
Jumpstart
Snowflake

A Step-by-Step Guide to Modern
Cloud Analytics
—
Dmitry Anoshin
Dmitry Shirokov
Donna Strok

Jumpstart Snowflake
A Step-by-Step Guide

to Modern Cloud Analytics

Dmitry Anoshin
Dmitry Shirokov
Donna Strok

Jumpstart Snowflake: A Step-by-Step Guide to Modern Cloud Analytics

ISBN-13 (pbk): 978-1-4842-5327-4		 ISBN-13 (electronic): 978-1-4842-5328-1
https://doi.org/10.1007/978-1-4842-5328-1

Copyright © 2020 by Dmitry Anoshin, Dmitry Shirokov, Donna Strok

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter
developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Susan McDermott
Development Editor: Laura Berendson
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC
is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-5327-4. For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Dmitry Anoshin
British Columbia, Canada

Donna Strok
Seattle, WA, USA

Dmitry Shirokov
Burnaby, BC, Canada

https://doi.org/10.1007/978-1-4842-5328-1

To my wife Lana and my kids, Vasily,
Anna, and Michael. Without your strong

support and love, this book would not exist. 

—Dmitry Anoshin

v

Chapter 1: Getting Started with Cloud Analytics�����������������������������������1

Time to Innovate��2

Key Cloud Computing Concepts���7

Meet Snowflake���14

Summary���17

Chapter 2: Getting Started with Snowflake���19

Planning���19

Deciding on a Snowflake Edition��20

Choosing a Cloud Provider and Region���20

Examining Snowflake’s Pricing Model���22

Examining Types of Snowflake Tools��24

Creating a Snowflake Account���26

Connecting to Snowflake���28

Logging Into the Snowflake Web Interface���28

Touring the Web Interface���30

Summary���34

Table of Contents

About the Authors���xi

Acknowledgments��xiii

vi

Chapter 3: Building a Virtual Warehouse���35

Overview of Snowflake Virtual Warehouses���35

Warehouse Sizes and Features��36

Multicluster Virtual Warehouses���38

Virtual Warehouse Considerations���41

Query Design��41

Caching Impacts���42

Scaling��42

Building a Snowflake Virtual Warehouse���42

Creating a Virtual Warehouse���43

Starting, Resuming, Suspending, and Resizing��45

Using a Warehouse���47

Setting Up Load Monitoring��47

Summary���51

Chapter 4: Loading Bulk Data into Snowflake�������������������������������������53

Overview of Bulk Data Loading��54

What Is Bulk Data Loading?��54

Bulk Load Locations���55

Supported File Formats and Encoding���55

Compression Handling���56

Encryption Options���57

Bulk Data Loading Recommendations���57

File Preparation��57

File Staging���61

Table of ContentsTable of Contents

vii

Loading���63

Querying Staged Files��64

Bulk Loading with the Snowflake Web Interface���65

Summary���68

Chapter 5: Getting Started with SnowSQL���69

Installing SnowSQL��69

Configuring SnowSQL��73

Connection Settings���74

Configuration Variables��76

SnowSQL Commands���80

Multiple Connection Names���83

Data Loading with SnowSQL��86

Summary���87

Chapter 6: Continuous Data Loading with Snowpipe���������������������������89

Loading Data Continuously��94

Snowpipe Auto-Ingest��94

Snowpipe REST API Using AWS Lambda��104

Summary���105

Chapter 7: Snowflake Administration��107

Administering Roles and Users��108

Enforcement Model��110

Working with Roles and Users��111

Administering Resource Consumption���113

Virtual Warehouse Usage��114

Data Storage Usage��115

Data Transfer Usage���116

Table of ContentsTable of Contents

viii

Administering Databases and Warehouses��117

Managing Warehouses���117

Managing Databases��118

Zero-Copy Cloning��119

Administering Account Parameters���121

Administering Database Objects��122

Administering Data Shares��123

Administering Clustered Tables���124

Snowflake Materialized Views���126

Summary���128

Chapter 8: Snowflake Security Overview��129

Snowflake Security Reference Architecture��130

Virtual Private Cloud���132

Physical Security��133

Network and Site Access��133

Account and User Authentication���134

Object Security���135

Data Security��136

Security Validation��138

Snowflake Audit and Logging���138

Penetration Testing���144

Summary���144

Chapter 9: Working with Semistructured Data����������������������������������147

Supported File Formats��148

Advanced Data Types���149

Working with XML��151

Table of ContentsTable of Contents

ix

Working with JSON��161

Working with AVRO��167

Working with Parquet��171

Summary���175

Chapter 10: Secure Data Sharing��177

Secure Data Sharing��178

Secure Table Sharing���181

Data Sharing Using a Secure View���186

Summary���193

Chapter 11: Designing a Modern Analytics Solution with
Snowflake��195

Modern Analytics Solution Architecture���196

Snowflake Partner Ecosystem���198

Building Analytics Solutions���200

Summary��211

Chapter 12: Snowflake and Data Science��213

Snowflake and the Analytics Ecosystem���214

Snowflake and Apache Spark��215

Connector for Apache Spark��218

Working with Databricks��220

Summary���228

Chapter 13: Migrating to Snowflake��229

Data Warehouse Migration Scenarios��230

Startup or Small Business Analytics Scenario��230

On-Premise Analytics Scenario for Enterprises and Large Organizations����231

Cloud Analytics Modernization with Snowflake��233

Table of ContentsTable of Contents

x

Data Warehouse Migration Process���234

Organizational Part of the Migration Project��235

Technical Aspects of a Migration Project���244

Real-World Migration Project���246

Additional Resources���248

Summary���249

Chapter 14: Time Travel���251

Summary���259

Index��261

Table of ContentsTable of Contents

xi

About the Authors

Dmitry Anoshin is a data-centric technologist and recognized expert

in building and implementing cloud analytics solutions. He has more

than ten years of experience with data engineering and analytics and

has worked across different industries in Europe and North America

delivering end-to-end analytics solutions in a wide range of industries.

His main interest now is cloud analytics with AWS, Azure, and GCP.

He helps companies to modernize analytics solutions with cloud

technologies and migrate legacy solutions to the cloud.

Moreover, he is the author of five books about various BI tools with

PacktPub (SAP Lumira Essentials, Learning Hunk (Splunk), Mastering BI with

Microstrategy 10, Tableau Cookbook 2019, and Tableau Desktop Certitfication

Guide). He often presents at Tableau user groups, AWS and Azure user

groups, and huge data conferences like Enterprise Data World and Data

Summit. He leads the Tableau user group in Victoria, BC, and the Snowflake

user groups in Vancouver and Toronto. In addition, he contributes to the

leading Canadian analytics firm Rock Your Data (https://rockyourdata.

cloud)and writes blog posts at https://medium.com/rock-your-data.

Finally, he mentors students in the data analytics program at the

University of Victoria and shares cloud analytics knowledge, best practices,

and real-world use cases.

Dmitrii Shirokov is a Data Architect & Cloud Analytics Consultant at

Rock Your Data, focused on digital transformation, design analytics

solutions, data integration and migration, data governance, and cloud/

in-house infrastructure. With over 10 years of experience in data analytics

and big data, he has the breadth and depth of experience needed to build

﻿https://rockyourdata.cloud﻿
﻿https://rockyourdata.cloud﻿
https://medium.com/rock-your-data

xii

mature analytical solutions. Before joining Rock Your Data in early 2018,

he worked in different companies in tech consulting and banking sectors.

Previously, he held various data-engineering positions focusing on data-

driven business transformation.

Donna Strok loves all things data and for over 10 years has worked in the

field with companies such as Expedia Group, JPMorgan Chase and most

recently Amazon. She earned her Bachelors degree in Computer Science

and her Masters in Computer Information Systems.

She resides in beautiful Seattle, WA with her cat Dwayne Johnson and

in her free time enjoys the wanderlust of world travel. She’s always on the

on the hunt for exploring unique grocery stores and amazing hole-in the-

wall restaurants, where some of her most memorable meals have been had.

About the AuthorsAbout the Authors

xiii

Acknowledgments

I would like to thank the Apress team for the opportunity to deliver this

book. Specifically, thank you to Susan McDermott, Laura Berendson,

Rita Fernando, and Jessica Vakili for your support, editing, and guidance.

We couldn’t have done it without you.

A big thank-you to Kent Graziano who reviewed our book and added

a lot of value to it as well as helped us edit and fine-tune the Snowflake

information.

—Dmitry Anoshin, Dmitry Shirokov, and Donna Strok

1© Dmitry Anoshin, Dmitry Shirokov, Donna Strok 2020
D. Anoshin et al., Jumpstart Snowflake, https://doi.org/10.1007/978-1-4842-5328-1_1

CHAPTER 1

Getting Started
with Cloud Analytics

“Don’t shoot for the middle. Dare to think big. Disrupt.
Revolutionize. Don’t be afraid to form a sweeping dream that
inspires, not only others, but yourself as well. Incremental
innovation will not lead to real change—it only improves
something slightly. Look for breakthrough innovations,
change that will make a difference.”

—Leonard Brody and David Raffa

Cloud technologies can change the way organizations do analytics. The

cloud allows organizations to move fast and use best-of-breed technologies.

Traditionally, data warehouse (DW) and business intelligence (BI) projects

were considered a serious investment and took years to build. They

required a solid team of BI, DW, and data integration (ETL) developers

and architects. Moreover, they required big investments, IT support, and

resources and hardware purchases. Even if you had the team, budget, and

hardware in place, there was still a chance you would fail.

The cloud computing concept isn’t new, but only recently has it started

to be widely used for analytics use cases. The cloud creates access to near-

infinite, low-cost storage; provides scalable computing; and gives you tools

for building secure solutions. Finally, you pay only for what you use.

2

In this chapter, we will cover the analytics market trends over the

last decade and the DW evolution. In addition, we will cover key cloud

concepts. Finally, you will meet the Snowflake DW and learn about its

unique architecture.

�Time to Innovate
As data professionals, we have worked on many data warehouse projects.

We have designed and implemented numerous enterprise data warehouse

solutions across various industries. Some projects we built from scratch,

and others we fixed. Moreover, we have migrated systems from “legacy”

to modern massive parallel processing (MPP) platforms and leveraged

extract-load-transform (ELT) to let the MPP DW platform do the heavy

lifting.

MPP is one of the core principles of analytics data warehousing, and it is

still valid today. It is good to know about the alternative that existed before

MPP was introduced, namely, symmetric multiprocessing. Figure 1-1 shows

an easy example that help us understand the difference between SMP

and MPP.

Figure 1-1.  SMP vs. MPP

Chapter 1 Getting Started with Cloud Analytics

3

Let’s look at a simple example. Imagine you have to do laundry. You

have two options.

•	 Miss a party on Friday night but visit the laundromat

where you can run all your laundry loads in parallel

because everyone else is at the party. (This is MPP.)

•	 Visit the laundromat on Saturday and use just one

washing machine. (This is SMP.)

It is obvious that running six washing machines at the same time is

faster than running one at a time. It is this linear scalability of MPP systems

that allows us to accomplish our task faster. Table 1-1 compares the SMP

and MPP systems. If you work with a DW, you are probably aware of these

concepts. Snowflake innovates in this area and actually combines SMP

and MPP.

In our past work, Oracle was popular across enterprise organizations.

All the DW solutions had one thing in common: they were extremely

expensive and required the purchase of hardware. For consulting

Table 1-1.  MPP vs. SMP

Model Description

Massively parallel

processing (MPP)

The coordinated processing of a single task by multiple

processors, with each processor using its own OS and

memory and communicating with each other using some

form of messaging interface. Usually MPP is a share-

nothing architecture.

Symmetric

multiprocessing (SMP)

A tightly coupled multiprocessor system where

processors share resources such as single instances of

the operating system (OS), memory, I/O devices, and a

common bus. SMP is a shared-disk architecture.

Chapter 1 Getting Started with Cloud Analytics

4

companies, the hardware drove revenue; you could have an unprofitable

consulting project, but a hardware deal would cover the yearly bonus.

Later, we saw the rise of Hadoop and big data. The Internet was full of

news about the replacement of traditional DWs with Hadoop ecosystems.

It was a good time for Java developers, who could enjoy coding and

writing Map Reduce jobs until the community released a bunch of SQL

tools such as Hive, Presto, and so on. Instead of learning Java, personally

we applied Pareto principles, where we could solve 20 percent of tasks

using traditional DW platforms and SQL to bring 80 percent of the value.

(In reality, we think it was more like 80 percent of the cases produced 95

percent of the value.)

Later, we saw the rise of data science and machine learning, and

developers started to learn R and Python. But we found we still should

have ELT/ETL and DW in place; otherwise, these local R/Python scripts

didn’t have any value. It was relatively easy to get a sample data set and

build a model using data mining techniques. However, it was a challenge

to automate and scale this process because of a lack of computing power.

Then came data lakes. It was clear that a DW couldn’t fit all the data,

and we couldn’t store all the data in a DW because it was expensive. If you

aren’t familiar with data lakes, see https://medium.com/rock-your-data/

getting-started-with-data-lake-4bb13643f9.

Again, some parties argued that data lakes were new DWs, and everyone

should immediately migrate their traditional solutions to data lakes using

the Hadoop technology stack. We personally didn’t believe that data lakes

could replace the traditional SQL DWs based on our experience with BI and

business users. However, a data lake could complement an existing DW

solution when there was a big volume of unstructured data and we didn’t

want to leverage the existing DW because it lacked computing power and

storage capabilities. Apache products such as Hive, Presto, and Impala

helped us to get SQL access for big data storage and leverage data lake data

with traditional BI solutions. It is obvious that this path was expensive but

could work for big companies with resources and strong IT teams.

Chapter 1 Getting Started with Cloud Analytics

https://medium.com/rock-your-data/getting-started-with-data-lake-4bb13643f9
https://medium.com/rock-your-data/getting-started-with-data-lake-4bb13643f9

5

In 2013, we heard about DWs in the cloud, namely, Amazon Redshift.

We didn’t see a difference between the cloud edition of Amazon Redshift

and the on-premise Teradata, but it was obvious that we could get the

same results without buying an extremely expensive appliance. Even at

that time, we noticed the one benefit of Redshift. It was built on top of the

existing open source database Postgres. This meant we didn’t really need

to learn something new. We knew the MPP concept from Teradata and

we knew Postgres, so we could start to use Redshift immediately. It was

definitely a breath of fresh air in a world of big dinosaurs like Oracle and

Teradata.

It should be obvious to you that Amazon Redshift wasn’t a disruptive

innovation. It was an incremental innovation that built on a foundation

already in place. In other words, it was an improvement to the existing

technology or system. That is the core difference between Snowflake and

other cloud DW platforms.

Amazon Redshift became quite popular, and other companies

introduced their cloud DW platforms. Nowadays, all big market vendors

are building a DW solution for the cloud.

As a result, Snowflake was the disruptive innovation. The founders of

Snowflake collected all the pain points of the existing DW platforms and

came up with a new architecture and new product that addresses modern

data needs and allows organization to move fast with limited budgets and

small teams. If you are interested in a market overview of DW solutions,

refer to Gartner’s Quadrant for Data Management Solutions for Analytics,

as shown in Figure 1-2.

Chapter 1 Getting Started with Cloud Analytics

6

Figure 1-2.  Gartner’s Quadrant for Data Management Solutions
for Analytics. Source: Smoot, Rob; “Snowflake Recognized as a
Leader by Gartner: Third Consecutive Year Positioned in the Magic
Quadrant Report,” Jan 23, 2019, https://www.snowflake.com/
blog/snowflake-recognized-as-a-leader-by-gartner-third-
consecutive-year-positioned-in-the-magic-quadrant-report/

Chapter 1 Getting Started with Cloud Analytics

https://www.snowflake.com/blog/snowflake-recognized-as-a-leader-by-gartner-third-consecutive-year-positioned-in-the-magic-quadrant-report/
https://www.snowflake.com/blog/snowflake-recognized-as-a-leader-by-gartner-third-consecutive-year-positioned-in-the-magic-quadrant-report/
https://www.snowflake.com/blog/snowflake-recognized-as-a-leader-by-gartner-third-consecutive-year-positioned-in-the-magic-quadrant-report/

7

Everyone has their own journey. Some worked with big data

technologies like Hadoop; others spent time with traditional DW and BI

solutions. But all of us have a common goal of helping our organizations to

be truly data-driven. With the rise of cloud computing, we have many new

opportunities to do our jobs better and faster. Moreover, cloud computing

opened new ways of doing analytics. Snowflake was founded in 2012,

came out in stealth mode in October 2014, and became generally available

in June 2015. Snowflake brought innovation into the data warehouse

world, and it is the new era of data warehousing.

�Key Cloud Computing Concepts
Before jumping into Snowflake, we’ll cover key cloud fundamentals to help

you better understand the value of the cloud platform.

Basically, cloud computing is a remote virtual pool of on-demand

shared resources offering compute, storage, database, and network

services that can be rapidly deployed at scale. Figure 1-3 shows the key

elements of cloud computing.

Table 1-2 defines the key terms of cloud computing. These are the

building blocks for a cloud analytics solution as well as the Snowflake DW.

Figure 1-3.  Key terms of cloud computing

Chapter 1 Getting Started with Cloud Analytics

8

It is important to mention hypervisors as a core element of cloud

computing. Figure 1-4 shows a host with multiple virtual machines and

a hypervisor that is used to create a virtualized environment that allows

multiple VMs to be deployed on a single physical host.

Table 1-2.  Key Terms for Cloud Computing

Term Description

Compute The “brain” to process our workload. It has the CPUs and RAM to run

workloads and processes, in our case, data.

Databases Traditional SQL or NoSQL databases that we can leverage for our

applications and analytics solutions in order to store structure data.

Storage Allows us to save and store data in raw format as files. It could be

traditional text files, images, or audio. Any resource in the cloud that

can store data is a storage resource.

Network Provides resources for connectivity between other cloud services

and consumers.

ML/AI Provides special types of resources for heavy computations and

analytics workloads.

Chapter 1 Getting Started with Cloud Analytics

9

Virtualization gives us the following benefits:

•	 Reduces capital expenditure

•	 Reduces operating costs

•	 Provides a smaller footprint

•	 Provides optimization for resources

There are three cloud deployment models, as shown in Figure 1-5.

Figure 1-4.  Role of hypervisor

Chapter 1 Getting Started with Cloud Analytics

10

The model you choose depends on the organization’s data handling

policies and security requirements. For example, often government and

health organizations that have a lot of critical customer information prefer

to keep the data in a private cloud. Table 1-3 defines the cloud deployment

models.

Figure 1-5.  Cloud deployment models

Table 1-3.  Cloud Deployment Models

Model Description

Public cloud The service provider opens up the cloud infrastructure for

organizations to use, and the infrastructure is on the premises

of the service provider (data centers), but it is operated by the

organization paying for it.

Private cloud The cloud is solely owned by a particular institution, organization,

or enterprise.

Hybrid cloud This is a mix of public and private clouds.

Chapter 1 Getting Started with Cloud Analytics

11

In most cases, we prefer to go with a public cloud. AWS, Azure, and

GCP all are public clouds, and you can start building solutions and

applications immediately.

It is also good to know about cloud service models (as opposed to on-

premise solutions). Figure 1-6 shows three main service models with an

easy analogy “Hamburger as a Service”.

One example of IaaS is a cloud virtual machine. Amazon EC2 is an

example of IaaS. Amazon Elastic MapReduce (i.e., managed Hadoop) is an

example of PaaS, and DynamoDB (AWS NoSQL database) is an example of

SaaS that is completely managed for you.

Figure 1-6.  Cloud service models, pizza as a service

Chapter 1 Getting Started with Cloud Analytics

12

Note I n a cloud software distribution model, SaaS is the most
comprehensive service, and it abstracts much of the underlying
hardware and software maintenance from the end user. It is
characterized by a seamless, web-based experience, with as little
management and optimization as possible required of the end user.
The IaaS and PaaS models, comparatively, often require significantly
more management of the underlying hardware or software.

Snowflake is a SaaS model also known as data warehouse as a service

(DWaaS). Everything—from the database storage infrastructure to the

compute resources used for analysis and the optimization of data within

the database—is handled by Snowflake.

A final aspect of cloud computing theory is the shared responsibility

model (SRM). Figure 1-7 shows a key elements of SRM.

SRM has many attributes, but the main idea is that the cloud vendor is

responsible for the security of the cloud, and the customers are responsible

for the security in the cloud. This means that the clients should define their

security strategies and leverage best practices for their data in order to

keep it secure.

Figure 1-7.  Cloud Vendors Shared Responsibility Model

Chapter 1 Getting Started with Cloud Analytics

13

When we talk about the cloud, you should know that cloud resources

are hosted in data centers and there is a concept of a region. You can find

information about Snowflake availability for the different cloud vendors

and regions at https://docs.snowflake.net/manuals/user-guide/

intro-regions.html.

Before moving to the next section, refer to Figure 1-8, which shows how

long data takes to upload to the cloud; this reference comes from Google

Cloud Platform presentation.

Figure 1-8.  Modern bandwidth

This table is a useful reference when migrating a DW from an on-

premise solution to the cloud. You will learn more about DW migration

and modernization in Chapter 14.

Chapter 1 Getting Started with Cloud Analytics

https://docs.snowflake.net/manuals/user-guide/intro-regions.html
https://docs.snowflake.net/manuals/user-guide/intro-regions.html

14

�Meet Snowflake
Snowflake is the first data warehouse that was built for the cloud from the

ground up, and it is a first-in-class data warehouse as a service. Snowflake

runs on the most popular cloud providers such as Amazon Web Services

and Microsoft Azure. Moreover, Snowflake has announced availability

on Google Cloud Platform. As a result, we can deploy the DW platform

on any of the major cloud vendors. Snowflake is faster and easier to use

and far more flexible than a traditional DW. It handles all aspects of

authentication, configurations, resource management, data protection,

availability, and optimization.

It is easy to get started with Snowflake. You just need to choose the

right edition of Snowflake and sign up. You can start with a free trial and

learn about the key features of Snowflake or compare it with other DW

platforms at https://trial.snowflake.com. You can immediately load

your data and get insights. All the components of Snowflake services run in

a public cloud infrastructure.

Note  Snowflake cannot be run on private cloud infrastructures (on-
premises or hosted). It is not a packaged software offering that can
be installed by a user. Snowflake manages all aspects of software
installation and updates.

Snowflake was built from the ground up and designed to handle

modern big data and analytics challenges. It combines the benefits of

both SMP and MPP architectures and takes full advantage of the cloud.

Figure 1-9 shows the architecture of Snowflake.

Chapter 1 Getting Started with Cloud Analytics

https://trial.snowflake.com

15

Similar to an SMP architecture, Snowflake uses a central storage that

is accessible from all the compute nodes. In addition, similar to an MPP

architecture, Snowflake processes queries using MPP compute clusters,

also known as virtual warehouses. As a result, Snowflake combines the

simplicity of data management and scalability with a shared-nothing

architecture (like in MPP).

As shown in Figure 1-9, the Snowflake architecture consists of three

main layers. Table 1-4 describes each layer.

Figure 1-9.  Snowflake architecture

Chapter 1 Getting Started with Cloud Analytics

16

In other words, Snowflake offers almost unlimited computing

and storage capabilities by utilizing cloud storage and computing.

Let’s look at a simple example of a traditional organization with a DW

platform. For example, say you have a DW, and you run ETL processing

overnight. During heavy ETL processing, business users can’t use the

DW a lot, and there aren’t many resources available. At the same time,

the marketing department should run complex queries for calculating

the attribution model. The inventory team should run their reports

and optimize inventory. In other words, every process and every team

in the organization is important, but the DW is a bottleneck. In the

case of Snowflake, every team or department can have its own virtual

warehouse that can be scaled up and down immediately depending on

the requirements. Moreover, the ETL process can have its own virtual

warehouse that is running only overnight. This means the DW isn’t a

Table 1-4.  Key Layers of Snowflake

Layer Description

Service layer Consists of services that coordinate Snowflake’s work. Services

run on a dedicated instance and include authentication,

infrastructure management, metadata management, query

parsing and optimization, and access control.

Compute layer Consists of a virtual warehouse (VW). Each VW is an MPP

compute cluster that consists of multiple compute nodes.

Each VM is an independent compute cluster that doesn’t share

resources with other VMs.

Storage layer Stores data in an internal compressed columnar format using

cloud storage. For example, in AWS it is S3; in Azure it is Blob

storage. Snowflake manages all aspects of data storage, and

customers don’t have direct access to file storage. Data is

accessible only via SQL.

Chapter 1 Getting Started with Cloud Analytics

17

bottleneck anymore and allows the organization to unlock its data’s

potential. Moreover, the organization will pay only for the resources it

uses. You don’t have to buy expensive appliances or think about future

workloads. Snowflake is truly democratizing data and gives almost

unlimited power to business users.

In addition to scalability and simplicity, Snowflake offers many more

unique features that didn’t exist before and aren’t available in other DW

platforms (cloud or on-premise) such as data sharing, time travel, database

replication and failover, zero-copy cloning, and more that you will learn in

this book.

�Summary
In this chapter, we briefly reviewed the history of data warehousing and

covered the fundamentals of cloud computing. This information gave

you some background so that you have a better understanding of why

Snowflake was brought to the market and why the cloud is the future of

data warehousing and modern analytics. Finally, you learned about the

unique architecture of Snowflake and its key layers. In the next chapter,

you will learn how to start working with Snowflake.

Chapter 1 Getting Started with Cloud Analytics

19© Dmitry Anoshin, Dmitry Shirokov, Donna Strok 2020
D. Anoshin et al., Jumpstart Snowflake, https://doi.org/10.1007/978-1-4842-5328-1_2

CHAPTER 2

Getting Started
with Snowflake
Congratulations on choosing to get started with Snowflake! In this chapter,

we will cover the following topics:

•	 Planning

•	 Creating your Snowflake account

•	 Connecting to Snowflake

By the end of this chapter, you will be ready to begin your cloud analytics

journey and follow along with the remaining chapters of this book. In the

“Planning” section, we will cover what decisions should be made before

creating your Snowflake account. These considerations include pricing and

region choices. We will also briefly introduce the Snowflake web interface.

�Planning
You need to consider the following before creating your Snowflake account:

•	 Snowflake editions

•	 Cloud providers and regions

•	 Snowflake pricing model

•	 Types of Snowflake tools

20

�Deciding on a Snowflake Edition
When you create your Snowflake account, you will be asked to choose

a Snowflake edition. Snowflake offers five account types, and each one

provides progressively more features.

Table 2-1 gives a high-level overview of the Snowflake editions and

what features are considered the selling points. Please refer to Snowflake’s

online pricing for the latest edition offerings and features (https://www.

snowflake.com/pricing).

�Choosing a Cloud Provider and Region
At the time of this publication, a Snowflake account can be hosted on

either Amazon Web Services (AWS) or Microsoft Azure. Each cloud

provider has data centers in many locations around the world. These

locations are referred to as regions. Transferring data between regions can

have cost implications. Therefore, region considerations are important

because the costs can vary depending on your requirements.

Table 2-1.  Snowflake Editions

Chapter 2 Getting Started with Snowflake

https://www.snowflake.com/pricing
https://www.snowflake.com/pricing

21

Multiple regions might be necessary to address global data access

speeds as well as replication needs. For example, if you have users located

in different parts of the world, it might make sense to replicate or partition

the data closer to your users. If you have a use case for multiple regions,

then you will need to create a Snowflake account for each region. We will

talk about solving multiple-region issues in later chapters.

Note  Snowflake accounts do not support more than one region. You
will need to create a Snowflake account for each region.

Regions dictate only the geographic location of where the data is stored

and the compute resources are provisioned, not the usage of the data.

The usage of the data may occur from anywhere in the world. Also, the

cloud platform that is chosen for each Snowflake account is completely

independent from your other Snowflake accounts. You may choose to

use a mix of cloud providers and regions; however, be aware that this

will impact the cost of transferring data into your Snowflake account.

Also, there are some limitations with using Azure as a cloud provider, as

described in Table 2-2.

Chapter 2 Getting Started with Snowflake

22

�Examining Snowflake’s Pricing Model
The pricing model is an attractive feature of Snowflake. This is because

Snowflake charges only for what is used. The storage and compute

resource costs are based on the amount of compressed data stored in the

database tables and whatever is needed for data recovery. The virtual

warehouse size determines the number of servers per cluster and what

the compute costs will be. The pricing model uses credits, and credits are

billed by full hour. Virtual warehouse sizes come in eight T-shirt sizes, as

noted in Table 2-3.

Table 2-2.  Limitations to Your Snowflake Account When Hosted on

Microsoft Azure

Snowflake editions

impacted

Virtual Private Snowflake (VPS) is not currently available

on Azure but is planned to be released shortly. Check

with the Snowflake web site for more details:

https://docs.snowflake.net/manuals/user-

guide/intro-editions.html

Security and data

encryption

No support for encryption with customer-managed keys.

No support for secure connectivity to customer-owned

virtual networks.

Data loading To access S3 from Azure, IAM policies must allow for

Snowflake access.

Third-party application

support

Check with your third-party partner to determine

whether Azure is supported.

These partners do support Azure: Alooma, Attunity,

Databricks, Fivetran, Informatica, Looker, Matillion,

MicroStrategy, Periscope, Power BI, Qubole, Sigma

Computing, Stitch, Tableau, Talend, and Wherescape.

Chapter 2 Getting Started with Snowflake

https://docs.snowflake.net/manuals/user-guide/intro-editions.html
https://docs.snowflake.net/manuals/user-guide/intro-editions.html

23

Note  Credits are billed on a per-second basis only when virtual
warehouses are running. If a virtual warehouse is suspended, it will
not accrue charges.

If a virtual warehouse needs to be resized, credits are billed only for

the additional increase or decrease in servers. For example, if your virtual

warehouse is increasing from Large to X-Large, you will be charged per

minute for each cluster being added. In this case, eight additional credits

are accrued for that minute during the increase. Also, each time a server

is started or stopped, there is a one-minute minimum billing charge even

if it took less time. After the minute of billing has occurred, then charges

go back to per-second billing. Refer to the Snowflake web site to get the

current pricing per credits in your currency.

�Other Pricing Considerations

You can choose to leave your data in the Snowflake database. But if you

need to transfer or copy your data out of Snowflake and into another

external storage location (i.e., AWS S3), Snowflake will charge for the query

compute costs associated with the export. Also, if you’re going to export

your data out of Snowflake and into a cloud storage such as S3 or Azure

Blob, there are additional egress charges for that if the location is either in

a different region or with a different cloud storage provider.

Table 2-3.  Credits Charged by Full Hour Based on Virtual Warehouse

Size

X-Small Small Medium Large X-Large 2X-Large 3X-Large 4X-Large

1 2 4 8 16 32 64 128

Chapter 2 Getting Started with Snowflake

24

Remember  Snowflake does not charge to load data into your
Snowflake environment from any external stage; however, your
cloud storage provider (Amazon S3 or Microsoft Azure) might charge
a separate egress fee if your data storage is located in a region or
network different from your Snowflake account.

�Examining Types of Snowflake Tools
Snowflake can be accessed in several ways: through a UI, command line,

JDBC/ODBC driver, or many third-party partner tools.

•	 Snowflake web interface. Most browsers can support

the Snowflake web interface. For minimum versions,

check the Snowflake web site. Snowflake recommends

Google Chrome (minimum version).

•	 SnowSQL, the Snowflake command-line client.

•	 Any client application connected via JDBC or ODBC.

•	 Third-party partners that have been built with

Snowflake capabilities, like Tableau and Matillion.

�Snowflake Web Interface

You can use any of the browser versions in Table 2-4 to access the

Snowflake web interface. Snowflake recommends using Google Chrome

because the other browsers have not been tested as much as Chrome has.

If any issues occur with the browser in the versions listed in Table 2-4,

contact Snowflake Support for help. We will go through the Snowflake web

interface more extensively later in this chapter.

Chapter 2 Getting Started with Snowflake

25

�SnowSQL

SnowSQL is a command-line client for connecting to and using Snowflake.

SnowSQL can be installed on any Red Hat–compatible Linux operating

system, macOS (64-bit), and Windows (64-bit). Other operating systems

have not been tested and may not work with SnowSQL. There are some

Linux systems that may not have all the needed libraries used by the

SnowSQL client. SnowSQL is available for download from the Snowflake

web interface as well as the Snowflake web site. We will cover SnowSQL in

later chapters of this book.

�JDBC and ODBC OS Platform Requirements

Both the Snowflake JDBC (64-bit) and ODBC (32-bit and 64-bit) drivers

can be installed on Linux, macOS, and Windows. The JDBC driver is

available for download from the Maven Central Repository at http://

search.maven.org/. The ODBC driver is available on the Snowflake Client

Driver Repository at https://sfc-repo.snowflakecomputing.com/odbc/

index.html. The ODBC driver can also be downloaded from the Snowflake

console. Windows users may need to install .NET drivers prior to the

installation of the ODBC driver.

Table 2-4.  Browsers Supported by the

Snowflake Web Interface

Browsers Versions

Chrome

Safari

Firefox

Internet Explorer

Opera

Edge

47+

9+

45+

11+

36+

12+

Chapter 2 Getting Started with Snowflake

http://search.maven.org/
http://search.maven.org/
https://sfc-repo.snowflakecomputing.com/odbc/index.html
https://sfc-repo.snowflakecomputing.com/odbc/index.html

26

�Third-Party Partners

In later chapters we will go over how the third-party partners Matillion and

Tableau use Snowflake. Right now, Snowflake makes it easy to integrate

with some of the more popular third-party tools like Databricks, Alteryx,

Looker, Qubole, Matillion, and Tableau. For a current list of the Snowflake

third-party partners, please visit the Snowflake web site at https://docs.

snowflake.net/manuals/user-guide/ecosystem-all.html.

�Creating a Snowflake Account
Now you should be ready to create your Snowflake account, and this is

probably the easiest part of the whole process. If you do not have an account

yet, you can sign up online for a free trial. When logging into www.snowflake.

com, you should see the screen shown in Figure 2-1. The information that

was gathered in our planning stage will help us go through this quickly.

Click Start for Free in the upper-right corner of the page. This will give you a

30-day trial of Snowflake plus 400 Snowflake credits to play with.

Figure 2-1.  Snowflake main web page

Chapter 2 Getting Started with Snowflake

https://docs.snowflake.net/manuals/user-guide/ecosystem-all.html
https://docs.snowflake.net/manuals/user-guide/ecosystem-all.html
http://www.snowflake.com
http://www.snowflake.com

27

Enter the following required details: name, company name, e-mail,

phone number, Snowflake edition, cloud provider, and region. Finish

by clicking Create Account, and in about 15 minutes, you will receive an

e-mail with a link to your web interface. Figure 2-2 shows a sample e-mail.

You must activate your account before going to the web interface.

Figure 2-2.  E-mail received from Snowflake once account is provisioned

Chapter 2 Getting Started with Snowflake

28

Note  Account activation must occur within 72 hours or you will
need to create another trial account.

�Connecting to Snowflake
In this section, we will demonstrate how to connect to Snowflake and give

you a tour of the web interface. We will cover other ways to connect to

Snowflake in later chapters. For now, we will do the following:

	 1.	 Log into the Snowflake web interface

	 2.	 Tour the web interface, which will include the

following:

•	 Databases page

•	 Shares page

•	 Warehouses page

•	 Worksheets page

•	 History page

•	 Partner Connect page

•	 Help menu

•	 User Preferences menu

�Logging Into the Snowflake Web Interface
As mentioned in the previous section, the Snowflake web interface is

accessible through a web browser. During your account creation, you

received an e-mail that notifies you that your account has been provisioned.

Chapter 2 Getting Started with Snowflake

29

This e-mail contains a link to your Snowflake web interface and a link to

activate your account. Clicking Activate will take you to a web browser

screen where you will be prompted to create a username and password.

Once you have entered your desired username and password, the

Welcome to Snowflake web interface will appear, as shown in Figure 2-3.

Congratulations, you have officially logged into Snowflake!

Snowflake makes it easy to navigate and learn about the different

features included in the web interface. We will go over what is included in

the web interface in the next section.

Figure 2-3.  Welcome to Snowflake screen

Chapter 2 Getting Started with Snowflake

30

�Touring the Web Interface
Now that you’ve logged into your Snowflake web interface, you can create

and manage all of your Snowflake objects. You can also use the web

interface to load some data into tables, execute ad hoc queries, run Data

Manipulation Language (DML) statements such as update, run Data

Definition Language (DDL) statements such as alter/create, view past

queries, change your password, set your user preferences, and perform

administrative tasks if you’ve been granted admin access.

If you have the required administrator role, you can perform

administrative tasks in the web interface such as creating and managing

users. We will go over the administrative portion of the interface in

Chapter 7. For this section, we will review the following parts of the web

interface: Databases page, Warehouses page, Worksheets page, History

page, Help menu, and User Preferences menu.

�Databases Page

The Databases page shows information about the databases you have

created or have privileges to access. With the necessary privileges, you

are able to perform tasks that include creating, cloning, dropping, and

modifying database objects; loading data into tables; and transferring

ownership of a database to a different role. To do these tasks, you just

click the database name. Figure 2-4 shows the database objects in the

SNOWFLAKE_SAMPLE_DATA database on the Databases page.

Chapter 2 Getting Started with Snowflake

31

�Warehouses Page

The Warehouses page displays information about your virtual warehouses

that have been created or that you have privileges to access. The

administrative tasks that can be performed on virtual warehouses through

this page include the following: creating or dropping, suspending or

resuming, configuring, and transferring ownership to a different role.

Figure 2-5 shows the virtual warehouses available in our example.

Figure 2-4.  Snowflake’s Databases page in the web user interface

Chapter 2 Getting Started with Snowflake

32

�Shares Page

If you need to share your data with other teams inside or outside your

organization, then Snowflake data sharing might be the solution you are

looking for. Snowflake data sharing enables data providers to effectively share

their data and to service their data consumers in a scalable and cost-effective

manner. Snowflake data sharing is available to all Snowflake customers.

�Worksheets Page

The Worksheets page is probably going to be the most used page for those

with access to the Snowflake user interface. This page is where users can

submit ad hoc SQL queries and execute DDL and DML statements. Other

tasks that can be done on the Worksheets page include the following: opening

concurrent worksheets that work in separate sessions, saving and reopening

worksheets, logging out of Snowflake or switching roles within the worksheet,

exporting query results, and resizing the current virtual warehouse if needed.

Figure 2-5.  Snowflake’s Warehouses page

Chapter 2 Getting Started with Snowflake

33

Caution  If you log out of Snowflake, all running queries in the
worksheet will cease.

�History Page

The History page saves details of what was executed through the

Worksheets page, SnowSQL, and any other SQL client that connects to

your Snowflake instance. The history goes back 14 days, and you are able

to view the details about each query. Results of queries are available for

only 24 hours after the query has completed running. There are filters

available to easily scan through the history, and you’re also able to change

how the history is viewed by adding additional columns, such as for the

status or virtual warehouse.

�Partner Connect Page

The Partner Connect page is available to the right of the History page. This

page provides instant access to all the third-party partners that Snowflake

is compatible with. It is easy to get set up; just click Partner Connect,

choose the partner tool, and click Connect. Once you receive confirmation

that your account was created, click Launch. In just a few short minutes

you will be able to integrate the partner with your Snowflake account.

�Help Menu

The Help menu is available in the upper-right corner of the Snowflake web

interface, next to Partner Connect. The Help menu is where you can access

the Snowflake documentation. Additionally, if you need support, the Help

menu is where you can create a support case. Also, Snowflake drivers are

available for download in the Help menu.

Chapter 2 Getting Started with Snowflake

34

�User Preferences Menu

The User Preferences menu can be accessed by clicking the drop-down

menu in the upper-right corner, next to your account name. The

preferences menu is where you can change your password, security role,

and notification settings. It is also where you can log out of Snowflake.

Reminder  Logging out of Snowflake will cancel all running queries
that are in a worksheet.

�Summary
In this chapter, we covered planning your Snowflake environment and

creating a Snowflake account, and we gave you a high-level overview of the

web user interface. You are now ready to load data and build your virtual

warehouse. The next few chapters will help you get started onboarding

your data, and then later chapters will discuss the tools you can use to

analyze your data.

Chapter 2 Getting Started with Snowflake

35© Dmitry Anoshin, Dmitry Shirokov, Donna Strok 2020
D. Anoshin et al., Jumpstart Snowflake, https://doi.org/10.1007/978-1-4842-5328-1_3

CHAPTER 3

Building a Virtual
Warehouse
A Snowflake virtual warehouse is a cluster of compute resources for your

Snowflake database. These compute resources include CPU, memory

allocation, and temporary storage. Virtual warehouse concepts are

important to understand because a virtual warehouse is the foundation of

what you will build inside your Snowflake account. In this chapter, we will

cover the following:

•	 Overview of Snowflake virtual data warehouses

•	 Understanding warehouse use cases

•	 Virtual data warehouse considerations

•	 Building your first Snowflake virtual data warehouse

�Overview of Snowflake Virtual Warehouses
In this section, we will cover the different warehouse types and strategies

for keeping costs down. The following are the topics that will be covered:

•	 Warehouse sizing and features

•	 Multicluster warehouses

36

�Warehouse Sizes and Features
Snowflake virtual warehouse sizes (as mentioned in Chapter 2) are T-shirt

sizes such as X-Small, Small, Medium, Large, and so on. The credit charges

for a virtual warehouse start at 1 for X-Small and double each size you go

up. This makes it an easy pricing model to remember.

�Choosing the Right Size

Even with the simple pricing model, it still might seem like a daunting task

to come up with the approximate size needed for your virtual warehouse.

Data loading and query processing are the two considerations that need to

be mapped out when determining the size you need. As queries get more

complex, the time it takes for the server to execute can increase. Likewise,

as more data gets loaded into Snowflake, the loading performance might

be affected.

Note  Larger virtual warehouses may not result in better
performance for data loading or query processing.

�Concurrency

The number of queries that a virtual warehouse can concurrently process

is determined by the size and complexity of each query. As queries are

submitted, the virtual warehouse calculates and reserves the compute

resources needed to process each query. If the virtual warehouse does

not have enough remaining resources to process a query, the query is

queued, pending resources that become available as other running queries

complete.

Chapter 3 Building a Virtual Warehouse

37

Snowflake provides some object-level parameters that can be set to

help control query processing and concurrency.

•	 STATEMENT_QUEUED_TIMEOUT_IN_SECONDS

•	 STATEMENT_TIMEOUT_IN_SECONDS

Note  If queries are queuing more than desired, another virtual
warehouse can be created, and queries can be manually redirected to
the new virtual warehouse. In addition, resizing a virtual warehouse
can enable limited scaling for query concurrency and queuing;
however, virtual warehouse resizing is primarily for improving query
performance.

To enable fully automated scaling for concurrency, Snowflake

recommends multicluster virtual warehouses, which provide essentially

the same benefits as creating additional virtual warehouses and redirecting

queries but without requiring manual intervention. Multicluster virtual

warehouses are discussed later in this chapter.

�Default Virtual Warehouses in Sessions

When a session is initiated in Snowflake, the session does not, by default,

have a virtual warehouse associated with it. Until a session has a virtual

warehouse associated with it, queries cannot be submitted within the

session. Snowflake allows sessions to specify which virtual warehouse they

will default to. Sessions can be initiated by users or tools, and sessions

may also change to another virtual warehouse by using the USE WAREHOUSE

command.

To facilitate querying immediately after a session is initiated,

Snowflake supports specifying a default virtual warehouse for each

individual user. The default warehouse for a user is used as the warehouse

Chapter 3 Building a Virtual Warehouse

38

for all sessions initiated by that user. A default warehouse can be specified

when creating or modifying the user, either by using the web interface or

by using CREATE USER/ALTER USER.

Snowflake clients (SnowSQL, JDBC driver, ODBC driver, Python

connector, etc.) can specify a default warehouse through their connections

or configuration files, as appropriate. Chapters 4, 5, and 6 discuss these

Snowflake clients and provide more information on how to set up the

default warehouse.

�Multicluster Virtual Warehouses
Some organizations may replicate data into separate data marts. They

may also shift some data workloads outside of normal business hours or

queue usage to boost performance. Snowflake offers users the ability to

automatically scale out their virtual warehouse by distributing replicated

data, in memory, across separate compute clusters.

Resizing your virtual warehouse can provide performance benefits

for slow-running queries and data loading. Multicluster warehouses will

automatically increase or decrease the number of queries.

Multicluster virtual warehouses are an Enterprise Edition feature. If

multicluster virtual warehouses are enabled for your account, you can also

set the maximum and minimum number of clusters for the warehouse.

Multicluster warehouses will use multiple clusters of servers to handle cases

where fluctuating numbers of concurrent queries occur, such as during

peak and off-peak hours. As the load increases, the virtual warehouse

automatically starts more clusters to prevent queries from queuing. When

the additional clusters are no longer needed, it shuts them down.

Note  Multicluster virtual warehouses are a Snowflake Enterprise
Edition feature.

Chapter 3 Building a Virtual Warehouse

39

�Overview of Multicluster Virtual Warehouses

Multicluster virtual warehouses improve concurrency and are designed

specifically for handling queuing and performance issues related to large

numbers of concurrent queries by many users. In addition, multicluster

virtual warehouses can be automated to scale if your number of users/

queries tends to fluctuate.

When deciding whether to use multicluster virtual warehouses and the

number of clusters to use per virtual warehouse, consider the following:

•	 All your virtual warehouses should be configured as

multicluster virtual warehouses.

•	 Multicluster virtual warehouses should be configured

to run in autoscaling mode, which enables Snowflake

to automatically start and stop clusters as needed.

When choosing the minimum and maximum number of clusters for a

multicluster warehouse, consider the following:

•	 Minimum: Keep the default value of 1; this ensures

that additional clusters are started only as needed.

However, if high availability of the virtual warehouse

is a concern, set the value higher than 1. This helps

ensure virtual warehouse availability and continuity in

the unlikely event that a cluster fails.

•	 Maximum: Set this value as large as possible, while

being mindful of the virtual warehouse size and

corresponding credit costs. For example, an X-Large

virtual warehouse (16 servers) with maximum clusters

(10) will consume 160 credits in an hour if all 10

clusters run continuously for the hour.

Chapter 3 Building a Virtual Warehouse

40

�Multicluster Credits and Usage

To see your consumption in the web interface, click the name of a

warehouse to display the average load on the warehouse for all queries

processed and queued over the last two weeks. The page displays the

query load in intervals of five minutes or one hour depending on the

length of the viewing window. Each time a virtual warehouse is resumed

or increases in size, your account is billed for one minute of usage; after

the first minute, billing is calculated per second. Figure 3-1 shows what the

usage screen looks like.

Credits are charged based on the following:

•	 The number of servers per cluster, which is determined

by the virtual warehouse size

•	 The number of clusters, if using multicluster virtual

warehouses

•	 The length of time each server in each cluster runs

Figure 3-1.  A newly created virtual warehouse’s load over time

Chapter 3 Building a Virtual Warehouse

41

�Virtual Warehouse Considerations
While reading this book, you may be looking for a solution for your

use case. Typical virtual warehouse design considerations include the

following:

•	 Query design

•	 Query caching, reuse of frequently run queries

•	 Scaling

�Query Design
The number of servers required to process a query depends on the

size and complexity of the query. Queries will scale linearly as a virtual

warehouse size increases, particularly for larger, more complex queries.

Therefore, consider the following in your query design:

•	 Table size is more significant than the number of rows.

•	 Filters using predicates impact processing.

•	 A higher number of joins will also impact processing.

Tip  To achieve the best results, try to execute relatively
homogeneous queries (size, complexity, data sets, etc.) on the
same warehouse; executing queries of widely varying size and/or
complexity on the same warehouse makes it more difficult to analyze
warehouse load, which can make it more difficult to select the best
size to match the size, composition, and number of queries in your
workload.

Chapter 3 Building a Virtual Warehouse

42

�Caching Impacts
When a virtual warehouse is in a running state, it maintains a cache of table

data that has been accessed from previously completed queries. The size of

the cache is determined by the number of servers in the virtual warehouse.

The size of the cache increases as the virtual warehouse size increases.

The cache is dropped when the virtual warehouse is suspended, which

may result in slower initial performance for some queries as the virtual

warehouse is resumed. The cache is rebuilt when a warehouse is resumed,

and queries are then able to take advantage of the improved performance

that the cache provides.

Consider the trade-off between saving credits by suspending a virtual

warehouse versus maintaining the cache of data from previous queries to

help with performance.

�Scaling
Virtual warehouse resizing is supported by Snowflake at any time. You can

even resize a warehouse while the virtual warehouse is running. When

you have a slow query and have other similarly sized queries queued up, it

might make sense to resize the warehouse while it’s running.

But be aware that larger is not necessarily faster; for smaller, basic

queries that are already executing quickly, you may not see any significant

improvement after resizing. If a query is already running, then it will not be

impacted by the resized virtual warehouse. The additional virtual warehouses

will be used only by the queued or new queries that will be processed.

�Building a Snowflake Virtual Warehouse
There are two ways you can build a Snowflake virtual warehouse. It can

be done either through the web interface or through SQL commands. We

will demonstrate how to do it in both ways. We will be doing this through

Chapter 3 Building a Virtual Warehouse

43

an already created Snowflake account. If you haven’t yet created your

Snowflake account, please review Chapter 2 to get your Snowflake account

set up. Let’s get started!

�Creating a Virtual Warehouse

SNOWFLAKE WEB INTERFACE

	1.	 Log in to your Snowflake web interface.

	2.	 Click Warehouses + Create.

	3.	G ive your virtual warehouse a name, choose a size, and set the

maximum idle time before the virtual warehouse automatically

suspends. Click Finish. Figure 3-2 shows this information

entered into the web interface.

Figure 3-2.  Create Warehouse dialog in web interface after selecting
Create Warehouse

Chapter 3 Building a Virtual Warehouse

44

Tip  After entering the details, click Show SQL at the bottom of
the Create Warehouse dialog to see the SQL that would perform this
same task. Figure 3-3 shows what this would look like based on the
setup in Figure 3-2.

SQL COMMANDS

	1.	T he following CREATE WAREHOUSE command will give the

same results as what was done in the web interface:

CREATE WAREHOUSE TestWarehouse

WITH WAREHOUSE_SIZE = 'MEDIUM'

WAREHOUSE_TYPE = 'STANDARD'

AUTO_SUSPEND = 600

AUTO_RESUME = TRUE;

	2.	 Figure 3-4 shows that our warehouse, TESTWAREHOUSE, is

created after provisioning was completed.

Figure 3-3.  Show SQL will display the SQL code that can be used in a
script. In this example, AUTO_SUSPEND automatically translates the
minutes entered into the Create Warehouse dialog into seconds

Chapter 3 Building a Virtual Warehouse

45

Important  Always ensure that auto suspend and auto resume are
set in your warehouse. By default, these settings are set for you when
a virtual warehouse is provisioned. Auto suspend stops a warehouse
if it sits idle for a specified period of time, while auto resume starts a
suspended virtual warehouse when queries are submitted to it. This
is important because a running warehouse will consume Snowflake
credits only when compute resources are being utilized. Shutting
down your warehouse, when they are not in use, will help conserve
credits and control costs.

�Starting, Resuming, Suspending, and Resizing
You can also manually start/resume, suspend, and resize a virtual

warehouse. These are especially helpful for one-offs or if you don’t want to

wait for the automatic start or suspension of your virtual warehouse.

A virtual warehouse can be started at any time, even when it’s first created.

Figure 3-4.  TESTWAREHOUSE has completed provisioning and is
now appearing in our list of warehouses

Chapter 3 Building a Virtual Warehouse

46

WEB INTERFACE

Here are the steps for common tasks:

•	 Start/Resume: Click Warehouses and select your warehouse.

Click Resume.

•	 Suspend: Click Warehouses and select your warehouse. Click

Suspend.

•	 Resize: Click Warehouses and select your warehouse. Click

Configure. Select the new size from the Size drop-down. Click

Finish.

SQL COMMAND

Here are commands for common tasks:

•	 Start/Resume: Use the ALTER WAREHOUSE command with

RESUME.

ALTER WAREHOUSE TestWarehouse

RESUME IF SUSPENDED

•	 Suspend: Use the ALTER WAREHOUSE command with

SUSPEND.

ALTER WAREHOUSE TestWarehouse

SUSPEND

•	 Resize: Use the ALTER WAREHOUSE command with SET

WAREHOUSE_SIZE.

ALTER WAREHOUSE TestWarehouse

SET WAREHOUSE_SIZE = XSMALL

Chapter 3 Building a Virtual Warehouse

47

�Using a Warehouse
The USE WAREHOUSE command is used only as a SQL command. This

simply allows the SQL statements to connect to the correct virtual

warehouse during execution. When using the Worksheets page in the web

interface, the USE WAREHOUSE command is implied by selecting the virtual

warehouse at the top right of the screen, as shown in Figure 3-5.

�Setting Up Load Monitoring
The load monitoring dashboard is used for the performance monitoring

of your virtual warehouses within your account. There is also a feature of

the dashboard that lets you monitor your credits over a period of time. Log

into your Snowflake web interface to begin setting up load monitoring.

	 1.	 Click Warehouses and highlight your chosen

warehouse. A page will appear on the right allowing

you to grant privileges.

	 2.	 Click Grant Privileges.

	 3.	 For “Privileges to grant,” select MONITOR.

Figure 3-5.  This shows how to view or change the virtual warehouse
within the worksheet

Chapter 3 Building a Virtual Warehouse

48

	 4.	 For “Grant privileges to,” select ACCOUNTADMIN.

	 5.	 Click Grant, as shown in Figure 3-6.

To view load monitoring, do the following:

	 1.	 Click Warehouses.

	 2.	 Click your choice of warehouse name (which should

be hyperlinked).

Figure 3-7 shows how the loading monitoring chart looks on a newly

created warehouse. There is one bar at the end of the Warehouse Load

Over Time chart, because we ran one query. At the bottom there is a date

slider that allows you to increase or decrease the date range you want to

see in the chart. There is no history in this chart; therefore, no more bars

appear.

Figure 3-6.  The information entered into the dialog

Chapter 3 Building a Virtual Warehouse

49

Note  The date slider has a minimum/maximum range of 8 hours to
14 days. Load monitoring data is not available previous to 14 days.

�Understanding Load Monitoring

The Warehouse Load Over Time bar chart contains bars that represent

time intervals. Each bar, or interval, represents the query loads that are

based on query statuses for the queries executing or queuing at that

time. There are four types of query statuses: Running, Queued, Queued

Provisioning, and Queued Repairing.

•	 Running: Queries that were actively running during

the interval. These queries may have started before or

during the interval.

Figure 3-7.  Warehouse Load Over Time chart on the TestWarehouse
warehouse

Chapter 3 Building a Virtual Warehouse

50

•	 Queued: Queries that are in wait status. The wait could

be because of the warehouse load being maxed out and

therefore would need to wait for running queries to

complete processing.

•	 Queued Provisioning: Queries that are in wait status

because the warehouse is provisioning, usually after a

warehouse resumes.

•	 Queued Repairing: Queries that are in wait status

while the warehouse is repaired. While rare, this occurs

only for a few minutes.

Query load is calculated by taking the execution time for each query

and dividing it by the interval time in seconds. This produces a percent

that is then additive for all the queries in that interval. The percent is

divided up by query status, which is displayed in the bar chart.

Best Practices for Load Monitoring

These are some best practices for load monitoring:

•	 A high query load and queuing are indicative of

needing to start up a separate warehouse. Move the

queued queries to the new warehouse.

•	 A low query load could mean your running queries

need more compute resources. Resizing the warehouse

can take care of this.

•	 Use the load monitor to study how the daily workloads

look over the course of two weeks. Notice the trends in

spikes and consider creating a warehouse specifically for

peak workloads. Or consider switching to multicluster so

that autoscaling takes care of the peak traffic.

Chapter 3 Building a Virtual Warehouse

51

•	 Use the load monitor to look at trends in Snowflake

credit usages. See whether the minimum cluster count

or warehouse size needs to be decreased to save money

on credits.

�Summary
This chapter covered the basics of Snowflake virtual warehouses. You

should now know the different virtual warehouse sizes and features and

what a multicluster virtual warehouse is. We also reviewed some important

things to consider with your virtual warehouse. Last, we showed how to

create your first virtual warehouse and highlighted the load monitoring tool.

Chapter 3 Building a Virtual Warehouse

53© Dmitry Anoshin, Dmitry Shirokov, Donna Strok 2020
D. Anoshin et al., Jumpstart Snowflake, https://doi.org/10.1007/978-1-4842-5328-1_4

CHAPTER 4

Loading Bulk Data
into Snowflake
There are two ways to load data into Snowflake: bulk data loading with the

COPY statement and continuous data loading with Snowpipe. This chapter

is focused on bulk data loading. We will cover the following topics:

•	 Overview of bulk data loading: We will cover what

bulk data loading is, file load locations, supported file

formats and encoding, compression handling, and

encryption options.

•	 Bulk data loading recommendations: We will cover

file preparation including file sizing and splitting, the

CSV and semistructured formats, staging, loading, and

querying.

Note  Continuous data loading with Snowpipe is covered in
Chapter 6.

54

�Overview of Bulk Data Loading
The bulk loading of data using COPY has been done longer than Snowflake

has been around. Many other database management systems support

using the COPY statement. Therefore, it is no surprise that Snowflake offers

the same support. To better understand bulk data loading, we will review

and answer these key questions:

•	 What is bulk data loading?

•	 Where can we bulk data load from?

•	 What are the compression and encryption options?

•	 What file formats are supported?

�What Is Bulk Data Loading?
To get data into a database table, you need to insert it. Insert statements

can take a while since they need to be executed one row at a time. Bulk

copying can take a large amount of data and insert it into a database all in

one batch. The bulk data loading option in Snowflake allows batch loading

of data from files that are in cloud storage, like AWS S3.

If your data files are not currently in cloud storage, then there is an

option to copy the data files from a local machine to a cloud storage staging

area before loading them into Snowflake. This is known as Snowflake’s

internal staging area. The data files are transmitted from a local machine to

an internal, Snowflake-designated, cloud storage staging location and then

loaded into tables using the COPY command.

Tip  External tables can be created instead of loading data into
Snowflake. This would be useful when only a portion of data is needed.

Chapter 4 Loading Bulk Data into Snowflake

55

�Bulk Load Locations
Snowflake supports loading data from files staged in any of the following

cloud storage locations, regardless of the cloud platform for your

Snowflake account:

•	 Snowflake-designated internal storage staging location

•	 AWS S3, where files can be loaded directly from any

user-supplied S3 bucket

•	 GCP Cloud Storage, where files can be loaded directly

from any user-supplied GCP Cloud Storage container

•	 Azure Blob storage, where files can be loaded directly

from any user-supplied Azure container

Note  Data transfer billing charges may apply when loading data
from files staged across different platforms. Refer to Chapter 2 for
more information.

�Supported File Formats and Encoding
Snowflake supports most of the common file formats used for loading

data. These file formats include the following:

•	 Delimited files (any valid delimiter is supported; the

default is a comma)

•	 JSON and XML

•	 Avro, including the automatic detection and processing

of staged Avro files that were compressed using Snappy

•	 ORC, including the automatic detection and processing

of staged ORC files that were compressed using Snappy

or zlib

Chapter 4 Loading Bulk Data into Snowflake

56

•	 Parquet, including the automatic detection and

processing of staged Parquet files that were compressed

using Snappy

For delimited files, the default character set is UTF-8. To use any other

characters set, you must explicitly specify the encoding to use for loading.

For all other supported file formats (JSON, Avro, etc.), the only supported

character set is UTF-8.

Note  Many character encoding sets are supported for the loading
of delimited files. Refer to Snowflake’s online documentation for more
details on which character encodings are supported.

Snowflake also allows you to configure a file format object for reuse.

This can be done through the user interface or with SQL code. This is

useful for formats that are frequently used by many load jobs. Here is

an example of a file format named "DEMO_DB"."PUBLIC".sample_file_

format. The file format object name can then be referenced during the

bulk load command.

CREATE FILE FORMAT "DEMO_DB"."PUBLIC".sample_file_format

TYPE = 'CSV' COMPRESSION = 'AUTO' FIELD_DELIMITER = ',' RECORD_

DELIMITER = '\n' SKIP_HEADER = 0 FIELD_OPTIONALLY_ENCLOSED_BY =

'NONE' TRIM_SPACE = FALSE ERROR_ON_COLUMN_COUNT_MISMATCH = TRUE

ESCAPE = 'NONE' ESCAPE_UNENCLOSED_FIELD = '\134' DATE_FORMAT =

'AUTO' TIMESTAMP_FORMAT = 'AUTO' NULL_IF = ('\\N');

�Compression Handling
When staging uncompressed files in a Snowflake stage, the files are

automatically compressed using gzip, unless compression is explicitly

disabled. Snowflake can automatically the detect gzip, bzip2, deflate,

Chapter 4 Loading Bulk Data into Snowflake

57

and raw_deflate compression methods. Autodetection is not yet

supported for brotli and zstandard. Therefore, when staging or loading

files compressed with either of these methods, you must explicitly specify

the compression method that was used.

�Encryption Options
When staging unencrypted files in an internal Snowflake location, the

files are automatically encrypted using 128-bit keys. 256-bit keys can be

enabled (for stronger encryption); however, additional configuration is

required. Files that are already encrypted can be loaded into Snowflake

from external cloud storage; the key used to encrypt the files must be

provided to Snowflake.

�Bulk Data Loading Recommendations
Loading large data sets can affect query performance. Snowflake

recommends dedicating separate warehouses to loading and querying

operations to optimize the performance for each. In this section, we will

cover the recommended ways to prepare the files.

�File Preparation
The number of data files that can be processed in parallel is determined

by the number and capacity of servers in a warehouse. If you follow the

file sizing guidelines described in the following section, the data loading

will require minimal resources. Note that these recommendations apply to

both bulk data loads and continuous loading using Snowpipe.

Chapter 4 Loading Bulk Data into Snowflake

58

�File Sizing

Know the following about file sizing:

•	 The number of load operations that can run in parallel

cannot exceed the number of data files to be loaded.

•	 To optimize the number of parallel operations for a

load, we recommend aiming to produce data files

roughly 10 MB to 100 MB in size, compressed.

•	 Aggregate smaller files to minimize the processing

overhead for each file.

•	 Split larger files into a greater number of smaller files

to distribute the load among the servers in an active

warehouse. The number of data files processed in

parallel is determined by the number and capacity of

servers in a warehouse.

•	 Snowflake recommends splitting large files by line to

avoid records that span chunks.

•	 Data loads of large Parquet files (e.g., greater than 3 GB)

could time out. Split large files into files 1 GB in size (or

smaller) for loading.

�File Splitting

If your source database does not allow you to export data files in smaller

chunks, use a third-party utility to split large CSV files. Windows does not

include a native file split utility; however, Windows supports many third-

party tools and scripts that can split large data files. Linux has the split

utility, which enables you to split a CSV file into multiple smaller files.

Chapter 4 Loading Bulk Data into Snowflake

59

Note  Splitting larger data files allows the load to scale linearly.
Using a larger warehouse (X-Large, 2X-Large, etc.) will consume
more credits and may not result in any performance increase.

�CSV File Preparation

Consider the following guidelines when preparing your delimited text

(CSV) files for loading:

•	 UTF-8 is the default character set; however, additional

encodings are supported. Use the ENCODING file format

option to specify the character set for the data files.

•	 Snowflake supports ASCII characters (including

high-order characters) as delimiters. Common field

delimiters include the pipe (|), comma (,), caret (^), and

tilde (~).

•	 A field can be optionally enclosed by double quotes,

and, within the field, all special characters are

automatically escaped, except the double quote itself

needs to be escaped by having two double quotes

right next to each other (“”). For unenclosed fields, a

backslash (\) is the default escape character.

•	 Common escape sequences can be used (e.g., \t for

tab, \n for newline, \r for carriage return, and \\ for

backslash).

•	 Fields containing carriage returns should also be

enclosed in quotes (single or double).

•	 The number of columns in each row should be

consistent.

Chapter 4 Loading Bulk Data into Snowflake

60

�Semistructured Data File Preparation

Semistructured data is data that does not conform to the standards of

traditional structured data, but it contains tags or other types of markup

that identify individual, distinct entities within the data.

Two of the key attributes that distinguish semistructured data from

structured data are nested data structures and the lack of a fixed schema.

•	 Structured data requires a fixed schema that is defined

before the data can be loaded and queried in a

relational database system. Semistructured data does

not require a prior definition of a schema and can

constantly evolve; i.e., new attributes can be added at

any time.

•	 In addition, entities within the same class may have

different attributes even though they are grouped

together, and the order of the attributes is not

important.

•	 Unlike structured data, which represents data as a

flat table, semistructured data can contain n level of

hierarchies of nested information.

The steps for loading semistructured data into tables are identical to

those for loading structured data into relational tables. Snowflake loads

semistructured data into a single VARIANT column. You can also use a

COPY INTO table statement during data transformation to extract selected

columns from a staged data file into separate table columns.

When semistructured data is inserted into a VARIANT column, what

Snowflake is really doing is extracting information about the key locations

and values and saving it into a semistructured document. The document is

referenced by the metadata engine for fast SQL retrieval.

Chapter 4 Loading Bulk Data into Snowflake

61

Note  VARIANT “null” values (not to be confused with SQL
NULL values) are not loaded to the table. To avoid this, extract
semistructured data elements containing “null” values into relational
columns before loading them, Alternatively, if the “null” values in
your files indicate missing values and have no other special meaning,
Snowflake recommends setting the file format option STRIP_NULL_
VALUES to TRUE when loading the semistructured data files.

�File Staging
Both internal and external stage locations in Snowflake can include a path

(referred to as a prefix in AWS). When staging regular data sets, Snowflake

recommends partitioning the data into logical paths to identify details such

as geographical location, along with the date, when the data is written.

Organizing your data files by path allows you to copy the data into

Snowflake with a single command. This allows you to execute concurrent

COPY statements that match a subset of files, taking advantage of parallel

operations.

For example, if you were storing data for a company that did business

all over the world, you might include identifiers such as continent, country,

and city in paths along with data write dates. Here are two examples:

•	 NA/Mexico/Quintana_Roo/Cancun/2020/01/01/01/

•	 EU/France/Paris/2020/01/01/05/

When you create a named stage, you can specify any part of a path. For

example, create an external stage using one of the previous example paths:

create stage test_stage url='s3://bucketname/united_states/

washington/seattle/' credentials=(aws_key_id='1234lkj'

aws_secret_key='asdlj1234');

Chapter 4 Loading Bulk Data into Snowflake

62

You can also add a path when you stage files in an internal user or table

stage. For example, you can stage mydata.csv in a specific path in the t1

table stage with this:

put file:///local/myfile.csv @%t1/united_states/washington/

seattle/2020/01/01/01/

When loading your staged data, narrow the path to the most granular

level that includes your data for improved data load performance.

•	 If the file names match except for a suffix or extension,

include the matching part of the file names in the path.

Here’s an example:

copy into t1 from @%t1/united_states/washington/

seattle/2020/01/01/01/myfile;

•	 Add the FILES or PATTERN option. Here’s an example:

•	 copy into t1 from @%t1/united_states/

california/los_angeles/2016/06/01/11/

files=('mydata1.csv', 'mydata1.csv');

•	 copy into t1 from @%t1/united_states/

california/los_angeles/2016/06/01/11/

pattern='.*mydata[^[0-9]{1,3}$$].csv';

When planning regular data loads, such as with extract-transform-load

(ETL) processing, it is important to partition the data in your internal (i.e.,

Snowflake) stage or external locations (S3 buckets or Azure containers)

using logical, granular paths. Create a partitioning structure that includes

identifying details such as the application or location, along with the

date when the data was written. You can then copy any fraction of the

partitioned data into Snowflake with a single command. You can copy data

into Snowflake by the hour, day, month, or even year when you initially

populate tables.

Chapter 4 Loading Bulk Data into Snowflake

63

Here are some examples of partitioned S3 buckets using paths:

•	 s3://bucket_name/brand/2016/07/01/11/

•	 s3://bucket_name/region/country/2016/07/01/14/

Note  S3 transmits a directory list with each COPY statement used
by Snowflake, so reducing the number of files in each directory
improves the performance of your COPY statements.

�Loading
The COPY command supports several options for loading data files from a

stage.

•	 By path of internal location or prefix of external location

•	 By listing specific files to load (up to 1,000 per COPY

command)

•	 By using pattern matching to identify specific files by

pattern

These options enable you to copy a fraction of the staged data into

a Snowflake table with a single command. This allows you to execute

concurrent COPY statements that match a subset of files, taking advantage of

parallel operations. Do take special note that the file being copied must have

the same data structure (i.e., number of columns, data type) as the table.

Tip  Listing specific files to load from a stage is generally the fastest.

Here’s an example of a list of files:

copy into sample_table from @%sample_data/data1/ files=

('sample_file1.csv', 'sample_file2.csv', 'sample_file3.csv')

Chapter 4 Loading Bulk Data into Snowflake

64

Here’s a pattern matching example:

copy into sample_table from @%sample_data/data1/

pattern='.*sample_file[^0-9{1,3}$$].csv';

In general, pattern matching using a regular expression is the slowest

of the three options for identifying/specifying data files to load from a

stage; however, this option works well if you exported your files in named

order from your external application and want to batch load the files in

the same order. Pattern matching can be combined with paths for further

control over data loading.

When data from staged files is loaded successfully, consider removing

the staged files to ensure the data isn’t inadvertently loaded again

(duplicated). Staged files can be deleted from a Snowflake stage (user

stage, table stage, or named stage) using the following methods:

•	 Files that were loaded successfully can be deleted from

the stage during a load by specifying the PURGE copy

option in the COPY INTO <table> command.

•	 After the load completes, use the REMOVE command to

remove the files in the stage.

�Querying Staged Files
Snowflake automatically generates metadata for files in Snowflake’s

internal file staging or external (i.e., AWS S3, Google Cloud Storage, or

Microsoft Azure) file staging. This metadata can be queried with the

following:

•	 A standard SELECT statement.

•	 During a COPY into a table. Transformations may be

applied to the columns in the same SELECT statement.

Chapter 4 Loading Bulk Data into Snowflake

65

Note  Querying is primarily for performing simple queries during
the data loading only and is not intended to replace querying already
loaded tables.

Here’s the query syntax for a standard SELECT statement:

SELECT [<alias>.]$<file_col_num>[.<element>] [,

[<alias>.]$<file_col_num>[.<element>] , ...]

 FROM { <internal_location> | <external_location> }

 [(FILE_FORMAT => <namespace>.<named_file_format>)]

 [<alias>]

Here’s the query syntax during a load:

/* Data load with transformation */

COPY INTO [<namespace>.]<table_name> [(<col_name> [,

<col_name> ...])]

 �FROM (SELECT [<alias>.]$<file_col_num>[.<element>] [,

[<alias>.]$<file_col_num>[.<element>] ...]

 FROM { internalStage | externalStage })

�Bulk Loading with the Snowflake Web
Interface
For smaller files (less than 50 MB), loading from the Snowflake web

interface is fine.

Note  If a file is large, then it should be loaded using SnowSQL or
Snowpipe. See the following chapters for more information on how to
bulk load with SnowSQL and Snowpipe.

Chapter 4 Loading Bulk Data into Snowflake

https://docs.snowflake.net/manuals/sql-reference/sql/select.html

66

BULK FILE LOADING THROUGH THE SNOWFLAKE USER INTERFACE

Prerequisites

	1.	 You need a Snowflake account; please review Chapter 2 to set

one up.

	2.	D ownload the file named zips2000.csv.

Instructions

	1.	 Log into the Snowflake web user interface.

	2.	 Click Databases + Tables.

	3.	 Click Create Table and enter the values shown in Figure 4-1.

	4.	 Click Load Data, and the Load Data wizard (Figure 4-2) will

appear. Select the warehouse you want to use and click Next.

Figure 4-1.  Create Table dialog that allows you to enter a table name
along with column names and their data types

Chapter 4 Loading Bulk Data into Snowflake

67

	5.	 Click Select Files to browse for zips2000.csv in the location

you saved it in (Figure 4-3). Click Next.

	6.	 Click the Add (looks like a plus sign) button to add a file format.

Enter what is shown in Figure 4-4. Click Finish.

Figure 4-2.  The Load Data wizard will appear once you click Load
Data

Figure 4-3.  Source files getting selected

Chapter 4 Loading Bulk Data into Snowflake

68

	7.	 Click Load, and your table will load. Once it has completed

loading, you can query it as usual.

�Summary
In this chapter, we reviewed bulk data loading with COPY, and we covered

what bulk data loading is, file load locations, supported file formats and

encoding, compression handling, and encryption options. We also covered

bulk data loading recommendations including file preparation and

staging, loading, and querying. In addition, we went through some sample

exercises on bulk loading data using COPY in our virtual warehouse.

Figure 4-4.  Create File Format dialog

Chapter 4 Loading Bulk Data into Snowflake

69© Dmitry Anoshin, Dmitry Shirokov, Donna Strok 2020
D. Anoshin et al., Jumpstart Snowflake, https://doi.org/10.1007/978-1-4842-5328-1_5

CHAPTER 5

Getting Started
with SnowSQL
SnowSQL is the next-generation command-line client for connecting to

Snowflake, executing SQL queries, and performing all DDL and DML

operations, including loading data into and unloading data out of database

tables.

In this chapter, we will go over the following topics:

•	 Installing SnowSQL

•	 Configuring SnowSQL

•	 Using commands in SnowSQL

•	 Making multiple connections

•	 Loading data using SnowSQL

After this chapter, you will be able to load data into Snowflake using

the SnowSQL command-line interface.

�Installing SnowSQL
SnowSQL can be downloaded and installed from the Snowflake web site

or from its various S3 URL locations. Refer to the Snowflake site for these

URLs. All the required software for installing SnowSQL is bundled in the

70

installers. Snowflake provides platform-specific versions of SnowSQL for

download.

•	 Microsoft Windows (64-bit): Windows 7 or higher,

Windows Server 2008 R2 or higher

•	 macOS: v10.12 or higher

•	 Linux (64-bit): CentOS 6 or higher, Ubuntu 14 or

higher

For Homebrew enthusiasts, the Cask extension has an installation

package available by executing the following: brew cask install

snowflake-snowsql.

As with most installations, you must first download it and then install.

This can be automated through scripting, which may be useful if deploying

through a CI/CD process. In automation scenarios, you can use curl

commands to download and then run the installations. There are several

online locations available to download the software from. Check with the

Snowflake online documentation for specific file names. For simplicity, we

will walk you through how to install SnowSQL on macOS, version 10.14.2,

using the download from the Snowflake web user interface. This is a great

exercise for proof of concepts or ad hoc work performed on personal

desktops. However, where possible, we will include Windows information

in each step.

	 1.	 Log into the Snowflake web user interface. Click

Help + Downloads. This brings up the Downloads

dialog, which gives you all the options of the

SnowSQL CLI client (Figure 5-1).

Chapter 5 Getting Started with SnowSQL

71

	 2.	 Download the version of the CLI client for SnowSQL

that is appropriate for your operating system. For

this demonstration, the CLI client for macOS will be

downloaded.

	 3.	 Once the download is complete, double-click the

downloaded application to begin the installation.

The installation should open to the Install Snowflake

SnowSQL dialog (Figure 5-2). Click Continue.

Figure 5-1.  Downloads dialog

Chapter 5 Getting Started with SnowSQL

72

	 4.	 Keep the installation’s defaults unless you need to

install it to a special location. Once the installation is

complete, you should be on the Summary tab of the

installation guide and should see the “Installation

is Complete” message. You should also see some

important information that needs to be followed

after clicking Close (Figure 5-3). Make sure to keep

this information handy. These steps will be covered

in the section “Configuring SnowSQL.”

Figure 5-2.  SnowSQL installation “introduction” screen

Chapter 5 Getting Started with SnowSQL

73

�Configuring SnowSQL
Now that SnowSQL is successfully installed, we will review how

to configure it. The configuration of SnowSQL takes place in the

configuration file named config. There are three sections to the

configuration file, which we will review in this section:

•	 Connection settings

•	 Configuration options

•	 Configuration variables

Figure 5-3.  The Install Snowflake SnowSQL wizard’s Summary
screen

Chapter 5 Getting Started with SnowSQL

74

�Connection Settings
Let’s begin by editing the SnowSQL config file to include the connection

settings. There are a couple things you will need from your Snowflake

profile: your account name, your login name, and possibly your region.

The account name is the alphanumeric value that is in your Snowflake web

interface URL. Depending on your cloud provider and region, your URL

may be formatted as follows:

AWS (US West): https://<account_name>.

snowflakecomputing.com

AWS (all other regions): https://<account_

name>.<region>.snowflakecomputing.com

Azure: https://<account_name>.<region>.azure.

snowflakecomputing.com

Your login_name is what you used to log into the web interface. For

more information on Snowflake account names, please see Snowflake’s

online documentation at https://docs.snowflake.net/manuals/user-

guide/connecting.html.

Note T he config file must be saved in UTF-8 encoding.

EDITING CONNECTION SETTINGS IN THE CONFIGURATION FILE

	1.	O pen a new terminal window and execute the following

command to test the connection to your Snowflake account:

snowsql -a account_name -u login_name

Here’s an example:

snowsql -a < xxx71531 -u DONNA

Chapter 5 Getting Started with SnowSQL

https://docs.snowflake.net/manuals/user-guide/connecting.html
https://docs.snowflake.net/manuals/user-guide/connecting.html

75

	2.	T o save these credentials locally so that they do not need to

be typed, edit the config file located in the ~/.snowsql/

Linux folder or %USERPROFILE%\.snowsql\ in Windows. Edit

the following values by uncommenting and saving the values

pertaining to your account. Enclose the password in quotes if

there are any special characters.

accountname = account_name

username = login_name

password = xxxxxxxx

region = region_code

Here’s an example:

accountname = xxx71531

username = DONNA

password = xxxxxxxx

region = us-east-1

	3.	T est your credentials by opening a new terminal window and

executing snowsql, as shown in Figure 5-4.

Figure 5-4.  Executing the snowsql command with all the credentials
saved in the config file

Chapter 5 Getting Started with SnowSQL

76

Caution T he password is stored in plain text in the config file.
Alternatively, you can leave the password out of the config file and
sign in every time. However, this will interfere with automation.
Therefore, if leaving the password in the config file, the file must
explicitly be secured to restrict access. In Linux or macOS, this can
be performed by setting the read permissions to your own user by
running the chmod command like this:

chmod 700 ~/.snowsql/config

�Configuration Variables
Variables offer a chance to set default values to frequently accessed

database objects or user-defined values. A variable is a string of

alphanumeric (case-insensitive) characters representing the name of the

variable. It may be enclosed in quotes, if needed. An example use case for a

variable is setting the default date as the current date for queries or setting

the default database to production. You can define variables for SnowSQL

in several ways: in the configuration file, at the command line while

executing SnowSQL, and after logging into SnowSQL.

�Configuration File Example

In the config file, there is a section labeled [variables]. These examples

will be using the sample database named SNOWFLAKE_SAMPLE_DATA

preloaded to Snowflake when you create your account.

	 1.	 Open the config configuration file in a text editor.

The default location of the file is as follows:

Linux/macOS: ~/.snowsql/

Windows: %USERPROFILE%\.snowsql\

Chapter 5 Getting Started with SnowSQL

77

Tip  You can use a different location for the configuration file; just
use -config followed by the path when starting up SnowSQL at the
command line. Here’s an example:

-config <path/to/config>

	 2.	 Locate the [variables] section and add the

following text:

database_name = SNOWFLAKE_SAMPLE_DATA

schema_name = TPCH_SF001

table_name = NATION

	 3.	 Save and close the config file. Test this by executing

each of the following commands in a terminal

window; the results should match Figure 5-5. Note

that this will work only if the connection variables

are set. See “Connection Settings” to set up your

config file.

snowsql

!set variable_substitution=true

USE "&database_name";

USE SCHEMA "&schema_name";

Select count(*) from "&table_name";

!quit

Chapter 5 Getting Started with SnowSQL

78

�Command-Line Example

The same type of variable setting can be performed at the command line

before being executed in SnowSQL. The variable names will be set when

you call SnowSQL. We have altered the variables names in this example so

that you can see the difference from what was set in the config file.

	 1.	 Open a new terminal window and execute the

following SnowSQL command. Note that this will

work only if the connection variables are set. See

“Connection Settings” to set up your config file.

snowsql -D tablename=NATION -s TPCH_SF001

-d SNOWFLAKE_SAMPLE_DATA

Figure 5-5.  The output of each command executed in SnowSQL. The
variables are added in the config file and set with the command !set
variable_substitution=true

Chapter 5 Getting Started with SnowSQL

79

	 2.	 The SnowSQL application should open and be

set to the database SNOWFLAKE_SAMPLE_DATA and

the schema TPCH_SF001 (see Figure 5-6). Type the

following commands:

!set variable_substitution=true

select count(*) from "&tablename";

�Executing Variables in an Active Session

SnowSQL also lets you define variables while in an active session. The

!define command must be used in order to set the variables. Walk

through the following exercise to see how this is done:

	 1.	 Open a new terminal window and execute the

following SnowSQL command. Note that this will

work only if the connection variables are set. See

“Connection Settings” to set up your config file. The

database and schema name will be set during the

connection.

snowsql -s TPCH_SF001 -d SNOWFLAKE_SAMPLE_DATA

Figure 5-6.  Setting variables while executing the SnowSQL
command

Chapter 5 Getting Started with SnowSQL

80

	 2.	 SnowSQL will open; then enter the following

SnowSQL commands. Your output should be similar

to Figure 5-7.

!define tablename=NATION

!set variable_substitution=true

select count(*) from "&tablename";

�SnowSQL Commands
In a Snowflake session, you can issue commands to take specific actions.

All commands in SnowSQL start with an exclamation point, followed by

the command name. These commands can be listed by typing !help in

an active SnowSQL session. Table 5-1 displays the commands that can

help you through your automation process. You can also execute these

commands in an active SnowSQL session.

Figure 5-7.  Creating and using variables in an active SnowSQL
session

Chapter 5 Getting Started with SnowSQL

81

Table 5-1.  SnowSQL Commands That Can Be Displayed by Using

!help in an Active Session

Command Description

!abort Aborts a query. Use something like this:

!abort <query id>

!connect Creates a new connection. Use something like this:

!connect <connection_name>

!define Defines a variable as the given value. Use something

like this:

!define <variable>=<value>

!edit Opens up a text editor. This is useful for writing

longer queries. It defaults to the previous query. Use

something like this:

!edit <query>

!exit (or !disconnect) Drops the current connection. Use something like

this:

!disconnect

!help (or !helps, !h) Shows the client help. Use something like this:

!help

!options (or !opts) Shows all options and their values. Use something

like this:

!options

!pause Pauses running queries. Use something like this:

!pause

(continued)

Chapter 5 Getting Started with SnowSQL

82

Command Description

!print Prints given text; use something like this:

!print <message>

!queries Lists queries matching the specified filters. Use

something like this:

!queries help

For a list of filters, add <filter>=<value>,

<filter> to refine the command.

!quit (or !q) Drops all connections and quits SnowSQL. Use

something like this:

!quit

!rehash Refreshes autocompletion. Use something like this:

!rehash

!result Shows the result of a query. Use something like this:

!result <query id>

To find <query id>, see !queries.

!set Sets an option to the given value. Use something like

this:

!set <option>=<value>

See !options for all the options currently set.

!source (or !load) Executes a given SQL file. Use something like this:

!source <filename>

You can use <url> in place of <filename>.

Table 5-1.  (continued)

(continued)

Chapter 5 Getting Started with SnowSQL

83

Command Description

!spool Turns on or off writing the results to a file. Use

something like this:

!spool <filename>

To turn it off, use this:

!spool off

!system Runs a system command in the shell. Use something

like this:

!system <system command>

!variables (or !vars) Shows all variables and their values. Use something

like this:

!variables

Table 5-1.  (continued)

�Multiple Connection Names
SnowSQL supports multiple sessions (i.e., connections) with

!connect <connection_name>. This can be especially useful if you

have development, test, and production environments. The SnowSQL

configuration file is where the different connections can be saved and

split out by sections named as [connections.<connection_name>]. The

default connection is always referenced by the [connections] section of

the config file.

You can connect to more than one connection name at a time. When

you open a connection, it will be added to a connection stack. Once your

connection ends, then the previous connection will resume. If the quit

command is used, then all connections in the stack will end.

Chapter 5 Getting Started with SnowSQL

84

CREATING SEPARATE ENVIRONMENT CONNECTIONS

For the purpose of this exercise, I will demonstrate how to connect to a

development environment and then a production environment. There are a

handful of ways to get this set up. I have seen separate Snowflake accounts

or separate virtual warehouses in the same Snowflake account. However,

I will show the latter, but note that you can simply swap out the value for

accountname if you choose to open separate Snowflake accounts.

	1.	O pen the config configuration file in a text editor. The default

location of the file is as follows:

Linux/macOS: ~/.snowsql/

Windows: %USERPROFILE%\.snowsql\

	2.	A dd the following text to the file, replace <your password>

with your Snowflake account password, and save:

[connections.development]

password=<your password>

warehousename=DEVELOPMENT

[connections.production]

password=<your password>

warehousename=PRODUCTION

	3.	O pen a terminal window and execute SNOWSQL to open a new

SnowSQL session. Run the following CREATE WAREHOUSE

statements. These two virtual warehouses are being created

for demonstration purposes; therefore, the smallest virtual

warehouse is being selected.

Chapter 5 Getting Started with SnowSQL

85

CREATE WAREHOUSE DEVELOPMENT WITH WAREHOUSE_SIZE =

'XSMALL' WAREHOUSE_TYPE = 'STANDARD' AUTO_SUSPEND = 600

AUTO_RESUME = TRUE MIN_CLUSTER_COUNT = 1 MAX_CLUSTER_

COUNT = 2 SCALING_POLICY = 'STANDARD';

CREATE WAREHOUSE PRODUCTION WITH WAREHOUSE_SIZE =

'XSMALL' WAREHOUSE_TYPE = 'STANDARD' AUTO_SUSPEND = 600

AUTO_RESUME = TRUE MIN_CLUSTER_COUNT = 1 MAX_CLUSTER_

COUNT = 2 SCALING_POLICY = 'STANDARD';

	4.	I n the same terminal window, execute the following commands.

The output should look similar to Figure 5-8.

!connect development

!connect production

!exit

!exit

!quit

Figure 5-8.  Connecting to development and production sessions in
the same terminal window. !exit will exit the top connection in the
stack, whereas !quit will exit all sessions at the same time and quit
SnowSQL

Chapter 5 Getting Started with SnowSQL

86

�Data Loading with SnowSQL
In this section, we will take the file named zips2000.csv and bulk load

it into Snowflake using SnowSQL. This will demonstrate that bulk data

loading using COPY can be scripted and be your path to data pipeline

automation.

LOAD DATA USING SNOWSQL

	1.	O pen a new terminal window and connect to your Snowflake

account (see the preceding section in this chapter for

detailed instructions on how to do this). Set the warehouse to

COMPUTE_WH, the database to DEMO_DB, and the schema to

PUBLIC.

USE WAREHOUSE COMPUTE_WH;

USE DATABASE DEMO_DB;

USE SCHEMA PUBLIC;

	2.	 Create a table named zipcodes2000_snowsql.

CREATE OR REPLACE TABLE "ZIPCODES2000_SNOWSQL"

("ZIPCODE" STRING, "LON" DOUBLE, "LAT" DOUBLE);

	3.	P ut the zips2000.csv file in the Snowflake staging area

using the SnowSQL SFTP.

put file:///Users/dstrok/documents/zips2000.csv

@DEMO_DB.PUBLIC.%zipcodes2000_snowsql;

	4.	 Copy the file contents into the Snowflake tables created in step 2.

copy into zipcodes2000_snowsql

from @%zipcodes2000_snowsql

file_format = (type = csv field_optionally_enclosed_

by='"' SKIP_HEADER = 1);

Chapter 5 Getting Started with SnowSQL

87

	5.	 Check the table to ensure that the data loaded.

select * from zipcodes2000_snowsql;

�Summary
In this chapter, you learned how to install and configure SnowSQL. We

also went over the SnowSQL commands. We demonstrated how to handle

multiple Snowflake connections using SnowSQL. Last, we bulk loaded a

CSV file into a Snowflake table using SnowSQL. You now have the tools to

get your virtual warehouse set up with automation.

Chapter 5 Getting Started with SnowSQL

89© Dmitry Anoshin, Dmitry Shirokov, Donna Strok 2020
D. Anoshin et al., Jumpstart Snowflake, https://doi.org/10.1007/978-1-4842-5328-1_6

CHAPTER 6

Continuous Data
Loading with
Snowpipe

“You and I are streaming data engines.”

— Jeff Hawkins, in an interview by Knowstuff1 from 2012

If you’re a data analyst or data scientist or you’re on an executive team,

you know the value of access to continuous and timely data at any given

time. You want to know that whenever you’re querying data, transforming

it, or accessing it in any way that the data represents the most up-to-date

information available to use for data analysis.

If you have stale data, you might make inaccurate conclusions or have

skewed statistics that will lead to misinformed strategic decisions that

can affect your company down the line. Access to continuous data is a

beneficial thing for anyone, regardless of role.

1�https://www.knowstuff.org/2012/11/
jeff-hawkins-develops-a-brainy-big-data-company/

https://www.knowstuff.org/2012/11/jeff-hawkins-develops-a-brainy-big-data-company/
https://www.knowstuff.org/2012/11/jeff-hawkins-develops-a-brainy-big-data-company/

90

Nowadays, we know that data is generated much faster than it

ever used to be before. In the past, corporate data would be updated

infrequently, either daily or weekly or even monthly, and added to your

data warehouse. Data accumulates over time, which leads to it becoming

more and more challenging to process.

Now we have app data, mobile data, and data sensors that generate

this constant flow of useful analytical data, but it can really be a challenge

to get it into a data warehouse because it’s being generated so quickly.

Multitudes of tiny files are being generated, and that can definitely lead to

problems.

Let’s look at the traditional way of dealing with loading data into a data

warehouse. Figure 6-1 shows data that’s being generated continuously,

loaded into a staging environment like S3, and then batched daily or

hourly into your database.

Unfortunately, this methodology allows for loading data only daily or

hourly or even half-hourly. It does not provide fast access to the data that

was generated. Users are often requesting the ability to analyze our data as

quickly as it’s coming in to make important decisions based on the results

being generated.

Figure 6-1.  Classical approach to loading into a data warehouse

Chapter 6 Continuous Data Loading with Snowpipe

91

If you decide to implement a continuously loading system, you’re

probably aware of is COPY command, which was designed for batch-loading

scenarios. After accumulating data over some time, such as hours or days,

you can then launch a COPY command to load data into your target table in

Snowflake.

Note T he COPY command is mainly a SQL command for loading
files into a Snowflake table. The command supports different options
and file formats. Please see the Snowflake documentation.2

As a work around for near real-time task, you may leverage a micro-

batching approach by using COPY command. It then takes a couple of

minutes to use a COPY statement on a schedule to load it. However, it is still

not a fully continuous load, because fresh data that arrives and ready for

loading into data warehouse won’t be triggered itself. Usually, humans or

a scheduler drives it.

If you have data that’s being generated continuously, you might think

that it’d be great if there were an easily affordable, lightweight way to get

your data up-to-date in Snowflake. Luckily, Snowflake agrees with you and

created a service called Snowpipe. Snowpipe is an autoscaling Snowflake

cloud service that provides continuously loaded data into the Snowflake

data warehouse from internal and external stages.

With a continuous loading approach like Snowpipe, you have a data-

driven way for new data to arrive from Snowflake to your target table.

Table 6-1 describes the data warehouse loading approaches.

2�https://docs.snowflake.net/manuals/sql-reference/sql/copy-into-table.html

Chapter 6 Continuous Data Loading with Snowpipe

https://docs.snowflake.net/manuals/sql-reference/sql/copy-into-table.html

92

With Snowpipe you have two options. The first option is to use

Snowpipe as a bucket AWS S3, where you define event notifications on

your S3 bucket and then have these event notifications sent to Snowflake

as soon as new files land in the S3 bucket. Those files are automatically

picked up by Snowpipe and loaded into your target tables.

The second option is to build your own integration with Snowpipe

using a REST API. You can create your own applications that will call the

Snowpipe loader according to your criteria. In Table 6-2 you can find a

summary of the critical benefits of using Snowpipe’s service.

Table 6-1.  Data Warehouse Loading Approaches

Approach Definition Snowpipe Options

Batch Data accumulates over

time (daily, hourly)

and is then loaded

periodically.

Point at an S3 bucket and a destination

table in your warehouse where new data

is automatically uploaded.

Microbatch Data accumulates over

small time windows

(minutes) and then is

loaded.

A technical resource can interface

directly using a REST API3 along with

Java and Python SDKs to enable highly

customized loading use cases.

Continuously

(near real time)

Every data item is

loaded individually as it

arrives in near real time.

Also available is a way to integrate to

Apache Kafka4 using a Kafka connector.5

3�For more information, see https://en.wikipedia.org/wiki/
Representational_state_transfer.

4�For more information, see https://kafka.apache.org/.
5�For more information, see https://docs.snowflake.net/manuals/user-guide/
kafka-connector.html.

Chapter 6 Continuous Data Loading with Snowpipe

https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://kafka.apache.org/
https://docs.snowflake.net/manuals/user-guide/kafka-connector.html
https://docs.snowflake.net/manuals/user-guide/kafka-connector.html

93

Table 6-2.  Key Snowpipe Benefits

Benefits Description

Continuous loading,

immediate insight.

Continuously generated data is available for analysis in

seconds.

Avoid repeated manual

COPY commands. High

level of availability

for building custom

integration.

No manual effort is required for loading data into

Snowflake.

Automated loading with no need for manual COPY

commands.

Using a REST API and SDK, you can build your own data

pipeline system.

Full support for

semistructured data on

load.

Availability of many industry-standard formats such as

XML, JSON, Parquet, ORC, and Avro.

No transformation is needed to load varying data

types, and there’s no trade-off between flexibility and

performance.

You pay only for the

compute time you use

to load data.

The “pay only for what you use” pricing model means idle

time is not charged for.

Snowflake’s built-for-the-cloud solution scales storage

separately from compute, up and down, transparently, and

automatically.

This requires a full understanding of the cost of loading

data. There is a separate expense item for “loading data”

in your Snowflake bill.

This has a serverless billing model via utilization-based

billing.

Zero management. No indexing, tuning, partitioning, or vacuuming on load.

Serverless. Serverless loading without contention.

No servers to manage and no impact to other workloads

thanks to unlimited concurrency.

Chapter 6 Continuous Data Loading with Snowpipe

94

�Loading Data Continuously
Let’s take a closer look at some options for loading data.

•	 Snowpipe Auto-Ingest

•	 Snowpipe REST API using AWS Lambda

�Snowpipe Auto-Ingest
Snowpipe Auto-Ingest is a fully automatic mode that loads data from

the block store into the target table. The speed and ease of configuration

provided by using DDL allows any data engineer or even analysts to

configure their automatic continuous data loading process in minutes.

Caution T he option auto_ingest is not available unless it
is explicitly enabled on your Snowflake account. Please contact
Snowflake Support6 for the enable options in your Snowflake account.

Figure 6-2 shows the main components of how this integration works.

The data source provides continuous data feeds into services like

AWS Kinesis,7 AWS Managed Streaming for Kafka (MSK),8 and Hosted

Apache Kafka.9 You can use them to stage your files into an external

stage (e.g., S3 bucket) as soon as files arrive in the bucket. S3 sends

6�E-mail: support@snowflake.com
7�AWS Kinesis is group of services related to real-time and near-real-time data
ingestion. For more information, see https://aws.amazon.com/kinesis/.

8�For more about the AWS Managed Streaming service for Kafka, see https://
docs.aws.amazon.com/msk/latest/developerguide/what-is-msk.html.

9�Apache Kafka is an open source stream-processing software platform. For more
information. see https://kafka.apache.org/documentation/.

Chapter 6 Continuous Data Loading with Snowpipe

https://aws.amazon.com/kinesis/
https://docs.aws.amazon.com/msk/latest/developerguide/what-is-msk.html
https://docs.aws.amazon.com/msk/latest/developerguide/what-is-msk.html
https://kafka.apache.org/documentation/

95

a notification via an SQS queue10 to Snowpipe, and as soon as that

notification about a new file in the queue is received, Snowpipe runs a

serverless loader application that loads the files from S3 into the target

tables behind the scenes.

�Building a Data Pipeline Using the Snowpipe
Auto-Ingest Option

To build an example of a continuously loaded data pipeline, we need the

following components:

•	 Stream Producer is a sample producer for Kinesis Data

Firehose. For simplicity, in this case, instead of a stream

producer based on the Lambda service, we just can use

Firehose Test Generator, which is available to us when

we are creating a Firehose stream.

•	 Kinesis Data Firehose as stream delivery service.

•	 S3 bucket as an external Snowflake stage.

Figure 6-2.  Snowflake continuous data loading approach using
Snowpipe with Auto-Ingest

10�AWS SQS is an Amazon Queue service. For more information, see https://
docs.aws.amazon.com/sqs/index.html.

Chapter 6 Continuous Data Loading with Snowpipe

https://docs.aws.amazon.com/sqs/index.html
https://docs.aws.amazon.com/sqs/index.html

96

•	 The following Snowflake services:

	a.	 Snowpipe

	b.	 Snowflake data warehouse

	c.	 Snowflake console

Figure 6-3 shows an overview of the component interaction.

To understand how internal integration actually takes place, we need

to dive a little bit into the internal structure of Snowpipe. Figure 6-4 shows

the main steps of integration.

Figure 6-3.  Snowpipe data loading using Auto-Ingest mode

Figure 6-4.  Snowpipe data loading using Auto-Ingest mode,
Snowpipe detail view

Chapter 6 Continuous Data Loading with Snowpipe

97

First, we have to create an external stage and a pipe using the

auto_ingest option. When we execute the DDL, we have to get a unique

identifier for an internal queue service (with AWS, it is based on SQS) that

is already linked to the Snowpipe serverless loader.

Second, we must create a new S3 bucket and configure an S3 bucket

event notification that has to send notification events into Snowpipe

SNS. The Snowpipe loader gets events about the new file into an S3

bucket and queues pipe statements that contain specific COPY commands.

Snowflake computes services fully and automatically scales when

executing DDL statements from the pipe queue. The last step is to create

and configure a stream that produces intensively a lot of events.

Caution  You cannot control transaction boundaries for load with
Snowpipe.

EXERCISE 1. BUILDING A DATA PIPELINE USING THE SNOWPIPE
AUTO-INGEST OPTION

In this exercise, we will build the pipeline shown in Figure 6-3. Specifically, the

following instructions show the process of creating a continuous data pipeline

for Snowflake using Snowpipe:

	1.	 Log into your Snowflake account and choose Worksheet.

	2.	 Create Snowflake external stages based on an S3 bucket.

Replace <your_AWS_KEY_ID> with your AWS credentials, and

replace <your_s3_bucket> with your S3 bucket URL.

Chapter 6 Continuous Data Loading with Snowpipe

98

Run the DDL statements on the worksheet, as shown in Listing 6-1.

Listing 6-1.  Creating External Stages

#create a new database for testing snowpipe

create database snowpipe data_retention_time_in_days = 1;

show databases like 'snow%';

create a new external stage

create or replace stage snowpipe.public.snowstage

url='S3://<your_s3_bucket>'

credentials=(

AWS_KEY_ID='<your_AWS_KEY_ID>',

AWS_SECRET_KEY='<your_AWS_SEKRET_KEY>');

create target table for Snowpipe

create or replace table snowpipe.public.snowtable(

 jsontext variant

);

create a new pipe

create or replace pipe snowpipe.public.snowpipe

 auto_ingest=true as

 copy into snowpipe.public.snowtable

 from @snowpipe.public.snowstage

 file_format = (type = 'JSON');

Chapter 6 Continuous Data Loading with Snowpipe

99

Note  Variant is universal semistructured data type of Snowflake
for loading data in formats such as JSON,11 Avro,12 ORC,13 Parquet,14 or
XML.15 For more information, you can refer to the references given.16

In the first part of Listing 6-1, we create a new external stage17 called

snowpipe.public.snowstage based on an S3 bucket, and we are

providing the URL S3 bucket and the credentials.18 Additionally, you can set

encryption options.19

The next step is to define a target table called snowpipe.public.

snowtable for the data that we want to load continuously. The table takes a

variant column as input for the JSON data.

The last part of the script is a definition of a new pipe called snowpipe.

public.snowpipe. You can see the pipe is set to auto_ingest=true,

which means that we are using notifications from S3 into SQS to notify

Snowflake about newly arrived data that is ready to load. Also, you can see

that the pipe wraps a familiar COPY statement that defines the transformations

and the data loading operations that we want to perform on the data as it

becomes available.

11�JSON file format: https://json.org/
12�Apache AVRO file format: https://avro.apache.org/
13�ORC file format: https://orc.apache.org/
14�Parquet file format: https://parquet.apache.org/
15�XML file format: https://en.wikipedia.org/wiki/XML
16�For more information, see https://docs.snowflake.net/manuals/sql-
reference/data-types-semistructured.html.

17�For more information, see https://docs.snowflake.net/manuals/sql-
reference/sql/create-stage.html.

18�For more information, check https://docs.aws.amazon.com/general/latest/
gr/aws-security-credentials.html.

19�See https://docs.snowflake.net/manuals/sql-reference/sql/create-
stage.html.

Chapter 6 Continuous Data Loading with Snowpipe

https://json.org/
https://avro.apache.org/
https://orc.apache.org/
https://parquet.apache.org/
https://en.wikipedia.org/wiki/XML
https://docs.snowflake.net/manuals/sql-reference/data-types-semistructured.html
https://docs.snowflake.net/manuals/sql-reference/data-types-semistructured.html
https://docs.snowflake.net/manuals/sql-reference/sql/create-stage.html
https://docs.snowflake.net/manuals/sql-reference/sql/create-stage.html
https://docs.aws.amazon.com/general/latest/gr/aws-security-credentials.html
https://docs.aws.amazon.com/general/latest/gr/aws-security-credentials.html
https://docs.snowflake.net/manuals/sql-reference/sql/create-stage.html
https://docs.snowflake.net/manuals/sql-reference/sql/create-stage.html

100

	3.	 Check the correctness of the configuration using the following

commands. Using show statements, you can see the status of

any pipes and stages.

check exists pipes and stages

show pipes;

show stages;

	4.	 Copy the SQS ARN link from the NotificationChannel field.

	5.	U sing a simple select statement, we can check the count of

loaded data.

check count of rows in target table

select count(*) from snowpipe.public.snowtable

	6.	 Log into your AWS account.

	7.	 Create an AWS S3 bucket called snowpipebucket, as shown

in Figure 6-5.

Figure 6-5.  Creating a new bucket for stream events

Chapter 6 Continuous Data Loading with Snowpipe

101

	8.	S et notification events for S3 for Snowpipe using the path S3

➤ snowpipebucket ➤ Properties ➤ Advanced settings ➤

Events, as shown in Figure 6-6.

	9.	 Create a new Kinesis Data Firehose stream using the path

Amazon Kinesis ➤ Data Firehose ➤ Create Delivery Stream.

You can see what that looks like in Figure 6-7.

Figure 6-6.  Setting S3 bucket notifications via SQS

Chapter 6 Continuous Data Loading with Snowpipe

102

	10.	S et the source to a direct PUT command, as shown in Figure 6-8.

	11.	 Choose a destination for your S3 bucket, as shown in Figure 6-9.

	12.	E nable logging using the CloudWatch service, as shown in

Figure 6-10.

Figure 6-7.  Creating a new Kinesis Firehose delivery stream

Figure 6-8.  Set the type of source as a direct PUT statement

Figure 6-9.  Configuration of Firehose, setting up S3 bucket as
destination

Chapter 6 Continuous Data Loading with Snowpipe

103

	13.	 Create an IAM role with a policy, as follows:

...

 {

 "Sid": "",

 "Effect": "Allow",

 "Action": [

 "s3:AbortMultipartUpload",

 "s3:GetBucketLocation",

 "s3:GetObject",

 "s3:ListBucket",

 "s3:ListBucketMultipartUploads",

 "s3:PutObject"

],

 "Resource": [

 "arn:aws:s3:::snowpipebucket",

 "arn:aws:s3:::snowpipebucket/*",

]

 },

...

	14.	R un the testing stream, as shown in Figure 6-11.

Figure 6-10.  Enabling CloudWatch logging

Chapter 6 Continuous Data Loading with Snowpipe

104

	15.	 Check the file in the S3 bucket.

	16.	 Check the count of loaded data.

check count of rows in target table

select count(*) from snowpipe.public.snowtable

�Snowpipe REST API Using AWS Lambda
If the Auto-Ingest option is not available to your account for some reason,

you will need a flexible way to integrate with other services so that you can

still implement your code through the Snowpipe REST API.

Figure 6-12 shows how to build a pipeline with a custom app using the

REST API.

Figure 6-11.  Testing

Chapter 6 Continuous Data Loading with Snowpipe

105

Figure 6-12 shows the second option. On the left side, you can see

your application. This can be an actual application if you are running one

on a virtual machine or a Docker container, but it also can be code that

you are running on AWS Lambda. Your Lambda function or application

then takes care of placing the load files in the S3 bucket as soon as the file

is persisted there.

Snowpipe then adds these files to a queue behind the REST API

endpoint. You will invoke the REST API, and that will invoke the Snowpipe

loader service, which works off of that queue to load the data into the

target tables that you have defined. For step-by-step instructions to do this,

you can refer to the official documentation.20

�Summary
In this chapter, we covered Snowpipe features that allow you to

continuously build a data pipeline. In addition, you learned about billing

and considered several basic options for using the features. Finally, you

built data pipelines based on Snowpipe integrations.

In the next chapter, we will discuss Snowflake administration and

cover the primary Snowflake objects in more detail.

Figure 6-12.  Snowpipe data loading using Auto-Ingest mode

20�https://docs.snowflake.net/manuals/user-guide/data-load-snowpipe-
rest-lambda.html

Chapter 6 Continuous Data Loading with Snowpipe

https://docs.snowflake.net/manuals/user-guide/data-load-snowpipe-rest-lambda.html
https://docs.snowflake.net/manuals/user-guide/data-load-snowpipe-rest-lambda.html

107© Dmitry Anoshin, Dmitry Shirokov, Donna Strok 2020
D. Anoshin et al., Jumpstart Snowflake, https://doi.org/10.1007/978-1-4842-5328-1_7

CHAPTER 7

Snowflake
Administration
Snowflake is a database, and as such it comes with similar administration

features as any other database. It was also the first data warehouse

as a service (DWaaS), meaning that end users can do a minimum of

administration and maintenance.

This chapter provides an overview of options for managing your

Snowflake account, geared primarily to Snowflake administrators.

However, it is also useful for end users to understand the key concepts of

Snowflake administration and management.

There are several main tasks required of administrators:

•	 Administering roles and users

•	 Administering account parameters

•	 Administering resource consumption

•	 Administering databases and warehouses

•	 Administering data shares

•	 Administering database objects

•	 Administering clustered tables

We will cover all these topics and show how it works using our

Snowflake demo.

108

�Administering Roles and Users
Snowflake uses roles for managing access and operations. In other

words, you can create custom roles with a set of privileges to control the

granularity of the access granted. For instance, say we want to create a

role for our marketing team, which will grant the team members access

to the data and allow them to run SQL queries using a virtual warehouse.

According to the Snowflake model, access to securable objects is managed

by privileges assigned to roles. Moreover, roles can be assigned to other

roles and users.

Snowflake leverages the following access control models:

•	 Discretionary access control (DAC): Each object has

an owner, and this owner can manage the access of the

object.

•	 Role-based access control (RBAC): Roles are created

and assigned privileges, and then the roles are assigned

to users.

Note  A securable object is a Snowflake entity to which access can
be granted (i.e., database, table, access, and so on). A privilege is a
level of access to an object.

Figure 7-1 shows an example of the Marketing role that grants the

privileges USAGE, MODIFY, and OPERATE to the securable objects

DATABASE and WAREHOUSE for marketing users.

Chapter 7 Snowflake Administration

109

When we launched our example Snowflake account, it had a number

of predefined default roles.

•	 ACCOUNTADMIN: This account administrator role is

the top-level role for a Snowflake account.

•	 SYSADMIN: This system administrator role is for

creating and managing databases and warehouse.

•	 PUBLIC: This is a pseudo-role that can be assigned to

any object, but they all will be available for all account

users.

•	 SECURITYADMIN: This security administrator role is

for creating and managing roles and users.

You can create custom roles with the SECURITYADMIN role, or you

can grant the CREATE ROLE privilege to any new role. For any custom

role, you should think about the role hierarchy in order to assign your new

custom role to the one of the high-level administration roles. Figure 7-2

shows an example of this hierarchy. It shows the Marketing role, which has

privileges for the marketing database, schema, and warehouse that belong

to the SYSADMIN role.

Figure 7-1.  Example of Marketing role that is granted specific
privileges for marketing users

Chapter 7 Snowflake Administration

110

�Enforcement Model
When you are connecting your Snowflake account with the web interface

or ODBC/JDBC, a session is initiated, and it has a current role that consists

of managed permissions for user. It is possible to change the role using the

USE ROLE command or to switch roles by using the menu in the top-right

corner.

When a user wants to perform any action in Snowflake, Snowflake will

compare the user’s role privileges against the required privileges.

Figure 7-2.  This is an example of a custom role hierarchy

Figure 7-3.  Role switching

Chapter 7 Snowflake Administration

111

Note  You may be familiar with the concept of a super-user or super-
role with other database vendors, but you will not find this functionality
in Snowflake. All access requires the appropriate access privileges.

�Working with Roles and Users
Snowflake allows you to control your data warehouse at a granular level

within roles. To create a role, you can execute DDL commands or use the

web interface. The following commands are available:

•	 CREATE ROLE: Creates a new role

•	 ALTER ROLE: Changes an existing role

•	 DROP ROLE: Drops an existing role

•	 SHOW ROLES: Shows a list of available roles

•	 USE ROLE: Switches a role for the session

Let’s create a new role. Log into your Snowflake account and make sure

that you choose the SECURITYADMIN role.

CREATE ROLE MARKETING_TEAM;

This command will create a role. Next, grant permissions for this

role and attach users. The following commands are available for user

management:

•	 CREATE USER: Creates a new user

•	 ALTER USER: Changes an existing user

•	 DESCRIBE USER: Describes an existing user

•	 SHOW PARAMETERS: Shows the parameters of the user

Chapter 7 Snowflake Administration

112

In addition, we can specify the following options for users:

•	 userProperties: Properties such as password, display

name, and so on.

•	 sessionParams: Session options such as default

warehouse and namespace

Let’s run a command that will create a new user and assign him to the

MARKETING_TEAM role.

CREATE USER marketing_analyst PASSWORD = 'RockYourData' COMMENT

= 'Marketing Analyst' LOGIN_NAME = 'marketing_user1' DISPLAY_

NAME = 'Marketing_Analyst' DEFAULT_ROLE = "MARKETING_TEAM"

DEFAULT_WAREHOUSE = 'SF_TUTS_WH' MUST_CHANGE_PASSWORD = TRUE;

GRANT ROLE "MARKETING_TEAM" TO USER marketing_analyst;

You can achieve the same result using the web interface.

The last part of the code grants privileges for the MARKETING_TEAM

role so new users can run SQL queries. We should grant OPERATE and

USAGE for the virtual warehouse to our new role, like this:

GRANT USAGE ON WAREHOUSE SF_TUTS_WH TO ROLE MARKETING_TEAM;

GRANT OPERATE ON WAREHOUSE SF_TUTS_WH TO ROLE MARKETING_TEAM;

Note  SF_TUTS_WH is a small virtual warehouse that was created
previously, but you can use your own warehouse. For demo purposes,
it is always good to use the smallest computing instance.

Again, we can use the web interface to perform the same actions. Then

we can log in with a new user, using login marketing_user1, and run this

sample query:

SELECT * FROM "SNOWFLAKE_SAMPLE_DATA"."TPCH_SF1"."REGION"

Chapter 7 Snowflake Administration

113

If you want to achieve the same result using the web interface, you

should navigate to the Account menu, as shown in Figure 7-4.

By default the Account menu is available for the role

ACCOUNTADMIN. This menu is usually accessible for Snowflake

administrators. It allows them to manage users and roles, control credit

usage, and so on.

�Administering Resource Consumption
The next important topic for Snowflake administrators is resource

consumption. Keeping track of storage and compute resources is critical

for Snowflake customers. Snowflake provides administrative capabilities

for monitoring credit and storage usage as well as provides resource

monitors that can send alerts on usage spikes and automatically suspend

the virtual warehouse.

By default, only the ACCOUNTADMIN role has access to the billing

information. But this access can be provided for other users and roles with

the monitor usage permissions.

As you know, Snowflake has a unique architecture that splits compute

resources (virtual warehouses) and data storage. The cost of Snowflake

consists of these two elements and is based on credits. In our case, when

we created the Snowflake demo account for this book, we were granted 400

credits, and we are tracking consumption.

Figure 7-4.  Account menu

Chapter 7 Snowflake Administration

114

�Virtual Warehouse Usage
You are already familiar with virtual warehouses (VWs) and its T-shirt

sizes. Snowflake will charge credits for using a VW. In other words, the

price depends on the number of VWs, their size, and how long they are

running queries.

Note  Credits are billed per second, with a 60-second minimum.

You can use the table function WAREHOUSE_METERING_HISTORY that

will show us hourly credit usage, or you can use web interface and click

Account ➤ Billing & Usage. Let’s run this code to see the usage for the last

seven days:

select * from table(information_schema.warehouse_metering_

history(dateadd('days',-7,current_date())));

In addition, we can specify the VW name as a parameter. Figure 7-5

shows an example of sample usage.

Figure 7-5.  Sample usage of credits for virtual warehouse for the XS,
XL, and 3XL instance sizes

Chapter 7 Snowflake Administration

115

�Data Storage Usage
Another aspect of the price is storage. Snowflake calculates the price of

storage monthly based on the average daily storage space. It includes files

stored in the Snowflake stage, data stored in databases, and historical data

maintained for a fail-safe. Moreover, time traveling and cloned objects are

consuming storage. The price is based on a flat rate per terabyte (TB).

Note T he TB price depends on the type of account (capacity or
on-demand), region, and cloud provider.

We can review the usage data using the web interface, as shown in

Figure 7-6.

Also, you can leverage table functions and a Snowflake view, as

shown here:

#Database Storage for last 7 days

select * from table(information_schema.database_storage_usage_

history(dateadd('days',-7,current_date()),current_date()));

Figure 7-6.  Snowflake usage report

Chapter 7 Snowflake Administration

116

#Stage Storage for last 7 days

select * from table(information_schema.stage_storage_usage_

history(dateadd('days',-7,current_date()),current_date()));

#Table Storage utilization

select * from table_storage_metrics

Note M ake sure that data is in a compressed format in the
Snowflake staging area. Another consideration is to use external
storage options like Amazon S3 where you can set the data lifecycle
policy and archive cold data.

�Data Transfer Usage
Snowflake is available in multiple regions for AWS, Azure, Google Cloud

Platform. You should take into consideration one more aspect of possible

cost. If you are using an external stage (AWS S3 or Azure Blob Storage), you

may be charged for data transfers between regions.

Snowflake charges a fee for unloading data into S3 or Blog Storage

within the same region or across regions.

Note  Snowflake won’t charge you for loading data from external
storage.

There is an internal Snowflake function that will help us to track this

cost, as shown here:

#Cost for the last 7 days

select * from table(information_schema.data_transfer_

history(date_range_start=>dateadd('day',-7,current_

date()),date_range_end=>current_date()));

Chapter 7 Snowflake Administration

117

�Administering Databases and Warehouses
There are a number of actions we can do with databases and warehouses.

As usual, you have a choice to use the web interface or execute SQL

commands.

We covered VWs in Chapter 2. In this section, we will review actions

that we can do with VWs and databases.

�Managing Warehouses
As an administrator, you can use the following commands with

warehouses:

•	 CREATE WAREHOUSE

•	 DROP WAREHOUSE

•	 ALTER WAREHOUSE

•	 USE WAREHOUSE

When you are creating a new warehouse, you are specifying parameters

such as size, type, and so on. Let’s create a new warehouse by executing

this command:

CREATE WAREHOUSE RYD WITH WAREHOUSE_SIZE = 'XSMALL' WAREHOUSE_

TYPE = 'STANDARD' AUTO_SUSPEND = 300 AUTO_RESUME = TRUE COMMENT

= 'Rock Your Data Virtual Warehouse';

We chose the smallest possible warehouse size, XSMALL. In addition, we

have two additional parameters.

•	 AUTO SUSPEND: This will stop the warehouse if it is idle

for more than 300 seconds.

•	 AUTO RESUME: This will start a suspended warehouse

when needed.

Chapter 7 Snowflake Administration

118

You also have an option to resize the warehouse using the ALTER

WAREHOUSE command. Finally, you can use the command USE WAREHOUSE

to specify which warehouse to use for the current session.

Note  ALTER WAREHOUSE is a unique feature. It exists only in
Snowflake. This command suspends or resumes a virtual warehouse
or aborts all queries (and other SQL statements) for a warehouse.
It can also be used to rename or set/unset the properties for a
warehouse. There are more details available at https://docs.
snowflake.net/manuals/sql-reference/sql/alter-
warehouse.html.

�Managing Databases
All data in Snowflake is stored in database tables. It is structured as a

collection of columns and rows. For each database, we can define one or

many schemas. Inside each schema, we are creating database objects such

as tables and views.

Note  Snowflake doesn’t have a hard limit on the number of
databases, schemas, or database objects.

These are the commands available for database management:

•	 CREATE DATABASE

•	 CREATE DATABASE CLONE

•	 ALTER DATABASE

•	 DROP DATABASE

Chapter 7 Snowflake Administration

https://docs.snowflake.net/manuals/sql-reference/sql/alter-warehouse.html
https://docs.snowflake.net/manuals/sql-reference/sql/alter-warehouse.html
https://docs.snowflake.net/manuals/sql-reference/sql/alter-warehouse.html

119

•	 UNDROP DATABASE

•	 USE DATABASE

•	 SHOW DATABASES

These commands could be executed via the web interface of SQL. Let’s

create a database.

CREATE DATABASE MARKETING_SANDBOX;

In addition, we can grant privileges such as CREATE SCHEMA,

MODIFY, MONITOR, and USAGE for a specific role.

Overall, the operations look similar to traditional databases. However,

there are a couple of unique features that are worth mentioning.

First is UNDROP DATABASE. Let’s imagine that you accidentally drop the

production database. Restoring it from backup could take at least a day.

But not with Snowflake, where you can instantly restore the most recent

version of a dropped database if you are within the defined retention

window for that database.

�Zero-Copy Cloning
Another unique feature is zero-copy cloning, which creates a snapshot of

a database. This snapshot is writable and independent. These types of

features are like a “dream come true” for data warehouse DBAs.

There are many situations where people need to copy their database

to test or experiment with their data to avoid altering their sensitive

production database. However, copying data can be painful and time-

consuming because all the data needs to be physically moved from the

production database to the database copy. This is extremely expensive

because both copies of the data need to be paid for. When a production

database gets updates, the database copy becomes stale and requires an

update.

Chapter 7 Snowflake Administration

120

Snowflake takes a different approach. It enables us to test and

experiment with our data more freely. It allows us to copy databases in

seconds. Snowflake doesn’t physically copy data. It continues to reference

the original data and will store new records only when you update or

change the data; therefore, you will pay for each unique record only once.

Finally, we can use zero-copy cloning with the Time Travel feature.

Figure 7-7 shows an option for cloning a database using the web

interface.

As usual, we have the option to execute a command. Here are

examples of commands with definitions:

--Clone a database and all objects within the database at its

current state:

create database mytestdb_clone clone mytestdb;

--Clone a schema and all objects within the schema at its

current state:

create schema mytestschema_clone clone testschema;

--Clone a table at its current state:

create table orders_clone clone orders;

--Clone a schema as it existed before the date and time in the

specified timestamp:

Figure 7-7.  Web interface for cloning a database

Chapter 7 Snowflake Administration

121

create schema mytestschema_clone_restore clone testschema

before (timestamp => to_timestamp(40*365*86400));

--Clone a table as it existed exactly at the date and time of

the specified timestamp:

create table orders_clone_restore clone orders at (timestamp

=> to_timestamp_tz('04/05/2013 01:02:03', 'mm/dd/yyyy

hh24:mi:ss'));

�Administering Account Parameters
Parameters control the behavior of our Snowflake account, individual

user sessions, and objects. All parameters are available on the Snowflake

documentation page.

We can split all the parameters into types:

•	 Account parameters: These are set at the account

level.

•	 Sessions parameters (majority): These are set for the

session, user, and account.

•	 Object parameters: These are set for the account and

object.

To override the default parameters, you can use the following

commands:

•	 ALTER ACCOUNT

•	 ALTER SESSION

•	 CREATE <object> or ALTER <object>

To see the available parameters and their options, run the following:

show parameters;

Chapter 7 Snowflake Administration

122

Moreover, we can look the parameters for a specific database or

warehouse.

These are some examples of parameters:

•	 STATEMENT_TIMEOUT_IN_SECONDS: Specifies the

amount of time after which a running SQL statement

is canceled by the system. This parameter will help to

control end users and prevent bad and heavy queries.

•	 MAX_CONCURRENCY_LEVEL: Specifies the maximum

number of SQL statements a warehouse cluster can

execute concurrently.

•	 TIMEZONE: Specifies the time zone setting for the

session.

�Administering Database Objects
One of the most common administration tasks within Snowflake is to

manage database objects such as tables, views, schemas, stages, file

formats, and so on.

All database objects are created under the schema. Traditional

databases objects such as table, view, materialized view, and sequence

have similar options:

•	 CREATE

•	 ALTER

•	 DROP

•	 SHOW

•	 DESCRIBE

Moreover, Snowflake Administartor may leverage Snowflake unique

capabilities like UNDROP and zero-copy cloning.

Chapter 7 Snowflake Administration

123

Another set of schema-level objects that are used in Snowflake include

the following:

•	 Stage: Used for storing data files; could be internal and

external

•	 File format: File format options (CSV, Parquet, etc.)

and formatting options for each file type

•	 Pipe: Single copy statement for loading a set of data

files

•	 UDF: User-defined function; a custom function that

consists of SQL and JavaScript

As a Snowflake administrator, you may need to manage these objects.

�Administering Data Shares
Secure data shares are another unique feature of Snowflake and will be

covered in Chapter 10. This feature allows you to become a data provider

by creating a data share using the CREATE SHARE command. By default, this

is available only for the ACCOUNTADMIN role.

These are the available commands:

•	 CREATE SHARE

•	 ALTER SHARE

•	 DROP SHARE

•	 DESCRIBE SHARE

•	 SHOW SHARE

Chapter 7 Snowflake Administration

124

Note  As a share creator, you are responsible for data security.
Before you create a share, you should spend some time to learn more
about data and use cases to prevent the sharing of sensitive data.
Secure views and UDFs are handy to use when creating shares.

After share creation, an admin can view, grant, or revoke access to

database objects using the following commands:

•	 GRANT <privilege> TO SHARE: Grants access to share

•	 REVOKE <privilege> TO SHARE: Revokes access to

share

•	 SHOW GRANTS TO SHARE: Shows all object privileges that

have been granted to share

•	 SHOW GRANTS OF SHARE: Shows all accounts for the

share and accounts that are using shares

In some cases, if you don’t need to share anymore and want to drop

it, you should consider the downstream impact for all consumers. As an

option, you may revoke grants on some objects and see the result.

�Administering Clustered Tables
As you know, Snowflake is a data warehouse as a service. The idea here is

simple: you just use the data warehouse, and you don’t need to think about

data distribution, sorting, and table statistics.

One aspect of Snowflake performance is micro-partitioning. When

we are loading data into Snowflake, it is automatically divided into

micro-partitions with 50 MB to 500 MB of compressed data. These micro-

partitions are organized in a columnar fashion. In addition, Snowflake

collects and stores metadata in micro-partitions. This helps to optimize

Chapter 7 Snowflake Administration

125

query plans and improve query performance by avoiding unnecessary

scanning of micro-partitions through an operation known as partition

pruning.

Snowflake also stores data in tables and tries to sort it along natural

dimensions such as date and/or geographic regions. This is called data

clustering, and it is a key factor for query performance. It is important,

especially for large tables. By default, Snowflake uses automatic clustering.

However, in some cases we may define the clustering key within the

CREATE TABLE statement to change the default behavior. This should be an

exception rather than a rule. In most cases, admins will not need to cluster.

Best practice is to avoid clustering unless there is a specific query pattern

that does not meet the SLA. In general, you should not need to cluster

unless the table is at least 1 TB.

As a Snowflake administrator, you may need to review table clustering

and run reclustering processes to identify all the problem tables and

provide the best possible performance.

There are two system functions that allow us to monitor clustering

information for tables:

•	 SYSTEM$CLUSTERING_DEPTH: This calculates the average

depth of the table according to the specific columns.

•	 SYSTEM$CLUSTERING_INFORMATION: This calculates

clustering details, including clustering depth, for a

specific table.

If you need to improve the clustering of data, you should create a new

table with a new clustering key and insert data into the new table, or you

can use materialized views (MVs) to create a version of the table with the

new cluster key. Then the MV function will automatically keep the MV

data in sync with the new data added to the base table.

Chapter 7 Snowflake Administration

https://docs.snowflake.net/manuals/sql-reference/functions/system_clustering_depth.html
https://docs.snowflake.net/manuals/sql-reference/functions/system_clustering_information.html

126

Note  A table with clustering keys defined is considered to be
clustered. Clustering keys aren’t important for all tables. Whether
to use clustering depends on the size of a table and the query
performance, and it is most suitable for multiterabyte tables.

�Snowflake Materialized Views
When working with Teradata, we worked with materialized views (MVs)

a lot. Basically, we had a complex SQL query that could produce metrics

and dimensions for a business intelligence solution. Because of complex

SQL logic, joins, and derived columns, we used MVs for improving query

performance. However, traditional MVs had their downsides. For example,

it was important to keep data in the VM up-to-date and refresh it daily with

an ETL process. In addition, we experienced slowdowns in performance

while updating the MVs using Data Manipulation Language commands.

Snowflake engineers didn’t abandon the MV concept and added this

functionality to Enterprise Edition. According to Snowflake, a materialized

view is a precomputed data set derived from a query specification (the

SELECT in the view definition) and stored for later use. Because the data

is precomputed, querying a materialized view is faster than executing the

original query. This performance difference can be significant when a

query is run frequently or is sufficiently complex.

Note M aterialized views are designed to improve query performance
for workloads composed of common, repeated query patterns. However,
materializing intermediate results incurs additional costs. As such,
before creating any materialized views, you should consider whether the
costs are offset by the savings from reusing these results frequently.

Chapter 7 Snowflake Administration

127

There are a couple use cases when we can benefit from using MVs:

•	 The query results contain a small number of rows and/

or columns relative to the base table (the table on

which the view is defined).

•	 The query results require significant processing,

including the following:

•	 Analysis of semistructured data

•	 Aggregates that take a long time to calculate

The main benefit of Snowflake MVs is that they solve the issues of

traditional MVs. MVs are views that are automatically maintained by

Snowflake. There is a background service that updates the materialized

view after changes are made to the base table. This is more efficient

and less error-prone than manually maintaining the equivalent of a

materialized view at the application level.

Table 7-1 shows the key similarities and differences between tables,

regular views, cached query results, and materialized views.

Table 7-1.  Key Similarities and Differences

Performance
Benefits

Security
Benefits

Simplifies
Query
Logic

Supports
Clustering

Uses
Storage

Uses
Credits for
Maintenance

Regular

table

Regular view

Cached

query result

Materialized

view

Chapter 7 Snowflake Administration

128

�Summary
In this chapter, we covered the main Snowflake administrative duties

(e.g., user and role administration), and you learned about key Snowflake

objects (e.g., warehouses and schema-level objects). In addition, we

reviewed billing and usage information. Finally, we covered data shares

and data clustering concepts as well as materialized views.

In the next chapter, you will learn about one of the key elements of

cloud analytics: security.

Chapter 7 Snowflake Administration

129© Dmitry Anoshin, Dmitry Shirokov, Donna Strok 2020
D. Anoshin et al., Jumpstart Snowflake, https://doi.org/10.1007/978-1-4842-5328-1_8

CHAPTER 8

Snowflake Security
Overview
For many organizations, it is challenging to be able to provide security

today, especially in the cloud, given the number of threats and attacks

that are occurring daily. Safeguarding data is paramount for Snowflake.

The Snowflake services platform was built with security in mind from the

beginning. The company has implemented a security framework that we

believe addresses a lot of their customers’ compliance challenges today.

Security is an important aspect in today’s world. Developers have

to secure their data and prevent unauthorized access to it, which is why

Snowflake encrypts all the data automatically, including data at rest and

in transit. In addition, Snowflake provides multifactor authentication and

performs federated authentication.

One of the challenges with on-premises solutions is that data can

reside at many different locations, so controlling the data flow and who’s

accessing it is challenging. With the cloud, you can build the right security

controls to safeguard your data, but security doesn’t stop there. There are

many more aspects that are related to monitoring and ensuring the system

is constantly protected.

The Snowflake platform is a cloud-native solution, and it provides

security so that you don’t need to worry; in other words, it is managed for

you. Snowflake provides an end-to-end security solution to its customers,

from when the data leaves a customer’s premises through the untrusted

130

Internet to the point when it arrives at the Snowflake storage; all along the

way, the data is protected. Moreover, Snowflake hardens all the virtual

machines that data resides on. Snowflake encrypts data, does audits,

monitors, sends alerts, and installs patches on a continuous basis. All of

this actually simplifies and facilitates the security efforts of customers. So,

the customer does not necessarily have to incur all the procedural and

compliance costs associated with security.

In this chapter, you will learn about the main Snowflake security

features:

•	 Snowflake security reference architecture

•	 Network and site access

•	 Account and user authentication

•	 Object security

•	 Data security

•	 Security validations

�Snowflake Security Reference Architecture
As you might know from previous chapters, Snowflake has a multicluster

shared data architecture. It separates the process of working with data and

information into three distinct layers.

•	 Storage layer, where all the data is stored in a columnar

compressed format and is always encrypted.

•	 Compute layer, comprised of virtual warehouses, which

are the compute nodes that perform all of the data

processing. Multiple virtual warehouses can work on

the same data at the same time.

Chapter 8 Snowflake Security Overview

131

•	 Services layer, also known as the “brains” of Snowflake.

This is where all security information/metadata

is stored and also where all query processing is

completed. The service layer also includes transaction

management, which coordinates across all of the

virtual warehouses, allowing for a consistent set of

operations against the same data at the same time.

This unique architecture allows Snowflake to ensure a high standard of

security for its customers. Figure 8-1 shows Snowflake’s security reference

architecture. It describes the components that make up Snowflake’s secure

data warehouse. We will cover the key elements of this diagram in this

chapter.

Note T his chapter will cover the security features that are available
to date. Snowflake is constantly working on adding new features.

Chapter 8 Snowflake Security Overview

132

�Virtual Private Cloud
First is the concept of a virtual private cloud (VPC). Snowflake is

implemented as a VPC within the cloud provider’s infrastructure. If a

customer requires complete isolation from other Snowflake customers

because of strict security requirements such as in the case of a financial

Figure 8-1.  Snowflake security reference architecture

Chapter 8 Snowflake Security Overview

133

institution, the Virtual Private Snowflake (VPS) edition must be used.

When implemented, VPS is a Snowflake implementation entirely on its

own VPC within the cloud provider’s infrastructure.

�Physical Security
Each cloud provider, including Amazon Web Services, Microsoft Azure,

and Google Cloud Platform, provide their own infrastructure and physical

security to guard all of their cloud data. Physical security includes 24-hour

armed guards and video surveillance to ensure no unauthorized access

is allowed in the data center. Neither Snowflake personnel nor Snowflake

customers have access to these data centers. Data redundancy is also a

standard practice implemented by the cloud provider for data recovery.

You can learn more about physical security from each cloud vendor by

visiting their documentation.

�Network and Site Access
All customer access to the Snowflake service via the Internet is made

via the secure protocol HTTPS. Moreover, all Internet communications

between users and the Snowflakes service are secured and encrypted

using TLS1.2 or higher.

All communication between connection methods and Snowflake is

secure, regardless of the method used to connect, whether via the web user

interface or ODBC or JDBC connectors. Authentication is required to gain

access to Snowflake. These connections are encrypted and communicate

solely over HTTPS.

Access to Snowflake is subject to network policies. These policies

provide options for managing network configurations to the Snowflake

service, such as restricting access to an account based on a user IP address.

Currently, Snowflake customers can implement a network policy to create

Chapter 8 Snowflake Security Overview

134

an IP whitelist, which is a list of allowed IP addresses, as well as an IP

blacklist, which lists those IP addresses that are forbidden access.

Figure 8-2 shows the Snowflake web UI for managing access policies.

Moreover, you can manage policies using SQL commands. Usually,

we will specify the IP address of our organization and will give access

to Snowflake only to our employees. We don’t want to have a publicly

available Snowflake endpoint.

For increased network connectivity security, private and direct

communication between Snowflake and other VPCs can be set up via an

AWS private link (in the case of AWS deployment). This feature, which

effectively creates a private tunnel of communication between Snowflake

and the VPC, is currently available only for the Business Critical Edition,

formerly known as Enterprise for Sensitive Data (ESD), or VPS customers.

�Account and User Authentication
For account access and user authentication, multifactor authentication

(MFA) can be implemented for increased security on account access by

users. MFA support is provided as an integrated Snowflake feature powered

by the Duo security service and managed completely by Snowflake.

Figure 8-2.  Managing access policies

Chapter 8 Snowflake Security Overview

135

The only additional task after enabling MFA is to install the Duo mobile

application, which is supported on multiple smartphone platforms

including iOS, Android, and Windows.

Currently, each user must enable MFA by themselves. As a security best

practice, all users with the account admin role should enroll with MFA.

Single sign-on (SSO) is a user authentication method that, once

enabled, allows users to authenticate through an external SAML 2.0–

compliant identity provider known as an IDP.

When authenticated, users can securely initiate one or more sessions

in Snowflake for the duration of their IDP session. These sessions can be

initiated from within the interface provided by the IDP or directly from

within Snowflake. This feature is available for customers on Enterprise

Edition and up.

�Object Security
Access to specific objects within Snowflake, such as warehouses, databases,

schemas, tables, etc., is controlled by a hybrid model of discretionary

access control (DAC) and role-based access control (RBACK).

Note  Discretionary access control (DAC) is when each object has
an owner, who can in turn grant access to that object. Role-based
access control (RBAC) is when access privileges are assigned to
roles, which are in turn assigned to users.

Discretionary access control means that each object created has an

owner and that owner has control over the object. Role-based access

control, as shown in Figure 8-3, makes use of roles that can be granted

access to objects. These roles, in turn, can be granted to other roles

or directly to users. The security admin system role in Snowflake is

responsible for managing these privileges.

Chapter 8 Snowflake Security Overview

136

�Data Security
Encryption is enabled by default in Snowflake. All customer data is

encrypted at rest. This includes not only the database data but also the

virtual warehouse cache and query results cache, which are both used

for performance optimization within Snowflake. All communication is

encrypted in transit over public networks and even within the Snowflake

virtual private cloud for customers who use the Business Critical Edition.

Note A dvanced Encryption Standard (AES) is a symmetric
encryption algorithm. The algorithm was developed by two Belgian
cryptographers, Joan Daemen and Vincent Rijmen. AES was designed
to be efficient in both hardware and software and supports a block
length of 128 bits and key lengths of 128, 192, and 256 bits.

All files that are stored in Snowflake internal stage objects are

automatically encrypted using either AES128 or AES256 strong encryption.

Specific additions of Snowflake also provide periodic rekeying of encrypted

data and support for customer-managed encryption keys.

Business Critical Edition of Snowflake allows us to use the Tri-Secret

Secure feature. This encryption is achieved using key wrapping, which

Figure 8-3.  Role-based access control

Chapter 8 Snowflake Security Overview

137

means using one key to lock up another. For example, if a user attempts

to access encrypted data within Snowflake, the data must first be

decrypted. To decrypt it, the data key is necessary, but the data key itself

is also encrypted or wrapped and requires another key, which is the

table key. Again, the table key is locked and requires yet another key,

the account key, to unlock it. The account key is also locked and can be

accessed using the root key that is stored in the hardware security model,

or Amazon CloudHSM within the cloud provider in the case of an AWS

implementation.

Amazon CloudHSM is a piece of hardware that is specialized for

encryption. The account key would need to be passed into CloudHSM and

unlocked by the root key. Then the hierarchy of table and data keys can

be subsequently unlocked, and the unencrypted data can be returned to

the user.

Encryption keys are rotated automatically for accounts running on

certain editions of Snowflake. The entire process of rotating encryption

keys is completed behind the scenes and is transparent to the end user.

With key rotation, a new version of a key is created, and the previous

version of this key is retired. The new version of the key is used to encrypt

data, while the previous version of the key is retired and used only to

decrypt data. In other words, with key rotation, new data gets fresh keys.

Snowflake takes security seriously, which is why the end-to-end

encryption of data is a default feature of the service. Whether data is in

flight between the customer and internal stage or at rest and stored in a

Snowflake database table, the data is always in an encrypted state.

To protect data against loss, Snowflake leverages data redundancy

implemented by the cloud infrastructure provider. Each cloud provider

region is geographically dispersed to several data centers across several

miles within the region. The cloud infrastructure within each region

provides automatic synchronous replication of data to three different

zones for redundancy, should one’s own have a failure. The data is

available from one of the other two zones in the region.

Chapter 8 Snowflake Security Overview

138

�Security Validation
Snowflakes supports multiple compliances, as described in Table 8-1. This

makes Snowflake is an attractive platform for the financial, government

and health industries where there are high compliance standards.

�Snowflake Audit and Logging
Application audit logs are also available for tracking activity within

Snowflake. All activity against the Snowflake service is logged within

the service’s layer. To access this activity log, go to the History tab in

the Snowflake web user interface. From this page, users can view each

Table 8-1.  Snowflake Security Validations

Type Description

SOC 2

Type II

Designed for service providers storing customer data in the cloud. It

requires companies to establish and follow strict information security

policies and procedures encompassing the security, availability, processing,

integrity, and confidentiality of customer data.

HIPPA Stands for Health Insurance Portability and Accountability Act. Passed

in 1996, HIPAA is a federal law that sets a national standard to protect

medical records and other personal health information.

PCI

DSS

Stands for Payment Card Industry Data Security Standard. This standard

sets the requirements for organizations and sellers to safely and securely

accept, store, process, and transmit card holder data during credit card

transactions to prevent fraud and data breaches.

CAIQ Stands for the Consensus Assessments Initiative Questionnaire (CAIQ).

This is a survey provided by the Cloud Security Alliance (CSA) for cloud

consumers and auditors to assess the security capabilities of a cloud

service provider.

Chapter 8 Snowflake Security Overview

139

command that was attempted along with the user who attempted the

command, when the action occurred, and whether it was successful.

Figure 8-4 shows the History tab.

If you click the SQL text, a dialog will pop up with a success or failure

message, as well as with actions to take to resolve any errors.

Another field in the activity log is Query ID. This ID can be used by

Snowflake Support to look up a specific query instance for troubleshooting.

Again, Snowflake personnel do not have access to customer data but can

access metadata such as the query statement and query plan.

Clicking the Query ID field in the activity log will jump to the Query

Profiler, allowing the user to view how the query optimizer worked and if

there are any bottlenecks to resolve.

�Query Profiler

When we work with data warehouse and business intelligence, often we

have to deal with performance issues. To understand why our query or our

report is slow, we should understand the mechanics of querying. Query

Profiler helps us to spot typical mistakes in SQL query expressions to identify

potential performance bottlenecks and improvement opportunities.

Figure 8-4.  Query History tab

Chapter 8 Snowflake Security Overview

140

To access it, go to the History tab or Worksheets tab. If we navigate to

the History tab and choose any query ID and then navigate to Profile, we

will see the visual plan for query execution, as per Figure 8-5.

Figure 8-5.  Query Profiler

Table 8-2 describes the key elements of the Query Profiler interface.

Chapter 8 Snowflake Security Overview

141

You can find more information about Query Profiler in the Snowflake

documentation at https://docs.snowflake.net/manuals/user-guide/

ui-query-profile.html.

�Login History Audit Logs

Snowflake provides table functions for extracting audit log history from the

metadata. The login history family of table functions can be used to look

up user login history with various filters such as time range or specific user.

Additional SQL predicates can be used to further filter the results. This

data remains available within the Snowflake metadata for seven days from

the login event. Therefore, it can be extracted and loaded into a Snowflake

schema or an external system such as a security information and event

management system for more detailed audit history tracking. Table 8-3

describes the available tables and their purpose.

Table 8-2.  Key Elements of Query Profiler

Element Description

Steps If the query was processed in multiple steps, you can toggle

between each step.

Operator tree The middle pane displays a graphical representation of all the

operator nodes for the selected step, including the relationships

between each operator node.

Node list The middle pane includes a collapsible list of operator nodes by

execution time.

Overview The right pane displays an overview of the query profile. The display

changes to operator details when an operator node is selected.

Chapter 8 Snowflake Security Overview

https://docs.snowflake.net/manuals/user-guide/ui-query-profile.html
https://docs.snowflake.net/manuals/user-guide/ui-query-profile.html

142

Here is some example code for logging into the history audit logs:

--Retrieve up to the last 100 login events of the current user:

select *

from table(information_schema.login_history_by_user())

order by event_timestamp;

--Retrieve up to the last 1000 login events of the specified

user:

select *

from table(information_schema.login_history_by_user('USER1',

result_limit=>1000))

order by event_timestamp;

--Retrieve up to 100 login events of every user your current

role is allowed to monitor in the last hour:

select *

from table(information_schema.login_history(dateadd('hours',-1,

current_timestamp()),current_timestamp()))

order by event_timestamp;

�Query History Audit Logs

The query logs in Snowflake can also be queried and extracted, just like the

login history logs. The information in the query history family of functions

is similar to the web user interface’s History tab output. The query

Table 8-3.  Login History Audit Functions

Function Description

LOGIN_HISTORY Returns queries within a specified time range

LOGIN_HISTORY_BY_SESSION Returns queries within a specified session and

time range

Chapter 8 Snowflake Security Overview

143

history can be filtered by time range, by session user, or even by specific

warehouse query. Query history is also available only for seven days. So,

for extended query history tracking, it is recommended you export the data

to an external system or Snowflake table. Table 8-4 describes the available

functions and their purpose.

Table 8-4.  Query History Audit Log Functions

Function Description

QUERY_HISTORY Returns queries within a specified

time range

QUERY_HISTORY_BY_SESSION Returns queries within a specified

session and time range

QUERY_HISTORY_BY_USER Returns queries submitted by a

specified user within a specified

time range

QUERY_HISTORY_BY_DATAWAREHOUSE Returns queries executed by a

specified warehouse within a

specified time range

Here is some example code for query history audit logs:

--Retrieve up to the last 100 queries run in the current

session:

select *

from table(information_schema.query_history_by_session())

order by start_time;

--Retrieve up to the last 100 queries run by the current user

(or run by any user on any warehouse on which the current user

has the MONITOR privilege):

Chapter 8 Snowflake Security Overview

144

select *

from table(information_schema.query_history())

order by start_time;

--Retrieve up to the last 100 queries run in the past hour by

the current user (or run by any user on any warehouse on which

the current user has the MONITOR privilege):

select *

from table(information_schema.query_history(dateadd('hours',-1,

current_timestamp()),current_timestamp()))

order by start_time;

�Penetration Testing
Penetration tests are an integral part of Snowflake’s ongoing testing of

security controls and procedures. Seven to ten tests are performed each

year to ensure no new holes or flaws arise in security. If a vulnerability is

found, the security team will log and track it to closure. The results of these

penetration tests are available to customers under NDA with Snowflake.

You can find more information about penetration testing in the article

“Snowflake: Serious about security” by Susan Walsh at https://www.

snowflake.com/blog/snowflake-seriously-serious-security/.

�Summary
In this chapter, we briefly covered the key Snowflake security features in

the following areas:

•	 Network/site access

•	 Account/user authentication

•	 Object security

Chapter 8 Snowflake Security Overview

https://www.snowflake.com/blog/snowflake-seriously-serious-security/
https://www.snowflake.com/blog/snowflake-seriously-serious-security/

145

•	 Data security

•	 Security validation

•	 Audit and logging

For each category, Snowflake provides extensive online

documentation.

In the next chapter, you will learn about Snowflake’s unique

capabilities of working with semistructured data formats like JSON, XML,

and AVRO.

Chapter 8 Snowflake Security Overview

147© Dmitry Anoshin, Dmitry Shirokov, Donna Strok 2020
D. Anoshin et al., Jumpstart Snowflake, https://doi.org/10.1007/978-1-4842-5328-1_9

CHAPTER 9

Working with
Semistructured Data
Nowadays, companies buy and use many different systems from different

companies. Eventually, data engineers face the problem of supporting

different data formats for building analytical solutions and maintaining

data sources. Data scientists face issues related to delivering valuable

insight from semistructured data.

Historically, to load semistructured data into a relational repository,

it was necessary to convert it to another format. However, with the

NoSQL1 revolution, such databases were used in conjunction with

relational databases. Ultimately, relational engines began to support

semistructured data.

Another concept that came from big data was the so-called schema-

on-read approach. You first load the data as it is without thinking about the

schema, and then when data already in the database, you working with this

and define schema. A Snowflake database is a full ANSI SQL RDBMS that

supports SQL for semistructured data while applying the schema-on-read2

approach. In addition, Snowflake Support automatically converts data into

column storage that is better suited for analytical workloads.

1�https://en.wikipedia.org/wiki/NoSQL
2�https://www.techopedia.com/definition/30153/schema-on-read

https://en.wikipedia.org/wiki/NoSQL
https://www.techopedia.com/definition/30153/schema-on-read

148

In this chapter, you will learn about how Snowflake works with

different formats. We will cover the following topics:

•	 Working with JSON, XML, and AVRO

•	 Working with ORC and Parquet

�Supported File Formats
Snowflake supports many popular data formats. Table 9-1 lists some of the

platforms that are integrated with Snowflake.

Snowflake provides the following for working with semistructured data:

•	 Storage engine that supports the most common

formats and internal optimization storage processes

•	 Flexible schema data types and the ability to track

changes

•	 SQL access for this data

For example, most REST3 services use JSON. This is in contrast to the

majority of legacy enterprise-level integration services that use XML to

exchange data between corporate applications. If you use Hadoop or S3,

you have worked with column-based formats before.

3�https://en.wikipedia.org/wiki/Representational_state_transfer

Chapter 9 Working with Semistructured Data

https://en.wikipedia.org/wiki/Representational_state_transfer

149

�Advanced Data Types
In Snowflake the primary universal data type is VARIANT. You have to use it

for working with semistructured data such as XML, JSON, AVRO, Parquet,

and ORC. For high efficiency and performance, the Snowflake engine

stores binary representations that support semistructured data using

column-oriented storage with compression.

This process is completely transparent to the end user. The VARIANT

type is a universal container that can store other types including OBJECT

and ARRAY. There is a restriction on the maximum size of an object in

compressed form, and it should not exceed 16 MB.

Any type of data in Snowflake can be converted to a VARIANT type.

The database uses explicit and implicit type conversions. For explicit

Table 9-1.  Snowflake-Supported File Formats

Format Description

JSON JSON4 is a lightweight data-interchange format based on JavaScript.

AVRO AVRO5 is a data serialization format based on binary JSON.

ORC Optimized Row Columnar (ORC6) is column-oriented7 format originally

developed for Apache Hive.

Parquet Parquet8 is the most used column-based format that came from the

Hadoop ecosystem.

XML Extensible Markup Language (XML9) is a markup language.

4�www.json.org/
5�https://avro.apache.org/
6�https://orc.apache.org/
7�https://en.wikipedia.org/wiki/Column-oriented_DBMS
8�http://parquet.apache.org/
9�https://en.wikipedia.org/wiki/XML

Chapter 9 Working with Semistructured Data

http://www.json.org/
https://avro.apache.org/
https://orc.apache.org/
https://en.wikipedia.org/wiki/Column-oriented_DBMS
http://parquet.apache.org/
https://en.wikipedia.org/wiki/XML

150

conversions, use the functions TO_VARIANT(<expr>) or <expr>::VARIANT,

where <expr> is an expression of any data type. Implicit conversion is used

when you do not explicitly indicate this; for example, this happens when

comparing data with different data types. For example, var:json_path >=

7 is cast to var:json_path >= 7::VARIANT.

Note T he VARIANT null value is distinct from the SQL NULL
value. VARIANT null is real value that may be in semistructured
data instead of SQL NULL. Use the test function IS_NULL_VALUE10 to
distinguish them.

In addition to type VARIANT, there are two more types.

•	 OBJECT is a key-value pair, where the key is a

nonempty string and the value is a written value of

the VARIANT type.

•	 ARRAY is an array, where the index is an integer (from 0

to 2^31-1), and values have the VARIANT type.

The steps for working with these types of data follow:

	 1.	 Create a file format and load the file into Snowflake.

	 2.	 Create a table with a column type of VARIANT,

OBJECT, or ARRAY.

	 3.	 Parse JSON or XML using Snowflake SQL extension

functions,11 e.g., PARSE_JSON or PARSE_XML.

10�https://docs.snowflake.net/manuals/sql-reference/functions/is_null_
value.html

11�https://docs.snowflake.net/manuals/sql-reference/functions-
semistructured.html

Chapter 9 Working with Semistructured Data

https://docs.snowflake.net/manuals/sql-reference/functions/is_null_value.html
https://docs.snowflake.net/manuals/sql-reference/functions/is_null_value.html
https://docs.snowflake.net/manuals/sql-reference/functions-semistructured.html
https://docs.snowflake.net/manuals/sql-reference/functions-semistructured.html

151

	 4.	 Extract values from a structure and determine

the data types using specific SQL functions, e.g.,

FLATTEN or GET.

	 5.	 Convert a structure to a lateral view using the

LATERAL function.

	 6.	 Work with relational views as usual.

�Working with XML
One of the most used formats for exchanging between companies is the

XML format.

This format is often used in the world of enterprises as the main format

for exchanging information between corporate services.

For instance, let’s use an open database called US New York

Demographic Statistics. The database provides statistical information

about the residents of New York. Using a specific request12 to this database,

we can download the sample in XML format.

Listing 9-1 shows an example of the response of the RESTful service

from the sample request.

Listing 9-1.  Example of XML

<response>

<row>

<row _id="row-abpe~s85f-zkcw" _uuid="00000000-0000-0000-00000"

_position="0" _address="https://data.cityofnewyork.us/resource/

kku6-nxdu/row-abpe~s85f-zkcw">

<jurisdiction_name>10001</jurisdiction_name>

12�https://data.cityofnewyork.us/api/views/kku6-nxdu/rows.
xml?accessType=DOWNLOAD

Chapter 9 Working with Semistructured Data

https://data.cityofnewyork.us/api/views/kku6-nxdu/rows.xml?accessType=DOWNLOAD
https://data.cityofnewyork.us/api/views/kku6-nxdu/rows.xml?accessType=DOWNLOAD

152

<count_participants>44</count_participants>

<count_female>22</count_female>

<percent_female>0.5</percent_female>

<count_male>22</count_male>

<percent_male>0.5</percent_male>

<count_gender_unknown>0</count_gender_unknown>

<percent_gender_unknown>0</percent_gender_unknown>

<count_gender_total>44</count_gender_total>

<percent_gender_total>100</percent_gender_total>

<count_pacific_islander>0</count_pacific_islander>

<percent_pacific_islander>0</percent_pacific_islander>

<count_hispanic_latino>16</count_hispanic_latino>

<percent_hispanic_latino>0.36</percent_hispanic_latino>

<count_american_indian>0</count_american_indian>

<percent_american_indian>0</percent_american_indian>

<count_asian_non_hispanic>3</count_asian_non_hispanic>

With this example, you can see that the structure of an XML file

contains the following:

•	 Field message that contains basic response information

•	 Summary of request, including the following:

•	 Tag response, including the tag row

•	 Tag row, which contains attribute tags

•	 Many attribute tags with data

Snowflake allows you to load such data directly into the database while

applying encryption on the fly and provides a set of functions that extends

the standard SQL, which makes it easy to work within the structure of XML

documents.

Chapter 9 Working with Semistructured Data

153

In other words, for querying any XML file, we could use special built-in

functions that extend ANSI SQL as follows:

•	 The table function LATERAL FLATTEN13 for extracting

data from a structure

•	 The $ and @ operators to access the root element and

attributes

•	 The XMLGET14 function for extracting the name of a tag

from an XML element

USING SNOWFLAKE SQL FOR XML

Let’s look at how to work with XML in Snowflake:

	1.	 Log into your Snowflake’s account and choose the

Worksheets tab.

	2.	 Choose your sample databases and warehouse using DML,

as follows:

use warehouse "COMPUTE_WH_TEST";

use "DEMO_DB"."PUBLIC";

	3.	 Create a table called demo_xml with the VARIANT attribute by

using a DDL statement.

create or replace table demo_xml (val variant);

	4.	D ownload the XML file onto your computer using the request in

the previous link.

13�https://docs.snowflake.net/manuals/sql-reference/functions/flatten.
html

14�https://docs.snowflake.net/manuals/sql-reference/functions/xmlget.
html

Chapter 9 Working with Semistructured Data

https://docs.snowflake.net/manuals/sql-reference/functions/flatten.html
https://docs.snowflake.net/manuals/sql-reference/functions/flatten.html
https://docs.snowflake.net/manuals/sql-reference/functions/xmlget.html
https://docs.snowflake.net/manuals/sql-reference/functions/xmlget.html

154

	5.	O pen the Snowflake UI and choose the Databases tab. Click the

table and then click the Load Data button. See Figure 9-1.

	6.	I n the window that opens, select your Snowflake warehouse, as

shown in Figure 9-2.

	7.	 Choose your XML file and download it into the Snowflake cloud.

See Figure 9-3.

Figure 9-1.  Loading data into the table using the Snowflake UI

Figure 9-2.  Choosing the warehouse

Chapter 9 Working with Semistructured Data

155

	8.	 Create a new file format for the table. See Figure 9-4.

Figure 9-3.  Choosing the source file for downloading into
Snowflake

Chapter 9 Working with Semistructured Data

156

	9.	 Choose the FF_XML format. See Figure 9-5.

	10.	U pload the sample file into Snowflake using Load Options by

default. See Figure 9-6.

Figure 9-4.  Creating a new file format into Snowflake

Figure 9-5.  Selecting a file format

Chapter 9 Working with Semistructured Data

157

	11.	 Check the data by using a SQL statement. See Figure 9-7.

select * from demo_xml;

	12.	T ry to access the root element using the $ operator. See

Figure 9-8.

select val:"$" from demo_xml;

Figure 9-6.  Selecting Load Options

Figure 9-7.  XML data in the table

Chapter 9 Working with Semistructured Data

158

	13.	T ry to extract the row attribute using the XMLGET function. See

Figure 9-9.

select XMLGET(val, 'row',0):"$" from demo_xml;

Figure 9-9 shows the query result, which is a hierarchy in which the

name of the tag is written to @ and the value of the tag is written to $.

	14.	E xtract an array of values using the LATERAL FLATTEN table

function with the to_array function, as shown in Listing 9-2.

See Figure 9-10.

Figure 9-8.  Applying the $ operator on the XML data in the table

Figure 9-9.  Applying the XMLGET function to the ROW attribute

Chapter 9 Working with Semistructured Data

159

Listing 9-2.  Extracting Values from an Array of the Table

select

xml_doc_val.index,

xml_doc_val.value

from demo_xml,

LATERAL FLATTEN(to_array(demo_xml.val:"$")) xml_doc,

LATERAL FLATTEN(to_array(xml_doc.VALUE:"$")) xml_doc_val;

In Listing 9-2, in the query, LATERAL FLATTEN is used twice

sequentially to extract a portion of the XML document and convert it

into rows.

	15.	T o complete the conversion of an array of values into a table

view, modify the query as shown in Listing 9-3. See Figure 9-11.

Listing 9-3.  Creating a View Based on Extracting Values from the

Array of the Table

create view stats_by_zip AS

select

 XMLGET(xml_doc_val.value, 'jurisdiction_name'

):"$" as "Jurisdiction_Name",

 XMLGET(xml_doc_val.value, 'count_participants'

):"$" as "Count_Participants",

 XMLGET(xml_doc_val.value, 'count_female'):"$"

 as "Count_Female",

Figure 9-10.  Applying the LATERAL FLATTEN table function to
the table

Chapter 9 Working with Semistructured Data

160

 XMLGET(xml_doc_val.value, 'count_male'):"$"

 as "Count_Male"

from demo_xml,

LATERAL FLATTEN(to_array(demo_xml.val:"$")) xml_doc,

LATERAL FLATTEN(to_array(xml_doc.VALUE:"$")) xml_doc_val;

select * from stats_by_zip;

In Listing 9-3, the query is similar to the previous one, and the

XMLGET function is used, which retrieves values and generates

values by columns.

	16.	 Let’s create a new view using the previous query and add some

names of neighborhoods from the site, as shown in Listing 9-4.15

Listing 9-4.  Extracting Values from the Array of the Table

create or replace table dic_zip_neighborhoods (zip_code

 string(5), name string(35));

insert into dic_zip_neighborhoods

values('10001','Chelsea and Clinton'),

 ('10002','Lower East Side'),

 ('10003','Lower East Side'),

 ('10004','Lower Manhattan')

 ..

 ;

15�https://www.health.ny.gov/statistics/cancer/registry/appendix/
neighborhoods.htm

Figure 9-11.  Creating a lateral view from the XML table

Chapter 9 Working with Semistructured Data

https://www.health.ny.gov/statistics/cancer/registry/appendix/neighborhoods.htm
https://www.health.ny.gov/statistics/cancer/registry/appendix/neighborhoods.htm

161

create view stats_by_zip_with_neighborhoods AS

select s.Jurisdiction_Name,

 d.name as Neighborhoods,

 s.Count_Participants,

 s.Count_Female,

 s.Count_Male

from stats_by_zip as s

left outer join dic_zip_neighborhoods as d

 on trim(s.Jurisdiction_Name::string) = d.zip_code

select * from stats_by_zip_with_neighborhoods;

In the view stats_by_zip_with_neighborhoods, we combined a regular

relational table and view based on XML data, applying the schema and

extracting only the necessary attributes on the fly. This view can easily be

connected to the BI tool.

�Working with JSON
These days, the JSON format is the most popular format for exchanging

data. Let’s take a look at how Snowflake works with JSON. Let’s take a

sample of financial data using a provider called “World Trading Data.”16

Perform a request17 to find out information about the companies Apple,

Microsoft, and HSBC Holding.

Listing 9-5 shows an example of the response of the RESTful service on

the sample request.

16�https://www.worldtradingdata.com
17�https://api.worldtradingdata.com/api/v1/stock?symbol=AAPL,MSFT,HSBA.
L&api_token=demo

Chapter 9 Working with Semistructured Data

https://www.worldtradingdata.com
https://api.worldtradingdata.com/api/v1/stock?symbol=AAPL,MSFT,HSBA.L&api_token=demo
https://api.worldtradingdata.com/api/v1/stock?symbol=AAPL,MSFT,HSBA.L&api_token=demo

162

Listing 9-5.  Example of JSON Data from NASDAQ

{

 "message": "This request..",

 "symbols_requested": 3,

 "symbols_returned": 3,

 "data": [

 {

 "symbol": "AAPL",

 "name": "Apple Inc.",

 "currency": "USD",

 "price": "202.73",

 "price_open": "201.41",

 "day_high": "203.13",

 "day_low": "201.36",

 "52_week_high": "233.47",

 "52_week_low": "142.00",

 "day_change": "1.18",

 "change_pct": "0.59",

 "close_yesterday": "201.55",

 "market_cap": "932776902656",

 "volume": "16682004",

 "volume_avg": "27522800",

 "shares": "4601079808",

 "stock_exchange_long": "NASDAQ Stock Exchange",

 "stock_exchange_short": "NASDAQ",

 "timezone": "EDT",

 "timezone_name": "America/New_York",

 "gmt_offset": "-14400",

 "last_trade_time": "2019-07-02 16:00:01"

 },

 {..},

Chapter 9 Working with Semistructured Data

163

 {..}

..

]

}

You can see that the response is a tree structure that contains the

following:

•	 Field message that contains basic response information

•	 Summary of request including the following:

•	 Attribute symbols_requested

•	 Attribute symbols_returned

•	 Attribute data that is a container for data

USING SNOWFLAKE SQL FOR JSON

Let’s look at how to work with JSON in Snowflake.

	1.	 Log into your Snowflake account and choose Worksheets.

	2.	 Choose your sample databases and warehouse using DML, as

follows:

use warehouse "COMPUTE_WH_TEST";

use "DEMO_DB"."PUBLIC";

	3.	 Create the table stock_json by using the following DDL

statement:

create or replace table stock_json (val variant);

val is a field with the type VARIANT.

Chapter 9 Working with Semistructured Data

164

	4.	I nsert the sample JSON into Snowflake’s table by using the

parse_json function.

insert into stock_json select parse_json('<JSON>');

Replace the substitutions with the recent JSON code before executing.

	5.	 Check the data into the table. See Figure 9-12.

Select * from stock_json;

	6.	U se the notation <field>:<attribute>[::type] to extract

data from a specific attribute, as shown in Listing 9-6. See

Figure 9-13.

Note U se the notation <field>:<list>.<attribute>[::type]
if you need to extract nested attributes but not from arrays.

Figure 9-12.  JSON data in the table

Chapter 9 Working with Semistructured Data

165

Listing 9-6.  Querying JSON by Using SQL

 select val:message::string as msg,

 val:symbols_requested::int as smbl_rqstd,

 val:symbols_returned::int as smbl_rtrnd

 from stock_json;

Note U nlike the behavior of ordinary relational databases, in
Snowflake, the query will not fail if the schema accidently changes.
For example, when an attribute is requested that is missing, it will
simply return a NULL value.

	7.	 For extracting nested elements from the array, use the built-

in table function FLATTEN, as shown in Listing 9-7.18 See

Figure 9-14.

table(flatten(<array>:<elements>))

Listing 9-7.  Extracting Elements of Arrays of JSON by Using SQL

select f.*
 from stock_json s,

table(flatten(val:data)) f;

Figure 9-13.  Extracting attributes from the JSON structure

18�https://docs.snowflake.net/manuals/sql-reference/functions/flatten.
html

Chapter 9 Working with Semistructured Data

https://docs.snowflake.net/manuals/sql-reference/functions/flatten.html
https://docs.snowflake.net/manuals/sql-reference/functions/flatten.html

166

In Listing 9-8, in the query, FLATTEN extract column names from

val:data of the JSON document and converts it into rows.

	8.	T o extract nested elements from the array, use the built-in table

function FLATTEN: table(flatten(<array>:<elemen

ts>)). See Figure 9-15.

Listing 9-8.  Extracting Elements of Arrays in JSON by Using SQL

select

 s.val:message::string as msg,

 s.val:symbols_requested::int as smbl_rqstd,

 s.val:symbols_returned::int as smbl_rtrnd,

 f.value:symbol::string as smbl,

 f.value:name::string as smbl_name,

 f.value:currency::string as smbl_currency,

 f.value:price::float as prc

 from stock_json s,

table(flatten(val:data)) f

Note T o count the number of elements in an array, you can use the
function array_size(<array>:<elements>).

Figure 9-15.  Extracting attributes from the JSON structure

Figure 9-14.  Applying the FLATTEN function to JSON

Chapter 9 Working with Semistructured Data

167

�Working with AVRO
An AVRO file is serialized JSON with a schema. It is often used as a data

transport format in Apache Kafka.

To work with the data from the AVRO file, you have to do the following:

	 1.	 Create a new stage for creating a new AVRO file

format.

	 2.	 Upload the AVRO file into the stage in Snowflake to

create a new file format.

	 3.	 Create a target table.

	 4.	 Copy the data from the file into the target table.

	 5.	 Query the data in the table using the Snowflake SQL

extension.

	 6.	 To do this, you can use the Snowflake UI or a

command.19

Additionally, you can use AVRO tools.20 Specifically, you can use a Java

package of specific tools for working with the AVRO format including doing

serialization of some JSON files using AVRO schemas.

WORKING WITH AVRO

Let’s look at how to work with AVRO in Snowflake:

	1.	O n your local computer, create a new JSON sample file and

save it as stock_sample2.json, as shown in Listing 9-9.

19�https://docs.snowflake.net/manuals/sql-reference/sql/create-file-
format.html

20�http://mirrors.ocf.berkeley.edu/apache/avro/stable/java/

Chapter 9 Working with Semistructured Data

https://docs.snowflake.net/manuals/sql-reference/sql/create-file-format.html
https://docs.snowflake.net/manuals/sql-reference/sql/create-file-format.html
http://mirrors.ocf.berkeley.edu/apache/avro/stable/java/

168

Listing 9-9.  JSON Sample File

{"symbol":"AAPL","name":"Apple

 Inc.","price":201.41,"last_trade_time":

 1568579958}

{"symbol":"AAPL","name":"Apple

 Inc.","price":201.42,"last_trade_time":

 1568587158}

..

{"symbol":"HSBA.L","name":"HSBC

 Holding","price":826.33,"last_trade_time":

 1568587158}

{"symbol":"HSBA.L","name":"HSBC

 Holding","price":826.47,"last_trade_time":

 1568648358}

	2.	 Create an Avro Schema for this sample file and save it as

stock_sample2.avsc, as shown in Listing 9-10.

Listing 9-10.  AVRO Schema File

{

 "type" : "record",

 "name" : "simple_stock_schema",

 "namespace" : "com.apress.snowflake_jumpstart.avro",

 "fields" : [{

 "name" : "symbol",

 "type" : "string",

 "doc" : "Symbol of the stock"

 }, {

 "name" : "name",

 "type" : "string",

 "doc" : "Name of the stock"

 }, {

 "name" : "price",

Chapter 9 Working with Semistructured Data

169

 "type" : "float",

 "doc" : "Price of the stock"

 }, {

 "name" : "last_trade_time",

 "type" : "long",

 "doc" : "Last trade time. Time Unix epoch time in seconds"

 }],

 "doc:" : "A basic schema for storing stock messages"

}

	3.	D ownload the last version of the AVRO tools and generate an

AVRO sample file, as shown in Listing 9-11.

Listing 9-11.  AVRO File Generation

java -jar ./avro-tools-1.9.0.jar fromjson --schema-file stock_

sample2.avsc stock_sample2.json > stock_sample2.avro

Snowflake supports Snappy21 compression, so you can add this option:

 --codec snappy

	4.	 Create the target table and the stage for the AVRO file in the

table and save it as meta_avro.sql, as shown in Listing 9-12.

Listing 9-12.  Creating Metadata for Loading an AVRO File

use warehouse "COMPUTE_WH_TEST";

use "DEMO_DB"."PUBLIC";

create or replace table c (val variant);

create or replace file format myavroformat

 type = 'AVRO';

create or replace stage my_avro_stage

 file_format = myavroformat;

21�https://en.wikipedia.org/wiki/Snappy_(compression)

Chapter 9 Working with Semistructured Data

https://en.wikipedia.org/wiki/Snappy_(compression)

170

	5.	R un the script.

snowsql -c cc -f meta_avro.sql

Here, cc is your connection label in the config file of snowsql.

	6.	 Create the script for uploading the AVRO data file. Save the

script as put_avro_file.sql, as shown in Listing 9-13.

Listing 9-13.  Uploading the Data and Copying It into the Target

Table

use warehouse "COMPUTE_WH_TEST";

use "DEMO_DB"."PUBLIC";

put file:///Path/to/file/stock_sample2.avro @my_avro_stage auto_

compress=true;

copy into demo_avro

 from @my_avro_stage/stock_sample2.avro.gz

 file_format = (format_name = myavroformat)

 on_error = 'skip_file';

	7.	U pload the file into the Snowflake cloud.

snowsql -c cc -f put_avro_file.sql

	8.	N ow we can check the data in the table, as shown in Listing 9-14.

See Figure 9-16.

Listing 9-14.  Requesting the Data Loaded from an AVRO File

 select val:symbol::string as symbol,

 val:name::string as name,

 �TO_TIMESTAMP(val:last_trade_time::number) as last_trade_time

 val:price::number(10,2) as price

 from demo_avro;

Chapter 9 Working with Semistructured Data

171

�Working with Parquet
A Parquet file is a compressed column-oriented binary file. It is used to

store big data with an analytical workload.

To work with the data in a Parquet file, you do the following:

	 1.	 Create a new stage for creating a new Parquet file

format.

	 2.	 Upload the Parquet file into the stage in Snowflake

where you have to create a new file format.

	 3.	 Create a target table.

	 4.	 Copy the data from the file in the stage to the target

table using mapping fields.

	 5.	 Query the data in the table.

Use a similar approach for working with ORC files.

Figure 9-16.  Loaded data from AVRO file in the table

Chapter 9 Working with Semistructured Data

172

WORKING WITH PARQUET

Let’s look at how to work with Parquet in Snowflake.

Since we do not have a Parquet file, let’s make it from a CSC file using

Python with the Pandas22 and PyArrow23 libraries. Pandas is a popular library

for data manipulation, and it can read our comma-separated file. PyArrow is

a Python interface for Apache Arrow that is a cross-language development

platform for in-memory data, which can also operate with different types of

data including Parquet.

	1.	O n your local computer, create a new CSV sample file and save

it as stock_sample3.csv, as shown in Listing 9-15.

Listing 9-15.  CSV Sample File

symbol,name,price,last_trade_time

"AAPL","Apple Inc.",201.42,1568587158

"AAPL","Apple Inc.",201.41,1568579958

"AAPL","Apple Inc.",201.44,1568648358

"MSFT","Microsoft",136.01,1568579958

"MSFT","Microsoft",136.92,1568587158

..

"HSBA.L","HSBC Holding",826.47,1568648358

	2.	 Let’s install the necessary libraries.

pip install pandas pyarrow

	3.	M ake a simple Python script that reads the CSV file and writes

it in Parquet format. Save the file as csv_to_parquet.py, as

shown in Listing 9-16.

22�https://pandas.pydata.org/
23�https://arrow.apache.org/docs/python/

Chapter 9 Working with Semistructured Data

https://pandas.pydata.org/
https://arrow.apache.org/docs/python/

173

Listing 9-16.  Transforming Data from CSV to Parquet

import pandas as pd

import pyarrow as pa

import pyarrow.parquet as pq

csv_file = 'stock_sample3.csv'

parquet_file = 'stock_sample3.parquet'

read data from CSV file

df = pd.read_csv(csv_file)

check it

print(df.dtypes)

print(df.to_string())

 # write the data in parquet file

table = pa.Table.from_pandas(df)

pq.write_table(table, parquet_file, compression='snappy')

	4.	 Create the target table and the stage for the Parquet file. Save

the script as meta_parquet.sql, as shown in Listing 9-17.

Listing 9-17.  Creating Metadata for Loading the Parquet File

use warehouse "COMPUTE_WH_TEST";

use "DEMO_DB"."PUBLIC";

create or replace table demo_parquet (

 symbol varchar,

 name varchar,

 price number(10,2),

 last_trade_time timestamp

);

create or replace file format myparquetformat

 type = 'PARQUET';

create or replace stage my_parquet_stage

 file_format = myparquetformat;

Chapter 9 Working with Semistructured Data

174

	5.	R un the script.

snowsql -c cc -f meta_parquet.sql

cc is your connection label in the config file of snowsql.

	6.	 Create the script for uploading the Parquet file. Save the script

as put_parquet_file.sql, as shown in Listing 9-18.

Listing 9-18.  Uploading the Data and Copying It into the Target

Table

use warehouse "COMPUTE_WH_TEST";

use "DEMO_DB"."PUBLIC";

put file:///Path/to/File/stock_sample3.parquet @my_parquet_stage

auto_compress=true;

extract and mapping values than copy data in the table

copy into demo_parquet

 from (select

 $1:symbol::varchar,

 $1:name::varchar,

 $1:price::number(10,2),

 to_timestamp($1:last_trade_time::number)

 from @my_parquet_stage/stock_sample3.parquet

)

 file_format = (format_name = myparquetformat)

 on_error = 'skip_file'

 ;

	7.	R un the script for uploading and checking the result. See

Figure 9-17.

snowsql -c cc -f put_parquet_file.sql

Chapter 9 Working with Semistructured Data

175

�Summary
In this chapter, we briefly covered how Snowflake can work with different

data formats. Moreover, you learned about which semistructured data

formats are supported in Snowflake and saw how this is done in practice

by running the examples with JSON, XML, AVRO, and Parquet.

In the next chapter, you will learn about Snowflake’s data sharing

capabilities.

Figure 9-17.  Loaded data from the Parquet file in the table

Chapter 9 Working with Semistructured Data

177© Dmitry Anoshin, Dmitry Shirokov, Donna Strok 2020
D. Anoshin et al., Jumpstart Snowflake, https://doi.org/10.1007/978-1-4842-5328-1_10

CHAPTER 10

Secure Data Sharing
Data sharing inside and outside the organization is one of the most

technically challenging tasks facing modern companies today.

Snowflake provides special features for distributing and sharing

corporate data.

In most cases, data providers must upload the data from a database,

encrypt each of the data sets, and then upload statistical data sets via FTP1

for distribution.

Then consumers have to download the data and painstakingly restore

it by copying it into their databases. There are other tools for sharing on a

cloud or on-premise platform, but they require ETL.2 E-mail exchange is

also possible, but it is slow and limited to a small file and also often leads

to an overflow of your e-mail account. The Snowflake company rethought

the data exchange process and proposed a new approach based on the

cloud architecture as a modern tool for distributing data.

Your data may be stored in Snowflake for some time. If you have

changed or even deleted some of it, you can always request a previous

state from a certain point in time, which is extremely convenient when

working with data.

In this chapter, we will cover the following topics:

1�File Transfer Protocol, https://en.wikipedia.org/wiki/
File_Transfer_Protocol

2�Extract, transform, load https://en.wikipedia.org/wiki/
Extract,_transform,_load

https://en.wikipedia.org/wiki/File_Transfer_Protocol
https://en.wikipedia.org/wiki/File_Transfer_Protocol
https://en.wikipedia.org/wiki/Extract,_transform,_load
https://en.wikipedia.org/wiki/Extract,_transform,_load

178

•	 How to securely share your data using Snowflake

•	 How to work with versions of objects

�Secure Data Sharing
The following are the key Snowflake data sharing benefits:

•	 No data movement, no data copying

•	 Instant access to shared data

•	 The ability to share and grant access to other

companies to use your database

•	 Updates reflected instantly

•	 Limited access to the row-level data by using secure

views

It is necessary to understand that in the process of sharing there is

no real copying of data. Therefore, the data consumer pays only for the

computing service but does not pay for the storage of this data, since

physically the data remains stored with the data provider. Since the

information is not actually transferred, consumers get an instant update

when the provider changes the data. A single data provider may have

multiple data consumers, both within the company and with external

consumers. Similarly, data consumers may have access to multiple

providers, thereby forming a network of providers and consumers.

Chapter 10 Secure Data Sharing

179

Let’s see how it works. The data sharing feature provides the ability

to share database objects between Snowflake’s accounts within a region

by using a specific share object. Such objects can be tables, secure views,

and secure UDFs.3 The data provider creates a share object, and the data

consumer uses this object for access.

Essentially, a share is an object that contains information about the

following:

•	 Permissions that provide access to the provider’s

database and selected objects

•	 Consumer database and objects that are shared

Often there is a situation where you have a base table, and you need to

organize access to only part of the records of this table. The best practice is

to use secure views.

The data sharing feature in Snowflake works only between Snowflake

accounts. If you want to grant access to the outside world, you will need to

use a reader account.4

A provider account can create reader accounts for those consumers

who are not customers of Snowflake. See Figure 10-1.

3�https://docs.snowflake.net/manuals/sql-reference/user-defined-
functions.html

4�https://docs.snowflake.net/manuals/user-guide/data-sharing-reader-
create.html

Chapter 10 Secure Data Sharing

https://docs.snowflake.net/manuals/sql-reference/user-defined-functions.html
https://docs.snowflake.net/manuals/sql-reference/user-defined-functions.html
https://docs.snowflake.net/manuals/user-guide/data-sharing-reader-create.html
https://docs.snowflake.net/manuals/user-guide/data-sharing-reader-create.html

180

Figure 10-1.  Snowflake data sharing

Chapter 10 Secure Data Sharing

181

Table 10-1 highlights the steps of the data sharing process in Figure 10-1.

�Secure Table Sharing
If you have a table, then for organizing access to the table, you need to

perform only three necessary steps.

	 1.	 Create a share object.

	 2.	 Add a table name to the share and grant privileges.

Table 10-1.  Data Sharing Process

Step Description

1 The provider account creates a share object called Share_1 on the

database Provider_DB_1 and grants access to selected objects in

table_1_1.

2 The consumer account creates the read-only database from the Share_1

object. Then, all shared objects are available to consumers. In Figure 10-1,

the accounts are called Customer Account #1 and Customer Account #2.

4 If consumers do not have an account in Snowflake, the provider can create

a reader account for them. In Figure 10-1, this is implemented for the

object Share_2.

5 Shared objects can be a table (like table_1_1), but the best practice is to

use a secure view. A view can include multiple private tables from various

databases.

6 In a secure view, as an option, we can use control data access by rows. For

this, we have to create a table in which there will be a mapping of a group

of records on users.

7 The consumer account grants permissions according to role-based access

control.

Chapter 10 Secure Data Sharing

182

	 3.	 Add a consumer account to the share object.

	 4.	 Log into a consumer account.

	 5.	 Add the available share to the account and query the

shared tables.

Let’s do an example.

EXAMPLE WITH SHARING TABLE

Let’s look at how to share a table in practice:

	1.	 Log into your Snowflake account (the provider account).

	2.	 Switch to a worksheet and run the code in Listing 10-1. See

Figure 10-2.

Listing 10-1.  Creating Sample Data

use role sysadmin;
create database samples;
create schema samples.finance;
create or replace table samples.finance.stocks_data (
 id int,
 symbol string,
 date date,
 time time(9),
 bid_price float,
 ask_price float,
 bid_cnt int,
 ask_cnt int
);

insert into samples.finance.stocks_data

 �values(1,'TDC',dateadd(day, -1,current_date()), '10:15:00', 36.3,

36.0, 10, 10),

Chapter 10 Secure Data Sharing

183

(2,'TDC', dateadd(month,-2,current_date()), '11:14:00',
36.5, 36.2, 10, 10),
(3,'ORCL', dateadd(day, -1,current_date()), '11:15:00',
57.8, 59.9, 13, 13),
(4,'ORCL', dateadd(month,-2,current_date()), '09:11:00',
57.3, 57.9, 12, 12),
(5,'TSLA', dateadd(day, -1,current_date()), '11:01:00',
255.2, 256.4, 22, 22),
(6,'TSLA', dateadd(month, -2,current_date()), '11:13:00',
255.2, 255.7, 23, 23);

select * from samples.finance.stocks_data;

In Listing 10-1 we did the following:

•	 We created a new database called samples and a schema

called samples.finance.

•	 We created a sample table called samples.finance.

stocks_data and filled it with values.

•	 We created a share object and provided access to another

account.

Figure 10-2.  Table with stock data

Chapter 10 Secure Data Sharing

184

Now see Listing 10-2.

Listing 10-2.  Creating a Share and Granting Permissions to a

New Account

use role accountadmin;
create or replace share stocks_share;
show shares;
grant usage on database samples to share stocks_share;
grant usage on schema samples.finance to share stocks_share;
grant select on table samples.finance.stocks_data to share
stocks_share;
 show grants to share stocks_share;

alter share stocks_share add accounts=<consumer_account>;

In Listing 10-2 we did the following:

•	 We created a shared object called stocks_share and

a schema called samples.finance. You can see the

metadata of the share object in Figure 10-3.

•	 We granted privileges by using the statement GRANT

<privilege> TO SHARE on the database

samples, the schema finance, or the concrete table

stocks_share to the consumer account locator

<consumer _account>.

•	 We checked privileges using SHOW GRANTS TO SHARE

<share_name>. See Figure 10-4.

Figure 10-3.  Metadata of share object

Chapter 10 Secure Data Sharing

185

•	 We added a new account to a share using ALTER

SHARE <share_name> ADD ACCOUNTS=<consumer

_account>;.

	3.	 Log into your consumer account called <consumer_

account>. Check access to the table via the consumer

account.

	4.	 Switch to the Worksheets tab and execute SQL. See Figure 10-5.

Now see Listing 10-3.

Listing 10-3.  Showing the Available Share

use role accountadmin;
show shares;
desc share <consumer_account>.STOCKS_SHARE;

	5.	 Let’s create a database based on the share. See Figure 10-6.

create database shared_db from share <provider_
account>.STOCKS_SHARE;

Figure 10-4.  Grants on a share object

Figure 10-5.  Available shares in consumer account

Chapter 10 Secure Data Sharing

186

	6.	 Query the shared table. See Figure 10-7.

�Data Sharing Using a Secure View
If you have a table, you need to perform these steps to organize access to

the table:

	 1.	 Add a new column to a table to divide data into a

few groups.

	 2.	 Create a mapping table (mapping the name of the

groups and the name of the Snowflake account).

	 3.	 Create a secure view on a table.

Figure 10-6.  Available shared objects in the consumer account

Figure 10-7.  Querying the shared table

Chapter 10 Secure Data Sharing

187

	 4.	 Create a share object.

	 5.	 Add the secure view name to the share and grant

privileges.

	 6.	 Add the account to the share object.

Let’s do an example.

SHARING A TABLE USING SECURE VIEW

Let’s look at how to provide access row-level sharing using a secure view.

	1.	 Log into your Snowflake account.

	2.	 Switch to a worksheet and execute the code in Listing 10-4.

Listing 10-4.  Modifying the Table and Adding Values for

Grouping Data

use role sysadmin;
alter table samples.finance.stocks_data
 add column access_id string;

update finance.stocks_data
 set access_id = 'GRP_1'
where id in (1,2,3,4);

update finance.stocks_data
 set access_id = 'GRP_2'
where id in (5,6);
commit;
 select * from samples.finance.stocks_data;

Chapter 10 Secure Data Sharing

188

In Listing 10-4, we did the following:

•	 We changed the table from the previous example by adding

a new column called access_id.

•	 We divided the stock data into two groups.

•	 IT companies: GRP_1

•	 Auto companies: GRP_2

Figure 10-8 shows some summary data of the table.

	3.	T o provide public access based on a secure view, execute the

code in Listing 10-5.

Listing 10-5.  Creating a Mapping Table

use role sysadmin;
create or replace table samples.finance.access_map (
 access_id string,
 account string
);

add access to tech companies for my account
insert into samples.finance.access_map values('GRP_1',
current_account());

Figure 10-8.  Table with column for grouping data

Chapter 10 Secure Data Sharing

189

add access to tech companies for my account
insert into samples.finance.access_map values('GRP_2',
'<consumer_account>');
commit;
select * from samples.finance.access_map;

In Listing 10-5, we did the following:

•	 We created a mapping table called access_map;.

•	 We filled the table with values:

•	 Group #1 of stocks for our account

•	 Group #2 of stocks for <consumer_account>

	4.	T o provide public access based on a secure view, execute the

code in Listing 10-6.

Listing 10-6.  Creating the Secure View on the Table

create or replace schema samples.public;
create or replace secure view samples.public.stocks as
 �select sd.symbol, sd.date, sd.time, sd.bid_price,

sd.ask_price, sd.bid_cnt, sd.ask_cnt
 from samples.finance.stocks_data sd
 �join samples.finance.access_map am on sd.access_id =

am.access_id
 and am.account = current_account();
grant select on samples.public.stocks to public;

In Listing 10-6, we did the following:

•	 We created a new public schema.

•	 We created a secure view called samples.public.

stocks; based on the table and the mapping table.

Chapter 10 Secure Data Sharing

190

•	 We used the function current_account() for

dynamically identifying the user account.

•	 We granted privileges to access the secure view.

	5.	 We tested the access to the table and the secure view.

Now see Listing 10-7.

Listing 10-7.  Checking Access to Tables

select count(*) from samples.finance.stocks_data;
select * from samples.finance.stocks_data;
select count(*) from samples.public.stocks;
select * from samples.public.stocks;
select * from samples.public.stocks
where symbol = 'TDC';

	6.	T est the access to the table and secure view by using the

session parameter simulated_data_sharing_consumer.

See Figure 10-9.

Now see Listing 10-8.

Figure 10-9.  The data of the secure view available to the consumer
(in session simulated mode)

Chapter 10 Secure Data Sharing

191

Listing 10-8.  Checking Access to the Table Using a Session Parameter

alter session set simulated_data_sharing_consumer=<consumer_name>;
select * from samples.public.stocks;

	7.	 Create a share object, add the secure view to the share, and

grant privileges.

Now see Listing 10-9.

Listing 10-9.  Adding the Secure View in the Share Object and Grant

Privileges

alter session set simulated_data_sharing_consumer='<provider_
account>';
use role accountadmin;
create or replace share share_sv;
grant usage on database samples to share share_sv;
grant usage on schema samples.public to share share_sv;
grant select on samples.public.stocks to share share_sv;
show grants to share share_sv;
alter share share_sv set accounts = <consumer_accounts>;
show shares;

In Listing 10-9, we did the following:

•	 We turned back to the session of the producer account.

•	 We created a new share object called share_sv.

•	 We added the secure view to the share.

•	 We granted privileges to access the secure view for the

consumer account.

Chapter 10 Secure Data Sharing

192

	8.	E xecute the script in Listing 10-10 on the consumer side. See

Figure 10-10.

Listing 10-10.  Consumer’s Script

use role accountadmin;

show shares;
create database shared_views_db from share <provider_
account>.share_sv;
grant imported privileges on database shared_views_db to
sysadmin;
use role sysadmin;
show views;
use warehouse <warehouse_name>;
select * from stocks;

In Listing 10-10, we did the following:

•	 We created a database from the share object called

share_sv.

•	 We granted imported privileges from the share object to the

sysadmin user.

•	 We got access to the secure view called stocks.

Figure 10-10.  The view available for the consumer

Chapter 10 Secure Data Sharing

193

�Summary
In this chapter, we covered the Snowflake data sharing feature that

provides an easy, fast, and secure way to distribute data. Moreover, you

learned about share objects and considered several basic options for using

these features.

Finally, we walked through two examples: a simple way to share a table

and an advanced way to share one by using a secure view.

In the next chapter, you will learn about how to design modern

analytical solutions based on Snowflake services.

Figure 10-11.  The data of the secure view available to the consumer

Chapter 10 Secure Data Sharing

195© Dmitry Anoshin, Dmitry Shirokov, Donna Strok 2020
D. Anoshin et al., Jumpstart Snowflake, https://doi.org/10.1007/978-1-4842-5328-1_11

CHAPTER 11

Designing a Modern
Analytics Solution
with Snowflake
You are now familiar with the Snowflake data warehouse (DW) and its

advantages over other DW solutions. However, a typical organization won’t

be using Snowflake alone. Snowflake is part of an analytics solution that

consists of multiple components, including business intelligence and data

integration tools.

In this chapter, you will learn about a modern solution architecture

and the role of Snowflake in it. We will cover the following topics:

•	 Modern analytics solution architecture

•	 Snowflake partner ecosystem

•	 Integration with Matillion ETL and Tableau

This chapter will help you to learn how to build an end-to-end solution

using leading cloud tools for business intelligence and data integration.

You will launch Matillion ETL and load data into the Snowflake DW. In

addition, you will connect to Tableau Desktop and build dashboards.

196

�Modern Analytics Solution Architecture
Nowadays, every organization wants to be data-driven to generate more

value for customers and stakeholders. The organization’s management

understands the value of data and treats it as an asset. They are ready to

invest in modern cloud solutions like Snowflake that are scalable and

secure. However, Snowflake is just one part of the analytical ecosystem.

It is the core data storage for all organization data, and it provides robust

access to the data.

You need more elements in order to build the right solution. These

elements include data integration tools, business intelligence, and data

modeling tools. Figure 11-1 highlights the key elements of a modern

analytics solution.

Figure 11-1.  Modern analytics solution architecture

Chapter 11 Designing a Modern Analytics Solution with Snowflake

197

Figure 11-1 gives you an idea of how a typical analytics solution can

look. I’ve already added Matillion ETL and Tableau to the diagram because

we are going to use them in this chapter. However, you have a choice to use

other products as well.

Table 11-1 describes additional information for each element of the

architecture.

Table 11-1.  Key Elements of Architecture Diagram

Element Description

Source

layer

The source layer includes all the data sources available at your

organization. This could include transactional databases, files, NoSQL

databases, business applications, external APIs, sensors, and IoT.

Storage

layer

The storage layer is the core of solution. You may hear about data

platforms, data lakes, and data warehouses. This is the place for all

of them. You are ingesting data into the storage layer from the source

layers, and you store this data for further analysis, data discovery, or

the decision-making process.

Access

layer

The access layer is nontechnical. The main goal is to provide access for

business users and allow them to interact with data through BI and SQL.

Stream Streaming is a method of data ingesting using real-time data injection.

For example, you can collect data from sensors, and you have a strict

SLA to analyze the data and make decisions.

Batch Batch Processing is a method of data ingesting. For example, for DWs,

we load data once per day. Sometimes, we should load data more

frequently.

Snowflake Snowflake is cloud data warehouse that can serve as a data lake. It

can collect data from both batching and streaming pipelines.

(continued)

Chapter 11 Designing a Modern Analytics Solution with Snowflake

198

In this chapter, we will show how to build simple solutions using

Matillion ETL, Snowflake, and Tableau. We won’t spend much time on

setting up a real source system and will use sample data sets that we will load

into Snowflake with Matillion and then visualize with Tableau. Moreover, we

won’t build a streaming solution or talk about lambda architecture. Based on

our experience in 80 percent of use cases, using a data warehouse, business

intelligence, and ELT is sufficient for a typical organization.

�Snowflake Partner Ecosystem
Snowflake has many technology partners, and it provides good integration

with them. In addition, it has a convenient feature called Partner Connect

that allows you to launch a solution via the Snowflake web interface,

as shown in Figure 11-2.

Table 11-1.  (continued)

Element Description

Matillion

ETL

Matillion ETL is a cloud-native tool that is responsible for the extract,

load, and transform (ELT) process. It was built for the cloud and

provides a visual interface for building data pipelines. The ELT tool is

responsible for all data movement and data transformation.

SqlDBM SqlDBM is a cloud data modeling tool. It was the first cloud tool that

was built for Snowflake. Without a proper data model, you can’t

deliver a quality DW. Moreover, it helps to communicate with business

stakeholders and collaborate with a team.

Tableau Tableau is a visual analytics platform that connects to Snowflake and

provides access for the business users and helps them slice/dice data

and deliver insights. In other words, it is business intelligence tool.

Data

science

tools

Data science tools provide advanced analytics capabilities. It could

be an open source product, programming language (R/Python), or

enterprise solution like Spark Databricks.

Chapter 11 Designing a Modern Analytics Solution with Snowflake

199

Moreover, Snowflake provides native drivers like JDBC, ODBC, and

others for connecting to third-party tools such as Tableau, SqlDBM, Spark,

and others. Figure 11-3 shows the list of available drivers. You can click

Help ➤ Download to get to this menu.

Figure 11-2.  Snowflake Partner Connect page

Figure 11-3.  Snowflake drivers

Chapter 11 Designing a Modern Analytics Solution with Snowflake

200

For our solution, we should choose a data integration tool and BI

tool. Based on our rich experience with DW, BI, and data integration, our

favorite tools for working with Snowflake are Matillion ETL and Tableau.

They are leaders in their area and allow us to build a modern analytics

solution and meet business requirements and SLAs.

�Building Analytics Solutions
Let’s get started.

�Getting Started with Matillion ETL

Matillion ETL is cloud data integration tool. It is available for Snowflake,

Redshift, and BigQuery. It increases development speed, secures data,

provides rich data transformation functionality, and offers many prebuilt

data connectors for Salesforce, Mailchimp, Facebook, and others. One of

the biggest advantages of the tool is that it looks and feels like a traditional

ETL tool with a friendly user interface where developers can drag and drop

components to build their data pipeline.

To start with Matillion ETL, click the Matillion box in Figure 11-1. This

will open a new window and ask permission to create objects within a

Snowflake account. You can see the list of objects in Table 11-2.

Table 11-2.  List of Matillion Objects

Object Object

Database PC_MATILLION_DB

Warehouse PC_MATILLION_WH (X-Small)

Role PC_MATILLION_ROLE

Username Snowflake-snowflake

Chapter 11 Designing a Modern Analytics Solution with Snowflake

201

After activation, the tool will immediately transfer you to the Matillion

ETL web interface. This is connected to your Snowflake cluster, and you

may start to work immediately. This increases your time to market.

Let’s load some initial data into Snowflake using Matillion.

Note O ur Snowflake cluster is hosted on AWS. When we launched
a Matillion ETL instance from the Partner Connect page, we created
the EC2 instance with Matillion ETL. It was created in a different AWS
account. We can launch Matillion ETL in our AWS account by finding
it in the AWS Marketplace. In this case, we will get full control over
the Matillion ETL instance, connect via SSH, use an application load
balancer, adjust security groups, and so on.

RUNNING OUR FIRST JOB WITH MATILLION ETL

We will use a demo Matillion ETL job and sample airport data in order to

create our first ELT job and then load and transform data for our Snowflake

DW. Let’s get started.

	1.	L og into Matillion ETL. You can use the URL, password, and

username that you’ve received in the Matillion activation

e-mail.

	2.	N avigate to Partner Connect Group ➤ Snowflake Project. You

will find two demo jobs, called dim_airport_setup and

dim_airports.

	3.	O pen the dim_airport_setup job by clicking it twice. In

Figure 11-4, we are showing key elements of the Matillion web

interface.

Chapter 11 Designing a Modern Analytics Solution with Snowflake

202

When you are working with Matillion, you are working mostly from a browser.

The same is true for Snowflake. Table 11-3 describes the key elements of the

Matillion ETL web interface shown in Figure 11-4.

Figure 11-4.  Modern analytics solution architecture

Chapter 11 Designing a Modern Analytics Solution with Snowflake

203

Table 11-3.  Key Elements of Matillion ETL Web Interface

Element in
Figure 11-4

Description

1 The job list pane includes all the jobs that you are building for this

project. Moreover, you can organize jobs with folders. There are

two types of jobs. A transformation job (green) is responsible for

data transformation inside Snowflake. An orchestration job (blue) is

responsible for extracting and loading data from/to external sources.

2 The Components pane includes all the components available for this

job type (blue or green). You can easily drag and drop components

and build pipelines.

3 The “Shared job” pane lists the shared jobs. A shared job is a kind of

aggregated job. For example, you can build a new job and reuse it as

a single component.

4 The Environments pane lists the environments. For example, by

default we have one environment that is connected to our Snowflake

cluster. If we want to load data into a different Snowflake cluster or

from another AWS account, we should create a new environment and

specify the credentials.

5 Canvas is our development environment where we can drag and drop

components from the Components pane or “Shared job” pane and

organize them into the data pipeline. Moreover, we can add notes

with tips and documentation.

6 The Project menu is the main menu for Matillion ETL, where you can

manage existing projects, switch to others, and manage variables,

schedules, API profiles, and many others.

7 The Admin menu is available for the Matillion administrator. From

this menu you can manage Matillion users, manage backups, and

download logs.

(continued)

Chapter 11 Designing a Modern Analytics Solution with Snowflake

204

You have learned about the key elements of the Matillion web interface, so you

can now run a job. Click the right button on the canvas and choose “Run job

(snowflake).” Matillion will run the current job using the environment name

snowflake. This job consists of multiple steps.

	a.	 Create tables using the Create Table component.

	b.	L oad data from S3 into the staging tables using the S3 Load

component.

	c.	E xecute the transformation job dim_airport that will

transform raw semistructured data into a tabular format and

load it into a dimension table.

Note  During this exercise, we loaded the Matillion sample data
set that is stored in an Amazon S3 bucket of Matillion. This bucket is
public and is available to everyone. If you have Snowflake on Azure,
then you will load data from Blob Storage.

Element in
Figure 11-4

Description

8 The Help menu allows you to get support information, manage active

sessions, and manage license keys.

9 Component options connect you to Snowflake and provide access to

business users and help them slice/dice data and deliver insights. In

other words, this is a business intelligence tool.

10 The Status menu provides information about currently running tasks,

shows the command log, and displays notices about available updates.

Table 11-3.  (continued)

Chapter 11 Designing a Modern Analytics Solution with Snowflake

205

	4.	A fter the job is finished, we can go back to the Snowflake web

UI and check the new objects that were created by Matillion.

Figure 11-5 shows the list of Snowflake tables that were

created by the Matillion orchestration job.

We launched Matillion ETL and loaded sample data into the Snowflake DW. In

a real-world scenario, we would create many more jobs and collect data from

external sources. For example, for marketing analytics use cases, we need to

load data from social media platforms such as Facebook, Twitter, YouTube, and

so on. Matillion ETL provides prebuilt connectors that will save time for data

engineers or ETL developers.

Moreover, for a quality solution, we should design a data model for querying

our data. We might choose a technique like using Data Vault, dimensional

modeling, and so on. The best choice for the Snowflake data model is SqlDBM.

The final step is to connect to a BI tool. We need a BI tool for simplifying

access for nontechnical users. With Tableau, business users can do data

discovery using drag-and-drop methods and powerful analytics and

visualization capabilities. For our sample solution, we will install Tableau

Desktop and connect to the matillion_dim_airport table in order to

visualize data.

Figure 11-5.  Snowflake tables created by Matillion ETL

Chapter 11 Designing a Modern Analytics Solution with Snowflake

206

�Getting Started with Tableau

Tableau is a leading visual analytics platform. There are many tools

available on the market, but Tableau stands out among them. We have

worked with many different tools from leading vendors and found that

Tableau is the most powerful tool for business intelligence and self-service.

Moreover, it has a large and friendly community. If you have never worked

with Tableau, now is a good time to try it. Connecting Tableau to Snowflake

allows us to use best-of-breed technologies working together. Tableau

is available in Server and Desktop versions. Moreover, it has a mobile

application. Let’s get Tableau and connect to the Snowflake cluster.

BUILDING OUR FIRST VISUALIZATION WITH TABLEAU AND SNOWFLAKE

During this exercise, we will install Tableau Desktop and connect it to the

Snowflake DW. Then we will visualize the matillion_airport_dim data.

	1.	L et’s download and install Tableau Desktop. Go to https://

www.tableau.com/products/desktop/download and

download a recent version of Tableau Desktop. It is available for

macOS and Windows. Then install it.

	2.	O pen Tableau Desktop and connect to Snowflake, as shown in

Figure 11-6.

Chapter 11 Designing a Modern Analytics Solution with Snowflake

https://www.tableau.com/products/desktop/download
https://www.tableau.com/products/desktop/download

207

Note T o connect to the Snowflake DW, you need to download the
ODBC driver from the Snowflake web UI. Select Help ➤ Download ➤
ODBC driver. Download it and install.

	3.	T hen, you should enter your credentials in order to connect to

Snowflake from Tableau. You can use the Matillion credentials

that were created during the Matillion ETL initializing, including

the user role, or you can use your master credentials. You

should use your admin Snowflake credentials. Figure 11-7

shows an example of the connection options.

Figure 11-6.  Tableau Desktop connection to Snowflake

Chapter 11 Designing a Modern Analytics Solution with Snowflake

208

	4.	 Click Sign In and then enter the following:

	 a.	W arehouse: PC_MATILLION_WH

	 b.	 Database: PC_MATILLION_DB

	 c.	S chema: Public

Then drag and drop the matillion_dim_airports table to

the connection canvas.

	5.	 Click Sheet 1, and you will jump into the development area. You

just created your first Tableau live data source.

Figure 11-7.  Snowflake connection window

Chapter 11 Designing a Modern Analytics Solution with Snowflake

209

Note T he Tableau data source supports live and extract options.
Extract will query all data from the data source and cache it into an
internal columnar data store called Hyper. The live connection will
query data from the data source on demand. This is the right strategy
for a big volume of data. With a live connection, Snowflake will do the
heavy lifting, and Tableau will render the result. This is the secret to
doing big data analytics.

	6.	L et’s create a quick visualization using the available data. Say

we want to know the number of airports across states and

order them in descending order. In Figure 11-8 you can see the

Tableau Desktop interface and a simple report.

Figure 11-8.  Number of airports in Alaska

Chapter 11 Designing a Modern Analytics Solution with Snowflake

210

Did you know that Alaska has the most airports of all states?

This is good insight. We built this report by dragging and

dropping the dimension (blue) State Name into the Rows pane

and Calculated Field #Airports into the Columns pane. To create

a calculated field, click the right button in the Measures pane

and choose Create Calculated Field. Then use the following

syntax:

COUNTD([Airport])

This count the distinct (unique) number of airports names. We

will put a measure also in the Label pane to provide a label for

each bar.

	7.	I t is interesting to look at Snowflake to see what was happening

when we built our report. From the Snowflake web UI on the

History tab, we can see the SQL query that was generated by

Tableau, shown here:

SELECT "matillion_dim_airports"."iata" AS "iata",

 "matillion_dim_airports"."state" AS "state"

FROM "PUBLIC"."matillion_dim_airports" "matillion_dim_

airports"

GROUP BY 1, 2

Moreover, we are able to look at the execution plan. This is

helpful when we are working with large data sets and multiple

tables.

We have connected the Snowflake DW with Tableau Desktop. The next

logical step is to publish the report to the Tableau server and share it with

stakeholders.

Chapter 11 Designing a Modern Analytics Solution with Snowflake

211

Note W ith Tableau, you can leverage the unique features of
Snowflake such as querying and visualizing semistructured data,
working with the Time Travel feature, sharing data, implementing
role-based security, and using custom aggregation. Moreover,
we can integrate Tableau and Matillion. You can find more good
information about this at https://rockyourdata.cloud/best-
practices-matillion-etl-and-tableau/.

�Summary
In this chapter, we covered the Snowflake partner ecosystem, and you

learned about a modern analytics architecture and its key elements.

Moreover, we connected to the best cloud ELT tool for Snowflake, which

is Matillion ETL, and ran our first job. Then, we built a report with the best

visual analytics tool, called Tableau. At the end of this chapter, we created

analytics solution that can be scaled and is ready for use in production.

Using this example, you can build your analytics solution and get

immediate value.

In the next chapter, we will talk about some data use cases for

Snowflake. You will learn how Snowflake can handle a large volume of data.

Chapter 11 Designing a Modern Analytics Solution with Snowflake

https://rockyourdata.cloud/best-practices-matillion-etl-and-tableau/
https://rockyourdata.cloud/best-practices-matillion-etl-and-tableau/

213© Dmitry Anoshin, Dmitry Shirokov, Donna Strok 2020
D. Anoshin et al., Jumpstart Snowflake, https://doi.org/10.1007/978-1-4842-5328-1_12

CHAPTER 12

Snowflake and
Data Science

“You’re only given a little spark of madness. You mustn’t lose it.”

—Robin Williams,
“Little spark of madness” stand-up, 1977

Nowadays, data is one of the main assets of any company. As a result, each

team of analysts is faced with the need to organize data science processes.

Snowflake is a smart choice as a data source for storing structured and

semistructured data.

In other words, elastic storage and computes allow you to store an

unlimited amount of data at no extra cost with the ability to search for

insights through data analysis and model building.

Additionally, the platform has integration possibilities with the most

popular data analytical solutions.

In this chapter, you will learn about how Snowflake and data science

platforms work together. We will cover the following topics:

•	 Snowflake-supported advanced analytics solutions

•	 Apache Spark introduction

•	 Snowflake and Spark connector

•	 Snowflake and Databricks

214

�Snowflake and the Analytics Ecosystem
Snowflake supports many popular analytical solutions. Table 12-1 shows

some of the platforms that are integrated with Snowflake.

Table 12-1.  Popular Analytics Solutions That Work with Snowflake

Tool Description

Alteryx Alteryx1 is a self-service data analytics platform.

Apache

Spark

Apache Spark2 is an open source cluster computing framework.

Databricks Databricks3 is a cloud-based big data processing company founded by

the creators of Apache Spark.

DataRobot DataRobot4 is a predictive analytics platform to rapidly build and

deploy predictive models in the cloud or in an enterprise.

H2O.io H2O.io5 is an open source machine learning and artificial intelligence

platform.

R Studio R Studio6 is an open source integrated development environment for R.

Qubola Qubola7 is cloud-native data platform based on Apache Spark, Apache

Airflow, and Presto.

1�You can find more information about the Alteryx platform at
https://www.alteryx.com/.

2�You can find more information about Apache Spark at
https://spark.apache.org/.

3�You can find more information about the Databricks platform at
https://databricks.com/.

4�You can find more information about DataRobot at
https://www.datarobot.com/.

5�You can find more information about the H2O platform at
https://www.h2o.ai/.

6�You can find more information about R Studio at https://www.rstudio.com/.
7�You can find more information about Qubola at https://www.qubole.com/.

Chapter 12 Snowflake and Data Science

https://www.alteryx.com/
https://www.alteryx.com/
https://spark.apache.org/
https://spark.apache.org/
https://databricks.com/
https://databricks.com/
https://www.datarobot.com/
https://www.datarobot.com/
https://www.h2o.ai/
https://www.h2o.ai/
https://www.rstudio.com/
https://www.qubole.com/

215

�Snowflake and Apache Spark
Let’s look at an example of how the interaction between the database

and the analytical platform works. Apache Spark is the de facto industry

standard for big data engineering and analytics. Spark is an open source

analytics framework based on a distributed computing cluster. It usually

uses engineering data pipelines, including streaming mode, ad hoc

analysis, machine learning, graph analysis, and other types of analytics.

Machine learning is becoming increasingly popular in many

companies because it can significantly impact many of the company’s

business processes. Spark can work for model training and production.

We can build a machine learning model using Spark MLlib, which is

an internal machine learning library using distributed, highly scaling

algorithms. Additionally, Spark works well with Pandas,8 Scikit-learn,9

TensorFlow,10 and other popular statistical, machine learning, and deep

learning libraries.

Moreover, you can use Apache MLflow11 for organizing the lifecycle

of the model and Apache Airflow12 or similar solutions for building data

pipelines.

8�Pandas is a Python library providing data structures and data analysis methods.
For more information, see https://pandas.pydata.org.

9�Scikit-learn is a free Python machine learning library. For more information, see
https://scikit-learn.org.

10�TensorFlow is an open source deep learning library. For more information, see
https://www.tensorflow.org.

11�MLflow is an open source platform for the machine learning lifecycle. For more
information, see https://mlflow.org/.

Chapter 12 Snowflake and Data Science

https://pandas.pydata.org
https://scikit-learn.org
https://www.tensorflow.org
https://mlflow.org/

216

Data scientists and analysts prefer to use SQL, R, and Python. Data

engineers usually use languages such as Python, Java, and Scala. Spark

provides an API with a different number of languages, including all these

languages. It depends on the assets and knowledge base of your team

members; each can be writing Spark code that executes on a distributed

cluster of machines. Your company can choose the optimal strategy

for deployment because Apache Spark can be set up and deployed on-

premises or in the cloud. Most popular cloud providers such as Amazon

AWS, Microsoft Azure, and Google supply Spark as a component or service.

AWS supports Spark as part of an EMR13 service. Microsoft supports Spark

in the Azure Hadoop–based HDInsight14 as well as the Azure Databricks

platform. Additionally, Google Cloud Dataproc15 is a managed service

based on Hadoop with Spark.

Let’s look at the main components of Apache Spark; see Figure 12-1.

Figure 12-1.  Apache Spark high-level components

12�Apache Airflow is a schedule and monitor workflows tool. For more information,
see https://airflow.apache.org.

13�AWS Elastic MapReduce (EMR) is a Hadoop managed service on AWS. For more
information, see https://aws.amazon.com/emr/.

14�HDInsight is a Hadoop–managed service on Azure. For more information, see
https://azure.microsoft.com/en-us/services/hdinsight/.

Chapter 12 Snowflake and Data Science

https://airflow.apache.org
https://aws.amazon.com/emr/
https://azure.microsoft.com/en-us/services/hdinsight/

217

Table 12-2 describes the components of the platform.

Table 12-2.  Components of Apache Spark

Component Description

Spark SQL Spark SQL is the module for working with structured data

by using SQL. It is compliant with the SQL ANSI 2011

specification and also supports Hive QL.

Spark Streaming Spark Streaming is a Spark Structured Streaming API that

allows you to build a scalable data pipeline solution that works

in near-real-time mode.

MLlib MLlib is the implementation of machine learning algorithms in

a scalable and distributed manner.

GraphX GraphX is the module for graph analytics. For instance, you

can use graph analysis as part of the implementation of fraud

analytics or customer churn analysis.

Spark Core with

Dataframe API

Spark Core is the distributed scalable engine that deploys on

different types of big data clusters such as Mesos, Hadoop

YARN, and Kubernetes. It provides a high-level abstraction

including RDD and Dataframe16 for operating with structured

and semi/unstructured data by using the Python, R, and Scala/

Java languages.

Datasource API The Datasource API provides the ability to deelop connectors

for connecting to Apache Spark. Snowflake has already

developed such a library.

Spark Modules Spark has an ecosystem for the development and distribution

of Spark-compatible libraries.

15�Google Cloud Dataproc is a Hadoop–managed service on GCP. For more
information, see https://cloud.google.com/dataproc/.

Chapter 12 Snowflake and Data Science

https://cloud.google.com/dataproc/

218

�Connector for Apache Spark
Snowflake provides Apache Spark Connector,17 which allows you to use

Snowflake and Spark together. Let’s dive into how it works.

Figure 12-2 shows a data flow process between Snowflake data

warehouse services and managed Apache Spark.

The connector supports two modes of data transfer, depending on

whether the internal stage is used or external. Stages can be based on an

AWS S3 or Azure Blob Storage container. Internal stages automatically

create and drop during data transfer inside the Snowflake session.

However, you can choose the external stages if you prefer to manage the

data transfer yourself.

Figure 12-2.  Bidirectional data transfer between Snowflake and Spark

16�Spark provides data frames and data sets. For more information, see
https://spark.apache.org/docs/latest/sql-programming-guide.html.

Chapter 12 Snowflake and Data Science

https://spark.apache.org/docs/latest/sql-programming-guide.html
https://spark.apache.org/docs/latest/sql-programming-guide.html

219

Note  Best practice is to use internal transfer. Use external transfer
only if there is a need to store data for more than 36 hours.

Additionally, one of the key features of the Spark connector is query

pushdown optimization. Pushdown optimization is an approach in which

the logic for transforming or querying data happens on the database

side. The adapter has deep integration with Spark and will be able to

read Spark’s logical query plans and transfer fully or partially executed

to Snowflake. This allows you to reduce the amount of data being moved

between the Snowflake database and Spark, which dramatically improves

performance. See Table 12-3.

Table 12-3.  Interaction Between Spark and Snowflake

Interaction Description

Spark dataframe A Spark dataframe is the data structure in the distributed

memory of Apache Spark that can be automatically created

and based on the data from Snowflake’s table. The schema of

the table and the dataframe schema must match. Otherwise,

you must specify the mapping.18 In the opposite direction, it

is the data structure that stores the data that is written to the

table.

Snowflake JDBC

driver

The Snowflake JDBC driver is a high-performance optimized

driver developed by the Snowflake corporation.

17�For more information about Snowflake Connector for Spark, see https://docs.
snowflake.net/manuals/user-guide/spark-connector.html.

(continued)

Chapter 12 Snowflake and Data Science

https://docs.snowflake.net/manuals/user-guide/spark-connector.html
https://docs.snowflake.net/manuals/user-guide/spark-connector.html

220

�Working with Databricks
Databricks provides the Databricks Unified Analytics Platform,20 which is a

data science and data engineering platform with tools for data engineers to

build data pipelines, for data scientists to build machine learning models,

and for business users to consume real-time dashboards.

In addition to the Spark engine, the platform provides many additional

enterprise-level components for building a complete process for gathering

insights from data sets, as well as designing and testing machine learning

models.

Interaction Description

Snowflake Spark

Connector

Snowflake Spark Connector is a connector that implements

the Spark Datasource API for Snowflake and is published as

the Maven19 package.

Snowflake internal/

external stages

Snowflake internal/external stages are Snowflake stages

used by the data transfer process.

Snowflake table A Snowflake table is the source/target table into the

Snowflake DB.

Table 12-3.  (continued)

18�For more information about column mapping, see https://docs.snowflake.
net/manuals/user-guide/spark-connector-use.html#label-spark-options.

19�Maven is a build automation tool used primarily for Java projects. For more
information, see https://maven.apache.org/.

Chapter 12 Snowflake and Data Science

https://docs.snowflake.net/manuals/user-guide/spark-connector-use.html#label-spark-options
https://docs.snowflake.net/manuals/user-guide/spark-connector-use.html#label-spark-options
https://maven.apache.org/

221

Figure 12-3.  Elements of Databricks Unified Analytics Platform

Databricks has already set up Snowflake Spark Connector. We can

easily use the interface for quickly setting up a connection between data

platforms. See Figure 12-3 and Table 12-4.

Chapter 12 Snowflake and Data Science

222

Table 12-4.  Components of Databricks Unified Analytics Platform

Component Description

Databricks

Workspace

The Databricks Workspace is an environment that provides a

hierarchy with notebooks, libraries, dashboards, and experiments

with appropriate access to them.

Databricks

Runtime

The Databricks Runtime is a number of components that improve the

usability, performance, and security of big data analytics.

•	 Apache Spark is an open source analytics framework based on

a distributed computing cluster.

•	 Delta Lake21 is an open source storage layer with ACID, scalable

metadata, and versioning features. It also includes schema

evolution features for building data lakes. It can be built on S3,

Azure Data Lake Storage, and HDFS.22

•	 ML Libraries is a list of the most popular machine learning

libraries such as TensorFlow.

•	 ML Flow23 is an open source platform for managing the

machine learning lifecycle, including the following:

•	 ML Flow Project provides a code packaging format.

•	 ML Flow Models provides a model packaging format. You

can deploy it to Docker or Azure ML for serving Apache Spark.

•	 ML Flow Tracking is a component for tracking experiments,

including code, parameters, and metrics.

Databricks

Cloud

Services

The platform can be deployed on AWS and Azure. Databricks is

software as a service. This means the platform provides the benefits

of a fully managed service and reduces infrastructure complexity.

20�For more information, see https://databricks.com/product/
unified-analytics-platform.

21�For more information about Delta Lake, see https://delta.io/.
22�For more information about Apache Hadoop Distributed File System, see
https://hadoop.apache.org/.

Chapter 12 Snowflake and Data Science

https://databricks.com/product/unified-analytics-platform
https://databricks.com/product/unified-analytics-platform
https://delta.io/
https://hadoop.apache.org/

223

USING SNOWFLAKE AND DATABRICKS TOGETHER

Let’s see how the Databricks interface works with Snowflake. This is just an

example of how you might do this.

	1.	 Sign into Azure at azure.microsoft.com.24

Note T he minimum requirement for a Databricks cluster is two
nodes. Your Azure account has to be “pay as you go.” Please check
your account’s limits and quotas25 and pricing details.26

	2.	L og into your Azure account.

	3.	 Create a new Databricks service using Home ➤ Azure

Databricks ➤ Create Azure Databricks service. See Figure 12-4.

23�For more information about MLFlow, see https://mlflow.org/.
24�For more information about Microsoft Azure, see https://azure.microsoft.
com.

25�For more information about limits, see https://docs.microsoft.com/en-us/
azure/azure-subscription-service-limits.

Chapter 12 Snowflake and Data Science

http://azure.microsoft.com
https://mlflow.org/
https://azure.microsoft.com
https://azure.microsoft.com
https://docs.microsoft.com/en-us/azure/azure-subscription-service-limits
https://docs.microsoft.com/en-us/azure/azure-subscription-service-limits

224

	4.	 Open a Databricks environment.

A Databricks notebook practically represents an extended version of

Python Notebook. See Figure 12-5.

Figure 12-4.  Creating a new Azure Databricks service

Chapter 12 Snowflake and Data Science

225

	5.	 Create a new small Spark cluster by selecting Cluster ➤ Create

cluster. See Figure 12-6.

Set Cluster Name to db_cluster.

Figure 12-6.  Launching a new Spark cluster

Figure 12-5.  Azure Databricks environment

Chapter 12 Snowflake and Data Science

226

Databricks Runtime 5.3 ML means the set of core runtimes, including

Apache Spark and Scala; machine learning libraries like Pandas,

PyTorch, and TensorFlow; and other popular data science packages.

Next, use Python version 3.

Finally, we have to choose the Worker Type setup. We can use the

standard type here. For better performance, we can choose a worker

called Databricks Delta Caching.27 See Figure 12-7.

	6.	 Create a new notebook using Azure Databricks ➤ Create a

blank notebook, call it snowflake_test, and attach the existing

cluster. See Figure 12-8.

Figure 12-7.  Launching a new Spark cluster

Figure 12-8.  Attaching the cluster to a notebook

26�For more information about Azure Databricks, see https://azure.microsoft.
com/en-us/pricing/details/databricks/.

Chapter 12 Snowflake and Data Science

https://azure.microsoft.com/en-us/pricing/details/databricks/
https://azure.microsoft.com/en-us/pricing/details/databricks/

227

	7.	 Connect to Snowflake.

Replace the substitutions according to your Snowflake credentials

before executing Listing 12-1.

Caution  Best practice is to use Databricks secrets28 instead of
these substitutions. In Listing 12-1 we left substitutions for ease of
perception.

Listing 12-1.  Connecting to Snowflake’s TPCH_SF1.SNOWFLAKE_

SAMPLE_DATA

options = dict(sfUrl="<your_snowflake_account>.
snowflakecomputing.com",
 sfUser="<user>",
 sfPassword="<password>",
 sfDatabase= "SNOWFLAKE_SAMPLE_DATA",
 sfSchema= "TPCH_SF1",
 sfWarehouse= "SMALL_COMPUTE_WH")

	8.	 Read data from Snowflake.

df = spark.read \
 .format("snowflake") \
 .options(**options) \
 .option("dbtable", "ORDERS") \
 .load()

display(df)

27�For more about optimizing performance with caching, see https://docs.
databricks.com/delta/delta-cache.html.

28�For more about Databricks secrets, see https://docs.databricks.com/user-
guide/secrets/index.html.

Chapter 12 Snowflake and Data Science

https://docs.databricks.com/delta/delta-cache.html
https://docs.databricks.com/delta/delta-cache.html
https://docs.databricks.com/user-guide/secrets/index.html
https://docs.databricks.com/user-guide/secrets/index.html

228

	9.	W rite data into Snowflake.

df.write \
 .format("snowflake") \
 .options(sfOptions) \
 .option("dbtable", "sampletable") \
 .mode(SaveMode.Overwrite) \
 .save() \

�Summary
In this chapter, we covered how Snowflake works with modern analytics

solutions. You learned about which popular advanced analytics platforms

have deep integration with Snowflake and saw how this is done in practice

by running through a quick example of Databricks.

In the next chapter, you will learn about how to migrate a legacy data

warehouse system into Snowflake.

Chapter 12 Snowflake and Data Science

229© Dmitry Anoshin, Dmitry Shirokov, Donna Strok 2020
D. Anoshin et al., Jumpstart Snowflake, https://doi.org/10.1007/978-1-4842-5328-1_13

CHAPTER 13

Migrating to
Snowflake
Throughout the book you have learned about key concepts of Snowflake,

including its architecture and its security capabilities. You have also met

some unique Snowflake features. Moreover, you saw how Snowflake can

be integrated with third-party tools for ELT/ETL and BI purposes as well as

big data and advanced analytics use cases with Spark.

In this chapter, we will highlight some key migration scenarios to give

you an idea of how you can migrate your legacy solution to the cloud.

In addition, some organizations might try to upgrade an existing cloud

solution that isn’t sufficient for a business use case or is very expensive.

Data warehouse modernization is the hottest topic right now, and

many organizations are looking for best practices to modernize their

legacy, expensive, and ineffective solutions using the cloud. Snowflake

is a good choice for organizations because it is available on main cloud

platforms such as Amazon Web Services (AWS), Microsoft Azure, and

Google Cloud Platform (GCP), and it allows you to get instant value by

democratizing the data across the organization.

In this chapter, we will cover the following topics:

•	 Data warehouse migration scenarios

•	 Common data architectures

230

•	 Key steps for a data warehouse migration

•	 Real-world project

•	 Additional resources for Snowflake migration

�Data Warehouse Migration Scenarios
The goal of a data warehouse migration is to serve the growing data

appetite of end users who are hungry for data insights. Before we dive deep

into this topic, let’s categorize the organizations and their data needs. We

will split organizations by their analytics maturity, as shown here:

•	 Startups and small business without a proper analytics

solution

•	 Organizations with on-premise data solutions

•	 Organizations with a default cloud solution deployed

on Azure, GCP, or AWS

�Startup or Small Business Analytics Scenario
The easiest deployment process is for startup companies. They don’t have

any analytics solution yet and are usually connecting to source systems

using business intelligence (BI) tool or spreadsheets. They are looking for

better alternatives, and they don’t want to invest in an expensive solution,

but they want to be sure that they can start small and scale easily. With

Snowflake, they get all the benefits of Snowflake and pay only for their

workloads. Over time, they will grow, and as a result, their Snowflake

implementation will grow.

Figure 13-1 shows an example architecture before Snowflake and with

it for small companies.

Chapter 13 Migrating to Snowflake

231

Startups track key metrics, and it is important to get timely insights

from data. As a result, analysts connect to the source systems and extract

the data. This process is manual and not scalable. The next logical step is

to hire a data engineer or analytics consulting company and deploy a data

warehouse with Snowflake. This will allow you to get insights you’re your

data and grow the business.

�On-Premise Analytics Scenario for Enterprises
and Large Organizations
The second scenario is the biggest and the most popular. There are lots of

enterprise organizations that are looking for a way to improve their existing

on-premise solutions. These solutions are extremely expensive, and they

require lots of resources to maintain. Moreover, they have lots of custom

solutions for big data, streaming, and so on. The complexity of these

solutions is extremely high, but the value isn’t high because on-premise

solutions are a bottleneck, and it is not easy to scale a solution even in the

case of an unlimited budget. So, the best way is to migrate the existing on-

premise solutions to the cloud and leverage an innovative analytics data

Figure 13-1.  Before and with Snowflake for startups

Chapter 13 Migrating to Snowflake

232

platform such as Snowflake. With Snowflake, enterprises can migrate all

their data to the cloud, use a single platform for a data warehouse, share

data, and make use of machine learning.

Figure 13-2 shows an example architecture before and with Snowflake

for enterprises and other large companies.

The figure is a top-level overview of an on-premise organization

with big data (a data lake, usually deployed on top of Hadoop) and an

on-premise data warehouse massive parallel processing (MPP) solution

such as Oracle, Teradata, or Netezza. Usually, enterprises use enterprise-

grade ETL solutions that are expensive and require powerful hardware.

There are multiple options for streaming, and one of the most popular is

Apache Kafka. Moreover, enterprises handle a big volume of data with a

semistructured format such as JSON, AVRO, Parquet, and so on. In the

Figure 13-2.  Before and with Snowflake for enterprises

Chapter 13 Migrating to Snowflake

233

example in Figure 13-2, we are uploading JSON into a data lake and then

parsing and loading it into a data warehouse. Finally, some organizations

have to share data. This isn’t an easy or cheap task for an on-premise

solution.

With Snowflake, organizations will migrate all their data into the

cloud. Moreover, they will use a single data platform for streaming use

cases, storing semistructured data, and querying the data via SQL, without

physically moving the data. So, there are lots of benefits that will open new

horizons for analytics and help to make business decisions driven by data.

�Cloud Analytics Modernization with Snowflake
The last scenario is the trickiest one. Some modern organizations have

already leveraged cloud vendors or migrated a legacy solution to the cloud.

However, they may be facing challenges such as high cost, performance

issues related to concurrency, or having multiple tools for various business

scenarios such as streaming and big data analytics. As a result, they decide

to try Snowflake and unify their data analytics with a single platform and

get almost unlimited scalability and elasticity.

Figure 13-3 shows an example architecture before and with Snowflake

for cloud deployments with Microsoft Azure.

Chapter 13 Migrating to Snowflake

234

On the left, we have multiple solutions from Azure for the data

warehouse and data lake, such as Azure Data Factory and Azure

Streaming. On the right, we have Snowflake that is hosted on the Azure

cloud, and we have leveraged another cloud ELT tool, Matillion ETL, that

allows us to create complex transformations visually. However, we can still

use Azure Data Factory for ELT. Finally, with this new architecture, you can

leverage the data sharing capabilities without physically moving the data.

�Data Warehouse Migration Process
We just reviewed three common scenarios for Snowflake migrations.

We will dive deep into the second scenario because it is one of the most

popular and complex. The first scenario isn’t a real migration scenario; it

is more a DW design and implementation project. The third scenario is

an evolution of the second; it has a similar idea, and usually it is easier to

perform since all the data is already in the cloud.

Figure 13-3.  Before and with Snowflake for cloud analytics
modernization on Microsoft Azure

Chapter 13 Migrating to Snowflake

235

When we talk about DW migration, there are two major approaches.

•	 Lift and shift: Just copy the data as is with limited

changes.

•	 Split and flip: Split a solution into logical functional

data layers. Match the data functionality with the right

technology. Leverage the wide selection of tools on the

cloud to best fit the needs. Move data in phases such as

prototype, learn, and perfect.

Despite the fact that “lift and shift” is a faster approach, it has limited

value for long-term organizational goals. As a result, we always prefer to

“split and flip.” This will guarantee that we won’t sacrifice for short-term

value.

We can split the migration process into two main buckets.

•	 The organizational part of the migration project

•	 The technical part of the migration project

Let’s review them in detail.

�Organizational Part of the Migration Project
Figure 13-4 shows a high-level overview of the steps needed to prepare and

execute the migration of an existing system to Snowflake.

Chapter 13 Migrating to Snowflake

236

Let’s learn more about each of migration steps that are recommended

by Snowflake.

�Document the Existing Solution

You already know that Snowflake uses row-based access control; therefore,

we have to document the existing users, their roles, and their permissions.

This allows you to replicate the data access and security strategy

implemented in your legacy system. You should pay special attention to

sensitive data sets and how they’re secured, as well as how frequently

security provisioning processes run in order to create similar security

within Snowflake. Finally, you want to ensure that you have an existing

architectural diagram of the existing solution.

Figure 13-4.  Key steps of migration process

Chapter 13 Migrating to Snowflake

237

�Establish a Migration Approach

Then, you should establish a migration approach. You should list all the

existing processes that you want to migrate. Moreover, you should identify

all the processes that have to be refactored as well as the broken processes

that need to be fixed. This will allow you to draft these deliverables and

create the data architecture diagram to present to the stakeholders.

Snowflake generally recommends minimal re-engineering for the first

iteration unless the current system is truly outdated. To provide a value

for the business as soon as possible, you should avoid a single “big-bang”

deliverable as the migration approach and instead break the migration

into incremental deliverables that enable your organization to start making

the transition to Snowflake more quickly. This process is called agile data

warehousing and allows you to deliver fast value for the end users.

Moreover, organizations may want to change their development or

deployment processes as part of the migration. You should document new

tools that will be introduced as a result of the migration, tools that will

need to be deprecated, and development environments that are needed

for the migration. Whether the development and deployment processes

change or not, you should capture the development environments that will

be used for the migration.

�Capture the Development and Deployment Processes

Modern organizations care about DevOps. If you didn’t widely use it before,

it could be a good opportunity to start implementing DevOps/DataOps

procedures that will increase the quality of your analytics solution.

For example, usually organizations have the following environments:

•	 Dev

•	 QA

•	 Prod

Chapter 13 Migrating to Snowflake

238

Moreover, they have source control repositories and methods for

capturing deployment changes from one environment to another. These

will be used for that migration. This information is critical to direct how the

development and deployments are implemented.

The ideal candidates for starting the migration provide value to the

business and require a minimal migration effort.

�Prioritize Data Sets for Migration

You should learn more about the available data sets in the legacy

solutions. Rather than starting with the most complex data sets, we prefer

to begin with a simple data set that can be migrated quickly to establish

a foundation through the development and deployment processes that

can be reused for the rest of the migration effort. To prioritize data sets

for migration, you should understand the dependencies among data sets.

Those dependencies need to be documented and conform with business

stakeholders. Ideally, this documentation can be captured using an

automated process that collects information from existing ETL jobs, job

schedules, and so on. This will help you avoid manual work for identifying

and documenting changes.

Creating an automated process provides value throughout the

migration project by more easily identifying the ongoing changes that will

occur throughout the migration project since the underlying systems are

unlikely to be static during the migration.

�Identify the Migration Team

Another important thing is to build the migration team. Some common roles

needed for the migration are developer, quality assurance, business owner,

project manager, program manager, scrum master, and communication. When

a Snowflake solution partner is engaged for migration, they may fulfill multiple

needs, including solution design, gathering requirements, delivering migration

project, producing documentation and conducting Snowflake training.

Chapter 13 Migrating to Snowflake

239

Based on our experience, the challenge is to change the paradigm from

a traditional DW to a cloud DW. Engineers should be ready to learn new

skills, and they may apply for additional professional courses related to

cloud foundations and Snowflake best practices.

�Define the Migration Deadlines and Budget

The expectations for any migration should be clear to all parties. But

the expectations need to be combined with other information that has

been gathered to determine whether the deadlines can be met. One

of the benefits of gathering all of this information is to establish and

communicate achievable deadlines, even if the deadlines are different

from what the business expects.

It is common in migration projects that deadlines are defined before

evaluating the scope of the project to determine whether the deadlines are

achievable, especially if the business is trying to deprecate the legacy system

before the renewal date. In situations where the deadline can’t be moved and

the migration scope requires more time than is available before the deadline,

work needs to be done with the business to agree on a path forward.

Understanding the budget that has been advocated to complete the

migration is also critically important. The amount of migration work and

the cost associated with the migration work both need to be compared

to the available budget to ensure that there are sufficient funds to

complete the work. Pausing in the middle of a migration or stopping it

altogether is a bad outcome for all involved parties.

When we are planning the budget, we should estimate the cost of

Snowflake deployment and the cost of the migration project.

�Determine the Migration Outcomes

Migration outcomes should be used to validate that the migration project

is providing the overall benefit the business expects to achieve from the

migration. For example, turning off the Oracle database system is one

Chapter 13 Migrating to Snowflake

240

of the desired outcomes. That outcome should be achieved with the

migration plan. This documentation can be expressed as success or failure

criteria for the migration project and may also include benchmarks that

compare process execution. Once compiled, this information should be

used for communicating with stakeholders.

After identifying the migration outcomes, you should present them to

the business along with the mitigation strategy and confirm the proposed

approach will meet their requirements. This should be done to set

appropriate expectations from the beginning of the migration.

The escalation process needs to be documented, including

who is responsible for working on the issue, who is responsible for

communicating the progress of the issue, and a list of contexts from the

business, Snowflake, and any other involved parties that are involved in

resolving the issue.

�Establish Security

Depending on the security requirements, there may be a need to capture

role creation, user creation, and the granting of users to roles for auditing

purposes. While the existing database security can be a good starting

point for setting up security within Snowflake, the security model should

be evaluated to determine whether there are roles and users who are

no longer needed or should be implemented differently as part of the

migration to Snowflake. Additional roles may be required for restricting

access to sensitive data. Moreover, you can think about improving the

solution security by implementing two-step authentication, collecting

security logs, and so on.

�Develop a Test Plan

Develop a test plan by identifying the appropriate level and scope for

each environment. For example, schedules aren’t executed in dev, but

only in QA and prod. Automate as much possible to ensure repeatable

Chapter 13 Migrating to Snowflake

241

test processes with consistent output for validation purposes and to find

agreed-on document acceptance criteria.

Moreover, you should involve business users in this process; they are

subject-matter experts and will help to evaluate solutions and help you

quickly identify the data discrepancy and processes that are wrong.

�Prepare Snowflake for Loading

Despite that Snowflake is a SQL data warehouse, it is different from other

analytical DW platforms.

When you have physical servers, you can use a dedicated server for

each environment (dev, test, prod). The hierarchy for the on-premise

solution looks like this:

•	 Physical server

•	 Databases

•	 Schemas

•	 Tables/views/functions

In the case of Snowflake, you don’t have a physical machine. When

you sign up for Snowflake, you get the link https://<our company name>.

snowflakecomputing.com/, and you stick to this account. As a result,

you don’t have a physical server layer, and you should think about the

organization of environments. To solve this particular issue, you have

several options.

•	 Use multiple accounts (different URLs).

•	 Create many databases with an environment prefix

(FIN_DEV, SALES_DEV, FIND_TEST, and so on).

•	 Create databases that will represent your environments

and then create a schema that will represent a

database.

Chapter 13 Migrating to Snowflake

242

This will require you to modify DDL while you are moving the schema

from the on-premise solution to the cloud. This is one of the biggest

engineering efforts in a migration. There are a number of tools available for

this purpose that can do forward and reverse engineering. Moreover, you

can leverage the Snowflake community and learn how others performed

this step.

Finally, you should assign databases, database objects, and virtual

warehouses to the appropriate security roles.

When you are ready, you can start to make an initial load into your

data warehouse. Many options are available for loading. For example, you

can unload data into the cloud storage, such as S3 in the case of using AWS,

and then collect this data via Snowflake. Or you can leverage cloud ETL

tools like Glue (AWS product) or Matillion ETL (a third-party commercial

product). You can even use open source solutions like Apache Airflow or

even Python.

�Keep Data Up-to-Date (Executing the Migration)

After an initial load of data is complete, you should start to develop

incremental load processes. This is the time when ETL/ELT tools are

handy and help you to accelerate your development effort.

These processes should be scheduled and take into consideration the

appropriate process dependency. The state of the data loading should

be clearly understood and communicated. For example, loading is in

progress, loading is completed successfully, and load failures occurred

that need to be addressed. Finally, begin comparing execution timings to

ensure that SLAs are being met.

One of the key things is to constantly communicate with business

users and allow them to visually track the load process. You can ensure this

by collecting ETL logs on all stages of the ETL process and visualize it with

BI tool.

Chapter 13 Migrating to Snowflake

243

�Implement the Test Plan (Executing the Migration)

Once an ETL/ELT process is in place, testing can begin. You can start

from initial data comparisons. This will allow for quickly identifying

discrepancies and sharing these results with stakeholders. Additional

groups should be engaged after the initial testing is completed. This helps

to validate the data and fix issues within a new solution.

�Run Systems in Parallel (Executing the Migration)

As business units are engaged in testing, you should run both systems (legacy

DW and Snowflake DW) in parallel to ensure the continued validation of

data to facilitate comparing data. In some cases, you may export data from

a legacy DW, which can be used for comparing data at the raw level. These

comparisons should take place in Snowflake, where resources can be

provisioned to compare data without negatively impacting the system.

You should attempt to minimize the time the two systems are running

in parallel while still maintaining a sufficient validation process.

�Repoint Tools to Snowflake

Up until now, the migration process has been focused on raw data

comparisons. The final step is to point all business users’ connections to

the new Snowflake DW. After the business units have validated that their

tools are producing required results, they cut over to Snowflake, begin

scheduling, and communicate the cutover plans to all stakeholders.

Once the cutover is complete, users should have the ability to log

into Business Intelligence tools and repoint them to the Snowflake data

warehouse.

Chapter 13 Migrating to Snowflake

244

�Technical Aspects of a Migration Project
Figure 13-5 shows the key elements of a migration project from a technical

point of view for a traditional on-premise data warehouse.

Let’s consider an example where we have an on-premise DW that we

have decided to move to Snowflake. We should start with the DDL for

moving the schemas, tables, views, and so on. There are many ways to

replicate a data warehouse model in Snowflake, starting from the Python

scripts that will convert the source system’s DDL into Snowflake DDL.

In addition, we can leverage data modeling tools like SQLDbm that have

good integration with Snowflake and can copy the source system DDL,

convert it to Snowflake DDL, and deploy it into Snowflake. Moreover, we

can use other tools that support forward and reverse engineering. This will

help us automate this process and save time and money.

Figure 13-5.  Simplified DW migration flow

Chapter 13 Migrating to Snowflake

245

After the DDL, we should move data. There are many approaches to do

this. We can leverage cloud ETL tool capabilities and migrate data from an

on-premise solution to Snowflake. For example, Matillion ETL can connect

to the on-premise DW and load data directly to Snowflake using cloud

data storage such as S3, Blob Storage, and so on. This is an efficient way of

moving data. Or, you could leverage Snowflake’s snowSQL CLI and load

data with the help of SQL. It is totally up to you. In some extreme cases

for a large volume of data, we might use physical devices such as AWS

Snowball or Azure Data Box.

Finally, the most complicated part is migrating the ETL/ELT logic. This

is the longest part, and there is a linear correlation between the number of

DW objects and the time it takes to perform a migration. This is the time

when we want to decide whether we want to migrate existing logic as is (lift

and shift) or we want to work closely with the business stakeholders and

learn about the business logic behind the code so we can take it apart and

improve it (split and flip).

From a tools standpoint, we can leverage scripting in Python, or we

can leverage Snowflake Partner Connect and choose an ETL tool that was

built specifically for the Snowflake DW. Some tools are managed services,

and others give you more freedom. For example, Matillion provides a

virtual machine that is hosted in our virtual private cloud (VPC), and we

can establish a mature security level. Moreover, when we are using ETL

tools, we can create a pattern, and then we can copy this pattern across the

use cases. The tools also allow end users to follow the process and visually

observe the data flow. Finally, Snowflake supports stored procedures,

and this gives you the ability to implement an ETL solution with stored

procedures like previously done in Oracle, Teradata, or SQL Server.

Chapter 13 Migrating to Snowflake

246

�Real-World Migration Project
Let’s look at a real-world project. Figure 13-6 shows an architecture

diagram for an e-commerce company that is selling used books online.

It is a straightforward solution that was built on an Oracle database

technology stack. It used PL/SQL as a main ETL tool, and with daily ETL, it

was loading data from several transactional systems as well as consuming

data from marketing-specific APIs and SFTPs. These were the challenges:

•	 The solution was expensive from a license perspective.

•	 ETL was complicated, and the database team owned

the logic. They were a kind of bottleneck for all new

requests.

•	 The DW had storage and compute limitations.

•	 The DW required full-time DBA support (for patching,

backups, and so on).

•	 Performance was an issue and required deep

knowledge of Oracle sizing and tuning (indexes, keys,

partitions, query plans, and so on).

Figure 13-6.  Legacy DW architecture

Chapter 13 Migrating to Snowflake

247

The company decided to move to the cloud to get more room to

grow and to get the benefits of a cloud infrastructure. Figure 13-7 shows

an architecture diagram of the new solution. This organization decided

to go with Snowflake, because it wanted to have unlimited concurrency

for queries, a consolidated DW, and a big data solution on a single data

platform, as well as dedicated virtual warehouses for analysts with heavy

queries.

Another major decision was made regarding the ETL tool. We reviewed

several tools and decided to go with Matillion ETL, because it was built

specifically for Snowflake and allows us to solve previous challenges

with “bottlenecks” in the ETL process. It has an intuitive user interface

and doesn’t require any coding knowledge. In addition, the organization

deployed Tableau as a main BI tool and settled on self-service analytics;

that’s why concurrency is a great benefit of Snowflake. Moreover, the

choice addressed another security requirement because it deploys within a

private subnet in AWS VPC.

Figure 13-7.  Modern DW architecture with Snowflake

Chapter 13 Migrating to Snowflake

248

Snowflake helped us to leverage big data and streaming capabilities

that were impossible with the legacy solution. For big data, we were

processing web logs within Apache Spark deployed on top of the EMR

cluster. Snowflake accesses Parquet files, and we don’t need to load them

into Snowflake. For the streaming use case, we leveraged DynamoDB

streams and Kinesis Firehose, and all data is sent into an S3 bucket where

Snowflake can consume it.

This core project with an Oracle DW and ETL migration took us six

months with a team of two engineers; it took another three to four months

to design and implement the streaming and big data solutions. The

organization also leveraged AWS SageMaker service for machine learning

and advanced analytics, which can be easily connected to Snowflake in

order to query data from Snowflake and can write models result back to

the Snowflake.

�Additional Resources
Working with Snowflake requires you to have a new set of skills related to

cloud computing. If you want to succeed with Snowflake, you should learn

the best practices of deploying cloud analytics solutions and follow the

market trends by reviewing new tools and methods for data processing and

transformation in the cloud.

Currently Snowflake is available in AWS, Microsoft Azure, and Google

Cloud Platform. We highly recommend you study a cloud vendor’s

learning materials in order to get a better understanding of cloud

computing and data storage. For example, if you deploy Snowflake using

AWS, you may start with the AWS Technical Essentials course that is free

and gives you an overview of AWS. Then you can go deeper with AWS

analytics using big data specialization.

At the same time, you should learn Snowflake best practices using

Snowflake training resources, community web sites, and blog posts. This

book is a good start.

Chapter 13 Migrating to Snowflake

249

�Summary
This chapter talked about the needs of organizations depending on their

maturity model and identified three common organization types. Then

you learned about the legacy DW modernization process and identified

the key steps.

Finally, we looked at a real-world project of migrating to Snowflake and

learned about its data architecture and project outcome.

Chapter 13 Migrating to Snowflake

251© Dmitry Anoshin, Dmitry Shirokov, Donna Strok 2020
D. Anoshin et al., Jumpstart Snowflake, https://doi.org/10.1007/978-1-4842-5328-1_14

CHAPTER 14

Time Travel
This chapter will cover the following tasks:

•	 Working with previous versions of objects. In other

words, Snowflake provides the ability to query

historical data.

•	 Creating copies/backups of data on the technical

history of objects.

A specialty of the technical design of the Snowflake is that the data

is stored in micro-partitions,1 which are immutable. This means that

with any operations such as the addition or deletion of data, a new

micro-partition is created, and the old one ceases to exist. Using special

commands that extend standard SQL, you can easily access historical data.

In general, the user’s data in a system has the following lifecycle:

•	 Data is created in data storage.

•	 Depending on the license, all states of the data are

stored during the retention period (Table 14-1). Users

can work with a technical history of any object using

SQL extensions.

1�https://docs.snowflake.net/manuals/user-guide/tables-clustering-
micropartitions.html

https://docs.snowflake.net/manuals/user-guide/tables-clustering-micropartitions.html
https://docs.snowflake.net/manuals/user-guide/tables-clustering-micropartitions.html

252

•	 At the end of the term, data moves to a particular

zone called fail-safe.2 Accordingly, the actual data of

the object, together with the related technical history,

becomes inaccessible to the user. In this area, data is

stored for seven days and can be recoverable only by

Snowflake.

The parameter DATA_RETENTION_TIME_IN_DAYS can be set on the

whole account or on the object level, meaning database, schema, or table.

According to this hierarchy, the parameter can be overridden.

The Snowflake Time Travel SQL extension provides some groups of

statements:

•	 Querying any version of data of the table using the

following:

•	 The statement SELECT with AT/BEFORE

•	 The user can request the version of the table

by specifying the exact time (using keyword

TIMESTAMP)

Table 14-1.  Data Retention Period Depending on License

License Description

Standard Edition The default is one day. (This can be set to zero days.)

Snowflake Enterprise

Edition and higher

For permanent objects, the range is from 0 to 90 days.

For transient3 objects, the default is one day. The range is

from zero to one day.

2�https://docs.snowflake.net/manuals/user-guide/data-failsafe.html
3�https://docs.snowflake.net/manuals/user-guide/tables-temp-transient.
html

Chapter 14 Time Travel

https://docs.snowflake.net/manuals/user-guide/data-failsafe.html
https://docs.snowflake.net/manuals/user-guide/tables-temp-transient.html
https://docs.snowflake.net/manuals/user-guide/tables-temp-transient.html

253

For example, to get data on August 5, 2019, use this:

SELECT * FROM <table> AT (TIMESTAMP => 'Mon,

05 Aug 2019 13:30:00 -0700'::timestamp);

•	 The user can request the version of the table by

specifying the relative time, meaning the time

difference in seconds from the present time (using

keyword OFFSET).

For example, select historical data from a table of

30 minutes ago using this:

SELECT * FROM <table> AT (offset -60*30)

•	 STATEMENT identifier of a certain transaction.

Here’s an example:

SELECT * FROM <table> BEFORE (STATEMENT =>

'<statement_id>');

•	 Creating a clone of a table, a schema, or a whole

database using the CREATE <TABLE>|<SCHEMA>|

<DB> CLONE . <ORIG_OBJECT> statement

Here’s an example:

CREATE TABLE <table_restored> CLONE <original_table>);

•	 Restoring an object using the UNDROP

<TABLE>|<SCHEMA>|<DB> command. Here’s an

example:

UNDROP TABLE <table>

•	 Additionally, the command SHOW TABLE HISTORY helps

track versions of an object.

Chapter 14 Time Travel

254

Figure 14-1.  Time Travel feature in Snowflake

Figure 14-1 shows an example. Table 14-2 describes the process.

Chapter 14 Time Travel

255

Table 14-2.  Working with Time Travel

Steps Description

1 The user sets the retention period for the account to X and then to Y using

the ALTER .. SET statement. Accordingly, this strategy applies to all

objects in the account.

2 The user sets the retention period for the database or schema to X

and then Y using the ALTER .. SET statement. This means that the

retention time will be changed for all objects below the hierarchy.

3 The user DROPs the database or schema and then UNDROPs it without

any problems because the retention time has not expired yet.

4 The user creates a new table called Table_1 and then adds some data.

This means at a point in time, t1, the table contains certain data. Further,

the user updates some rows in the table, so, at the time point t2, the

table already has other data.

5 The user creates a new table called Table_2 with the previous state of

table Table_1 at point of time t1 using the statement SELECT with AT

t1 or SELECT with t1.

6 This mechanism also supports schema evolution, which means the user

can add a new column to the table and add values into a new column.

The user can request any version of the table, and data will be returned

in the format it was in at the time of the request.

7 The last step is that the user can DROP and UNDROP the table and also

can CREATE a new table as CLONE at any point in time during the

retention time.

Chapter 14 Time Travel

256

TIME TRAVEL FEATURE

Let’s look at how to use the Time Travel feature in practice.

	1.	L og into your Snowflake account.

	2.	 Switch to Worksheets and execute the code in Listing 14-1 to

check the current data retention parameter.

Listing 14-1.  Checking Retention Parameters and Trying to Change

Them

show parameters like '%DATA_RETENTION%' in account;
alter account set DATA_RETENTION_TIME_IN_DAYS = 2;

show parameters like '%DATA%_RETENTION' in database samples;
alter database samples
 set DATA_RETENTION_TIME_IN_DAYS = 1;

In Listing 14-1, we did the following:

•	 We checked the current data retention parameter for the

account using the show parameters.. in account

command.

•	 We changed the parameter to two days for the account

using the alter account..set command.

•	 We checked the current data retention parameter for the

database using the show parameters..in account

command. We can see that it changed to 2. Since all

objects are attached to an account, the account parameters

are automatically applied to all objects below the hierarchy.

•	 We changed the parameter to 1 for the database using the

alter database..set command. See Figure 14-2.

Chapter 14 Time Travel

257

	3.	 Create a new sample table for the example by executing the

code in Listing 14-2.

Listing 14-2.  Creating a New Table

create or replace table samples.finance.stocks (
 id int,
 symbol string,
 name string);

insert into samples.finance.stocks
 values(1,'TDC', 'Teradata'),
 (2,'ORCL', 'Oracle'),
 (3,'TSLA', 'Tesla');

select * from samples.finance.stocks;

In Listing 14-2, we did the following:

•	 We created a new empty table called stocks.

•	 We populated the table with values. See Figure 14-3.

	4.	M odify the table and try to query the previous state. Wait about

a minute after the previous commands and execute the code in

Listing 14-3.

Figure 14-2.  Data retention parameter

Figure 14-3.  Sample table

Chapter 14 Time Travel

258

Listing 14-3.  Changing Data in the Table and Checking the State of

the Table

insert into samples.finance.stocks
values(5,'MSFT', 'Microsoft');
 delete from samples.finance.stocks
 where id = 3;
select * from samples.finance.stocks;
select * from samples.finance.stocks at
(offset => -1*60);

In Listing 14-3, we did the following:

•	 We changed the data in the table, inserted a new row, and

deleted one row.

•	 We checked the current state of the table. See Figure 14-4.

•	 We checked the state minutes ago using the following.

See Figure 14-5.

at (offset => -1*60).

Figure 14-5.  The previous state of the table

Figure 14-4.  The last state of the table

Chapter 14 Time Travel

259

	5.	 Drop and undrop the table, as shown in Listing 14-4.

Listing 14-4.  Changing the Data in the Table and Checking

the State of the Table

drop table samples.finance.stocks;
select * from samples.finance.stocks;
 undrop table samples.finance.stocks;

	6.	 Create a new table as a clone of the previous state of the

original table. Execute the code in Listing 14-5.

Listing 14-5.  Creating a Clone of the Table

create table samples.finance.stocks_10m clone
 samples.finance.stocks at (offset => -10*60);

�Summary
In this chapter, we covered the Time Travel feature. Moreover, you learned

about the data lifecycle in Snowflake and how to work with the history of

data objects in Snowflake.

Finally, we walked you through a few examples using the Time Travel

feature.

Chapter 14 Time Travel

261© Dmitry Anoshin, Dmitry Shirokov, Donna Strok 2020
D. Anoshin et al., Jumpstart Snowflake, https://doi.org/10.1007/978-1-4842-5328-1

Index

A
Administration

clustered tables, 124, 125
database objects, 122, 123
databases, 118, 119
data share, 123, 124
parameters, 121, 122
warehouses, 117, 118

Advanced Encryption Standard
(AES), 136

Agile data warehousing, 237
ALTER WAREHOUSE

command, 118
Alteryx, 214
Amazon Web Services (AWS), 20, 229
Analytical ecosystem, 214
Apache MLflow, 215
Apache Spark, 214, 222

cloud providers, 216
components, 216, 217
connector

data flow process, 218
key features, 219
stages, 218

data scientists, 216
machine learning, 215
optimal strategy, 216
vs. Snowflake, 219, 220

AVRO file
generation, 169
JSON sample file, 168
loading data, 171
metadata, 169
schema, 168
working, 167

AWS Snowball, 245
Azure Data Box, 245
Azure Databricks, 222

connecting Snowflake, 227
creation, 223, 224
data, 227, 228
delta caching, 226
environment, 224, 225
notebook, 226
Spark cluster, 225, 226

B
Batch method, 197
Bulk data loading

compression methods, 57
COPY statement, 54
encoding, 56
encryption, 57
file formats, 55, 56
staging area, 54

https://doi.org/10.1007/978-1-4842-5328-1

262

storage locations, 55
user interface, loading, 66–68

Business intelligence (BI), 1, 230

C
Cloud computing

deployment models, 10
key terms, 8
modern bandwidth, 13
role of hypervisor, 9
service models, 11
Shared responsibility model,

AWS, 12
virtualization, 9

COPY command, 54, 63, 91
COPY INTO table statement, 60
CREATE SHARE command, 123

D
Database management

commands, 118
Databricks, 214, 220

elements, 221
components, 222

Data clustering, 125
Data Definition

Language (DDL), 30
Data Manipulation Language

(DML), 30
DataRobot, 214
Data science tool, 198

Data sharing, 186–188, 190, 192
Datasource API, 217
Data system

lifecycle, 251
retention period, 252

Data warehouse, 90, 92
Data warehouse as a service

(DWaaS), 12, 107
Data warehouse (DW), 1
Data warehouse migration

architecture, 230
business analytics, 230, 231
cloud analytics, 233, 234
goal, 230
on-premise analytics, 231–233
organizational part

data, 238, 242
deadlines/budget, 239
development/deployment

process, 237, 238
documentation, 236
migration

approach, 237, 238
outcomes, 239
repoint tools, 243
run, 243
security, 240
Snowflake, 241, 242
test plan, 240, 243

overview, 235, 236
technical part, 244, 245

Delta Lake, 222
Discretionary access control

(DAC), 108, 135

Bulk data loading (cont.)

INDEX

263

E
Extract-load-transform (ELT), 2,

198, 242, 245
Extract-transform-load (ETL)

processing, 62, 242, 245

F
File preparation, bulk data

CSV files, 59
file sizing, 58
semistructured data, 60
splitting files, 58

File staging
ETL processing, 62
logical paths, 61
named stage, 61
staged data, 62

G, H, I
Google Cloud Platform (GCP), 229
GraphX, 217

J, K
JSON format

extracting attributes, 165
FLATTEN function, 166
NASDAQ, 162
Snowflake, 163
SQL, 165
table, 164
tree structure, 163

L
Loading data files, 63, 64

M, N
Machine learning, 215
Managed Streaming for Kafka

(MSK), 94
Massive parallel

processing (MPP), 232
data management solution, 6
data mining techniques, 4
principles, 2
Redshift, 5
vs. SMP, 2, 3
Snowflake, 5

Materialized views (MVs)
benefit, 127
data manipulation language,

126
similarities and differences, 127

Matillion ETL, 198, 200, 245
ML Libraries, 217, 222
Modern solution

architecture, 196–198
Multicluster virtual

warehouses, 38
Multifactor authentication

(MFA), 134

O
Optimized Row

Columnar (ORC), 149

INDEX

264

P
Parquet file

creating metadata, 173
CSV sample file, 172
PyArrow, 172
transforming data, 173
uploading data and copying to

target table, 174, 175
working, 171

Partition pruning, 125
Pattern matching, 64
Penetration testing, 144
Planning

cloud provider, 20
limitations, 22
regions, 20

pricing model, 22
cloud storage, 23
virtual warehouse

size, 23
Snowflake editions, 20
tools, 24

JDBC, 25
ODBC, 25
SnowSQL, 25
web interface, 24, 25

Pushdown optimization, 219

Q
Qubola, 214
Querying staged files, 64, 65

R
Real-world project

big data, 248
challenges, 246
DW architecture, 246, 247
ETL tool, 247
streaming, 248
Tableau, 247

Regions, 20
Resource consumption,

administration
data storage, usage, 115
data transfer, usage, 116
usage permissions, 113
VWs, usage, 114

Role-based access control (RBAC),
108, 135

Roles and users, administration
access control models, 108
account menu, 113
create user, 112
hierarchy, role, 109, 110
marketing role, 108, 109
role, commands, 111
Snowflake account, 109
user, commands, 111, 112

R Studio, 214

S
Schema-on-read approach, 147
Security reference architecture

INDEX

265

account and user
authentication, 134, 135

AES, 136, 137
audit and logging

history audit functions, 142
penetration tests, 144
query history audit logs

functions, 139, 143
Query Profiler, 140

layers, 130, 131
network and site access, 133,

134
object security, 135, 136
physical security, 133
validations, 138
VPC, 132

Semistructured data
data types, 149, 151
file formats, 148, 149
schema-on-read approach, 147

Shared responsibility model
(SRM), 12

Snowflake, 197
account creation, 26, 27
architecture, 15
aspects, 14
cloud providers, 14
connection, 28, 29
data sharing

benefits, 178
process, 181

DLL, 244
ETL processing, 16
internal/external stages, 220

JDBC driver, 219
key layers, 16
planning (see Planning)
scalability, 17
table, 220

consumer account, 185, 186
metadata, 184
steps, 181, 182
stock data, 183

VW (see Virtual warehouses
(VWs))

web interface (see Web
interface, Snowflake)

XML, 153
Snowflake partner ecosystem

connect page, 198, 199
drivers, 199
Matillion ETL

creation, 201, 204, 205
definition, 200
key elements, 203
modern solution

architecture, 202
objects, 200
tables, 205

Tableau, 206
best-of-breed

technologies, 206
connection window, 207, 208
data, 209
desktop connection, 206, 207
sign in, 208
SQL query, 210
visualization, 206

INDEX

266

Snowflake Spark Connector, 220
Snowpipe, 91

benefits, 93
options, 92

Snowpipe Auto-Ingest, 94, 95
data pipeline, 95–97, 99, 100

CloudWatch logging, 103
Kinesis Firehose delivery

stream, 102
PUT statement, 102
S3 bucket, 102
SQS, 101
stream events, 100
testing, 104

Snowpipe REST API, 104, 105
SnowSQL

commands, 81, 82
installation

curl commands, 70
Downloads dialog, 70, 71
introduction screen, 71, 72
platform-specific

versions, 70
Summary tab, 72, 73

load data, 86, 87
multiple sessions, 83, 85

SnowSQL configuration
connection settings, 74, 75
variables, 76

active session, 79, 80
command line, 78, 79
config file, 76–78

Spark dataframe, 219
SqlDBM model, 198, 205

SQLDbm tool, 244
Stream method, 197

T
Tableau, 198
Time travel feature

data retention
parameter, 256, 257

sample table, 257
table clone, 259
table creation, 257
table state, 258

Time travel SQL extension
process, 254
statements, 252
work, 255

U
UNDROP DATABASE, 119
USE ROLE command, 110
USE WAREHOUSE

command, 37, 47

V
Virtual private cloud (VPC), 132, 245
Virtual Private Snowflake (VPS), 22
Virtual warehouses (VWs), 15, 114

building
creating, 43
load monitoring, 47–51
query statuses, 49, 50

INDEX

267

start/resume, suspend, and
resize, 45

TESTWAREHOUSE, 45
USE WAREHOUSE

command, 47
caching impacts, 42
multicluster

choosing minimum and
maximum number, 39

credits and usage, 40
query design, 41
scaling, 42
sizes and features

choosing right size, 36
concurrency, 36, 37

USE WAREHOUSE
command, 37

W
Warehouse commands, 117, 118
Web interface, Snowflake

databases page, 30, 31
help menu, 33
history page, 33

partner connect page, 33
shares page, 32
user preferences menu, 34
warehouses page, 31, 32
worksheets page, 32

X, Y
XML format, 151

built-in functions, 153
choosing warehouse, 154
downloading source file, 155
example, 151
extracting values, 159–161
file creation, 156
LATERAL FLATTEN table

function, 159
loading data into table, 154
selecting load options, 157
structure, 152
XMLGET function, 158

Z
Zero-Copy cloning, 119, 121

INDEX

	Table of Contents
	About the Authors
	Acknowledgments
	Chapter 1: Getting Started with Cloud Analytics
	Time to Innovate
	Key Cloud Computing Concepts
	Meet Snowflake
	Summary

	Chapter 2: Getting Started with Snowflake
	Planning
	Deciding on a Snowflake Edition
	Choosing a Cloud Provider and Region
	Examining Snowflake’s Pricing Model
	Other Pricing Considerations

	Examining Types of Snowflake Tools
	Snowflake Web Interface
	SnowSQL
	JDBC and ODBC OS Platform Requirements
	Third-Party Partners

	Creating a Snowflake Account
	Connecting to Snowflake
	Logging Into the Snowflake Web Interface
	Touring the Web Interface
	Databases Page
	Warehouses Page
	Shares Page
	Worksheets Page
	History Page
	Partner Connect Page
	Help Menu
	User Preferences Menu

	Summary

	Chapter 3: Building a Virtual Warehouse
	Overview of Snowflake Virtual Warehouses
	Warehouse Sizes and Features
	Choosing the Right Size
	Concurrency
	Default Virtual Warehouses in Sessions

	Multicluster Virtual Warehouses
	Overview of Multicluster Virtual Warehouses
	Multicluster Credits and Usage

	Virtual Warehouse Considerations
	Query Design
	Caching Impacts
	Scaling

	Building a Snowflake Virtual Warehouse
	Creating a Virtual Warehouse
	Starting, Resuming, Suspending, and Resizing
	Using a Warehouse
	Setting Up Load Monitoring
	Understanding Load Monitoring
	Best Practices for Load Monitoring

	Summary

	Chapter 4: Loading Bulk Data into Snowflake
	Overview of Bulk Data Loading
	What Is Bulk Data Loading?
	Bulk Load Locations
	Supported File Formats and Encoding
	Compression Handling
	Encryption Options

	Bulk Data Loading Recommendations
	File Preparation
	File Sizing
	File Splitting
	CSV File Preparation
	Semistructured Data File Preparation

	File Staging
	Loading
	Querying Staged Files

	Bulk Loading with the Snowflake Web Interface
	Summary

	Chapter 5: Getting Started with SnowSQL
	Installing SnowSQL
	Configuring SnowSQL
	Connection Settings
	Configuration Variables
	Configuration File Example
	Command-Line Example
	Executing Variables in an Active Session

	SnowSQL Commands
	Multiple Connection Names
	Data Loading with SnowSQL
	Summary

	Chapter 6: Continuous Data Loading with Snowpipe
	Loading Data Continuously
	Snowpipe Auto-Ingest
	Building a Data Pipeline Using the Snowpipe Auto-Ingest Option

	Snowpipe REST API Using AWS Lambda
	Summary

	Chapter 7: Snowflake Administration
	Administering Roles and Users
	Enforcement Model
	Working with Roles and Users

	Administering Resource Consumption
	Virtual Warehouse Usage
	Data Storage Usage
	Data Transfer Usage

	Administering Databases and Warehouses
	Managing Warehouses
	Managing Databases
	Zero-Copy Cloning

	Administering Account Parameters
	Administering Database Objects
	Administering Data Shares
	Administering Clustered Tables
	Snowflake Materialized Views
	Summary

	Chapter 8: Snowflake Security Overview
	Snowflake Security Reference Architecture
	Virtual Private Cloud
	Physical Security
	Network and Site Access
	Account and User Authentication
	Object Security
	Data Security
	Security Validation
	Snowflake Audit and Logging
	Query Profiler
	Login History Audit Logs
	Query History Audit Logs

	Penetration Testing

	Summary

	Chapter 9: Working with Semistructured Data
	Supported File Formats
	Advanced Data Types
	Working with XML
	Working with JSON
	Working with AVRO
	Working with Parquet
	Summary

	Chapter 10: Secure Data Sharing
	Secure Data Sharing
	Secure Table Sharing
	Data Sharing Using a Secure View
	Summary

	Chapter 11: Designing a Modern Analytics Solution with Snowflake
	Modern Analytics Solution Architecture
	Snowflake Partner Ecosystem
	Building Analytics Solutions
	Getting Started with Matillion ETL
	Getting Started with Tableau

	Summary

	Chapter 12: Snowflake and Data Science
	Snowflake and the Analytics Ecosystem
	Snowflake and Apache Spark
	Connector for Apache Spark
	Working with Databricks
	Summary

	Chapter 13: Migrating to Snowflake
	Data Warehouse Migration Scenarios
	Startup or Small Business Analytics Scenario
	On-Premise Analytics Scenario for Enterprises and Large Organizations
	Cloud Analytics Modernization with Snowflake

	Data Warehouse Migration Process
	Organizational Part of the Migration Project
	Document the Existing Solution
	Establish a Migration Approach
	Capture the Development and Deployment Processes
	Prioritize Data Sets for Migration
	Identify the Migration Team
	Define the Migration Deadlines and Budget
	Determine the Migration Outcomes
	Establish Security
	Develop a Test Plan
	Prepare Snowflake for Loading
	Keep Data Up-to-Date (Executing the Migration)
	Implement the Test Plan (Executing the Migration)
	Run Systems in Parallel (Executing the Migration)
	Repoint Tools to Snowflake

	Technical Aspects of a Migration Project

	Real-World Migration Project
	Additional Resources
	Summary

	Chapter 14: Time Travel
	Summary

	Index

