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Preface: A Roadmap for Readers

What is the point of data in research? Philosophers and methodologists have long
discussed the use of data as empirical fodder for knowledge claims, highlighting,
for instance, the role of inductive reasoning in uncovering what data reveal about
the world and the different ways in which data can be modelled and interpreted
through statistical tools. This view of data as a fixed, context-independent body of
evidence, ready to be deployed within models and explanations, also accompanies
contemporary discourse on Big Data — and particularly the expectation that the dra-
matic increase in the volume of available data brings about the opportunity to
develop more and better knowledge. When taking data as ready-made sources of
evidence, however, what constitutes data in the first place is not questioned, nor is
the capacity of data to generate insight. The spotlight falls on the sophisticated algo-
rithms and machine learning tools used to interpret a given dataset, not on the efforts
and complex conditions necessary to make the data amenable to such treatment.
This becomes problematic particularly in situations of controversy and disagree-
ment over supposedly “undisputable” data, as in the case of current debates over the
significance of climate change, the usefulness of vaccines and the safety of genetic
engineering. Without a critical framework to understand how data come to serve as
evidence and the conditions under which this does or does not work, it is hard to
confront the challenges posed by disputes over the reliability, relevance and validity
of data as empirical grounds for knowledge claims.

In this volume, we move decisively away from the idea that what counts as data —
and in turn, how data are presented, legitimized and used as evidence — can be given
for granted and that finding the correct interpretative framework is all that is required
to make data “speak for themselves”. We focus instead on the strategies, controver-
sies and investments surrounding decisions around what researchers identify and
use as data in the first place: in other words, the myriad of techniques, efforts, instru-
ments, infrastructures and institutions used to process and mobilize data so that it
can actually serve as evidence. No matter how “big” data are, the road from data to
knowledge remains complex and full of obstacles. The contributions collected in
this book highlight a wide spectrum of activities involved in handling data — includ-
ing data collection, aggregation, cleaning, dissemination, publication, visualization
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and ordering — with the aim to study the opportunities and constraints posed by such
activities on how data are eventually interpreted. Hence, the initial question about
what role data play in research morphs into two further queries: What conditions are
required to identify data in the first place and to make them usable as evidence? And
what implications does data processing carry not just for the content of the knowl-
edge being produced but for the extent to which that knowledge can ground inter-
ventions in the world and inform political, scientific, social, economic debate?

The contributions to this volume help readers to ponder these questions by guid-
ing them into the thick web of entanglements involved in making data move across
time, space and social context. Readers are asked to accompany data in their jour-
neys from their material origin through human interactions with the world (which
range from the collection of objects to the generation of traces and measurements)
to their dissemination across various forms of aggregation (datasets, data series,
indicators) and vehicles (databases, publications, archives) and ultimately to their
use as evidence for claims.! During these journeys, data experience many different
types of encounters — with other data, diverse groups of users, specific infrastruc-
tures and technologies and political, economic and cultural expectations — which
affect and shape the data themselves and their prospective usability. Far from under-
estimating the politics and power of data, which so many contributors to the emerg-
ing field of critical data studies have so effectively highlighted, we seek to document
how such politics is embedded, reified and/or revised in the technical and epistemic
work that structures everyday research practices. Delving into stories of how data
travel involves seeing data as entities that can, and often do, change their properties
in response to their environment and relations — and whose travels are often choreo-
graphed and regulated to achieve a variety of (sometimes incompatible) goals. What
comes to be seen as datum at any one point in time is itself the result of a journey;
and far from being linear and well-organized, the journey is often full of detours and
unpredictable changes, largely due to the diverse and complex social networks and
contexts responsible for making data move.

Unsurprisingly, the study of data in motion generates a wealth of insights that are
not easily systematised in one thread. When first imagining this volume, I had envi-
sioned a straightforward comparative work, which would examine differences and
similarities across data practices in the biological, biomedical, environmental, phys-
ical and social sciences. Following 5 years of discussions with my coeditor and the
wonderful team of authors assembled here, however, the illusion that data could be
disciplined and contained in this way has been shattered. Data journeys transcend
and defy disciplinary boundaries both in the methods used to track and analyse them
and in the domains in which data come to be seen as valuable. Of course, as many
of these chapters forcefully illustrate, epistemic cultures and context-specific norms
shape and direct the journeys and uses of data. And yet, even when looking at highly
discipline-specific cases (such as the analysis of genomic data in population biology
or observations in astronomy), we found surprising parallels and intersections with
other social and epistemic worlds — and a wealth of opportunities for data initially

"For an extended discussion of data journeys as a theoretical and methodological tool, see the
introduction to the volume.
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collected for a specific, supposedly self-contained purpose to journey further,
towards new settings and unforeseen uses.

To convey this unpredictability, the structure of the volume is organized along
what we imagine to be the stages of a data journey, with each cluster of chapters
discussing the skills, methods, activities and norms that may be typically associated
to those stages across a wide range of research areas. The first section is devoted to
the origins of data: from the choice and interaction with material samples of the
world from which data will be extracted (Halfmann) to the role of theories and
instruments in data generation (Karaca) and the questions involved in choosing a
vehicle for data to start their travels towards new interpretations (Ankeny). The
second section examines the ways in which data are brought together for analysis
and specifically the practices, standards and tools involved in data cleaning
(Boumans and Leonelli), clustering (Morgan and Griesemer) and visualizing
(Bechtel) — with a strong emphasis on the challenges and opportunities presented by
the aggregation of data coming from different sources towards novel uses and inter-
pretations. The third section explores the circumstances and implications of data
sharing, paying attention particularly to the tight intersection between decisions
about who can access the data and criteria used to evaluate and regulate their quality
and reliability (both within research communities, as discussed by Parker in relation
to climate data and Hoeppe in relation to astrological observations, and within
broader policy and governance circles, as considered by Teira and Tempini in the
case of patient data). The fourth section considers data interpretation and highlights
the ways in which commitments to analytic techniques, instruments and concepts
(Wylie) as well as decisions around what is considered to be data (Tempini) and
metadata (Miiller-Wille) may need to be transformed in order for data to be fruit-
fully used or reused within new situations. The fifth and final sections juxtapose
different cases of data journeys to raise questions about what fruitful data use may
actually consist of: first, by focusing on the procedures used to make data and
related claims actionable, credible and accountable to the various types of publics
and goals involved in data journeys, ranging from clinical settings (Cambrosio
et al.) to public health (Ramsden) and related policies (Gaudilliere and Gasnier)
and, second, by questioning the very narrative of authentication and discovery that
often underscores the use of data as evidence (Rappert and Coopmans).

Reading the volume in this order will help those interested in the full arch of data
journeys to understand the specificities associated to different stage of travel and the
deep interrelations and intersections across them. This is but one type of variety
encountered in the qualitative study of data movements, however. I want to mention
another six for readers to consider before delving in and deciding how to engage
with this book.

e Variety of research domains
While many of the most fascinating data journeys are not contained within tradi-
tional research domains, the authors assembled within this volume have been
purposefully approached for their deep, long-term engagement with specific
research areas, so that the volume could encompass a wide range of disciplinary
areas and illustrate the many sources of variety among research areas and epis-
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temic communities. Readers interested primarily in biology could focus on the
chapters by Bechtel and Griesemer, who consider different stages in the journeys
of genomic data, and then look to the chapters by Tempini, Cambrosio et al.,
Miiller-Wille and Ramsden to witness how biological data move into the bio-
medical, policy and public health domains. Students of biomedicine should pri-
oritize the chapters by Ankeny, Tempini, Ramsden, Cambrosio et al. and
Gaudilliere and Gasnier; those interested in the environmental sciences should
start with Halfmann (oceanography) and Parker (climate science); those inter-
ested in the physical sciences should read Koraka (particle physics) and Hoeppe
(astronomy); and for the social and historical sciences, the spotlight shifts to
chapters by Morgan (economics), Wylie (archaeology) and Rappert and
Coopmans (art authentication). The chapter by Boumans and Leonelli exempli-
fies the attempt to compare data practices across two very different domains:
economics and plant science.
* Variety of relations between data and other research components
A key question arising when interrogating the nature of data is the extent to
which their role and characteristics differ from the ones associated to metadata,
materials, models, apparatus and infrastructures. Several contributors to the vol-
ume address this issue directly. Halfmann starts this thread by questioning the
relationship between data and samples, which has been rarely discussed within
data studies so far. Hoeppe and Karaca focus on the entanglements between data
and instrumentation, particularly in cases — such as Hoeppe’s telescopes and
Karaka’s particle accelerator — in which whole research communities are formed
around highly complexity and expensive apparatus. Parker discusses instead the
relationship between models and data in the climate sciences and the extent to
these two types of scientific objects are co-constructed and unavoidably inter-
twined. Griesemer, Miiller-Wille, Tempini, Porter and Bechtel focus on the role
of infrastructures in data visualization and the extent to which choices made in
order to make data widely accessible and searchable affect their interpretation —
but also what gets to count as data and metadata. And last but not least, Morgan,
Teira and Tempini, Ramsden and Boumans and Leonelli consider the develop-
ment and role of standards and measurement frameworks alongside the travel
and clustering of multiple datasets, as crucial components of both the technical
and the institutional motors for the travel of data.
e Variety of data vehicles

A closely related concern is the question of how data actually travel, which, bor-
rowing the terminology devised by Morgan (2010) to discuss travelling facts, can
be usefully characterized as a question around vehicles. As mentioned above,
many of the chapters in the volume discuss the characteristics of databases and
related search engines, thus contributing to the burgeoning scholarship on data
infrastructures pioneered by Bowker (1994), and rightly seen to be central to
understanding how data move and land in new epistemic spaces. In addition to
data infrastructures, the volume considers well-trodden but no less vivid vehi-
cles, such as case reports — heavily descriptive narratives which Ankeny high-
lights as fruitful in identifying, capturing and ordering data for future analysis.
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Bechtel’s analysis of the travel of genomic data beyond databases to various
tools of network analysis points instead to the complexities of interlocking data
infrastructures that build upon each other, a situation in which software itself
comes to play a crucial role as data vehicle — as explicitly discussed by Tempini’s
reflection on the travels of digital data. Less intuitively and perhaps more contro-
versially, particular forms of governance, such as the monitoring of global health
by the United Nations and the shifts in pharmaceutical regulation by the Food
and Drug Administration, can themselves constitute effective vehicles for data
journeys, as considered in the chapters by Gaudilliere and Gasnier and Teira and
Tempini.
e Variety of grounds for legitimacy
The question of what makes data reliable, legitimate and trustworthy is another
key issue underpinning several of the chapters, both because of its importance to
understanding the role of data as empirical evidence and because it is often a
central concern for the protagonists of the case studies discussed by volume con-
tributors. What does it mean for data to be fit for purpose? In other words and
paraphrasing a seminal discussion by Clarke and Fujimura (1992) on the epis-
temic roles of tools in biological research, what count as the “right” data for the
job, and how do we verify the credibility of data interpretations? Perhaps most
striking in this respect is Wylie’s investigation of the shifting grounds through
which different generations of archaeologists have assessed the legitimacy and
significance of carbon dating as a method for data collection and (re)interpreta-
tion. Similarly focused on intergenerational understandings of data, Miiller-Wille
discusses how physiological and sociological data on a controversial issue such
as race managed to retain credibility for over a century, while Parker analyses
benchmarking practices in relation to climate data sourced at very different loca-
tions and times (and thus hard to align and homogenize). A different approach
consists of understanding how changes to the very properties of datasets — and
the metadata that accompanies them — can be credibly framed as strategies to
increase the usefulness and reliability of data as evidence. This question is con-
fronted by Morgan in relation to data aggregation and Tempini with reference to
their computational handling, while Cambrosio et al. focus on the shift from talk
of “data” to talk of “knowledge” in medical information infrastructures, which is
tied to the emergence of consensus around what “levels of evidence” are needed
for clinical interventions and which sources of knowledge can be trusted.
e Variety of data types

Perhaps most striking, particularly to readers used to think of data as computable
numbers, is the breadth of data types considered in this volume. While some
authors (e.g. Morgan) focus specifically on the properties of numerical data, it
soon becomes clear that the objects identified and used as data within research
are not limited to the quantitative results of measurement practices. Observations,
both in textual and graphical forms, are common in medicine (Ankeny), astron-
omy (Hoeppe) and the life sciences (Boumans and Leonelli), where images and
diagrams function both as containers of data (e.g. Griesemer) and as data in and
of themselves (Bechtel, Cambrosio et al). The transformations involved in digi-
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tizing analogue objects (Halfmann) and making them amenable to different types
of computation (Tempini) complicate easy distinctions between quantitative and
qualitative data. Different data properties and formats are instead often in a his-
torical continuum, related to each other by specific technologies and techniques
employed at different times to extract various forms of insight. At the same time,
the preference for numerical data that can be easily aggregated — such as the
assessment of economic performance (Boumans and Leonelli) or national com-
pliance with given objectives (Gaudilliere and Gasnier) — can skew the analysts’
attention, with significant implications for what kinds of knowledge become
established (Porter 1995). The extent to which data are amenable to visualization
is also a crucial determinant of mobility (Porter).

Variety of methodological approaches to the study of data

The volume puts philosophical, historical and sociological methods of research
in dialogue with each other, thus bringing together different styles and disciplin-
ary approaches to the study of data movements. All contributors are conversant
with different disciplinary approaches, which they merge to consider data jour-
neys from a qualitative viewpoint — a somewhat unavoidable choice given the
importance of understanding motivations, goals and historical circumstances in
order to track data and reconstruct their travels. This multidisciplinarity is a key
characteristic of the volume and the result of the authors’ own commitment to
dialogue across fields as well as the extensive conversations held during the 5
years in which the volume was assembled — exemplified most directly by the
comparison of data cleaning practices in economics and plant science coauthored
by Boumans and Leonelli. The emphasis and argumentative style of authors
does, at the same time, reflect the differences in their expertise, which could also
be used as an entry point for readers. Authors with a stronger background in Ais-
tory provide vivid narratives of data moving across long time periods and mul-
tiple geographic sites, thus fostering an understanding of the long dureé of data
journey and the enabling or constraining role played by institutions such as the
American Public Health Association (Ramsden) and the Institute for Health
Metrics and Evaluation (Gaudilliere and Gasnier) and political debates like those
surrounding the notion of race (Miiller-Wille). Authors rooted in social studies of
science provide ethnographic forays into the goals, expectations and social orga-
nization of researchers, which helps to better understand apparently straightfor-
ward practices such as observation in astronomy (Hoeppe) and the interpretation
of biomarkers in clinical practice (Cambrosio et al); and those more philosophi-
cally oriented delve deep into the technical, material and conceptual tools
employed to structure, order and analyse data, thus highlighting the epistemic
role of, for example, samples (Halfmann), experimental apparatus (Koraka),
digital formatting (Tempini), visualization tools (Bechtel, Griesemer), evalua-
tion practices (Parker, Boumans and Leonelli, Teira and Tempini) and ordering
or narrative devices (Ankeny, Morgan).

Variety of data politics

Because the epistemic work underpinning data processing and movement is
unavoidably value-laden, our authors’ own political commitments around key
data-related concerns are also in evidence within each piece. These commit-
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ments are not uniform, not so much due to overt disagreement over the same
issues but rather in the sense of authors being interested in different forms of
politics. Both Ramsden’s analysis of public health data journeys and Teira and
Tempini’s work on electronic health records focus on the potential for inequality
and governmental exploitation of such data to implement specific forms of social
control. Griesemer is more concerned with how social and racial representation
is handled through the travel of genomic data and what groups are excluded or
included by database structures. Morgan worries about the diverse measuring
frameworks through which different types of datasets are clustered together and
the resulting unevenness and potential loss of meaning when using such diverse
clusters as indicators — as with the Sustainable Development Goals of the United
Nations. Wylie is similarly interested in questions of legacy and in the account-
ability of temporal and methodological discontinuities in the handling and inter-
pretation of data as evidence (in archaeology and beyond). Rappert and Coopmans
grapple with questions of trust and authority in delivering judgements over data
interpretation. And a whole set of authors, including Ankeny, Boumans and
Leonelli, Tempini and Halfmann, worry about the opacity of data-handling pro-
cesses that have a strong and yet underacknowledged effect on how data are then
used and interpreted. All of these concerns are deeply political and have signifi-
cant implications for ongoing debates around, for example, the trustworthiness
of Big Data as source of evidence and the potential for inequality and exploita-
tion underpinning open data policies.

These roadmaps are by no means exhaustive but hopefully provide at least a
sense of the breadth and import of the material presented in this volume. We encour-
age our readers to find their own approach to the chapters and let themselves be
challenged by these wide-ranging, diverse and sometimes challenging discussions,
whose overarching aim is to provide a feel for the sophistication, complexity and
epistemic significance of efforts devoted to data mobility within research and beyond.

Exeter, UK Sabina Leonelli
London, UK
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Learning from Data Journeys

Sabina Leonelli

Abstract The introduction discusses the idea of data journeys and its characteris-
tics as an investigative tool and theoretical framework for this volume and broader
scholarship on data. Building on a relational and historicized understanding of data
as lineages, it reflects on the methodological and conceptual challenges involved in
mapping, analyzing and comparing the production, movement and use of data
within and across research fields and approaches, and the strategies developed to
cope with such difficulties. The introduction then provides an overview of signifi-
cant variation among data practices in different research areas that emerge from the
analyses of data journeys garnered in this volume. In closing, it discusses the sig-
nificance of this approach towards addressing the challenges raised by data-centric
science and the emergence of big and open data.

1 Introduction: Data Movement and Epistemic Diversity

Digital access to data and the development of automated tools for data mining are
widely seen to have revolutionized research methods and ways of doing research.
The idea that knowledge can be produced primarily by sifting through existing data,
rather than by formulating and testing hypotheses, is far from novel; and yet,
developments in information technology and in the financing, institutionalisation and
marketization of data are making “data-intensive” approaches more prominent than
ever before in the history of science. This is perhaps most blatant in the emphasis
placed by both the public and private sectors on the production and exploitation of
“big” and “open” data—in other words, on the creation, dissemination and aggregation
of vast datasets to facilitate their re-purposing for as wide a range of goals as possible.!

'As exemplified by the Open Science and Innovation policy of the European Commission
(European Commission 2016).

S. Leonelli (<)
Department of Sociology, Philosophy and Anthropology & Exeter Centre for the Study of the
Life Sciences (Egenis), University of Exeter, Exeter, UK

Alan Turing Institute, London, UK
e-mail: s.leonelli@exeter.ac.uk

© The Author(s) 2020 1
S. Leonelli, N. Tempini (eds.), Data Journeys in the Sciences,
https://doi.org/10.1007/978-3-030-37177-7_1


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37177-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-37177-7_1#ESM
mailto:s.leonelli@exeter.ac.uk

2 S. Leonelli

The promise of big and open data is tied to two key factors. One is their mobility:
the value of data as prospective evidence increases the more they travel across sites,
since this makes it possible for people with diverse expertise, interests and skills to
probe the data and consider whether they yield useful insight into their ongoing
inquiries.” The other is their interoperability, that is the extent to which they can be
linked to other types of data coming from a variety of diverse sources.* It is through
linkage techniques and tools that data become part of big data aggregates, which in
turn function as empirical platforms to explore novel correlations, power machine
learning algorithms and ask ambitious and innovative questions.

This volume interrogates the conditions for data movement, and the ways in
which data mobility and interoperability can be achieved, from the viewpoint of the
history, philosophy and social studies of science. What is already clear from the
growing scholarship on data is that this requires enormous resources, apposite tech-
nologies and methods, and high levels of human ingenuity - which is why in the
world of research as in many other parts of society, online databases, data visualiza-
tion tools and data analytics have become indispensable to any form of research and
innovation.* This insight runs counter the hyped public discourse around the sup-
posedly intrinsic power of big data and the related expectation that, given a lot of
data, useful and reliable discoveries would follow. And yet, even recognising that
mobilizing data requires resources is not enough to understand how they can be
effectively used as sources of evidence. Stocking up on skills and tools from data
science, information technology and computer engineering does not suffice for
knowledge production. The critical issue is how to merge such expertise and solu-
tions with existing domain-specific knowledge embedded in evolving social con-
texts, thus developing methods that carefully and creatively tailor data-intensive
approaches to the study of specific targets and the achievement of given goals. In
other words, transforming data into knowledge requires more than some generalist
algorithms, clustering methods, robust infrastructure and/or clever apps: it is a mat-
ter of adapting (and sometimes creating) mathematical and computational tools to
match the ever-changing characteristics of the research targets, methods and
communities in question — including their political and economic context.

To highlight this, the volume brings together in-depth case studies that document
the motivations and characteristics of the existing variety of data practices across

2Data mobility has been associated to the rise of a “fourth revolution” in knowledge production
that is affecting all aspects of society (Hey et al. 2009; Kitchin 2014; Wouters et al. 2013; Floridi
2011). T argued that extensive data mobility is a defining characteristic of data-centric science,
which also captures the historical novelty of this approach to data (Leonelli 2016).

3This is widely recognized in data science itself, where interoperability is viewed as one of the four
crucial challenges to so-called “FAIR” data (that is, data which are “findable, accessible, interoper-
able and reusable”; Wilkinson et al. 2016). See also extensive ethnographic research on interoper-
ability conditions by Christine Borgman and collaborators (e.g. Edwards et al. 2011; Borgman
2015) and the Exeter data studies group (e.g. Leonelli 2012; Tempini and Leonelli 2018), among
others.

*See for example the inaugural issue of the Harvard Data Science Review (Meng 2019), in which
these factors are all highlighted as integral components of data science.
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research fields, locations, projects, objectives and lines of inquiry. This provides
readers with insight into the salient circumstances affecting data interpretation, be
they scientific, technological, political and/or social — and thus with concrete
grounding to consider how such variety originates, how it affects whether and how
data are moved and re-used, and with which implications for the knowledge being
generated — and its social roles.

Data production and use within different areas of research have long been defined
by highly distinctive histories, methods, objects, materials, aims and technologies.
Such diversity is a key challenge to any attempt to articulate the general character-
istics and implications of data-intensive science, and indeed there is arguably no
single characterisation that can fit all the different ways of working subsumed under
that umbrella. Leading research organisations, science academies and science pol-
icy bodies have repeatedly argued that when it comes to data practices, “one size
does not fit all” and it is thus damaging to apply the same guidelines and standards
for data management across different fields, research situations and long-standing
traditions.® In a similar vein, historians have documented various forms of big data
production and interpretation across space, time and disciplinary boundaries®; and
researchers in the social and information sciences have documented the diverse eco-
systems underpinning research in biology, biomedicine, physics, astronomy and the
social, environmental and climate sciences — and pointed to differences in data types
and standards, preferred instruments, norms and interests as having an enormous
impact on the effectiveness of strategies to analyse large datasets brought together
from different sources.’

How does such diversity affect the conditions under which data are processed
and disseminated for re-use across different research environments? This is the
question at the heart of this volume. Answering this question implies, first of all,
understanding how data practices (ranging from the design of data collection to data
processing and interpretation) adapt to specific situations, while also arching back
to long-standing methodological traditions and norms. It also involves understand-
ing how data actually move from one setting to another, what it takes for that move-
ment to occur and what conceptual, material and social constraints it is subject to.
Such understanding is particularly relevant in our age of distributed global net-
works, multidisciplinary collaboration and Open Science, where the pooling and
linking of data coming from different fields, topics and sources constitutes at once
a tantalising opportunity and a significant challenge. Without the ability to track
how data change themselves and their environment as they move across contexts, it
is impossible to strategize, innovate or even just document data practices and their

3See for instance the OECD (2007), Boulton et al (2012), the Global Young Academy (2016), the
Open Science Policy Platform (2018) and the European Commission (2017). The whole working
agenda of the Research Data Alliance is also based around the recognition of field-specific data
requirements. I have discussed the epistemic foundations for this view in Leonelli (2016).

%For instance see Blair (2010), Aronova et al. (2018), Daston (2017).

"Among prominent contributors: Geoff Bowker (1994 and subsequent works), Paul Edwards
(2010), Rob Kitchin (2014), Borgman (2015).
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effects — also making it hard to assign responsibility for mistakes, misunderstand-
ings or wilful deceptions in the use of data as evidence for decision-making.

Tracking data movements and explaining their direction and implications cannot
be done solely through quantitative methods. Bibliographic analyses are of limited
use since the vast majority of researchers, despite grounding their research on the
consultation of databases, are not in the habit of documenting their searches or cite
their data sources with precision when writing up results. The re-use of data is most
commonly acknowledged in the form of a citation to a journal article providing a
specific interpretation of the data. Where data are sourced from a repository rather
than a published paper, citation is less reliable (also because some repositories do
not provide stable identifiers for their datasets, so data users would cite the whole
repository rather than the specific entry of interest); and the pivotal role played by
data infrastructures in facilitating the re-use of data remains largely hidden.?
Moreover, the number of infrastructures, technologies and standardisation tools
developed to process and mobilise data is growing exponentially, generating vast
and interdependent networks of resources which are extremely hard to map and
describe even for the practitioners involved. One of the reasons for this growth is the
insistence by researchers working within different traditions to tailor their data prac-
tices and related tools as closely as possible to their existing methods and commit-
ments. This requirement makes sense given that such methods and commitments
have been adapted over centuries to the study of the specific characteristics of phe-
nomena of interest, and yet makes it difficult for researchers to agree on common
standards and norms. This reluctance, coupled with a project-driven, short-term
funding system, encourages an uncontrollable and unsustainable proliferation of
resources for the management and analysis of data, with hundreds of databases
emerging every year in relation to the same research field. As is often the case when
scores of information resources haphazardly multiply and intersect, this prolifera-
tion results in obfuscation: each tool for data mobilisation becomes a black-box
whose effects on the wider landscape are impossible to quantify without a thorough
qualitative assessment.” The expanding network of variously interlocked data
resources and infrastructures is thus not only hard to trace, but opaque in its impact
on knowledge generation.

The investigative approach used in this volume builds on extensive research on
the history of different fields, the qualitative study of the practices and ethos charac-
terising the research communities in question, and consideration of how such his-
tory affects: (1) the norms, strategies and behaviours utilized when collecting,
sharing and processing data, including measuring frameworks and specific instru-
ments and skills; and thus (2) the outputs of research, which may include knowledge
claims but also technologies, methods and forms of intervention. Through the in-
depth investigation of case studies, we follow different stages of data movements,

8This has made it very difficult to quantify the impact of data infrastructure on research, and thus
their value (Bastow and Leonelli 2010; Pasquetto et al. 2017).

For detailed studies on this phenomenon, see Mongilli and Pellegrino (2014), Pasquale (2015),
Egyedi and Mehos (2015), Ebeling (2016), Leonelli (2018a).
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ranging from the planning that precedes data production to various ways in which
data are mobilised and re-purposed, often with the goal of providing “actionable”
knowledge. The volume as a whole constitutes a (undoubtedly partial, yet rich)
sample of the variety of data practices to be found in different portions of the
research world. At the same time, the volume exemplifies a coherent overarching
approach to the investigation of data movements and their implications, which is
ideally suited to analysing the diverse conditions under which data are handled,
understanding the reasons underpinning such diversity, and identifying nodes of
difference and similarity in ways that can help develop best practice. This approach,
which we call the study of “data journeys”, is what this introductory chapter aims to
systematically review and articulate.

To this aim, this chapter is structured as follows. I first discuss the very notion of
data and provide a conceptualisation of data epistemology that proves particularly
suitable to the emphasis on data mobility and interoperability: the historicized and
relational view of data as lineages (Sect. 1). I then discuss the idea of data journey
both as a way of theorising data movement and as a methodological tool to investi-
gate it (Sect. 2). I emphasise how data movements often transcend institutional
boundaries and evade — or even reshape -- traditional conceptions of division of
labour in science, thus making categories such as ‘disciplines’ and ‘research fields’
descriptively and normatively inadequate. The fluid nature of data journeys makes
them challenging to identify and reconstruct, and yet it is the very opportunity to
articulate and explicitly tackle those challenges that makes data journeys into useful
units of analysis to map and compare the situations and sets of practices through
which data are mobilised and used (Sect. 3). As a demonstration, I reflect on some
significant differences and similarities among data practices that emerge from the
analyses of data journeys garnered in this volume (Sect. 4). In closing, I discuss the
significance of this approach towards addressing the scientific, political, economic
and social challenges raised by data-centric science and the emergence of big data.
This body of work does not sit easily with the current political and economic push
towards universal adoption of big and open data as motors of research and innova-
tion (Srnicek 2017, Mirowski 2018). Recognizing the diversity of data journeys and
related practices explains the difficulties involved in governing and standardizing
big and open data, and highlights the considerable resources and the breadth of
expertise involved in re-using data in ways that are sustainable, reliable and
trustworthy.

2 Mutability and Portability: Data as Lineages

When attempting to define what data are and how they contribute to the production
of knowledge, reference to the Latin etymology of the term ‘datum’ - meaning “that
which is given” - is unavoidable. This volume takes one aspect of this etymology
very seriously: the reference to the public life of data as objects that can be physi-
cally moved and passed around (whether through digital or analogue means), so as
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to be subject to scrutiny by people other than those involved in their creation. Data
are mobile entities, and their mobility defines their epistemic role. Hence, for any
object to be identified and recognised as datum, it needs to be portable.

This is not a new position. An early proponent was Bruno Latour in his seminal
discussion of how data produced during fieldwork are subsequently circulated (Latour
1999). Latour, however, added that while data are defined by their mobility, their epis-
temic power derives from their immutability - their capacity to stay the same and thus
to be taken as a faithful and stable document of the specific moment, place and envi-
ronment in which they were created. In this interpretation, data are static products of
one-off interactions between investigators and/or the parts of the world under investi-
gation: while phenomena change over time, the data that document them are fixed.

This volume was born of a different premise: that this impression of fixity, often
associated to the idea of data as “given”, is highly misleading. In virtually all of the
cases discussed in this volume, data are everything but stable objects ready for use.
What makes data so powerful as sources of evidence is rather their mutability: the
multiple ways in which they are transformed and modified to fit different uses as
they travel across space, time and social situations. In order to serve their evidential
function, data need to be adapted to the various forms of storage, dissemination and
re-use over time and space to which they are subjected. Hence the mobility of data
depends on their capacity to adapt to different landscapes and enter unforeseen
spaces. As they travel around, data undergo frequent modification to fit their new
environments. They acquire or shed components, merge with other data, shift shape
and labels, change vehicles and companions, and such transformations prove essen-
tial to their usability by different audiences and purposes. As Mary Morgan (2010)
noted in relation to the travels of facts, data are therefore best viewed as mutable
mobiles. The more they travel, the more they shift shape to suit their new circum-
stances, and as a result prove tractable and effective in serving new goals.

This conceptualisation of data immediately poses a series of conceptual and
methodological problems. Do data retain some integrity while they travel? How do
we make sense of data as objects that remain identifiable while changing character-
istics, shape and format throughout their journeys? And when do data cease to be
data and become something else? The chapters of this volume answer these ques-
tions in the form of stories of data birth, regeneration, loss and even death. These
stories highlight the extent to which what is used as data by a given group at a given
moment in time and space may not retain that function at a later time, either because
the group shifts attention to other objects as sources of evidence or because the
journey to new research situations fails.

One way to frame these stories and their significance for data epistemology is to
adopt a relational view of data, within which the power to represent and thus docu-
ment specific aspects of the world is not intrinsic to data in and of themselves, but
rather derives from situated ways of in which data are handled (such as specific
forms of modelling and interpretation).!® This is not to say that the physical features

107 discuss the relational view of data in detail in Leonelli (2016, 2018a).
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of data objects — what colour and consistence they are, what marks they bear, and
perhaps most crucially, whether or not they resemble (and in which respects) given
aspects of the world — do not matter. Quite the opposite: the material properties of
data as objects play a pivotal role in enabling and constraining specific practices of
assemblage, dissemination and interpretation. And yet, they are not the only con-
straint on modelling and theorising. Other significant factors include the technolo-
gies, materials, social settings and institutions involved in facilitating or impeding
data travel. For example, the photograph of a child has physical properties that make
it a potentially useful source of evidence in a study of human physical development,
but this potential can only be realised under a series of conditions that include: the
availability of comparable data (say pictures of other children, pictures of the same
child at different times, or other types of data on the child such as her height and
family history); the extent to which the resolution and format of the photograph fit
the requirement imposed by the computational tools used in the analysis; and the
opportunity to access relevant metadata (such as the age and location of the child,
which however constitute sensitive data whose circulation and use are strictly regu-
lated). What data can be evidence for - what representational value is ascribed to
them - thus depends on their concrete characteristics at the time of analysis as well
as the specific situation in which data are being examined.

The relational view of data makes them into historical entities which — much like
organic beings — evolve and change as their life unfolds and merges with elements
of their environment. Building on this biological metaphor, I propose to conceptual-
ize data as lineages: not static objects whose significance and evidential value are
fixed, but objects that need to be transformed in order to travel and be re-used for
new goals. The metaphor may appear to break down when observing that the plas-
ticity of organisms and their ability to adapt to new environment are essential condi-
tions for their survival, while data seem perfectly able to live a long life without
requiring any modification. Typical examples are the contents of archives, musea,
repositories and other establishments whose goal is often understood to consist of
the long-term preservation of artefacts in their original state. In response to this
objection, my contention is that what these establishments preserve are not data, but
rather objects which may or may not be used as data (or data sources); and that as
soon as the effort is made to use such objects as data or acquire data from them (for
example, through measurement), they are at least minimally modified to fit the ever-
evolving physical environments and research cultures within which they are valued
and interpreted.!! Using an archaeological artefact or an organic specimen as datum
and/or data source, for instance, may involve touching it and moving it around —
operations that are likely to affect the object itself, particularly if it is fragile and/or

A very significant difference between data and organisms may consist of the locus of agency,
with data depending on the agency of humans for their “evolution” as components of inquiry, while
organisms arguably possess some degree of self-organisation. This introduction is no place for a
lengthy exploration of these ideas, which are the subject of a manuscript in preparation by Leonelli
and John Dupré.
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very old, and be conducted differently depending on what instruments researchers
are using to document the characteristics of the object.'?

Thus again, the use of objects as data requires portability and mobility, which in
turn beget mutability - for instance when exposing data to new technologies, bring-
ing them to new user communities, and articulating how they may fit new strands of
inferential reasoning. The archaeological artefacts discussed by Alison Wylie are a
perfect case in point, with her chapter illustrating how the ways in which these
materials are manipulated — and traces are extracted from them — changes in parallel
to shifting conceptual, institutional and technological contexts of analysis. Both her
case and the case of art authentication discussed by Coopmans and Rappert power-
fully show how the very value of artefacts as data sources depends on mobilisation
and transformation, since if complete consensus was reached on what exactly these
objects represent, there would be no incentive to continue to use them as part of a
line of inquiry.

By the same token, several chapters in the volume demonstrate the enormous
efforts and resources involved in keeping data objects and their evidential value
stable over time — from the development and updating of standards and classifica-
tory categories, as discussed by Edmund Ramsden in the case of data about housing
and Jean-Paul Gaudilliere and Camille Gasnier in relation to health data, to the
development of consensus around the interpretive commitments used in data infra-
structures (e.g. the biomedical “knowledgebases” analysed by Alberto Cambrosio
and colleagues) and the establishment of benchmarks and practices through which
data uses can be documented and assessed, as described by Wendy Parker for
weather data and G6tz Hoeppe for astronomical observations. It is no coincidence
that what Cambrosio and colleagues document is the gradual disappearance of data
from clinical spaces in favour of established, situated interpretations of those data.
Within knowledgebases, the question of what makes data such in relation to any one
clinical situation is eschewed in favour of a more practical and actionable reference
to agreed interpretative claims.

While other conceptualisations of data may well fit the study of data journeys,'?
the relational view of data as lineages does in my view illustrate the significance of
focusing on data movements to understand the role and status of data within
research. This approach shifts analysts’ attention towards understanding what
makes data more or less stable and usable, the epistemic — but also affective, insti-
tutional, financial, social - value imputed to the objects used as data across different
situations of inquiry, and the extent to which such objects retain or lose integrity and
material properties. It thus challenges facile understandings of data as the “raw”
materials of science, which have long been critiqued within philosophy and the
social sciences,'* and yet remain attractive to those who like to understand the

12See for example Wylie (2002) and Shavit and Griesemer (2011).

13 Another useful conceptualization, which also emphasizes the significance of studying data as
mobile and mutable objects but places emphasis on the socio-material rather than the conceptual
conditions of travel, is that proposed by Bates et al. (2016).

14 As epitomized by the effectively titled book edited by Lisa Gitelman (2013), Raw Data is an
Oxymoron, and recalled by Helen Longino, a prominent participant in these debates, in the after-
word of this volume.
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research process as a straightforward accumulation of facts. All the contributions to
this volume exemplify how using data as evidence is everything but straightforward,
and sophisticated methods, resources and skills are required to guarantee the
reliability of the empirical grounds on which knowledge is built.

3 Data Journeys as Units of Analysis

Data journeys can be broadly defined as designating the movement of data from
their production site to many other sites in which they are processed, mobilised and
re-purposed. “Sites” in this definition do not need to refer to geographical locations,
though this is often the case: they also encompass temporal locations and diverse
viewpoints (whether motivated by different theoretical commitments, expertise and
know-how, or by political, social and ethical views).

As a conceptualisation of the research process, the idea of data journeys is a
direct counterpoint to the distinction between ‘“hypothesis-driven” and “data-
driven” modes of research. Data journeys provide a framework within which to
identify and investigate the various ways in which theoretical expectations shape the
travel of data and the various vehicles and resources used to support that travel,
regardless of whether the data were originally generated to test a given hypothesis.
Indeed, focusing on data journeys facilitates the identification and exploration of
data movements regardless of whether they are part of the same line of inquiry or
methodological approach. Data produced to test a hypothesis are no less likely to
travel than data produced for explorative purposes: in both cases, the data are tied to
a specific frame of analysis (whether this is conceptual, as in the case of a given
hypothesis, or methodological, as in the case of the tools used to collect and/or gen-
erate data), and work is required to move them away and beyond that frame. The
chapter by Teira and Tempini discusses how data produced by a randomised clinical
trial — the posterchild for hypothesis-driven research — do not typically travel beyond
the trial itself unless legal protection of patient confidentiality and the commercial
sensitivity of the data is in place, as well as institutions and infrastructures to curate
the data appropriately (see also Tempini and Leonelli 2018). The difficulties
involved in pharmaceutical data journeys become evident when attempting to merge
such data with electronic health records gathered for goals different than that of test-
ing. Focusing instead on data whose very history exemplifies the practice of data
collection without a predetermined target, James Griesemer demonstrates how the
circulation and appropriate mining of the outputs of sequencing experiments also
requires the adoption of a complex set of strategies and resources. !

Indeed, the metaphor of the “journey” is powerful because, just like many human
journeys, data journeys are enabled by infrastructures and social agency to various

SThe very history of the development of institutional and technological means for sharing
sequencing data within and beyond biology illustrates this well (see for example Stevens 2013,
Hilgartner 2017 and Maxson et al. 2018).
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degrees and are not always, or even frequently, smooth.!® A useful way to think
through the significance of adopting this metaphor is to consider what it can mean
for journeys to be successful. Sometimes journeys are perceived as successful when
they consist of an item or person following a given itinerary towards a pre-selected
point of arrival, by means of existing vehicles and infrastructures. In this interpreta-
tion, successful journeys will require meticulous planning and/or dependable and
easily accessible infrastructures, which can secure the pathways through which data
can be displaced (much in the same way as humans managing a business trip with-
out complications by travelling a well-serviced highway in a dependable car). Well-
established and meticulously curated databases, such the biological ones discussed
by William Bechtel in his chapter, can sometimes serve as such predictable, con-
trolled travelling tools.

In other cases, the success of a journey will not depend on adherence to an itiner-
ary or even a pre-determined destination, but rather on: the effects of the journey on
its protagonists and/or their surroundings; the ability of a given vehicle to mobilise
data in the first place; the extent to which data are welcomed and used in new envi-
ronments; and/or the degree to which the purpose and destination of the journey
changes en route. This is an interpretation of the idea of journey that relates less to
physical displacement and more to intellectual development and learning, whereby
one travels to explore, discover and “find meaning”’. Rachel Ankeny’s discussion of
the construction of medical case reports is a good example of the hopes and uncer-
tainties built into developing vehicles for data, in a situation where the future uses
and potential itineraries of such reports (and thus what counts as data within them)
are largely unpredictable. The whole point of this form of data dissemination is to
encourage as wide a range of future travel and interpretations as possible.

No matter what the success of a journey is taken to imply, its achievement is
prone to the unavoidable serendipity involved in any type of displacement as well as
the heightened risks typically associated with travel. Using data journeys as a unit
of analysis for data practices and their outcomes helps to identify and evaluate such
risks, including questions relating to error in the data (for instance when data are
copied inaccurately), misappropriation, misinterpretation and loss — and the relation
between such risks and the physical and social characteristics of data objects and
their travelling vehicles. Gregor Halfmann’s chapter on the transformation of sam-
ples into data stresses the precarious transitions involved in datafying the environ-
ment, but also the epistemic significance of the material links between the practices
of data collection and further data dissemination and use. Once those material links
weaken, for instance in cases where digital data have long been stored, formatted,
shared and manipulated through various types of databases and related software, it
becomes imperative to establish clear benchmarks for what data are reliable in rela-
tion to specific uses — and yet, as discussed both by Parker in relation to climate

16See also McNally et al. (2012), Lagoze (2014), Bates et al. (2016), among others.
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science and Tempini in relation to public health, such benchmarking proves increas-
ingly challenging to design as data journeys grow in length and complexity.'”

More generally, using data journeys as a theoretical framework helps to consider
and examine the relationship between different types of data structures (their physi-
cal characteristics as mutable objects) and data functions (their prospective use as
evidence). What types of data - and forms of data aggregation - best afford what
interventions and interpretations? And to which extent the physical characteristics
of data constrain possible goals and uses? Many chapters in this volume focus on
numerical data formats and their ability to aggregate and lend themselves to compu-
tational and statistical techniques, which in turn facilitates their travel and their re-
interpretation for many purposes. Other chapters stress how images and samples
lend themselves to different types of manipulations, with their rich material proper-
ties making them prone to a large variety of interpretation and also, possibly, to a
broad evidential scope. While it has long been recognised that quantification has an
important role to play in inferential reasoning, attention to data journeys rather than
specific instances of data highlights the epistemic role played by data traditionally
regarded as “qualitative”.

Similar considerations apply to characteristics often associated to “big data”
(Kitchin and McArdle 2016). Take, for instance, the idea of volume and the related
notion of scale. Griesemer’s and Mary Morgan’s chapters both emphasise the
importance of different kinds of data collectives and groups — such as datasets — to
the travels of individual data points (or datums, in Morgan’s provocative terms). As
they point out, the mining of big data often involves: the merging of datasets of dif-
fering scales and sizes, whose components were collected through diverse frame-
works; and choices about how such data collectives should be linked or otherwise
compared are a fundamental component of data journeys. Another key property
associated to big data is velocity, and again the study of data journeys enables ana-
lysts to interrogate this not just in relation to data production, but to the full arch of
data mobilisation and re-purposing. What is the role of speed in data journeys?
What impact does higher or lower speed of mobilisation have on the reliability of
datasets, the amount of uncertainty and trustworthiness assigned to them, and the
extent to which they can be reproducible? While the speed at which data travel may
not matter much to their prospective re-use, the speed at which data vehicles, infra-
structures and algorithms are developed to facilitate such fast travel matters a great
deal. Lack of investment and strategy around data travels implicitly supports a naive
and unrealistic view of data as “speaking for themselves”, which could compromise
the extent to which data that have been mobilised can reliably interpreted as evi-
dence. A case in point is Koray Karaca’s data construction at CERN, where what
constitutes a reliable and travel-worthy dataset from any one experiment (collision
event) is decided through the automated implementation of models in a fraction of

7For lengthier discussions of quality assessment in distributed data systems, see Floridi and Illari
(2014), Cai and Zhu (2015) and Leonelli (2017).
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a second, but the computational, theoretical and methodological resources that
make such a quick decision process possible require immense foresight, adequate
theoretical models, a highly sophisticated experimental apparatus and constant cali-
bration work. Similarly, Hoeppe illustrates cases of fast data travel in astronomy
while also stressing the importance of explicit reflection on assumptions, norms and
standards used during such journeys towards evaluating existing data
interpretation.

4 The Significance of Articulating Data Challenges

Regardless of what perspective one has on the nature and roles of data, tracking data
journeys is a fruitful methodological tool to investigate what happens to data them-
selves, rather than instruments, methods, claims, epistemic communities, reper-
toires, epistemic regimes. Attempts to follow and reconstruct data journeys are
experiments in identifying components of research that are of direct relevance to
data, rather than, as more usual within theory-centric approaches to knowledge
development, considering data in order to understand theories and models. In this
sense, we take inspiration from the infrastructural inversion articulated by Geoffrey
Bowker and Susan Leigh Star, with its encouragement to “recognize the depths of
interdependence of technical networks and standards, on the one hand, and the real
work of politics and knowledge production on the other” (Bowker and Star 1999).8
What data journeys do is place the spotlight firmly on to data themselves and the
implications that infrastructures — among many other forces, expectations and mate-
rial settings - have on their interpretation.

I already stressed how this approach enables analysts to step beyond a rigid con-
ceptualisation of “disciplinary” knowledge spaces, communities and tools. Data are
fascinating research components partly by virtue of their ability to transcend bound-
aries. The explosion of data journey sites reflects the disruptive power of data with
respect to institutional and disciplinary boundaries. Data are collected, circulated
and re-used within and beyond the scientific world, across different publics and for
widely diverse purposes — think only of crowdsourcing and citizen science as an
example of data crossing over various types of research and decision-making in
both the private and the public sector. Most significantly, data travels often play an
important role in challenging and re-shaping institutional, disciplinary and social
boundaries, thus acting as the ultimate “boundary objects” with the ability to con-
struct, destroy and/or re-make boundaries (Star and Griesemer 1989). The approach
is exceptionally well-suited to studying the vertiginous development of ever more
complex data science tools and infrastructures whose interdependencies and impact
on knowledge production require unpacking and investigation. In my own experi-
ence of studying data journeys, I found a high level of interest in my results from

18 See also Bowker (1994) and Star and Ruhleder (1996).
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researchers and curators themselves, who are the first to acknowledge how hard it is
for any one agent in the system to acquire an overarching view of how data travels.
Such an overarching view is arguably impossible to achieve: data journeys, as nar-
ratives that bring together various parts of a journey and highlight its implications
for (at least some parts of) knowledge production and society, may well constitute
the next best thing.

By the same token, many of the advantages so far identified in the adoption of
data journeys as a unit of analysis also constitute major challenges, at once concep-
tual and methodological, which all contributors to this volume had to face. Most
obvious is the problem of when journeys stop. It is difficult to delimit a data journey,
given both the variety of data uses that can derive from the publication of one data-
set, and the current explosion of digital data infrastructures. Networks of data infra-
structures and related uses can quickly become so complex as to be impossible to
localise and track. This difficulty is compounded by the mutable and aggregate
nature of data themselves, which makes data even more difficult to follow whenever
they are recombined to constitute new aggregates (as discussed in Tempini’s,
Griesemer’s and Morgan’s chapters); and the problem of identifying who counts as
a “user” of data at different points of a data journey (is it anybody who handles the
data, for instance, or is it only those to interpret the data for purposes associated to
knowledge-production?).

These issues cannot be settled in any general, abstract manner. As exemplified by
the chapters of this volume, solutions to these challenges turn out to be highly situ-
ated, and the very opportunity to clearly articulate these challenges constitutes an
advantage of adopting data journeys as units of analysis. Nevertheless, they ended
up taking similar forms across chapters, thus giving rise to a coherent set of meth-
odological preferences which all contributors converged upon, which I now
briefly list:

* Questioning “fixed” locations: attention to data journeys involves purposefully
looking beyond a specific location in time or space — whether this is conceptual-
ised as a specific project, institution, system or even research field — and ques-
tioning what defines and constitutes a situation of inquiry at every step of the
way and in clear relation to the goals of the groups involved;

* Focusing on non-linear, multiple narratives: reflecting the non-linear nature of
data journeys themselves and the several strands of data practice (and related
conceptualisations, goals and skills) that may end up animating the travels of a
single dataset;

o Utilizing detailed case studies to explore and contrast the local characteristics of
the data practices in question, for instance through ethnographies and historical
reconstruction, thus recognising that the devil in data journeys is in the specific
conditions under which movement happens;

» FEngaging with practitioners: because of the importance of details and of famil-
iarity with context, an embodied understanding of the skills, techniques and
goals involved at different moment of a data journey provides a strong platform
for interpretation and for assessing the extent to which the chosen cases act (or
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not) as representatives for wider concerns and attitudes. The study of data
journeys tends to be “in medias res”, with science scholars often working along-
side, and sometimes collaboratively, with data practitioners.

*  Meddling with other disciplinary lenses: all contributors to this volume worked
from a specific disciplinary/methodological perspective and yet engaged in fre-
quent dialogue with scholars with different skills and goals (including other con-
tributors of this volume), with the aim to heighten awareness of the many
dimensions of data journeys and their implications for conceptualizations of
data-intensive science. While this may not amount to fully fledged interdiscipli-
narity, it does call attention to the significance of interest in a multi-disciplinary
approach, where historical and philosophical findings inform social scientific
studies (and vice-versa)."”

» Attention to reflexivity: ways in which each author carves out case study and
identifies data journey is itself important to explicitly discuss, since it has strong
repercussions on analysis and it always itself dependent on the analyst’s own
goals and vantage point. The position of the author depends partly on their own
skills, preferences, aims and institutional position, and partly on the characteris-
tics of the groups and data uses that they investigate. Unavoidably, engagement
with data journeys typically requires tackling and confronting these issues in
ways that make sense given one’s interests and situation. Making one’s perspec-
tive as explicit as possible in the narration of these stories is therefore
important.?

Taken together, these methodological commitments constitute an overarching
approach to the study of data journeys which facilitates the identification and study
of common challenges, while at the same time maintaining the ambiguities and
generative tensions that virtually all scholars engaged in data studies have identified
as constitutive of the epistemic power of data.

5 Nodes of Difference and Similarity

While the range of data practices within this volume makes it impossible to offer a
straight comparison between cases on the basis of their disciplinary provenance,
some topics do emerge as crucial elements of data mobility across all chapters. In
this section, I reflect on ways in which such elements can be used as nodes to iden-
tify and reflect upon differences and similarities among data journeys.

Perhaps the most obvious one, which resonates with existing scholarship and my
remarks so far on the laboriousness of data journeys, is the significance of cleaning

1T discussed the value of bringing together philosophical, historical and sociological perspectives
to study the management of data within bioinformatics in Leonelli (2010).

'The methodological and conceptual demand for reflexivity is discussed in most detail within
Hoeppe’s chapter.
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and processing practices to the interpretation of data. The principles guiding data
cleaning can change dramatically across areas, often due to the preferences devel-
oped by research communities dealing with different types of data, phenomena and
research goals. This is illustrated in Boumans’ and Leonelli’s comparison between
business cycle analysis in economics, where simplicity is regarded as a virtue, and
plant phenomics in biology, where simplicity is viewed as potential oversimplifica-
tion. The tools and methods used to clean data also range widely. In the cases dis-
cussed by Tempini and by Parker, attention falls on digital means of filtering data,
where a given data format is preferred because it is compatible with existing soft-
ware and related models. It is notable that despite pertaining to different research
areas (environmental and climate science respectively), both examples concern situ-
ations where finding technical ways to share heterogeneous and geographically dis-
persed data is a priority. A different approach consists of identifying standards that
can help to systematize vast amounts of data by narrowing down what counts as data
in the first place, a phenomenon clearly illustrated by attempts to use biological,
medical, socio-economic and environmental data for public health purposes docu-
mented in Ramsden’s, Morgan’s and Gaudilliere’s and Gasnier’s chapters. Yet
another take on data cleaning is to proritize circumstances of data use over the char-
acteristics of the data objects in and of themselves, as exemplified by Hoeppe’s
study of what he calls “architectures of astronomical observations”; or to focus on
the effects of data cleaning on a given audience, as illustrated by the selection of
data points as markers of authenticity claims for artworks discussed by Rappert and
Coopmans.

Visualisation and its power to stabilise data patterns and related interpretations
is another theme to emerge strongly from the study of data journeys. Miiller-Wille
and Porter’s cases, both of which concern the study of inheritance to determine
recurrence of traits (respectively taken to denote race and mental illness) in specific
populations, illustrate how the deployment of tables to visualise data is instrumental
towards identifying patterns through which data are organised and understood — and
crucially, to make such patterns robust over time even to changes in the underpin-
ning datasets. Bechtel’s discussion of network diagrams in contemporary biology
provides another case where the patterns generated by a visualisation become them-
selves data to be disseminated and interpreted, thus engendering a data journey
where movement and reuse are dependent on the tractability and interoperability of
visualisations rather than of original sequencing data. Another take on sequencing
data is provided by Griesemer, who emphasises the grouping of data into datasets as
another type of patterning obtained through visualising tools such as Excel spread-
sheets and computational interfaces, which transforms specific data ensembles into
stable targets for investigation.

Visualisation tools play a central role in data journeys because data are often
unwieldy and hard to amalgamate, homogenize or even coordinate. A key reason for
this, particularly for data produced for research purposes, is that data are generated
through instruments, techniques and methods that are finely tuned to the study of
specific phenomena. Hence another node emerging from this volume is the relation
between data and the world: that is, the significance of the target system and its rela-
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tions to humans. The biological world, for instance, has long been perceived as
consisting of “endless forms most beautiful” that require tailored research
approaches. As discussed in Halfmann’s chapter, the study of marine organisms
tends to differ dramatically from that of trees, mammals and fungi, not to speak of
the ubiquitous microbes whose activities intersect and underpin all other forms of
life. This radical methodological pluralism results in myriads of data types, formats
and labels, and resistance to overarching attempts at standardisation (as exemplified
by Leonelli’s plant phenomics).?! The environmental sciences similarly need to
tackle ever-transforming, unique ecosystems, and the biomedical and social sci-
ences follow suit with the additional complications brought by the looping effects
involved in humans studying humans — such as the capacity of practices of data
classification to change the very phenomena that they identify, as in the case of
categories of mental illness which Ian Hacking (2007) usefully described as “inter-
active kinds”. At the same time, within these sciences the role of values and social
priorities in guiding data production and interpretation tends to be particularly pro-
nounced, with a desire for actionable knowledge structuring the choice of strategies
and vehicles for data journeys and sometimes resulting in adherence to narrow stan-
dards for the sake of achieving socially relevant goals (as demonstrated by the chap-
ters of the volume related to public health, including Ramsden, Gaudilliere and
Gasnier, Teira and Tempini, Morgan, and Cambrosio and colleagues). By contrast,
the targets of natural sciences such as astronomy, physics and geology may be no
less variable than the biological ones, but are generally perceived to be more inde-
pendent from human experience (Daston and Lunbeck 2011). The sky thus works,
in Hoeppe’s terms, as a stable object which can be observed and re-observed across
time; while in Koraka’s discussion, the collision events studied in particle physics
are assumed to be representative of the behaviour of all fundamental particles,
regardless of location and circumstances — a commitment that simplifies the process
of data amalgamation from different runs of an experiment.

Even where the target of data are assumed to be relatively homogeneous, how-
ever, data practices can differ on the basis of the degree of entanglement perceived
to exist between data and the instruments through which they are generated (which
may include conceptual tools like theories and models, or material tools like mea-
suring or experimental apparatus). Within particle physics, the generation of data is
deeply informed by theoretical models and the specificities of a highly complex
experimental apparatus, as illustrated by Karaca’s analysis of data acquisition pro-
cedures used at CERN. Similarly, Parker discusses the data-model symbiosis char-
acterising much work in the climate sciences. It is hardly possible to thing about
data as “raw” in such cases. The temptation to consider data as raw products of a
situated interaction with nature arises more consistently in relation to biological and
astronomic work, though even there the idea of ‘observing’ as a value-neutral,
observer-independent activity is quickly dispelled. Rather than focusing on whether

2I'This in turn, somewhat paradoxically, makes it hard to estimate and research the very phenom-
enon of biodiversity (Miiller-Wille 2017).
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or not data are treated as raw documents of nature, contributors to the volume found
it easier to examine stages of data processing and the extent to which certain traces
are being transformed and modified in transit.?> This is where the journey metaphor
comes in useful, highlighting the value that certain kinds of data types, format and
related practices of management and processing of data objects have, and how it can
differ across communities and stages of travel. The question of “what constitutes
raw data?” becomes “what typologies of data processing are there, and what do they
achieve within different types of inquiry?”

The relation between data and materials such as samples, specimens and prepara-
tions deserves a special mention here, partly because it has attracted less attention than
other aspects (both in the sciences and in science studies), but also because this is where
we find some of the starkest discipline-related differences between data journeys. For
archaeologists, for instance, materials are crucial anchors for inquiry, made even more
important by their scarcity. Within the biological and biomedical sciences, samples are
hard to obtain once data have been digitised and shared via databases. Even in cases
where they are collected (such as biobanks, natural history museums or seed banks),
samples are depletable and thus hard to access and reuse — and of course living organ-
isms develop and evolve, making it hard to stabilise their characteristics so that they can
act as a fixed reference point. Within social sciences such as economics and sociology,
it is even harder to hold on to a material sample as populations are constantly
transformed.

The management of change and temporality within and beyond data infrastruc-
tures can itself be considered as a node in the analysis and comparison of data
journeys. We discussed how data are transformed through mobilisation, and how the
target systems which data are supposed to document are also constantly changing.
Notably, change in data and their use as evidence is separate and often disconnected
from change in target systems. In other words, the processual nature of data as lin-
eages is out of step with the processual nature of the entities that data are supposed
to document: “data time” is not the same as “phenomena time” (Griesemer and
Yamashita 2002, Leonelli 2018b). This mismatch can be highlighted or downplayed
when ordering, visualizing and interpreting data as representations of specific phe-
nomena — that is, when developing data infrastructures, data mining algorithms and
models. This is a problem for (automated and complex) systems for big data analy-
sis, where situated assessment of data provenance and the specific date on which
data were originally collected is often unfeasible or side-stepped (Shavit and
Griesemer 2009; Leonelli and Tempini 2018). The vast majority of data infrastruc-
tures and mining tools assume a static definition of knowledgebase, with no sys-
temic provisions made for capturing change in target systems or in the data
themselves. The reification processes involved here prove particularly pernicious
when producing visualisations of data that build on each other at increasing levels
of abstraction, as in the case of networks where creating links can be relatively
simple but can make looking ‘back’ to the relation between networks and target
systems fiendishly difficult.

220n the tracking of traces, see Rheinberger (2011).
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All these considerations point to a final node of difference and similarity across
data journeys, which is the grounds on which those involved grant legitimacy and
trustworthiness to the data. This is where the cases within the volume show perhaps
the greatest degree of variety, with multiple norms and concerns emerging in rela-
tion to different data uses. Wylie shows how belief in archaeological data can be
warranted through frequent reanalysis of materials and triangulation of existing data
with data obtained through new instruments and methods. The cases of Miiller-
Wille, Porter and Bechtel show visualisation tools adding legitimacy and longevity
to biological data that would otherwise be highly contested, while Ramsden shows
the links between the adoption of standards, the portability of the data and the
degree to which they are accepted and used as grounds for public health decisions.
Attitudes to data ownership, governance and authorship can also contribute to eval-
uations of data credibility, with concerns around ethics and security playing a par-
ticularly strong role in the travels of sensitive personal data (as shown in Teira and
Tempini’s discussion of the different roles that government may take in regulating
the dissemination and reuse of medical records). The ways in which data journeys
themselves are institutionalised, and the status of institutions themselves, are of
course crucial to assessments of trustworthiness. Data regimes become reified and
actualised through different types of platforms (Keating and Cambrosio 2003), rep-
ertoires (Ankeny and Leonelli 2016), market structures (Sunder Rajan 2016) and
moral economies (Daston 1995, Pestre 2003, Strasser 2011), which shape the vari-
ous ways in which data are valued, including their role as sources of evidence.

6 Conclusion: Why Study Data Journeys?

The approach to data journeys that I sketched here helps to trace the relations
between the goals guiding different types of data use and the methodological, epis-
temic, cultural and political commitments favoured within those situations as they
develop and transform over time. This may not be as satisfactory as a straightfor-
ward list of components essential to all data journeys or universal conditions under
which data are likely to be reused — but the experiences of authors researching data
movements, within and beyond this volume, indicate that such a straightforward list
may not exist. This finding chimes with the failure of scientific attempts to find
universal standards and guidelines for data interoperability and reuse, which resulted
in the top global organisations focusing on data curation and dissemination (includ-
ing the Research Data Alliance, CODATA, the European Open Science Cloud and
the Digital Data Curation Centre) backing a discipline-specific approach, within
which diversity in epistemic cultures is taken as the starting point for devising data
management practices, rather than as an obstacle to overcome to make data travel.
The studies contained in this volume point to a yet more radical approach: rather
than discipline-specific, the communalities and differences in data journeys emerge
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as use-specific, and thus dependent on the goals, commitments and tools available
to those seeking to extract meaning from data within specific situations.

It could be objected that the focus on data journeys as units of analysis, being so
strongly steeped in history, necessarily constitutes a “a posteriori” view of what
already happened, which cannot provide insight into current and future events - par-
ticularly given the unpredictability of journeys themselves. It is not a coincidence
that the best examples of data re-use in this volume come from historical work from
the nineteenth and twentieth century. For the more contemporary data journeys
documented in this volume, most of which are still ongoing, it may even be too soon
to tell about re-use. This should not come as a surprise, given the deep link between
the epistemic value of data and their mobility. When conceptualising data them-
selves as mutable mobiles, data management and use are by definition moving tar-
gets, and any attempt to narrate data use necessarily turns away from its present
dynamics. This does not mean that the study of data journeys cannot offer lessons
for the future. Quite the opposite: this approach provides a way to pose the funda-
mental normative question, “what are data journeys good for?”

Asking this question is crucial at a time in which reliance on the “power of big
data” permeates public discourse. The possibility to bring lots of data together is
often hailed as a force for good, capable of revolutionizing the third sector (for
instance through the personalisation of service provision) and fixing virtually any
social and environmental problem, ranging from pollution to inequality. Focusing
on the challenges and strictures of data travel is an excellent antidote to such hype.
Understanding the conditions under which data come to be used, including the vari-
ous stages and processes through which that use is made possible, shines a light on
the costs and opportunities involved in data mobility. Data journeys need to be
reconstructed and studied with equal attention to technical and to social aspects,
thus displaying the extent to which value judgements and financial incentives inter-
sect with scientific goals and technological innovation. This is key to contemporary
debates around data storage, protection, security and use, as well as the meaning of
openness and fairness in information sharing and the development of artificial intel-
ligence. How are big (and small) data transformed into scientific knowledge, with
what implications, and how can the reliability of such knowledge be assessed?*
Who do data journeys benefit and who do they damage, when and how? Answering
these questions requires delving in both the technical and the social worlds of data,
thus identifying conceptual and material commitments and their repercussions in
terms of who is included, excluded or ignored by such knowledge-making pro-
cesses. By embodying this type of analysis, this volume exemplifies the value of
bringing scholarship from history, philosophy and social studies of science to bear
on issues of central concern to contemporary science and science policy.

230n the social challenges posed by the use of big data, see for instance the seminal work of dana
boyd (e.g. 2012).
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Material Origins of a Data Journey
in Ocean Science: How Sampling
and Scaffolding Shape Data Practices

Gregor Halfmann

Abstract This chapter discusses the epistemological relevance of material interac-
tions during the early stages of a data journey. It shows that processes taking place
when research technology makes physical contact with the objects targeted in
research endeavours shape the subsequent data journeys and the practices of creating
scientific knowledge. The chapter is based on a case study of ecological monitoring
in ocean sciences and zooms in on the practice of sampling the oceans’ ecosystems
with mechanical sampling devices that are towed regularly by commercial ships. I
propose an understanding of materiality as the integration of physical matter from
various sources so as to constitute a new entity, in this case a research sample con-
taining plankton organisms. The material integration is followed by material continu-
ity, the preservation of the sample throughout several if not all stages of the research
process without a change of medium. This two-fold understanding is an attempt to
ground the notion of “materiality” epistemologically rather than ontologically. As
shown with empirical examples, material interactions are the origin of resistances or
challenges which unfold throughout the research process as scientists intend to create
knowledge by manipulating and analysing physical objects. The scientific practices
are shaped by investigating, resolving, and working around these challenges.

1 Introduction

This chapter tracks physical interactions during the creation of research samples
and discusses their epistemological significance. On the basis of a case study in
ocean science, I argue that interactions between materials of the research technol-
ogy and of the natural systems studied by scientists shape practices of creating and
using scientific data; scientists deliberately study material interactions in order to
account for uncertainties and to maintain commensurability of data that have been
created decades apart. Understanding the epistemological significance of “material-
ity” in scientific practices is thus important for studies of data journeys.
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A variety of studies in the philosophy and sociology of science are concerned
with the material nature of scientific objects and practices. Inducing a ‘clash of
materials’ (Rheinberger 2011: 344) between biological entities and research tech-
nologies is central to many experimental practices in the life sciences. Such a clash
may lead to the formation of objects, which are described as “material”. However, a
wide range of objects with fundamentally different formation processes and physi-
cal characteristics are used in the life sciences, for example anatomical preparations
(Rheinberger 2015), model organisms (Ankeny and Leonelli 2011), or “material
models” in the form of species collections in museums (Griesemer 1990). What
“materiality” implies for knowledge production has been elaborated by scholars in
some cases, showing that material interactions and knowledge production processes
are often intertwined, but in a variety of ways.! This chapter complements these
accounts by tracking the epistemological impacts of material interactions at selected
stages of the formation and processing of research samples.

While many scholars have focussed on specific kinds of material objects or mate-
rial aspects of their case studies, the terms “material” and “materiality” tend to
remain rather loosely defined. Quite often, it seems that “material” is used to signal
difference or opposition to other classes of objects or processes, which may be
labelled “non-material”, “virtual”, “theoretical”, “mathematical”, “ideational”, or
the like. The opposition seems to bear on differences in an entity’s physical consti-
tution, stability, or tangibility, but also relates to its ontological status: mathematical
theories or ideas certainly differ ontologically from a sampled biological species.

Debates over the meaning of “materiality” have ensued in some cases; for exam-
ple, Morgan (2003) and Parker (2009) debate how to understand “materiality” with
respect to scientific experiments. Parker (2009: 492-93) criticises that computer
simulations are not seen as material experiments by many; she further suggests that
the emphasis on “stuff” may be misplaced and that epistemologically, the behaviour
of a system is more relevant than its ontological characteristics. In science and tech-
nology studies, the meaning of materiality has been discussed in relation to a grow-
ing interest in ontology; Woolgar and Lezaun (2013: 326) argue that characteristics
that may qualify an object as “material” should be treated as practical achievements
and “materiality” should therefore be understood as an ‘upshot of practices’ of a
certain kind. These examples show that materiality in scientific practices deserves
deeper scholarly consideration; a closer study of materiality may provide classifica-
tions involving “material”, “non-material”, or other types of entities with crucial
context and a more solid grounding.

In this chapter, I propose an understanding of materiality as the integration of
physical matter from various sources so as to constitute a new entity; the material
integration is followed by the preservation of the entity throughout several if not all

"For example, the materiality of anatomical preparations results in an ‘indexicality’ of the object
that points to itself rather than representing something else (Rheinberger 2015: 323); standardised
material characteristics of model organisms make them usable as ‘genetic tools’ (Ankeny and
Leonelli 2011: 316); the materiality of species collections provide an epistemological robustness
to potential changes of theoretical perspective (Griesemer 1990: 83).
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stages of the epistemic process without a change of medium. Material integration
and material continuity are a two-fold characteristic applicable to objects that scien-
tists create and use as well as to scientific practices. This understanding is an attempt
to ground the notion of “materiality” epistemologically rather than ontologically.
Empirical examples presented in this chapter show that material interactions are the
origin of resistances or challenges, which unfold throughout the research process as
scientists intend to create knowledge by manipulating and analysing physical
objects; scientific practices are shaped by investigating, resolving, and working
around these challenges.

Material integration appears as a characteristic that is applicable to virtually any
entity considering formational processes on a biological or chemical level. However,
in combination with material continuity, my understanding of materiality leaves
aside data practices that involve “jumps” to an entirely different medium.
Understanding materiality in research processes requires a focus on preservation
and overlaps between different stages of epistemic practices, which can be likened
to scholarly accounts of biological reproduction as I discuss later in this chapter.

By focusing on sampling and subsequent research practices, my chapter zooms
in—as the title indicates—on the “origins” or the very early stages of a data journey.
The beginning of a journey is not necessarily the moment, in which things move
physically (or virtually) for the first time. Many would argue that a personal journey
begins with thorough planning and smart packing; many choices made at this
stage—which route to travel, which shoes to wear—depend on material aspects and
conditions such as terrain or expected weather conditions. These conditions create
challenges, which shape the actual movement and influence the journey’s outcome.
The journey, as an unfolding process or development, is enabled, facilitated, or
“scaffolded” by these choices and by the artefacts, infrastructures, and agents a
traveller has decided to utilise, for example boots, maps, or travel agents. This chap-
ter is not about the data journey per se, but about early stages of an epistemic pro-
cess; I use the plural form “origins” to account for the difficulty of pointing at one
distinct moment, at which the journey begins.? A great deal of thinking, planning,
and preparing is necessary for data (and for persons) to travel successfully (Leonelli
2016: 40, Learning from Data Journeys); the origins of these preparations, that is
the processes and conditions that cause or provoke certain preparatory measures,
are scattered across various domains,’® including, as I intend to show in this chapter,
material interactions at the sampling stage.

2] use the term “origin” with caution, in particular in relation to material objects; Rheinberger
(2011: 338-9) writes that with respect to “traces”, which are ‘material manifestations’ in experi-
mentation before they are turned into representations, an origin does not exist and has never
existed. With “origins of a data journey”, I intend to highlight a number of processes leading up to
the creation of data and the data journey, without implying that a concrete origin in space and time
is tangible.

3The institutional context of research or the history of a research field, from which research activity
is inspired and research methods are passed on, are examples of other domains that introduce
restrictions on data practices.
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Various stages of processing and manipulation of physical objects are strongly
pronounced in my case study, the Continuous Plankton Recorder (CPR) Survey.
Research samples containing marine organisms are created by deployment of
mechanical sampling devices on commercial ships crossing the oceans. Samples are
then analysed in four distinct steps in a laboratory in Plymouth, UK; these include
microscopic identification and counting of hundreds of different taxa ranging from
single-celled phytoplankton to zooplankton organisms measuring several millime-
tres. All samples are archived for potential re-analysis in the future. I illustrate with
several examples in this chapter that material interactions between the mechanical
sampling device and marine organisms require specific practices, which “scaffold”
the creation and the interpretation of scientific data.

I understand scaffolding as dynamic structures of conceptualisations, practices,
theories, technologies, or personal relationships, which are applied to entities in
order to facilitate the development of specific capacities or skills. Wimsatt and
Griesemer (2007) have coined the concept of scaffolding in relation to the develop-
ment of culture and it has since been applied to various domains, including scientific
practice. A rich collection of essays (Caporael et al. 2014b) demonstrates the appli-
cability in three very broad domains—evolution, culture, and cognition—and
encourages scholars to analyse their own work in terms of scaffolding. An example
of its applicability in science is Wylie (2016: 1), who explains how ‘interpretive
scaffolding’ is used in archaeology to determine how material traces of the past can
be used as evidence; Wylie points to epistemological consequences of scaffolding by
arguing that scaffolding is always provisional and new ways of data interpretation
are capable of calling assumptions based on an established scaffold into question.

As the following empirical sections show, the CPR Survey is grounded in the
analysis of physical objects probably as much as archaeology; yet, my case is quite
different, because the same type of evidence—physical samples containing marine
organisms—is created repeatedly over multiple decades. Scientists must then be
able to compare old data with new data, which is a common challenge in environ-
mental sciences that study long-term changes of natural systems (Edwards 2010).
Besides discussing the material origins of scientific data, this chapter illustrates how
the usability of data from different decades is scaffolded by implementing data
practices that preserve methodological continuity.

After introducing the CPR Survey and tracking some material interactions and
their epistemological implications, I discuss my understanding of “materiality” and
elaborate how the material origins of scientific data require different forms of scaf-
folding and thereby shape data practices.

2 The Continuous Plankton Recorder Survey

The CPR Survey is an ongoing, long-term research programme run by the Sir Alister
Hardy Foundation for Ocean Science (SAHFOS) from Plymouth, UK, since 1990
until SAHFOS merged with the Marine Biological Association of the UK (MBA) in
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2018.* However, the survey itself is much older. The CPR was invented by fisheries
ecologist Alister Hardy in the 1920s for the purpose of monitoring zooplankton, the
key food source of larval fish (McQuatters-Gollop et al. 2015: 2). The design of the
CPR and the steps of sample analysis were developed experimentally in a ‘pioneer
period’ in the 1930s and the early 1940s (Reid et al. 2003: 130). Since the 1950s,
the basic methods of sampling and analysis have remained unchanged (Reid et al.
2003: 131-32). With datasets covering more than 70 years, the CPR Survey is one
of the longest running time series in environmental and marine science (McQuatters-
Gollop et al. 2015: 2). The methodological stability is one of the most important
aspects of the CPR Survey; it is vital for its reputation and prestige in the scientific
community, but it introduces constraints to scientific practice, as the survey’s lab
manager David Johns explains:

“The whole idea is that you keep the methodology the same. You don’t want to make any
mistakes with methodology, it has got to be the same. We pride ourselves on our 70-year
time series, that’s what we want.” (DR0934: 5)

The CPR Survey has a long and eventful history; it was close to shut down in the
1980s, when long-term marine monitoring programmes in Europe were terminated
at an alarming rate (Duarte et al. 1992).5 Unlike many other programmes, the pro-
jected closing of the CPR Survey led to an international initiative strongly supported
by the International Council for the Exploration of the Sea (ICES) and the
Intergovernmental Oceanographic Commission (I0OC) of UNESCO; a rescue fund
was put together and established SAHFOS as a charity organisation in 1990 (Reid
et al. 2003). SAHFOS’ core work was ‘the running and safeguarding’ of the CPR
Survey, according to its former Director (Owens 2015: 2). Running the survey con-
sists of producing data related to plankton distributions from the analysis of sam-
ples, which are created through the deployment of CPRs. In addition to this core
activity, SAHFOS increasingly engaged in ‘ancillary activities and associated sci-
ence’ (Owens 2015: 2).5

A CPR is a mechanical filtering device that is towed by commercial ships on
their regular shipping routes. Bands of silk inside the CPR filter the seawater and are
processed into individual samples measuring around ten by ten centimetres. As of
summer 2017 more than 5 million nautical miles have been sampled with CPRs in
total and more than 250,000 samples have been analysed.” The CPR Survey oper-

* At the time of my research, the CPR Survey was still conducted by SAHFOS, and the name there-
fore appears throughout the chapter and my references. Since April 2018 the CPR Survey is offi-
cially run by the MBA and the name “SAHFOS” has now largely disappeared from websites and
official statements related to the CPR Survey.

3 At that time, long-term ecological monitoring ‘was considered weak science, akin to stamp col-
lecting’ (Reid et al. 2003: 141); around 40% of European monitoring programmes were shut down
in the late 1980s (Duarte et al. 1992).

®The survey’s staff members are involved in the development and testing of new technology, in
policy-driven work, or in education and outreach. Several research fellows conduct research in
environmental change, molecular ecology, marine biodiversity, sustainable resources, and health
and well-being of marine food sources (SAHFOS 2015).

7<https://www.sahfos.ac.uk/> [accessed 26 June 2017].
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ates mainly in the North Atlantic and the North Sea, where most of the circa 25
regular towing routes are located. All samples are archived and stored in Plymouth
for potential re-analysis in the future. Research based on CPR data sets has contrib-
uted significantly to the understanding of spatio-temporal dynamics of oceanic
plankton and their responses to anthropogenic pressures and climate variability. The
data are also used to inform UK and European marine policy-making and manage-
ment of the seas (McQuatters-Gollop et al. 2015: 2).

In today’s ocean science landscape, the CPR Survey is one of the oldest, yet only
one of many projects that engage people without scientific credentials or institu-
tional affiliations in sampling or data creation. To meet the economic challenges of
sampling the world’s oceans on increasingly finer spatial scales and with temporal
regularity, a growing number of projects take advantage of recreational and profes-
sional seafarers, who regularly interact with the oceans. Picking up the current wave
of citizen science and fuelled by technological innovation, marine science is often
seen as a prime example of scientific fields with high potential for contributions by
citizen scientists (Lauro et al. 2014). The CPR Survey does not refer to itself offi-
cially as “citizen science”, although a wide range of non-scientists volunteer to
make the survey possible. Among them are the captains, chief officers, bosuns, and
crews aboard ships, but also ship owners and managers, stevedores, terminal man-
agers, heavy cargo operators, and engineering companies (DR1960: 6).8 The col-
laboration is crucial for setting up a ship for towing CPRs and for proper handling
and transportation of boxed CPRs in high security areas in the ports’ container ter-
minals. For each ship and each tow, the survey relies on a number of volunteers,
who make sure that a CPR arrives at the right ship at the right time. The collabora-
tive practice of the CPR Survey has epistemic implications in its own right; most
importantly, the geographical scope of the sampling and the CPR data depends on
the locations of frequented shipping routes. The social dimension of the CPR
Survey, in which research culture meets seafaring culture, offers opportunities for
sociological and epistemological research. This chapter, however, focuses on the
epistemology of the CPR Survey’s material dimension.

3 Material Interactions and their Epistemological
Implications

The following sub-sections describe two examples of material processes within the
CPR Survey and their epistemological implications. These implications become
manifest in data practices such as methods of creating data by sample analysis, but
also in the outcomes of those practices, for example in databases and publications.

8SAHFOS often used the term “volunteers” to refer to the non-scientists involved in the survey.
There is no formal contract with the non-scientists, except for the engineering companies who are
commissioned to install davits or blocks on the ships that enable towing of a CPR. The shipping
crews, but not the companies or ship owners, are compensated with £60 per tow (DR1960: 6).
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The two processes are the deformation of plankton organisms during sampling and
interactions between the silk and the organisms.

3.1 Deformation of Plankton Organisms and Identification

A CPR is a steel device that is shaped similar to a bobsleigh and weighs around
90 kg. When a CPR tow is scheduled to begin, crew members use the ship’s winch to
lower the CPR into the sea. SAHFOS emphasises that the sampling is never to inter-
fere with the ship’s normal business; a ship thus never stops or slows down for the
deployment of a CPR. The steel body hits the water at up to 20 knots, putting signifi-
cant tension on the steel wire, the body, and the internal mechanics of the CPR.° The
wire is paid out until a coloured mark settles on the sea surface, indicating that the
CPR has reached the desired depth between seven and 10 m. The pointed nose of the
CPR has a small opening of around 1.5 cm?, through which seawater enters a tunnel
inside the CPR that leads to the filtering silk (SAHFOS 2016: 18; Reid et al. 2003:
126). The tunnel widens, so that the water pressure and the speed of flow inside the
tunnel reduce significantly. A layer of silk (the filtering silk) spans across the tunnel,
acts as a filter and retains a share of organisms and materials that have entered the
tunnel. While the CPR is being towed, a propeller attached to the external body
drives a mechanism that pulls the silk continuously across the flow of water. The silk
that has crossed the tunnel is met by a second layer of silk (the covering silk), which
is drawn by the same mechanism. The covering silk goes on top of the filtering silk,
so that the organisms are held between the two layers.!® The silk rolls are drawn
together into a closed chamber filled with a formalin solution. The organisms cannot
survive this process, but the formalin prevents the decay of their bodies.

Plankton organisms often get damaged and deformed during the sampling pro-
cess. They may knock against the steel walls of the CPR or against other organisms
that are already on the silk.!! If towed through a plankton bloom, areas of the silk can
actually get clogged with organisms, which affects the volume of filtered sea water
(Hunt and Hosie 2006). The biggest cause of deformation is, however, the sandwich-
ing of organisms between the two silk layers. With regard to some of the larger
zooplankton species,'? the survey’s lab manager David Johns explains that “the stuff

°In a video of a CPR deployment, the device jumps on the sea surface for several seconds before
submerging. When the CPR is hauled in, it sometimes smashes against the ship’s hull strong
enough for the steel body to be damaged and require refitting in the survey’s workshop (DR1960).
1"Two bands of silk are marked, cut, folded, rolled up, and placed inside the internal cassette by
hand before a CPR is deployed. A metre of silk covers around one hundred nautical miles, so up
two five metres of silk are rolled up for each of the two silk rolls.

"'This cause of deformation is alleviated to some degree by the widening of the tunnel and the reduc-
tion of flow speed inside the CPR by a factor of around 1/30 (Batten et al. 2003: 196; DR2901: 2).
20nly zooplankton species larger than two millimetres are identified and counted the way
described here. Smaller plankton, including single-celled phytoplankton, are identified with up to
625x magnification; Richardson et al. (2006: 35).
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is squashed” and “it is very, very flat”, when it arrives in Plymouth (DR0934: 19).
The organisms thus look very different under a microscope in the survey’s lab than
out in the ocean or in taxonomic reference literature; Johns explains how the altered
appearance by deformation affects the identification process:

“Textbooks are obviously really useful, but it is not the same as looking down and actually
seeing a physical specimen there. ... They do look quite different, so you need to manipu-
late the organism.” (DR0934: 18-19).

In order to be manipulated, turned around, and viewed from different angles, the
zooplankton organisms are manually scraped off the silk and placed into a Bogorov
tray under a different microscope for identification and counting.'® Johns explains:

“It is just so much easier to identify them. You can’t do it on the silk very easily. It is so
much easier, you take them off, put them into that tray, add some fluid and then you can
manipulate them easily, flip them around. Because a lot of them, depending on how they are
lying, they can hide their identification features, so you need to kind of manipulate them
360.” (DR0533: 6)

The deformation during sampling and the way some organisms—especially those
with spiny body features—are caught up in the silk requires manipulation and
removal of organisms in order to create data. In this stage of the analysis, which is
called the “zooplankton eyecount”, all organisms larger than two millimetres are
taken off the silk for identification and counting and are put back onto the silk after-
wards. Data are created by counting different species or taxonomic groups and
recording the result with tally marks in a hand-written notebook right next to the
microscope. !4

The organisms’ altered appearance also requires the sample analysts to have spe-
cific identification skills and experience. New analysts go through a training phase,
which lasts several months until they are allowed to work on samples even from the
survey’s most frequent sampling routes all by themselves. Samples from areas that
are not sampled as frequently as the North Atlantic and the North Sea can be par-
ticularly challenging, because the encountered species and the ecology are very
different. Some analysts have therefore specialised in samples from certain areas
after years of practice and interacting with other analysts in the lab (DR0533: 10).
Johns explains that “probably most of [the training] is informal and on-the-job
stuff” (DR0934: 18), due to the specific characteristics of the CPR samples; the
skills and experience are best acquired in practice and in cooperation with experi-
enced analysts. One of the experienced sample analysts describes the interaction in
the lab, by which they gain expertise:

3 Manipulation and turning around of organisms is also necessary, because some species are dif-
ficult to distinguish; for example calanus finmarchicus and calanus helgolandicus, two of the most
important zooplankton species in the North Atlantic and the North Sea, look very similar and are
identified primarily by the shape of their fifth pair of swimming legs; Richardson et al. (2006: 47).
“The data in the notebooks are later entered into the digital database manually by two sample
analysts together in order to avoid transcription mistakes and to notice unusual looking results that
might indicate an error in identification or counting (DR0533: 2).
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“We are always looking at each other’s samples all the time. It’s not that a day goes past
where you are not going to go a look at someone else’s stuff ...” (DR8112: 10)

The removal of materials from the sample and the ways of acquiring expertise and
experience are examples of how data practices are shaped by material interactions
at the sampling stage.

In 2011, SAHFOS published the Fish larvae atlas of the NE Atlantic (Edwards
et al. 2011), which illustrates how deformation during sampling constrains exactly
what kinds of data can possibly be created during sample analysis. The atlas covers
geographical distributions of fish larvae of nine different taxa for the years
1948-2005. More than 10,000 archived silk samples have been re-analysed with
new molecular methods, because fish larvae are not routinely identified in the
microscopic analysis:

Due to the size of the fish larvae and the sampling method, they can often be damaged and
identification to species level is not always possible using traditional microscopic methods.
(Edwards et al. 2011: 2)

As the fish larvae are often too damaged for visual identification, they are only
counted and recorded in the survey’s database as one taxonomic group. The data-
base’s content and the knowledge of the ocean ecosystem are thus shaped by mate-
rial interactions that occur during sampling.

3.2 Silk Specifications and Quantification

Albeit having changed silk suppliers several times throughout the history of the
survey, silk with identical specifications has been used for sampling since the begin-
ning of the CPR Survey. The silk bands have a mesh size of around 270 pm and are
quality controlled and prepared in a standardised way, which includes marking,
stamping, folding, cutting, and putting the silk onto a roll that is going to be placed
inside the CPR." Smooth fabrics such as nylon and much finer mesh sizes are
typically used in plankton science today. The 270 pm is indeed large compared to
the size of some species that are routinely recorded, as lab manager Johns explains:

“We had people saying that there is no way that we can see coccolithophores, they said ‘no,
it is going to go straight through your mesh, because they are only ten microns.” But they do
stay there, so we took photos and we published some of it and say ‘actually, we can see
these.”” (DR0934: 6)

Coccolithophores are a group of unicellular, eukaryotic phytoplankton species,
which are around a magnitude smaller than the gap between the silk threads; yet, a
constant portion of those species are retained. That is because the silk has a certain

SMarking and stamping is required for calculating the cutting points after each tow under consid-
eration of the ship’s average speed; each sample is intended to correspond to ten nautical miles of
a tow, but the length of silk pulled by the mechanisms over that distance depends on how fast the
ship has sailed.
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roughness and the individual threads are spinous, so that small organisms stick to
them; the silk also has a leno weave, which has two twisted threads going in one
direction and one thread in the other direction, whereas most nylon fabrics used for
filtering are heat-fused so that the junctions are smooth. Phytoplankton can thus get
caught in the tiny gaps between the twisted silk threads (Richardson et al. 2006: 61;
DR0934: 6).

Some interactions between certain types of organisms and the sampling technol-
ogy are in fact multi-layered, because the presence of larger organisms also affects
the efficiency, at which small phytoplankton are retained.'® Large zooplankton may
have spiny body features, on which smaller organisms may get caught. As a growing
amount of plankton covers the silk, the filter efficiency tends to increase:

As more and more organisms are filtered onto the mesh the open apertures are progressively
clogged and reduce the effective mesh size. So as more large organisms are retained,
smaller organisms, which at the start of the sampling would have been extruded, will be
retained progressively more effectively (Batten et al. 2003: 206).

In general, a significant amount of small phytoplankton still flow through the silk
and return into the open ocean, while most of the large zooplankton is retained. The
material processes are complex and have led to experimental investigations regard-
ing the effects of clogging with different mesh sizes (Hays 1994; Hunt and Hosie
2006). Some gelatinous plankton species can particularly enhance clogging
(Richardson et al. 2006: 61). Batten et al. (2003: 206) explain the challenge posed
by such interactions between organisms of different sizes and texture and the silk:

The effect is hard to quantify since the ambient concentrations of organisms (needed to
determine the true proportion retained) will never be known for a specific patch of sea water
at a specific time.

The materiality of the silk and the plankton organisms thus have implications that
relate to the quantities of specific organisms on the silk, which are represented in the
data created by the analysts. More specific, the data created by sample analysis
hardly reflect the total numbers of plankton organisms at a specific space and time
in the ocean. Richardson et al. (2006: 61) state that ‘there is increasing evidence that
the CPR substantially underestimates absolute numbers’. The CPR data are thus
often referred to as “semi-quantitative”. This characteristic of the CPR Survey,
which is a result of material processes, does not mean that data are false or useless;
however, the materiality shapes the way data are used by scientists:
Notwithstanding the semi-quantitative nature of CPR sampling, there is considerable evi-

dence that it captures a roughly consistent fraction of the in situ abundance of each taxon
and thus reflects the major patterns observed in the plankton. (Richardson et al. 2006: 61)

The semi-quantitative character of the data could be viewed as a shortcoming; how-
ever, as Johns explains, the consistency of the sampling is valued higher than poten-
tial increases of precision:

1The distinction I make between small phytoplankton and large zooplankton is a simplification
and does not reflect the spectrum of shapes and sizes of the organisms on a silk sample.
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“We want to keep that consistent time series. And there are a lot of potential sort of foibles
in the dataset. But the fact that it has always been done in the same way ... You get lots of
people who, it’s not an accuse, but who would say ‘well, you under-count certain things’.
Well yeah, we do, but they have been consistently under-counted for sixty years. So you can
just ignore the abundance values and just look at the trend to see what is happening. So
yeah, if you were starting [the survey] from scratch, you would do it completely differ-
ently.” (DR0533: 4)

Other “foibles”!” result, for example, from the analysis of phytoplankton and zoo-
plankton smaller than two millimetres, for which each sample is sub-sampled. In
case of phytoplankton, only around 1/10,000th of a silk area is looked at under the
microscope. The analysts further use a number of fixed abundance categories, which
are subsequently converted into estimates for the quantity of organisms of a specific
taxon on a sample. Richardson et al. (2006: 63) explain that ‘abundance estimates
from individual plankton samples are inherently imprecise because of variable zoo-
plankton behaviour such as diel vertical migration and local weather conditions that
can concentrate or disperse fine-scale patches (Robertson 1968), as well as the
“broad-brush” counting procedures.’

As CPR data do not reflect total quantities of organisms in the ocean, the data are
usually not expressed in units such as organisms per cubic metre of sea water;
instead, they remain expressed in the unit ‘numbers per sample’, which is an esti-
mate derived from the hand-written records (Richardson et al. 2006: 62).

Batten et al. (2016) is a localised study in fisheries ecology and an example of
how semi-quantitative data are used. The study uses indices calculated from CPR
data to explain variability of the Prince William Sound herring’s first year growth.
Annual abundance anomalies for groups such as large zooplankton, small zooplank-
ton, or diatoms were calculated and then correlated with estimates of herring growth
rates calculated from scale size measurements. Figures in the study use ‘organisms
(zooplankton) or cells (diatoms) per Continuous Plankton Recorder (CPR) sample’
as a unit (Batten et al. 2016: 428); the authors also explain the relation between the
silk’s mesh size and filter efficiency, and clarify what their data may represent:

Only an undefined proportion of the phytoplankton and microzooplankton community ... is
enumerated by CPR sample analysis. The data shown here then do not necessarily indicate
whether more or less chlorophyll or ciliates were available, but as the CPR is an internally-
consistent sampler, they do indicate when relatively more, or less, of the large diatoms and
hard-shelled microzooplankton were present and available as a food source. (Batten et al.
2016: 429)

The specifications of the used silk and material interactions at the sampling stage
between the silk and plankton organisms thus affect how many organisms end up on
the silk, the quantities subsequently recorded by analysts in their notebooks, and
how the data can be used to create knowledge of the ocean ecosystem.

17Johns seemed to be searching for the right term before saying “foibles”. However, the term seems
very fitting, as it refers to a ‘minor flaw or shortcoming’, but not as a complete fault or failure.
Persons or things with foibles are still valued and useful, despite minor shortcomings; <https://
www.merriam-webster.com/dictionary/foible> [accessed 24 August 2017].
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4 Material Integration and Continuity

The previous sections illustrate how many of the sample’s material characteristics
that restrict how the object can be manipulated and used originate when the CPR is
in the water. By contrast, the materials themselves, the silk, the steel, and the organ-
isms, have their respective origins in factories, in plankton life cycles, or even fur-
ther back. In the course of a CPR tow, physical parts of both the sampling technology
and the ocean ecosystem not only “clash” against each other; they become inte-
grated. A variety of effects during integration—some of which are described
above—Iead to the formation of a novel object, the silk roll, which is later processed
into individual samples.

Material integration is a constitutive phase and can be regarded as the realisation
of an ‘apparatus-world complex’, a term used by philosopher Rom Harré (2003:
28-31), who explains that a technical device is capable of being ‘integrated into a
unitary entity by fusion with nature’ (Harré 2003: 28); furthermore, ‘the apparatus
and the neighbouring part of the world in which it is embedded constitute one thing’
(Harré 2003: 29).'"® The point is that the material integration realised in the CPR
Survey is a constellation that results in the constitution of a new research object with
properties that have been shaped during integration by material interactions.'” Both
the plankton organisms and the silk are physically transformed during the integra-
tion: the organisms are immediately deformed and the silk assumes a different
colour. The silk as well as the organisms are constitutive parts of the newly formed
object and a research sample in the CPR Survey could not exist without either one.

My understanding of “integration” as the constitution of a new research object
resonates with Tempini’s (this volume a, b) account of assembling and integrating
data from various sources to create new digital datasets. There is obviously a strong
contrast between a sample integrated physically from silk, ocean water, and marine
organisms and digital data that have been integrated from various datasets by com-
putational commands; however, epistemologically, both integration procedures are
geared towards forming objects that are analysable and meaningful in specific epis-
temic contexts.

In my case, it is important that the very materials that have been integrated are
preserved throughout various stages of transportation, unloading, cutting, analysis,

8Rheinberger’s (2010: 217-218) description of an ‘intersection’ as a ‘surface’, ‘plane’, or ‘point
of contact’ between a technical device and the object studied by scientists is similar to Harré’s
apparatus-world complex; according to Rheinberger, an interface is a ‘fertile analytical constella-
tion’, which certainly resonates with the idea that new entities are “born” during sampling.

“While this is not describing a case of reproduction, my view of silk rolls as novel objects, from
which individual samples are created, is inspired by Griesemer’s (2014: 39-40) view of hybrids as
individuals in biological reproduction; individuality is not an intrinsic property of certain objects,
but can be understood as designating a relation between attention, abilities, and interest of the
person tracking a phenomenon and properties, relations, behaviours, and activities attributed to
what is being tracked. My account tracks materiality and contrasts with a view of the sample as a
mere assembly of materials which could easily be disassembled to its original components.



Material Origins of a Data Journey in Ocean Science: How Sampling and Scaffolding... 39

and long-term storage. In the CPR Survey, material continuity is achieved between
the silk roll’s formation process out in the oceans and the object that is placed under
a microscope and eventually archived in Plymouth. In his account of biological
reproduction, Griesemer (2014: 26-27) emphasises the notion of ‘material continu-
ity’ and material ‘overlap’ between parent and offspring when ‘organized material
parts’ are transferred between the two; form or information are transferred materi-
ally and not by any kind of impression or translation to a different medium. Although
being pressed severely into the silk, the plankton material usually remains suffi-
ciently organised for the sample analyst to identify and count the organisms using
specific tools and methods of manipulation.

Rheinberger (2015: 323-325) asserts preparations a materiality and durability
similar to the research samples in the CPR Survey: Preparations ‘participate in, are
part of, the very materiality of the object under scrutiny’; their ‘configuration’ is
expressed in physical, biological, and chemical properties (Rheinberger 2015: 323).
A CPR silk sample has assumed a specific configuration that makes it analysable
and the configuration is preserved by material continuity.?® It is important, however,
that “preservation” and “continuity” are not intended to imply that samples are
immutable or “frozen”: Due to the formalin, the organisms’ green colour fades over
time?'; their spatial arrangement on the silk changes when plankton are removed
and put back onto the silk during the zooplankton eyecount; and samples in the
archive might get contaminated and slowly decay, impeding the ability to perform a
re-analysis. Material continuity is an absence of “jumps” from one medium to
another, as in the hand-written recording of plankton counts or the digitisation of
hand-written notes.*

Material integration and material continuity frame an understanding of “materi-
ality” that—despite being based on the physicality of objects and practices—
emphasises the epistemological significance of material objects over characteristics
that categorise objects ontologically. The next section discusses exactly how mate-
riality shapes scientific practices.

20Rheinberger (2015: 323) further claims that ‘preparations are renderings, not representations’
with a ‘particular indexicality’ that points to themselves and not to something that is represented
by the preparation. The material characteristics of the silk samples seem to point primarily to the
processes involved in their formation; additionally, the bias between the number of organisms on
the sample and plankton distributions in the ocean poses questions regarding the samples’ potential
use as representations. These issues relating to scientific representation require deeper discussion
elsewhere.

2I'The survey derives a set of data from the colour of returning silk samples, as sample colour is
used as an indicator of relative phytoplankton biomass in the geographical area of the tow. Due to
fading of the colour, the assessment is performed when the silk roll is cut into individual samples
and can only be performed once.

22The lack of translation to another medium is another reason why considering samples as straight-
up representations is problematic (see note 20); a sample is a product of continuity starting with
the fusion of materials in the oceans, and not by intentionally writing or imprinting information
onto a medium.
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5 Scaffolding Sample Analysis and the Creation
of Knowledge

A CPR sample’s physical properties require specific epistemic practices that are
applied to the sample or to the data that have resulted from the analysis. The exam-
ples described in this chapter are the removal of plankton organisms from the silk,
on-the-job transfer of identification skills, and the consideration of relative quanti-
ties and trends instead of total quantities. Regarding the removal of large zooplank-
ton from the silk, the scraping together of organisms, the Bogorov tray, the additional
microscope, and the manipulation of organisms are artefacts and practices, which
scaffold the identification and counting of the organisms. Without this step, the
identification would hardly be possible, be much more difficult, or at the very least
take much longer to perform. The plankton analyst faces what Caporael et al.
(2014a: 15) call a ‘productive resistance or challenge’, which can be overcome
through scaffolding. The aided identification results in a growing volume of scien-
tific data created from an individual sample, and eventually in growth of the data-
base and of the data’s interpretive scope. Besides development and maintenance,
growth, as a change of size or status without change of organisation, is a plausible
function or goal of scaffolding procedures, as Caporael et al. (2014a: 15-16) remark.
Similar to a scaffold that is removed from a building after construction work has
finished, the additional tray is removed, the organisms are placed back onto the silk
and evenly spread out. Except for an altered distribution of the larger organisms,
which has never been recorded in any way before the removal of organisms, no
visual characteristic of the sample indicates that the scaffolding procedure and the
identification of large zooplankton have been performed.

The second example, the on-the-job training of analysts, is a scaffold that devel-
ops the skills and capacities of the laboratory staff. Frequent interactions between
experienced analysts and new staff members scaffold the acquisition of identification
skills, which could hardly be learned without the informal exchanges. Challenges
and resistance are caused by the deformed appearances of the organisms, the spe-
cific composition of various species on samples depending on the region they are
from, or any kind of unusual or surprising encounter on a sample. This type of on-
the-job development of capacities and resolving of challenges is an example of what
is called ‘developmental agent scaffolding’ by Caporael et al. (2014a: 15), which is
characterised by cooperation and response between agents and their targets rather
than just by application of an artefact or structure. The scaffolding in this example
is anything but permanent, as people in the lab are not constantly assisting each
other; it is utilised as needed, either if new analysts receive basic training, if a spe-
cial expertise is going to be acquired, or if an analyst is simply in doubt about an
organism’s taxonomic identity.

The third example of scaffolding relates to the interpretation of the semi-
quantitative data created by sample analysis. Although the distribution of organisms
on a sample is not representative of the species’ total quantities in the ocean,
researchers are capable of creating knowledge about the oceans with the data. The
use of the data is scaffolded by multiple studies carried out throughout the history
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of the CPR Survey into the technical details and uncertainties introduced by mate-
rial interactions such as clogging of the silk. This is how the survey has accumulated
‘considerable evidence’ (Richardson et al. 2006: 61) that CPRs filter each taxon
consistently and that the data reflect the patterns and trends of the plankton in the
ocean. SAHFOS has likewise conducted studies regarding the effects of different
ship speeds: The average speed of ships has almost doubled since the 1950s and in
general, not all ships tow CPRs at the same speed due to season, weather, or other
restrictions (SAHFOS 2016: 19; Batten et al. 2003: 200-02).%

Knowledge and evidence accumulated from these studies scaffold long-term
consistency of the sampling and data analysis methods; the consistency, in turn,
scaffolds commensurability and comparability of data created decades apart. A
wide range of knowledge claims about the ocean ecosystem, especially those based
on averaged data, depend on this commensurability. Only because the methods of
sampling and data creation have been maintained for multiple decades, the CPR
data are as valuable and relevant for plankton science as they are today.

As Caporael et al. (2014a: 16) explain, ‘maintenance seems more different from
development than it really is’; in a dynamic system, ‘maintenance sustains a steady
state, that is, it preserves organization in the face of stress, deterioration, and change,
so maintenance is a change operation’ (Caporael et al. 2014a: 16). In the face of
uncertainties, the inner consistency of the CPR Survey is maintained, although
potential “foibles” (as the lab manager called them) may be maintained in the data
as well. After decades of performing sampling and analysis the same way, the prac-
tice has become historically “entrenched” (Wimsatt 2014). However, the use CPR
data still hinges on the abilities to evaluate the data’s accuracy and potential bias;
each study of the survey’s materiality develops this ability. Along with the material
interactions themselves, such scaffolds shape the data practices in my case.

Similar to other scaffolds, efforts aimed at understanding the materiality are
expended on different time scales than the CPR Survey as a whole, because they are
normally time-limited projects explicitly concerned with one detail or interaction.
These studies are not completely invisible, as they are frequently published in sci-
entific journals or referenced in publications using the data. In terms of scaffolding,
however, this referencing seems more like a certificate that a development has hap-
pened or that a particular aspect of the survey is being maintained. The scaffolding
itself, that is the actual practice aimed at development, has been removed, whereas
the developed skill or capacity has been internalised.?*

The effects of the towing speed on the average depth and filter volume of the CPR are still not
fully understood; experiments from 2015 showed greater depth with higher towing speeds, but
earlier studies suggested a constant towing depth independent of speed (SAHFOS 2016: 19; Batten
et al. 2003: 201-02). The average increase of speed from around 10 knots in the 1950s to around
20 knots today had a negative effect on the towing stability. By 1970 more and more CPRs were
actually torn off and lost. As a consequence, a stronger and more flexible steel wire was introduced
since 1976 (Batten et al. 2003: 199).

2 “Internalisation” is also a characteristic of scaffolding; a capacity, a skill, or sometimes the entire
scaffold may be internalised by the developed structure, so that it is not visible from the outside;
the internalised scaffold (for example a new method, or new knowledge) may then become a stable
platform for new scaffolding procedures (Wimsatt and Griesemer 2007: 245). In the CPR Survey,
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6 Conclusion

My study of an example of long-term ecological monitoring in ocean science
emphasises the importance of samples and material interactions during their forma-
tion for epistemic processes and data practices. Materials of the sampling device
interact with materials of the research target in ways that require transient and
dynamic scaffolding activities?; scientists apply specific practices and techniques
to material objects in order to achieve results and progress that would not be realis-
able otherwise or only realisable with much more difficulty and under much higher
economical costs. The continuity of methods, how scientific practice can remain
unchanged in the context of historical developments, deserves particular emphasis
and certainly offers opportunities for intriguing philosophical study. Without scaf-
folding the continuity of sampling and data practices, much of the data in my case
study would hardly be usable at all to study long-term changes of the ocean ecosys-
tem. Temporary scaffolds are necessary in order to keep an historically “entrenched”
scientific method stable for decades and in order to learn about sources of uncertain-
ties in the resulting data.

This chapter approaches the materiality of scientific objects by regarding it as the
integration of physical parts from different sources into one novel entity and as the
realisation of material continuity—a preservation of physical matter without any
“jumps” to a different medium—throughout the epistemic process; this approach is
not intended as a readily generalisable definition of the term “materiality”. The aim
of this chapter was to flesh out the epistemological relevance of material interac-
tions by showing how such interactions between research technologies and research
targets can shape data journeys.
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Abstract In present-day high-energy physics experiments, experimenters need to
make various judgments in order to design automated data processing systems
within the existing technical limitations. In this chapter, as a case study, I consider
the automated data acquisition system used in the ATLAS experiment at the Large
Hadron Collider (LHC) located at CERN, where the Higgs boson was discovered in
2012. I show that the design of this system involves both theoretical and experimen-
tal judgments each of which has different functions in the initial data journey
through which usable data are constructed out of collision events detected by the
ATLAS detector. I also explore what requirements the foregoing judgments impose
on the LHC data in terms of usability, mobility and mutability. I argue that in
present-day HEP experiments these aspects of data are distinct but related to each
other due to the fact that they are subjected to some common requirements imposed
by the theoretical and experimental judgments involved in the design of data acqui-
sition systems.

1 Introduction

The introduction of computer technologies to experimental high-energy physics
(HEP) experiments in the fifties and sixties resulted in the automation of data pro-
cessing in HEP experiments (Galison 1997). Continuous advances in computer tech-
nologies have led to the ever-increasing automation of data processing in experimental
HEP. This has made it possible to process increasingly large and complex data pro-
duced by increasingly more advanced particle detectors and colliders. As a result,
experimental HEP has been progressively data intensive over the past 60 years, and
this has been accompanied by important changes not only in terms of methods, tech-
niques, and tools employed in HEP experiments (Franklin 2013; Gutsche et al.
2017), but also in terms of organizational structures (Boisot et al. 2011; Knorr-
Cetina 1999) and authorship (Galison 2003) in experimental HEP collaborations.
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The ATLAS and CMS experiments! currently running at the Large Hadron Collider
(LHC) located at CERN represent the state of the art in automated data processing in
HEP experiments, as the level of automation achieved in these experiments is unparalleled
in previous HEP experiments. While automation enables processing unprecedently
large and complex data in the foregoing LHC experiments, it greatly reduces the need
for human intervention in data processing. However, automation does not diminish the
role of human judgments in this process. As I will discuss in this chapter, experimenters
at the LHC need to make various judgments to be able to design automated data
processing systems within the existing technical limitations.> As a case study, I will
examine the automated data acquisition system used in the ATLAS experiment. I will
argue that the design of this system involves both theoretical and experimental judgments
each of which has different functions in the automation of data processing in the ATLAS
experiment. I will also explore what kinds of requirements the foregoing judgments
impose on the LHC data in terms of usability, mobility and mutability, which are the
general aspects of data in physical and biological sciences (Leonelli 2016).

In addressing the foregoing issues, I shall make use of the notion of data journey,
which is a useful metaphor to characterize various processes that data undergo in
experiments performed in physical and biological sciences (ibid.). In these
experiments, data journeys start with the process of data acquisition. Some of the
philosophical aspects of this process have already been discussed in the context of
the LHC experiments (see, e.g., Morrison 2015; Beauchemin 2018; Karaca 2017,
2018), and also in other contexts in this volume. In a case study concerning ocean
science, Gregor Halfmann (in this volume) discusses the initial stage of data acqui-
sition where data is first produced. In a case study concerning astronomy, Gotz
Hoeppe (in this volume) discusses aspects of data acquisition concerning data inter-
pretation. In this chapter, I will focus on the initial data journey in the ATLAS
experiment that links the production of collision events at the LHC to the stage of
data acquisition where usable data are constructed out of collision events detected
by the LHC, prior to the stage of data analysis and modeling (Karaca 2018; Leonelli
2019; Boumans and Leonelli in this volume).

In scientific experimentation, data usability means the fitness of experimental data
for its intended uses, namely data analysis and data modelling, which are aimed at
serving the objectives of an experiment. In the context of present-day HEP experi-
ments, the term data is used to refer to collision events produced by collider systems
such as the LHC and detected by detector systems such as the ATLAS and CMS detec-
tors. In the terminology of HEP, the term event denotes “the record of all the products
from a given bunch crossing,” (Ellis 2010, 6) which occurs when two beams of parti-
cles collide with each other inside the collider. In the ATLAS experiment, proton

'The names of these HEP experiments are derived from the ATLAS (A Toroidal LHC Apparatus)
and CMS (Compact Muon Solenoid) detectors located at the LHC.
2The details of the design of the automated data processing systems used in the ATLAS and CMS

experiments are explained in the technical design reports of these experiments, see ATLAS
Collaboration 2003; CMS Collaboration 2002.
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bunches, rather than individual protons, collide inside the LHC at a rate of approxi-
mately 40 million times per second. These recorded collision events, amounting to
petabytes (=10% bytes) of data, are then processed and finally digitally recorded on
tapes in databases at CERN. I shall call the foregoing journey of the LHC data the local
data journey, as opposed to the global journey that I take to refer to the journey of the
LHC data concerning its dissemination to researchers located inside and outside CERN.

The plan of this chapter is as follows. In Sect. 2, I will discuss how the criteria
for usable data are specified in the ATLAS experiment. Also, I will characterize the
experimental strategy used to search for usable data in this experiment. In Sect. 3, I
will examine the local data journey at the LHC and show how usable LHC data are
constructed out of event fragments detected by the ATLAS detector. In the final sec-
tion, I will argue that in the ATLAS experiment data mutability is required for data
usability, and that the former is enabled by data mobility through the local data
journey at the LHC. Furthermore, I will identify the judgments involved in the
design of the ATLAS data acquisition system. I will argue that as a result of the
requirements imposed by the foregoing judgments, usability, mutability, and mobil-
ity are related, though distinct, aspects of the LHC data during its local journey.

2 Selection Criteria and Search Strategy for Usable Data
in the ATLAS Experiment

The ATLAS experiment at the LHC is a multi-purpose HEP experiment with two sets
of objectives (ATLAS Collaboration 2003, Sect. 4): (1) to test the predictions of the
present models of HEP concerning new particles, including the Higgs boson predicted
by the Standard Model (SM)? of elementary particle physics and the particles, such
as new heavy gauge bosons, superpartners and gravitons, predicted by the theoretical
models beyond the SM (BSM models) that have been offered as possible extensions
of the SM model, such as super-symmetric and extra-dimensional models (Ellis
2012); and (2) to search for unforeseen physics processes, i.e., those that have not
been predicted by the present HEP models, including possible deviations from the
SM at low energies. As I shall show in this section, the diversity of the objectives of
the ATLAS experiment has a crucial bearing on what is considered usable data in this
experiment, and also on the procedure through which this data is acquired.

The first set of objectives of the ATLAS experiment concerns a range of predic-
tions concerning different kinds of heavy particles (including the SM Higgs boson)
that are predicted to be produced at high energies, while its second set of objectives
concerns unforeseen physics processes which might occur at both high and low ener-

3The SM consists of two different gauge theories; namely, the electroweak theory of the weak and
electromagnetic interactions, and the theory of quantum chromo-dynamics which describes the
strong interaction.
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gies. This means that the collision events relevant to the first set of objectives of the
ATLAS experiment are also relevant to its second set of objectives concerning the
discovery of unforeseen physics processes that might occur at high energies.
Therefore, the objectives of the ATLAS experiment require different, but partly
overlapping, types of collision events to be acquired during the stage of data
acquisition.

In the context of present-day HEP experiments, collision events that have the
potential to serve the objectives of the experiment are often referred to as interesting
events. In the case of the ATLAS experiment, the signatures* predicted by the SM
for the Higgs boson are high transverse-momentum (p;)® photons and leptons,® and
the ones predicted by the BSM models for new particles beyond the SM, such as
new heavy gauge bosons W’ and Z’ and supersymmetric particles, are high p; single
particles, namely photons and leptons, high py jets as well as high missing and total
transverse energy (E7).” The aforementioned high p; and E; types of signatures
might be produced at the LHC as a result of the decay processes involving the Higgs
boson and the aforementioned particles predicted by the BSM models. The same
types of signatures might also be produced at the LHC as a result of some unfore-
seen physics processes occurring at high energies (i.e. approximately above
10 GeV). This means that the collision events containing high p; and E; types of
signatures are relevant to both sets of objectives of the ATLAS experiment, thus
making them interesting for the process of data selection.® For this reason, in the
ATLAS experiment, the selection of the interesting events relevant to the predic-
tions of the SM and BSM models, as well as to the discovery of unforeseen pro-
cesses at high energies, is performed by using selection criteria that consist of only
the aforementioned high p; and E; types of signatures. These selection criteria are
often referred to as inclusive triggers, in the sense that they constitute the main set
of selection criteria in the trigger menu used in the ATLAS experiment.

As the above discussion indicates, the range of interesting events in the ATLAS
experiment includes a wide variety of high p; and E; types of signatures across a
wide range of py and E; values, i.e., approximately from 10 GeV to 1 TeV. The tech-
nical limitations in terms of data storage capacity and data process time make it
necessary to apply data selection criteria to collisions events themselves in real-
time,1i.e., during the course of particle collisions at the collider (ATLAS Collaboration

*The term signature is used in experimental HEP to denote stable sub-atomic particles or energies
into which unstable sub-atomic particles decay as a result of a physical process.
>Transverse-momentum is the component of the momentum of a particle that is transverse to the
proton-proton collision axis, and transverse-energy is obtained from energy measurements in the
calorimeter detector.

°A lepton is a spin ¥2 particle that interacts through electromagnetic and weak interactions, but not
through strong interaction. In the SM, leptons include electron, muon and tau, and their respective
neutrinos.

"In this context, the term high refers to the pT and ET values that are approximately of the order of
10 GeV for particles, and 100 GeV for jets.

8The foregoing types of signatures also differ among each other, as the predictions to which they
are relevant, namely those by the SM and the BSM models, are different from each other (for
details, see ATLAS Collaboration 2003, Sect. 4; Karaca 2017).
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2012). Moreover, due to the aforementioned technological limitations, only a min-
ute fraction of the interesting events could be selected for further evaluation at the
stage of data analysis. This necessitates, for the fulfillment of the objectives of the
ATLAS experiment, that the trigger menu (i.e. the full list of data selection criteria)
be sensitive enough to select the range of types of interesting events that will serve
the entire range of objectives of the ATLAS experiment. If the trigger menu were
not appropriate to this end, then the data selection procedure would be biased
against certain types of interesting events. As a result, the ATLAS experiment would
fail to achieve some of its objectives, as the fulfillment of a particular objective of
the ATLAS experiment requires the acquisition of certain types of interesting events.

A major challenge in the ATLAS experiment is to perform data selection in an
unbiased manner with respect to the various objectives of the experiment. This chal-
lenge has been addressed through a particular data selection strategy that aims at
increasing the sensitivity of the trigger menu, and thus of the selection procedure. To
this end, the foregoing selection strategy requires the trigger menu to be sufficiently
diversified in terms of types of selection signatures that are appropriate for the vari-
ous objectives of the experiment. Since the ATLAS experiment is largely aimed to
test the SM’s prediction of the Higgs boson and the predictions of the BSM models,
the adopted strategy in the first place requires the trigger menu to be sufficiently
diversified in terms selection signatures composed of only high p; and E; types of
signatures relevant to the aforementioned predictions. This aims at extending the
range of the relevant LHC data that could be acquired through the trigger menu.

In the ATLAS experiment, unforeseen physics processes might also occur at low
energies, i.e., approximately below 10 GeV. Inclusive triggers are not appropriate
for the search for novel p; and E; processes at low energies, as these selection crite-
ria consist of only high pr and E; types of signatures. Therefore, the selection strat-
egy adopted in the ATLAS experiment also requires the trigger menu to be
sufficiently diversified in terms low p; and E; types of selection signatures. These
selection signatures are referred as to prescaled triggers and determined by prescal-
ing inclusive triggers with lower pr and Er thresholds (<10 GeV) (for details, see
ATLAS Collaboration 2003, Sect. 4.4.2). In this context, prescaling means that the
amount of events that a trigger could accept is suppressed by what is called a pres-
cale factor in order for the selection process not to be swamped by the events con-
taining vastly abundant low prand E; types of signatures, so that the aforementioned
first set of objectives of the ATLAS experiment is not endangered. Prescaled trig-
gers are necessary for the trigger menu, and thus of the selection procedure, to be
sensitive enough to the search for novel p; and E; processes at low energies. Since
the events containing low p; and E; types of signatures have the potential to be of
use for some SM studies of strong interactions (see, e.g., ATLAS Collaboration
2016) as well as to provide support for new physics searches at low energies, pres-
caled triggers are especially aimed at further extending the range of the LHC data
relevant to the second set of the objectives of the ATLAS experiment.’

Note that these events are also used to determine trigger efficiencies and detector performance.
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3 Local Data Journey at the LHC

In the ATLAS experiment, the trigger menu is applied to collision events at three
different levels through the use of what are called trigger systems (Ellis 2010).1°
These are automated systems designed and used to select the desired events from
the collision events. The first stage of the data selection process is carried out by the
level-1 trigger system that provides a crude selection of the interesting events in
real-time. In the ATLAS experiment, the initial event rate of the proton-proton col-
lisions is ~40 MHz, corresponding to approximately 40,000,000 collision events per
second. The first level of the data selection process is performed by the level-1 trig-
ger system, whose technical features allow for an event-acceptance rate of
75-100 kHz. The second and third levels of the data selection process are respec-
tively carried out by the level-2 and level-3 trigger systems, which are jointly called
the High-level Trigger and Data Acquisition System (HLT/DAQ). Unlike the level-1
trigger system, which is hardware-based, the HLT/DAQ system is software-based,
meaning that the level-1 and level-2 selection processes are performed directly by
the specialized software algorithms according to the trigger menu. The level-2 and
level-3 trigger systems have much smaller event-acceptance rates, which are respec-
tively around ~2 kHz and ~200 Hz, and thereby provide finer selections of the
desired events.!! Therefore, in the ATLAS experiment, the initial event rate is
gradually lowered from 40 MHz down to around 200 Hz at the end of the level-3
selection process, meaning that the interesting events are selected from the collision
events at a ratio of approximately 200/40,000,000, i.e., 5 in every 1 million events.

The first stage of the data acquisition process is carried out by the level-1 trigger
system that performs a crude selection of potentially interesting events from the
collision events detected by the calorimeter and muon detectors, which are the
components of the ATLAS detector system.!? The level-1 trigger system produces a
trigger decision within 2.5 ps and thereby reduces the LHC event-rate frequency of
40 MHz down to the range of 75—100 kHz. In addition to the calorimeter and muon
detectors, the tracking detectors are also used in the ATLAS experiment.!? Since the
event rate is so high and thus the trigger decision time is so short, it is technologi-
cally impossible for the tracking detectors to determine particle tracks quickly
enough for the level-1 event selection. Only the hit points produced by particles
inside the tracking detectors could be recorded. These space points are later assem-

"The treatment in this section is based on the ATLAS Technical Design Report (ATLAS
Collaboration 2003), which is a technical document that contains the design information concern-
ing the principal components and functions of the ATLAS data acquisition system.

"'Note that the aforementioned event-acceptance rates are valid only for the early data-taking run
(Run-1) and have changed significantly during Run-1 and also during Run-2.

2ZATLAS is a detector system that consists of different individual detectors, including the inner
detector and the calorimeter and muon detectors.

3In HEP experiments, the tracking detectors are used to determine particle tracks as well as to
measure the momenta of electrically charged particles by means of the curvatures of their tracks in
a magnetic field.
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bled by software algorithms in order to determine particle tracks. As a result, the
data from the tracking detectors are not used directly by the level-1 trigger system
for event selection. Moreover, due to the shortness of the level-1 trigger-decision
time, even though the hit points are recorded, they are not completely read out from
the tracking detectors during the level-1 selection. This means that the information
(i.e., in terms of location in the detector, and p; or E; for each particle or jet con-
tained, or associated missing E7) necessary to fully specify a selected event is frag-
mented across the individual detectors of the ATLAS detector system, and that all
pieces of this fragmented information are not assembled yet. Therefore, the full
description of the event is not yet known, and as a result, the level-1 event selection
is performed without full granularity, i.e., without the availability of data from all
the channels of the individual detectors.

As shown in Fig. 1, the level-2 event selection begins when the sub-unit called
Level-2 Supervisor sends (arrow 1)'* the results of the level-1 selection to the sub-
unit called Level-2 Processing Unit (arrow 2). Unlike the level-1 trigger system, the
level-2 trigger system uses the Rol data'® processed by the sub-unit called Read-out
System (ROS) from all the sub-detectors of the ATLAS detector with full granular-
ity. The event fragments, which are temporarily stored in the ROS, are accepted to
the level-2 selection in small amounts. This way of performing event selection is
called the seeding mechanism (ATLAS Collaboration 2003, Sect. 9.5.3.1). The ROS
sends (arrows 2.1 and 2.2) to Level2Processing a subset of the event-fragments data,
namely, the information regarding the locations (in the detector), momenta, and
energies of the events selected at the level-1 selection. LVL2Processing sends
(arrow 3.1) the information regarding the events accepted by the level-2 trigger
system back to the ROS. LVL2Processing also sends (arrow 3.2) this information to
LVL2Supervisor. LVL2Supervisor forwards (arrow 4) the same information to the
sub-unit called Event Builder, which receives from the ROS the event-fragments
data for the events selected by LVL2Processsing. Event Builder (arrow 5.1) requests
from the ROS the event-fragments data for the events selected by the LVL.2Processsing
unit. Upon this, ROS (arrow 5.2) sends the event fragments to the Event Builder.
The component called Sub-Farm Input (SFI) of the Event Builder assembles the
event fragments associated with each selected event into a single record. At this
stage, the full description of each selected event is available. The events that have
been built are then passed (arrow 6) to the sub-unit called Event Filter Processor
(EFP), through which the level-3 event selection, which is also called “event filter”
(EF) selection, is carried out by specialized software algorithms (arrow 7).'® The
events that have passed the level-3 selection are then sent (arrow 8) to the sub-unit
called Sub-Farm Output (SFO) for permanent storage and offline data analysis.

14 Arrows refer to Fig. 1.

SThe regions in the ATLAS detector that contain signals for interesting events are called regions
of interest (Rols). The Rols and the energy information associated with the signals detected in the
Rols are together called the Rol data.

1*Note that in Fig. 1, the correct arrow numbers for the messages “EFSelection” and “SendEvent”
should be “7” and “8” respectively.
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Fig.1 The relationships between the different components of the HLT/DAQ system in the ATLAS
experiment. (Source: Fig. 9-2 in ATLAS Collaboration 2003)

The details of the level-2 and level-3 selection processes are not shown in Fig. 1.
These selection processes are carried out by the Event Selection Software (ESS)
system, which is a software component of the HLT system (ATLAS Collaboration
2003, Sect. 9).'7 The level-2 selection of an event is carried out in a series of steps
each of which consists of two stages. In the first stage, the event is partially
reconstructed, meaning that the trigger elements (TEs)'® associated with the event
are refined and reconstructed by the reconstruction algorithms according to what is
called the sequence table of the step. Each sequence in this table consists of an input
TE and a reconstruction algorithm that is to be executed to refine and reconstruct an
input TE into an output TE." In the second stage, the event partially reconstructed
undergoes a selection process based on what is called the menu table of the step that
contains a list of the selection signatures required for this step.

The Step Handler initiates the first stage of the level-2 selection by executing the
Step Sequencer to access the list of the active input TEs associated with an event

17For future reference, note that the following units to be mentioned in what follows, namely, Step
Handler, Step Sequencer, Step Decision, Step Controller and Result Builder, are the software com-
ponents of the ESS system that steers the HLT selection process.

'8 A TE denotes one specific signature identified by the level-1 trigger system, e.g.,“e25i”. A TE is
said to be active if it has previously satisfied a selection signature at the level-1 selection, or at the
previous step of the level-2 selection, if the step under consideration is not the first step of the
level-2 selection.

! Reconstruction algorithms are a class of HLT algorithms that act on the Rol data with full granu-
larity from all sub-detectors to find new features associated with input TEs, such as a track or an
isolation requirement.
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selected by the level-1 trigger system. The Step Sequencer next compares the list of
the active TEs with the required TEs given in the sequence table of the step. For all
matching TEs, the Step Sequencer executes the reconstruction algorithms to refine
and reconstruct the input TEs into the output TEs according to the sequence table of
the step. The Step Sequencer also creates the list of the output TEs for the imple-
mentation of the seeding mechanism discussed earlier. The Step Sequencer also
marks each output TE as “seeded by input TE” depending on from which input TE
it has been previously created. Then, it passes each output TE to the relevant hAypoth-
esis algorithms—another class of HLT algorithms—that decide whether the TE is
valid, depending on whether its reconstructed features are consistent with its phys-
ics interpretation. For example, if a track or an isolation requirement associated with
a TE is found by a reconstruction algorithm, then the relevant hypothesis algorithm
determines whether this track or isolation requirement matches the physics interpre-
tation of the TE. The hypothesis algorithms activate the validated TEs and discard
the invalidated TEs by deactivating them.

The Step Handler initiates the second stage of the level-2 selection by calling the
Step Decision to access the list of the active output TEs, i.e., the TEs validated by the
hypothesis algorithms in the first stage of the level-1 selection. The Step Decision
compares the list of the active output TEs with the required selection signatures
given in the menu table of the step. For the TE combinations that match the selection
signatures in the menu table, the Step Decision creates a list of the satisfied signa-
tures that consist of those matching TE combinations. The event is accepted for the
next step by the Step Decision, if the TE combinations it contains satisfy at least one
signature given in the menu table of the step; otherwise it is rejected and thus not
considered for the level-3 selection. The Step Decision sends the information regard-
ing the decision about the event to the Step Handler that will initiate the next step
configured with a different sequence table and a menu table. The level-2 selection of
an event ends at the step where it is rejected, or it continues until all required steps
are completed, indicating that the event is finally accepted for the level-3 selection.

If an event is accepted at the level-2 selection, the Step Controller executes the
Result Builder to provide the information necessary to seed the level-3 selection.
This includes all satisfied signatures and the associated TE combinations, as well as
the level-1 Rol data. The Result Builder assembles all these data-fragments, and the
results are subsequently used for the seeding of the level-3 selection. The level-3
selection is implemented and coordinated by the Step Handler in the similar way as
the level-2 selection is carried out as described above. But, the level-3 selection dif-
fers from the level-2 selection in that the TEs are now the active TEs of the level-2
selection, and that more sophisticated HLT algorithms are used to achieve a much
finer event selection. As has been mentioned previously, the events that have passed
the level-3 selection are stored in the Sub-Farm Output for data analysis. This marks
the end of the local journey of the LHC data.

The collision events that have been rejected by the level-1 and level-2 trigger
systems are removed from the data selection system. However, all the data selection
operations carried out by the ATLAS data acquisition system are recorded by the
system called Online Bookkeeper that produces logs stored in the form of logbook
data (ATLAS Collaboration 2003, Sect. 10.4.1.2). Therefore, the ATLAS data
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acquisition system is traceable in the sense that the decision regarding the accep-
tance or rejection of an event (already selected by the level-1 trigger system) by the
level-1 and level-2 system systems can be reassessed by using the logbook data.
The LHC data is disseminated to the researchers located outside CERN through
its global journey implemented by the ATLAS Distributed Data Management system
(ADDM) where the acquired collision events are digitally written to datafiles aggre-
gated into what are called datasets (for details, see Branco et al. 2008). The latter are
disseminated through its four-tier hierarchical structure.” Tier-0 is the CERN Data
Center where datasets are created, stored and distributed to Tier-1 which consist of
(currently) 13 computer centers located in the following countries: Canada, Germany,
Spain, France, Italy, Nordic countries, Netherlands, Republic of Korea, Russian
Federation, Taipei, UK, and US. Tier-1 temporarily store datasets and distribute them
to Tier-2 which consists of computer centers located typically at universities and
similar scientific institutions. There are currently 150 Tier-2 sites around the world.
Researchers located outside CERN can access data sets (for the purpose of data
analysis) through Tier-3 which consists of local computer clusters located at univer-
sities and similar research centers or even through individual personal computers.

4 Conclusions

The technical limitations at CERN in terms of data storage capacity and data pro-
cess time do not allow applying the trigger menu to the detected events without
subjecting them to the construction and selection processes that make up the local
data journey in the ATLAS experiment. Since the requirements for data usability are
specified by the selection criteria in the trigger menu, data mobility is necessary for
data usability and constitutes an essential aspect of the ATLAS data acquisition
process. During the local data journey, collision events detected by the ATLAS
detector system are constructed out of the fragments of proton-proton collision
events that are produced by the LHC and detected by the ATLAS detector system.
The first part of the local journey is a construction process in the sense that event
fragments are assembled by the level-1 and level-2 triggers into full events. This part
of the local journey is at the same time a selection process, because both events and
event fragments that do not satisfy the selection criteria are filtered out and dis-
carded from further consideration. The second part of the local data journey, which
is carried out by the level-2 trigger, is solely a selection process that filters out the
events constructed in the first part that do not satisfy the selection criteria. The third
level of the local journey is also solely a selection process that further refines event
selections made in previous levels. The above considerations show that during the
local journey, events are mutable in the sense that their contents—namely, their
constituent signatures—are transformed into full events by the construction and
selection processes according to the selection criteria in the trigger menu. Therefore,
in the context of the ATLAS experiment, data mutability in the sense of changeabil-

2 For more information, see the URL: https://home.cern/about/computing/grid-system-tiers
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ity of event content is a consequence of data mobility, which is in turn a necessary
condition to apply selection criteria and thereby ensure data usability.

The above discussion indicates that the trigger menu used in the ATLAS data
acquisition process should also be regarded as the set of event construction criteria,
as it serves to construct events out of event fragments. The determination of the trig-
ger menu is partly based on the theoretical judgment that the selection criteria con-
sidered relevant to the testing of the predictions of the SM and BSM models should
consist of only types of signatures predicted by these models. The determination of
the trigger menu also requires a judgment in the form of a data selection strategy,
namely that the trigger menu should be sufficiently diversified in terms of types of
signatures that are relevant to the intended objectives of the ATLAS experiment.
Since the ATLAS experiment also aims at discovering unforeseen phenomena that
are not accounted for by the SM and BSM models, the foregoing selection strategy
also requires the trigger menu to include selection criteria that are not necessarily
based on the predictions of these models. This enables using the same trigger menu
to acquire data sets relevant to the entirety of the intended objectives of the ATLAS
experiment. The judgment on which the data selection strategy is based is experi-
mental, as it does not follow from the predictions of the SM and BSM models that
not dictate how the trigger menu should be diversified in terms of signatures.
Therefore, the foregoing theoretical and experimental judgments jointly contribute
to the determination of the trigger menu and thereby impose requirements on what
counts as usable data in the ATLAS experiment.

The implementation of the above-mentioned experimental strategy in the ATLAS
experiment requires taking account of the technical limitations at CERN in terms of
data storage capacity and data process time. This is turn leads to the judgment that
the trigger menu should to be applied to collision events in real time, i.e. while pro-
ton collisions are taking place inside the ATLAS detector. This is a technical judg-
ment based on the consideration that the amount of events produced by the LHC is
so large that the foregoing technical limitations make it impracticable to apply the
trigger menu after events are recorded. It is also experimental in the sense that unlike
the experimental judgment concerning the trigger menu, it dictates which specific
experimental procedures to use to apply the trigger menu to collision events. It
thereby imposes certain technical requirements on the design of the ATLAS data
acquisition system. The main technical requirement is the three-level arrangement
of the trigger systems in the way it is described in the previous section. There are
also more specific requirements concerning the details of the event construction and
selection processes. An important technical detail is the use of the seeding mecha-
nism according to which events fragments are accepted to the level-2 trigger in small
amounts. If event fragments were accepted at once, this would considerably dimin-
ish the level-2 trigger decision time and thus render the level-2 selection process
ineffective. The factors such as data processing capacity of each trigger and the
amount of events produced by the LHC are also considered in specifying the details
of the ATLAS data acquisition system. These technical requirements, together with
the ones imposed by the experimental judgments, can be seen as the requirements
imposed on the mobility and mutability of the LHC data during its local journey.
While the requirements on mobility specify the ways in which events are made to
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travel during the construction and selection processes, the requirements on mutabil-
ity specify the ways in which the contents of events transform during these processes.

In the philosophical literature, the necessity of data mobility and data mutability
for data usability has been studied and stressed in relation to data dissemination
(see, e.g. Morgan 2010; Leonelli 2015). The present case-study shows that data
usability is an essential concern in present-day HEP experiments already in the
stage of data acquisition. In this context, in order for the experiment to achieve its
intended objectives, it is necessary that the issue of data usability be dealt with
before data are disseminated for analysis and interpretation. As the case of the
ATLAS experiment illustrates, data mobility and data mutability are necessary con-
ditions to deal with the issue of data usability encountered in data acquisition stage.
Thus, in present-day HEP experiments, data does not come ready-made from the
detector but rather is constructed to be usable for the purposes of the experiment. As
aresult of this construction process, data is both mobile and mutable from the outset
and prior to its dissemination. Therefore, usability, mobility and mutability are
related, though distinct, aspects of data in the context of present-day HEP experi-
ments. What makes these aspects of data related to each other is the fact that they
are subjected to some common requirements imposed by theoretical, experimental
and technical judgments involved in the design of data acquisition systems.
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Tracing Data Journeys Through Medical
Case Reports: Conceptualizing Case
Reports Not as ‘“Anecdotes” but Productive
Epistemic Constructs, or Why Zebras Can
Be Useful

Check for
updates

Rachel A. Ankeny

Abstract Medical case reports provide an important example of data journeying:
they are used to collect data and make them available for re-use to others in the field
including clinicians, biomedical researchers, and health policymakers. In this paper,
I explore how data journey in case reports, with particular focus on the earliest
stages of the process, namely from creation and publication of case reports to the
initial re-uses of them and data within them. I investigate key themes relating to case
reporting and re-use, including factors which seem to smooth the path along which
the data captured by a case report journey via broader citation patterns and detailed
qualitative analysis of highly re-used case reports. This analysis reveals some of the
key factors associated with the case reports whose data have greater amounts of
journeying including publication in a general medical journal; that the data have
broader implications and evidential value for topical or even urgent issues for
instance in public health; and use in the case report of multiple research methods or
concepts from diverse subfields. These findings along with standardization of case
reporting are shown to have epistemological implications, particularly for how we
understand the journeying of data.

1 Introduction

Data never stand on their own: they are gathered and become accessible via differ-
ent forms of “packaging” (Ankeny 2010; Leonelli 2010, 2016) and travel over space
and time. These journeys associated with their use and re-use in various contexts
shape how they are understood, interpreted, and subsequently utilized. The issues
associated with curation, imposing ontologies, and establishing metadata via online
databases are well recognized, including the resulting epistemological limitations
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(Leonelli 2016). Standardization of data is a critical part of such processes and is
extremely complex even where the data in question are relatively simple (such as
genomic sequencing data in organism-based databases, see Leonelli and Ankeny
2012), let alone in fields where data are highly heterogeneous (e.g., in this volume
see the chapters by Halfmann, Parker, Ramsden, and Wylie).

Clinical research is a domain of scientific practice where data often are extremely
complex and collected in highly variable and non-standardized ways. The com-
plexities associated with the data collected typically arise not because of the content
of the data but because of our (high) level of interest in the details and the mixture
of subjective and objective types of information in play whenever the main focus is
on humans and particularly patients. Various types of data can be more easily stan-
dardized than others, for instance those collected in randomized controlled trials
(RCTs), which can be easily aggregated using meta-analysis or similar. However
other types of clinical data are much more diverse in terms of quantity, quality,
provenance, means of production, attached metadata, and so on.

Medical case reports are a particularly striking example: among other purposes,
they are used to collect data and make them available for re-use by others including
clinicians, biomedical researchers, and health policymakers (for other uses, see e.g.
Ankeny 2010, 2014, 2017a). Case reports are an ideal focus for exploring of how
data “journey” at their earliest stages. They do not tend to cover great distances in
any literal sense, but instead move from one context to another and thus allow
exploration and development of understanding via application in new domains.

In this paper, I explore how data journey in case reports with particular focus on
the earliest stages of the process, namely from creation and publication of case
reports to the initial re-uses of them and data within them. Following presentation
of background on medical case reports, I investigate key themes relating to case
reporting and re-use, including factors that seem to smooth the path of the journey
along which the data travel, via broader citation patterns and detailed qualitative
analysis of highly re-used case reports. This analysis reveals some of the key factors
associated with the valuing of data captured by case reports by those in the broader
biomedical and health communities, as well as allowing reflections on how and
when case reports are most useful and how standardization of case reporting might
support the journeying of data.

As in the historical sciences, much of what is contained in medical case reports
is contingent. In both fields, narratives are particularly useful ways of accounting
for contingent outcomes by providing detailed data relating to them since narratives
allow capture of rich descriptions that permit the envisioning of alternative possi-
bilities or relationships.! Medical case reporting also involves processes of toggling
back and forth between individual instances (observations on a specific patient) and
the generalizations that might follow from them, if only implicitly.> Thus this

'See Beatty 2016, 2017 on issues relating to contingency as well as what makes something
narrative-worthy.

2On similar processes in natural history, see Terrall 2017.
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account also has relevance for the historical sciences and other sciences which
depend closely on contingent and local observational data.

2 Background: What Are Medical Case Reports?

Medical case reports have been utilized for centuries to record and disseminate
unusual presentations of illness that cannot be readily identified or that do not eas-
ily map onto recognized clinical conditions. Using a detailed narrative format,?
they outline the diagnosis, treatment, and outcomes typically of a single patient (or
a small series of patients) with a focus on practice-based observations and clinical
care, rather than the results of RCTs or other experimental methodologies. One
goal of case reporting is to capture data on specific instances of phenomena includ-
ing many details that may not be immediately relevant, but may prove to be: the
data do not have an immediate or definite purpose or target, but are collected
because of their potential and future evidential value, which often is not clear when
the case report is written or published. Thus these data (and the case report itself)
are made available for re-use over time as subsequent instances of similar illnesses
arise or as the data within the case report becomes relevant for another purpose, and
so can be systematically combined into larger datasets and hence journey beyond
their original domain.

Unlike RCTs or similar, the data typically contained in case reports are highly
non-standardized, and include a mixture of quantitative and qualitative information.
Accordingly, they are treated as one of the lowest types of evidence in the hierarchy
associated with the evidence-based medicine (EBM) movement (Nissen and Wynn
2012). Some critics even have argued that highlighting the rare and unusual (termed
by them “anecdotal”) is dangerous, because they can lead clinician-readers to mis-
taken interpretations about what they are seeing in seeing in their patients and what
is likely (Hoffman 1999) or that they rely on specious claims made by clinicians
who wish to get published but without doing the required research (McGee 2006).
It also has been documented that case reports do not receive nearly as many cita-
tions as meta-analyses or randomized controlled trial (Patsopoulos et al. 2005), and
are read far less often (Leopold 2015). Hence some journals have limited the num-
ber of case reports that they publish, imposed much more detailed and stringent
guidelines, or even stopped publishing them altogether. From their point of view, to
borrow a phrase, “the plural of anecdote is not data” (Leopold 2015, 3074).

Advocates of case reports defend their use for particular types of purposes (e.g.,
Godlee 1998; Vandenbroucke 1999, 2001; Wright and Kouroukis 2000; Carey 2006;
Smith 2008; Smalheiser et al. 2015; Rison et al. 2017): first, they can serve as the
basis of hypotheses and direct future clinical research especially about the efficacy

3On narratives in case reports, see especially Hurwitz 2017; on narrative in medicine, see Gygax
and Locher 2015; Hurwitz and Bates 2016.
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of interventions, side effects of certain treatments or drugs, and aspects of clinical
practice relating to individualized treatment (see Ankeny 2014, 2017a). Case reports
have proven useful for identifying adverse and beneficial effects and recognizing
new or rare diseases or unusual manifestations of common diseases; an oft-cited
example of the success of case reporting is the recognition of the relationship
between use of the drug thalidomide by pregnant women and congenital abnormali-
ties in newborns (McBride 1961; Lenz 1962). Case reports can serve as a type of
evidence even in EBM when used in the appropriate manner (Jenicek 2001) and can
also be useful in clinical education (Cabdn-Martinez and Garcia-Beltran 2012), par-
ticularly given the dominance of problem-based learning approaches in medicine.
Finally, there is some evidence that case reports can make significant contributions
to medical research planning (Albrecht et al. 2005).

Case reports account for a rapidly growing number of medical publications and
an increasing number of dedicated journals in recent years, with at least 160 case
reports journals from 78 publishers documented as of mid-2015 (for a useful sum-
mary, see Akers 2016, Table 1 available online), with observers commenting that
there has been a “renaissance of the case reporting literature” (Smalheiser et al.
2015, 171). More generally in the field of medicine considered as a whole, the num-
ber of MEDLINE-listed case reports is said to substantially exceed the number of
published clinical studies (Kiene et al. 2013). The newer journals tend to be open
access and range from having a focus on general medical issues to accounts of case
reports in more specialized subfields. Unfortunately, predatory publishing practices
are particularly rampant among case report journals (Akers 2016), with nearly 50%
of publishers engaging in questionable publishing practices. In addition, few have
impact factors, in part because of the infrequency with which case reports are cited,
but nearly half of the journals (as of mid-2015) are indexed in PubMed (Akers
2016), making them accessible to clinicians and researchers and for analysis of the
types performed in the current paper.

Unlike other parts of medical training and publication (e.g., differential diagnos-
tic processes or mortality and morbidity reporting, see Bosk 1979), the processes of
recording this type of historical data generally have not been made consistent or
standardized. Thus case reports have been viewed by many within the field as insuf-
ficiently rigorous for aggregation for data analysis which would be rigorous enough
to inform research design and allow data to journey to new domains to permit com-
parisons across diverse contexts including different sociocultural settings.
Traditional approaches to gathering data via case reports make it difficult to locate
and re-use relevant data despite considerable technological improvements related to
the rise of open access and internet-based systems.

Out of recognition of many of these limitations, consensus-based international
guidelines have been developed, called the “CAse REport” or CARE guidelines
(Gagnier et al. 2013), to increase the completeness in the presentation of published
case reports, create more comparability between the data contained in case reports
particularly with regard to potential therapeutic interventions and outcomes, and
generate more transparency for patients and practitioners, and in turn to inform
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clinical practice guidelines. When adopted by a journal, these types of guidelines
have been argued to be associated with an increase in the completeness of the infor-
mation published (e.g., Turner et al. 2012) and hence can be viewed as critical prag-
matic constructs.

The CARE guidelines are a 13-item checklist outlining basic reporting require-
ments for published case reports, provided in a structured manner. The key goal is
to increase completeness and transparency in published case reports. The authors
stress that they “attempted to strike a balance between adequate detail and the con-
cise writing that is one of the appealing characteristics of a case report” (Gagnier
et al. 2013, 4).* As discussed elsewhere (Ankeny 2017b), these guidelines are
extremely revealing with regard to the underlying epistemology of case reporting
particularly in the current era of dedicated journal outlets which have considerable
investment in establishing case reports as a valid form of evidence. For the purposes
of this paper, I do not analyze them in any detail particularly because their promul-
gation has been quite recent but do use some of the issues highlighted in the guide-
lines in my analysis of re-use patterns.

3 Detecting Patterns and Themes in Case Reporting
and Re-use

3.1 Broader Patterns of Re-use

One of the main potential benefits of publishing case reports (and providing the
necessary infrastructures to make them more accessible) is so they can be re-used
by others who come across similar phenomena particularly in clinical settings, or so
that the observational data can be used as the basis for initiating various types of
research. Hence it is useful to look at the broader patterns of re-use to get a sense of
the uptake of medical case reports.

More generally, it must be noted that citation analysis may severely underesti-
mate the impact of clinical-oriented research in certain fields particularly in com-
parison to basic research (e.g., Van Eck et al. 2013) and case reports specifically are
cited at a negligible rate compared to other types of publications (Patsopoulos et al.
2005). However for the purposes of this paper, a focus on published literature is
appropriate because I am primarily interested in explicit re-uses of data captured in

“This structure also aims to capture “useful” information including that required by the
U.S. Department Health and Human Services to demonstrate so-called “meaningful use” of certi-
fied electronic health records, which in turn is required by some private insurers for physicians to
for health providers to quality for certain types of performance incentives. Although intriguing to
consider the epistemological impacts of these social and financial incentives, an analysis of the
interplay between these requirements and the content of case reporting guidelines is beyond the
scope of this paper.
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case reports; note that this approach of necessity will fail to capture negative
instances, that is, where a case report was accessed and utilized but found not to be
relevant to the current problem or phenomenon under examination, in similar ways
to the type of publication bias that has been well recognized with regard to negative
results (e.g., Kicinski et al. 2015). Article usage statistics (available via many jour-
nals and databases) might well provide more accurate quantitative information that
could be compared across case reports but would fail to allow any assessment of
whether or how a case report is being re-used.

Tracking re-use of medical case reports is plagued with technological difficul-
ties, particularly when assessing case reports via citations across all types of jour-
nals and medical subfields: for instance although PubMed’ indexes nearly half of
the journals that publish case reports, excludes most that are likely to be predatory
journals (Akers 2016), and provides a “case reports” filter, it does not allow analysis
of articles by number of citations (similar limitations occur with Embase, another
major medical database). An additional issue is that there are inaccuracies in the
tagging of publications as “case reports” (see note 6 below for a rough estimate of
the rate of inaccuracy). Even tracing case report patterns by journal by focusing on
the dedicated journals is complicated by the fact that several major case report jour-
nals have changed name over time and full datasets are thus not readily available.

Hence I used two strategies to analyze case reporting and re-use over the past
25 years: (1) a broader strategy allowing general patterns of re-use (using citations
as a proxy) to be visualized; and (2) a more specific strategy focused on highly cited
case reports. The temporal window of 1997-2017 was selected to permit inclusion
of both the newer journals focused on case reports as well as more traditional jour-
nals which publish case reports; it also allows medium- and longer-term re-use to be
tracked, since as the analysis reveals, re-use often only occurs over considerable
periods of time.

For the first broader search, Web of Science was utilized using a case report
focused strategy for medically related fields® to extract data for the years 1997-2017,
which generated a total of 108,348 case reports. Just over 30% of these reports have
no citations to date, and just over 17% have between one and ten citations since time
of publication. A second analysis used the Medline subset within Web of Science,

SPubMed is a free search engine which primarily allows access to the MEDLINE database of refer-
ences and abstracts on life sciences and biomedical topics, which in turn is managed by the United
States National Library of Medicine at the National Institutes of Health as part of the Entrez sys-
tem of information retrieval.

®This search was performed on 14 November 2018 by utilizing Web of Science Core Collection to
search for all items tagged as topic = “case reports” for the years 1997-2017, which generated a
list of all items tagged as case reports from more generalized journals. This set was then supple-
mented by inclusion of all publications in case report-focused journals for the same time period
(identified by explicit inclusion of “case report” or similar in the journal titles, and drawing on the
list published in Akers 2016). These sets were combined and then narrowed to include only those
with topic = “humans" or “patients”, and by excluding publications coded to non-medical catego-
ries. The publications were then run through Clarivate InCites to obtain rates of citation.
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to perform a search for case reports for the years 1997-2017.7 The results were
102,195 articles, of which only 98 (slightly more than .09%) of the publications
verified to be case reports® were highly cited in their respective field as of March/
April 2018 (i.e., they received enough citations to place them in the top 1% of their
academic field based on a highly cited threshold for the field and publication year);
of these publications, only four were published in the past 2 years and received
enough citations to place them in the top 0.1% of papers in their respective aca-
demic field. Thus these findings echo previous analyses of the relative neglect of
uptake of case reports, but do permit us to focus on those that may have resulted in
important instances of re-use.

The highly cited case reports do share certain characteristics: first, they tend to
appear in highly popular, general medical journals (e.g., The New England Journal
of Medicine), which have extremely large readerships. They also cover one of three
main topics broadly defined, namely non-randomized and non-controlled trials of
experimental drugs or therapies on individuals or very small groups of patients,
often on a compassionate or emergency basis; epidemiological or other features of
emerging or novel diseases that are typically infectious in nature; and characteriza-
tion of underlying mutated genetic sequences of disease-related phenotypes or pro-
cesses at other levels (such as tumors). Less frequent topics include adverse effects
of or reactions to therapies of various types; reporting of new illegal drug use and
effects; and longer-term outcomes of novel surgical procedures, particularly organ
and other transplants. Despite all of these publications being considered to be highly
cited, there is no particularly robust correlation between year of publication and the
number of citations, and the range in the number of citations is large, from nearly
1500 for a 2011 paper on using modified T-cells to treat leukemia, to 15 for a 2017
paper published in a more narrow subfield, toxicology, focused on episodes of
intoxication via a new synthetic opioid.

Although these broader trends give us hints about how data can journey to new
domains via case reports, more qualitative analysis helps to reveal precisely what
travels from early stage case reports and what roles such data journeying serves.
Hence in the following sections, a series of highly cited case reports are analyzed
to provide insights into the valuing of data captured by case reports and what fac-
tors are associated with re-use. I have opportunistically selected two case reports
to explore which have particularly interesting patterns of data re-use but have
attempted to represent two of the main types of case reporting captured in the
quantitative analysis above.

"This search was performed by selecting “case report” in the document type field for the years
1997-2017, then limiting to core clinical journals and to humans (17 July 2018).

8The original set that was automatically generated on 17 July 2018 included 118 articles, of which
20 (17%) were determined not to be case reports based on manual review of abstracts; some
appeared to be review articles that had been mistagged whereas others were very large observa-
tional studies that strictly speaking would not typically be considered to be serial case reports but
which some journals nonetheless place in their “case report” sections.
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3.2 Case Reports on Infectious Diseases

One key role played by case reports is to draw attention to emerging or novel infec-
tious disease processes: in recent years, occurrences of Zika, Middle East Respiratory
Syndrome (MERS), Ebola, and Influenza A have been described via case reporting,
with attention to a range of aspects of the phenomena under study. These case
reports often contain important data that then can journey rapidly from their loca-
tion of creation and reproduce faithfully, as long as certain features are in place.

For instance, a case report (Gao et al. 2013) of three observed human fatalities
related to infection with a new form of the avian influenza A virus (H7N9) in
Shanghai, China was among the most highly cited (1247 times) in the data set
above, as the initial publication relating to what subsequently became a pandemic.
Previously the transmission of H7 viruses to mammals had been rarely reported in
Asia, human infection with the N9 subtype had not been documented anywhere, and
these types of infections had rarely been fatal or as severe as in the patients who
presented for care in Shanghai. The case report summarizes the typical information
about the patients, including demographic and epidemiological characteristics, par-
ticularly those associated with pre-existing conditions likely to have depressed their
immune systems as well as potential contact with chickens; the complications, treat-
ment, and clinical outcomes of the patients; and detailed analysis of the characteris-
tics of the virus isolated from the patients.

In conclusion, the authors (many of whom have numerous previous publications
on different forms of epidemic influenza particularly in China) make an urgent call
to others in the medical field: “We are concerned by the sudden emergence of these
infections and the potential threat to the human population. An understanding of the
source and mode of transmission of these infections, further surveillance, and
appropriate counter measures are urgently required” (Gao et al. 2013, 1896). Among
the key points discussed is whether this novel version of the virus occurred within
these human hosts or was directly transmitted by birds, with the latter said to be the
preferred explanation, particularly based on genetic sequencing and other forms of
analysis. However a critical point made in the case report is that influenza surveil-
lance of birds, swine, and humans is limited in China and nearby countries, which
makes it very difficult to provide an answer to this question.

With regard to the processes associated with data journeying, a few critical points
are notable. First, the initial journeying of the data from the clinical setting to the
printed case report (and hence to them becoming available publicly on a global
basis) occurred over a highly compressed time period®: the patients were seen

?Case reports typically have longer gestation times between clinical observation, laboratory analy-
sis, and other processes, and actual publication, even when focused on similar public health related
issues: see for instance Colson et al. 2010 on a small case controlled study within a single family
on the transmission of hepatitis E via figatellu, a traditional pig liver sausage widely eaten in
France and commonly consumed raw, where initial observations and data collection occurred in
2007-9 but which was not published until 2010; nonetheless this case report also is among the
most highly cited in its field.
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between mid-February and the end of March 2013, and the case report was pub-
lished online in mid-April 2013.!° Subsequently when published in print in mid-
May, it was accompanied by a high-profile editorial by researchers at the US Centers
for Disease Control which lauded the authors of the case report for the speed with
which the virus was identified and whole genome sequences of it made available,
particularly given the global public health issues raised (Uyeki and Cox 2013, which
echoes an earlier editorial in Nature in April, Anonymous 2013), which was impor-
tant because of the lack of transparency that sometimes had occurred in the context
of past epidemics in China (e.g., with reference to SARS, see Knobler et al. 2004).
These factors underscore that the speed with which data from a case report journeys
and the extent to which it travels (i.e., how often it is picked up by others reporting
research and whether it reaches a global audience) is directly related to a number of
factors including the perceived usefulness of the original case report in terms of the
data contained within it and the potential threat posed by the condition(s) described,
both of which are common in infectious disease related case reports.

Second, data within case reports are more likely to be re-used if they relate to
multiple research methods or fields. For instance, the editorial cited above under-
scored many other critical points raised by the case report, namely that some of the
sequence data suggested that this virus was likely to result in asymptomatic or mild
avian disease, and thus had the potential to generate a silent widespread epizootic
epidemic in China and neighboring countries. Many of the subsequent publications
citing the original case report explore these types of issues (e.g., Xu et al. 2013). In
addition, in the 6—12 months after the original case report, various members of the
research team published more detailed reports (sometimes as research letters, pre-
sumably in order to get them published quickly given the urgency of what was
quickly becoming a public health crisis)!! in high-profile outlets, such as on the
biological features of the virus, epidemiological surveillance, and tracing the gene-
sis of the infection via various types of birds (e.g., Lam et al. 2013) which helped to
widen the exposure of the original publication particularly in fields beyond infec-
tious disease. Hence various types of data originally contained within the original
case report journeyed without necessarily being closely connected to the initial case
report. Examples include numerous publications related to technology development
such as new methods for real-time detection of infection (e.g., Zhu et al. 2013).

10 Although beyond the scope of this paper, it is worth noting that formal mechanisms such as infec-
tious disease reporting and more informal mechanisms such as media coverage can help data in a
case study to journey. According to the journal Nature (Anonymous 2013), China reported the
H7NO outbreak to the World Health Organization (WHO) on 31 March 2013, and simultaneously
published the genomic sequences of viruses from the three human cases on the database of the
Global Initiative on Sharing Avian Influenza Data (GISAID). It also shared all of the sequences
with the WHO, and live virus with the WHO and other laboratories. In addition, the Chinese media
reported new cases on a daily basis and discussed H7N9 fairly openly, with Chinese President Xi
Jinping publicly calling for an effective response, noting that the government should ensure release
of accurate information about the outbreaks.

! Self-citations are common among citations to previously published case reports, and are difficult
to systematically eliminate from larger datasets when mapping patterns of re-use.
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Finally, the “call to arms” for more surveillance and reporting in the case report
(and associated publications such as the accompanying editorial) resulted in numer-
ous publications about additional instances of the disease, as well as having clear
public policy implications, which also appears to be a mark of a case report from
which data are likely to journey. Thus potential wider relevance along with “action-
ability” of data (see Ramsden in this volume) is often associated with wider patterns
of journeying. For instance following the case report and in part based on its find-
ings, H7N9 influenza was established as a notifiable infectious disease in Taiwan
which experienced a spike of cases amongst travelers returning from China soon
after the initial outbreak in China (TCDC 2013). As underscored in a paper citing
the original case report, one of the lessons to be learned from this case report is more
generic, and relates to the importance of this type of data having a way to journey
outward, particularly given certain tendencies reinforced in medical training:
“Instead of recognizing that billions of people worldwide are exposed to important
and emerging infectious diseases, our training has relegated this topic mostly to
‘tropical medicine’ or public health or labelled the threat as a ‘zebra’ item” (McFee
2013), referring to the medical training adage that “if you hear hoofbeats, think
horses, not zebras” (see Hunter 1996; Wright and Kouroukis 2000). Given increased
globalization together with the emergence of various serious health threats, some
“zebras” are now critically important, and there is a critical need for pandemic pre-
paredness. Thus these sorts of public health emergencies require not only rapid data
collection and analysis, but also data sharing and feedback (Uyeki and Cox 2013;
see also Lurie et al. 2013) via “data journeying” particularly in conceptual terms.
Case reporting provides a clear mechanism for these processes to occur, especially
where detailed data are provided in case reports that are useful for epidemiological
tracking and related processes (Anonymous 2013).

3.3 Case Reporting of Adverse Effects

Another key category of case reporting relates to adverse or unexpected effects
particularly of commonly utilized treatments or drugs. Consider a highly cited case
report detailing two fatalities and one life-threatening incident in young children
related to consumption of codeine for pain relief after adenotonsillectomy for
obstructive sleep apnea syndrome (Kelly et al. 2012). The Canadian team proposed
that where the surgery has not resolved the sleep apnea, morphine is particularly
dangerous as it may further worsen the respiratory condition, can be fatal in cases
where children have a certain genetic allele that can lead to a toxic accumulation of
morphine exceeding therapeutic levels, and is of particular concern in individuals of
North African descent where the mutation is more common (occurring in 30% of
the population).

Some members of the team (together with the chief coroner for the province) had
previously published a letter in 2009 focused on a single case similar to the 2012
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series which documented the death of an otherwise healthy 2 year old with func-
tional duplication of a particular genetic allele known to be associated with increased
rates of conversion of codeine to morphine and which may have contributed to
respiratory depression and death, in concert with other factors (Ciszkowski et al.
2009). In this letter, the authors declare that “given the polymorphic nature of
codeine metabolism and the fact that adenotonsillectomy does not reverse all cases
of obstructive sleep apnea, codeine cannot be considered a safe outpatient analgesic
for young children after adenotonsillectomy.”

Tracing the citations to the 2012 case report reveals several key themes: first,
the uptake of the 2009 letter (and the data contained in it) was much more lim-
ited, based on citation patterns, than the case report which appeared later, despite
both appearing in very high-profile medical journals (The New England Journal
of Medicine and Pediatrics respectively). However there are several reasons
which seem to be correlated with this difference, notably that the 2012 case
report was in fact peer-reviewed and detailed multiple instances of the observed
phenomenon. Description of multiple occurrences of a phenomenon appears to
result in the case report and the data contained in it being valued more highly,
likely because it is viewed by readers as providing more or more robust evidence
especially because other underlying factors can be ruled out; even if three cases
may seem to many to still be anecdotal, in this example multiple cases appear to
have resulted in more re-use of data and of the case report itself, at least in the
form of citations.

An additional trigger which contributes to wider recognition and re-use of case
reports is whether the observed adverse effects come to be formally certified, such
as in recognition by regulatory authorities or professional organizations. In the cur-
rent case, during late 2011, the Patient Safety and Quality Improvement Committee
of the American Academy of Otolaryngology—Head and Neck Surgery (AAO-HNS)
had become concerned about adverse events, particularly respiratory depression,
after adenotonsillectomy and conducted a nationwide, anonymous survey of otolar-
yngologists about such events (Racoosin et al. 2013). By August 2012 following an
evaluation of the safety of use of codeine in children including a comprehensive
review of the literature and case reports submitted to the US Food and Drug
Administration (FDA)’s Adverse Event Reporting System, the FDA issued a press
release and drug safety communication warning of the risk of respiratory depression
and/or death following the use of codeine after tonsillectomy. Its review found 13
cases, including 10 deaths and 3 cases of life-threatening respiratory depression
associated with codeine use during the period 1969 and 1 May 2012 (including the
original case reports). The issuing of the FDA advisory is correlated with a sharp
increase in citations to the 2012 report, likely simply out of increased awareness of
these issues, with many of the publications exploring implications of these findings
for codeine use in children in this or other types of care settings.

In addition, the scale of the potential for adverse effects clearly contributes to the
re-use of case reports. Although the complication in the case at hand is likely rare,
it has the potential to affect a significant number of children given the huge number
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of adenotonsillectomies performed per year, about half a million annually (Cheng
and Sobol 2013). Case reports are more likely to be viewed as oddities or mere
anecdotes if they seem to have very small-scale effects, in which case they are obvi-
ously not particularly ripe for re-use of the data contained within them.

A final factor about whether data contained in case reports about adverse effects
are subsequently re-used seems to be related to whether they align with other broader
epistemological understandings or trends in patient care, public health, or other types
of medical practices (again here compare the chapters by Cambrosio et al. and
Ramsden with particular attention to the idea of actionability of data especially in
clinical research practices). There are at least two potential ways in which these
issues are likely have been in play in this example: first, as noted in a Perspectives
piece published in The New England Journal of Medicine following the FDA warn-
ing, increased awareness of what they term “the value of both personalized medicine
and the reporting of rare adverse outcomes” (Racoosin et al. 2013, 2155) has resulted
in more attention to and publicity about such adverse effects. In other words, the
genomic turn of the early 2000s has resulted in greater awareness of genetic diversity
including mechanisms relating to drug reactions, and greater abilities to provide
alternative clinical treatments. These claims are substantiated in the types of articles
citing this case report, many of which make reference to the need for more precise
methods to determine optimal approaches to pain control, particularly with young
children post-adenotonsillectomy, and some of which position these claims explicitly
within the emerging field of pharmacogenetics (e.g., Lee etal. 2014; Smith etal. 2018).

But a second likely trigger of the patterns of re-use observed relates to the
increasing awareness of the so-called “opioid epidemic” in the 2010s, especially in
the United States.!> Due to increases in opioid-related addiction, overdoses, and
deaths, opioid use came to be viewed as a public health crisis in this period, in part
related to illegal drug use but also in concert with over-prescription of legal pain
medications including oxycodone which is chemically and otherwise similar to
codeine. Thus in the re-use of data from the original case report, we find it cited
simply as evidence of the potential dangers of codeine use in articles more broadly
exploring the potential benefits and dangers of prescribing it not only for children
(e.g., Carter et al. 2013: Martin et al. 2014) but in certain groups likely to be more
at risk such as immigrants (e.g., Ray et al. 2014, which in fact observed no
increased risk in these groups despite language and genetic differences). Further,
due to subsequent changes in the way the FDA classified (“scheduled”) hydroco-
done combination products in 2013, several of the publications (e.g., Fleming and
Wanat 2014) emphasize the potential dangers of codeine-based products for pain
management, in part out of recognition that there would be a tendency to increase
use of these products as these remain accessible at levels requiring less approval

2Even using the terminology of “epidemic” in this context raises a range of historical, political,
and sociological issues, but this issue is not a main focus in this paper; for discussion, see for
instance Green et al. 2002; Martin and Martin-Granel 2006.



Tracing Data Journeys Through Medical Case Reports: Conceptualizing Case Reports... 71

processes. Hence as this case report shows, re-use of data can become quite loose
and its journeying more akin to wandering where some part of the case report
proves to have much broader relevance, and particularly where there are practice
and public health implications.

4 Conclusions: Implications for Understanding How Data
Journey

What makes data more likely to journey beyond their original case reports? It is
clear that a few factors can be identified; though these are neither necessary or suf-
ficient, they do provide some marks that assist us with understanding the potential
epistemological value of case reporting and the data contained within them. First,
case reports that have implications well beyond their immediate domain are likely
to be published in general medical journals which allows them to be read much
more widely, and hence to much more easily be conceptualized as having broader
relevance. Second, the data contained in case reports tend to journey when they have
content with broader implications well beyond the case report at hand, and particu-
larly when the data have evidential value for topical or even urgent issues, particu-
larly those arising in public health. Any potential for wider applicability may well
not be explicitly detailed in the original case report, but can be spurred on by addi-
tional factors, such as relevance for policy, uptake and endorsement by professional
organizations or governmental authorities, description in other contexts such as
framing editorials accompanying the case report, and so on.

Third, use of multiple research methods or concepts from diverse subfields
within medicine can expedite the journeying of data within a case report into a range
of types of journals and allow the data to journey well beyond their original context.
Thus larger teams of authors are often common in the most highly cited case reports,
likely in part because diverse expertise is necessary for case reports that bring
together different types of data, but this pattern in turn seems to support greater
potential for the data to journey more widely. Finally, data from case reports tend to
journey where there is alignment with broader epistemological understandings or
agendas within medicine: for instance the turn toward genomics in the 2000s
resulted in journeying of data associated with numerous case reports related to
unusual phenotypic disease patterns or adverse effects to other contexts, notably to
publications detailing more fundamental biomedical research to determine the
genetic basis for these patterns or effects.

What can be said about the efficiency of the journeying of data from case reports?
The empirical data and qualitative analysis presented above reveal that the speed
with which data from a case report journey and the extent to which they travel is cor-
related not only with the perceived usefulness of the original case report in terms of
the original data contained within it (as would be expected) but also by the potential
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threat posed by the condition(s) described: so infectious disease-related case reports
often are urgently reported and data from them picked up elsewhere. In addition, as
occurred in the case report on the adverse effects of codeine in young tonsillectomy
patients, data associated with case reports where broader implications subsequently
come to be recognized (e.g., for postoperative pain control or even pain control in
general in this example) have their journeying expedited by their application in these
broader contexts.

These issues related to journeying take us back to the various efforts to standardize
case reporting: why bother limiting data captured by case reports to certain categories
when our technological infrastructures in fact might permit us to “write down every-
thing,” and in principle create more potential for journeying? One part of the answer
clearly relates to the requirement that case reports be useable by medical practitioners
who are both the authors of the guidelines and many of the likely users (and re-users)
of the case reports and the data contained in them: not all data that might be captured
and packaged in a case report are of equal relevance, which can be seen in the factors
more closely associated with journeying outlined above. Thus new efforts at highly
structured guidelines about what must be included impose a certain rigor to what is
thought to be essential for understanding a case report and for re-using the data con-
tained in them to identify similar cases or other domains where the data might have
relevance. Though in some sense it is technically possible to include absolutely all data
(or many more pieces of data than currently contained in case reports), to do so would
undermine the structures (narrative and otherwise) that form the basis for what the case
report is a case of, and hence place limits on the abilities of practitioners to re-use it.

In addition, these guidelines have certain merits beyond mere standardization for
ease of re-use of case reports and the data within them: at a deeper level, they con-
stitute a line of attack on traditional assumptions regarding what types of data are
valued and under what circumstances. Case reporting in a standardized manner
reinforces the value of data derived from individual case reports and helps to estab-
lish methods for consistent re-use. These types of guidelines also underscore how
data can serve evidence in these sorts of observational settings that previously have
been assumed to be unable to be systematized in any significant ways, particularly
as compared to RCTs and other experimental methodologies. As the authors note,
what is most critical is that case reporting be made more precise, complete, and
transparent (Gagnier et al. 2013), which no doubt is correct. However as this paper
has shown, there are deeper epistemic issues underlying the re-use of case reports
and the journeying of the data within them, and these guidelines have the potential
to allow both creators and users to be reflective about both the potential (and limita-
tions) of case reporting, particularly in the context of re-use.

Exploring the effective journeying of data contained in case reports together
with efforts to standardize the presentation of data are important parts of devel-
oping deeper understandings of appropriate, effective, and rigorous ways of
using observation-based methodologies in the biomedical sciences and other
fields that rely on such approaches, given that these have been largely neglected,
for instance in medicine due to the rise of EBM and related approaches in which
data are relatively easy to systematize (cf. Tempini and Teira in this volume on
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the difficulties of circulating data in other settings). As the guideline authors
state, “When it becomes clear how new data contributes to evidence, the steward-
ship needed to produce high-quality data will become more rewarding and our
attitude toward ‘observation’ will shift...This will transform how we think about
‘evidence’ and revolutionize its creation, diffusion, and use—opening new
opportunity landscapes” (Gagnier et al. 2013, 5). How these types of data journey
faithfully and efficiently in a variety of contexts and hence come to be valued as
a form of evidence warrants further exploration.
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Abstract This chapter considers and compares the ways in which two types of data,
economic observations and phenotypic data in plant science, are prepared for use as
evidence for claims about phenomena such as business cycles and gene-environment
interactions. We focus on what we call “cleaning by clustering” procedures, and
investigate the principles underpinning this kind of cleaning. These cases illustrate the
epistemic significance of preparing data for use as evidence in both the social and
natural sciences. At the same time, the comparison points to differences and similarities
between data cleaning practices, which are grounded in the characteristics of the objects
of interests as well as the conceptual commitments, community standards and research
tools used by economics and plant science towards producing and validating claims.

1 Introduction: Preparing Big Data for Analysis

Big data cannot be interpreted without extensive and laborious preparation, includ-
ing various stages of processing and ordering to make it possible for data to be dis-
seminated and subjected to analysis. Several chapters in this volume — including
Halfmann’s on sampling in oceanography, Karaca on data acquisition in particle
physics and Hoeppe on sharing observations in astronomy - stress the decisive
impact that such preparation practices have on the subsequent journeys of data and
the use of data as evidence for claims about phenomena. In this chapter we discuss
the epistemological significance of yet another practice of data preparation: data
cleaning, that is the efforts involved in formatting, manipulating and visualising
data so that they are sufficiently tractable to be amenable for analysis.
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The cleaning strategies that we aim to discuss are not focused on scrubbing and
scraping dirt away, but rather on tidying up, sorting and ordering. In everyday life as
in data practices, tidying up can be done in a variety of different ways depending on
existing habits and future requirements. In what follows, we focus on two strategies
for tidying up data which both rely, in different ways, on the clustering of objects
into groups. The first strategy is to get rid of smudges and flecks by arranging
objects so that unruly bits are less visible, and the eye is drawn to the more orderly —
cleaner - parts of the ensemble. We exemplify this strategy through the analysis of
data cleaning practices in economics, and specifically in relation to business cycle
analysis, where data consist of observations of journalists, business annals, and
social and economic statistical time-series. The second strategy is to put everything
in boxes and store them some place out of sight, placing labels on each box to be
able to retrieve its contents when needed (the more boxes and objects one has, of
course, the more complex the labels will need to be).! We exemplify this strategy
through the analysis of data cleaning practices in biology, and specifically the han-
dling of phenomic data about plants, where data include images and measurements
documenting the morphology, physiology and behaviour of organisms and their
environments.

We compare a case from the natural sciences (biology) with one from social sci-
ences (economics) in some detail to exemplify the complexity of the research prac-
tices involved, which mirrors the complexity of the phenomena under study in both
areas. While the conceptual commitments, community standards and research tools
used by economics and biology are starkly different, in both cases data cleaning and
subsequent analysis involve bringing together voluminous datasets of diverse types
and formats, generated by a broad range of heterogeneous sources. The projected
value of these data as evidence for scientific claims grows with aggregation: the
more data analysts are able to link together and consider as a single body of evi-
dence, the more sophisticated and reliable the resulting insights are expected to be.

The chapter is organised as follows. In the first section, we examine the work
required to create meaningful clusters from these forms of big data, and the extent
to which data cleaning transforms datasets. In section two we draw on Mary
Douglas’s seminal analysis of dirt and impurity, in which she argued that cleaning
is not about removal but about ordering, to identify a common strategy used by
researchers in both cases, which we call cleaning by clustering. After discussing
this general approach, we note how the specific mechanisms and tools used to enact
this strategy differ considerably in the two domains of practice. In economics,
cleaning by clustering is largely a question of exercising visual judgement grounded
on principles similar to the Gestalt principles, thus arranging data in ways that are
aesthetically appealing and intuitively intelligible to the analyst. This strategy goes
along way towards facilitating data mining, for instance through the construction of

'This approach to cleaning is heavily built on the strategies of packaging, curating and labelling
explored by Leonelli (2011, 2016). Contrary to data packaging in her previous studies, however,
tidying up is not primarily aimed at making data portable across contexts, but rather at making it
possible for data to be analysed and interpreted.
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data models that highlight meaningful correlations and direct analysts towards spe-
cific interpretations. By the same token, this form of clustering is difficult to undo,
leading to a situation where the aesthetic criteria employed to arrange the data are
traded off with the ways in which the data could be used as evidence. In plant phe-
nomics, cleaning by clustering is instead guided by the attempt to define a “land-
scape” for the re-purposing of data: a set of conditions, in other words, through
which researchers may be able to re-use data for new goals.? The priority in this case
is not achieving visual intelligibility alone, but rather the creation of data visualisa-
tion and retrieval tools that enable users to disaggregate data clusters when needed
to confront new research questions. This enables researchers to trace the origin of
the relevant data journeys, and evaluate the reliability and appropriateness of every
step of “cleaning” in light of novel situations of inquiry within which data may be
re-purposed. We are particularly interested in identifying the principles that guide
data cleaning activities in these cases, and the conceptual, material and social cir-
cumstances within which these principles are grounded and through which they
originate. To this aim, in section three we explore the relation between data cleaning
practices and how data are subsequently moved and used. Comparing our two cases
points to significant differences between data practices, which are grounded in the
nature of the objects of interest as well as in the conceptual commitments, commu-
nity standards and research tools used by economics and plant science towards pro-
ducing and validating claims. It also points to the difficulties experienced by data
analysts in providing general principles of cleanliness with regard to research data,
as exemplified by the recent debate around “tidy data” in computational data sci-
ence, which we discuss in our closing section.

2 Cleaning Data: Empirical Cases from Plant Science
and Economics

Our starting point is a close look at two cases of “data cleaning” taken from eco-
nomics and plant science, respectively. The cases exemplify some of the most
sophisticated forms of data processing in each field, aiming to encompass very dif-
ferent types and formats of data coming from a wide variety of sources, which can
only be considered as a single body of evidence thanks to laborious processing. The
economic case, concerning the generation of quantitative facts about the business
cycle at the National Bureau of Economic Research in the 1940s, was selected for
two reasons. On the one hand, this post-war research at the NBER is exemplary for
many current practices of data preparation in economics, and on the other hand this
practice was described so explicitly and in such great detail in a publication,
Measuring Business Cycle (1946), that it enables and ensures insight and under-

>The landscape may include data collection strategies, repositories and visualisation tools enabling
researchers to retrieve, compare and analyse data coming from a variety of sources.
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standing of this specific clustering practice. The plant science case, concerning the
processing of phenotypic data in plant phenomics, constitutes one of the most dis-
cussed examples of complex data processing in contemporary biology, with several
ongoing debates documenting the rationale and strategies used to make data usable
for further analysis. Below, we focus on the discussions surrounding the identifica-
tion of essential data and related standards (“‘minimal information”) for this kind of
research.

2.1 Empirical Case: Measuring Business Cycles

Founded in 1920, the National Bureau of Economic Research (NBER) is a private,
non-profit, non-partisan organization dedicated to conducting economic research
and to disseminating research findings among academics, public policy makers, and
business professionals.® The object of the NBER is “to ascertain and to present to
the public important economic facts and their interpretation in a scientific and
impartial manner” (Burns and Mitchell 1946, p. v). Wesley C. Mitchell, the first
director of the NBER till 1945, was well-known for his contributions to the empiri-
cal analysis of business cycles.* The NBER is not a statistical office or bureau that
aims at collecting economic and social data, but instead aims to analyse existing
economic and social statistics, in this case to “measure business conditions.” These
statistics were data of various aspects of economic and business life and came from
various different sources. An 11 page long appendix of Measuring Business Cycle
(1946) list these statistics such as of industrial production, freight, sales, milk used
in factory production, transit rides, railway passengers miles, wholesale prices, total
income payments, employment, bank debits, electric power production, payrolls,
business failures, from organisations such as Federal Reserve, Interstate Commerce
Commission, Bureau of Foreign and Domestic Commerce, Railroad Companies,
Bureau of Labor Statistics, Chicago Board of Trade, and Bureau of Foreign and
Domestic Commerce.

The book Measuring Business Cycles (1946) was the result of 20 years of empir-
ical business studies at the Bureau under the supervision of Mitchell. The aim was
to identify and establish facts about the business cycles, which could be used to test
existing business cycle theories. Burns and Mitchell stated that theoretical work on
business cycles was “often highly suggestive; yet rest so much upon simplifying
assumptions and is so imperfectly tested for conformity to experience that, for our
purposes, the conclusions must serve mainly as hypotheses” (p. 4). At the same
time, they observed that “satisfactory tests cannot be made unless hypotheses have
been framed with an eye to testing, and unless, observations upon many economic

3See the NBER website, http://www.nber.org

*See Morgan 1990, pp. 44-56, for a more detailed background of the NBER and Mitchell’s
approach.
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activities have been made in a uniform manner” (p. 4). Although theories were seen
as “incomplete in coverage” and “highly suggestive,” they were not “put aside” but
used “as hypotheses concerning what activities and what relations among them are
worth studying. In that way they will be of inestimable value in his factual inqui-
ries” (p. 10). Hence the point of departure for data analysis was not a theory of the
business cycle but a very general definition covering commonly accepted character-
istics of the business cycles:

Business cycles are a type of fluctuation found in the aggregate economic activity of nations
that organize their work mainly in business enterprises: a cycle consists of expansions
occurring at about the same time in many economic activities, followed by similarly general
recessions, contractions, and revivals which merge into the expansion phase of the next
cycle; this sequence of changes is recurrent but not periodic; in duration business cycles
vary from more than one year to ten or twelve years; they are not divisible into shorter
cycles of similar character with amplitudes approximating their own. (Burns and Mitchell
1946, p. 3)

This working definition was supposed to list the observable characteristics of a
“distinct species of economic phenomena” (p. 3), that is the business cycle. This
definition focused on what should be measured, such as the average duration of the
cycle. To achieve this aim, all kinds of questions raised by this definition had first to
be answered.’

To understand which principles of clustering were used in this case of business
cycle measurement, we need to have a closer look at the four implicit assumptions
made within this definition. The first assumption is that the cyclical turns of differ-
ent processes are concentrated around certain points in time. The second assump-
tion is that the business cycle is not a periodic but a recurrent process, a “regularity”
that is different from “seasonal variations, random change, and secular trends”
(p- 6). Another assumption of the definition is that business cycles run in a continu-
ous round, “no intervals are admitted between one phase and its successor, or
between the end of one cycle and the beginning of the next” (p. 7). And the last
assumption is the duration of the cycle, somewhere between 1 year and 10 or
12 years.

The main problem for analysts is that business indexes and time series do not
show “cyclical patterns” that are “sweeping smoothly upward from depressions to a
single peak of prosperity and the declining steadily to a new trough” (p. 7), and so
a business cycle has to be identified from an irregular process, where the movements
are interrupted by others in the opposite direction, and where one may see double or
triple peaks and troughs. What therefore is needed are criteria to identify the char-
acteristics of the business cycles, such as “what reversals in direction mark the end
of a cyclical phase” (p. 8). Crucial to our analysis is the fact that such criteria cannot
be derived from any (business cycle) theory,® but rather they relate to aesthetic

3Such as, for instance: How large or small does a nation have to be to have a business cycle, or is
it an international phenomenon? How far back in time can business cycles be traced? What is the
most appropriate level of aggregation? Which economic activities should be included?

¢See Bogen and Woodward (1988) for a similar, more general claim about the incompleteness of
theories in this respect.
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judgements based on visual displays of the data. In other words, certain smooth and
simple shapes turn out to be used as tools to process and visualise the data. The
approach is based on pattern recognition, described by Burns and Mitchell (1946,
p- 8n) as “the source of all true knowledge”, but nevertheless it is required to be as
objective as possible. Indeed, these criteria are presented as “a ‘brake’ on an inves-
tigator’s pattern sense which [...] may lead to mischievous fictions” (p. 8n).

Burns and Mitchell emphasized that the cyclical pattern can be seen “only by the
eye of the mind” (p. 12). “What we literally observe is not a congeries of economic
activities rising and falling in unison, but changes in readings taken from many
recording instruments of varying reliability” (p. 14). To “see” the business cycle “in
the mind’s eye,” these recordings have “to be decomposed for our purposes; then
one set of components must be put together in a new fashion” (p. 14).

We conceive business cycles to consist of roughly synchronous movements in many activi-
ties. To determine whether this thought symbol represents experience or fantasy, our mea-
sures of the cyclical behavior characteristics of many activities must be assembled into the
end products of which our definition is the blueprint. In statistical jargon, time-series analy-
sis must be followed by a time-series synthesis. (Burns and Mitchell 1946, p. 17)

The idea is the decomposition of the time series into cyclical, secular, seasonal
and random movements, but the “isolation of cyclical fluctuations” was considered
to be a “highly uncertain operation” (p. 37), particularly if it is done in a “mechani-
cal manner”. The components cannot be segregated without considerable testing
and experimenting by skilled technicians. “There is always danger that the statisti-
cal operations performed on the original data may lead an investigator to bury real
problems and worry about false ones” (p. 38).”

Most of the analysis was in the determination of cyclical timing. It had become
clear that the data needed to be adjusted for —i.e., cleaned from — seasonal variations
“to be more useful in explaining business cycles than would measures made from
highly fabricated data” (p. 43). We therefore briefly focus on this aspect of the busi-
ness cycle analysis, to show how much it was a combination of “hunch and judg-
ment” (p. 44) and mechanical methods, which results were evaluated based on their
visual displays.

Two methods were used, one consisted in taking averages of the original figures
for each months, which were adjusted for secular trend; and the other entailed tak-
ing a 12-month moving average of the original figures, placing each average in the
seventh month of shifting 12-month intervals. The rationale for both methods are
the assumptions that “random components of a series [will] cancel one another” and
that “the process of averaging will tend also to make the cyclical component of a
series sum to zero” (p. 47).

When the data was adjusted for seasonal variations, the next problem was the
dating of cyclical fluctuations. Therefore the data was plotted upon a semi-logarith-

7See Boumans 2015 for a more detailed account of measurement, which sees measurement as a
considered balance between mechanical objectivity and expert judgement.



From Dirty Data to Tidy Facts: Clustering Practices in Plant Phenomics and Business... 85

mic chart (typically about 7 feet long) such that the whole record was studied in this
graphic form. As far as possible the scales were kept uniform.

The basic criterion for distinguishing the three types of movements, that is the
cyclical, secular and erratic movements, was their duration. Secular trends were
conceived as drifts that persist in a given direction for a few decades. Erratic move-
ments, the “saw-tooth contour” (p. 57) were supposed to cover no longer than a few
months. But even with this basic criterion, the judgments were often difficult:

When specific cycles are made doubtful by random movements, we smooth the data by
moving averages and base judgments upon the curve of moving averages. When the secular
trend rises sharply, we allow brief and mild declines to count as contractions of specific
cycles. Similarly, when the secular trend falls sharply, brief and mild rises are counted a
specific-cycle expansions. (Burns and Mitchell 1946, p. 57)

Once the cycles had been distinguished the NBER researchers proceeded with
the dating of the turning points. The idea is to take the highest and lowest points of
the plotted curves as the dates of the cyclical turns. But often it is not clear to decide
which points these are, for example when erratic movements are prominent in the
vicinity of a cyclical turn. Then all kinds of checks or averages have to be consid-
ered to arrive at a determination.

Our methods of determining specific cycles make no pretensions to elegance. Since no fast
line separates erratic or episodic movements from specific cycles, or erratic turns from
cyclical turns, there is ample opportunity for vagaries of judgment. At times our rules fail to
yield a clear-cut decision. At times the members of our statistical staff disagree in their
efforts to apply the rules to a given series. Our experience indicates that this difficulty can-
not be removed by multiplying rules. (Burns and Mitchell 1946, p. 64)

The judgment is instead based on a consensus of three persons who have worked
independently on marking off the cycle. Once arrived at this consensus, the whole
process is audited by an “experienced member of the staff” (p. 64) (Fig. 1).

2.2 Empirical Case: Processing and Interoperability
Requirements for Imaging Data in Plant Phenomics

Plant phenotyping involves analysing plant trait data with the aim to study develop-
ment and gene-environment interactions. It emerged in the 1960s with an initial
emphasis on quantitative analysis, which was later broadened to imaging data
obtained via high-throughput experiments performed in fields, glasshouses, and/or
laboratories. Such imaging data, and the accompanying observations about the con-
ditions under which the images were obtained, now constitute the most coveted type
of data in this field, with increasingly sophisticated tools being developed for their
visualisation and automated analysis. This shift of emphasis on complex data for-
mats proceeded in parallel to the broadening of the term “phenotyping” to include
any type of morphological variability within organisms, thus encompassing not
only the immediately visible features of organisms, but also (1) features of tissues,
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Fig. 1 Example chart of a time series in its original shape and after it has been adjusted for sea-
sonal variation. The adjustment is supposed to facilitate dating of turning points, indicated by the
asterisks. (Source: Burns and Mitchell 1946, p. 60, Chart 4)

proteins, metabolic pathways and other aspects only accessible through intervention
and specialised imaging techniques; and (2) the ways in which such features vary
across environments that range from laboratories to glasshouses, field trials and the
“wild” — which involves collecting data on the soil, climate, other organisms and
microbiome with which plants interact. In the words of prominent contributors to
the field, phenotyping — also called “phenomics” — “broadened its focus from the
initial characterization of single-plant traits in controlled conditions towards ‘real-
life’ applications of robust field techniques in plant plots and canopies” (Walter
et al. 2015). Importantly for our analysis, this shift in the conceptualisation of phe-
notypic traits made them much less obviously identifiable as concrete descriptors.
Collecting data about the size of a leaf or the structure of a metabolic pathway is not
simply a matter of observation, but rather is informed by a rich conceptual apparatus
defining what counts as leaf surface and metabolism. Thus, just as much as business
cycles are no pure theoretical constructs, phenotypes are no ‘brute facts’ about the
world: in both cases, empirical and theoretical considerations remain firmly inter-
twined, and affect researchers’ approach to data processing and interpretation.

A key component of contemporary phenomics, and the reason why it is regarded
as generating knowledge that can underpin and guide agricultural production, is a
holistic characterisation of plant performance, which involves the employment of
several investigative methods and the generation and analysis of a wide variety of
data types. These include, for instance, multispectral and thermographic imaging of
plant growth, which is often carried out within so-called “smart glasshouses” in an
automated fashion (by robots or conveyor belts that transport the plants to various
imaging chambers, multiple times per day, over an extended period of time).
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Photographs and measurements are produced that document how plants develop,
how their leaves and roots change, and how they respond to external stimuli.

Cleaning such images for analysis involves judgements around the quality and
resolution of the photograph, the lighting and background conditions, the position
in which plants have been captured and the extent and clarity to which relevant
leaves and roots show in the picture. The quantity of images generated through any
one experiment makes it hard for researchers to do such work manually, and yet it
is hard to fully automate due to the large amount of know-how and theoretical com-
mitments involved in judging image quality — encompassing familiarity with the
plants and their full life-cycle, expectations around how plants may respond to envi-
ronmental conditions, existing conceptualisations of plant development and growth,
and assumptions around which environmental and morphological elements need to
be valued and prioritised over others.

Another popular type of phenomic data is acquired through top-view imaging of
the plant canopy in the field, which can be performed by humans in helicopters,
robots or remote-controlled drones. These photographs can be analysed to measure
leaf greenness, via tools such as the Normalised Difference Vegetation Index, or
plant biomass and growth in the area under scrutiny. Again, while some basic
parameters can be established for what counts as a “bad image” and which elements
of each image may be classified as “noise”, cleaning such images involves expert
assessment based on detailed knowledge of the characteristics and patterns of
growth of the plants at hand. An example (Fig. 2) is an imaging study of soy-bean
fields to determine patterns of growth, in which researchers prepare images for fur-
ther analysis (in their own words, “classify” the images) through models that are
manually trained at every step to respond to the traits of interest in the beans (Xavier
et al. 2017).

Given the sensitivity of phenomic studies to local conditions and the conceptual
preferences and know-how of specific researchers, consensus around how to clean
data is hard to achieve. Nevertheless, such consensus is highly valued and sought
for, as it enables researchers to compare results obtained across species, field types
and environmental conditions. One attempt towards establishing general standards
for data collection and processing is the Minimal Information About Plant
Phenotypic Experiments, or MIAPPE. MIAPPE is part of a broader set of “minimal
information about data” movement now recognized and coordinated by the FAIR
sharing international initiative for reusable data curation.® This is an attempt to stan-
dardize the practices and variables required to tidy up data formatting and analysis
enough to make data searchable, visualisable and retrievable through digital means.
The idea of “minimal” information is meant to foster an evaluation of which contex-
tual information is most important to data interpretation, resulting in as small a set

8See https://fairsharing.org/collection/MIBBI. Among the first incarnations of the movement, and
now highly successful standards in their own right, were the Minimal Information About a
Microarray Experiment, or MIAME (Rogers and Cambrosio 2007) and the Minimal Information
for Biological and Biomedical Investigations, or MIBBI (http://www.nature.com/nbt/journal/v26/
n8&/full/nbt.1411.html)


https://fairsharing.org/collection/MIBBI
http://www.nature.com/nbt/journal/v26/n8/full/nbt.1411.html
http://www.nature.com/nbt/journal/v26/n8/full/nbt.1411.html
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Fig. 2 Example imagery of a single plot of soy-bean canopy, used to calculate a percentage can-
opy coverage on a given sampling date. (a, b) From aerial (above; a) or ground (below; b) plat-
forms, with raw (left) and classified (right) imagery. (Source: http://www.genetics.org/
content/206/2/1081)

as possible of metadata that researchers view as essential to phenotypic data reuse.
Somewhat paradoxically, within MIAPPE this aspiration towards minimal informa-
tion is accompanied by the wish to lose as little information as possible about the
original format of the data, the circumstances under which they were generated, and
the ways in which they were processed since. This is because the specificity of the
provenance and formatting of data in each case is regarded as highly valuable by the
plant scientists using such data for their own research, a requirement that research-
ers and engineers involved in the development of MIAPPE take seriously: “We had
to allow for differences that occur between particular types of plant experiments,
e.g. performed in different growth facilities. This is reflected in a varying set of
attributes recommended in MIAPPE” (Cwiek-Kupczyfiska et al. 2016). Indeed, the


http://www.genetics.org/content/206/2/1081
http://www.genetics.org/content/206/2/1081
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list of attributes to be reported to MIAPPE involves over 80 items, which can extend
to over a hundred depending on the field conditions. The basic categories are them-
selves relatively broad, encompassing general metadata, timing and location, bio-
sources, environment, treatments, experimental design, observed variables and as
much information as possible on sample collection, processing and management —a
far cry from the minimalism that the MIAPPE criteria were expected to exemplify.

It is useful to consider a couple of the simplest examples from this list. Take for
instance the item “location and timing of an experiment”. Here MIAPPE developers
note that “depending on the nature of the study and scientific objectives, different
initial time points might be crucial—sowing date or transfer date, treatment applica-
tion time, etc. The duration of particular stages is also important.” (Cwiek-
Kupczyfiska et al. 2016, p. 3). Thus, even a relatively straightforward measure such
as the time of the experiment turns out to be a complex and context-dependent issue,
for which it is hard to establish any hard and fast boundaries to ensure comparability
across different experiments.” Another example is item “biosource” — that is, the
identification of the plant material at hand. Here MIAPPE recommends using at
least two attributes, one consisting of the species name as in standard taxonomic
classifications, and the other consisting of the “infraspecific”’ name, pointing to the
specific variant, accession or line in question. Complications arise due to the types
and history of the plant materials at hand. While the taxonomy of plant species is,
though controversial, subject to international standards, the identification and clas-
sification of sub-species variants is highly decentralised and context-dependent,
with no overarching agreement around classification and often not even a clear
awareness of the differences between local systems. For example the varieties of the
plant Manihot esculenta, whose root cassava is a key crop in West Africa and South
America, are often defined by the different ways in which local breeders value spe-
cific traits (like the humidity and colour of the root) when processing the plant for
food production. Aware of this fact, the authors point to the importance of referenc-
ing any “public collection of names”, and/or a specific experimental station or gene-
bank in which the variant may be stored and or the seeds may have been sourced,
and to which they can be physically traced. There are international identification
systems for crops of commercial interest, such as the FAO/Bioversity Multi-Crop
Passport Descriptors, but these do not cover all possible variants. The ways in which
data about specific attributes are structured in MIAPPE conform to the ISA-Tab
standards for data ordering, which is widely adopted in biology and looks as follows
(Table 1).

This table aims to impose a clear conceptual ordering of the data, resulting in
their presentation in a format and structure that is amenable to computational analy-
sis. At the same time, the application of the ISA-Tab standard to the specific case of
phenotyping is complex, as demonstrated by challenges encountered in developing
the so-called “ISA-Tab Phenotyping Configuration”. This consists of a standard
Investigation file, a Phenotyping Assay file describing phenotypic procedures and
observed variables (according to the dozens of attributes identified by MIAPPE,

°See Leonelli (2018) for an analysis of data time and its significance particularly within
experiments.
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Table 1 The structure of an ISA-Tab dataset

Investigation
general information about project
o Study
T experiment description:
?3 S S u experimental units and their
@ characteristics, conditions and
= treatments, ..
Assay
A A A ces measurement specific sampling,
"N ol protocols, devices, data processing, ...
Data

g D D T local or external files with raw
fa) and processed data in

N N domain-specific formats

Source: Cwiek-Kupczynska et al. (2016)

such as location and biosources), and three versions of a Study file: one called
“basic study” and consisting of a default general description of all plant experi-
ments, which needs to be extended by added recommended MIAPPE attributes as
applicable to the specific case'®; and two extensions called “field” and “greenhouse”
studies, featuring specific attributes for growth facilities and environmental infor-
mation (Cwiek—Kupczyﬁska et al. 2016, p. 8) (Table 2).

Notably, despite the drive towards comparability, MIAPPE emphasizes the need
to capture any data format in use within the relevant scientific communities, rather
than attempting to impose overarching standards on the ways in which data are
produced: “in our implementation of MIAPPE, we do not restrict the format of the
raw data in any way; it can be any custom, platform- or device- specific format,
including texts, images, binary data, etc.” (Cwiek-Kupczynska et al. 2016, p. 11). At
the same time, MIAPPE requires that information about data provenance (metadata)
is reported in ways that are comprehensive and retrievable by later data users. The
most stringent MIAPPE instructions concern how to organize and display such
metadata:

If there is no description, the Derived Data File should be a standard, plain tab-separated

sample-by-variable matrix. Its first column should contain (in the simplest situation) values

from the Assay Name column in the Assay file, and the rest of the columns provide values
for all variables. The names of those columns should correspond to the values in the Variable

19Tn practice, it can be also used when very little is known about the origin of observations, e.g. for
simple, external or legacy phenotypic datasets that should be formatted as ISA-Tab, without the
ambition to satisfy the MIAPPE recommendations.
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Table 2 Tllustration of what the basic ISA-TAB fields correspond to when implemented by plant
scientists in the field and in the greenhouse, respectively

Basic

Field

Greenhouse

Source name

Source name

Source name

Characteristics[organism]

Characteristics[organism]

Characteristics[organism]

Characteristics[Infraspecific
name]

Characteristics[Infraspecific
name]

Characteristics[Infraspecific name]

Characteristics[seed origin]

Characteristics[seed origin]

Characteristics[seed origin]

Characteristics[study start]

Characteristics[study start]

Characteristics[study start]

Characteristics[study Characteristics[study Characteristics[study duration
duration] duration

Characteristics[growth Characteristics[growth Characteristics[growth facility]
facility] facility]

Characteristics[geographic
location]

Characteristics[geographic
location]

Characteristics[geographic location]

Protocol REF[rooting]

Protocol REF[rooting]

Parameter value[rooting
medium]

Parameter value[rooting medium]

Parameter value[container type]

Parameter value[container

volume]

Parameter value[plot size] Parameter value[container
dimension]

Unit Unit

Parameter value[sowing
density]

Parameter value[number of plants
per container]

Parameter value[pH]

Parameter value[pH]

Protocol REF[aerial
conditions]

Protocol REF[aerial conditions]

Parameter value[air
humidity]

Parameter value[air humidity]

Parameter value[daily
photon flux]

Parameter value[daily photon flux]

Parameter value[length of
light period]

Parameter value[length of light
period]

Parameter value[day
temperature]

Parameter value[day temperature]

Parameter value[night
temperature]

Parameter value[night
temperature]

Protocol REF[nutrition]

Protocol REF[nutrition]

Parameter value[N before
fertilisation]

Parameter value[N before
fertilisation]

Parameter value[type of
fertiliser]

Parameter value[type of fertiliser]

Parameter value[amount of
fertiliser]

Parameter value[amount of
fertiliser]

(continued)
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Table 2 (continued)

Basic Field Greenhouse
Protocol REF[watering] Protocol REF[watering]
Parameter value[irrigation | Parameter value[irrigation type]
type]
Parameter value[volume] Parameter value[volume]
Parameter Parameter value[frequency]
value[frequency]
Protocol REF[sampling] Protocol REF[sampling]
Parameter Parameter value[experimental
value[experimental unit] unit]
Sample name Sample name Sample name

Source: Cwiek-Kupczynska et al. (2016)

ID column in the Trait Definition File [...]. So, a default derived data format is an “Assay
Name X Variable” matrix of observations, that can be quantitative or qualitative. An exten-
sion of the above rule governing the format of the Derived Data File is possible by using
values from another “data node” column (e.g. Source Name, Sample Name, Extract Name,
etc.) as unique identifiers of the rows in the table with the associated observations. (Cwiek-
Kupczynska et al. 2016, p. 12)

This is because such ordering is what enables researchers to initiate
comparisons:

we can provide separate data files with measurements taken for different observational
units, e.g., morphological traits like “height” and “number of leaves” can be assigned to the
whole plant, whereas physiological traits can be restricted to samples taken from particular
leaf of a plant. Also conveying data aggregated over “data nodes” is possible in this way.
(Cwiek-Kupczynska et al. 2016, p. 12)

Despite the attention placed by MIAPPE developers on the variability and con-
textuality of data and related preparation procedures, applying MIAPPE criteria to
the processing of data in the field remains a big challenge. As a concrete example,
we take the data processing performed at a leading station for the collection of phe-
nomics data in the UK. The North Wyke Farm Platform is a research facility built
around a working farm in Devon, in which researchers can study the interactions
between climate, soil, animals, plants and microbiota in as close a setting as possi-
ble to real farming. The whole area is full of sensors and measurement devices,
which collect data at regular intervals (15 minutes) about a variety of aspects of the
farm: temperature, soil composition, humidity and rainfall, etc. The sensors are cali-
brated and checked in 15 huts (“monitoring cabins’) positioned around the fields,
and the data produced is sent wirelessly to the central computing facility based in
the manor house, where researchers proceed to prepare the data, cluster them and
store/disseminate them through a database. There are also three meteorological sta-
tions that move around the fields. An important activity besides collecting numeri-
cal measurements is the collection of samples (of soil, air, water, insects and plants),
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which are acquired manually (e.g. manual sampling device for soil), prepared and
stored in fridges at various temperatures).'!

Researchers interviewed!? in North Wyke have stressed that the data collected by
the Farm Platform are not yet being interpreted: this will only be possible when
enough longitudinal data are collected over the course of the next few years.'® This
makes the task of data cleaning ever more important, since the researchers’ main
task at the moment is to make sure that the data collected is reliable and clustered
and displayed in ways that will facilitate further analysis, and prove informative for
interested farmers. Cleaning the data means first of all making them comparable and
consistent with other datasets generated within the Farm, an arduous task given the
variety of measurements taken and images collected. Equally important is to make
sure that such data would be comparable and consistent with other phenomics data
from outside North Wyke. While researchers attempt to follow criteria similar to
those formulated by MIAPPE, the variability in the interpretation of the attributes
and values is a serious threat to automated mining and comparison among the data.
Researchers aim to enable analysis in the future, but caution against any automated
search. They also emphasize how the power of this evidence is in the meta-data, the
information that enables researchers to contextualize the findings and evaluate their
significance in relation to findings from other locations enacting different epistemic
cultures and methods.

3 Cleaning by Clustering: The Principles Underpinning
Data Cleaning Practices

Renowned anthropologist Mary Douglas provided an important argument for under-
standing the process of cleaning as being not about removal, but about ordering.
According to Douglas (2002), dirt is essentially disorder: “There is no such thing as
absolute dirt: it exists in the eye of the beholder. [...] Dirt offends against order.
Eliminating it is not a negative movement, but a positive effort to organize the envi-

'The facility attracts researchers from different communities and disciplines seeking to develop
sustainable agriculture and ruminant production systems http://www.nature.com/news/agriculture-
steps-to-sustainable-livestock-1.14796. It is the only currently functioning facility of its kind
world-wide, and the Global Farm Platform http://www.globalfarmplatform.org/ was born to
attempt to export this model and initiate similar sites elsewhere.

Interviews were carried out by Leonelli in January 2016. A subset of the interviews, which inter-
viewees consented to release in an open access format, is available here: https://zenodo.org/com-
munities/datastudies/?page=1&size=20

3North Wyke researchers are also conducting short-term studies in which the data are used as
evidence for claims about phenomena. Examples include research on replacing nitrogen as fertil-
izer, the use of plants to manage soil and water during floods, shifts in soil biota as land use
changes, and the modelling of grassland production systems. At the same time, researchers only
take up research that will not “distort” on-going, long-term data collection by forcing them to
“clean” data with too narrow a set of epistemic goals in mind.


http://www.nature.com/news/agriculture-steps-to-sustainable-livestock-1.14796
http://www.nature.com/news/agriculture-steps-to-sustainable-livestock-1.14796
http://www.globalfarmplatform.org/
https://zenodo.org/communities/datastudies/?page=1&size=20
https://zenodo.org/communities/datastudies/?page=1&size=20
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ronment” (p. 2). In chasing dirt when tidying we are “positively re-ordering our
environment, making it conform to an idea [...] it is a creative moment, an attempt
to relate form to function, to make unity of experience” (p. 3). Douglas emphasizes
that the identification of dirt should not be considered as a unique, isolated event.
“Where there is dirt there is system. Dirt is the by-product of a systematic ordering
and classification of matter, in so far as ordering involves rejecting inappropriate
elements” (p. 44). Cleaning is the reaction which condemns any object or idea likely
to confuse or contradict cherished classifications, thus “reducing dissonance”
(Douglas 2002, p. 340). Thus cleaning is part of the epistemological activity of
systematization, such as ordering and classification. Douglas distinguishes two
phases to such systematization practices:

In the course of any imposing of order, the attitude to rejecting bits and pieces of dirt goes
through two stages. First they are recognisably out of place, a threat to good order, and so
are regarded as objectionable and vigorously brushed away. At this stage they have some
identity: they can be seen to be unwanted bits of whatever it was they came from, hair or
food or wrappings. This is the stage at which they are dangerous; their half-identity still
clings to them and the clarity of the scene in which they obtrude is impaired by their pres-
ence. But a long process of pulverizing, dissolving and rotting awaits any physical things
that have been recognized as dirt. In the end, all identity is gone. The origin of the various
bits and pieces is lost and they have entered into the mass of common rubbish. It is unpleas-
ant to poke about in the refuse to try to recover anything, for this revives identity. So long
as identity is absent, rubbish is not dangerous. It does not even create ambiguous percep-
tions since it clearly belongs in a defined place, a rubbish heap of one kind or another.
(Douglas 2002, pp. 197-8)

The stage of total disintegration is the stage in which dirt has become undifferen-
tiated. Then a cycle has been completed, resulting in an order that is either continu-
ous with what was there before the cleaning or created by the process of cleaning itself.

Drawing on Douglas’s analysis, we argue that in both of our cases researchers
adopt the same broad strategy for data cleaning: they clean by clustering. Cleaning
is a way to impose order and intelligibility on a dataset, by identifying categories
and typologies for classification, models and algorithms through which data can be
filtered and selected, and/or tools through which data can be displayed and organ-
ised so as to enable further analysis and interpretation.

The specific mechanisms and tools used to enact this strategy, however, differ
considerably across our cases, revealing a divergence in the heuristic principles
used to guide and motivate the cleaning strategies, and the extent to which whatever
is neutralized from a given stage of data cleaning is regarded as “unwanted bits”
with “some half-identity clinging to them”, or as dirt where “identity is absent”.

In our economics case, clustering involves looking for cyclical patterns through
visual judgement. To understand the heuristic behind this cleaning procedure, it is
useful to discuss briefly Gestalt theory first. Gestalt psychologists study perceptual
organization: “how all the bits and pieces of visual information are structured into
larger units of perceived objects and their interrelations” (Palmer 1999, p. 255). A
“naive realist” explanation of this organization could be that this organization simply
reflects the structure of the external world. A problem with this explanation is that the
visual system does not have direct access to how the environment is structured, it has
only access to the image projected onto the retina, the “array of light that falls on the
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retinal mosaic” (p. 257). This optic array allows for an infinite variety of possible
organizations. The question therefore is how the visual system picks out one of them.
To answer this question Max Wertheimer, one of the founders of Gestalt psychology,
studied the stimulus factors that affect perceptual grouping: “how various elements
in a complex display are perceived as ‘going together’ in one’s perceptual experi-
ence” (Palmer 1999, p. 257). The theoretical approach of the Gestalt psychologists is
that perceptual organization is grounded in the wish to maximize simplicity, or
equivalently, minimize complexity. They called this hypothesis the principle of
Prignanz, today also called the minimum principle. It states that the percept will be
as good as the prevailing conditions allow. The term “good” refer to the degree of
figural simplicity or regularity, and the prevailing conditions refer to the structure of
the current stimulus image (Palmer 1999, p. 289). The Gestalt psychologists saw
symmetry as a global property with which figural goodness could be analysed.

The organising Gestalt in the case of the NBER business cycle analysis was a
cyclical pattern, such as the Fig. 3. By taking averages, whether weighted or not
(which is an act of clustering), one aimed at reducing the noise in the observations
as much as possible. Because it is not possible to tidy up by a kind of physical inter-
vention on some physical material, the tidying up is not done by removal but by
clustering in such a way that the cluster itself is “cleaner” than the individual data.
The principle of Prignanz that was implicitly applied and was the underlying goal
of the procedures is an as simple as possible shaped cycle with clear peaks and
troughs.

In the economic case, the original data end up as what Douglas classified as
undifferentiated dirt — that is, as objects that are forever disconnected from their
original source.

[T]hese symbols are derived by extensive technical operations from symbolic records kept
for practical ends, or combinations of such records. We are, in truth, transmuting actual
experience in the workaday world into something new and strange [...]. (Burns and Mitchell
1946, p. 17)

Expansion Boom  Recession Depression

Fig. 3 Example of a “typical” business cycle pattern (Source: https://seekingalpha.com/
article/2716385-investing-in-business-cycles)


https://seekingalpha.com/article/2716385-investing-in-business-cycles
https://seekingalpha.com/article/2716385-investing-in-business-cycles
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In other words, the process of cleaning by clustering in this case transforms a
large quantity of objects that were previously identified as data into objects that
have new evidential value, but are no longer available or retrievable as sources of
information about the contexts from which they were inferred.'* At the same time,
it is important to note that the resulting records do not completely fail to provide an
identity to the discarded objects. Keeping some traces of the original time series is
relevant if only to verify that results are not artificial products of spurious cyclical
patterns. The visualisations of original times and the adjusted one should show suf-
ficient similarity. “A common method of judging the goodness of [an] adjustment is
to see whether the adjusted figures show similar movements in successive years”
(Burns and Mitchell 1946, p. 54).

In plant phenomics, clustering instead involves defining a “landscape” for the
potential re-contextualisation of data. The starting assumption is that phenomics data,
in all their richness, variability and multiplicity of features, may be used for all sorts
of research goals, ranging from studies of irrigation systems to investigations of plant
growth and nutrition (as in the case of North Wyke data). Therefore the priority for
researchers is not the visual intelligibility of a particular way of arranging data, but
rather the creation of categorisations that facilitate the disaggregation of data clusters
when needed by the inquiry at hand. In other words, researchers want to retain the
ability to trace the origin of the relevant data journeys, and evaluate the adequacy of
every step of data cleaning towards producing reliable evidence for new research
questions. Key heuristic principles here are: accuracy, in the sense of being as faithful
as possible to the specific characteristics of the research objects at hand; and trace-
ability of data sources, in the sense of making sure that prospective data analysts have
what they need to assess the quality of the data and, if needed, process them differ-
ently (which typically includes as extensive an access as possible to metadata).

This approach is hard to compare to the application of Gestalt principles, because
those are focusing on visual appearance and presentation, while phenomics prac-
tices of cleaning by clustering focus on interpretability and the potential to disag-
gregate existing data clusters. Nevertheless, like the economics case, this is in
striking opposition to common sense interpretations of the metaphors of “cleaning”
and “dirt” that focus on the removal of blatantly unwanted items. Both in biology
and economics “dirt” may (and often does) contain useful information, which needs
to be ordered so as to be retrievable depending on the interests of the prospective
analyst. The original datasets and related metadata never fully become undifferenti-
ated dirt as in Douglas’s analysis. Rather, researchers attempt to “cling on to their
half-identity”, in Douglas’s terms, thus leaving open the option for these objects to
be re-identified as data and fully reinstated as significant sources of evidence for a
claim. The main difference between the two fields is that economic data have lost
more of the identity of their original data than is the case in phenomics. While in
plant phenomics accuracy and traceability are leading, in economics accuracy has
to be balanced with Prignanz, and traceability is not required.

'“This interpretation assumes a relational account of data epistemology, as outlined in Leonelli
(2016) and in the introduction to this volume.
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4 Comparing Heuristics across Research Communities
in Natural and Social Sciences

Economic data are processed in ways that make them much more computationally
tractable than phenomics data due to their numerical format. Economic data are thus
better amenable to aggregation and analysis in comparison to many other data types,
which potentially expands their scope for linkage and aggregation with other datasets
but also limits the power of investigators to contextualise and situate the data in rela-
tion to their origin. In this case, cleaning by clustering is a cumulative process, in
which the bulk of “raw” data is replaced by a smaller set of business-cycle “facts”
through the exercise of visual principles.'® As a result, analysts working at later stages
of these data journeys are left mostly with data models that conform to specific criteria
and are best used to address a narrow set of questions, in conformity with the princi-
ples and assumptions made while preparing them for analysis. The original “raw” data
are no longer accessible, having been ‘“cleaned out” in the data visualisations.

By contrast, phenomics data remain more difficult to analyse through computa-
tional tools, and can only be compared and linked with other datasets by employing
case-by-case adjustments. They are so heterogeneous, and their ordering into clus-
ters so pluralistic and open to multiple interpretations, that additional processing is
needed every time researchers re-use them for a specific project. When considering
data on biosource as discussed in section two, for instance, researchers need to
double-check what assumptions have been made about the taxonomy of plant vari-
eties when ordering plant traits into groups. At the same time, the richness of data
formats and of the information that they carry make them useful evidence for a large
variety of inquiries, and makes it easier to interrogate their reliability and quality in
relation to different research conditions and aims. Phenomics data can potentially
be used to answer many research questions. Cleaning by clustering in this case is
not a cumulative process: it is crucial for researchers to lose as few data and meta-
data as possible, as one never knows what will turn out to be important later.

It has been frequently observed that big data aggregation is often accompanied
by loss of contextual information (metadata).'® While in both of our cases the role
and ordering of contextual information plays a key role in the process of cleaning by
clustering, the principles associated to handling such contextual information are
considerably different. In economics, metadata become increasingly less relevant:
the principles guiding data ordering and clustering are those of Prignanz. In plant
phenomics, metadata never cease to be relevant, as the principles guiding ordering
and clustering are those of accuracy and traceability.

15Facts about phenomena, in the sense of Bogen and Woodward 1988.

*Lawrence Busch (2014, also discussed in Mittlestand and Floridi 2016) lists several reasons for
this, including: Lossiness (lose aspects of the phenomena studied); Drift (phenomena change over
time, but data representing them do not); Distancing (distance from phenomenon facilitates iden-
tification of patterns); Layering (reducing phenomena to set of variables, e.g. in Tidy data); Errors;
Standards; Disproportionality; Amplification/reduction; Narratives.
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Assumptions made about the nature of the phenomena at hand (respectively,
plant morphology and business cycles) may seem to have a significant impact on the
type of techniques and principles enacted by researchers. For instance, the propo-
nents of MIAPPE explicitly note that

we are fully aware that MIAPPE suggests a description of the experiment that is rather
extended in comparison to current practices. Hence, although we think that all of the attri-
butes in Table 1 are needed to adequately describe each dataset, we accept that, in practice,
the full complement of information may not be possible to collect, or might be unavailable
to the person building the dataset. Therefore, we have selected and marked those descriptors
deemed absolutely essential. (Cwiek-Kupczynska et al. 2016, 7)

Remarkably, their “absolutely essential” list of traits still comprises 35 attributes,
a skinnier list than the original list of over 80 attributes (ranging from 70 to over a
hundred depending on growth conditions and type of environment/soil), but still
daunting in its richness.

We do not think that these differences should be viewed simply as a measure of
the difference between studying plants and studying economic conditions. Both
types of phenomena are highly complex in their own ways, and arguably economic
behaviour is even more difficult to reduce to a simple set of variables. A more plau-
sible explanation lies in the methods and commitments characterizing the two fields
of inquiry. Economics, business cycle analysis in particular, is a highly generalist
field but it is not holistic: research focuses on analysing the business cycle as an
isolated phenomenon. By contrast, plant phenomics favours a holistic approach,
emphasising the complexity of the interrelated processes through which plant mor-
phology is constituted (see Fig. 4 and also Leonelli 2016, ch. 6).

Furthermore, plant phenomics has no pretension to achieve a “complete repre-
sentation” (or complete knowledge) of the plant systems it analyses, precisely
because of their daunting complexity and the fact that so little is as yet known about
them. Thus, any model proposed in plant science to analyse a phenomenon will be
limited in scope, and need to be complemented by several others to provide a more
comprehensive picture of the phenomena for specific investigative goals. Related to
this, mathematical and statistical modelling — while of course strongly present in
this work — are not always the primary or main tool of analysis; and their role is not
always one of data validation, they are also employed as tools to order and display
the data at hand in ways that may help analysis (Leonelli 2019).

5 Conclusions

Our analysis points to the difficulties experienced by analysts in providing general
principles of cleanliness with regard to research data. This is nicely exemplified
when considering the ongoing debate around the identification and application of
overarching “tidy data principles” in contemporary data science, which seeks to
outline criteria for “cleaning” and structuring data so as to make them amenable to
computational analysis (Wickham 2014). Within this framework, data processing is
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Fig. 4 Representation of the conceptual landscape for phenomics, taken from a seminal review
paper from Walter et al. (2015)

conceptualised as consisting of four stages: (1) import data; (2) tidy data; (3) trans-
form/visualise/model data; (4) communicate data. Tidy datasets are defined as pro-
viding “a standardized way to link the structure of a dataset (its physical layout) with
its semantics (its meaning)” (Wickham 2014, 2), thus helping to prepare data for
visualisation and modelling. This literature does not shy away from data diversity,
and recognises that data “tidiness” comes in a variety of different flavours depending
on the field and goals of inquiry, the statistical and computational tools available
(which are referred to as “tidy tools”, p. 20), and the cognitive preferences of inves-
tigators. The starting point for this work is to acknowledge that determining what are
observations and what are variables is relatively easy in the case of specific datasets,
but that such a distinction is hard to define in general terms, also because of the
diversity often characterising data sources and levels of abstraction. At the same
time, an attempt is made to discuss tools through which “messy data” can be “tidied
up”, so as to be ready for computational analysis. An example is the activity of
“melting”, which consists of stacking datasets by turning columns of numbers into
rows. Another is “string splitting”’, which involves splitting the columns of any given
data table into different variables. Furthermore, a series of “tidy tools” are presented,
such as data aggregation, filtering, visualisation and statistical modelling, whose
common aim is to “take untidy datasets as input and return tidy datasets as outputs”
(p- 12). All these strategies for cleanliness are meant to “make analysis easier by
easing the transitions between manipulation, visualisation and modelling” (p. 15).
This approach to data cleaning aligns nicely with the strategy that we have called
“cleaning by clustering”. At the same time, our reading of Douglas’s work on dirt
provides a conceptual framework and rationale for this approach. It makes it clear
that cleanliness is not a matter of removing unnecessary items, “noise”” or “mess”
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from somehow predefined “meaningful datasets”, thus assuming that (1) there is a
“best way” to order data regardless of the research aims of specific investigations;
and (2) what researchers should consider as reliable and veritable data need to be
uncovered and separated from “meaningless noise”. By contrast, we propose to view
data cleanliness as a process of ordering data into clusters, which runs in parallel with
situated attempts to assign meaning to data in relation to specific research questions
and goals. Thus cleaning can take a variety of different forms — and result in very
different ideas of “what counts as data” — depending on the assumptions, commit-
ments and circumstances of the research projects at hand. Moreover, our cases have
shown that the above mentioned four stages of data analysis are actually four aspects
of one process of data interpretation which cannot be separated from each other.
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The Datum in Context: Measuring
Frameworks, Data Series and the Journeys
of Individual Datums

Mary S. Morgan

Abstract Studying a social whole such as a city, an economy, or a society, requires
the construction of ‘group data sets’ where the group is made up of a number of
individual data series, each one in turn made up of a string of individual data points
or datums. This group set forms the most important context for considering the
travels of any single numerical datum. The purpose of this paper is to explore and
explain how it is that different kinds of group data sets, where the data are collected
and aligned according to different measuring principles and to represent different
subject matters, affect the travels of any datum point in the group. Using examples
from social science, the paper examines how the relations of the data points within
the whole set determine the possibilities for any single individual datum to travel
within and out of its set, and how the integrity and fruitfulness of data or datum
journeys will be dependent on those bit-whole relations that characterize the group
data set.

1 Introduction

The natural world is full of examples of clouds of individuals travelling in groups,
groups significant enough that we have given them special labels that suggest their
different group behaviour in terms of individuals: swarms of midges, murmurings
of starlings, armies of ants, packs of wolves. To the amateur naturalist: ants line up,
wolves practice hierarchy and strategy, starlings free-wheel according to some
unaccountable design, while midges just swarm. The specialist animal behaviour
expert will have more exact descriptions than these folk terms, but the point to focus
on is how the whole is understood as a large set of small elements which cohere in
very different forms and behave in different ways to make up the whole.

We can see a similar variety in the bit-whole relations of data that are taken to
represent complex group behaviour in the social world. Studying a social whole
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such as a city, an economy, or a society, requires the construction of ‘group data
sets’ where the group is made up of a number of individual data series, each one in
turn made up of a string of individual data points or datums.! Any individual datum
(or bit) has relations not just with the other data points in their series, but also with
those of the group (or whole) data set. For example, the data on population growth
of a society consist of individuals, who can be counted in a simple aggregate whole,
but for social science purposes will more likely be found in data series divided by
occupational classes, or age cohorts, or regional spaces. The bit-whole relations will
depend upon the kind of group data involved, for there is variety in bit-whole rela-
tions just as in those naturalists’ examples suggested above. No doubt these varied
kind of datum-to-‘group data set’ relations can be found in other fields of science
with complex wholes such as ecology, physiology, and so forth; it is not necessarily
a special feature of social science data. What is important is that different kinds of
data sets in the sciences have different bit-whole properties, and that these turn out
to be very important for the possibilities and fruitfulness of individual datum jour-
neys. So, while the datum and its travels take centre stage in this paper, it does so
always in relation to its ‘companions’ not just in the individual data set, but in the
group data set, which should be conceived as its primary context. This focus on the
datum-group data relations sits in contrast to many other studies in this volume, and
to earlier studies of travelling data, which focus on other kinds of ‘companions’ and
other background and foreground contexts which affect the journeys of data.?

The purpose of this paper is to explore and explain — for quantitative data — how
it is that different ‘kinds’ of numerical data form an important context for a single
numerical datum. I take kinds of numerical data to indicate numerical data collected
and aligned according to different principles into group data sets. The most impor-
tant principles that I consider are those that stem from the kinds of measuring sys-
tems involved in the construction of the group data set. The subject matter of the data
set is also important of course, but this is not the primary focus of my discussion here.

For an example, consider the measuring system based on statistical thinking.
This involves the notion of an underlying statistical population, and modes of sam-
pling in collecting data (random, systematic, representative, stratified, etc). The
relations between individual data points within each statistical data series will
depend primarily on what kind of population is involved and whether the datums
come from, for example: a sample from a controlled trial in medicine, a time series
in economics, a survey in sociology, or the demographic census of population. They

'Tt is important in this paper to signal the collection of individual data points in a way that main-
tains their individuality: as ‘datums’, a jarring term that enables me to insist on this important
distinction to the collective plural ‘data’ where individual distinctions are not relevant.

%See the notion of ‘travelling companions’ for the successful journeys of data (to use the language
of the How Well Do Facts Travel? project — see Morgan 201 1a, and the other essays in Howlett and
Morgan 2011). Sabina Leonelli’s (2011) contribution to that project volume, and her subsequent
book (2016), on the curation of plant research, provides an important parallel for the ideas of this
paper. In her case, the information on both background and labelling are essential elements that
travel with the data. Here the focus is on the other data points in the data set as companions.
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will each have different bit-whole relations that depend on the statistical framework
and the subject matter. For example, the data points in a rain-fall data series are
clearly related in the time sequence and cannot be randomly re-ordered in the data
array without losing some really important information from the data set, whereas
data taken from a controlled field trial can likely be ordered and re-ordered in the
array without breaking any internal relationships between the data points. Broader
subject matters hold further power. Ted Porter (1986) and Ian Hacking (1990), in
their writing about the history of statistical thinking, have exemplified how such
subject matters meant that astronomers’ personal errors of measurement were first
formulated according to a ‘law of error’, and then show how such law-like distribu-
tions were reformulated as human social character deviations, and thence reinter-
preted into natural biological variation in what became known as the ‘normal’
curve. Meanwhile, the behaviour of populations of human individuals became the
analogy for the kinetic theory of gases and evolutionary theorizing using biomet-
rics. The data from all these domains share notions of statistical populations and
distributions, but their subject interpretations and usage differ.

Following further the original example, the data of a national population when
measured by a census of population are both statistically ‘governed’ (by the nature
of such population distributions, and principles of taking good samples) and ‘gov-
erned’ by the socio-economic characteristics of the nation (such as occupational
class, or age aspect, or regional characteristics) that are to be measured. So, we can
understand whole (or group) data sets as involving the following elements: indi-
vidual datums (or bits) that are assembled into data series, which are then packed
into subject category boxes, which taken together form parts of a whole data set.
The category boxes depend on the purpose and framing of the whole data set, so the
same data series may appear in many different whole data sets. But how those boxes
or parts fit together depends on the principles of measurement of the whole that are
being followed. There is rarely a simple aggregation at any point. In the population
example, a simple aggregation (from samples to population, and over time and
space) will tell us the total number of individuals at a given date, but this has little
use. Most analysis will want to know the categories and how they fit together in the
whole. Then, what can be extracted from the whole to travel with validity depends
on both the base principles of measuring the bits, the categories and how they divide
the world, and the conceptual nature of the whole.?

This point may be clarified by contrast with another data set dependent on the
statistical notions of population. The data of sampled biological populations in
worldwide genetics or genomics data sets depend on the hereditary properties of
specimens and evolved relationships of sample subjects as well as on theoretical
assumptions and empirical practices of sampling and specimen collection.* These

3And given this, it is no surprise that any data that travel have to be carefully resituated in a way
that protects their integrity in any new site, as other papers in this volume make clear (see Leonelli’s
introduction).

*] thank Jim Griesemer for this parallel example from his field (see his chapter in this volume that
exemplifies the point).
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two different fields of science both use the term ‘population’ and rely on statistical
principles of collection and ordering. The data journeys that occur in these fields
have multiple valences, and their data journeys surely differ. Even so, the datums
from these different fields may well share similar characteristics of detachability,
and so their journeys might have more in common with each other than with the
journeys of data from sets in the same subject field but constructed according to
very different principles of observation and measurement.

Both principles of measurement and subject field relations have considerable
impact on the way that data are conceived and used, and so on their possibilities for
travel as empirical objects, as ‘theoretical’ stand ins, as stand-alone values, and the
like. Whether, and under what conditions, an individual datum point can travel
within the data set, or independently beyond it, and whether such data travels are
associated with integrity and fruitfulness® in travelling will depend in part on the
nature of those internal relations of measurement principles and subject matter that
characterise the data set. This creates a presumption that data journeys will be
affected by the characteristics of the whole, as much as of the parts and of the rela-
tions between those parts.

The importance of this framing, and emphasis, on the principles that lie behind
whole data set measurement is demonstrated in this paper in a comparison of two
sets of numbers that economists and social scientists use when they aim to get a grip
on a national socio-economy. These two data sets are assembled according to two
very different kinds of measuring and aggregating principles. One set uses account-
ing principles: everything must be counted once and nothing twice, columns must
add, and bottom lines must balance. Using these accounting principles produces a
group (or whole) data set that includes many individual data series, each of which
has a place in the accounting system: — a system set up to measure national eco-
nomic activity both within certain categories and as a whole. The other group data
consists of a set of ‘indicators’: numbers that are not conceived as direct measure-
ments of the concepts they relate to (such as the business cycle, or the health status,
of a country), but are understood to be indicators for characteristics relevant for
those concepts (such as, respectively, industrial production or infant mortality).
These two kinds of group data sets were first developed in the mid twentieth century
to draw together many different data series in attempts to count, measure, or capture
the whole economic activity of the nation state: they were the social scientists’ ‘big
data’ projects of their time. They were, and are, produced according to very differ-
ent principles — accounting vs indicators — and so exhibit very different bit-whole
relations within the group data set. Both provide aggregates in some sense, but
according to different principles. My analysis will show how their bit-whole rela-
tions are critical for determining the very different possibilities for using individual
datum points within the data set, and will explore the kinds of reasoning and analy-
sis that goes on when data are taken out of the whole for use.

3See Morgan 201 1a for the importance of ‘integrity’ and ‘fruitfulness’ in data journeys.
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2 Data Sets and Their Kinds

Scientific discussions typically refer to data not to a datum, because scientists rarely
deal with an individual datum which is not also part of a bigger set. Often, the term
‘set’ refers to a data series (a string of data collected under the relevant same condi-
tions) but here the arguments relate to a group of such series — referred to here as a
‘group, or whole, data set’. Typically (as suggested above) the data points — the
datums (see note 2 again) — within such a group set are held together by two sorts of
relationship. One comes with the theoretical and interpretative constraints of the
scientific subject field in which they live. The other — more important for the argu-
ment of this paper — comes with the means and principles of measurement that
underlie their collection and their colligation into the group set. At the level of the
group, these measuring principles generate different kinds of relations between the
individual datums and between the series in the group. Conceived as measurements,
numerical data are not all the same kind of thing.

I use the term kind of data to point to the facts that there are different kinds of
‘measuring instruments’ involved in producing numerical data, a term of usage in
this context due to Marcel Boumans.® The measuring instruments used in social sci-
ences look rather different from the thermometers, Geiger counters, and so forth,
that might be first thought of when considering scientific measuring instruments. In
the social field, they are mostly various kinds of counting systems that rely on
observation posts spread out across the country in government offices, banks, com-
panies and families who all report aspects of their lives (usually for completely
other purposes). The raw data collected from these observation points are numeri-
cal, and combined in different ways, according to the frameworks or principles and
techniques of the measuring instruments (consisting, as Boumans argues, of mod-
els, formulae, rules, conventions, etc) used to turn such raw numbers into measure-
ments of the economy and society.

The following analogy may communicate the point. One can think of there being
families of measuring instruments rather like there are families of musical instru-
ments in an orchestra: woodwind, percussion, brass, strings etc. Each family of
instruments produces sounds according to a common principle or recipe and set of
techniques; but within each family, individual instruments occur with slightly dif-
ferent characteristics: violins and cellos use one principle (using taught strings) for
making music, but do so with different objects and range; the percussion family has
their own different strategy (of hitting objects), with individual instruments of more
variety of range. Within an orchestra, all play together, but still, the family voices
can be separately recognised as characterised by the principles of the instrument of
the relevant group. The analogy here is that in socio-economics we have different
families or kinds of measuring instruments, all producing numbers as measurements.

®Marcel Boumans, in a series of papers (but especially his 2001 and 2005a and 2005b book),
developed the idea of using of this term ‘measuring instruments’ to analyse the formulae that cre-
ate numbers for the phenomena of economics.
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Some of these numbers are produced using principles of statistical thinking (popu-
lations and samples); some use accounting principles (of aggregating and balanc-
ing); some use principles of tracking (indicators that track characteristics of the
phenomena); and some use principles of splicing with weights to make aggregates
(in the form of index numbers).” Thus, for the social scientists, statistical processes
produce data of a different kind than those produced by accounting principles,
which are in turn of a different kind than those producing indicator data, and another
kind than those producing index numbers. These different kinds of data come from
using four different kinds of ‘measuring instruments’, each using different princi-
ples and strategies to recognise, collect, code, assemble, and organise the informa-
tion from raw observations into numbers (see Morgan 2001, 2007). Just as the
instruments in the different orchestral sections produce sounds according to differ-
ent principles, these different measuring instruments produce numbers of different
kinds using four different principles of measurement. So when I refer to kinds of
measurements in this account, I am pointing back to these principled-based measur-
ing instruments that produce such kinds of data at the group level.

That specificity of the kind of data in question has implications for the possibili-
ties for data travels, not just because of the different nature of those data kinds, but
also because the internal relations between data points that are carried within any
data series or group data set derive from their principles of construction and usage.
These four different kinds of measuring instruments will produce data sets where
the relationships of individual data points to their group data sets, that is of bits to
wholes, have different formats. Any one datum will come from a group data set
which is collected, and aligned, according to the principles of a specific kind of
measuring instrument, and that datum has to be used and interpreted with that rele-
vant set of background principles of the measuring system always in mind. This
family sharing in the principles of a measurement instrument used in constructing a
data set may matter as much, possibly more, than the scientific subject field for the
nature of any data journeys. Thus, for socio-economic data that come from different
measuring instruments, and so produce different kinds of group data sets, the very
different internal relations will be critical for understanding the different possibili-
ties for data journeys, and what happens to datums when they travel.

Conceived as measurements, the group data set produced using any one of these
four socio-economic measuring instruments is expected to have some kind of a
representing relation to the phenomena of interest that scientists want to investigate.
These are likely to differ according to the kind of data involved. The formal ‘repre-
sentational theory of measurement’ investigated this question seriously for a num-
ber of characteristic measuring systems (see Suppes 1998). That approach can be
contrasted with the pragmatic approach of Finkelstein (1982) for whom ‘measure-
ment’ always involves some form of observation. The materials here suggest that
both notions are more valuable when they can be taken together. First, socio-economic

7A ‘population-samples’ example was discussed in Sect. 1 above, other are discussed later in this
paper; and see Morgan 2001 for further discussion of each kind of numerical data.
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numbers are often not direct measures of such phenomena by active scientists, but
more often ‘observations’ taken for other purposes and abstracted from their origi-
nal economic contexts in life. Second, for data to capture complex socio-economic
phenomena, just as for complex environmental processes (such as in ecology), a
single datum will rarely do so, which is why the nature of the group data set and its
construction is so important. While at the level of the individual data series, social
scientists habitually use different kinds of data sets produced by different measuring
instruments to represent the things in their world, that does not immediately tell us
what matters about the differences in these forms of representation for their group
data set, nor for their data journeys (either as a set or individually). So, I use the term
representing here in a pragmatic way, generic but informal, and will explore in what
follows, how — for a kind of data (ie from a kind of measuring instrument) — datum
and data journeys will be affected by the characteristics of the whole, as much as of
the parts, and of the relations between them.

3 Economic Data: Perspectives on the World

There are two very expansive sets of data used by economists and social scientists
to look at, and into, the economy/society as a whole unit. They both operate by
assembling data at the national level, and they do so in standardised forms to enable
comparisons across nations. They both provide a numerical account of the economy
or society showing not just the whole, but also the bits of the economy/society in
relation to the whole. They do so by using two (of the above four) different kinds of
measuring instruments which offer very different kinds of perspectives and so cre-
ate different kinds of data. One kind offers a broad view and one a deep view, and
so parallel in numerical form the kinds of visual perspectival accounts that Svetlana
Alpers (1984) examined in her contrast between the broad cityscapes of the Dutch
painters and the deep distant landscape view provided by the Italian painters of the
early modern period. Both groups of artists provided pictures of the whole, and both
enabled you to see the elements in the landscapes as bits in the whole in relation to
each other. These are paralleled in these social science measurement systems in that
one kind looks broadly to pick up the full range and diversity of phenomena, the
other looks more deeply to reveal the interrelations between a smaller range of phe-
nomena that are taken the characterise the economy as a whole.

These two different kinds of data set examined in the rest of this paper provide
the materials to consider the dependency of datum travels on the measuring struc-
tures or instruments they come from. One kind of data set, the one that looks deeply,
is the national income accounts (NIA). It announces the nature of it its internal rela-
tions in its name:- an individual datum is tightly ordered in the whole by the account-
ing principles of the measuring instrument. The other kind, socio-economic
indicators, are much less individually constrained and together they look across a
wide range of the phenomena of the whole, capturing all the individual elements
separately that make up a picture of socio-economic development.
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I need to be careful here: for we are really talking about two master data sets —
whole or group data sets — one assembled according to accounting rules, the other
according to the indicator format. But inside each group data set, there are many
series of data, each one consisting of data that have been collected, coded, assem-
bled and manipulated to represent a particular element of the economy or society.
These data series are not raw but highly wrought and polished. Any one set of num-
bers in the NIA data set, or any one indicator series in the overall database of indica-
tors, may be constructed according to any of the measuring instruments: some may
come from accounting processes, others by statistical methods from surveys or cen-
suses, others are simple numerical counts. Regardless of the numerical provenance
of the individual series, it is the relation of each of these individual and separate
series to each other and to the whole that are formulated according to those group-
level (accounting or indicator) measurement frameworks.

Both kinds of measuring instruments are generative, in the sense that they gener-
ate whole data sets designed to represent in some direct or indirect way some con-
ceptualised phenomena. The middle level stuff of the social sciences represented in
the separate data series is not stuff that can be found raw (with whatever practical
difficulties); it is stuff that must be fashioned to fit, more or less indirectly, their
conceptualised phenomena. Thus ‘national income’ and socio-economic develop-
ment’ are both highly abstract: no one can ‘see’ national income, or socio-economic
development in any direct way through a microscope. But social scientists do ‘see’
(ie generate) with their microscopes, data on something they conceptualise as devel-
opment, or national income. We could even label the NIA a ‘national-level
analytical-accounting macroscope’. The point here is not to subvert Ian Hacking’s
(1983) seminal point about seeing with rather than through our measuring instru-
ments, but rather to extend it for thinking about measurement at the macro scale and
in the social sciences where measuring instruments are not physical but organisa-
tional and technical.

3.1 Accounting

National Income Accounting (NIA) began in the late 1930s as a project to count all
economic activity of the national economy for each year. It was developed into a
usable system by the end of the 1940s, its development hastened by the needs of
various national governments to organise the ‘war economy’, a period which
stretched the limits of productive capacity and in which governments needed to plan
the economy. Such accounting became equally important in peace times as the new
post-war international economic arrangements and agencies required such measure-
ments as part of their regulatory agendas. In such an accounting, a national income
data set, constructed for each country (or possibly sub-region) separately, provides
an accounting picture of the whole national economy and its salient parts, where all
the parts are related to each other in an accounting framework. That framework
provides the rules of what to count, how to count, how to check that everything is
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Table 1 The simplest table of national accounting

I I 1

Net national income Net national output Net national expenditure

1. Rents 7. Net output of agriculture 14. Expenditure on goods and

2. Profits 8. Net output of mining services for current consumption
3. Interest 9. Net output of manufacture | 15 Netinvestment

4. Salaries 10. Net output of distribution

5. Wages 11. Net output of transport

12. Net output of other services

6. Total net national income | 13. Total net national output 16. Total net national expenditure

Source: Adapted from Deane 1948, p. 9

counted, and uses balance checks between the wholes to ensure that everything
(within its framework) is taken into account.

It is a three-dimensional account — the aggregate economy is measured according
to all incomes (Column I), all things produced (Column II), and all expenditures
(Column III). It appears in one of its earliest and simplest forms in Table 1 showing
the three columns or dimensions each with its associated categories (adapted from
Deane 1948, and see Morgan 2011b). Everything that has to be counted has to be
placed in the right place (column and row), so every individual data series has to be
categorised, that is, national accounting operates under a system of categorization
rules for the individual series. (And these accounts can be broken down into finer
sub-categories and equivalent numbers.) The bottom line categories for each col-
umn: 6, 13, and 16 form an identity based on the principles of the accounting. When
the table is filled in with the relevant numbers, the three numbers for these catego-
ries should be equal because they constitute three different ways to count what
economists consider to be equivalent in monetary terms. If the different columns of
the system do not balance, the implication is that there is something missing some-
where. That is, ‘the bottom line’ of accounting must balance as a matter of principle.

The national income accounts operate not only to measure aspects of the aggre-
gate economy as depicted in the data set, but as a standardised set of measurements
that can be reasoned with and are essential in helping governments make policy.
Those reasonings are primarily driven by the functional or behavioural economic
connections between the elements in the accounts, but any reasoning will have to
be reflected in the accounting numbers and consistent with the accounting princi-
ples. This is just the same as using accounting for a firm or company. A firm’s
accounts are both a representation of the company’s health, and a functional space
for thinking about changing the performance of the company. So, if a company
invests more, it expects to grow in overall product in successive years as a func-
tional relationship; such changes will of course be reflected in the accounting rela-
tions. But less obviously, they are also constrained by the accounting relations: if
there is no profit, there is no money to invest and so it must come from other
change in the company’s activities. These relationships and constraints are all
revealed in the accounting numbers. Similarly for the aggregate numbers of the
NIA: the numbers represent the economic situation for the national state for a year
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(the usual accounting period) and so function in two different, but coherent, ways:
as subject categories with accounting rules, and as subject categories with eco-
nomic relations. So, again, if a nation invests more, it expects to grow in overall
product in successive years. Fruitful uses of the data can be found even when the
individual datum elements are mutable, and surprisingly this is precisely because
of these strong internal relations.

This may all seem obscure, so an example that demonstrates these characteristics
of a travelling datum in this context may clarify. The example comes from
Wolfgang’s Stolper’s attempt to make a plan for the Nigerian economy in the early
1960s at a time when it had just gained independence (see Morgan 2008). His plan-
ning asked each individual region to submit their specific plans for investment to the
federal government so that all their plans could be put together. Each datum point
supplied by the regions had to be found a place in the national aggregate plan, but
the construction of the measurement system meant that to do so, it had to fit with all
the other current and future pieces of information in the NIA system that repre-
sented the Nigerian economy of the day. So, for example, a region that wanted to
build more schools could come along with their costed project to do so. Such a
project would require more trained teachers (and so more college places in the edu-
cation system), and more construction (entailing the building industry, with labour
and resources), all requiring changes in Column II, row 12 (see Table 1). Both more
teachers and more school buildings would necessitate more government expendi-
ture in Column III, row 14 or 15. If this part of the plan went ahead, those activities
would generate more incomes in Column I, row 4 or 5, and so consumption in the
system as a whole: Column III, row 14. This last reaction is described by the eco-
nomic relation, known as the ‘multiplier effect’, that can be traced through the cat-
egories and data set of the NIA. The individual datum elements for each numbered
category can be ‘taken out’ of the accounts by the government planner, altered to
show this change, travel and be re-situated in other contexts (such as in a local bud-
get for a school building), and be replaced in the national accounts by a new num-
ber. But the usefulness and fruitfulness of such datum journeys are most evident
when each travels as a member of the national (NIA) data set into a context where
both the internal accounting principles, and the subject matter economic relations of
that NIA data set are made use of.

As an accounting system, there are very strong requirements of consistency, but
the processes for re-balancing the bottom lines are driven by the economic relations
within and between the columns. If, for example — as a result of the new school
bid — some other government funded activity (asked for by some other region per-
haps) would have to be curtailed to make this schools investment possible, this in
turn would reduce the multiplier effects — that is, there would be balancing effects
across the accounting columns and rows. Any planning number that is taken out and
replaced with another such is likely to alter the whole table, as depicted in Fig. 1.
These numbers are expressed in, and represent, monetary amounts, but in turn those
monetary amounts represent real things in the economy: people earn incomes by
educating children in school buildings. Time consistency matters too — more invest-
ment in schools this year would not only imply less of something else now, but
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NIA table entry, each
holds a data series

SooNn Various types of datum

Summary datum type,
A must balance across
all columns

o Updated element in one
\ data series, with first round

effects on other datums +

Fig. 1 Accounting kind: NIA whole data set

might also produce more returns in the future from an educated workforce, so there
was also a process of making the present and future numbers consistent. As Deane
remarked, the economic policy maker

wants to be able to see each of the constituent items in the network of national economic
activity not only as a separate feature of the national accounts, but also as a factor influenc-
ing and influenced by other activities... (Deane 1953, p 3)

Even without going into more details, it is possible to see that, in reasoning about
one datum point (the numbers for investment in new schools) — it is not possible to
pull the accounting principles and economic reasoning away from each other. But it
is equally easy (I hope) to see that the accounting principles operate not only as a
reasoning space, but also as a constraint on that reasoning about the future of that
society, a specific society in time and place taking into account all the other datum
points that involves. An individual datum can be transported in or out, and be muta-
ble within the planning system, and create mutability in the represented economic
system — provided only that all the consistencies hold. In other words, there are
strong requirements in the accounting principles that constrain the numbers and
determine the reasoning with them (see Morgan 2008).

3.2 Indicating

The second kind of data base involves so-called ‘indicators’, typically made up of a
set of data series, each one indicating something of relevance for understanding the
many dimensions of socio-economic aspects of life. An indicator series is one that
aims to track or indicate one aspect of a complex phenomena — each characteristic
of that phenomenon will have a separate data series. Sometimes these can be charted
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or sited in tables together, but they are not so easily combined for both technical and
subject matter reasons.®

There are two examples which are close to the NIA in aiming to capture, in num-
bers, characteristics of the aggregate economy or socio-economy. The first example,
business cycle indicators, were developed in the 1920s and 1930s in literature which
crossed over between academic and public domains (and are still evident in the finan-
cial press nowadays). They were numbers that were held to capture or represent
characteristics of the business cycle at the level of the nation state, a phenomenon
that was difficult to define beyond the idea that it was cycles in the economic activity
of an economy. While the causes and mechanisms were not so evident (and are still
argued over), the community of economists had more agreement over the general
characteristics of the phenomenon, yet also believed that these characteristics (and
the timing of such cycles) were to some extent specific to a national economy. While
all national economies would have some indicators in common (eg interest rates,
exchange rates, bank deposits, exports and imports, etc), a highly industrialised
economy might additionally be characterised by a set of industry indicators, while a
more agricultural economy might be best represented by an additional set of primary
sector indicators. A relatively small set of such indicators (perhaps up to a dozen)
were taken to characterise economic activity as well as offering some insight into the
timing of cycles evident in the time relations between each indicator series and thus
in each characteristic element. Both the overall set, and the time relations between
them were taken to indicate the nature and path of economic activity for the national
economy. None of them could serve as ‘proxy’ for the whole economy, because they
did not represent the whole economy directly or indirectly but only aspects of it. And
there were technical difficulties in making combinations: they did not each follow the
same pattern in the same time frame. More pertinantly, they could not easily be com-
bined into one single indicator because, although they exhibited correlations, there
was no principled way that they could be related as far as subject matter was con-
cerned. Business cycles on the one hand operated as a rather vague concept, and on
the other hand as a phenomenon of many characteristics which could not easily be
patterned or drawn together into a causal network, nor measured in any direct way.’
Indeed it was partly this problem that lead economists to prefer the greater insight
offered by the joined-up system of national income accounts which became available
in the 1940s and 1950s and so made business cycle indicators less important.

A similar kind of data structure, but with a much higher dimension of character-
istic elements and with much broader reach of subject area, are the indicator set now
being developed for the UN’s Sustainable Development Goals. These replaced the

$Morgan and Bach (2018) explore why such data series cannot be easily or informatively com-
bined, which might be considered in comparison to the data mash-ups of epidemiology and related
fields, see Leonelli and Tempini (2018).

°See Boumans and Leonelli (this volume) who discuss the rather ‘inflexible’ characteristics of data
clustering associated with business cycle indicators; they argue that these practices, in this context,
are an interpretative move which has not encouraged the re-use, or aggregation, of these data for
other purposes.
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Millenium Development Goals (2000-2015), and are substantially more ambitious
(see Morgan and Bach 2018). This set of 230 data series is designed to offer a
numerical picture of every nation’s socio-economic health, including now their envi-
ronmental health. They consist of a bundle of separate data series, each one having
an ‘indicator’ relationship to one of 169 ‘targets’, each of which itself has an indirect
relationship to the 17 ‘goals’. By indirect, I mean that the indicators don’t offer
measurements of, or for, one of the targets but only numbers related to one charac-
teristic of each target; in most cases there are several indicators per target and several
targets per goal. That is, both goals and targets are multidimensional and goals in
particular are defined verbally and conceptually rather than in any measurable way
(unlike the aggregate gross national income in the NIA accounts). For example,
Goal 3 of the SDGs is aimed at increasing health and well being. It is accompanied
by a set of targets concerned with maternal and infant healthiness, reducing prevent-
able diseases, providing access to health care, and so forth. Some of these are easier
to associate with numerical evidence than others. Each of the 9 targets for Goal 3 is
accompanied by a set of indicators which can offer numerical evidence associated
with the current situation of that target in different countries over time. These indica-
tors — such as ‘malaria incidence per 1000 population’ or ‘road traffic deaths’ — indi-
cate: they offer numerical information about some aspect of one target in relation to
the goal, but they are far from measuring or representing the target let alone the
overall goal that needs to be represented. This example is rather straightforward for
there are lots of health-related data series that can be turned into numerical indica-
tors. But suppose we take a more opaque Goal 16: ‘promoting peaceful and inclu-
sive societies’ and ask for ‘legal identity’ as a target for inclusivity: we are
immediately faced with difficulties in finding ways to indicate this concept. For
example, how should one rank-order the various forms of legal identity, let alone
find numbers for them? Registered birth and citizenship are relatively straightfor-
ward and likely have relatively good numbers collected by the state. But what about
the host of in-between status such as ‘the right to remain and work but not have your
children have the right to school or health care’? Even assuming we had numbers
that would fit those categories of people, we have no principled way to rank-ordering
the categories, nor to value them in some commensurable way.

Because of the three-level ‘goals-targets-indicators’ system of the SDGs, these
indicators have a double degree of detachment from their goals, and so distance in
representing power, for those goals and targets to which they are attached (see
Morgan and Bach 2018). The indicators are taken to represent the characteristics of
the targets (in some form), and the targets are taken to represent the characteristics
of the goals (in some form). This is a downside for the representing power of any
data set. At the same time, the various indicator series remain largely independent
of each other, having no formal or informal relations between them. They are not
part of an interrelated causal account, although individual series might capture indi-
vidual symptoms, causes or consequences of underdevelopment. (For example,
high infant mortality is thought to be a consequence of low levels of development
whereas low levels of education are thought to be a cause of low levels of develop-
ment.) They cannot be aggregated according to any usable or principled rules as
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works for the NIA, nor provide matter for functional or behavioural theorizing
about socioeconomic development as we saw for the NIA. And unlike the ‘index
numbers’ by which economists regularly measure multiply-component concepts
(for example inflation, or industrial output), social scientists cannot easily turn these
sustainable development indications into a single overall data series that would
make sense according to measurement principles. Why not — because they are not
measured in comparable units (eg money) nor is there any principled ways of decid-
ing how to weight the various elements in the whole (eg is legal identity worth 10%
of total sustainable development or 1%). They cannot be turned in any principled
way in an aggregate measure like the national income, nor combined in a principled
way consistent with ideas about development into one meta-data series for each
country and so be available for international comparison.!® While these data cer-
tainly contain information indicating characteristics of development, they should
not be considered measurements of development.

As individual indicators, these data series and individual datum points can and
do travel fruitfully from the statisticians to many users including into social scien-
tists’ research labs and are used for many varied topics not just those of develop-
ment even though their status as measurements in relation to development theory is
not generally easy to determine They also travel from UN usages to a variety of
other users for any other purpose they choose for them: they are public numbers for
public use and their usage depends in considerable part on their UN provenance that
makes them trustworthy (Porter 1995). As a set of 230 different data series indicat-
ing levels of development for each country member of the UN, they provide a whole
data set. As such, they most frequently appear for use in comparison purposes in
social scientific work, and for certain action purposes at national level.!! But they
remain a set of data series, not an integrated whole measurement system, as depicted
in Fig. 2. Consider the problem situation parallel to our NIA example: suppose a
government wanted to use the SDG structure of goals and targets to create a more
sustainable development path. They cannot be reasoned with for planning a devel-
opment programme in a nation state because they have no internal socio-economic
relations generated either by association with the kind of measuring instrument
involved, nor by any behavioural or theoretical relations from their subject matter.
But, the very fact that the indicator numbers are not held tightly together by internal
relations between different indicators (as in the NIA), and that they might be indi-
cating a cause or effect or symptom, means that individually they can be (and are

10Several data series might be ‘mashed up’ (see again Leonelli and Tempini 2018) into a single
series for each country or region, but the informative quality of the resulting numbers would likely
be low, and the country comparisons largely meaningless, for the grain of analysis is not nearly fine
enough across the geographical space to be helpful. This is in contrast to the Multidimensional
Poverty Index which was carefully designed to be a combined number that was informative at a
finer grain than previous poverty indices (see Bach and Morgan Forthcoming).

Tt would be a false separation to think that there are scientific uses and policy or practical uses for
these indicator number or for the NIA: all these numbers are hard to come by; gathering them
generally requires public resources; they are used by professional communities of practice in and
out of academic institutions; and for a wide range of purposes.
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SDG indicator, each
holds a data series

& O & O various types of datum

Updated element in a
O data series — no effects
on other datums

Fig. 2 Indicator kind: SDGs whole data set

easily) taken out of their group set, to be used separately for prompting action in all
sorts of circles: academic and scientific in the professional sphere; and in public and
international circles where the indicator data can be used for lobbying, asking for
development aid, held up as exemplary for encouragement, or pronounced as dire in
order to shame the government concerned. The lack of internal principles to hold
the individual indicator series together makes for different characteristics of usage
than individual numbers in the NIA."? Indicators can be used with considerable
freedom without worrying about the constraints of measurement principles or where
they fit in the overall subject contexts, and this is most evident when they travel
from domain to domain of usage. Unlike the NIA, where every datum travelling in
and out has the potential to change all the other numbers (if only to correct them),
travels of the SDG’s indicators cause no ripples within the rest of the indicator sys-
tem of data, as indicated in Fig. 2 in comparison with Fig. 1.

4 Conclusions

Economists have developed two kinds of data to capture social-economic well-
being. They are based on two different frameworks of measurement The national
income accounts are designed to measure the complete set of income, expenditure
and products at the level of the nation. They do so by building up from the subcat-
egories of all these three activities which are understood to be — in the bottom line —

121t is possible that these independent data series in the indicators could be analysed and combined
with correlated analysis within the national unit, or between/across national units. The latter pos-
sibility is not dealt with in this paper (but see also FN10).
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equivalent (in economic and monetary terms). In contrast, the indicator series may
look just as ordered because they are arrayed in connection with bigger targets, but
they are in fact held together by no such constraints.

From these different measuring frameworks, come differences in usage. For the
bundle of indicators, each of which can be used for action but not reasoning — any
travelling datum has no effect on the whole. In contrast, the other kind is the highly
constrained NIA which can be used for measuring the current health of the econ-
omy, and for reasoning and action in that realm, but in which any travelling datum
can upset — and then must reset — the whole system. Perhaps counter-intuitively,
datums from both travel easily and fruitfully into new contexts.

Not all indicator systems have this degree of bit-whole freedom. Datums from
the business cycle indicators for example, tend to travel together because they indi-
cate time-related characteristics of the same phenomena. Each datum and indicator
can be taken out separately, but they gain from travelling together in a pattern, per-
haps like a murmuring of starlings. In contrast, the indicators of the SDGs are more
like a swarm of midges, with no recognisable pattern and no obvious relationships
between the bits. Both of these indicator sets are very different in their relations to
each other and to the whole compared to the national income accounts (NIA).
Whereas both individual datums and series from the indicators have bit-whole rela-
tions, those for the NIA depend on their part-whole relations. The NIA parts might
look like the ant-line, because if one element travels off the path for some reason
(eg, for correction or updating), the rest have to fall in to make up the line. But they
have more part-whole relations than just lining up, since they rely on multiple rela-
tions for their effectiveness in reasoning and analytical usage, and this relies on a
well ordered hierarchy of rows and columns; thus the relation of parts within the
whole is more like the hierarchy and co-ordination of the wolf-pack. Or perhaps — as
Jim Griesemer suggested,'® to bring the analogy into line with our socio-economic
world: a bundle of indicators is like a flashmob of independent agents — taking a
datum out or bringing one in does not upset the whole; in contrast, the national
income accounts are tightly joined together so that taking out a datum would be
equivalent of taking a section of piping out of a chemical plant: the whole process
would need to be reassembled.

When we think of individual datum travels, one has to think first of the rest of the
data set as their most intimate of travelling companions. Datums rarely travel on
their own without their companions in the data series or set, but when they do, that
set of interrelations — or indeed lack of such relations — within the whole data set is
critical to their independence of travel and how they fit into their new contexts. That
set of interrelations in turn depends on the measuring structures or instruments that
were used to generate and organise the individual data series and individual datums
within them.

3Thanks to James Griesemer for this incisive analogy — provided at the Exeter meeting in 2017
that spawned this volume.
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Data Journeys Beyond Databases
in Systems Biology: Cytoscape and NDEx

William Bechtel

Abstract This chapter investigates how data travels beyond databases in cell
biology by focusing on Cytoscape, a platform that has been developed to repre-
sent networks, and NDEX, a database that allows for the reuse of network repre-
sentations. I begin with a brief review of the databases that have been developed
for data involving, for example, protein-protein interactions, that are relational
and hence productively represented in networks. Given the amount of data stored
in modern databases, raw network representations are typically hairballs that pro-
vides researchers little useful information other than that lots of things interact.
Cytoscape was created by systems biologists to facilitate moving beyond hair-
balls to informative representations. It provides tools for clustering nodes and
annotating them according to what is known about the objects represented. I pro-
vide examples of how Cytoscape has been deployed to develop new knowledge
about biological mechanisms. Cytoscape has been made freely available, and
I describe how a large interational community of researchers has created Apps
that enable researchers to make a number of more specialized inferences. NDEX,
created by members of the same research lab, serves as an Expo for networks—
researchers can share networks they have developed and other researchers can
search for networks and made them the basis for further incorporation of data or
analyses.

1 Introduction

As in many fields, contemporary biologists generate vast amounts of data.
Increasingly, this data is stored in large, on-line databases that procure data from
curation of published literature and from high-throughput experiments. There it is
accessed by researchers distinct from those who produced the data. Leonelli (2016;
this volume) has developed the useful metaphors of data travel and data journeys to
characterize this process of data movement. Much of the work on data journeys to
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date has focused on the preparation and travel of the data themselves, with less
attention paid to the resources that are employed to analyze the data after they
travel.! When the data specifies relations (causal, co-occurrence, etc.) between enti-
ties, this analysis often involves the construction of network diagrams in which
entities are represented as nodes and relations between them as edges.? In the course
of research, network diagrams are subject to various manipulations designed to
reveal additional patterns in the data. Beyond their use in individual research proj-
ects, these networks themselves travel, providing the foundation for yet other
research projects in which they are subject to further manipulation. Network dia-
grams are one format in which data are physically instantiated and subject to muta-
tion as they are incorporated into network diagrams and passed on to other
researchers (see Leonelli, this volume, for discussion of how data are mutated in the
course of data journeys).

My focus will be on the tools that systems biologists have created to construct
and operate on network diagrams and to enable networks themselves to travel.
Anyone could construct a network diagram by hand from a body of data using a
standard graphics package. However, such a process is laborious and the product is
frozen—the researchers cannot then integrate data from additional sources or trans-
form the diagram to reveal new patterns. Accordingly, researchers have developed
software tools for creating, analyzing, and disseminating network diagrams. In Sect.
4 T will discuss Cytoscape, the most widely used platform for constructing network
diagrams in systems biology. While developed in a systems biology framework,
Cytoscape has itself traveled to and is actively used in numerous other scientific
fields. Cytoscape provides a platform on which researchers with specific analytic
needs can develop their own add-ons, referred to as apps. In Sect. 5 I will describe
several apps and, using them, illustrate some of the analysis strategies employed in
systems biology. In Sect. 6 I will describe the recent development of NDEX, which
serves as an online exposition (expo) to which networks themselves can travel so as
to be viewed by others and selectively taken up for additional journeys. As a back-
ground for focusing on network diagrams, I begin in Sect. 2 by introducing the types
of data used to construct network diagrams in systems biology and in Sect. 3
describe the public databases and ontologies from which researchers extract data to
create and analyze networks.

Leonelli (2016, chapter 6) provides a pioneering examination of reuse. See chapters by Tempini,
Chap. 13, Morgan, Chap. 6, and Griesemer, Chap. 8 in this volume, for other aspects of reuse.
Tempini addresses the reuse of data for different objectives than that for which it was collected, and
in particular focuses on how this often involves linkage of data from different sources such as
between weather, environment, and health data. As he demonstrates, this requires manipulations
that attenuate the differences due to where the data originated.

2Networks are just one mode of downstream analysis of data. See Cambrosio et al., this volume,
for an account of knowledgebases that tailor large datasets for particular clinical applications.
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2 Data Production: From Individual Experiments
to High-Throughput Experiments

Through most of the twentieth century, experiments in fields like cell and molecu-
lar biology were conducted one at a time. But many of the procedures used in these
experiments lent themselves to automation so that multiple variants on an experi-
ment could be conducted in parallel. For example, when Sanger first developed
techniques for sequencing amino acids in the 1950s or nucleic acids in the 1970s,
he applied them to one protein or gene at a time. By the late 1980s these techniques
were automated and by the 1990s automation made possible the sequencing of
whole genomes of numerous species. Sequencing data identifies proteins and
genes, but not what they do. Automated procedures enabled procuring other types
of data related to function such as techniques that reveal whether proteins form
complexes either with other proteins or with DNA or whether genetic mutations
interact epistatically. I discuss only techniques detecting whether proteins can form
complexes.

Much of the early twentieth century research focused on the reactions individ-
ual proteins catalyze, but in the second half of the twentieth century it became
increasingly evident that proteins form complexes with each other and these are
important to their catalytic function. Two techniques have proven especially useful
in enabling high-throughput studies of protein-protein interactions (PPIs). The
first, the yeast two-hybrid technique introduced by Fields and Song (1989), begins
by transfecting yeast cells with two plasmids, each attaching to a different protein.
One serves as the bait and the other as the prey and when the proteins to which they
are attached interact with each other, the two domains are united and form a func-
tional transcription factor that initiates transcription of a reporter gene. This tech-
nique identifies pairs of proteins that can interact, but many pairs do not do so in a
given cell type. An alternative technique, affinity purification followed by mass
spectrometry, starts with proteins that are actually bound into a complex in a cell
and uses mass spectrometry to determine their identity (Rigaut et al. 1999). This
approach identifies stable multi-protein interactions that actually occur in the cell.
On the other hand, it misses more transient interactions that form and dissolve as
cells carry out activities. As a result, both approaches to obtaining PPI data are
actively employed.

High-throughput techniques for performing PPI studies were created shortly
after automated gene sequencing was introduced and provided a means to study
many of the novel genes they revealed. In the first high-throughput attempt to iden-
tify PPIs in yeast, Uetz et al. (2000) chose 192 proteins to use as baits and mated
them with 6000 prey proteins. They identified 957 interactions between 1004 pro-
teins. The following year Ito et al. (2001) performed an even larger-scale study,
identifying 4549 interactions between 3278 proteins. Surprisingly, there was little
overlap with the interactions identified in these two studies. I return to the Uetz et al.
and Ito et al. studies to show how they were used in a pioneering network study in
the next section.
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3 Data Travels in Systems Biology: Databases
and Ontologies

As biologists generated increasing volumes of data, they established publicly acces-
sible databases to make this data accessible. The first databases were created for
protein and gene sequence data. Dayhoff created the Atlas of Protein Sequence and
Structure (Dayhoff and Eck 1965-1972) which she published in book form. Shortly
after her death in 1984 it was made available electronically as the Protein Information
[originally Interaction] Resource’s Protein Sequence Database. It eventually merged
into UniProt, which continues as a major source of information about proteins (The
UniProt Consortium 2017). GenBank was developed in the same period for gene
sequence data. Many additional databases for different types of biological data soon
appeared—in 1989 the Listing of Molecular Biological Databases identified 50
databases (Lawton et al. 1989) and the number has continued to grow ever since.
Annually, the first issue of Nucleic Acids Research reviews new and updated data-
bases. On its website it provides a compilation of current databases, totaling 1613 in
2019. As Leonelli (this volume) notes, this process is both uncontrolled and unsus-
tainable. In fact, each year the Nucleic Acids Research compilation annually elimi-
nates discontinued URLs, including 147 in 2019.

Two of the early databases to include PPI data were the Yeast Proteome Database
(YPD) and the Martinsried Institute for Protein Sequences (MIPS) database of pro-
tein interactions. A study by Schwikowski et al. (2000) illustrates how these data-
bases were employed to construct a network from which new knowledge about
yeast was extracted. They combined data from YPD and MIPS with data from the
two high throughput studies noted at the end of the last section, yielding informa-
tion on 2709 interactions involving 2039 proteins. Employing hierarchical cluster-
ing based on functional assignments found in the YPD and a layout procedure that
located similarly connected nodes near each other, Schwikowski et al. identified one
large connected network, shown in Fig. 1, plus 203 much smaller networks. In cases
in which YPD contained information about a protein’s cellular role, the researchers
encoded it using the color of nodes: blue for membrane fusion, grey for chromatin
structure, green for cell structure, yellow for lipid metabolism, and red for cytokine-
sis. By zooming in on parts of the network, as in panel B, they could focus on inter-
actions between proteins that performed similar cellular roles, in this case membrane
fusion, lipid metabolism, and cell structure.

An important question about any network diagram is whether the patterns it
reveals are informative or simply an artifact of the representation strategy the
researchers employed. To investigate this, Schwikowski et al. started with a given
node to which a cellular role was assigned and asked how often one of the nodes
with which it was connected in the network was assigned the same cellular role.
This happened 72% of the time, (compared with, on average, 12% for scrambled
networks). The authors present this as vindicating the network—had they not known
the cellular role of the initial protein, they could have predicted it correctly 72% of
the time based on the roles of its neighbors.
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Fig. 1 Network diagram of protein interactions in yeast constructed by Schwikowski et al. 2000
drawing both upon results of high-throughput yeast two-hybrid studies and data from low-
throughput studies collected in the MIPS and YPD databases. Reprinted by permission from
Springer Nature: Nature Biotechnology, A network of protein-protein interactions in yeast,
Schwikowski et al. 2000
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As researchers recognized the usefulness of drawing upon large datasets in their
research, many researchers created their own databases, tailored to their interests,
and made them publicly available. These included the Database of Interacting
Proteins (DIP) (Xenarios et al. 2000), MINT (Zanzoni et al. 2002), BIND (Alfarano
et al. 2005), HPRD (Peri et al. 2003), BioGRID (Breitkreutz et al. 2003a), and
IntAct (Hermjakob et al. 2004b). The infrastructure for each was relatively small—
on average, they employed two full-time curators who read published papers and
entered the data. In addition to primarily serving the interest of a particular labora-
tory, each database developed its own data structures and procedures for download-
ing and curating data. No single database could keep up with the rapid appearance
of new datasets. As a result, researchers who wanted to use PPI data often combined
data from multiple databases, developing their own tools (parsers, etc.) to do so.
Recognizing the problem users faced, the curators of several databases collaborated
to develop a standardized format (Hermjakob et al. 2004a). A standard format, how-
ever, made another problem even more salient. In reporting data, journal articles
often failed to supply sufficient information about the entities studied or the experi-
mental procedure used. This information is crucial for others to use and interpret the
data (see Leonelli 2016, chapter 4; Rogers and Cambrosio 2007; and Boumans and
Leonelli, this volume). Accordingly, the consortium generated guidelines as to the
minimal information required in reporting a PPI experiment (Orchard et al. 2007).
Several of the databases also began to work directly with journals so that data in
new publications could be directly added to the databases. These efforts ultimately
led to the development of the International Molecular Exchange (IMEx) Consortium,
which among other initiatives introduced a deep curation standard aiming “to cap-
ture the full experimental detail provided in the interaction report, as this is often
essential to assess interaction context and confidence” (Orchard 2012, p. 347). The
initiative also sought to address another problem, that of maintaining funding for the
various databases. The IMEx consortium also provided that if a member can no
longer curate its databases, its records would be turned over to another member.
Accordingly, when MPIDP ceased its curation efforts in 2012, it turned its records
over to IntAct, which has subsequently maintained and updated them.

PPI databases have provided the data for constructing networks, but another
database created during the same period, Gene Ontology (GO), has played a crucial
role in allowing biologists to interpret networks. The motivation for developing GO
was to develop “a structured, precisely defined, common, controlled vocabulary for
describing the roles of genes and gene products” (Ashburner et al. 2000, p. 26) rep-
resented in the databases that had been developed for different model organisms
(initially yeast, fruit fly, and mouse). GO comprises three ontologies, one for bio-
logical processes, another for molecular functions, and a third for cellular compo-
nents, each providing general terms, organized hierarchically, that can be used to
annotate individual genes. These ontologies are themselves undergoing continual
revision and development (Leonelli 2010, 2016).

By 2000 systems biologists had a rich set of databases on which they could draw.
Some, such as GenBase and UniProt, emphasized structural knowledge, but many
focused on relational information, including PPI data. GO provided a common lan-
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guage for annotating the entries in the different databases. These are the raw materi-
als from which systems biologists constructed network diagrams with the goal of
developing new biological knowledge.

4 Cytoscape: A Platform for Generating and Analyzing
Network Diagrams

Tables in databases are great for storing and organizing data, but it is often difficult
for humans to examine data tables directly and draw biologically meaningful infer-
ences or even figure out what algorithms they might employ to generate inferences.?
For this reason, most of the databases include a self-developed program to display
the results of searches as network diagrams. These, however, typically employ a
fixed format designed by the curators of the database.* Individual network formats
support some inferences but not others. In order for users to leverage the vast amount
of data contained in these databases, they need to generate network representations
appropriate for their needs (see Leonelli, this volume, for a discussion of the rela-
tional nature of data).

Although several programs for creating network diagrams, including Osprey,
VisANT, Gephi, and GraphViz, were developed in the first decade of the twenty-
first century, Cytoscape (Shannon et al. 2003) has emerged as the most widely used.
Ideker and his collaborators at the Institute for Systems Biology began developing
Cytoscape in late 2001 for their own research and publicly released Cytoscape 0.8
as an opensource platform in June 2002. When Ideker moved to the University of
California, San Diego, it became the center for Cytoscape development. The local
team of 3-5 developers collaborates with numerous other developers at other insti-
tutions (currently including the Academic Medical Center in Amsterdam, the
Institute for Systems Biology, the Institute Pasteur, the Gladstone Institute, the
University of California, San Francisco, and the University of Toronto).

Although it is hard to measure actual use, in 2018 Cytoscape was downloaded on
average 17,600 times per month and started on users’ computers about 5000 times
each day. According to Google Scholar, the standard reference used to acknowledge
Cytoscape, Shannon et al. (2003), has been cited more than 14,750 times as of
September 2019, most often by papers that include a network diagram generated
with Cytoscape. These numbers likely significantly underestimate how frequently
Cytoscape is used since many users do not explicitly acknowledge it (just as most
people do not acknowledge Microsoft Excel or Adobe Illustrator even if they made
extensive use of these in their research).

3Tables, though, sometimes enable viewers to visualize data. See Miiller-Wille and Porter (this
volume) for examples.

*The exception is BioGRID, whose developers also created Osprey, a network visualization pro-
gram (Breitkreutz et al. 2003b). However, development of Osprey has ended and its webpage sug-
gests researchers use Cytoscape.
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Cytoscape, now in version 3.7.1, is an open-source, freely available java-based
software package that runs on individual computers. It is a key platform of the
National Resource for Network Biology and its development team continues to add
new features to facilitate investigations directed at a range of topics such as repre-
senting networks at multiple scales and representing dynamic changes in cellular
network organization in disease. An even larger community of computationally ori-
ented biologists from around the world generates apps (initially referred to as plug-
ins) that extend Cytoscape’s capacities for analyzing networks. These are made
available through the Cytoscape App Store, hosted on the Cytoscape website (http://
cytoscape.org). In this section I will describe how Cytoscape is used to construct
and modify network diagrams. In the subsequent section I will discuss apps and
how they support analyses of networks.

Figure 2 provides a schematic overview of the Cytoscape architecture. The
Cytoscape Window contains both the tables of node and edge attributes, from which
Cytoscape constructs the network diagram, and the network diagram itself. Other
components operate on the tables and graphs. I will not elaborate on the Graph
Editing and Selection component. It performs functions much like those contained
in the File and Edit components of word processing programs: opening stored net-
works or creating new ones, selecting, deleting or hiding, or copying nodes or
edges, etc.

Visual Mapper (later termed VizMapper and in Cytoscape 3.5 renamed Style)
and the Layout Engines take their input from the Node and Edge Attribute Tables.
An Edge Attribute Table is shown in the screenshot in Fig. 3; a similar table defines

k—_-;I. Plug-ins

Cytoscape Window

Network Graph
» Nodes Node+Edge N otah
« Edges Attributes ?ﬂ:sgu?$s+
» Visual properties Server
» 2D layout coords

Filtering API
= ByTopology
* ByAlttribute
« Combination

show, hide, select
nodes and edges

Graph Editing Layout Engines
Create, delete, 3 H!erarchlcal
» Circular

« Attribute-based

!

Data attributes
ST T2

Visual properties

Fig. 2 Schematic overview of the Cytoscape architecture reprinted from Shannon et al. 2003.
Although the labels for some of the components have changed, the overall architecture has not.
Reprinted with permission of Trey Ideker
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Fig. 3 Screenshot of Cytoscape 3.5. The window at the bottom shows the Edge Table from which
the diagram in the upper window is generated. The window on the left shows the assignments of
visual properties to nodes in Style. Screenshot used with permission of Trey Ideker

the nodes. A researcher can generate these tables based on data he or she has col-
lected or from data downloaded from one or more of the databases discussed in the
previous section. At a minimum, these tables must identify the entities to be repre-
sented by the nodes and the relations to be represented by edges, but they may also
identify a variety of attributes of the entity (e.g. its concentration) or relation. The
tables can also include annotations (e.g., cell location or cell function) procured
from sources such as GO.

Style, shown on the left in Fig. 3, maps features specified in the table unto visual
properties of nodes and of edges. Thus, an investigator can map attributes or annota-
tions specified in the node and edge tables to labels or to visible features such as
shape, size, and color. If color, for example, is used to indicate biological processes
as specified in GO and size is used to represent the level of expression of a gene, the
viewer can quickly see patterns in how these attributes and annotations vary.

There are many ways to lay out nodes in a 2-dimensional representation—nodes
can be positioned randomly, around a circle, in a grid, or in a hierarchical arrange-
ment. [t is often useful to group nodes by their values on a particular annotation such
as biological process or cellular component. When used with a circular layout, this
results in nodes that share an attribute being located close together around the circle.
There is great flexibility in how nodes are laid out and the choice affects what pat-
terns the researcher can identify. For example, it is easier to see that several nodes
are highly interconnected or are all connected to another set of nodes when they are
positioned near each other. Spring-embedded layouts do this by treating edges like
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springs (Eades 1984): connected nodes that are far apart are drawn together, but if
they get too close, they are repelled a bit. For each of these strategies for laying out
nodes there are a variety of algorithms, each of which generates a somewhat differ-
ent result. After an algorithm is applied, the user can also manually move one or a
selected group of nodes. Researchers find it useful to try out different layout strate-
gies to find one that generates interpretable patterns.

Since the goal of network analysis is to generate biologically interpretable
results, researchers derogatorily refer to networks such as shown in Fig. 4a as hair-
balls. Although the data is represented, it is not presented in a manner that can be
interpreted biologically. Merico et al. (2009) illustrate how, by altering visual fea-
tures and layout in Cytoscape, to transform this hairball into an informative network
diagram revealing components of mechanisms involved in chromosome mainte-
nance and duplication in yeast (Fig. 4b). Figure 4a was generated from curated data
of PPIs (represented as edges) from both low- and high-throughput experimental
studies retrieved from BioGRID. The nodes represent proteins and their colors indi-
cate their location in the chromosome: red, replication fork; green, nucleosome;
blue, kinetochore; yellow, other chromosome components. The use of color in
Fig. 4a is already a step away from a pure hairball, but the network diagram offers
no mechanistic insight. By applying a spring-embedded layout in which edges are
assigned forces so as to draw highly connected nodes closer together and yet keep
them from getting too close, the authors transformed Fig. 4a into 4b. Being highly
connected, the nodes for proteins in the kinetochore, nucleosome, and replication
fork are now situated adjacent to each other. VizMapper (Style) used data about how
much gene expression changes over the cell cycle to determine node size. In addi-
tion, the width of the edges is determined by the Pearson correlation between tran-
script profiles. Looking at the network diagram one can readily see that many green

Fig. 4 (a) A hairball network diagram based on PPIs among proteins involved in chromosome
maintenance and duplication in Saccharomyces cerevisiae. (b) The network has been transformed
into an informative network diagram. Reprinted by permission from Springer Nature: Nature
Biotechnology, How to visually interpret biological data using networks, Merico et al. 2009
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nodes are large and connected with numerous thick edges, indicating that the
expression of proteins in the nucleosome is changing together during the cell cycle.

Now that the nodes are laid out in an informative manner, a researcher can zoom
in to local regions and make his or her own inferences about parts and operations. A
commonly used inference strategy is guilt-by-association—if neighbors of a node
without an annotation share a common annotation (in this case, for a cellular com-
ponent), the researchers infer that the unannotated node should receive the same
annotation. The three proteins shown in the region shaded in orange in Fig. 4b, Psf1,
Psf2 and Psf3, are colored yellow since GO did not assign them a cellular compo-
nent annotation below the level of chromosome. The layout procedure, however,
situated them among the red nodes that have the replication fork annotation.
Employing guilt-by-association, the researchers inferred these proteins should be
assigned that annotation as well. Merico et al. report that although these proteins are
not so annotated in GO, research already published showed that they belonged to
the GINS complex in the nucleosome that is responsible for assembling the DNA
replication machinery. Guilt-by-association led the network researchers to make a
correct assignment.

The layout algorithm also enables the identification of new mechanisms. The
nodes labeled Orcl, Orc2, Orc3, Orc4, Orc5 and Orc6 are located together (in a
region shaded in violet) apart from the three regions of nodes annotated to cellular
components. The authors infer that they form a distinct mechanism and report that
although these nodes lacked specific annotations in GO, “they are known members
of the yeast origin recognition complex (ORC), responsible for the loading of the
replication machinery onto DNA” (p. 922). In this case again the inference is
supported.

Cytoscape thus provides researchers the ability to transform tables into network
diagrams, assign visible features to attributes and annotations of entities and their
relations, and determine how the nodes and edges will be laid out. Exploration with
different approaches (e.g., changing whether an attribute is represented by the shape
or color of nodes) is often important to finding informative patterns. This would be
very cumbersome if researchers had to construct each network diagram by hand but
relatively easy with Cytoscape.

5 Further Analyzing Networks: Cytoscape’s App Store

As I have noted, Cytoscape provides a platform for other researchers to construct
apps to perform specific analyses for their own purposes but also make the resulting
apps available to others. In this way Cytoscape serves multiple groups of users who
have different research agendas and require different tools for their execution. Many
of the apps are the focus of journal publications that describe the procedures
employed in the app and one or more examples of its use (I have identified such
publications for several of the apps discussed below). In Spring 2017 there were
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more than 180 apps in the Cytoscape App Store that work with Cytoscape 3.X.5
Some apps support the import and integration of data from specific databases that
researchers might wish to represent in networks. For example, KEGGScape,
GeneMania, ReactomeFIViz, and STRING, draw results from these different data-
bases into Cytoscape. Bisogenet integrates and imports data from multiple data-
bases such as DIP, BIOGRID, BIND, MINT, and IntAct. AgilentLiteratureSearch
allows users to directly query published literature for PPIs and incorporate the
results into a Cytoscape network. Apps such as BINGO and ClueGO facilitate anno-
tation of nodes and edges using Gene Ontology.

Yet other apps provide layout and visualization algorithms that extend beyond
what is offered in the core. For example, Cy3D generates three-dimensional views
of networks while CyAnimator supports the construction of animations. With
respect to layout, GOlorize enables the use of GO annotations to direct the layout of
nodes so that the network is interpretable in terms of biological functions while
DeDal facilitates using principal components analysis in developing layouts, align-
ing one network with another, and morphing between selected layouts so as to find
ones that are biologically interpretable.

Yet other apps support particular analyses of networks useful for specific lines of
research. I will first discuss two classes of analysis apps: those used to compute a
variety of standard network measures and those designed to identify clusters or
modules in a given network. I will then offer two illustrations of how particular apps
contribute to a better understanding of biological processes.

Apps for Computing Network Measures Graph theorists have developed an exten-
sive set of measures to characterize networks. For purposes of this exposition, I will
focus only on networks with undirected edges. Some of the most common measures
are mean shortest path length, the clustering coefficient, and node degree distribu-
tion. The length of a path between two nodes is the number of edges that are tra-
versed in going from one to the other; the mean shortest path length is the mean for
all pairs of nodes of the shortest (or characteristic) path lengths between them. It
provides a measure of how quickly effects can travel through the network. The
nodes to which any given node is connected are its neighbors and the clustering
coefficient characterizes the degree to which the neighbors of a node are connected
to one another. Finally, node degree refers to the number of connections a given
node has to other nodes. Of particular interest are networks in which node degree is
not distributed normally but according to a power law. In such a case, some nodes
are highly connected to other nodes, and serve as hubs, whereas most nodes have
few connections. NetworkAnalyzer (Assenov et al. 2008) computes these and many
other statistics that are used to characterize networks, displaying the results in his-
tograms or scatterplots. Apps such as CytoHubba identify hubs.

SAnother 132 Apps were written for Cytoscape 2.X but have not been recoded to work with
Cytoscape 3.X. This was a serious cost of completely revising the Cytoscape’s program interface
in 2013, which was done in part to improve the architecture through which apps interact with the
core program.
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Apps for Identifying Clusters For many research objectives it is valuable to iden-
tify nodes that are especially highly interconnected. These clusters, sometimes
referred to as modules, often reflect groups of components that perform a common
activity—that is, work as a mechanism. The apps Molecular Complex Detection
(MCODE) (Bader and Hogue 2003) and ClusterMaker2 (Morris et al. 2011) identify
clusters. Modules may be organized hierarchically, sometimes with different types
of connections at different levels. When Bandyopadhyay et al. (2008) developed a
network based on both PPI and genetic interactions they found that PPIs tended to
link nodes in modules while genetic interactions generated higher level clusters.
Srivas et al. (2011) implemented the procedure Bandyopadhyay et al. employed in
the app PanGIA.

5.1 Applying an App for Identifying Active Modules

Most clustering algorithms view networks as static structures, but Ideker et al.
(2002) sought to identify nodes that organize into clusters or mechanisms only in
specific circumstances such as when particular genes are mutated or yeast are grown
on specific media. In an earlier paper, Ideker et al. (2001) has investigated the galac-
tose (GAL) utilization mechanism in yeast. They started with PPI and protein-DNA
interaction data to construct a network of 348 genes with 362 interactions. They
grew colonies of wild-type and nine mutant strains, each lacking one known GAL
gene, on media containing or lacking 2% galactose, measured global mRNA
changes and protein concentration changes across the conditions, and plotted these
on the network. As Cytoscape had not yet been developed, they used the LEDA
toolbox developed at the Max-Planck-Institut fiir Informatik (Mehlhorn and Niher
1999) to construct the network shown in Fig. 5a. Arrows represent protein-DNA
interactions and straight edges PPIs. The nodes are shown in clusters corresponding
to genes that exhibited similar changes in expression over all perturbations and the
clusters are labeled by their biological functions. Darker shading of nodes indicates
increased and lighter shading decreased expression. The size of the nodes reflects
the magnitude of change in the case in which gal4 (the node colored in red) is
knocked out in the presence of galactose. The network diagram reveals that the
expression changes resulting from the perturbation is more correlated in connected
proteins than among randomly selected proteins, a result Ideker et al. further con-
firmed with statistical analysis.

In the 2002 study, Ideker et al. sought to identify modules in which expression
changed the most in specific conditions. Having developed Cytoscape, they repre-
sented the network in it and developed an analysis strategy that became one of the
first Cytoscape apps, jActiveModules. The analysis first computes a z-score for the
degree of change in expression of each gene in a particular condition, indicated by
the shading of the nodes in Fig. 5b. It then identifies subnetworks of genes under or
over expressed and rank-orders them in terms of activity. The top five subnetworks
are indicated in Fig. 5b by common coloring of the node border and the attached
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Fig.5 Comparative network diagrams: (a) from Ideker et al. 2001 and (b) from Ideker et al. 2002.
Both show the same 362 associations between genes whose expression was increased or decreased
when grown with or without 2% galactose. In the diagram on the left, darker nodes indicate
increased expression when gal4 (shown in red) is knocked out. The edges shown in color other than
black in the diagram on the right indicate the subnetworks that were most altered when gal80 was
knocked out. A. From Ideker, T., Thorsson, V., Ranish, J. A., Christmas, R., Buhler, J., Eng, J. K.,
Bumgarner, R., Goodlett, D. R., Aebersold, R., & Hood, L. (2001). Integrated genomic and pro-
teomic analyses of a systematically perturbed metabolic network. Science, 292, 929-934.
Reprinted with permission from AAAS. B. reprinted from Ideker, T., Ozier, O., Schwikowski, B.,
& Siegel, A. F,, Discovering regulatory and signalling circuits in molecular interaction networks,
Bioinformatics, 2002, Volume 18 Suppl 1, S233-240, by permission of Oxford University Press

edges. Ideker et al. interpret the subnetworks active in a particular condition as
mechanisms involved in transmitting signals and performing regulatory functions.
In the example shown, GAL8O0 (the only labeled node) is deleted. The adjacent
node, GAL4, is a hub with protein-DNA connections to seven other genes. This
suggests the hypothesis that GALSO influences these genes through its effect on
GALA4, a hypothesis for which there was already empirical support (Lohr et al. 1995).

5.2 Applying an App for Modeling Diffusion

Whereas jActiveModules was one of the first apps developed for Cytoscape,
Diffusion (Carlin et al. 2017) is one of the most recent. Diffusion implements a
distinctive strategy for discovering underlying clusters that correspond to mecha-
nisms that has proven effective in fields such as cancer research in which researchers
confront extremely heterogeneous data. For example, in The Cancer Genome Atlas
study of 500 tumors of various types, individual tumors exhibited from 20 to 300
somatic mutations, with the genes mutated varying substantially across samples of
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the same type of tumor. This made it difficult to determine which mutations might
play a causal role. To address this problem, Vandin et al. (2011) developed a strategy
of mapping mutated genes onto a PPI network and treating them as hot spots from
which simulated heat could diffuse. In many cases, heat diffusing from different
nodes would converge on the same cluster of nodes. These nodes were hypothesized
to represent a mechanism or pathway that, when disrupted through any of the muta-
tions, leads to cancer. The approach was further developed by Hofree et al. (2013),
who used propagation in networks to stratify cancer populations in ways that cor-
responded to patient survival. Heat diffusion algorithms are computationally
extremely demanding. Thus, the designers of Diffusion linked the app locally
installed on an individual researcher’s computer to an internet service that performs
the computation. Using Diffusion within Cytoscape, the user can visually select
nodes as heat sources, invoke the service, and then visualize the diffusion results.

Carlin et al. employed Diffusion to better understand why one melanoma cell
line responds to the drug Vemurafenib (LOX-IMVI) while another is resistant. They
use a network generated from the NCI Pathway Interaction Database (an amalgama-
tion of expert-curated cancer pathways) and initiated diffusion from six genes with
known relations to the drug: BRAF, PDGFRB, NRAS, HGF, MAP 2 KI, and
MAPK]I. Diffusion identified a subnetwork of 53 nodes and 448 edges. Cytoscape
was then used to filter the top 10% of nodes activated after diffusion. Based on
combining the results of multiple queries followed by filtering, Carlin et al. deter-
mined that 7SC2 and BLNK are mutated in the resistant but not the sensitive cell
lines and proposed that this might explain the difference.

6 Network Expo: NDEx

In the previous two sections I have characterized how tools like Cytoscape allow for
data that has traveled to databases to travel one step further and be used in network
analyses. But is that the end of the line? In this section I show how network dia-
grams themselves can also travel. Traditionally, network diagrams have been dis-
tributed as static visual representations and those who wanted to analyze them
further had to recreate them for themselves. But networks generated with Cytoscape
and similar programs can be stored in structured data formats in which they can then
be distributed to other users, who may then incorporate additional data into the net-
work or perform a different type of analysis (e.g., a different clustering procedure)
to the existing network. While such sharing can be carried out informally by
authors,’ the Network Data Exchange (NDEX) is providing a platform for doing this
on a large scale.

°A collaboration between Elsevier and Cytoscape created the Interactive Network Viewer which
allowed authors to make networks available in online publications in a viewer with some capacities
for readers to further explore the network or download it to Cytoscape. This project is no longer
active.
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NDEx was introduced in 2014 as “an online commons” (Pillich et al. 2017) or
expo that functions much like World Expos. In this case, the exhibits are the net-
works that provide original interpretations of data. By uploading their networks,
researchers can showcase them and others can download them for use in their own
work. The developers further characterize NDEx as “a step toward an ecosystem in
which networks bearing data, hypotheses, and findings flow easily between scien-
tists” (Pratt et al. 2015). The project employs its own group of developers in Ideker’s
lab at UC San Diego and is supported by the National Cancer Institute, the National
Resource for Network Biology, the California Stem Cell Agency, Pfizer, Janssen,
and Roche.”

At its core, NDEx functions much like Google Docs or Dropbox. Networks are
added to NDEXx either from other online sources such as Pathway Commons, which
draws data from a wide range of databases including BIND, DIP, and BioGRID that
were discussed in Sect. 2, or by individual users via either direct file import or from
Cytoscape. Individual users store their own networks and have control over who can
access them—they can keep them private, share them with designated others, or
make them public. Sharing with a group of researchers allows a group to collaborate
in further developing a network. If made public, other users might use the network
as the basis for their own work and upload new versions for others to access. Each
network that is added to NDEx is assigned a Universally Unique Identifier (UUID)
so that it can be easily referenced. If someone modifies a public network and saves
it, it is assigned a new UUID. NDEX is distinct from other online network reposito-
ries such as KEGG and Pathway Commons in that users manage their own networks
rather than the networks being managed by the organization that maintains the
resource. To facilitate visualizing and indexing networks as well as interactions with
Cytoscape, NDEx employs the Cytoscape Cyberinfrastructure network exchange
format, CX, to store information. CX, however, maintains the semantics of the for-
mat employed by the creator of the network.?

For networks to be useful to others, it is important that depositors provide suffi-
cient information about how they were created and the data that was used (databases
are updated regularly and attempts to reconstruct networks will not necessarily
yield the same results unless the same iteration of the database is used). Accordingly,
NDEXx maintains a provenance history that contains this information. The history
also includes information about other networks that were used in constructing a
particular network.

For NDEXx to provide a useful expo, other users must be able to find networks
that are relevant to them. Thus, when networks are uploaded, NDEx indexes text
strings for network descriptions, the user and group that manages the network, the

"Legally, the Cytoscape Consortium, a 5.0.1cs corporation, owns Cytoscape and NDEx, along
with NeXO and Cytoscape.js. It contracts with the various pharmaceutical companies and sub-
contracts with UC San Diego.

$WikiPathways provides a useful comparison case with NDEx. WikiPathways is based on the Wiki
model in which everyone collaborates on a common public document. It is also limited to small
networks and allows for content that is not represented in a network.
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genes or proteins represented by the nodes, the relations represented by the edges,
and references cited. Users can initiate searches from NDEx homepage by entering
names of cell processes or names of genes or proteins. This will bring up a table
listing a number of networks. Figure 6 shows the results of a search for three circa-
dian genes, per2, cry2, and bmall. This returned 165 networks in which at least one
of these genes is included. The table shows the name of the network, the number of
nodes and edges, whether the network is public or private, the owner, and the date it
was last modified. When one hovers a mouse over the name of a network, a popup
window appears with a description of the network if one has been provided. If there
is anicon in the Ref. column, it links to a publication in which the network appeared.
One can proceed to download the network by selecting the icon with a white down-
ward arrow.

Clinking on a network name brings it up in a window (if there are too many
edges, a sample of 500 edges will be displayed). Users can choose instead to see a
listing of the edges in a table view. The screen also shows either network info (e.g.,
when it was created, its UUID address) or the provenance history. A search box
enables users to query particular nodes and select a number of edges out from those
nodes. The network selected in Fig. 6 has 195 nodes and 4534 edges. Entering
CRY?2 and distance 1 returns the more restricted network shown in Fig. 7. Selecting
the nodes PER2, CRY2, and the two edges connecting them, brings up information
about the nodes, including links to UniProt, GenBank, and publications providing
evidence for the edges.

TG i e, +

[ B e Trps : 243 . - 4 &+ B0 L] O A0 =
L . L - L Ourlowges (Prie. Ik UvecnBOf-free. S ACEOBMAN  AMAG-Spn b @ weeeris [I) weoeenBosgy s ) wrOoma - Cune. 5] meaz vas »

T [Genes and
Batwaorks (165)
Network Mame - Rel. Dissass  Tissue Nodes. Edges Visibility Crwnar Last Modified
B o 545 1048 PUBLIC L THANAT 548 P
4 Y 4088 19608 PUBLC SRE 1122 AM
B o 2885 8833 PUBLIC SAE 204 PM
& = 265 287 PUBLIC 5518 204 PM
4 IR WEMS  MTIO PUBLC SB16.1121 AM
&d 88 a3 PUBLC L A28 800 PM
[ # | aness 39401 PuBLIC 82815 800 PM
Tha Fthedrn beings 1 158 Bestione SHBbIME 050 wat 60LE A YO Mettwiy
1 Commere (PR 71 &d = 100 PUBLIC TARAT 1258 PM
&d Cadon (. 12049 TaONNS PUBLIC TABAT 1:43 AM
w“ Colon .. TT88 TeENE  PUBLIC TABAT 143 AM
PUBLIC ArVANS 1054 AM

2567 TS PUBLIC B2/15 158 PM

(4] T
4 5012 38564
*

e bt o etk IS4 PR B345- 365 Bacs- D86 et

Fig. 6 Screen shot of NDEx after search for networks that include per2, cry2, or bmall, three
prominent mammalian circadian genes
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Fig. 7 Screen shot of the network selected in Fig. 6 after a query requesting nodes directly con-
nected to CRY2

NDEXx has been designed to integrate smoothly with Cytoscape. From within
Cytoscape, one can use the app CyNDEXx to query networks in NDEx and import
selected ones. CyNDEXx also allows users to export networks developed or modified
in Cytoscape to NDEX. Once a network has been imported from NDEXx to Cytoscape,
a researcher can use it to continue the inquiry for which it was originally designed
by carrying out additional analyses or accept the analysis offered and incorporate
further data into the network.

The developers of NDEXx have advanced a bold vision of how NDEx can provide
“new models of scientific publication.” It provides an expo “in which live data struc-
tures replace static diagrams and supplemental files.” Drawing upon these live data
structures, other biologists can create new networks that serve their own ends and
create new expositions in NDEx. For NDEXx to realize these goals, network biolo-
gists must be willing to share their networks. There is evidence that they will as use
of NDEx is showing steady growth. From July 2015 until March 2016 the number
of unique visitors per month increased from 151 to over 1200. As of July 2017 there
were 3190 public networks, 810 registered users and 37 groups, although not all of
these have uploaded networks to NDEx. The developers are pursuing a number of
strategies to encourage greater use such as making NDEx a platform on which
authors may make networks in their papers available to reviewers. To the extent that
NDEXx is successful as an expo of networks, network diagrams will be both products
of inquiry and inputs for future inquiries.
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7 Conclusions

In systems biology and many other fields, relational data travel from individual
researchers to publicly accessible databases, from which they are accessed and
employed by subsequent researchers. I have focused on the resources that systems
biologists have created to enable further data journeys. These resources are allowing
researchers both to represent and extract interpretations from the data and to share
the products of their research so that other researchers can build upon them. These
tools enable data and the analyses constructed from them to continue to travel far
beyond the initial database to which they were uploaded.

My focus has been on the increasingly popular use of network representations of
relational data. Networks are not just an attractive format in which to represent data.
As I have developed in earlier publications, they are employed in novel ways to
make discoveries about biological mechanisms. In recent decades, philosophers of
biology have characterized the research strategies by which biologists in a variety of
fields search for mechanisms to explain phenomena of interest (Bechtel and
Richardson 1993/2010; Craver and Darden 2013). Most of these strategies start
with hypothesized mechanisms and decompose them to find their constituents.
Network biology pursues a different strategy, starting with data about how biologi-
cal entities are related to each other (e.g., which proteins interact), identifying
mechanisms as local clusters within the network and appealing to them to explain
biological phenomena (Bechtel 2017, 2019).

Key to network biology is the construction of network representations and the
application of tools to analyze these representations. Since its introduction in 2002,
Cytoscape has emerged as a freely available and widely used platform for creating
and analyzing network representations. The core of Cytoscape allows researchers to
import databases of relational data and generate network representations employing
a variety of different layouts that enable specific inferences from the data and differ-
ent ways to annotate the representation to incorporate yet additional information. A
user can, for example, quickly switch between different layouts until he or she finds
one that provides insight into the data. Of central importance are algorithms used to
find clusters of nodes that are then interpreted as potential mechanisms.

The construction of a revealing network representation is often just the starting
point for further analysis. The core of Cytoscape provides a range of tools intended
for use on a wide variety of network studies (extending, for example, to the social
sciences). But Cytoscape also provides a platform for other researchers, often with
interests limited to specific domains, to develop their own analytic tools in the form
of apps. By providing an App store, the developers of Cytoscape have encouraged
researchers to make these available to yet other researchers.

Cytoscape and its apps are powerful tools for researchers to reuse data that has
been deposited into the growing number of databases developed by biologists. A
particularly valuable feature is allowing researchers to readily integrate data from a
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variety of different databases into a single network that can then be analyzed in dif-
ferent ways. Until recently, however, these network representations and the analyses
performed on them represented the end of data journeys—they might be published,
but anyone who wanted to carry on the inquiry would have to procure the network
in a useable format from the researchers or reconstruct it for themselves. By provid-
ing an easily searchable expo of networks that other users can access, add data to,
and further analyze (using Cytoscape or another platform), NDEx enables data to
travel yet further. Since users can both download networks and upload their revised
network, data can be recirculated potentially indefinitely.

Resources such as databases, Cytoscape and its apps, and NDEX, constitute
important infrastructures that are increasingly relied upon by contemporary biolo-
gists. These tools supplement traditional experimental tools, allowing results to
travel widely and to be analyzed by multiple researchers using different techniques
for network analysis. They thereby contribute in novel ways to the development of
scientific knowledge.
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James Griesemer

Abstract I describe a data journey drawn from a case study of research in human
population genomics. The case is framed in dialogue with a project on what has
been called the “re-situation” of scientific knowledge (Morgan 2014). The kind of
journey described elicits a missing concept—‘dataser-centric” biology—in the con-
versation around the emergence of “big data” and data-centric biology (Leonelli
2016) and its contrast, “traditional” or “‘small data” biology. I distinguish datapoint-
centric from dataser-centric practices. The case study is about the development, use,
and amendment of data sets in one lab’s pursuit of human genome diversity studies.
I offer a model of data journeys to interpret the case. The model is comprised of
three kinds of components: scientific data structures, data representations, and data
journey narratives. The case study illustrates two visualizations that frame the data-
set journey.

1 Traveling Findings and Data Journeys in Human
Population Genomics

In this chapter, I make a case for a “middle ground” landscape of data sez-centric
biology as an important setting for data journeys in twenty-first century science,
adding “middle sized” facts to the big and the small (Howlett and Morgan 2011,
Leonelli 2016). Communities of specialists in fields practicing dataset-centric biol-
ogy are organized around data sets rather than dissociable, individually retrievable
data points, even though the dissociability of the latter is key to the data journeys of
dataset-centric biology. For dataset-centric biology, if datapoints are disaggregated
from their context in a dataset, datapoints may lose value or meaning as datasets add
value and change meaning. Scientific focus on datasets prods dataset-centric sci-
ences down toward a “craft” scale of operation rather than up to an “industrial”
scale: in dataset-centric biology, datapoints are not interchangeable parts, nor inde-
pendently valuable “widgets” in a datapoint-as-product economy of science. At
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craft scale, datapoints are more like individualized parts of whole dataset products
and less like anonymized members of possibly arbitrary or merely conventional sets.

In a broad sense, the data journeys in human population genomics of interest in
this chapter begin with tissue specimen collection, proceed to extraction of DNA
from specimens, and eventually result in sequencing, production of digital sequence
records, and archiving of the records. My focus here, however, is on the journey
after digital data is produced: how these records are collected into datasets that can
travel (or not), just as Leonelli (2016) has documented how genomics datapoints
can travel. These journeys must of course be planned, including developing proto-
cols for subject sampling and specimen collection, but here I focus on journeys of
datapoints and datasets derived from DNA already extracted and archived. After
tissue collection and curation, extracted DNA specimens are allowed to circulate in
a limited fashion to qualified research labs. The labs then conduct or arrange
sequencing so as to use the digital data in a range of biomedical and ancestry stud-
ies. Once the data gets into digital form, the datasets can have a life of their own.
This “workflow” can be summarized by distinguishing: (1) a “field” setting in which
a study design is put into action to produce “data,” (2) a lab setting in which speci-
mens or data are put in motion to produce findings and reports, and (3) a community
setting in which findings are put into circulation in various social worlds that become
evaluated as “facts” or sent back into scientific workflows to be reworked, reinter-
preted, reevaluated (Fig. 1). My case study focuses on the latter: the use of genomic
DNA data to infer ancestry relations among human populations.

The case is part of a project on what has been called the “re-situation” of scien-
tific knowledge (Morgan 2014). The kind of journey described elicits a missing
concept—*"“dataser-centric” biology—in the conversation around the emergence of
“big data” and data-centric biology (Leonelli 2016) and its contrast, “traditional” or
“small data” biology. I distinguish datapoinz-centric from dataset-centric practices.
The case study is about the development, use, and amendment of datasets in one
lab’s pursuit of human genome diversity studies.

The data journey I re-trace here begins with sequence data analyzed in a paper by
Noah Rosenberg et al. (2002) in Science magazine: “Genetic Structure of Human
Populations.” This paper reports “big findings,” that is, findings about worldwide
ancestry relationships derived from analysis of a substantial collection of datapoints
in a dataset using advanced analytical methods and theoretical models. The paper
also reports (or refers to) “small findings,” e.g. findings of particular sequences
detected in particular DNA samples. Some of the small findings are presented sim-
ply by citation of the datasets used in the analysis leading to the big findings, based
on sequencing cell line panel DNA collected for the Human Genome Diversity
Project (HGDP).

Data for the HGDP that supplied the Rosenberg lab came from 1064 lympho-
blastoid cell lines (LCLs) cultured from blood samples collected from people of
different localities or regions around the world by a variety of laboratories interested
in participating in the shared effort (Cann et al. 2002). These collection efforts were
heterogeneous. Specimens were eventually deposited and archived at the Center for
the Study of Human Polymorphism (CEPH), in Paris, which provides samples of
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Fig. 1 Diagram illustrating the kind of work flow from a study design, to field work (stage 1)
producing specimens or raw data, which is then assembled into datasets, analyzed and interpreted
as yielding findings in the lab (stage 2), that are then circulated via talks, publications and online
media in various social worlds (stage 3) that evaluate findings, elevating some of them to the status
of facts and returning others for reconsideration, reinterpretation, and reevaluation. Many points in
such processes feed into future study designs or the modifications of ongoing studies

extracted DNA to qualified researchers. These users of HGDP-CEPH specimens
then generated data by sequencing the DNA (or in some cases RNA) or by arrang-
ing for third parties to do the sequencing.! Attention to data in the HGDP, like data
in the Human Genome Project (HGP) more broadly, reflects emerging sensibilities
of data-centric biology. DNA sequences—“digital” data derived from DNA sam-
ples—are the main form of data used to reconstruct ancestry in population genom-
ics. Over the course of the 1990s and 2000s, this data—the data points—became
increasingly archived in online databases of the kinds Leonelli (2016) describes.

That said, the kind of data journey of the sequence data in the HGDP data sefs, is
quite different, in mode of travel, in the organization and standardization of data
practices, and in the institutionalization of the data packaging practices that govern
the work. It is a data ser journey—of datapoints between datasets and datasets
within and among projects—as much or more than a journey of datapoints into and
out of a centralized database.

'E.g. the Mammalian Genotyping Service of the Marshfield Clinic Research Institute (Marshfield
Clinic Research Institute 2014).
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One of the big findings reported concerns relationships between clusters of simi-
lar genetic sequence markers and continent-scale geographic distribution of humans.
The finding is big enough to be reported in the abstract of the paper (Rosenberg
et al. 2002, 2381):

... without using prior information about the origins of individuals, we identified six main
genetic clusters, five of which correspond to major geographic regions, and subclusters that
often correspond to individual populations.

The 2002 publication was a landmark and its findings, methods, and conceptual
presuppositions widely debated (Horton 2003). The model-based clustering algo-
rithm implemented in analytical software the authors and their collaborators built,
program STRUCTURE (Pritchard et al. 2000), assumes a pre-defined number of
clusters and then allocates datapoints to clusters based on patterns of genetic simi-
larity. The methodology is to allocate sample individuals to clusters by similarity
across a collection of loci—sequences that are either shared or not shared between
individual samples. The particular clusters to which individuals are assigned emerge
in the clustering process and can then be compared to the “pre-defined” population
labels from which the samples came.? The “big fact” of continental geographic pat-
terns of human ancestral groups in circulation since the eighteenth century was
affirmed by Rosenberg et al. (2002) in a novel way: based on genotype sequence
distributions without reference to the pre-defined population labels. The paper is
easy to read, contra the authors’ intentions, as endorsing a presupposed biological
concept of race by conflating a geographic interpretation of genetic classification
with race on the grounds that the pre-defined populations (either from the sampling
design or in the analysis) somehow biased the results.’ The analysis is subtle and
interpretation tricky.

The analysis leading to the big finding was also contested for its theoretical pre-
suppositions (e.g. by Serre and Pdibo 2004) and defended (e.g. Rosenberg et al.
2005). Some challenges to the results questioned the sampling methodology that
produced the HGDP-CEPH cell lines. Others challenged that the analysis was
flawed mainly due to theoretical presuppositions regarding whether human genetic
variation can be assumed to be organized in more or less discrete “clusters,” perhaps
with some admixture, or rather in more or less continuous “clines,” perhaps with
some clumping and isolation. There has been discussion of the analytical methodol-
ogy as well, including examination of the models and algorithms used by
STRUCTURE, alternative cluster algorithms, and alternative multivariate statistical
approaches (see Sect. 4 below).

2Part of the methodological controversy about this research concerns the sampling methods used
to collect samples in the first place and part with whether and how DNA donors “self-identify”
with population labels assigned as “meta-data” to the DNA sequence data. Our larger project will
address the latter topic in detail (Griesemer and Barragdn 2019).

3See Wills 2017 for an analysis of “rhetorical appropriations” of the article; see Wade 2014 for a
journalist’s reading of the paper as supporting a concept of race as “clusters of variation.”
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It is not my purpose to characterize how well this big “fact” of continental differ-
ences (variously as a story of race, ethnicity, or genetic variation) has traveled
through the centuries or spread among disciplines or societies, nor to assess the
critical charges by post-colonialist thinkers, even while I fully agree that issues of
race and ethnicity are far more important in the grand schemes of human cultures
and societies than is reconstruction of the data journeys of the datapoints, their
uptake in datasets, or interpretations of narratives of facts related to the journeys of
the constructed datasets. Nevertheless, my interest here is to understand scientific
practices involved in using the kinds of data that fuel the work of producing big
findings, rather than the findings themselves.

2 Scientific Data Structures

In contrast to the big findings—the stuff of “results” and “discussion” sections of
published scientific papers—key small findings mentioned or referred to in
Rosenberg et al. (2002) concern the genotypes at the particular loci of the particular
sample subjects used to assemble the genome diversity dataset for the analysis.
These small findings are, in effect, “asserted” by reference, via the computer files in
which the data are represented and recorded, to “scientific data structures.” These
data structures are displayed in the files and described in “materials and methods”
sections, figures, tables, information supplementary to main publications, and soft-
ware manuals. The data structures and files link sample subject identifiers to
sequence data, e.g. diversitydata.stru, which is described in another file,
diversityreadme.txt.*

The representation of genotypes in the diversitydata.stru file is clear but indirect,
involving pointers (labels) to sequence data records stored in centralized databases
such as GenBank. GenBank labels for DNA sequences appear as names of loci in
the data file.’

Genotypes for each sample individual are coded in labels for the two alleles at
each locus represented in the file: 377 loci in this dataset x 2 alleles for each diploid
sample individual, with two rows in the data table for each sample subject, one row
for each of the paired chromosomes. The allele at the first sequenced locus for
sample individual 995, for example, from “Karitiana Brazil AMERICA,” (Pop ID
82) is an allele coded as “120” (Fig. 2).

Allele encodings report “genotypes (measured in base pairs)” (Rosenberg et al.
2002), that is, by integer labels: “Each allele at a given locus should be coded by a
unique integer” (Pritchard et al. 2010, p. 6). “120” encodes a unique allele at locus

“Rosenberg maintains downloadable copies of the exact data used in the original paper at the
Rosenberg Lab website (Rosenberg Lab 2018).

3 Another downloadable file, diversityreadme.txt, contains “meta-data” information about how
diversitydata.stru is organized. The reference to “the structure program” is to the software, called
“STRUCTURE,” authored by some of the authors of Rosenberg et al. (2002).
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Fig. 2 Screen shot of records in a dataset visualization in program STRUCTURE, after I cleaned
(pruned) out meta-data from the file downloaded from the Rosenberg Lab’s dataset web page, so
the software could read the data file. STRUCTURE is a free software package described by
Prichard et al. (2000) and downloadable at http://web.stanford.edu/group/pritchardlab/structure.
html. The dataset used by Rosenberg et al. (2002) is downloadable from the Rosenberg Lab “Data
sets” webpage: https://rosenberglab.stanford.edu/datasets.html

D12S1638. Sample subject 995 happens to have the same allele, “120,” on both
chromosomes and is thus homozygous for that locus.

A different data file, diversityloci.txt, associates GenBank sequence identifiers
such as D12S1638 with Marshfield Screening Set labels (AFMB002VDS5) linking
the sequence to the tissue sample from which it was sequenced. This link represents
and visualizes an early part of an “omics”-like datapoint journey from samples to
sequences in the workflow of population genomicists. In turn, the GenBank identi-
fier points to a record in NCBI's Nucleotide Database, “a collection of sequences
from several sources, including GenBank, RefSeq, TPA and PDB,” (NCBI 2019).
reflecting a datapoint journey from a HGP reference sequence contributed to this
centralized, online-accessible database. The GenBank sequence label D12S1638 is
itself a reference to an actual sequence of 233 nucleotides, reported at the NCBI
web site.

These several files, maintained at the Rosenberg lab website as “the data” (and
meta-data), correspond to a simple relational data structure that points in one direc-
tion to the tissue sample sources in the Marshfield Screening set of CEPH-curated
cell lines and points in the other direction to the DNA sequences generated from
those cell lines that are eventually encoded in datasets in the Rosenberg lab (and
potentially uploadable to GenBank’s NCBI Nucleotide Sequence Database).

For the text-based cluster analysis methods implemented in program
STRUCTURE, which are used to analyze the dataset in Rosenberg et al. (2002), and
for the project of studying allele polymorphisms in these sequences, all that matters
is that the text used to label the sequences, e.g. “120,” be unique.” Whether the

®The complete reference sequence for locus D12S1638 can be retrieved from a NCBI Nucleotide
Sequence  Database  Fasta search  report  https://www.ncbi.nlm.nih.gov/nuccore/
753031.1?report=fasta. Accessed 5 June, 2018.

"The mathematical method at the heart of the software’s algorithm, latent Dirichlet allocation, is
also used for topic modeling in digital humanities (see Blei and Lafferty 2009). There are journeys
of models and software within and among fields to be tracked alongside the data journeys described
here.
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software actually compares sequence “data” or rather encodings of genotypic dif-
ferences in text labels for these similarities or differences is irrelevant to the form of
analysis and findings presented in the publication, although quite relevant to how
we might interpret their datapoint journeys and what other uses or “re-situations”
might be made of the datapoints and datasets.

The software, program STRUCTURE, is also downloadable from the laboratory
of Jonathan Pritchard, one of its authors, now at Stanford University (Pritchard Lab
2019). The downloadability of the data set, which visualizes a scientific data struc-
ture, and analytical software from a local but accessible website, i.e. a lab web site
rather than a community- or government-maintained online database, is a feature of
the kind of dataset-centric practice I suggest is now widespread in contemporary
biology. This dataset archiving practice occupies a middle ground between the non-
or poorly-circulating datasets of hypothesis-centric traditional practices and the
highly accessible datapoints archived in centralized databases of the datapoint-
centric sciences. It is notable that while web links for this kind of local hosting of
datasets and software tend to break as researchers move from one research organiza-
tion (typically, a university) to another, links to the datasets, software, and refer-
ences do mostly get reestablished and are relatively speaking “findable” (by internet
search) if not by archiving in stable, centrally located internet resources of a federal
government (e.g., NCBI, CEPH) or major NGO (e.g., Coriell, Marshfield, Simons).

3 Dataset Journey Representations: Two Visualizations

Datapoint and dataset structure representations for the Rosenberg et al. (2002) paper
were already introduced in Fig. 2. What I am not talking about is the widely noted
and discussed figures in Rosenberg et al. (2002, Figures 1 and 2) and other publica-
tions using program STRUCTURE (and in its early versions, the separate visualiza-
tion software, DISTRUCT). These are visualizations of the output of the dataset
analysis which are interpreted to produce “big findings.”

The description of this dataset in the supplemental information to the paper
already narrates a dataset journey by relating the dataset constructed and analyzed
for the publication from its source material in DNA extracted from one of the
Marshfield screening sets of tissue samples used as sources of DNA. I describe that
narrative in the next section. Here, I describe two data visualizations that are central
to dataset journey narratives.

Figure 2 displayed a fragment of the Rosenberg et al. (2002) dataset in the form
it takes when the dataset file is opened with the Apple MacOS graphical interface
implementation of program STRUCTURE, version 2.3.4, after I did some “clean-
ing” or “pruning” of the “raw” data file. There was a data journey even from the
“raw-raw” data—that is, the downloadable data file as archived on the Rosenberg
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lab’s dataset web page.® The “raw-raw” data file contains redundant “meta-data,”
i.e. data that is not used by program STRUCTURE for data analysis, but which
makes the data file more human-readable without following cross-references to
other data files, as described above. This meta-data about “pre-defined” populations
embedded in the dataset is also used to interpret what genotype similarity clusters
mean so as to formulate big findings.

Indeed, this meta-data added to the data file is redundant because it is also linked
by a data field in each data record to the “population code,” e.g. “82” standing for
“Karitiana Brazil AMERICA,” which also appears in a separate “meta-data” file
called diversitycodes.txt.” This meta-data must be removed from the data file in
order for STRUCTURE to read it.

So far, I have considered datapoint and dataset representations in data tables
(stored in computer data files). I turn now to visualized representations of datapoint
and dataset journeys. These journey visualizations are not narratives themselves, i.e.
stories of the travels of points and sets through and to various sets, publications and
research projects. Rather, visualizations of scientific data structure representations
can facilitate data journeys as “chronicles” promoting certain sorts of dataset “travel
narratives” in a research community. These visualizations “chart the territory” or
“map the waters” in which dataset “ships” can travel from research project to
research project.

Thus far, I have mentioned the journeys of samples to specimens to datapoints in
dataset assembly, visualized by the kinds of data files discussed above. Next, I
describe two kinds of visualizations of data set journeys linking different datasets
into sequences or chronologies.

3.1 Example: Lab Web Page Dataset Journey Visualization

Rosenberg’s lab “diversity” web page links to a “Data sets” web page with a link
titled: “HGDP-CEPH human genome diversity cell line panel” (Rosenberg Lab
2018). The main “Data sets” page shows that the Rosenberg lab maintains data sets
mostly on humans, but includes non-humans (chickens) and also links to datasets
“hosted by collaborating labs.””1°

This diversity web page provides links to many of the maintained datasets for
human data. It also visualizes a kind of data journey itself. The web page does this
as a structured framework of boxes/panels—a vertical, textual “triptych”—in the

81 discovered the raw data file was not in a format program STRUCTURE could process directly
by trial and error, as have many other naive users. For evidence, see the Google Groups FAQ:
https://groups.google.com/forum/#!forum/structure-software. Accessed 13 August, 2019.

° Additional figures can be viewed in an expanded version of this chapter at: http://philsci-archive.
pitt.edu. For diversitycodes.txt see Rosenberg Lab (2018).

!0Chicken breeds with known population structure are used to test “the utility of genetic cluster
analysis in ascertaining population structure,” see Rosenberg et al. 2001.
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web page. Each panel includes a descriptive title, summary dataset description, ref-
erences to sources, and links to downloadable dataset files. The panels start with the
HGDP 2002 dataset from Rosenberg et al. (2002) at the bottom of the page (reading
up to the top of the page to follow the journey chronologically) or start with the most
recently archived dataset of exome data from 2013 (reading down the page from top
to bottom to retrace the lineage of current work back to source datasets). The trip-
tych is headed (at the top) by a summary of the “lineage” of datasets from 2013 back
to 2002: “[2013] [2011] [2009] [2008] [2006] [2005] [2002].”

Each panel title indicates the character of the dataset as a modification from
HGDP 2002, e.g. “HGDP+other 2013 microsatellites”, indicating that 645 autoso-
mal microsatellite loci were added to the original 377 of the HGDP 2002 study in
the study published by Pemberton et al. (2013). The web page overall visualizes the
journey of the HGDP 2002 datapoints in the 2002 dataset in summary form as each
new dataset (or version) is assembled from previous ones, sometimes noting varia-
tion from other, related or similar datasets referenced in the literature.!

3.2 Example: Excel Spreadsheet Dataset Journey Visualization

In 2006, Rosenberg published a paper attempting to frame the story of a dataset
journey in terms of a different kind of visualization than the vertical triptych in his
Lab’s “Data sets” webpage. Interestingly, because this was also a project concern-
ing the HGDP 2002 dataset, the 2006 project also appears as a place in the dataset
journey in that triptych visualization, titled “HGDP 2006 relatives” (Rosenberg
Lab 2018).

Rosenberg (2006) seeks to put some order into the proliferation of datasets serv-
ing human population genomics ancestry reconstructions by offering a naming con-
vention for datasets and an assessment of which of the datasets that his lab assembled
are appropriate for what kinds of work, based on their characteristics as datasets.

Rosenberg’s dataset visualization is in the form of an Excel Spreadsheet (Fig. 3)
that offers a different kind of triptych than the one previously discussed.

The spreadsheet lists individual HGDP sample donors by sample number (e.g.,
sample donor 995 discussed above). The population codes and “meta-data” of pop-
ulation names, sample locations (usually nation-states) and large scale regions fol-
low. Meta-data information on the sex of the donor is also included. Then, a series
of columns are used to indicate whether each donor’s sample (in the form of DNA
sequence datapoints) is included in datasets that figured in the research projects
marked by publications cited in the column headings.

Wherever a “1” appears in the rows of these columns, the individual’s DNA
sequence data is included among the records of the dataset used in that column’s
publication. By scanning across the columns from left to right, one can see when a

See additional figures in the expanded version of this chapter at: http://philsci-archive.pitt.edu
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Fig. 3 Screen shot of a fragment of the Rosenberg (2006) spreadsheet “SampleInformation.xlIs”.
The figure displays a “triptych” or rather 10-ptych (columns G-P) of points of embarkment/disem-
barkment of datapoints originating in the HGDP-CEPH LCL cell line panel and ending in dataset
H952, which has dropped all data (and records) that include close (1st or 2nd degree) relatives. The
spreadsheet is downloadable from Rosenberg Lab (2018). It is not included as supplemental infor-
mation to the published paper. https://rosenberglab.stanford.edu/data/rosenberg2006ahg/
Samplelnformation.xls. Accessed 26 August 2019

particular datapoint embarked or disembarked the research program (sequence of
research projects) in the Rosenberg Lab. The stops along the journey are from the
HGDP-CEPH sample set, to the dataset analyzed in Rosenberg et al. (2002) to the
dataset analyzed in Rosenberg et al. (2005), to the dataset called H971 to the dataset
called H952.

4 Data Journey Narratives: Datapoints and Datasets

A data journey narrative appears in a particular research publication to tell the story
of the dataset that arrived at the research project reported in the publication and is
analyzed there. Such narratives have the form of stories about “how the dataset got
to its destination,” after a perhaps circuitous route through other research projects,
labs, programs, or specialties.

Dataset journey narratives support a form of narrative explanation (Currie 2018).
However, because they are narratives of dataset journeys, the target of explanation
is not some phenomenon in nature, but rather an explanation of the use of a particu-
lar dataset in a particular research project.

The aim is to explain how and why a particular dataset “arrived” at this particular
destination, given a particular research project. Dataset journey narratives are
needed to persuade an audience to accept the dataset as appropriate for data analysis
and thus to accept the results as findings worthy of circulation.


https://rosenberglab.stanford.edu/data/rosenberg2006ahg/SampleInformation.xls
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4.1 Dataset Assembly Narrative

Rosenberg et al. (2002) describe a dataset derived from 1056 individuals from 52
“pre-defined” populations, sequenced at 377 autosomal microsatellite loci. The
1056 individual DNA samples are a different set than the samples delivered to the
lab from CEPH because not all of those samples could be used for Rosenberg et al.’s
purposes. As they write (Rosenberg et al. 2002 supplemental, 1):

The data set that we analyzed differs from the HGDP-CEPH Human Genome Diversity Cell
Line Panel of 1064 individuals in its inclusion of Japanese individual #1026, whose cell line
could not be produced owing to technical problems, and its exclusions of She #1331, who
was not genotyped, and 8 individuals whose populations had samples of size 1 or 2 (#993,
#994, #1028, #1030, #1031, #1033, #1034, #1035). Individual #1410, who is not included
in the Cell Line Panel, was genotyped, but as the only representative of his population, was
not analyzed. The loci studied, from Marshfield Screening Set #10 (http://research.marsh-
fieldclinic.org/ genetics/sets/combo.html), include a mixture of 377 polymorphic di-, tri-,
and tetra-nucleotide repeat loci spread across all 22 autosomes (2, 19), with 3.8% missing
data. Genotyping was performed by the Mammalian Genotyping Service (19).

This kind of attention to precisely what dataset is being assembled for a particular
investigation is central to the kind of data journey of interest here. Consideration is
given to why individual datapoints may or may not embark on the journey. The goal
is to use as much of the HGDP-CEPH world-wide sample tissue collection as pos-
sible to reflect as much of the world-wide genetic diversity sampled and to provide
the most robust inferences of ancestry relations possible, given the available data
and background knowledge at the time.

Datasets assembled for specific projects seek to answer questions or test hypoth-
eses. In the case of Rosenberg et al. (2002), the question is whether STRUCTURE
can reveal population diversity through study of genetic diversity data without
appeal to “self-identified” population membership of sample donors. The datapoints
and dataset are described, their provenance and relations to previously assembled
datasets are also described, and the reasoning behind the beginnings and endings of
journeys of particular datapoints (or specimens, in the early stages of these data
journeys) is given.

The reasons the data journey takes particular twists and turns are a mix of kinds,
starting from the usual kinds of “cleaning” of “raw” data familiar from other con-
texts and discussed above. “Japanese individual #1026” was included in the
Rosenberg study even though the extracted DNA was not derived from the CEPH
cell line diversity panel due to technical problems with the CEPH cell line. Other
tissue samples were not sequenced and hence could not supply data. Samples that
were included in the Rosenberg study collectively have 3.8% missing data, i.e.
sequences missing for particular loci within the 377 loci sequenced for each indi-
vidual. Missing data reduces the resolution and precision of the analysis, but not so
much that the whole data record for those individuals must be excluded from the
analysis. Some data, in other words, fails to be generated from specimens while
other data is dropped when the records in which they are coded are eliminated from
consideration for various reasons. These are typical kinds of “missing data.”


http://research.marshfieldclinic.org/
http://research.marshfieldclinic.org/
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Fig.4 Workflow diagram following the format of Fig. 1, illustrating specific elements of the data-
set assembly and use of data in the Rosenberg et al. 2002 study

Of more interest is when researchers drop DNA sequences in the transition from
specimens to data because samples don’t meet theoretical requirements of their
“model-driven” analysis tools. Population genetics theory (and statistical sampling
theory) says inferences will be poor for populations represented by only one or two
specimens (i.e. sample size n = 1 or 2), so they are not included in the dataset,
although they are included in the HGDP-CEPH donor blood tissue specimens, lym-
phoblastoid cell lines, and DNA sample “screening sets.”!? This kind of hiatus or
end to a datapoint and sub-dataset journey is the tip of an iceberg of ways in which
data may be “cleaned” or “pruned” in the processing steps leading from material
samples to “raw raw” data to “raw” data to “cooked” or processed data.'* Figure 4
illustrates a workflow for dataset assembly in the work of the Rosenberg Lab fol-
lowing the outline of Fig. 1.

12 Different investigators and labs set different local sample size thresholds based on varying theo-
retical requirements for their specific research purposes, so whether a given datapoint can continue
on a dataset journey depends on the lab and the project.

3The cleaning metaphor supports a useful contrast between “raw” and “cooked” data, even if
Bowker (2005, p. 184) is right that “Raw data is both an oxymoron and a bad idea; to the contrary,
data should be cooked with care.”
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4.2 Dataset Journey Narrative

Of still more interest are beginnings and endings of the journeys of data points that
result from further analyses inspired by working with the data set. These further
practices support stories of data journeys of datapoints from dataset to dataset and
journeys of datasets from research project to research project. They are dataset jour-
neys: a voyage of the Beagle rather than Darwin’s voyage or FitzRoy’s voyage;
voyages of the starship Enterprise rather than Kirk’s voyage or Spock’s voyage.

Samples are gathered together; information is collected from samples and assem-
bled into a dataset; the data journey begins with a scientific study of the dataset.
Small and big findings arise and emerge from this traditional kind of scientific work.
In addition, medium-sized facts arise about the dataset itself, where a medium-sized
fact is a relational fact over the group of datapoints, or a fact derived from the set,
but not extending or applying beyond the sample specimens that led to the group of
datapoints. Medium-sized facts contrast with Leonelli’s (2016) small facts or find-
ings corresponding to individual datapoints and with big facts or findings derived
from the analysis of the whole dataset in the light of a theory, question or hypothesis.

Because of the technical nature of the work of comparing genetic sequences,
results of model-driven analysis in hypothesis-centric research often reveal salient
features of the dataset, e.g. features that identify particular datapoints or small
groups of datapoints as exceptional.'* These are “medium-sized” facts or findings
about the dataset itself, and thus about the sample set or sample sub-sets. These
medium-sized facts can drive dataset journeys less visible than the big fact journeys
in which scientists use data and whose reports grab the headlines when the science
is perceived to have important scientific implications, societal impact or is other-
wise controversial.

One of these less visible data journeys concerns individual 995 from the Karitiana
in Brazil. The challenge in her journey was due to her traveling companion, indi-
vidual 996. Individual/datapoint 995 from the Karitiana remained on the dataset
journey from 2002 to 2006 at least, but when it was inferred that individual 996 was
probably 995’s sister (due to the level of genetic similarity), one of them had to get
off the ship (dataset). Rosenberg (2006) introduced the convention to drop which-
ever among pairs of such datapoints had arbitrarily been given the higher-numbered
label, so Ms. 996’s journey ended while Ms. 995°s continued. In other cases, whole
families had to exit the journey for analogous reasons. This is not how the data jour-
neys would go if socio-cultural anthropologists rather than geneticists were arrang-
ing the journeys, given the fundamentally different orientation of the two disciplines
to family-level data. For anthropologists, families represent important units in the
organization of cultures, but in the context of population-level genomics, they

14Compare Tempini, this volume a, b, on analogous discoveries of middle-sized facts about envi-
ronmental public health datasets, and Hoeppe, this volume, on discovery of “artifacts” in radio
telescope datasets.
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represent complications to sampling assumptions needed to apply theory to data and
thus are to be avoided.

The character of the journeys of the datapoints in the Rosenberg et al. (2002)
dataset does not become apparent until one looks at some of the destinations to
which the dataset traveled. Here, I focus more on dataset journeys within the prac-
tices of the Rosenberg Lab and its collaborations and less on data journeys out into
the wider specialty and beyond where others can download Rosenberg et al.’s data
and software and try to repeat the analysis reported in the publication or construct
new datasets from old. My goal in this chapter is modest: to formulate the idea of
dataset-centric biology, display some of its narrative forms and visualizations, and
underscore its potential value for understanding the organization of contemporary
sciences, using an illustrative case, not to establish its generality or reach.

In 2005, Rosenberg et al. (2005) published a defense of their methods and find-
ings in the 2002 paper. They “expanded their earlier dataset” from *“377 to 993
markers” so they could evaluate critical responses (e.g. Serre and Pidibo 2004) that
human populations are ordered in clines, not clusters. Since this was mostly an
expansion, with new datapoints joining the journey, including datapoints of kinds
other than microsatellite data, I will not further discuss this paper. I note simply that
in 2005 a bunch of new travelers joined on, so we can think of datasets as both
structures serving as vehicles for the travel of datapoints and as destinations: data-
points travel from dataset to dataset, getting on or getting off different ships at vari-
ous “stops.”

A different paper, by Ramachandran et al. in 2005, is more interesting for present
purposes. Certain features of some of the datapoints in the 2002 study were noted,
causing some of them to be dropped and others to be added for this study. The
account of the dataset structure in the “Materials and Methods” section (p. 15942)
is instructive. In this quotation, note that reference (11) is to Rosenberg et al. (2002).

Data. The data set that we analyzed consists of 1,027 individuals from the HGDP-CEPH
Human Genome Diversity Cell Line Panel (10). Several individuals from the collection of
1,056 individuals studied by Rosenberg et al. (11) were excluded from the present analysis.
These included the following: (i) no. 1026, who was studied by Rosenberg et al. (11) but
who was not in the HGDP-CEPH panel; (ii) nos. 770 and 980, who were identified by
Rosenberg et al. (11) as likely labeling errors; (iii) nos. 589, 652, 659, 826, 979, 981, 1022,
1025, 1087, 1092, 1154, and 1235, each of whom was identified by Mountain and
Ramakrishnan (12) as a duplicate sample of another individual included in the panel; (iv)
nos. 111 and 220, who were identified by Mountain and Ramakrishnan (12) as duplicates
of each other but whose population labels differed; and (v) 21 individuals from the Surui
population, an extreme outlier in a variety of previous analyses (11, 13, 14). Individuals not
studied by Rosenberg et al. (11) but analyzed here included the following: (i) no. 1331,
whose genotypes had been unavailable at the time of the Rosenberg et al. (11) study; (ii)
nos. 993, 994, 1028, 1030, 1031, 1033, 1034, and 1035, who were previously excluded as
members of populations with small sample sizes but who were grouped for the present
analysis into Southwestern Bantu (individuals no. 1028, 1031, and 1035) and Southeastern
Bantu (individuals no. 993, 994, 1030, 1033, and 1034) populations. Thus, the present data
set includes two additional populations along with all populations studied by Rosenberg
etal. (11) except Surui for a total of 53 populations.
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In addition to the kinds of data “cleaning” mentioned previously, this paper dropped
a whole population, the 21 individuals sampled from the Surui in Brazil, who live
near the Karitiana by the way, as an “extreme outlier.”” 21 individual data points
were dropped from the journey because of a characteristic of that population as a
whole—bad traveling companions one might say. This points to the dataset as itself
a “fact” or finding produced by the analyses cited. I describe such facts as “medium”
sized because they form the basis for the analyses leading to big facts, but are facts
about the datasets themselves, analogous to the way the small facts of interest here
are facts about individual sample subjects.

Equally interesting is the continuation on the dataset journey of datapoints 1028,
1031, 1034 and 993, 994, 1030, 1033, and 1034 who didn’t make the earlier seg-
ment of the journey from HGDP-CEPH sample set to the dataset of Rosenberg et al.
(2002), but who were allowed to get back into the research program and the overall
dataset journey at a different research project and publication “stop” due to the
small sample size threshold set by Rosenberg’s project. Ramachandran et al. re-
grouped them into Southwestern and Southeastern Bantu, in effect defining new
populations by means of a statistical procedure and adding population labels (“meta-
data”) in the lab rather than as a result of “self-reporting” or “data collection” in the
field. In effect, they were interpreted as coming from different places than their
original “relevance labels” (place of origin) designated, so they in effect, got new
“visas” to travel by Ramachandran et al. (see Leonelli 2011 and 2016 on relevance
and reliability labels).!3

These and other papers appearing between 2002 and 2005 prompted Rosenberg
to publish the 2006 paper described above (Sect. 4.2). It visualizes datapoint jour-
neys to and among datasets in a spreadsheet format. Although this paper can be read
as part of the other visualization of dataset journeys in the Rosenberg lab (on the
datasets web page), this paper can alternatively be read as a new kind of publication
in this specialty: a data “curator” paper, signaling a kind of work analogous to that
of the specialized data curators in the bio-ontology projects Leonelli (2016) dis-
cusses. Instead of tracking changes to datasets within the “materials & methods” or
“supplementary” sections of publications of a research project, Rosenberg (2006) is
a publication aimed at tracking datasets and, more importantly, proposing standards
for naming and using these datasets. This implies a new level of attention to the

SM’charek 2005 writes about the “passports” DNA samples needed to pass from one part of the
forensics lab she studied to another. I use the related metaphor of “visa.” The difference of meta-
phors is that the passport is a license to travel. The visa is a license to travel in a specific place for
a specific period of time. To continue the metaphor, DNA sequences or their tissue samples get
“passports” when they are enrolled as samples in the CEPH bio-repository. To get a visa to be
included in a particular dataset, the “receiving” country—research group in this case—has to
approve. Approval can turn on questions of “desirability” (un-sequence-able tissue samples are
undesirable; duplicates are undesirable) or for “theoretical” reasons (sample size too small).
Barragan, on the other hand, writes about dataset curating practices in terms of data noise and data
silencing as life scientists confront genomic datasets with archaeological, ethnographic, ethnohis-
torical and linguistic datasets about pre-Columbian and contemporary indigenous groups in north-
ern South America (Barragan 2016, 2017).
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ways in which data visualizations (and narratives) set data in motion and contribute
to data travel among research projects.

The curation of HGDP-derived datasets in Rosenberg (2006) is not for the sake
of online database management and curation of sequence datapoints, accessible in
the way the “omics” databases are. Rather, it attempts to curate, by documenting in
a publication, both the dataset that was initially assembled for the 2002 study and
the journeys of the datapoints among datasets as a widening circle of researchers
used and tinkered with the 2002 dataset to produce new datasets. Differently put,
researchers such as Rosenberg (and perhaps those involved in the HGDP more
broadly) seem to be taking a new and active interest in conceptualizing and repre-
senting the “middle-ground” dataset landscape in which many of their data-centric
practices are enacted.

5 A Model of Dataset Journeys and Conclusions

I don’t pretend to have done more than scratch the surface of a case study of dataset-
centric human population genomics. What I hope to have illustrated is that there is
a “middle ground” data landscape between the traditional hypothesis-driven use of
data as familiarly described by philosophies of “scientific method” and the new
ground of data-centric science described so well by Leonelli. I have gestured at
ways in which individual datapoints in datasets, at least in human population
genomic diversity studies, make data journeys that are of neither of Leonelli’s two
kinds, but which resemble them in some respects and to some degree and differ in
other respects. Perhaps other question-driven scientific specialties are also influ-
enced by what is newly afforded in the rapidly changing landscape of computational
and online digital methods, so there may be many forms of dataset-centric scientific
practices waiting to be described. Morgan’s study (this volume) of two kinds of data
journeys in economics regarding national income accounts and indicator series also
concern humans and population data, though with a very different subject matter
and principles for dataset formation and use than the biological genomics studies
considered here.

In this chapter, I have characterized data journeys in terms of a model comprised
of three kinds of components: data structures, data visualizations and data journey
narratives. The details of specific scientific practices involved in producing and
using these components do matter, if we are to understand these data journeys in
middle-ground landscapes of datasets and how they might inform big findings and
facts. This is particularly true of genomic ancestry projects like HGDP and biomedi-
cal projects like personalized genomic medicine. A further result of this case study
is important for present purposes to signal a connection of dataset-centric biology to
characteristic features of emerging data-centric “omics” research practices: the
emergence of a “bioinformatics” practice alongside the basic, craft research process
of asking and answering questions, posing and testing hypotheses.



A Data Journey Through Dataset-Centric Population Genomics 161

A distinct and notable line of investigation emerged in population genomics in
roughly the time frame 2002-2006 around detection of close relationships among
individuals with sequence data in genetic datasets of this kind, both for ancestry and
biomedical studies (e.g. Boehnke and Cox 1997; Epstein et al. 2000). This litera-
ture, reviewing both datasets and software and modeling approaches, flourished to
the point that there are now review articles “benchmarking” different relatedness
inference methods (e.g. Porras-Hurtado et al. 2013; Ramstetter et al. 2017). This is
evidence of a “standards” specialization emerging within dataset-centric population
genomics analogous to the kind of “infrastructure” supporting a bioinformatics spe-
cialization that Leonelli (2011, 2016) discusses for data-centric “omics” biology
(see also Tempini 2017, this volume a, b).

Moreover, Rosenberg’s efforts in (2006) are, I suggest, aimed at supporting a
narrative that steers the dataset journeys of particular datapoints. This is not quite
like the curation that goes on in the world of “omics,” because the target is datasets
that are purpose-built and question-driven. The corresponding findings reported in
this emerging dataset curation literature are medium-sized, regarding these datasets
themselves. The normative directions derive from the standards concerning what
sorts of findings or “big” facts can or should be derived from datasets of particular
kinds or with particular characteristics.'®

The data journey discussed here is not quite like the ones Leonelli describes, nor
like many of those detailed in Howlett and Morgan (2011) on traveling facts. The
journey of the dataset is driven in part by the conventional publication system in
which peer-reviewed publications of findings using these datasets (together with
ancillary visualizations in web pages, spreadsheets and supplementary material)
draw attention to the datasets themselves and provoke scrutiny of the datapoints.
This scrutiny may extend, moreover, to science studies analysts tracing dataset and
datapoint journeys in terms of the components of a model in which data structures,
data visualizations and data journey narratives mobilize datapoints in dataset jour-
neys. These journeys may encourage re-use of the dataset or construction of related
or alternative datasets, adding and dropping datapoints, thus driving the data
journey(s) forward. A different story will be needed for the drivers of “sample sets”
such as blood donor samples, cell lines, and extracted DNA sample sets because the
differences in materiality matter. The contingency of such sample sets being avail-
able to feed the production of datasets is critical to dataset journeys."”

Dataset journeys, classification schemes and data visualizations designed to
maintain and manage them in contemporary biology are driven by a hybrid system
of formal, institutionalized, community-sanctioned publishing and quasi-“samizdat™
or “self-publishing” systems of personal, individual, laboratory, and university-
sponsored websites for distributing datasets and software as well as publications.
Unsurprisingly, there is also an emerging effort to institutionalize these kinds of

1*On the links between data, classification systems and standards, see Bowker and Star (1999).

17Tt remains to be seen whether the model described here applies to sample journeys as well as to
data journeys. Thanks to Carlos Andrés Barragdn for emphasizing this point.
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publication as well, in data journals and dataset archiving services. There is, never-
theless, less standardization of data formats in dataset curation and publication as
displayed in this case study, even if there is substantial standardization of some of
the data content of datapoints due to the rise of data-centric biology and centralized,
shared databases for datapoints.®

The lower degree of standardization is no doubt partly due to the fact that nearly
every population geneticist running a lab today is (or is becoming) a coder who
writes their own software in their own way, typically built to read and analyze data
formatted anachronistically for their own lab’s purposes. It is a relatively manage-
able problem for others to gain access to such data and tools: if the software and the
dataset can be downloaded and the provenance and versioning meta-data for the
software is curated along with the dataset, one can (with effort) get the original
software to analyze the original dataset. Nevertheless, it is a problem. And it entails
different kinds of practices and workflows than biological research had required
before the data and software coding revolutions of the last few decades.'”

It means that data journeys may require software journeys: particular software
versions (and perhaps operating systems or whole virtual machine execution envi-
ronments) may have to chaperone datasets in order for scientific analyses to be
repeated and re-evaluated. Indeed, software versioning is a form of software journey
in this middle-ground landscape between the small landscapes of datapoints and
small facts on the one hand, and the big landscapes of research findings and big
facts on the other.?

One more comparison of dataset-centric biology with the bioinformatics dimen-
sions of datapoint-centric biology will display some similarities and highlight dif-
ferences. Rosenberg also engages in dataset packaging practices which parallel
Leonelli’s (2011, 2016) labeling story. Relevance labels, which signal the value of
datapoints for particular kinds of journeys and analyses, are included in the dataset
(or linked to it) by coding what are called “pre-defined” populations as part of the
data records. These are names like Karitiana, for the name of the people/place of a
certain culturally specific, geographically localized group of people; like Brazil, for
the name of the nation-state in which the Karitiana are (largely) thought to reside at
present; and like AMERICA, for the name of the “region” or “continent” of which
the relevant nation-state is considered part (see Barragdn 2016). As we saw, these
“pre-defined” populations played no role in the cluster based inference of ancestry

18 See Tempini, this volume a, b, for a case where infrastructures are built to systematize, institu-
tionalize and standardize the sourcing, hosting, manipulation and generation of datasets. See also
Tempini (2017). Morgan’s two cases (this volume)—national income accounts and UN indicators
of national “health”—also suggest different subject matters and principles may require or lead to
different respects and degrees of both standards and infrastructure.

19 A recent trend in bioinformatics is to solve this problem by making the entire “execution environ-
ment” of a whole computational “scientific workflow” the basic unit to be prepared for data jour-
neys. Rather than just data, or software or both, this workflow-centric biology involves creating
whole execution environments of data, software and computer operating system as the “basic
units” (Meng and Thain 2017).

2Thanks to Jason Oakes for pressing this point.
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relations in Rosenberg et al. (2002) directly, though they surely did play a role in
attracting the attention of those who conducted the initial sampling effort because
the collectors were interested in sampling human genetic diversity, especially
among small groups that might soon disappear. It is no accident that the HGDP-
CEPH samples are not (all) drawn from nation-state capital cities, for example, nor
from a conventional grid of equally spaced sample locations defined by the geom-
etry of the Earth (constrained by availability of time, money, skill, and interest of
collectors in sampling at a particular geographic “scale”). The HGDP-CEPH sam-
ple panel was made after several years of inconclusive internal battle over what
would be an appropriate sampling protocol for the HGDP (see NAS 1997, for exam-
ple), but it is not the focus of interest and concern here.

Leonelli’s “reliability” labeling practices are also included in Rosenberg’s data-
set curation practices, though the latter do not appear in “evidence codes” stored in
an online accessible “bio-ontology” or “database.” Rather, they appear in the
“Materials and Methods” sections of “ordinary” scientific papers or coded in
archived, downloadable “data” (i.e. meta-data) files devoted to answering a research
question or testing a model-driven hypothesis. Cross-referencing a DNA sequence
dataset via joining ID field, “Pop ID,” is perhaps assurance of both reliability and
readability of the data file.

It is common to describe the sources and methods used to generate a dataset in
any scientific paper worthy of the name. In the case of human population genomics
diversity papers, this extends to discussion of individual datapoints and, increas-
ingly, to a methods literature of papers like Rosenberg (2006) devoted to curation of
datasets apart from the research papers devoted to reporting the “big”-fact findings
of question-driven research projects. Interestingly, unlike the methods sections of
ordinary “omics” papers from molecular biology labs, precious little, if any, space
in the Materials and Methods sections is devoted to reporting on the protocols and
technologies used to actually generate the sequence data. This may seem surprising,
but the data curation tasks for these dataset-centric research programs are less con-
cerned with reporting on sequence data reliability than on sequence dataset reli-
ability for the question at hand.?!

In the illustrative case of dataset-centric research discussed here, there are two
aspects of the case that may require recalibrating the concept for use beyond my
case study of a human population genomics data journey. First, the research is in the
population sciences. Population sciences by their nature deal with collections of
“individuals” (members of populations). There is a sense of compositionality of the
relevant data that is integral to this kind of research. The very idea of a population
is that it be composed of members (or parts, depending on one’s metaphysics).
Surely attention in such contexts is focused on datasets since collections of data-
points tend to be used to represent data about populations, e.g. through statistical
reasoning that treats the collected data as a sample from a population whose

2 Studies of ancient human DNA are something of an exception, since the quality of sequence data
deriving from ancient, even fossil, specimens is a special problem. See e.g. Veeramah and Hammer
(2014) for a relatively recent overview of whole genome sequence data.
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unknown properties are subjects of theoretical inquiry, or through some other mode
of aggregation, extrapolation or inference from information about members to a set
or population. Inquiry may even focus on properties of individuals gua members of
a population, in a form of research known in some fields as “downward causation,”
whereby properties of the group cause (or determine) properties of the members. So
perhaps the notion that the case discussed here illustrates dataset-centric biology
may not generalize beyond population sciences.

A second kind of particularity of the case study is the way it focuses on humans.
Data in human biology can be difficult to collect for familiar reasons of ethical or
legal restraint or constraint, difficulty of access, expense, entanglement with politi-
cal, social or cultural differences between researchers, sponsors and potential “sub-
jects,” and for many other reasons (Barragan 2012). The constraints may be quite
different than for social science data collection about humans (e.g. Morgan, this
volume). Biological datasets collected from human subjects thus tend to be more
“precious” to researchers than data collected from non-humans (though not always
of course—natural history is often pursued in out of the way places that can be hard,
expensive, or unpleasant to get to and work in). Human genome diversity data on
members of the Karitiana in South America, for example, are critical for the story of
human diversity in ways that make these people much more than mere “sample
subjects” (see Barragan 2016).

The virtues of “model organisms” include features that tend to make data collec-
tion easy, cheap, and fast, and the data, in consequence, relatively disposable. As the
unit cost of DNA sequencing falls with advances in technology, on top of scaling
and standardizing effects of commercialization, researchers may find it easier to
collect new fruit fly specimens, extract new DNA samples, and generate new collec-
tions of sequence data for their project-specific uses, than to rely on data already
generated by other labs (that may have used doubtful or out-of-date methods, or
with questionable expertise, or based on samples less specifically suited to a differ-
ent project’s questions and purposes).

I conclude by noting that the case study analysis and model of datapoint and
dataset journeys sketched here indicates not only that new modes of data-centric
science are emerging, but that old ones are transforming—particularly around the
packaging, vehicles, conveyances, and infrastructure that gets organized or reorga-
nized to put research subjects, specimen samples, extracted materials, and data
points and sets into motion on new kinds of journeys to new kinds of destinations.
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Sharing Data, Repairing Practices:
On the Reflexivity of Astronomical Data
Journeys

Gotz Hoeppe

Abstract This chapter probes into how scientists’ discursive interactions are ori-
ented not only to others’ arguments but also toward achieving an agreement on what
data are like and how they ought to be used. It does so by attempting a reading of an
episode of data re-use from recent astronomy that is mindful of researchers’ inter-
actional and discursive work. I focus on the presumed detection, in 2004, of a gal-
axy at record distance from Earth. The original data became public at the time of
publication and were soon re-used and supplemented with new observations by
other teams. Data re-using scientists sought to reconstruct the practices used in
making the discovery claim, and found them at fault. This allowed them to suggest
the repair of data and of data use practices, which were subsequently taken up by the
scientists who had claimed the discovery. I argue that this work was enabled by
astronomy’s discipline-specific architecture for observation, of which objectual,
technological and institutional elements provide contexts and resources for achiev-
ing the reflexive repair of data and data use practices. These astronomers experience
data journeys more as reflexive loopings in screen-mediated work than as itineraries
across physical sites or geographies.

1 Introduction

As Sabina Leonelli notices in her introduction to this volume, Bruno Latour’s notion
of immutable mobiles — ‘objects which have the properties of being mobile but also
immutable, presentable, readable and combinable with one another’ (Latour 1986,
7) — has been a useful starting point for making sense of data journeys in the sci-
ences. In this contribution I take Latour’s notion as a point of departure for probing
into how digital data become ‘tools for communication’ (Leonelli 2016, 69) in
astronomical research, oriented not only to the production of specific results but
also to the repair or correction of data analysis practices. In doing so I take note of
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how data journeys in astronomy are shaped by its disciplinary setting in terms of
researchers’ shared object of interest (the sky), their use of digital infrastructures
and data standards, as well as their largely shared access to telescopes and data. This
has pervasive effects on the mobility and uses of data in astronomy. One of these is
how it enables practices to be reflexive, that is, how earlier observations and inter-
pretations can be witnessably revised in sequences of action.!

Hans-Jorg Rheinberger (1997, 106) has observed that, by making (traces of)
transient events durable and available in many places and at various times, immu-
table mobiles are ‘able to retroact on other graphematic articulations — and, what is
most important, not only on those from which they have originated.” Drawing on
William Ivins (1953) and Elizabeth Eisenstein (1979), Latour (1986, 19-20) can be
read as illustrating this retroaction with the impact of printing technology on early
modern astronomy, which made it possible for astronomers to notice differences
and inconsistencies in data, allowing them to use new observations to re-assess
prior ones.

The retroaction that Rheinberger describes is worth a closer look if one seeks to
gain insights into contemporary data uses as social and material practices. For one
thing, it brings the sequentiality and temporality of scientific work into focus. New
data can lead researchers to re-consider prior records. They can spot differences
where data were expected to show ‘the same,” alerting data users to details of the
unavoidably local and contextual production and interpretation of data. In its course,
data may be used-as-is, be dismissed, or repaired.’

When conceived as machine-generated ‘inscriptions’ (Latour and Woolgar
1979), digital data may appear to be text-like, a form of writing. The transmission
of writing has been commonly regarded as fundamentally distinct from dialogical
exchanges in co-presence (Peters 1999). Sybille Kramer expresses this view starkly
when she writes that ‘[t]Jransmission is precisely not dialogical: the goal of technical
communication is emission or dissemination, not dialogue. We can thus clearly dis-
tinguish between the personal principle of understanding and the postal principle of
transmission’ (Krdamer 2015, 23). As conversation analysts have demonstrated, talk-
in-interaction (whether in face-to-face situations or mediated through telephones or
screen-based media) is shaped by the ongoing repair of utterances: fellow conversa-
tionalists routinely resolve the meaning of indexical, context-dependent utterances
in the ‘here and now’ of their interaction, and thus maintain mutual understanding
and communicative order concurrently. For example, a speaker may correct an
utterance upon noticing her recipient’s misunderstanding — a case of self-repair. In
doing so participants maintain intersubjectivity (Schegloff 2006).

By contrast, uses of texts appear to be subjected less to the ‘tyranny of account-
ability’ (Enfield and Sidnell 2017) characteristic of social interaction in co-presence

'T shall elaborate on this ethnomethodological usage of reflexivity later in this text. Always under-
stood as temporal and sequential, it is different, for example, from the postmodern concern of
ethnographers about their role in doing fieldwork.

>The removal of an artifact and the (re-)construction of missing metadata would be two kinds of
repair of scientific data.
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(Deppermann 2015). Interpreting texts is less constrained than the interpretation of
utterances in conversation, but also more necessary (McHoul 1982; Livingston
1995). But because of this, certain features of texts become more prominent and
consequential for assuring the success of communication at a distance, including
the resort to numbers (Porter 1995; Heintz 2007).

Some work on writing argues that the schism between transmission and dialogue
is not as radical in practice as Kridmer and others posit in principle. Thus, Dorothy
Smith (2001, 175-176) suggested to conceive of the social, organizational and insti-
tutional uses of texts, especially of printed materials, as

text-reader conversations in which, unlike real-life conversations, one side of the conversa-
tion is fixed and unresponsive to the other’s responses. (...) However the reader takes it up,
the text remains as a constant point of reference against which any particular interpretation
can be checked. It is the constancy of the text that provides for the standardization effect.
(...) Text-reader conversations are embedded in and organize local settings of work. (...) In
standardizing one ‘party’ to every text-reader conversation, the terms of all conversations
with the ‘same’ text are standardized. Among participants, an open-ended chain is created:
text-reader-reader-reader-.

Much like Latour (1986), Smith explores the consequences of the spread of
‘identical copies’ to multiple sites, yet she focuses on the institutional, regulatory
and always again locally situated uses of texts. If digital media technologies provide
new possibilities for communication, one may wonder if, in scientists’ work with
digital data, the schism of transmission and dialogue is likewise challenged.

Building on studies of social interaction and Alfred Schiitz’s (1967) phenome-
nology of the social world, Charles Goodwin illustrates how social actors perform
‘co-operative, accumulative action on materials provided by predecessors who are
not present’ (Goodwin 2018, 248). He argues that this pertains characteristically to
scientific data production (Goodwin 2013, 8). Witnessing the training of an astron-
omy PhD student I observed that the work of combining data from different tele-
scopes is not only sequential, temporal, and contextual, but also reflexive (Hoeppe
2014). That is, past actions and interpretations were commonly re-assessed, and
repaired as this unfolding work was oriented to the (re-)construction of natural
order. For example, when the output of an algorithm for parameter estimation was
assessed and deemed implausible (yielding galaxies that were ‘too bright for their
distance’), calibration exposures were re-inspected, resulting in the identification of
an artifact of straylight that was subsequently subtracted to yield better calibrated
‘science images’ on which the algorithm was re-run. Involving such instances of
repair this work bears a resemblance with repair in talk-in-interaction and correc-
tion in instructional settings as it has been studied by ethnomethodologists and con-
versation analysts (Macbeth 2004; Schegloff 2006).? It also resonates with studies

3Ethnomethodology is a sociological approach to the study of human sense-making practices
rooted in phenomenology. Following Garfinkel (1967), it inquires into how people achieve mutual
understanding and social order through practices that are inevitably embodied, witnessable, tem-
poral and sequential. See Lynch (1993: 15-17) for a refined account of ethnomethodological
reflexivity.
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that have expanded and elaborated this notion of repair to address the maintainance
of infrastructures and socio-material orders (Henke 2000; Graham and Thrift 2007,
Schaffer 2011; Sims and Henke 2012).

My aim in this chapter is to make the notions of repair and reflexivity fruitful for
the study of data journeys in the natural sciences. I do so by attempting a reading of
an episode of data re-use from recent astronomy. I focus on the presumed detection,
in 2004, of a galaxy at record distance from Earth. The original data became public
at the time of publication and were soon re-used and supplemented with new obser-
vations by other teams. I inquire into how data re-using scientists sought to recon-
struct the practices used in making the discovery claim, and found them at fault.
Doing so allowed them not only to suggest the repair of data (such as removing
artifacts) but also the repair of data use practices, which were subsequently taken up
by the scientists who had claimed the discovery. I shall argue that this work was
enabled by astronomy’s discipline-specific ‘architecture for observation,” of which
objectual, technological and institutional elements provide contexts and resources
for achieving the reflexive repair of data and data use practices. Before describing
and interpreting this episode (in Sects. 3 and 4) I sketch the architecture of astro-
nomical observation in which it unfolded (Sect. 2).

While I draw mainly on published sources, the episode I describe happened
when I worked as an editor and staff-writer of the popular astronomy magazine
Sterne und Weltraum. 1 wrote two pieces about it (Hoeppe 2004, 2005). This maga-
zine’s editorial offices are located at the Max Planck Institute for Astronomy in
Heidelberg (Germany), a leading research institute, where I benefitted from wit-
nessing rumour about the claimed discovery and assessments of it. This chapter is
also informed by my subsequent 18 months of ethnography on digital astronomical
research practices, conducted between 2007 and 2010, followed by re-visits between
2010 and 2017, as well as by my own graduate training in astrophysics.

2 An Architecture for Observation: Enabling Reflexive Uses
of Data

Seeking to gain insights into data journeys in contemporary astronomy as a social
and material practice, I first identify three recurrent disciplinary aspects that come
to matter therein: It is marked by astronomers’ shared practices of observing and
re-observing objects in the sky (a), by their data being almost exclusively digital and
available in a standard format (b), and by the shared access to many observing
facilities and much observational data (c). The first of these — an object or environ-
ment, of sorts — is specific to astronomy (although reference to shared environments
or objects is common in other disciplines as well). The other two — a set of technolo-
gies and social institutions — are shared to a certain degree with other scientific
disciplines.

Together these aspects contribute essentially to what I shall call the architecture
of contemporary astronomical observation. It is a relatively stable, and partly
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institutionalized, configuration that is shared by diverse users throughout various
projects. Today encompassing all branches of astronomy, this architecture has been
shaped by the use of satellite observatories and radio telescopes (Hoeppe, in prepa-
ration). Data need not be digital or public to be able to travel, nor does the sky have
to be fixed for this to succeed, but in contemporary astronomy the three aspects —
(a), (b) and (c) — are central to researchers’ experience.* Here I prefer ‘architecture’
to the notion of ‘knowledge infrastructure’ (Edwards 2010; Borgman 2015; Hoeppe
2019a) for drawing attention to the discipline-specific, situated and material setting
of observational astronomy and its pervasive effects on the mobility and uses of data.

My use of ‘architecture’ is informed primarily by Michael Lynch (1993) and
Charles Goodwin (2010). Drawing on work by Gurwitsch, Merleau-Ponty and
Foucault, Lynch (1993, 132) inquired into how acts of observation are shaped and
constrained by disciplinary ‘archi-textural environments’ that comprise buildings,
laboratory set-ups and other equipment. Goodwin (2010, 107) conceives of an
‘architecture for perception’ as ‘a physical object that embodies a solution to a
repetitive cognitive task posed in the work of the community using it.” My use of
‘architecture’ resonates more loosely, but still pertinently, with Knorr-Cetina’s
(2003) notion, informed in turn by Fligstein (2001), of the reflexive architecture of
financial markets, wherein traders engage (and co-constitute) a shared object (a
financial market) through mediating digital technologies.

2.1 Object: ‘Astronomy is About Observing and Re-Observing
Sources on the Sky’

In a blog post, New York University astronomer David W. Hogg (2008) noted in
passing that ‘[a]ll of astronomy and astrophysics is built on the observation and
reobservation of sources on the sky. Doing so is contingent on the stability or
‘immutability’ of the sky that has been a commonplace for astronomers since
Antiquity (Evans 1998). While some objects are known to move in respect to this
apparently stable background, most celestial objects can be found again by refer-
ence to patterns of stars or celestial coordinates. These are dominant organizing
principles for accessing observational data.

Whereas some ancient Greek philosophers famously imagined the astronomical
sky to be a material sphere surrounding all observers on Earth (Aristotle 1939),
contemporary astronomers tend to define it as ‘a two-dimensional distribution of
intensity of electromagnetic radiation’ (Léna 1989, 245). But it only becomes a
‘two-dimensional distribution’ when thus represented using media like paper, pho-
tographs or digital technologies. The epistemic benefits of observing and re-
observing objects in the sky are contingent on this use of media. In using diverse

*These three aspects do not characterize astronomical work exhaustively. Other elements of this
architecture would be, for example, the implicit cosmology (Hoeppe 2014) that astronomers share,
as well as widely shared tools, including the SExtractor code mentioned below.
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media, astronomers’ ‘mundane reason’ is oriented to reflexively producing consis-
tent representations of the ‘same’ sky despite ever-present noise and artefacts in
their data (Hoeppe 2014, 2019b; cf. Pollner 1987). In such work, cartographic refer-
ence posits the uniqueness of the world as a methodological maxim (Giere 2006) —
an assumption that facilitates robustness reasoning in astronomy (cf. Wimsatt 2012
[1981]; Wylie, chapter “Radiocarbon Dating in Archaeology: Triangulation and
Traceability”, this volume).

2.2 Technology: Astronomical Data Are Digital, and Utilize
a Standard Format

A second aspect of contemporary astronomy’s architecture of observation is techno-
logical. Unlike the enormous diversity of materials that biologists, oceanographers
or archaeologists can use (Leonelli 2016; Halfmann, this volume; Wylie, this vol-
ume), almost all data in contemporary astronomy are digital recordings of cosmic
radiation. To unpack the specific salience of the digital for the travel of data, it is
necessary to refine Latour’s (1986) notion of immutable mobiles, which included,
among others, hand-drawn maps, machine generated inscriptions and printed
tabulations. Rheinberger (2011, 344) suggests that the traces produced in laboratory
experiments become ‘data proper’ (and proper immutable mobiles) only when they
can be easily stored and retrieved. In my reading, he appears to be close to suggesting
that ‘data proper’ are symbols. In Peirce’s (1992 [1894]) classification of the relation
between signs and their objects, traces are indices and represent their object by
contiguity. Photographs are indices as well as icons, signs which correlate with their
objects by resemblance. Beyond this, digital photographs are also symbols, since —
constituted by arrays of numbers, in binary format or otherwise — they use notational
conventions. This resonates with an understanding of the digital as the ‘encoding’
of ‘information’ that permits its subsequent retrieval without loss (e.g. Dourish
2017, Chapter 1).

Invented in 1969, Charged-Coupled Devices (CCDs) are found in most digital
cameras and at all observatories today (Smith and Tatarewicz 1985; McCray 2014).
These detectors use the photoelectric effect to produce grid-shaped pixel images
which can be read out and then stored, retrieved or transmitted as digital files. Not
only are they very sensitive, and — once cooled with liquid nitrogen to reduce quan-
tum noise in the detector — can be exposed for several hours. CCDs also are very
linear, recording incoming light in direct proportion to the exposure time. This
implies that their outputs are directly amenable to arithmetic calculations, including
the pixel-by-pixel addition, subtraction and division of images, with generative uses
for epistemic work (Hoeppe 2019b). The linearity of CCDs also allows astronomers
to calculate the exposure time necessary for reaching a specific sensitivity. This
encourages conceiving of data in terms of the ‘abstract time’ of exposures and
facilitates scheduling observing time — a requirement for the institutionalization of
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service mode observing, in which observatory staff members produce data for
absent data users (Hoeppe 2018).

In 1979, astronomers defined FITS (Flexible Image Transport System), a shared
data format to ‘transfer regularly gridded astronomical image data between differ-
ent locations’ (Grosbgl et al. 1988, 359; cf. also McCray 2014). It was quickly
adopted and endorsed by all major observatories and space agencies. FITS files are
calculable objects which link metadata to images and tables; they have been the
dominant data format in astronomy for more than 30 years. The FITS format has
shaped astronomers’ understanding of what their data are like.> Its dominance con-
trast with the diversity of data formats in disciplines like biology (Leonelli 2016),
the Earth sciences (Halfmann, this volume) and economics (Morgan, this volume).

2.3 Social Institutions: Sharing Instruments and Data

The third aspect of astronomy’s architecture for observation is institutional.® Since
the 1960s, a dominant fraction of astronomical data has been produced by public
observatories built and operated using tax money. In their process of allocating
observing time, peer-review committees at major observatories and space agencies
consider proposals from a diverse, international community of academic users.
Current practices of observation and data management are deeply informed by how
satellite telescopes and radio observatories have been operated since the late the
1970s. These data have been digital throughout. Produced mostly at public institu-
tions, they were made exclusively available to applicant users only for a period of
proprietary use (typically 6 or 12 months), after which they became public. The
commitment to do so instigated the formation of public data archives. Another
defining element of the operation of satellite and radio observatories was the intro-
duction of service-mode observing (Hoeppe 2018). Authors of observing projects
can use data earlier, but they do not have preferential access to the local context of
data production, including the ‘tacit knowledge’ of observatory staff members.

3 Re-Using Data to Assess an Astronomical Discovery Claim

Given this background I now consider a discovery claim and its subsequent evalua-
tion, in which the original data, available publicly at the end of a period of proprie-
tary use, were re-used and re-assessed in the light of additional observations.

5The dominant status of FITS as astronomy’s unique data format has been challenged recently.

®Here I adopt Hart’s (2001, 136) convenient definition that an ‘institution is an established practice
in the life of a community or it is the organization that carries it out.”
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3.1 Record Distance: “A Lensed Galaxy at z = 10.0”

In 2004, a group of five astronomers led by Roser Pell6 of the Observatoire Midi-
Pyrénées in Toulouse (France) announced the discovery of a galaxy at record dis-
tance from Earth (Pell6 et al. 2004a). These researchers had used detectors at three
large telescopes to observe clusters of galaxies, which, because of their considerable
mass, are thought to act as gravitational lenses which focus the light emitted from
faint distant background sources. By utilizing this ‘gravitational telescope,” they
hoped to exceed the sensitivity of previous searches for the most distant galaxies.
What astronomers call redshift (abbreviated as z) is a measure of how much the
wavelengths of the light emitted by cosmic objects are stretched due to cosmic
expansion, shifting specific spectral features to longer wavelengths. Adopting a spe-
cific cosmological model allows computing both the distance and the look-back
time, that is, how long this light has traveled to reach observers on Earth. Pell6 et al.
claimed to have discovered a galaxy at redshift 10.0 behind the galaxy cluster Abell
1835, corresponding to a look-back time of more than 13 billion years. This was a
momentous claim, given that spectroscopically confirmed, and thus presumably
reliable, record-redshifts had increased more or less steadily from z = 5.7 in 1993 to
‘only’ z = 6.5 in 2004, with a few redshift 7 candidates awaiting spectroscopic con-
firmation (Hu and Cowie 20006).

The Toulouse team relied on two lines of evidence. The first was a series of digi-
tal pixel images taken through a series of broad-band filters (each transmitting light
of a specific wavelength range) in visible and near-infrared light using the Wide-
Field/Planetary Camera (WFPC2) of Hubble Space Telescope (HST), the 3.6-meter
Canada-France Hawaii Telescope (CFHT) on Mauna Kea (Hawaii) and, with the
Infrared Spectrometer And Array Camera (ISAAC) at one of the European Southern
Observatory’s (ESO) four 8-meter Very Large Telescopes (VLT) on Paranal (Chile).
These data, throughout in FITS format, were obtained in service mode. Pell6 et al.
first reduced the digital images of Abell 1835, detected objects using SourceExtractor
(Bertin and Arnouts 1996), a code widely used in the community, and assembled a
catalogue of photometric measurements of the detected sources in the exposures of
all the filters used.

As in other attempts to find distant, young galaxies, Pell6 et al. then searched for
a discontinuity in the observed spectral energy distributions. To qualify as candidate
high-redshift galaxies, objects had to be detected at longer (near-infrared) wave-
bands only, but not at shorter (visible) ones. The ‘break’ in-between, ascribed to the
observed wavelength of the redshifted Lyman o spectral emission line of hydrogen,
was expected from previous observations of distant galaxies and simulated model
spectra.

Object #1916 in Pell6 et al.’s catalogue was the most promising candidate. It was
not detected in visible light, but in three near-infrared wavebands, with an apparent
‘jump’ between the so-called J-band (around 1.26 pm) and the H-band (around
1.65 pm; Fig. 1). This suggested a redshift around 10 to Pell6 et al., even though
detections in each single detection were only marginally statistically significant.
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Fig. 1 Figure 1 of Pell6 et al. (2004a), showing digital photographic negatives of exposures of the
Abell 1835 galaxy cluster using the Infrared Spectrometer And Array Camera (ISAAC) at the Very
Large Telescope (VLT, Chile; above) with exposures of the field around the candidate high-redshift
galaxy #1916, as taken with the WFPC2 camera on board the Hubble Space Telescope in the visual
R band (bottom left) and the near-infrared J-, H-, and K-bands using ISAAC (bottom right). Pell6
et al. claim the detection of #1916 in the J-, H- and K-bands. (Reproduced with permission © ESO)

The Toulouse team’s second line of evidence was a spectroscopic analysis. They
recorded spectra of #1916 in the J-band, also with the ISAAC instrument at the
VLT. Long exposures taken in two different observational set-ups suggested to them
a statistically significant signal of a spectral line at a wavelength of 1.337 pm.
Interpreting it as the redshifted Lyman a emission, they inferred a redshift of 10.0
for #1916. Pell6 et al. argued that finding a galaxy at such a high redshift, whose
light was emitted only 460 million years after the big bang, was in accordance with
theoretical models of galaxy formation and cosmology. On March 1, 2004, ESO
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published a press release entitled “VLT smashes the record of the farthest galaxy
known.”” It was widely taken up by popular news media.

3.2 Three Hot Pixels

Pell6 et al.’s ISAAC/VLT observations became public through ESO’s data archive
website on March 3, 2004, one year after the observations were recorded, and 2 days
after publication of the press release. Several scientists retrieved the data for scruti-
nizing the analysis and for re-assessing the data in light of additional observations.
Soon thereafter the Toulouse team’s second line of evidence was challenged.
Stephen Weatherley from Imperial College London and colleagues processed the
spectroscopic data with an independent approach (Weatherley et al. 2004). After
failing to confirm the spectral line, they tried to identify the discrepancy with the
analysis of the Toulouse team of Pell6 et al. (2004a), which they refer to as P04, by
replicating their procedure:

To find the cause of the discrepancy between our results for the Lya line and those
reported by P04, we re-reduced the data following the principles of P04, i.e. subtracting
frames in pairs, then wavelength calibrating the frames, rebinning onto a linear wave-
length scale. In this process we made a careful check for bad data. We identified three
variable hot pixels® [pixels which did not record incoming light linearly and have to be
excluded from the analysis] which result in spurious positive flux in four of the sky-sub-
tracted frames in the region of the emission line. We confirmed that these are very easily
identified when the frames are registered to the nearest pixel, but are harder to spot when
the data are rebinned in the wavelength calibration step. The summed spurious positive
flux, when averaged into the entire data set, corresponds approximately to the flux mea-
sured by P04; therefore these variable hot pixels plausibly account for the difference
between our results and those of P0O4.

3 These have coordinates (28, 761), (28, 836), (919, 790) in the raw frames. (Weatherley
et al. 2004, L.32)

Weatherley et al. recognized that one step in the reduction procedure adopted by
Pell6 et al. (2004a) — ‘rebinning the data onto a linear wavelength scale’ — had
caused them to fail to identify the three hot pixels as artifacts that, in a proper analy-
sis, had to be removed from the data. In other words, Weatherley et al. could repli-
cate the signal reported by Pell6 et al. only if making what they thought was a
mistaken use of the data. By listing the positions of the hot pixels in the raw frames
in a footnote, Weatherley et al. made the Toulouse team accountable in detail to their
treatment of the raw data.

"http://eso.org/public/news/eso0405/ (accessed 20 April 2018).
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3.3 A Transient Source?

It did not take long until the Toulouse team’s first line of evidence (an object detected
with the photometric properties of a high-redshift galaxy) was challenged as well.
Only in combination with the photometry measured through broad-band filters was
the high-redshift interpretation of the spectral line plausible. A single spectral line
itself would not have provided substantial evidence for any galaxy’s redshift, since
the spectra of young, intensively star-forming galaxies exhibit several perspicuous
spectral lines at widely different wavelengths. Their individual detection would
point to different, and generally smaller, redshifts. Pell6 et al.’s claim that the spec-
tral line detected of #1916 was the redshifted Lyman o emission of a galaxy criti-
cally depended on the detected discontinuity in emission between the near-infrared
J and H wavebands.

However, as pointed out by a team led by Malcolm Bremer of the University of
Bristol (UK), both of these detections were ‘not highly significant’ (Bremer et al.
2004, L1). Shortly after the publication of Pell6 et al.’s paper, Bremer and his col-
leagues were granted two blocks of Director’s Discretionary Time® for using the
NIRI (Near Infra-Red Imager) camera at the 8-meter Gemini North telescope on
Mauna Kea (Hawaii) to obtain a deeper exposure of #1916 in the H-band. In their
resulting publication, Bremer et al. (2004) state that they aim to ‘better constrain the
H-band photometry (...) and to investigate the morphology of the source under the
excellent seeing conditions that are often attainable at Gemini-North’ (Bremer et al.
2004, L2). Thus, they write that they are not merely out to replicate Pell6 et al.’s
claim but seek to refine their interpretation.

Even though Bremer et al.’s (2004) Gemini NIRI observations had been taken
under excellent conditions and being significantly deeper, i.e. more sensitive, than
the ones taken for Pell6 et al. at the VLT, they failed to detect #1916 in the H-band.
Their paper is a comprehensive exercise in making sense of this non-confirmation.
They did so by first re-reducing Pell6 et al.’s H-band data, which they showed side-
by-side along with their deeper H-band image (Fig. 2), confirming that their photo-
metric calibration agrees well with that of Pell6 et al. Next, Bremer et al. set out to
probe whether, with their method and new data, they could have accidentally failed
to detect #1916. For doing so they placed artificial objects into their digital expo-
sures and demonstrated that, using their source detection and photometry algo-
rithms, they could retrieve the properties of these objects, illustrating the soundness
of their measurements. As such, they called the discontinuity between the J- and
H-band fluxes into question, and with it a critical piece of evidence for the redshift
of 10.0. Maintaining a cautious and considerate tone throughout, Bremer et al. dis-

$Demonstrating that one aims to conduct observations on a ‘hot and highly competitive topic’ is
one legitimate rationale for submitting a proposal for Director’s Discretionary Time at the European
Southern Observatory. See: https://www.eso.org/sci/observing/policies/ddt_policy.html (accessed
14 September 2017).
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Fig. 2 Figure 1 of Bremer et al. (2004), showing their re-reduction of Pell6 et al.’s (2004a, b)
H-band image taken with ISAAC at the VLT (right) along with new H-band observations made
with the NIRI camera at the Gemini North telescope at Mauna Kea (Hawaii). Bremer et al.
emphasize that they have used the same display parameters as Pell6 et al. Note that these images
are rotated relative to those shown in Fig. 1. (© AAS. Reproduced with permission)

cuss that #1916 may not existent or be intrinsically variable, considering if a
transient object in the outer solar system could have been spotted in some expo-
sures. They conclude that ‘the reality of any source at this position [of #1916] has to
be strongly questioned’ (Bremer et al. 2004, L4).

The lack of a detection at visible wavelengths was another piece of Pell6 et al.’s
evidence for the high redshift of #1916, an argument informed by model spectra
energy distributions of young star-forming galaxies. To probe this further, mem-
bers of Bremer’s team, now under the lead of Matt Lehnert of the Max Planck
Institute for extraterrestrial Physics in Garching (Germany), succeeded to obtain
Director’s Discretionary Time at the VLT to obtain additional deep imaging in the
(visible) V-band. They wrote: ‘A V-band detection would be decisive: it would
demonstrate beyond any doubt that the source is not at z = 10’ (Lehnert et al. 2005,
81, emphasis in original). Other than in their previous paper, their objective now
appears to challenge Pell6 et al.’s discovery claim. Despite going deeper than Pell6
et al.’s previous V-band images, which had been taken with the Hubble Space
Telescope, and with assessing their detection limit by again placing faint artificial
objects into their digital exposure and retrieving them using algorithms, Lehnert
et al. fail to detect #1916 in the V-band. They note that, ‘[f]Jormally, a nondetection
is consistent with the candidate having a redshift of 10’ (Lehnert et al. 2005, 82),
and then embarked on a long critical discussion of how a transient source, such as
a supernova explosion or an object moving in the outer solar system, could have
conspired to produce the signal that Pell6 et al. claimed, finding none of these sce-
narios compelling.
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Fig. 3 Figure 1 of Smith et al. (2006), showing re-reductions of Pell6 et al.’s (2004a, b) H and K
near-infrared images of the field around the position of the high-redshift galaxy candidate #1916.
Note that these images are rotated relative to those shown in Fig. 1. Using the same data, Smith
et al. fail to replicate Pell6 et al’s H- and K-band detection. (© AAS. Reproduced with
permission)

3.4 Lostin the Noise

Yet another group of astronomers combined new observations of #1916 with a re-
analysis of Pell6 et al.’s ISAAC/VLT data. For an independent study of Abell 1835,
Graham P. Smith of the California Institute for Technology and colleagues at the
University of Arizona (USA) had been granted spectroscopic observations using
LRIS, the Low-Resolution Imaging Spectrograph at the 10-meter Keck telescope on
Mauna Kea (Hawaii), and infrared images taken with the Spitzer Space Telescope,
a satellite observatory. These researchers were able to modify their observing run
with LRIS so as to include the position of #1916, and to search for it in the Spitzer
images which had been scheduled prior to Pell6 et al.’s discovery announcement.
Neither of these observations yielded a detection at the position of #1916. It is note-
worthy that Smith had been the principal investigator of the Hubble Space Telescope
WFPC2 observations of A1835 that Pell6 et al. (2004b) (re-)used.

Smith et al. (2006) then went on to re-analyze Pell6 et al.’s H- and K-band data
(see Fig. 3). After not detecting #1916 with what they regarded as a proper analysis
set-up, they experimented with alternative algorithm settings (smoothing the
images, varying the size of the detection area etc.) to find out under which condi-
tions Pell6 et al.’s near-infrared images would yield the detection they claimed.
Doing so was similar to Weaverley et al.’s (2004) re-analysis of Pell6 et al.’s ISAAC/
VLT spectra. Smith et al. (2006) wondered how the apparently elongated shape of
#1916 (as seen in Fig. 1, center of the bottom panel, and Fig. 2, right image) could
be reproduced. They found that only, and inappropriately, searching for objects at an
angular scale smaller than the resolution of the exposures would yield the stated
detection at the position of #1916. Doing so would make it one of 500 comparably
large statistical fluctuations across the field, each of which could have been mistak-
enly held for a detection. They conclude that ‘there is no statistically sound evi-
dence for the existence of #1916’ (Smith et al. 2006, 580).
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3.5 The Toulouse Team Responds to Its Critics

Progressively faced with these accounts, the Toulouse team first endorsed Bremer
et al.’s speculation that #1916 might be variable and announced a more detailed
investigation (Péllo et al. 2004b).° Two years later they presented a comprehensive
analysis of their search for distant galaxies in the fields of the galaxy clusters A1835
and AC114 (Richard et al. 2006). It includes improved photometry of #1916, which
they rename as A1835#8, and, in separate online material, a newly estimated red-
shift: z = 7.38, which is much lower than the claim of a record redshift (Richard
et al. 2006, Online Material, p. 4). Citing Lehnert et al. (2005) and Smith et al.
(2006), Richard et al. acknowledge in their main paper that ‘the photometric proper-
ties of this source are still a matter of debate’ and notice that ‘its nature (and hence
also its redshift) presents a puzzle’ (Richard et al. 2006, 873). They drop it from
their list of high redshift galaxy candidates without addressing the alternative analy-
ses of Bremer et al. and Smith et al., whose data had meanwhile become public.!

All critics of the Toulouse team acknowledged communications with Roser Pellé
in their publications (Weatherley et al. 2004, L29, L30; Bremer et al. 2004, L4;
Lehnert et al. 2005, 84; Smith et al. 2006, 581). In their 2006 paper, the Toulouse
team in turn acknowledges its critics” ‘useful comments and discussions’, including
Graham Smith and his co-author Egichi Egami (Richard et al. 2006, 879). A closer
reading of their paper suggests that the Toulouse team’s refined data analysis is
informed by their critics. The Online Materials to their paper are particularly inter-
esting. There they describe improvements in the data reduction and attend carefully
to the assessment ‘false-positive detections.” Not only did they now probe their
completeness statistics with inserting (and algorithmically retreiving) artifical stars
into their digital images (Richard et al. 2006, 867), as Bremer et al. (2004) had done
(see above). They also argue for a careful analysis of the noise properties of near-
infrared images that echoes the comments and recommendations of Smith et al.
(2006). These Online Materials thus communicate the Toulouse team’s adoption of
specific sequential operations of work with near-infrared exposures first adopted by
secondary data users. As such, members of the Toulouse team repaired (or cor-
rected) its data analysis practices.

On September 27, 2010, the European Southern Observatory added a note to the
2004 press release on its website, stating that the ‘identification of this object with

?Since the field observed by Pell6 et al. (2004a) is located in a position on the sky where models
of gravitational lensing in the gravitational field of A1835 predict large magnifications of sources
at a wide range of cosmic distances the probability of detecting variable sources is increased.

19Tt is only in a non-peer reviewed venue, ESO’s quarterly magazine The Messenger, that members
of the Toulouse team defended their analysis against the criticism of Bremer et al. (2004), Lehnert
et al. (2005) and Smith et al. (2006). Notably, this paper (Schaerer et al. 20006) is co-authored by
Egichi Egami, a co-author of Smith et al. (2006). It did not elicit a response in a peer-reviewed
publication.
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a galaxy at very high redshift is no longer considered to be valid by most
astronomers.’!!

4 Discussion and Conclusions

This discovery claim and its subsequent dismissal is an episode of astronomical data
journeys that involved 18 astronomers and data from seven different detectors
attached to four large ground-based telescopes (one in Chile, three in Hawaii) and
two satellites. These diverse data ‘met’ in ‘cartographic’ digital images, as well as
in discipline-specific representational spaces: in tables listing measured radiation
fluxes as a function of wavelengths, and in their graphical representation as spectral
energy distributions (SEDs), typically with model SED shapes overlaid (as in Fig. 1
of Pell6 et al. 2004a). Once its proprietary period had ended, Pell6 et al.’s (2004a)
ISAAC/VLT data were being successively re-analysed in the light of additional
observations, and the question turned to what Pell6 et al. had done with the data to
see what they saw. Given that their observations were done in service mode, Pell6
et al. did not have preferential access to the local context of data production at the
observatory.

To see (or not to see) #1916 in the reduced images was distinctly shaped by spe-
cific equipments and work practices (cf. Lynch 2013). Bremer et al. and Smith et al.
present images of their re-reductions of Pello et al.’s VLT/ISAAC data used for the
discovery claim alongside reductions of their supplementary data. The critics insist
that one has to make specific identifiable and describable mistakes to make #1916
visible as a high-redshift galaxy. Weatherley et al. (2004) claim that the presumed
spectral line becomes visible only when three hot pixels are not properly deleted
from the data set, and Smith et al. (2006) found that only when parameters are set to
values they consider inappropriate did the search algorithm identify #1916 as a
proper source. All participants agreed that at least two lines of evidence were neces-
sary to claim the discovery of a high-redshift galaxy, a shared demand for the
robustness of evidence (see the chapters by Halfmann, Parker and Wylie).

Pell6 et al.’s (2004a) discovery announcement elicited the critical responses and
was as such generative of a sequence of actions. The unfolding ‘text-reader conver-
sation’ (Smith 2001) was marked by a series of comparisons involving re-analyses
of Pell6 et al.’s VLT/ISAAC ‘raw’ data (as available on the observatory website) and
re-assessments of the initial detection. The results of these re-analyses were made
witnessably visible (see Figs. 2 and 3). This conversation was not entirely virtual,
with scientists reading each other’s papers and working with the original data set in

Thttp://eso.org/public/news/eso0405/ (accessed 20 April 2018).
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different ways. As mentioned above, all critics acknowledge communications with
Roser Pelld, the lead author of the Toulouse team.'?

While any description of action is unavoidably incomplete at some level of detail
(Livingston 2008, 161), the critics of the Toulouse team point to omissions of
descriptive detail in the Pell6 et al. (2004a) article that could challenge their repli-
cability. Thus, Weatherley et al. (2004, L31) miss a proper description of Pelld
et al.’s bad pixel rejection methods, Bremer et al. (2004, L3) bemoan the unspecified
observing time of the H-band exposure, and Smith et al. (2006, 576) note that Pell6
et al. ‘neither explain how they reduced the [Hubble Space Telescope WFPC2] data
nor how the detection limit was calculated.” However, these critics claim to have
been able to re-construct what Pell6 et al. had done nevertheless (perhaps thanks to
Roser Pell6’s clarifications; see above) — at least to their own satisfaction and expec-
tation of what they themselves could be held accountable to. In this sense, the open
access to data made analysis practices available for inspection by other researchers.
This opens the way to a deeper mutual understanding, and possibly agreement, of
what proper procedures for using these data are.

As such, this episode can be read as an instance of the repair of data use prac-
tices. Members of the Toulouse team ended up learning from secondary users of
‘their’ data, making their revised understanding witnessable in the Online Materials
of their Richard et al. (2006) article. It seems, then, that it was through the (separate)
circulation of a discovery claim and the ‘raw’ data on which it was based that prac-
tices could travel from data re-users ‘back’ to those for whom the data were origi-
nally recorded. The ‘raw’ data themselves were not repaired, but remained fixed as
the first element of a ‘text-reader conversation’ (Smith 2001). The work described
was reflexive, inasmuch as past actions were re-interpreted in the light of new data
and analyses, and made witnessable as such. In terms of its mediated character and
its episodic temporality that extended over 2 years, the repair of practices in this
episode was markedly different from conversational repair or instructional correc-
tion (Macbeth 2004; Schegloff 2006). However, as argued previously for cases of
maintaining, or re-establishing the functioning of, motor boats (Sohn-Rethel 1990),
buildings (Henke 2000), scientific instruments (Schaffer 2011), infrastructures
(Graham and Thrift 2007) and credibility (Sims and Henke 2012), the notion of
repair is illuminating in its orientation to social, material and natural orders.

The architecture for observation that I described in Sect. 2 provided resources for
the assessment and repair of data and data use practices. First, there are its objectual
features. The ‘immutability of the heavens’ has been instrumental already for
assembling the data set that the Toulouse team gathered over a period of 2 years
(Pell6 et al. 2004a). The use of celestial coordinates for achieving reference was not
described as being problematic in this episode. Only in respect to the possibility that
Pell6 et al. may have detected a transient source were time-variable phenomena,

12T restrict my discussion to articles that appeared in peer-reviewed journals. The chronology of
events is unavoidably affected different periods of review, re-submission and publication.
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such as small objects moving in the outer solar system or supernovae, invoked (by
Lehnert et al. and Smith et al.) as interpretive resources.

Secondly, there are its technological and medial features. The importance of the
digitality of data is illustrated not only by its apparent mobility (through information
infrastructures), which — like the FITS data format — is presumed throughout and
not mentioned in the publications cited, but also by the possibilities of analysis
afforded by this medium, including Smith et al.’s experimenting with inserting arti-
ficial objects into their images and their detailed assessment of the statistical proper-
ties of noise in their infrared images. The Toulouse team later adopted these
techniques.

Thirdly, this episode was shaped institutionally not only by the open access to
Pell6 et al.’s VLT/ISAAC data after the proprietary period, which made it possible
for others to reconstruct and criticize their actions. With the exception of having
access to the data earlier, Pell6 et al. used ESO’s data archive just like those who
later scrutinized, and contested, their discovery claim.

The possibility of re-using data for making sense of what the Toulouse team had
done to see what they saw arguably contributed to avoiding a discourse in which a
discovery claim was directly confronted with counter-evidence, resulting in its dis-
missal. As interest turned from the presumed discovery of a specific galaxy at record
distance to the viability of the method of using galaxy clusters as ‘gravitational
telescopes’ for such work, the reputation of the Toulouse team was not damaged
beyond repair. Indeed, its members have continued to do much respected research
in the field." Since their data had been taken by observatory staff in service mode,
Pell6 et al. could not be blamed for lacking technical skill or manipulative intentions
in producing their data. Although Pell6 et al. were informally blamed for having
issued an overly bold and ultimately mistaken claim, nobody accused them of fraud.
Galison (2003) and Leahey (2016) have pointed out that scandals of fraud are rare
or even absent in contemporary astronomy, ascribing this mostly to the dearth of
commercial interest and the large team sizes in the discipline. Going beyond this
claim it seems that if there is a particular ethos of sharing in astronomy, it may well
be constituted by the ‘tyranny of accountability’ (Enfield and Sidnell 2017) of this
work with open access data in astronomy’s architecture for observation.
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Evaluating Data Journeys: Climategate,
Synthetic Data and the Benchmarking
of Methods for Climate Data Processing

Wendy S. Parker

Abstract This chapter concerns the benchmarking of methods used to process data
in climate science. It explores the nature and value of benchmarking in this context
by examining an ongoing initiative — the International Surface Temperature Initiative
(ISTT) — that is developing a public databank of temperature observations as well as
a system for benchmarking the methods that databank users employ to further pro-
cess the data. Interestingly, the benchmarking system will make use of “synthetic
data” generated with the help of computer simulation models. It is argued here that
the benchmarking system has crucial scientific and gatekeeping roles to play in the
context of ISTL. It is further suggested that, once we appreciate how synthetic data
are to be produced and used by ISTI, we uncover yet another variety of what Paul
Edwards (A vast machine: computer models, climate data, and the politics of global
warming. MIT Press, Cambridge, MA, 2010) has described as “model-data symbio-
sis” in the practice of climate science.

1 Introduction

In November 2009, email exchanges among climate scientists were taken without
authorization from servers at the U.K.’s Climatic Research Unit and made public on
the Internet. Dubbed “Climategate” in blogs and popular media, the contents of the
emails gave rise to allegations of fraud and scientific misconduct on the part of cli-
mate scientists and called attention to an ongoing struggle between climate scien-
tists and climate contrarians over data access. Several independent reviews
exonerated climate scientists of the charges of fraud and misconduct but did fault
them in one significant respect: for being insufficiently open and transparent in their
dealings with contrarian requests for information, including Freedom of Information
requests for raw data used to estimate changes in global mean surface temperature
over land (see e.g. Russell et al. 2010).
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The International Surface Temperature Initiative (ISTI) was launched in 2010, in
the wake of the Climategate episode, and seeks to promote transparency and open-
ness in the process of producing temperature change estimates (Thorne et al. 2011).
Spearheaded by leading climate data experts in the UK and around the world, ISTI
is working to construct a comprehensive, publicly-accessible global databank of
historical surface meteorological observations taken over land, providing data at
monthly, daily and even sub-daily resolutions. This is a substantial undertaking.' It
involves not only obtaining observational data from numerous sources around the
world, but also getting the data and any available metadata into a common format
and then merging the data records with the aim of maximizing station coverage and
data quality while minimizing duplication. Release of the first version of the merged
data, focused on monthly mean temperatures, occurred in June 2014 (Rennie et al.
2014), with an updated release in October 2015. These releases included data from
over 30,000 observing stations worldwide, several times the number typically used
in estimating global surface temperature changes over land.

In addition, ISTI intends to develop a set of benchmarking tests for users who
generate “data products” from the databank (see also Tempini, this volume a, b on
“derivative datasets”). These products include reconstructions of the evolution of
global and regional temperature over time, from which trends and other changes are
often calculated. Arriving at such data products requires the application of quality
control and “homogenization” algorithms to data in the databank. Homogenization
is a process that aims to remove jumps and trends in station time series that are due
to non-climatic factors, e.g. because an instrument is replaced with a new one, a
building is constructed nearby, or the timing of observations changes. In the envi-
sioned benchmarking tests, users would apply their algorithms to synthetic data that
contain deliberately-introduced artefacts (known as “inhomogeneities”) that are not
known to the users in advance. The idea is to test how well the different homogeni-
zation methodologies work by checking their performance on data that are like real
climate data in many important respects, but for which the “true” underlying climate
signal is known (Willett et al. 2014). ISTT hopes to host all data products developed
using the databank on its website, along with information about benchmarking per-
formance for the generating methodologies (Thorne et al. 2011).

This chapter discusses and reflects upon the data journeys envisioned by ISTI,
with special attention to the accompanying benchmarking scheme. As outlined fur-
ther in Sect. 2, these journeys include the traveling of temperature data from a
source or holder, through a processing and merging procedure by ISTI, followed by
subsequent quality control and homogenization processes undertaken by third par-
ties, which deliver “data products”. We will see that, given methodological deci-
sions along the way, only some data will make the full journey. Section 3 turns to
ISTT’s envisioned benchmarking scheme, explaining how its synthetic data are to be
produced with the help of simulation models that serve as analogues to the real

'Tt is also largely unfunded. Progress has been somewhat slower than desired, in part because
participating researchers are largely volunteering their time (with in-kind support from some of
their institutions).
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world. The benchmarking scheme and its synthetic data are, in a sense, “external to”
the envisioned data journeys, but it is argued that they are far from ancillary compo-
nents of the ISTI project. On the contrary, benchmarking has crucial roles to play,
not only in advancing the scientific goals of the project but also by serving an
important gatekeeping function in the complex and politicized context of climate
change research. Section 4 contends that the proposed use of synthetic data in ISTI’s
benchmarking scheme constitutes a distinctive variety of what Paul Edwards (2010)
has called “model-data symbiosis” in the practice of climate science. Finally, Sect.
5 offers some concluding remarks.

2 Data Journeys Envisioned by ISTI

Today, there are thousands of land-based weather stations around the world making
regular observations of temperature, pressure, humidity and other weather condi-
tions, often overseen by national meteorological services. It was not always so, of
course. Regular observations of temperature began at a few sites in Western Europe
in the seventeenth century (Camuffo and Bertolin 2012), but it was not until the
mid-nineteenth century that coordinated networks of land-based observing stations
began to emerge; they expanded rapidly in the twentieth century (Fleming 1998, Ch.
3). In recent decades, there have been major efforts to locate and bring together
records of these past surface observations in support of climate change research
(e.g. Menne et al. 2012). These ongoing efforts require international cooperation
and involve significant “data rescue” activities, including imaging and digitizing of
paper records.

ISTT’s envisioned journeys for surface temperature data — from individual records
held by sources to data products of use in regional and global climate change
research — are conceptualized in terms of six stages (Thorne et al. 2011). Paper
records from observing stations, as well as digital images of those records, are what
ISTI call “Stage 0” data. Many of the data obtained by ISTI in constructing their
databank, however, are Stage 1 data: “digitized data, in their native format, provided
by the contributor” (Rennie et al. 2014, 78). In the simplest case, Stage 1 data might
have been produced from Stage 0 data by typing into a computer file what is shown
on a paper record.” In other cases, Stage 1 data already reflect substantial processing
by the contributor. For instance, many of the Stage 1 data obtained by ISTI had
already been subjected to quality control and homogenization algorithms by their
contributors; though “raw” data are preferable for the databank, these are not what
some sources are willing or able to provide, whether for practical or proprietary
reasons.

2That person might have translated or transformed the original data record into a preferred format
of her own, so it seems that the “native format” here should be understood as whatever format the
contributor to ISTI provides.
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At Stage 2, data are converted by ISTI from their native format — units, temporal
resolution, etc. — to a common format that also includes some metadata. The conver-
sion to a common format sometimes involves averaging, e.g. in order to convert
hourly data to daily or monthly average values. The metadata at Stage 2 indicate not
only such things as the station’s ID, latitude, longitude and elevation, but also
whether the data have undergone quality control or homogenization by the contribu-
tor, how a daily or monthly average value was calculated from observations (if this
was necessary), and the mode of transmission from contributor to ISTI (ibid., 79).
The documentation accompanying the first release of ISTI data indicates that some
58 source collections were converted to Stage 2 data (see Table 1 for a snapshot).
Many of these data collections were obtained from national meteorological ser-
vices, universities and research stations.

At Stage 3, the data sources are prioritized and then subjected to a merge algo-
rithm, with the aim of maximizing station coverage and data quality while minimiz-
ing duplication. In the merge performed for monthly data, ISTI chose to give higher
priority to sources “that have better data provenance, extensive metadata, come
from a national weather or hydrological service, or have long and consistent periods
of record” (Rennie et al. 2014, 82). The highest priority source — in ISTI’s case the
Global Historical Climatology Network — Daily (GCHN-D) dataset, which contains
on the order of a billion observational records (Durre et al. 2010) — becomes the
starting point for building the merged dataset.

The merge algorithm then works through the remaining data sources according
to their priority. Each record provided by a source is a candidate station. The algo-
rithm first compares the record to a list of stations with known issues in their data or
metadata; this list was generated using another algorithm that looks for signs of
problems, such as an undocumented shift in units, or flipping the sign of the sta-
tion’s longitude, etc. If the record/candidate station is not withheld (“blacklisted”)
following this comparison, the merge algorithm continues, trying to determine
whether the candidate station is unique or matches an existing station. This is a non-
trivial task, given that different data sources can use different names for the same
station, can represent latitude and longitude with different precision, etc. ISTI
describes the merge algorithm as employing a “quasi-probabilistic approach” that
“attempts to mimic the decisions an expert analyst would make manually” (Rennie
et al. 2014, 81). It involves comparing features of the metadata of station records,
and in some cases of the temperature data themselves, and then assigning scores on
a set of metrics. Depending on whether those scores pass particular thresholds, the
station records are either withheld, added to the dataset as new stations, or merged
with records for existing stations (see Fig. 1). The merge algorithm is made avail-
able on the ISTI website, and ISTI emphasizes that users can change the threshold
settings to produce alternative merged datasets, as ISTI did themselves (see Rennie
et al. 2014, Table 12).

In ISTT’s analysis, their “databank” project encompasses the journeys of data
from Stage O to Stage 3. The final two stages of the envisioned journeys are left to
users of the databank; since the databank is publicly available, in principle these
users might be anyone. At Stage 4, quality control procedures are applied to Stage 3
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Table 1 Partial list of sources of temperature data that were converted to Stage 2 data

Time Raw/QC/
Name Source scale homogenized | TMAX | TMIN TAVG
Antarctica SCAR Reader Project | Monthly | Raw N N Y
Antarctica (AWS) | Antarctic Daily Raw Y Y N
Meteorological
Research Center
Antarctica (Palmer | Antarctic Daily Raw Y Y Y
Station) Meteorological
Research Center
Antarctica (South | Antarctic Monthly | Raw Y Y Y
Pole Station) Meteorological
Research Center
Arctic IARC/Univ of Alaska | Monthly | Homogenized |N N Y
Fairbanks
Argentina National Institute of | Daily Raw Y Y N
Agricultural
Technology (INTA)
Australia Australia Bureau of | Daily Homogenized |Y Y Y
Meteorology
Brazil INPE, Nat. Institute | Daily Raw Y Y N
for Space Research
Brazil-In met INMET Daily Raw Y Y N
Canada Environment Canada | Monthly | Homogenized |Y Y Y
Canada Environment Canada | Monthly | Raw Y Y Y
Central Asia NSIDC Monthly | Homogenized |Y Y Y
Channel Islands States of Jersey Met | Daily Raw Y Y N
Colonial Era Griffith Monthly | Raw Y Y N
Archives
CRUTEM4 UKMO Monthly | Homogenized |N N Y
East Africa Univ. of Alabama Monthly | Raw Y Y Y
Huntsville
Ecuador Inst. Nacional De Daily Raw Y Y N
Met E Hidrologia
Europe/N. Africa | European Climate Daily Raw Y Y Y
Assessment (Daily,
Non-Blended)

Source: Rennie et al. (2014, Table 1)

data. It turns out that the GCHN-D data, which form the starting point for construct-
ing the ISTI monthly merged dataset, have already been subjected to quality control
by the U.S. National Center for Environmental Information (NCEI).? The procedure
there involves 19 automated tests designed to detect duplicate data, climatological
outliers and spatial, temporal and internal inconsistencies; a small number of
problematic data (well under 1%) are consequently excluded (Durre et al. 2010).

3This was formerly called the National Climatic Data Center (NCDC).
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Fig. 1 Workflow for ISTI merge algorithm. (Source: Rennie et al. 2014, Fig. 5)

Many other sources in the ISTI databank, however, have not been subjected to qual-
ity control (as their metadata communicates), and it is up to users to address this.
Stage 5 data have, in addition, been homogenized. That is, the data at Stage 5
have been subjected to further processing to try to remove jumps and trends in sta-
tion time series due to non-climatic factors. When station metadata are available
(e.g. reporting a shift in instrument location), this can aid homogenization, but often
such metadata are not available. Many homogenization methods thus are statistical
methods that compare station records to those of neighbouring stations or of refer-
ence stations, identifying and correcting for inhomogeneities based on expected
relationships among the records (see e.g. Costa and Soares 2009; Venema et al.
2012). There is substantial uncertainty about how best to identify and correct for
inhomogeneities; statistical methods for doing so, for instance, can plausibly
employ any of a number of approaches and assumptions. Table 2 summarizes fea-
tures of several different homogenization algorithms. Even without going into the
technical details, one can see that there are differences in what data are compared to
(comparison), in how data are searched for potential inhomogeneities (search), and
in the form of tests used to identify the presence of inhomogeneities (criterion);
there are also differences in how corrections are applied to data once an inhomoge-
neity has been detected (not shown in Table 2). Attempting to correct for inhomoge-
neities is particularly important when data will be used to quantify changes in
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Table 2 Homogenization algorithms differ in a number of respects

Comparison Detection References
Method Comparison Time step | Search Criterion
MASH Multiple Annual, Exhaustive Statistical test | Szentimrey (2007,
references parallel (MLR) 2008)
monthly
PRODIGE | Pairwise, Annual, DP Penalized Caussinus and
human parallel likelihood Mestre (2004)
synthesis monthly
USHCN | Pairwise, Serial HBS Statistical test | Menne et al. (2009)
automatic monthly (MLR)
synthesis
AnClim Reference Annual, HBS, Statistical test gtepanek et al.
series parallel moving (2009)
monthly window
Craddock | Pairwise, Serial Visual Visual Craddock (1979)
human monthly and Brunetti et al.
synthesis (2006)
RhtestV2 | Reference Serial Stepwise Statistical test | Wang (2008)
series or monthly (modified
absolute Fisher)
SNHT Reference Annual HBS Statistical test | Alexandersson and
series (MLR) Moberg (1997)
Climatol | Reference Parallel HBS, Statistical test | Guijarro (2011)
series monthly moving
window
ACMANT | Reference Annual, DP Penalized Domonkos et al.
series joint likelihood (2011)
seasonal

Source: Venema et al. (2012, Table 1)

climate, since trends in the data introduced by non-climatic factors can be of similar
size to the changes expected due to increased greenhouse gas emissions.

In contrast to the “data” of Stages 0-3, ISTI refers to Stage 4 and 5 results as
“data products” (Thorne et al. 2011). It may be tempting to think that this shift in
terminology reflects a substantive change, with later-stage data being, for instance,
somehow more heavily processed. This is not really the case, however. As noted
above, even some Stage 1 data held by ISTI have been subjected to quality control
and homogenization by their sources (see Table 1 above). Thus, while Stage 4 and
Stage 5 data will in fact reflect some additional processing by users, similar process-
ing efforts will have already been made with respect to some of the data at earlier
stages. ISTI’s distinction between “data” and “data products” primarily marks the
boundary of ISTI’s control; results generated by third parties using ISTI’s databank
are “data products”.
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3 Evaluating Data Journeys: Benchmarking and Its
Importance

ISTI scientists hope that users of the databank will develop multiple, independent
data products for a given region and period. They hope, for instance, that a variety
of reconstructions of global and regional temperature evolution over the twentieth
century will be developed, where users apply their own preferred methods for qual-
ity control and homogenization to Stage 3 data. Such independent estimates, it is
thought, could help to shed light on the extent to which there is uncertainty about
temperature trends and other quantities commonly derived from such reconstruc-
tions: “Multiple products are the only conceivable way to get even a simple estimate
of the structural (methodological choices) uncertainty; we need to attack the prob-
lem from many different a priori assumptions to create an ensemble of estimates”
(Thorne et al. 2011, ES44). Although there are various climate data products already
in existence, “quality assurance information is sparse, documentation quality is
mixed, and different source data choices and methods can make meaningful inter-
comparison hard” (ibid). One reason that quality assurance information is sparse is
that it is difficult to produce such information in a reliable way. Climate scientists
do not have access to the true evolution of regional and global temperatures, nor to
some known-to-be-accurate estimates, against which data products can be evaluated.

Benchmarking exercises are now emerging as one approach to learning about the
reliability of methodologies used in generating climate data products — that is, in
evaluating particular parts of climate data journeys. In very general terms, a bench-
mark can be understood as “a test or set of tests used to compare the performance of
alternative tools or techniques” (Sim et al. 2003). The most ambitious benchmark-
ing exercise to date in climate science is the COST-HOME (European Cooperation
in Science and Technology — Advances in Homogenization Methods of Climate
Series) project. COST-HOME developed a benchmark dataset and published it
online, allowing anyone to attempt to homogenize it and submit data products for
evaluation (see Venema et al. 2012). The COST-HOME benchmark dataset included
three different types of data, but most contributors focused on the “surrogate data”
portion, which was considered the “most realistic” of the three types (ibid., 92).
These surrogate data, which represented conditions at a number of small networks
of observing stations, were produced with the help of statistical methods, such that
they reproduced important statistical features of real homogenized data, such as
their “distribution, power spectrum and cross spectra”; several known types of inho-
mogeneities and other “data disturbances” were then added, and the task for partici-
pants was to recover the homogenous surrogate data (ibid.). Importantly, those
homogenous data were not disclosed to participants until after a deadline for sub-
mission of data products. Twenty-five submissions were received, based on 13 dif-
ferent homogenization methods, including some manual methods (ibid.). These
were evaluated on a variety of metrics that measure similarities between the submit-
ted data product and the homogeneous surrogate data (i.e. “truth”).
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ISTI envisions a benchmarking scheme that is similar to that of COST-HOME in
some respects. Participants submitting data products for evaluation will not know in
advance the “true” underlying data to which inhomogeneities were added. In addi-
tion, the benchmarking exercise will be open to all. In fact, ISTI “strongly advo-
cates” that anyone producing Stage 5 data products from the databank take part in
benchmarking exercises (Willett et al. 2014). But there are also some differences.
Rather than data for small networks of stations, ISTI plans to construct global
benchmark datasets, representing what they refer to as “analog inhomogeneous
worlds” (ibid.; Thorne et al. 2011), i.e. analogues to the inhomogeneous data col-
lected in the real world. In addition, the construction of these benchmarks will begin
not from homogenized real data, but from computer simulations from global cli-
mate models.* These simulation results, which include values of temperature on a
regular grid, will be interpolated to a set of 30,000+ stations analogous to those in
the databank (Willett et al. 2014). Inhomogeneities will then be added to these
“analog-clean worlds”, to produce “synthetic data”. The inhomogeneities are
intended to be “physically plausible representations of known causes of inhomoge-
neity (e.g. station moves, instrument malfunctions or changes, screen/shield
changes, changes to observing practice over time, and local environment changes)”
(ibid., 192). See Fig. 2 for a depiction of some of the ways in which the benchmark-
ing exercise mirrors the analysis of the “real” ISTI databank data.

ISTI highlight several positive features of their envisioned simulation-based
approach to the generation of benchmarking datasets. Time series of temperature
values from a climate model will be free from inhomogeneities, so the “true” cli-
mate signal will be known. In addition, the data will include “globally consistent
variability”, including coherent variability associated with events like El Nino —
Southern Oscillation (ENSO). Moreover, it will be possible to generate inhomoge-
neous worlds with different levels of background climate change, since climate
models can be run under a variety of scenarios in which greenhouse gas concentra-
tions are rising rapidly, held constant, etc.; at least some information then can be
obtained about how the skill of different homogenization algorithms varies, if at all,
with the level of background climate change.

ISTI proposes to provide ten inhomogeneous worlds/synthetic datasets in a given
benchmarking cycle, each based on a different simulation, with the cycle of analysis
and evaluation repeating roughly every 3 years (ibid.). The aim is for these different
worlds to incorporate inhomogeneities with a range of frequencies and magnitudes,
seasonality, and geographical pervasiveness (e.g. when a whole network changes
observing practices at once). Participants would submit their homogenized bench-
mark data for evaluation by ISTI. The results of this assessment as well as “truth”

*These climate models incorporate both basic physical theory (from fluid dynamics, thermody-
namics, etc.) and some simplified/idealized representations of small-scale processes; the latter are
necessary in part because limited computational power constrains the resolution at which the cli-
mate system can be represented. The knowledge on which the models are based, including the
theoretical knowledge, is of course empirical, but the climate models are not data-driven models
obtained by fitting curves to observations.
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Fig.2 Envisioned benchmarking of homogenization algorithms. ISTI’s analogue worlds allow for
testing of homogenization algorithms in cases where “truth” is known. The aim is to learn about
how these algorithms are likely to perform on real data where similar inhomogeneities are present
but truth cannot be known

for the ten cases — i.e. the clean analog worlds produced by sampling/interpolating
simulation results — would subsequently be unveiled. The cycle would then repeat.

ISTI’s envisioned benchmarking system is intended to support three important
scientific goals of the ISTI project: quantification of the potential structural uncer-
tainty of a given climate data product; objective intercomparison of such data prod-
ucts; and advancing homogenization algorithm development (Willett et al. 2014,
192). These are discussed here in reverse order.

The benchmarking scheme aims to support homogenization algorithm devel-
opment by helping developers to learn more about the strengths and weaknesses
of their algorithms — which sorts of inhomogeneities they are good at detecting
and correcting, which they are not, etc. In further support of this