, as shown in 

Figure 4-19.

 3. For each pixel in the image, we repeat the previous steps to obtain 

the pixel values based on the neighbors’ pixels. Make sure that for 

all pixels the starting position and direction remain consistent.

 4. When all pixels are done, we arrange the pixel values in an LBP 

array.

 5. Finally, we calculate a histogram over the LBP array. This 

histogram is taken as an LBP feature vector.

Image Dimension (537, 671, 3)

Feature Vector Dimension: 
(194832,)

Figure 4-18. Dimension output from the print() statement
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This approach of calculating an LBP feature vector allows us to capture finer details 

of the image texture. But for most machine learning classification problems, fine-grained 

features may not give the desired outcome, especially when the input images are of 

varying scales of texture.

To overcome this problem, we have an enhanced version of LBP, as described next.

The enhanced version of LBP allows for variable neighborhood sizes. Now, we have 

two additional parameters to work with.

• Instead of a fixed square neighborhood, we can define the number of 

points, p, in a circularly symmetric neighborhood.

• The radius of the circle, r, allows us to define different neighborhood 

sizes.

Figure 4-20 shows the green dots as the number of points and the dotted circle with 

varying radius. The smaller the radius, the finer the texture captured. Increasing the 

radius allows us to be able to classify textures of varying scales.

Figure 4-19. LBP pixel value calculation

Figure 4-20. LBP calculation based on neighborhood size and number of points
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We are now ready to learn how to implement LBP. We will again use scikit-image 

(specifically the feature subpackage from the skimage package). Here is the function 

signature we will use for LBP calculation:

local_binary_pattern(image, P, R, method='default')

The parameters are explained here:

image: The NumPy representation of a grayscale image.

P: The number of neighborhood points along the circle surrounding the point for 

which LBP is being calculated. This is the number of green dots in Figure 4-20.

R: This is a floating-point number and defines the radius of the circle.

method: This parameter takes any of these string values: default, ror, uniform, or 

var. The meaning of these method values is as explained here:

• default: This instructs the function to calculate original LBP 

based on grayscale without considering the rotation invariant. The 

description of a rotationally invariant binary descriptor is beyond 

the scope of this book. To learn more about this, review the paper 

“OSRI: A Rotationally Invariant Binary Descriptor” at http://ivg.

au.tsinghua.edu.cn/~jfeng/pubs/Xuetal_TIP14_Descriptor.pdf.

• ror: This method instructs the function to use a rotationally invariant 

binary descriptor.

• uniform: This uses an improved rotation invariance with uniform 

patterns and finer quantization of the angular space, which is 

grayscale and rotation invariant. A binary pattern is considered 

uniform if there are at most two 0-1 to 1-0 transitions in the binary 

sequence of digits. For example, 00100101 is a uniform pattern as it 

has two transitions (shown in red and blue). Similarly, 00010001 is 

also a uniform pattern as it has one 0-1 to 1-0 transition. On the other 

hand, 01010100 is not a uniform pattern. In the computation of the 

LBP histogram, the histogram has a separate bin for every uniform 

pattern, and all nonuniform patterns are assigned to a single bin. 

Using uniform patterns, the length of the feature vector for a single 

cell reduces from 256 to 59.

Chapter 4  Building a MaChine learning–Based CoMputer Vision systeM

http://ivg.au.tsinghua.edu.cn/~jfeng/pubs/Xuetal_TIP14_Descriptor.pdf
http://ivg.au.tsinghua.edu.cn/~jfeng/pubs/Xuetal_TIP14_Descriptor.pdf


124

• nri_uniform: Non rotation-invariant uniform patterns variant, which 

is only grayscale invariant.

• var: Rotation invariant variance measures of the contrast of local 

image texture, which is rotation but not grayscale invariant.

The output of the function local_binary_pattern() is an ndarray representing an 

LBP image.

We have covered enough background to start implementing LBP and see it in action. 

Listing 4-7 demonstrates the use of the local_binary_pattern() function.

It starts with loading an image from the disk, resizing it, and converting it to 

grayscale.

Line 12 calculates the histogram of the original image. Lines 14 through 16 plot the 

original image histogram.

Listing 4-7. LBP Image and Histogram Calculation and Comparison with 

Original Image

Filename: Listing_4_7.py

1    import cv2

2    import numpy as np

3    from skimage import feature as sk

4    from matplotlib import pyplot as plt

5

6    #Load an image from the disk, resize and convert to grayscale

7    image = cv2.imread("images/obama.jpg")

8    image = cv2.resize(image, (int(image.shape[0]/5), int(image.shape[1]/5)))

9    image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

10

11   # calculate Histogram of original image and plot it

12   originalHist = cv2.calcHist(image, [0], None, [256], [0,256])

13

14   plt.figure()

15   plt.title("Histogram of Original Image")

16   plt.plot(originalHist, color='r')

17

18   # Calculate LBP image and histogram over the LBP, then plot the histogram
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19   radius = 3

20   points = 3*8

21   # LBP calculation

22   lbp = sk.local_binary_pattern(image, points, radius, method='default')

23   lbpHist, _ = np.histogram(lbp, density=True, bins=256, range=(0, 256))

24

25   plt.figure()

26   plt.title("Histogram of LBP Image")

27   plt.plot(lbpHist, color='g')

28   plt.show()

29

30   #showing the original and LBP images

31   cv2.imshow("Original image", image)

32   cv2.imshow("LBP Image", lbp)

33   cv2.waitKey(0)

The calculation of the LBP image is performed on line 22. Notice that we used the 

default method for LBP calculation, which takes a radius of 3 and the number of points 

as 24. Line 22 uses the local_binary_pattern() function from the feature subpackage 

of the skimage package.

Line 23 calculates the histogram over the LBP image. Why did we use NumPy’s 

histogram function? If you try to use the cv2.calcHist() function for the LBP image, 

you will receive an error message saying “-210 Unsupported format or combination of 

formats.” This is because the output format of local_binary_pattern() is different and 

not supported by OpenCV’s calcHist() function. For that reason, we are using NumPy’s 

histogram() function.

Figure 4-21 shows the original image. Let’s look at the output of Listing 4-7. Figure 4- 22  

is the LBP image calculated from an input image (Figure 4-21). Notice how neatly it has 

captured the texture of the original image. Compare Figure 4-23 with Figure 4-24 for 

histograms plotted from the original image and from the LBP image, respectively.
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Figure 4-22. LBP image

Figure 4-21. Original grayscale image
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Figure 4-23. Histogram of the original image

Note that sometimes LBP is used with HOG to improve object detection accuracy.

In this section, our focus was on learning different techniques to perform feature 

extraction. We focused on learning the concepts of these feature extraction techniques, 

which will be helpful in the next chapter when we learn about machine learning and 

neural networks. We will utilize these concepts when developing real-world use cases in 

Chapters 6 through 9.

The next section of this chapter is about feature selection strategy.

Figure 4-24. Histogram of the LBP image
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 Feature Selection
In machine learning, feature selection is the process of selecting variables or attributes 

that are relevant and useful in model training. This is a process of eliminating 

unnecessary or irrelevant features and selecting a subset of features that are strong 

contributors to the learning of the model. The reasons for learning about feature 

selection are as follows:

• To reduce the complexity of a model and make it easier to interpret

• To reduce machine learning training time

• To improve the accuracy of a model by feeding it the right set of 

variables

• To reduce overfitting

So, how is feature selection different from feature extraction? Feature extraction is 

the process of creating features, and feature selection is the process of utilizing a subset 

of features or removing unnecessary features. Together, feature extraction and selection 

are referred to as feature engineering.

It has been statistically proven that there is an optimum number of features beyond 

which the model performance starts degrading. The question is, how do we know what 

the optimum number is, and how do we decide which features to use and which not to 

use? This section attempts to answer this question.

There are many feature selection techniques. We will explore some of the common 

feature selection techniques used for machine learning now.

 Filter Method
You have a feature set, and you want to select a subset to feed to your machine 

learning algorithm. In other words, you want to have the features already selected 

prior to machine learning being triggered. Filtering is a process that allows you to do 

preprocessing to select the feature subset. In this process, you determine a correlation 

between a feature and the target variable and determine their relationship based on 

statistical scores. Note that the filtering process is independent of any machine learning 

algorithm. A feature is selected (or rejected) only on the basis of the relationship 

between feature variables and the target variable. Several statistical methods exist to 

help us score a feature against the target variable.
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The following table provides a practical guide for selecting methods to determine the 

feature-target relationship:

Feature Variable Type Target Variable Type Statistical Method Name

Continuous Continuous pearson’s correlation

Continuous Categorical linear discriminant analysis (lda)

Categorical Categorical Chi-square

Categorical Continuous anoVa

Descriptions of these statistical methods are outside of the scope of this book. A wide 

variety of books and online resources are available on these age-old methods.

 Wrapper Method
In the wrapper method, you use a subset of features and train the model. Evaluate the 

model, and based on the result, either add or remove features and retrain the model. 

Repeat this process until you get a model with acceptable accuracy. It’s more like a trial- 

and- error approach to finding the right subset of features. Plus, this is computationally 

expensive as you have to actually build multiple models (and most likely throw away all 

that you are not happy with).

There are a few approaches that are practically used to perform feature selection 

under a wrapper method, as shown here:

• Forward selection: Start with one feature and build and evaluate the 

model. Iteratively, keep adding features that best improve the model.

• Backward elimination: Start with all features and build and evaluate 

the model. Iterate through by eliminating features until you get the 

best model. Repeat this until no improvement is observed on feature 

removal.

• Recursive feature elimination: In the recursive feature elimination 

process, we repeatedly create models and set aside the best or the 

worst-performing feature at each iteration. The features are ranked 

either by their coefficients or by feature importance, and the least 

important features are eliminated. Recursively, we create new models 

with the leftover features until all features are exhausted.
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 Embedded Method
In an embedded method, the feature selection is done by the machine learning 

algorithm while the model is being trained. LASSO and RIDGE regularization methods 

for regression algorithms are examples of such algorithms where the best suitable 

features contributing to the model accuracy are evaluated.

Lasso regression uses L1 regularization and adds a penalty equivalent to the absolute 

value of the magnitude of coefficients.

Ridge regression uses L2 regularization and adds a penalty equivalent to the square 

of the magnitude of coefficients.

Since the model itself evaluates the feature importance, this is one of the least 

expensive methods of feature selection.

This book is about how to build machine learning and deep learning–based 

computer vision applications. Although feature extraction and selection are important 

parts of any machine learning algorithm, this book covers only an introductory level of 

information about it. This is a huge subject and deserves a separate book on this topic.

 Model Training
Let’s review our image processing pipeline from Figure 4-2. So far, we have learned how 

to ingest images and do preprocessing to enhance their quality. This preprocessing 

enables us to transform the input image into a format suitable for the next steps in the 

pipeline: the feature extraction and selection. In the previous section of this chapter, 

we explored various techniques of feature engineering. I hope you have mastered the 

concepts presented so far and you are all set to learn machine learning as applied to 

computer vision.

 How to Do Machine Learning
Assume you have extracted and selected features from a large number of images. What is 

a large number by the way? Well, there is no magic number to answer this question. The 

number should be the true (or at least close to true) representation of the actual scenario 

we are trying to model. Remember, one of the characteristics of a good feature set is 

repeatability. While there is no good way to arrive at a “large” number, the rule of thumb 

is “the more the better” for a good model outcome.
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These feature sets are fed to mathematical algorithms to determine certain patterns 

(we will talk more about these algorithms later). The output of the algorithm is called 

a model, and the process of creating this model is called the training model. In other 

words, the computer uses an algorithm to learn patterns from the input feature set. The 

feature set that is used for training a model is called the training set. See Figure 4-25.

Broadly speaking, there are two types of training set and, hence, two types of 

machine learning: supervised and unsupervised learning. These are described next.

 Supervised Learning
Assume you have an 8×8 image and the values of all 64 pixels are your features. Also, 

assume that you have several of such images and you have extracted pixel values from 

them to make a feature set. All 64 features of one image are arranged as an array (or 

vector). The feature set will have as many rows as the number of images in the training 

set, with each row representing one distinct image. Now, with this dataset, you want to 

train a model that can classify an input image to a certain class. For example, you want 

to classify an image based on whether it contains a dog or a cat (let’s keep it simple for 

now).

Assume further that these training images are already labeled, meaning that they are 

already identified and marked as to which image contains a dog and which one has a cat. 

That means we have the correct class identified for each image.

Figure 4-26 shows a sample of a labeled training set. Column 1 of Figure 4-26 is the 

image ID that uniquely identifies an image. Columns 2 through 65 show the pixel values 

of all 64 columns (because our image dimension is 8×8 in this example). These pixel 

values together form our feature vector (X). The last column is the label column (y) 

that has the value 0 for a dog or 1 for a cat (labels must be numeric to be fed in machine 

learning). The labels are also known as target variables or dependent variables.

Figure 4-25. Illustration of ML model training
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When we train a machine learning model by feeding a dataset containing feature 

vectors and associated labels to a learning algorithm, it is called supervised learning.

The supervised learning algorithm (see Figure 4-27) learns by optimizing a function 

that takes a feature vector as input and generates the label as output. You will learn more 

about various optimization functions in the next chapter.

There are several supervised learning algorithms, such as support vector machine 

(SVM), linear regression, logistic regression, decision tree, random forest, artificial 

neural network (ANN), and convolution neural network (CNN).

This book is about applying deep learning or neural networks (ANN and CNN) to 

train models for computer vision. In the next chapter, you will learn details about these 

deep learning algorithms and how to train models for computer vision.

 Unsupervised Learning
In the previous example, each feature vector has an associated label. The learning 

objective of this kind of labeled dataset is to find a relationship between the feature 

vector and the label. What if you do not have the labels associated with feature vectors? 

In other words, your inputs to the model are only the feature vectors and no output 

Figure 4-26. Example dataset with labeled feature vectors

Figure 4-27. Illustration of supervised learning
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or labels, and you want your machine learning algorithm to learn from this input 

dataset. The model you will train from a dataset having only the feature vectors is called 

unsupervised learning.

Unsupervised learning algorithms (see Figure 4-28) take a dataset containing only 

feature vectors as input and determine structure or patterns in the data, such as a 

grouping or clustering of data. This means the algorithms learn from a training set that 

does not have any labeled data and find commonalities in the data.

Unsupervised learning is used to cluster or group a dataset. Another application of 

unsupervised learning is to create labels for your supervised learning algorithms.

Some of the commonly used unsupervised algorithms are K-means clustering, auto- 

encoders, deep belief nets, and hebbian learning.

This book covers only the supervised learning used in computer vision.

 Model Deployment
So, what happens after you create a trained machine learning model?

Before we answer this question, let’s understand what we do with a trained model.

In the case of supervised learning, a trained model provides us with a function 

that takes a feature set as input and gives us an output. The output is generally known 

as prediction. In other words, a model predicts outcomes based on input data. Such 

predictions may be continuous values or classes.

Similarly, in the case of unsupervised learning, a trained model takes a feature set 

and gives output as the group or cluster that an input feature falls into. The groupings or 

clustering may be further used to create labels for supervised learning.

Now, to answer our first question, we deploy a trained model so that we can predict 

or classify images (or input dataset) that might be made available by external business 

applications. Based on the business use case, these predictions/classes are used in 

various analyses and decision-making.

Figure 4-28. Unsupervised learning
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Input images may be generated by some external applications. These images are 

ingested and processed the same way as the images were processed during the feature 

engineering for model training. Features are extracted from the ingested images and 

passed to the model function to obtain predictions or classes.

While the model development is an iterative process, once a model gives acceptable 

accuracy, we usually version that model and deploy it in production. In practice, models 

are not changed or re-trained with new data until the accuracy starts dropping or until 

retraining with the new dataset is expected to increase the accuracy.

However, a model is expected to be utilized much more frequently than retraining 

the model. In some cases, it may be hundreds or thousands of input images that need 

to be predicted or classified per second. In other cases, we may need to classify millions 

of images in a batch over a day or at some frequency. Therefore, we need to deploy our 

models in such a way that they scale based on the input volume and processing load.

Having the right deployment architecture is essential for us to be able to utilize the 

model effectively in production. Let’s explore different ways we serve our models in 

production.

• Embedded model: Model artifacts are used as a dependency in the 

consuming application code. It is built and deployed along with 

the application that calls the model function as an internal library 

function. This is a good approach for embedded applications for 

edge computing devices (such as in the case of IoT) but not suitable 

for enterprise applications where the data volume is large and the 

processing needs to scale. Also, deploying new versions of models 

is harder in this case; you may have to rebuild the entire application 

code and deploy again.

• Model deployed as a separate service: In this approach, the model 

is wrapped in a service. The service is independently deployed and 

separated from consuming applications. This allows us to update the 

models and redeploy them without affecting other applications. The 

consuming applications make service calls via remote invocation, 

which may introduce some latencies.
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• Model deployed as a RESTful web service: This is similar to the 

approach described earlier. In this case, models are called via RESTful 

API calls using the TCP/IP protocol. This approach provides scalability 

and load balancing, but the network latency may be a concern.

• Model deployed for distributed processing: This is a highly scalable 

model deployment. In this approach, the input images (dataset) 

are stored in a distributed storage that is accessible by all nodes of a 

cluster. The models are deployed in all cluster nodes. All participating 

nodes take input data from the distributed storage, process them, and 

store the prediction outcome to distributed storage for applications 

to consume. Some examples of distributed storage are Hadoop 

Distributed File System (HDFS), Amazon S3, Google Cloud Storage, 

and Azure Blob Storage.

You will learn about how to scale model development and deployment on the cloud 

in Chapter 10.

 Summary
This chapter, along with all previous chapters, built a solid foundation for developing 

computer vision applications using artificial neural networks. In this chapter, we 

explored the image processing pipeline, its components, and their roles in building 

machine learning–based computer vision systems. You learned various techniques of 

feature extraction and selection. We also explored, at a high level, different machine 

learning algorithms, model training, and deployment.

The next chapter, Chapter 5, is the central theme of this book. In that chapter, we will 

discuss various machine learning models and implement ANN, CNN, RNN, and YOLO 

models as applied to computer vision. We will write Python code using the Keras deep 

learning library and execute it on TensorFlow.

This may be a perfect time to go back and review the concepts presented in all 

the previous chapters. If you have followed through all the code examples, your 

development environment is most likely all set for the next chapter. If not, go back to 

Chapter 1 and install all prerequisite software and get your development computer 

ready. We are going to do some serious work and learn something really interesting. If 

you are all set, let’s go!
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CHAPTER 5

Deep Learning and 
Artificial Neural Networks
This chapter will cover deep learning and artificial neural networks. The chapter will 

explore this topic with working code examples to show how to apply deep learning 

concepts in computer vision. Our learning objectives of this chapter are as follows:

• To understand neural networks, their architecture, and various 

mathematical functions and algorithms that work behind the scenes.

• To write code in TensorFlow to ingest images, extract features, and 

train different types of neural networks.

• To write code and understand how to use pre-trained and our 

custom-trained models in image classification. We will also learn 

how to retrain an existing model.

• To learn how to evaluate a model and tune parameters to optimize 

the model performance in terms of accuracy.

This chapter will include some mathematical concepts and equations. Although it is 

not necessary to have a formal understanding of the mathematics of the equations listed 

in this chapter, we do provide you with several references to explore the mathematical 

treatment of these equations.

 Introduction to Artificial Neural Networks
An artificial neural network (ANN) is a computing system that is designed to work the 

way the human brain works. Let’s understand this with a simplistic example.

https://doi.org/10.1007/978-1-4842-5887-3_5#DOI
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Assume that you see an object you have never seen before. Someone tells you that 

it is a car. And then you see many other objects and learn to recognize them. Then you 

see another object and you try to guess what it is. You may say something like, “I think I 

saw this before.” Or you may say, “I guess it is a car.” That means you are not 100 percent 

certain about identifying the object. Now, assume that you see many cars in different 

shapes, sizes, orientations, and colors. You are fully trained to identify the “car” object. 

Most likely, you will not say “I guess,” but you will say, “It is a car.” That means your 

confidence in identifying a car increases as you have trained yourself better by observing 

a large number of cars.

What is happening here is that when you see a car just once or a few times, you learn 

to recognize it if it is presented in the same or similar ways you saw it before. But when 

you see a large number of samples in a wide variety of ways, you learn to recognize the 

object with 100 percent (or close to 100 percent) accuracy. Let’s look at the diagrams 

in Figure 5-1 to see how information is processed in our brains (a simplified version of 

human brain function).

Figure 5-1. Human eyes as sensing device feeding input to the brain that stores 
patterns

Our eye works as a sensing device. When we see an object, our eyes capture an image 

of that object that is passed to the brain as an input signal. Neurons in our brain do the 

computation on the input signals and generate outputs.

As shown in Figure 5-2, dendrites receive input signals (X). The neuron combines 

these input signals and performs computations using some function. The output is 

transmitted to axon terminals.

A human body has billions of neurons with trillions of interconnections among 

them. These interconnected neurons are called a neural network.
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Computer scientists were inspired by the human vision system and tried to mimic 

neural networks by creating a computer system that learns and functions the way our 

brains do. This learning system is called an artificial neural network (ANN).

Figure 5-3 looks analogous to Figure 5-1. A camera works as a sensing device much 

like our eyes capture images of objects. The images are transmitted to an interpreter 

system, such as a computer, where they are processed in a similar way as a neuron 

processes the input signals. Some examples of other sensing devices are X-ray, CT-scan, 

and MRI machines; satellite imaging systems; and document scanners. The interpreting 

devices, such as computers, provide the processing of the data acquired by the camera. 

Most of the computer vision–related computations, such as feature extraction and 

pattern determination, are performed within the computer.

Figure 5-2. Information processing in human neurons

Figure 5-3. Artificial sensing device (a camera) feeding image input to computers
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Figure 5-4 is analogous to the human neuron shown in Figure 5-2. The variables 

x1, x2, .. xn are the input signals (e.g., image features) with certain weights w1, w2, .. 

wn associated with each input signal. These input signals are processed using some 

mathematical functions to generate outputs. The processing unit that combines these 

input signals is called a neuron, named after the human neuron. The mathematical 

function that computes the output from the neuron is called an activation function. In 

Figure 5-4, the circle marked with the function symbol f(x) is the neuron. The output y is 

generated from the neuron.

Figure 5-4. Artificial neuron

 Perceptron
A single neuron of a neural network is called a perceptron. A perceptron implements 

a mathematical function that operates on the input signals and generates outputs. 

Figure 5-4 is an example of a perceptron. A perceptron is the simplest neural network. 

We will see later that a typical neural network for machine learning consists of several 

neurons. The inputs to the neuron come either from the source (camera or sensing 

devices) or from the outputs of other neurons.

 How a Perceptron Learns

The learning objective of a perceptron is to determine the ideal weights for each input 

signal. The learning algorithm arbitrarily assigns weights to each input signal. The signal 

value is multiplied by its corresponding weight. The product (weight times signal value) 

of each signal is added to compute an output. The computation is represented by the 

following equations:
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 f(x)=w x +w x +w x + +w x1 1 2 2 3 3 n n¼  (Equation 5-1)

Sometimes a bias, x0, is also added to the equation, as shown here:

 f(x)= x w x +w x +w x + +w x0 1 1 2 2 3 3 n n+ ¼  (Equation 5-2)

Equation 5-2 can also be written as follows:
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(Equation 5-3)

The neuron computes using Equation 5-2 over a large number of inputs. An 

optimization function optimizes the weights by using certain mathematical algorithms, 

called an optimizer, and the computation is repeated with the new weights. This weight 

optimization and computation and re-optimization are performed in multiple iterations 

until the weights are fully optimized for the given set of inputs. We will learn more about 

this optimization function later in this chapter. The fully optimized weights are the actual 

learning of the neuron.

 Multilayer Perceptron
Much like the human brain contains billions of neurons, an artificial neural network 

contains several neurons or perceptrons. Inputs are processed by a group of neurons. 

Each neuron in the group processes the inputs independently. Outputs from this 

group of neurons are fed to another neuron or group of neurons for further processing. 

You can imagine these neurons arranged as layers where the output from one layer 

is fed as inputs to the next layer. You can have as many layers as needed to train your 

neural network. This multilayer approach of arranging neurons in a neural network is 

commonly known as multilayer perceptron (MLP). Figure 5-5 shows an example MLP.

Chapter 5  Deep Learning anD artifiCiaL neuraL networks



142

 Why MLP?

Let’s consider a single neuron with a single input. Equation 5-1 will look like the 

following:

 f(x)= x w x0 1 1+  

This represents the equation of a straight line with an intercept as x0 and a slope 

(angle with the horizontal or x-axis) that equals to w1. 

Don’t worry if you do not understand this math. This is to show you that a single 

neuron models a linear relationship of input to output. Machine learning algorithms, 

such as linear regression and logistic regression, model linear relationships. Most 

real-world problems do not exhibit linear relationships. Multilayer perceptrons model 

nonlinearity and can model real-world problems more accurately than single neuron–

based models.

Figure 5-5. Multilayer perceptron
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 What Is Deep Learning?
Deep learning is another name for a multilayer artificial neural network or multilayer 

perceptron. We have different types of deep learning systems depending upon the neural 

network architecture and its working principles. For example, feed-forward neural 

networks, convolutional networks, recurrent neural networks, autoencoders, and deep 

beliefs are different types of deep learning systems.

The following sections start with an explanation of the high-level architecture 

of the multilayer perceptron. In this book, we will use MLP and deep learning (DL) 

interchangeably.

 Deep Learning or Multilayer Perceptron Architecture
A multilayer perceptron consists of at least three types of layers: input layer, hidden 

layers, and output layer (as shown in Figure 5-5). You can have more than one hidden 

layer. Each layer contains one or more neurons. A neuron performs some computation 

on the inputs it gets and generates outputs. The output from the neurons are sent as 

input to the next layer except in the case of the output layer, which generates the final 

output for applications to consume from.

An MLP architecture consists of the following:

• Input layer: The first layer of a neural network is called the input 

layer. This layer takes the input from the external source, such as 

images from the sensing devices. The inputs to this layer are the 

features (see Chapter 4 for details on features).

 The nodes in the input layer do not do any computation. These nodes 

simply pass their inputs to the next layer.

 The number of neurons in the input layer is the same as the number 

of features. Sometimes, an additional node is added in each layer. 

This additional node is called a bias node. The bias node is added to 

have control over the output from the layer. In deep learning, the bias 

is not required, but it is a common practice to add one.

 Figure 5-6 shows a neural network architecture with bias nodes. The 

nodes shown in orange colors are the biased nodes added in each 

layer.

Chapter 5  Deep Learning anD artifiCiaL neuraL networks



144

 Question: What is the total number of neurons in the input layer of a 

neural network?

 Answer: The number of input layer neurons = The number of input 

features without a bias = (The number of input features + 1) with  

a bias

• Hidden layer: The layers of neurons between the input and output 

layers are called hidden layers. A neural network must have at least 

one hidden layer. This is the layer where the learning happens. The 

neurons in this layer do the computations needed for learning. In 

most cases, one hidden layer is sufficient for learning, but you can 

have as many layers as needed to model the real-world cases. As 

the number of hidden layers increases, the computation complexity 

increases with a corresponding increase in computation time.

Figure 5-6. Multilayer perceptron with bias nodes
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 How many neurons should we have in the hidden layer? Well, there 

is no magic number, and several practical strategies exist. A common 

practice is to take two-thirds (or 66 percent) of the number of 

neurons in the previous layer. For example, if the number of neurons 

in the input layer is 100, the number of neurons in the first hidden 

layer will be 66 and in the next hidden layer will be 43 and so on. 

Again, there is no magic number, and you should tune the neuron 

counts based on the model accuracy.

• Output layer: The final layer of the neural network is the output layer. 

The output layer gets its input from the last hidden layer. The number 

of neurons in the output layer depends on the type of problem you 

want the neural network to solve and is described here:

• For regression problems when the network has to predict a 

continuous value, such as the closing price of stocks, the output 

node has only one neuron.

• For classification problems when the network has to predict one 

of many classes, the output layer has as many neurons as the 

number of all possible classes. For example, if the network is 

trained to predict one of four classes of animals—cat, dog, lion, 

bull—the output layer will have four neurons, one for each class.

• Edges or weight connections: Weights are also referred to as coefficients 

or input multipliers. Each input feature to a neuron is multiplied by a 

weight. Pictorially, each connection from input to a neuron is linked 

with a weighted line. The weighted line signifies the contribution of 

the feature in predicting the outcome we are trying to model for. Think 

of weight as the contribution or significance of an input feature. The 

higher the weight, the more the contribution of the feature. If weight is 

negative, the feature has a negative effect. If the weight is zero, the input 

feature is not important and can be removed from the training set.

 The training objective of a neural network is to calculate the most 

optimized weights for each input feature for each connection to 

neurons of each layer. We will learn more in this chapter how a neural 

network learns by adjusting the weights. If bias is used, the neural 

network learns the bias as well.
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 Activation Functions
The mathematical function that determines the output of a neuron is called the 

activation function.

Neurons operate on inputs using the following linear equation:
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(Equation 5-4)

But the output of a neuron is not the result of Equation 5-4. It is the activation 

function that operates on the value of z (calculated from Equation 5-4) and determines 

the output from the neuron.

The activation function determines whether the neuron it’s attached to should be 

activated (turned on or off), based on whether the neuron’s input is relevant for model 

prediction. Actually, the activation function normalized the output of each neuron to a 

range between 0 and 1 or between -1 and 1.

There are several mathematical functions that are used as activation for different 

usage. We will explore the following activation functions that TensorFlow supports out of 

the box. We will learn more about TensorFlow in the next section.

 Linear Activation Function

The linear activation function calculates the neuron output by multiplying weights to 

inputs as per the equation f(x) = x0+ w1x1 + w2x2 + w3x3 + ....+ wnxn. The output of linear 

activation function varies from -∞ to +∞, as shown in Figure 5-7. That means linear 

activation function is as good as having no activation.
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The linear activation function has the following two main problems and is not used 

in deep learning:

• Deep learning uses a method called backpropagation (more on 

this later), which uses a technique called gradient descent. The 

gradient descent requires calculating a first-order derivative of the 

input, which, in the case of linear activation, is a constant. The first 

derivative of a constant is a zero. That means it has no relationship 

with the input. Therefore, it is not possible to go back and update the 

weights of the inputs.

• If you use linear activation function, the last layer will be the linear 

function of the first layer, regardless of the number of layers in the 

neural network. In other words, a linear activation function turns 

your network into just one layer. That means your network can learn 

only the linear dependencies of inputs to output, and that is not 

suitable for solving complex problems such as computer vision.

Figure 5-7. Linear activation function graph
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 Sigmoid or Logistic Activation Function

The sigmoid activation function calculates the neuron output using the sigmoid 

function, as shown here:

 
s z Z( ) = +( )-1 1/ e  (Equation 5-5)

where z is calculated using Equation 5-4.

The sigmoid function always yields a value between 0 and 1. This makes the output 

smooth without many jumps as the input value fluctuates. The other advantage is that 

this is a nonlinear function and does not generate a constant value from a first-order 

derivative. This makes it suitable for deep learning with backpropagation that updates 

weights based on gradient descent. See Figure 5-8.

Figure 5-8. Sigmoid activation function graph

The biggest disadvantage of the sigmoid function is that the output does not change 

between large or small input values, which make it unsuitable for cases where the 

feature vector contains large or small values. One way to overcome this disadvantage is 

to normalize your feature vector to have values between -1 and 1 or between 0 and 1.

Another characteristic that you will notice from Figure 5-8 is that the S-shaped curve 

is not centered at zero.
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 TanH/Hyperbolic Tangent

TanH is similar to the sigmoid activation function except that TanH is zero-centered. See 

Figure 5-9 and notice that the S-shaped curve passes through the origin.

The TanH activation function calculates the neuron output using this formula:

 
tanh /z( ) = -( ) +( )e e e ez z z z- -

 (Equation 5-6)

Because the TanH function is zero centered, it models with inputs having small, 

large, and neutral values.

 Rectified Linear Unit

The rectified linear unit (ReLu) determines the neuron output based on the value of z 

as computed from Equation 5-4. If the value of z is positive, ReLU takes that value as an 

output; otherwise, it outputs as zero. The output from ReLU ranges between 0 and +∞. 

The ReLU function is represented as shown here (see also Figure 5-10):

 f (z) max(0 z)= ,  (Equation 5-7)

Figure 5-9. TanH activation function graph (zero-centered)
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The advantage of the ReLU activation function is that it is computationally efficient 

and allows the network to converge quickly. Also, ReLU is nonlinear, and it has a 

derivative function that makes it suitable for backpropagation for weight adjustment as 

the neural network learns.

The biggest disadvantage of the ReLU function is that the gradient of the function 

becomes zero for zero or negative inputs. This makes it not suitable for backpropagation 

when the input has negative values.

ReLU is widely used for most computer vision model training as the image pixels do 

not have negative values.

 Leaky ReLU

Leaky ReLU provides a slight variation of ReLU. Instead of making the negative value of 

z (as calculated from Equation 5-3) zero, it multiplies the negative value of z by a small 

number such as 0.01. Figure 5-11 depicts the Leaky ReLU outputs.

Figure 5-10. ReLU activation graph (with value ranges between 0 and infinity)
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The leaky ReLU has a small slope in the negative area and allows for 

backpropagation for negative inputs.

The disadvantage is that the result of the leaky ReLU is not consistent with negative 

values.

 Scaled Exponential Linear Unit

A scaled exponential linear unit (SELU) computes neuron outputs using the following 

equation:
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where the value of λ = 1.05070098 and the value of 𝞪 = 1.67326324. These values are fixed 

and do not change during backpropagation.

The graph in Figure 5-12 shows the SELU characteristics.

Figure 5-11. Leaky ReLU graph (modified ReLU by taking negative value 
multiplied with a small number)
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SELU has the “self-normalizing” properties (see reference 1 for the original paper on 

SELU). The inventors of SELU have proven mathematically that SELU generates output 

that is normalized with mean 0 and standard deviation 1.

In TensorFlow or Keras, if you use the weight initialization method as truncated 

normal distribution centered around zero by using the method tf.keras.

initializers.lecun_normal, you will get the normalized output of all network 

components, such as weights, biases, and activations, at each layer.

So, why do we care about the network generating normalized outputs? The 

initialization function lecun_normal initializes the parameters of the network as a 

normal distribution or Gaussian distribution. SELU also generates normalized outputs. 

That means the entire network exhibits normalized behavior. Therefore, the output in 

the last layer is also normalized.

With SELU, the learning is highly robust and allows training networks that have many 

layers.

Since with SELU the entire network is self-normalizing, it is efficient in terms of 

computation and tends to converge faster. Another advantage is that it overcomes the 

problems of exploding or vanishing gradients when the input features are too high or too 

low.

Figure 5-12. SELU activation graph
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 Softplus Activation Function

The softplus activation function applies smoothing to the activation function value z (as 

calculated by Equation 5-4). It uses the log of exponent as follows:

 
f x ez( ) = +( )ln 1  (Equation 5-9)

Softplus is also called the SmoothReLU function. The first derivation of the  

softplus function is 1/(1+e-z), which is the same as the sigmoid activation function.  

See Figure 5- 13.

Figure 5-13. Softplus activation graph

 Softmax

Softmax is a function that takes an input vector of real numbers, normalizes it into a 

probability distribution, and generates outputs in the range (0,1) with the sum of output 

values equal to 1.

It is most often used as the activation for the last layer (output layer) of a 

classification neural network. The result is interpreted as the prediction probability of 

each class.

Chapter 5  Deep Learning anD artifiCiaL neuraL networks



154

The softmax transformation is calculated using the following formula:
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(Equation 5-10)

The normalized output of the previous equation is always between 0 and 1. When 

you add these outputs, the result will be 1.

 Feedforward
A feedforward neural network is an artificial neural network in which the connection 

between the neurons does not form a cycle. The network that we learned about so far is a 

feedforward neural network.

A feedforward neural network is the simplest neural network. In this network, the 

information flows in one direction (forward direction), starting from the input layer to 

the hidden layer and all the way to the output layer. In this network, there is no loopback 

or feedback mechanism.

The example networks shown in Figures 5-2 and 5-3 are feedforward artificial neural 

networks.

For the most part of this book, we will use a feedforward network.

 Error Function
What is an error? An error, in the context of machine learning, is the difference between 

expected outcome and the predicted outcome. The equation of error may be written in a 

simplified form as follows:

Error = Expected outcome - Predicted outcome

We have already learned that the learning objective of a neural network is to calculate 

optimized values of weights. The weights are considered optimized for a given dataset, 

when the errors are at a minimum (ideally, zero). We have seen that when the network 

starts the learning process, it initializes weights and calculates the output from each neuron 

by using one of the activation functions. It then calculates the error, adjusts the weights, 

calculates outputs, and re-calculates the errors and compares them with previously 

calculated errors, until it finds the minimum error. The weights that give the minimum 

errors are taken as the final weights. The network is considered “learned” at this stage.
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From calculus, if the first derivative of a function is zero, the function at that point is 

either minimum or maximum. Finding this minimum point where the first derivative is 

zero is the goal of the neural network training process. Therefore, a neural network must 

have an error function that will calculate the first derivative and find the points (weights 

and biases) where the error function is minimum. What this error function should be 

depends on the type of model we want to train. Error functions are also known as loss 

function, or simply loss.

The mathematics that computes the derivatives and finds the optimum values of 

weights is beyond the scope of this book. We will explore a few commonly used error 

functions and where they should be applied. We will not get deep into the mathematics 

behind these error functions to keep this book focused on our learning objectives: 

building computer vision applications. If you do not have any background of calculus, do 

not worry about it. Just make sure that you understand what error functions should be 

used in solving computer vision problems.

The error functions are broadly divided into the following three categories:

• Regression loss functions are used when we want to train models to 

predict continuous value outcomes, such as stock prices and housing 

prices.

• Binary classification loss functions are used when we want to train 

models to predict a maximum of two classes, such as cat versus dog 

or cancer versus no cancer.

• Multiclass classification loss functions are used when our models 

need to predict more than two classes, such as object detection.

The following section provides an overview of different error functions, their usages, 

and the types of activation functions they are compatible with. Use this section as a 

guide to determine the appropriate error functions for your particular modeling work.

 Regression Loss Function

Error function name: Mean squared error (MSE) loss.

Brief description: This is the default error function for regression problems. This is 

the preferred loss function if the distribution of the target variable is normal or Gaussian.

Where to use: When the distribution of target variables is normally distributed.

Applicable activation functions: model.add(Dense(1, activation='linear'))
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TensorFlow example: model.compile(loss='mean_squared_error') or model.

compile(loss='mse')

Error function name: Mean squared logarithmic error (MSLE) loss.

Brief description: This function first calculates the logarithm of predicted values and 

calculates the mean squared error.

Where to use: When the target variable has a spread of values and when predicting a 

large value, you may not want to punish a model as heavily as the mean squared error. 

This is normally used when your model is predicting unscaled values.

Applicable activation functions: model.add(Dense(1, activation='linear'))

TensorFlow example: model.compile(loss='mean_squared_logarithmic_error')

Error function name: Mean absolute error loss.

Brief description: This is calculated as the average of the absolute difference between 

the expected and predicted values.

Where to use: When the target variable is normally distributed and has some outliers.

Applicable activation functions: model.add(Dense(1, activation='linear'))

TensorFlow example: model.compile(loss='mean_absolute_error')

 Binary Classification Loss Function

Error function name: Binary cross-entropy.

Brief description: This is the default loss function for binary classification problems 

and is preferred over other functions. Cross-entropy calculates a score that summarizes 

the average difference between the actual and predicted probability distributions for 

predicting class 1. The score is minimized, and a perfect cross-entropy value is set to 0.

Where to use: When the target value is in the range (0,1).

Applicable activation functions: model.add(Dense(1, activation='sigmoid'))

TensorFlow example: model.compile(loss='binary_crossentropy', 

metrics=['accuracy'])

Error function name: Hinge loss.

Brief description: This is used mainly in support of vector machine–based binary 

classification.

Where to use: When the target variable is in the range (-1, 1).

Applicable activation functions: model.add(Dense(1, activation='tanh'))

TensorFlow example: model.compile(loss='hinge', metrics=['accuracy'])

Error function name: Squared hinge loss.
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Brief description: This function calculates the square of the score hinge loss. It 

smoothens the surface of the error function and makes it numerically easier to work with.

Where to use: When the target variable is in the range (-1, 1).

Applicable activation functions: model.add(Dense(1, activation='tanh'))

TensorFlow example: model.compile(loss='squared_hinge', 

metrics=['accuracy'])

 Multiclass Classification Loss Function

Error function name: Multiclass cross-entropy loss.

Brief description: This is the default loss function for multiclass classification 

problems and is preferred over other functions. Cross-entropy calculates a score that 

summarizes the average difference between the actual and predicted probability 

distributions for predicting class 1. The score is minimized, and a perfect cross-entropy 

value is set to 0.

Where to use: When the target values are in the set {0, 1, 3, 4,..., n}, where each class is 

assigned a unique integer value.

Applicable activation functions: model.add(Dense(4, activation='softmax'))

TensorFlow example: model.compile(loss='categorical_crossentropy', 

metrics=['accuracy'])

Error function name: Sparse multiclass cross-entropy loss.

Brief description: Sparse cross-entropy performs the same cross-entropy calculation 

of error, without requiring that the target variable be one hot-encoded prior to training.

Where to use: When you have a large number of classes in the target, for example, 

predicting dictionary words.

Applicable activation functions: model.add(Dense(100, activation='softmax'))

TensorFlow example: model.compile(loss='sparse_categorical_crossentropy', 

metrics=['accuracy'])

Error function name: Kullback-Leibler divergence (KLD) loss.

Brief description: KLD measures how one probability distribution differs from a 

baseline distribution. A KL divergence loss of 0 means the distributions are identical. It 

determines how much information is lost (in terms of bits) if the predicted probability 

distribution is used to approximate the desired target probability distribution.

Where to use: This is used to solve complex problems such as auto-encoders for 

learning dense features. If this is used for multiclass classification, it works as multiclass 

cross-entropy.
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Applicable activation functions: model.add(Dense(100, activation='softmax'))

TensorFlow example: model.compile(loss='kullback_leibler_divergence', 

metrics=['accuracy'])

 Optimization Algorithms
The learning objective of a neural network is to determine the most optimized weights 

(and biases) at which the loss is minimum. When the network starts learning, it assigns 

weights to each input connection. Initially, these weights are rarely optimized. How 

much the weights are off from optimized is determined by measuring the loss (or error). 

To determine the ideal weights, the learning algorithm optimizes the loss function so 

that it finds weights that make the loss function have the minimum value. The weights 

(and biases) are updated, and the process is repeated until there is no more scope for 

optimization. The mathematical function that optimizes the loss function is called the 

optimization algorithm or optimizer.

There are several optimization algorithms that offer different degrees of accuracy, 

speed, and parallelism. We will explore some of the most popular ones in this 

section. We will provide introductory-level information, without going deep into the 

mathematics that are used in these algorithms. You will get a good idea of where to use 

which optimization algorithms.

 Gradient Descent

Gradient descent is an optimization algorithm that finds weights where the loss function 

(also known as cost function) is zero or minimum. Gradient descent is a technique to find 

the minimum cost function. This is how it works:

 1. The cost function or error function is represented by the following 

equation:

 
f w

N
y w xi i i( ) = å -( )1

 (Equation 5-11)

where yi is the actual/known value and wi is the weight corresponding 

to the feature vector xi of ith sample. wi xi is the predicted value that is 

subtracted from the actual value yi to calculate the error or loss.
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From calculus, we know that the first derivative of a function at a 

point gives the slope or gradient of the function at that point. If you 

plot the cost function f(w), you will see a multidimensional curve (as 

shown in Figure 5-14). The derivative is calculated to get the gradient 

to determine which direction along the curve to move to get the new 

set of weights. Since the goal is to minimize the cost, the algorithm 

moves to the direction of the negative gradient.

For example, let’s assume there is only one feature, and hence we 

need to compute only one weight (w). The cost function will look like 

the left image in Figure 5-14.

The algorithm first calculates the cost or loss for the initial weights, 

assuming this loss is f(w) and assuming the loss is calculated at point 

1 in Figure 5-14 (left).

Figure 5-14. Cost function with gradient movement toward minimum

 2. The algorithm then computes the gradient (delta) and moves 

down the curve; the direction is decided by the negative gradient.

 3. As it descends, the algorithm computes the new weights using the 

following formula:

weight =weight +alpha -delta =weight - alpha delta** **( )  (Equation 5-12)

Here, alpha is called the learning rate. The learning rate determines 

the size of the steps through which the gradient descends the curve 

to reach the minimum point.
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 4. The error is again computed using the new value of the weight, 

and the process is repeated until the algorithm finds the ultimate 

minimum cost.

Local and Global Minima

For simplicity, we considered only one feature and hence only one weight. But in 

practice, there may be tens or even hundreds of features for which weights need to be 

learned. The image on the right of Figure 5-14 shows the error curve when more than 

one weight needs to be optimized. In this case, the curve may have multiple points that 

would appear as minimums, called local minima. The objective of the gradient descent 

algorithm is to find the global minimum to optimize the weights.

Learning Rate

As shown in Equation 5-12, the parameter alpha is called the learning rate. The learning 

rate determines how big or small the steps are that the gradient descent algorithm will 

take to move down the curve to find the global minimum.

What should be the value of this learning rate? A large value of the learning rate may 

miss the minimum point and may oscillate back and forth and never find the minimum. 

On the other hand, a small value of the learning rate will require a lot of steps to reach 

the minimum point.

Having a small learning rate will make the learning slow. Figure 5-15 shows the effect 

of big and small learning rates.

Figure 5-15. Effect of big and small learning rates
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Therefore, we must set the learning rate appropriately. A good practical range for 

learning rate is between 0.01 and 0.1. We generally start with a learning rate within this 

range and tune as needed.

Regularization

What happens if the weight of one of the features is high compared to all other features? 

This feature will have a higher weight and will have significant influence in the overall 

prediction. Regularization is a way to control the effect of one or a few large weights. 

We add another parameter, called regularization, in the cost function to balance 

the excessive weights that may cause our prediction to be heavily impacted. The 

regularization parameter penalizes the large weights to reduce its impact.

Let’s keep this simple for now. I will explain the regularization when we write some 

code to train our own models.

 Stochastic Gradient Descent

Gradient descent computes the gradients of the entire training examples in every step 

and every iteration. This are lots of computations, and they take time to converge. 

Depending upon the size of the training set, it may not be computationally feasible to 

run the algorithm in a single machine as it has to fit the entire data in memory (RAM). 

Also, the processing cannot be distributed for parallelized computing. Stochastic 

gradient descent (SGD) overcomes these problems.

SGD computes the gradients of a small subset of a training set that can easily fit in 

memory.

This is how SGD works:

 1. Randomize the input dataset to eliminate any biases.

 2. Calculate the gradient of a randomly selected single piece of data 

or a small batch of data.

 3. Update the weights using the formula weight = weight - alpha * delta.

Generally, the weight updates in SGD are computed for a few training examples 

as opposed to a single example because this reduces the variances in the weights that 

lead to stable convergences. A mini batch size of 128 or 256 is a good starting point. 

The optimal batch size may vary for different applications, architecture, and computer 

hardware capacity.
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SGD for Distributed and Parallel Computing

If you have a large training dataset, you can divide the randomized training set into 

small mini batches. These mini batches can be distributed across multiple computers 

in a cluster architecture. SGD can independently and in parallel compute weights in 

individual computers that have a small batch of data. The results can be combined from 

the individual computers to a central computer to get the final and optimized weights.

SGD can also optimize weights by using parallel processing in a single computer that 

has multiple CPUs or GPUs.

The distributed and parallel operations to compute optimized weights by using the 

SGD algorithm helps converge it faster.

SGD with Momentum

If you plot your cost function and you see ravine-shaped curves, which have steep walls 

and narrow bottoms, you should consider using SGD with momentum. Ravines are more 

prominent around local minima. In such cases, SGD oscillates around the minimum and 

may not reach the target. Standard SGD normally delays the conversion, especially after 

a few iterations. See Figure 5-16.

Figure 5-16. SGD with momentum

Momentum is a method that controls the oscillation by controlling the gradient 

movement. The momentum update is given by the following equation:

 v = + *ggv alpha delta  (Equation 5-13)

where the delta is gradient calculated using SGD and alpha is the learning rate.

𝒗 is the velocity vector having the same dimension as the parameters (or weight).

The value of 𝞬 is in the range (0, 1) and generally taken as 0.9 by default.
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Finally, the weights are updated using the following equation:

 weight =weight +v  

 Adaptive Gradient Algorithm (Adagrad)

Gradient descent and SGD require us to manually set and tune the learning rate. If the 

learning is too high, the algorithm will miss the minimum point, and if it is too low, 

the algorithm will take a lot of time to converge. Finding a perfect learning rate is a 

manual process. It is particularly difficult to choose the right learning rate when the 

neural network has multidimensionality. One option is to set different learning rates for 

each dimension. However, most neural networks have hundreds or even thousands of 

dimensions, which makes it almost impossible to choose the learning rate manually.

Adagrad solves this problem by calculating the right learning rate for each parameter 

by looking at the past. It generates a larger learning rate for features that are infrequent 

and a lower learning rate for higher frequency features. That means each parameter has 

its own learning rate that improves performance on problems with sparse gradients.

Adagrad is well-suited for dealing with sparse data, for example, in computer vision 

or NLP.

One of the biggest disadvantages of Adagrad is that the adaptive learning rate tends 

to get really small over time.

 RMSProp

Remember SGD with momentum? The introduction of momentum controls the 

gradient movement in a steeper curve. RMSProp provides an enhancement to SGD 

with momentum. It restricts the movement of gradients in the vertical direction. Think 

of it this way: if you have a steep curve, a small movement in the horizontal direction 

will cause a large movement in the vertical direction. RMSProp controls the vertical 

movement so that the movement in both vertical and horizontal directions is not uneven 

and it leads to finding the minimum point faster.

 Adaptive Moment (Adam)

The Adam optimization algorithm is designed for deep learning and is a preferred 

optimizer. It combines the SGD with momentum and RMSProp. Adam updates network 

weights iteratively based on training data.
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Instead of adapting the parameter learning rates based on the average first moment 

(the mean) as in RMSProp, Adam makes use of the average of the second moments of 

the gradients.

The math behind Adam is out of the scope of this book (again, to stay focused on the 

core theme of the book). See the original paper at https://arxiv.org/pdf/1412.6980.pdf 

for more detailed information about how gradients are calculated and updated.

The paper describes the following benefits of Adam:

• Straightforward to implement

• Computationally efficient

• Little memory requirements

• Invariant to diagonal rescale of the gradients

• Well-suited for problems that are large in terms of data and/or 

parameters

• Appropriate for nonstationary objectives

• Appropriate for problems with noisy/or sparse gradients

• Hyperparameters that have intuitive interpretation and typically 

require little tuning

 Backpropagation
To train a neural network, we need the following three things:

• Input data or input features

• A feedforward multilayer neural network

• An error function

The network assigns initial weights to each input feature. Using an optimization 

algorithm, such as SGD or Adam, the error function is optimized to compute the 

minimum error, and the weights are updated.

A multilayer perceptron contains at least three layers: input, hidden, and output 

layers. There can be more than one hidden layer.
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In a feedforward network, the neuron’s output is calculated in the forward direction, 

starting from the first hidden layer, then the second hidden layer, and so on, and finally 

at the output layer.

The next step is to estimate the error so that the weights will be updated. In the 

backpropagation method, the gradients of weights are first calculated at the last layer, 

and the gradients of the first layer are calculated at the last. The partial computations 

of the gradient from one layer are reused in the computation of the gradient for 

the previous layer. This backward flow of the error information allows for efficient 

computation of the gradient at each layer. In other words, the gradient calculations are 

not done independently at each layer.

Why is the error of the last layer computed first? The simple reason is that the hidden 

layer has no target variables. It is the output layer that maps to the target variables of 

the labeled dataset. Therefore, calculating the errors at the last layer first makes perfect 

sense.

This section provided an overview of how neural networks work and what different 

algorithms work behind the scenes. We also explored that there are several parameters, 

such as learning rates and momentum, that we can control to tune our training. The 

parameters that we can set or tune to train a good model are called hyperparameters. We 

will learn more about the hyperparameters later in this chapter.

In the following sections, we will write code to implement some of the concepts 

covered in the previous sections of this chapter. We will write Python code and use 

TensorFlow to work through the examples. We will begin with a high-level introduction 

of TensorFlow and cover those features and functions that are relevant to computer 

vision. We will use TensorFlow code throughout the remainder of this chapter, and we 

will provide relevant explanations while implementing the neural network concepts.

 Introduction to TensorFlow
TensorFlow is an open source platform for end-to-end machine learning. It provides 

a high-level and easy-to-use API to create machine learning models. TensorFlow is an 

execution engine for Keras, a high-level neural network API written in Python.

At the time of writing this book, TensorFlow version 2 (TF2) is available. But some of 

the core concepts covered in this book (such as object detection) work with TensorFlow 

version 1 (TF1) only. For the most part, we will use TF2 and use TF1 mostly for object 

detection.
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 TensorFlow Installation
If you have followed the instructions in Chapter 1, TensorFlow and Keras should already 

be installed in your working environment. If not, check out Chapter 1 and follow the 

installation instructions for TensorFlow.

 How to Use TensorFlow
To use TensorFlow in your code, you must import it as follows:

import tensorflow as tf

You can access Keras API by using the following:

tf.keras

Before we deep dive into neural networks, let’s understand some of the terminology 

of TensorFlow.

 Tensor
A tensor is a data structure containing n-dimensional arrays of a base data type.

If the value of n is 0, it’s called a scalar, and the rank of the scalar is 

0 or 0-dimensional.

If the value of n is 1, it’s called a vector, and the rank of the vector 

is 1 or 1-dimensional.

If the value of n is 2, it’s called a matrix, and the rank of the matrix 

is 2 or 2-dimensional.

If the value of n is 3 or more, it’s called a tensor. Depending upon 

the value of n, its rank is 3 or more.

So, a tensor is a generalization of vectors and matrices to higher dimensions.  

Table 5- 1 summarizes the differences between scalar, vector, matrix, and tensor.
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Internally, TensorFlow defines, manipulates, and computes tensors. It provides a 

Tensor class that is accessible by using this:

tf.Tensor

The Tensor class has the following properties:

 – A data type, e.g., uint8, int32, float32, or string. Every element of 

a tensor must be of the same data type.

 – A shape, which is the number of dimensions and size of each dimension.

 Variable
TensorFlow has a class called Variable, accessible by using tf.Variable. The tf.

Variable class represents a tensor whose values are manipulated by operations such as 

read and modify. You will learn, later in this chapter, that tf.keras uses tf.Variable to 

store model parameters. Listing 5-1 shows a python example of how to use a Variable.

 Constant
TensorFlow also supports constants, whose values cannot be changed once initialized. 

To create a constant, call this function:

tf.constant(value, dtype=None, shape=None, name='Const')

Table 5-1. Definitions of Scalar, Vector, Matrix, and Tensor

Data Structure Dimension or Rank
(the Value of n)

Example

scalar 0 scalar_s = 231

Vector 1 vector_v = [1,2,3,4,5]

Matrix 2 matrix_m = [[1,2,3],[4,5,6],[7,8,9]]

tensor 3 or more tensor_3d = [

[[1,2,3],    [4,5,6],    [7,8,9]],

[[11,12,13], [14,15,16], [17,18,19]],

[[21,22,23], [24,25,26], [27,28,29]],

]
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where

value is the actual value or a list that is set as the constant.

dtype is the data type of the resulting tensor represented by the 

constant.

shape is an optional parameter and represents the dimensions of 

the resulting tensor.

name is the name of the tensor.

If you do not specify the data type, tf.constant() will infer it from the value of the 

constant.

The function tf.constant() returns a constant tensor.

Listing 5-1 shows a simple code example that creates a tensor variable.

Listing 5-1. Creating a Tensor Variable

Filename: Listing_5_1.py

1    import tensorflow as tf

2

3    # create a tensor variable with zero filled with default datatype float32

4    a_tensor = tf.Variable(tf.zeros([2,2,2]))

5

6    # Create a 0-D array or scalar variable with data type tf.int32

7    a_scalar = tf.Variable(200, tf.int32)

8

9    # Create a 1-D array or vector with data type tf.int32

10   an_initialized_vector = tf.Variable([1, 3, 5, 7, 9, 11], tf.int32)

11

12   # Create a 2-D array or matrix with default data type which is tf.float32

13   an_initialized_matrix = tf.Variable([ [2, 4], [5, 25] ])

14

15   # Get the tensor's rank and shape

16   rank = tf.rank(a_tensor)

17   shape = tf.shape(a_tensor)

18

19   # Create a constant initialized with a fixed value.
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20   a_constant_tensor = tf.constant(123.100)

21   print(a_constant_tensor)

22   tf.print(a_constant_tensor)

Line 1 of Listing 5-1 imports the TensorFlow package. Line 4 creates a tensor with 

shape [2,2,2] filled with zeros. By default, it creates a tensor of data type tf.float32 (if 

no data type is specified while creating the tensor, it will default to float32). However, 

the data type is inferred from the initial value.

Line 7 creates a scalar data with type int32, line 10 creates a vector with data type 

int32, and line 13 creaets a 2×2 matrix with the default data type float32.

Line 16 shows how to get the tensor’s rank (see Table 1-1), and line 17 shows how to 

obtain the shape.

Line 20 creates a constant tensor with a value initialized as 123.100. Its data type is 

interpreted by the value it is initialized with.

Lines 20 and 21 show two different ways of printing the tensor. Execute the code and 

notice the difference between the two print statements.

To evaluate a tensor, use the Tensor.eval() method, which creates an equivalent 

NumPy array with the same shape as the tensor. Note that the tensor is evaluated only 

when the default tf.Session is active.

This book is not about TensorFlow. We will cover only the features that are relevant 

to writing code for building computer vision and deep learning models. You should 

visit the official TensorFlow website and learn to work with the Python functions of 

TensorFlow. Here is the API specification: https://www.tensorflow.org/api_docs/

python/tf.

We will revisit TensorFlow in almost all of the following sections.

 Our First Computer Vision Model with Deep 
Learning: Classification of Handwritten Digits
We are now ready to build and train our first model for computer vision. We will start 

with the famous “Hello World” type of deep learning model and learn how to build 

a simple multilayer perceptron classifier. By the time you finish this section, you will 

have a real working computer vision model. As before, we will provide a line-by-line 

explanation of the TensorFlow code that we will write along the way. Before we get into 

coding our first model, let’s understand what we are to build and what the steps are.
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Our objective is to train a model to classify images of handwritten digits (0 to 9) using 

an artificial neural network.

We will build a neural network to perform supervised learning. For any supervised 

learning, we need a dataset that contains labeled data. In other words, we need images 

that are already marked with the digits they represent. For example, if an image contains 

the handwritten digit 5, it will be marked with 5. Similarly, all images we want to use in 

the training must be marked with corresponding labels.

Our dataset has ten classes, one class for each digit. The class index starts with 0. 

Therefore, our classes are in the range (0,9).

The labeled image dataset is divided into two parts, typically in a 70:30 ratio.

• Training set: The 70 percent labeled images are used for actual 

training. For a good result, we should ensure that the training data 

is balanced, meaning that it has almost equal representation of all 

classes.

 What if your training set does not have a balanced class? The majority 

class will have greater influence on the model, and your minority 

class may never or rarely be predicted.

 To balance your class, you may do oversampling or undersampling. 

In oversampling, you should add more images of the minority class 

and bring them close to being equal to the majority classes. In 

undersampling, you remove images from the majority class to bring it 

close to the minority class in number.

 There are other synthetic methods to balance your classes, but they 

are not recommended for computer vision. The synthetic minority 

oversampling technique (SMOTE) is one such method but is not 

recommended for computer vision. However, the research paper 

at https://arxiv.org/pdf/1710.05381.pdf concludes that the 

undersampling performs on par with oversampling and therefore 

should be preferred for computational efficiency.

• Test set: 30 percent of the labeled data is used as a test set. Images 

from the test set are passed through the trained model, and the 

predicted results are compared to the labels to assess the model 

accuracy.

Chapter 5  Deep Learning anD artifiCiaL neuraL networks

https://arxiv.org/pdf/1710.05381.pdf


171

 It is important to ensure that the test set does not have the same 

image that is also present in the training set. Also, it is important that 

the test set contains all the classes in equal proportions.

We will perform the following tasks to build the model:

 1. Download the image dataset containing handwritten digits with 

their labels from https://storage.googleapis.com/tensorflow/

tf-keras-datasets/mnist.npz.

 2. Configure a multilayer perceptron classifier with four layers: the 

input layer, two hidden layers, and the output layer.

 3. Fit the MLP model with the training set. Fitting the model means 

training the model.

 4. Evaluate the trained model using the test set.

 5. Predict using the model on a different dataset (not used in the 

training or test sets) and display the result.

Finally, we have arrived at a point where we look at the TensorFlow code line by line 

to learn how to train a deep learning–based model for computer vision for classifying 

handwritten digits.

Let’s explore Listing 5-2, which demonstrates how to train a deep learning–based 

computer vision model.

Listing 5-2. Four-Layer MLP for Classification of Images with Handwritten Digits

Filename: Listing_5_2.py

1    import tensorflow as tf

2    import matplotlib.pyplot as plt

3    # Load MNIST data using built-in datasets download function

4    mnist = tf.keras.datasets.mnist

5    (x_train, y_train), (x_test, y_test) = mnist.load_data()

6

7    #Normalize the pixel values by dividing each pixel by 255

8    x_train, x_test = x_train / 255.0, x_test / 255.0

9

10   # Build the 4-layer neural network (MLP)
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11   model = tf.keras.models.Sequential([

12    tf.keras.layers.Flatten(input_shape=(28, 28)),

13    tf.keras.layers.Dense(128, activation='relu'),

14    tf.keras.layers.Dense(60, activation='relu'),

15    tf.keras.layers.Dense(10, activation='softmax')

16   ])

17

18   # Compile the model and set optimizer,loss function and metrics

19   model.compile(optimizer='adam',

20                loss='sparse_categorical_crossentropy',

21                metrics=['accuracy'])

22

23   # Finally, train or fit the model

24   trained_model = model.fit(x_train, y_train, validation_split=0.3, epochs=100)

25

26   # Visualize loss  and accuracy history

27   plt.plot(trained_model.history['loss'], 'r--')

28   plt.plot(trained_model.history['accuracy'], 'b-')

29   plt.legend(['Training Loss', 'Training Accuracy'])

30   plt.xlabel('Epoch')

31   plt.ylabel('Percent')

32   plt.show();

33

34   # Evaluate the result using the test set.\

35   evalResult = model.evaluate(x_test,  y_test, verbose=1)

36   print("Evaluation", evalResult)

37   predicted = model.predict(x_test)

38   print("Predicted", predicted)

Line 1 imports the TensorFlow package. This package gives access to the Keras deep 

learning library and several other deep learning–related functions. Line 2 imports matplotlib.

Line 4 initializes the keras.datasets.mnist module. This module provides a built- 

in function to download the Modified National Institute of Standards and Technology 

(MNIST) handwritten digit image data. The MNIST database is a large collection of 

handwritten digits that is widely used for training various computer vision systems. The 

database is available at http://yann.lecun.com/exdb/mnist/.
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Line 5 downloads the MNIST dataset. The load_data() function in the mnist 

module downloads the digits database and returns a tuple of NumPy arrays. By default, 

it will download the database in your home directory location, ~/.keras/datasets, with 

a default file name of mnist.npz. You can download to any other location by providing 

an absolute file path, for example, in the function load_data(path='/absolute/path/

mnist.npz'). Make sure that the directory already exists.

The load_data() function returns a tuple of NumPy arrays, as described here:

x_train: This NumPy array contains pixel values of images that 

we will use for training.

y_train: This NumPy array contains the labels for each image in 

x_train.

x_test and y_test: These are the pixel values of images and 

corresponding labels for the test dataset.

On line 8, we know that the pixel values of an image range from 0 to 255. We need to 

normalize the pixel values so that they are between 0 and 1. Dividing each pixel by 255 

will normalize it as shown in line 8. The x_train and x_test NumPy arrays are divided 

by a scalar 255 to normalize these arrays.

In this example, we are downloading a publicly available dataset using built-in 

functions in TensorFlow. If you have data in your local disk or any distributed file system, 

TensorFlow provides functions to load the data. We will demonstrate how to load the file 

from the local file system later in this chapter.

On lines 11 through 16, although this is a single statement but broken into multiple 

lines for clarity, this is where we are defining our neural network. Let’s look at the 

different parts of it.

 – tf.keras.models.Sequential: This is a TensorFlow class that provides a function 

to create layers of our neural network. In this example, we are creating four layers 

and passing as an array to the constructor of the Sequential class.

 – tf.keras.layers: This module provides APIs to create different types of 

neural network layers. In this example:

 – tf.keras.layers.Flatten(input_shape=(28, 28)) defines the input layer by 

initializing the Flatten() function. Our input images are 28×28pixels with a 

single channel. The argument to this function is the input shape. This flatten 

function will create 28×28 = 784 neurons in the input layer. Remember, the 
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number of neurons in the input layer is the same as the number of features (plus 

1 if a bias is used). Our digit images are of 28×28pixels, and each pixel value is 

taken as an input feature; hence, the number of nodes in this layer is 784. We will 

see more examples with complex features later in this chapter. Let’s keep things 

simple for now.

 – tf.keras.layers.Dense creates a dense layer in the neural network. The 

dense layer takes two important parameters: the number of neurons and 

the activation function. Notice that we have three dense layersin our 

neural network in Listing 5-2.

 – Hidden layer 1: The number of neurons is 128, and the activation function is 

relu.

 – Hidden layer 2: The number of neurons is 60, and the activation function 

is relu.

 – Output layer (the last layer): The number of neurons is 10, and the activation 

function is softmax.

Why is the activation function in the hidden layers relu? Recall from the “Activation 

Functions” section and Figure 5-10 that relu always generates output in the range 

from 0 to infinity and does not generate any negative number. The pixel values, after 

normalization, are in the range (0,1). Therefore, RELU makes perfect sense for this layer.

Why is softmax in the output layer? Remember, softmax generates probability 

distributions of the neuron outputs. The output layer generates probabilities of each 

class. In this example, for each input image, it will generate 10 probabilities, one for 

each class. The sum of these probabilities will be equal to 1. The class with the highest 

probability is generally taken as the predicted class for the input image.

Why do we have only ten neurons in the output layer? It’s because we have only ten 

digits to be predicted, and the output layer for classification problems should have the 

same number of neurons as the number of classes to be predicted.

Lines 19 through 21 call the compile() function to build the neural network with the 

configuration we provided earlier. The function compile() takes the following:

 – optimizer = ‘adam': The name of the optimization function that will try to find the 

minimum of the loss function.
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 – loss = ‘sparse_categorical_crossentropy': The loss function that will be 

optimized. This is a multiclass classification, and the sparse_categorical_

crossentropy loss function is our choice.

 – metrics= [‘accuracy']: A list of metrics to be evaluated by the model during 

training and testing. Since we have a single output model and it’s a classification 

problem, we pass only one metric, the “accuracy,” in this list.

Line 24 actually fits the model. When this line executes, the model starts learning. 

This takes these arguments:

 – x_train: NumPy representation of normalized values of the pixels

 – y_train: NumPy of the labels

 – validation_split = 0.3, which tells the algorithm to hold 30 percent off the 

training data to use for validation

 – epochs = 100, number of training iterations

If you want to use your test dataset, or any other dataset that you have access to, for 

validation, instead of validation_split, you could use validation_data=(x_test, 

y_test).

The question is, how many iterations or epochs should we use to train our model? 

Generally, it takes more than one iteration for the neural network to learn. This is one 

of those parameters that you will need to tune. When your model starts learning, you 

will see the output printed in the console (e.g., the PyCharm console, if you execute the 

code in PyCharm). It shows the loss and accuracy for each epoch. With each epoch, the 

loss should go down, and the accuracy should go up. If you start noticing that the loss no 

longer decreases or the accuracy no longer increases, you should set your epoch value at 

that level.

Figure 5-17 shows a sample training output with 100 epochs.
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On lines 27 through 32, we want to plot graphs of loss versus epoch and accuracy 

versus epoch to understand how good our training is. Our trained model maintains a 

history of losses and accuracy per epoch that is accessible by using history[‘loss'] 

and history[‘accuracy'].

In Figure 5-18, you will notice that the loss (shown by the red line) is decreasing with 

each epoch, and it starts becoming flat at about the tenth epoch. Most likely, any more 

iterations will not reduce the loss any further. Therefore, set the epoch at about 10 so that 

you avoid any more computation.

Similarly, the accuracy level increases and becomes flat after a few epochs. Both of 

these—loss and accuracy—will help you determine the number of iterations for training 

your neural network.

Figure 5-17. Sample console output with loss and accuracy per epoch
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Figure 5-18. Plot of training loss and accuracy versus epoch

You can print all the keys within the History object by calling history.keys(). You 

may also want to plot the val_acc and val_loss graphs to see how your model evaluates 

against the 30 percent validation data.

Line 35 evaluates the model against the test dataset. We use the evaluate() function 

that takes these parameters:

 – x_test NumPy containing normalized pixel values of all test images

 – y_test NumPy containing labels for the test dataset

 – verbose =1 as an optional parameter to print the output

As you can see from the sample output, in Figure 5-19, the accuracy of our model on 

the test dataset is 0.9787 or 97.87 percent, which is considered a reasonably good model.

Figure 5-19 shows the sample output from the evaluate() function. Our model 

evaluated an overall accuracy level of 97.87 percent with loss of 0.2757.

Evaluation [0.2757401464153796, 0.9787]

Figure 5-19. Evaluation output
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If you have a test dataset, like the one we have in this example, you do not need to 

hold 30 percent off the training set, as in line 24. The parameter validation_split = 

0.3 is optional if you want to perform the evaluation using the test data like we did in 

line 35.

On line 37, so far, we built, trained, and evaluated the neural network. Line 37 uses 

the trained model to predict the classes of input images that were not used in model 

training. Any new image (with a normalized NumPy of pixel values) can be fed to the 

model to predict its class.

To predict a class, we use the function model.predict(), which takes the image 

NumPy as a parameter.

The output from the predict() function is a NumPy of arrays. The elements of this 

array are probabilities of each class. The index of the max probability is the predicted 

class of that image.

For example, the input image with a handwritten digit gets the prediction 

probabilities, as shown in Figure 5-20. Starting from zero, the sixth index (highlighted in 

yellow) has the highest probability of 0.99844. Therefore, the predicted class for the input 

image is 7, which matches with the handwritten digits, as shown in the figure.

[1.8943774e-06, 4.848908e-06, 0.00090997526, 0.00060881954, 5.6300826e-07, 
1.5920621e-07, 0.998444, 3.4792773e-09, 1.1292449e-05, 1.8514449e-05 ]

Figure 5-20. Input image and prediction probabilities

Congratulations! You built and trained your first neural network for computer vision. 

In the following sections, we will learn how to evaluate whether our model is good or 

bad and how to tune parameters to make our model better in terms of lower loss and 

higher accuracy.

 Model Evaluation
After we train a model, we perform the evaluation of it by analyzing the loss and 

accuracy. This loss and accuracy are calculated based on the training data. Even if the 

accuracy is high and the loss is small, we cannot be certain that the model will predict 
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with the same accuracy when a new set of data is fed to the model. It is important to 

analyze the model’s performance by feeding test data, which must be different from the 

training set. Here are a few commonly used evaluation methods that are in practice.

 Overfitting
An overfit model learns so well with the training data that it performs well with the 

training data but performs poorly with valuation and test data. For example, if the 

accuracy of a model with training data is high (say 97 percent) but the accuracy of the 

model with the test set or validation set is lower (say 70 percent), the model is said to be 

overfitting. Figure 5-21 depicts a case of overfitting where the test accuracy is lower than 

the training accuracy.

Figure 5-21. Example of overfitting

How do you avoid overfitting?

There are a few ways to control or avoid overfitting.

• Regularization: We have already learned what regularization is and 

how it affects the model.

• Dropout: Dropout is also a regularization technique. With dropout, 

neurons are randomly dropped out, which means the output of 
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the dropped-out neurons is not fed as input in the next layer. The 

dropout is temporary and applies to a particular pass only. That 

means weight updates are not applied to the temporarily removed 

neurons during that particular pass.

 In TensorFlow, dropout is implemented by adding a layer, called the 

Dropout layer, and specifying dropout rate or probability (e.g., 20 

percent). The dropout layer can be added either in the input layer 

or in the hidden layer. For most practical purposes, we keep this 

dropout probability small to avoid losing important features.

 In Listing 5-2, we could add a dropout layer as shown in Listing 5-3.

Listing 5-3. Code Fragment to Show the Dropout Layer

....

model = tf.keras.models.Sequential([

 tf.keras.layers.Flatten(input_shape=(28, 28)),

 tf.keras.layers.Dense(128, activation='relu'),

 tf.keras.layers.Dropout(0.2),

 tf.keras.layers.Dense(60, activation='relu'),

 tf.keras.layers.Dense(10, activation='softmax')

])

.....

 Underfitting

A model is said to be underfitting when it cannot capture the underlying trend from the 

training data. An underfit model simply means that the model does not fit the data well 

enough. It usually happens either when we have a small dataset or when the dataset is 

not a true representation of the actual scenario we are trying to model. The accuracy of 

an underfit model is not good for both training and test sets. This kind of model should 

be avoided. A good way to avoid underfitting is to add more data to your training set or 

have enough data that has all the variations and trends that you are trying to model. Also, 

feature engineering to select the right features helps to reduce underfitting.
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 Evaluation Metrics

There are other important metrics you should look at to assess the quality of your 

model. They are described here. These metrics are calculated from the test dataset by 

comparing the predicted outcome with the label values.

• True positive rate (TPR) or sensitivity: If the predicted value and the 

label value match, it is called a true positive (TP). The TPR is defined 

as follows:

 TPR = Total number of all TPs/ Total number of all positive cases

• True negative rate (TNR) or specificity: The TNR is defined as follows:

 TNR = total number of true negatives / total number of negative cases

• False positive rate (FPR) of fallout: The FPR is defined as follows:

 FPR = total number of false positive cases / total number of negative 

cases

• False negative rate (FNR) or miss rate: The FNR is defined as follows:

 FNR = total number of false negative cases / total number of positive 

cases

• Confusion matrix: A confusion matrix is also called an error matrix. 

It shows the number of positives and negatives of each class in a 

grid form. For example, if you have two classes, dog and cat, the 

confusion matrix may look like this:

cat (predicted) dog (predicted)

cat (actual) 80 10

dog (actual) 8 92

In this example, the cat class has 80 true positives, 10 false positives, 

and 8 false negatives. Similarly, for the dog class, there are 92 true 

positives, 8 false positives, and 10 false negatives.

Listing 5-4 shows the code sample that calculates a confusion matrix 

and displays in array form.
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Listing 5-4. Confusion Matrix Calculation

.....

40   confusion =  tf.math.confusion_matrix(y_test, np.argmax(predicted, 

axis=1), num_classes=10)

41   tf.print(confusion)

.....

Listing 5-4 is an exztension of Listing 5-2. Line 37 of Listing 5-2 uses 

the test dataset to predict from the model. The output is a NumPy 

array of probabilities for each input. np.argmax(predicted, axis=1) 

gets the index of the max probabilities in the array. The index 

represents the predicted class.

In Listing 5-4, tf.math.confusio_matrix() calculates the confusion 

matrix. It takes these arguments:

 – x_test: The NumPy of the image features of the test dataset

 – np.argmax(predicted, axis=1): The predicted class

The optional argument num_classes = 10 represents the number of 

classes we want our model to predict.

The confusion_matrix() function returns a tensor. If you print this 

tensor directly by using print(confusion), it will not show you 

the values of the tensor. You will need to execute the tensor so it 

calculates all the values before displaying to the console.

Lines 40 and 41 in Listing 5-4 show how to generate a confusion 

matrix and print them on the console using the tf.print() 

statement.

Figure 5-22 shows a sample confusion matrix from the test set we 

used in this example.
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Figure 5-22. Confusion matrix output sample

• Precision: Precision is defined as the ratio of total number of true 

positives and total number of predicted positives.

Precision = Number of True Positive / Number of Predicted Positive

= True Positives/ (True Positives + False Positives)

= TP/(TP + FP)

Ideally, your model should not have any false positives, i.e.,  

FP = 0. Then, precision = 1, or 100 percent. In other words, the 

more precision, the better the model.

• Recall: Recall is the ratio of total number of true positives and total 

number of actual positives. Recall is the same as the true positive 

rate. The formula to calculate the recall is as follows:

Recalls = Total number of true positives / total number of positives

=  total number of true positives / (total number of true 

positives + total number of false negatives)

= TP / (TP + FN)

Ideally, your model should not have any false negatives, i.e., FN = 0. 

Then, recall = 1, or 100 percent. Therefore, the more recall, the better 

the model.
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• F1 score: Looking at both the precision and recall, we see that both of 

these metrics should be close to 100 percent for an ideal mode. How 

would you judge your model if one of these—precision and recall—is 

smaller than the other? The F1 score helps to make the decision. The 

F1 score combines both precision and recall to get composite metrics 

that help judge how good or bad our model is. The F1 score is the 

harmonic mean of precision and recall and is calculated by using the 

following formula:

F1-Score = 2 × Precision × Recall / (Precision + Recall)

• Accuracy: Accuracy is defined as follows:

Accuracy = (TP + TN) / Total sample count

= (TP + TN)/ (T + N)

= (TP + TN)/ (TP + TN + FP + FN)

These metrics help us make the decision whether the model is good to deploy in 

production or tune parameters and retrain the model. 

 Hyperparameters
Hyperparameters are those parameters to the neural network model that we set before 

the learning process starts. These are considered external parameters as opposed to 

the parameters that the algorithm computes from the training data. Hyperparameters 

cannot be inferred by the algorithm while the model is being trained. These 

hyperparameters affect the overall performance of the model, including the accuracy 

and training execution time.

These are some of the common hyperparameters you may need to tune when 

training neural networks for computer vision:

• Number of hidden layers in the network

• Number of neurons in the hidden layers

• Dropout and learning rates

• Optimization algorithms
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• Activation functions

• Loss functions

• Epochs or number of iterations

• Split for validation set

• Batch size

• Momentum

 TensorBoard
Often you will need to understand what is happening while your machine learning 

workflow is running. TensorBoard is a tool that will help you visualize your machine 

learning measurements and metrics. Using TensorBoard, you will be able to track 

experiment metrics such as loss and accuracy, visualize the model graph, project 

embeddings to a lower-dimensional space, and much more.

TensorBoard provides an HParams dashboard that helps us identify the best 

experiment or most promising sets of hyperparameters. We will take the same neural 

network example that we worked out in the previous section and visualize various 

hyperparameters to get an idea of how we should tune them.

Before you work through the following example, make sure you have TensorBoard 

installed. If you are in your virtualenv command prompt, simply run this command to 

check for TensorBoard installation:

(cv) username $: tensorboard --logdir mylogdir

If everything goes well, you should see an output saying something like this:

TensorBoard 2.1.0 at http://localhost:6006/ (Press CTRL+C to quit)

Point your browser to http://localhost:6066, and you should see the TensorBoard 

web UI.

 Experiments for Hyperparameter Tuning
The code example in Listing 5-5 demonstrates a simple experiment with only three 

hyperparameters for a simple neural network. We kept the example simple for our 

learning purposes.
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Our goal is to conduct experiments with the following parameters:

 – Number of neurons in the first hidden layer

 – Optimization functions

 – Dropout rates

After the experiments are complete, we want to visualize the result in the 

TensorBoard web UI and use an HParams dashboard to analyze the result.

Listing 5-5 shows the code flow.

Listing 5-5. Hyperparameter Tuning and Visualization on HParams of TensorBoard

1    import tensorflow as tf

2    from tensorboard.plugins.hparams import api as hp

3

4    # Load MNIST data using built-in datasets download function

5    mnist = tf.keras.datasets.mnist

6    (x_train, y_train), (x_test, y_test) = mnist.load_data()

7

8    x_train, x_test = x_train / 255.0, x_test / 255.0

9

10   HP_NUM_UNITS = hp.HParam('num_units', hp.Discrete([16, 32]))

11   HP_DROPOUT = hp.HParam('dropout', hp.RealInterval(0.1, 0.2))

12   HP_OPTIMIZER = hp.HParam('optimizer', hp.Discrete(['adam', 'sgd']))

13

14   METRIC_ACCURACY = 'accuracy'

15

16   with tf.summary.create_file_writer('logs/hparam_tuning').as_default():

17    hp.hparams_config(

18      hparams=[HP_NUM_UNITS, HP_DROPOUT, HP_OPTIMIZER],

19      metrics=[hp.Metric(METRIC_ACCURACY, display_name='Accuracy')],

20    )

21

22

23   def train_test_model(hparams):

24        model = tf.keras.models.Sequential([

25            tf.keras.layers.Flatten(),
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26             tf.keras.layers.Dense(hparams[HP_NUM_UNITS], activation=tf.

nn.relu),

27            tf.keras.layers.Dropout(hparams[HP_DROPOUT]),

28            tf.keras.layers.Dense(10, activation=tf.nn.softmax),

29        ])

30        model.compile(

31            optimizer=hparams[HP_OPTIMIZER],

32            loss='sparse_categorical_crossentropy',

33            metrics=['accuracy'],

34        )

35

36        model.fit(x_train, y_train, epochs=5)

37        _, accuracy = model.evaluate(x_test, y_test)

38        return accuracy

39   def run(run_dir, hparams):

40    with tf.summary.create_file_writer(run_dir).as_default():

41      hp.hparams(hparams)  # record the values used in this trial

42      accuracy = train_test_model(hparams)

43      tf.summary.scalar(METRIC_ACCURACY, accuracy, step=1)

44

45   session_num = 0

46

47   for num_units in HP_NUM_UNITS.domain.values:

48     for dropout_rate in (HP_DROPOUT.domain.min_value, HP_DROPOUT.domain.

max_value):

49      for optimizer in HP_OPTIMIZER.domain.values:

50        hparams = {

51            HP_NUM_UNITS: num_units,

52            HP_DROPOUT: dropout_rate,

53            HP_OPTIMIZER: optimizer,

54        }

55        run_name = "run-%d" % session_num

56        print('--- Starting trial: %s' % run_name)

57        print({h.name: hparams[h] for h in hparams})

58        run('logs/hparam_tuning/' + run_name, hparams)

59        session_num += 1
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Lines 5 through 8 load the same MNIST digits data that we worked with before.

Line 10 sets the values for the number of neurons or units: 16 and 32.

Line 11 sets the dropout rates: 0.1 and 0.2.

Line 12 sets the optimization functions: adam and sgd.

The rest of the code structure is straightforward and does not need any explanation. 

Notice that the model.fit() function is called within a nested for loop (lines 47 through 

59) for each combination of the three hyperparameters. The metrics output is written in 

a log file logs/hparam_tuning.

After the experiments are executed successfully, launch TensorBoard by using the 

following command (ensure you are in the virtualenv called cv that we have been using 

throughout this book):

(cv) username $: tensorboard -logdir logs/hparam_tuning

You may have to pass the absolute path to the logs/hparam_tuning directory.

Launch the browser and point to http://localhost:6006. You should see the 

TensorBoard web UI. From the top-right drop-down, select HPARAMS. You should see 

the dashboard similar to the one in Figure 5-23.

Figure 5-23. TensorBoard showing the HPARAMS view containing accuracies 
corresponding to each combination of hyperparameters

From this dashboard, you can see the combination of hyperparameters that gives 

the highest accuracy: 96.160 percent accuracy for 32 neurons, 0.1 dropout, and the adam 

optimizer.
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Figure 5-24. Parallel combination view of HPARAMS

Alternatively, click the Parallel Coordinates View tab to launch Figure 5-24.

As shown in Figure 5-24, clicking the link to the highest accuracy (or any accuracy 

that you want to examine), you will see the green highlighted path that represents the 

combination of hyperparameters that generated the accuracy.

 Saving and Restoring Model
More often than not, you will want to save your trained model so that you can use it later 

to classify or predict new images. After all, you don’t want to train a model every time 

you want to use it.

In practice, model training is a time-consuming process. Depending on your data 

size, hardware capacity, and neural network configuration, the training process may take 

hours or days. You may want to save the model during and after the training. In the event 

that the training is interrupted, you could resume it from where it left off and avoid the 

loss of time it took to train before it was interrupted.

In this section, we will explore how to train and save a neural network, load it later, 

and use it in our applications.
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 Save Model Checkpoints During Training
Listing 5-6 has pretty much all the lines that we saw in our first model training code 

in Listing 5-2. We will highlight the lines that are different, and what they mean in the 

context of saving the training weights.

Listing 5-6. Model Weights Are Saved During the Training

Filename: Listing_5_6.py

1    import tensorflow as tf

2    import matplotlib.pyplot as plt

3    import os

4

5    # The file path where the checkpoint will be saved.

6    checkpoint_path = "cv_checkpoint_dir/mnist_model.ckpt"

7    checkpoint_dir = os.path.dirname(checkpoint_path)

8

9    # Create a callback that saves the model's weights.

10   cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_path,

11                                                   save_weights_only=True,

12                                                   verbose=1)

13

14   # Load MNIST data using built-in datasets download function.

15   mnist = tf.keras.datasets.mnist

16   (x_train, y_train), (x_test, y_test) = mnist.load_data()

17

18   # Normalize the pixel values by dividing each pixel by 255.

19   x_train, x_test = x_train / 255.0, x_test / 255.0

20

21   # Build the ANN with 4-layers.

22   model = tf.keras.models.Sequential([

23    tf.keras.layers.Flatten(input_shape=(28, 28)),

24    tf.keras.layers.Dense(128, activation='relu'),

25    tf.keras.layers.Dense(60, activation='relu'),

26    tf.keras.layers.Dense(10, activation='softmax')

27   ])
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28

29   # Compile the model and set optimizer,loss function and metrics

30   model.compile(optimizer='adam',

31                loss='sparse_categorical_crossentropy',

32                metrics=['accuracy'])

33

34   # Finally, train or fit the model, pass callbacks to save the model weights.

35    trained_model = model.fit(x_train, y_train, validation_split=0.3, 

epochs=10, callbacks=[cp_callback])

36

37   # Visualize loss  and accuracy history

38   plt.plot(trained_model.history['loss'], 'r--')

39   plt.plot(trained_model.history['accuracy'], 'b-')

40   plt.legend(['Training Loss', 'Training Accuracy'])

41   plt.xlabel('Epoch')

42   plt.ylabel('Percent')

43   plt.show();

44

45   # Evaluate the result using the test set.

46   evalResult = model.evaluate(x_test,  y_test, verbose=1)

47   print("Evaluation Result: ", evalResult)

Line 3 imports the os package that provides file system–related functions that are 

used in saving the model to a file path.

Line 6 is the file name that will store our model weights.

Line 7 creates the operating system–specific file path object.

Line 10 initializes a TensorFlow callback class called ModelCheckpoint by passing the 

following arguments:

 – filepath: This is the file path object that we created in line 7.

 – save_weights_only: Instead of saving the entire model during the training, we 

should save the weights only. By default, this is set to False, which means save 

the entire model. By setting this to True, we let the neural network know that 

we want to save the weights only.

 – verbose = 1 prints the logs and runs the status on the console. Otherwise, the 

default 0 means silent.
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There are other arguments that we may want to pass based on what the intent is. 

Here is the list of additional arguments:

 – save_best_only: This is False by default. If set to True, the algorithm will 

evaluate and save the best weights as determined by the metrics we pass.

 – save_frequency: The default value is epoch, which means we want to save check-

points at the end of every epoch. You can also pass an integer to indicate how 

frequently you want to save the checkpoints. For example, if you set save_ 

frequency = 5, this will mean that the checkpoints will be saved every fifth epoch.

You will notice that in Listing 5-6, all other lines are the same as in Listing 5-2 except 

line 35, which fits the model.

Line 35 has an additional argument to the fit() function. The additional argument 

callbacks = [cp_callback] is meant to save the checkpoints during the model training.

Notice that we set epoch=10 in Listing 5-6. Figure 5-25 and Figure 5-26 show some 

sample output of loss and accuracy of this model. The model accuracy with test data is 

0.9775, and the loss is 0.084755.

Figure 5-26. Model evaluation with epoch=2

Figure 5-25. Training loss and accuracy
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 Manually Save Weights
If you want to manually save the weights, instead of saving the checkpoint every epoch 

or periodically, you can simply add this function:

# Save the model weights

checkpoint_path = "cv_checkpoint_dir/mnist_model.ckpt"

model.save_weights(checkpoint_path)

 Load the Saved Weights and Retrain the Model
If you want to load the saved weights either because you want to resume training after 

interruption or because you have more data or for any other reason, simply add the 

following line after you have created/configured the neural network:

# Load saved weights

model.load_weights(checkpoint_path)

Make sure you have initialized your neural network like you did in lines 22 and 30 of 

Listing 5-6. It is important to note that the network architecture must be the same as the 

network that stored the checkpoints.

 Saving the Entire Model
Call the model.save() function to save the entire model, including the model 

architecture, weights, and training configuration. Make sure that the function model.

save() is called after you call the fit() method. That is, call the save() function after 

line 35 of Listing 5-6. Here is the code snippet to save the entire model:

# Save the entire model to a file name “my_ann_model.h5”.

# You can also give the absolute pass to save the model.

model.save('mv_ann_model.h5')

Saving a fully functional model is useful.

 – You can load and retrain a model from where it left off.

 – You can share the model with other researchers or team members to run on 

different systems.

 – You can use the model in any other applications.
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 Retraining the Existing Model
If you want to retrain an existing model with additional data, here is the code snippet 

that will help you do that:

# Load and create the exact same model, including its weights and the 

optimizer

model = tf.keras.models.load_model('mv_ann_model.h5')

# Show the model architecture

model.summary()

#Retrain the model

retrained_model = model.fit(x_train, y_train, validation_split=0.3, epochs=10)

 Using a Trained Model in Applications
If you already have a trained model that you save in the file system, you can load the 

model and call the predict() function to use the model. Here is an example:

# Load and create the exact same model, including its weights and the 

optimizer

model = tf.keras.models.load_model('mv_ann_model.h5')

# Predict the class of the input image from the loaded model

predicted = model.predict(x_pixel_data)

print("Predicted", predicted)

 Convolution Neural Network
A convolution neural network (CNN) is a special kind of artificial neural network. A 

CNN differs from a conventional ANN most in that feature engineering is automatically 

performed in CNN.

We will learn the technique that CNN uses to extract and select features from the 

input images. Along the way, we will learn some commonly used terminologies related 

to CNN. We will write TensorFlow code to train our own CNN model to classify images, 

and as before, we will provide a line-by-line explanation of the code. We will work 

through an example to classify chest X-rays to detect pneumonia.
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 Architecture of CNN
A conventional ANN or MLP consists of an input layer, one or more hidden layers, 

and an output layer. CNN has a set of additional layers, called convolution layers (see 

Figure 5-27). The input images are fed to the first layer of this convolution layer. The 

output from the convolution layer is fed to the “input” layer of the fully connected 

MLP. The convolution layer implements an algorithm that performs feature engineering 

of the input images. The MLP implements the traditional deep learning algorithms to 

classify images.

Figure 5-27. CNN architecture

The convolution layer has two parts to it.

• Convolution: This layer extracts features from the images (feature 

extraction).

• Subsampling: This layer selects from extracted features (feature 

selection).

Figure 5-28 depicts a complete CNN.
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Figure 5-29. A black-and-white image (left) is seen as a 2D matrix by a computer 
(right)

Figure 5-28. CNN with convolution, subsampling, and fully connected MLP layers

 How Does CNN Work
We saw in Chapter 2 that a computer sees a black-and-white image with a single 

channel as a 2D matrix of pixel values (as shown in Figure 5-28). A color image with 

RGB channels (three channels) is shown as a stack of these 2D matrices. These stacks 

of matrices form a 3D tensor (remember tensors?). Figure 5-29 and Figure 5-30 show a 

visual presentation of a 3D image tensor.
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With this background of how images are represented as a tensor, let’s understand the 

convolution process.

 Convolution

Imagine that we have an image that we glance over with a magnifying glass, keeping a 

note of important patterns we observe. This is a good analogy of how convolution works.

Here are the steps to extract important features from an image using convolution:

 1. Divide the image into grids of size k×k pixels. This is called a 

kernel, which is represented as a k×k matrix.

 2. Define one or more filters that are of the same dimensions as the 

kernel.

 3. Take the first kernel (starting from the top-left corner of the 2D 

matrix) of one of the channels, do element-wise multiplication 

with the first filter, and add the multiplication results. Do the same 

with other channels and sum the results of all three channels to 

get the pixel value of a newly created feature.

Figure 5-30. Tensor representation of a three-channel color image as a stack of 2D 
matrices
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This is demonstrated in Figure 5-31. For this example, we take a 

7×7×3 image with the kernel size 3×3. We have two sets of filters: 

W0 and W1 (shown in red). The filter W0 has a bias of 1, and filter 

W1 does not have any bias. The output feature is shown in the 

green color grid (shown below on the far right).

Figure 5-31. Convolution (image courtesy of Andrej Karpathy)
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The output is calculated as shown here:

Channel 1 Output = 0x(-1) +  0x(-1) + 0x1 + 0x1 + 2x1 + 

1x0 + 0x0 + 0x(-1)+1x(-1) = 2

Channel 2 Output = 0x0 + 0x0 + 0x(-1) + 0x1 + 2x1 + 0x0 + 

0x(-1) + 2x(-1) + 0x1 = 0

Channel 3 Output = 0x0 + 0x0 + 0x1 + 0x0 + 0x0 + 2x0 + 

0x0 + 2x0 + 2x1 = 1

Feature Value = Channel 1 Output + Channel 2 Output + 

Channel 3 Output + bias

Feature Value    = 2 + 0 + 1 + 1 = 4

The value 4 is shown highlighted in the top green grid’s top-left 

corner.

 4. The kernel is now moved to the right, and the feature value is 

calculated as explained earlier. When the kernel is moved all the 

way to the right, it is moved down to the next row starting from the 

leftmost pixels of that row. The number of steps to the horizontal 

and vertical directions the kernel is moved to scan the entire 

image is called the stride. The stride is expressed as s (for example, 

2 or 3, etc.). A stride of 2 means the kernel will move two steps to 

the right, and when it reaches the right edge of the image, it moves 

down by 2 pixels.

 5. When the entire image is scanned, a feature matrix is created. 

The dimensions of the feature matrix in our example are 3×3 (for 

a 7×7×3-pixel image, 3×3 kernel, and 2×2 stride). This feature 

matrix, also known as a feature map, is shown in Figure 5-31 in the 

top green 3×3 grid (to the right).

 6. The same convolution process is repeated with the next set of 

filters, and a feature map is created. The bottom green grid in 

Figure 5-31 shows the feature map from the second filter.

 7. This process is repeated for all the filters, and feature maps are 

generated from each filter.
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 Pooling/Subsampling/Downsampling

Convolution extracts features from the images. These features are represented as n × 

n matrices. These features or n × n matrices are fed to another layer, called the pooling 

layer, which performs “downsampling,” much like feature selection. Max pooling and 

average pooling are two popular methods to downsample the features.

Max Pooling

In the pooling layer, much like the convolution stage, the feature matrix is divided into 

grids of k×k (e.g., 2×2 pixels in Figure 5-32) kernels with stride s (e.g., stride 1 in the 

example). In the max pooling layer, the maximum pixel values from each kernel area is 

taken, and a downsampled matrix is generated. This process is repeated for each filter 

output from the previous layer.

Figure 5-32. Max pooling to downsample features (image courtesy of Andrej 
Karpathy)

Average Pooling

Average pooling works the same way as the max pooling except that on average pooling 

the average (not the max) of kernel pixels is taken to create the downsampled matrix.

A CNN typically consists of alternating convolution and pooling layers along with a 

multilayer perceptron (as shown in Figure 5-33).
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 Summary of CNN Concepts
Here is what we learned:

• A CNN consists of alternating convolution and pooling layers with 

MLP at the end. Every convolution layer does not necessarily have a 

downsampling layer.

• Convolution is a feature extraction process in the convolution layer.

• A kernel of dimension k×k is defined to divide input images into grids.

• Filters, of the same dimension as the kernel, are multiplied with 

the pixels in the kernel, and the results are summed over each pixel 

and each image channel. An optional bias is added to the result to 

generate feature matrices.

• The pooling layer implements downsampling algorithms (max 

pooling or average pooling) to downsample the features.

• The process is repeated for each pair of convolution-pooling layers 

where output from one pooling layer is fed as input to the next 

convolution layer.

Figure 5-33. CNN layers, alternating convolution and pooling layers with MLP
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• The last convolution/pooling layer feeds feature matrices to the input 

layer of the MLP.

• The MLP part of the network learns as a conventional MLP network.

 Training a CNN Model: Pneumonia Detection from Chest 
X-rays
TensorFlow with Keras has made it extremely simple to train a CNN model. With just a 

few lines of code, you will be able to implement a CNN.

In this section, we will write code to train a model to detect pneumonia from chest 

X-rays. The model presented here is a simple CNN network for academic and learning 

purposes and must not be used in diagnosing any medical conditions.

 Chest X-ray Dataset

We have downloaded chest X-ray images from a publicly available dataset located 

at Kaggle’s website, https://www.kaggle.com/paultimothymooney/chest-xray- 

pneumonia. These images are available under the Creative Commons License, https://

creativecommons.org/licenses/by/4.0/.

The dataset consists of images that represent normal chest X-rays (disease- 

free lungs) and pneumonia-infected lungs. These normal and pneumonia images 

are separated and stored in separate directories; all normal images are stored in 

a directory named as NORMAL, and pneumonia images are stored in the PNEUMONIA 

directory. Furthermore, the dataset is divided into training, test, and validation sets. 

After downloading the images from Kaggle’s website, we saved them in our local disk. 

Figure 5-34 shows a sample directory structure.
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 Code Structure

We will keep our code simple and easy to understand. There are better ways to organize 

the code and make it more object-oriented and reusable, which is highly recommended 

for production-quality work. You must parameterize your code for flexibility and 

maintainability and avoid any hard-codings. However, we have made the following 

code simple, and we have used some hard-coded values to maintain simplicity for the 

purpose of learning.

 CNN Model Training

Listing 5-7 shows the code sample for training a CNN model for predicting pneumonia 

from chest X-rays. 

Listing 5-7. Code to Train CNN Model to Predict Pneumonia from Chest X-rays

1    import numpy as np

2    import pathlib

3    import cv2

4    import tensorflow as tf

5    import matplotlib.pyplot as plt

6

Figure 5-34. Directory structure of chest X-ray images
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7

8    # Section1: Loading images from directories for training and test

9    trainig_img_dir ="images/chest_xray/train"

10  test_img_dir ="images/chest_xray/test"

11

12    # ImageDataGenerator class provides a mechanism to load both small and 

large dataset.

13    # Instruct ImageDataGenerator to scale to normalize pixel values to 

range (0, 1)

14    datagen = tf.keras.preprocessing.image.ImageDataGenerator(resca

le=1./255.)

15    #Create a training image iterator that will be loaded in a small batch 

size. Resize all images to a #standard size.

16    train_it = datagen.flow_from_directory(trainig_img_dir, batch_size=8, 

target_size=(1024,1024))

17    # Create a training image iterator that will be loaded in a small 

batch size. Resize all images to a #standard size.

18    test_it = datagen.flow_from_directory(test_img_dir, batch_size=8, 

target_size=(1024, 1024))

19

20   # Lines 22 through 24 are optional to explore your images.

21    # Notice, next() function call returns both pixel and labels values as 

numpy arrays.

22   train_images, train_labels = train_it.next()

23   test_images, test_labels = test_it.next()

24    print('Batch shape=%s, min=%.3f, max=%.3f' % (train_images.shape, 

train_images.min(), train_images.max()))

25

26   # Section 2: Build CNN network and train with training dataset.

27    # You could pass argument parameters to build_cnn() function to set 

some of the values

28    # such as number of filters, strides, activation function, number of 

layers etc.

29   def build_cnn():

30      model =  tf.keras.models.Sequential()
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31       model.add(tf.keras.layers.Conv2D(32, (3, 3), activation='relu', 

strides=(2,2), input_shape=(1024, 1024, 3)))

32       model.add(tf.keras.layers.MaxPooling2D((2, 2)))

33       model.add(tf.keras.layers.Conv2D(64, (3, 3), strides=(2,2),activati

on='relu'))

34      model.add(tf.keras.layers.MaxPooling2D((2, 2)))

35       model.add(tf.keras.layers.Conv2D(128, (3, 3), strides=(2,2),activat

ion='relu'))

36      model.add(tf.keras.layers.Flatten())

37      model.add(tf.keras.layers.Dense(128, activation='relu'))

38      model.add(tf.keras.layers.Dense(2, activation='softmax'))

39      return model

40

41   # Build CNN model

42   model = build_cnn()

43   #Compile the model with optimizer and loss function

44   model.compile(optimizer='adam',

45                loss='categorical_crossentropy',

46                metrics=['accuracy'])

47

48    # Fit the model. fit_generator() function iteratively loads large 

number of images in batches

49   history = model.fit_generator(train_it, epochs=10, steps_per_epoch=16,

50                      validation_data=test_it, validation_steps=8)

51

52   # Section 3: Save the CNN model to disk for later use.

53   model_path = "models/pneumiacnn"

54   model.save(filepath=model_path)

55

56   # Section 4: Display evaluation metrics

57   print(history.history.keys())

58   plt.plot(history.history['accuracy'], label='accuracy')

59   plt.plot(history.history['val_accuracy'], label = 'val_accuracy')

60   plt.plot(history.history['loss'], label='loss')

61   plt.plot(history.history['val_loss'], label = 'val_loss')

62
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63   plt.xlabel('Epoch')

64   plt.ylabel('Metrics')

65   plt.ylim([0.5, 1])

66   plt.legend(loc='lower right')

67   plt.show()

68   test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)

69   print(test_acc)

The code in Listing 5-7 for CNN model training is logically divided into the following 

four sections:

• Loading images (lines 9 through 24): We have our training and test 

images stored in directories as described earlier. To load these images 

for the purpose of training and validation, we used a powerful class, 

ImageDataGenerator, provided by Keras. Here is the line-by-line 

explanation of how we used this class:

 Line 9 and 10 are the directories that have training and test images in 

their subdirectories.

 Line 14 initializes the ImageDataGenerator class. We passed the 

argument rescale = 1/255 because we want to normalize the pixel 

values to be in the range between 0 and 1. This normalization is done 

by multiplying each pixel of the images by 1/255. We call this line 

datagen as indicated by the variable name.

 Line 16 is calling the flow_from_directory() function of the datagen 

object. This function loads images from the directory training_img_

directory, in a batch mode (e.g., batch_size = 8), and resizes the 

images to a size indicated by target_size (e.g., 1024×1024px). This is 

a highly scalable function and will be able to load millions of images 

without loading all of them in memory. It will load at a time as many 

images as indicated by the batch_size argument. Resizing all images 

to a standard size is important for most machine learning exercises. 

Note that the default resize value of this function is 256. If you omit 

the resize argument, all your input images will be resized to 256×256.
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 Line 17 does the same as line 16 except that it is loading the images 

from the test directory. Although we have validation data in our 

directory (the dataset downloaded from the Kaggle website contains 

validation images), the number is small, and therefore we have 

decided to use the test dataset for validation.

 The function flow_from_directory() returns an iterator. If you 

iterate over this iterator, you will get a tuple of two NumPy arrays—

arrays of image pixel values and arrays of labels.

 Note that labels are interpreted from the subdirectories the images 

are read from. For example, all images from the NORMAL directories 

will get the label NORMAL, and similarly images belonging to the 

PNEUMONIA subdirectory will get the PNEUMONIA label. But wait. Aren’t 

these labels supposed to be numeric? These directory names are 

sorted by their names and indexed, starting from 0. In our case, 

NORMAL will be indexed as 0 and PNEUMONIA as 1. But, it does not stop 

here. The function flow_from_directory() takes an additional 

argument called class_mode. By default the value of class_mode is 

categorical. You could also pass a value to it as binary or sparse. The 

differences between these three are as follows:

 – categorical will return 2D one-hot encoded labels.

 – binary will return 1D binary labels.

 – sparse will return 1D integer labels.

Lines 22 through 24 are optional and not needed for training the 

model. We provided them to show you how you could explore 

the values from the iterator returned from the flow_from_

directory() function.

• CNN configuration and training (lines 29 through 50): Lines 29 

through 39 implement a function to build a CNN. These lines are our 

main focus in this section. So, let’s try to understand what is going 

on here.
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 Line 30 creates a sequential neural network to which we stack up 

layers. Recall that we used the same tf.keras.model.Sequential 

class to create the sequential model. The add() function of the model 

object is used to add layers in sequential order—the layer added first 

is executed first and so on.

 Line 31 adds our first layer to the network. If you recall from our 

previous discussion on CNN, our first layer of the CNN must be a 

convolution layer that takes the input (image pixel values). Here we 

are using the Conv2D class to define our convolution layer. We are 

passing five important parameters to Conv2D().

 – filters, which in our example is 64.

 – The kernel dimension, which in this example is 3×3 pixels and passed 

as a tuple (3,3).

 – The activation function, which in our case is relu (as the pixel values 

range from 0 to 1 and are never negative).

 – The next parameter is to set the strides, which is by default (1,1) if not 

set. In our case, we set it to (2,2).

 – The final parameter is to set the input size. Since our images are 

resized to 1024×1024 pixels colored (with three channels), therefore, 

the input_shape is (1024,1024,3). 

Line 32 adds the pooling layer, MaxPooling2D. Recall that the 

convolution and pooling layers are alternated and come in pairs, 

except for the layer before the MLP layers. We are passing the 

argument to set the size of the grid or kernel. In our example, it is 

set to be (2,2).

Lines 33, 34, and 35 are again our convolution and pooling layers. 

You can have as many convolution and pooling layers as are 

required to achieve the desired accuracy levels.

The outputs from the convolution layer, line 35, are fed to the first 

layer of the MLP. Recall that the first layer of the MLP is called the 

input layer, followed by hidden layers, and finally the output layer.

Line 36 flattens the output from line 35.
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Line 37 is the hidden layer of the MLP and has been explained in 

the ANN section.

Line 38 is the final layer, the output layer. As explained previously, 

we are using the activation function softmax as we are solving a 

classification problem involving two classes.

Line 42 simply calls the build_cnn() function and creates a model 

object.

Line 44 compiles the model, as we saw earlier with ANNs.  

You will notice the difference between line 44 and line 30 of 

Listing 5-6 in the loss function. Here we are using the loss function 

 categorical_crossentropy as opposed to sparse_categorical_

crossentropy that we used in Listing 5-6. Can you guess why?

Finally, we are starting the training in line 49. Notice that we are 

not calling the function fit() as we called in Listing 5-6. We are 

calling the fit_generator() function. This function works with 

the ImageDataGenerator to load images in a small batch. If you 

use the simple fit() function, it will take the first batch of input 

and train the model, and that is clearly not what we want. The 

function fit_generator() takes an important parameter called 

steps_per_epoch, which is the number of batches it will complete 

in each epoch. Here is the official definition:

steps_per_epoch: The total number of steps (batches of samples) 

to yield from generator (the data loader) before declaring one 

epoch finished and starting the next epoch. It should typically be 

equal to the number of samples of your dataset divided by the 

batch size. For example, if you have 1,000 files in your training set 

and your batch_size is 8, you should set steps_per_epoch equal to 

1000/8 = 125.

Another important parameter to this function is validation_

steps, which is defined as follows:

validation_steps: This is relevant only if validation_data is a 

generator. It is the total number of steps (batches of samples) to 

yield from generator (the data loader) before stopping.
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• Saving the CNN model to disk (lines 53 and 54): Line 54 saves the 

trained model to the directory specified in line 53. You could save the 

training checkpoints as well.

• Evaluation and visualization (lines 57 through 69): We plot a graph 

of training loss, validation loss, training accuracy, and test accuracy 

against epochs. Line 68 evaluates the model and simply prints the 

accuracy in line 69.

 Figure 5-35 shows a sample output while the model runs. Figure 5- 36  

shows a sample plot of training and validation metrics. As the 

graph shows, the losses of both training and validation decrease as 

the number of epochs increases. Also, the accuracy improves over 

epochs.

Epoch 1/10
16/16 [==============================] - 126s 8s/step - loss: 0.6689 - accuracy: 0.6953 - val_loss: 0.6374 - val_accuracy: 0.6719
Epoch 2/10
16/16 [==============================] - 113s 7s/step - loss: 0.4902 - accuracy: 0.7500 - val_loss: 0.5442 - val_accuracy: 0.7344
Epoch 3/10
16/16 [==============================] - 100s 6s/step - loss: 0.3313 - accuracy: 0.8281 - val_loss: 0.2979 - val_accuracy: 0.8438
Epoch 4/10
16/16 [==============================] - 136s 8s/step - loss: 0.3130 - accuracy: 0.8516 - val_loss: 0.2127 - val_accuracy: 0.9219
Epoch 5/10
16/16 [==============================] - 107s 7s/step - loss: 0.2858 - accuracy: 0.8672 - val_loss: 0.3694 - val_accuracy: 0.7656
Epoch 6/10
16/16 [==============================] - 102s 6s/step - loss: 0.2343 - accuracy: 0.9219 - val_loss: 0.2187 - val_accuracy: 0.8906
Epoch 7/10
16/16 [==============================] - 130s 8s/step - loss: 0.3260 - accuracy: 0.8828 - val_loss: 0.1669 - val_accuracy: 0.9531
Epoch 8/10
16/16 [==============================] - 94s 6s/step - loss: 0.1941 - accuracy: 0.9297 - val_loss: 0.4719 - val_accuracy: 0.7812
Epoch 9/10
16/16 [==============================] - 101s 6s/step - loss: 0.3174 - accuracy: 0.8828 - val_loss: 0.1896 - val_accuracy: 0.9375
Epoch 10/10
16/16 [==============================] - 102s 6s/step - loss: 0.2728 - accuracy: 0.8594 - val_loss: 0.3509 - val_accuracy: 0.7969

Figure 5-35. Sample output from the CNN model training
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Figure 5-36. Sample plot of metrics (loss and accuracy over epoch) for training 
and valuation

 Pneumonia Prediction

Listing 5-8 shows how to use the previously trained CNN model to predict pneumonia 

from a new set of images.

Listing 5-8. Code for Predicting Pneumonia by Using the Trained CNN Model

1    import numpy as np

2    import pathlib

3    import cv2

4    import tensorflow as tf

5    import matplotlib.pyplot as plt

6

7    model_path = "models/pneumiacnn"

8

9    val_img_dir ="images/chest_xray/val"

10    # ImageDataGenerator class provides a mechanism to load both small and 

large dataset.

11    # Instruct ImageDataGenerator to scale to normalize pixel values to 

range (0, 1)
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12    datagen = tf.keras.preprocessing.image.ImageDataGenerator(resca

le=1./255.)

13    # Create a training image iterator that will be loaded in a small 

batch size. Resize all images to a #standard size.

14    val_it = datagen.flow_from_directory(val_img_dir, batch_size=8, 

target_size=(1024,1024))

15

16

17    # Load and create the exact same model, including its weights and the 

optimizer

18   model = tf.keras.models.load_model(model_path)

19

20   # Predict the class of the input image from the loaded model

21   predicted = model.predict_generator(val_it, steps=24)

22   print("Predicted", predicted)

The code for classifying or predicting images for the presence of pneumonia is 

divided into three parts.

• Loading images (lines 9 through 14): Images are loaded from the 

disk directory as explained in Listing 5-7. Line 14 uses flow_from_

directory() as we did before.

• Loading saved models (line 18): Recall from Listing 5-7 that we saved 

the trained model in the directory, models/pneumiacnn. Line 18 loads 

the saved model from the disk directory.

• Predicting pneumonia (line 21): Line 21 uses the model.

predict_generator() function. This function is similar to the 

fit_generator() function in the sense that both the functions read 

images from the disk in batches. The predict_generator() function 

predicts whether the images represent pneumonia or not by loading 

images in batches.

 The predicted outcome is printed in line 22.

 Figure 5-37 shows a sample prediction output.
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Figure 5-37. Sample prediction output

The prediction output is a NumPy array consisting of the probabilities of all 

classes for each image. In the previous output sample, in the first print output line, 

the probability of the second class is the highest. It is about 98 percent, and hence the 

prediction class for the first input is 1 (which is the index of the class with the highest 

probability).

A CNN is one of the most powerful algorithms used in computer vision. In this section, 

you learned about the concepts of CNNs and how they work. We also worked through 

some code examples of training our own CNN models for predicting pneumonia.

 Examples of Popular CNNs
The CNN we built in Listing 5-7 is not a production-quality network. We built a simple 

network to learn the basics. Let’s look at some of the popular networks that were proven 

successful globally.

 LeNet-5

The LeNet-5 CNN architecture was first introduced in 1998 by LeCun et al. in their 

paper “Gradient-Based Learning Applied to Document Recognition.” This architecture 

was mainly used for recognizing handwritten and machine-generated characters 

(optical character recognition [OCR]) from documents. The architecture is simple and 
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straightforward and hence used widely in teachings. Here are the salient features of the 

LeNet-5 architecture:

• This is a CNN network, and it consists of seven layers.

• Out of these seven layers, there are three convolution layers (C1, C3, 

and C5).

• There are two subsampling layers (S2 and S4).

• There is one fully connected layer (F6) and one output layer.

• The convolutional layers use 5×5 convolution kernels with stride 1.

• The subsampling layers are 2×2 average pooling layers.

• The entire network uses the TanH activation function except for the 

output layer, which uses softmax.

Figure 5-38 shows the LeNet-5 network.

Figure 5-38. LeNet-5 (image courtesy of http://yann.lecun.com/exdb/publis/
pdf/lecun-01a.pdf)

Here’s an exercise for you: modify the TensorFlow code from Listing 5-7 and 

implement LeNet-5.

 AlexNet

AlexNet is a convolutional neural network architecture designed by Alex Krizhevsky 

et al. It became popular when AlexNet competed in the ImageNet Large Scale Visual 

Recognition Challenge in 2012 and achieved a top-five error of 15.3 percent, more than 

10.8 percentage points lower than that of the runner-up. AlexNet is a deep network, and 

despite being computationally expensive, it became feasible because of the use of GPUs.
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The features of AlexNet are as follows:

• It is a deep convolutional neural network containing eight layers.

• The input size is 224×224×3 color images.

• The first five layers are a combination of convolutional and max 

pooling layers with the following configurations:

• Convolution layer 1: Kernel 11×11, filters 96, strides 4×4, 

activation ReLU

• Pooling layer 1: MaxPooling with kernel size 3×3, strides 2×2

• Convolution layer 2: Kernel 5×5, filters 256, strides 1×1, 

activation ReLU

• Pooling layer 2: MaxPooling with kernel size 3×3, strides 2×2

• Convolution layer 3: Kernel 3×3, filters 384, strides 1×1, 

activation ReLU

• Convolution layer 4: Kernel 3×3, filters 384, strides 1×1, 

activation ReLU

• Convolution layer 5: Kernel 3×3, filters 384, strides 1×1, 

activation ReLU

• Pooling layer 5: MaxPooling with kernel size 3×3, strides 2×2

• The last three layers are a fully connected MLP.

• All convolution layers used ReLU activation functions.

• The output layer used softmax activation.

• There are 1,000 classes in the output layer.

• The network has 60 million parameters and 650,000 neurons, and it 

takes about 3 days to train on a GPU.

Figure 5-39 shows an illustration of AlexNet.

Chapter 5  Deep Learning anD artifiCiaL neuraL networks



216

 VGG-16

The next famous deep neural network we are going to explore is VGG-16, which won the 

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) competition in 2014. VGG 

was designed by researchers at Oxford Visual Geometry Group (VGG). Their publication 

is available at https://arxiv.org/abs/1409.1556.

Figure 5-40 shows the VGG-16 network. Here is a list of its salient features:

• VGG-16 is a convolutional neural network that consists of 16 layers.

• It has 13 convolutional layers and 3 fully connected dense layers.

• The 16 convolutional layers have the following features:

• Convolution layer 1: Input size 224×224x3, kernel 3×3, filters 64, 

activation ReLU

• Convolution layer 2: Kernel 3×3, filters 64, activation ReLU

• Pooling layer: MaxPooling, kernel size 2×2 and strides 2×2

• Convolution layer 3: Kernel 3×3, filters 128, activation ReLU

• Convolution layer 4: Kernel 3×3, filters 128, activation ReLU

• Pooling layer: MaxPooling, kernel size 2×2 and strides 2×2

• Convolution layer 5: Kernel 3×3, filters 256, activation ReLU

• Convolution layer 6: Kernel 3×3, filters 256, activation ReLU

• Convolution layer 7: Kernel 3×3, filters 256, activation ReLU

• Pooling layer: MaxPooling, kernel size 2×2 and strides 2×2

Figure 5-39. AlexNet with five convolution layers and three fully connected MLPs
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• Convolution layer 8: Kernel 3×3, filters 512, activation ReLU

• Convolution layer 9: Kernel 3×3, filters 512, activation ReLU

• Convolution layer 10: Kernel 3×3, filters 512, activation ReLU

• Pooling layer: MaxPooling, kernel size 2×2 and strides 2×2

• Convolution layer 11: Kernel 3×3, filters 512, activation ReLU

• Convolution layer 12: Kernel 3×3, filters 512, activation ReLU

• Convolution layer 13: Kernel 3×3, filters 512, activation ReLU

• Pooling layer: MaxPooling, kernel size 2×2 and strides 2×2

• Fully connected layer 14 (MLP input layer): Flatten dense layer 

with input size 25088

• Fully connected hidden layer 15: Dense layer with input size 4096

• Fully connected output layer for 1,000 classes.

• This network has 138 million parameters.

Figure 5-40. VGG-16 architecture with 16 layers (13 convolutional layers and 3 
dense layers)

Here’s an exercise for you: modify Listing 5-7 and implement the VGG-16 network 

using TensorFlow.

 Summary
In this chapter, we learned the basics of artificial neural networks and convolutional 

neural networks. We wrote TensorFlow-based code to train our own ANN and CNN 

models, evaluated the results, and used the saved models to classify images. We also 

learned how to tune hyperparameters and visualize the analysis in the HParams 
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dashboard of TensorBoard. In addition, we explored a few popular CNNs: LeNet-5, 

AlexNet, and VGG-16.

In this chapter, we solved classification problems. In other words, our models were 

trained to tell which class the input images belong to. In the next chapter, we will learn 

how to detect objects in images.
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CHAPTER 6

Deep Learning in Object 
Detection
In the previous chapter, we discovered how to classify images using a standard 

multilayer perceptron (MLP) and a convolutional neural network (CNNs). During 

classification tasks, we predict the class of the entire image and do not care what kind of 

objects are in the image. In this chapter, we will detect objects and their locations within 

the image.

The learning objectives of this chapter are as follows:

 – We will explore some of the popular deep learning algorithms used in object 

detection.

 – We will train our own object detection models using TensorFlow on the GPU.

 – We will use trained models to predict objects within images.

The concepts presented in this chapter will be utilized in the next three chapters to 

develop real-world computer vision applications.

 Object Detection
Object detection involves two distinct sets of activities: locating objects and classifying 

objects. Locating objects within the image is called localization, which is typically 

performed by drawing bounding boxes around the objects. Before the deep learning 

algorithms became popular, the object localization was performed by marking each pixel 

in the image that contained the object. For example, object detection was performed 

using techniques such as edge detection, drawing contours, and HOGs (revisit 

Chapters 3 and 4). These techniques are compute-intensive, slow, and not accurate.
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Object detection using deep learning techniques has been shown to be faster and 

more accurate compared to non-deep-learning algorithms. The learning process is 

usually compute-intensive, but the actual detection is fast and suitable for detecting 

objects in real time. For example, deep learning–based object detection is being used in 

the following:

 – Driverless cars

 – Airport security

 – Video surveillance

 – Defect detection in industrial production

 – Industrial-quality assurance

 – Facial recognition

Deep learning algorithms for object detection have evolved over time. In this 

chapter, we will learn two different variations of convolutional neural networks used in 

object detection: two-step convolutions and single-step convolutions. A region-based 

convolutional neural network (R-CNN) is a two-step algorithm. You only look once 

(YOLO) and single-shot detection (SSD) are examples of single-step algorithms for object 

detection.

Before we deep dive into the object detection algorithms, we will define an important 

metric, called intersection over union, which is widely used in object detectors.

 Intersection Over Union
Intersection over union (IoU), also known as Jaccard index, is one of the most commonly 

used evaluation metrics in object detection algorithms. It is used to measure the identity 

of two arbitrary shapes.

In object detection, we create training sets by drawing bounding boxes around 

objects for labeling. These bounding boxes in the training set are also known as the 

ground truth. During the model learning, the object detection algorithm predicts 

bounding boxes and compares them against the ground truth. IoU is used to evaluate 

how closely the predicted bounding box overlaps with the ground truth.

The IoU between a predicted bounding box A and a ground truth box B is calculated 

by using the formula shown in Figure 6-1.
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When we label an image, we typically draw rectangular boxes around the objects 

within the image. This rectangular region surrounding the object is the ground truth. In 

Figure 6-2, the ground truth is shown by the green rectangular box.

When the algorithm learns, it predicts the bounding boxes surrounding the object. In 

Figure 6-2, the red rectangular region is the predicted bounding box.

=

Intersection Union

Figure 6-1. IoU

Figure 6-2. IoU, predicted bounding box intersecting with ground truth
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The learning algorithm computes the IoU between the ground truth and the 

predicted bounding boxes. The match between the predicted and ground truth is 

considered poor if the IoU between them is less than 50 percent. If the IoU is between 

50 and 95 percent, the match is considered good. An IoU greater than 95 percent is 

considered an excellent match.

The learning objective of an object detection algorithm is to optimize the IoU.

Let’s now explore various deep learning algorithms used in object detection. We will 

also review their strengths and weaknesses and how they compare with each other.

 Region-Based Convolutional Neural Network
An R-CNN was the first successful model that used a large convolutional neural network 

to detect objects in images. The detection method is described by Ross Girshick 

et al. in their 2014 paper titled “Rich feature hierarchies for accurate object detection 

and semantic segmentation” (https://arxiv.org/pdf/1311.2524.pdf). Figure 6-3 

demonstrates the R-CNN method.

R-CNN comprises of the following three modules:

• Region proposal: The R-CNN algorithm first finds regions in the 

image that might contain objects. These regions are called region 

proposals. They are called proposals because these regions may or 

may not contain objects and the objective of the learning function is 

to eliminate those regions that do not contain objects. These region 

proposals are the bounding boxes around the objects (as shown in 

Figure 6-3, diagram 2).

The R-CNN system proposed by Girshick et al. is agnostic to the 

algorithm that finds the region proposal. That means you could 

use any algorithm, such as HOG, to find the regions. They used 

an algorithm known as selective search. The selective search 

algorithm looks at the image through grids of different sizes. 

For each grid size, the algorithm attempts to group together 

adjacent pixels by comparing the texture, color, or pixel values to 

identify objects. Using this method, region proposals are created. 

In summary, the algorithm creates a set of bounding boxes of 

potential target objects.
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• Feature extraction: The region proposals are cropped out of the 

image and resized. These cropped images are then fed to a standard 

CNN to extract features (Figure 6-3, diagram 3). According to the 

original paper, the AlexNet deep learning CNN was used for feature 

extraction. From each region, 4,096-dimensional feature vectors were 

extracted.

• Classifier: The extracted features are classified by using the standard 

classification algorithms, such as the linear SVM model (diagram 4 of 

Figure 6-3).

Figure 6-3. R-CNN model (image source: Girshick et al.)

R-CNN was the first successful deep learning–based object detection system, but it 

suffered a serious issue with respect to performance. Its time performance problem is 

because of the following:

• Each region proposal is passed to the CNN for feature extraction.  

This may amount to approximately 2,000 passes per image.

• Three different models need to be trained: the CNN for feature 

extraction, the classifier model to predict the image class, and the 

regression model to tighten the bounding boxes. The training is 

compute-intensive and added to the computation time.

• Each of the region proposals needs to be predicted. Because of the 

number of regions, the predictions from the CNN will be slow.
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 Fast R-CNN
To overcome the limitations of R-CNNs, Ross Girshick from Microsoft published a paper 

in 2015 titled “Fast R-CNN” that proposed a single model to learn and output regions 

and classifications directly (https://arxiv.org/pdf/1504.08083.pdf).

A Fast R-CNN also uses an algorithm, for example edge boxes, to generate region 

proposals. Unlike an R-CNN, which crops and resizes region proposals, the Fast R-CNN 

processes the entire image. Instead of classifying each region, the Fast R-CNN pools the 

CNN features corresponding to each region proposal.

Figure 6-4 shows the Fast R-CNN architecture. It takes the entire image as input 

and generates a set of region proposals. The last layer of the deep CNN has a special 

layer called the region of interest (ROI) pooling layer. The ROI pooling layer extracts a 

fixed- length feature vector from the feature map specific for a given input candidate 

region.

Figure 6-4. Fast R-CNN architecture (image source: Ross Girshick)

Each ROI feature vector from the ROI pool is fed to a fully connected MLP that 

generates two sets of outputs—one for the object class and the other for the bounding 

boxes. The softmax activation function predicts the object class, and a linear regressor 

generates the bounding boxes corresponding to the predicted class. The process is 

repeated for each region of interest from the ROI pool.
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As the original paper describes, Ross Girshick applied the Fast R-CNN with VGG- 

16 to the Microsoft COCO dataset to establish a preliminary baseline. The COCO 

dataset (http://cocodataset.org/) is large-scale object detection, segmentation, and 

captioning dataset available in the public domain for free. The Fast R-CNN training set 

consists of 80,000 images, and the training was iterated for 240,000 epochs. The model 

quality was assessed as follows:

 – The mean average precision (mAP) with the PASCAL object dataset: 35.9 percent

 – The average precision (AP) with the COCO dataset: 19.7 percent

Compared to an R-CNN, the Fast R-CNN is much faster to train and make 

predictions. However, it still needs a set of candidate region proposals with each input 

image, and a separate model predicts the regions.

 Faster R-CNN
Shaoqing Ren et al. at Microsoft Research published a paper in 2016 titled “Faster 

R-CNN: Towards Real-Time Object Detection with Region Proposal Networks” (https://

arxiv.org/pdf/1506.01497.pdf). This paper describes an improved version of the 

Fast R-CNN from the training speed and detection accuracy perspectives. Except for the 

region proposal method, a Faster R-CNN is architecturally similar to a Fast R-CNN.

A Faster R-CNN architecture consists of a region proposal network (RPN) that shares 

the full-image convolutional features with the detection network, thus enabling nearly 

cost-free region proposals.

An RPN is a fully convolutional network. It simultaneously predicts object bounds 

and objectness scores at each position of the image. The RPN is trained end to end to 

generate high-quality region proposals. These region proposals are used by the Fast 

R-CNN for detection. This is illustrated in Figure 6-5.

Chapter 6  Deep Learning in ObjeCt DeteCtiOn

http://cocodataset.org/
https://arxiv.org/pdf/1506.01497.pdf
https://arxiv.org/pdf/1506.01497.pdf


226

A Faster R-CNN consists of two parts: the RPN and the Fast R-CNN.

 Region Proposal Network
An RPN is a deep CNN that takes an image input and generates output as a set of 

rectangular object proposals. Each rectangular proposal has an “objectness” score.

Figure 6-6 shows how an RPN generates region proposals. We take the convolutional 

feature map generated by the last shared convolutional layer and slide a small network. 

This small network takes as input an n×n spatial window of the input convolutional 

feature map. Each sliding window is mapped to a lower-dimensional feature, for 

example a 256-dimensional feature for AlexNet or 5,126-dimensional for VGG-16.

This feature is fed into two sibling fully connected layers—a box-regression layer for 

predicting bounding boxes and a box-classification layer for predicting object classes.

Figure 6-5. Faster R-CNN with RPN, a unified network for faster object detection 
(image source: Shaoqing Ren et al.)
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Multiple region proposals are predicted at each sliding window location. Assuming 

the maximum number of proposals at each window location is k, the total number of 

bounding boxes coordinates will be 4k, and the number of object classes will be 2k (one 

for the probability of being an object and the other for the probability of not being an 

object). These region boxes at each window are called anchors.

 Fast R-CNN
The second part of the Faster R-CNN is the detection network. This part is exactly the 

same as the Fast R-CNN (as described earlier). The Fast R-CNN takes input from the RPN 

to detect objects in images.

 Mask R-CNN
The Mask R-CNN extends the Faster R-CNN. The Faster R-CNN is widely used for object 

detection tasks because of its speed of detection. We have already seen that, for a given 

image, Faster R-CNN predicts the class label and bounding box coordinates for each 

object in the image. The Mask R-CNN adds an extra branch for predicting an object 

mask along with the object class and bounding box coordinates (review the concept of 

masking in Chapter 3).

Figure 6-6. Region detection using sliding window and anchor (image source: 
Shaoqing Ren, et al.)

Chapter 6  Deep Learning in ObjeCt DeteCtiOn



228

Here is how the Mask R-CNN differs from its predecessor, the Faster R-CNN:

• The Faster R-CNN has two outputs: a class label and bounding box 

coordinates.

• The Mask R-CNN has three outputs: a class label, bounding box 

coordinates, and object mask.

Ross Girshick et al. explained Mask R-CNN in their 2017 paper titled “Mask R-CNN” 

(https://arxiv.org/pdf/1703.06870.pdf). In the Mask R-CNN, each pixel is classified 

into a fixed set of categories without differentiating object instances. It introduces a 

concept called pixel-to-pixel alignment between the output and input layers of the neural 

network. The class of each pixel determines the masks in the ROI.

Figure 6-7 illustrates the Mask R-CNN network architecture.

Class

Backbone: 
ResNet 50 or RPN Faster R-CNN

Bbox

Mask

Input 
Image

Figure 6-7. Mask R-CNN. Additional mask prediction branch in a Faster R-CNN

As shown in Figure 6-7, the network consists of three modules—backbone, RPN, and 

output head.

 Backbone
The backbone is the standard deep neural network. The original paper describes using 

ResNet-50 and ResNet-101. The backbone’s main role is the feature extraction.

In addition to ResNet, a feature pyramid network (FPN) is used to extract the finer 

feature details of the image.

The FPN consists of decreasing size layers of a CNN in which case each forward layer 

has fewer number of neurons.
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As shown in Figure 6-8, each higher layer passes the features to the lower layers, 

and predictions are done at each layer. The size of the higher layer is smaller, which 

means the feature size will be smaller than the previous layers. This approach captures 

features of the image at different scales, thus allowing you to detect smaller objects in 

the image.

Figure 6-8. FPN (image source: Tsung-Yi Lin, et al.)

FPN is an add-on to the backbone network and is typically performed independently 

of the ResNet or other backbone network. FPN can be added not only to the Mask 

R-CNN but also to the Fast R-CNN to be able to detect objects of different sizes.

 RPN
As described earlier, the RPN module is used for generating region proposals. The RPN 

architecture in the case of Mask R-CNNs is the same as in the case of Faster R-CNNs.

 Output Head
As shown in Figure 6-8, the last module consists of the Faster R-CNN with an additional 

output branch. Therefore, a total of three outputs are generated by this module. The 

outputs—an object class and bounding box coordinates—are the same as in the case of 

Faster R-CNNs. The third output is the object mask, which is a list of pixels defining the 

object contours.
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 What Is the Significance of the Masks?
The Mask R-CNN (like the Faster R-CNN) generates object classes and the bounding 

boxes. The combination of these two helps us locate the objects within the image. 

The mask output from the network is used in object segmentation. This object 

segmentation is popularly used in optical character recognition (OCR) to extract text 

from documents. Another example of usage of a Mask R-CNN is in airport security 

where travelers’ bags are scanned and visualized with masking. Figure 6-9 shows a 

typical display of a Mask R-CNN.

Figure 6-9. Display of images with bounding boxes and masks (image source: 
Ross Girshick et al.)

 Mask R-CNN in Human Pose Estimation
An interesting use of a Mask R-CNN is in estimating the human pose. The network can 

be extended to model locations of keypoints as a one-hot mask. Keypoints are defined as 

the points of interest on the image. For humans, these keypoints represent major joints 

such as an elbow, shoulder, or knee. The keypoints are selected such that they do not 

change with the rotation, movement, shrinkage, translation, and distortion. The Mask 

R-CNN is trained to predict K masks, one for each of K keypoint types (e.g., left shoulder, 

right elbow). See Figure 6-10.
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To train a network to estimate human pose, the training images are marked with K 

keypoints of an instance object. For each keypoint, the training target is a one-hot m×m 

binary mask where only a single pixel is labeled as the foreground.

According to the original paper, the authors used a variant of ResNet-FPN 

architecture as the feature extraction backbone. The head architecture (or output 

module) was similar to the regular Mask R-CNN. The keypoint head consisted of a 

stack of eight 3×3 512-D convolution layers, followed by a deconvolutional layer and 2× 

bilinear upscaling. This produced an output resolution of 56×56. It was estimated that 

a relatively high-resolution output (compared to masks) is required for keypoint-level 

localization accuracy.

 Single-Shot Multibox Detection
An R-CNN and its variants are two-stage detectors. They have two dedicated networks: 

one network generates the region proposals to predict bounding boxes, and the other 

network predicts object classes. These two-stage detectors are fairly accurate, but they 

come with a high computational cost. This means these detectors are not suitable for 

detecting objects in streaming videos in real time.

A single-shot object detector predicts both the bounding boxes and the object 

classes in a single forward pass of the network.

Single-shot multibox detection (SSD) was explained by Wei Liu et al in a 2016 paper 

titled “SSD: Single Shot MultiBox Detector” (https://arxiv.org/pdf/1512.02325.pdf). 

First we will review how SSD works, and later in this chapter, we will train a custom SSD 

model using TensorFlow.

Figure 6-10. Display of human pose estimation using keypoint prediction (image 
source: Ross Girshick, et al.)
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 SSD Network Architecture
An SSD neural network consists of two components: base network and prediction 

network.

• Base network: The base network is a deep convolutional network that 

is truncated before any classification layer. For example, remove the 

fully connected layer of ResNet or VGG to create the base network for 

SSD. The base network is used for feature extraction from the input 

images.

• Detection network: To the base network, attach some extra 

convolutional layers that will actually do the prediction of bounding 

boxes and object classes. The detection network has the following 

characteristics.

 Multiscale Feature Maps for Detection

The convolutional layers attached to the end of the base network are designed in such a 

way that these layers decrease in size progressively. This allows us to predict objects at 

multiple scales. This can be visualized as shown in Figure 6-11.
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Figure 6-11. Convolutional layers of decreasing size to predict object class 
categories and bounding boxes at scales

As shown in Figure 6-11, every detection layer and, optionally, the last layer of the 

base network predicts offsets of the four coordinates of the bounding boxes and object 

class categories. How are bounding boxes and objects predicted? Through anchor boxes. 

Let’s understand the concept of anchor boxes.

Anchor Boxes and Convolutional Predictors for Detection

Anchors are one or more rectangular shapes set at each convolution point of the feature 

map. In Figure 6-12, there are five rectangular anchors (shown in red outlines) set at a 

point (shown in blue). 
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In SSD, typically five anchor boxes are selected at each point. Each of these anchors 

acts as a detector. That means, there are typically five detectors at each location of the 

feature map, and each one of them detects five different objects (or no object). The varying 

size of these detectors allows them to detect objects of different sizes. Smaller detectors will 

detect smaller objects, and larger detectors are capable of detecting larger objects.

Figure 6-12. Anchor boxes

At each convolution point on the feature map (shown in blue in Figure 6-12), the 

algorithm predicts offsets of bounding boxes relative to anchor boxes. It also predicts the 

class scores that indicate the presence of a class instance in each of these boxes.

 Default Boxes and Aspect Ratios

It is important to note that these anchors are chosen beforehand as constants. In SSD, a 

set of fixed “default anchors” is mapped at each convolution point.

Assume that there are K number of boxes at each location; we compute C class 

scores and the four offset coordinates relative to the default box. This will result in a total 

of (C+4)×K filters around each convolution point. Assuming the feature size of m×n, the 

output tensor size will be (C+4)×K×m×n.

These default anchors are applied at each of the detection convolutional layers (as 

shown in Figure 6-11). The size of these convolutional layers decreases progressively, 

allowing us to generate several feature maps of different resolutions.

Figure 6-13 shows the overall network architecture.
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Figure 6-13. Truncated VGG backbone with additional convolutional layers for 
detection (image source: Liu et al., https://arxiv.org/pdf/1512.02325.pdf)

Ground truth (green box)

Predicted (red box)

IoU < 50%

IoU > 50%

IoU > 95%

Figure 6-14. Matching of default box with ground truth box

 Training
In the following section we will explore how the SSD model learns by optimizing the loss 

functions, and the object matching strategy it follows.

 Matching Strategy

During the training, the algorithm determines which default boxes correspond to the 

ground truth and then trains the network accordingly. To match the default boxes with 

the ground truth, it uses IoU to determine the overlap. This IoU-based overlap is also 

called the Jaccard overlap. An IoU threshold of 0.5 is considered to determine whether 

the default box overlaps any ground truth. This overlapping using IoU is performed 

at each layer, allowing the network to learn at scale. The SSD starts with the default 

boxes as predictions and attempts to regress closer to the ground truth bounding boxes. 

Figure 6-14 illustrates the concept of overlapping and selection of default boxes.
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 Training Objective

SSD’s learning objective is to optimize a loss function, which is the weighted sum of the 

localization loss (loc) and the confidence loss (conf) over all matched default boxes.

 Choosing Scales and Aspect Ratios for Default Boxes

The decreasing size of the detection layers of the SSD network allows it to learn different 

object scales. As the training moves forward, the size of the feature map decreases. How 

does the algorithm determine the size of default boxes for each layer?

For each layer, the algorithm calculates the scale using the following formula:

Sk = Smin + {(Smax − Smin)/( m − 1)} (k − 1), where k ∈ [1, m]

where m is the size of the feature map, Smin = 0.2 for the lowest layer, and Smax = 0.9 for 

the highest layer. All other layers in between are evenly spaced. Recall that five default 

boxes are used in SSD. These default boxes are set for different aspect ratios: ar ∈ {1, 2, 

3, ½, ⅓}. The width and height of each default boxes are calculated using the following 

formula:

Width = Sk ar

Height = Sk / ar

For an aspect ratio of 1, another box of scale S’k= S Sk k+( )1  is calculated. That means 

six default boxes per feature map are determined. The center of the default boxes are set 

using this formula: ( (i+0.5)/ |fk| , (j+0.5)/ |fk| ), where |fk| is the size of the k-th square 

feature map, i, j ∈ [0, |fk|).

By combining predictions for all default boxes with different scales and aspect ratios 

from all locations of many feature maps, a diverse set of predictions is generated. This 

covers various input object sizes and shapes.

You will learn in the next section that YOLO uses K-means clustering to dynamically 

select anchor boxes. Also, in YOLO, these anchors are called priors or bounding box 

priors.

 Hard Negative Mining

At each layer and for each feature map, many default boxes are created. After matching 

with the ground truth (where IoU ≥ 0.5), the majority of these default boxes will not 
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overlap with the ground truth. These nonoverlapping default boxes (IoU < 0.5) are called 

negative boxes, and those matching with ground truth are positive boxes. In most cases, 

the number of negatives is way higher than the number of positives. This causes class 

imbalance, which will skew the predictions. To balance the classes, negative boxes are 

sorted, the topmost probable negative boxes are taken, and the rest are discarded to 

make the negative:positive ratio at most 3:1. It has been found that this ratio leads to 

faster optimization.

 Data Augmentation

SDD is robust to various input object sizes and shapes. To make it robust, each training 

image is sampled by one of the following options:

• Use the entire original image.

• Sample a patch so that the minimum IoU is 0.1, 0.3, 0.5, 0.7, or 0.9.

• Randomly sample a patch.

The characteristics of each sample are the following:

• The size of each sampled patch is [0.1, 1] of the original image size.

• The aspect ratio is between ½ and 2.

• Keep the overlapped part of the ground truth box if the center of it is 

in the sampled patch.

After these sampling steps, each sampled patch is resized to a fixed size and is 

horizontally flipped with a probability of 0.5, in addition to applying some photometric 

distortions.

 Nonmaximum Suppression

At the time of inference, a large number of boxes are generated during the forward pass 

of the SSD. Processing all of these bounding boxes will be compute-intensive and time- 

consuming. Therefore, it is important to get rid of those bounding boxes, which have 

low confidence of containing objects and have low IoU. Only the top N bounding boxes 

having the maximum IoU and confidence are selected, and nonmaximum boxes are 

dropped or suppressed. This eliminates duplicates and ensures that only the most likely 

predictions are retained by the network.
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 SSD Results
SSD is a fast, robust, and accurate model. With the VGG-16 base architecture, SSD 

compares favorably to its state-of-the-art object detector counterparts in terms of both 

accuracy and speed. The SSD-512 model (the highest-resolution network using 512×512 

input images) is at least three times faster and more accurate compared to the state- 

of- the art Faster R-CNN on the PASCAL VOC and COCO datasets. The SSD-300 model 

performs real-time object detection more accurately in streaming video at 59 frames per 

second speed, which is faster than the first version of YOLO. In Chapter 7, you will learn 

how to detect objects in videos using SSD.

 YOLO
YOLO is a fast, real-time, and multi-object detection algorithm. YOLO consists of a single 

convolutional neural network that predicts simultaneously the bounding boxes and class 

probabilities of objects within them. YOLO trains on the full image, and the network is 

set up to solve regression problems to detect objects. Therefore, YOLO does not need a 

complex processing pipeline, which makes it extremely fast.

A base network runs 45 frames per second on a Titan X GPU. The speed is higher 

with faster versions of GPU, and it could go up to 150 frames per second. This makes 

YOLO suitable for detecting objects in streaming videos in real time with less than 25 

milliseconds of latency. Furthermore, YOLO achieves more than twice the mean average 

precision (mAP) of other real-time systems.

YOLO was created by Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali 

Farhadi in 2016 in their paper titled “You Only Look Once: Unified, Real-Time Object 

Detection” (https://arxiv.org/pdf/1506.02640.pdf).

The detection process, as illustrated in Figure 6-15 and described in the original 

paper, is as follows:

 1. The input image is divided into S×S grids.

 2. If the center of the object falls within a grid, that grid is responsible 

for detecting that object.

 3. Each grid cell predicts B number of bounding boxes and a 

confidence score for these bounding boxes.

 4. The confidence score is calculated using the following formula:
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Confidence score = Probability of objectness x IOU between the 
predicted box and the ground truth.

If the bounding box does not contain any object, the confidence 

score is zero.

 5. For each bounding box, the network makes five predictions: x, y, 

w, h, and confidence where

 – The (x, y) coordinates represent the center of the box relative to 

the bounds of the grid cell.

 – w and h are the width and height relative to the whole image.

 – The confidence prediction represents the IOU between the 

predicted box and any ground truth box.

 6. At the same time, the network predicts, for each grid cell, a 

class conditional probability C conditioned on the grid cell 

containing an object. Only one conditional probability per grid 

cell is predicted, regardless of how many bounding boxes B are 

predicted.

 7. To obtain the class-specific confidence score for each box, the 

following formula is applied:

Class confidence score = Pr(Classi|Object) x Pr(Object) x IOU 
between prediction and ground truth.

where Pr(Classi|Object) represents the probability of a class 

given the object within the grid cell.

 8. These predictions are encoded as an S × S × (B x 5 + C) tensor.

The inventors of YOLO used the following settings for evaluation:

•  Dataset: PASCAL Visual Object Classes, http://host.robots.

ox.ac.uk/pascal/VOC/ (PASCAL VOC)

• S = 7

• B = 2

• C = 20 as PASCAL VOC had 20 object classes

The final prediction yielded a 7 × 7 × (2 × 5 + 20) = 7 × 7 × 30 tensor.
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 YOLO Network Design
The YOLO network architecture was inspired by GoogLeNet for image classification. 

A slightly modified GoogLeNet for YOLO consists of 24 convolutional layers with max 

pooling followed by two fully connected layers. Notice the output tensor or dimension 

7×7×30 generated from the last layer shown in a full network in Figure 6-16.

Figure 6-15. Illustration of YOLO object detection (image source: Joseph Redmon 
et al.)
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Figure 6-16. YOLO neural network architecture. (image source: Joseph Redmon et al.)

 Limitations of YOLO
Although YOLO is one of the fastest object detection algorithms, it has a few limitations.

• It struggles with small objects that come in groups such as flocks of 

birds.

• It can predict only one class of objects within a cell grid.

• It does not predict well if the object has an unusual aspect ratio that 

was not seen in the training set.

• Its accuracy is less than some of the state-of-the-art algorithms, such 

as the Faster R-CNN.

 YOLO9000 or YOLOv2
YOLOv2 is an improved version of YOLO. It improves detection accuracy and speed 

compared to YOLO. It was trained to detect more than 9,000 object classes; therefore, 

the name YOLO9000 was given to it. This improvement and the detection algorithm 

are described in the paper titled “YOLO9000: Better, Faster, Stronger” published 

in December 2016 by Joseph Redmon and Ali Farhadi (https://arxiv.org/

pdf/1612.08242.pdf).
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YOLOv2 was designed to overcome some of the limitations, especially the precision 

and recall levels, of YOLO. Furthermore, it is able to detect objects with unseen aspect 

ratios.

Here is a list of improvements made in YOLOv2 to achieve a better, faster, and 

stronger result:

• Batch normalization: YOLOv2 added batch normalization on all the 

convolutional layers in YOLO. Recall that batch normalization helps 

regularize the model. By using batch normalization, YOLOv2 showed 

a mAP improvement of more than 2 percent.

• High-resolution classifier: YOLOv2 was fine-tuned to learn from 

higher-resolution input images. At 448×448 resolution, the network 

output improved by 4 percent mAP.

• Convolution with anchor boxes: YOLOv2 removed the fully connected 

layers and used fully convolutional layers. It also introduced anchor 

boxes to predict bounding boxes. Although there is a slight decrease 

in accuracy, by using anchor boxes, YOLOv2 is able to detect more 

than 1,000 objects per image compared to 98 in YOLO.

• Dimension cluster: The size of the anchor boxes is determined by 

using K-means clustering of the VOC 2017 training set. A value of k=5 

provides the best trade-off between average IOU/model complexity. 

The average IOU is 61.0 percent.

• Fine-grained features: YOLOv2 uses a pass-through layer that 

concatenates the higher-resolution features by stacking adjacent 

features into different channels instead of spatial locations. This 

approach gives a modest 1 percent performance increase.

• Multiscale training: YOLOv2 is able to detect objects in images 

of different sizes. Instead of fixing the input image size, YOLOv2 

changes the network on the fly every few iterations. For example, 

every 10 batches the network randomly chooses a new image 

dimension. This means the same network can predict detections at 

different resolutions. At low resolutions, YOLOv2 operates as a cheap 

and fairly accurate detector.
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The 288×288 YOLOv2 network runs at more than 90 FPS with mAP 

almost as good as Fast R-CNN. This makes it ideal for smaller 

GPUs, high frame rate video, or multiple video streams. At high 

resolution, YOLOv2 is a state-of-the-art detector with 78.6 mAP on 

VOC 2007 while still operating at faster than real-time speeds.

• DarkNet instead of GoogLeNet: YOLOv2 uses a convolutional neural 

network called DarkNet-19. This network has 19 convolutional 

layers and 5 max pooling layers. Darknet-19 only requires 5.58 

billion operations, as opposed to 30.67 billion in VGG or 8.52 billion 

in YOLO, to process an image. Yet it achieves 72.9 percent top-one 

accuracy and 91.2 percent top-five accuracy on ImageNet.  

Figure 6- 17 shows the Darknet-19 network architecture.

Figure 6-17. Darknet-19 (source: Joseph Redmon et al., https://arxiv.org/
pdf/1612.08242.pdf)
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• Joint classification and detection: YOLOv2 can learn from a dataset 

containing labels for both classification and detection. During the 

training, when the network sees images labeled for detection, it 

performs the full YOLOv2 loss function optimization. And, when 

it sees images for classification, it backpropagates losses using 

the classification part of the network. The dataset for YOLOv2 was 

created by combining datasets from COCO and ImageNet. The 

network capable of learning from both classification and detection 

dataset makes a stronger model compared to plain YOLO.

The following table summarizes the YOLOv2 improvements and their effect on 

accuracy and speed (compared to plain YOLO):

Modifications Effects

better batch normalization 2 percent map improvement

high-resolution classifier 4 percent map improvement

Convolution with anchor boxes Capable of detecting more than 1,000 objects  

per image

Dimension cluster 4.8 percent map improvement

Fine-grained features 1 percent map improvement

Multiscale training 1.1 percent map improvement

Faster Darknet-19 33 percent computation decrease, 0.4 percent 

map improvement

Convolutional prediction layer 0.3 percent map improvement

Stronger joint classification and detection able to detect more than 9,000 objects

 YOLOv3
The most recent version of YOLO is YOLOv3, which provides some improvements 

to YOLOv2. YOLOv3 is described in the paper titled “YOLOv3: An Incremental 

Improvement” published in April 2018 by Joseph Redmon and Ali Farhadi (https://

arxiv.org/pdf/1804.02767.pdf).
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The features and improvements of YOLOv3 are described here:

• Bounding box prediction: There is no change in YOLOv3 compared 

to YOLOv2 when it comes to detecting bounding boxes. YOLOv3 

uses sum of squared error loss during the training. It also predicts an 

objectness score for each bounding box using logistic regression. The 

objectness score is taken as 1 if the bounding box prior overlaps a 

ground truth object by more than any other bounding box prior. Only 

one bounding box prior is assigned for each ground truth object. 

If the bounding box prior is not the best but does overlap a ground 

truth object by more than some threshold, the prediction is ignored. 

The inventors of YOLOv3 used a threshold of 0.5. The system assigns 

only one bounding box prior for each ground truth object.

• Object class prediction: The network predicts multiple classes of an 

object within a bounding box. The softmax activation function is not 

suitable for predicting multilabel classes. Therefore, YOLOv3 uses a 

regression classifier instead of softmax.

• Predictions across scales: YOLOv3 predicts bounding boxes at 

three different scales. It still uses the K-means cluster to determine 

bounding box priors. It has nine clusters and three scales arbitrarily 

selected, and then it divides the clusters evenly across scales.

For example, on the COCO dataset, the nine clusters were as 

follows: (10×13), (16×30), (33×23), (30×61), (62×45), (59×119), 

(116×90), (156×198), (373×326).

• Feature extractor: As a feature extraction backbone, YOLOv3 uses an 

improved version of Darknet-19. This network was given the name 

Darknet-53. It has 53 convolutional layers. Figure 6-18 shows the 

Darknet-53 network architecture.
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• Training: There was no change in the training approach in YOLOv3 

compared to YOLOv2. The training was performed on the full image, 

with multiscaled data, batch normalization, and mixed classification 

and detection labels.

Here are the YOLOv3 results:

 – For the overall mAP, YOLOv3 performance drops significantly due to 

a much wider network (53 layers compared to 19 in YOLOv2).

 – YOLOv3 with 608×608-resolution images got 33.0 percent mAP in 

51ms inference time, while RetinaNet-101–50–500 only got 32.5 

percent mAP in 73ms inference time.

 – YOLOv3’s accuracy level is on par with SSD variants with a 3× faster  

detection time.

Figure 6-18. Darknet-53 used in YOLOv3 (source: https://arxiv.org/
pdf/1804.02767.pdf)
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 Comparison of Object Detection Algorithms
In this section, we have explored three distinct algorithm classes for object detection: 

R-CNN and its variants, SSD and YOLO. These algorithms were trained on two popular 

datasets—VOC and COCO—and benchmarked for speed and accuracy. The comparison 

provided in this section can be used as a guide to decide the suitability and applicability 

of one algorithm versus the other in building systems for object detection. The 

performance metrics and benchmarking results have been mostly taken from the paper 

“Object Detection with Deep Learning: A Review” written by Zhong-Qiu Zhao, Peng 

Zheng, Shou-tao Xu, and Xindong Wu and published in April 2019 (https://arxiv.org/

pdf/1807.05511.pdf).

 Comparison of Architecture
Table 6-1 provides a comparison of object detection algorithms in terms of the neural 

network architecture they use.

Table 6-1. Comparison or Neural Network Architecture of Object Detectors

Object 
Detector

Region 
Proposal

Activation 
Function

Loss Function Softmax 
Layer

r-Cnn Selective 

search

SgD hinge loss (classification), bounding box 

regression

Yes

Fast r-Cnn Selective 

search

SgD Class log loss + bounding box regression Yes

Faster r-Cnn rpn SgD Class log loss + bounding box regression Yes

Masr r-Cnn rpn SgD Class log loss + bounding box regression + 

semantic sigmoid loss

Yes

SSD none SgD Class sum-squared error loss + bounding 

box regression

no

YOLO none SgD Class sum-squared error loss + bounding 

box regression + object confidence + 

background confidence

Yes

(continued)
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Object 
Detector

Region 
Proposal

Activation 
Function

Loss Function Softmax 
Layer

YOLOv2 none SgD Class sum-squared error loss + bounding 

box regression + object confidence + 

background confidence

Yes

YOLOv3 none SgD Class sum-squared error loss + bounding 

box regression + object confidence + 

background confidence

Logistic 

classifier

 Comparison of Performance
Table 6-2 provides a performance comparison of the object detection algorithms trained 

on the Microsoft COCO dataset. The training was conducted on an Intel i7-6700K CPU 

with a single core and an Nvidia Titan X GPU.

Table 6-2. Performance Comparison of Object Detection Models

Object Detector Trained On mAP Test Speed  
(Sec/Image)

Frames per 
Second  
(FPS)

Suitable  
for  
Real- Time 
Videos?

r-Cnn COCO 2007 66.0% 32.84 0.03 no

Fast r-Cnn COCO 2007 and 2012 66.9% 1.72 0.60 no

Faster r-Cnn (Vgg- 16) COCO 2007 and 2012 73.2% 0.11 9.1 no

Faster r-Cnn 

(restnet-101)

COCO 2007 and 2012 83.8% 2.24 0.4 no

SSD300 COCO 2007 and 2012 74.3% 0.02 46 Yes

SSD512 COCO 2007 and 2012 76.8% 0.05 19 Yes

YOLO COCO 2007 and 2012 73.4% 0.02 46 Yes

YOLOv2 COCO 2007 and 2012 78.6% 0.03 40 Yes

YOLOv3 608x608 COCO 2007 and 2012 76.0% 0.029 34 Yes

YOLOv3 416x416 COCO 2007 and 2012 75.9% 0.051 19 Yes
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 Training Object Detection Model Using TensorFlow
We are now ready to write code to build and train our own object detection models. We 

will use the TensorFlow API and write code in Python. Object detection models are very 

compute-intensive and require both a lot of memory and a powerful processor. Most 

general-purpose laptops or computers may not be able to handle the computations 

necessary to build and train an object detection model. For example, a MacBook Air with 

32GB RAM and an eight-core CPU is not able to run a detection model involving about 

7,000 images. Thankfully, Google provides a limited amount of GPU-based computing 

for free. It has been proven that these models run many folds faster on a GPU than on a 

CPU. Therefore, it is important to learn how to train a model on a GPU. For the purposes 

of demonstration and learning, we will use the free version of Google GPU. Let’s first 

define what our learning objective is and how we want to achieve it.

• Objective: Learn how to train an object detection model using Keras 

and TensorFlow.

• Dataset: The Oxford-IIIT Pet dataset, which is freely available at 

robots.ox.ac.uk/~vgg/data/pets/. The dataset consists of 37 

categories of pets with roughly 200 images for each class. The images 

have large variations in scale, pose, and lighting. They are already 

annotated with bounding boxes and labeled.

• Execution environment: We will use Google Colaboratory (colab.

research.google.com), or Colab for short. We will utilize the GPU 

hardware accelerator that comes free with Colab. Google Colab is a 

free Jupyter notebook environment that requires no setup and runs 

entirely in the cloud. Jupyter notebook is an open source web-based 

application to write and execute Python programs. To learn more 

about how to use a Jupyter notebook, visit https://jupyter.org. 

The documentation is available at https://jupyter-notebook.

readthedocs.io/en/stable/. We will learn the Colab notebook as 

we work through the code.

• Important note: At the time of writing this book, TensorFlow version 2 

does not support the training of custom models for object detection. 

Therefore, we will use TensorFlow version 1.15 to train the model. 

The TensorFlow team and the open source community are working 
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to migrate the version 1 code to support the training of custom object 

detection models in version 2. Therefore, some of the steps that we 

have here are likely to change in the future. The GitHub location of 

this book will have the updated steps for version 2.

We will train the detection model with TensorFlow 1 on Google Colab, and after the 

model is trained, we will download and use it with TensorFlow 2. We will learn how to do 

that as well.

 TensorFlow on Google Colab with GPU
Google Colab provides a Jupyter notebook for machine learning education and training 

for free. It provides about 13GB RAM, 130GB disk, and an Nvidia GPU for 12 hours of 

continuous use. You can re-create your runtime if your session expires or the 12-hour 

limit is passed. When you execute your code, it is executed on a virtual machine that gets 

created specific to your private account. After the session expires, the virtual machine is 

terminated, and any data saved in the virtual disk is lost. However, Colab provides a way 

to mount your Google Drive directory to the Colab virtual disk. Your data will be stored 

on your Google Drive that you can retrieve when you create a Google Colab session. 

Let’s start with Google Colab and set up our runtime environment that we will utilize for 

executing our TensorFlow code.

 Accessing Google Colab

You must have a Google (or Gmail) account to access Google Colab. If you don’t already 

have one, you need to first sign up for an account at https://accounts.google.com.

Using your web browser, access the Google Colab URL at http://colab.research.

google.com. If you are already signed in with your Google account, you will have access 

to Colab; otherwise, you will need to sign in to your account to gain access to it.

 Connecting to the Hosted Runtime

Click the Connect button located at the top right of the screen, below the user and 

setting icons, and then click “Connect to hosted runtime” (Figure 6-19). At this point, 

your Colab session is created.
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Figure 6-19. Connecting to a hosted runtime

 Selecting a GPU Hardware Accelerator

Click Edit and then “Notebook settings” (Figure 6-20) to open a modal window. Select 

GPU as the hardware accelerator. Make sure you have Python 3 selected for the runtime 

type. Click the Save button (Figure 6-21).

Figure 6-20. Accessing notebook settings

Figure 6-21. Selecting GPU as the accelerator
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 Creating a Colab Project

Click File and then “New Python 3 notebook.” Your new notebook will open in a new 

browser tab. Give this notebook a meaningful name, such as Object Detection Model 

Training. By default, this notebook is saved in your Google Drive.

 Setting the Runtime Environment for TensorFlow and Model 
Training

Click +Code to insert a code cell into the notebook. Notice the code block with an empty 

cell in the main area of the notebook. You can write any Python code within this cell and 

execute it by clicking the execute icon .

Google Colab is an interactive programming environment and does not give direct 

access to the underlying operating system. You can invoke the shell using %%shell, 

which remains active within a single block of code cells it is invoked from. You can 

invoke the shell from as many code blocks as needed.

To set up our environment, we will follow the following steps:

 1. Install the necessary libraries needed to execute our TensorFlow 

code and train our model. Listing 6-1 shows the commands to 

install the required libraries.

Listing 6-1. Installing the Necessary Libraries and Packages

Filename: Listing_6_1

1    %%shell

2    %tensorflow_version 1.x

3    sudo apt-get install protobuf-compiler python-pil python-lxml python- tk

4    pip install --user Cython

5    pip install --user contextlib2

6    pip install --user pillow

7    pip install --user lxml

8    pip install --user matplotlib

Line 1 invokes the shell within the context of the code block it 

belongs to. This allows to run any shell command within this block.
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Line 2 tells the notebook that we want to use TensorFlow version 1.x 

and not the latest version 2, which is the default execution engine for 

machine learning on Google Colab. If you encounter any issue due 

to your Colab instance using TensorFlow 2, install TensorFlow 1.15 

using the command: pip install tensorflow==1.15.

Line 3 installs, using the operating system command, the Protobuf 

compiler and a few other software. Protobuf is used to compile the 

TensorFlow source code. Lines 4 through 8 install the Python libraries.

 2. Download the TensorFlow “models” project from the GitHub 

repository, and build and install it in your working environment. 

Listing 6-2 shows how to do this.

Listing 6-2. Downloading the TensorFlow Models Project, Building It, and 

Setting It Up

1    %%shell

2    mkdir computer_vision

3    cd computer_vision

4    git clone https://github.com/ansarisam/models.git

5    #git clone https://github.com/tensorflow/models.git

6    cd models/research

7

8    protoc object_detection/protos/*.proto --python_out=.

9

10   export PYTHONPATH=$PYTHONPATH:/content/computer_vision/models/research

11   export PYTHONPATH=$PYTHONPATH:/content/computer_vision/models/research/slim

12

13

14   python setup.py build

15   python setup.py install

Line 1 invokes the shell.

Line 2 creates a new directory called computer_vision. This is the 

directory we want to organize all our code and data in. Line 3 changes 

the current working directory to the new directory we just created.
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Line 4 clones a GitHub repository and downloads the source code of 

TensorFlow models project. This repository is forked from the official 

TensorFlow models’ repository. The official repository is listed in  

line 5 for reference.

The models repository contains a number of models implemented 

in TensorFlow. After it downloads the source code, you will see two 

subdirectories—official and research—within the models directory. 

The “official” directory contains all the models that are officially 

supported by TensorFlow and that get installed when you install 

TensorFlow. The research directory contains a large number of models 

that are created and maintained by researchers and not officially 

supported yet. The object detection models that we are interested in are 

in the research directory and not part of the official release yet.

Line 6 changes the working directory to the modes/research directory.

Line 8 builds the object detection–related source code using the 

Protobuf compiler.

Lines 10 and 11 set the PYTHONPATH environment variable to the 

research and research/slim directories.

Line 14 executes a build command using setup.py, a script that is 

provided in the Python script directory. Similarly, line 15 installs the 

object detection models in our working environment.

To test your code, execute each cell block one by one or execute all 

of them by clicking Runtime and then selecting “Run all” from the 

top menu context in Colab. If everything goes well, your TensorFlow 

version 1.x environment is ready for training object detection models.

 Downloading the Oxford-IIIT Pet Dataset

Let’s insert another code cell into the notebook. We will download the annotated and 

labeled pet dataset from the official website to a directory in our Colab workspace. 

Listing 6-3 contains the code that downloads the pet dataset and annotations.
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Listing 6-3. Downloading and Uncompressing the Images and Annotations of 

the Pet Dataset

1    %%shell

2    cd computer_vision

3    mkdir petdata

4    cd petdata

5    wget http://www.robots.ox.ac.uk/~vgg/data/pets/data/images.tar.gz

6    wget http://www.robots.ox.ac.uk/~vgg/data/pets/data/annotations.tar.gz

7    tar -xvf annotations.tar.gz

8    tar -xvf images.tar.gz

Line 1 invokes the shell. We need to do this in every cell block if we want to use any 

shell command.

Line 2 changes our working directory to the computer_vision directory.

Line 3 creates another directory called petdata within the computer_vision 

directory. We will download the pet dataset in the petdata directory.

Line 4 changes the working directory to the petdata directory.

Line 5 downloads the pet images, and line 6 downloads the annotations.

Lines 7 and 8 uncompress the downloaded images and annotations files.

If you execute this code block, you will see the images and annotations downloaded 

in the petdata directory. Images will be stored in the images subdirectory, and the 

annotations will be stored in the annotations subdirectory within the petdata directory.

 Generating TensorFlow TFRecord Files

TFRecord is a simple format for storing a sequence of binary records. The data in TFRecord 

is serialized and stored in smaller chunks (e.g., 100MB to 200MB), which makes them more 

efficient to transfer across networks and read serially. You will learn more about TFRecord, 

its format, and how to convert images and associated annotations in the TFRecord 

file format in Chapter 9. For now, we will use a Python script provided in the research 

directory of the TensorFlow source code we downloaded from GitHub. The script is located 

at the path research/object_detection/dataset_tools/create_pet_tf_record.py.

Object detection algorithms take TFRecord files as input to the neural network. 

TensorFlow provides a Python script to convert the Oxford pet image annotation files to 

a set of TFRecord files. Listing 6-4 does the conversion of both training and test sets to 

TFRecords.
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Listing 6-4. Converting Image Annotation Files to TFRecord Files

1    %%shell

2    cd computer_vision

3    cd models/research

4

5    python object_detection/dataset_tools/create_pet_tf_record.py \

6       --label_map_path=object_detection/data/pet_label_map.pbtxt \

7       --data_dir=/content/computer_vision/petdata \

8       --output_dir=/content/computer_vision/petdata/

Lines 2 and 3 change the working directory to the research directory.

Lines 5 through 8 run the Python script, create_pet_tf_record.py, that takes the 

following parameters:

• label_map_path: This file has the mapping of an ID (starting from 1) 

and corresponding class name. For the pet dataset, the mapping file 

is already available in the object_detection/data/pet_label_map.

pbtxt file. You will learn, in Chapter 9, how to generate this mapping 

file. But for now, let’s just use what is already available. This is a JSON-

formatted file. A few sample entries of the mapping file are shown here:

item {

  id: 1

  name: 'Abyssinian'

}

item {

  id: 2

  name: 'american_bulldog'

}

...

• data_dir: This is the parent directory of the images and annotations 

subdirectories.

• output_dir: This is the destination directory where the TFRecord 

files will be stored. You can give any existing directory name. After 

conversion of images and annotations, the TFRecord files will be 

saved in this directory.
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After this code block executes, it creates a set of *.record files in the output_directory. 

The script, create_pet_tf_record.py, creates both training and evaluation sets.

• Training set: The output directory should now contain 10 training file 

and 10 evaluation files. The number of *.record files may be different 

depending upon your input size. The *.record files of training set are 

named as pet_faces_train.record-?????-of-00010. The regular 

expression ????? takes values sequentially from 00001 through 00010.

• Evaluation or test set: The evaluation dataset is named as  pet_faces_

eval.record-?????-of-00010.

 Downloading a Pre-trained Model for Transfer Learning

Training a state-of-the-art object detection model from scratch takes several days, 

even with GPUs. To speed up the training, we will download an existing model trained 

on a different dataset, such as COCO, and reuse some of its parameters, including the 

weights, to initialize our new model. Reusing the weights and parameters from a pre- 

trained model to train a new model is called transfer learning. We will describe the 

transfer learning process in this section.

A collection of object detection models, trained on COCO and other datasets, is 

located at “TensorFlow detection model zoo” (https://github.com/tensorflow/

models/blob/master/research/object_detection/g3doc/detection_model_zoo.md).

Here is a list of COCO trained models:

Model Name Speed 
(ms)

COCO 
mAP[^1]

Outputs

ssd_mobilenet_v1_coco 30 21 boxes

ssd_mobilenet_v1_0.75_depth_coco ☆ 26 18 boxes

ssd_mobilenet_v1_quantized_coco ☆ 29 18 boxes

ssd_mobilenet_v1_0.75_depth_quantized_coco ☆ 29 16 boxes

ssd_mobilenet_v1_ppn_coco ☆ 26 20 boxes

ssd_mobilenet_v1_fpn_coco ☆ 56 32 boxes

ssd_resnet_50_fpn_coco ☆ 76 35 boxes

ssd_mobilenet_v2_coco 31 22 boxes
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Model Name Speed 
(ms)

COCO 
mAP[^1]

Outputs

ssd_mobilenet_v2_quantized_coco 29 22 boxes

ssdlite_mobilenet_v2_coco 27 22 boxes

ssd_inception_v2_coco 42 24 boxes

faster_rcnn_inception_v2_coco 58 28 boxes

faster_rcnn_resnet50_coco 89 30 boxes

faster_rcnn_resnet50_lowproposals_coco 64 boxes

rfcn_resnet101_coco 92 30 boxes

faster_rcnn_resnet101_coco 106 32 boxes

faster_rcnn_resnet101_lowproposals_coco 82 boxes

faster_rcnn_inception_resnet_v2_atrous_coco 620 37 boxes

faster_rcnn_inception_resnet_v2_atrous_

lowproposals_coco

241 boxes

faster_rcnn_nas 1833 43 boxes

faster_rcnn_nas_lowproposals_coco 540 boxes

mask_rcnn_inception_resnet_v2_atrous_coco 771 36 Masks

mask_rcnn_inception_v2_coco 79 25 Masks

mask_rcnn_resnet101_atrous_coco 470 33 Masks

mask_rcnn_resnet50_atrous_coco 343 29 Masks

For our training, we will download the ssd_inception_v2_coco model from 

http://download.tensorflow.org/models/object_detection/ssd_inception_v2_

coco_2018_01_28.tar.gz. You can download any of the trained models and follow the 

rest of the steps to train your own model. The command set in Listing 6-5 downloads the 

SSD inception model.

Listing 6-5. Downloading a Pre-trained SSD Inception Object Detection Model

1    %%shell

2    cd computer_vision

3    mkdir pre-trained-model
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4    cd pre-trained-model

5     wget http://download.tensorflow.org/models/object_detection/ssd_

inception_v2_coco_2018_01_28.tar.gz

6    tar -xvf ssd_inception_v2_coco_2018_01_28.tar.gz

We have created a new directory, called pre-trained-model, within the computer_

vision directory and changed the working directory to the new directory (lines 2, 3, 

and 4).

Line 5 uses the wget command to download the ssd_inception-v2_coco model as a 

compressed file.

Line 6 decompresses the downloaded file into a directory, ssd_inception_v2_

coco_2018_01_28.

In the Google Colab window, expand the left panel and check the Files tab. You 

should see something similar to the directory structure shown in Figure 6-22.

Figure 6-22. Pre-trained model directory structure
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 Configuring the Object Detection Pipeline

We need to provide a configuration file to the TensorFlow object detection API to train 

our model. This configuration file is called the training pipeline, which has a well- 

defined schema. The schema for the training pipeline is available in the location object_

detection/protos/pipeline.proto in the research directory.

The JSON formatted training pipeline is broadly divided into five parts, as shown here:

model: {

        (... Add model config here...)

}

train_config : {

        (... Add train_config here...)

}

train_input_reader: {

        (... Add train_input configuration here...)

}

eval_config: {

        (... Add eval_configuration here...)

}

eval_input_reader: {

        (... Add eval_input configuration here...)

}

• model: This defines the type of model we want to train.

• train_config: This defines the settings for the model parameters.

• eval_config: This determines what set of metrics will be reported for 

evaluation.

• train_input_config: This defines what dataset the model should be 

trained with.

• eval_input_config: This defines what dataset the model will be 

evaluated on.
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In Figure 6-22, notice the file pipeline.config in the model’s directory, ssd_

inception_v2_coco_2018_01_28. Download the pipeline.config file (right-click and 

Download) from the Colab, save it in your local computer, and edit it to configure your 

pipeline for your model. Here is a sample of the edited file that we will use for our model 

training:

model {

  ssd {

    num_classes: 37

    image_resizer {

      fixed_shape_resizer {

        height: 300

        width: 300

      }

    }

    feature_extractor {

      type: "ssd_inception_v2"

      depth_multiplier: 1.0

      min_depth: 16

      conv_hyperparams {

        regularizer {

          l2_regularizer {

            weight: 3.99999989895e-05

          }

        }

        initializer {

          truncated_normal_initializer {

            mean: 0.0

            stddev: 0.0299999993294

          }

        }

        activation: RELU_6

        batch_norm {

          decay: 0.999700009823

          center: true

          scale: true
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          epsilon: 0.0010000000475

          train: true

        }

      }

        override_base_feature_extractor_hyperparams: true

    }

    box_coder {

      faster_rcnn_box_coder {

        y_scale: 10.0

        x_scale: 10.0

        height_scale: 5.0

        width_scale: 5.0

      }

    }

    matcher {

      argmax_matcher {

        matched_threshold: 0.5

        unmatched_threshold: 0.5

        ignore_thresholds: false

        negatives_lower_than_unmatched: true

        force_match_for_each_row: true

      }

    }

    similarity_calculator {

      iou_similarity {

      }

    }

    box_predictor {

      convolutional_box_predictor {

        conv_hyperparams {

          regularizer {

            l2_regularizer {

              weight: 3.99999989895e-05

            }

          }
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          initializer {

            truncated_normal_initializer {

              mean: 0.0

              stddev: 0.0299999993294

            }

          }

          activation: RELU_6

        }

        min_depth: 0

        max_depth: 0

        num_layers_before_predictor: 0

        use_dropout: false

        dropout_keep_probability: 0.800000011921

        kernel_size: 3

        box_code_size: 4

        apply_sigmoid_to_scores: false

      }

    }

    anchor_generator {

      ssd_anchor_generator {

        num_layers: 6

        min_scale: 0.20000000298

        max_scale: 0.949999988079

        aspect_ratios: 1.0

        aspect_ratios: 2.0

        aspect_ratios: 0.5

        aspect_ratios: 3.0

        aspect_ratios: 0.333299994469

        reduce_boxes_in_lowest_layer: true

      }

    }

    post_processing {

      batch_non_max_suppression {

        score_threshold: 0.300000011921

        iou_threshold: 0.600000023842
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        max_detections_per_class: 100

        max_total_detections: 100

      }

      score_converter: SIGMOID

    }

    normalize_loss_by_num_matches: true

    loss {

      localization_loss {

        weighted_smooth_l1 {

        }

      }

      classification_loss {

        weighted_sigmoid {

        }

      }

      hard_example_miner {

        num_hard_examples: 3000

        iou_threshold: 0.990000009537

        loss_type: CLASSIFICATION

        max_negatives_per_positive: 3

        min_negatives_per_image: 0

      }

      classification_weight: 1.0

      localization_weight: 1.0

    }

  }

}

train_config {

  batch_size: 24

  data_augmentation_options {

    random_horizontal_flip {

    }

  }

  data_augmentation_options {

    ssd_random_crop {
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    }

  }

  optimizer {

    rms_prop_optimizer {

      learning_rate {

        exponential_decay_learning_rate {

          initial_learning_rate: 0.00400000018999

          decay_steps: 800720

          decay_factor: 0.949999988079

        }

      }

      momentum_optimizer_value: 0.899999976158

      decay: 0.899999976158

      epsilon: 1.0

    }

  }

  fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/model.ckpt"

  from_detection_checkpoint: true

  num_steps: 100000

}

train_input_reader {

  label_map_path: "PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt"

  tf_record_input_reader {

    input_path: "PATH_TO_BE_CONFIGURED/mscoco_train.record"

  }

}

eval_config {

  num_examples: 8000

  max_evals: 10

  use_moving_averages: false

}

eval_input_reader {

  label_map_path: "PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt"

  shuffle: false

  num_readers: 1
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  tf_record_input_reader {

    input_path: "PATH_TO_BE_CONFIGURED/mscoco_val.record"

  }

}

Since the pipeline.config file was saved at the time of training the model that we 

downloaded for transfer learning, we will keep most of the parts as is except for those 

highlighted using bold fonts. Here are the parameters that we should change based on 

the settings that we have in our Colab environment:

Num_classes: 37, which represents the 37 categories of pets in our 

dataset.

fine_tune_checkpoint: /content/computer_vision/pre- 

trained- model/ssd_inception_v2_coco_2018_01_28/model.

ckpt, which is the path where we stored the pre-trained model 

checkpoint. Notice in Figure 6-22 that the file name of the model 

checkpoint is model.ckpt.data-00000-of-00001, but in the fine_

tune_checkpoint configuration we provide only up to model.ckpt 

(you must not include the full name of the checkpoint file). To get 

the path of this checkpoint fie, in the Colab file browser, right-click 

the file name, and click “Copy path.”

num_steps: 100000, which is the number of steps the algorithm 

should execute. You may need to tune this number to get a 

desirable accuracy level.

Train_input_reader → label_map_path: /content/computer_

vision/models/research/object_detection/data/pet_label_

map.pbtxt, which is the path of the file that contains the mapping 

of ID and class name. For the pet dataset, this is available in the 

research directory.

Train_input_reader → input_path: /content/computer_

vision/petdata/pet_faces_train.record-?????-of-00010, 

which is the path of TFRecord file for training dataset. Notice that 

we used a regular expression (?????) in the training set path. This 

is important to include all training TFRecord files.
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Eval_input_reader → label_map_path: /content/computer_

vision/models/research/object_detection/data/pet_label_

map.pbtxt, which is the same as the training label map.

Eval_input_reader → input_path: /content/computer_vision/

petdata/pet_faces_eval.record-?????-of-00010, which is the 

path of the TFRecord file for evaluation dataset. Notice that we 

used a regular expression (?????) in the evaluation set path. This 

is important to include all evaluation TFRecord files.

It is important to note that pipeline.config has the parameter override_base_

feature_extractor_hyperparams set to true.

After editing the pipeline.config file, you need to upload it to Colab. You can 

upload it to any directory location, but in this case, we are uploading it to its original 

location from where we downloaded it. We will first remove the old pipeline.config file 

and then upload the updated one.

To delete the old pipeline.config file from the Colab directory location, right-click 

it and then click Delete. To upload the updated pipeline.config file from your local 

computer, right-click the Colab directory (ssd_inception_v2_coco_2018_01_28), click 

Upload, and browse and upload the file from your computer.

 Executing the Model Training

We are ready to start the training. Listing 6-6 triggers the training execution.

Listing 6-6. Executing the Model Training

1    %%shell

2    export PYTHONPATH=$PYTHONPATH:/content/computer_vision/models/research

3     export PYTHONPATH=$PYTHONPATH:/content/computer_vision/models/

research/slim

4    cd computer_vision/models/research/

5     PIPELINE_CONFIG_PATH=/content/computer_vision/pre-trained-model/ssd_

inception_v2_coco_2018_01_28/pipeline.config

6    MODEL_DIR=/content/computer_vision/pet_detection_model/

7    NUM_TRAIN_STEPS=1000

8    SAMPLE_1_OF_N_EVAL_EXAMPLES=1

9    python object_detection/model_main.py \
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10      --pipeline_config_path=${PIPELINE_CONFIG_PATH} \

11      --model_dir=${MODEL_DIR} \

12      --num_train_steps=${NUM_TRAIN_STEPS} \

13      --sample_1_of_n_eval_examples=$SAMPLE_1_OF_N_EVAL_EXAMPLES \

14      --alsologtostderr

TensorFlow provides a Python script, model_main.py, to trigger the model training. 

This script is located in the directory models/research/object_detection. This script 

takes the following parameters:

• pipeline_config_path: This is the path of the pipeline.config file.

• model_dir: This is the directory where your trained model will be 

saved.

• num_train_steps: This is the number of steps we want our network 

to train. This will override the num_steps parameter in the pipeline.

config file.

• sample_1_of_n_eval_examples: This determines one out of how 

many samples the model should use for evaluation.

Execute the previous code block in Colab and wait for the model to learn from your 

image set. While the model is learning, you will see the iteration losses printed in the 

Colab console. If everything goes well, you will have a trained object detection model 

saved in the model_dir directory.

 Exporting the TensorFlow Graph

After the model is successfully trained, the model along with the checkpoints are saved 

in model_dir, which is pet_detection_model in our case. This directory contains all 

the checkpoints that were generated during the training. These checkpoints must be 

converted into a final model. To use this model in predicting objects and bounding 

boxes, we need to export this model. Here are the steps.

First we need to identify the candidate checkpoint to export. This may be the last 

checkpoint that we can identify by looking at the sequence number in the file name. The 

checkpoints typically consist of the following three files (ignore the rest of the files in the 

directory for now):
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• model.ckpt-${CHECKPOINT_NUMBER}.data-00000-of-00001

• model.ckpt-${CHECKPOINT_NUMBER}.index

• model.ckpt-${CHECKPOINT_NUMBER}.meta

Take the checkpoint with the maximum ${CHECKPOINT_NUMBER} value. Our model 

ran for 10,000 steps, so our max checkpoint files should look like the following:

• model.ckpt-10000.data-00000-of-00001

• model.ckpt-10000.index

• Model.ckpt-10000.meta

Listing 6-7 exports our object detection–trained model into a user-defined directory.

Listing 6-7. Exporting the TensorFlow Graph

1    %%shell

2    export PYTHONPATH=$PYTHONPATH:/content/computer_vision/models/research

3     export PYTHONPATH=$PYTHONPATH:/content/computer_vision/models/

research/slim

4    cd computer_vision/models/research

5

6    python object_detection/export_inference_graph.py \

7       --input_type image_tensor \

8        --pipeline_config_path /content/computer_vision/pre-trained-model/

ssd_inception_v2_coco_2018_01_28/pipeline.config \

9        --trained_checkpoint_prefix /content/computer_vision/pet_detection_

model/model.ckpt-100 \

10       --output_directory /content/computer_vision/pet_detection_model/

final_model

Lines 6 through 10 export the TensorFlow graph by calling the script export_

inference_graph.py, which is located in the directory models/research/object_

detection. This script takes the following parameters:

• input_type: For our model, it will be image_tensor.

• pipeline_config_path: This is the same pipeline.config file path 

that we used before.
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• trained_checkpoint_prefix: This is the path of the candidate 

checkpoint that we identified earlier (model.ckpt-ckpt-10000). Do 

not use the .index or .meta or anything in the checkpoint prefix.

• output_directory: This is the directory where the exported graph 

will be saved. Figure 6-23 shows the output directory structure after 

the export script is executed.

Figure 6-23. Model exported in the directory final_model
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 Downloading the Object Detection Model

Google Colab does not allow you to download a directory. You can download a file but 

not a directory. Of course, you could download each file from the final_model directory 

one by one, but that is not efficient. However, we will learn how to save your fully trained 

model to your private Google Drive.

Google Colab will terminate your virtual machine and delete all your data after 12 

hours of continuous usage or after your session expires. That means you will lose your 

model if you do not download it. You can directly save your models and any data to 

Google Drive. If your model is going to run for hours, it is a good idea that you save all 

your data and model in Google Drive before you begin the training process.

Here are the steps to do that.

To mount your Google Drive, from the left panel, click Files and then Mount Drive. 

Some new code is inserted in the notebook area. Execute the code by clicking the  

icon located in the code block.

Click the authorization link to generate an authorization code. You may need to 

sign in to your Google account again. Copy the authorization code and paste it in the 

notebook and press the Enter key. See Figure 6-24. After the drive is mounted, you will 

see a list of directories in the left panel on the Files tab (in Figure 6-25). Notice that the 

example Google Drive in Figure 6-25 has a directory called computervision that was 

already created in the Drive. Feel free to create any directory you want.

Move the final_model directory to the Google Drive directory.

To save the trained object detection model to the Google Drive directory, simply drag 

final_directory from the Colab directory to the Google Drive directory.

You must also copy to the Google Drive the following checkpoint files:

• model.ckpt-10000.data-00000-of-00001

• Model.ckpt-10000.index

• Model.ckpt-10000.meta

Chapter 6  Deep Learning in ObjeCt DeteCtiOn



272

To download model from Google Drive, log in to your Google Drive and download 

the trained model to your local computer. You should download the entire final_model 

directory.

 Visualizing the Training Result in TensorBoard

To see the training statistics and the model result, launch the TensorBoard dashboard 

using the code in Listing 6-8 in Colab. --logdir is the directory where we are saving the 

model checkpoints.

Listing 6-8. Launching the TensorBoard Dashboard to See the Training Results

1    %load_ext tensorboard

2    %tensorboard --logdir /content/computer_vision/pet_detection_model

Line 1 loads the TensorBoard notebook extension. This will display the TensorBoard 

dashboard embedded within the Colab screen.

Figure 6-26 shows the TensorBoard dashboard showing the Image page.

Figure 6-25. Google dDive directory structure

Figure 6-24. Google Drive mounting
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Figure 6-26. Model training result in TensorBoard dashboard

Alternatively, if you want to evaluate the model offline in your local computer and 

not on Colab, you can download the entire pet_detection_model directory where 

we saved the model checkpoints. The final_model directory, which we exported 

our trained model to, does not contain the full model statistics and training results. 

Therefore, you must download the entire pet_detection_model directory.

In your computer terminal (or command prompt), launch TensorBoard by passing 

the path to the pet_detection_model directory. Make sure you are in the virtual 

environment (as explained in Chapter 1). Here is the command:

(cv) username$ tensorboard --logdir ~/Downloads/pet_detection_model

After the previous command is successfully executed, open your web browser and go 

to http://localhost:6006 to see the TensorBoard dashboard. Click the Image tab in the 

top menu to see the evaluation output with bounding boxes on the images, as shown in 

Figure 6-26.
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 Detecting Objects Using Trained Models
As we learned before, model training is not a frequent activity and, when we have a 

reasonably good model (high accuracy or mAP), we may not need to retrain the model 

for as long as the model gives accurate predictions. Also, the model training is compute- 

intensive, and it takes several hours or days to train a good model even on GPUs. It is 

sometimes desirable and economical to train your computer vision models on the cloud 

and use GPUs. When the model is ready, download it to use locally in your computer or 

application server, which will use this model to detect objects in images.

In this section, we will explain how to develop object detection predictors in your 

local computer using the model that we trained on Google Colab. We will use PyCharm, 

the IDE that we have been using throughout this book. Of course, you can use Colab 

to develop the object detection predictor, but that is not ideal from the production 

deployment perspective.

Although the object detection model training is not yet supported in TensorFlow 

version 2, the detection code that we are going to write here works on TensorFlow 2.

We will follow this high-level plan to develop our predictor:

 1. Download and install the TensorFlow models project from the 

GitHub repository.

 2. Write the Python code that will utilize the exported TensorFlow 

graph (exported model) to predict objects within new images that 

were not included in the training or test sets.

 Installing TensorFlow’s models Project
The installation process of the TensorFlow models project is the same as we did on 

Google Colab. The difference may be in the Protobuf installation as it is platform- 

dependent software. Before we start, make sure that your PyCharm IDE is configured 

to use the virtual environment we created in Chapter 1. We will execute commands in 

PyCharm’s terminal window. If you choose to execute commands using the operating 

system’s shell, make sure you have activated the virtual environment for the shell 

session. (See Chapter 1 to review virtualenv.) Here is the full set of steps to install and 

configure the models project:
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 1. First, let’s install a few necessary libraries that are needed to build 

and install the models project. Execute the commands shown in 

Table 6-3 in the terminal or at the command prompt (from within 

the virtualenv).

Table 6-3. Commands to Install Dependencies

pip install --user Cython

pip install --user contextlib2

pip install --user pillow

pip install --user lxml

 2. Install Google’s Protobuf compiler. The installation process 

depends on the operating system you are using. Follow these 

instructions for your OS:

 a. On Ubuntu: sudo apt-get install protobuf-compiler

 b. On other Linux OSs:

wget -O protobuf.zip 

https://github.com/google/protobuf/releases/download/v3.0.0/

protoc-3.0.0-linux-x86_64.zip

unzip protobuf.zip

Remember the directory location you have installed Protobuf 

in, as you will need to provide the full path to bin/protoc when 

building the TensorFlow code.

 a. On Mac OS: brew install protobuf

 3. Clone the TensorFlow models project from GitHub using the 

following:

git clone https://github.com/ansarisam/models.git

You can also download the models from the TensorFlow official 

repository at https://github.com/tensorflow/models.git.

As shown in Figure 6-27, we have downloaded the TensorFlow 

models project in a directory called chapter6.
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 4. Compile the models project using the Protobuf compiler. Run the 

following set of commands from the models/research directory:

$ cd models/research

$ protoc object_detection/protos/*.proto --python_out=.

If you installed Protobuf manually and unzipped it in a directory, 

provide the full path up to bin/protoc in the previous command.

 5. Set the following environment variables. It’s a standard practice to 

set these environment variables in ~/.bash_profile. Here are the 

instructions to do that:

 a. Open your command prompt or terminal and type vi ~/.bash_

profile. You can use any other editor such as nano to edit the 

.bash_profile file.

 b. Add the following three lines at the end of .bash_profile. Make 

sure the paths match with the directory paths you have in your 

computer.

Figure 6-27. Example directory structure consisting of TensorFlow model project
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export  

PYTHONPATH=$PYTHONPATH:~/cviz_tf2_3/chapter6/models/

research/object_detection

export  

PYTHONPATH=$PYTHONPATH:~/cviz_tf2_3/chapter6/models/

research

export  

PYTHONPATH=$PYTHONPATH:~/cviz_tf2_3/chapter6/models/

research/slim

 c. Save the file ~/.bash_profile after adding the previous line.

 d. Close your terminal and relaunch it to effect the change. You will need to 

close your PyCharm IDE to have the environment variables update in your 

IDE. To test the setting, type the command echo $PYTHONPATH in your 

PyCharm terminal window. It should print the paths we just set up.

 6. Build and install the research project that we just built using 

Protobuf. Execute the following commands from the models/

research directory:

python setup.py build

python setup.py install

If the command successfully runs, it should print, at the end, something like this:

Finished processing dependencies for object-detection==0.1

We are all set with the environment preparation and ready to write code to detect 

objects in images. We will use the exported model that we downloaded from Colab. If 

you have not done so, it is time to download the final model from Google Colab or Drive 

if you saved your models in your Google Drive.

 Code for Object Detection
Now that we have our coding environment ready with GitHub checkouts of the 

TensorFlow models project and all the necessary setup done, we are ready to write code 

that does object detection in images and draws bounding boxes around them. To keep 

the code simple and easy to understand, we have divided it into the following parts:
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• Configuration and initialization: In this section of the code, we 

initialize the model path, image input, and output directories.  

Listing 6-9 shows the first part of the code that includes the library 

imports and path setup.

Listing 6-9. Imports and Path Initialization Part of the Object Detection Code

Filename: Listing_6_9.py

1    import os

2    import pathlib

3    import random

4    import numpy as np

5    import tensorflow as tf

6    import cv2

7    # Import the object detection module.

8    from object_detection.utils import ops as utils_ops

9    from object_detection.utils import label_map_util

10

11   # to make gfile compatible with v2

12   tf.gfile = tf.io.gfile

13

14   model_path = "ssd_model/final_model"

15   labels_path = "models/research/object_detection/data/pet_label_map.pbtxt"

16   image_dir = "images"

17   image_file_pattern = "*.jpg"

18   output_path="output_dir"

19

20   PATH_TO_IMAGES_DIR = pathlib.Path(image_dir)

21   IMAGE_PATHS = sorted(list(PATH_TO_IMAGES_DIR.glob(image_file_pattern)))

22

23   # List of the strings that is used to add the correct label for each box.

24    category_index = label_map_util.create_category_index_from_labelmap 

(labels_path, use_display_name=True)

25   class_num =len(category_index)

Chapter 6  Deep Learning in ObjeCt DeteCtiOn



279

Line 1 through 6 are our usual imports. Lines 8 and 9 import the object 

detection APIs from the research module of the TensorFlow models 

project. Make sure the PYTHONPATH environment variable is correctly 

set (as explained earlier).

Line 12 initializes the gfile in the TensorFlow2 compatibility mode. 

The gfile provides I/O functionality in TensorFlow.

Line 14 initializes the directory path where our object detection trained 

model is located.

Line 15 initializes the mapping file path. We set the same JSON 

formatted file containing the class ID and class name mapping that we 

used for the training.

Line 16 is the input directory path containing images in which objects 

need to be detected.

Line 17 defines the pattern of file names in the input image path. If you 

want to load all files from the directory, use *.*.

Line 18 is the output directory path where the images with bounding 

boxes around the detected objects will be saved.

Lines 20 and 21 are to create iterable path objects that we will iterate 

through to read images one by one and detect objects in each of them.

Line 24 uses the label mapping file to create a category or class index.

Line 25 assigned the number of classes to the class_num variable.

In addition to the previous initialization, we initialize a color table that 

we will use when drawing bounding boxes. Listing 6-10 shows the code.

Listing 6-10. Creating a Color Table Based on the Number of Object Classes

27   def get_color_table(class_num, seed=0):

28      random.seed(seed)

29      color_table = {}

30      for i in range(class_num):

31          color_table[i] = [random.randint(0, 255) for _ in range(3)]

32      return color_table

33

34   colortable = get_color_table(class_num)

35
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• Create a model object by loading the trained model. Listing 6-11 

shows the function, load_model(), that takes the model path as 

input. Line 40 loads the saved model from the directory and creates a 

model object that is returned by this function. We will use this model 

object to predict the objects and bounding boxes.

Listing 6-11. Loading the Model from a Directory

36   # # Model preparation and loading the model from the disk

37   def load_model(model_path):

38

39      model_dir = pathlib.Path(model_path) / "saved_model"

40      model = tf.saved_model.load(str(model_dir))

41      model = model.signatures['serving_default']

42      return model

43

• Run the prediction and construct the output in a usable form. We 

have written a function called run_inference_for_single_image() 

that takes two arguments: the model object and image NumPy. This 

function returns a Python dictionary. The output dictionary contains 

the following key pairs:

 detection_boxes, which is a 2D array consisting of the four corners 

of bounding boxes.

detection_scores, which is a 1D array of scores associated with 

each bounding box.

detection_classes, which is a 1D array of integer representation 

of the object class-index associated with each bounding box.

num_detections, which is a scalar that indicates the number of 

predicted object classes.

Listing 6-12 shows the implementation of the function  

run_inference_for_single_image().

Let’s examine the code listing line by line.
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The TensorFlow model object takes a batch of image tensors to 

predict the object classes and bounding boxes around them. Line 

48 converts the image NumPy into a tensor. Since we are processing 

one image at a time and the model object takes a batch, we need to 

convert our image tensor into a batch of images. Line 50 does that. 

The tf.newaxis expression is used to increase the dimension of an 

existing array by 1, when used once. Thus, a 1D array will become a 

2D array. A 2D array will become a 3D array. And so on.

Listing 6-12. Predicting Objects and Bounding Boxes and Organizing the Output

44   # Predict objects and bounding boxes and format the result

45   def run_inference_for_single_image(model, image):

46

47       # The input needs to be a tensor, convert it using `tf.convert_to_

tensor`.

48      input_tensor = tf.convert_to_tensor(image)

49      # The model expects a batch of images, so add an axis with `tf.newaxis`.

50      input_tensor = input_tensor[tf.newaxis, ...]

51

52      # Run prediction from the model

53      output_dict = model(input_tensor)

54

55      # Input to model is a tensor, so the output is also a tensor

56       # Convert to numpy arrays, and take index [0] to remove the batch 

dimension.

57      # We're only interested in the first num_detections.

58      num_detections = int(output_dict.pop('num_detections'))

59      output_dict = {key: value[0, :num_detections].numpy()

60                     for key, value in output_dict.items()}

61      output_dict['num_detections'] = num_detections

62

63      # detection_classes should be ints.

64       output_dict['detection_classes'] = output_dict['detection_

classes'].astype(np.int64)

65
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66      # Handle models with masks:

67      if 'detection_masks' in output_dict:

68          # Reframe the the bbox mask to the image size.

69           detection_masks_reframed = utils_ops.reframe_box_masks_to_

image_masks(

70              output_dict['detection_masks'], output_dict['detection_boxes'],

71              image.shape[0], image.shape[1])

72          detection_masks_reframed = tf.cast(detection_masks_reframed > 0.5,

73                                             tf.uint8)

74           output_dict['detection_masks_reframed'] = detection_masks_

reframed.numpy()

75

76      return output_dict

Line 53 is the one that does the actual object detection. The function 

model(input_tensor) predicts the object classes, bounding boxes, 

and associated scores. The model(input_tensor) function returns a 

dictionary that we will format in a usable form so that it contains the 

output corresponding to the input image only.

Since the model takes a batch of images, the function returns output 

for the batch. Because we have only one image, we are interested in the 

first result of this output dictionary (accessed by the 0th index). Line 59 

extracts the first output and reassigns the output_dict variable.

Line 61 stores a number of detections in the dictionary so that we have 

this number handy when we work with the result.

Lines 66 through 74 are applicable only for a Mask R-CNN when masks 

need to be predicted. For all other predictors, these lines may be omitted.

Line 76 returns the output dictionary, which consists of coordinates 

of detected bounding boxes, object classes, scores, and number of 

detections. In the case of a Mask R-CNN, it also includes object masks.

Next, we will examine how output_dict is used to draw bounding 

boxes around detected objects in the images.

• We will now write code to infer the output, draw bounding boxes 

around detected objects, and store the result. The function infer_

object() in Listing 6-13 is used to infer output_dict that was 
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returned by the function run_inference_for_single_image(). This 

function called infer_object() draws bounding boxes around each 

detected object in the image. It also labels the objects with class 

names and scores and finally saves the result to the output directory 

location. Listing 6-13 is the line-by-line explanation of the code.

Listing 6-13. Drawing Bounding Boxes Around Detected Objects in Input Images

79   def infer_object(model, image_path):

80      # Read the image using openCV and create an image numpy

81      # The final output image with boxes and labels on it.

82      imagename = os.path.basename(image_path)

83

84      image_np = cv2.imread(os.path.abspath(image_path))

85      # Actual detection.

86      output_dict = run_inference_for_single_image(model, image_np)

87

88      # Visualization of the results of a detection.

89      for i in range(output_dict['detection_classes'].size):

90

91          box = output_dict['detection_boxes'][i]

92          classes = output_dict['detection_classes'][i]

93          scores = output_dict['detection_scores'][i]

94

95          if scores > 0.5:

96              h = image_np.shape[0]

97              w = image_np.shape[1]

98              classname = category_index[classes]['name']

99              classid =category_index[classes]['id']

100             #Draw bounding boxes

101              cv2.rectangle(image_np, (int(box[1] * w), int(box[0] * h)), 

(int(box[3] * w), int(box[2] * h)), colortable[classid], 2)

102

103             #Write the class name on top of the bounding box

104             font = cv2.FONT_HERSHEY_COMPLEX_SMALL

105              size = cv2.getTextSize(str(classname) + ":" + str(scores), 

font, 0.75, 1)[0][0]
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106

107              cv2.rectangle(image_np,(int(box[1] * w), int(box[0] * h-20)),  

((int(box[1] * w)+size+5), int(box[0] * h)), 

colortable[classid],-1)

108             cv2.putText(image_np, str(classname) + ":" + str(scores),

109                      (int(box[1] * w), int(box[0] * h)-5), font, 0.75, 

(0,0,0), 1, 1)

110         else:

111             break

112      # Save the result image with bounding boxes and class labels in 

file system

113     cv2.imwrite(output_path+"/"+imagename, image_np)

Line 79 defines the function infer_object() that takes two arguments: the model 

object and the path of the input image.

Line 82 simply gets the file name of the image that is used in line 110 and stores the 

resulting image with the same name to the output directory.

Line 84 reads the image using OpenCV and converts it into a NumPy array.

Line 85 calls the function run_inference_for_single_image() by passing to it the 

model object and the image NumPy. Recall that the function run_inference_for_single_

image() returns a dictionary containing the detected objects and bounding boxes.

The output dictionary may contain more than one object and bounding box. We 

need to loop through and draw bounding boxes around those objects for which the score 

is more than a threshold value. In the previous code example, line 13 loops through each 

detected object class. The scores in the output dictionary are sorted in descending order. 

Therefore, when the score is less than the threshold value, the loop is exited.

Lines 91 through 93 simply extract the three important output arrays—bounding box 

coordinates, detected object class within this bounding box, and associated prediction 

score—and assign them to the corresponding variables.

In line 91, the variable box is an array containing the four corners of the bounding 

box as described here:

• box[0] is the y-coordinate, and box[0] is the x-coordinate of the left- 

top corner of the rectangular bounding box.

• box[1] and box[2] are the y- and x-coordinates of the bottom-right 

corner of the bounding box.
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Line 95 checks to see whether the score is greater than the threshold. In this 

example, we used a threshold value of 0.5, but you can use a value suitable to your 

particular application. The bounding box will be drawn on the image only if the score is 

greater than the threshold value; otherwise, it will exit the for loop.

Recall that the images are resized before they are fed into the model for the training. 

The images are resized according to the height and width settings in the pipeline.

config that we used for the training. Therefore, the predicted bounding boxes are also 

scaled according to the resized images. Hence, we need to re-scale the bounding boxes 

according to the original size of the input image used for detection. Multiplying the box 

coordinates with the image height and width scales the coordinates for the image size.

Line 101 draws rectangular bounding boxes using OpenCV’s rectangle() function 

(review Chapter 2 for the rectangle() function). Notice that we used the colortable to 

dynamically get a different color for different classes.

Line 105 writes the predicted class name and corresponding score just above the 

bounding box. If you like, you can change the font style in line 104. In our example, the 

font color of the text and the borders of the bounding box are the same. You can use a 

different color by calling the colortable functions with different values. For example, 

add a constant to the class index and call the color table for the text color.

As we mentioned earlier, the scores are sorted with the highest score at the top of the 

array. The first case of score after the threshold will break the loop to avoid unnecessary 

processing.

Line 113 saves the resulting image, with bounding boxes around detected objects, 

into the output directory.

Now that we have all the right settings and functions defined, we need to call them to 

trigger the detection process. Listing 6-14 shows you how to trigger the detection.

Listing 6-14. Function Calls to Trigger the Detection Process

116  # Obtain the model object

117  detection_model = load_model(model_path)

118

119  # For each image, call the prediction

120  for image_path in IMAGE_PATHS:

121     infer_object(detection_model, image_path)
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In Listing 6-14, line 117 calls the load_model() function by passing the path to the 

trained model. This function returns the model object that will be utilized in subsequent 

calls.

Line 120 iterates through each image file and calls infer_object() for each image. 

The function infer_object() is invoked for each image, and the final output with 

bounding boxes around the detected objects are saved in the output directory.

Let’s put all these together to see the complete source code for object detection. 

Listing 6-15 is the fully working code.

Listing 6-15. Fully Working Code for Object Detection Using a Pretrained Model

Filename: Listing_6_15.py

1    import os

2    import pathlib

3    import random

4    import numpy as np

5    import tensorflow as tf

6    import cv2

7    # Import the object detection module.

8    from object_detection.utils import ops as utils_ops

9    from object_detection.utils import label_map_util

10

11   # to make gfile compatible with v2

12   tf.gfile = tf.io.gfile

13

14   model_path = "ssd_model/final_model"

15   labels_path = "models/research/object_detection/data/pet_label_map.pbtxt"

16   image_dir = "images"

17   image_file_pattern = "*.jpg"

18   output_path="output_dir"

19

20   PATH_TO_IMAGES_DIR = pathlib.Path(image_dir)

21   IMAGE_PATHS = sorted(list(PATH_TO_IMAGES_DIR.glob(image_file_pattern)))

22

23   # List of the strings that are used to add the correct label for each box.
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24    category_index = label_map_util.create_category_index_from_labelmap 

(labels_path, use_display_name=True)

25   class_num =len(category_index)

26

27   def get_color_table(class_num, seed=0):

28      random.seed(seed)

29      color_table = {}

30      for i in range(class_num):

31          color_table[i] = [random.randint(0, 255) for _ in range(3)]

32      return color_table

33

34   colortable = get_color_table(class_num)

35

36   # # Model preparation and loading the model from the disk

37   def load_model(model_path):

38

39      model_dir = pathlib.Path(model_path) / "saved_model"

40      model = tf.saved_model.load(str(model_dir))

41      model = model.signatures['serving_default']

42      return model

43

44   # Predict objects and bounding boxes and format the result

45   def run_inference_for_single_image(model, image):

46

47      # The input needs to be a tensor, convert it using `tf.convert_to_tensor`.

48      input_tensor = tf.convert_to_tensor(image)

49      # The model expects a batch of images, so add an axis with `tf.newaxis`.

50      input_tensor = input_tensor[tf.newaxis, ...]

51

52      # Run prediction from the model

53      output_dict = model(input_tensor)

54

55      # Input to model is a tensor, so the output is also a tensor

56       # Convert to numpy arrays, and take index [0] to remove the batch 

dimension.
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57      # We're only interested in the first num_detections.

58      num_detections = int(output_dict.pop('num_detections'))

59      output_dict = {key: value[0, :num_detections].numpy()

60                     for key, value in output_dict.items()}

61      output_dict['num_detections'] = num_detections

62

63      # detection_classes should be ints.

64       output_dict['detection_classes'] = output_dict['detection_

classes'].astype(np.int64)

65

66      # Handle models with masks:

67      if 'detection_masks' in output_dict:

68          # Reframe the the bbox mask to the image size.

69           detection_masks_reframed = utils_ops.reframe_box_masks_to_

image_masks(

70              output_dict['detection_masks'], output_dict['detection_boxes'],

71              image.shape[0], image.shape[1])

72          detection_masks_reframed = tf.cast(detection_masks_reframed > 0.5,

73                                             tf.uint8)

74           output_dict['detection_masks_reframed'] = detection_masks_

reframed.numpy()

75

76      return output_dict

77

78

79   def infer_object(model, image_path):

80      # Read the image using openCV and create an image numpy

81      # The final output image with boxes and labels on it.

82      imagename = os.path.basename(image_path)

83

84      image_np = cv2.imread(os.path.abspath(image_path))

85      # Actual detection.

86      output_dict = run_inference_for_single_image(model, image_np)

87

88      # Visualization of the results of a detection.
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89      for i in range(output_dict['detection_classes'].size):

90

91          box = output_dict['detection_boxes'][i]

92          classes = output_dict['detection_classes'][i]

93          scores = output_dict['detection_scores'][i]

94

95          if scores > 0.5:

96              h = image_np.shape[0]

97              w = image_np.shape[1]

98              classname = category_index[classes]['name']

99              classid =category_index[classes]['id']

100             #Draw bounding boxes

101              cv2.rectangle(image_np, (int(box[1] * w), int(box[0] * h)), 

(int(box[3] * w), int(box[2] * h)), colortable[classid], 2)

102

103             #Write the class name on top of the bounding box

104             font = cv2.FONT_HERSHEY_COMPLEX_SMALL

105              size = cv2.getTextSize(str(classname) + ":" + str(scores), 

font, 0.75, 1)[0][0]

106

107              cv2.rectangle(image_np,(int(box[1] * w), int(box[0] * 

h-20)), ((int(box[1] * w)+size+5), int(box[0] * h)), 

colortable[classid],-1)

108             cv2.putText(image_np, str(classname) + ":" + str(scores),

109                      (int(box[1] * w), int(box[0] * h)-5), font, 0.75, 

(0,0,0), 1, 1)

110         else:

111             break

112      # Save the result image with bounding boxes and class labels in 

file system

113     cv2.imwrite(output_path+"/"+imagename, image_np)

114     # cv2.imshow(imagename, image_np)

115

116  # Obtain the model object

117  detection_model = load_model(model_path)
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118

119  # For each image, call the prediction

120  for image_path in IMAGE_PATHS:

121     infer_object(detection_model, image_path)

Figure 6-28 shows some sample output with the detected objects enclosed within 

bounding boxes.

Figure 6-28. Example output images with detected animal faces and surrounding 
boxes

 Training a YOLOv3 Model for Object Detection
YOLOv3 is the youngest of all the object detection algorithms we have studied in this 

chapter. It has not made it to the TensorFlow object detection API yet. Joseph Redmon 

and Ali Farhadi, the authors of YOLOv3, have made their APIs publicly available. They 

have also provided weights of a trained model based on the COCO dataset. As described 

in the YOLOv3 section of this chapter, YOLOv3 uses the Darknet-53 architecture to train 

the model.

We will use the official API and weights of the pretrained model to perform transfer 

learning of our YOLOv3 model from the same Oxford-IIIT Pet dataset that we used in the 

previous SSD model. We will run the training on Google Colab and use a GPU hardware 

accelerator.
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Before we start, sign in to your Google Colab account and create a new project. If 

you followed the SSD training process, it should be easy for you. Otherwise, review the 

Google Colab section of the previous sections. Let’s begin!

 Installing the Darknet Framework
Darknet is an open source neural network framework written in C and CUDA that runs 

on both CPUs and GPUs. First, clone the Darknet GitHub repository and then build the 

source. Listing 6-16 shows how to do this in a Google Colab notebook.

Listing 6-16. Cloning a Darknet Repository

1    %%shell

2    git clone https://github.com/ansarisam/darknet.git

3    # Official repository

4    #git clone https://github.com/pjreddie/darknet.git

Line 2 checks out the Darknet project from our GitHub repository that was forked 

from the official Darknet repository. If you prefer to download it from the official 

repository, uncomment line 4 and comment line 2.

After the repository is cloned, expand the file browser, navigate to the darknet 

directory, and download the Makefile to your local computer. Edit the Makefile 

(highlighted in bold letters) and change GPU=1 and OPENCV=1, as shown here:

GPU=1

CUDNN=0

OPENCV=1

OPENMP=0

DEBUG=0

Make sure no other change is made to the Makefile, or you may have trouble 

building your Darknet code.

After making the previous changes, upload the Makefile to the darknet directory of 

Colab.

Now we are ready to build the Darknet framework. Listing 6-17 shows the build 

command.
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Listing 6-17. Running the make Command to Build Darknet

1    %%shell

2    cd darknet/

3    make

After the build process successfully completes, run the command in Listing 6-18 to 

test your installation. It should print usage: ./darknet <function> if the installation is 

successful.

Listing 6-18. Testing the Darknet Installation

1    %%shell

2    cd darknet

3    ./darknet

 Downloading Pre-trained Convolutional Weights
Listing 6-19 downloads pre-trained weights of the COCO dataset trained on the 

Darknet-53 framework.

Listing 6-19. Downloading Pre-trained Darknet-53 Weights

1    %%shell

2    mkdir pretrained

3    cd pretrained

4    wget https://pjreddie.com/media/files/darknet53.conv.74

 Downloading an Annotated Oxford-IIIT Pet Dataset
Listing 6-20 downloads the pet dataset with both the images and annotations. This was 

already explained in the previous section related to SSD training.

Listing 6-20. Downloading the Pet Dataset Images and Annotations

1    %%shell

2    mkdir petdata

3    cd petdata

4    wget http://www.robots.ox.ac.uk/~vgg/data/pets/data/images.tar.gz

5    wget http://www.robots.ox.ac.uk/~vgg/data/pets/data/annotations.tar.gz
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6    tar -xvf images.tar.gz

7    tar -xvf annotations.tar.gz

Note the images directory contains a few files with the extension .mat, which 
causes the training to break. Listing 6-21 removes these .mat files.

Listing 6-21. Deleting the Invalid File Extension .mat

1    %%shell

2    cd /content/petdata/images

3    rm *.mat

 Preparing the Dataset
The YOLOv3 training API expects the dataset to have a certain format and directory 

structure. The pet data that we downloaded has two subdirectories: images and 

annotations. The images directory contains all the labeled images that we will use for 

training and testing. The annotations directory contains annotation files in XML format, 

one XML file per image.

YOLOv3 expects the following files:

 – train.txt: This file contains the absolute path of images—one image path 

per line—that will be used for training.

 – test.txt: This file contains the absolute path of images—one image path 

per line—that will be used for testing.

 – class.data: This file contains a list of names of the object classes—one 

name per line.

 – labels: This directory is in the same location where train.txt and test.txt 

are located. This labels directory contains annotation files, one file per image. 

The file name in this directory must be the same as the image file name, except 

that it has the extension .txt. For example, if the image file name is 

Abyssinian_1.jpg, the annotation file name in the labels directory must be 

Abyssinian_1.txt. Each annotation text file must contain the annotated 

bounding box and object class in one single line in the following format:

<object-class> <x_center> <y_center> <width> <height>
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where

<object-class> is the integer class index of the object, from 0 to (num_

class-1).

<x_center> and <y_center> are float values representing the center of 

the bounding boxes relative to the image height and width.

<width> <height> are the width and height of bounding boxes relative 

to the image height and width.

Note that the entries in this file are separated by blank spaces and not 

by commas or any other delimiters.

An example entry of the annotation text file is as follows (ensure the fields are 

separated by white space and not comma or any other delimiter.):

10 0.63   0.28500000000000003   0.28500000000000003   0.215

Listing 6-22 converts the pet data annotations into the format YOLOv3 requires. This 

is standard Python code and does not really need any explanation.

Listing 6-22. Converting Image Annotations from XML to TXT

1    import os

2    import glob

3    import pandas as pd

4    import xml.etree.ElementTree as ET

5

6

7    def xml_to_csv(path, img_path, label_path):

8       if not os.path.exists(label_path):

9           os.makedirs(label_path)

10

11      class_list = []

12      for xml_file in glob.glob(path + '/*.xml'):

13          xml_list = []

14          tree = ET.parse(xml_file)

15          root = tree.getroot()

16          for member in root.findall('object'):

17              imagename = str(root.find('filename').text)
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18              print("image", imagename)

19              index = int(imagename.rfind("_"))

20              print("index: ", index)

21              classname = imagename[0:index]

22

23              class_index = 0

24              if (class_list.count(classname) > 0):

25                  class_index = class_list.index(classname)

26

27              else:

28                  class_list.append(classname)

29                  class_index = class_list.index(classname)

30

31              print("width: ", root.find("size").find("width").text)

32              print("height: ", root.find("size").find("height").text)

33              print("minx: ", member[4][0].text)

34              print("ymin:", member[4][1].text)

35              print("maxx: ", member[4][2].text)

36              print("maxy: ", member[4][3].text)

37              w = float(root.find("size").find("width").text)

38              h = float(root.find("size").find("height").text)

39              dw = 1.0 / w

40              dh = 1.0 / h

41              x = (float(member[4][0].text) +  float(member[4][2].text)) / 

2.0 - 1

42              y = (float(member[4][1].text) +  float(member[4][3].text)) / 

2.0 - 1

43              w = float(member[4][2].text) - float(member[4][0].text)

44              h = float(member[4][3].text) - float(member[4][1].text)

45              x = x * dw

46              w = w * dw

47              y = y * dh

48              h = h * dh

49
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50              value = (class_index,

51                       x,

52                       y,

53                       y,

54                       h

55                       )

56              print("The line value is: ", value)

57               print("csv file name: ", os.path.join(label_path, 

imagename.rsplit('.', 1)[0] + '.txt'))

58              xml_list.append(value)

59              df = pd.DataFrame(xml_list)

60               df.to_csv(os.path.join(label_path, imagename.rsplit('.', 1)

[0] + '.txt'), index=None, header=False, sep=' ')

61

62      class_df = pd.DataFrame(class_list)

63      return class_df

64

65

66   def create_training_and_test(image_dir, label_dir):

67      file_list = []

68      for img in glob.glob(image_dir + "/*"):

69          print(os.path.abspath(img))

70

71          imagefile = os.path.basename(img)

72

73          textfile = imagefile.rsplit('.', 1)[0] + '.txt'

74

75          if not os.path.isfile(label_dir + "/" + textfile):

76              print("delete image file ", img)

77              os.remove(img)

78              continue

79          file_list.append(os.path.abspath(img))

80

81      file_df = pd.DataFrame(file_list)

82      train = file_df.sample(frac=0.7, random_state=10)

83      test = file_df.drop(train.index)
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84      train.to_csv("petdata/train.txt", index=None, header=False)

85      test.to_csv("petdata/test.txt", index=None, header=False)

86

87

88   def main():

89      img_dir = "petdata/images"

90      label_dir = "petdata/labels"

91

92      xml_path = os.path.join(os.getcwd(), 'petdata/annotations/xmls')

93      img_path = os.path.join(os.getcwd(), img_dir)

94      label_path = os.path.join(os.getcwd(), label_dir)

95

96      class_df = xml_to_csv(xml_path, img_path, label_path)

97       class_df.to_csv('petdata/class.data', index=None, header=False, 

delimiter=r"\s+")

98      create_training_and_test(img_dir, label_path)

99      print('Successfully converted xml to csv.')

100

101

102  main()

 Configuring the Training Input
We need a configuration file that has the path information for the training and test sets. 

The format of the config file is as follows:

classes= 37

train  = /content/petdata/train.txt

valid  = /content/petdata/test.txt

names = /content/petdata/class.data

backup = /content/yolov3_model

where the classes variable takes the number of object classes our training images have 

(37 pet classes in our example), the train and valid variables take the path to the training 

and validation lists that we created earlier, names takes the path to the file containing class 

names, and the backup variable points to the directory path where the trained YOLO model 

will be saved. Make sure that this directory exists or the execution will throw an exception.
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Save this text file and give it a name with a .cfg extension. In our case, we save this 

file as pet_input.cfg. We will then upload this file to Colab in the directory path  

/content/darknet/cfg.

 Configuring the Darknet Neural Network
Download the sample network config file from /content/darknet/cfg/yolov3-voc.cfg  

from Colab and save it in your local computer. You may rename this file to something relevant 

to your dataset. For example, we have renamed it to yolov3-pet.cfg for this exercise.

We will edit this file to match our data. The most important part of the file that we are 

going to edit is the yolo layer.

Search for the section [yolo] in the config file. There should be three yolo layers. We 

will edit the number of object classes, which is 37 in our case. In all three places, we will 

change the number of classes to 37. In addition, we will change the filters values in the 

convolutional layer just before the yolo layer in all three places. The value of filters in 

the convolutional layer before the yolo layer is determined by the following formula:

filter = num/3 * (num_class+5)
Filter = (9/3) * (37 + 5) = 126

See the following code for an example of the [yolo] section and [convolutional] 

section just before the [yolo] section:

....

[convolutional]

size=1

stride=1

pad=1

filters=126

activation=linear

[yolo]

mask = 0,1,2

anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326

classes=37

num=9

jitter=.3

ignore_thresh = .5
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truth_thresh = 1

random=1

...

Make sure you changed the classes and filters values at three places in the config file.

Other parameters that we will edit are as follows:

width=416, which is the width of the input image. All images will 

be resized to this width.

height=416, which is the height of the input image. All images will 

be resized to this height.

batch=64, which indicates how frequently we want weights to be 

updated.

subdivisions=16, which indicates how many examples will be 

loaded in memory if the GPU does not have large enough memory 

to load the data examples equal to the batch size. If you see an “out 

of memory” exception when you execute the training, tune this 

number and gradually decrease it until you see no memory error.

max_batches=74000, which indicates how many batches the training 

should run. If you set it too high, the training may take a long time 

to complete. If it is too low, the network will not learn enough. 

Practically, it has been established that the max_batch size should be 

2,000 times the number of classes. In our case, we have 37 classes, so 

the max_batch value should be 2,000×37 = 74,000. If you have only 

one class, set the max_batches value to a minimum of 4,000.

Save the config file and then upload it to the cfg directory path:  /content/darknet/cfg.

 Training a YOLOv3 Model
Execute the YOLOv3 training using the command in Listing 6-23.

Listing 6-23. Training the YOLOv3 Model

1    %%shell

2    cd darknet/

3     ./darknet detector train cfg/pet_input.cfg cfg/yolov3-pet.cfg  

/content/pretrained/darknet53.conv.74
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As shown in Listing 6-23, the parameters to the training are the paths to pet_input.

cfg, yolov3-pet.cfg, and the pre-trained darknet model.

If everything goes well, you will have a trained model in the directory path specified 

in the config, with backup set to /content/yolov3_model. While the network is learning, 

it will save the intermediate weights as checkpoints in the backup directory.

Observe the console output while the training is in progress. You will notice three 

important lines that show the Avg IOU of three regions, 82, 94, and 106 (as shown in 

Figure 6-29).

Figure 6-29. Sample console output during YOLOv3 training (the output shows 
500 iterations only, which is usually not sufficient for a real-life model)

These three regions mean YOLO layer 82, layer 94, and layer 106 in the Darknet 

framework. You may also observe that the IOU of some of the regions is -nan, which is 

perfectly normal. After a few iterations, the region IOU will start showing the numbers.

Observe that the first number of the sample output in Figure 6-29 is 499, which tells 

that the training is completed for 499 batches at a batch level loss of 4.618134, overall 

average loss of 4.148183, and learning rate 0.000062, and that it took 13.985329 seconds 

Chapter 6  Deep Learning in ObjeCt DeteCtiOn



301

to complete that batch. This will give you an idea of how long the training will take to 

complete. The loss value gives an idea of how well the learning is going on.

Notice the last three lines, which are printed at the end when the training is 

completely done. It shows the location where the checkpoints, intermediate weights, and 

final weights are saved.

You should copy the entire directory containing the final model to your private 

Google Drive so that you could use the trained model in your applications.

While the training is on, the console prints a lot of information, which is displayed 

in the web browser. After a while, the web browser becomes unresponsive. Clearing the 

console output may be a good idea to prevent the browser from getting killed. To clear 

the log output, click the X button located just below the Execute button located in the left 

corner of the notebook cell block. While the training is running, you will see three dots, 

and on hover, it turns into an X button.

 How Long the Training Should Run
Typically the training should run for at least 2,000 iterations per class, but not less than 

4,000 iterations in total. In our example with a pet dataset, we have 37 classes. That 

means we should set max_batches to 74000.

Observe the output while the training is going on, and notice the losses after each 

iteration. If the loss stabilizes and does not change over batches, we should consider 

stopping the training. Ideally, the loss should be close to zero. However, for most 

practical purposes, our goal should be to have losses stabilized below 0.05.

 Final Model
After the network finishes learning, the final YOLOv3 model will be saved in the directory 

/content/yolov3_model. The name of the model file will be yolov3-pet_final.weights.

Download this model or save it to your private Google Drive folder, because Google 

Colab deletes all your files when the session expires. We will use this model in object 

detection in real time, both in images and in videos.
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 Detecting Objects Using a Trained YOLOv3 Model
We will write some Python code and execute object detection in our local computer, 

like we did in the case of SSD. We will use the trained model that we downloaded from 

Google Colab (see the “Final Model” section).

Let’s start by setting up our development environment in PyCharm.

 Installing Darknet to the Local Computer
Install and build the Darknet framework on your local computer using the following 

steps:

 1. Open a command prompt, shell terminal, or PyCharm’s terminal 

and cd to the directory where you want to install the Darknet 

framework. Make sure you are in the same virtualenv that we 

created in Chapter 1.

 2. Clone the GitHub repository, https://github.com/ansarisam/

darknet.git. This repository was forked from the original darknet 

repository, https://github.com/pjreddie/darknet. We made 

a few changes in the C code (in src/image.c) to generate the 

bounding boxes in the output. In addition, we have provided 

a Python script, yolov3_detector.py, to predict objects and 

bounding boxes, and then save the output as JSON. See Figure 6-30.

(cv) user$ pwd 
/home/user/cviz_tf2_3/chapter6/yolov3

(cv) user$ git clone https://github.com/ansarisam/darknet.git

Figure 6-30. Command to show the directory structure and clone the GitHub 
repository

 3. After the source code is cloned, edit the Makefile located in the 

darknet directory. If you are using a GPU, set GPU=1 and save 

the file. If you are using a CPU, do not make any changes to this 

Makefile.
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 4. Build the C source code using the make command. Simply type the 

command from the darknet directory, as shown in Figure 6-31.

(cv) user$ pwd 
/home/user/cviz_tf2_3/chapter6/yolov3

(cv) user$ cd darknet
(cv) user$ make

Figure 6-31. Build source code by using the make command

If everything runs successfully, you will have your PyCharm 

environment ready for object detection.

 5. Test the installation by typing the command ./darknet from the 

darknet directory. The command should print output that looks 

something like usage.: ./darknet <function>.

 Python Code for Object Detection
Listing 6-24 provides the Python code to detect objects in images.

Listing 6-24. Object Detection with Results Stored as JSON to Output Location

1    import os

2    import subprocess

3    import pandas as pd

4    image_path="test_images/dog.jpg"

5    yolov3_weights_path="backup/yolov3.weights"

6    cfg_path="cfg/yolov3.cfg"

7    output_path="output_path"

8    image_name = os.path.basename(image_path)

9     process = subprocess.Popen(['./darknet', 'detect', cfg_path, yolov3_

weights_path, image_path],

10                       stdout=subprocess.PIPE,

11                       stderr=subprocess.PIPE)

12   stdout, stderr = process.communicate()

13
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14   std_string = stdout.decode("utf-8")

15   std_string = std_string.split(image_path)[1]

16   count = 0

17   outputList = []

18   rowDict = {}

19   for line in std_string.splitlines():

20

21      if count > 0:

22          if count%2 > 0:

23              obj_score = line.split(":")

24              obj = obj_score[0]

25              score = obj_score[1]

26              rowDict["object"] = obj

27              rowDict["score"] = score

28          else:

29              bbox = line.split(",")

30              rowDict["bbox"] = bbox

31              outputList.append(rowDict)

32              rowDict = {}

33      count = count +1

34   rowDict["image"] = image_path

35   rowDict["predictions"] = outputList

36

37   df = pd.DataFrame(rowDict)

38    df.to_json(output_path+"/"+image_name.replace(".jpg", ".json").

replace(".png", ".json"),orient='records')

Lines 1 through 3 are our usual imports.

Line 4 sets the path to the location of the image in which the object needs to be 

detected.

Line 5 sets the path to the weights of the trained model (downloaded from Colab).

Line 6 sets the Darknet neural network configuration that we used for the training.

Line 7 is the output location where the final results containing the detected objects, 

associated scores, and enclosing bounding boxes are saved in JSON format.
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Lines 9 through 12 execute a shell command and pipe the output and error to stdout 

and stderr variables. We are using the subprocess package that spawns new processes, 

connects to their input/output/error pipes, and obtains their return codes. The output 

and errors returned by the subprocess are in bytes. Therefore, we convert the output 

bytes into a UTF-8 encoded string in line 13.

Under the hood, this subprocess executes the following shell command:

./darknet detect <cfg_path> <yolov3_model_weights_path> <image_path>

You can execute this command directly in the terminal, from the darknet directory. 

This command will print on the console a lot of information, such as the network 

configuration, detected objects, detection scores, and bounding boxes.

Lines 15 through 35 parse the output into a structured JSON format. The final output 

contains the image path, a list of predictions of object class, the coordinates of bounding 

box, and the associated score. The bounding box coordinates are in the format [left, 

top, right, bottom].

Line 37 creates a dataframe using Pandas, and line 38 saves the dataframe in JSON 

format to the output location.

Figure 6-32 shows a sample output in JSON format created by predicting objects 

from the image shown in Figure 6-33.

Figure 6-32. Original image containing objects that are to be detected from the 
YOLOv3 model
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[{
"image": "test_images\/dog4.jpg",
"predictions": {

"object": "person",
"score": " 99%",
"bbox": ["585", " 213", " 634", " 318"]

}
}, {

"image": "test_images\/dog4.jpg",
"predictions": {

"object": "person",
"score": " 100%",
"bbox": ["626", " 46", " 1171", " 803"]

}
}, {

"image": "test_images\/dog4.jpg",
"predictions": {

"object": "person",
"score": " 99%",
"bbox": ["491", " 197", " 535", " 307"]

}
}, {

"image": "test_images\/dog4.jpg",
"predictions": {

"object": "bicycle",
"score": " 98%",
"bbox": ["596", " 321", " 992", " 847"]

}
}, {

"image": "test_images\/dog4.jpg",
"predictions": {

"object": "fire hydrant",
"score": " 100%",
"bbox": ["368", " 326", " 568", " 820"]

}
}, {

"image": "test_images\/dog4.jpg",
"predictions": {

"object": "dog",
"score": " 78%",
"bbox": ["588", " 255", " 830", " 374"]

}
}]

Figure 6-33. JSON output from YOLOv3 predictor
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 Summary
In this chapter, we learned about different object detection algorithms and how they 

compare to each other with respect to detection speed and accuracy. We trained two 

detection models, SSD and YOLOv3, and went through the process end to end from 

ingesting data to saving prediction output.

We also learned how to use Google Colab to train detection models on the cloud and 

use the power of GPUs.

In this chapter, we mainly focused on detecting objects in images and did not work 

on any example involving video. The process of detecting objects in videos is similar to 

the detection in images, as videos are simply frames of images. Chapter 7 is dedicated to 

that topic. Then we will apply the concepts presented in this chapter to Chapters 9 and 10  

to develop real-world use cases of computer vision using deep learning.
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CHAPTER 7

Practical Example: Object 
Tracking in Videos
The focus of this chapter is on two critical capabilities of computer vision: object 

detection and object tracking. In general and in the context of a set of images, object 

detection provides the ability to identify one or more objects in an image, and object 

tracking provides the ability to track a detected object across a set of images. In previous 

chapters, we explored the technical aspects of training deep learning models to detect 

objects. In this chapter, we will explore a simple example of putting that knowledge to 

practice in the context of videos.

Object tracking in a video, or simply video tracking, involves detecting and locating 

an object and tracking it over time. Video tracking is not only to detect an object in 

different frames but also to track it across frames. When an object is first detected, its 

unique identity is extracted and then tracked in subsequent frames.

Object tracking has many applications in the real world, such as the following:

 – Autonomous cars

 – Security and surveillance

 – Traffic control

 – Augmented reality (AR)

 – Crime detection and criminal tracking

 – Medical imaging and more

In this chapter, we will learn how to implement video tracking and work through the 

code examples. At the end of this chapter, you will have a fully functional video tracking 

system.

https://doi.org/10.1007/978-1-4842-5887-3_7#DOI
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Our high-level plan of implementation is as follows:

 1. Video source: We will use OpenCV to read live streams of video 

from a webcam or the built-in camera of the laptop. You can also 

read videos from a file or IP camera.

 2. Object detection model: We will use an SSD model pre-trained on 

the COCO dataset. You can train your own model for your specific 

use cases (review Chapter 6 for information on training the object 

detection model).

 3. Prediction: We will predict object classes (detection) and their 

bounding boxes (localization) within each frame of the video 

(review Chapter 6 for information on detecting objects in images).

 4. Unique identity: We will use a hashing algorithm to create a 

unique identity of each object. We will learn more about the 

hashing algorithm later in this chapter.

 5. Tracking: We will use the Hamming distance algorithm (more on 

this later in this chapter) to track the previously detected objects.

 6. Display: We will stream the output video for display in web 

browsers. We will use Flask for this. Flask is a lightweight web 

application microframework.

 Preparing the Working Environment
Let’s establish a directory structure so that it is easy to follow the code and work through 

the following examples. We will see code fragments of each of the six steps described 

earlier. At the end, we will put everything together to make the object tracking system 

complete and workable.

We have a directory called video_tracking. Inside this we have a subdirectory called 

templates, which has an HTML file called index.html. The subdirectory templates is 

the standard place where Flask looks for HTML pages. In the video_tracking directory, 

we have four Python files: videoasync.py, object_tracker.py, tracker.py, and video_

server.py. Figure 7-1 shows this directory structure.
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We will import videoasync as a module in object_tracker.py. Therefore, the 

directory video_tracking must be recognized as a source directory in PyCharm.  

To make it a source directory in PyCharm, click the PyCharm menu option at the top 

left of the screen, then click Preferences, expand Project in the left panel, click Project 

Structure, highlight the video_tracking directory, and click Mark as Source (located at 

the top of the screen), as shown in Figure 7-2. Finally, click OK to close the window.

Figure 7-1. Code directory structure

Figure 7-2. Marking a directory as a source in PyCharm
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 Reading a Video Stream
OpenCV provides convenient methods to connect to a video source and read images 

from the video frames. The images from these frames are internally converted by 

OpenCV into NumPy arrays. These NumPy arrays are further processed to detect and 

track objects in them. The detection process is compute-intensive, and it may not be 

able to keep up with the speed of reading frames. Therefore, reading the frames and 

performing detection operations in the main thread will exhibit slow performance, 

especially when dealing with high-definition (HD) videos. In Listing 7-1, we will 

implement multithreading for capturing frames. We will call it an asynchronous reading 

of video frames.

Listing 7-1. Implementation of Asynchronous Reading of Video Frames

1    # file: videoasync.py

2    import threading

3    import cv2

4

5    class VideoCaptureAsync:

6       def __init__(self, src=0):

7           self.src = src

8           self.cap = cv2.VideoCapture(self.src)

9           self.grabbed, self.frame = self.cap.read()

10          self.started = False

11          self.read_lock = threading.Lock()

12

13      def set(self, key, value):

14          self.cap.set(key, value)

15

16      def start(self):

17          if self.started:

18               print('[Warning] Asynchronous video capturing is already 

started.')

19              return None

20          self.started = True

21          self.thread = threading.Thread(target=self.update, args=())
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22          self.thread.start()

23          return self

24

25      def update(self):

26          while self.started:

27              grabbed, frame = self.cap.read()

28              with self.read_lock:

29                  self.grabbed = grabbed

30                  self.frame = frame

31

32      def read(self):

33          with self.read_lock:

34              frame = self.frame.copy()

35              grabbed = self.grabbed

36          return grabbed, frame

37

38      def stop(self):

39          self.started = False

40         self.thread.join()

41

42

43

44      def __exit__(self, exec_type, exc_value, traceback):

45          self.cap.release()

The file videoasync.py implements the class VidoCaptureAsync (line 5), which 

consists of a constructor and functions to start the thread, read frames, and stop the 

thread.

Line 6 defines a constructor that takes the video source as an argument. The default 

value of this source, src=0 (also called the device index), represents the input from the 

built-in camera on the laptop/computer. If you have a USB camera, set the value of this 

src accordingly. There is no standard way to find the device index if you have multiple 

cameras attached to your computer ports. One way could be to loop through from a 

starting index of 0 until you connect to the device. You can print the device properties to 

identify the device you want to connect to. For IP-based cameras, pass the IP address or 

the URL.
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If your video source is a file, pass the path to the video file.

Line 8 uses OpenCV’s VideoCapture() function and passes the source ID to connect 

to the video source. The VideoCapture object assigned to the self.cap variable is used 

for reading the frames.

Line 9 reads the first frame and occupies the connection to the video camera.

Line 10 is the flag that is used to manage the lock. Line 11 actually acquires the 

thread lock.

Lines 13 and 14 implement a function to set properties to the VideoCapture object, 

such as frame height, width, and frames per second (FPS).

Lines 16 through 23 implement the function to start the thread for asynchronously 

reading frames.

Lines 25 through 30 implement an update() function to read the frame and update 

the class-level frame variable. The update function is internally used within the start 

function, in line 21, to asynchronously read the video frames.

Lines 32 through 36 implement the read() function. The read() function simply 

returns the frame updated in the update() function block. This also returns a Boolean to 

indicate whether the frame was successfully read.

Lines 38 through 40 implement the stop() function to stop the thread and return 

the control to the main thread. The join() function prevents the shutdown of the main 

thread until the child thread completes its execution.

Upon exit, the video source is released (line 45).

We will now write the code to utilize the asynchronous video reading module. In the 

same directory, video_tracking, we will create a Python file called object_tracker.py 

that implements the following functionality.

 Loading the Object Detection Model
We will use the same pre-trained SSD model that we used in Chapter 6 for detecting 

objects in images. If you have trained a model based on your own images, you can use 

that model. All you have to do is to provide the path to the model directory. Listing 7-2 

shows how to load the trained model from the disk. Recall that this is the same function 

that we used in Chapter 6’s Listing 6-11. We will load the model only once and use it for 

detecting objects in all frames.
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Listing 7-2. load_model() Function to Load Trained Model from the Disk

43   # # Model preparation

44   def load_model(model_path):

45      model_dir = pathlib.Path(model_path) / "saved_model"

46      model = tf.saved_model.load(str(model_dir))

47      model = model.signatures['serving_default']

48      return model

49

50   model = load_model(model_path)

 Detecting Objects in Video Frames
The code for detecting objects is almost the same as the one we used in Chapter 6. The 

difference is that here we create an infinite loop inside which we read one image frame 

at a time and make a function call to track_object() for tracking objects within that 

frame. The track_object() function internally calls the same run_inference_for_

single_image() function that we implemented in Chapter 6’s Listing 6-12.

The output from the run_inference_for_single_image() function is a dictionary 

containing detection_classes, detection_boxes, and detection_scores. We will 

utilize these values to calculate the unique identity of each object and track their 

locations.

Listing 7-3 shows the streamVideo() function that implements the infinite loop to 

read streaming frames from the video source.

In Listing 7-3, line 115 starts the block of the streamVideo() function. Line 116 uses 

the global keyword with the thread lock.

Line 117 starts the infinite while loop. Inside this loop, the first line, line 

118, reads the current video frame (image) by calling the read() function of the 

VideoCaptureAsync class. The read() function returns a tuple of a Boolean indicating 

whether the frame is read successfully, and a NumPy array of the image frame.

If the frame is successfully retrieved (line 119), acquire the lock (line 120) so that 

other threads do not modify the frame NumPy while the current thread’s image is still 

being detected for objects.
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Line 121 calls the track_object() function by passing the model object and frame 

NumPy. We will see later in Listing 7-13 what this track_object() function does. In 

line 123, the output NumPy array is converted into the compressed .jpg image so that 

it is lightweight and easily transferable over the network. We used cv2.imencode() to 

convert the NumPy array to image. This function returns a tuple of a Boolean indicating 

whether the conversion is successful and returns the encoded image.

If the image conversion is not successful, skip that frame (line 125).

Finally, on line 127, it yields the byte-encoded image. The yield keyword returns a 

read-once iterator from the while loop.

Lines 130 through 137 are cleanup functions when either the program is terminated 

or the screen is killed by pressing Q to quit.

Listing 7-3. Implementing Infinite Loop for Reading Streams of Video Frames 

and Internally Calling an Object Tracking Function for Each Frame

114   # Function to implement infinite while loop to read video frames and 

generate the output   #for web browser

115  def streamVideo():

116     global lock

117     while (True):

118         retrieved, frame = cap.read()

119         if retrieved:

120             with lock:

121                 frame = track_object(model, frame)

122

123                 (flag, encodedImage) = cv2.imencode(".jpg", frame)

124                 if not flag:

125                     continue

126

127                 yield (b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' +

128                    bytearray(encodedImage) + b'\r\n')

129

130         if cv2.waitKey(1) & 0xFF == ord('q'):

131             cap.stop()
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132             cv2.destroyAllWindows()

133             break

134

135     # When everything done, release the capture

136     cap.stop()

137     cv2.destroyAllWindows()

 Creating a Unique Identity for Objects Using dHash
We use perceptual hashing to create a unique identity of an object detected within 

the image. Difference hashing, or simply dHash, is one of the most commonly used 

algorithms to calculate a unique hash of an image. A dHash provides several advantages 

that makes it a suitable choice for identifying and comparing images. The following are 

some benefits of using a dHash:

• The image hash does not change if the aspect ratio changes.

• Changes in brightness or contrast will either not change the image 

hash or change it slightly. This means the hashes remain close to 

others with varying contrasts.

• The computation of a dHash is extremely fast.

We do not use cryptographic hashes, such as MD-5 or SHA-1. The reason is that 

for these hashing algorithms, if there is a slight change in the image, the cryptographic 

hashes will be totally different. Even for a single-pixel change, it will result in a 

completely different hash. Therefore, if two images are perceptually similar, their 

cryptographic hashes will be totally different. This makes it not a fit for the application 

when we have to compare two images.

The dHash algorithm is simple. The following are the steps to compute the dHash:

 1. Convert the image or snippet of the image into grayscale. This 

makes computation much faster, and the dHash will not change 

much if there is a slight variation of color. In the object detection, 

we crop the detected objects using the bounding boxes and 

convert the cropped image into grayscale.
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 2. Resize the grayscale image. To compute a 64-bit hash, the image 

is resized to 9×8 pixels, ignoring its aspect ratio. The aspect ratio is 

ignored to ensure that the resulting image hash will match similar 

images regardless of their initial spatial dimensions.

Why 9×8 pixels? In a dHash, the algorithm computes the 

difference of gradients of adjacent pixels. The difference of nine 

rows with adjacent rows will yield only eight rows in the result, 

thus making the final output with 8×8 pixels, which will give us a 

64-bit hash.

 3. Build the hash by converting each pixel into either 0 or 1 by 

applying the “greater than” formula, as shown here:

If P[x=1] > P[x], then 1 else 0.

The binary values are then converted into an integer hash.

Listing 7-4 shows the Python and OpenCV implementation of the dHash.

Listing 7-4. Calculating the dHash from an Image

32      def getCropped(self, image_np, xmin, ymin, xmax, ymax):

33          return image_np[ymin:ymax, xmin:xmax]

34

35      def resize(self, cropped_image, size=8):

36          resized = cv2.resize(cropped_image, (size+1, size))

37          return resized

38

39      def getHash(self, resized_image):

40          diff = resized_image[:, 1:] > resized_image[:, :-1]

41          # convert the difference image to a hash

42          dhash = sum([2 ** i for (i, v) in enumerate(diff.flatten()) if v])

43          return int(np.array(dhash, dtype="float64"))

Lines 32 and 33 implement the cropping function. We pass the NumPy arrays of the 

full image frame and the four coordinates of the bounding box that surrounds an object. 

The function crops the portion of the image that contains the detected object.

Lines 35 through 37 are for resizing the cropped image into a 9×8 size.
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Lines 39 through 43 implement the calculation of the dHash. Line 40 finds the 

difference of adjacent pixels by applying the greater-than rule described earlier. Line 42 

builds the numeric hash from the binary bit values. Line 43 converts the hash to integer 

and returns the dhash from the function.

 Using the Hamming Distance to Determine Image 
Similarity
The Hamming distance is commonly used to compare two hashes. The Hamming 

distance measures the number of different bits in two hashes.

If the Hamming distance of two hashes is zero, it means the two hashes are identical. 

The lower the Hamming distance, the more similar the two hashes are. 

Listing 7-5 shows how to calculate the Hamming distance between two hashes.

Listing 7-5. Calculation of the Hamming Distance

45      def hamming(self, hashA, hashB):

46          # compute and return the Hamming distance between the integers

47          return bin(int(hashA) ^ int(hashB)).count("1")

The function hamming() in line 45 takes two hashes as input and returns the number 

of bits, which are different in these two input hashes.

 Object Tracking
After an object is detected in an image, its unique identity is created by calculating the 

dHash of the cropped part of the image that contains the object. The object is tracked 

from one frame to the other by calculating the Hamming distance of the object’s dHash. 

There are many use cases of tracking. In our example, we created two tracking functions 

to do the following:

 1. Track the path of the object from the first occurrence of the 

object in a frame to all occurrences in the subsequent frames. 

This function tracks the center of the bounding boxes and draws 

a line or path connecting all these centers. Listing 7-6 shows 

this implementation. The function createHammingDict() takes 
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the current object’s dHash, its center of the bounding box, and 

the history of all objects and its centers. The function compares 

the dHash of the current object with all dHashes seen so far and 

uses the Hamming distance to find similar objects to track its 

movements or the path.

Listing 7-6. Tracking the Centers of Bounding Boxes of Detected Objects 

Between Multiple Frames

49      def createHammingDict(self, dhash, center, hamming_dict):

50          centers = []

51          matched = False

52          matched_hash = dhash

53          # matched_classid = classid

54

55          if hamming_dict.__len__() > 0:

56              if hamming_dict.get(dhash):

57                  matched = True

58

59              else:

60                  for key in hamming_dict.keys():

61

62                      hd = self.hamming(dhash, key)

63

64                      if(hd < self.threshold):

65                          centers = hamming_dict.get(key)

66                          if len(centers) > self.max_track_frame:

67                              centers.pop(0)

68                          centers.append(center)

69                          del hamming_dict[key]

70                          hamming_dict[dhash] = centers

71                          matched = True

72                          break

73

74          if not matched:

75              centers.append(center)
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76              hamming_dict[dhash] = centers

77

78          return  hamming_dict

 2. Get the unique identifiers of the objects and track the number of 

unique objects detected. Listing 7-7 implements a function called 

getObjectCounter() that counts the number of unique objects 

detected across frames. It compares the dHash of the current 

object with all dHashes computed so far across all previous 

frames.

Listing 7-7. Function to Track Count of Unique Objects Detected in Video Frames

79

80      def getObjectCounter(self, dhash, hamming_dict):

81          matched = False

82          matched_hash = dhash

83          lowest_hamming_dist = self.threshold

84          object_counter = 0

85

86          if len(hamming_dict) > 0:

87              if dhash in hamming_dict:

88                  lowest_hamming_dist = 0

89                  matched_hash = dhash

90                  object_counter = hamming_dict.get(dhash)

91                  matched = True

92

93              else:

94                  for key in hamming_dict.keys():

95                      hd = self.hamming(dhash, key)

96                      if(hd < self.threshold):

97                          if hd < lowest_hamming_dist:

98                              lowest_hamming_dist = hd

99                              matched = True

100                             matched_hash = key

101                             object_counter = hamming_dict.get(key)
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102         if not matched:

103             object_counter = len(hamming_dict)

104         if matched_hash in hamming_dict:

105             del hamming_dict[matched_hash]

106

107         hamming_dict[dhash] = object_counter

108         return  hamming_dict

109

 Displaying a Live Video Stream in a Web Browser
We will publish our video tracking code to Flask, a lightweight web framework. This 

will allow us to view the live stream of the video, with tracked objects, in web browsers 

using a URL. You can use other frameworks, such as Django, to publish the video to 

be accessible from a web browser. We selected Flask for our example because it is 

lightweight, flexible, and easy to implement with just a few lines of code.

Let’s explore how to use Flask in our current context. We will start with installing 

Flask to our virtualenv.

 Installing Flask
We will use the pip command to install Flask. Make sure you activate your virtualenv and 

execute the command pip install flask, as shown here:

 (cv_tf2) computername:~ username$ pip install flask

 Flask Directory Structure
Refer to the directory structure in Figure 7-1. We have created a subdirectory called 

templates in the video_tracking directory. We will create an HTML file, index.html, 

that will contain the code to display streaming video. We will save index.html to the 

templates directory. The name of the directory must be templates as Flask looks for this 

directory to find the HTML files.
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 HTML for Displaying a Video Stream
Listing 7-8 shows the HTML code that is saved in the index.html page. Line 7 is the 

most important line that will display the live video stream. This is a standard <img> tag of 

HTML that is typically used to display an image in a web browser. The {{...}} portion 

of the code in line 7 is the Flask symbol that instructs Flask to load the image from a 

URL. When this HTML page is loaded, it will make a call to the /video_feed URL and 

fetch the image from there to display within the <img> tag.

Listing 7-8. HTML Code for Displaying the Video Stream

1    <html>

2     <head>

3       <title>Computer Vision</title>

4     </head>

5     <body>

6       <h1>Video Surveillance</h1>

7       <img src="{{ url_for('video_feed') }}" > </img>

8     </body>

9    </html>

10

Now we need some server-side code that will serve this HTML page. We also need a 

server-side implementation to serve images when the /video_feed URL is called.

We will implement these two functions in a separate Python file, video_server.py, 

that is saved in the video_tracking directory. Make sure that this video_server.py file 

and the templates directory are in the same parent directory.

Listing 7-9 shows a server-side implementation of Flask services. Line 2 imports 

Flask and its related packages. Line 3 imports our object_tracker package that has the 

implementation of object detection and tracking.

Line 4 creates a Flask application using the constructor app = Flask(__name__), 

which takes the current module as an argument. By calling the constructor, we 

instantiate the Flask web application framework and assign this to a variable called app. 

We will bind all server-side services to this app.

All Flask services are served through URLs, and we have to bind the URL or route to 

the service it will serve. The following are the two services we need to implement for our 

example:
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 – Service that will render index.html from the home URL,  

e.g., http://localhost:5019/

 – Service that will serve a stream of video from /video_feed URL,  

e.g., http://localhost:5019/video_feed

 Flask to Load the HTML Page
Line 6 of Listing 7-9 has a route binding of /, which indicates the home URL. When 

the home URL is called from a web browser, the function index() is called to serve the 

request (line 7). The index() function simply renders an HTML page from a template, 

index.html, that we created in Listing 7-8.

 Flask to Serve the Video Stream
Line 11 of Listing 7-9 binds the /video_feed URL to the Python function video_feed(). 

This function, in turn, calls the streamVideo() function that we implemented for 

detecting and tracking objects in video. Line 15 creates the Response object from the 

video frames and sends a multipart HTTP response to the caller.

Listing 7-9. Flask Server-Side Code to Launch index.html and Serve Video 

Stream

1    # video_server.py

2    from flask import Flask, render_template, Response

3    import object_tracker as ot

4    app = Flask(__name__)

5

6    @app.route("/")

7    def index():

8       # return the rendered template

9    return render_template("index.html")

10

11   @app.route("/video_feed")

12   def video_feed():
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13       # return the response generated along with the specific media

14       # type (mime type)

15        return Response(ot.streamVideo(),mimetype = "multipart/x-mixed- 

replace; boundary=frame")

16

17   if __name__ == '__main__':

18       app.run(host="localhost", port="5019", debug=True,

19                    threaded=True, use_reloader=False)

20

 Running the Flask Server
Execute the video_server.py file from a terminal by typing the command python 

video_server.py from the video_tracking directory. Make sure you have your 

virtualenv activated.

(cv) computername:video_tracking username$ python video_server.py

This will start the Flask server and run on host="localhost" and port="5019" (line 

18 of Listing 7-9). You should change the host and port for your production environment. 

Also, turn off the debug mode by setting debug=False in line 18.

When the server starts, point your web browser to the URL http://localhost:5019/ 

to see the live video streams with object tracking.

 Putting It All Together
We have explored the building blocks of our video tracking system. Let’s put them all 

together to have a fully functional system. Figure 7-3 shows the high-level sequence of 

function calls of our video tracking system.
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When the web browser is launched with the URL http://localhost:5019/, the 

Flask backend server serves the index.html page, which internally calls the URL  

http://localhost:5019/video_feed that invokes the server-side function video_feed(). 

The rest of the function calls, as shown in Figure 7-3, when completed, send the video 

frames with the detected objects with their tracking information to the web browser 

for display. Listings 7-10 through 7-14 provide the complete source code of the video 

tracking system.

The file path for Listing 7-10 is video_tracking/templates/index.html.

Figure 7-3. Schematic of sequence of function calls of the video tracking system
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Listing 7-10. index.html

<html>

 <head>

   <title>Computer Vision</title>

 </head>

 <body>

   <h1>Video Surveillance</h1>

   <img src="{{ url_for('video_feed') }}" > </img>

 </body>

</html>

The file path for Listing 7-11 is video_tracking/video_server.py.

Listing 7-11. video_server.py

# video_server.py

from flask import Flask, render_template, Response

import object_tracker as ot

app = Flask(__name__)

@app.route("/")

def index():

   # return the rendered template

  return render_template("index.html")

@app.route("/video_feed")

def video_feed():

  # return the response generated along with the specific media

  # type (mime type)

   return Response(ot.streamVideo(),mimetype = "multipart/x-mixed-replace; 

boundary=frame")

if __name__ == '__main__':

  app.run(host="localhost", port="5019", debug=True,

        threaded=True, use_reloader=False)

The file path for Listing 7-12 is video_tracking/object_tracker.py.
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Listing 7-12. object_tracker.py

import os

import pathlib

import random

import numpy as np

import tensorflow as tf

import cv2

import threading

# Import the object detection module.

from object_detection.utils import ops as utils_ops

from object_detection.utils import label_map_util

from videoasync import VideoCaptureAsync

import tracker as hasher

lock = threading.Lock()

# to make gfile compatible with v2

tf.gfile = tf.io.gfile

model_path = "./../model/ssd_inception_v2_coco_2018_01_28"

labels_path = "./../model/mscoco_label_map.pbtxt"

# List of the strings that is used to add correct label for each box.

category_index = label_map_util.create_category_index_from_labelmap(labels_

path, use_display_name=True)

class_num =len(category_index)+100

object_ids = {}

hasher_object = hasher.ObjectHasher()

#Function to create color table for each object class

def get_color_table(class_num, seed=50):

   random.seed(seed)

   color_table = {}

   for i in range(class_num):

       color_table[i] = [random.randint(0, 255) for _ in range(3)]

   return color_table
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colortable = get_color_table(class_num)

# Initialize and start the asynchronous video capture thread

cap = VideoCaptureAsync().start()

# # Model preparation

def load_model(model_path):

   model_dir = pathlib.Path(model_path) / "saved_model"

   model = tf.saved_model.load(str(model_dir))

   model = model.signatures['serving_default']

   return model

model = load_model(model_path)

# Predict objects and bounding boxes and format the result

def run_inference_for_single_image(model, image):

   #  The input needs to be a tensor, convert it using `tf.convert_to_

tensor`.

   input_tensor = tf.convert_to_tensor(image)

   # The model expects a batch of images, so add an axis with `tf.newaxis`.

   input_tensor = input_tensor[tf.newaxis, ...]

   # Run prediction from the model

   output_dict = model(input_tensor)

   # Input to model is a tensor, so the output is also a tensor

   # Convert to NumPy arrays, and take index [0] to remove the batch dimension.

   # We're only interested in the first num_detections.

   num_detections = int(output_dict.pop('num_detections'))

   output_dict = {key: value[0, :num_detections].numpy()

                  for key, value in output_dict.items()}

   output_dict['num_detections'] = num_detections

   # detection_classes should be ints.

    output_dict['detection_classes'] = output_dict['detection_classes'].

astype(np.int64)

   return output_dict
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# Function to draw bounding boxes and tracking information on the image frame

def track_object(model, image_np):

   global object_ids, lock

   # Actual detection.

   output_dict = run_inference_for_single_image(model, image_np)

   # Visualization of the results of a detection.

   for i in range(output_dict['detection_classes'].size):

       box = output_dict['detection_boxes'][i]

       classes = output_dict['detection_classes'][i]

       scores = output_dict['detection_scores'][i]

       if scores > 0.5:

           h = image_np.shape[0]

           w = image_np.shape[1]

           classname = category_index[classes]['name']

           classid =category_index[classes]['id']

           #Draw bounding boxes

            cv2.rectangle(image_np, (int(box[1] * w), int(box[0] * h)), 

(int(box[3] * w), int(box[2] * h)), colortable[classid], 2)

           #Write the class name on top of the bounding box

           font = cv2.FONT_HERSHEY_COMPLEX_SMALL

            hash, object_ids = hasher_object.getObjectId(image_np, 

int(box[1] * w), int(box[0] * h), int(box[3] * w),

                                            int(box[2] * h), object_ids)

            size = cv2.getTextSize(str(classname) + ":" + str(scores)+ 

"[Id: "+str(object_ids.get(hash))+"]", font, 0.75, 1)[0][0]

            cv2.rectangle(image_np,(int(box[1] * w), int(box[0] * 

h-20)), ((int(box[1] * w)+size+5), int(box[0] * h)), 

colortable[classid],-1)

            cv2.putText(image_np, str(classname) + ":" + str(scores)+ 

"[Id: "+str(object_ids.get(hash))+"]",
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                    (int(box[1] * w), int(box[0] * h)-5), font, 0.75, 

(0,0,0), 1, 1)

            cv2.putText(image_np, "Number of objects detected: 

"+str(len(object_ids)),

                       (10,20), font, 0.75, (0, 0, 0), 1, 1)

       else:

           break

   return image_np

# Function to implement infinite while loop to read video frames and 

generate the output for web browser

def streamVideo():

   global lock

   while (True):

       retrieved, frame = cap.read()

       if retrieved:

           with lock:

               frame = track_object(model, frame)

               (flag, encodedImage) = cv2.imencode(".jpg", frame)

               if not flag:

                   continue

               yield (b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' +

                  bytearray(encodedImage) + b'\r\n')

       if cv2.waitKey(1) & 0xFF == ord('q'):

           cap.stop()

           cv2.destroyAllWindows()

           break

   # When everything done, release the capture

   cap.stop()

   cv2.destroyAllWindows()

The file path for Listing 7-13 is video_tracking/videoasync.py.
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Listing 7-13. videoasync.py

# file: videoasync.py

import threading

import cv2

class VideoCaptureAsync:

   def __init__(self, src=0):

       self.src = src

       self.cap = cv2.VideoCapture(self.src)

       self.grabbed, self.frame = self.cap.read()

       self.started = False

       self.read_lock = threading.Lock()

   def set(self, var1, var2):

       self.cap.set(var1, var2)

   def start(self):

       if self.started:

           print('[Warning] Asynchronous video capturing is already started.')

           return None

       self.started = True

       self.thread = threading.Thread(target=self.update, args=())

       self.thread.start()

       return self

   def update(self):

       while self.started:

           grabbed, frame = self.cap.read()

           with self.read_lock:

               self.grabbed = grabbed

               self.frame = frame

   def read(self):

       with self.read_lock:

           frame = self.frame.copy()

           grabbed = self.grabbed

       return grabbed, frame
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   def stop(self):

       self.started = False

       # self.cap.release()

       # cv2.destroyAllWindows()

       self.thread.join()

   def __exit__(self, exec_type, exc_value, traceback):

       self.cap.release()

The file path for Listing 7-14 is video_tracking/tracker.py.

Listing 7-14. tracker.py

# tracker.py

import numpy as np

import cv2

class ObjectHasher:

    def __init__(self, threshold=20, size=8, max_track_frame=10, radius_

tracker=5):

       self.threshold = 20

       self.size = 8

       self.max_track_frame = 10

       self.radius_tracker = 5

   def getCenter(self, xmin, ymin, xmax, ymax):

       x_center = int((xmin + xmax)/2)

       y_center = int((ymin+ymax)/2)

       return (x_center, y_center)

    def getObjectId(self, image_np, xmin, ymin, xmax, ymax, hamming_

dict={}):

        croppedImage = self.getCropped(image_np,int(xmin*0.8), 

int(ymin*0.8), int(xmax*0.8), int(ymax*0.8))

       croppedImage = cv2.cvtColor(croppedImage, cv2.COLOR_BGR2GRAY)

       resizedImage = self.resize(croppedImage, self.size)

       hash = self.getHash(resizedImage)

       center = self.getCenter(xmin*0.8, ymin*0.8, xmax*0.8, ymax*0.8)
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       # hamming_dict = self.createHammingDict(hash, center, hamming_dict)

       hamming_dict = self.getObjectCounter(hash, hamming_dict)

       return hash, hamming_dict

   def getCropped(self, image_np, xmin, ymin, xmax, ymax):

       return image_np[ymin:ymax, xmin:xmax]

   def resize(self, cropped_image, size=8):

       resized = cv2.resize(cropped_image, (size+1, size))

       return resized

   def getHash(self, resized_image):

       diff = resized_image[:, 1:] > resized_image[:, :-1]

       # convert the difference image to a hash

       dhash = sum([2 ** i for (i, v) in enumerate(diff.flatten()) if v])

       return int(np.array(dhash, dtype="float64"))

   def hamming(self, hashA, hashB):

       # compute and return the Hamming distance between the integers

       return bin(int(hashA) ^ int(hashB)).count("1")

   def createHammingDict(self, dhash, center, hamming_dict):

       centers = []

       matched = False

       matched_hash = dhash

       # matched_classid = classid

       if hamming_dict.__len__() > 0:

           if hamming_dict.get(dhash):

               matched = True

           else:

               for key in hamming_dict.keys():

                   hd = self.hamming(dhash, key)

                   if(hd < self.threshold):

                       centers = hamming_dict.get(key)

                       if len(centers) > self.max_track_frame:

                           centers.pop(0)
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                       centers.append(center)

                       del hamming_dict[key]

                       hamming_dict[dhash] = centers

                       matched = True

                       break

       if not matched:

           centers.append(center)

           hamming_dict[dhash] = centers

       return  hamming_dict

   def getObjectCounter(self, dhash, hamming_dict):

       matched = False

       matched_hash = dhash

       lowest_hamming_dist = self.threshold

       object_counter = 0

       if len(hamming_dict) > 0:

           if dhash in hamming_dict:

               lowest_hamming_dist = 0

               matched_hash = dhash

               object_counter = hamming_dict.get(dhash)

               matched = True

           else:

               for key in hamming_dict.keys():

                   hd = self.hamming(dhash, key)

                   if(hd < self.threshold):

                       if hd < lowest_hamming_dist:

                           lowest_hamming_dist = hd

                           matched = True

                           matched_hash = key

                           object_counter = hamming_dict.get(key)

       if not matched:

           object_counter = len(hamming_dict)
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       if matched_hash in hamming_dict:

           del hamming_dict[matched_hash]

       hamming_dict[dhash] = object_counter

       return  hamming_dict

   def drawTrackingPoints(self, image_np, centers, color=(0,0,255)):

        image_np = cv2.line(image_np, centers[0], centers[len(centers) - 1], 

color)

       return image_np

Run the Flask server by executing the command python video_server.py from a 

terminal. To see the live stream of video, launch your web browser and point to the URL 

http://localhost:5019.

 Summary
In this chapter, we developed a fully functional video tracking system using a pre-trained 

SSD model. We also learned about the difference hashing (dHash) algorithm and used 

the Hamming distance to determine image similarity. We deployed our system to the 

Flask microweb framework to render real-time video tracking in a web browser.
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CHAPTER 8

Practical Example:  
Face Recognition
Face recognition is a computer vision problem to detect and identify human faces in an 

image or video. The first step of facial recognition is to detect and locate the position of the 

face in the input image. This is a typical object detection task like we learned about in the 

previous chapters. After the face is detected, a feature set, also called a facial footprint or 

face embedding, is created from various key points on the face. A human face has 80 nodal 

points or distinguishing landmarks that are used to create the feature set (USPTO Patent 

Number US7634662B2, https://patents.google.com/patent/US7634662B2/). The face 

embedding is then compared against a database to establish the identity of the face.

There are many applications of facial recognition in the real world, such as the 

following:

• As the password for access control to high-security areas

• In airport customs and border protection

• In identifying genetic disorders

• As a way to predict the age and gender of individuals (e.g., used in 

controlling age-based access, such as alcohol purchases)

• In law enforcement (e.g., police find potential crime suspects and 

witnesses by scanning millions of photos).

• In organizing digital photo albums (e.g., photos on social media)

In this chapter, we will explore FaceNet, a popular face recognition algorithm developed 

by Google engineers. We will learn how to train a FaceNet-based neural network to develop 

a face recognition model. At the end, we will write code to develop a fully functional face 

recognition system that can detect faces in real time from a video stream.

https://doi.org/10.1007/978-1-4842-5887-3_8#DOI
https://patents.google.com/patent/US7634662B2/
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 FaceNet
FaceNet was invented by three Google engineers, Florian Schroff, Dmitry Kalenichenko, 

and James Philbin. They published their work in 2015 in a paper titled “FaceNet: 

A Unified Embedding for Face Recognition and Clustering” (https://arxiv.org/

pdf/1503.03832.pdf).

FaceNet is a unified system that provides the following capabilities:

• Face verification (is this the same person?)

• Recognition (who is this person?)

• Clustering (are there similar faces?)

FaceNet is a deep neural network that does the following:

• Computes a 128D compact feature vector, called face embedding, 

from the input images. Recall from Chapter 4 that a feature 

vector contains information that describes an object’s significant 

characteristics. The 128D feature vector, which is a list of 128 real- 

valued numbers, represents output that attempts to quantify the face.

• Learn by optimizing a triplet loss function. We will explore the loss 

function later in this chapter.

 FaceNet Neural Network Architecture
Figure 8-1 shows the FaceNet architecture.

The components of a FaceNet network are described in the following sections.

Deep CNN L2
Em
bed
din
g

Triplet 
Loss

Figure 8-1. FaceNet neural network architecture
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 Input Images

The training set consists of thumbnails of faces cropped from the images. Other than 

translation and scaling, no other alignments to the face crops are needed.

 Deep CNN

FaceNet was trained using deep convolutional neural networks using SGD with 

backpropagation and an AdaGrad optimizer. The initial learning rate was taken as 0.05 

and decreased with iterations to finalize the model. The training was performed on a 

CPU-based cluster for 1,000 to 2,000 hours.

The FaceNet paper describes two different architectures of deep convolutional 

neural networks having different trade-offs. The first architecture was inspired by Zeiler 

and Fergus, and the second is the inception from Google. The two architectures differ 

mainly in two aspects: the number of parameters and the floating-point operations per 

second (FLOPS). FLOPS is a standard measure of computer performance that requires 

floating-point computations.

The Zeiler and Fergus CNN architecture consists of 22 layers and trains on 140 

million parameters at 1.6 billion FLOPS per image. This CNN architecture is referred to 

as NN1 that has an input size of 220×220.

Table 8-1 shows the network configuration based on Zeiler and Fergus that is used in 

FaceNet.
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The second type of network is the inception model based on GoogLeNet. This 

model has 20× fewer parameters (around 6.6 million to 7.5 million) and 5× fewer FLOPS 

(around 500 million to 1.6 billion).

There are a few variants of the inception model based on the input size. They are 

briefly described here:

• NN2: This is an inception model that takes images of size 224×224 

and trains on 7.5 million parameters at 1.6 billion FLOPS per image.

Table 8-2 shows the NN2 inception model used in FaceNet.

Table 8-1. Deep CNN Based on Zeiler and Fergus Network 

Architecture (Source: Schroff et al, https://arxiv.org/

pdf/1503.03832.pdf)

-
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• NN3: This is identical in architecture compared to NN2 except that it 

uses a 160×160 input size resulting in a smaller network size.

• NN4: This network has a 96×96 input size resulting in drastically 

reduced parameters that requires only 285 million FLOPS per image 

(compared to 1.6 billion on NN1 and NN2). Because of the reduced 

size and lower FLOPS requiring less CPU time, NN4 is suitable for 

mobile devices.

• NNS1: This is also called a “mini” inception due to its smaller size. It 

has an input size of 165×165 and 26 million parameters that require 

only 220 million FLOPS per image.

• NNS2: This is called a “tiny” inception. It has an input size of 140×116 

and 4.3 million parameters that require 20 million FLOPS.

NN4, NNS1, and NNS2 are suitable for mobile devices because of the smaller 

number of parameters requiring low CPU FLOPS per image.

It is important to mention that the model accuracy is higher with larger FLOPS. In 

general, a network with lower FLOPS runs faster and consumes less memory but results 

in lower accuracy.

Table 8-2. Inception Model Architecture Based on GoogLeNet (Source: Schroff 

et al, https://arxiv.org/pdf/1503.03832.pdf)

-
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Figure 8-2 shows a plot of FLOPS versus accuracy with different types of CNN 

architectures.

 Face Embedding

The face embeddings of sizes 1×1×128 are generated from the L2 normalization layer of 

the deep CNN (as shown in Figure 8-1 and Tables 8-1 and 8-2).

After the embeddings are calculated, the face verification (or finding similar faces) is 

performed by calculating the Euclidean distances between the embeddings and finding 

similar faces based on the following:

• The faces of the same person have smaller distances

• The faces of different people have larger distances

The face recognition is performed by the standard K-nearest neighbors (K-NN) 

classification.

The clustering is done using algorithms like K-means or agglomerative clustering 

techniques.

Figure 8-2. FLOPS versus accuracy (source: FaceNet, https://arxiv.org/
pdf/1503.03832.pdf)
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 Triplet Loss Function

The loss function used in FaceNet is known as the triplet loss function.

The embeddings of the same faces are called positives and of different faces are 

negatives. The face being analyzed is called the anchor. To calculate the loss, a triplet 

consisting of an anchor, a positive, and a negative embedding is formed, and their 

Euclidean distances are analyzed. The learning objective of FaceNet is to minimize the 

distance between an anchor and a positive and maximize the distance between the 

anchor and a negative.

Figure 8-3 illustrates the triplet loss function and the learning process.

Each face image is a feature vector, representing a d-dimensional Euclidean 

hypersphere, and represented by a function ||f(x)||2 = 1.

Assume the face image xi
a (anchor) is closer to the face xi

p  (hard positive) of the 

same person than xi
n (hard negative) faces of different people. Further, assume that there 

are N triplets in the training set. The triplet loss function is represented by the following 

equation:

L = ( )- ( ) - ( ) - ( ) +éë ùûå
i

N

i
a

i
p

i
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i
nf x f x f x f x|| || || ||2

2
2
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where α is a margin of distance between positive and negative embeddings.

If we consider every possible combination of triplets, there will be lots of triplets, 

and the previous function may take a lot of time to converge. Also, not every triplet 

contributes to the model learning. Therefore, we need a method to select the right 

triplets so that our model training is efficient and the accuracy is optimum.

Figure 8-3. The triplet loss minimizes the distance between an anchor and a 
positive, both of which have the same identity, and it maximizes the distance 
between the anchor and a negative of a different identity. (Source: FaceNet, 
https://arxiv.org/pdf/1503.03832.pdf.)
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 Triplet Selection

Ideally, we should select triplets in such a way that || ||f x f xi
a

i
p( ) ( )- 2

2  is minimum and 

|| ||f x f xi
a

i
n( ) ( )- 2

2  is maximum. But calculating this min and max across all datasets may 

be infeasible. Therefore, we need a method to efficiently calculate the min and max 

of distances. This may be done offline and then fed to the algorithm or be determined 

online using some algorithms.

In an online method, we divide the embeddings into mini-batches. Each mini-batch 

contains a small set of positives and some randomly selected negatives. The inventors of 

FaceNet used mini-batches consisting of 40 positives and randomly selected negatives 

embeddings. The min and max distances are calculated for each mini-batch to create 

triplets.

In the next sections, we will learn how to train our own model based on FaceNet and 

build a system for real-time face recognition.

 Training a Face Recognition Model
One of the most popular TensorFlow implementations of FaceNet is by David Sandberg. 

This is an open source version and freely available under the MIT License at GitHub 

at https://github.com/davidsandberg/facenet. We have forked the original GitHub 

repository and committed a slightly modified version to our GitHub repository located at 

https://github.com/ansarisam/facenet. We did not modify the core neural network 

and triplet loss function implementations. Our modified version of FaceNet, forked 

from David Sandberg’s repository, uses OpenCV for reading and manipulating images. 

We also upgraded some of the library functions of TensorFlow. This implementation of 

FaceNet requires TensorFlow version 1.x and does not currently run on version 2.

In the following example, we will use Google Colab to train our face detection model. 

It is important to note that a face detection model is compute-intensive and may take 

several days to learn, even on GPUs. Therefore, Colab is not an ideal platform to train 

a long-running model, because you will lose all the data and settings after the Colab 

session expires. You should consider using a cloud-based GPU environment for training 

a production-quality face recognition model. Chapter 10 will show you how to scale your 

model training on the cloud. For now, let’s use Colab for the purposes of learning.

Before we start, create a new Colab project and give it a meaningful name, such as 

FaceNet Training.
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 Checking Out FaceNet from GitHub
Check out the source code of the TensorFlow implementation of FaceNet. In Colab, 

add a code cell by clicking the +Code icon. Write the command to clone the GitHub 

repository, as shown in Listing 8-1. Click the Execute button to run the command. After 

the successful execution, you should see the directory facenet in your Colab file browser 

panel.

Listing 8-1. Cloning the GitHub Repository of TensorFlow Implementation of 

FaceNet

1    %%shell

2    git clone https://github.com/ansarisam/facenet.git

 Dataset
We will use the VGGFace2 dataset for training our face recognition model. VGGFace2 

is a large-scale image dataset for face recognition, provided by Visual Geometry Group, 

https://www.robots.ox.ac.uk/~vgg/data/vgg_face2/.

The VGGFace2 dataset consists of 3.3 million faces of more than 9,000 people 

(referred to as identities). The data sample has 362 images (on an average) per 

identity. The dataset is described in the paper at http://www.robots.ox.ac.uk/~vgg/

publications/2018/Cao18/cao18.pdf published in 2018 by Q. Cao, L. Shen, W. Xie, 

O. M. Parkhi, and A. Zisserman.

The size of the training set is 35GB, and the test set is 1.9GB. The datasets are 

available as compressed (zipped) files. The face images are organized in subdirectories. 

The name of each subdirectory is the identity class ID in the format n< classID > . 

Figure 8-4 shows a sample directory structure containing training images.
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A separate metadata file in CSV format is provided. The header of this metadata file 

is as follows:

Identity ID, name, sample number, train/test flag and gender

Here is a brief description:

 – Identity ID maps to the subdirectory name.

 – name is the name of the person whose face image is included.

Figure 8-4. Subdirectories containing images
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 – sample number represents the number of images in the subdirectory.

 – train/test flag indicates whether the identity is in the training set or 

test set. The training set is represented by flag 1 and the test set as 0.

 – gender is the gender of the person.

It is important to note that the size of this dataset is too large to fit in the free version 

of Google Colab or Google Drive.

If the entire dataset does not fit in the free version of Colab, you could use just a 

subset of the data (maybe a few hundred identities) for the purpose of learning.

Of course, you can use your own images if you want to build a custom face 

recognition model. All you need to do is to save images of the same person in one 

directory, with each person having their own directory, and match the directory 

structure to look like Figure 8-4. Make sure your directory names and image file names 

do not have any blank spaces.

 Downloading VGGFace2 Data
To download the images, you will need to register at http://zeus.robots.ox.ac.uk/

vgg_face2/signup/. After the registration, log in to download the data directly from 

http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/, save the compressed training 

and test files to your local drive, and then upload them to Colab.

If you prefer to download the images directly in Colab, you can use the code in 

Listing 8-2. Run the program with the correct URLs to download both the training and 

test sets.

Listing 8-2. Python Code to Download VGGFace2 Images (Source: https://

github.com/MistLiao/jgitlib/blob/master/download.py)

1    import sys

2    import getpass

3    import requests

4
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5    VGG_FACE_URL = "http://zeus.robots.ox.ac.uk/vgg_face2/login/"

6     IMAGE_URL = "http://zeus.robots.ox.ac.uk/vgg_face2/get_

file?fname=vggface2_train.tar.gz"

7     TEST_IMAGE_URL="http://zeus.robots.ox.ac.uk/vgg_face2/get_

file?fname=vggface2_test.tar.gz"

8

9    print('Please enter your VGG Face 2 credentials:')

10   user_string = input('    User: ')

11   password_string = getpass.getpass(prompt='    Password: ')

12

13   credential = {

14      'username': user_string,

15      'password': password_string

16   }

17

18   session = requests.session()

19   r = session.get(VGG_FACE_URL)

20

21   if 'csrftoken' in session.cookies:

22      csrftoken = session.cookies['csrftoken']

23   elif 'csrf' in session.cookies:

24      csrftoken = session.cookies['csrf']

25   else:

26      raise ValueError("Unable to locate CSRF token.")

27

28   credential['csrfmiddlewaretoken'] = csrftoken

29

30   r = session.post(VGG_FACE_URL, data=credential)

31

32   imagefiles = IMAGE_URL.split('=')[-1]

33

34   with open(imagefiles, "wb") as files:

35      print(f"Downloading the file: `{imagefiles}`")

36      r = session.get(IMAGE_URL, data=credential, stream=True)

37      bytes_written = 0
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38      for data in r.iter_content(chunk_size=400096):

39          files.write(data)

40          bytes_written += len(data)

41          MegaBytes = bytes_written / (1024 * 1024)

42          sys.stdout.write(f"\r{MegaBytes:0.2f} MiB downloaded...")

43          sys.stdout.flush()

44

45   print("\n Images are successfully downloaded. Exiting the process.")

After you download the training and test sets, uncompress them to get the training 

and test directories and subdirectories as per the structure shown in Figure 8-4. To 

uncompress, you can execute the commands in Listing 8-3.

Listing 8-3. Commands to Uncompress Files

1    %%shell

2    tar xvzf vggface2_train.tar.gz

3    tar xvzf vggface2_test.tar.gz

 Data Preparation
The training set for FaceNet should be images of the face portion only. Therefore, we 

need to crop the images to extract the faces, align them, and resize them, if needed. We 

will use an algorithm called multitask cascaded convolutional networks (MTCNNs) that 

has proven to outperform many face detection benchmarks while retaining real-time 

performance.

The FaceNet source we cloned from the GitHub repository has a TensorFlow 

implementation of MTCNN. The implementation of this model is outside the scope of 

this book. We will use the Python program align_dataset_mtcnn.py available in the 

align module to get the bounding boxes of all the faces detected in the training and test 

sets. This program will retain the directory structure and save the cropped images in the 

same directory hierarchy, as shown in Figure 8-4.

Listing 8-4 shows the script to perform the face cropping and alignment.
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Listing 8-4. Code for Face Detection Using MTCNN, Cropping and Alignment

1    %%shell

2    %tensorflow_version 1.x

3    export PYTHONPATH=$PYTHONPATH:/content/facenet

4    export PYTHONPATH=$PYTHONPATH:/content/facenet/src

5    for N in {1..10}; do \

6    python facenet/src/align/align_dataset_mtcnn.py \

7    /content/train \

8    /content/train_aligned \

9    --image_size 182 \

10   --margin 44 \

11   --random_order \

12   --gpu_memory_fraction 0.10 \

13   & done

In Listing 8-4, line 1 activates the shell, and line 2 sets the TensorFlow version to 1.x 

to let Colab know that we do not want to use version 2, which is the default version in 

Colab.

Lines 3 and 4 set the PYTHONPATH environment variable to the facenet and facenet/

src directories. If you are using a virtual machine or physical machine and have direct 

access to the operating system, you should consider setting the environment variable in 

the ~/.bash_profile file.

To speed up the face detection and alignment process, we have created ten parallel 

processes (line 5), and for each process we are using 10 percent of the GPU memory (line 

12). If your dataset is smaller and you want to process the MTCNN in a single process, 

simply remove lines 5, 12, and 13.

Line 6 calls the file align_dataset_mtcnn.py and passes the following arguments:

 – The first argument, /content/train, is the directory path where 

training images are located.

 – The second argument, /content/train_aligned, is the directory 

path where the aligned images will be stored.

 – The third argument, --image_size, is the size of the cropped images. 

We set this to 182×182 pixels.
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 – The argument --margin, which is set to 44, creates a margin around 

all four sides of the cropped images.

 – The next parameter, --random_order, if present, will select images in 

random order by the parallel processes.

 – The last argument, --gpu_memory_fraction, is used to tell the 

algorithm what fraction of the GPU memory to use for each of the 

parallel processes.

The cropped image size in the previous script is 182×182 pixels. The input to the 

Inception-ResNet-v1 is only 160×160. This gives an additional margin for random crops. 

The use of the additional margin 44 is used to add any contextual information to the 

model. This additional margin of 44 should be tuned based on your particular situations, 

and the cropping performance should be assessed.

Execute the previous script to start the cropping and alignment processes. Note that 

this is a compute-intensive process and may take several hours to complete.

Repeat the previous process for the test images.

 Model Training
Listing 8-5 is used to train the FaceNet model with the triplet loss function.

Listing 8-5. Script to Train the FaceNet Model with the Triplet Loss Function

%tensorflow_version 1.x

!export PYTHONPATH=$PYTHONPATH:/content/facenet/src

!python facenet/src/train_tripletloss.py \

--logs_base_dir logs/facenet/ \

--models_base_dir /content/drive/'My Drive'/chapter8/facenet_model/ \

--data_dir /content/drive/'My Drive'/chapter8/train_aligned/ \

--image_size 160 \

--model_def models.inception_resnet_v1 \

--optimizer ADAGRAD \

--learning_rate 0.01 \

--weight_decay 1e-4 \

--max_nrof_epochs 10 \

--epoch_size 200
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As mentioned previously, the current implementation of FaceNet runs on 

TensorFlow version 1.x and is not compatible with TensorFlow 2 (line 1 sets version 1.x).

Line 2 is to set the PYTHONPATH environment variable to the facenet/src directory.

Line 3 executes the FaceNet training with the triplet loss function. There are many 

parameters that can be set for the training, but we will list only the important ones here. 

For a detailed list of parameters and their explanation, check out the source code of 

train_tripletloss.py located in the facenet/src directory.

The following arguments are passed for the model training:

 – --logs_base_dir: This is the directory where training logs are saved. 

We will connect TensorBoard to this directory to evaluate the model 

using the TensorBoard dashboard.

 – --model_base_dir: This is the base directory where the model 

checkpoints will be stored. Notice that we have provided the path /

content/drive/'My Drive'/chapter8/facenet_model/ to store the 

model checkpoints to Google Drive. This is to permanently save the 

model checkpoints to Google Drive and avoid losing the model 

because of Colab’s session termination. If the Colab session termi-

nates, we can relaunch the model to pick up from where it stopped. 

Note the single quotations enclosing My Drive because of the space 

in the name.

 – --data_dir: This is the base directory of the aligned images for 

training.

 – --image_size: The input images for training will be resized based on 

this parameter. Inception-ResNet-v1 takes the input image size of 

160×160 pixels.

 – --model_def: This is the name of the model. We are using incep-

tion_resnet_v1 in this example.

 – --optimizer: This is the optimization algorithm to use. You could 

use any of the optimizers ADAGRAD, ADADELTA, ADAM, RMSPROP, and MOM, 

with ADAGRAD being the default one.

 – --learning_rate: We set the learning rate to 0.01. Tune as needed.
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 – --weight_decay: This prevents the weight from becoming too large.

 – --max_nrof_epochs: The maximum number of epochs that the 

training should run.

 – --epoch_size: This is the number of batches per epoch.

Execute the training by clicking the Run button in Colab. Depending upon your 

training size and the training parameters, it may take several hours or even days to 

complete the model.

After the model is successfully trained, the checkpoints are saved in the directory 

--model_base_dir that we configured earlier in Listing 8-5, line 5.

 Evaluation
While the model is running, the losses for each epoch and each batch will print to the 

console. This should give you an idea of how the model is learning. Ideally, the losses 

should be decreasing and should become stable at a very low value, close to zero. 

Figure 8-5 shows a sample output while the training is going on.

You can also evaluate the model performance using TensorBoard. Launch the 

TensorBoard dashboard using the command in Listing 8-6.

Figure 8-5. Colab console output while the training is in progress. It shows the loss 
per batch per epoch
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Listing 8-6. Launching TensorBoard by Pointing to the logs Directory

1 %tensorflow_version 2.x

2 %load_ext tensorboard

3 %tensorboard --logdir /content/logs/facenet

 Developing a Real-Time Face Recognition System
A face recognition system will require three important items.

• A face detection model

• A classification model

• Image or video source

 Face Detection Model
We learned how to train a face detection model in the previous section. We can use 

the model that we built, or we can use an available pre-trained model that fits our 

requirements. Table 8-3 lists the pre-trained models that are publicly available for free.

The models are available at the following locations for free download.

The models were evaluated against the Labeled Faces in the Wild (LFW) dataset, 

available at http://vis-www.cs.umass.edu/lfw/. Table 8-4 shows the model 

architecture and accuracy.

Table 8-3. Face Recognition Pre-trained Models Provided by David Sandberg

Model Name Training 
Dataset

Download Location

20180408- 

102900

CaSia- 

WebFace

https://drive.google.com/

open?id=1R77HmFADxe87GmoLwzfgMu_HY0IhcyBz

20180402- 

114759

VggFace2 https://drive.google.com/open?id=1EXPBSXwTaqrSC0

OhUdXNmKSh9qJUQ55-
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For our example, we will use the VGGFace2 model.

 Classifier for Face Recognition
We will build a model to recognize faces (who the person is). We will train the model to 

recognize George W. Bush, Barack Obama, and Donald Trump, the three most recent 

U.S. presidents.

To keep this simple, we will download a few images of each of the three presidents 

and organize them in subdirectories that will look like Figure 8-6.

Table 8-4. Evaluation Results with Accuracy of FaceNet Models Trained on 

the CASIA-WebFace and VGGFace2 Datasets (Information Provided by David 

Sandberg)

Model Name LFW accuracy Training Dataset Architecture

20180408-102900 0.9905 CaSia-WebFace inception resnet v1

20180402-114759 0.9965 VggFace2 inception resnet v1

Figure 8-6. Input image directory structure

Chapter 8  praCtiCal example: FaCe reCognition 



356

We will develop the face detector on our personal computer/laptop. Before we train 

our classifier, we need to clone the FaceNet GitHub repository. Execute the following 

command:

git clone https://github.com/ansarisam/facenet.git

After the FaceNet source is cloned, set PYTHONPATH to facenet/src and add it to the 

environment variable. 

export PYTHONPATH=$PYTHONPATH:/home/user/facenet/src

The path to the src directory must be the actual directory path in your computer.

 Face Alignment

In this section, we will perform the face alignment of the images. We will use the same 

MTCNN model as we did in the previous section. Since we have a small set of images, 

we will use a single process to align these faces. Listing 8-7 shows the script for face 

alignment.

Listing 8-7. Script for Face Alignment Using MTCNN

1    python facenet/src/align/align_dataset_mtcnn.py \

2    ~/presidents/ \

3   ~/presidents_aligned \

4    --image_size 182 \

5    --margin 44

Note on mac-based computers, the image directories may have a hidden file 
called .DS_Store. make sure you delete this file from all subdirectories that 
contain our input images. also, ensure that the subdirectories contain the images 
only and no other files.

Execute the previous scripts to crop and align the faces. Figure 8-7 shows some 

sample output.
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 Classifier Training

With this minimal setup, we are ready to train the classifier. Listing 8-8 shows the script 

that launches the classifier training.

Listing 8-8. Script to Launch the Face Classifier Training

1    python facenet/src/classifier.py TRAIN \

2    ~/presidents_aligned \

3    ~/20180402-114759/20180402-114759.pb \

4    ~/presidents_aligned/face_classifier.pkl \

5    --batch_size 1000 \

6    --min_nrof_images_per_class 40 \

7    --nrof_train_images_per_class 35 \

8    --use_split_dataset

In Listing 8-8, line 1 calls classifier.py and passes the parameter TRAIN, which indicates 

that we want to train a classifier. Other parameters to this Python script are as follows:

 – The input base directory containing the aligned face images (line 2).

 – The path to the pretrained face detection model that we either built 

ourselves or downloaded from the Google Drive link provided in the 

previous section (line 3). If you have trained your own model that 

saved the checkpoints, provide the path to the directory containing 

the checkpoints. In Listing 8-8, we provided the path to the frozen 

model (*.pb).

Figure 8-7. Cropped and aligned faces of three U.S. presidents
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 – Line 4 is the path where our classifier model will be saved. Note that 

this is a Pickle file with the .pkl extension. Pickle is a Python serial-

ization and deserialization module.

After the classifier model is successfully executed, the trained classifier is stored in 

the file provided in line 4 of Listing 8-8.

 Face Recognition in a Video Stream

In Listing 7-1, we used OpenCV’s convenient function cv2.VideoCapture() to read 

video frames from either the built-in camera of the computer or a USB or IP camera. The 

argument 0 to the VideoCapture() function is typically used to read frames from the 

built-in camera. In this section, we will discuss how to use YouTube as our video source.

To read YouTube videos, we will use a Python library called pafy, which internally 

uses the youtube_dl library. Install these libraries using PIP in your development 

environment. Simply execute the commands in Listing 8-9 to install pafy.

Listing 8-9. Commands to Install YouTube-Related Libraries

pip install pafy

pip install youtube_dl

The FaceNet repository that we cloned for this exercise provides the source code, 

real_time_face_recognition.py in the contributed module, for recognizing faces in a 

video. Listing 8-10 shows how to use the Python API to detect and recognize faces from a 

video.

Listing 8-10. Script to Call Real-Time Face Recognition API

1   python real_time_face_recognition.py \

2   --source youtube \

3   --url https://www.youtube.com/watch?v=ZYkxVbYxy-c \

4   --facenet_model_checkpoint ~/20180402-114759/20180402-114759.pb \

5   --classfier_model ~/presidents_aligned/face_classifier.pkl
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In Listing 8-10, line 1 calls real_time_face_recognition.py and passes the 

following arguments:

 – Line 2 sets the value of the argument --source, which in this case is 

youtube. If you skip this argument, it will default to the built-in 

camera with the computer. You can explicitly pass the argument 

webcam to read frames from the built-in camera.

 – Line 3 is to pass the YouTube video URL. This argument is not 

needed in the case of the camera source.

 – Line 4 provides the path to the pre-trained FaceNet model. You can 

supply the path to either the checkpoint directory or the frozen *.pb 

model.

 – Line 5 provides the file path of the classifier model that we trained in 

the previous section, such as the classifier model for recognizing the 

faces of three U.S. presidents.

When you execute Listing 8-10, it will read the YouTube video frames and display the 

recognized faces with bounding boxes. Figure 8-8 shows a sample recognition.

Figure 8-8. Sample screenshots taken from videos with faces recognized. The 
input source of the video is YouTube
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 Summary
Face detection is an interesting computer vision problem that involves detecting 

classifying facial embeddings to identify, in an image, who the person is. In this chapter, 

we explored FaceNet, a popular face recognition algorithm based on ResNet. We learned 

the technique to crop the face portion of the image using the MTCNN algorithm. We 

also trained our own classifier and worked through an example to classify faces of three 

U.S. presidents. Finally, we ingested streams of videos from YouTube and implemented a 

real-time face recognition system.
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CHAPTER 9

Industrial Application: 
Real-Time Defect 
Detection in Industrial 
Manufacturing
Computer vision has many applications in industrial manufacturing. One such 

application is in the automation of visual inspection for quality control and assurance.

Most manufacturing companies train their people to manually perform visual 

inspection, which is a manual process of inspection that can be subjective, resulting in 

accuracy that is dependent on the experience and opinion of the individual inspector. It 

should also be noted that this process is labor intensive.

In cases when there are machine calibration issues, environmental settings, or 

equipment malfunction, the entire batch of production may become faulty. In such 

cases, manual inspection after the fact may prove to be expensive, as the items may 

have already been produced and the entire batch of faulty products (maybe hundreds or 

thousands) may need to be discarded.

In summary, the manual process of inspection is slow, inaccurate, and expensive.

A computer vision–based visual inspection system can detect surface defects in real 

time by analyzing streams of video frames. The system can send alerts, in real time, when 

a defect or a series of defects is detected so that the production can be stopped to avoid 

any loss.

In this chapter, we will develop a deep learning–based computer vision system to 

detect surface defects, such as patches, scratches, pitted surfaces, and crazings.

https://doi.org/10.1007/978-1-4842-5887-3_9#DOI
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We will work with a dataset containing labeled images of hot-rolled steel strips. We 

will first transform the dataset, train an SSD model, and utilize the model to build a defect 

detector. We will also learn how to label our own images for any object detection task.

 Real-Time Surface Defect Detection System
In this section, we will first examine the dataset that we will use for training and testing 

a surface defect detection model. We will transform the images and annotations into 

TFRecord files, and train an SSD model on Google Colab. We will apply the object 

detection concepts presented in Chapter 6.

 Dataset
We will utilize a dataset provided by K. Song and Y. Yan at Northeastern University 

(NEU). The dataset consists of six types of surface defects of hot-rolled steel strips. These 

defects are labeled as follows:

 – Rolled-in scale (RS), which typically occurs when the mill scale is 

rolled into metal during the rolling process.

 – Patches (Pa), which may be irregular surface patches.

 – Crazing (Cr), which is a network of cracks on the surface.

 – Pitted surface (PS) consisting of a number of small shallow holes.

 – Inclusion (In), which is compound materials embedded inside steel

 – Scratches (Sc)

Figure 9-1 shows labeled images of steel surfaces with these six defects.
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The dataset includes 1,800 grayscale images with 300 samples of each of the defect 

classes.

The dataset is available for free download for education and research purposes at 

https://drive.google.com/file/d/1qrdZlaDi272eA79b0uCwwqPrm2Q_WI3k/view. 

Download the dataset from this link and uncompress it. The uncompressed dataset 

is organized in the directory structure shown in Figure 9-2. The images are in the 

subdirectory IMAGES. The ANNOTATIONS subdirectory contains XML files of annotations of 

bounding boxes and the defect class in PASCAL VOC annotation format.

Figure 9-1. Sample of labeled images of surfaces having six different types of 
defects (source: http://faculty.neu.edu.cn/yunhyan/NEU_surface_defect_
database.html)
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 Google Colab Notebook
Start with creating a new notebook on Google Colab and give a name (e.g., Surface 

Defect Detection v1.0).

Since the NEU dataset is located on Google Drive, we can directly copy it to our 

private Google Drive. On Colab, we will mount the private Google Drive, uncompress the 

dataset, and set up the development environment (Listing 9-1). Please review Chapter 6 

to refresh your understanding of the implementation.

Listing 9-1. Mounting Google Drive, Downloading, Building, and Installing 

TensorFlow Models

1    # Code block 1: Mount Google Drive

2    from google.colab import drive

3    drive.mount('/content/drive')

4

5    # Code block 2: uncompress NEU data

6    %%shell

7    ls /content/drive/'My Drive'/NEU-DET.zip

Figure 9-2. NEU-DET dataset directory structure
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8    unzip /content/drive/'My Drive'/NEU-DET.zip

9

10   # Code block 3: Clone github repository of Tensorflow model project

11   !git clone https://github.com/ansarisam/models.git

12

13    # Code block 4: Install Google protobuf compiler and other 

dependencies

14   !sudo apt-get install protobuf-compiler python-pil python-lxml python- tk

15

16   # Code block 4: Install dependencies

17   %%shell

18   cd models/research

19   pwd

20   protoc object_detection/protos/*.proto --python_out=.

21   pip install --user Cython

22   pip install --user contextlib2

23   pip install --user pillow

24   pip install --user lxml

25   pip install --user jupyter

26   pip install --user matplotlib

27

28   # Code block 5: Build models project

29   %%shell

30    export PYTHONPATH=$PYTHONPATH:/content/models/research:/content/

models/research/slim

31   cd /content/models/research

32   python setup.py build

33   python setup.py install

 Data Transformation
We will transform the NEU dataset into TFRecord format (review the SSD model training 

section of Chapter 6). Listing 9-2 is TensorFlow-based code to transform images and 

annotations into TFRecord.
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Listing 9-2. Transforming Images and Annotations in PASCAL VOC Format into 

TFRecord

File name: generic_xml_to_tf_record.py

1    from __future__ import absolute_import

2    from __future__ import division

3    from __future__ import print_function

4

5    import hashlib

6    import io

7    import logging

8    import os

9

10   from lxml import etree

11   import PIL.Image

12   import tensorflow as tf

13

14   from object_detection.utils import dataset_util

15   from object_detection.utils import label_map_util

16   import random

17

18   flags = tf.app.flags

19    flags.DEFINE_string('data_dir', '', 'Root directory to raw PASCAL VOC 

dataset.')

20

21   flags.DEFINE_string('annotations_dir', 'annotations',

22                     '(Relative) path to annotations directory.')

23   flags.DEFINE_string('image_dir', 'images',

24                     '(Relative) path to images directory.')

25

26   flags.DEFINE_string('output_path', '', 'Path to output TFRecord')

27   flags.DEFINE_string('label_map_path', 'data/pascal_label_map.pbtxt',

28                     'Path to label map proto')
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29    flags.DEFINE_boolean('ignore_difficult_instances', False, 'Whether to 

ignore '

30                      'difficult instances')

31   FLAGS = flags.FLAGS

32

33    # This function generates a list of images for training and 

validation.

34   def create_trainval_list(data_dir):

35      trainval_filename = os.path.abspath(os.path.join(data_dir,"trainval.txt"))

36     trainval = open(os.path.abspath(trainval_filename), "w")

37     files = os.listdir(os.path.join(data_dir, FLAGS.image_dir))

38     for f in files:

39         absfile =os.path.abspath(os.path.join(data_dir, FLAGS.image_dir, f))

40         trainval.write(absfile+"\n")

41         print(absfile)

42     trainval.close()

43

44

45   def dict_to_tf_example(data,

46                        dataset_directory,

47                        label_map_dict,

48                        ignore_difficult_instances=False,

49                        image_subdirectory=FLAGS.image_dir):

50   """Convert XML derived dict to tf.Example proto.

51

52    Notice that this function normalizes the bounding box coordinates 

provided

53   by the raw data.

54

55   Args:

56     data: dict holding PASCAL XML fields for a single image

57     dataset_directory: Path to root directory holding PASCAL dataset

58     label_map_dict: A map from string label names to integers ids.
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59     ignore_difficult_instances: Whether to skip difficult instances in the

60       dataset  (default: False).

61     image_subdirectory: String specifying subdirectory within the

62       PASCAL dataset directory holding the actual image data.

63

64   Returns:

65     example: The converted tf.Example.

66

67   Raises:

68      ValueError: if the image pointed to by data['filename'] is not a 

valid JPEG

69   """

70   filename = data['filename']

71

72   if filename.find(".jpg") < 0:

73       filename = filename+".jpg"

74   img_path = os.path.join("",image_subdirectory, filename)

75   full_path = os.path.join(dataset_directory, img_path)

76

77   with tf.gfile.GFile(full_path, 'rb') as fid:

78     encoded_jpg = fid.read()

79   encoded_jpg_io = io.BytesIO(encoded_jpg)

80   image = PIL.Image.open(encoded_jpg_io)

81   if image.format != 'JPEG':

82     raise ValueError('Image format not JPEG')

83   key = hashlib.sha256(encoded_jpg).hexdigest()

84

85   width = int(data['size']['width'])

86   height = int(data['size']['height'])

87

88   xmin = []

89   ymin = []

90   xmax = []

91   ymax = []
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92   classes = []

93   classes_text = []

94   truncated = []

95   poses = []

96   difficult_obj = []

97   if 'object' in data:

98     for obj in data['object']:

99       difficult = bool(int(obj['difficult']))

100      if ignore_difficult_instances and difficult:

101        continue

102

103      difficult_obj.append(int(difficult))

104

105      xmin.append(float(obj['bndbox']['xmin']) / width)

106      ymin.append(float(obj['bndbox']['ymin']) / height)

107      xmax.append(float(obj['bndbox']['xmax']) / width)

108      ymax.append(float(obj['bndbox']['ymax']) / height)

109      classes_text.append(obj['name'].encode('utf8'))

110      classes.append(label_map_dict[obj['name']])

111      truncated.append(int(obj['truncated']))

112      poses.append(obj['pose'].encode('utf8'))

113

114  example = tf.train.Example(features=tf.train.Features(feature={

115      'image/height': dataset_util.int64_feature(height),

116      'image/width': dataset_util.int64_feature(width),

117      'image/filename': dataset_util.bytes_feature(

118          data['filename'].encode('utf8')),

119      'image/source_id': dataset_util.bytes_feature(

120          data['filename'].encode('utf8')),

121       'image/key/sha256': dataset_util.bytes_feature(key.

encode('utf8')),

122      'image/encoded': dataset_util.bytes_feature(encoded_jpg),

123      'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')),

124      'image/object/bbox/xmin': dataset_util.float_list_feature(xmin),

125      'image/object/bbox/xmax': dataset_util.float_list_feature(xmax),
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126      'image/object/bbox/ymin': dataset_util.float_list_feature(ymin),

127      'image/object/bbox/ymax': dataset_util.float_list_feature(ymax),

128       'image/object/class/text': dataset_util.bytes_list_

feature(classes_text),

129       'image/object/class/label': dataset_util.int64_list_

feature(classes),

130       'image/object/difficult': dataset_util.int64_list_

feature(difficult_obj),

131       'image/object/truncated': dataset_util.int64_list_

feature(truncated),

132      'image/object/view': dataset_util.bytes_list_feature(poses),

133  }))

134  return example

135

136   def create_tf(examples_list, annotations_dir, label_map_dict,   

dataset_type):

137    writer = None

138    if not os.path.exists(FLAGS.output_path+"/"+dataset_type):

139        os.mkdir(FLAGS.output_path+"/"+dataset_type)

140

141    j = 0

142    for idx, example in enumerate(examples_list):

143

144        if idx % 100 == 0:

145            logging.info('On image %d of %d', idx, len(examples_list))

146             print((FLAGS.output_path + "/tf_training_" + str(j) + ".record"))

147             writer = tf.python_io.TFRecordWriter(FLAGS.output_path + 

"/"+dataset_type+"/tf_training_" + str(j) + ".record")

148            j = j + 1

149

150         path = os.path.join(annotations_dir, os.path.basename(example).

replace(".jpg", '.xml'))

151

152        with tf.gfile.GFile(path, 'r') as fid:
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153            xml_str = fid.read()

154        xml = etree.fromstring(xml_str)

155         data = dataset_util.recursive_parse_xml_to_dict(xml)

['annotation']

156

157         tf_example = dict_to_tf_example(data, FLAGS.data_dir,  

label_map_dict,

158                                    FLAGS.ignore_difficult_instances)

159        writer.write(tf_example.SerializeToString())

160

161  def main(_):

162

163    data_dir = FLAGS.data_dir

164    create_trainval_list(data_dir)

165

166     label_map_dict = label_map_util.get_label_map_dict(FLAGS.label_map_path)

167

168    examples_path = os.path.join(data_dir,'trainval.txt')

169    annotations_dir = os.path.join(data_dir, FLAGS.annotations_dir)

170    examples_list = dataset_util.read_examples_list(examples_path)

171

172    random.seed(42)

173    random.shuffle(examples_list)

174    num_examples = len(examples_list)

175    num_train = int(0.7 * num_examples)

176    train_examples = examples_list[:num_train]

177    val_examples = examples_list[num_train:]

178

179    create_tf(train_examples, annotations_dir, label_map_dict, "train")

180    create_tf(val_examples, annotations_dir, label_map_dict, "val")

181

182  if __name__ == '__main__':

183    tf.app.run()

184
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Listing 9-2 does the following:

 1. First, call the function create_trainval_list() to create a text 

file containing a list of absolute paths of all images from the 

IMAGES subdirectory.

 2. Split the list of image paths into a 70:30 ratio to generate separate 

lists of images for the training and validation sets.

 3. For each image in the training set, create a TFRecord using the 

function dict_to_tf_example(). The TFRecord contains the 

bytes of the image, bounding boxes, the annotated class name, 

and several other metadata about the image. The TFRecord is 

serialized and written to a file. Multiple TFRecord files are created, 

and the number of files depend on the total number of images and 

the number of images to be included in each TFRecord file.

 4. Similarly, TFRecords for each of the validation images are created 

and serialized to files.

 5. The training and validation sets are saved into two separate 

subdirectories—train and val—inside the output directory.

If you clone the GitHub repository mentioned in Listing 9-1, the Python file generic_

xml_to_tf_record.py is already included. But if you clone the official TensorFlow 

model’s repository, then you will need to save the code from Listing 9-2 into generic_

xml_to_tf_record.py and upload it to your Colab environment (for example, to the  

/content directory).

We need a mapping file that maps the class index with the class name. This file 

contains JSON content and typically has the extension .pbtxt. We have six defect 

classes, and we can manually write the label mapping file as shown here:

File name: steel_label_map.pbtxt

item {

  id: 1

  name: 'rolled-in_scale'

}
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item {

  id: 2

  name: 'patches'

}

item {

  id: 3

  name: 'crazing'

}

item {

  id: 4

  name: 'pitted_surface'

}

item {

  id: 5

  name: 'inclusion'

}

item {

  id: 6

  name: 'scratches'

}

Upload the steel_label_map.pbtxt file to your Colab environment to the /content 

directory (or any other directory you want as long as you provide the correct path in 

Listing 9-3).

The script in Listing 9-3 executes generic_xml_to_tf_record.py by providing these 

parameters:

 – --label_map_path: The path to the steel_label_map.pbtxt.

 – --data_dir: The root directory where images and annotations 

directories are located.

 – --output_path: The path where you want to save the generated 

TFRecord files. Ensure that this directory exists. If not, create this 

directory before executing this script.
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 – --annotations_dir: The subdirectory name where the annotation 

XML files are located.

 – --image_dir: The subdirectory name where images are located.

Listing 9-3. Executing generic_xml_to_tf_record.py That Creates TFRecord Files

1    %%shell

2    %tensorflow_version 1.x

3

4    python /content/generic_xml_to_tf_record.py \

5       --label_map_path=/content/steel_label_map.pbtxt \

6       --data_dir=/content/NEU-DET \

7       --output_path=/content/NEU-DET/out \

8       --annotations_dir=ANNOTATIONS \

9       --image_dir=IMAGES

Run the script in Listing 9-3 to create TFRecord files in the output directory. You will 

see two subdirectories—train and val—where TFRecords for training and validation 

are saved.

Note that the output directory must exist. Otherwise, create one before executing the 

code in Listing 9-3.

 Training the SSD Model
We are now ready with the right input set in TFRecord format to train our SSD model. 

The training step is exactly the same as we followed in Chapter 6. First download a pre- 

trained SSD model for a transfer learning based on the training and validation set we 

created earlier.

Listing 9-4 shows the same code that we used in Chapter 6 (Listing 6-5).

Listing 9-4. Downloading a Pre-trained Object Detection Model

1    %%shell

2    %tensorflow_version 1.x

3    mkdir pre-trained-model

4    cd pre-trained-model
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5     wget http://download.tensorflow.org/models/object_detection/ssd_

inception_v2_coco_2018_01_28.tar.gz

6    tar -xvf ssd_inception_v2_coco_2018_01_28.tar.gz

We will now edit the pipeline.config file, as explained in the section “Configuring 

the Object Detection Pipeline” of Chapter 6. Listing 9-5 shows the sections of the 

pipeline.config file edited as per the current configuration.

Listing 9-5. Section of pipeline.config That Must to Be Edited to Point to the 

Appropriate Directory Structure

model {

  ssd {

    num_classes: 6

    image_resizer {

      fixed_shape_resizer {

        height: 300

        width: 300

      }

    }

   ......

        batch_norm {

          decay: 0.999700009823

          center: true

          scale: true

          epsilon: 0.0010000000475

          train: true

        }

      }

            override_base_feature_extractor_hyperparams: true

    }

    .....

    matcher {

      argmax_matcher {

        matched_threshold: 0.5

        unmatched_threshold: 0.5

        ignore_thresholds: false
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        negatives_lower_than_unmatched: true

        force_match_for_each_row: true

      }

    }

   ......

   fine_tune_checkpoint: "/content/pre-trained-model/ssd_inception_v2_

coco_2018_01_28/model.ckpt"

  from_detection_checkpoint: true

  num_steps: 100000

}

train_input_reader {

  label_map_path: "/content/steel_label_map.pbtxt"

  tf_record_input_reader {

    input_path: "/content/NEU-DET/out/train/*.record"

  }

}

eval_config {

  num_examples: 8000

  max_evals: 10

  use_moving_averages: false

}

eval_input_reader {

  label_map_path: "/content/steel_label_map.pbtxt"

  shuffle: false

  num_readers: 1

  tf_record_input_reader {

    input_path: "/content/NEU-DET/out/val/*.record"

  }

}

As shown in Listing 9-5, we must edit the sections highlighted in yellow in  

Listing 9-5.

num_classes: 6

fine_tune_checkpoint: path to pre-trained model checkpoint

label_map_path: path to .pbtxt file
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input_path: path to the training TFRecord files.

label_map_path: path to the .pbtxt file

input_path: path to the validation TFRecord files.

Edit the pipeline.config file and upload it to the Colab environment.

Execute the model training using the script shown in Listing 9-6. Review  

Listing 6-6 in Chapter 6 to refresh the concepts. 

Listing 9-6. Executing the Model Training

1    %%shell

2    %tensorflow_version 1.x

3     export PYTHONPATH=$PYTHONPATH:/content/models/research:/content/

models/research/slim

4    cd models/research/

5      PIPELINE_CONFIG_PATH=/content/pre-trained-model/ssd_inception_v2_

coco_2018_01_28/steel_defect_pipeline.config

6    MODEL_DIR=/content/neu-det-models/

7    NUM_TRAIN_STEPS=10000

8    SAMPLE_1_OF_N_EVAL_EXAMPLES=1

9    python object_detection/model_main.py \

10      --pipeline_config_path=${PIPELINE_CONFIG_PATH} \

11      --model_dir=${MODEL_DIR} \

12      --num_train_steps=${NUM_TRAIN_STEPS} \

13      --sample_1_of_n_eval_examples=$SAMPLE_1_OF_N_EVAL_EXAMPLES \

14      --alsologtostderr

While the model is learning, the logs are printed on the Colab console. Make a note 

of the loss per epoch and tune the model’s hyperparameters, if needed.

 Exporting the Model
After the training has successfully completed, the checkpoints are saved in the directory 

specified in line 6 of Listing 9-6.

To utilize the model for real-time detection, we need to export the TensorFlow graph. 

Review the section “Exporting the TensorFlow Graph” of Chapter 6 for details on this.
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Listing 9-7 shows how to export the SSD model that we just trained.

Listing 9-7. Exporting the Model to the TensorFlow Graph

1    %%shell

2    %tensorflow_version 1.x

3    export PYTHONPATH=$PYTHONPATH:/content/models/research

4    export PYTHONPATH=$PYTHONPATH:/content/models/research/slim

5    cd /content/models/research

6

7    python object_detection/export_inference_graph.py \

8       --input_type image_tensor \

9        --pipeline_config_path /content/pre-trained-model/ssd_inception_v2_

coco_2018_01_28/steel_defect_pipeline.config \

10       --trained_checkpoint_prefix /content/neu-det-models/model.

ckpt- 10000 \

11      --output_directory /content/NEU-DET/final_model

After exporting the model, you should save it to Google Drive. Download the final 

model from Google Drive to your local computer. We can use this model to detect surface 

defects from video frames in real time. Review the concepts presented in Chapter 7.

 Model Evaluation
Launch the TensorBoard dashboard to evaluate the model quality. Listing 9-8 shows 

how to launch the TensorBoard dashboard.

Listing 9-8. Launching the TensorBoard Dashboard

1    %tensorflow_version 2.x

2    %load_ext tensorboard

3    %tensorboard --logdir /drive/'My Drive'/NEU-DET-models/
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Figure 9-3 shows a sample training output of TensorBoard.

 Prediction
If you have set up your working environment as described in the section “Detecting 

Objects Using Trained Models” of Chapter 6, you should have everything needed to 

predict surface defects in an image. Simply change the variables in Listing 6-15 and 

execute the Python code shown in Listing 9-9.

Listing 9-9. Variable Initialization Portion of Code from Listing 6-15

model_path = "/Users/sansari/Downloads/neu-det-models/final_model"

labels_path = "/Users/sansari/Downloads/steel_label_map.pbtxt"

image_dir = "/Users/sansari/Downloads/NEU-DET/test/IMAGES"

image_file_pattern = "*.jpg"

output_path="/Users/sansari/Downloads/surface_defects_out"

Figure 9-3. TensorBoard output display of surface defect detection model training
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Figure 9-4 shows some sample output of predictions for different classes of defects.

 Real-Time Defect Detector
Follow the instructions provided in Chapter 7 and deploy the detection system that 

will read video images from the camera and detect surface defects in real time. If you 

have multiple cameras connected to the same device, use the appropriate value for the 

argument x in the function cv2.VideoCapture(x). By default, x=0 reads video from the 

built-in camera of the computer. The values of x=1, x=2, etc., will read videos attached to 

computer ports. For an IP-based camera, the value of x should be the IP address.

 Image Annotations
In all previous examples, we used images that were already annotated and labeled. 

In this section, we will explore how to annotate images for object detection or face 

recognition.

Rolled-in scale Pitted surface Patches Inclusions Crazing

Figure 9-4. Sample prediction output of defective surface with bounding boxes
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There are several open source and commercial tools for image labeling. We will 

explore the Microsoft Visual Object Tagging Tool (VoTT), which is an open source 

annotation and labeling tool for image and video assets. The source code of VoTT is 

available at https://github.com/microsoft/VoTT.

 Installing VoTT
VoTT requires NodeJS and NPM.

To install NodeJS, download the executable binaries for your operating system from 

the official website at https://nodejs.org/en/download/. For example, download and 

install the Windows Installer (.msi) to install NodeJS on Windows OS, download and 

install the macOS Installer (.pkg) to install it on a Mac, or choose Linux Binaries (x64) for 

Linux.

NPM is installed with NodeJS. To check whether NodeJS and NPM are installed on 

your computer, execute the following commands in your terminal window:

node -v

npm -v

VoTT installers for different OSs are maintained at GitHub (https://github.

com/Microsoft/VoTT/releases). Download the installer for your OS. At the time of 

writing this book, the latest VoTT is version 2.1.1, which can be downloaded from these 

locations:

• Windows: https://github.com/microsoft/VoTT/releases/

download/v2.1.0/vott-2.1.0-win32.exe

• Mac: https://github.com/microsoft/VoTT/releases/download/

v2.1.0/vott-2.1.0-darwin.dmg

• Linux: https://github.com/microsoft/VoTT/releases/download/

v2.1.0/vott-2.1.0-linux.snap

Install VoTT on your computer by running the downloaded executable.

To run VoTT from the source, execute the following commands on your terminal:

git clone https://github.com/Microsoft/VoTT.git

 cd VoTT

 npm ci

 npm start
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Running VoTT with the npm start command will launch both the electron version 

and the browser version. The major difference between the two versions is that the 

browser version cannot access the local file system, while the electron version can.

Since our images are on the local file system, we will explore the electron version of 

VoTT.

When you launch the VoTT user interface, you will see the home screen to either 

create a new project, open a local project, or open a cloud project.

To annotate images, we will follow the steps in the next sections.

 Create Connections
We will create two connections: one for input and the other for output.

The input connection is to the directory where unlabeled images are stored.

The output connection is where the annotations are stored.

Currently, VoTT supports connection to the following:

• Azure Blob Storage

• Bing Image Search

• Local File System

We will create a connection to the local file system. To create a new connection, click 

the New Connections icon in the left navigation bar to launch the connection screen. 

Click the plus icon corresponding to the label CONNECTIONS, located in the top-left 

panel. See Figure 9-5.
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Select Local File System for the Provider field. Click Select Folder to open the local 

file system directory structure. Select the directory that contains input images that need 

to be labeled. Click the Save Connection button.

Similarly, create another connection for storing the output.

 Create a New Project
The tasks of image annotations and labeling are managed under a project. To create a 

project, click the home icon and then New Project to open the Project Settings page. See 

Figure 9-6.

Figure 9-5. Creating a new connection
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The two important fields on the Project Settings page are Source Connection and 

Target Connections. Select the appropriate connections that we created in the previous 

step for input and output directories. Click the Save Project button.

 Create Class Labels
After saving the project settings, the screen transitions to the main labeling page. To 

create the class labels, click the (+) icon corresponding to the label TAGS located in the 

top-right corner of the panel on the right (as shown in Figure 9-7). Create all the class 

labels, such as crazing, patch, inclusion, etc.

Figure 9-6. Project Settings page to create a new project
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 Label the Images
Select an image thumbnail from the left panel, and the image will open in the main 

tagging area. Draw rectangles or polygons around the defective areas of the image, and 

select the appropriate tag to annotate the image. See Figure 9-8.

Similarly, annotate all images one by one.

Figure 9-8. Drawing rectangles around the defective areas and selecting the class 
tag to annotate the image

Figure 9-7. Creating class labels
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 Export Labels
VoTT supports the following formats for export:

• Azure Custom Vision Service

• Microsoft Cognitive Toolkit (CNTK)

• TensorFlow (Pascal VOC and TFRecords)

• VoTT (generic JSON schema)

• Comma-separated values (CSV)

We will configure the settings to export our annotations in the TensorFlow TFRecord 

file format.

To configure, click the export icon located in the left navigation bar. The export 

icon looks like a slanting arrow pointing upward. The Export Settings page opens. For 

the Provider field, select TensorFlow Records and click the Save Export Settings button 

(Figure 9-9).

Figure 9-9. Export Settings page
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Go back to the project page (click the Tag Editor icon). Click the  icon located in 

the top toolbar to export the annotation to a TensorFlow Records file.

Check the output folder of the local file system. You will notice that a directory with 

the name containing TFRecords-export has been created in the output directory.

Exporting to the TFRecord format also generates a tf_label_map.pbtxt file that 

contains the class and index mapping.

For up-to-date information and instructions on the image labeling, visit the official 

GitHub page of the VoTT project maintained by Microsoft: https://github.com/

microsoft/VoTT.

 Summary
In this chapter, we developed a surface defect detection system. We trained an SSD 

model on an already labeled image set of hot-rolled steel strips with six classes of defects. 

We used the trained model to predict surface defects in both images and videos. We also 

explored an image annotation tool called VoTT that helps annotate images and export 

the labels into TFRecord format.
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CHAPTER 10

Computer Vision 
Modeling on the Cloud
Training state-of-the-art convolutional neural networks can require significant computer 

resources. It may take several hours or days to train a network depending on the number 

of training samples, network configuration, and available hardware resources. A single 

GPU may not be feasible to train a complex network involving large numbers of training 

images. The models need to be trained on multiple GPUs. Only a limited number of 

GPUs can be installed on a single machine. A single machine with multiple GPUs may 

not be sufficient for training on a large number of images. It will be faster if the model is 

trained on multiple machines with each machine having multiple GPUs.

It is difficult to estimate the number of GPUs and machines needed to train a 

model in a certain time frame. In most practical cases, it is not known up front how 

many machines are needed for the modeling and how long the training will run. Also, 

modeling is not done frequently. A model that predicts with a high degree of accuracy 

may not need to be retrained for several days, weeks, months, or as long as it gives 

accurate results. Therefore, any hardware procured for the modeling may remain idle 

until the model is retrained.

Modeling on the cloud is a good way to scale the training across multiple machines 

and GPUs. Most cloud providers offer virtual machines, compute resources, and storage 

on a pay-as-you-go model. This means you will be charged only for the cloud resources 

used during the period when the model is learning. After the model is successfully 

trained, you can export the model to your application server where it will be used for 

prediction. At this point, all cloud resources that are no longer required can be deleted, 

which will reduce costs.

https://doi.org/10.1007/978-1-4842-5887-3_10#DOI
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TensorFlow provides APIs to train machine learning models on multiple CPUs and 

GPUs installed on either a single machine or multiple machines.

In this chapter, we will explore distributed modeling and train computer vision 

models at scale on the cloud.

The learning objectives of this chapter are as follows:

• To explore the TensorFlow APIs for distributed training

• To set up distributed TensorFlow clusters involving multiple virtual 

machines and GPUs on the three popular cloud providers: Amazon 

Web Services (AWS), Google Cloud Platform (GCP), and Microsoft 

Azure

• To train computer vision models on distributed clusters on the cloud

 TensorFlow Distributed Training
This section will cover TensorFlow distributed training.

 What Is Distributed Training?
The state-of-the-art neural network for computer vision computes millions of 

parameters from a large number of images. The training is time-consuming if all of the 

computations are performed on a single CPU or GPU. In addition, the entire training 

dataset is required to be loaded in memory, which may exceed the memory of a single 

machine.

In distributed training, computations are performed concurrently on multiple 

CPUs or GPUs, and the results are combined to create the final model. Ideally, the 

computation should scale linearly with the number of GPUs or CPUs. In other words, if it 

takes H hours to train a model on one GPU, it should take H/N hours to train the model 

on N number of GPUs.

There are two commonly used methods to implement parallelism in distributed 

training: data parallelism and model parallelism. TensorFlow provides APIs to distribute 

the training by splitting models over multiple devices (CPUs, GPUs, or computers).
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 Data Parallelism

Large training datasets can be divided into smaller mini batches. The mini batches 

can be distributed across multiple computers in a cluster architecture. SGD can 

independently and in parallel compute weights on individual computers that have a 

small batch of data. The results can be combined from the individual computers to a 

central computer to get the final and optimized weights.

SGD can also optimize weights by using parallel processing in a single computer 

with multiple CPUs or GPUs. The distributed and parallel operations to compute 

optimized weights by using the SGD algorithm helps converge it faster.

Figure 10-1 shows a pictorial view of data parallelism.

Data parallelism can be achieved in the following two ways:

• Synchronous: In this case, all nodes train over different chunks of 

input data and aggregate gradients at each step. The synchronization 

of gradients is done by an all-reduce method, as illustrated in 

Figure 10-2.

Large 
number of
images

GPU0

GPU1

GPU2

...

GPU127

64 images

64 images

64 images

64 images

Batch size = 64 x 128 = 8,192 images

Figure 10-1. Data parallelism and batch size calculation
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• Asynchronous: In this case, all nodes independently train over the 

input data and update variables asynchronously through a dedicated 

server called a parameter server, as shown in Figure 10-3.

GPU0

...

GPU127

Model Updater

2. Update model when all 
gradients are received from 
all GPUs

3. Fetch new model and 
compute with new batch

3. Fetch new model and 

1. Submit gradients

compute with new batch

Figure 10-2. Synchronous data parallelism

...

GPU0

GPU127

Parameter Server(s)

2. Update model after 
receiving gradients from 
each GPU

Figure 10-3. Asynchronous data parallelism using parameter servers
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 Model Parallelism

Deep neural networks, such as Darknet, compute billions of parameters. It is a challenge 

to load the entire network in the memory of a single CPU or GPU, even when the batch 

size is small. Model parallelism is a method in which the model is broken into different 

parts, with each part performing operations on the same set of data in different CPUs, 

GPUs, or nodes of the physical computer hardware. The same data batch is copied to all 

nodes in the cluster, but the nodes get different parts of the model. These model parts 

operate on its input dataset concurrently on different nodes.

When the parts of the model run in parallel, their shared parameters need to be 

synchronized. This approach of parallelism works the best in the case of multiple CPUs 

or GPUs on the same machine as the devices are connected by a high-speed bus.

We will now explore how TensorFlow distributes the training across multiple GPUs 

or machines.

 TensorFlow Distribution Strategy
TensorFlow provides a high-level API to distribute the training across multiple GPUs or 

multiple nodes. The API is exposed via the tf.distribute.Strategy class. With just a 

few additional lines and minor code changes, we can distribute the neural networks that 

we have explored in all prior examples.

We can use tf.distribute.Strategy with Keras to distribute networks built by 

using the Keras API. We can also use this to distribute custom training loops. In general, 

any computation in TensorFlow can be distributed using this API.

TensorFlow supports the following types of distribution strategies.

 MirroredStrategy

MirroredStrategy supports synchronous distributed training on multiple GPUs on one 

machine. All variables of the model are mirrored across all GPUs. These variables collectively 

are called MirroredVariables. The computations for the training are performed in parallel on 

each GPU. The variables are synchronized with each other by applying identical updates.

The MirroredVariables are updated across all devices by using all-reduce algorithms. 

An all-reduce algorithm aggregates tensors across all the devices by adding them up 

and makes them available on each device. Figure 10-2 illustrates an example of an all- 

reduce algorithm. These algorithms are efficient and do not have much communication 

overhead for synchronization.
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There are several all-reduce algorithms. TensorFlow uses NVIDIA NCCL as the 

default all-reduce algorithm in MirroredStrategy.

We will explore how to use MirroredStrategy to distribute the training of a deep 

neural network. To keep it simple and easy to understand, let’s modify the code from 

Listing 5-2 and make it distributed. Refer to lines 11, 19, and 24 of Listing 5-2. Here is 

what these lines of code look like:

Line 11, Listing 5-2: model = tf.keras.models.

Sequential([...])

Line 19, Listing 5-2: model.compile(...)

Line 24, Listing 5-2: history = model.fit(...)

The following are the steps to parallelize the training of Listing 5-2:

 1. Create an instance of MirroredStrategy.

 2. Move the creation and compilation of the model  

(lines 11 and 19 of Listing 5-2) inside the scope() method of  

the MirroredStrategy object.

 3. Fit the model (line 24, without any change).

All other lines of Listing 5-2 remain unchanged.

Listing 10-1 shows this concept.

Listing 10-1. Synchronous Distributed Training Using MirroredStrategy

1   strategy = tf.distribute.MirroredStrategy()

2   with strategy.scope():

3     model = tf.keras.Sequential([...])

4     model.compile(...)

5   model.fit(...)

Thus, with just two additional lines of code and minor adjustments, we can 

distribute our training to multiple GPUs on a single machine.

As shown in Listing 10-1, within the scope() method of the MirroredStrategy 

object, we create the computation that we want to run in a distributed and parallel 

fashion. The MirroredStrategy object takes care of replicating the model’s training on 

the available GPUs, aggregating gradients, and more.
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Each batch of the input is divided equally among the replicas. For example, if the 

input batch size is 16 and we use MirroredStrategy with two GPUs, each GPU will 

get eight input examples in each step. We should tune the batch size appropriately to 

effectively utilize the computing power of the GPUs.

The tf.distribute.MirroredStrategy() method creates the default object that 

uses all available GPUs that are visible to TensorFlow. If you want to use only some of the 

GPUs of the machine, simply do the following:

strategy = tf.distribute.MirroredStrategy(devices=["/gpu:0", "/gpu:1"])

Here’s an exercise for you: modify the code example shown in Listing 5-4 and train 

the digit recognition model in distributed mode using MirroredStrategy.

 CentralStorageStrategy

CentralStorageStrategy places the model variables on the CPU and replicates 

the computations across all local GPUs on one machine. Except for the 

placement of variables on the CPU rather than replicating them on GPUs, the 

CentralStorageStrategy is similar to the MirroredStrategy.

At the time of writing this book, the CentralStorageStrategy is experimental and 

likely to change in the future. To distribute the training under CentralStorageStrategy, 

simply replace line 1 of Listing 10-1 with the following:

strategy = tf.distribute.experimental.CentralStorageStrategy()

 MultiWorkerMirroredStrategy

MultiWorkerMirroredStrategy is similar to MirroredStrategy. It distributes the 

training across multiple machines, each having one or more GPUs. It copies all variables 

in the model on each device across all machines. These machines where computations 

are performed are referred to as workers.

To keep the variables in sync across all workers, it uses CollectiveOps as the all- 

reduce communication method. A collective op is a single op in the TensorFlow 

graph. It can automatically chooses an all-reduce algorithm in the TensorFlow runtime 

according to hardware, network topology, and tensor sizes.

To distribute the training across multiple workers under 

MultiWorkerMirroredStrategy, simply replace line 1 of Listing 10-1 with the following:

strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy()
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This creates the default MultiWorkerMirroredStrategy with 

CollectiveCommunication.AUTO as the default for CollectiveOps. You can choose one 

of the following two implementations of CollectiveOps:

• CollectiveCommunication.RING implements ring-based collectives 

using gRPC as the communication layer. gRPC is an open source 

implementation of Remote Procedure Call developed by Google.  

To use this, call the previous instantiation as follows:

strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy(

        tf.distribute.experimental.CollectiveCommunication.RING)

• CollectiveCommunication.NCCL uses NVIDIA NCCL to implement 

collectives. Here is a usage example:

strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy(

        tf.distribute.experimental.CollectiveCommunication.NCCL)

Cluster Configuration

TensorFlow makes it easy to distribute the training across multiple workers. But 

how does it know about the cluster configuration? Before we run our code that uses 

MultiWorkerMirroredStrategy to distribute the training, we must set the TF_CONFIG 

environment variable on all the workers that are going to participate in the model 

training. TF_CONFIG is described later in this section.

Dataset Sharding

How is data made available to workers?

When we use model.fit(x=train_datasets, epochs=3, steps_per_epoch=5), we 

pass the training set directly to the fit() function. The dataset is sharded automatically 

in a multiworker training.

Fault Tolerance

If any of the workers fails, the entire cluster will fail. There is no built-in failure recovery 

mechanism in TensorFlow. However, tf.distribute.Strategy with Keras provides a 

fault tolerance mechanism by saving the training checkpoints. If any worker fails, all the 

other workers will wait for the failed workers to restart. Since the checkpoints are saved, 
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the training will start from the point where it stopped as soon as the failed worker comes 

back up.

To make your distributed cluster fault tolerant, you must save the training 

checkpoints (review Chapter 5 to see how checkpoints are saved using callbacks).

 TPUStrategy

Tensor processing units (TPUs) are specialized application-specific integrated circuits 

(ASICs) designed by Google to dramatically accelerate the machine learning workloads. 

TPUs are available on Cloud TPU and Google Colab.

In terms of implementation, TPUStrategy is the same as MirroredStrategy except 

that the model variables are mirrored to TPUs. Listing 10-2 shows how to instantiate 

TPUStrategy.

Listing 10-2. Instantiation of TPUStrategy

1   cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver(

    tpu=tpu_address)

2   tf.config.experimental_connect_to_cluster(cluster_resolver)

3   tf.tpu.experimental.initialize_tpu_system(cluster_resolver)

4   tpu_strategy = tf.distribute.experimental.TPUStrategy(cluster_resolver)

In line 1, specify the TPU address by passing it to the argument tpu=tpu_address.

 ParameterServerStrategy

In ParameterServerStrategy, the model variables are placed on a dedicated machine, 

called the parameter server. In this case, some machines are designated as workers and 

some as parameter servers. Computations are replicated across all GPUs of all workers 

while the variables are updated in the parameter server.

The implementation of ParameterServerStrategy is the same as 

MultiWorkerMirroredStrategy. We must set the TF_CONFIG environment variable on 

each of the participating machines. TF_CONFIG is explained next.

To distribute the training under ParameterServerStrategy, simply replace line 1 of 

Listing 10-1 with the following:

strategy = tf.distribute.experimental.ParameterServerStrategy()
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 OneDeviceStrategy

Sometimes we want to test our distributed code on a single device (GPU) before 

moving it to a fully distributed system involving multiple devices. OneDeviceStrategy is 

designed for this purpose. When we use this strategy, the model variables are placed on 

a specified device.

To use this strategy, simply use the following code and replace line 1 of Listing 10-1:

strategy = tf.distribute.OneDeviceStrategy(device="/gpu:0")

This strategy is only for testing the code. Switch to other strategies before training 

your model on a fully distributed environment.

It is important to note that all the previous strategies, except MirroredStrategy, for 

distributed training are experimental at this time.

 TF_CONFIG: TensorFlow Cluster Configuration
A TensorFlow cluster for distributed training consists of one or more machines, called 

workers. The computations of the model training are performed in each worker. There is 

one specialized worker, called the master or chief worker, that has extra responsibilities 

in addition to being a normal worker. The additional responsibilities of the chief worker 

include saving the checkpoints and writing summary files for TensorBoard.

The TensorFlow cluster may also include dedicated machines for parameter servers. 

The parameter server is mandatory in the case of ParameterServerStrategy.

The TensorFlow cluster configuration is specified by a TF_CONFIG environment 

variable. We must set this environment variable on all the machines on the cluster.

The format of TF_CONFIG is a JSON file consisting of two components: cluster and 

task.

The cluster component provides information about the workers and parameter 

servers that participate in the model training. This is a dictionary list of the workers’ 

hostnames and communication ports (e.g., localhost:1234).

The task component specifies the role of the worker for the current task. It is 

customary to specify the first worker, with index 0 in the worker list, as the master or 

chief worker.

Table 10-1 describes the key-value pairs of TF_CONFIG .
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 An Example TF_CONFIG

Assume that we have a cluster of three machines that we want to use for distributed 

training. The hostnames of these machines are host1.local, host2.local, and host3.

local. Assume that they all communicate via port 8900.

Also, assume the following roles for each machine:

worker: host1.local (chief worker)

worker: host2.local (normal worker)

ps: host3.local (parameter server)

The TF_CONFIG environment variable that needs to be set on all three machines, as 

shown in Table 10-2.

Table 10-1. TF_CONFIG Format Description

Key Description Example

cluster a dictionary containing the keys worker, chief, and ps. 

each of these keys is a list of hostname:port of all 

machines involved in the training.

cluster: {

worker:["host1:12345",

"host2:2345"]

}

task specifies the task a particular machine will perform.  

this has the following keys:

type: this specifies the worker type and takes a string 

for worker, chief, or ps.

index: the zero-based index of the task. most 

distributed training jobs have a single master task, one or 

more parameter servers, and one or more workers.

trial: this is used when hyperparameter tuning is 

performed. this value sets the number of trials to train. 

this helps to identify which trial is currently running.  

this takes a string value containing the trial number, 

starting from 1.

task: { type: chief, 

index:0}

this indicates that 

host1:1234 is the chief 

node.

job the job parameters you used when you initiated the job. 

this is optional and may be ignored in most cases.
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 Example Code of Distributed Training 
with a Parameter Server
Listing 10-3, a modified version of Listing 5-2, shows a simple implementation of 

ParameterServerStrategy to distribute training to multiple workers. We will explore 

how to execute this code on the cloud.

Listing 10-3. Distributing Training Across Multiple Workers Using 

ParameterServerStrategy

File name: distributed_training_ps.py

01: import argparse

02: import tensorflow as tf

03: from tensorflow_core.python.lib.io import file_io

04:

05: #Disable eager execution

06: tf.compat.v1.disable_eager_execution()

07:

08: #Instantiate the distribution strategy -- ParameterServerStrategy.

    #This needs to be in the beginning of the code.

09: strategy = tf.distribute.experimental.ParameterServerStrategy()

10:

Table 10-2. Example TF_CONFIG Environment Variable in Three-Node Cluster 

That Has Two Workers and One Parameter Server

master worker ps

'cluster': {

         'worker': ["host1.

local:8900", "host2.

local:8900"], "ps": 

["host3.local:8900"]

},

     'task': {'type': 

worker, 'index': 0}

}

'cluster': {

         'worker': ["host1.

local:8900", "host2.

local:8900"], "ps": 

["host3.local:8900"]

},

'task': {'type': 

worker, 'index': 1}

}

'cluster': {

         'worker': ["host1.

local:8900", "host2.

local:8900"], "ps": 

["host3.local:8900"]

},

'task': {'type': ps, 

'index': 0}

}
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11: #Parse the command line arguments

12: parser = argparse.ArgumentParser()

13: parser.add_argument(

14:      "--input_path",

15:      type=str,

16:      default="",

17:      help="Directory path to the input file. Could you be cloud storage"

18: )

19: parser.add_argument(

20:      "--output_path",

21:      type=str,

22:      default="",

23:      help="Directory path to the input file. Could you be cloud storage"

24: )

25: FLAGS, unparsed = parser.parse_known_args()

26:

27: # Load MNIST data using built-in datasets' download function

28: mnist = tf.keras.datasets.mnist

29: (x_train, y_train), (x_test, y_test) = mnist.load_data()

30:

31: #Normalize the pixel values by dividing each pixel by 255

32: x_train, x_test = x_train / 255.0, x_test / 255.0

33:

34: BUFFER_SIZE = len(x_train)

35: BATCH_SIZE_PER_REPLICA = 16

36: GLOBAL_BATCH_SIZE = BATCH_SIZE_PER_REPLICA * 2

37: EPOCHS = 10

38: STEPS_PER_EPOCH = int(BUFFER_SIZE/EPOCHS)

39:

40: train_dataset = tf.data.Dataset.from_tensor_slices((x_train, 

        y_train)).shuffle(BUFFER_SIZE).batch(GLOBAL_BATCH_SIZE)

41:  test_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test)).

batch(GLOBAL_BATCH_SIZE)

42:

43:
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44: with strategy.scope():

45:     # Build the ANN with 4-layers

46:    model = tf.keras.models.Sequential([

47:    tf.keras.layers.Flatten(input_shape=(28, 28)),

48:    tf.keras.layers.Dense(128, activation='relu'),

49:    tf.keras.layers.Dense(60, activation='relu'),

50:    tf.keras.layers.Dense(10, activation='softmax')])

51:

52:    # Compile the model and set optimizer,loss function and metrics

53:    model.compile(optimizer='adam',

54:              loss='sparse_categorical_crossentropy',

55:              metrics=['accuracy'])

56:

57:  #Save checkpoints to the output location--most probably on a cloud 

storage, such as GCS

58:  callback = tf.keras.callbacks.ModelCheckpoint(filepath=FLAGS.output_path)

59: # Finally, train or fit the model

60:  history = model.fit(train_dataset, epochs=EPOCHS, steps_per_

epoch=STEPS_PER_EPOCH, callbacks=[callback])

61:

62: # Save the model to the cloud storage

63: model.save("model.h5")

64: with file_io.FileIO('model.h5', mode='r') as input_f:

65:      with file_io.FileIO(FLAGS.output_path+ '/model.h5', mode='w+') as 

output_f:

66:        output_f.write(input_f.read())

The code in Listing 10-3 can be divided into four logical parts.

• Reading and parsing the command-line arguments (lines 11 through 25).  

It accepts two arguments: the training data input path and the output 

path for saving checkpoints and the final model.

• Loading the input images and creating the training and test sets (lines 

27 through 41). It is important to note that ParameterServerStrategy 

does not support last partial batch handling, passing the steps_per_

epoch argument to model.fit() when the dataset is imbalanced on 

multiple workers. Notice the calculation of steps_per_epoch in Line 38.
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• Creating and compiling the Keras model within the scope of 

ParameterServerStrategy (line 9 and lines 44 through 55). Here are 

a few important points to consider:

• Create the instance of ParameterServerStrategy or 

MultiWorkerMirroredStrategy at the beginning of the program 

and put the code that may create ops after the strategy is 

instantiated.

• The portion of the code that needs to be distributed must be 

wrapped within the scope of the strategy.

• Line 44 defines the scope() block within which we wrap the 

model definition and compilation.

• Lines 45 through 50 create the model within the strategy scope.

• Lines 53 through 55 compile the model within the strategy scope.

• Training the model and saving the checkpoints and final model (lines 

57 through 66).

 a. Line 58 creates the model checkpoint object that is passed to 

the model’s fit() function to save the checkpoints while the 

model trains.

 b. Line 60 triggers the model training by calling the fit() 

function. As explained earlier, the train_dataset passed 

to the fit() function is automatically distributed by the 

distribution strategy (ParameterServerStrategy in this case).

 c. Line 63 saves the complete model in the local directory. Lines 

64 through 66 copy the local model to cloud storage, such as 

Google Cloud Storage (GCS) or Amazon S3.

 d. Notice that lines 57 through 66 are outside the scope of the 

strategy.

We now have the model training code that can be distributed across multiple 

workers and trained in parallel mode using a parameter server. Next, we will run this 

training on the cloud using the architecture shown in Figure 10-4.
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 Steps for Running Distributed Training on the Cloud
We will deploy a TensorFlow cluster on the cloud based on the architecture shown in 

Figure 10-4 and do the following steps to execute the training:

 1. Create a TensorFlow cluster.

 a. Parameter server, chief, and worker nodes: All three cloud providers—AWS, 

GCP, Azure—provide a browser-based shell and graphical user interface 

(UI) to create and manage virtual machines. We can create either GPU-

based VMs or CPU-based VMs depending on the data size and the neural 

network’s complexity.

 2. Install TensorFlow and all the prerequisite libraries on all VMs: 

Review Chapter 1 for the instructions on installing prerequisites. 

For running the code in Listing 10-3, we will install TensorFlow 

only.

Figure 10-4. TensorFlow cluster architecture with the chief, workers, and 
parameter server on the cloud VMs. The data and the model are on the scalable 
storage system

Chapter 10  Computer Vision modeling on the Cloud



405

 3. Create the cloud storage directory (also called a bucket): 

Depending upon the cloud provider, we will create one of the 

following:

• AWS S3 bucket

• Google Cloud Storage (GCS) bucket

• Azure container

 4. Upload the Python code and execute the training on each machine: 

Using the cloud shell or any other SSH client, log in to each of the 

nodes and perform the following:

• Upload the Python package containing the dependencies and 

model training code (of Listing 10-3) to each of the nodes. Upload 

the code via scp or any other file transfer protocols. Since our 

code is committed in GitHub, we can clone the repository and 

download the code across all nodes.

 On each machine, clone the GitHub repository as shown in 

Listing 10-4.

Listing 10-4. Cloning the GitHub Repository

git clone https://github.com/ansarisam/dist-tf-modeling.git

• We will need to set the machine role–specific TF_CONFIG environment 

variable on each machine and execute the Python code for 

distributed training, as shown in Listing 10-5.

Listing 10-5. Executing Distributed Training

export TF_CONFIG=$CONFIG;python distributed_training_ps.py --input_path 

gs://cv_training_data --output_path gs://cv_distributed_model/output

It is not efficient to manually execute the command in Listing 10-5 on each of the 

nodes, especially when there is a large number of workers. We can write scripts to 

automate the launch of distributed training on a large cluster. The GitHub repository 

shown in Listing 10-4 has a Python script that can be used for automation. To 

understand how this works, we will follow the manual steps and launch the training on 

each VM one by one.
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 Distributed Training on Google Cloud
Google Cloud Platform (GCP) is a suite of cloud computing services that runs on the 

same infrastructure that Google uses internally for its end-user products, such as Google 

Search and YouTube.

We will use two GCP services for the purpose of running distributed training. These 

two services are Google Cloud Storage (GCS) for saving checkpoints and trained models 

and Compute Engine for virtual machines (VMs).

Let’s get started!

 Signing Up for GCP Access
If you already have a GCP account, skip this section. If not, create a GCP account at 

https://cloud.google.com. Google offers a $300 credit for education and learning. 

We will use this free account for our exercise in this section. You must enable billing for 

business and production deployment.

After creating an account, sign in to the Google Cloud Console, at https://console.

cloud.google.com. A successful sign-in will take you to the GCP Dashboard, which looks 

like Figure 10-5.

Figure 10-5. Google Cloud Platform Dashboard
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 Creating a Google Cloud Storage Bucket
GCS is a highly durable object storage on Google Cloud. It can scale to store exabytes of 

data. A GCS bucket is analogous to a directory in a file system. We can create the GCS 

bucket in one of the following two ways.

 Creating the GCS Bucket from the Web UI
To create a bucket using the web UI, follow these steps:

 1. Log in to the Google Cloud Console, at https://cloud.google.com. 

From the left- side navigation menu, click Storage and then Browse 

to launch the storage browser page (see Figure 10-6).

 2. Click the Create Bucket button at the top of the page.

 3. On the next page, fill in the bucket name (e.g., cv_model) and 

click Continue. Select Region for the location type, select the 

appropriate location such as “us-east4 (Northern Virginia),” and 

then click Continue (see Figure 10-7).

Figure 10-6. Storage menu
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 4. Select Standard for the default storage class, and click Continue.

 5. Select Uniform for the access control and then click Continue.

 6. Click the Create button to create the bucket.

 7. On the next page, click the Overview tab to see the bucket details 

(see Figure 10-8).

Figure 10-7. Form to create a bucket
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 Creating the GCS Bucket from the Cloud Shell
If you have already created the bucket using the web UI, you do not need to follow these 

steps. It is easy to create the bucket using the command line.

 1. Activate the Cloud Shell by clicking the  icon located in the 

top-right corner. In Figure 10-5, this icon is marked with a red 

rectangle. The Cloud Shell will open at the bottom of the screen 

(within the same browser window).

 2. Execute the command in Listing 10-6 in the Cloud Shell to create 

the bucket.

Listing 10-6. gsutil Command to Create GCS Bucket

gsutil mb -c regional -l us-east4 gs://cv_model

Figure 10-8. Bucket detail page
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Provide the appropriate region and bucket name in the command 

in Listing 10-6. If you have created the bucket using the web UI, 

make sure to use a different bucket name.

gsutil is a Python application that lets us access cloud storage from 

the command line.

Figure 10-9 shows the gsutil command execution in the Cloud Shell.

 Launching GCP Virtual Machines
We will launch the following types of virtual machines (VMs) for our exercise:

• One GPU-based VM: Parameter server

• One GPU-based VM: Chief node

• Two GPU-based VMs: Worker nodes

The VMs will be launched in the same region where our GCS bucket is located  

(us- east4 in the previous example).

To launch the VMs, follow these steps:

 1. In the main navigation menu, click Compute Engine and then 

“VM instances” to launch the page that displays a list of the VMs 

previously launched.

 2. Click Create to launch the web form that we need to fill in to create 

the instance. Figure 10-10 and Figure 10-11 show the instance 

creation form.

Figure 10-9. gsutil command to create a bucket using the Cloud Shell
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Figure 10-10. Form (top portion) to provide information to create a VM
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 3. We will create four GPU-based VMs to create the cluster. In the 

instance creation form, click the Change button next to the Image 

under “Boot disk” (as shown in Figure 10-12).

On the next screen (as shown in Figure 10-13), select Deep 

Learning on Linux for the operating system and Deep Learning 

Image: TensorFlow 1.15.0 m45 for the version.

Figure 10-11. Bottom portion of the instance creation form

Figure 10-12. Clicking the Change button to launch the “Boot disk” selection page
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 4. Figure 10-14 shows the screen that lists all four VMs that we 

created.

Figure 10-13. CUDA 10–based Linux OS with pre-installed TensorFlow 1.15
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 SSH to Log In to Each VMs
We will use the Cloud Shell and gsutil to log in to all four VMs created earlier. Activate 

the Cloud Shell and click the + icon (marked with a red rectangle in Figure 10-15).

To log in via SSH, execute the commands (in each of the four Cloud Shell tabs) 

shown in Listing 10-7.

Figure 10-14. List of all VMs created

Figure 10-15. Creating multiple tabs of the Cloud Shell by clicking the + icon
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Listing 10-7. SSH to Log In to All 4VMs Using Cloud Shell

SSH to parameter server    gcloud compute ssh parameter-server

SSH to chief               gcloud compute ssh chief

SSH to worker-0            gcloud compute ssh worker-0

SSH to worker-1            gcloud compute ssh worker-1

 Uploading the Code for Distributed Training or Cloning 
the GitHub Repository
While logged in via SSH, execute the following command to clone the GitHub repository 

that contains the distributed model training code (as shown in Listing 10-8). This needs 

to be done on all machines.

Listing 10-8. Command to Clone the GitHub Repository

git clone https://github.com/ansarisam/dist-tf-modeling.git

If the git command does not work, install git using the command sudo apt-get 

install git.

 Installing Prerequisites and TensorFlow
The image “Deep Learning on Linux” has all the prerequisites and TensorFlow 

preinstalled. However, if we want to configure our environment, execute all the 

commands of Listing 10-9 (review Chapter 1 for the detailed instructions).

Listing 10-9. Installing Prerequisites Including TensorFlow

sudo apt-get update

sudo apt-get -y upgrade && sudo apt-get install -y python-pip python-dev

sudo apt-get install python3-dev python3-pip

sudo pip3 install -U virtualenv

mkdir cv

virtualenv --system-site-packages -p python3 ./cv

source ./cv/bin/activate

pip install tensorflow==1.15
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 Running Distributed Training
Make sure you have cloned the GitHub repository (as shown in Listing 10-8) on all the 

machines. Also, ensure you are logged in to each of the VMs via SSH (using the Cloud 

Shell). Execute the following commands on each of the VMs to launch the distributed 

training.

Here’s the command for the parameter server:

cd dist_tf_modeling

export TF_CONFIG='{"task": {"index": 0, "type": "ps"}, 

"cluster": {"chief":["chief:8900"],"worker": ["worker-0:8900", 

"worker-1:8900"],  "ps":["parameter-server:8900"]}}';python distributed_

training_ps.py --output_path gs://cv_model_v1

Here’s the command for the chief node:

cd dist_tf_modeling

export TF_CONFIG='{"task": {"index": 0, "type": "chief"}, 

"cluster": {"chief":["chief:8900"],"worker": ["worker-0:8900", 

"worker-1:8900"],  "ps":["parameter-server:8900"]}}';python distributed_

training_ps.py --output_path gs://cv_model_v1

Here’s the command for the worker-0 node:

cd dist_tf_modeling

export TF_CONFIG='{"task": {"index": 0, "type": "worker"}, 

"cluster": {"chief":["chief:8900"],"worker": ["worker-0:8900", 

"worker-1:8900"],  "ps":["parameter-server:8900"]}}';python distributed_

training_ps.py --output_path gs://cv_model_v1

Here’s the command for the worker-1 node:

cd dist_tf_modeling

export TF_CONFIG='{"task": {"index": 1, "type": "worker"}, 

"cluster": {"chief":["chief:8900"],"worker": ["worker-0:8900", 

"worker-1:8900"],  "ps":["parameter-server:8900"]}}';python distributed_

training_ps.py --output_path gs://cv_model_v1
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Note that all participating nodes must be able to communicate with the parameter 

servers via the port configured in TF_CONFIG. Also, the nodes must have the necessary 

read and write permissions to the GCS bucket.

The model checkpoints are saved in GCS at the path gs://cv_model_v1. The trained 

model is saved as model.h5 in gs://cv_model_v1.

GCP instances with GPUs are expensive. You should terminate them if they are no 

longer used to avoid any charges.

 Distributed Training on Azure
Microsoft Azure is a cloud computing service used for building, testing, deploying, and 

managing applications and services through Microsoft-managed data centers.

The distributed training with ParameterServerStrategy in Listing 10-3 will also 

work on Azure in almost the same way it worked on GCP. The difference between 

GCP and Azure is the way we create VMs nodes. Instead of repeating the process of 

distributing the parameter server–based training on an Azure cluster, we will explore a 

different strategy for distributed training.

We will distribute the training using MirroredStrategy on a single node that has 

multiple GPUs. In this section, we will learn the following:

• How to create a multi-GPU-based virtual machine on Azure using the 

web interface

• How to set up TensorFlow to run on GPUs

• What changes are needed to make the code in Listing 10-3 work on 

multiple GPUs

• How to execute the training and monitor it

Note that the GPU support for TensorFlow is available for Ubuntu and Windows with 

CUDA-enabled cards. In this exercise, we will create a Ubuntu 18.4–based VM with two 

GPUs.
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 Creating a VM with Multiple GPUs on Azure
We need to first sign up at https://azure.microsoft.com/ to create a free account. 

Then go to https://portal.azure.com/ and log in to your account. The free account 

allows you to create a VM with only one GPU. To create a VM with multiple GPUs, you 

must activate billing. To activate it, follow these instructions:

 1. Click the main navigation (expand the burger icon located in the 

top-left corner).

 2. Select Cost Management + Billing, and click “Azure subscription.”

 3. Click Add.

 4. Follow the on-screen instructions.

To create the virtual machine, do the following:

 1. On the home page, click the icon for “Virtual machines.”

 2. Click the button “Create virtual machine” located at the bottom of 

the page or click the + Add icon located in the top-left corner.

 3. Fill in the form to configure the VM. Figure 10-16 shows the top 

portion of the basic configuration. For the field Image, select 

Ubuntu Server 10.04 LTS.
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 4. We will add GPUs to the VM. Click the link “Change size,” which is 

shown enclosed within the red rectangle in Figure 10-16. This will 

launch the page that shows a list of all the available devices within 

the region that you selected for the Region field in Figure 10-3.

As shown in Figure 10-17, first clear all the filters and search for NC 

to find the NC series of GPUs. We will select the NC12_Promo VM 

size, which gives us two GPUs, 12 vCPUs, and 112GB of memory. 

Highlight the row corresponding to the size NC12_Promo and click 

the Select button located at the bottom of the screen.

Figure 10-16. Azure configuration page to create a VM
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Visit https://docs.microsoft.com/en-us/azure/virtual-

machines/linux/sizes-gpu for more information about other VM 

sizes.

If the row corresponding to the GPU we want to use is grayed out, 

that means either you have not upgraded your subscription or you 

do not have sufficient quota to use that VM.

You can ask Microsoft to increase your quota. Visit https://

docs.microsoft.com/en-us/azure/azure-resource-manager/

templates/error-resource-quota for more information on how 

to request a quota increase.

On the Basic configuration screen (Figure 10-3), you can select 

either of the following (depending on your security policy) for the 

authentication type:

• SSH public key: Paste the SSH public key that you will use to 

access this VM.

• Password: Create a username and password that you will need to 

supply while connecting via SSH. We will use this option for our 

exercise.

Figure 10-17. Device size (GPU) selection screen
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 5. Leave everything else as the default and click the “Review + 

create” button at the bottom-left corner of the screen. On the next 

page, we will review our configuration to make sure everything 

is selected correctly and then finally click the Create button. If 

everything goes well, the VM with two GPUs will be created. It 

may take a few minutes for our VM to be ready.

In this case, we did not create any disk as the VM comes with a 

large enough disk size to run our training. This is not a persistent 

disk and will be deleted if the VM is terminated. Therefore, in 

production, you must add a persistent disk to avoid losing the 

data.

 6. After our VM is ready, we will see an alert indicating that the VM 

is ready to use, if we have not left the page we were last on. We can 

also go back to the home page and click the “Virtual machines” 

icon to see a list of VMs we have created. Click the VM name to 

open the details page, as shown in Figure 10-18.

 7. Note the public IP address or copy it, as we will need it to SSH 

to our VM. Using an SSH client, such as Putty for Windows 

or the Shell terminal in Mac or Linux, log on to the VM using 

the authentication method you selected before. Here are the 

commands to SSH via the two methods of authentication:

Figure 10-18. VM detail page showing the public IP address
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• Password-based authentication:

$ ssh username@13.82.230.148

username@13.82.230.148's password:

• SSH public key–based authentication:

$ ssh -i ~/sshkey.pem 13.82.230.148

If successfully authenticated, you will be logged in to the VM.

 Installing GPU Drivers and Libraries
To run TensorFlow on a GPU-based machine, we need to install the GPU driver and a 

few libraries. Perform the following steps:

 1. Execute all the commands of Listing 10-10 on the terminal (make 

sure you are logged in via SSH).

Listing 10-10. Commands to Add NVIDIA Package Repositories

# Add NVIDIA package repositories

$ wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/

x86_64/cuda-repo-ubuntu1804_10.1.243-1_amd64.deb

$ sudo dpkg -i cuda-repo-ubuntu1804_10.1.243-1_amd64.deb

sudo apt-key adv --fetch-keys $ https://developer.download.nvidia.com/

compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub

$ sudo apt-get update

$ wget http://developer.download.nvidia.com/compute/machine-learning/repos/

ubuntu1804/x86_64/nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.deb

$ sudo apt install ./nvidia-machine-learning-repo-ubuntu1804_1.0.0- 1_

amd64.deb

sudo apt-get update

 2. If the NVIDIA package repositories are successfully added, install 

the NVIDIA driver using the command from Listing 10-11.

Listing 10-11. Installing the NVIDIA Driver

$ sudo apt-get install --no-install-recommends nvidia-driver-418
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 3. You will need to reboot the VM for the previous installation to 

take effect. On the SSH terminal shell, execute the command sudo 

reboot.

 4. SSH to the VM again.

 5. To test whether the NVIDIA driver was successfully installed, 

execute the following command:

$ nvidia-smi

This command should display something like Figure 10-19.

 6. We will now install the development and runtime libraries  

(Listing 10-12). This will be around 4GB in size.

Listing 10-12. Installing Development and Runtime Libraries

$ sudo apt-get install --no-install-recommends \

    cuda-10-1 \

    libcudnn7=7.6.4.38-1+cuda10.1  \

    libcudnn7-dev=7.6.4.38-1+cuda10.1

Figure 10-19. Output of the command nvidia-smi
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 7. Install the TensorRT library (Listing 10-13).

Listing 10-13. Installing TensorRT

$ sudo apt-get install -y --no-install-recommends libnvinfer6=6.0.1- 

1+cuda10.1 \

    libnvinfer-dev=6.0.1-1+cuda10.1 \

    libnvinfer-plugin6=6.0.1-1+cuda10.1

 Creating virtualenv and Installing TensorFlow
Follow the instructions provided in Chapter 1 to install all the libraries and 

dependencies you will need. We will execute the commands in Listing 10-14 to install all 

the prerequisites that we need for our current exercise.

Listing 10-14. Installing Python, Creating virtualenv, and Installing TensorFlow

$ sudo apt update

$ sudo apt-get install python3-dev python3-pip

$ sudo pip3 install -U virtualenv

$ mkdir cv

$ virtualenv --system-site-packages -p python3 ./cv

$ source ./cv/bin/activate

(cv) $ pip install  tensorflow

(cv) $ pip install tensorflow-gpu

 Implementing MirroredStrategy
Refer to line 9 of Listing 10-3. Instead of instantiating ParameterServerStrategy, we will 

create an instance of MirroredStrategy, as shown here:

strategy = tf.distribute.MirroredStrategy()

All the other lines of Listing 10-3 will remain the same.

We have committed to the GitHub repository the modified code that has the 

implementation of MirroredStrategy for distributed training. The GitHub repository 

location is https://github.com/ansarisam/dist-tf-modeling.git, and the file name 

containing the MirroredStrategy code is mirrored_strategy.py.
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 Running Distributed Training
Log on via SSH to the VM we created earlier. Then clone the GitHub repository, as shown 

in Listing 10-15.

Listing 10-15. Cloning GitHub Repository

$ git clone https://github.com/ansarisam/dist-tf-modeling.git

Execute the Python code shown in Listing 10-16 to train the distributed model.

Listing 10-16. Executing the MirroredStrategy-Based Distributed Model

$ python dist-tf-modeling/mirrored_strategy.py

If everything goes well, you will see the training progress printed on the terminal 

console. Figure 10-20 shows some sample output.

Chapter 10  Computer Vision modeling on the Cloud



426

To check whether the GPUs are being utilized for the distributed training, SSH to the 

VM from a different terminal and execute the command shown in Listing 10-17.

Listing 10-17. Checking the GPU Status

$ nvidia-smi

Figure 10-21 and 10-22 show the outputs of this command.

Figure 10-20. Sample screen showing training progress and evaluation outputs
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Figure 10-22. GPU status while training is in progress

Figure 10-21. GPU status before the training starts
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If you no longer need the VM, you should terminate it to avoid any costs as these 

GPU-based VMs are very expensive. Before terminating the VM, make sure you 

download and store the trained model and checkpoints to permanent storage.

 Distributed Training on AWS
Amazon Web Services (AWS) is a subsidiary of Amazon that provides on-demand 

cloud computing platforms and APIs to individuals, companies, and governments, on a 

metered pay-as-you-go basis. In this section, we will explore how to train a distributed 

model on AWS.

The distributed training of Listing 10-3 will also work on AWS. All we need to do is to 

create VMs and follow the steps that we did for training the model of GCP.

Similarly, we can train the MirroredStrategy-based model on AWS VMs that have 

multiple GPUs. All the instructions for training on Azure will be the same for AWS, except 

the method of creating multi-GPU-based VMs.

Here we will explore yet another technique for training a scalable model on the 

cloud. We will learn how to use Horovod to distribute the training on AWS. Let’s first 

understand what the Horovod framework is and how to use it in distributed model 

training.

 Horovod
The official document describes Horovod as a distributed deep learning training 

framework for TensorFlow, Keras, PyTorch, and Apache MXNet. It aims to make 

distributed deep learning fast and easy to use. Horovod was developed at Uber and is 

hosted by Linux Foundation AI.

The source code with documentation is maintained at the GitHub repository at 

https://github.com/horovod/horovod. The official documentation is at  https://

horovod.readthedocs.io/en/latest/summary_include.html.

To use Horovod, we will need to make a few minor changes in the TensorFlow 

code for model training. We will use the same example code from Listing 5-2 and make 

changes to make it Horovod compatible.
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 How to Use Horovod
When we define a neural network, we specify the optimization algorithm, such as AdaGrad, 

that we want our network to use to optimize the gradients. In distributed learning, the 

gradients are calculated in multiple nodes, averaged using an all-reduce or all-gather 

algorithm, and further optimized using the optimization algorithm. Horovod provides a 

wrapper function to distribute the optimization to all participating nodes and delegates the 

gradient optimization task to the original optimization algorithm that we wrap in Horovod.

We will use Horovod with TensorFlow to distribute the model training to multiple nodes, 

each having one or more GPUs. We will work on the same code example from Listing 5-2, 

make a few minor changes to it to make it Horovod compatible, and execute the training on 

AWS. To use Horovod, we need to make the following changes in the code of Listing 5-2:

 1. Import horovod.tensorflow as hvd.

 2. Initialize Horovod using hvd.init().

 3. Pin the GPU that will process gradients (one GPU per process) 

using this:

config = tf.ConfigProto()

config.gpu_options.visible_device_list = str(hvd.local_rank())

 4. Build the model as we normally do in TensorFlow. Define the loss 

function.

 5. Define the TensorFlow optimization function, as follows:

opt = tf.train.AdagradOptimizer(0.01 * hvd.size())

 6. Call the Horovod distributed optimization function and pass the 

original TensorFlow optimizer from step 5. This is the core of 

Horovod.

opt = hvd.DistributedOptimizer(opt)

 7. Create a Horovod hook to broadcast training variables to all 

processors.

hooks = [hvd.BroadcastGlobalVariablesHook(0)]

0 means all processors with rank zero (e.g., the first GPU) to all 

processors.
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 8. Finally, train the model using this:

train_op = opt.minimize(loss)

Let’s put all these together and convert our code from Listing 5-2 into Horovod- 

compatible code that can be distributed across multiple nodes with multiple GPUs. 

Listing 10-18 shows the complete code that we can execute on a Horovod cluster 

with TensorFlow as an execution engine. Code taken from the examples directory of 

the official source code of Horovod is maintained at https.//github.com/horovod/

horovod.git.

Listing 10-18. Distributed Training with Horovod

File name: horovod_tensorflow_mnist.py

01: import tensorflow as tf

02: import horovod.tensorflow.keras as hvd

03:

04: # Horovod: initialize Horovod.

05: hvd.init()

06:

07: # Horovod: pin GPU to be used to process local rank (one GPU per process)

08: gpus = tf.config.experimental.list_physical_devices('GPU')

09: for gpu in gpus:

10:     tf.config.experimental.set_memory_growth(gpu, True)

11: if gpus:

12:     tf.config.experimental.set_visible_devices(gpus[hvd.local_rank()], 'GPU')

13:

14: # Load MNIST data using built-in datasets download function

15: mnist = tf.keras.datasets.mnist

16: (x_train, y_train), (x_test, y_test) = mnist.load_data()

17:

18: #Normalize the pixel values by dividing each pixel by 255

19: x_train, x_test = x_train / 255.0, x_test / 255.0

20:

21: BUFFER_SIZE = len(x_train)

22: BATCH_SIZE_PER_REPLICA = 16
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23: GLOBAL_BATCH_SIZE = BATCH_SIZE_PER_REPLICA * 2

24: EPOCHS = 100

25: STEPS_PER_EPOCH = int(BUFFER_SIZE/EPOCHS)

26:

27:  train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train)). 

repeat().shuffle(BUFFER_SIZE).batch(GLOBAL_BATCH_SIZE,drop_remainder=True)

28:  test_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test)).

batch(GLOBAL_BATCH_SIZE)

29:

30:

31: mnist_model = tf.keras.Sequential([

32:     tf.keras.layers.Conv2D(32, [3, 3], activation='relu'),

33:     tf.keras.layers.Conv2D(64, [3, 3], activation='relu'),

34:     tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),

35:     tf.keras.layers.Dropout(0.25),

36:     tf.keras.layers.Flatten(),

37:     tf.keras.layers.Dense(128, activation='relu'),

38:     tf.keras.layers.Dropout(0.5),

39:     tf.keras.layers.Dense(10, activation='softmax')

40: ])

41:

42: # Horovod: adjust learning rate based on number of GPUs.

43: opt = tf.optimizers.Adam(0.001 * hvd.size())

44:

45: # Horovod: add Horovod DistributedOptimizer.

46: opt = hvd.DistributedOptimizer(opt)

47:

48:  # Horovod: Specify `experimental_run_tf_function=False` to ensure 

TensorFlow

49: # uses hvd.DistributedOptimizer() to compute gradients.

50: mnist_model.compile(loss=tf.losses.SparseCategoricalCrossentropy(),

51:                     optimizer=opt,

52:                     metrics=['accuracy'],

53:                     experimental_run_tf_function=False)

54:
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55: callbacks = [

56:      # Horovod: broadcast initial variable states from rank 0 to all 

other processes.

57:      # This is necessary to ensure consistent initialization of all 

workers when

58:      # training is started with random weights or restored from a 

checkpoint.

59:     hvd.callbacks.BroadcastGlobalVariablesCallback(0),

60:

61:     # Horovod: average metrics among workers at the end of every epoch.

62:     #

63:      # Note: This callback must be in the list before the 

ReduceLROnPlateau,

64:     # TensorBoard or other metrics-based callbacks.

65:     hvd.callbacks.MetricAverageCallback(),

66:

67:      # Horovod: using `lr = 1.0 * hvd.size()` from the very beginning 

leads to worse final

68:      # accuracy. Scale the learning rate `lr = 1.0` ---> `lr = 1.0 * 

hvd.size()` during

69:      # the first three epochs. See https://arxiv.org/abs/1706.02677 for 

details.

70:     hvd.callbacks.LearningRateWarmupCallback(warmup_epochs=3, verbose=1),

71: ]

72:

73:  # Horovod: save checkpoints only on worker 0 to prevent other workers 

from corrupting them.

74: if hvd.rank() == 0:

75:       callbacks.append(tf.keras.callbacks.ModelCheckpoint('./checkpoint-

{epoch}.h5'))

76:

77: # Horovod: write logs on worker 0.

78: verbose = 1 if hvd.rank() == 0 else 0

79:
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80: # Train the model.

81: # Horovod: adjust the number of steps based on the number of GPUs.

82:  mnist_model.fit(train_dataset, steps_per_epoch=500 // hvd.size(), 

callbacks=callbacks, epochs=24, verbose=verbose)

The code section that uses the Horovod APIs are marked in the comments with the 

label Horovod:. The code is properly commented to help you understand how to use 

Horovod. All other lines of code were already explained in Chapter 5.

 Creating a Horovod Cluster on AWS
You must have an AWS account and be able to log in to your AWS web console. If you do 

not have an account, create one at https://aws.amazon.com. AWS offers certain types 

of resources for free for a year. But the types of resources that we need in order to train 

our model on a Horovod cluster may require you to enable billing. Your account may 

be charged for the resources you will use to run the distributed training. You may also 

need to request to increase quotas for certain resources such as vCPU and GPUs. The 

instructions to increase quotas are available at https://aws.amazon.com/about-aws/

whats-new/2019/06/introducing-service-quotas-view-and-manage-quotas-for- 

aws-services-from-one-location/.

 Horovod Cluster

AWS provides a convenient way to create a massively scalable Horovod cluster with just 

a few clicks. For the purpose of our exercise in this section, we will create a cluster of two 

nodes, each having only one GPU. We will perform the following:

 1. Log on to your AWS account to access the AWS management 

console; see https://console.aws.amazon.com.

 2. Click Services, then EC2, then Instances, and then Launch 

Instance (as shown in Figure 10-23).
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 3. On the next screen, search for deep learning and select “Deep 

Learning AMI (Deep Learning AMI (Amazon Linux) Version 26.0 - 

ami-02bd97932dabc037b)” from the list of Amazon machine 

images (AMIs). See Figure 10-24.

Figure 10-23. AWS instance launch screen

Figure 10-24. AMI selection screen
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 4. On the Choose an Instance Type page, select the GPU instances, 

type g2.2xlarge, set the vCPUs to 8, and set the memory to 

15GB (as shown in Figure 10-25). You can select any GPU-based 

instance to meet your training requirements. Click the Next: 

Configuration Instance Details button at the bottom of the screen.

 5. Fill in the Configure Instance Details page (as shown in Figure 10-26).  

In the Number of Instances field, we entered 2 to create two nodes 

in the cluster. You can create as many nodes as you need to scale 

your training.

For the placement group, check the box “Add Instance to 

placement group” and create a new group or add to an existing 

one. Select “cluster” for the placement group strategy.

We will leave everything else at the default settings on this page. 

Click the Next: Add Storage button.

Figure 10-25. Choose an Instance Type selection screen
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 6. On the Add Storage page (as shown in Figure 10-27), provide the 

numbers for the disk size as per your needs. In this example, we 

will leave everything as is. Click the Next: Add Tags button and 

then the Next: Configure Security Groups button.

Figure 10-26. Configuring the instance details
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 7. Either create a new security group or use “Select an existing 

security group” if you want an existing security group (see 

Figure 10-28). Click Review and Launch followed by the Launch 

buttons. This will display a pop-up screen to either create or 

select a key pair. This key pair is used to log on to the VM using 

SSH. Follow the on-screen instructions (as shown in Figure 10-29).

Figure 10-28. Page to create or select security groups

Figure 10-27. Add Storage page
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 8. After the instances are successfully launched, we will need to 

create passwordless SSH to enable every node to communicate 

with each other. We create an RSA key on one machine and copy 

the public key from the rsa_id.pub file to all nodes’ authorized_

keys file. Here are the steps:

 a. SSH to machine 1, and from its home directory, execute the 

command ssh- keygen. Press Enter for every single prompt 

until you see the fingerprint printed on the screen. The 

terminal output should look like Figure 10-30.

Figure 10-29. Pop-up screen to create or select a key pair
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 b. Copy the content of ~/.ssh/id_rsa.pub to ~/.ssh/

authorized_keys, as shown in Figure 10-31 and Figure 10-32.

Figure 10-30. ssh-keygen output

Figure 10-31. cat ~/.ssh/id_ras.pub output. Copy the entire text starting from ssh- rsa

Figure 10-32. Paste the id_rsa.pub content to the end of the authorized_keys file
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 c. Copy the id_rsa.pub content of one machine to the end of the 

authorized_keys files of all nodes.

 d. Repeat the process to create ssh-keygen on the rest of the 

machines and copy the contents of id_rsa.pub to the end of 

authorized_keys of each of the nodes.

 e. You should verify by logging in via SSH from one machine to 

another. It should allow you to log on without any password. 

If the SSH prompts for a password, that means you do not 

have passwordless communication from one machine to 

the other. For Horovod to work, all machines must be able to 

communicate without a password to other machines.

 Running Distributed Training

The AMI we used in this example contains scripts to launch the training in distributed 

mode. There is a train_synthetic.sh shell script located at /home/ec2-user/examples/

horovod/tensorflow. You can modify this script to point to your code and launch the 

training.

This example script launches a RestNet-based training on the Horovod cluster we 

just created. Simply execute it as follows:

sh /home/ec2-user/examples/horovod/tensorflow/train_synthetic.sh 2

The 2 argument indicates the number of GPUs in the cluster.

If everything goes well, you will have a trained model that you can download to the 

machine where you will host the application that uses this model to predict outcomes.

The AMI we used has Horovod already installed. If you want to use a VM that does 

not have Horovod, follow the installation instructions in the next section.

 Installing Horovod
Horovod depends on OpenMPI to run. First we need to install OpenMPI using the 

commands shown in Listing 10-19.
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Listing 10-19. Installing OpenMPI

# Download Open MPI

$ wget https://download.open-mpi.org/release/open-mpi/v4.0/openmpi- -

4.0.2.tar.gz

# Uncompress

$ gunzip -c openmpi-4.0.2.tar.gz | tar xf -

$ cd openmpi-4.0.2

$ ./configure --prefix=/usr/local

$ make all install

It will take several minutes to install OpenMPI.

After OpenMPI is successfully installed, install Horovod using the pip command, as 

shown in Listing 10-20.

Listing 10-20. Installing Horovord

$ pip install horovord

Listings 10-19 and 10-20 must be executed on all machines of the cluster.

 Running Horovod to Execute Distributed Training
To run on a machine with four GPUs, use this:

$ horovodrun -np 4 -H localhost:4 python horovod_tensorflow_mnist.py

To run on four machines with four GPUs each, run this:

$ horovodrun -np 16 -H host1:4,host2:4,host3:4,host4:4 python horovod_

tensorflow_mnist.py

You can also specify host nodes in a host file. Here’s an example:

$ cat horovod_cluster.conf

host1 slots=2

host2 slots=2

host3 slots=2
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This example lists the hostnames (host1, host2, and host3) and how many “slots” 

there are for each. Slots indicate how many GPUs the training can potentially execute on 

a node.

To run on hosts specified in a file called horovod_cluster.conf, run this:

$ horovodrun -np 6 -hostfile horovod_cluster.conf python horovod_

tensorflow_mnist.py

VMs with GPUs are costly. Therefore, it is advised to terminate the VMs if they are no 

longer used. Figure 10-33 shows how to terminate your instances.

 Summary
The chapter started with the introduction of distributed training of computer vision 

models. We explored various distribution strategies supported in TensorFlow and 

learned how to write code for distributed training.

We trained our handwriting recognition model based on the MNIST dataset on the 

GCP, Azure, and AWS cloud infrastructures. We explored three different techniques 

of training models on the three cloud platforms. Our example training was based 

on TensorFlow-supported distribution strategies: ParameterServerStrategy and 

MirroredStrategy. You also learned how to use Horovod for large-scale training of 

computer vision models.

Figure 10-33. Terminating AWS VMs
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