
Data Journeys
in the Sciences

Sabina Leonelli
Niccolò Tempini
Editors



Data Journeys in the Sciences



Sabina Leonelli  •  Niccolò Tempini
Editors

Data Journeys  
in the Sciences



ISBN 978-3-030-37176-0        ISBN 978-3-030-37177-7  (eBook)
https://doi.org/10.1007/978-3-030-37177-7

© The Editor(s) (if applicable) and The Author(s) 2020. This book is an open access publication.
Open Access  This book is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit 
to the original author(s) and the source, provide a link to the Creative Commons license and indicate if 
changes were made.
The images or other third party material in this book are included in the book’s Creative Commons 
license, unless indicated otherwise in a credit line to the material. If material is not included in the book’s 
Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the 
editors give a warranty, expressed or implied, with respect to the material contained herein or for any 
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations.

Cover image produced by Michel Durinx [centimedia.org] on the basis of extracts from Holland, W.J. 
(1922) The butterfly book; a popular guide to a knowledge of the butterflies of North America. Garden 
City, N.Y., Doubleday (available from the Biodiversity Heritage Library, DOI: https://doi.org/10.5962/
bhl.title.5524).

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Editors
Sabina Leonelli
Department of Sociology, Philosophy and 
Anthropology & Exeter Centre for the 
Study of the Life Sciences (Egenis)
University of Exeter
Exeter, UK

Alan Turing Institute
London, UK

Niccolò Tempini
Department of Sociology, Philosophy and 
Anthropology & Exeter Centre for the 
Study of the Life Sciences (Egenis)
University of Exeter
Exeter, UK

Alan Turing Institute
London, UK

https://doi.org/10.1007/978-3-030-37177-7
http://creativecommons.org/licenses/by/4.0/
https://urldefense.proofpoint.com/v2/url?u=http-3A__centimedia.org&d=DwMGaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=y3yy0v9TtR-i0LLuEz4WtaNY4A-dbzarVAvJ8s4gs08Zr67tBs6PWQWU0zeVln1L&m=Kr5ckTna7S8s-QDa7hnSa0qbSRtocqZRpf8ae7ylaOk&s=LU59SRB29G9-c-WmwWEGv6TpL3TY9Fsn6B3s_4VcNus&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__commons.wikimedia.org_wiki_Category-3AThe-5Fbutterfly-5Fbook-3B-5Fa-5Fpopular-5Fguide-5Fto-5Fa-5Fknowledge-5Fof-5Fthe-5Fbutterflies-5Fof-5FNorth-5FAmerica-5F-281922-29&d=DwMGaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=y3yy0v9TtR-i0LLuEz4WtaNY4A-dbzarVAvJ8s4gs08Zr67tBs6PWQWU0zeVln1L&m=Kr5ckTna7S8s-QDa7hnSa0qbSRtocqZRpf8ae7ylaOk&s=AaAGAliZVn_tiMOSm5gZB2JmjnV7qIJph3W5AIm_MzM&e=
https://doi.org/10.5962/bhl.title.5524
https://doi.org/10.5962/bhl.title.5524


v

Preface: A Roadmap for Readers

What is the point of data in research? Philosophers and methodologists have long 
discussed the use of data as empirical fodder for knowledge claims, highlighting, 
for instance, the role of inductive reasoning in uncovering what data reveal about 
the world and the different ways in which data can be modelled and interpreted 
through statistical tools. This view of data as a fixed, context-independent body of 
evidence, ready to be deployed within models and explanations, also accompanies 
contemporary discourse on Big Data – and particularly the expectation that the dra-
matic increase in the volume of available data brings about the opportunity to 
develop more and better knowledge. When taking data as ready-made sources of 
evidence, however, what constitutes data in the first place is not questioned, nor is 
the capacity of data to generate insight. The spotlight falls on the sophisticated algo-
rithms and machine learning tools used to interpret a given dataset, not on the efforts 
and complex conditions necessary to make the data amenable to such treatment. 
This becomes problematic particularly in situations of controversy and disagree-
ment over supposedly “undisputable” data, as in the case of current debates over the 
significance of climate change, the usefulness of vaccines and the safety of genetic 
engineering. Without a critical framework to understand how data come to serve as 
evidence and the conditions under which this does or does not work, it is hard to 
confront the challenges posed by disputes over the reliability, relevance and validity 
of data as empirical grounds for knowledge claims.

In this volume, we move decisively away from the idea that what counts as data – 
and in turn, how data are presented, legitimized and used as evidence – can be given 
for granted and that finding the correct interpretative framework is all that is required 
to make data “speak for themselves”. We focus instead on the strategies, controver-
sies and investments surrounding decisions around what researchers identify and 
use as data in the first place: in other words, the myriad of techniques, efforts, instru-
ments, infrastructures and institutions used to process and mobilize data so that it 
can actually serve as evidence. No matter how “big” data are, the road from data to 
knowledge remains complex and full of obstacles. The contributions collected in 
this book highlight a wide spectrum of activities involved in handling data – includ-
ing data collection, aggregation, cleaning, dissemination, publication, visualization 
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and ordering – with the aim to study the opportunities and constraints posed by such 
activities on how data are eventually interpreted. Hence, the initial question about 
what role data play in research morphs into two further queries: What conditions are 
required to identify data in the first place and to make them usable as evidence? And 
what implications does data processing carry not just for the content of the knowl-
edge being produced but for the extent to which that knowledge can ground inter-
ventions in the world and inform political, scientific, social, economic debate?

The contributions to this volume help readers to ponder these questions by guid-
ing them into the thick web of entanglements involved in making data move across 
time, space and social context. Readers are asked to accompany data in their jour-
neys from their material origin through human interactions with the world (which 
range from the collection of objects to the generation of traces and measurements) 
to their dissemination across various forms of aggregation (datasets, data series, 
indicators) and vehicles (databases, publications, archives) and ultimately to their 
use as evidence for claims.1 During these journeys, data experience many different 
types of encounters – with other data, diverse groups of users, specific infrastruc-
tures and technologies and political, economic and cultural expectations – which 
affect and shape the data themselves and their prospective usability. Far from under-
estimating the politics and power of data, which so many contributors to the emerg-
ing field of critical data studies have so effectively highlighted, we seek to document 
how such politics is embedded, reified and/or revised in the technical and epistemic 
work that structures everyday research practices. Delving into stories of how data 
travel involves seeing data as entities that can, and often do, change their properties 
in response to their environment and relations – and whose travels are often choreo-
graphed and regulated to achieve a variety of (sometimes incompatible) goals. What 
comes to be seen as datum at any one point in time is itself the result of a journey; 
and far from being linear and well-organized, the journey is often full of detours and 
unpredictable changes, largely due to the diverse and complex social networks and 
contexts responsible for making data move.

Unsurprisingly, the study of data in motion generates a wealth of insights that are 
not easily systematised in one thread. When first imagining this volume, I had envi-
sioned a straightforward comparative work, which would examine differences and 
similarities across data practices in the biological, biomedical, environmental, phys-
ical and social sciences. Following 5 years of discussions with my coeditor and the 
wonderful team of authors assembled here, however, the illusion that data could be 
disciplined and contained in this way has been shattered. Data journeys transcend 
and defy disciplinary boundaries both in the methods used to track and analyse them 
and in the domains in which data come to be seen as valuable. Of course, as many 
of these chapters forcefully illustrate, epistemic cultures and context-specific norms 
shape and direct the journeys and uses of data. And yet, even when looking at highly 
discipline-specific cases (such as the analysis of genomic data in population biology 
or observations in astronomy), we found surprising parallels and intersections with 
other social and epistemic worlds – and a wealth of opportunities for data initially 

1 For an extended discussion of data journeys as a theoretical and methodological tool, see the 
introduction to the volume.
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collected for a specific, supposedly self-contained purpose to journey further, 
towards new settings and unforeseen uses.

To convey this unpredictability, the structure of the volume is organized along 
what we imagine to be the stages of a data journey, with each cluster of chapters 
discussing the skills, methods, activities and norms that may be typically associated 
to those stages across a wide range of research areas. The first section is devoted to 
the origins of data: from the choice and interaction with material samples of the 
world from which data will be extracted (Halfmann) to the role of theories and 
instruments in data generation (Karaca) and the questions involved in choosing a 
vehicle for data to start their travels towards new interpretations (Ankeny). The 
second section examines the ways in which data are brought together for analysis 
and specifically the practices, standards and tools involved in data cleaning 
(Boumans and Leonelli), clustering (Morgan and Griesemer) and visualizing 
(Bechtel) – with a strong emphasis on the challenges and opportunities presented by 
the aggregation of data coming from different sources towards novel uses and inter-
pretations. The third section explores the circumstances and implications of data 
sharing, paying attention particularly to the tight intersection between decisions 
about who can access the data and criteria used to evaluate and regulate their quality 
and reliability (both within research communities, as discussed by Parker in relation 
to climate data and Hoeppe in relation to astrological observations, and within 
broader policy and governance circles, as considered by Teira and Tempini in the 
case of patient data). The fourth section considers data interpretation and highlights 
the ways in which commitments to analytic techniques, instruments and concepts 
(Wylie) as well as decisions around what is considered to be data (Tempini) and 
metadata (Müller-Wille) may need to be transformed in order for data to be fruit-
fully used or reused within new situations. The fifth and final sections juxtapose 
different cases of data journeys to raise questions about what fruitful data use may 
actually consist of: first, by focusing on the procedures used to make data and 
related claims actionable, credible and accountable to the various types of publics 
and goals involved in data journeys, ranging from clinical settings (Cambrosio 
et  al.) to public health (Ramsden) and related policies (Gaudilliere and Gasnier) 
and, second, by questioning the very narrative of authentication and discovery that 
often underscores the use of data as evidence (Rappert and Coopmans).

Reading the volume in this order will help those interested in the full arch of data 
journeys to understand the specificities associated to different stage of travel and the 
deep interrelations and intersections across them. This is but one type of variety 
encountered in the qualitative study of data movements, however. I want to mention 
another six for readers to consider before delving in and deciding how to engage 
with this book.

•	 Variety of research domains
While many of the most fascinating data journeys are not contained within tradi-
tional research domains, the authors assembled within this volume have been 
purposefully approached for their deep, long-term engagement with specific 
research areas, so that the volume could encompass a wide range of disciplinary 
areas and illustrate the many sources of variety among research areas and epis-
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temic communities. Readers interested primarily in biology could focus on the 
chapters by Bechtel and Griesemer, who consider different stages in the journeys 
of genomic data, and then look to the chapters by Tempini, Cambrosio et al., 
Müller-Wille and Ramsden to witness how biological data move into the bio-
medical, policy and public health domains. Students of biomedicine should pri-
oritize the chapters by Ankeny, Tempini, Ramsden, Cambrosio et  al. and 
Gaudilliere and Gasnier; those interested in the environmental sciences should 
start with Halfmann (oceanography) and Parker (climate science); those inter-
ested in the physical sciences should read Koraka (particle physics) and Hoeppe 
(astronomy); and for the social and historical sciences, the spotlight shifts to 
chapters by Morgan (economics), Wylie (archaeology) and Rappert and 
Coopmans (art authentication). The chapter by Boumans and Leonelli exempli-
fies the attempt to compare data practices across two very different domains: 
economics and plant science.

•	 Variety of relations between data and other research components
A key question arising when interrogating the nature of data is the extent to 
which their role and characteristics differ from the ones associated to metadata, 
materials, models, apparatus and infrastructures. Several contributors to the vol-
ume address this issue directly. Halfmann starts this thread by questioning the 
relationship between data and samples, which has been rarely discussed within 
data studies so far. Hoeppe and Karaca focus on the entanglements between data 
and instrumentation, particularly in cases  – such as Hoeppe’s telescopes and 
Karaka’s particle accelerator – in which whole research communities are formed 
around highly complexity and expensive apparatus. Parker discusses instead the 
relationship between models and data in the climate sciences and the extent to 
these two types of scientific objects are co-constructed and unavoidably inter-
twined. Griesemer, Müller-Wille, Tempini, Porter and Bechtel focus on the role 
of infrastructures in data visualization and the extent to which choices made in 
order to make data widely accessible and searchable affect their interpretation – 
but also what gets to count as data and metadata. And last but not least, Morgan, 
Teira and Tempini, Ramsden and Boumans and Leonelli consider the develop-
ment and role of standards and measurement frameworks alongside the travel 
and clustering of multiple datasets, as crucial components of both the technical 
and the institutional motors for the travel of data.

•	 Variety of data vehicles
A closely related concern is the question of how data actually travel, which, bor-
rowing the terminology devised by Morgan (2010) to discuss travelling facts, can 
be usefully characterized as a question around vehicles. As mentioned above, 
many of the chapters in the volume discuss the characteristics of databases and 
related search engines, thus contributing to the burgeoning scholarship on data 
infrastructures pioneered by Bowker (1994), and rightly seen to be central to 
understanding how data move and land in new epistemic spaces. In addition to 
data infrastructures, the volume considers well-trodden but no less vivid vehi-
cles, such as case reports – heavily descriptive narratives which Ankeny high-
lights as fruitful in identifying, capturing and ordering data for future analysis. 
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Bechtel’s analysis of the travel of genomic data beyond databases to various 
tools of network analysis points instead to the complexities of interlocking data 
infrastructures that build upon each other, a situation in which software itself 
comes to play a crucial role as data vehicle – as explicitly discussed by Tempini’s 
reflection on the travels of digital data. Less intuitively and perhaps more contro-
versially, particular forms of governance, such as the monitoring of global health 
by the United Nations and the shifts in pharmaceutical regulation by the Food 
and Drug Administration, can themselves constitute effective vehicles for data 
journeys, as considered in the chapters by Gaudilliere and Gasnier and Teira and 
Tempini.

•	 Variety of grounds for legitimacy
The question of what makes data reliable, legitimate and trustworthy is another 
key issue underpinning several of the chapters, both because of its importance to 
understanding the role of data as empirical evidence and because it is often a 
central concern for the protagonists of the case studies discussed by volume con-
tributors. What does it mean for data to be fit for purpose? In other words and 
paraphrasing a seminal discussion by Clarke and Fujimura (1992) on the epis-
temic roles of tools in biological research, what count as the “right” data for the 
job, and how do we verify the credibility of data interpretations? Perhaps most 
striking in this respect is Wylie’s investigation of the shifting grounds through 
which different generations of archaeologists have assessed the legitimacy and 
significance of carbon dating as a method for data collection and (re)interpreta-
tion. Similarly focused on intergenerational understandings of data, Müller-Wille 
discusses how physiological and sociological data on a controversial issue such 
as race managed to retain credibility for over a century, while Parker analyses 
benchmarking practices in relation to climate data sourced at very different loca-
tions and times (and thus hard to align and homogenize). A different approach 
consists of understanding how changes to the very properties of datasets – and 
the metadata that accompanies them – can be credibly framed as strategies to 
increase the usefulness and reliability of data as evidence. This question is con-
fronted by Morgan in relation to data aggregation and Tempini with reference to 
their computational handling, while Cambrosio et al. focus on the shift from talk 
of “data” to talk of “knowledge” in medical information infrastructures, which is 
tied to the emergence of consensus around what “levels of evidence” are needed 
for clinical interventions and which sources of knowledge can be trusted.

•	 Variety of data types
Perhaps most striking, particularly to readers used to think of data as computable 
numbers, is the breadth of data types considered in this volume. While some 
authors (e.g. Morgan) focus specifically on the properties of numerical data, it 
soon becomes clear that the objects identified and used as data within research 
are not limited to the quantitative results of measurement practices. Observations, 
both in textual and graphical forms, are common in medicine (Ankeny), astron-
omy (Hoeppe) and the life sciences (Boumans and Leonelli), where images and 
diagrams function both as containers of data (e.g. Griesemer) and as data in and 
of themselves (Bechtel, Cambrosio et al). The transformations involved in digi-
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tizing analogue objects (Halfmann) and making them amenable to different types 
of computation (Tempini) complicate easy distinctions between quantitative and 
qualitative data. Different data properties and formats are instead often in a his-
torical continuum, related to each other by specific technologies and techniques 
employed at different times to extract various forms of insight. At the same time, 
the preference for numerical data that can be easily aggregated – such as the 
assessment of economic performance (Boumans and Leonelli) or national com-
pliance with given objectives (Gaudilliere and Gasnier) – can skew the analysts’ 
attention, with significant implications for what kinds of knowledge become 
established (Porter 1995). The extent to which data are amenable to visualization 
is also a crucial determinant of mobility (Porter).

•	 Variety of methodological approaches to the study of data
The volume puts philosophical, historical and sociological methods of research 
in dialogue with each other, thus bringing together different styles and disciplin-
ary approaches to the study of data movements. All contributors are conversant 
with different disciplinary approaches, which they merge to consider data jour-
neys from a qualitative viewpoint – a somewhat unavoidable choice given the 
importance of understanding motivations, goals and historical circumstances in 
order to track data and reconstruct their travels. This multidisciplinarity is a key 
characteristic of the volume and the result of the authors’ own commitment to 
dialogue across fields as well as the extensive conversations held during the 5 
years in which the volume was assembled – exemplified most directly by the 
comparison of data cleaning practices in economics and plant science coauthored 
by Boumans and Leonelli. The emphasis and argumentative style of authors 
does, at the same time, reflect the differences in their expertise, which could also 
be used as an entry point for readers. Authors with a stronger background in his-
tory provide vivid narratives of data moving across long time periods and mul-
tiple geographic sites, thus fostering an understanding of the long dureé of data 
journey and the enabling or constraining role played by institutions such as the 
American Public Health Association (Ramsden) and the Institute for Health 
Metrics and Evaluation (Gaudilliere and Gasnier) and political debates like those 
surrounding the notion of race (Müller-Wille). Authors rooted in social studies of 
science provide ethnographic forays into the goals, expectations and social orga-
nization of researchers, which helps to better understand apparently straightfor-
ward practices such as observation in astronomy (Hoeppe) and the interpretation 
of biomarkers in clinical practice (Cambrosio et al); and those more philosophi-
cally oriented delve deep into the technical, material and conceptual tools 
employed to structure, order and analyse data, thus highlighting the epistemic 
role of, for example, samples (Halfmann), experimental apparatus (Koraka), 
digital formatting (Tempini), visualization tools (Bechtel, Griesemer), evalua-
tion practices (Parker, Boumans and Leonelli, Teira and Tempini) and ordering 
or narrative devices (Ankeny, Morgan).

•	 Variety of data politics
Because the epistemic work underpinning data processing and movement is 
unavoidably value-laden, our authors’ own political commitments around key 
data-related concerns are also in evidence within each piece. These commit-
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ments are not uniform, not so much due to overt disagreement over the same 
issues but rather in the sense of authors being interested in different forms of 
politics. Both Ramsden’s analysis of public health data journeys and Teira and 
Tempini’s work on electronic health records focus on the potential for inequality 
and governmental exploitation of such data to implement specific forms of social 
control. Griesemer is more concerned with how social and racial representation 
is handled through the travel of genomic data and what groups are excluded or 
included by database structures. Morgan worries about the diverse measuring 
frameworks through which different types of datasets are clustered together and 
the resulting unevenness and potential loss of meaning when using such diverse 
clusters as indicators – as with the Sustainable Development Goals of the United 
Nations. Wylie is similarly interested in questions of legacy and in the account-
ability of temporal and methodological discontinuities in the handling and inter-
pretation of data as evidence (in archaeology and beyond). Rappert and Coopmans 
grapple with questions of trust and authority in delivering judgements over data 
interpretation. And a whole set of authors, including Ankeny, Boumans and 
Leonelli, Tempini and Halfmann, worry about the opacity of data-handling pro-
cesses that have a strong and yet underacknowledged effect on how data are then 
used and interpreted. All of these concerns are deeply political and have signifi-
cant implications for ongoing debates around, for example, the trustworthiness 
of Big Data as source of evidence and the potential for inequality and exploita-
tion underpinning open data policies.

These roadmaps are by no means exhaustive but hopefully provide at least a 
sense of the breadth and import of the material presented in this volume. We encour-
age our readers to find their own approach to the chapters and let themselves be 
challenged by these wide-ranging, diverse and sometimes challenging discussions, 
whose overarching aim is to provide a feel for the sophistication, complexity and 
epistemic significance of efforts devoted to data mobility within research and beyond.

Exeter, UK� Sabina Leonelli
London, UK
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Learning from Data Journeys

Sabina Leonelli

Abstract  The introduction discusses the idea of data journeys and its characteris-
tics as an investigative tool and theoretical framework for this volume and broader 
scholarship on data. Building on a relational and historicized understanding of data 
as lineages, it reflects on the methodological and conceptual challenges involved in 
mapping, analyzing and comparing the production, movement and use of data 
within and across research fields and approaches, and the strategies developed to 
cope with such difficulties. The introduction then provides an overview of signifi-
cant variation among data practices in different research areas that emerge from the 
analyses of data journeys garnered in this volume. In closing, it discusses the sig-
nificance of this approach towards addressing the challenges raised by data-centric 
science and the emergence of big and open data.

1  �Introduction: Data Movement and Epistemic Diversity

Digital access to data and the development of automated tools for data mining are 
widely seen to have revolutionized research methods and ways of doing research. 
The idea that knowledge can be produced primarily by sifting through existing data, 
rather than by formulating and testing hypotheses, is far from novel; and yet, 
developments in information technology and in the financing, institutionalisation and 
marketization of data are making “data-intensive” approaches more prominent than 
ever before in the history of science. This is perhaps most blatant in the emphasis 
placed by both the public and private sectors on the production and exploitation of 
“big” and “open” data – in other words, on the creation, dissemination and aggregation 
of vast datasets to facilitate their re-purposing for as wide a range of goals as possible.1

1 As exemplified by the Open Science and Innovation policy of the European Commission 
(European Commission 2016).
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The promise of big and open data is tied to two key factors. One is their mobility: 
the value of data as prospective evidence increases the more they travel across sites, 
since this makes it possible for people with diverse expertise, interests and skills to 
probe the data and consider whether they yield useful insight into their ongoing 
inquiries.2 The other is their interoperability, that is the extent to which they can be 
linked to other types of data coming from a variety of diverse sources.3 It is through 
linkage techniques and tools that data become part of big data aggregates, which in 
turn function as empirical platforms to explore novel correlations, power machine 
learning algorithms and ask ambitious and innovative questions.

This volume interrogates the conditions for data movement, and the ways in 
which data mobility and interoperability can be achieved, from the viewpoint of the 
history, philosophy and social studies of science. What is already clear from the 
growing scholarship on data is that this requires enormous resources, apposite tech-
nologies and methods, and high levels of human ingenuity - which is why in the 
world of research as in many other parts of society, online databases, data visualiza-
tion tools and data analytics have become indispensable to any form of research and 
innovation.4 This insight runs counter the hyped public discourse around the sup-
posedly intrinsic power of big data and the related expectation that, given a lot of 
data, useful and reliable discoveries would follow. And yet, even recognising that 
mobilizing data requires resources is not enough to understand how they can be 
effectively used as sources of evidence. Stocking up on skills and tools from data 
science, information technology and computer engineering does not suffice for 
knowledge production. The critical issue is how to merge such expertise and solu-
tions with existing domain-specific knowledge embedded in evolving social con-
texts, thus developing methods that carefully and creatively tailor data-intensive 
approaches to the study of specific targets and the achievement of given goals. In 
other words, transforming data into knowledge requires more than some generalist 
algorithms, clustering methods, robust infrastructure and/or clever apps: it is a mat-
ter of adapting (and sometimes creating) mathematical and computational tools to 
match the ever-changing characteristics of the research targets, methods and 
communities in question – including their political and economic context.

To highlight this, the volume brings together in-depth case studies that document 
the motivations and characteristics of the existing variety of data practices across 

2 Data mobility has been associated to the rise of a “fourth revolution” in knowledge production 
that is affecting all aspects of society (Hey et al. 2009; Kitchin 2014; Wouters et al. 2013; Floridi 
2011). I argued that extensive data mobility is a defining characteristic of data-centric science, 
which also captures the historical novelty of this approach to data (Leonelli 2016).
3 This is widely recognized in data science itself, where interoperability is viewed as one of the four 
crucial challenges to so-called “FAIR” data (that is, data which are “findable, accessible, interoper-
able and reusable”; Wilkinson et al. 2016). See also extensive ethnographic research on interoper-
ability conditions by Christine Borgman and collaborators (e.g. Edwards et al. 2011; Borgman 
2015) and the Exeter data studies group (e.g. Leonelli 2012; Tempini and Leonelli 2018), among 
others.
4 See for example the inaugural issue of the Harvard Data Science Review (Meng 2019), in which 
these factors are all highlighted as integral components of data science.
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research fields, locations, projects, objectives and lines of inquiry. This provides 
readers with insight into the salient circumstances affecting data interpretation, be 
they scientific, technological, political and/or social  – and thus with concrete 
grounding to consider how such variety originates, how it affects whether and how 
data are moved and re-used, and with which implications for the knowledge being 
generated – and its social roles.

Data production and use within different areas of research have long been defined 
by highly distinctive histories, methods, objects, materials, aims and technologies. 
Such diversity is a key challenge to any attempt to articulate the general character-
istics and implications of data-intensive science, and indeed there is arguably no 
single characterisation that can fit all the different ways of working subsumed under 
that umbrella. Leading research organisations, science academies and science pol-
icy bodies have repeatedly argued that when it comes to data practices, “one size 
does not fit all” and it is thus damaging to apply the same guidelines and standards 
for data management across different fields, research situations and long-standing 
traditions.5 In a similar vein, historians have documented various forms of big data 
production and interpretation across space, time and disciplinary boundaries6; and 
researchers in the social and information sciences have documented the diverse eco-
systems underpinning research in biology, biomedicine, physics, astronomy and the 
social, environmental and climate sciences – and pointed to differences in data types 
and standards, preferred instruments, norms and interests as having an enormous 
impact on the effectiveness of strategies to analyse large datasets brought together 
from different sources.7

How does such diversity affect the conditions under which data are processed 
and disseminated for re-use across different research environments? This is the 
question at the heart of this volume. Answering this question implies, first of all, 
understanding how data practices (ranging from the design of data collection to data 
processing and interpretation) adapt to specific situations, while also arching back 
to long-standing methodological traditions and norms. It also involves understand-
ing how data actually move from one setting to another, what it takes for that move-
ment to occur and what conceptual, material and social constraints it is subject to. 
Such understanding is particularly relevant in our age of distributed global net-
works, multidisciplinary collaboration and Open Science, where the pooling and 
linking of data coming from different fields, topics and sources constitutes at once 
a tantalising opportunity and a significant challenge. Without the ability to track 
how data change themselves and their environment as they move across contexts, it 
is impossible to strategize, innovate or even just document data practices and their 

5 See for instance the OECD (2007), Boulton et al (2012), the Global Young Academy (2016), the 
Open Science Policy Platform (2018) and the European Commission (2017). The whole working 
agenda of the Research Data Alliance is also based around the recognition of field-specific data 
requirements. I have discussed the epistemic foundations for this view in Leonelli (2016).
6 For instance see Blair (2010), Aronova et al. (2018), Daston (2017).
7 Among prominent contributors: Geoff Bowker (1994 and subsequent works), Paul Edwards 
(2010), Rob Kitchin (2014), Borgman (2015).
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effects – also making it hard to assign responsibility for mistakes, misunderstand-
ings or wilful deceptions in the use of data as evidence for decision-making.

Tracking data movements and explaining their direction and implications cannot 
be done solely through quantitative methods. Bibliographic analyses are of limited 
use since the vast majority of researchers, despite grounding their research on the 
consultation of databases, are not in the habit of documenting their searches or cite 
their data sources with precision when writing up results. The re-use of data is most 
commonly acknowledged in the form of a citation to a journal article providing a 
specific interpretation of the data. Where data are sourced from a repository rather 
than a published paper, citation is less reliable (also because some repositories do 
not provide stable identifiers for their datasets, so data users would cite the whole 
repository rather than the specific entry of interest); and the pivotal role played by 
data infrastructures in facilitating the re-use of data remains largely hidden.8 
Moreover, the number of infrastructures, technologies and standardisation tools 
developed to process and mobilise data is growing exponentially, generating vast 
and interdependent networks of resources which are extremely hard to map and 
describe even for the practitioners involved. One of the reasons for this growth is the 
insistence by researchers working within different traditions to tailor their data prac-
tices and related tools as closely as possible to their existing methods and commit-
ments. This requirement makes sense given that such methods and commitments 
have been adapted over centuries to the study of the specific characteristics of phe-
nomena of interest, and yet makes it difficult for researchers to agree on common 
standards and norms. This reluctance, coupled with a project-driven, short-term 
funding system, encourages an uncontrollable and unsustainable proliferation of 
resources for the management and analysis of data, with hundreds of databases 
emerging every year in relation to the same research field. As is often the case when 
scores of information resources haphazardly multiply and intersect, this prolifera-
tion results in obfuscation: each tool for data mobilisation becomes a black-box 
whose effects on the wider landscape are impossible to quantify without a thorough 
qualitative assessment.9 The expanding network of variously interlocked data 
resources and infrastructures is thus not only hard to trace, but opaque in its impact 
on knowledge generation.

The investigative approach used in this volume builds on extensive research on 
the history of different fields, the qualitative study of the practices and ethos charac-
terising the research communities in question, and consideration of how such his-
tory affects: (1) the norms, strategies and behaviours utilized when collecting, 
sharing and processing data, including measuring frameworks and specific instru-
ments and skills; and thus (2) the outputs of research, which may include knowledge 
claims but also technologies, methods and forms of intervention. Through the in-
depth investigation of case studies, we follow different stages of data movements, 

8 This has made it very difficult to quantify the impact of data infrastructure on research, and thus 
their value (Bastow and Leonelli 2010; Pasquetto et al. 2017).
9 For detailed studies on this phenomenon, see Mongilli and Pellegrino (2014), Pasquale (2015), 
Egyedi and Mehos (2015), Ebeling (2016), Leonelli (2018a).
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ranging from the planning that precedes data production to various ways in which 
data are mobilised and re-purposed, often with the goal of providing “actionable” 
knowledge. The volume as a whole constitutes a (undoubtedly partial, yet rich) 
sample of the variety of data practices to be found in different portions of the 
research world. At the same time, the volume exemplifies a coherent overarching 
approach to the investigation of data movements and their implications, which is 
ideally suited to analysing the diverse conditions under which data are handled, 
understanding the reasons underpinning such diversity, and identifying nodes of 
difference and similarity in ways that can help develop best practice. This approach, 
which we call the study of “data journeys”, is what this introductory chapter aims to 
systematically review and articulate.

To this aim, this chapter is structured as follows. I first discuss the very notion of 
data and provide a conceptualisation of data epistemology that proves particularly 
suitable to the emphasis on data mobility and interoperability: the historicized and 
relational view of data as lineages (Sect. 1). I then discuss the idea of data journey 
both as a way of theorising data movement and as a methodological tool to investi-
gate it (Sect. 2). I emphasise how data movements often transcend institutional 
boundaries and evade – or even reshape -- traditional conceptions of division of 
labour in science, thus making categories such as ‘disciplines’ and ‘research fields’ 
descriptively and normatively inadequate. The fluid nature of data journeys makes 
them challenging to identify and reconstruct, and yet it is the very opportunity to 
articulate and explicitly tackle those challenges that makes data journeys into useful 
units of analysis to map and compare the situations and sets of practices through 
which data are mobilised and used (Sect. 3). As a demonstration, I reflect on some 
significant differences and similarities among data practices that emerge from the 
analyses of data journeys garnered in this volume (Sect. 4). In closing, I discuss the 
significance of this approach towards addressing the scientific, political, economic 
and social challenges raised by data-centric science and the emergence of big data. 
This body of work does not sit easily with the current political and economic push 
towards universal adoption of big and open data as motors of research and innova-
tion (Srnicek 2017, Mirowski 2018). Recognizing the diversity of data journeys and 
related practices explains the difficulties involved in governing and standardizing 
big and open data, and highlights the considerable resources and the breadth of 
expertise involved in re-using data in ways that are sustainable, reliable and 
trustworthy.

2  �Mutability and Portability: Data as Lineages

When attempting to define what data are and how they contribute to the production 
of knowledge, reference to the Latin etymology of the term ‘datum’ - meaning “that 
which is given” - is unavoidable. This volume takes one aspect of this etymology 
very seriously: the reference to the public life of data as objects that can be physi-
cally moved and passed around (whether through digital or analogue means), so as 
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to be subject to scrutiny by people other than those involved in their creation. Data 
are mobile entities, and their mobility defines their epistemic role. Hence, for any 
object to be identified and recognised as datum, it needs to be portable.

This is not a new position. An early proponent was Bruno Latour in his seminal 
discussion of how data produced during fieldwork are subsequently circulated (Latour 
1999). Latour, however, added that while data are defined by their mobility, their epis-
temic power derives from their immutability - their capacity to stay the same and thus 
to be taken as a faithful and stable document of the specific moment, place and envi-
ronment in which they were created. In this interpretation, data are static products of 
one-off interactions between investigators and/or the parts of the world under investi-
gation: while phenomena change over time, the data that document them are fixed.

This volume was born of a different premise: that this impression of fixity, often 
associated to the idea of data as “given”, is highly misleading. In virtually all of the 
cases discussed in this volume, data are everything but stable objects ready for use. 
What makes data so powerful as sources of evidence is rather their mutability: the 
multiple ways in which they are transformed and modified to fit different uses as 
they travel across space, time and social situations. In order to serve their evidential 
function, data need to be adapted to the various forms of storage, dissemination and 
re-use over time and space to which they are subjected. Hence the mobility of data 
depends on their capacity to adapt to different landscapes and enter unforeseen 
spaces. As they travel around, data undergo frequent modification to fit their new 
environments. They acquire or shed components, merge with other data, shift shape 
and labels, change vehicles and companions, and such transformations prove essen-
tial to their usability by different audiences and purposes. As Mary Morgan (2010) 
noted in relation to the travels of facts, data are therefore best viewed as mutable 
mobiles. The more they travel, the more they shift shape to suit their new circum-
stances, and as a result prove tractable and effective in serving new goals.

This conceptualisation of data immediately poses a series of conceptual and 
methodological problems. Do data retain some integrity while they travel? How do 
we make sense of data as objects that remain identifiable while changing character-
istics, shape and format throughout their journeys? And when do data cease to be 
data and become something else? The chapters of this volume answer these ques-
tions in the form of stories of data birth, regeneration, loss and even death. These 
stories highlight the extent to which what is used as data by a given group at a given 
moment in time and space may not retain that function at a later time, either because 
the group shifts attention to other objects as sources of evidence or because the 
journey to new research situations fails.

One way to frame these stories and their significance for data epistemology is to 
adopt a relational view of data, within which the power to represent and thus docu-
ment specific aspects of the world is not intrinsic to data in and of themselves, but 
rather derives from situated ways of in which data are handled (such as specific 
forms of modelling and interpretation).10 This is not to say that the physical features 

10 I discuss the relational view of data in detail in Leonelli (2016, 2018a).
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of data objects – what colour and consistence they are, what marks they bear, and 
perhaps most crucially, whether or not they resemble (and in which respects) given 
aspects of the world – do not matter. Quite the opposite: the material properties of 
data as objects play a pivotal role in enabling and constraining specific practices of 
assemblage, dissemination and interpretation. And yet, they are not the only con-
straint on modelling and theorising. Other significant factors include the technolo-
gies, materials, social settings and institutions involved in facilitating or impeding 
data travel. For example, the photograph of a child has physical properties that make 
it a potentially useful source of evidence in a study of human physical development, 
but this potential can only be realised under a series of conditions that include: the 
availability of comparable data (say pictures of other children, pictures of the same 
child at different times, or other types of data on the child such as her height and 
family history); the extent to which the resolution and format of the photograph fit 
the requirement imposed by the computational tools used in the analysis; and the 
opportunity to access relevant metadata (such as the age and location of the child, 
which however constitute sensitive data whose circulation and use are strictly regu-
lated). What data can be evidence for - what representational value is ascribed to 
them - thus depends on their concrete characteristics at the time of analysis as well 
as the specific situation in which data are being examined.

The relational view of data makes them into historical entities which – much like 
organic beings – evolve and change as their life unfolds and merges with elements 
of their environment. Building on this biological metaphor, I propose to conceptual-
ize data as lineages: not static objects whose significance and evidential value are 
fixed, but objects that need to be transformed in order to travel and be re-used for 
new goals. The metaphor may appear to break down when observing that the plas-
ticity of organisms and their ability to adapt to new environment are essential condi-
tions for their survival, while data seem perfectly able to live a long life without 
requiring any modification. Typical examples are the contents of archives, musea, 
repositories and other establishments whose goal is often understood to consist of 
the long-term preservation of artefacts in their original state. In response to this 
objection, my contention is that what these establishments preserve are not data, but 
rather objects which may or may not be used as data (or data sources); and that as 
soon as the effort is made to use such objects as data or acquire data from them (for 
example, through measurement), they are at least minimally modified to fit the ever-
evolving physical environments and research cultures within which they are valued 
and interpreted.11 Using an archaeological artefact or an organic specimen as datum 
and/or data source, for instance, may involve touching it and moving it around – 
operations that are likely to affect the object itself, particularly if it is fragile and/or 

11 A very significant difference between data and organisms may consist of the locus of agency, 
with data depending on the agency of humans for their “evolution” as components of inquiry, while 
organisms arguably possess some degree of self-organisation. This introduction is no place for a 
lengthy exploration of these ideas, which are the subject of a manuscript in preparation by Leonelli 
and John Dupré.
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very old, and be conducted differently depending on what instruments researchers 
are using to document the characteristics of the object.12

Thus again, the use of objects as data requires portability and mobility, which in 
turn beget mutability - for instance when exposing data to new technologies, bring-
ing them to new user communities, and articulating how they may fit new strands of 
inferential reasoning. The archaeological artefacts discussed by Alison Wylie are a 
perfect case in point, with her chapter illustrating how the ways in which these 
materials are manipulated – and traces are extracted from them – changes in parallel 
to shifting conceptual, institutional and technological contexts of analysis. Both her 
case and the case of art authentication discussed by Coopmans and Rappert power-
fully show how the very value of artefacts as data sources depends on mobilisation 
and transformation, since if complete consensus was reached on what exactly these 
objects represent, there would be no incentive to continue to use them as part of a 
line of inquiry.

By the same token, several chapters in the volume demonstrate the enormous 
efforts and resources involved in keeping data objects and their evidential value 
stable over time – from the development and updating of standards and classifica-
tory categories, as discussed by Edmund Ramsden in the case of data about housing 
and Jean-Paul Gaudillière and Camille Gasnier in relation to health data, to the 
development of consensus around the interpretive commitments used in data infra-
structures (e.g. the biomedical “knowledgebases” analysed by Alberto Cambrosio 
and colleagues) and the establishment of benchmarks and practices through which 
data uses can be documented and assessed, as described by Wendy Parker for 
weather data and Götz Hoeppe for astronomical observations. It is no coincidence 
that what Cambrosio and colleagues document is the gradual disappearance of data 
from clinical spaces in favour of established, situated interpretations of those data. 
Within knowledgebases, the question of what makes data such in relation to any one 
clinical situation is eschewed in favour of a more practical and actionable reference 
to agreed interpretative claims.

While other conceptualisations of data may well fit the study of data journeys,13 
the relational view of data as lineages does in my view illustrate the significance of 
focusing on data movements to understand the role and status of data within 
research. This approach shifts analysts’ attention towards understanding what 
makes data more or less stable and usable, the epistemic – but also affective, insti-
tutional, financial, social - value imputed to the objects used as data across different 
situations of inquiry, and the extent to which such objects retain or lose integrity and 
material properties. It thus challenges facile understandings of data as the “raw” 
materials of science, which have long been critiqued within philosophy and the 
social sciences,14 and yet remain attractive to those who like to understand the 

12 See for example Wylie (2002) and Shavit and Griesemer (2011).
13 Another useful conceptualization, which also emphasizes the significance of studying data as 
mobile and mutable objects but places emphasis on the socio-material rather than the conceptual 
conditions of travel, is that proposed by Bates et al. (2016).
14 As epitomized by the effectively titled book edited by Lisa Gitelman (2013), Raw Data is an 
Oxymoron, and recalled by Helen Longino, a prominent participant in these debates, in the after-
word of this volume.
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research process as a straightforward accumulation of facts. All the contributions to 
this volume exemplify how using data as evidence is everything but straightforward, 
and sophisticated methods, resources and skills are required to guarantee the 
reliability of the empirical grounds on which knowledge is built.

3  �Data Journeys as Units of Analysis

Data journeys can be broadly defined as designating the movement of data from 
their production site to many other sites in which they are processed, mobilised and 
re-purposed. “Sites” in this definition do not need to refer to geographical locations, 
though this is often the case: they also encompass temporal locations and diverse 
viewpoints (whether motivated by different theoretical commitments, expertise and 
know-how, or by political, social and ethical views).

As a conceptualisation of the research process, the idea of data journeys is a 
direct counterpoint to the distinction between “hypothesis-driven” and “data-
driven” modes of research. Data journeys provide a framework within which to 
identify and investigate the various ways in which theoretical expectations shape the 
travel of data and the various vehicles and resources used to support that travel, 
regardless of whether the data were originally generated to test a given hypothesis. 
Indeed, focusing on data journeys facilitates the identification and exploration of 
data movements regardless of whether they are part of the same line of inquiry or 
methodological approach. Data produced to test a hypothesis are no less likely to 
travel than data produced for explorative purposes: in both cases, the data are tied to 
a specific frame of analysis (whether this is conceptual, as in the case of a given 
hypothesis, or methodological, as in the case of the tools used to collect and/or gen-
erate data), and work is required to move them away and beyond that frame. The 
chapter by Teira and Tempini discusses how data produced by a randomised clinical 
trial – the posterchild for hypothesis-driven research – do not typically travel beyond 
the trial itself unless legal protection of patient confidentiality and the commercial 
sensitivity of the data is in place, as well as institutions and infrastructures to curate 
the data appropriately (see also Tempini and Leonelli 2018). The difficulties 
involved in pharmaceutical data journeys become evident when attempting to merge 
such data with electronic health records gathered for goals different than that of test-
ing. Focusing instead on data whose very history exemplifies the practice of data 
collection without a predetermined target, James Griesemer demonstrates how the 
circulation and appropriate mining of the outputs of sequencing experiments also 
requires the adoption of a complex set of strategies and resources.15

Indeed, the metaphor of the “journey” is powerful because, just like many human 
journeys, data journeys are enabled by infrastructures and social agency to various 

15 The very history of the development of institutional and technological means for sharing 
sequencing data within and beyond biology illustrates this well (see for example Stevens 2013, 
Hilgartner 2017 and Maxson et al. 2018).
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degrees and are not always, or even frequently, smooth.16 A useful way to think 
through the significance of adopting this metaphor is to consider what it can mean 
for journeys to be successful. Sometimes journeys are perceived as successful when 
they consist of an item or person following a given itinerary towards a pre-selected 
point of arrival, by means of existing vehicles and infrastructures. In this interpreta-
tion, successful journeys will require meticulous planning and/or dependable and 
easily accessible infrastructures, which can secure the pathways through which data 
can be displaced (much in the same way as humans managing a business trip with-
out complications by travelling a well-serviced highway in a dependable car). Well-
established and meticulously curated databases, such the biological ones discussed 
by William Bechtel in his chapter, can sometimes serve as such predictable, con-
trolled travelling tools.

In other cases, the success of a journey will not depend on adherence to an itiner-
ary or even a pre-determined destination, but rather on: the effects of the journey on 
its protagonists and/or their surroundings; the ability of a given vehicle to mobilise 
data in the first place; the extent to which data are welcomed and used in new envi-
ronments; and/or the degree to which the purpose and destination of the journey 
changes en route. This is an interpretation of the idea of journey that relates less to 
physical displacement and more to intellectual development and learning, whereby 
one travels to explore, discover and “find meaning”. Rachel Ankeny’s discussion of 
the construction of medical case reports is a good example of the hopes and uncer-
tainties built into developing vehicles for data, in a situation where the future uses 
and potential itineraries of such reports (and thus what counts as data within them) 
are largely unpredictable. The whole point of this form of data dissemination is to 
encourage as wide a range of future travel and interpretations as possible.

No matter what the success of a journey is taken to imply, its achievement is 
prone to the unavoidable serendipity involved in any type of displacement as well as 
the heightened risks typically associated with travel. Using data journeys as a unit 
of analysis for data practices and their outcomes helps to identify and evaluate such 
risks, including questions relating to error in the data (for instance when data are 
copied inaccurately), misappropriation, misinterpretation and loss – and the relation 
between such risks and the physical and social characteristics of data objects and 
their travelling vehicles. Gregor Halfmann’s chapter on the transformation of sam-
ples into data stresses the precarious transitions involved in datafying the environ-
ment, but also the epistemic significance of the material links between the practices 
of data collection and further data dissemination and use. Once those material links 
weaken, for instance in cases where digital data have long been stored, formatted, 
shared and manipulated through various types of databases and related software, it 
becomes imperative to establish clear benchmarks for what data are reliable in rela-
tion to specific uses – and yet, as discussed both by Parker in relation to climate 

16 See also McNally et al. (2012), Lagoze (2014), Bates et al. (2016), among others.
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science and Tempini in relation to public health, such benchmarking proves increas-
ingly challenging to design as data journeys grow in length and complexity.17

More generally, using data journeys as a theoretical framework helps to consider 
and examine the relationship between different types of data structures (their physi-
cal characteristics as mutable objects) and data functions (their prospective use as 
evidence). What types of data - and forms of data aggregation - best afford what 
interventions and interpretations? And to which extent the physical characteristics 
of data constrain possible goals and uses? Many chapters in this volume focus on 
numerical data formats and their ability to aggregate and lend themselves to compu-
tational and statistical techniques, which in turn facilitates their travel and their re-
interpretation for many purposes. Other chapters stress how images and samples 
lend themselves to different types of manipulations, with their rich material proper-
ties making them prone to a large variety of interpretation and also, possibly, to a 
broad evidential scope. While it has long been recognised that quantification has an 
important role to play in inferential reasoning, attention to data journeys rather than 
specific instances of data highlights the epistemic role played by data traditionally 
regarded as “qualitative”.

Similar considerations apply to characteristics often associated to “big data” 
(Kitchin and McArdle 2016). Take, for instance, the idea of volume and the related 
notion of scale. Griesemer’s and Mary Morgan’s chapters both emphasise the 
importance of different kinds of data collectives and groups – such as datasets – to 
the travels of individual data points (or datums, in Morgan’s provocative terms). As 
they point out, the mining of big data often involves: the merging of datasets of dif-
fering scales and sizes, whose components were collected through diverse frame-
works; and choices about how such data collectives should be linked or otherwise 
compared are a fundamental component of data journeys. Another key property 
associated to big data is velocity, and again the study of data journeys enables ana-
lysts to interrogate this not just in relation to data production, but to the full arch of 
data mobilisation and re-purposing. What is the role of speed in data journeys? 
What impact does higher or lower speed of mobilisation have on the reliability of 
datasets, the amount of uncertainty and trustworthiness assigned to them, and the 
extent to which they can be reproducible? While the speed at which data travel may 
not matter much to their prospective re-use, the speed at which data vehicles, infra-
structures and algorithms are developed to facilitate such fast travel matters a great 
deal. Lack of investment and strategy around data travels implicitly supports a naïve 
and unrealistic view of data as “speaking for themselves”, which could compromise 
the extent to which data that have been mobilised can reliably interpreted as evi-
dence. A case in point is Koray Karaca’s data construction at CERN, where what 
constitutes a reliable and travel-worthy dataset from any one experiment (collision 
event) is decided through the automated implementation of models in a fraction of 

17 For lengthier discussions of quality assessment in distributed data systems, see Floridi and Illari 
(2014), Cai and Zhu (2015) and Leonelli (2017).
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a second, but the computational, theoretical and methodological resources that 
make such a quick decision process possible require immense foresight, adequate 
theoretical models, a highly sophisticated experimental apparatus and constant cali-
bration work. Similarly, Hoeppe illustrates cases of fast data travel in astronomy 
while also stressing the importance of explicit reflection on assumptions, norms and 
standards used during such journeys towards evaluating existing data 
interpretation.

4  �The Significance of Articulating Data Challenges

Regardless of what perspective one has on the nature and roles of data, tracking data 
journeys is a fruitful methodological tool to investigate what happens to data them-
selves, rather than instruments, methods, claims, epistemic communities, reper-
toires, epistemic regimes. Attempts to follow and reconstruct data journeys are 
experiments in identifying components of research that are of direct relevance to 
data, rather than, as more usual within theory-centric approaches to knowledge 
development, considering data in order to understand theories and models. In this 
sense, we take inspiration from the infrastructural inversion articulated by Geoffrey 
Bowker and Susan Leigh Star, with its encouragement to “recognize the depths of 
interdependence of technical networks and standards, on the one hand, and the real 
work of politics and knowledge production on the other” (Bowker and Star 1999).18 
What data journeys do is place the spotlight firmly on to data themselves and the 
implications that infrastructures – among many other forces, expectations and mate-
rial settings - have on their interpretation.

I already stressed how this approach enables analysts to step beyond a rigid con-
ceptualisation of “disciplinary” knowledge spaces, communities and tools. Data are 
fascinating research components partly by virtue of their ability to transcend bound-
aries. The explosion of data journey sites reflects the disruptive power of data with 
respect to institutional and disciplinary boundaries. Data are collected, circulated 
and re-used within and beyond the scientific world, across different publics and for 
widely diverse purposes – think only of crowdsourcing and citizen science as an 
example of data crossing over various types of research and decision-making in 
both the private and the public sector. Most significantly, data travels often play an 
important role in challenging and re-shaping institutional, disciplinary and social 
boundaries, thus acting as the ultimate “boundary objects” with the ability to con-
struct, destroy and/or re-make boundaries (Star and Griesemer 1989). The approach 
is exceptionally well-suited to studying the vertiginous development of ever more 
complex data science tools and infrastructures whose interdependencies and impact 
on knowledge production require unpacking and investigation. In my own experi-
ence of studying data journeys, I found a high level of interest in my results from 

18 See also Bowker (1994) and Star and Ruhleder (1996).
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researchers and curators themselves, who are the first to acknowledge how hard it is 
for any one agent in the system to acquire an overarching view of how data travels. 
Such an overarching view is arguably impossible to achieve: data journeys, as nar-
ratives that bring together various parts of a journey and highlight its implications 
for (at least some parts of) knowledge production and society, may well constitute 
the next best thing.

By the same token, many of the advantages so far identified in the adoption of 
data journeys as a unit of analysis also constitute major challenges, at once concep-
tual and methodological, which all contributors to this volume had to face. Most 
obvious is the problem of when journeys stop. It is difficult to delimit a data journey, 
given both the variety of data uses that can derive from the publication of one data-
set, and the current explosion of digital data infrastructures. Networks of data infra-
structures and related uses can quickly become so complex as to be impossible to 
localise and track. This difficulty is compounded by the mutable and aggregate 
nature of data themselves, which makes data even more difficult to follow whenever 
they are recombined to constitute new aggregates (as discussed in Tempini’s, 
Griesemer’s and Morgan’s chapters); and the problem of identifying who counts as 
a “user” of data at different points of a data journey (is it anybody who handles the 
data, for instance, or is it only those to interpret the data for purposes associated to 
knowledge-production?).

These issues cannot be settled in any general, abstract manner. As exemplified by 
the chapters of this volume, solutions to these challenges turn out to be highly situ-
ated, and the very opportunity to clearly articulate these challenges constitutes an 
advantage of adopting data journeys as units of analysis. Nevertheless, they ended 
up taking similar forms across chapters, thus giving rise to a coherent set of meth-
odological preferences which all contributors converged upon, which I now 
briefly list:

•	 Questioning “fixed” locations: attention to data journeys involves purposefully 
looking beyond a specific location in time or space – whether this is conceptual-
ised as a specific project, institution, system or even research field – and ques-
tioning what defines and constitutes a situation of inquiry at every step of the 
way and in clear relation to the goals of the groups involved;

•	 Focusing on non-linear, multiple narratives: reflecting the non-linear nature of 
data journeys themselves and the several strands of data practice (and related 
conceptualisations, goals and skills) that may end up animating the travels of a 
single dataset;

•	 Utilizing detailed case studies to explore and contrast the local characteristics of 
the data practices in question, for instance through ethnographies and historical 
reconstruction, thus recognising that the devil in data journeys is in the specific 
conditions under which movement happens;

•	 Engaging with practitioners: because of the importance of details and of famil-
iarity with context, an embodied understanding of the skills, techniques and 
goals involved at different moment of a data journey provides a strong platform 
for interpretation and for assessing the extent to which the chosen cases act (or 

Learning from Data Journeys



14

not) as representatives for wider concerns and attitudes. The study of data 
journeys tends to be “in medias res”, with science scholars often working along-
side, and sometimes collaboratively, with data practitioners.

•	 Meddling with other disciplinary lenses: all contributors to this volume worked 
from a specific disciplinary/methodological perspective and yet engaged in fre-
quent dialogue with scholars with different skills and goals (including other con-
tributors of this volume), with the aim to heighten awareness of the many 
dimensions of data journeys and their implications for conceptualizations of 
data-intensive science. While this may not amount to fully fledged interdiscipli-
narity, it does call attention to the significance of interest in a multi-disciplinary 
approach, where historical and philosophical findings inform social scientific 
studies (and vice-versa).19

•	 Attention to reflexivity: ways in which each author carves out case study and 
identifies data journey is itself important to explicitly discuss, since it has strong 
repercussions on analysis and it always itself dependent on the analyst’s own 
goals and vantage point. The position of the author depends partly on their own 
skills, preferences, aims and institutional position, and partly on the characteris-
tics of the groups and data uses that they investigate. Unavoidably, engagement 
with data journeys typically requires tackling and confronting these issues in 
ways that make sense given one’s interests and situation. Making one’s perspec-
tive as explicit as possible in the narration of these stories is therefore 
important.20

Taken together, these methodological commitments constitute an overarching 
approach to the study of data journeys which facilitates the identification and study 
of common challenges, while at the same time maintaining the ambiguities and 
generative tensions that virtually all scholars engaged in data studies have identified 
as constitutive of the epistemic power of data.

5  �Nodes of Difference and Similarity

While the range of data practices within this volume makes it impossible to offer a 
straight comparison between cases on the basis of their disciplinary provenance, 
some topics do emerge as crucial elements of data mobility across all chapters. In 
this section, I reflect on ways in which such elements can be used as nodes to iden-
tify and reflect upon differences and similarities among data journeys.

Perhaps the most obvious one, which resonates with existing scholarship and my 
remarks so far on the laboriousness of data journeys, is the significance of cleaning 

19 I discussed the value of bringing together philosophical, historical and sociological perspectives 
to study the management of data within bioinformatics in Leonelli (2010).
20 The methodological and conceptual demand for reflexivity is discussed in most detail within 
Hoeppe’s chapter.
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and processing practices to the interpretation of data. The principles guiding data 
cleaning can change dramatically across areas, often due to the preferences devel-
oped by research communities dealing with different types of data, phenomena and 
research goals. This is illustrated in Boumans’ and Leonelli’s comparison between 
business cycle analysis in economics, where simplicity is regarded as a virtue, and 
plant phenomics in biology, where simplicity is viewed as potential oversimplifica-
tion. The tools and methods used to clean data also range widely. In the cases dis-
cussed by Tempini and by Parker, attention falls on digital means of filtering data, 
where a given data format is preferred because it is compatible with existing soft-
ware and related models. It is notable that despite pertaining to different research 
areas (environmental and climate science respectively), both examples concern situ-
ations where finding technical ways to share heterogeneous and geographically dis-
persed data is a priority. A different approach consists of identifying standards that 
can help to systematize vast amounts of data by narrowing down what counts as data 
in the first place, a phenomenon clearly illustrated by attempts to use biological, 
medical, socio-economic and environmental data for public health purposes docu-
mented in Ramsden’s, Morgan’s and Gaudillière’s and Gasnier’s chapters. Yet 
another take on data cleaning is to proritize circumstances of data use over the char-
acteristics of the data objects in and of themselves, as exemplified by Hoeppe’s 
study of what he calls “architectures of astronomical observations”; or to focus on 
the effects of data cleaning on a given audience, as illustrated by the selection of 
data points as markers of authenticity claims for artworks discussed by Rappert and 
Coopmans.

Visualisation and its power to stabilise data patterns and related interpretations 
is another theme to emerge strongly from the study of data journeys. Müller-Wille 
and Porter’s cases, both of which concern the study of inheritance to determine 
recurrence of traits (respectively taken to denote race and mental illness) in specific 
populations, illustrate how the deployment of tables to visualise data is instrumental 
towards identifying patterns through which data are organised and understood – and 
crucially, to make such patterns robust over time even to changes in the underpin-
ning datasets. Bechtel’s discussion of network diagrams in contemporary biology 
provides another case where the patterns generated by a visualisation become them-
selves data to be disseminated and interpreted, thus engendering a data journey 
where movement and reuse are dependent on the tractability and interoperability of 
visualisations rather than of original sequencing data. Another take on sequencing 
data is provided by Griesemer, who emphasises the grouping of data into datasets as 
another type of patterning obtained through visualising tools such as Excel spread-
sheets and computational interfaces, which transforms specific data ensembles into 
stable targets for investigation.

Visualisation tools play a central role in data journeys because data are often 
unwieldy and hard to amalgamate, homogenize or even coordinate. A key reason for 
this, particularly for data produced for research purposes, is that data are generated 
through instruments, techniques and methods that are finely tuned to the study of 
specific phenomena. Hence another node emerging from this volume is the relation 
between data and the world: that is, the significance of the target system and its rela-
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tions to humans. The biological world, for instance, has long been perceived as 
consisting of “endless forms most beautiful” that require tailored research 
approaches. As discussed in Halfmann’s chapter, the study of marine organisms 
tends to differ dramatically from that of trees, mammals and fungi, not to speak of 
the ubiquitous microbes whose activities intersect and underpin all other forms of 
life. This radical methodological pluralism results in myriads of data types, formats 
and labels, and resistance to overarching attempts at standardisation (as exemplified 
by Leonelli’s plant phenomics).21 The environmental sciences similarly need to 
tackle ever-transforming, unique ecosystems, and the biomedical and social sci-
ences follow suit with the additional complications brought by the looping effects 
involved in humans studying humans – such as the capacity of practices of data 
classification to change the very phenomena that they identify, as in the case of 
categories of mental illness which Ian Hacking (2007) usefully described as “inter-
active kinds”. At the same time, within these sciences the role of values and social 
priorities in guiding data production and interpretation tends to be particularly pro-
nounced, with a desire for actionable knowledge structuring the choice of strategies 
and vehicles for data journeys and sometimes resulting in adherence to narrow stan-
dards for the sake of achieving socially relevant goals (as demonstrated by the chap-
ters of the volume related to public health, including Ramsden, Gaudillière and 
Gasnier, Teira and Tempini, Morgan, and Cambrosio and colleagues). By contrast, 
the targets of natural sciences such as astronomy, physics and geology may be no 
less variable than the biological ones, but are generally perceived to be more inde-
pendent from human experience (Daston and Lunbeck 2011). The sky thus works, 
in Hoeppe’s terms, as a stable object which can be observed and re-observed across 
time; while in Koraka’s discussion, the collision events studied in particle physics 
are assumed to be representative of the behaviour of all fundamental particles, 
regardless of location and circumstances – a commitment that simplifies the process 
of data amalgamation from different runs of an experiment.

Even where the target of data are assumed to be relatively homogeneous, how-
ever, data practices can differ on the basis of the degree of entanglement perceived 
to exist between data and the instruments through which they are generated (which 
may include conceptual tools like theories and models, or material tools like mea-
suring or experimental apparatus). Within particle physics, the generation of data is 
deeply informed by theoretical models and the specificities of a highly complex 
experimental apparatus, as illustrated by Karaca’s analysis of data acquisition pro-
cedures used at CERN. Similarly, Parker discusses the data-model symbiosis char-
acterising much work in the climate sciences. It is hardly possible to thing about 
data as “raw” in such cases. The temptation to consider data as raw products of a 
situated interaction with nature arises more consistently in relation to biological and 
astronomic work, though even there the idea of ‘observing’ as a value-neutral, 
observer-independent activity is quickly dispelled. Rather than focusing on whether 

21 This in turn, somewhat paradoxically, makes it hard to estimate and research the very phenom-
enon of biodiversity (Müller-Wille 2017).
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or not data are treated as raw documents of nature, contributors to the volume found 
it easier to examine stages of data processing and the extent to which certain traces 
are being transformed and modified in transit.22 This is where the journey metaphor 
comes in useful, highlighting the value that certain kinds of data types, format and 
related practices of management and processing of data objects have, and how it can 
differ across communities and stages of travel. The question of “what constitutes 
raw data?” becomes “what typologies of data processing are there, and what do they 
achieve within different types of inquiry?”

The relation between data and materials such as samples, specimens and prepara-
tions deserves a special mention here, partly because it has attracted less attention than 
other aspects (both in the sciences and in science studies), but also because this is where 
we find some of the starkest discipline-related differences between data journeys. For 
archaeologists, for instance, materials are crucial anchors for inquiry, made even more 
important by their scarcity. Within the biological and biomedical sciences, samples are 
hard to obtain once data have been digitised and shared via databases. Even in cases 
where they are collected (such as biobanks, natural history museums or seed banks), 
samples are depletable and thus hard to access and reuse – and of course living organ-
isms develop and evolve, making it hard to stabilise their characteristics so that they can 
act as a fixed reference point. Within social sciences such as economics and sociology, 
it is even harder to hold on to a material sample as populations are constantly 
transformed.

The management of change and temporality within and beyond data infrastruc-
tures can itself be considered as a node in the analysis and comparison of data 
journeys. We discussed how data are transformed through mobilisation, and how the 
target systems which data are supposed to document are also constantly changing. 
Notably, change in data and their use as evidence is separate and often disconnected 
from change in target systems. In other words, the processual nature of data as lin-
eages is out of step with the processual nature of the entities that data are supposed 
to document: “data time” is not the same as “phenomena time” (Griesemer and 
Yamashita 2002, Leonelli 2018b). This mismatch can be highlighted or downplayed 
when ordering, visualizing and interpreting data as representations of specific phe-
nomena – that is, when developing data infrastructures, data mining algorithms and 
models. This is a problem for (automated and complex) systems for big data analy-
sis, where situated assessment of data provenance and the specific date on which 
data were originally collected is often unfeasible or side-stepped (Shavit and 
Griesemer 2009; Leonelli and Tempini 2018). The vast majority of data infrastruc-
tures and mining tools assume a static definition of knowledgebase, with no sys-
temic provisions made for capturing change in target systems or in the data 
themselves. The reification processes involved here prove particularly pernicious 
when producing visualisations of data that build on each other at increasing levels 
of abstraction, as in the case of networks where creating links can be relatively 
simple but can make looking ‘back’ to the relation between networks and target 
systems fiendishly difficult.

22 On the tracking of traces, see Rheinberger (2011).
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All these considerations point to a final node of difference and similarity across 
data journeys, which is the grounds on which those involved grant legitimacy and 
trustworthiness to the data. This is where the cases within the volume show perhaps 
the greatest degree of variety, with multiple norms and concerns emerging in rela-
tion to different data uses. Wylie shows how belief in archaeological data can be 
warranted through frequent reanalysis of materials and triangulation of existing data 
with data obtained through new instruments and methods. The cases of Müller-
Wille, Porter and Bechtel show visualisation tools adding legitimacy and longevity 
to biological data that would otherwise be highly contested, while Ramsden shows 
the links between the adoption of standards, the portability of the data and the 
degree to which they are accepted and used as grounds for public health decisions. 
Attitudes to data ownership, governance and authorship can also contribute to eval-
uations of data credibility, with concerns around ethics and security playing a par-
ticularly strong role in the travels of sensitive personal data (as shown in Teira and 
Tempini’s discussion of the different roles that government may take in regulating 
the dissemination and reuse of medical records). The ways in which data journeys 
themselves are institutionalised, and the status of institutions themselves, are of 
course crucial to assessments of trustworthiness. Data regimes become reified and 
actualised through different types of platforms (Keating and Cambrosio 2003), rep-
ertoires (Ankeny and Leonelli 2016), market structures (Sunder Rajan 2016) and 
moral economies (Daston 1995, Pestre 2003, Strasser 2011), which shape the vari-
ous ways in which data are valued, including their role as sources of evidence.

6  �Conclusion: Why Study Data Journeys?

The approach to data journeys that I sketched here helps to trace the relations 
between the goals guiding different types of data use and the methodological, epis-
temic, cultural and political commitments favoured within those situations as they 
develop and transform over time. This may not be as satisfactory as a straightfor-
ward list of components essential to all data journeys or universal conditions under 
which data are likely to be reused – but the experiences of authors researching data 
movements, within and beyond this volume, indicate that such a straightforward list 
may not exist. This finding chimes with the failure of scientific attempts to find 
universal standards and guidelines for data interoperability and reuse, which resulted 
in the top global organisations focusing on data curation and dissemination (includ-
ing the Research Data Alliance, CODATA, the European Open Science Cloud and 
the Digital Data Curation Centre) backing a discipline-specific approach, within 
which diversity in epistemic cultures is taken as the starting point for devising data 
management practices, rather than as an obstacle to overcome to make data travel. 
The studies contained in this volume point to a yet more radical approach: rather 
than discipline-specific, the communalities and differences in data journeys emerge 
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as use-specific, and thus dependent on the goals, commitments and tools available 
to those seeking to extract meaning from data within specific situations.

It could be objected that the focus on data journeys as units of analysis, being so 
strongly steeped in history, necessarily constitutes a “a posteriori” view of what 
already happened, which cannot provide insight into current and future events - par-
ticularly given the unpredictability of journeys themselves. It is not a coincidence 
that the best examples of data re-use in this volume come from historical work from 
the nineteenth and twentieth century. For the more contemporary data journeys 
documented in this volume, most of which are still ongoing, it may even be too soon 
to tell about re-use. This should not come as a surprise, given the deep link between 
the epistemic value of data and their mobility. When conceptualising data them-
selves as mutable mobiles, data management and use are by definition moving tar-
gets, and any attempt to narrate data use necessarily turns away from its present 
dynamics. This does not mean that the study of data journeys cannot offer lessons 
for the future. Quite the opposite: this approach provides a way to pose the funda-
mental normative question, “what are data journeys good for?”

Asking this question is crucial at a time in which reliance on the “power of big 
data” permeates public discourse. The possibility to bring lots of data together is 
often hailed as a force for good, capable of revolutionizing the third sector (for 
instance through the personalisation of service provision) and fixing virtually any 
social and environmental problem, ranging from pollution to inequality. Focusing 
on the challenges and strictures of data travel is an excellent antidote to such hype. 
Understanding the conditions under which data come to be used, including the vari-
ous stages and processes through which that use is made possible, shines a light on 
the costs and opportunities involved in data mobility. Data journeys need to be 
reconstructed and studied with equal attention to technical and to social aspects, 
thus displaying the extent to which value judgements and financial incentives inter-
sect with scientific goals and technological innovation. This is key to contemporary 
debates around data storage, protection, security and use, as well as the meaning of 
openness and fairness in information sharing and the development of artificial intel-
ligence. How are big (and small) data transformed into scientific knowledge, with 
what implications, and how can the reliability of such knowledge be assessed?23 
Who do data journeys benefit and who do they damage, when and how? Answering 
these questions requires delving in both the technical and the social worlds of data, 
thus identifying conceptual and material commitments and their repercussions in 
terms of who is included, excluded or ignored by such knowledge-making pro-
cesses. By embodying this type of analysis, this volume exemplifies the value of 
bringing scholarship from history, philosophy and social studies of science to bear 
on issues of central concern to contemporary science and science policy.

23 On the social challenges posed by the use of big data, see for instance the seminal work of dana 
boyd (e.g. 2012).
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Material Origins of a Data Journey 
in Ocean Science: How Sampling 
and Scaffolding Shape Data Practices

Gregor Halfmann

Abstract  This chapter discusses the epistemological relevance of material interac-
tions during the early stages of a data journey. It shows that processes taking place 
when research technology makes physical contact with the objects targeted in 
research endeavours shape the subsequent data journeys and the practices of creating 
scientific knowledge. The chapter is based on a case study of ecological monitoring 
in ocean sciences and zooms in on the practice of sampling the oceans’ ecosystems 
with mechanical sampling devices that are towed regularly by commercial ships. I 
propose an understanding of materiality as the integration of physical matter from 
various sources so as to constitute a new entity, in this case a research sample con-
taining plankton organisms. The material integration is followed by material continu-
ity, the preservation of the sample throughout several if not all stages of the research 
process without a change of medium. This two-fold understanding is an attempt to 
ground the notion of “materiality” epistemologically rather than ontologically. As 
shown with empirical examples, material interactions are the origin of resistances or 
challenges which unfold throughout the research process as scientists intend to create 
knowledge by manipulating and analysing physical objects. The scientific practices 
are shaped by investigating, resolving, and working around these challenges.

1  �Introduction

This chapter tracks physical interactions during the creation of research samples 
and discusses their epistemological significance. On the basis of a case study in 
ocean science, I argue that interactions between materials of the research technol-
ogy and of the natural systems studied by scientists shape practices of creating and 
using scientific data; scientists deliberately study material interactions in order to 
account for uncertainties and to maintain commensurability of data that have been 
created decades apart. Understanding the epistemological significance of “material-
ity” in scientific practices is thus important for studies of data journeys.
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A variety of studies in the philosophy and sociology of science are concerned 
with the material nature of scientific objects and practices. Inducing a ‘clash of 
materials’ (Rheinberger 2011: 344) between biological entities and research tech-
nologies is central to many experimental practices in the life sciences. Such a clash 
may lead to the formation of objects, which are described as “material”. However, a 
wide range of objects with fundamentally different formation processes and physi-
cal characteristics are used in the life sciences, for example anatomical preparations 
(Rheinberger 2015), model organisms (Ankeny and Leonelli 2011), or “material 
models” in the form of species collections in museums (Griesemer 1990). What 
“materiality” implies for knowledge production has been elaborated by scholars in 
some cases, showing that material interactions and knowledge production processes 
are often intertwined, but in a variety of ways.1 This chapter complements these 
accounts by tracking the epistemological impacts of material interactions at selected 
stages of the formation and processing of research samples.

While many scholars have focussed on specific kinds of material objects or mate-
rial aspects of their case studies, the terms “material” and “materiality” tend to 
remain rather loosely defined. Quite often, it seems that “material” is used to signal 
difference or opposition to other classes of objects or processes, which may be 
labelled “non-material”, “virtual”, “theoretical”, “mathematical”, “ideational”, or 
the like. The opposition seems to bear on differences in an entity’s physical consti-
tution, stability, or tangibility, but also relates to its ontological status: mathematical 
theories or ideas certainly differ ontologically from a sampled biological species.

Debates over the meaning of “materiality” have ensued in some cases; for exam-
ple, Morgan (2003) and Parker (2009) debate how to understand “materiality” with 
respect to scientific experiments. Parker (2009: 492–93) criticises that computer 
simulations are not seen as material experiments by many; she further suggests that 
the emphasis on “stuff” may be misplaced and that epistemologically, the behaviour 
of a system is more relevant than its ontological characteristics. In science and tech-
nology studies, the meaning of materiality has been discussed in relation to a grow-
ing interest in ontology; Woolgar and Lezaun (2013: 326) argue that characteristics 
that may qualify an object as “material” should be treated as practical achievements 
and “materiality” should therefore be understood as an ‘upshot of practices’ of a 
certain kind. These examples show that materiality in scientific practices deserves 
deeper scholarly consideration; a closer study of materiality may provide classifica-
tions involving “material”, “non-material”, or other types of entities with crucial 
context and a more solid grounding.

In this chapter, I propose an understanding of materiality as the integration of 
physical matter from various sources so as to constitute a new entity; the material 
integration is followed by the preservation of the entity throughout several if not all 

1 For example, the materiality of anatomical preparations results in an ‘indexicality’ of the object 
that points to itself rather than representing something else (Rheinberger 2015: 323); standardised 
material characteristics of model organisms make them usable as ‘genetic tools’ (Ankeny and 
Leonelli 2011: 316); the materiality of species collections provide an epistemological robustness 
to potential changes of theoretical perspective (Griesemer 1990: 83).
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stages of the epistemic process without a change of medium. Material integration 
and material continuity are a two-fold characteristic applicable to objects that scien-
tists create and use as well as to scientific practices. This understanding is an attempt 
to ground the notion of “materiality” epistemologically rather than ontologically. 
Empirical examples presented in this chapter show that material interactions are the 
origin of resistances or challenges, which unfold throughout the research process as 
scientists intend to create knowledge by manipulating and analysing physical 
objects; scientific practices are shaped by investigating, resolving, and working 
around these challenges.

Material integration appears as a characteristic that is applicable to virtually any 
entity considering formational processes on a biological or chemical level. However, 
in combination with material continuity, my understanding of materiality leaves 
aside data practices that involve “jumps” to an entirely different medium. 
Understanding materiality in research processes requires a focus on preservation 
and overlaps between different stages of epistemic practices, which can be likened 
to scholarly accounts of biological reproduction as I discuss later in this chapter.

By focusing on sampling and subsequent research practices, my chapter zooms 
in—as the title indicates—on the “origins” or the very early stages of a data journey. 
The beginning of a journey is not necessarily the moment, in which things move 
physically (or virtually) for the first time. Many would argue that a personal journey 
begins with thorough planning and smart packing; many choices made at this 
stage—which route to travel, which shoes to wear—depend on material aspects and 
conditions such as terrain or expected weather conditions. These conditions create 
challenges, which shape the actual movement and influence the journey’s outcome. 
The journey, as an unfolding process or development, is enabled, facilitated, or 
“scaffolded” by these choices and by the artefacts, infrastructures, and agents a 
traveller has decided to utilise, for example boots, maps, or travel agents. This chap-
ter is not about the data journey per se, but about early stages of an epistemic pro-
cess; I use the plural form “origins” to account for the difficulty of pointing at one 
distinct moment, at which the journey begins.2 A great deal of thinking, planning, 
and preparing is necessary for data (and for persons) to travel successfully (Leonelli 
2016: 40, Learning from Data Journeys); the origins of these preparations, that is 
the processes and conditions that cause or provoke certain preparatory measures, 
are scattered across various domains,3 including, as I intend to show in this chapter, 
material interactions at the sampling stage.

2 I use the term “origin” with caution, in particular in relation to material objects; Rheinberger 
(2011: 338–9) writes that with respect to “traces”, which are ‘material manifestations’ in experi-
mentation before they are turned into representations, an origin does not exist and has never 
existed. With “origins of a data journey”, I intend to highlight a number of processes leading up to 
the creation of data and the data journey, without implying that a concrete origin in space and time 
is tangible.
3 The institutional context of research or the history of a research field, from which research activity 
is inspired and research methods are passed on, are examples of other domains that introduce 
restrictions on data practices.
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Various stages of processing and manipulation of physical objects are strongly 
pronounced in my case study, the Continuous Plankton Recorder (CPR) Survey. 
Research samples containing marine organisms are created by deployment of 
mechanical sampling devices on commercial ships crossing the oceans. Samples are 
then analysed in four distinct steps in a laboratory in Plymouth, UK; these include 
microscopic identification and counting of hundreds of different taxa ranging from 
single-celled phytoplankton to zooplankton organisms measuring several millime-
tres. All samples are archived for potential re-analysis in the future. I illustrate with 
several examples in this chapter that material interactions between the mechanical 
sampling device and marine organisms require specific practices, which “scaffold” 
the creation and the interpretation of scientific data.

I understand scaffolding as dynamic structures of conceptualisations, practices, 
theories, technologies, or personal relationships, which are applied to entities in 
order to facilitate the development of specific capacities or skills. Wimsatt and 
Griesemer (2007) have coined the concept of scaffolding in relation to the develop-
ment of culture and it has since been applied to various domains, including scientific 
practice. A rich collection of essays (Caporael et al. 2014b) demonstrates the appli-
cability in three very broad domains—evolution, culture, and cognition—and 
encourages scholars to analyse their own work in terms of scaffolding. An example 
of its applicability in science is Wylie (2016: 1), who explains how ‘interpretive 
scaffolding’ is used in archaeology to determine how material traces of the past can 
be used as evidence; Wylie points to epistemological consequences of scaffolding by 
arguing that scaffolding is always provisional and new ways of data interpretation 
are capable of calling assumptions based on an established scaffold into question.

As the following empirical sections show, the CPR Survey is grounded in the 
analysis of physical objects probably as much as archaeology; yet, my case is quite 
different, because the same type of evidence—physical samples containing marine 
organisms—is created repeatedly over multiple decades. Scientists must then be 
able to compare old data with new data, which is a common challenge in environ-
mental sciences that study long-term changes of natural systems (Edwards 2010). 
Besides discussing the material origins of scientific data, this chapter illustrates how 
the usability of data from different decades is scaffolded by implementing data 
practices that preserve methodological continuity.

After introducing the CPR Survey and tracking some material interactions and 
their epistemological implications, I discuss my understanding of “materiality” and 
elaborate how the material origins of scientific data require different forms of scaf-
folding and thereby shape data practices.

2  �The Continuous Plankton Recorder Survey

The CPR Survey is an ongoing, long-term research programme run by the Sir Alister 
Hardy Foundation for Ocean Science (SAHFOS) from Plymouth, UK, since 1990 
until SAHFOS merged with the Marine Biological Association of the UK (MBA) in 
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2018.4 However, the survey itself is much older. The CPR was invented by fisheries 
ecologist Alister Hardy in the 1920s for the purpose of monitoring zooplankton, the 
key food source of larval fish (McQuatters-Gollop et al. 2015: 2). The design of the 
CPR and the steps of sample analysis were developed experimentally in a ‘pioneer 
period’ in the 1930s and the early 1940s (Reid et al. 2003: 130). Since the 1950s, 
the basic methods of sampling and analysis have remained unchanged (Reid et al. 
2003: 131–32). With datasets covering more than 70 years, the CPR Survey is one 
of the longest running time series in environmental and marine science (McQuatters-
Gollop et al. 2015: 2). The methodological stability is one of the most important 
aspects of the CPR Survey; it is vital for its reputation and prestige in the scientific 
community, but it introduces constraints to scientific practice, as the survey’s lab 
manager David Johns explains:

“The whole idea is that you keep the methodology the same. You don’t want to make any 
mistakes with methodology, it has got to be the same. We pride ourselves on our 70-year 
time series, that’s what we want.” (DR0934: 5)

The CPR Survey has a long and eventful history; it was close to shut down in the 
1980s, when long-term marine monitoring programmes in Europe were terminated 
at an alarming rate (Duarte et al. 1992).5 Unlike many other programmes, the pro-
jected closing of the CPR Survey led to an international initiative strongly supported 
by the International Council for the Exploration of the Sea (ICES) and the 
Intergovernmental Oceanographic Commission (IOC) of UNESCO; a rescue fund 
was put together and established SAHFOS as a charity organisation in 1990 (Reid 
et al. 2003). SAHFOS’ core work was ‘the running and safeguarding’ of the CPR 
Survey, according to its former Director (Owens 2015: 2). Running the survey con-
sists of producing data related to plankton distributions from the analysis of sam-
ples, which are created through the deployment of CPRs. In addition to this core 
activity, SAHFOS increasingly engaged in ‘ancillary activities and associated sci-
ence’ (Owens 2015: 2).6

A CPR is a mechanical filtering device that is towed by commercial ships on 
their regular shipping routes. Bands of silk inside the CPR filter the seawater and are 
processed into individual samples measuring around ten by ten centimetres. As of 
summer 2017 more than 5 million nautical miles have been sampled with CPRs in 
total and more than 250,000 samples have been analysed.7 The CPR Survey oper-

4 At the time of my research, the CPR Survey was still conducted by SAHFOS, and the name there-
fore appears throughout the chapter and my references. Since April 2018 the CPR Survey is offi-
cially run by the MBA and the name “SAHFOS” has now largely disappeared from websites and 
official statements related to the CPR Survey.
5 At that time, long-term ecological monitoring ‘was considered weak science, akin to stamp col-
lecting’ (Reid et al. 2003: 141); around 40% of European monitoring programmes were shut down 
in the late 1980s (Duarte et al. 1992).
6 The survey’s staff members are involved in the development and testing of new technology, in 
policy-driven work, or in education and outreach. Several research fellows conduct research in 
environmental change, molecular ecology, marine biodiversity, sustainable resources, and health 
and well-being of marine food sources (SAHFOS 2015).
7 <https://www.sahfos.ac.uk/> [accessed 26 June 2017].
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ates mainly in the North Atlantic and the North Sea, where most of the circa 25 
regular towing routes are located. All samples are archived and stored in Plymouth 
for potential re-analysis in the future. Research based on CPR data sets has contrib-
uted significantly to the understanding of spatio-temporal dynamics of oceanic 
plankton and their responses to anthropogenic pressures and climate variability. The 
data are also used to inform UK and European marine policy-making and manage-
ment of the seas (McQuatters-Gollop et al. 2015: 2).

In today’s ocean science landscape, the CPR Survey is one of the oldest, yet only 
one of many projects that engage people without scientific credentials or institu-
tional affiliations in sampling or data creation. To meet the economic challenges of 
sampling the world’s oceans on increasingly finer spatial scales and with temporal 
regularity, a growing number of projects take advantage of recreational and profes-
sional seafarers, who regularly interact with the oceans. Picking up the current wave 
of citizen science and fuelled by technological innovation, marine science is often 
seen as a prime example of scientific fields with high potential for contributions by 
citizen scientists (Lauro et al. 2014). The CPR Survey does not refer to itself offi-
cially as “citizen science”, although a wide range of non-scientists volunteer to 
make the survey possible. Among them are the captains, chief officers, bosuns, and 
crews aboard ships, but also ship owners and managers, stevedores, terminal man-
agers, heavy cargo operators, and engineering companies (DR1960: 6).8 The col-
laboration is crucial for setting up a ship for towing CPRs and for proper handling 
and transportation of boxed CPRs in high security areas in the ports’ container ter-
minals. For each ship and each tow, the survey relies on a number of volunteers, 
who make sure that a CPR arrives at the right ship at the right time. The collabora-
tive practice of the CPR Survey has epistemic implications in its own right; most 
importantly, the geographical scope of the sampling and the CPR data depends on 
the locations of frequented shipping routes. The social dimension of the CPR 
Survey, in which research culture meets seafaring culture, offers opportunities for 
sociological and epistemological research. This chapter, however, focuses on the 
epistemology of the CPR Survey’s material dimension.

3  �Material Interactions and their Epistemological 
Implications

The following sub-sections describe two examples of material processes within the 
CPR Survey and their epistemological implications. These implications become 
manifest in data practices such as methods of creating data by sample analysis, but 
also in the outcomes of those practices, for example in databases and publications. 

8 SAHFOS often used the term “volunteers” to refer to the non-scientists involved in the survey. 
There is no formal contract with the non-scientists, except for the engineering companies who are 
commissioned to install davits or blocks on the ships that enable towing of a CPR. The shipping 
crews, but not the companies or ship owners, are compensated with ₤60 per tow (DR1960: 6).
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The two processes are the deformation of plankton organisms during sampling and 
interactions between the silk and the organisms.

3.1  �Deformation of Plankton Organisms and Identification

A CPR is a steel device that is shaped similar to a bobsleigh and weighs around 
90 kg. When a CPR tow is scheduled to begin, crew members use the ship’s winch to 
lower the CPR into the sea. SAHFOS emphasises that the sampling is never to inter-
fere with the ship’s normal business; a ship thus never stops or slows down for the 
deployment of a CPR. The steel body hits the water at up to 20 knots, putting signifi-
cant tension on the steel wire, the body, and the internal mechanics of the CPR.9 The 
wire is paid out until a coloured mark settles on the sea surface, indicating that the 
CPR has reached the desired depth between seven and 10 m. The pointed nose of the 
CPR has a small opening of around 1.5 cm2, through which seawater enters a tunnel 
inside the CPR that leads to the filtering silk (SAHFOS 2016: 18; Reid et al. 2003: 
126). The tunnel widens, so that the water pressure and the speed of flow inside the 
tunnel reduce significantly. A layer of silk (the filtering silk) spans across the tunnel, 
acts as a filter and retains a share of organisms and materials that have entered the 
tunnel. While the CPR is being towed, a propeller attached to the external body 
drives a mechanism that pulls the silk continuously across the flow of water. The silk 
that has crossed the tunnel is met by a second layer of silk (the covering silk), which 
is drawn by the same mechanism. The covering silk goes on top of the filtering silk, 
so that the organisms are held between the two layers.10 The silk rolls are drawn 
together into a closed chamber filled with a formalin solution. The organisms cannot 
survive this process, but the formalin prevents the decay of their bodies.

Plankton organisms often get damaged and deformed during the sampling pro-
cess. They may knock against the steel walls of the CPR or against other organisms 
that are already on the silk.11 If towed through a plankton bloom, areas of the silk can 
actually get clogged with organisms, which affects the volume of filtered sea water 
(Hunt and Hosie 2006). The biggest cause of deformation is, however, the sandwich-
ing of organisms between the two silk layers. With regard to some of the larger 
zooplankton species,12 the survey’s lab manager David Johns explains that “the stuff 

9 In a video of a CPR deployment, the device jumps on the sea surface for several seconds before 
submerging. When the CPR is hauled in, it sometimes smashes against the ship’s hull strong 
enough for the steel body to be damaged and require refitting in the survey’s workshop (DR1960).
10 Two bands of silk are marked, cut, folded, rolled up, and placed inside the internal cassette by 
hand before a CPR is deployed. A metre of silk covers around one hundred nautical miles, so up 
two five metres of silk are rolled up for each of the two silk rolls.
11 This cause of deformation is alleviated to some degree by the widening of the tunnel and the reduc-
tion of flow speed inside the CPR by a factor of around 1/30 (Batten et al. 2003: 196; DR2901: 2).
12 Only zooplankton species larger than two millimetres are identified and counted the way 
described here. Smaller plankton, including single-celled phytoplankton, are identified with up to 
625x magnification; Richardson et al. (2006: 35).
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is squashed” and “it is very, very flat”, when it arrives in Plymouth (DR0934: 19). 
The organisms thus look very different under a microscope in the survey’s lab than 
out in the ocean or in taxonomic reference literature; Johns explains how the altered 
appearance by deformation affects the identification process:

“Textbooks are obviously really useful, but it is not the same as looking down and actually 
seeing a physical specimen there. … They do look quite different, so you need to manipu-
late the organism.” (DR0934: 18–19).

In order to be manipulated, turned around, and viewed from different angles, the 
zooplankton organisms are manually scraped off the silk and placed into a Bogorov 
tray under a different microscope for identification and counting.13 Johns explains:

“It is just so much easier to identify them. You can’t do it on the silk very easily. It is so 
much easier, you take them off, put them into that tray, add some fluid and then you can 
manipulate them easily, flip them around. Because a lot of them, depending on how they are 
lying, they can hide their identification features, so you need to kind of manipulate them 
360.” (DR0533: 6)

The deformation during sampling and the way some organisms—especially those 
with spiny body features—are caught up in the silk requires manipulation and 
removal of organisms in order to create data. In this stage of the analysis, which is 
called the “zooplankton eyecount”, all organisms larger than two millimetres are 
taken off the silk for identification and counting and are put back onto the silk after-
wards. Data are created by counting different species or taxonomic groups and 
recording the result with tally marks in a hand-written notebook right next to the 
microscope.14

The organisms’ altered appearance also requires the sample analysts to have spe-
cific identification skills and experience. New analysts go through a training phase, 
which lasts several months until they are allowed to work on samples even from the 
survey’s most frequent sampling routes all by themselves. Samples from areas that 
are not sampled as frequently as the North Atlantic and the North Sea can be par-
ticularly challenging, because the encountered species and the ecology are very 
different. Some analysts have therefore specialised in samples from certain areas 
after years of practice and interacting with other analysts in the lab (DR0533: 10). 
Johns explains that “probably most of [the training] is informal and on-the-job 
stuff” (DR0934: 18), due to the specific characteristics of the CPR samples; the 
skills and experience are best acquired in practice and in cooperation with experi-
enced analysts. One of the experienced sample analysts describes the interaction in 
the lab, by which they gain expertise:

13 Manipulation and turning around of organisms is also necessary, because some species are dif-
ficult to distinguish; for example calanus finmarchicus and calanus helgolandicus, two of the most 
important zooplankton species in the North Atlantic and the North Sea, look very similar and are 
identified primarily by the shape of their fifth pair of swimming legs; Richardson et al. (2006: 47).
14 The data in the notebooks are later entered into the digital database manually by two sample 
analysts together in order to avoid transcription mistakes and to notice unusual looking results that 
might indicate an error in identification or counting (DR0533: 2).
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“We are always looking at each other’s samples all the time. It’s not that a day goes past 
where you are not going to go a look at someone else’s stuff …” (DR8112: 10)

The removal of materials from the sample and the ways of acquiring expertise and 
experience are examples of how data practices are shaped by material interactions 
at the sampling stage.

In 2011, SAHFOS published the Fish larvae atlas of the NE Atlantic (Edwards 
et al. 2011), which illustrates how deformation during sampling constrains exactly 
what kinds of data can possibly be created during sample analysis. The atlas covers 
geographical distributions of fish larvae of nine different taxa for the years 
1948–2005. More than 10,000 archived silk samples have been re-analysed with 
new molecular methods, because fish larvae are not routinely identified in the 
microscopic analysis:

Due to the size of the fish larvae and the sampling method, they can often be damaged and 
identification to species level is not always possible using traditional microscopic methods. 
(Edwards et al. 2011: 2)

As the fish larvae are often too damaged for visual identification, they are only 
counted and recorded in the survey’s database as one taxonomic group. The data-
base’s content and the knowledge of the ocean ecosystem are thus shaped by mate-
rial interactions that occur during sampling.

3.2  �Silk Specifications and Quantification

Albeit having changed silk suppliers several times throughout the history of the 
survey, silk with identical specifications has been used for sampling since the begin-
ning of the CPR Survey. The silk bands have a mesh size of around 270 μm and are 
quality controlled and prepared in a standardised way, which includes marking, 
stamping, folding, cutting, and putting the silk onto a roll that is going to be placed 
inside the CPR.15 Smooth fabrics such as nylon and much finer mesh sizes are 
typically used in plankton science today. The 270 μm is indeed large compared to 
the size of some species that are routinely recorded, as lab manager Johns explains:

“We had people saying that there is no way that we can see coccolithophores, they said ‘no, 
it is going to go straight through your mesh, because they are only ten microns.’ But they do 
stay there, so we took photos and we published some of it and say ‘actually, we can see 
these.’” (DR0934: 6)

Coccolithophores are a group of unicellular, eukaryotic phytoplankton species, 
which are around a magnitude smaller than the gap between the silk threads; yet, a 
constant portion of those species are retained. That is because the silk has a certain 

15 Marking and stamping is required for calculating the cutting points after each tow under consid-
eration of the ship’s average speed; each sample is intended to correspond to ten nautical miles of 
a tow, but the length of silk pulled by the mechanisms over that distance depends on how fast the 
ship has sailed.
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roughness and the individual threads are spinous, so that small organisms stick to 
them; the silk also has a leno weave, which has two twisted threads going in one 
direction and one thread in the other direction, whereas most nylon fabrics used for 
filtering are heat-fused so that the junctions are smooth. Phytoplankton can thus get 
caught in the tiny gaps between the twisted silk threads (Richardson et al. 2006: 61; 
DR0934: 6).

Some interactions between certain types of organisms and the sampling technol-
ogy are in fact multi-layered, because the presence of larger organisms also affects 
the efficiency, at which small phytoplankton are retained.16 Large zooplankton may 
have spiny body features, on which smaller organisms may get caught. As a growing 
amount of plankton covers the silk, the filter efficiency tends to increase:

As more and more organisms are filtered onto the mesh the open apertures are progressively 
clogged and reduce the effective mesh size. So as more large organisms are retained, 
smaller organisms, which at the start of the sampling would have been extruded, will be 
retained progressively more effectively (Batten et al. 2003: 206).

In general, a significant amount of small phytoplankton still flow through the silk 
and return into the open ocean, while most of the large zooplankton is retained. The 
material processes are complex and have led to experimental investigations regard-
ing the effects of clogging with different mesh sizes (Hays 1994; Hunt and Hosie 
2006). Some gelatinous plankton species can particularly enhance clogging 
(Richardson et al. 2006: 61). Batten et al. (2003: 206) explain the challenge posed 
by such interactions between organisms of different sizes and texture and the silk:

The effect is hard to quantify since the ambient concentrations of organisms (needed to 
determine the true proportion retained) will never be known for a specific patch of sea water 
at a specific time.

The materiality of the silk and the plankton organisms thus have implications that 
relate to the quantities of specific organisms on the silk, which are represented in the 
data created by the analysts. More specific, the data created by sample analysis 
hardly reflect the total numbers of plankton organisms at a specific space and time 
in the ocean. Richardson et al. (2006: 61) state that ‘there is increasing evidence that 
the CPR substantially underestimates absolute numbers’. The CPR data are thus 
often referred to as “semi-quantitative”. This characteristic of the CPR Survey, 
which is a result of material processes, does not mean that data are false or useless; 
however, the materiality shapes the way data are used by scientists:

Notwithstanding the semi-quantitative nature of CPR sampling, there is considerable evi-
dence that it captures a roughly consistent fraction of the in situ abundance of each taxon 
and thus reflects the major patterns observed in the plankton. (Richardson et al. 2006: 61)

The semi-quantitative character of the data could be viewed as a shortcoming; how-
ever, as Johns explains, the consistency of the sampling is valued higher than poten-
tial increases of precision:

16 The distinction I make between small phytoplankton and large zooplankton is a simplification 
and does not reflect the spectrum of shapes and sizes of the organisms on a silk sample.
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“We want to keep that consistent time series. And there are a lot of potential sort of foibles 
in the dataset. But the fact that it has always been done in the same way … You get lots of 
people who, it’s not an accuse, but who would say ‘well, you under-count certain things’. 
Well yeah, we do, but they have been consistently under-counted for sixty years. So you can 
just ignore the abundance values and just look at the trend to see what is happening. So 
yeah, if you were starting [the survey] from scratch, you would do it completely differ-
ently.” (DR0533: 4)

Other “foibles”17 result, for example, from the analysis of phytoplankton and zoo-
plankton smaller than two millimetres, for which each sample is sub-sampled. In 
case of phytoplankton, only around 1/10,000th of a silk area is looked at under the 
microscope. The analysts further use a number of fixed abundance categories, which 
are subsequently converted into estimates for the quantity of organisms of a specific 
taxon on a sample. Richardson et al. (2006: 63) explain that ‘abundance estimates 
from individual plankton samples are inherently imprecise because of variable zoo-
plankton behaviour such as diel vertical migration and local weather conditions that 
can concentrate or disperse fine-scale patches (Robertson 1968), as well as the 
“broad-brush” counting procedures.’

As CPR data do not reflect total quantities of organisms in the ocean, the data are 
usually not expressed in units such as organisms per cubic metre of sea water; 
instead, they remain expressed in the unit ‘numbers per sample’, which is an esti-
mate derived from the hand-written records (Richardson et al. 2006: 62).

Batten et al. (2016) is a localised study in fisheries ecology and an example of 
how semi-quantitative data are used. The study uses indices calculated from CPR 
data to explain variability of the Prince William Sound herring’s first year growth. 
Annual abundance anomalies for groups such as large zooplankton, small zooplank-
ton, or diatoms were calculated and then correlated with estimates of herring growth 
rates calculated from scale size measurements. Figures in the study use ‘organisms 
(zooplankton) or cells (diatoms) per Continuous Plankton Recorder (CPR) sample’ 
as a unit (Batten et al. 2016: 428); the authors also explain the relation between the 
silk’s mesh size and filter efficiency, and clarify what their data may represent:

Only an undefined proportion of the phytoplankton and microzooplankton community … is 
enumerated by CPR sample analysis. The data shown here then do not necessarily indicate 
whether more or less chlorophyll or ciliates were available, but as the CPR is an internally-
consistent sampler, they do indicate when relatively more, or less, of the large diatoms and 
hard-shelled microzooplankton were present and available as a food source. (Batten et al. 
2016: 429)

The specifications of the used silk and material interactions at the sampling stage 
between the silk and plankton organisms thus affect how many organisms end up on 
the silk, the quantities subsequently recorded by analysts in their notebooks, and 
how the data can be used to create knowledge of the ocean ecosystem.

17 Johns seemed to be searching for the right term before saying “foibles”. However, the term seems 
very fitting, as it refers to a ‘minor flaw or shortcoming’, but not as a complete fault or failure. 
Persons or things with foibles are still valued and useful, despite minor shortcomings; <https://
www.merriam-webster.com/dictionary/foible> [accessed 24 August 2017].
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4  �Material Integration and Continuity

The previous sections illustrate how many of the sample’s material characteristics 
that restrict how the object can be manipulated and used originate when the CPR is 
in the water. By contrast, the materials themselves, the silk, the steel, and the organ-
isms, have their respective origins in factories, in plankton life cycles, or even fur-
ther back. In the course of a CPR tow, physical parts of both the sampling technology 
and the ocean ecosystem not only “clash” against each other; they become inte-
grated. A variety of effects during integration—some of which are described 
above—lead to the formation of a novel object, the silk roll, which is later processed 
into individual samples.

Material integration is a constitutive phase and can be regarded as the realisation 
of an ‘apparatus-world complex’, a term used by philosopher Rom Harré (2003: 
28–31), who explains that a technical device is capable of being ‘integrated into a 
unitary entity by fusion with nature’ (Harré 2003: 28); furthermore, ‘the apparatus 
and the neighbouring part of the world in which it is embedded constitute one thing’ 
(Harré 2003: 29).18 The point is that the material integration realised in the CPR 
Survey is a constellation that results in the constitution of a new research object with 
properties that have been shaped during integration by material interactions.19 Both 
the plankton organisms and the silk are physically transformed during the integra-
tion: the organisms are immediately deformed and the silk assumes a different 
colour. The silk as well as the organisms are constitutive parts of the newly formed 
object and a research sample in the CPR Survey could not exist without either one.

My understanding of “integration” as the constitution of a new research object 
resonates with Tempini’s (this volume a, b) account of assembling and integrating 
data from various sources to create new digital datasets. There is obviously a strong 
contrast between a sample integrated physically from silk, ocean water, and marine 
organisms and digital data that have been integrated from various datasets by com-
putational commands; however, epistemologically, both integration procedures are 
geared towards forming objects that are analysable and meaningful in specific epis-
temic contexts.

In my case, it is important that the very materials that have been integrated are 
preserved throughout various stages of transportation, unloading, cutting, analysis, 

18 Rheinberger’s (2010: 217–218) description of an ‘intersection’ as a ‘surface’, ‘plane’, or ‘point 
of contact’ between a technical device and the object studied by scientists is similar to Harré’s 
apparatus-world complex; according to Rheinberger, an interface is a ‘fertile analytical constella-
tion’, which certainly resonates with the idea that new entities are “born” during sampling.
19 While this is not describing a case of reproduction, my view of silk rolls as novel objects, from 
which individual samples are created, is inspired by Griesemer’s (2014: 39–40) view of hybrids as 
individuals in biological reproduction; individuality is not an intrinsic property of certain objects, 
but can be understood as designating a relation between attention, abilities, and interest of the 
person tracking a phenomenon and properties, relations, behaviours, and activities attributed to 
what is being tracked. My account tracks materiality and contrasts with a view of the sample as a 
mere assembly of materials which could easily be disassembled to its original components.
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and long-term storage. In the CPR Survey, material continuity is achieved between 
the silk roll’s formation process out in the oceans and the object that is placed under 
a microscope and eventually archived in Plymouth. In his account of biological 
reproduction, Griesemer (2014: 26–27) emphasises the notion of ‘material continu-
ity’ and material ‘overlap’ between parent and offspring when ‘organized material 
parts’ are transferred between the two; form or information are transferred materi-
ally and not by any kind of impression or translation to a different medium. Although 
being pressed severely into the silk, the plankton material usually remains suffi-
ciently organised for the sample analyst to identify and count the organisms using 
specific tools and methods of manipulation.

Rheinberger (2015: 323–325) asserts preparations a materiality and durability 
similar to the research samples in the CPR Survey: Preparations ‘participate in, are 
part of, the very materiality of the object under scrutiny’; their ‘configuration’ is 
expressed in physical, biological, and chemical properties (Rheinberger 2015: 323). 
A CPR silk sample has assumed a specific configuration that makes it analysable 
and the configuration is preserved by material continuity.20 It is important, however, 
that “preservation” and “continuity” are not intended to imply that samples are 
immutable or “frozen”: Due to the formalin, the organisms’ green colour fades over 
time21; their spatial arrangement on the silk changes when plankton are removed 
and put back onto the silk during the zooplankton eyecount; and samples in the 
archive might get contaminated and slowly decay, impeding the ability to perform a 
re-analysis. Material continuity is an absence of “jumps” from one medium to 
another, as in the hand-written recording of plankton counts or the digitisation of 
hand-written notes.22

Material integration and material continuity frame an understanding of “materi-
ality” that—despite being based on the physicality of objects and practices—
emphasises the epistemological significance of material objects over characteristics 
that categorise objects ontologically. The next section discusses exactly how mate-
riality shapes scientific practices.

20 Rheinberger (2015: 323) further claims that ‘preparations are renderings, not representations’ 
with a ‘particular indexicality’ that points to themselves and not to something that is represented 
by the preparation. The material characteristics of the silk samples seem to point primarily to the 
processes involved in their formation; additionally, the bias between the number of organisms on 
the sample and plankton distributions in the ocean poses questions regarding the samples’ potential 
use as representations. These issues relating to scientific representation require deeper discussion 
elsewhere.
21 The survey derives a set of data from the colour of returning silk samples, as sample colour is 
used as an indicator of relative phytoplankton biomass in the geographical area of the tow. Due to 
fading of the colour, the assessment is performed when the silk roll is cut into individual samples 
and can only be performed once.
22 The lack of translation to another medium is another reason why considering samples as straight-
up representations is problematic (see note 20); a sample is a product of continuity starting with 
the fusion of materials in the oceans, and not by intentionally writing or imprinting information 
onto a medium.
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5  �Scaffolding Sample Analysis and the Creation 
of Knowledge

A CPR sample’s physical properties require specific epistemic practices that are 
applied to the sample or to the data that have resulted from the analysis. The exam-
ples described in this chapter are the removal of plankton organisms from the silk, 
on-the-job transfer of identification skills, and the consideration of relative quanti-
ties and trends instead of total quantities. Regarding the removal of large zooplank-
ton from the silk, the scraping together of organisms, the Bogorov tray, the additional 
microscope, and the manipulation of organisms are artefacts and practices, which 
scaffold the identification and counting of the organisms. Without this step, the 
identification would hardly be possible, be much more difficult, or at the very least 
take much longer to perform. The plankton analyst faces what Caporael et  al. 
(2014a: 15) call a ‘productive resistance or challenge’, which can be overcome 
through scaffolding. The aided identification results in a growing volume of scien-
tific data created from an individual sample, and eventually in growth of the data-
base and of the data’s interpretive scope. Besides development and maintenance, 
growth, as a change of size or status without change of organisation, is a plausible 
function or goal of scaffolding procedures, as Caporael et al. (2014a: 15–16) remark. 
Similar to a scaffold that is removed from a building after construction work has 
finished, the additional tray is removed, the organisms are placed back onto the silk 
and evenly spread out. Except for an altered distribution of the larger organisms, 
which has never been recorded in any way before the removal of organisms, no 
visual characteristic of the sample indicates that the scaffolding procedure and the 
identification of large zooplankton have been performed.

The second example, the on-the-job training of analysts, is a scaffold that devel-
ops the skills and capacities of the laboratory staff. Frequent interactions between 
experienced analysts and new staff members scaffold the acquisition of identification 
skills, which could hardly be learned without the informal exchanges. Challenges 
and resistance are caused by the deformed appearances of the organisms, the spe-
cific composition of various species on samples depending on the region they are 
from, or any kind of unusual or surprising encounter on a sample. This type of on-
the-job development of capacities and resolving of challenges is an example of what 
is called ‘developmental agent scaffolding’ by Caporael et al. (2014a: 15), which is 
characterised by cooperation and response between agents and their targets rather 
than just by application of an artefact or structure. The scaffolding in this example 
is anything but permanent, as people in the lab are not constantly assisting each 
other; it is utilised as needed, either if new analysts receive basic training, if a spe-
cial expertise is going to be acquired, or if an analyst is simply in doubt about an 
organism’s taxonomic identity.

The third example of scaffolding relates to the interpretation of the semi-
quantitative data created by sample analysis. Although the distribution of organisms 
on a sample is not representative of the species’ total quantities in the ocean, 
researchers are capable of creating knowledge about the oceans with the data. The 
use of the data is scaffolded by multiple studies carried out throughout the history 
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of the CPR Survey into the technical details and uncertainties introduced by mate-
rial interactions such as clogging of the silk. This is how the survey has accumulated 
‘considerable evidence’ (Richardson et  al. 2006: 61) that CPRs filter each taxon 
consistently and that the data reflect the patterns and trends of the plankton in the 
ocean. SAHFOS has likewise conducted studies regarding the effects of different 
ship speeds: The average speed of ships has almost doubled since the 1950s and in 
general, not all ships tow CPRs at the same speed due to season, weather, or other 
restrictions (SAHFOS 2016: 19; Batten et al. 2003: 200–02).23

Knowledge and evidence accumulated from these studies scaffold long-term 
consistency of the sampling and data analysis methods; the consistency, in turn, 
scaffolds commensurability and comparability of data created decades apart. A 
wide range of knowledge claims about the ocean ecosystem, especially those based 
on averaged data, depend on this commensurability. Only because the methods of 
sampling and data creation have been maintained for multiple decades, the CPR 
data are as valuable and relevant for plankton science as they are today.

As Caporael et al. (2014a: 16) explain, ‘maintenance seems more different from 
development than it really is’; in a dynamic system, ‘maintenance sustains a steady 
state, that is, it preserves organization in the face of stress, deterioration, and change, 
so maintenance is a change operation’ (Caporael et al. 2014a: 16). In the face of 
uncertainties, the inner consistency of the CPR Survey is maintained, although 
potential “foibles” (as the lab manager called them) may be maintained in the data 
as well. After decades of performing sampling and analysis the same way, the prac-
tice has become historically “entrenched” (Wimsatt 2014). However, the use CPR 
data still hinges on the abilities to evaluate the data’s accuracy and potential bias; 
each study of the survey’s materiality develops this ability. Along with the material 
interactions themselves, such scaffolds shape the data practices in my case.

Similar to other scaffolds, efforts aimed at understanding the materiality are 
expended on different time scales than the CPR Survey as a whole, because they are 
normally time-limited projects explicitly concerned with one detail or interaction. 
These studies are not completely invisible, as they are frequently published in sci-
entific journals or referenced in publications using the data. In terms of scaffolding, 
however, this referencing seems more like a certificate that a development has hap-
pened or that a particular aspect of the survey is being maintained. The scaffolding 
itself, that is the actual practice aimed at development, has been removed, whereas 
the developed skill or capacity has been internalised.24

23 The effects of the towing speed on the average depth and filter volume of the CPR are still not 
fully understood; experiments from 2015 showed greater depth with higher towing speeds, but 
earlier studies suggested a constant towing depth independent of speed (SAHFOS 2016: 19; Batten 
et al. 2003: 201–02). The average increase of speed from around 10 knots in the 1950s to around 
20 knots today had a negative effect on the towing stability. By 1970 more and more CPRs were 
actually torn off and lost. As a consequence, a stronger and more flexible steel wire was introduced 
since 1976 (Batten et al. 2003: 199).
24 “Internalisation” is also a characteristic of scaffolding; a capacity, a skill, or sometimes the entire 
scaffold may be internalised by the developed structure, so that it is not visible from the outside; 
the internalised scaffold (for example a new method, or new knowledge) may then become a stable 
platform for new scaffolding procedures (Wimsatt and Griesemer 2007: 245). In the CPR Survey, 
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6  �Conclusion

My study of an example of long-term ecological monitoring in ocean science 
emphasises the importance of samples and material interactions during their forma-
tion for epistemic processes and data practices. Materials of the sampling device 
interact with materials of the research target in ways that require transient and 
dynamic scaffolding activities25; scientists apply specific practices and techniques 
to material objects in order to achieve results and progress that would not be realis-
able otherwise or only realisable with much more difficulty and under much higher 
economical costs. The continuity of methods, how scientific practice can remain 
unchanged in the context of historical developments, deserves particular emphasis 
and certainly offers opportunities for intriguing philosophical study. Without scaf-
folding the continuity of sampling and data practices, much of the data in my case 
study would hardly be usable at all to study long-term changes of the ocean ecosys-
tem. Temporary scaffolds are necessary in order to keep an historically “entrenched” 
scientific method stable for decades and in order to learn about sources of uncertain-
ties in the resulting data.

This chapter approaches the materiality of scientific objects by regarding it as the 
integration of physical parts from different sources into one novel entity and as the 
realisation of material continuity—a preservation of physical matter without any 
“jumps” to a different medium—throughout the epistemic process; this approach is 
not intended as a readily generalisable definition of the term “materiality”. The aim 
of this chapter was to flesh out the epistemological relevance of material interac-
tions by showing how such interactions between research technologies and research 
targets can shape data journeys.
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Abstract  In present-day high-energy physics experiments, experimenters need to 
make various judgments in order to design automated data processing systems 
within the existing technical limitations. In this chapter, as a case study, I consider 
the automated data acquisition system used in the ATLAS experiment at the Large 
Hadron Collider (LHC) located at CERN, where the Higgs boson was discovered in 
2012. I show that the design of this system involves both theoretical and experimen-
tal judgments each of which has different functions in the initial data journey 
through which usable data are constructed out of collision events detected by the 
ATLAS detector. I also explore what requirements the foregoing judgments impose 
on the LHC data in terms of usability, mobility and mutability. I argue that in 
present-day HEP experiments these aspects of data are distinct but related to each 
other due to the fact that they are subjected to some common requirements imposed 
by the theoretical and experimental judgments involved in the design of data acqui-
sition systems.

1  �Introduction

The introduction of computer technologies to experimental high-energy physics 
(HEP) experiments in the fifties and sixties resulted in the automation of data pro-
cessing in HEP experiments (Galison 1997). Continuous advances in computer tech-
nologies have led to the ever-increasing automation of data processing in experimental 
HEP. This has made it possible to process increasingly large and complex data pro-
duced by increasingly more advanced particle detectors and colliders. As a result, 
experimental HEP has been progressively data intensive over the past 60 years, and 
this has been accompanied by important changes not only in terms of methods, tech-
niques, and tools employed in HEP experiments (Franklin 2013; Gutsche et  al. 
2017), but also in terms of organizational structures (Boisot et  al. 2011; Knorr-
Cetina 1999) and authorship (Galison 2003) in experimental HEP collaborations.
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The ATLAS and CMS experiments1 currently running at the Large Hadron Collider 
(LHC) located at CERN represent the state of the art in automated data processing in 
HEP experiments, as the level of automation achieved in these experiments is unparalleled 
in previous HEP experiments. While automation enables processing unprecedently 
large and complex data in the foregoing LHC experiments, it greatly reduces the need 
for human intervention in data processing. However, automation does not diminish the 
role of human judgments in this process. As I will discuss in this chapter, experimenters 
at the LHC need to make various judgments to be able to design automated data 
processing systems within the existing technical limitations.2 As a case study, I will 
examine the automated data acquisition system used in the ATLAS experiment. I will 
argue that the design of this system involves both theoretical and experimental judgments 
each of which has different functions in the automation of data processing in the ATLAS 
experiment. I will also explore what kinds of requirements the foregoing judgments 
impose on the LHC data in terms of usability, mobility and mutability, which are the 
general aspects of data in physical and biological sciences (Leonelli 2016).

In addressing the foregoing issues, I shall make use of the notion of data journey, 
which is a useful metaphor to characterize various processes that data undergo in 
experiments performed in physical and biological sciences (ibid.). In these 
experiments, data journeys start with the process of data acquisition. Some of the 
philosophical aspects of this process have already been discussed in the context of 
the LHC experiments (see, e.g., Morrison 2015; Beauchemin 2018; Karaca 2017, 
2018), and also in other contexts in this volume. In a case study concerning ocean 
science, Gregor Halfmann (in this volume) discusses the initial stage of data acqui-
sition where data is first produced. In a case study concerning astronomy, Götz 
Hoeppe (in this volume) discusses aspects of data acquisition concerning data inter-
pretation. In this chapter, I will focus on the initial data journey in the ATLAS 
experiment that links the production of collision events at the LHC to the stage of 
data acquisition where usable data are constructed out of collision events detected 
by the LHC, prior to the stage of data analysis and modeling (Karaca 2018; Leonelli 
2019; Boumans and Leonelli in this volume).

In scientific experimentation, data usability means the fitness of experimental data 
for its intended uses, namely data analysis and data modelling, which are aimed at 
serving the objectives of an experiment. In the context of present-day HEP experi-
ments, the term data is used to refer to collision events produced by collider systems 
such as the LHC and detected by detector systems such as the ATLAS and CMS detec-
tors. In the terminology of HEP, the term event denotes “the record of all the products 
from a given bunch crossing,” (Ellis 2010, 6) which occurs when two beams of parti-
cles collide with each other inside the collider. In the ATLAS experiment, proton 

1 The names of these HEP experiments are derived from the ATLAS (A Toroidal LHC Apparatus) 
and CMS (Compact Muon Solenoid) detectors located at the LHC.
2 The details of the design of the automated data processing systems used in the ATLAS and CMS 
experiments are explained in the technical design reports of these experiments, see ATLAS 
Collaboration 2003; CMS Collaboration 2002.
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bunches, rather than individual protons, collide inside the LHC at a rate of approxi-
mately 40 million times per second. These recorded collision events, amounting to 
petabytes (=1025 bytes) of data, are then processed and finally digitally recorded on 
tapes in databases at CERN. I shall call the foregoing journey of the LHC data the local 
data journey, as opposed to the global journey that I take to refer to the journey of the 
LHC data concerning its dissemination to researchers located inside and outside CERN.

The plan of this chapter is as follows. In Sect. 2, I will discuss how the criteria 
for usable data are specified in the ATLAS experiment. Also, I will characterize the 
experimental strategy used to search for usable data in this experiment. In Sect. 3, I 
will examine the local data journey at the LHC and show how usable LHC data are 
constructed out of event fragments detected by the ATLAS detector. In the final sec-
tion, I will argue that in the ATLAS experiment data mutability is required for data 
usability, and that the former is enabled by data mobility through the local data 
journey at the LHC.  Furthermore, I will identify the judgments involved in the 
design of the ATLAS data acquisition system. I will argue that as a result of the 
requirements imposed by the foregoing judgments, usability, mutability, and mobil-
ity are related, though distinct, aspects of the LHC data during its local journey.

2  �Selection Criteria and Search Strategy for Usable Data 
in the ATLAS Experiment

The ATLAS experiment at the LHC is a multi-purpose HEP experiment with two sets 
of objectives (ATLAS Collaboration 2003, Sect. 4): (1) to test the predictions of the 
present models of HEP concerning new particles, including the Higgs boson predicted 
by the Standard Model (SM)3 of elementary particle physics and the particles, such 
as new heavy gauge bosons, superpartners and gravitons, predicted by the theoretical 
models beyond the SM (BSM models) that have been offered as possible extensions 
of the SM model, such as super-symmetric and extra-dimensional models (Ellis 
2012); and (2) to search for unforeseen physics processes, i.e., those that have not 
been predicted by the present HEP models, including possible deviations from the 
SM at low energies. As I shall show in this section, the diversity of the objectives of 
the ATLAS experiment has a crucial bearing on what is considered usable data in this 
experiment, and also on the procedure through which this data is acquired.

The first set of objectives of the ATLAS experiment concerns a range of predic-
tions concerning different kinds of heavy particles (including the SM Higgs boson) 
that are predicted to be produced at high energies, while its second set of objectives 
concerns unforeseen physics processes which might occur at both high and low ener-

3 The SM consists of two different gauge theories; namely, the electroweak theory of the weak and 
electromagnetic interactions, and the theory of quantum chromo-dynamics which describes the 
strong interaction.
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gies. This means that the collision events relevant to the first set of objectives of the 
ATLAS experiment are also relevant to its second set of objectives concerning the 
discovery of unforeseen physics processes that might occur at high energies. 
Therefore, the objectives of the ATLAS experiment require different, but partly 
overlapping, types of collision events to be acquired during the stage of data 
acquisition.

In the context of present-day HEP experiments, collision events that have the 
potential to serve the objectives of the experiment are often referred to as interesting 
events. In the case of the ATLAS experiment, the signatures4 predicted by the SM 
for the Higgs boson are high transverse-momentum (pT)5 photons and leptons,6 and 
the ones predicted by the BSM models for new particles beyond the SM, such as 
new heavy gauge bosons W′ and Z′ and supersymmetric particles, are high pT single 
particles, namely photons and leptons, high pT jets as well as high missing and total 
transverse energy (ET).7 The aforementioned high pT and ET types of signatures 
might be produced at the LHC as a result of the decay processes involving the Higgs 
boson and the aforementioned particles predicted by the BSM models. The same 
types of signatures might also be produced at the LHC as a result of some unfore-
seen physics processes occurring at high energies (i.e. approximately above 
10 GeV). This means that the collision events containing high pT and ET types of 
signatures are relevant to both sets of objectives of the ATLAS experiment, thus 
making them interesting for the process of data selection.8 For this reason, in the 
ATLAS experiment, the selection of the interesting events relevant to the predic-
tions of the SM and BSM models, as well as to the discovery of unforeseen pro-
cesses at high energies, is performed by using selection criteria that consist of only 
the aforementioned high pT and ET types of signatures. These selection criteria are 
often referred to as inclusive triggers, in the sense that they constitute the main set 
of selection criteria in the trigger menu used in the ATLAS experiment.

As the above discussion indicates, the range of interesting events in the ATLAS 
experiment includes a wide variety of high pT and ET types of signatures across a 
wide range of pT and ET values, i.e., approximately from 10 GeV to 1 TeV. The tech-
nical limitations in terms of data storage capacity and data process time make it 
necessary to apply data selection criteria to collisions events themselves in real-
time, i.e., during the course of particle collisions at the collider (ATLAS Collaboration 

4 The term signature is used in experimental HEP to denote stable sub-atomic particles or energies 
into which unstable sub-atomic particles decay as a result of a physical process.
5 Transverse-momentum is the component of the momentum of a particle that is transverse to the 
proton-proton collision axis, and transverse-energy is obtained from energy measurements in the 
calorimeter detector.
6 A lepton is a spin ½ particle that interacts through electromagnetic and weak interactions, but not 
through strong interaction. In the SM, leptons include electron, muon and tau, and their respective 
neutrinos.
7 In this context, the term high refers to the pT and ET values that are approximately of the order of 
10 GeV for particles, and 100 GeV for jets.
8 The foregoing types of signatures also differ among each other, as the predictions to which they 
are relevant, namely those by the SM and the BSM models, are different from each other (for 
details, see ATLAS Collaboration 2003, Sect. 4; Karaca 2017).
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2012). Moreover, due to the aforementioned technological limitations, only a min-
ute fraction of the interesting events could be selected for further evaluation at the 
stage of data analysis. This necessitates, for the fulfillment of the objectives of the 
ATLAS experiment, that the trigger menu (i.e. the full list of data selection criteria) 
be sensitive enough to select the range of types of interesting events that will serve 
the entire range of objectives of the ATLAS experiment. If the trigger menu were 
not appropriate to this end, then the data selection procedure would be biased 
against certain types of interesting events. As a result, the ATLAS experiment would 
fail to achieve some of its objectives, as the fulfillment of a particular objective of 
the ATLAS experiment requires the acquisition of certain types of interesting events.

A major challenge in the ATLAS experiment is to perform data selection in an 
unbiased manner with respect to the various objectives of the experiment. This chal-
lenge has been addressed through a particular data selection strategy that aims at 
increasing the sensitivity of the trigger menu, and thus of the selection procedure. To 
this end, the foregoing selection strategy requires the trigger menu to be sufficiently 
diversified in terms of types of selection signatures that are appropriate for the vari-
ous objectives of the experiment. Since the ATLAS experiment is largely aimed to 
test the SM’s prediction of the Higgs boson and the predictions of the BSM models,  
the adopted strategy in the first place requires the trigger menu to be sufficiently 
diversified in terms selection signatures composed of only high pT and ET types of 
signatures relevant to the aforementioned predictions. This aims at extending the 
range of the relevant LHC data that could be acquired through the trigger menu.

In the ATLAS experiment, unforeseen physics processes might also occur at low 
energies, i.e., approximately below 10 GeV. Inclusive triggers are not appropriate 
for the search for novel pT and ET processes at low energies, as these selection crite-
ria consist of only high pT and ET types of signatures. Therefore, the selection strat-
egy adopted in the ATLAS experiment also requires the trigger menu to be 
sufficiently diversified in terms low pT and ET types of selection signatures. These 
selection signatures are referred as to prescaled triggers and determined by prescal-
ing inclusive triggers with lower pT and ET thresholds (<10 GeV) (for details, see 
ATLAS Collaboration 2003, Sect. 4.4.2). In this context, prescaling means that the 
amount of events that a trigger could accept is suppressed by what is called a pres-
cale factor in order for the selection process not to be swamped by the events con-
taining vastly abundant low pT and ET types of signatures, so that the aforementioned 
first set of objectives of the ATLAS experiment is not endangered. Prescaled trig-
gers are necessary for the trigger menu, and thus of the selection procedure, to be 
sensitive enough to the search for novel pT and ET processes at low energies. Since 
the events containing low pT and ET types of signatures have the potential to be of 
use for some SM studies of strong interactions (see, e.g., ATLAS Collaboration 
2016) as well as to provide support for new physics searches at low energies, pres-
caled triggers are especially aimed at further extending the range of the LHC data 
relevant to the second set of the objectives of the ATLAS experiment.9

9 Note that these events are also used to determine trigger efficiencies and detector performance.
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3  �Local Data Journey at the LHC

In the ATLAS experiment, the trigger menu is applied to collision events at three 
different levels through the use of what are called trigger systems (Ellis 2010).10 
These are automated systems designed and used to select the desired events from 
the collision events. The first stage of the data selection process is carried out by the 
level-1 trigger system that provides a crude selection of the interesting events in 
real-time. In the ATLAS experiment, the initial event rate of the proton-proton col-
lisions is ~40 MHz, corresponding to approximately 40,000,000 collision events per 
second. The first level of the data selection process is performed by the level-1 trig-
ger system, whose technical features allow for an event-acceptance rate of 
75-100 kHz. The second and third levels of the data selection process are respec-
tively carried out by the level-2 and level-3 trigger systems, which are jointly called 
the High-level Trigger and Data Acquisition System (HLT/DAQ). Unlike the level-1 
trigger system, which is hardware-based, the HLT/DAQ system is software-based, 
meaning that the level-1 and level-2 selection processes are performed directly by 
the specialized software algorithms according to the trigger menu. The level-2 and 
level-3 trigger systems have much smaller event-acceptance rates, which are respec-
tively around ~2  kHz and ~200  Hz, and thereby provide finer selections of the 
desired events.11 Therefore, in the ATLAS experiment, the initial event rate is 
gradually lowered from 40 MHz down to around 200 Hz at the end of the level-3 
selection process, meaning that the interesting events are selected from the collision 
events at a ratio of approximately 200/40,000,000, i.e., 5 in every 1 million events.

The first stage of the data acquisition process is carried out by the level-1 trigger 
system that performs a crude selection of potentially interesting events from the 
collision events detected by the calorimeter and muon detectors, which are the 
components of the ATLAS detector system.12 The level-1 trigger system produces a 
trigger decision within 2.5 μs and thereby reduces the LHC event-rate frequency of 
40 MHz down to the range of 75–100 kHz. In addition to the calorimeter and muon 
detectors, the tracking detectors are also used in the ATLAS experiment.13 Since the 
event rate is so high and thus the trigger decision time is so short, it is technologi-
cally impossible for the tracking detectors to determine particle tracks quickly 
enough for the level-1 event selection. Only the hit points produced by particles 
inside the tracking detectors could be recorded. These space points are later assem-

10 The treatment in this section is based on the ATLAS Technical Design Report (ATLAS 
Collaboration 2003), which is a technical document that contains the design information concern-
ing the principal components and functions of the ATLAS data acquisition system.
11 Note that the aforementioned event-acceptance rates are valid only for the early data-taking run 
(Run-1) and have changed significantly during Run-1 and also during Run-2.
12 ATLAS is a detector system that consists of different individual detectors, including the inner 
detector and the calorimeter and muon detectors.
13 In HEP experiments, the tracking detectors are used to determine particle tracks as well as to 
measure the momenta of electrically charged particles by means of the curvatures of their tracks in 
a magnetic field.
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bled by software algorithms in order to determine particle tracks. As a result, the 
data from the tracking detectors are not used directly by the level-1 trigger system 
for event selection. Moreover, due to the shortness of the level-1 trigger-decision 
time, even though the hit points are recorded, they are not completely read out from 
the tracking detectors during the level-1 selection. This means that the information 
(i.e., in terms of location in the detector, and pT or ET for each particle or jet con-
tained, or associated missing ET) necessary to fully specify a selected event is frag-
mented across the individual detectors of the ATLAS detector system, and that all 
pieces of this fragmented information are not assembled yet. Therefore, the full 
description of the event is not yet known, and as a result, the level-1 event selection 
is performed without full granularity, i.e., without the availability of data from all 
the channels of the individual detectors.

As shown in Fig. 1, the level-2 event selection begins when the sub-unit called 
Level-2 Supervisor sends (arrow 1)14 the results of the level-1 selection to the sub-
unit called Level-2 Processing Unit (arrow 2). Unlike the level-1 trigger system, the 
level-2 trigger system uses the RoI data15 processed by the sub-unit called Read-out 
System (ROS) from all the sub-detectors of the ATLAS detector with full granular-
ity. The event fragments, which are temporarily stored in the ROS, are accepted to 
the level-2 selection in small amounts. This way of performing event selection is 
called the seeding mechanism (ATLAS Collaboration 2003, Sect. 9.5.3.1). The ROS 
sends (arrows 2.1 and 2.2) to Level2Processing a subset of the event-fragments data, 
namely, the information regarding the locations (in the detector), momenta, and 
energies of the events selected at the level-1 selection. LVL2Processing sends 
(arrow 3.1) the information regarding the events accepted by the level-2 trigger 
system back to the ROS. LVL2Processing also sends (arrow 3.2) this information to 
LVL2Supervisor. LVL2Supervisor forwards (arrow 4) the same information to the 
sub-unit called Event Builder, which receives from the ROS the event-fragments 
data for the events selected by LVL2Processsing. Event Builder (arrow 5.1) requests 
from the ROS the event-fragments data for the events selected by the LVL2Processsing 
unit. Upon this, ROS (arrow 5.2) sends the event fragments to the Event Builder. 
The component called Sub-Farm Input (SFI) of the Event Builder assembles the 
event fragments associated with each selected event into a single record. At this 
stage, the full description of each selected event is available. The events that have 
been built are then passed (arrow 6) to the sub-unit called Event Filter Processor 
(EFP), through which the level-3 event selection, which is also called “event filter” 
(EF) selection, is carried out by specialized software algorithms (arrow 7).16 The 
events that have passed the level-3 selection are then sent (arrow 8) to the sub-unit 
called Sub-Farm Output (SFO) for permanent storage and offline data analysis.

14 Arrows refer to Fig. 1.
15 The regions in the ATLAS detector that contain signals for interesting events are called regions 
of interest (RoIs). The RoIs and the energy information associated with the signals detected in the 
RoIs are together called the RoI data.
16 Note that in Fig. 1, the correct arrow numbers for the messages “EFSelection” and “SendEvent” 
should be “7” and “8” respectively.
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The details of the level-2 and level-3 selection processes are not shown in Fig. 1. 
These selection processes are carried out by the Event Selection Software (ESS) 
system, which is a software component of the HLT system (ATLAS Collaboration 
2003, Sect. 9).17 The level-2 selection of an event is carried out in a series of steps 
each of which consists of two stages. In the first stage, the event is partially 
reconstructed, meaning that the trigger elements (TEs)18 associated with the event 
are refined and reconstructed by the reconstruction algorithms according to what is 
called the sequence table of the step. Each sequence in this table consists of an input 
TE and a reconstruction algorithm that is to be executed to refine and reconstruct an 
input TE into an output TE.19 In the second stage, the event partially reconstructed 
undergoes a selection process based on what is called the menu table of the step that 
contains a list of the selection signatures required for this step.

The Step Handler initiates the first stage of the level-2 selection by executing the 
Step Sequencer to access the list of the active input TEs associated with an event 

17 For future reference, note that the following units to be mentioned in what follows, namely, Step 
Handler, Step Sequencer, Step Decision, Step Controller and Result Builder, are the software com-
ponents of the ESS system that steers the HLT selection process.
18 A TE denotes one specific signature identified by the level-1 trigger system, e.g.,“e25i”. A TE is 
said to be active if it has previously satisfied a selection signature at the level-1 selection, or at the 
previous step of the level-2 selection, if the step under consideration is not the first step of the 
level-2 selection.
19 Reconstruction algorithms are a class of HLT algorithms that act on the RoI data with full granu-
larity from all sub-detectors to find new features associated with input TEs, such as a track or an 
isolation requirement.

Fig. 1  The relationships between the different components of the HLT/DAQ system in the ATLAS 
experiment. (Source: Fig. 9–2 in ATLAS Collaboration 2003)
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selected by the level-1 trigger system. The Step Sequencer next compares the list of 
the active TEs with the required TEs given in the sequence table of the step. For all 
matching TEs, the Step Sequencer executes the reconstruction algorithms to refine 
and reconstruct the input TEs into the output TEs according to the sequence table of 
the step. The Step Sequencer also creates the list of the output TEs for the imple-
mentation of the seeding mechanism discussed earlier. The Step Sequencer also 
marks each output TE as “seeded by input TE” depending on from which input TE 
it has been previously created. Then, it passes each output TE to the relevant hypoth-
esis algorithms—another class of HLT algorithms—that decide whether the TE is 
valid, depending on whether its reconstructed features are consistent with its phys-
ics interpretation. For example, if a track or an isolation requirement associated with 
a TE is found by a reconstruction algorithm, then the relevant hypothesis algorithm 
determines whether this track or isolation requirement matches the physics interpre-
tation of the TE. The hypothesis algorithms activate the validated TEs and discard 
the invalidated TEs by deactivating them.

The Step Handler initiates the second stage of the level-2 selection by calling the 
Step Decision to access the list of the active output TEs, i.e., the TEs validated by the 
hypothesis algorithms in the first stage of the level-1 selection. The Step Decision 
compares the list of the active output TEs with the required selection signatures 
given in the menu table of the step. For the TE combinations that match the selection 
signatures in the menu table, the Step Decision creates a list of the satisfied signa-
tures that consist of those matching TE combinations. The event is accepted for the 
next step by the Step Decision, if the TE combinations it contains satisfy at least one 
signature given in the menu table of the step; otherwise it is rejected and thus not 
considered for the level-3 selection. The Step Decision sends the information regard-
ing the decision about the event to the Step Handler that will initiate the next step 
configured with a different sequence table and a menu table. The level-2 selection of 
an event ends at the step where it is rejected, or it continues until all required steps 
are completed, indicating that the event is finally accepted for the level-3 selection.

If an event is accepted at the level-2 selection, the Step Controller executes the 
Result Builder to provide the information necessary to seed the level-3 selection. 
This includes all satisfied signatures and the associated TE combinations, as well as 
the level-1 RoI data. The Result Builder assembles all these data-fragments, and the 
results are subsequently used for the seeding of the level-3 selection. The level-3 
selection is implemented and coordinated by the Step Handler in the similar way as 
the level-2 selection is carried out as described above. But, the level-3 selection dif-
fers from the level-2 selection in that the TEs are now the active TEs of the level-2 
selection, and that more sophisticated HLT algorithms are used to achieve a much 
finer event selection. As has been mentioned previously, the events that have passed 
the level-3 selection are stored in the Sub-Farm Output for data analysis. This marks 
the end of the local journey of the LHC data.

The collision events that have been rejected by the level-1 and level-2 trigger 
systems are removed from the data selection system. However, all the data selection 
operations carried out by the ATLAS data acquisition system are recorded by the 
system called Online Bookkeeper that produces logs stored in the form of logbook 
data (ATLAS Collaboration 2003, Sect. 10.4.1.2). Therefore, the ATLAS data 
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acquisition system is traceable in the sense that the decision regarding the accep-
tance or rejection of an event (already selected by the level-1 trigger system) by the 
level-1 and level-2 system systems can be reassessed by using the logbook data.

The LHC data is disseminated to the researchers located outside CERN through 
its global journey implemented by the ATLAS Distributed Data Management system 
(ADDM) where the acquired collision events are digitally written to datafiles aggre-
gated into what are called datasets (for details, see Branco et al. 2008). The latter are 
disseminated through its four-tier hierarchical structure.20 Tier-0 is the CERN Data 
Center where datasets are created, stored and distributed to Tier-1 which consist of 
(currently) 13 computer centers located in the following countries: Canada, Germany, 
Spain, France, Italy, Nordic countries, Netherlands, Republic of Korea, Russian 
Federation, Taipei, UK, and US. Tier-1 temporarily store datasets and distribute them 
to Tier-2 which consists of computer centers located typically at universities and 
similar scientific institutions. There are currently 150 Tier-2 sites around the world. 
Researchers located outside CERN can access data sets (for the purpose of data 
analysis) through Tier-3 which consists of local computer clusters located at univer-
sities and similar research centers or even through individual personal computers.

4  �Conclusions

The technical limitations at CERN in terms of data storage capacity and data pro-
cess time do not allow applying the trigger menu to the detected events without 
subjecting them to the construction and selection processes that make up the local 
data journey in the ATLAS experiment. Since the requirements for data usability are 
specified by the selection criteria in the trigger menu, data mobility is necessary for 
data usability and constitutes an essential aspect of the ATLAS data acquisition 
process. During the local data journey, collision events detected by the ATLAS 
detector system are constructed out of the fragments of proton-proton collision 
events that are produced by the LHC and detected by the ATLAS detector system. 
The first part of the local journey is a construction process in the sense that event 
fragments are assembled by the level-1 and level-2 triggers into full events. This part 
of the local journey is at the same time a selection process, because both events and 
event fragments that do not satisfy the selection criteria are filtered out and dis-
carded from further consideration. The second part of the local data journey, which 
is carried out by the level-2 trigger, is solely a selection process that filters out the 
events constructed in the first part that do not satisfy the selection criteria. The third 
level of the local journey is also solely a selection process that further refines event 
selections made in previous levels. The above considerations show that during the 
local journey, events are mutable in the sense that their contents—namely, their 
constituent signatures—are transformed into full events by the construction and 
selection processes according to the selection criteria in the trigger menu. Therefore, 
in the context of the ATLAS experiment, data mutability in the sense of changeabil-

20 For more information, see the URL: https://home.cern/about/computing/grid-system-tiers
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ity of event content is a consequence of data mobility, which is in turn a necessary 
condition to apply selection criteria and thereby ensure data usability.

The above discussion indicates that the trigger menu used in the ATLAS data 
acquisition process should also be regarded as the set of event construction criteria, 
as it serves to construct events out of event fragments. The determination of the trig-
ger menu is partly based on the theoretical judgment that the selection criteria con-
sidered relevant to the testing of the predictions of the SM and BSM models should 
consist of only types of signatures predicted by these models. The determination of 
the trigger menu also requires a judgment in the form of a data selection strategy, 
namely that the trigger menu should be sufficiently diversified in terms of types of 
signatures that are relevant to the intended objectives of the ATLAS experiment. 
Since the ATLAS experiment also aims at discovering unforeseen phenomena that 
are not accounted for by the SM and BSM models, the foregoing selection strategy 
also requires the trigger menu to include selection criteria that are not necessarily 
based on the predictions of these models. This enables using the same trigger menu 
to acquire data sets relevant to the entirety of the intended objectives of the ATLAS 
experiment. The judgment on which the data selection strategy is based is experi-
mental, as it does not follow from the predictions of the SM and BSM models that 
not dictate how the trigger menu should be diversified in terms of signatures. 
Therefore, the foregoing theoretical and experimental judgments jointly contribute 
to the determination of the trigger menu and thereby impose requirements on what 
counts as usable data in the ATLAS experiment.

The implementation of the above-mentioned experimental strategy in the ATLAS 
experiment requires taking account of the technical limitations at CERN in terms of 
data storage capacity and data process time. This is turn leads to the judgment that 
the trigger menu should to be applied to collision events in real time, i.e. while pro-
ton collisions are taking place inside the ATLAS detector. This is a technical judg-
ment based on the consideration that the amount of events produced by the LHC is 
so large that the foregoing technical limitations make it impracticable to apply the 
trigger menu after events are recorded. It is also experimental in the sense that unlike 
the experimental judgment concerning the trigger menu, it dictates which specific 
experimental procedures to use to apply the trigger menu to collision events. It 
thereby imposes certain technical requirements on the design of the ATLAS data 
acquisition system. The main technical requirement is the three-level arrangement 
of the trigger systems in the way it is described in the previous section. There are 
also more specific requirements concerning the details of the event construction and 
selection processes. An important technical detail is the use of the seeding mecha-
nism according to which events fragments are accepted to the level-2 trigger in small 
amounts. If event fragments were accepted at once, this would considerably dimin-
ish the level-2 trigger decision time and thus render the level-2 selection process 
ineffective. The factors such as data processing capacity of each trigger and the 
amount of events produced by the LHC are also considered in specifying the details 
of the ATLAS data acquisition system. These technical requirements, together with 
the ones imposed by the experimental judgments, can be seen as the requirements 
imposed on the mobility and mutability of the LHC data during its local journey. 
While the requirements on mobility specify the ways in which events are made to 
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travel during the construction and selection processes, the requirements on mutabil-
ity specify the ways in which the contents of events transform during these processes.

In the philosophical literature, the necessity of data mobility and data mutability 
for data usability has been studied and stressed in relation to data dissemination 
(see, e.g. Morgan 2010; Leonelli 2015). The present case-study shows that data 
usability is an essential concern in present-day HEP experiments already in the 
stage of data acquisition. In this context, in order for the experiment to achieve its 
intended objectives, it is necessary that the issue of data usability be dealt with 
before data are disseminated for analysis and interpretation. As the case of the 
ATLAS experiment illustrates, data mobility and data mutability are necessary con-
ditions to deal with the issue of data usability encountered in data acquisition stage. 
Thus, in present-day HEP experiments, data does not come ready-made from the 
detector but rather is constructed to be usable for the purposes of the experiment. As 
a result of this construction process, data is both mobile and mutable from the outset 
and prior to its dissemination. Therefore, usability, mobility and mutability are 
related, though distinct, aspects of data in the context of present-day HEP experi-
ments. What makes these aspects of data related to each other is the fact that they 
are subjected to some common requirements imposed by theoretical, experimental 
and technical judgments involved in the design of data acquisition systems.
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Tracing Data Journeys Through Medical 
Case Reports: Conceptualizing Case 
Reports Not as “Anecdotes” but Productive 
Epistemic Constructs, or Why Zebras Can 
Be Useful

Rachel A. Ankeny

Abstract  Medical case reports provide an important example of data journeying: 
they are used to collect data and make them available for re-use to others in the field 
including clinicians, biomedical researchers, and health policymakers. In this paper, 
I explore how data journey in case reports, with particular focus on the earliest 
stages of the process, namely from creation and publication of case reports to the 
initial re-uses of them and data within them. I investigate key themes relating to case 
reporting and re-use, including factors which seem to smooth the path along which 
the data captured by a case report journey via broader citation patterns and detailed 
qualitative analysis of highly re-used case reports. This analysis reveals some of the 
key factors associated with the case reports whose data have greater amounts of 
journeying including publication in a general medical journal; that the data have 
broader implications and evidential value for topical or even urgent issues for 
instance in public health; and use in the case report of multiple research methods or 
concepts from diverse subfields. These findings along with standardization of case 
reporting are shown to have epistemological implications, particularly for how we 
understand the journeying of data.

1  �Introduction

Data never stand on their own: they are gathered and become accessible via differ-
ent forms of “packaging” (Ankeny 2010; Leonelli 2010, 2016) and travel over space 
and time. These journeys associated with their use and re-use in various contexts 
shape how they are understood, interpreted, and subsequently utilized. The issues 
associated with curation, imposing ontologies, and establishing metadata via online 
databases are well recognized, including the resulting epistemological limitations 
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(Leonelli 2016). Standardization of data is a critical part of such processes and is 
extremely complex even where the data in question are relatively simple (such as 
genomic sequencing data in organism-based databases, see Leonelli and Ankeny 
2012), let alone in fields where data are highly heterogeneous (e.g., in this volume 
see the chapters by Halfmann, Parker, Ramsden, and Wylie).

Clinical research is a domain of scientific practice where data often are extremely 
complex and collected in highly variable and non-standardized ways. The com-
plexities associated with the data collected typically arise not because of the content 
of the data but because of our (high) level of interest in the details and the mixture 
of subjective and objective types of information in play whenever the main focus is 
on humans and particularly patients. Various types of data can be more easily stan-
dardized than others, for instance those collected in randomized controlled trials 
(RCTs), which can be easily aggregated using meta-analysis or similar. However 
other types of clinical data are much more diverse in terms of quantity, quality, 
provenance, means of production, attached metadata, and so on.

Medical case reports are a particularly striking example: among other purposes, 
they are used to collect data and make them available for re-use by others including 
clinicians, biomedical researchers, and health policymakers (for other uses, see e.g. 
Ankeny 2010, 2014, 2017a). Case reports are an ideal focus for exploring of how 
data “journey” at their earliest stages. They do not tend to cover great distances in 
any literal sense, but instead move from one context to another and thus allow 
exploration and development of understanding via application in new domains.

In this paper, I explore how data journey in case reports with particular focus on 
the earliest stages of the process, namely from creation and publication of case 
reports to the initial re-uses of them and data within them. Following presentation 
of background on medical case reports, I investigate key themes relating to case 
reporting and re-use, including factors that seem to smooth the path of the journey 
along which the data travel, via broader citation patterns and detailed qualitative 
analysis of highly re-used case reports. This analysis reveals some of the key factors 
associated with the valuing of data captured by case reports by those in the broader 
biomedical and health communities, as well as allowing reflections on how and 
when case reports are most useful and how standardization of case reporting might 
support the journeying of data.

As in the historical sciences, much of what is contained in medical case reports 
is contingent. In both fields, narratives are particularly useful ways of accounting 
for contingent outcomes by providing detailed data relating to them since narratives 
allow capture of rich descriptions that permit the envisioning of alternative possi-
bilities or relationships.1 Medical case reporting also involves processes of toggling 
back and forth between individual instances (observations on a specific patient) and 
the generalizations that might follow from them, if only implicitly.2 Thus this 

1 See Beatty 2016, 2017 on issues relating to contingency as well as what makes something 
narrative-worthy.
2 On similar processes in natural history, see Terrall 2017.
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account also has relevance for the historical sciences and other sciences which 
depend closely on contingent and local observational data.

2  �Background: What Are Medical Case Reports?

Medical case reports have been utilized for centuries to record and disseminate 
unusual presentations of illness that cannot be readily identified or that do not eas-
ily map onto recognized clinical conditions. Using a detailed narrative format,3 
they outline the diagnosis, treatment, and outcomes typically of a single patient (or 
a small series of patients) with a focus on practice-based observations and clinical 
care, rather than the results of RCTs or other experimental methodologies. One 
goal of case reporting is to capture data on specific instances of phenomena includ-
ing many details that may not be immediately relevant, but may prove to be: the 
data do not have an immediate or definite purpose or target, but are collected 
because of their potential and future evidential value, which often is not clear when 
the case report is written or published. Thus these data (and the case report itself) 
are made available for re-use over time as subsequent instances of similar illnesses 
arise or as the data within the case report becomes relevant for another purpose, and 
so can be systematically combined into larger datasets and hence journey beyond 
their original domain.

Unlike RCTs or similar, the data typically contained in case reports are highly 
non-standardized, and include a mixture of quantitative and qualitative information. 
Accordingly, they are treated as one of the lowest types of evidence in the hierarchy 
associated with the evidence-based medicine (EBM) movement (Nissen and Wynn 
2012). Some critics even have argued that highlighting the rare and unusual (termed 
by them “anecdotal”) is dangerous, because they can lead clinician-readers to mis-
taken interpretations about what they are seeing in seeing in their patients and what 
is likely (Hoffman 1999) or that they rely on specious claims made by clinicians 
who wish to get published but without doing the required research (McGee 2006). 
It also has been documented that case reports do not receive nearly as many cita-
tions as meta-analyses or randomized controlled trial (Patsopoulos et al. 2005), and 
are read far less often (Leopold 2015). Hence some journals have limited the num-
ber of case reports that they publish, imposed much more detailed and stringent 
guidelines, or even stopped publishing them altogether. From their point of view, to 
borrow a phrase, “the plural of anecdote is not data” (Leopold 2015, 3074).

Advocates of case reports defend their use for particular types of purposes (e.g., 
Godlee 1998; Vandenbroucke 1999, 2001; Wright and Kouroukis 2000; Carey 2006; 
Smith 2008; Smalheiser et al. 2015; Rison et al. 2017): first, they can serve as the 
basis of hypotheses and direct future clinical research especially about the efficacy 

3 On narratives in case reports, see especially Hurwitz 2017; on narrative in medicine, see Gygax 
and Locher 2015; Hurwitz and Bates 2016.
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of interventions, side effects of certain treatments or drugs, and aspects of clinical 
practice relating to individualized treatment (see Ankeny 2014, 2017a). Case reports 
have proven useful for identifying adverse and beneficial effects and recognizing 
new or rare diseases or unusual manifestations of common diseases; an oft-cited 
example of the success of case reporting is the recognition of the relationship 
between use of the drug thalidomide by pregnant women and congenital abnormali-
ties in newborns (McBride 1961; Lenz 1962). Case reports can serve as a type of 
evidence even in EBM when used in the appropriate manner (Jenicek 2001) and can 
also be useful in clinical education (Cabán-Martinez and García-Beltrán 2012), par-
ticularly given the dominance of problem-based learning approaches in medicine. 
Finally, there is some evidence that case reports can make significant contributions 
to medical research planning (Albrecht et al. 2005).

Case reports account for a rapidly growing number of medical publications and 
an increasing number of dedicated journals in recent years, with at least 160 case 
reports journals from 78 publishers documented as of mid-2015 (for a useful sum-
mary, see Akers 2016, Table 1 available online), with observers commenting that 
there has been a “renaissance of the case reporting literature” (Smalheiser et  al. 
2015, 171). More generally in the field of medicine considered as a whole, the num-
ber of MEDLINE-listed case reports is said to substantially exceed the number of 
published clinical studies (Kiene et al. 2013). The newer journals tend to be open 
access and range from having a focus on general medical issues to accounts of case 
reports in more specialized subfields. Unfortunately, predatory publishing practices 
are particularly rampant among case report journals (Akers 2016), with nearly 50% 
of publishers engaging in questionable publishing practices. In addition, few have 
impact factors, in part because of the infrequency with which case reports are cited, 
but nearly half of the journals (as of mid-2015) are indexed in PubMed (Akers 
2016), making them accessible to clinicians and researchers and for analysis of the 
types performed in the current paper.

Unlike other parts of medical training and publication (e.g., differential diagnos-
tic processes or mortality and morbidity reporting, see Bosk 1979), the processes of 
recording this type of historical data generally have not been made consistent or 
standardized. Thus case reports have been viewed by many within the field as insuf-
ficiently rigorous for aggregation for data analysis which would be rigorous enough 
to inform research design and allow data to journey to new domains to permit com-
parisons across diverse contexts including different sociocultural settings. 
Traditional approaches to gathering data via case reports make it difficult to locate 
and re-use relevant data despite considerable technological improvements related to 
the rise of open access and internet-based systems.

Out of recognition of many of these limitations, consensus-based international 
guidelines have been developed, called the “CAse REport” or CARE guidelines 
(Gagnier et al. 2013), to increase the completeness in the presentation of published 
case reports, create more comparability between the data contained in case reports 
particularly with regard to potential therapeutic interventions and outcomes, and 
generate more transparency for patients and practitioners, and in turn to inform 
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clinical practice guidelines. When adopted by a journal, these types of guidelines 
have been argued to be associated with an increase in the completeness of the infor-
mation published (e.g., Turner et al. 2012) and hence can be viewed as critical prag-
matic constructs.

The CARE guidelines are a 13-item checklist outlining basic reporting require-
ments for published case reports, provided in a structured manner. The key goal is 
to increase completeness and transparency in published case reports. The authors 
stress that they “attempted to strike a balance between adequate detail and the con-
cise writing that is one of the appealing characteristics of a case report” (Gagnier 
et  al. 2013, 4).4 As discussed elsewhere (Ankeny 2017b), these guidelines are 
extremely revealing with regard to the underlying epistemology of case reporting 
particularly in the current era of dedicated journal outlets which have considerable 
investment in establishing case reports as a valid form of evidence. For the purposes 
of this paper, I do not analyze them in any detail particularly because their promul-
gation has been quite recent but do use some of the issues highlighted in the guide-
lines in my analysis of re-use patterns.

3  �Detecting Patterns and Themes in Case Reporting 
and Re-use

3.1  �Broader Patterns of Re-use

One of the main potential benefits of publishing case reports (and providing the 
necessary infrastructures to make them more accessible) is so they can be re-used 
by others who come across similar phenomena particularly in clinical settings, or so 
that the observational data can be used as the basis for initiating various types of 
research. Hence it is useful to look at the broader patterns of re-use to get a sense of 
the uptake of medical case reports.

More generally, it must be noted that citation analysis may severely underesti-
mate the impact of clinical-oriented research in certain fields particularly in com-
parison to basic research (e.g., Van Eck et al. 2013) and case reports specifically are 
cited at a negligible rate compared to other types of publications (Patsopoulos et al. 
2005). However for the purposes of this paper, a focus on published literature is 
appropriate because I am primarily interested in explicit re-uses of data captured in 

4 This structure also aims to capture “useful” information including that required by the 
U.S. Department Health and Human Services to demonstrate so-called “meaningful use” of certi-
fied electronic health records, which in turn is required by some private insurers for physicians to 
for health providers to quality for certain types of performance incentives. Although intriguing to 
consider the epistemological impacts of these social and financial incentives, an analysis of the 
interplay between these requirements and the content of case reporting guidelines is beyond the 
scope of this paper.
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case reports; note that this approach of necessity will fail to capture negative 
instances, that is, where a case report was accessed and utilized but found not to be 
relevant to the current problem or phenomenon under examination, in similar ways 
to the type of publication bias that has been well recognized with regard to negative 
results (e.g., Kicinski et al. 2015). Article usage statistics (available via many jour-
nals and databases) might well provide more accurate quantitative information that 
could be compared across case reports but would fail to allow any assessment of 
whether or how a case report is being re-used.

Tracking re-use of medical case reports is plagued with technological difficul-
ties, particularly when assessing case reports via citations across all types of jour-
nals and medical subfields: for instance although PubMed5 indexes nearly half of 
the journals that publish case reports, excludes most that are likely to be predatory 
journals (Akers 2016), and provides a “case reports” filter, it does not allow analysis 
of articles by number of citations (similar limitations occur with Embase, another 
major medical database). An additional issue is that there are inaccuracies in the 
tagging of publications as “case reports” (see note 6 below for a rough estimate of 
the rate of inaccuracy). Even tracing case report patterns by journal by focusing on 
the dedicated journals is complicated by the fact that several major case report jour-
nals have changed name over time and full datasets are thus not readily available.

Hence I used two strategies to analyze case reporting and re-use over the past 
25 years: (1) a broader strategy allowing general patterns of re-use (using citations 
as a proxy) to be visualized; and (2) a more specific strategy focused on highly cited 
case reports. The temporal window of 1997–2017 was selected to permit inclusion 
of both the newer journals focused on case reports as well as more traditional jour-
nals which publish case reports; it also allows medium- and longer-term re-use to be 
tracked, since as the analysis reveals, re-use often only occurs over considerable 
periods of time.

For the first broader search, Web of Science was utilized using a case report 
focused strategy for medically related fields6 to extract data for the years 1997–2017, 
which generated a total of 108,348 case reports. Just over 30% of these reports have 
no citations to date, and just over 17% have between one and ten citations since time 
of publication. A second analysis used the Medline subset within Web of Science, 

5 PubMed is a free search engine which primarily allows access to the MEDLINE database of refer-
ences and abstracts on life sciences and biomedical topics, which in turn is managed by the United 
States National Library of Medicine at the National Institutes of Health as part of the Entrez sys-
tem of information retrieval.
6 This search was performed on 14 November 2018 by utilizing Web of Science Core Collection to 
search for all items tagged as topic = “case report∗” for the years 1997–2017, which generated a 
list of all items tagged as case reports from more generalized journals. This set was then supple-
mented by inclusion of all publications in case report-focused journals for the same time period 
(identified by explicit inclusion of “case report” or similar in the journal titles, and drawing on the 
list published in Akers 2016). These sets were combined and then narrowed to include only those 
with topic = “human∗” or “patient∗”, and by excluding publications coded to non-medical catego-
ries. The publications were then run through Clarivate InCites to obtain rates of citation.
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to perform a search for case reports for the years 1997–2017.7 The results were 
102,195 articles, of which only 98 (slightly more than .09%) of the publications 
verified to be case reports8 were highly cited in their respective field as of March/
April 2018 (i.e., they received enough citations to place them in the top 1% of their 
academic field based on a highly cited threshold for the field and publication year); 
of these publications, only four were published in the past 2 years and received 
enough citations to place them in the top 0.1% of papers in their respective aca-
demic field. Thus these findings echo previous analyses of the relative neglect of 
uptake of case reports, but do permit us to focus on those that may have resulted in 
important instances of re-use.

The highly cited case reports do share certain characteristics: first, they tend to 
appear in highly popular, general medical journals (e.g., The New England Journal 
of Medicine), which have extremely large readerships. They also cover one of three 
main topics broadly defined, namely non-randomized and non-controlled trials of 
experimental drugs or therapies on individuals or very small groups of patients, 
often on a compassionate or emergency basis; epidemiological or other features of 
emerging or novel diseases that are typically infectious in nature; and characteriza-
tion of underlying mutated genetic sequences of disease-related phenotypes or pro-
cesses at other levels (such as tumors). Less frequent topics include adverse effects 
of or reactions to therapies of various types; reporting of new illegal drug use and 
effects; and longer-term outcomes of novel surgical procedures, particularly organ 
and other transplants. Despite all of these publications being considered to be highly 
cited, there is no particularly robust correlation between year of publication and the 
number of citations, and the range in the number of citations is large, from nearly 
1500 for a 2011 paper on using modified T-cells to treat leukemia, to 15 for a 2017 
paper published in a more narrow subfield, toxicology, focused on episodes of 
intoxication via a new synthetic opioid.

Although these broader trends give us hints about how data can journey to new 
domains via case reports, more qualitative analysis helps to reveal precisely what 
travels from early stage case reports and what roles such data journeying serves. 
Hence in the following sections, a series of highly cited case reports are analyzed 
to provide insights into the valuing of data captured by case reports and what fac-
tors are associated with re-use. I have opportunistically selected two case reports 
to explore which have particularly interesting patterns of data re-use but have 
attempted to represent two of the main types of case reporting captured in the 
quantitative analysis above.

7 This search was performed by selecting “case report” in the document type field for the years 
1997–2017, then limiting to core clinical journals and to humans (17 July 2018).
8 The original set that was automatically generated on 17 July 2018 included 118 articles, of which 
20 (17%) were determined not to be case reports based on manual review of abstracts; some 
appeared to be review articles that had been mistagged whereas others were very large observa-
tional studies that strictly speaking would not typically be considered to be serial case reports but 
which some journals nonetheless place in their “case report” sections.
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3.2  �Case Reports on Infectious Diseases

One key role played by case reports is to draw attention to emerging or novel infec-
tious disease processes: in recent years, occurrences of Zika, Middle East Respiratory 
Syndrome (MERS), Ebola, and Influenza A have been described via case reporting, 
with attention to a range of aspects of the phenomena under study. These case 
reports often contain important data that then can journey rapidly from their loca-
tion of creation and reproduce faithfully, as long as certain features are in place.

For instance, a case report (Gao et al. 2013) of three observed human fatalities 
related to infection with a new form of the avian influenza A virus (H7N9) in 
Shanghai, China was among the most highly cited (1247 times) in the data set 
above, as the initial publication relating to what subsequently became a pandemic. 
Previously the transmission of H7 viruses to mammals had been rarely reported in 
Asia, human infection with the N9 subtype had not been documented anywhere, and 
these types of infections had rarely been fatal or as severe as in the patients who 
presented for care in Shanghai. The case report summarizes the typical information 
about the patients, including demographic and epidemiological characteristics, par-
ticularly those associated with pre-existing conditions likely to have depressed their 
immune systems as well as potential contact with chickens; the complications, treat-
ment, and clinical outcomes of the patients; and detailed analysis of the characteris-
tics of the virus isolated from the patients.

In conclusion, the authors (many of whom have numerous previous publications 
on different forms of epidemic influenza particularly in China) make an urgent call 
to others in the medical field: “We are concerned by the sudden emergence of these 
infections and the potential threat to the human population. An understanding of the 
source and mode of transmission of these infections, further surveillance, and 
appropriate counter measures are urgently required” (Gao et al. 2013, 1896). Among 
the key points discussed is whether this novel version of the virus occurred within 
these human hosts or was directly transmitted by birds, with the latter said to be the 
preferred explanation, particularly based on genetic sequencing and other forms of 
analysis. However a critical point made in the case report is that influenza surveil-
lance of birds, swine, and humans is limited in China and nearby countries, which 
makes it very difficult to provide an answer to this question.

With regard to the processes associated with data journeying, a few critical points 
are notable. First, the initial journeying of the data from the clinical setting to the 
printed case report (and hence to them becoming available publicly on a global 
basis) occurred over a highly compressed time period9: the patients were seen 

9 Case reports typically have longer gestation times between clinical observation, laboratory analy-
sis, and other processes, and actual publication, even when focused on similar public health related 
issues: see for instance Colson et al. 2010 on a small case controlled study within a single family 
on the transmission of hepatitis E via figatellu, a traditional pig liver sausage widely eaten in 
France and commonly consumed raw, where initial observations and data collection occurred in 
2007–9 but which was not published until 2010; nonetheless this case report also is among the 
most highly cited in its field.
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between mid-February and the end of March 2013, and the case report was pub-
lished online in mid-April 2013.10 Subsequently when published in print in mid-
May, it was accompanied by a high-profile editorial by researchers at the US Centers 
for Disease Control which lauded the authors of the case report for the speed with 
which the virus was identified and whole genome sequences of it made available, 
particularly given the global public health issues raised (Uyeki and Cox 2013, which 
echoes an earlier editorial in Nature in April, Anonymous 2013), which was impor-
tant because of the lack of transparency that sometimes had occurred in the context 
of past epidemics in China (e.g., with reference to SARS, see Knobler et al. 2004). 
These factors underscore that the speed with which data from a case report journeys 
and the extent to which it travels (i.e., how often it is picked up by others reporting 
research and whether it reaches a global audience) is directly related to a number of 
factors including the perceived usefulness of the original case report in terms of the 
data contained within it and the potential threat posed by the condition(s) described, 
both of which are common in infectious disease related case reports.

Second, data within case reports are more likely to be re-used if they relate to 
multiple research methods or fields. For instance, the editorial cited above under-
scored many other critical points raised by the case report, namely that some of the 
sequence data suggested that this virus was likely to result in asymptomatic or mild 
avian disease, and thus had the potential to generate a silent widespread epizootic 
epidemic in China and neighboring countries. Many of the subsequent publications 
citing the original case report explore these types of issues (e.g., Xu et al. 2013). In 
addition, in the 6–12 months after the original case report, various members of the 
research team published more detailed reports (sometimes as research letters, pre-
sumably in order to get them published quickly given the urgency of what was 
quickly becoming a public health crisis)11 in high-profile outlets, such as on the 
biological features of the virus, epidemiological surveillance, and tracing the gene-
sis of the infection via various types of birds (e.g., Lam et al. 2013) which helped to 
widen the exposure of the original publication particularly in fields beyond infec-
tious disease. Hence various types of data originally contained within the original 
case report journeyed without necessarily being closely connected to the initial case 
report. Examples include numerous publications related to technology development 
such as new methods for real-time detection of infection (e.g., Zhu et al. 2013).

10 Although beyond the scope of this paper, it is worth noting that formal mechanisms such as infec-
tious disease reporting and more informal mechanisms such as media coverage can help data in a 
case study to journey. According to the journal Nature (Anonymous 2013), China reported the 
H7N9 outbreak to the World Health Organization (WHO) on 31 March 2013, and simultaneously 
published the genomic sequences of viruses from the three human cases on the database of the 
Global Initiative on Sharing Avian Influenza Data (GISAID). It also shared all of the sequences 
with the WHO, and live virus with the WHO and other laboratories. In addition, the Chinese media 
reported new cases on a daily basis and discussed H7N9 fairly openly, with Chinese President Xi 
Jinping publicly calling for an effective response, noting that the government should ensure release 
of accurate information about the outbreaks.
11 Self-citations are common among citations to previously published case reports, and are difficult 
to systematically eliminate from larger datasets when mapping patterns of re-use.
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Finally, the “call to arms” for more surveillance and reporting in the case report 
(and associated publications such as the accompanying editorial) resulted in numer-
ous publications about additional instances of the disease, as well as having clear 
public policy implications, which also appears to be a mark of a case report from 
which data are likely to journey. Thus potential wider relevance along with “action-
ability” of data (see Ramsden in this volume) is often associated with wider patterns 
of journeying. For instance following the case report and in part based on its find-
ings, H7N9 influenza was established as a notifiable infectious disease in Taiwan 
which experienced a spike of cases amongst travelers returning from China soon 
after the initial outbreak in China (TCDC 2013). As underscored in a paper citing 
the original case report, one of the lessons to be learned from this case report is more 
generic, and relates to the importance of this type of data having a way to journey 
outward, particularly given certain tendencies reinforced in medical training: 
“Instead of recognizing that billions of people worldwide are exposed to important 
and emerging infectious diseases, our training has relegated this topic mostly to 
‘tropical medicine’ or public health or labelled the threat as a ‘zebra’ item” (McFee 
2013), referring to the medical training adage that “if you hear hoofbeats, think 
horses, not zebras” (see Hunter 1996; Wright and Kouroukis 2000). Given increased 
globalization together with the emergence of various serious health threats, some 
“zebras” are now critically important, and there is a critical need for pandemic pre-
paredness. Thus these sorts of public health emergencies require not only rapid data 
collection and analysis, but also data sharing and feedback (Uyeki and Cox 2013; 
see also Lurie et al. 2013) via “data journeying” particularly in conceptual terms. 
Case reporting provides a clear mechanism for these processes to occur, especially 
where detailed data are provided in case reports that are useful for epidemiological 
tracking and related processes (Anonymous 2013).

3.3  �Case Reporting of Adverse Effects

Another key category of case reporting relates to adverse or unexpected effects 
particularly of commonly utilized treatments or drugs. Consider a highly cited case 
report detailing two fatalities and one life-threatening incident in young children 
related to consumption of codeine for pain relief after adenotonsillectomy for 
obstructive sleep apnea syndrome (Kelly et al. 2012). The Canadian team proposed 
that where the surgery has not resolved the sleep apnea, morphine is particularly 
dangerous as it may further worsen the respiratory condition, can be fatal in cases 
where children have a certain genetic allele that can lead to a toxic accumulation of 
morphine exceeding therapeutic levels, and is of particular concern in individuals of 
North African descent where the mutation is more common (occurring in 30% of 
the population).

Some members of the team (together with the chief coroner for the province) had 
previously published a letter in 2009 focused on a single case similar to the 2012 
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series which documented the death of an otherwise healthy 2 year old with func-
tional duplication of a particular genetic allele known to be associated with increased 
rates of conversion of codeine to morphine and which may have contributed to 
respiratory depression and death, in concert with other factors (Ciszkowski et al. 
2009). In this letter, the authors declare that “given the polymorphic nature of 
codeine metabolism and the fact that adenotonsillectomy does not reverse all cases 
of obstructive sleep apnea, codeine cannot be considered a safe outpatient analgesic 
for young children after adenotonsillectomy.”

Tracing the citations to the 2012 case report reveals several key themes: first, 
the uptake of the 2009 letter (and the data contained in it) was much more lim-
ited, based on citation patterns, than the case report which appeared later, despite 
both appearing in very high-profile medical journals (The New England Journal 
of Medicine and Pediatrics respectively). However there are several reasons 
which seem to be correlated with this difference, notably that the 2012 case 
report was in fact peer-reviewed and detailed multiple instances of the observed 
phenomenon. Description of multiple occurrences of a phenomenon appears to 
result in the case report and the data contained in it being valued more highly, 
likely because it is viewed by readers as providing more or more robust evidence 
especially because other underlying factors can be ruled out; even if three cases 
may seem to many to still be anecdotal, in this example multiple cases appear to 
have resulted in more re-use of data and of the case report itself, at least in the 
form of citations.

An additional trigger which contributes to wider recognition and re-use of case 
reports is whether the observed adverse effects come to be formally certified, such 
as in recognition by regulatory authorities or professional organizations. In the cur-
rent case, during late 2011, the Patient Safety and Quality Improvement Committee 
of the American Academy of Otolaryngology–Head and Neck Surgery (AAO-HNS) 
had become concerned about adverse events, particularly respiratory depression, 
after adenotonsillectomy and conducted a nationwide, anonymous survey of otolar-
yngologists about such events (Racoosin et al. 2013). By August 2012 following an 
evaluation of the safety of use of codeine in children including a comprehensive 
review of the literature and case reports submitted to the US Food and Drug 
Administration (FDA)’s Adverse Event Reporting System, the FDA issued a press 
release and drug safety communication warning of the risk of respiratory depression 
and/or death following the use of codeine after tonsillectomy. Its review found 13 
cases, including 10 deaths and 3 cases of life-threatening respiratory depression 
associated with codeine use during the period 1969 and 1 May 2012 (including the 
original case reports). The issuing of the FDA advisory is correlated with a sharp 
increase in citations to the 2012 report, likely simply out of increased awareness of 
these issues, with many of the publications exploring implications of these findings 
for codeine use in children in this or other types of care settings.

In addition, the scale of the potential for adverse effects clearly contributes to the 
re-use of case reports. Although the complication in the case at hand is likely rare, 
it has the potential to affect a significant number of children given the huge number 
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of adenotonsillectomies performed per year, about half a million annually (Cheng 
and Sobol 2013). Case reports are more likely to be viewed as oddities or mere 
anecdotes if they seem to have very small-scale effects, in which case they are obvi-
ously not particularly ripe for re-use of the data contained within them.

A final factor about whether data contained in case reports about adverse effects 
are subsequently re-used seems to be related to whether they align with other broader 
epistemological understandings or trends in patient care, public health, or other types 
of medical practices (again here compare the chapters by Cambrosio et  al. and 
Ramsden with particular attention to the idea of actionability of data especially in 
clinical research practices). There are at least two potential ways in which these 
issues are likely have been in play in this example: first, as noted in a Perspectives 
piece published in The New England Journal of Medicine following the FDA warn-
ing, increased awareness of what they term “the value of both personalized medicine 
and the reporting of rare adverse outcomes” (Racoosin et al. 2013, 2155) has resulted 
in more attention to and publicity about such adverse effects. In other words, the 
genomic turn of the early 2000s has resulted in greater awareness of genetic diversity 
including mechanisms relating to drug reactions, and greater abilities to provide 
alternative clinical treatments. These claims are substantiated in the types of articles 
citing this case report, many of which make reference to the need for more precise 
methods to determine optimal approaches to pain control, particularly with young 
children post-adenotonsillectomy, and some of which position these claims explicitly 
within the emerging field of pharmacogenetics (e.g., Lee et al. 2014; Smith et al. 2018).

But a second likely trigger of the patterns of re-use observed relates to the 
increasing awareness of the so-called “opioid epidemic” in the 2010s, especially in 
the United States.12 Due to increases in opioid-related addiction, overdoses, and 
deaths, opioid use came to be viewed as a public health crisis in this period, in part 
related to illegal drug use but also in concert with over-prescription of legal pain 
medications including oxycodone which is chemically and otherwise similar to 
codeine. Thus in the re-use of data from the original case report, we find it cited 
simply as evidence of the potential dangers of codeine use in articles more broadly 
exploring the potential benefits and dangers of prescribing it not only for children 
(e.g., Carter et al. 2013: Martin et al. 2014) but in certain groups likely to be more 
at risk such as immigrants (e.g., Ray et  al. 2014, which in fact observed no 
increased risk in these groups despite language and genetic differences). Further, 
due to subsequent changes in the way the FDA classified (“scheduled”) hydroco-
done combination products in 2013, several of the publications (e.g., Fleming and 
Wanat 2014) emphasize the potential dangers of codeine-based products for pain 
management, in part out of recognition that there would be a tendency to increase 
use of these products as these remain accessible at levels requiring less approval 

12 Even using the terminology of “epidemic” in this context raises a range of historical, political, 
and sociological issues, but this issue is not a main focus in this paper; for discussion, see for 
instance Green et al. 2002; Martin and Martin-Granel 2006.
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processes. Hence as this case report shows, re-use of data can become quite loose 
and its journeying more akin to wandering where some part of the case report 
proves to have much broader relevance, and particularly where there are practice 
and public health implications.

4  �Conclusions: Implications for Understanding How Data 
Journey

What makes data more likely to journey beyond their original case reports? It is 
clear that a few factors can be identified; though these are neither necessary or suf-
ficient, they do provide some marks that assist us with understanding the potential 
epistemological value of case reporting and the data contained within them. First, 
case reports that have implications well beyond their immediate domain are likely 
to be published in general medical journals which allows them to be read much 
more widely, and hence to much more easily be conceptualized as having broader 
relevance. Second, the data contained in case reports tend to journey when they have 
content with broader implications well beyond the case report at hand, and particu-
larly when the data have evidential value for topical or even urgent issues, particu-
larly those arising in public health. Any potential for wider applicability may well 
not be explicitly detailed in the original case report, but can be spurred on by addi-
tional factors, such as relevance for policy, uptake and endorsement by professional 
organizations or governmental authorities, description in other contexts such as 
framing editorials accompanying the case report, and so on.

Third, use of multiple research methods or concepts from diverse subfields 
within medicine can expedite the journeying of data within a case report into a range 
of types of journals and allow the data to journey well beyond their original context. 
Thus larger teams of authors are often common in the most highly cited case reports, 
likely in part because diverse expertise is necessary for case reports that bring 
together different types of data, but this pattern in turn seems to support greater 
potential for the data to journey more widely. Finally, data from case reports tend to 
journey where there is alignment with broader epistemological understandings or 
agendas within medicine: for instance the turn toward genomics in the 2000s 
resulted in journeying of data associated with numerous case reports related to 
unusual phenotypic disease patterns or adverse effects to other contexts, notably to 
publications detailing more fundamental biomedical research to determine the 
genetic basis for these patterns or effects.

What can be said about the efficiency of the journeying of data from case reports? 
The empirical data and qualitative analysis presented above reveal that the speed 
with which data from a case report journey and the extent to which they travel is cor-
related not only with the perceived usefulness of the original case report in terms of 
the original data contained within it (as would be expected) but also by the potential 
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threat posed by the condition(s) described: so infectious disease-related case reports 
often are urgently reported and data from them picked up elsewhere. In addition, as 
occurred in the case report on the adverse effects of codeine in young tonsillectomy 
patients, data associated with case reports where broader implications subsequently 
come to be recognized (e.g., for postoperative pain control or even pain control in 
general in this example) have their journeying expedited by their application in these 
broader contexts.

These issues related to journeying take us back to the various efforts to standardize 
case reporting: why bother limiting data captured by case reports to certain categories 
when our technological infrastructures in fact might permit us to “write down every-
thing,” and in principle create more potential for journeying? One part of the answer 
clearly relates to the requirement that case reports be useable by medical practitioners 
who are both the authors of the guidelines and many of the likely users (and re-users) 
of the case reports and the data contained in them: not all data that might be captured 
and packaged in a case report are of equal relevance, which can be seen in the factors 
more closely associated with journeying outlined above. Thus new efforts at highly 
structured guidelines about what must be included impose a certain rigor to what is 
thought to be essential for understanding a case report and for re-using the data con-
tained in them to identify similar cases or other domains where the data might have 
relevance. Though in some sense it is technically possible to include absolutely all data 
(or many more pieces of data than currently contained in case reports), to do so would 
undermine the structures (narrative and otherwise) that form the basis for what the case 
report is a case of, and hence place limits on the abilities of practitioners to re-use it.

In addition, these guidelines have certain merits beyond mere standardization for 
ease of re-use of case reports and the data within them: at a deeper level, they con-
stitute a line of attack on traditional assumptions regarding what types of data are 
valued and under what circumstances. Case reporting in a standardized manner 
reinforces the value of data derived from individual case reports and helps to estab-
lish methods for consistent re-use. These types of guidelines also underscore how 
data can serve evidence in these sorts of observational settings that previously have 
been assumed to be unable to be systematized in any significant ways, particularly 
as compared to RCTs and other experimental methodologies. As the authors note, 
what is most critical is that case reporting be made more precise, complete, and 
transparent (Gagnier et al. 2013), which no doubt is correct. However as this paper 
has shown, there are deeper epistemic issues underlying the re-use of case reports 
and the journeying of the data within them, and these guidelines have the potential 
to allow both creators and users to be reflective about both the potential (and limita-
tions) of case reporting, particularly in the context of re-use.

Exploring the effective journeying of data contained in case reports together 
with efforts to standardize the presentation of data are important parts of devel-
oping deeper understandings of appropriate, effective, and rigorous ways of 
using observation-based methodologies in the biomedical sciences and other 
fields that rely on such approaches, given that these have been largely neglected, 
for instance in medicine due to the rise of EBM and related approaches in which 
data are relatively easy to systematize (cf. Tempini and Teira in this volume on 
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the difficulties of circulating data in other settings). As the guideline authors 
state, “When it becomes clear how new data contributes to evidence, the steward-
ship needed to produce high-quality data will become more rewarding and our 
attitude toward ‘observation’ will shift…This will transform how we think about 
‘evidence’ and revolutionize its creation, diffusion, and use—opening new 
opportunity landscapes” (Gagnier et al. 2013, 5). How these types of data journey 
faithfully and efficiently in a variety of contexts and hence come to be valued as 
a form of evidence warrants further exploration.
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Abstract  This chapter considers and compares the ways in which two types of data, 
economic observations and phenotypic data in plant science, are prepared for use as 
evidence for claims about phenomena such as business cycles and gene-environment 
interactions. We focus on what we call “cleaning by clustering” procedures, and 
investigate the principles underpinning this kind of cleaning. These cases illustrate the 
epistemic significance of preparing data for use as evidence in both the social and 
natural sciences. At the same time, the comparison points to differences and similarities 
between data cleaning practices, which are grounded in the characteristics of the objects 
of interests as well as the conceptual commitments, community standards and research 
tools used by economics and plant science towards producing and validating claims.

1  �Introduction: Preparing Big Data for Analysis

Big data cannot be interpreted without extensive and laborious preparation, includ-
ing various stages of processing and ordering to make it possible for data to be dis-
seminated and subjected to analysis. Several chapters in this volume – including 
Halfmann’s on sampling in oceanography, Karaca on data acquisition in particle 
physics and Hoeppe on sharing observations in astronomy  - stress the decisive 
impact that such preparation practices have on the subsequent journeys of data and 
the use of data as evidence for claims about phenomena. In this chapter we discuss 
the epistemological significance of yet another practice of data preparation: data 
cleaning, that is the efforts involved in formatting, manipulating and visualising 
data so that they are sufficiently tractable to be amenable for analysis.
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The cleaning strategies that we aim to discuss are not focused on scrubbing and 
scraping dirt away, but rather on tidying up, sorting and ordering. In everyday life as 
in data practices, tidying up can be done in a variety of different ways depending on 
existing habits and future requirements. In what follows, we focus on two strategies 
for tidying up data which both rely, in different ways, on the clustering of objects 
into groups. The first strategy is to get rid of smudges and flecks by arranging 
objects so that unruly bits are less visible, and the eye is drawn to the more orderly – 
cleaner - parts of the ensemble. We exemplify this strategy through the analysis of 
data cleaning practices in economics, and specifically in relation to business cycle 
analysis, where data consist of observations of journalists, business annals, and 
social and economic statistical time-series. The second strategy is to put everything 
in boxes and store them some place out of sight, placing labels on each box to be 
able to retrieve its contents when needed (the more boxes and objects one has, of 
course, the more complex the labels will need to be).1 We exemplify this strategy 
through the analysis of data cleaning practices in biology, and specifically the han-
dling of phenomic data about plants, where data include images and measurements 
documenting the morphology, physiology and behaviour of organisms and their 
environments.

We compare a case from the natural sciences (biology) with one from social sci-
ences (economics) in some detail to exemplify the complexity of the research prac-
tices involved, which mirrors the complexity of the phenomena under study in both 
areas. While the conceptual commitments, community standards and research tools 
used by economics and biology are starkly different, in both cases data cleaning and 
subsequent analysis involve bringing together voluminous datasets of diverse types 
and formats, generated by a broad range of heterogeneous sources. The projected 
value of these data as evidence for scientific claims grows with aggregation: the 
more data analysts are able to link together and consider as a single body of evi-
dence, the more sophisticated and reliable the resulting insights are expected to be.

The chapter is organised as follows. In the first section, we examine the work 
required to create meaningful clusters from these forms of big data, and the extent 
to which data cleaning transforms datasets. In section two we draw on Mary 
Douglas’s seminal analysis of dirt and impurity, in which she argued that cleaning 
is not about removal but about ordering, to identify a common strategy used by 
researchers in both cases, which we call cleaning by clustering. After discussing 
this general approach, we note how the specific mechanisms and tools used to enact 
this strategy differ considerably in the two domains of practice. In economics, 
cleaning by clustering is largely a question of exercising visual judgement grounded 
on principles similar to the Gestalt principles, thus arranging data in ways that are 
aesthetically appealing and intuitively intelligible to the analyst. This strategy goes 
a long way towards facilitating data mining, for instance through the construction of 

1 This approach to cleaning is heavily built on the strategies of packaging, curating and labelling 
explored by Leonelli (2011, 2016). Contrary to data packaging in her previous studies, however, 
tidying up is not primarily aimed at making data portable across contexts, but rather at making it 
possible for data to be analysed and interpreted.

M. Boumans and S. Leonelli



81

data models that highlight meaningful correlations and direct analysts towards spe-
cific interpretations. By the same token, this form of clustering is difficult to undo, 
leading to a situation where the aesthetic criteria employed to arrange the data are 
traded off with the ways in which the data could be used as evidence. In plant phe-
nomics, cleaning by clustering is instead guided by the attempt to define a “land-
scape” for the re-purposing of data: a set of conditions, in other words, through 
which researchers may be able to re-use data for new goals.2 The priority in this case 
is not achieving visual intelligibility alone, but rather the creation of data visualisa-
tion and retrieval tools that enable users to disaggregate data clusters when needed 
to confront new research questions. This enables researchers to trace the origin of 
the relevant data journeys, and evaluate the reliability and appropriateness of every 
step of “cleaning” in light of novel situations of inquiry within which data may be 
re-purposed. We are particularly interested in identifying the principles that guide 
data cleaning activities in these cases, and the conceptual, material and social cir-
cumstances within which these principles are grounded and through which they 
originate. To this aim, in section three we explore the relation between data cleaning 
practices and how data are subsequently moved and used. Comparing our two cases 
points to significant differences between data practices, which are grounded in the 
nature of the objects of interest as well as in the conceptual commitments, commu-
nity standards and research tools used by economics and plant science towards pro-
ducing and validating claims. It also points to the difficulties experienced by data 
analysts in providing general principles of cleanliness with regard to research data, 
as exemplified by the recent debate around “tidy data” in computational data sci-
ence, which we discuss in our closing section.

2  �Cleaning Data: Empirical Cases from Plant Science 
and Economics

Our starting point is a close look at two cases of “data cleaning” taken from eco-
nomics and plant science, respectively. The cases exemplify some of the most 
sophisticated forms of data processing in each field, aiming to encompass very dif-
ferent types and formats of data coming from a wide variety of sources, which can 
only be considered as a single body of evidence thanks to laborious processing. The 
economic case, concerning the generation of quantitative facts about the business 
cycle at the National Bureau of Economic Research in the 1940s, was selected for 
two reasons. On the one hand, this post-war research at the NBER is exemplary for 
many current practices of data preparation in economics, and on the other hand this 
practice was described so explicitly and in such great detail in a publication, 
Measuring Business Cycle (1946), that it enables and ensures insight and under-

2 The landscape may include data collection strategies, repositories and visualisation tools enabling 
researchers to retrieve, compare and analyse data coming from a variety of sources.
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standing of this specific clustering practice. The plant science case, concerning the 
processing of phenotypic data in plant phenomics, constitutes one of the most dis-
cussed examples of complex data processing in contemporary biology, with several 
ongoing debates documenting the rationale and strategies used to make data usable 
for further analysis. Below, we focus on the discussions surrounding the identifica-
tion of essential data and related standards (“minimal information”) for this kind of 
research.

2.1  �Empirical Case: Measuring Business Cycles

Founded in 1920, the National Bureau of Economic Research (NBER) is a private, 
non-profit, non-partisan organization dedicated to conducting economic research 
and to disseminating research findings among academics, public policy makers, and 
business professionals.3 The object of the NBER is “to ascertain and to present to 
the public important economic facts and their interpretation in a scientific and 
impartial manner” (Burns and Mitchell 1946, p. v). Wesley C. Mitchell, the first 
director of the NBER till 1945, was well-known for his contributions to the empiri-
cal analysis of business cycles.4 The NBER is not a statistical office or bureau that 
aims at collecting economic and social data, but instead aims to analyse existing 
economic and social statistics, in this case to “measure business conditions.” These 
statistics were data of various aspects of economic and business life and came from 
various different sources. An 11 page long appendix of Measuring Business Cycle 
(1946) list these statistics such as of industrial production, freight, sales, milk used 
in factory production, transit rides, railway passengers miles, wholesale prices, total 
income payments, employment, bank debits, electric power production, payrolls, 
business failures, from organisations such as Federal Reserve, Interstate Commerce 
Commission, Bureau of Foreign and Domestic Commerce, Railroad Companies, 
Bureau of Labor Statistics, Chicago Board of Trade, and Bureau of Foreign and 
Domestic Commerce.

The book Measuring Business Cycles (1946) was the result of 20 years of empir-
ical business studies at the Bureau under the supervision of Mitchell. The aim was 
to identify and establish facts about the business cycles, which could be used to test 
existing business cycle theories. Burns and Mitchell stated that theoretical work on 
business cycles was “often highly suggestive; yet rest so much upon simplifying 
assumptions and is so imperfectly tested for conformity to experience that, for our 
purposes, the conclusions must serve mainly as hypotheses” (p.  4). At the same 
time, they observed that “satisfactory tests cannot be made unless hypotheses have 
been framed with an eye to testing, and unless, observations upon many economic 

3 See the NBER website, http://www.nber.org
4 See Morgan 1990, pp.  44–56, for a more detailed background of the NBER and Mitchell’s 
approach.
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activities have been made in a uniform manner” (p. 4). Although theories were seen 
as “incomplete in coverage” and “highly suggestive,” they were not “put aside” but 
used “as hypotheses concerning what activities and what relations among them are 
worth studying. In that way they will be of inestimable value in his factual inqui-
ries” (p. 10). Hence the point of departure for data analysis was not a theory of the 
business cycle but a very general definition covering commonly accepted character-
istics of the business cycles:

Business cycles are a type of fluctuation found in the aggregate economic activity of nations 
that organize their work mainly in business enterprises: a cycle consists of expansions 
occurring at about the same time in many economic activities, followed by similarly general 
recessions, contractions, and revivals which merge into the expansion phase of the next 
cycle; this sequence of changes is recurrent but not periodic; in duration business cycles 
vary from more than one year to ten or twelve years; they are not divisible into shorter 
cycles of similar character with amplitudes approximating their own. (Burns and Mitchell 
1946, p. 3)

This working definition was supposed to list the observable characteristics of a 
“distinct species of economic phenomena” (p. 3), that is the business cycle. This 
definition focused on what should be measured, such as the average duration of the 
cycle. To achieve this aim, all kinds of questions raised by this definition had first to 
be answered.5

To understand which principles of clustering were used in this case of business 
cycle measurement, we need to have a closer look at the four implicit assumptions 
made within this definition. The first assumption is that the cyclical turns of differ-
ent processes are concentrated around certain points in time. The second assump-
tion is that the business cycle is not a periodic but a recurrent process, a “regularity” 
that is different from “seasonal variations, random change, and secular trends” 
(p. 6). Another assumption of the definition is that business cycles run in a continu-
ous round, “no intervals are admitted between one phase and its successor, or 
between the end of one cycle and the beginning of the next” (p. 7). And the last 
assumption is the duration of the cycle, somewhere between 1  year and 10 or 
12 years.

The main problem for analysts is that business indexes and time series do not 
show “cyclical patterns” that are “sweeping smoothly upward from depressions to a 
single peak of prosperity and the declining steadily to a new trough” (p. 7), and so 
a business cycle has to be identified from an irregular process, where the movements 
are interrupted by others in the opposite direction, and where one may see double or 
triple peaks and troughs. What therefore is needed are criteria to identify the char-
acteristics of the business cycles, such as “what reversals in direction mark the end 
of a cyclical phase” (p. 8). Crucial to our analysis is the fact that such criteria cannot 
be derived from any (business cycle) theory,6 but rather they relate to aesthetic 

5 Such as, for instance: How large or small does a nation have to be to have a business cycle, or is 
it an international phenomenon? How far back in time can business cycles be traced? What is the 
most appropriate level of aggregation? Which economic activities should be included?
6 See Bogen and Woodward (1988) for a similar, more general claim about the incompleteness of 
theories in this respect.
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judgements based on visual displays of the data. In other words, certain smooth and 
simple shapes turn out to be used as tools to process and visualise the data. The 
approach is based on pattern recognition, described by Burns and Mitchell (1946, 
p. 8n) as “the source of all true knowledge”, but nevertheless it is required to be as 
objective as possible. Indeed, these criteria are presented as “a ‘brake’ on an inves-
tigator’s pattern sense which […] may lead to mischievous fictions” (p. 8n).

Burns and Mitchell emphasized that the cyclical pattern can be seen “only by the 
eye of the mind” (p. 12). “What we literally observe is not a congeries of economic 
activities rising and falling in unison, but changes in readings taken from many 
recording instruments of varying reliability” (p. 14). To “see” the business cycle “in 
the mind’s eye,” these recordings have “to be decomposed for our purposes; then 
one set of components must be put together in a new fashion” (p. 14).

We conceive business cycles to consist of roughly synchronous movements in many activi-
ties. To determine whether this thought symbol represents experience or fantasy, our mea-
sures of the cyclical behavior characteristics of many activities must be assembled into the 
end products of which our definition is the blueprint. In statistical jargon, time-series analy-
sis must be followed by a time-series synthesis. (Burns and Mitchell 1946, p. 17)

The idea is the decomposition of the time series into cyclical, secular, seasonal 
and random movements, but the “isolation of cyclical fluctuations” was considered 
to be a “highly uncertain operation” (p. 37), particularly if it is done in a “mechani-
cal manner”. The components cannot be segregated without considerable testing 
and experimenting by skilled technicians. “There is always danger that the statisti-
cal operations performed on the original data may lead an investigator to bury real 
problems and worry about false ones” (p. 38).7

Most of the analysis was in the determination of cyclical timing. It had become 
clear that the data needed to be adjusted for – i.e., cleaned from – seasonal variations 
“to be more useful in explaining business cycles than would measures made from 
highly fabricated data” (p. 43). We therefore briefly focus on this aspect of the busi-
ness cycle analysis, to show how much it was a combination of “hunch and judg-
ment” (p. 44) and mechanical methods, which results were evaluated based on their 
visual displays.

Two methods were used, one consisted in taking averages of the original figures 
for each months, which were adjusted for secular trend; and the other entailed tak-
ing a 12-month moving average of the original figures, placing each average in the 
seventh month of shifting 12-month intervals. The rationale for both methods are 
the assumptions that “random components of a series [will] cancel one another” and 
that “the process of averaging will tend also to make the cyclical component of a 
series sum to zero” (p. 47).

When the data was adjusted for seasonal variations, the next problem was the 
dating of cyclical fluctuations. Therefore the data was plotted upon a semi-logarith-

7 See Boumans 2015 for a more detailed account of measurement, which sees measurement as a 
considered balance between mechanical objectivity and expert judgement.
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mic chart (typically about 7 feet long) such that the whole record was studied in this 
graphic form. As far as possible the scales were kept uniform.

The basic criterion for distinguishing the three types of movements, that is the 
cyclical, secular and erratic movements, was their duration. Secular trends were 
conceived as drifts that persist in a given direction for a few decades. Erratic move-
ments, the “saw-tooth contour” (p. 57) were supposed to cover no longer than a few 
months. But even with this basic criterion, the judgments were often difficult:

When specific cycles are made doubtful by random movements, we smooth the data by 
moving averages and base judgments upon the curve of moving averages. When the secular 
trend rises sharply, we allow brief and mild declines to count as contractions of specific 
cycles. Similarly, when the secular trend falls sharply, brief and mild rises are counted a 
specific-cycle expansions. (Burns and Mitchell 1946, p. 57)

Once the cycles had been distinguished the NBER researchers proceeded with 
the dating of the turning points. The idea is to take the highest and lowest points of 
the plotted curves as the dates of the cyclical turns. But often it is not clear to decide 
which points these are, for example when erratic movements are prominent in the 
vicinity of a cyclical turn. Then all kinds of checks or averages have to be consid-
ered to arrive at a determination.

Our methods of determining specific cycles make no pretensions to elegance. Since no fast 
line separates erratic or episodic movements from specific cycles, or erratic turns from 
cyclical turns, there is ample opportunity for vagaries of judgment. At times our rules fail to 
yield a clear-cut decision. At times the members of our statistical staff disagree in their 
efforts to apply the rules to a given series. Our experience indicates that this difficulty can-
not be removed by multiplying rules. (Burns and Mitchell 1946, p. 64)

The judgment is instead based on a consensus of three persons who have worked 
independently on marking off the cycle. Once arrived at this consensus, the whole 
process is audited by an “experienced member of the staff” (p. 64) (Fig. 1).

2.2  �Empirical Case: Processing and Interoperability 
Requirements for Imaging Data in Plant Phenomics

Plant phenotyping involves analysing plant trait data with the aim to study develop-
ment and gene-environment interactions. It emerged in the 1960s with an initial 
emphasis on quantitative analysis, which was later broadened to imaging data 
obtained via high-throughput experiments performed in fields, glasshouses, and/or 
laboratories. Such imaging data, and the accompanying observations about the con-
ditions under which the images were obtained, now constitute the most coveted type 
of data in this field, with increasingly sophisticated tools being developed for their 
visualisation and automated analysis. This shift of emphasis on complex data for-
mats proceeded in parallel to the broadening of the term “phenotyping” to include 
any type of morphological variability within organisms, thus encompassing not 
only the immediately visible features of organisms, but also (1) features of tissues, 
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proteins, metabolic pathways and other aspects only accessible through intervention 
and specialised imaging techniques; and (2) the ways in which such features vary 
across environments that range from laboratories to glasshouses, field trials and the 
“wild” – which involves collecting data on the soil, climate, other organisms and 
microbiome with which plants interact. In the words of prominent contributors to 
the field, phenotyping – also called “phenomics” – “broadened its focus from the 
initial characterization of single-plant traits in controlled conditions towards ‘real-
life’ applications of robust field techniques in plant plots and canopies” (Walter 
et al. 2015). Importantly for our analysis, this shift in the conceptualisation of phe-
notypic traits made them much less obviously identifiable as concrete descriptors. 
Collecting data about the size of a leaf or the structure of a metabolic pathway is not 
simply a matter of observation, but rather is informed by a rich conceptual apparatus 
defining what counts as leaf surface and metabolism. Thus, just as much as business 
cycles are no pure theoretical constructs, phenotypes are no ‘brute facts’ about the 
world: in both cases, empirical and theoretical considerations remain firmly inter-
twined, and affect researchers’ approach to data processing and interpretation.

A key component of contemporary phenomics, and the reason why it is regarded 
as generating knowledge that can underpin and guide agricultural production, is a 
holistic characterisation of plant performance, which involves the employment of 
several investigative methods and the generation and analysis of a wide variety of 
data types. These include, for instance, multispectral and thermographic imaging of 
plant growth, which is often carried out within so-called “smart glasshouses” in an 
automated fashion (by robots or conveyor belts that transport the plants to various 
imaging chambers, multiple times per day, over an extended period of time). 

Fig. 1  Example chart of a time series in its original shape and after it has been adjusted for sea-
sonal variation. The adjustment is supposed to facilitate dating of turning points, indicated by the 
asterisks. (Source: Burns and Mitchell 1946, p. 60, Chart 4)
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Photographs and measurements are produced that document how plants develop, 
how their leaves and roots change, and how they respond to external stimuli.

Cleaning such images for analysis involves judgements around the quality and 
resolution of the photograph, the lighting and background conditions, the position 
in which plants have been captured and the extent and clarity to which relevant 
leaves and roots show in the picture. The quantity of images generated through any 
one experiment makes it hard for researchers to do such work manually, and yet it 
is hard to fully automate due to the large amount of know-how and theoretical com-
mitments involved in judging image quality – encompassing familiarity with the 
plants and their full life-cycle, expectations around how plants may respond to envi-
ronmental conditions, existing conceptualisations of plant development and growth, 
and assumptions around which environmental and morphological elements need to 
be valued and prioritised over others.

Another popular type of phenomic data is acquired through top-view imaging of 
the plant canopy in the field, which can be performed by humans in helicopters, 
robots or remote-controlled drones. These photographs can be analysed to measure 
leaf greenness, via tools such as the Normalised Difference Vegetation Index, or 
plant biomass and growth in the area under scrutiny. Again, while some basic 
parameters can be established for what counts as a “bad image” and which elements 
of each image may be classified as “noise”, cleaning such images involves expert 
assessment based on detailed knowledge of the characteristics and patterns of 
growth of the plants at hand. An example (Fig. 2) is an imaging study of soy-bean 
fields to determine patterns of growth, in which researchers prepare images for fur-
ther analysis (in their own words, “classify” the images) through models that are 
manually trained at every step to respond to the traits of interest in the beans (Xavier 
et al. 2017).

Given the sensitivity of phenomic studies to local conditions and the conceptual 
preferences and know-how of specific researchers, consensus around how to clean 
data is hard to achieve. Nevertheless, such consensus is highly valued and sought 
for, as it enables researchers to compare results obtained across species, field types 
and environmental conditions. One attempt towards establishing general standards 
for data collection and processing is the Minimal Information About Plant 
Phenotypic Experiments, or MIAPPE. MIAPPE is part of a broader set of “minimal 
information about data” movement now recognized and coordinated by the FAIR 
sharing international initiative for reusable data curation.8 This is an attempt to stan-
dardize the practices and variables required to tidy up data formatting and analysis 
enough to make data searchable, visualisable and retrievable through digital means. 
The idea of “minimal” information is meant to foster an evaluation of which contex-
tual information is most important to data interpretation, resulting in as small a set 

8 See https://fairsharing.org/collection/MIBBI. Among the first incarnations of the movement, and 
now highly successful standards in their own right, were the Minimal Information About a 
Microarray Experiment, or MIAME (Rogers and Cambrosio 2007) and the Minimal Information 
for Biological and Biomedical Investigations, or MIBBI (http://www.nature.com/nbt/journal/v26/
n8/full/nbt.1411.html)
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as possible of metadata that researchers view as essential to phenotypic data reuse. 
Somewhat paradoxically, within MIAPPE this aspiration towards minimal informa-
tion is accompanied by the wish to lose as little information as possible about the 
original format of the data, the circumstances under which they were generated, and 
the ways in which they were processed since. This is because the specificity of the 
provenance and formatting of data in each case is regarded as highly valuable by the 
plant scientists using such data for their own research, a requirement that research-
ers and engineers involved in the development of MIAPPE take seriously: “We had 
to allow for differences that occur between particular types of plant experiments, 
e.g. performed in different growth facilities. This is reflected in a varying set of 
attributes recommended in MIAPPE” (Ćwiek-Kupczyńska et al. 2016). Indeed, the 

Fig. 2  Example imagery of a single plot of soy-bean canopy, used to calculate a percentage can-
opy coverage on a given sampling date. (a, b) From aerial (above; a) or ground (below; b) plat-
forms, with raw (left) and classified (right) imagery. (Source: http://www.genetics.org/
content/206/2/1081)
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list of attributes to be reported to MIAPPE involves over 80 items, which can extend 
to over a hundred depending on the field conditions. The basic categories are them-
selves relatively broad, encompassing general metadata, timing and location, bio-
sources, environment, treatments, experimental design, observed variables and as 
much information as possible on sample collection, processing and management – a 
far cry from the minimalism that the MIAPPE criteria were expected to exemplify.

It is useful to consider a couple of the simplest examples from this list. Take for 
instance the item “location and timing of an experiment”. Here MIAPPE developers 
note that “depending on the nature of the study and scientific objectives, different 
initial time points might be crucial—sowing date or transfer date, treatment applica-
tion time, etc. The duration of particular stages is also important.” (Ćwiek-
Kupczyńska et al. 2016, p. 3). Thus, even a relatively straightforward measure such 
as the time of the experiment turns out to be a complex and context-dependent issue, 
for which it is hard to establish any hard and fast boundaries to ensure comparability 
across different experiments.9 Another example is item “biosource” – that is, the 
identification of the plant material at hand. Here MIAPPE recommends using at 
least two attributes, one consisting of the species name as in standard taxonomic 
classifications, and the other consisting of the “infraspecific” name, pointing to the 
specific variant, accession or line in question. Complications arise due to the types 
and history of the plant materials at hand. While the taxonomy of plant species is, 
though controversial, subject to international standards, the identification and clas-
sification of sub-species variants is highly decentralised and context-dependent, 
with no overarching agreement around classification and often not even a clear 
awareness of the differences between local systems. For example the varieties of the 
plant Manihot esculenta, whose root cassava is a key crop in West Africa and South 
America, are often defined by the different ways in which local breeders value spe-
cific traits (like the humidity and colour of the root) when processing the plant for 
food production. Aware of this fact, the authors point to the importance of referenc-
ing any “public collection of names”, and/or a specific experimental station or gene-
bank in which the variant may be stored and or the seeds may have been sourced, 
and to which they can be physically traced. There are international identification 
systems for crops of commercial interest, such as the FAO/Bioversity Multi-Crop 
Passport Descriptors, but these do not cover all possible variants. The ways in which 
data about specific attributes are structured in MIAPPE conform to the ISA-Tab 
standards for data ordering, which is widely adopted in biology and looks as follows 
(Table 1).

This table aims to impose a clear conceptual ordering of the data, resulting in 
their presentation in a format and structure that is amenable to computational analy-
sis. At the same time, the application of the ISA-Tab standard to the specific case of 
phenotyping is complex, as demonstrated by challenges encountered in developing 
the so-called “ISA-Tab Phenotyping Configuration”. This consists of a standard 
Investigation file, a Phenotyping Assay file describing phenotypic procedures and 
observed variables (according to the dozens of attributes identified by MIAPPE, 

9 See Leonelli (2018) for an analysis of data time and its significance particularly within 
experiments.
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such as location and biosources), and three versions of a Study file: one called 
“basic study” and consisting of a default general description of all plant experi-
ments, which needs to be extended by added recommended MIAPPE attributes as 
applicable to the specific case10; and two extensions called “field” and “greenhouse” 
studies, featuring specific attributes for growth facilities and environmental infor-
mation (Ćwiek-Kupczyńska et al. 2016, p. 8) (Table 2).

Notably, despite the drive towards comparability, MIAPPE emphasizes the need 
to capture any data format in use within the relevant scientific communities, rather 
than attempting to impose overarching standards on the ways in which data are 
produced: “in our implementation of MIAPPE, we do not restrict the format of the 
raw data in any way; it can be any custom, platform- or device- specific format, 
including texts, images, binary data, etc.” (Ćwiek-Kupczyńska et al. 2016, p. 11). At 
the same time, MIAPPE requires that information about data provenance (metadata) 
is reported in ways that are comprehensive and retrievable by later data users. The 
most stringent MIAPPE instructions concern how to organize and display such 
metadata:

If there is no description, the Derived Data File should be a standard, plain tab-separated 
sample-by-variable matrix. Its first column should contain (in the simplest situation) values 
from the Assay Name column in the Assay file, and the rest of the columns provide values 
for all variables. The names of those columns should correspond to the values in the Variable 

10 In practice, it can be also used when very little is known about the origin of observations, e.g. for 
simple, external or legacy phenotypic datasets that should be formatted as ISA-Tab, without the 
ambition to satisfy the MIAPPE recommendations.

Table 1  The structure of an ISA-Tab dataset

Source: Ćwiek-Kupczyńska et al. (2016)
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Table 2  Illustration of what the basic ISA-TAB fields correspond to when implemented by plant 
scientists in the field and in the greenhouse, respectively

Basic Field Greenhouse

Source name Source name Source name
Characteristics[organism] Characteristics[organism] Characteristics[organism]
Characteristics[Infraspecific 
name]

Characteristics[Infraspecific 
name]

Characteristics[Infraspecific name]

Characteristics[seed origin] Characteristics[seed origin] Characteristics[seed origin]
Characteristics[study start] Characteristics[study start] Characteristics[study start]
Characteristics[study 
duration]

Characteristics[study 
duration

Characteristics[study duration

Characteristics[growth 
facility]

Characteristics[growth 
facility]

Characteristics[growth facility]

Characteristics[geographic 
location]

Characteristics[geographic 
location]

Characteristics[geographic location]

Protocol REF[rooting] Protocol REF[rooting]
  Parameter value[rooting 

medium]
  Parameter value[rooting medium]
  Parameter value[container type]
  Parameter value[container 

volume]
  Parameter value[plot size]   Parameter value[container 

dimension]
  Unit   Unit
  Parameter value[sowing 

density]
  Parameter value[number of plants 

per container]
  Parameter value[pH]   Parameter value[pH]
Protocol REF[aerial 
conditions]

Protocol REF[aerial conditions]

  Parameter value[air 
humidity]

  Parameter value[air humidity]

  Parameter value[daily 
photon flux]

  Parameter value[daily photon flux]

  Parameter value[length of 
light period]

  Parameter value[length of light 
period]

  Parameter value[day 
temperature]

  Parameter value[day temperature]

  Parameter value[night 
temperature]

  Parameter value[night 
temperature]

Protocol REF[nutrition] Protocol REF[nutrition]
  Parameter value[N before 

fertilisation]
  Parameter value[N before 

fertilisation]
  Parameter value[type of 

fertiliser]
  Parameter value[type of fertiliser]

  Parameter value[amount of 
fertiliser]

  Parameter value[amount of 
fertiliser]

(continued)
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ID column in the Trait Definition File […]. So, a default derived data format is an “Assay 
Name × Variable” matrix of observations, that can be quantitative or qualitative. An exten-
sion of the above rule governing the format of the Derived Data File is possible by using 
values from another “data node” column (e.g. Source Name, Sample Name, Extract Name, 
etc.) as unique identifiers of the rows in the table with the associated observations. (Ćwiek-
Kupczyńska et al. 2016, p. 12)

This is because such ordering is what enables researchers to initiate 
comparisons:

we can provide separate data files with measurements taken for different observational 
units, e.g., morphological traits like “height” and “number of leaves” can be assigned to the 
whole plant, whereas physiological traits can be restricted to samples taken from particular 
leaf of a plant. Also conveying data aggregated over “data nodes” is possible in this way. 
(Ćwiek-Kupczyńska et al. 2016, p. 12)

Despite the attention placed by MIAPPE developers on the variability and con-
textuality of data and related preparation procedures, applying MIAPPE criteria to 
the processing of data in the field remains a big challenge. As a concrete example, 
we take the data processing performed at a leading station for the collection of phe-
nomics data in the UK. The North Wyke Farm Platform is a research facility built 
around a working farm in Devon, in which researchers can study the interactions 
between climate, soil, animals, plants and microbiota in as close a setting as possi-
ble to real farming. The whole area is full of sensors and measurement devices, 
which collect data at regular intervals (15 minutes) about a variety of aspects of the 
farm: temperature, soil composition, humidity and rainfall, etc. The sensors are cali-
brated and checked in 15 huts (“monitoring cabins”) positioned around the fields, 
and the data produced is sent wirelessly to the central computing facility based in 
the manor house, where researchers proceed to prepare the data, cluster them and 
store/disseminate them through a database. There are also three meteorological sta-
tions that move around the fields. An important activity besides collecting numeri-
cal measurements is the collection of samples (of soil, air, water, insects and plants), 

Basic Field Greenhouse

Protocol REF[watering] Protocol REF[watering]
  Parameter value[irrigation 

type]
  Parameter value[irrigation type]

  Parameter value[volume]   Parameter value[volume]
  Parameter 

value[frequency]
  Parameter value[frequency]

Protocol REF[sampling] Protocol REF[sampling]
  Parameter 

value[experimental unit]
  Parameter value[experimental 

unit]
Sample name Sample name Sample name

Source: Ćwiek-Kupczyńska et al. (2016)

Table 2 (continued)
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which are acquired manually (e.g. manual sampling device for soil), prepared and 
stored in fridges at various temperatures).11

Researchers interviewed12 in North Wyke have stressed that the data collected by 
the Farm Platform are not yet being interpreted: this will only be possible when 
enough longitudinal data are collected over the course of the next few years.13 This 
makes the task of data cleaning ever more important, since the researchers’ main 
task at the moment is to make sure that the data collected is reliable and clustered 
and displayed in ways that will facilitate further analysis, and prove informative for 
interested farmers. Cleaning the data means first of all making them comparable and 
consistent with other datasets generated within the Farm, an arduous task given the 
variety of measurements taken and images collected. Equally important is to make 
sure that such data would be comparable and consistent with other phenomics data 
from outside North Wyke. While researchers attempt to follow criteria similar to 
those formulated by MIAPPE, the variability in the interpretation of the attributes 
and values is a serious threat to automated mining and comparison among the data. 
Researchers aim to enable analysis in the future, but caution against any automated 
search. They also emphasize how the power of this evidence is in the meta-data, the 
information that enables researchers to contextualize the findings and evaluate their 
significance in relation to findings from other locations enacting different epistemic 
cultures and methods.

3  �Cleaning by Clustering: The Principles Underpinning 
Data Cleaning Practices

Renowned anthropologist Mary Douglas provided an important argument for under-
standing the process of cleaning as being not about removal, but about ordering. 
According to Douglas (2002), dirt is essentially disorder: “There is no such thing as 
absolute dirt: it exists in the eye of the beholder. […] Dirt offends against order. 
Eliminating it is not a negative movement, but a positive effort to organize the envi-

11 The facility attracts researchers from different communities and disciplines seeking to develop 
sustainable agriculture and ruminant production systems http://www.nature.com/news/agriculture-
steps-to-sustainable-livestock-1.14796. It is the only currently functioning facility of its kind 
world-wide, and the Global Farm Platform http://www.globalfarmplatform.org/ was born to 
attempt to export this model and initiate similar sites elsewhere.
12 Interviews were carried out by Leonelli in January 2016. A subset of the interviews, which inter-
viewees consented to release in an open access format, is available here: https://zenodo.org/com-
munities/datastudies/?page=1&size=20
13 North Wyke researchers are also conducting short-term studies in which the data are used as 
evidence for claims about phenomena. Examples include research on replacing nitrogen as fertil-
izer, the use of plants to manage soil and water during floods, shifts in soil biota as land use 
changes, and the modelling of grassland production systems. At the same time, researchers only 
take up research that will not “distort” on-going, long-term data collection by forcing them to 
“clean” data with too narrow a set of epistemic goals in mind.
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ronment” (p. 2). In chasing dirt when tidying we are “positively re-ordering our 
environment, making it conform to an idea […] it is a creative moment, an attempt 
to relate form to function, to make unity of experience” (p. 3). Douglas emphasizes 
that the identification of dirt should not be considered as a unique, isolated event. 
“Where there is dirt there is system. Dirt is the by-product of a systematic ordering 
and classification of matter, in so far as ordering involves rejecting inappropriate 
elements” (p. 44). Cleaning is the reaction which condemns any object or idea likely 
to confuse or contradict cherished classifications, thus “reducing dissonance” 
(Douglas 2002, p.  340). Thus cleaning is part of the epistemological activity of 
systematization, such as ordering and classification. Douglas distinguishes two 
phases to such systematization practices:

In the course of any imposing of order, the attitude to rejecting bits and pieces of dirt goes 
through two stages. First they are recognisably out of place, a threat to good order, and so 
are regarded as objectionable and vigorously brushed away. At this stage they have some 
identity: they can be seen to be unwanted bits of whatever it was they came from, hair or 
food or wrappings. This is the stage at which they are dangerous; their half-identity still 
clings to them and the clarity of the scene in which they obtrude is impaired by their pres-
ence. But a long process of pulverizing, dissolving and rotting awaits any physical things 
that have been recognized as dirt. In the end, all identity is gone. The origin of the various 
bits and pieces is lost and they have entered into the mass of common rubbish. It is unpleas-
ant to poke about in the refuse to try to recover anything, for this revives identity. So long 
as identity is absent, rubbish is not dangerous. It does not even create ambiguous percep-
tions since it clearly belongs in a defined place, a rubbish heap of one kind or another. 
(Douglas 2002, pp. 197-8)

The stage of total disintegration is the stage in which dirt has become undifferen-
tiated. Then a cycle has been completed, resulting in an order that is either continu-
ous with what was there before the cleaning or created by the process of cleaning itself.

Drawing on Douglas’s analysis, we argue that in both of our cases researchers 
adopt the same broad strategy for data cleaning: they clean by clustering. Cleaning 
is a way to impose order and intelligibility on a dataset, by identifying categories 
and typologies for classification, models and algorithms through which data can be 
filtered and selected, and/or tools through which data can be displayed and organ-
ised so as to enable further analysis and interpretation.

The specific mechanisms and tools used to enact this strategy, however, differ 
considerably across our cases, revealing a divergence in the heuristic principles 
used to guide and motivate the cleaning strategies, and the extent to which whatever 
is neutralized from a given stage of data cleaning is regarded as “unwanted bits” 
with “some half-identity clinging to them”, or as dirt where “identity is absent”.

In our economics case, clustering involves looking for cyclical patterns through 
visual judgement. To understand the heuristic behind this cleaning procedure, it is 
useful to discuss briefly Gestalt theory first. Gestalt psychologists study perceptual 
organization: “how all the bits and pieces of visual information are structured into 
larger units of perceived objects and their interrelations” (Palmer 1999, p. 255). A 
“naïve realist” explanation of this organization could be that this organization simply 
reflects the structure of the external world. A problem with this explanation is that the 
visual system does not have direct access to how the environment is structured, it has 
only access to the image projected onto the retina, the “array of light that falls on the 
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retinal mosaic” (p. 257). This optic array allows for an infinite variety of possible 
organizations. The question therefore is how the visual system picks out one of them. 
To answer this question Max Wertheimer, one of the founders of Gestalt psychology, 
studied the stimulus factors that affect perceptual grouping: “how various elements 
in a complex display are perceived as ‘going together’ in one’s perceptual experi-
ence” (Palmer 1999, p. 257). The theoretical approach of the Gestalt psychologists is 
that perceptual organization is grounded in the wish to maximize simplicity, or 
equivalently, minimize complexity. They called this hypothesis the principle of 
Prägnanz, today also called the minimum principle. It states that the percept will be 
as good as the prevailing conditions allow. The term “good” refer to the degree of 
figural simplicity or regularity, and the prevailing conditions refer to the structure of 
the current stimulus image (Palmer 1999, p. 289). The Gestalt psychologists saw 
symmetry as a global property with which figural goodness could be analysed.

The organising Gestalt in the case of the NBER business cycle analysis was a 
cyclical pattern, such as the Fig. 3. By taking averages, whether weighted or not 
(which is an act of clustering), one aimed at reducing the noise in the observations 
as much as possible. Because it is not possible to tidy up by a kind of physical inter-
vention on some physical material, the tidying up is not done by removal but by 
clustering in such a way that the cluster itself is “cleaner” than the individual data. 
The principle of Prägnanz that was implicitly applied and was the underlying goal 
of the procedures is an as simple as possible shaped cycle with clear peaks and 
troughs.

In the economic case, the original data end up as what Douglas classified as 
undifferentiated dirt – that is, as objects that are forever disconnected from their 
original source.

[T]hese symbols are derived by extensive technical operations from symbolic records kept 
for practical ends, or combinations of such records. We are, in truth, transmuting actual 
experience in the workaday world into something new and strange […]. (Burns and Mitchell 
1946, p. 17)

Fig. 3  Example of a “typical” business cycle pattern (Source: https://seekingalpha.com/
article/2716385-investing-in-business-cycles)

From Dirty Data to Tidy Facts: Clustering Practices in Plant Phenomics and Business…

https://seekingalpha.com/article/2716385-investing-in-business-cycles
https://seekingalpha.com/article/2716385-investing-in-business-cycles


96

In other words, the process of cleaning by clustering in this case transforms a 
large quantity of objects that were previously identified as data into objects that 
have new evidential value, but are no longer available or retrievable as sources of 
information about the contexts from which they were inferred.14 At the same time, 
it is important to note that the resulting records do not completely fail to provide an 
identity to the discarded objects. Keeping some traces of the original time series is 
relevant if only to verify that results are not artificial products of spurious cyclical 
patterns. The visualisations of original times and the adjusted one should show suf-
ficient similarity. “A common method of judging the goodness of [an] adjustment is 
to see whether the adjusted figures show similar movements in successive years” 
(Burns and Mitchell 1946, p. 54).

In plant phenomics, clustering instead involves defining a “landscape” for the 
potential re-contextualisation of data. The starting assumption is that phenomics data, 
in all their richness, variability and multiplicity of features, may be used for all sorts 
of research goals, ranging from studies of irrigation systems to investigations of plant 
growth and nutrition (as in the case of North Wyke data). Therefore the priority for 
researchers is not the visual intelligibility of a particular way of arranging data, but 
rather the creation of categorisations that facilitate the disaggregation of data clusters 
when needed by the inquiry at hand. In other words, researchers want to retain the 
ability to trace the origin of the relevant data journeys, and evaluate the adequacy of 
every step of data cleaning towards producing reliable evidence for new research 
questions. Key heuristic principles here are: accuracy, in the sense of being as faithful 
as possible to the specific characteristics of the research objects at hand; and trace-
ability of data sources, in the sense of making sure that prospective data analysts have 
what they need to assess the quality of the data and, if needed, process them differ-
ently (which typically includes as extensive an access as possible to metadata).

This approach is hard to compare to the application of Gestalt principles, because 
those are focusing on visual appearance and presentation, while phenomics prac-
tices of cleaning by clustering focus on interpretability and the potential to disag-
gregate existing data clusters. Nevertheless, like the economics case, this is in 
striking opposition to common sense interpretations of the metaphors of “cleaning” 
and “dirt” that focus on the removal of blatantly unwanted items. Both in biology 
and economics “dirt” may (and often does) contain useful information, which needs 
to be ordered so as to be retrievable depending on the interests of the prospective 
analyst. The original datasets and related metadata never fully become undifferenti-
ated dirt as in Douglas’s analysis. Rather, researchers attempt to “cling on to their 
half-identity”, in Douglas’s terms, thus leaving open the option for these objects to 
be re-identified as data and fully reinstated as significant sources of evidence for a 
claim. The main difference between the two fields is that economic data have lost 
more of the identity of their original data than is the case in phenomics. While in 
plant phenomics accuracy and traceability are leading, in economics accuracy has 
to be balanced with Prägnanz, and traceability is not required.

14 This interpretation assumes a relational account of data epistemology, as outlined in Leonelli 
(2016) and in the introduction to this volume.
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4  �Comparing Heuristics across Research Communities 
in Natural and Social Sciences

Economic data are processed in ways that make them much more computationally 
tractable than phenomics data due to their numerical format. Economic data are thus 
better amenable to aggregation and analysis in comparison to many other data types, 
which potentially expands their scope for linkage and aggregation with other datasets 
but also limits the power of investigators to contextualise and situate the data in rela-
tion to their origin. In this case, cleaning by clustering is a cumulative process, in 
which the bulk of “raw” data is replaced by a smaller set of business-cycle “facts” 
through the exercise of visual principles.15 As a result, analysts working at later stages 
of these data journeys are left mostly with data models that conform to specific criteria 
and are best used to address a narrow set of questions, in conformity with the princi-
ples and assumptions made while preparing them for analysis. The original “raw” data 
are no longer accessible, having been “cleaned out” in the data visualisations.

By contrast, phenomics data remain more difficult to analyse through computa-
tional tools, and can only be compared and linked with other datasets by employing 
case-by-case adjustments. They are so heterogeneous, and their ordering into clus-
ters so pluralistic and open to multiple interpretations, that additional processing is 
needed every time researchers re-use them for a specific project. When considering 
data on biosource as discussed in section two, for instance, researchers need to 
double-check what assumptions have been made about the taxonomy of plant vari-
eties when ordering plant traits into groups. At the same time, the richness of data 
formats and of the information that they carry make them useful evidence for a large 
variety of inquiries, and makes it easier to interrogate their reliability and quality in 
relation to different research conditions and aims. Phenomics data can potentially 
be used to answer many research questions. Cleaning by clustering in this case is 
not a cumulative process: it is crucial for researchers to lose as few data and meta-
data as possible, as one never knows what will turn out to be important later.

It has been frequently observed that big data aggregation is often accompanied 
by loss of contextual information (metadata).16 While in both of our cases the role 
and ordering of contextual information plays a key role in the process of cleaning by 
clustering, the principles associated to handling such contextual information are 
considerably different. In economics, metadata become increasingly less relevant: 
the principles guiding data ordering and clustering are those of Prägnanz. In plant 
phenomics, metadata never cease to be relevant, as the principles guiding ordering 
and clustering are those of accuracy and traceability.

15 Facts about phenomena, in the sense of Bogen and Woodward 1988.
16 Lawrence Busch (2014, also discussed in Mittlestand and Floridi 2016) lists several reasons for 
this, including: Lossiness (lose aspects of the phenomena studied); Drift (phenomena change over 
time, but data representing them do not); Distancing (distance from phenomenon facilitates iden-
tification of patterns); Layering (reducing phenomena to set of variables, e.g. in Tidy data); Errors; 
Standards; Disproportionality; Amplification/reduction; Narratives.
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Assumptions made about the nature of the phenomena at hand (respectively, 
plant morphology and business cycles) may seem to have a significant impact on the 
type of techniques and principles enacted by researchers. For instance, the propo-
nents of MIAPPE explicitly note that

we are fully aware that MIAPPE suggests a description of the experiment that is rather 
extended in comparison to current practices. Hence, although we think that all of the attri-
butes in Table 1 are needed to adequately describe each dataset, we accept that, in practice, 
the full complement of information may not be possible to collect, or might be unavailable 
to the person building the dataset. Therefore, we have selected and marked those descriptors 
deemed absolutely essential. (Ćwiek-Kupczyńska et al. 2016, 7)

Remarkably, their “absolutely essential” list of traits still comprises 35 attributes, 
a skinnier list than the original list of over 80 attributes (ranging from 70 to over a 
hundred depending on growth conditions and type of environment/soil), but still 
daunting in its richness.

We do not think that these differences should be viewed simply as a measure of 
the difference between studying plants and studying economic conditions. Both 
types of phenomena are highly complex in their own ways, and arguably economic 
behaviour is even more difficult to reduce to a simple set of variables. A more plau-
sible explanation lies in the methods and commitments characterizing the two fields 
of inquiry. Economics, business cycle analysis in particular, is a highly generalist 
field but it is not holistic: research focuses on analysing the business cycle as an 
isolated phenomenon. By contrast, plant phenomics favours a holistic approach, 
emphasising the complexity of the interrelated processes through which plant mor-
phology is constituted (see Fig. 4 and also Leonelli 2016, ch. 6).

Furthermore, plant phenomics has no pretension to achieve a “complete repre-
sentation” (or complete knowledge) of the plant systems it analyses, precisely 
because of their daunting complexity and the fact that so little is as yet known about 
them. Thus, any model proposed in plant science to analyse a phenomenon will be 
limited in scope, and need to be complemented by several others to provide a more 
comprehensive picture of the phenomena for specific investigative goals. Related to 
this, mathematical and statistical modelling – while of course strongly present in 
this work – are not always the primary or main tool of analysis; and their role is not 
always one of data validation, they are also employed as tools to order and display 
the data at hand in ways that may help analysis (Leonelli 2019).

5  �Conclusions

Our analysis points to the difficulties experienced by analysts in providing general 
principles of cleanliness with regard to research data. This is nicely exemplified 
when considering the ongoing debate around the identification and application of 
overarching “tidy data principles” in contemporary data science, which seeks to 
outline criteria for “cleaning” and structuring data so as to make them amenable to 
computational analysis (Wickham 2014). Within this framework, data processing is 
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conceptualised as consisting of four stages: (1) import data; (2) tidy data; (3) trans-
form/visualise/model data; (4) communicate data. Tidy datasets are defined as pro-
viding “a standardized way to link the structure of a dataset (its physical layout) with 
its semantics (its meaning)” (Wickham 2014, 2), thus helping to prepare data for 
visualisation and modelling. This literature does not shy away from data diversity, 
and recognises that data “tidiness” comes in a variety of different flavours depending 
on the field and goals of inquiry, the statistical and computational tools available 
(which are referred to as “tidy tools”, p. 20), and the cognitive preferences of inves-
tigators. The starting point for this work is to acknowledge that determining what are 
observations and what are variables is relatively easy in the case of specific datasets, 
but that such a distinction is hard to define in general terms, also because of the 
diversity often characterising data sources and levels of abstraction. At the same 
time, an attempt is made to discuss tools through which “messy data” can be “tidied 
up”, so as to be ready for computational analysis. An example is the activity of 
“melting”, which consists of stacking datasets by turning columns of numbers into 
rows. Another is “string splitting”, which involves splitting the columns of any given 
data table into different variables. Furthermore, a series of “tidy tools” are presented, 
such as data aggregation, filtering, visualisation and statistical modelling, whose 
common aim is to “take untidy datasets as input and return tidy datasets as outputs” 
(p. 12). All these strategies for cleanliness are meant to “make analysis easier by 
easing the transitions between manipulation, visualisation and modelling” (p. 15).

This approach to data cleaning aligns nicely with the strategy that we have called 
“cleaning by clustering”. At the same time, our reading of Douglas’s work on dirt 
provides a conceptual framework and rationale for this approach. It makes it clear 
that cleanliness is not a matter of removing unnecessary items, “noise” or “mess” 

Fig. 4  Representation of the conceptual landscape for phenomics, taken from a seminal review 
paper from Walter et al. (2015)
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from somehow predefined “meaningful datasets”, thus assuming that (1) there is a 
“best way” to order data regardless of the research aims of specific investigations; 
and (2) what researchers should consider as reliable and veritable data need to be 
uncovered and separated from “meaningless noise”. By contrast, we propose to view 
data cleanliness as a process of ordering data into clusters, which runs in parallel with 
situated attempts to assign meaning to data in relation to specific research questions 
and goals. Thus cleaning can take a variety of different forms – and result in very 
different ideas of “what counts as data” – depending on the assumptions, commit-
ments and circumstances of the research projects at hand. Moreover, our cases have 
shown that the above mentioned four stages of data analysis are actually four aspects 
of one process of data interpretation which cannot be separated from each other.
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The Datum in Context: Measuring 
Frameworks, Data Series and the Journeys 
of Individual Datums

Mary S. Morgan

Abstract  Studying a social whole such as a city, an economy, or a society, requires 
the construction of ‘group data sets’ where the group is made up of a number of 
individual data series, each one in turn made up of a string of individual data points 
or datums. This group set forms the most important context for considering the 
travels of any single numerical datum. The purpose of this paper is to explore and 
explain how it is that different kinds of group data sets, where the data are collected 
and aligned according to different measuring principles and to represent different 
subject matters, affect the travels of any datum point in the group. Using examples 
from social science, the paper examines how the relations of the data points within 
the whole set determine the possibilities for any single individual datum to travel 
within and out of its set, and how the integrity and fruitfulness of data or datum 
journeys will be dependent on those bit-whole relations that characterize the group 
data set.

1  �Introduction

The natural world is full of examples of clouds of individuals travelling in groups, 
groups significant enough that we have given them special labels that suggest their 
different group behaviour in terms of individuals: swarms of midges, murmurings 
of starlings, armies of ants, packs of wolves. To the amateur naturalist: ants line up, 
wolves practice hierarchy and strategy, starlings free-wheel according to some 
unaccountable design, while midges just swarm. The specialist animal behaviour 
expert will have more exact descriptions than these folk terms, but the point to focus 
on is how the whole is understood as a large set of small elements which cohere in 
very different forms and behave in different ways to make up the whole.

We can see a similar variety in the bit-whole relations of data that are taken to 
represent complex group behaviour in the social world. Studying a social whole 
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such as a city, an economy, or a society, requires the construction of ‘group data 
sets’ where the group is made up of a number of individual data series, each one in 
turn made up of a string of individual data points or datums.1 Any individual datum 
(or bit) has relations not just with the other data points in their series, but also with 
those of the group (or whole) data set. For example, the data on population growth 
of a society consist of individuals, who can be counted in a simple aggregate whole, 
but for social science purposes will more likely be found in data series divided by 
occupational classes, or age cohorts, or regional spaces. The bit-whole relations will 
depend upon the kind of group data involved, for there is variety in bit-whole rela-
tions just as in those naturalists’ examples suggested above. No doubt these varied 
kind of datum-to-‘group data set’ relations can be found in other fields of science 
with complex wholes such as ecology, physiology, and so forth; it is not necessarily 
a special feature of social science data. What is important is that different kinds of 
data sets in the sciences have different bit-whole properties, and that these turn out 
to be very important for the possibilities and fruitfulness of individual datum jour-
neys. So, while the datum and its travels take centre stage in this paper, it does so 
always in relation to its ‘companions’ not just in the individual data set, but in the 
group data set, which should be conceived as its primary context. This focus on the 
datum-group data relations sits in contrast to many other studies in this volume, and 
to earlier studies of travelling data, which focus on other kinds of ‘companions’ and 
other background and foreground contexts which affect the journeys of data.2

The purpose of this paper is to explore and explain – for quantitative data – how 
it is that different ‘kinds’ of numerical data form an important context for a single 
numerical datum. I take kinds of numerical data to indicate numerical data collected 
and aligned according to different principles into group data sets. The most impor-
tant principles that I consider are those that stem from the kinds of measuring sys-
tems involved in the construction of the group data set. The subject matter of the data 
set is also important of course, but this is not the primary focus of my discussion here.

For an example, consider the measuring system based on statistical thinking. 
This involves the notion of an underlying statistical population, and modes of sam-
pling in collecting data (random, systematic, representative, stratified, etc). The 
relations between individual data points within each statistical data series will 
depend primarily on what kind of population is involved and whether the datums 
come from, for example: a sample from a controlled trial in medicine, a time series 
in economics, a survey in sociology, or the demographic census of population. They 

1 It is important in this paper to signal the collection of individual data points in a way that main-
tains their individuality: as ‘datums’, a jarring term that enables me to insist on this important 
distinction to the collective plural ‘data’ where individual distinctions are not relevant.
2 See the notion of ‘travelling companions’ for the successful journeys of data (to use the language 
of the How Well Do Facts Travel? project – see Morgan 2011a, and the other essays in Howlett and 
Morgan 2011). Sabina Leonelli’s (2011) contribution to that project volume, and her subsequent 
book (2016), on the curation of plant research, provides an important parallel for the ideas of this 
paper. In her case, the information on both background and labelling are essential elements that 
travel with the data. Here the focus is on the other data points in the data set as companions.
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will each have different bit-whole relations that depend on the statistical framework 
and the subject matter. For example, the data points in a rain-fall data series are 
clearly related in the time sequence and cannot be randomly re-ordered in the data 
array without losing some really important information from the data set, whereas 
data taken from a controlled field trial can likely be ordered and re-ordered in the 
array without breaking any internal relationships between the data points. Broader 
subject matters hold further power. Ted Porter (1986) and Ian Hacking (1990), in 
their writing about the history of statistical thinking, have exemplified how such 
subject matters meant that astronomers’ personal errors of measurement were first 
formulated according to a ‘law of error’, and then show how such law-like distribu-
tions were reformulated as human social character deviations, and thence reinter-
preted into natural biological variation in what became known as the ‘normal’ 
curve. Meanwhile, the behaviour of populations of human individuals became the 
analogy for the kinetic theory of gases and evolutionary theorizing using biomet-
rics. The data from all these domains share notions of statistical populations and 
distributions, but their subject interpretations and usage differ.

Following further the original example, the data of a national population when 
measured by a census of population are both statistically ‘governed’ (by the nature 
of such population distributions, and principles of taking good samples) and ‘gov-
erned’ by the socio-economic characteristics of the nation (such as occupational 
class, or age aspect, or regional characteristics) that are to be measured. So, we can 
understand whole (or group) data sets as involving the following elements: indi-
vidual datums (or bits) that are assembled into data series, which are then packed 
into subject category boxes, which taken together form parts of a whole data set. 
The category boxes depend on the purpose and framing of the whole data set, so the 
same data series may appear in many different whole data sets. But how those boxes 
or parts fit together depends on the principles of measurement of the whole that are 
being followed. There is rarely a simple aggregation at any point. In the population 
example, a simple aggregation (from samples to population, and over time and 
space) will tell us the total number of individuals at a given date, but this has little 
use. Most analysis will want to know the categories and how they fit together in the 
whole. Then, what can be extracted from the whole to travel with validity depends 
on both the base principles of measuring the bits, the categories and how they divide 
the world, and the conceptual nature of the whole.3

This point may be clarified by contrast with another data set dependent on the 
statistical notions of population. The data of sampled biological populations in 
worldwide genetics or genomics data sets depend on the hereditary properties of 
specimens and evolved relationships of sample subjects as well as on theoretical 
assumptions and empirical practices of sampling and specimen collection.4 These 

3 And given this, it is no surprise that any data that travel have to be carefully resituated in a way 
that protects their integrity in any new site, as other papers in this volume make clear (see Leonelli’s 
introduction).
4 I thank Jim Griesemer for this parallel example from his field (see his chapter in this volume that 
exemplifies the point).
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two different fields of science both use the term ‘population’ and rely on statistical 
principles of collection and ordering. The data journeys that occur in these fields 
have multiple valences, and their data journeys surely differ. Even so, the datums 
from these different fields may well share similar characteristics of detachability, 
and so their journeys might have more in common with each other than with the 
journeys of data from sets in the same subject field but constructed according to 
very different principles of observation and measurement.

Both principles of measurement and subject field relations have considerable 
impact on the way that data are conceived and used, and so on their possibilities for 
travel as empirical objects, as ‘theoretical’ stand ins, as stand-alone values, and the 
like. Whether, and under what conditions, an individual datum point can travel 
within the data set, or independently beyond it, and whether such data travels are 
associated with integrity and fruitfulness5 in travelling will depend in part on the 
nature of those internal relations of measurement principles and subject matter that 
characterise the data set. This creates a presumption that data journeys will be 
affected by the characteristics of the whole, as much as of the parts and of the rela-
tions between those parts.

The importance of this framing, and emphasis, on the principles that lie behind 
whole data set measurement is demonstrated in this paper in a comparison of two 
sets of numbers that economists and social scientists use when they aim to get a grip 
on a national socio-economy. These two data sets are assembled according to two 
very different kinds of measuring and aggregating principles. One set uses account-
ing principles: everything must be counted once and nothing twice, columns must 
add, and bottom lines must balance. Using these accounting principles produces a 
group (or whole) data set that includes many individual data series, each of which 
has a place in the accounting system: – a system set up to measure national eco-
nomic activity both within certain categories and as a whole. The other group data 
consists of a set of ‘indicators’: numbers that are not conceived as direct measure-
ments of the concepts they relate to (such as the business cycle, or the health status, 
of a country), but are understood to be indicators for characteristics relevant for 
those concepts (such as, respectively, industrial production or infant mortality). 
These two kinds of group data sets were first developed in the mid twentieth century 
to draw together many different data series in attempts to count, measure, or capture 
the whole economic activity of the nation state: they were the social scientists’ ‘big 
data’ projects of their time. They were, and are, produced according to very differ-
ent principles – accounting vs indicators – and so exhibit very different bit-whole 
relations within the group data set. Both provide aggregates in some sense, but 
according to different principles. My analysis will show how their bit-whole rela-
tions are critical for determining the very different possibilities for using individual 
datum points within the data set, and will explore the kinds of reasoning and analy-
sis that goes on when data are taken out of the whole for use.

5 See Morgan 2011a for the importance of ‘integrity’ and ‘fruitfulness’ in data journeys.

M. S. Morgan



107

2  �Data Sets and Their Kinds

Scientific discussions typically refer to data not to a datum, because scientists rarely 
deal with an individual datum which is not also part of a bigger set. Often, the term 
‘set’ refers to a data series (a string of data collected under the relevant same condi-
tions) but here the arguments relate to a group of such series – referred to here as a 
‘group, or whole, data set’. Typically (as suggested above) the data points – the 
datums (see note 2 again) – within such a group set are held together by two sorts of 
relationship. One comes with the theoretical and interpretative constraints of the 
scientific subject field in which they live. The other – more important for the argu-
ment of this paper  – comes with the means and principles of measurement that 
underlie their collection and their colligation into the group set. At the level of the 
group, these measuring principles generate different kinds of relations between the 
individual datums and between the series in the group. Conceived as measurements, 
numerical data are not all the same kind of thing.

I use the term kind of data to point to the facts that there are different kinds of 
‘measuring instruments’ involved in producing numerical data, a term of usage in 
this context due to Marcel Boumans.6 The measuring instruments used in social sci-
ences look rather different from the thermometers, Geiger counters, and so forth, 
that might be first thought of when considering scientific measuring instruments. In 
the social field, they are mostly various kinds of counting systems that rely on 
observation posts spread out across the country in government offices, banks, com-
panies and families who all report aspects of their lives (usually for completely 
other purposes). The raw data collected from these observation points are numeri-
cal, and combined in different ways, according to the frameworks or principles and 
techniques of the measuring instruments (consisting, as Boumans argues, of mod-
els, formulae, rules, conventions, etc) used to turn such raw numbers into measure-
ments of the economy and society.

The following analogy may communicate the point. One can think of there being 
families of measuring instruments rather like there are families of musical instru-
ments in an orchestra: woodwind, percussion, brass, strings etc. Each family of 
instruments produces sounds according to a common principle or recipe and set of 
techniques; but within each family, individual instruments occur with slightly dif-
ferent characteristics: violins and cellos use one principle (using taught strings) for 
making music, but do so with different objects and range; the percussion family has 
their own different strategy (of hitting objects), with individual instruments of more 
variety of range. Within an orchestra, all play together, but still, the family voices 
can be separately recognised as characterised by the principles of the instrument of 
the relevant group. The analogy here is that in socio-economics we have different 
families or kinds of measuring instruments, all producing numbers as measurements. 

6 Marcel Boumans, in a series of papers (but especially his 2001 and 2005a and 2005b book), 
developed the idea of using of this term ‘measuring instruments’ to analyse the formulae that cre-
ate numbers for the phenomena of economics.
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Some of these numbers are produced using principles of statistical thinking (popu-
lations and samples); some use accounting principles (of aggregating and balanc-
ing); some use principles of tracking (indicators that track characteristics of the 
phenomena); and some use principles of splicing with weights to make aggregates 
(in the form of index numbers).7 Thus, for the social scientists, statistical processes 
produce data of a different kind than those produced by accounting principles, 
which are in turn of a different kind than those producing indicator data, and another 
kind than those producing index numbers. These different kinds of data come from 
using four different kinds of ‘measuring instruments’, each using different princi-
ples and strategies to recognise, collect, code, assemble, and organise the informa-
tion from raw observations into numbers (see Morgan 2001, 2007). Just as the 
instruments in the different orchestral sections produce sounds according to differ-
ent principles, these different measuring instruments produce numbers of different 
kinds using four different principles of measurement. So when I refer to kinds of 
measurements in this account, I am pointing back to these principled-based measur-
ing instruments that produce such kinds of data at the group level.

That specificity of the kind of data in question has implications for the possibili-
ties for data travels, not just because of the different nature of those data kinds, but 
also because the internal relations between data points that are carried within any 
data series or group data set derive from their principles of construction and usage. 
These four different kinds of measuring instruments will produce data sets where 
the relationships of individual data points to their group data sets, that is of bits to 
wholes, have different formats. Any one datum will come from a group data set 
which is collected, and aligned, according to the principles of a specific kind of 
measuring instrument, and that datum has to be used and interpreted with that rele-
vant set of background principles of the measuring system always in mind. This 
family sharing in the principles of a measurement instrument used in constructing a 
data set may matter as much, possibly more, than the scientific subject field for the 
nature of any data journeys. Thus, for socio-economic data that come from different 
measuring instruments, and so produce different kinds of group data sets, the very 
different internal relations will be critical for understanding the different possibili-
ties for data journeys, and what happens to datums when they travel.

Conceived as measurements, the group data set produced using any one of these 
four socio-economic measuring instruments is expected to have some kind of a 
representing relation to the phenomena of interest that scientists want to investigate. 
These are likely to differ according to the kind of data involved. The formal ‘repre-
sentational theory of measurement’ investigated this question seriously for a num-
ber of characteristic measuring systems (see Suppes 1998). That approach can be 
contrasted with the pragmatic approach of Finkelstein (1982) for whom ‘measure-
ment’ always involves some form of observation. The materials here suggest that 
both notions are more valuable when they can be taken together. First, socio-economic 

7 A ‘population-samples’ example was discussed in Sect. 1 above, other are discussed later in this 
paper; and see Morgan 2001 for further discussion of each kind of numerical data.
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numbers are often not direct measures of such phenomena by active scientists, but 
more often ‘observations’ taken for other purposes and abstracted from their origi-
nal economic contexts in life. Second, for data to capture complex socio-economic 
phenomena, just as for complex environmental processes (such as in ecology), a 
single datum will rarely do so, which is why the nature of the group data set and its 
construction is so important. While at the level of the individual data series, social 
scientists habitually use different kinds of data sets produced by different measuring 
instruments to represent the things in their world, that does not immediately tell us 
what matters about the differences in these forms of representation for their group 
data set, nor for their data journeys (either as a set or individually). So, I use the term 
representing here in a pragmatic way, generic but informal, and will explore in what 
follows, how – for a kind of data (ie from a kind of measuring instrument) – datum 
and data journeys will be affected by the characteristics of the whole, as much as of 
the parts, and of the relations between them.

3  �Economic Data: Perspectives on the World

There are two very expansive sets of data used by economists and social scientists 
to look at, and into, the economy/society as a whole unit. They both operate by 
assembling data at the national level, and they do so in standardised forms to enable 
comparisons across nations. They both provide a numerical account of the economy 
or society showing not just the whole, but also the bits of the economy/society in 
relation to the whole. They do so by using two (of the above four) different kinds of 
measuring instruments which offer very different kinds of perspectives and so cre-
ate different kinds of data. One kind offers a broad view and one a deep view, and 
so parallel in numerical form the kinds of visual perspectival accounts that Svetlana 
Alpers (1984) examined in her contrast between the broad cityscapes of the Dutch 
painters and the deep distant landscape view provided by the Italian painters of the 
early modern period. Both groups of artists provided pictures of the whole, and both 
enabled you to see the elements in the landscapes as bits in the whole in relation to 
each other. These are paralleled in these social science measurement systems in that 
one kind looks broadly to pick up the full range and diversity of phenomena, the 
other looks more deeply to reveal the interrelations between a smaller range of phe-
nomena that are taken the characterise the economy as a whole.

These two different kinds of data set examined in the rest of this paper provide 
the materials to consider the dependency of datum travels on the measuring struc-
tures or instruments they come from. One kind of data set, the one that looks deeply, 
is the national income accounts (NIA). It announces the nature of it its internal rela-
tions in its name:- an individual datum is tightly ordered in the whole by the account-
ing principles of the measuring instrument. The other kind, socio-economic 
indicators, are much less individually constrained and together they look across a 
wide range of the phenomena of the whole, capturing all the individual elements 
separately that make up a picture of socio-economic development.

The Datum in Context: Measuring Frameworks, Data Series and the Journeys…



110

I need to be careful here: for we are really talking about two master data sets – 
whole or group data sets – one assembled according to accounting rules, the other 
according to the indicator format. But inside each group data set, there are many 
series of data, each one consisting of data that have been collected, coded, assem-
bled and manipulated to represent a particular element of the economy or society. 
These data series are not raw but highly wrought and polished. Any one set of num-
bers in the NIA data set, or any one indicator series in the overall database of indica-
tors, may be constructed according to any of the measuring instruments: some may 
come from accounting processes, others by statistical methods from surveys or cen-
suses, others are simple numerical counts. Regardless of the numerical provenance 
of the individual series, it is the relation of each of these individual and separate 
series to each other and to the whole that are formulated according to those group-
level (accounting or indicator) measurement frameworks.

Both kinds of measuring instruments are generative, in the sense that they gener-
ate whole data sets designed to represent in some direct or indirect way some con-
ceptualised phenomena. The middle level stuff of the social sciences represented in 
the separate data series is not stuff that can be found raw (with whatever practical 
difficulties); it is stuff that must be fashioned to fit, more or less indirectly, their 
conceptualised phenomena. Thus ‘national income’ and socio-economic develop-
ment’ are both highly abstract: no one can ‘see’ national income, or socio-economic 
development in any direct way through a microscope. But social scientists do ‘see’ 
(ie generate) with their microscopes, data on something they conceptualise as devel-
opment, or national income. We could even label the NIA a ‘national-level 
analytical-accounting macroscope’. The point here is not to subvert Ian Hacking’s 
(1983) seminal point about seeing with rather than through our measuring instru-
ments, but rather to extend it for thinking about measurement at the macro scale and 
in the social sciences where measuring instruments are not physical but organisa-
tional and technical.

3.1  �Accounting

National Income Accounting (NIA) began in the late 1930s as a project to count all 
economic activity of the national economy for each year. It was developed into a 
usable system by the end of the 1940s, its development hastened by the needs of 
various national governments to organise the ‘war economy’, a period which 
stretched the limits of productive capacity and in which governments needed to plan 
the economy. Such accounting became equally important in peace times as the new 
post-war international economic arrangements and agencies required such measure-
ments as part of their regulatory agendas. In such an accounting, a national income 
data set, constructed for each country (or possibly sub-region) separately, provides 
an accounting picture of the whole national economy and its salient parts, where all 
the parts are related to each other in an accounting framework. That framework 
provides the rules of what to count, how to count, how to check that everything is 
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counted, and uses balance checks between the wholes to ensure that everything 
(within its framework) is taken into account.

It is a three-dimensional account – the aggregate economy is measured according 
to all incomes (Column I), all things produced (Column II), and all expenditures 
(Column III). It appears in one of its earliest and simplest forms in Table 1 showing 
the three columns or dimensions each with its associated categories (adapted from 
Deane 1948, and see Morgan 2011b). Everything that has to be counted has to be 
placed in the right place (column and row), so every individual data series has to be 
categorised, that is, national accounting operates under a system of categorization 
rules for the individual series. (And these accounts can be broken down into finer 
sub-categories and equivalent numbers.) The bottom line categories for each col-
umn: 6, 13, and 16 form an identity based on the principles of the accounting. When 
the table is filled in with the relevant numbers, the three numbers for these catego-
ries should be equal because they constitute three different ways to count what 
economists consider to be equivalent in monetary terms. If the different columns of 
the system do not balance, the implication is that there is something missing some-
where. That is, ‘the bottom line’ of accounting must balance as a matter of principle.

The national income accounts operate not only to measure aspects of the aggre-
gate economy as depicted in the data set, but as a standardised set of measurements 
that can be reasoned with and are essential in helping governments make policy. 
Those reasonings are primarily driven by the functional or behavioural economic 
connections between the elements in the accounts, but any reasoning will have to 
be reflected in the accounting numbers and consistent with the accounting princi-
ples. This is just the same as using accounting for a firm or company. A firm’s 
accounts are both a representation of the company’s health, and a functional space 
for thinking about changing the performance of the company. So, if a company 
invests more, it expects to grow in overall product in successive years as a func-
tional relationship; such changes will of course be reflected in the accounting rela-
tions. But less obviously, they are also constrained by the accounting relations: if 
there is no profit, there is no money to invest and so it must come from other 
change in the company’s activities. These relationships and constraints are all 
revealed in the accounting numbers. Similarly for the aggregate numbers of the 
NIA: the numbers represent the economic situation for the national state for a year 

Table 1  The simplest table of national accounting

I II III
Net national income Net national output Net national expenditure

1. Rents 7. Net output of agriculture 14. Expenditure on goods and 
services for current consumption
15. Net investment

2. Profits 8. Net output of mining
3. Interest 9. Net output of manufacture
4. Salaries 10. Net output of distribution
5. Wages 11. Net output of transport

12. Net output of other services
6. Total net national income 13. Total net national output 16. Total net national expenditure

Source: Adapted from Deane 1948, p. 9
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(the usual accounting period) and so function in two different, but coherent, ways: 
as subject categories with accounting rules, and as subject categories with eco-
nomic relations. So, again, if a nation invests more, it expects to grow in overall 
product in successive years. Fruitful uses of the data can be found even when the 
individual datum elements are mutable, and surprisingly this is precisely because 
of these strong internal relations.

This may all seem obscure, so an example that demonstrates these characteristics 
of a travelling datum in this context may clarify. The example comes from 
Wolfgang’s Stolper’s attempt to make a plan for the Nigerian economy in the early 
1960s at a time when it had just gained independence (see Morgan 2008). His plan-
ning asked each individual region to submit their specific plans for investment to the 
federal government so that all their plans could be put together. Each datum point 
supplied by the regions had to be found a place in the national aggregate plan, but 
the construction of the measurement system meant that to do so, it had to fit with all 
the other current and future pieces of information in the NIA system that repre-
sented the Nigerian economy of the day. So, for example, a region that wanted to 
build more schools could come along with their costed project to do so. Such a 
project would require more trained teachers (and so more college places in the edu-
cation system), and more construction (entailing the building industry, with labour 
and resources), all requiring changes in Column II, row 12 (see Table 1). Both more 
teachers and more school buildings would necessitate more government expendi-
ture in Column III, row 14 or 15. If this part of the plan went ahead, those activities 
would generate more incomes in Column I, row 4 or 5, and so consumption in the 
system as a whole: Column III, row 14. This last reaction is described by the eco-
nomic relation, known as the ‘multiplier effect’, that can be traced through the cat-
egories and data set of the NIA. The individual datum elements for each numbered 
category can be ‘taken out’ of the accounts by the government planner, altered to 
show this change, travel and be re-situated in other contexts (such as in a local bud-
get for a school building), and be replaced in the national accounts by a new num-
ber. But the usefulness and fruitfulness of such datum journeys are most evident 
when each travels as a member of the national (NIA) data set into a context where 
both the internal accounting principles, and the subject matter economic relations of 
that NIA data set are made use of.

As an accounting system, there are very strong requirements of consistency, but 
the processes for re-balancing the bottom lines are driven by the economic relations 
within and between the columns. If, for example – as a result of the new school 
bid – some other government funded activity (asked for by some other region per-
haps) would have to be curtailed to make this schools investment possible, this in 
turn would reduce the multiplier effects – that is, there would be balancing effects 
across the accounting columns and rows. Any planning number that is taken out and 
replaced with another such is likely to alter the whole table, as depicted in Fig. 1. 
These numbers are expressed in, and represent, monetary amounts, but in turn those 
monetary amounts represent real things in the economy: people earn incomes by 
educating children in school buildings. Time consistency matters too – more invest-
ment in schools this year would not only imply less of something else now, but 

M. S. Morgan



113

might also produce more returns in the future from an educated workforce, so there 
was also a process of making the present and future numbers consistent. As Deane 
remarked, the economic policy maker

wants to be able to see each of the constituent items in the network of national economic 
activity not only as a separate feature of the national accounts, but also as a factor influenc-
ing and influenced by other activities… (Deane 1953, p 3)

Even without going into more details, it is possible to see that, in reasoning about 
one datum point (the numbers for investment in new schools) – it is not possible to 
pull the accounting principles and economic reasoning away from each other. But it 
is equally easy (I hope) to see that the accounting principles operate not only as a 
reasoning space, but also as a constraint on that reasoning about the future of that 
society, a specific society in time and place taking into account all the other datum 
points that involves. An individual datum can be transported in or out, and be muta-
ble within the planning system, and create mutability in the represented economic 
system – provided only that all the consistencies hold. In other words, there are 
strong requirements in the accounting principles that constrain the numbers and 
determine the reasoning with them (see Morgan 2008).

3.2  �Indicating

The second kind of data base involves so-called ‘indicators’, typically made up of a 
set of data series, each one indicating something of relevance for understanding the 
many dimensions of socio-economic aspects of life. An indicator series is one that 
aims to track or indicate one aspect of a complex phenomena – each characteristic 
of that phenomenon will have a separate data series. Sometimes these can be charted 

Fig. 1  Accounting kind: NIA whole data set
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or sited in tables together, but they are not so easily combined for both technical and 
subject matter reasons.8

There are two examples which are close to the NIA in aiming to capture, in num-
bers, characteristics of the aggregate economy or socio-economy. The first example, 
business cycle indicators, were developed in the 1920s and 1930s in literature which 
crossed over between academic and public domains (and are still evident in the finan-
cial press nowadays). They were numbers that were held to capture or represent 
characteristics of the business cycle at the level of the nation state, a phenomenon 
that was difficult to define beyond the idea that it was cycles in the economic activity 
of an economy. While the causes and mechanisms were not so evident (and are still 
argued over), the community of economists had more agreement over the general 
characteristics of the phenomenon, yet also believed that these characteristics (and 
the timing of such cycles) were to some extent specific to a national economy. While 
all national economies would have some indicators in common (eg interest rates, 
exchange rates, bank deposits, exports and imports, etc), a highly industrialised 
economy might additionally be characterised by a set of industry indicators, while a 
more agricultural economy might be best represented by an additional set of primary 
sector indicators. A relatively small set of such indicators (perhaps up to a dozen) 
were taken to characterise economic activity as well as offering some insight into the 
timing of cycles evident in the time relations between each indicator series and thus 
in each characteristic element. Both the overall set, and the time relations between 
them were taken to indicate the nature and path of economic activity for the national 
economy. None of them could serve as ‘proxy’ for the whole economy, because they 
did not represent the whole economy directly or indirectly but only aspects of it. And 
there were technical difficulties in making combinations: they did not each follow the 
same pattern in the same time frame. More pertinantly, they could not easily be com-
bined into one single indicator because, although they exhibited correlations, there 
was no principled way that they could be related as far as subject matter was con-
cerned. Business cycles on the one hand operated as a rather vague concept, and on 
the other hand as a phenomenon of many characteristics which could not easily be 
patterned or drawn together into a causal network, nor measured in any direct way.9 
Indeed it was partly this problem that lead economists to prefer the greater insight 
offered by the joined-up system of national income accounts which became available 
in the 1940s and 1950s and so made business cycle indicators less important.

A similar kind of data structure, but with a much higher dimension of character-
istic elements and with much broader reach of subject area, are the indicator set now 
being developed for the UN’s Sustainable Development Goals. These replaced the 

8 Morgan and Bach (2018) explore why such data series cannot be easily or informatively com-
bined, which might be considered in comparison to the data mash-ups of epidemiology and related 
fields, see Leonelli and Tempini (2018).
9 See Boumans and Leonelli (this volume) who discuss the rather ‘inflexible’ characteristics of data 
clustering associated with business cycle indicators; they argue that these practices, in this context, 
are an interpretative move which has not encouraged the re-use, or aggregation, of these data for 
other purposes.
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Millenium Development Goals (2000–2015), and are substantially more ambitious 
(see Morgan and Bach 2018). This set of 230 data series is designed to offer a 
numerical picture of every nation’s socio-economic health, including now their envi-
ronmental health. They consist of a bundle of separate data series, each one having 
an ‘indicator’ relationship to one of 169 ‘targets’, each of which itself has an indirect 
relationship to the 17 ‘goals’. By indirect, I mean that the indicators don’t offer 
measurements of, or for, one of the targets but only numbers related to one charac-
teristic of each target; in most cases there are several indicators per target and several 
targets per goal. That is, both goals and targets are multidimensional and goals in 
particular are defined verbally and conceptually rather than in any measurable way 
(unlike the aggregate gross national income in the NIA accounts). For example, 
Goal 3 of the SDGs is aimed at increasing health and well being. It is accompanied 
by a set of targets concerned with maternal and infant healthiness, reducing prevent-
able diseases, providing access to health care, and so forth. Some of these are easier 
to associate with numerical evidence than others. Each of the 9 targets for Goal 3 is 
accompanied by a set of indicators which can offer numerical evidence associated 
with the current situation of that target in different countries over time. These indica-
tors – such as ‘malaria incidence per 1000 population’ or ‘road traffic deaths’ – indi-
cate: they offer numerical information about some aspect of one target in relation to 
the goal, but they are far from measuring or representing the target let alone the 
overall goal that needs to be represented. This example is rather straightforward for 
there are lots of health-related data series that can be turned into numerical indica-
tors. But suppose we take a more opaque Goal 16: ‘promoting peaceful and inclu-
sive societies’ and ask for ‘legal identity’ as a target for inclusivity: we are 
immediately faced with difficulties in finding ways to indicate this concept. For 
example, how should one rank-order the various forms of legal identity, let alone 
find numbers for them? Registered birth and citizenship are relatively straightfor-
ward and likely have relatively good numbers collected by the state. But what about 
the host of in-between status such as ‘the right to remain and work but not have your 
children have the right to school or health care’? Even assuming we had numbers 
that would fit those categories of people, we have no principled way to rank-ordering 
the categories, nor to value them in some commensurable way.

Because of the three-level ‘goals-targets-indicators’ system of the SDGs, these 
indicators have a double degree of detachment from their goals, and so distance in 
representing power, for those goals and targets to which they are attached (see 
Morgan and Bach 2018). The indicators are taken to represent the characteristics of 
the targets (in some form), and the targets are taken to represent the characteristics 
of the goals (in some form). This is a downside for the representing power of any 
data set. At the same time, the various indicator series remain largely independent 
of each other, having no formal or informal relations between them. They are not 
part of an interrelated causal account, although individual series might capture indi-
vidual symptoms, causes or consequences of underdevelopment. (For example, 
high infant mortality is thought to be a consequence of low levels of development 
whereas low levels of education are thought to be a cause of low levels of develop-
ment.) They cannot be aggregated according to any usable or principled rules as 
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works for the NIA, nor provide matter for functional or behavioural theorizing 
about socioeconomic development as we saw for the NIA. And unlike the ‘index 
numbers’ by which economists regularly measure multiply-component concepts 
(for example inflation, or industrial output), social scientists cannot easily turn these 
sustainable development indications into a single overall data series that would 
make sense according to measurement principles. Why not – because they are not 
measured in comparable units (eg money) nor is there any principled ways of decid-
ing how to weight the various elements in the whole (eg is legal identity worth 10% 
of total sustainable development or 1%). They cannot be turned in any principled 
way in an aggregate measure like the national income, nor combined in a principled 
way consistent with ideas about development into one meta-data series for each 
country and so be available for international comparison.10 While these data cer-
tainly contain information indicating characteristics of development, they should 
not be considered measurements of development.

As individual indicators, these data series and individual datum points can and 
do travel fruitfully from the statisticians to many users including into social scien-
tists’ research labs and are used for many varied topics not just those of develop-
ment even though their status as measurements in relation to development theory is 
not generally easy to determine They also travel from UN usages to a variety of 
other users for any other purpose they choose for them: they are public numbers for 
public use and their usage depends in considerable part on their UN provenance that 
makes them trustworthy (Porter 1995). As a set of 230 different data series indicat-
ing levels of development for each country member of the UN, they provide a whole 
data set. As such, they most frequently appear for use in comparison purposes in 
social scientific work, and for certain action purposes at national level.11 But they 
remain a set of data series, not an integrated whole measurement system, as depicted 
in Fig. 2. Consider the problem situation parallel to our NIA example: suppose a 
government wanted to use the SDG structure of goals and targets to create a more 
sustainable development path. They cannot be reasoned with for planning a devel-
opment programme in a nation state because they have no internal socio-economic 
relations generated either by association with the kind of measuring instrument 
involved, nor by any behavioural or theoretical relations from their subject matter. 
But, the very fact that the indicator numbers are not held tightly together by internal 
relations between different indicators (as in the NIA), and that they might be indi-
cating a cause or effect or symptom, means that individually they can be (and are 

10 Several data series might be ‘mashed up’ (see again Leonelli and Tempini 2018) into a single 
series for each country or region, but the informative quality of the resulting numbers would likely 
be low, and the country comparisons largely meaningless, for the grain of analysis is not nearly fine 
enough across the geographical space to be helpful. This is in contrast to the Multidimensional 
Poverty Index which was carefully designed to be a combined number that was informative at a 
finer grain than previous poverty indices (see Bach and Morgan Forthcoming).
11 It would be a false separation to think that there are scientific uses and policy or practical uses for 
these indicator number or for the NIA: all these numbers are hard to come by; gathering them 
generally requires public resources; they are used by professional communities of practice in and 
out of academic institutions; and for a wide range of purposes.
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easily) taken out of their group set, to be used separately for prompting action in all 
sorts of circles: academic and scientific in the professional sphere; and in public and 
international circles where the indicator data can be used for lobbying, asking for 
development aid, held up as exemplary for encouragement, or pronounced as dire in 
order to shame the government concerned. The lack of internal principles to hold 
the individual indicator series together makes for different characteristics of usage 
than individual numbers in the NIA.12 Indicators can be used with considerable 
freedom without worrying about the constraints of measurement principles or where 
they fit in the overall subject contexts, and this is most evident when they travel 
from domain to domain of usage. Unlike the NIA, where every datum travelling in 
and out has the potential to change all the other numbers (if only to correct them), 
travels of the SDG’s indicators cause no ripples within the rest of the indicator sys-
tem of data, as indicated in Fig. 2 in comparison with Fig. 1.

4  �Conclusions

Economists have developed two kinds of data to capture social-economic well-
being. They are based on two different frameworks of measurement The national 
income accounts are designed to measure the complete set of income, expenditure 
and products at the level of the nation. They do so by building up from the subcat-
egories of all these three activities which are understood to be – in the bottom line – 

12 It is possible that these independent data series in the indicators could be analysed and combined 
with correlated analysis within the national unit, or between/across national units. The latter pos-
sibility is not dealt with in this paper (but see also FN10).

Fig. 2  Indicator kind: SDGs whole data set
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equivalent (in economic and monetary terms). In contrast, the indicator series may 
look just as ordered because they are arrayed in connection with bigger targets, but 
they are in fact held together by no such constraints.

From these different measuring frameworks, come differences in usage. For the 
bundle of indicators, each of which can be used for action but not reasoning – any 
travelling datum has no effect on the whole. In contrast, the other kind is the highly 
constrained NIA which can be used for measuring the current health of the econ-
omy, and for reasoning and action in that realm, but in which any travelling datum 
can upset – and then must reset – the whole system. Perhaps counter-intuitively, 
datums from both travel easily and fruitfully into new contexts.

Not all indicator systems have this degree of bit-whole freedom. Datums from 
the business cycle indicators for example, tend to travel together because they indi-
cate time-related characteristics of the same phenomena. Each datum and indicator 
can be taken out separately, but they gain from travelling together in a pattern, per-
haps like a murmuring of starlings. In contrast, the indicators of the SDGs are more 
like a swarm of midges, with no recognisable pattern and no obvious relationships 
between the bits. Both of these indicator sets are very different in their relations to 
each other and to the whole compared to the national income accounts (NIA). 
Whereas both individual datums and series from the indicators have bit-whole rela-
tions, those for the NIA depend on their part-whole relations. The NIA parts might 
look like the ant-line, because if one element travels off the path for some reason 
(eg, for correction or updating), the rest have to fall in to make up the line. But they 
have more part-whole relations than just lining up, since they rely on multiple rela-
tions for their effectiveness in reasoning and analytical usage, and this relies on a 
well ordered hierarchy of rows and columns; thus the relation of parts within the 
whole is more like the hierarchy and co-ordination of the wolf-pack. Or perhaps – as 
Jim Griesemer suggested,13 to bring the analogy into line with our socio-economic 
world: a bundle of indicators is like a flashmob of independent agents – taking a 
datum out or bringing one in does not upset the whole; in contrast, the national 
income accounts are tightly joined together so that taking out a datum would be 
equivalent of taking a section of piping out of a chemical plant: the whole process 
would need to be reassembled.

When we think of individual datum travels, one has to think first of the rest of the 
data set as their most intimate of travelling companions. Datums rarely travel on 
their own without their companions in the data series or set, but when they do, that 
set of interrelations – or indeed lack of such relations – within the whole data set is 
critical to their independence of travel and how they fit into their new contexts. That 
set of interrelations in turn depends on the measuring structures or instruments that 
were used to generate and organise the individual data series and individual datums 
within them.

13 Thanks to James Griesemer for this incisive analogy – provided at the Exeter meeting in 2017 
that spawned this volume.
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Data Journeys Beyond Databases 
in Systems Biology: Cytoscape and NDEx

William Bechtel

Abstract  This chapter investigates how data travels beyond databases in cell 
biology by focusing on Cytoscape, a platform that has been developed to repre-
sent networks, and NDEx, a database that allows for the reuse of network repre-
sentations. I begin with a brief review of the databases that have been developed 
for data involving, for example, protein-protein interactions, that are relational 
and hence productively represented in networks. Given the amount of data stored 
in modern databases, raw network representations are typically hairballs that pro-
vides researchers little useful information other than that lots of things interact. 
Cytoscape was created by systems biologists to facilitate moving beyond hair-
balls to informative representations. It provides tools for clustering nodes and 
annotating them according to what is known about the objects represented. I pro-
vide examples of how Cytoscape has been deployed to develop new knowledge 
about biological mechanisms. Cytoscape has been made freely available, and 
I describe how a large interational community of researchers has created Apps 
that enable researchers to make a number of more specialized inferences. NDEx, 
created by members of the same research lab, serves as an Expo for networks—
researchers can share networks they have developed and other researchers can 
search for networks and made them the basis for further incorporation of data or 
analyses.

1  �Introduction

As in many fields, contemporary biologists generate vast amounts of data. 
Increasingly, this data is stored in large, on-line databases that procure data from 
curation of published literature and from high-throughput experiments. There it is 
accessed by researchers distinct from those who produced the data. Leonelli (2016; 
this volume) has developed the useful metaphors of data travel and data journeys to 
characterize this process of data movement. Much of the work on data journeys to 
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date has focused on the preparation and travel of the data themselves, with less 
attention paid to the resources that are employed to analyze the data after they 
travel.1 When the data specifies relations (causal, co-occurrence, etc.) between enti-
ties, this analysis often involves the construction of network diagrams in which 
entities are represented as nodes and relations between them as edges.2 In the course 
of research, network diagrams are subject to various manipulations designed to 
reveal additional patterns in the data. Beyond their use in individual research proj-
ects, these networks themselves travel, providing the foundation for yet other 
research projects in which they are subject to further manipulation. Network dia-
grams are one format in which data are physically instantiated and subject to muta-
tion as they are incorporated into network diagrams and passed on to other 
researchers (see Leonelli, this volume, for discussion of how data are mutated in the 
course of data journeys).

My focus will be on the tools that systems biologists have created to construct 
and operate on network diagrams and to enable networks themselves to travel. 
Anyone could construct a network diagram by hand from a body of data using a 
standard graphics package. However, such a process is laborious and the product is 
frozen—the researchers cannot then integrate data from additional sources or trans-
form the diagram to reveal new patterns. Accordingly, researchers have developed 
software tools for creating, analyzing, and disseminating network diagrams. In Sect. 
4 I will discuss Cytoscape, the most widely used platform for constructing network 
diagrams in systems biology. While developed in a systems biology framework, 
Cytoscape has itself traveled to and is actively used in numerous other scientific 
fields. Cytoscape provides a platform on which researchers with specific analytic 
needs can develop their own add-ons, referred to as apps. In Sect. 5 I will describe 
several apps and, using them, illustrate some of the analysis strategies employed in 
systems biology. In Sect. 6 I will describe the recent development of NDEx, which 
serves as an online exposition (expo) to which networks themselves can travel so as 
to be viewed by others and selectively taken up for additional journeys. As a back-
ground for focusing on network diagrams, I begin in Sect. 2 by introducing the types 
of data used to construct network diagrams in systems biology and in Sect. 3 
describe the public databases and ontologies from which researchers extract data to 
create and analyze networks.

1 Leonelli (2016, chapter 6) provides a pioneering examination of reuse. See chapters by Tempini, 
Chap. 13, Morgan, Chap. 6, and Griesemer, Chap. 8 in this volume, for other aspects of reuse. 
Tempini addresses the reuse of data for different objectives than that for which it was collected, and 
in particular focuses on how this often involves linkage of data from different sources such as 
between weather, environment, and health data. As he demonstrates, this requires manipulations 
that attenuate the differences due to where the data originated.
2 Networks are just one mode of downstream analysis of data. See Cambrosio et al., this volume, 
for an account of knowledgebases that tailor large datasets for particular clinical applications.
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2  �Data Production: From Individual Experiments 
to High-Throughput Experiments

Through most of the twentieth century, experiments in fields like cell and molecu-
lar biology were conducted one at a time. But many of the procedures used in these 
experiments lent themselves to automation so that multiple variants on an experi-
ment could be conducted in parallel. For example, when Sanger first developed 
techniques for sequencing amino acids in the 1950s or nucleic acids in the 1970s, 
he applied them to one protein or gene at a time. By the late 1980s these techniques 
were automated and by the 1990s automation made possible the sequencing of 
whole genomes of numerous species. Sequencing data identifies proteins and 
genes, but not what they do. Automated procedures enabled procuring other types 
of data related to function such as techniques that reveal whether proteins form 
complexes either with other proteins or with DNA or whether genetic mutations 
interact epistatically. I discuss only techniques detecting whether proteins can form 
complexes.

Much of the early twentieth century research focused on the reactions individ-
ual proteins catalyze, but in the second half of the twentieth century it became 
increasingly evident that proteins form complexes with each other and these are 
important to their catalytic function. Two techniques have proven especially useful 
in enabling high-throughput studies of protein-protein interactions (PPIs). The 
first, the yeast two-hybrid technique introduced by Fields and Song (1989), begins 
by transfecting yeast cells with two plasmids, each attaching to a different protein. 
One serves as the bait and the other as the prey and when the proteins to which they 
are attached interact with each other, the two domains are united and form a func-
tional transcription factor that initiates transcription of a reporter gene. This tech-
nique identifies pairs of proteins that can interact, but many pairs do not do so in a 
given cell type. An alternative technique, affinity purification followed by mass 
spectrometry, starts with proteins that are actually bound into a complex in a cell 
and uses mass spectrometry to determine their identity (Rigaut et al. 1999). This 
approach identifies stable multi-protein interactions that actually occur in the cell. 
On the other hand, it misses more transient interactions that form and dissolve as 
cells carry out activities. As a result, both approaches to obtaining PPI data are 
actively employed.

High-throughput techniques for performing PPI studies were created shortly 
after automated gene sequencing was introduced and provided a means to study 
many of the novel genes they revealed. In the first high-throughput attempt to iden-
tify PPIs in yeast, Uetz et al. (2000) chose 192 proteins to use as baits and mated 
them with 6000 prey proteins. They identified 957 interactions between 1004 pro-
teins. The following year Ito et  al. (2001) performed an even larger-scale study, 
identifying 4549 interactions between 3278 proteins. Surprisingly, there was little 
overlap with the interactions identified in these two studies. I return to the Uetz et al. 
and Ito et al. studies to show how they were used in a pioneering network study in 
the next section.
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3  �Data Travels in Systems Biology: Databases 
and Ontologies

As biologists generated increasing volumes of data, they established publicly acces-
sible databases to make this data accessible. The first databases were created for 
protein and gene sequence data. Dayhoff created the Atlas of Protein Sequence and 
Structure (Dayhoff and Eck 1965-1972) which she published in book form. Shortly 
after her death in 1984 it was made available electronically as the Protein Information 
[originally Interaction] Resource’s Protein Sequence Database. It eventually merged 
into UniProt, which continues as a major source of information about proteins (The 
UniProt Consortium 2017). GenBank was developed in the same period for gene 
sequence data. Many additional databases for different types of biological data soon 
appeared—in 1989 the Listing of Molecular Biological Databases identified 50 
databases (Lawton et al. 1989) and the number has continued to grow ever since. 
Annually, the first issue of Nucleic Acids Research reviews new and updated data-
bases. On its website it provides a compilation of current databases, totaling 1613 in 
2019. As Leonelli (this volume) notes, this process is both uncontrolled and unsus-
tainable. In fact, each year the Nucleic Acids Research compilation annually elimi-
nates discontinued URLs, including 147 in 2019.

Two of the early databases to include PPI data were the Yeast Proteome Database 
(YPD) and the Martinsried Institute for Protein Sequences (MIPS) database of pro-
tein interactions. A study by Schwikowski et al. (2000) illustrates how these data-
bases were employed to construct a network from which new knowledge about 
yeast was extracted. They combined data from YPD and MIPS with data from the 
two high throughput studies noted at the end of the last section, yielding informa-
tion on 2709 interactions involving 2039 proteins. Employing hierarchical cluster-
ing based on functional assignments found in the YPD and a layout procedure that 
located similarly connected nodes near each other, Schwikowski et al. identified one 
large connected network, shown in Fig. 1, plus 203 much smaller networks. In cases 
in which YPD contained information about a protein’s cellular role, the researchers 
encoded it using the color of nodes: blue for membrane fusion, grey for chromatin 
structure, green for cell structure, yellow for lipid metabolism, and red for cytokine-
sis. By zooming in on parts of the network, as in panel B, they could focus on inter-
actions between proteins that performed similar cellular roles, in this case membrane 
fusion, lipid metabolism, and cell structure.

An important question about any network diagram is whether the patterns it 
reveals are informative or simply an artifact of the representation strategy the 
researchers employed. To investigate this, Schwikowski et al. started with a given 
node to which a cellular role was assigned and asked how often one of the nodes 
with which it was connected in the network was assigned the same cellular role. 
This happened 72% of the time, (compared with, on average, 12% for scrambled 
networks). The authors present this as vindicating the network—had they not known 
the cellular role of the initial protein, they could have predicted it correctly 72% of 
the time based on the roles of its neighbors.
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Fig. 1  Network diagram of protein interactions in yeast constructed by Schwikowski et al. 2000 
drawing both upon results of high-throughput yeast two-hybrid studies and data from low-
throughput studies collected in the MIPS and YPD databases. Reprinted by permission from 
Springer Nature: Nature Biotechnology, A network of protein-protein interactions in yeast, 
Schwikowski et al. 2000
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As researchers recognized the usefulness of drawing upon large datasets in their 
research, many researchers created their own databases, tailored to their interests, 
and made them publicly available. These included the Database of Interacting 
Proteins (DIP) (Xenarios et al. 2000), MINT (Zanzoni et al. 2002), BIND (Alfarano 
et  al. 2005), HPRD (Peri et  al. 2003), BioGRID (Breitkreutz et  al. 2003a), and 
IntAct (Hermjakob et al. 2004b). The infrastructure for each was relatively small—
on average, they employed two full-time curators who read published papers and 
entered the data. In addition to primarily serving the interest of a particular labora-
tory, each database developed its own data structures and procedures for download-
ing and curating data. No single database could keep up with the rapid appearance 
of new datasets. As a result, researchers who wanted to use PPI data often combined 
data from multiple databases, developing their own tools (parsers, etc.) to do so. 
Recognizing the problem users faced, the curators of several databases collaborated 
to develop a standardized format (Hermjakob et al. 2004a). A standard format, how-
ever, made another problem even more salient. In reporting data, journal articles 
often failed to supply sufficient information about the entities studied or the experi-
mental procedure used. This information is crucial for others to use and interpret the 
data (see Leonelli 2016, chapter 4; Rogers and Cambrosio 2007; and Boumans and 
Leonelli, this volume). Accordingly, the consortium generated guidelines as to the 
minimal information required in reporting a PPI experiment (Orchard et al. 2007). 
Several of the databases also began to work directly with journals so that data in 
new publications could be directly added to the databases. These efforts ultimately 
led to the development of the International Molecular Exchange (IMEx) Consortium, 
which among other initiatives introduced a deep curation standard aiming “to cap-
ture the full experimental detail provided in the interaction report, as this is often 
essential to assess interaction context and confidence” (Orchard 2012, p. 347). The 
initiative also sought to address another problem, that of maintaining funding for the 
various databases. The IMEx consortium also provided that if a member can no 
longer curate its databases, its records would be turned over to another member. 
Accordingly, when MPIDP ceased its curation efforts in 2012, it turned its records 
over to IntAct, which has subsequently maintained and updated them.

PPI databases have provided the data for constructing networks, but another 
database created during the same period, Gene Ontology (GO), has played a crucial 
role in allowing biologists to interpret networks. The motivation for developing GO 
was to develop “a structured, precisely defined, common, controlled vocabulary for 
describing the roles of genes and gene products” (Ashburner et al. 2000, p. 26) rep-
resented in the databases that had been developed for different model organisms 
(initially yeast, fruit fly, and mouse). GO comprises three ontologies, one for bio-
logical processes, another for molecular functions, and a third for cellular compo-
nents, each providing general terms, organized hierarchically, that can be used to 
annotate individual genes. These ontologies are themselves undergoing continual 
revision and development (Leonelli 2010, 2016).

By 2000 systems biologists had a rich set of databases on which they could draw. 
Some, such as GenBase and UniProt, emphasized structural knowledge, but many 
focused on relational information, including PPI data. GO provided a common lan-
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guage for annotating the entries in the different databases. These are the raw materi-
als from which systems biologists constructed network diagrams with the goal of 
developing new biological knowledge.

4  �Cytoscape: A Platform for Generating and Analyzing 
Network Diagrams

Tables in databases are great for storing and organizing data, but it is often difficult 
for humans to examine data tables directly and draw biologically meaningful infer-
ences or even figure out what algorithms they might employ to generate inferences.3 
For this reason, most of the databases include a self-developed program to display 
the results of searches as network diagrams. These, however, typically employ a 
fixed format designed by the curators of the database.4 Individual network formats 
support some inferences but not others. In order for users to leverage the vast amount 
of data contained in these databases, they need to generate network representations 
appropriate for their needs (see Leonelli, this volume, for a discussion of the rela-
tional nature of data).

Although several programs for creating network diagrams, including Osprey, 
VisANT, Gephi, and GraphViz, were developed in the first decade of the twenty-
first century, Cytoscape (Shannon et al. 2003) has emerged as the most widely used. 
Ideker and his collaborators at the Institute for Systems Biology began developing 
Cytoscape in late 2001 for their own research and publicly released Cytoscape 0.8 
as an opensource platform in June 2002. When Ideker moved to the University of 
California, San Diego, it became the center for Cytoscape development. The local 
team of 3–5 developers collaborates with numerous other developers at other insti-
tutions (currently including the Academic Medical Center in Amsterdam, the 
Institute for Systems Biology, the Institute Pasteur, the Gladstone Institute, the 
University of California, San Francisco, and the University of Toronto).

Although it is hard to measure actual use, in 2018 Cytoscape was downloaded on 
average 17,600 times per month and started on users’ computers about 5000 times 
each day. According to Google Scholar, the standard reference used to acknowledge 
Cytoscape, Shannon et  al. (2003), has been cited more than 14,750 times as of 
September 2019, most often by papers that include a network diagram generated 
with Cytoscape. These numbers likely significantly underestimate how frequently 
Cytoscape is used since many users do not explicitly acknowledge it (just as most 
people do not acknowledge Microsoft Excel or Adobe Illustrator even if they made 
extensive use of these in their research).

3 Tables, though, sometimes enable viewers to visualize data. See Müller-Wille and Porter (this 
volume) for examples.
4 The exception is BioGRID, whose developers also created Osprey, a network visualization pro-
gram (Breitkreutz et al. 2003b). However, development of Osprey has ended and its webpage sug-
gests researchers use Cytoscape.
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Cytoscape, now in version 3.7.1, is an open-source, freely available java-based 
software package that runs on individual computers. It is a key platform of the 
National Resource for Network Biology and its development team continues to add 
new features to facilitate investigations directed at a range of topics such as repre-
senting networks at multiple scales and representing dynamic changes in cellular 
network organization in disease. An even larger community of computationally ori-
ented biologists from around the world generates apps (initially referred to as plug-
ins) that extend Cytoscape’s capacities for analyzing networks. These are made 
available through the Cytoscape App Store, hosted on the Cytoscape website (http://
cytoscape.org). In this section I will describe how Cytoscape is used to construct 
and modify network diagrams. In the subsequent section I will discuss apps and 
how they support analyses of networks.

Figure 2 provides a schematic overview of the Cytoscape architecture. The 
Cytoscape Window contains both the tables of node and edge attributes, from which 
Cytoscape constructs the network diagram, and the network diagram itself. Other 
components operate on the tables and graphs. I will not elaborate on the Graph 
Editing and Selection component. It performs functions much like those contained 
in the File and Edit components of word processing programs: opening stored net-
works or creating new ones, selecting, deleting or hiding, or copying nodes or 
edges, etc.

Visual Mapper (later termed VizMapper and in Cytoscape 3.5 renamed Style) 
and the Layout Engines take their input from the Node and Edge Attribute Tables. 
An Edge Attribute Table is shown in the screenshot in Fig. 3; a similar table defines 

Fig. 2  Schematic overview of the Cytoscape architecture reprinted from Shannon et  al. 2003. 
Although the labels for some of the components have changed, the overall architecture has not. 
Reprinted with permission of Trey Ideker
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the nodes. A researcher can generate these tables based on data he or she has col-
lected or from data downloaded from one or more of the databases discussed in the 
previous section. At a minimum, these tables must identify the entities to be repre-
sented by the nodes and the relations to be represented by edges, but they may also 
identify a variety of attributes of the entity (e.g. its concentration) or relation. The 
tables can also include annotations (e.g., cell location or cell function) procured 
from sources such as GO.

Style, shown on the left in Fig. 3, maps features specified in the table unto visual 
properties of nodes and of edges. Thus, an investigator can map attributes or annota-
tions specified in the node and edge tables to labels or to visible features such as 
shape, size, and color. If color, for example, is used to indicate biological processes 
as specified in GO and size is used to represent the level of expression of a gene, the 
viewer can quickly see patterns in how these attributes and annotations vary.

There are many ways to lay out nodes in a 2-dimensional representation—nodes 
can be positioned randomly, around a circle, in a grid, or in a hierarchical arrange-
ment. It is often useful to group nodes by their values on a particular annotation such 
as biological process or cellular component. When used with a circular layout, this 
results in nodes that share an attribute being located close together around the circle. 
There is great flexibility in how nodes are laid out and the choice affects what pat-
terns the researcher can identify. For example, it is easier to see that several nodes 
are highly interconnected or are all connected to another set of nodes when they are 
positioned near each other. Spring-embedded layouts do this by treating edges like 

Fig. 3  Screenshot of Cytoscape 3.5. The window at the bottom shows the Edge Table from which 
the diagram in the upper window is generated. The window on the left shows the assignments of 
visual properties to nodes in Style. Screenshot used with permission of Trey Ideker
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springs (Eades 1984): connected nodes that are far apart are drawn together, but if 
they get too close, they are repelled a bit. For each of these strategies for laying out 
nodes there are a variety of algorithms, each of which generates a somewhat differ-
ent result. After an algorithm is applied, the user can also manually move one or a 
selected group of nodes. Researchers find it useful to try out different layout strate-
gies to find one that generates interpretable patterns.

Since the goal of network analysis is to generate biologically interpretable 
results, researchers derogatorily refer to networks such as shown in Fig. 4a as hair-
balls. Although the data is represented, it is not presented in a manner that can be 
interpreted biologically. Merico et al. (2009) illustrate how, by altering visual fea-
tures and layout in Cytoscape, to transform this hairball into an informative network 
diagram revealing components of mechanisms involved in chromosome mainte-
nance and duplication in yeast (Fig. 4b). Figure 4a was generated from curated data 
of PPIs (represented as edges) from both low- and high-throughput experimental 
studies retrieved from BioGRID. The nodes represent proteins and their colors indi-
cate their location in the chromosome: red, replication fork; green, nucleosome; 
blue, kinetochore; yellow, other chromosome components. The use of color in 
Fig. 4a is already a step away from a pure hairball, but the network diagram offers 
no mechanistic insight. By applying a spring-embedded layout in which edges are 
assigned forces so as to draw highly connected nodes closer together and yet keep 
them from getting too close, the authors transformed Fig. 4a into 4b. Being highly 
connected, the nodes for proteins in the kinetochore, nucleosome, and replication 
fork are now situated adjacent to each other. VizMapper (Style) used data about how 
much gene expression changes over the cell cycle to determine node size. In addi-
tion, the width of the edges is determined by the Pearson correlation between tran-
script profiles. Looking at the network diagram one can readily see that many green 

Fig. 4  (a) A hairball network diagram based on PPIs among proteins involved in chromosome 
maintenance and duplication in Saccharomyces cerevisiae. (b) The network has been transformed 
into an informative network diagram. Reprinted by permission from Springer Nature: Nature 
Biotechnology, How to visually interpret biological data using networks, Merico et al. 2009
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nodes are large and connected with numerous thick edges, indicating that the 
expression of proteins in the nucleosome is changing together during the cell cycle.

Now that the nodes are laid out in an informative manner, a researcher can zoom 
in to local regions and make his or her own inferences about parts and operations. A 
commonly used inference strategy is guilt-by-association—if neighbors of a node 
without an annotation share a common annotation (in this case, for a cellular com-
ponent), the researchers infer that the unannotated node should receive the same 
annotation. The three proteins shown in the region shaded in orange in Fig. 4b, Psf1, 
Psf2 and Psf3, are colored yellow since GO did not assign them a cellular compo-
nent annotation below the level of chromosome. The layout procedure, however, 
situated them among the red nodes that have the replication fork annotation. 
Employing guilt-by-association, the researchers inferred these proteins should be 
assigned that annotation as well. Merico et al. report that although these proteins are 
not so annotated in GO, research already published showed that they belonged to 
the GINS complex in the nucleosome that is responsible for assembling the DNA 
replication machinery. Guilt-by-association led the network researchers to make a 
correct assignment.

The layout algorithm also enables the identification of new mechanisms. The 
nodes labeled Orc1, Orc2, Orc3, Orc4, Orc5 and Orc6 are located together (in a 
region shaded in violet) apart from the three regions of nodes annotated to cellular 
components. The authors infer that they form a distinct mechanism and report that 
although these nodes lacked specific annotations in GO, “they are known members 
of the yeast origin recognition complex (ORC), responsible for the loading of the 
replication machinery onto DNA” (p.  922). In this case again the inference is 
supported.

Cytoscape thus provides researchers the ability to transform tables into network 
diagrams, assign visible features to attributes and annotations of entities and their 
relations, and determine how the nodes and edges will be laid out. Exploration with 
different approaches (e.g., changing whether an attribute is represented by the shape 
or color of nodes) is often important to finding informative patterns. This would be 
very cumbersome if researchers had to construct each network diagram by hand but 
relatively easy with Cytoscape.

5  �Further Analyzing Networks: Cytoscape’s App Store

As I have noted, Cytoscape provides a platform for other researchers to construct 
apps to perform specific analyses for their own purposes but also make the resulting 
apps available to others. In this way Cytoscape serves multiple groups of users who 
have different research agendas and require different tools for their execution. Many 
of the apps are the focus of journal publications that describe the procedures 
employed in the app and one or more examples of its use (I have identified such 
publications for several of the apps discussed below). In Spring 2017 there were 
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more than 180 apps in the Cytoscape App Store that work with Cytoscape 3.X.5 
Some apps support the import and integration of data from specific databases that 
researchers might wish to represent in networks. For example, KEGGScape, 
GeneMania, ReactomeFIViz, and STRING, draw results from these different data-
bases into Cytoscape. Bisogenet integrates and imports data from multiple data-
bases such as DIP, BIOGRID, BIND, MINT, and IntAct. AgilentLiteratureSearch 
allows users to directly query published literature for PPIs and incorporate the 
results into a Cytoscape network. Apps such as BiNGO and ClueGO facilitate anno-
tation of nodes and edges using Gene Ontology.

Yet other apps provide layout and visualization algorithms that extend beyond 
what is offered in the core. For example, Cy3D generates three-dimensional views 
of networks while CyAnimator supports the construction of animations. With 
respect to layout, GOlorize enables the use of GO annotations to direct the layout of 
nodes so that the network is interpretable in terms of biological functions while 
DeDaL facilitates using principal components analysis in developing layouts, align-
ing one network with another, and morphing between selected layouts so as to find 
ones that are biologically interpretable.

Yet other apps support particular analyses of networks useful for specific lines of 
research. I will first discuss two classes of analysis apps: those used to compute a 
variety of standard network measures and those designed to identify clusters or 
modules in a given network. I will then offer two illustrations of how particular apps 
contribute to a better understanding of biological processes.

Apps for Computing Network Measures  Graph theorists have developed an exten-
sive set of measures to characterize networks. For purposes of this exposition, I will 
focus only on networks with undirected edges. Some of the most common measures 
are mean shortest path length, the clustering coefficient, and node degree distribu-
tion. The length of a path between two nodes is the number of edges that are tra-
versed in going from one to the other; the mean shortest path length is the mean for 
all pairs of nodes of the shortest (or characteristic) path lengths between them. It 
provides a measure of how quickly effects can travel through the network. The 
nodes to which any given node is connected are its neighbors and the clustering 
coefficient characterizes the degree to which the neighbors of a node are connected 
to one another. Finally, node degree refers to the number of connections a given 
node has to other nodes. Of particular interest are networks in which node degree is 
not distributed normally but according to a power law. In such a case, some nodes 
are highly connected to other nodes, and serve as hubs, whereas most nodes have 
few connections. NetworkAnalyzer (Assenov et al. 2008) computes these and many 
other statistics that are used to characterize networks, displaying the results in his-
tograms or scatterplots. Apps such as CytoHubba identify hubs.

5 Another 132 Apps were written for Cytoscape 2.X but have not been recoded to work with 
Cytoscape 3.X. This was a serious cost of completely revising the Cytoscape’s program interface 
in 2013, which was done in part to improve the architecture through which apps interact with the 
core program.
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Apps for Identifying Clusters  For many research objectives it is valuable to iden-
tify nodes that are especially highly interconnected. These clusters, sometimes 
referred to as modules, often reflect groups of components that perform a common 
activity—that is, work as a mechanism. The apps Molecular Complex Detection 
(MCODE) (Bader and Hogue 2003) and ClusterMaker2 (Morris et al. 2011) identify 
clusters. Modules may be organized hierarchically, sometimes with different types 
of connections at different levels. When Bandyopadhyay et al. (2008) developed a 
network based on both PPI and genetic interactions they found that PPIs tended to 
link nodes in modules while genetic interactions generated higher level clusters. 
Srivas et al. (2011) implemented the procedure Bandyopadhyay et al. employed in 
the app PanGIA.

5.1  �Applying an App for Identifying Active Modules

Most clustering algorithms view networks as static structures, but Ideker et  al. 
(2002) sought to identify nodes that organize into clusters or mechanisms only in 
specific circumstances such as when particular genes are mutated or yeast are grown 
on specific media. In an earlier paper, Ideker et al. (2001) has investigated the galac-
tose (GAL) utilization mechanism in yeast. They started with PPI and protein-DNA 
interaction data to construct a network of 348 genes with 362 interactions. They 
grew colonies of wild-type and nine mutant strains, each lacking one known GAL 
gene, on media containing or lacking 2% galactose, measured global mRNA 
changes and protein concentration changes across the conditions, and plotted these 
on the network. As Cytoscape had not yet been developed, they used the LEDA 
toolbox developed at the Max-Planck-Institut für Informatik (Mehlhorn and Näher 
1999) to construct the network shown in Fig. 5a. Arrows represent protein-DNA 
interactions and straight edges PPIs. The nodes are shown in clusters corresponding 
to genes that exhibited similar changes in expression over all perturbations and the 
clusters are labeled by their biological functions. Darker shading of nodes indicates 
increased and lighter shading decreased expression. The size of the nodes reflects 
the magnitude of change in the case in which gal4 (the node colored in red) is 
knocked out in the presence of galactose. The network diagram reveals that the 
expression changes resulting from the perturbation is more correlated in connected 
proteins than among randomly selected proteins, a result Ideker et al. further con-
firmed with statistical analysis.

In the 2002 study, Ideker et al. sought to identify modules in which expression 
changed the most in specific conditions. Having developed Cytoscape, they repre-
sented the network in it and developed an analysis strategy that became one of the 
first Cytoscape apps, jActiveModules. The analysis first computes a z-score for the 
degree of change in expression of each gene in a particular condition, indicated by 
the shading of the nodes in Fig. 5b. It then identifies subnetworks of genes under or 
over expressed and rank-orders them in terms of activity. The top five subnetworks 
are indicated in Fig. 5b by common coloring of the node border and the attached 
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edges. Ideker et  al. interpret the subnetworks active in a particular condition as 
mechanisms involved in transmitting signals and performing regulatory functions. 
In the example shown, GAL80 (the only labeled node) is deleted. The adjacent 
node, GAL4, is a hub with protein-DNA connections to seven other genes. This 
suggests the hypothesis that GAL80 influences these genes through its effect on 
GAL4, a hypothesis for which there was already empirical support (Lohr et al. 1995).

5.2  �Applying an App for Modeling Diffusion

Whereas jActiveModules was one of the first apps developed for Cytoscape, 
Diffusion (Carlin et  al. 2017) is one of the most recent. Diffusion implements a 
distinctive strategy for discovering underlying clusters that correspond to mecha-
nisms that has proven effective in fields such as cancer research in which researchers 
confront extremely heterogeneous data. For example, in The Cancer Genome Atlas 
study of 500 tumors of various types, individual tumors exhibited from 20 to 300 
somatic mutations, with the genes mutated varying substantially across samples of 

Fig. 5  Comparative network diagrams: (a) from Ideker et al. 2001 and (b) from Ideker et al. 2002. 
Both show the same 362 associations between genes whose expression was increased or decreased 
when grown with or without 2% galactose. In the diagram on the left, darker nodes indicate 
increased expression when gal4 (shown in red) is knocked out. The edges shown in color other than 
black in the diagram on the right indicate the subnetworks that were most altered when gal80 was 
knocked out. A. From Ideker, T., Thorsson, V., Ranish, J. A., Christmas, R., Buhler, J., Eng, J. K., 
Bumgarner, R., Goodlett, D. R., Aebersold, R., & Hood, L. (2001). Integrated genomic and pro-
teomic analyses of a systematically perturbed metabolic network. Science, 292, 929–934. 
Reprinted with permission from AAAS. B. reprinted from Ideker, T., Ozier, O., Schwikowski, B., 
& Siegel, A. F., Discovering regulatory and signalling circuits in molecular interaction networks, 
Bioinformatics, 2002, Volume 18 Suppl 1, S233–240, by permission of Oxford University Press
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the same type of tumor. This made it difficult to determine which mutations might 
play a causal role. To address this problem, Vandin et al. (2011) developed a strategy 
of mapping mutated genes onto a PPI network and treating them as hot spots from 
which simulated heat could diffuse. In many cases, heat diffusing from different 
nodes would converge on the same cluster of nodes. These nodes were hypothesized 
to represent a mechanism or pathway that, when disrupted through any of the muta-
tions, leads to cancer. The approach was further developed by Hofree et al. (2013), 
who used propagation in networks to stratify cancer populations in ways that cor-
responded to patient survival. Heat diffusion algorithms are computationally 
extremely demanding. Thus, the designers of Diffusion linked the app locally 
installed on an individual researcher’s computer to an internet service that performs 
the computation. Using Diffusion within Cytoscape, the user can visually select 
nodes as heat sources, invoke the service, and then visualize the diffusion results.

Carlin et al. employed Diffusion to better understand why one melanoma cell 
line responds to the drug Vemurafenib (LOX-IMVI) while another is resistant. They 
use a network generated from the NCI Pathway Interaction Database (an amalgama-
tion of expert-curated cancer pathways) and initiated diffusion from six genes with 
known relations to the drug: BRAF, PDGFRB, NRAS, HGF, MAP 2  K1, and 
MAPK1. Diffusion identified a subnetwork of 53 nodes and 448 edges. Cytoscape 
was then used to filter the top 10% of nodes activated after diffusion. Based on 
combining the results of multiple queries followed by filtering, Carlin et al. deter-
mined that TSC2 and BLNK are mutated in the resistant but not the sensitive cell 
lines and proposed that this might explain the difference.

6  �Network Expo: NDEx

In the previous two sections I have characterized how tools like Cytoscape allow for 
data that has traveled to databases to travel one step further and be used in network 
analyses. But is that the end of the line? In this section I show how network dia-
grams themselves can also travel. Traditionally, network diagrams have been dis-
tributed as static visual representations and those who wanted to analyze them 
further had to recreate them for themselves. But networks generated with Cytoscape 
and similar programs can be stored in structured data formats in which they can then 
be distributed to other users, who may then incorporate additional data into the net-
work or perform a different type of analysis (e.g., a different clustering procedure) 
to the existing network. While such sharing can be carried out informally by 
authors,6 the Network Data Exchange (NDEx) is providing a platform for doing this 
on a large scale.

6 A collaboration between Elsevier and Cytoscape created the Interactive Network Viewer which 
allowed authors to make networks available in online publications in a viewer with some capacities 
for readers to further explore the network or download it to Cytoscape. This project is no longer 
active.
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NDEx was introduced in 2014 as “an online commons” (Pillich et al. 2017) or 
expo that functions much like World Expos. In this case, the exhibits are the net-
works that provide original interpretations of data. By uploading their networks, 
researchers can showcase them and others can download them for use in their own 
work. The developers further characterize NDEx as “a step toward an ecosystem in 
which networks bearing data, hypotheses, and findings flow easily between scien-
tists” (Pratt et al. 2015). The project employs its own group of developers in Ideker’s 
lab at UC San Diego and is supported by the National Cancer Institute, the National 
Resource for Network Biology, the California Stem Cell Agency, Pfizer, Janssen, 
and Roche.7

At its core, NDEx functions much like Google Docs or Dropbox. Networks are 
added to NDEx either from other online sources such as Pathway Commons, which 
draws data from a wide range of databases including BIND, DIP, and BioGRID that 
were discussed in Sect. 2, or by individual users via either direct file import or from 
Cytoscape. Individual users store their own networks and have control over who can 
access them—they can keep them private, share them with designated others, or 
make them public. Sharing with a group of researchers allows a group to collaborate 
in further developing a network. If made public, other users might use the network 
as the basis for their own work and upload new versions for others to access. Each 
network that is added to NDEx is assigned a Universally Unique Identifier (UUID) 
so that it can be easily referenced. If someone modifies a public network and saves 
it, it is assigned a new UUID. NDEx is distinct from other online network reposito-
ries such as KEGG and Pathway Commons in that users manage their own networks 
rather than the networks being managed by the organization that maintains the 
resource. To facilitate visualizing and indexing networks as well as interactions with 
Cytoscape, NDEx employs the Cytoscape Cyberinfrastructure network exchange 
format, CX, to store information. CX, however, maintains the semantics of the for-
mat employed by the creator of the network.8

For networks to be useful to others, it is important that depositors provide suffi-
cient information about how they were created and the data that was used (databases 
are updated regularly and attempts to reconstruct networks will not necessarily 
yield the same results unless the same iteration of the database is used). Accordingly, 
NDEx maintains a provenance history that contains this information. The history 
also includes information about other networks that were used in constructing a 
particular network.

For NDEx to provide a useful expo, other users must be able to find networks 
that are relevant to them. Thus, when networks are uploaded, NDEx indexes text 
strings for network descriptions, the user and group that manages the network, the 

7 Legally, the Cytoscape Consortium, a 5.0.1cs corporation, owns Cytoscape and NDEx, along 
with NeXO and Cytoscape.js. It contracts with the various pharmaceutical companies and sub-
contracts with UC San Diego.
8 WikiPathways provides a useful comparison case with NDEx. WikiPathways is based on the Wiki 
model in which everyone collaborates on a common public document. It is also limited to small 
networks and allows for content that is not represented in a network.
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genes or proteins represented by the nodes, the relations represented by the edges, 
and references cited. Users can initiate searches from NDEx homepage by entering 
names of cell processes or names of genes or proteins. This will bring up a table 
listing a number of networks. Figure 6 shows the results of a search for three circa-
dian genes, per2, cry2, and bmal1. This returned 165 networks in which at least one 
of these genes is included. The table shows the name of the network, the number of 
nodes and edges, whether the network is public or private, the owner, and the date it 
was last modified. When one hovers a mouse over the name of a network, a popup 
window appears with a description of the network if one has been provided. If there 
is an icon in the Ref. column, it links to a publication in which the network appeared. 
One can proceed to download the network by selecting the icon with a white down-
ward arrow.

Clinking on a network name brings it up in a window (if there are too many 
edges, a sample of 500 edges will be displayed). Users can choose instead to see a 
listing of the edges in a table view. The screen also shows either network info (e.g., 
when it was created, its UUID address) or the provenance history. A search box 
enables users to query particular nodes and select a number of edges out from those 
nodes. The network selected in Fig.  6 has 195 nodes and 4534 edges. Entering 
CRY2 and distance 1 returns the more restricted network shown in Fig. 7. Selecting 
the nodes PER2, CRY2, and the two edges connecting them, brings up information 
about the nodes, including links to UniProt, GenBank, and publications providing 
evidence for the edges.

Fig. 6  Screen shot of NDEx after search for networks that include per2, cry2, or bmal1, three 
prominent mammalian circadian genes
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NDEx has been designed to integrate smoothly with Cytoscape. From within 
Cytoscape, one can use the app CyNDEx to query networks in NDEx and import 
selected ones. CyNDEx also allows users to export networks developed or modified 
in Cytoscape to NDEx. Once a network has been imported from NDEx to Cytoscape, 
a researcher can use it to continue the inquiry for which it was originally designed 
by carrying out additional analyses or accept the analysis offered and incorporate 
further data into the network.

The developers of NDEx have advanced a bold vision of how NDEx can provide 
“new models of scientific publication.” It provides an expo “in which live data struc-
tures replace static diagrams and supplemental files.” Drawing upon these live data 
structures, other biologists can create new networks that serve their own ends and 
create new expositions in NDEx. For NDEx to realize these goals, network biolo-
gists must be willing to share their networks. There is evidence that they will as use 
of NDEx is showing steady growth. From July 2015 until March 2016 the number 
of unique visitors per month increased from 151 to over 1200. As of July 2017 there 
were 3190 public networks, 810 registered users and 37 groups, although not all of 
these have uploaded networks to NDEx. The developers are pursuing a number of 
strategies to encourage greater use such as making NDEx a platform on which 
authors may make networks in their papers available to reviewers. To the extent that 
NDEx is successful as an expo of networks, network diagrams will be both products 
of inquiry and inputs for future inquiries.

Fig. 7  Screen shot of the network selected in Fig. 6 after a query requesting nodes directly con-
nected to CRY2
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7  �Conclusions

In systems biology and many other fields, relational data travel from individual 
researchers to publicly accessible databases, from which they are accessed and 
employed by subsequent researchers. I have focused on the resources that systems 
biologists have created to enable further data journeys. These resources are allowing 
researchers both to represent and extract interpretations from the data and to share 
the products of their research so that other researchers can build upon them. These 
tools enable data and the analyses constructed from them to continue to travel far 
beyond the initial database to which they were uploaded.

My focus has been on the increasingly popular use of network representations of 
relational data. Networks are not just an attractive format in which to represent data. 
As I have developed in earlier publications, they are employed in novel ways to 
make discoveries about biological mechanisms. In recent decades, philosophers of 
biology have characterized the research strategies by which biologists in a variety of 
fields search for mechanisms to explain phenomena of interest (Bechtel and 
Richardson 1993/2010; Craver and Darden 2013). Most of these strategies start 
with hypothesized mechanisms and decompose them to find their constituents. 
Network biology pursues a different strategy, starting with data about how biologi-
cal entities are related to each other (e.g., which proteins interact), identifying 
mechanisms as local clusters within the network and appealing to them to explain 
biological phenomena (Bechtel 2017, 2019).

Key to network biology is the construction of network representations and the 
application of tools to analyze these representations. Since its introduction in 2002, 
Cytoscape has emerged as a freely available and widely used platform for creating 
and analyzing network representations. The core of Cytoscape allows researchers to 
import databases of relational data and generate network representations employing 
a variety of different layouts that enable specific inferences from the data and differ-
ent ways to annotate the representation to incorporate yet additional information. A 
user can, for example, quickly switch between different layouts until he or she finds 
one that provides insight into the data. Of central importance are algorithms used to 
find clusters of nodes that are then interpreted as potential mechanisms.

The construction of a revealing network representation is often just the starting 
point for further analysis. The core of Cytoscape provides a range of tools intended 
for use on a wide variety of network studies (extending, for example, to the social 
sciences). But Cytoscape also provides a platform for other researchers, often with 
interests limited to specific domains, to develop their own analytic tools in the form 
of apps. By providing an App store, the developers of Cytoscape have encouraged 
researchers to make these available to yet other researchers.

Cytoscape and its apps are powerful tools for researchers to reuse data that has 
been deposited into the growing number of databases developed by biologists. A 
particularly valuable feature is allowing researchers to readily integrate data from a 
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variety of different databases into a single network that can then be analyzed in dif-
ferent ways. Until recently, however, these network representations and the analyses 
performed on them represented the end of data journeys—they might be published, 
but anyone who wanted to carry on the inquiry would have to procure the network 
in a useable format from the researchers or reconstruct it for themselves. By provid-
ing an easily searchable expo of networks that other users can access, add data to, 
and further analyze (using Cytoscape or another platform), NDEx enables data to 
travel yet further. Since users can both download networks and upload their revised 
network, data can be recirculated potentially indefinitely.

Resources such as databases, Cytoscape and its apps, and NDEx, constitute 
important infrastructures that are increasingly relied upon by contemporary biolo-
gists. These tools supplement traditional experimental tools, allowing results to 
travel widely and to be analyzed by multiple researchers using different techniques 
for network analysis. They thereby contribute in novel ways to the development of 
scientific knowledge.
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A Data Journey Through Dataset-Centric 
Population Genomics

James Griesemer

Abstract  I describe a data journey drawn from a case study of research in human 
population genomics. The case is framed in dialogue with a project on what has 
been called the “re-situation” of scientific knowledge (Morgan 2014). The kind of 
journey described elicits a missing concept—“dataset-centric” biology—in the con-
versation around the emergence of “big data” and data-centric biology (Leonelli 
2016) and its contrast, “traditional” or “small data” biology. I distinguish datapoint-
centric from dataset-centric practices. The case study is about the development, use, 
and amendment of data sets in one lab’s pursuit of human genome diversity studies. 
I offer a model of data journeys to interpret the case. The model is comprised of 
three kinds of components: scientific data structures, data representations, and data 
journey narratives. The case study illustrates two visualizations that frame the data-
set journey.

1  �Traveling Findings and Data Journeys in Human 
Population Genomics

In this chapter, I make a case for a “middle ground” landscape of data set-centric 
biology as an important setting for data journeys in twenty-first century science, 
adding “middle sized” facts to the big and the small (Howlett and Morgan 2011, 
Leonelli 2016). Communities of specialists in fields practicing dataset-centric biol-
ogy are organized around data sets rather than dissociable, individually retrievable 
data points, even though the dissociability of the latter is key to the data journeys of 
dataset-centric biology. For dataset-centric biology, if datapoints are disaggregated 
from their context in a dataset, datapoints may lose value or meaning as datasets add 
value and change meaning. Scientific focus on datasets prods dataset-centric sci-
ences down toward a “craft” scale of operation rather than up to an “industrial” 
scale: in dataset-centric biology, datapoints are not interchangeable parts, nor inde-
pendently valuable “widgets” in a datapoint-as-product economy of science. At 
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craft scale, datapoints are more like individualized parts of whole dataset products 
and less like anonymized members of possibly arbitrary or merely conventional sets.

In a broad sense, the data journeys in human population genomics of interest in 
this chapter begin with tissue specimen collection, proceed to extraction of DNA 
from specimens, and eventually result in sequencing, production of digital sequence 
records, and archiving of the records. My focus here, however, is on the journey 
after digital data is produced: how these records are collected into datasets that can 
travel (or not), just as Leonelli (2016) has documented how genomics datapoints 
can travel. These journeys must of course be planned, including developing proto-
cols for subject sampling and specimen collection, but here I focus on journeys of 
datapoints and datasets derived from DNA already extracted and archived. After 
tissue collection and curation, extracted DNA specimens are allowed to circulate in 
a limited fashion to qualified research labs. The labs then conduct or arrange 
sequencing so as to use the digital data in a range of biomedical and ancestry stud-
ies. Once the data gets into digital form, the datasets can have a life of their own. 
This “workflow” can be summarized by distinguishing: (1) a “field” setting in which 
a study design is put into action to produce “data,” (2) a lab setting in which speci-
mens or data are put in motion to produce findings and reports, and (3) a community 
setting in which findings are put into circulation in various social worlds that become 
evaluated as “facts” or sent back into scientific workflows to be reworked, reinter-
preted, reevaluated (Fig. 1). My case study focuses on the latter: the use of genomic 
DNA data to infer ancestry relations among human populations.

The case is part of a project on what has been called the “re-situation” of scien-
tific knowledge (Morgan 2014). The kind of journey described elicits a missing 
concept—“dataset-centric” biology—in the conversation around the emergence of 
“big data” and data-centric biology (Leonelli 2016) and its contrast, “traditional” or 
“small data” biology. I distinguish datapoint-centric from dataset-centric practices. 
The case study is about the development, use, and amendment of datasets in one 
lab’s pursuit of human genome diversity studies.

The data journey I re-trace here begins with sequence data analyzed in a paper by 
Noah Rosenberg et al. (2002) in Science magazine: “Genetic Structure of Human 
Populations.” This paper reports “big findings,” that is, findings about worldwide 
ancestry relationships derived from analysis of a substantial collection of datapoints 
in a dataset using advanced analytical methods and theoretical models. The paper 
also reports (or refers to) “small findings,” e.g. findings of particular sequences 
detected in particular DNA samples. Some of the small findings are presented sim-
ply by citation of the datasets used in the analysis leading to the big findings, based 
on sequencing cell line panel DNA collected for the Human Genome Diversity 
Project (HGDP).

Data for the HGDP that supplied the Rosenberg lab came from 1064 lympho-
blastoid cell lines (LCLs) cultured from blood samples collected from people of 
different localities or regions around the world by a variety of laboratories interested 
in participating in the shared effort (Cann et al. 2002). These collection efforts were 
heterogeneous. Specimens were eventually deposited and archived at the Center for 
the Study of Human Polymorphism (CEPH), in Paris, which provides samples of 
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extracted DNA to qualified researchers. These users of HGDP-CEPH specimens 
then generated data by sequencing the DNA (or in some cases RNA) or by arrang-
ing for third parties to do the sequencing.1 Attention to data in the HGDP, like data 
in the Human Genome Project (HGP) more broadly, reflects emerging sensibilities 
of data-centric biology. DNA sequences—“digital” data derived from DNA sam-
ples—are the main form of data used to reconstruct ancestry in population genom-
ics. Over the course of the 1990s and 2000s, this data—the data points—became 
increasingly archived in online databases of the kinds Leonelli (2016) describes.

That said, the kind of data journey of the sequence data in the HGDP data sets, is 
quite different, in mode of travel, in the organization and standardization of data 
practices, and in the institutionalization of the data packaging practices that govern 
the work. It is a data set journey—of datapoints between datasets and datasets 
within and among projects—as much or more than a journey of datapoints into and 
out of a centralized database.

1 E.g. the Mammalian Genotyping Service of the Marshfield Clinic Research Institute (Marshfield 
Clinic Research Institute 2014).

Fig. 1  Diagram illustrating the kind of work flow from a study design, to field work (stage 1) 
producing specimens or raw data, which is then assembled into datasets, analyzed and interpreted 
as yielding findings in the lab (stage 2), that are then circulated via talks, publications and online 
media in various social worlds (stage 3) that evaluate findings, elevating some of them to the status 
of facts and returning others for reconsideration, reinterpretation, and reevaluation. Many points in 
such processes feed into future study designs or the modifications of ongoing studies
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One of the big findings reported concerns relationships between clusters of simi-
lar genetic sequence markers and continent-scale geographic distribution of humans. 
The finding is big enough to be reported in the abstract of the paper (Rosenberg 
et al. 2002, 2381):

… without using prior information about the origins of individuals, we identified six main 
genetic clusters, five of which correspond to major geographic regions, and subclusters that 
often correspond to individual populations.

The 2002 publication was a landmark and its findings, methods, and conceptual 
presuppositions widely debated (Horton 2003). The model-based clustering algo-
rithm implemented in analytical software the authors and their collaborators built, 
program STRUCTURE (Pritchard et al. 2000), assumes a pre-defined number of 
clusters and then allocates datapoints to clusters based on patterns of genetic simi-
larity. The methodology is to allocate sample individuals to clusters by similarity 
across a collection of loci—sequences that are either shared or not shared between 
individual samples. The particular clusters to which individuals are assigned emerge 
in the clustering process and can then be compared to the “pre-defined” population 
labels from which the samples came.2 The “big fact” of continental geographic pat-
terns of human ancestral groups in circulation since the eighteenth century was 
affirmed by Rosenberg et al. (2002) in a novel way: based on genotype sequence 
distributions without reference to the pre-defined population labels. The paper is 
easy to read, contra the authors’ intentions, as endorsing a presupposed biological 
concept of race by conflating a geographic interpretation of genetic classification 
with race on the grounds that the pre-defined populations (either from the sampling 
design or in the analysis) somehow biased the results.3 The analysis is subtle and 
interpretation tricky.

The analysis leading to the big finding was also contested for its theoretical pre-
suppositions (e.g. by Serre and Pääbo 2004) and defended (e.g. Rosenberg et al. 
2005). Some challenges to the results questioned the sampling methodology that 
produced the HGDP-CEPH cell lines. Others challenged that the analysis was 
flawed mainly due to theoretical presuppositions regarding whether human genetic 
variation can be assumed to be organized in more or less discrete “clusters,” perhaps 
with some admixture, or rather in more or less continuous “clines,” perhaps with 
some clumping and isolation. There has been discussion of the analytical methodol-
ogy as well, including examination of the models and algorithms used by 
STRUCTURE, alternative cluster algorithms, and alternative multivariate statistical 
approaches (see Sect. 4 below).

2 Part of the methodological controversy about this research concerns the sampling methods used 
to collect samples in the first place and part with whether and how DNA donors “self-identify” 
with population labels assigned as “meta-data” to the DNA sequence data. Our larger project will 
address the latter topic in detail (Griesemer and Barragán 2019).
3 See Wills 2017 for an analysis of “rhetorical appropriations” of the article; see Wade 2014 for a 
journalist’s reading of the paper as supporting a concept of race as “clusters of variation.”

J. Griesemer



149

It is not my purpose to characterize how well this big “fact” of continental differ-
ences (variously as a story of race, ethnicity, or genetic variation) has traveled 
through the centuries or spread among disciplines or societies, nor to assess the 
critical charges by post-colonialist thinkers, even while I fully agree that issues of 
race and ethnicity are far more important in the grand schemes of human cultures 
and societies than is reconstruction of the data journeys of the datapoints, their 
uptake in datasets, or interpretations of narratives of facts related to the journeys of 
the constructed datasets. Nevertheless, my interest here is to understand scientific 
practices involved in using the kinds of data that fuel the work of producing big 
findings, rather than the findings themselves.

2  �Scientific Data Structures

In contrast to the big findings—the stuff of “results” and “discussion” sections of 
published scientific papers—key small findings mentioned or referred to in 
Rosenberg et al. (2002) concern the genotypes at the particular loci of the particular 
sample subjects used to assemble the genome diversity dataset for the analysis. 
These small findings are, in effect, “asserted” by reference, via the computer files in 
which the data are represented and recorded, to “scientific data structures.” These 
data structures are displayed in the files and described in “materials and methods” 
sections, figures, tables, information supplementary to main publications, and soft-
ware manuals. The data structures and files link sample subject identifiers to 
sequence data, e.g. diversitydata.stru, which is described in another file, 
diversityreadme.txt.4

The representation of genotypes in the diversitydata.stru file is clear but indirect, 
involving pointers (labels) to sequence data records stored in centralized databases 
such as GenBank. GenBank labels for DNA sequences appear as names of loci in 
the data file.5

Genotypes for each sample individual are coded in labels for the two alleles at 
each locus represented in the file: 377 loci in this dataset × 2 alleles for each diploid 
sample individual, with two rows in the data table for each sample subject, one row 
for each of the paired chromosomes. The allele at the first sequenced locus for 
sample individual 995, for example, from “Karitiana Brazil AMERICA,” (Pop ID 
82) is an allele coded as “120” (Fig. 2).

Allele encodings report “genotypes (measured in base pairs)” (Rosenberg et al. 
2002), that is, by integer labels: “Each allele at a given locus should be coded by a 
unique integer” (Pritchard et al. 2010, p. 6). “120” encodes a unique allele at locus 

4 Rosenberg maintains downloadable copies of the exact data used in the original paper at the 
Rosenberg Lab website (Rosenberg Lab 2018).
5 Another downloadable file, diversityreadme.txt, contains “meta-data” information about how 
diversitydata.stru is organized. The reference to “the structure program” is to the software, called 
“STRUCTURE,” authored by some of the authors of Rosenberg et al. (2002).
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D12S1638. Sample subject 995 happens to have the same allele, “120,” on both 
chromosomes and is thus homozygous for that locus.

A different data file, diversityloci.txt, associates GenBank sequence identifiers 
such as D12S1638 with Marshfield Screening Set labels (AFMB002VD5) linking 
the sequence to the tissue sample from which it was sequenced. This link represents 
and visualizes an early part of an “omics”-like datapoint journey from samples to 
sequences in the workflow of population genomicists. In turn, the GenBank identi-
fier points to a record in NCBI’s Nucleotide Database, “a collection of sequences 
from several sources, including GenBank, RefSeq, TPA and PDB,” (NCBI 2019). 
reflecting a datapoint journey from a HGP reference sequence contributed to this 
centralized, online-accessible database. The GenBank sequence label D12S1638 is 
itself a reference to an actual sequence of 233 nucleotides, reported at the NCBI 
web site.6

These several files, maintained at the Rosenberg lab website as “the data” (and 
meta-data), correspond to a simple relational data structure that points in one direc-
tion to the tissue sample sources in the Marshfield Screening set of CEPH-curated 
cell lines and points in the other direction to the DNA sequences generated from 
those cell lines that are eventually encoded in datasets in the Rosenberg lab (and 
potentially uploadable to GenBank’s NCBI Nucleotide Sequence Database).

For the text-based cluster analysis methods implemented in program 
STRUCTURE, which are used to analyze the dataset in Rosenberg et al. (2002), and 
for the project of studying allele polymorphisms in these sequences, all that matters 
is that the text used to label the sequences, e.g. “120,” be unique.7 Whether the 

6 The complete reference sequence for locus D12S1638 can be retrieved from a NCBI Nucleotide 
Sequence Database Fasta search report https://www.ncbi.nlm.nih.gov/nuccore/
Z53031.1?report=fasta. Accessed 5 June, 2018.
7 The mathematical method at the heart of the software’s algorithm, latent Dirichlet allocation, is 
also used for topic modeling in digital humanities (see Blei and Lafferty 2009). There are journeys 
of models and software within and among fields to be tracked alongside the data journeys described 
here.

Fig. 2  Screen shot of records in a dataset visualization in program STRUCTURE, after I cleaned 
(pruned) out meta-data from the file downloaded from the Rosenberg Lab’s dataset web page, so 
the software could read the data file. STRUCTURE is a free software package described by 
Prichard et  al. (2000) and downloadable at http://web.stanford.edu/group/pritchardlab/structure.
html. The dataset used by Rosenberg et al. (2002) is downloadable from the Rosenberg Lab “Data 
sets” webpage: https://rosenberglab.stanford.edu/datasets.html
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software actually compares sequence “data” or rather encodings of genotypic dif-
ferences in text labels for these similarities or differences is irrelevant to the form of 
analysis and findings presented in the publication, although quite relevant to how 
we might interpret their datapoint journeys and what other uses or “re-situations” 
might be made of the datapoints and datasets.

The software, program STRUCTURE, is also downloadable from the laboratory 
of Jonathan Pritchard, one of its authors, now at Stanford University (Pritchard Lab 
2019). The downloadability of the data set, which visualizes a scientific data struc-
ture, and analytical software from a local but accessible website, i.e. a lab web site 
rather than a community- or government-maintained online database, is a feature of 
the kind of dataset-centric practice I suggest is now widespread in contemporary 
biology. This dataset archiving practice occupies a middle ground between the non- 
or poorly-circulating datasets of hypothesis-centric traditional practices and the 
highly accessible datapoints archived in centralized databases of the datapoint-
centric sciences. It is notable that while web links for this kind of local hosting of 
datasets and software tend to break as researchers move from one research organiza-
tion (typically, a university) to another, links to the datasets, software, and refer-
ences do mostly get reestablished and are relatively speaking “findable” (by internet 
search) if not by archiving in stable, centrally located internet resources of a federal 
government (e.g., NCBI, CEPH) or major NGO (e.g., Coriell, Marshfield, Simons).

3  �Dataset Journey Representations: Two Visualizations

Datapoint and dataset structure representations for the Rosenberg et al. (2002) paper 
were already introduced in Fig. 2. What I am not talking about is the widely noted 
and discussed figures in Rosenberg et al. (2002, Figures 1 and 2) and other publica-
tions using program STRUCTURE (and in its early versions, the separate visualiza-
tion software, DISTRUCT). These are visualizations of the output of the dataset 
analysis which are interpreted to produce “big findings.”

The description of this dataset in the supplemental information to the paper 
already narrates a dataset journey by relating the dataset constructed and analyzed 
for the publication from its source material in DNA extracted from one of the 
Marshfield screening sets of tissue samples used as sources of DNA. I describe that 
narrative in the next section. Here, I describe two data visualizations that are central 
to dataset journey narratives.

Figure 2 displayed a fragment of the Rosenberg et al. (2002) dataset in the form 
it takes when the dataset file is opened with the Apple MacOS graphical interface 
implementation of program STRUCTURE, version 2.3.4, after I did some “clean-
ing” or “pruning” of the “raw” data file. There was a data journey even from the 
“raw-raw” data—that is, the downloadable data file as archived on the Rosenberg 
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lab’s dataset web page.8 The “raw-raw” data file contains redundant “meta-data,” 
i.e. data that is not used by program STRUCTURE for data analysis, but which 
makes the data file more human-readable without following cross-references to 
other data files, as described above. This meta-data about “pre-defined” populations 
embedded in the dataset is also used to interpret what genotype similarity clusters 
mean so as to formulate big findings.

Indeed, this meta-data added to the data file is redundant because it is also linked 
by a data field in each data record to the “population code,” e.g. “82” standing for 
“Karitiana Brazil AMERICA,” which also appears in a separate “meta-data” file 
called diversitycodes.txt.9 This meta-data must be removed from the data file in 
order for STRUCTURE to read it.

So far, I have considered datapoint and dataset representations in data tables 
(stored in computer data files). I turn now to visualized representations of datapoint 
and dataset journeys. These journey visualizations are not narratives themselves, i.e. 
stories of the travels of points and sets through and to various sets, publications and 
research projects. Rather, visualizations of scientific data structure representations 
can facilitate data journeys as “chronicles” promoting certain sorts of dataset “travel 
narratives” in a research community. These visualizations “chart the territory” or 
“map the waters” in which dataset “ships” can travel from research project to 
research project.

Thus far, I have mentioned the journeys of samples to specimens to datapoints in 
dataset assembly, visualized by the kinds of data files discussed above. Next, I 
describe two kinds of visualizations of data set journeys linking different datasets 
into sequences or chronologies.

3.1  �Example: Lab Web Page Dataset Journey Visualization

Rosenberg’s lab “diversity” web page links to a “Data sets” web page with a link 
titled: “HGDP-CEPH human genome diversity cell line panel” (Rosenberg Lab 
2018). The main “Data sets” page shows that the Rosenberg lab maintains data sets 
mostly on humans, but includes non-humans (chickens) and also links to datasets 
“hosted by collaborating labs.”10

This diversity web page provides links to many of the maintained datasets for 
human data. It also visualizes a kind of data journey itself. The web page does this 
as a structured framework of boxes/panels—a vertical, textual “triptych”—in the 

8 I discovered the raw data file was not in a format program STRUCTURE could process directly 
by trial and error, as have many other naïve users. For evidence, see the Google Groups FAQ: 
https://groups.google.com/forum/#!forum/structure-software. Accessed 13 August, 2019.
9 Additional figures can be viewed in an expanded version of this chapter at: http://philsci-archive.
pitt.edu. For diversitycodes.txt see Rosenberg Lab (2018).
10 Chicken breeds with known population structure are used to test “the utility of genetic cluster 
analysis in ascertaining population structure,” see Rosenberg et al. 2001.
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web page. Each panel includes a descriptive title, summary dataset description, ref-
erences to sources, and links to downloadable dataset files. The panels start with the 
HGDP 2002 dataset from Rosenberg et al. (2002) at the bottom of the page (reading 
up to the top of the page to follow the journey chronologically) or start with the most 
recently archived dataset of exome data from 2013 (reading down the page from top 
to bottom to retrace the lineage of current work back to source datasets). The trip-
tych is headed (at the top) by a summary of the “lineage” of datasets from 2013 back 
to 2002: “[2013] [2011] [2009] [2008] [2006] [2005] [2002].”

Each panel title indicates the character of the dataset as a modification from 
HGDP 2002, e.g. “HGDP+other 2013 microsatellites”, indicating that 645 autoso-
mal microsatellite loci were added to the original 377 of the HGDP 2002 study in 
the study published by Pemberton et al. (2013). The web page overall visualizes the 
journey of the HGDP 2002 datapoints in the 2002 dataset in summary form as each 
new dataset (or version) is assembled from previous ones, sometimes noting varia-
tion from other, related or similar datasets referenced in the literature.11

3.2  �Example: Excel Spreadsheet Dataset Journey Visualization

In 2006, Rosenberg published a paper attempting to frame the story of a dataset 
journey in terms of a different kind of visualization than the vertical triptych in his 
Lab’s “Data sets” webpage. Interestingly, because this was also a project concern-
ing the HGDP 2002 dataset, the 2006 project also appears as a place in the dataset 
journey in that triptych visualization, titled “HGDP 2006 relatives” (Rosenberg 
Lab 2018).

Rosenberg (2006) seeks to put some order into the proliferation of datasets serv-
ing human population genomics ancestry reconstructions by offering a naming con-
vention for datasets and an assessment of which of the datasets that his lab assembled 
are appropriate for what kinds of work, based on their characteristics as datasets.

Rosenberg’s dataset visualization is in the form of an Excel Spreadsheet (Fig. 3) 
that offers a different kind of triptych than the one previously discussed.

The spreadsheet lists individual HGDP sample donors by sample number (e.g., 
sample donor 995 discussed above). The population codes and “meta-data” of pop-
ulation names, sample locations (usually nation-states) and large scale regions fol-
low. Meta-data information on the sex of the donor is also included. Then, a series 
of columns are used to indicate whether each donor’s sample (in the form of DNA 
sequence datapoints) is included in datasets that figured in the research projects 
marked by publications cited in the column headings.

Wherever a “1” appears in the rows of these columns, the individual’s DNA 
sequence data is included among the records of the dataset used in that column’s 
publication. By scanning across the columns from left to right, one can see when a 

11 See additional figures in the expanded version of this chapter at: http://philsci-archive.pitt.edu
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particular datapoint embarked or disembarked the research program (sequence of 
research projects) in the Rosenberg Lab. The stops along the journey are from the 
HGDP-CEPH sample set, to the dataset analyzed in Rosenberg et al. (2002) to the 
dataset analyzed in Rosenberg et al. (2005), to the dataset called H971 to the dataset 
called H952.

4  �Data Journey Narratives: Datapoints and Datasets

A data journey narrative appears in a particular research publication to tell the story 
of the dataset that arrived at the research project reported in the publication and is 
analyzed there. Such narratives have the form of stories about “how the dataset got 
to its destination,” after a perhaps circuitous route through other research projects, 
labs, programs, or specialties.

Dataset journey narratives support a form of narrative explanation (Currie 2018). 
However, because they are narratives of dataset journeys, the target of explanation 
is not some phenomenon in nature, but rather an explanation of the use of a particu-
lar dataset in a particular research project.

The aim is to explain how and why a particular dataset “arrived” at this particular 
destination, given a particular research project. Dataset journey narratives are 
needed to persuade an audience to accept the dataset as appropriate for data analysis 
and thus to accept the results as findings worthy of circulation.

Fig. 3  Screen shot of a fragment of the Rosenberg (2006) spreadsheet “SampleInformation.xls”. 
The figure displays a “triptych” or rather 10-ptych (columns G-P) of points of embarkment/disem-
barkment of datapoints originating in the HGDP-CEPH LCL cell line panel and ending in dataset 
H952, which has dropped all data (and records) that include close (1st or 2nd degree) relatives. The 
spreadsheet is downloadable from Rosenberg Lab (2018). It is not included as supplemental infor-
mation to the published paper. https://rosenberglab.stanford.edu/data/rosenberg2006ahg/
SampleInformation.xls. Accessed 26 August 2019
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4.1  �Dataset Assembly Narrative

Rosenberg et al. (2002) describe a dataset derived from 1056 individuals from 52 
“pre-defined” populations, sequenced at 377 autosomal microsatellite loci. The 
1056 individual DNA samples are a different set than the samples delivered to the 
lab from CEPH because not all of those samples could be used for Rosenberg et al.’s 
purposes. As they write (Rosenberg et al. 2002 supplemental, 1):

The data set that we analyzed differs from the HGDP-CEPH Human Genome Diversity Cell 
Line Panel of 1064 individuals in its inclusion of Japanese individual #1026, whose cell line 
could not be produced owing to technical problems, and its exclusions of She #1331, who 
was not genotyped, and 8 individuals whose populations had samples of size 1 or 2 (#993, 
#994, #1028, #1030, #1031, #1033, #1034, #1035). Individual #1410, who is not included 
in the Cell Line Panel, was genotyped, but as the only representative of his population, was 
not analyzed. The loci studied, from Marshfield Screening Set #10 (http://research.marsh-
fieldclinic.org/ genetics/sets/combo.html), include a mixture of 377 polymorphic di-, tri-, 
and tetra-nucleotide repeat loci spread across all 22 autosomes (2, 19), with 3.8% missing 
data. Genotyping was performed by the Mammalian Genotyping Service (19).

This kind of attention to precisely what dataset is being assembled for a particular 
investigation is central to the kind of data journey of interest here. Consideration is 
given to why individual datapoints may or may not embark on the journey. The goal 
is to use as much of the HGDP-CEPH world-wide sample tissue collection as pos-
sible to reflect as much of the world-wide genetic diversity sampled and to provide 
the most robust inferences of ancestry relations possible, given the available data 
and background knowledge at the time.

Datasets assembled for specific projects seek to answer questions or test hypoth-
eses. In the case of Rosenberg et al. (2002), the question is whether STRUCTURE 
can reveal population diversity through study of genetic diversity data without 
appeal to “self-identified” population membership of sample donors. The datapoints 
and dataset are described, their provenance and relations to previously assembled 
datasets are also described, and the reasoning behind the beginnings and endings of 
journeys of particular datapoints (or specimens, in the early stages of these data 
journeys) is given.

The reasons the data journey takes particular twists and turns are a mix of kinds, 
starting from the usual kinds of “cleaning” of “raw” data familiar from other con-
texts and discussed above. “Japanese individual #1026” was included in the 
Rosenberg study even though the extracted DNA was not derived from the CEPH 
cell line diversity panel due to technical problems with the CEPH cell line. Other 
tissue samples were not sequenced and hence could not supply data. Samples that 
were included in the Rosenberg study collectively have 3.8% missing data, i.e. 
sequences missing for particular loci within the 377 loci sequenced for each indi-
vidual. Missing data reduces the resolution and precision of the analysis, but not so 
much that the whole data record for those individuals must be excluded from the 
analysis. Some data, in other words, fails to be generated from specimens while 
other data is dropped when the records in which they are coded are eliminated from 
consideration for various reasons. These are typical kinds of “missing data.”
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Of more interest is when researchers drop DNA sequences in the transition from 
specimens to data because samples don’t meet theoretical requirements of their 
“model-driven” analysis tools. Population genetics theory (and statistical sampling 
theory) says inferences will be poor for populations represented by only one or two 
specimens (i.e. sample size n = 1 or 2), so they are not included in the dataset, 
although they are included in the HGDP-CEPH donor blood tissue specimens, lym-
phoblastoid cell lines, and DNA sample “screening sets.”12 This kind of hiatus or 
end to a datapoint and sub-dataset journey is the tip of an iceberg of ways in which 
data may be “cleaned” or “pruned” in the processing steps leading from material 
samples to “raw raw” data to “raw” data to “cooked” or processed data.13 Figure 4 
illustrates a workflow for dataset assembly in the work of the Rosenberg Lab fol-
lowing the outline of Fig. 1.

12 Different investigators and labs set different local sample size thresholds based on varying theo-
retical requirements for their specific research purposes, so whether a given datapoint can continue 
on a dataset journey depends on the lab and the project.
13 The cleaning metaphor supports a useful contrast between “raw” and “cooked” data, even if 
Bowker (2005, p. 184) is right that “Raw data is both an oxymoron and a bad idea; to the contrary, 
data should be cooked with care.”

Fig. 4  Workflow diagram following the format of Fig. 1, illustrating specific elements of the data-
set assembly and use of data in the Rosenberg et al. 2002 study
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4.2  �Dataset Journey Narrative

Of still more interest are beginnings and endings of the journeys of data points that 
result from further analyses inspired by working with the data set. These further 
practices support stories of data journeys of datapoints from dataset to dataset and 
journeys of datasets from research project to research project. They are dataset jour-
neys: a voyage of the Beagle rather than Darwin’s voyage or FitzRoy’s voyage; 
voyages of the starship Enterprise rather than Kirk’s voyage or Spock’s voyage.

Samples are gathered together; information is collected from samples and assem-
bled into a dataset; the data journey begins with a scientific study of the dataset. 
Small and big findings arise and emerge from this traditional kind of scientific work. 
In addition, medium-sized facts arise about the dataset itself, where a medium-sized 
fact is a relational fact over the group of datapoints, or a fact derived from the set, 
but not extending or applying beyond the sample specimens that led to the group of 
datapoints. Medium-sized facts contrast with Leonelli’s (2016) small facts or find-
ings corresponding to individual datapoints and with big facts or findings derived 
from the analysis of the whole dataset in the light of a theory, question or hypothesis.

Because of the technical nature of the work of comparing genetic sequences, 
results of model-driven analysis in hypothesis-centric research often reveal salient 
features of the dataset, e.g. features that identify particular datapoints or small 
groups of datapoints as exceptional.14 These are “medium-sized” facts or findings 
about the dataset itself, and thus about the sample set or sample sub-sets. These 
medium-sized facts can drive dataset journeys less visible than the big fact journeys 
in which scientists use data and whose reports grab the headlines when the science 
is perceived to have important scientific implications, societal impact or is other-
wise controversial.

One of these less visible data journeys concerns individual 995 from the Karitiana 
in Brazil. The challenge in her journey was due to her traveling companion, indi-
vidual 996. Individual/datapoint 995 from the Karitiana remained on the dataset 
journey from 2002 to 2006 at least, but when it was inferred that individual 996 was 
probably 995’s sister (due to the level of genetic similarity), one of them had to get 
off the ship (dataset). Rosenberg (2006) introduced the convention to drop which-
ever among pairs of such datapoints had arbitrarily been given the higher-numbered 
label, so Ms. 996’s journey ended while Ms. 995’s continued. In other cases, whole 
families had to exit the journey for analogous reasons. This is not how the data jour-
neys would go if socio-cultural anthropologists rather than geneticists were arrang-
ing the journeys, given the fundamentally different orientation of the two disciplines 
to family-level data. For anthropologists, families represent important units in the 
organization of cultures, but in the context of population-level genomics, they 

14 Compare Tempini, this volume a, b, on analogous discoveries of middle-sized facts about envi-
ronmental public health datasets, and Hoeppe, this volume, on discovery of “artifacts” in radio 
telescope datasets.
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represent complications to sampling assumptions needed to apply theory to data and 
thus are to be avoided.

The character of the journeys of the datapoints in the Rosenberg et al. (2002) 
dataset does not become apparent until one looks at some of the destinations to 
which the dataset traveled. Here, I focus more on dataset journeys within the prac-
tices of the Rosenberg Lab and its collaborations and less on data journeys out into 
the wider specialty and beyond where others can download Rosenberg et al.’s data 
and software and try to repeat the analysis reported in the publication or construct 
new datasets from old. My goal in this chapter is modest: to formulate the idea of 
dataset-centric biology, display some of its narrative forms and visualizations, and 
underscore its potential value for understanding the organization of contemporary 
sciences, using an illustrative case, not to establish its generality or reach.

In 2005, Rosenberg et al. (2005) published a defense of their methods and find-
ings in the 2002 paper. They “expanded their earlier dataset” from “377 to 993 
markers” so they could evaluate critical responses (e.g. Serre and Pääbo 2004) that 
human populations are ordered in clines, not clusters. Since this was mostly an 
expansion, with new datapoints joining the journey, including datapoints of kinds 
other than microsatellite data, I will not further discuss this paper. I note simply that 
in 2005 a bunch of new travelers joined on, so we can think of datasets as both 
structures serving as vehicles for the travel of datapoints and as destinations: data-
points travel from dataset to dataset, getting on or getting off different ships at vari-
ous “stops.”

A different paper, by Ramachandran et al. in 2005, is more interesting for present 
purposes. Certain features of some of the datapoints in the 2002 study were noted, 
causing some of them to be dropped and others to be added for this study. The 
account of the dataset structure in the “Materials and Methods” section (p. 15942) 
is instructive. In this quotation, note that reference (11) is to Rosenberg et al. (2002).

Data. The data set that we analyzed consists of 1,027 individuals from the HGDP-CEPH 
Human Genome Diversity Cell Line Panel (10). Several individuals from the collection of 
1,056 individuals studied by Rosenberg et al. (11) were excluded from the present analysis. 
These included the following: (i) no. 1026, who was studied by Rosenberg et al. (11) but 
who was not in the HGDP-CEPH panel; (ii) nos. 770 and 980, who were identified by 
Rosenberg et al. (11) as likely labeling errors; (iii) nos. 589, 652, 659, 826, 979, 981, 1022, 
1025, 1087, 1092, 1154, and 1235, each of whom was identified by Mountain and 
Ramakrishnan (12) as a duplicate sample of another individual included in the panel; (iv) 
nos. 111 and 220, who were identified by Mountain and Ramakrishnan (12) as duplicates 
of each other but whose population labels differed; and (v) 21 individuals from the Surui 
population, an extreme outlier in a variety of previous analyses (11, 13, 14). Individuals not 
studied by Rosenberg et al. (11) but analyzed here included the following: (i) no. 1331, 
whose genotypes had been unavailable at the time of the Rosenberg et al. (11) study; (ii) 
nos. 993, 994, 1028, 1030, 1031, 1033, 1034, and 1035, who were previously excluded as 
members of populations with small sample sizes but who were grouped for the present 
analysis into Southwestern Bantu (individuals no. 1028, 1031, and 1035) and Southeastern 
Bantu (individuals no. 993, 994, 1030, 1033, and 1034) populations. Thus, the present data 
set includes two additional populations along with all populations studied by Rosenberg 
et al. (11) except Surui for a total of 53 populations.
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In addition to the kinds of data “cleaning” mentioned previously, this paper dropped 
a whole population, the 21 individuals sampled from the Surui in Brazil, who live 
near the Karitiana by the way, as an “extreme outlier.” 21 individual data points 
were dropped from the journey because of a characteristic of that population as a 
whole—bad traveling companions one might say. This points to the dataset as itself 
a “fact” or finding produced by the analyses cited. I describe such facts as “medium” 
sized because they form the basis for the analyses leading to big facts, but are facts 
about the datasets themselves, analogous to the way the small facts of interest here 
are facts about individual sample subjects.

Equally interesting is the continuation on the dataset journey of datapoints 1028, 
1031, 1034 and 993, 994, 1030, 1033, and 1034 who didn’t make the earlier seg-
ment of the journey from HGDP-CEPH sample set to the dataset of Rosenberg et al. 
(2002), but who were allowed to get back into the research program and the overall 
dataset journey at a different research project and publication “stop” due to the 
small sample size threshold set by Rosenberg’s project. Ramachandran et  al. re-
grouped them into Southwestern and Southeastern Bantu, in effect defining new 
populations by means of a statistical procedure and adding population labels (“meta-
data”) in the lab rather than as a result of “self-reporting” or “data collection” in the 
field. In effect, they were interpreted as coming from different places than their 
original “relevance labels” (place of origin) designated, so they in effect, got new 
“visas” to travel by Ramachandran et al. (see Leonelli 2011 and 2016 on relevance 
and reliability labels).15

These and other papers appearing between 2002 and 2005 prompted Rosenberg 
to publish the 2006 paper described above (Sect. 4.2). It visualizes datapoint jour-
neys to and among datasets in a spreadsheet format. Although this paper can be read 
as part of the other visualization of dataset journeys in the Rosenberg lab (on the 
datasets web page), this paper can alternatively be read as a new kind of publication 
in this specialty: a data “curator” paper, signaling a kind of work analogous to that 
of the specialized data curators in the bio-ontology projects Leonelli (2016) dis-
cusses. Instead of tracking changes to datasets within the “materials & methods” or 
“supplementary” sections of publications of a research project, Rosenberg (2006) is 
a publication aimed at tracking datasets and, more importantly, proposing standards 
for naming and using these datasets. This implies a new level of attention to the 

15 M’charek 2005 writes about the “passports” DNA samples needed to pass from one part of the 
forensics lab she studied to another. I use the related metaphor of “visa.” The difference of meta-
phors is that the passport is a license to travel. The visa is a license to travel in a specific place for 
a specific period of time. To continue the metaphor, DNA sequences or their tissue samples get 
“passports” when they are enrolled as samples in the CEPH bio-repository. To get a visa to be 
included in a particular dataset, the “receiving” country—research group in this case—has to 
approve. Approval can turn on questions of “desirability” (un-sequence-able tissue samples are 
undesirable; duplicates are undesirable) or for “theoretical” reasons (sample size too small). 
Barragán, on the other hand, writes about dataset curating practices in terms of data noise and data 
silencing as life scientists confront genomic datasets with archaeological, ethnographic, ethnohis-
torical and linguistic datasets about pre-Columbian and contemporary indigenous groups in north-
ern South America (Barragán 2016, 2017).
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ways in which data visualizations (and narratives) set data in motion and contribute 
to data travel among research projects.

The curation of HGDP-derived datasets in Rosenberg (2006) is not for the sake 
of online database management and curation of sequence datapoints, accessible in 
the way the “omics” databases are. Rather, it attempts to curate, by documenting in 
a publication, both the dataset that was initially assembled for the 2002 study and 
the journeys of the datapoints among datasets as a widening circle of researchers 
used and tinkered with the 2002 dataset to produce new datasets. Differently put, 
researchers such as Rosenberg (and perhaps those involved in the HGDP more 
broadly) seem to be taking a new and active interest in conceptualizing and repre-
senting the “middle-ground” dataset landscape in which many of their data-centric 
practices are enacted.

5  �A Model of Dataset Journeys and Conclusions

I don’t pretend to have done more than scratch the surface of a case study of dataset-
centric human population genomics. What I hope to have illustrated is that there is 
a “middle ground” data landscape between the traditional hypothesis-driven use of 
data as familiarly described by philosophies of “scientific method” and the new 
ground of data-centric science described so well by Leonelli. I have gestured at 
ways in which individual datapoints in datasets, at least in human population 
genomic diversity studies, make data journeys that are of neither of Leonelli’s two 
kinds, but which resemble them in some respects and to some degree and differ in 
other respects. Perhaps other question-driven scientific specialties are also influ-
enced by what is newly afforded in the rapidly changing landscape of computational 
and online digital methods, so there may be many forms of dataset-centric scientific 
practices waiting to be described. Morgan’s study (this volume) of two kinds of data 
journeys in economics regarding national income accounts and indicator series also 
concern humans and population data, though with a very different subject matter 
and principles for dataset formation and use than the biological genomics studies 
considered here.

In this chapter, I have characterized data journeys in terms of a model comprised 
of three kinds of components: data structures, data visualizations and data journey 
narratives. The details of specific scientific practices involved in producing and 
using these components do matter, if we are to understand these data journeys in 
middle-ground landscapes of datasets and how they might inform big findings and 
facts. This is particularly true of genomic ancestry projects like HGDP and biomedi-
cal projects like personalized genomic medicine. A further result of this case study 
is important for present purposes to signal a connection of dataset-centric biology to 
characteristic features of emerging data-centric “omics” research practices: the 
emergence of a “bioinformatics” practice alongside the basic, craft research process 
of asking and answering questions, posing and testing hypotheses.
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A distinct and notable line of investigation emerged in population genomics in 
roughly the time frame 2002–2006 around detection of close relationships among 
individuals with sequence data in genetic datasets of this kind, both for ancestry and 
biomedical studies (e.g. Boehnke and Cox 1997; Epstein et al. 2000). This litera-
ture, reviewing both datasets and software and modeling approaches, flourished to 
the point that there are now review articles “benchmarking” different relatedness 
inference methods (e.g. Porras-Hurtado et al. 2013; Ramstetter et al. 2017). This is 
evidence of a “standards” specialization emerging within dataset-centric population 
genomics analogous to the kind of “infrastructure” supporting a bioinformatics spe-
cialization that Leonelli (2011, 2016) discusses for data-centric “omics” biology 
(see also Tempini 2017, this volume a, b).

Moreover, Rosenberg’s efforts in (2006) are, I suggest, aimed at supporting a 
narrative that steers the dataset journeys of particular datapoints. This is not quite 
like the curation that goes on in the world of “omics,” because the target is datasets 
that are purpose-built and question-driven. The corresponding findings reported in 
this emerging dataset curation literature are medium-sized, regarding these datasets 
themselves. The normative directions derive from the standards concerning what 
sorts of findings or “big” facts can or should be derived from datasets of particular 
kinds or with particular characteristics.16

The data journey discussed here is not quite like the ones Leonelli describes, nor 
like many of those detailed in Howlett and Morgan (2011) on traveling facts. The 
journey of the dataset is driven in part by the conventional publication system in 
which peer-reviewed publications of findings using these datasets (together with 
ancillary visualizations in web pages, spreadsheets and supplementary material) 
draw attention to the datasets themselves and provoke scrutiny of the datapoints. 
This scrutiny may extend, moreover, to science studies analysts tracing dataset and 
datapoint journeys in terms of the components of a model in which data structures, 
data visualizations and data journey narratives mobilize datapoints in dataset jour-
neys. These journeys may encourage re-use of the dataset or construction of related 
or alternative datasets, adding and dropping datapoints, thus driving the data 
journey(s) forward. A different story will be needed for the drivers of “sample sets” 
such as blood donor samples, cell lines, and extracted DNA sample sets because the 
differences in materiality matter. The contingency of such sample sets being avail-
able to feed the production of datasets is critical to dataset journeys.17

Dataset journeys, classification schemes and data visualizations designed to 
maintain and manage them in contemporary biology are driven by a hybrid system 
of formal, institutionalized, community-sanctioned publishing and quasi-“samizdat” 
or “self-publishing” systems of personal, individual, laboratory, and university-
sponsored websites for distributing datasets and software as well as publications. 
Unsurprisingly, there is also an emerging effort to institutionalize these kinds of 

16 On the links between data, classification systems and standards, see Bowker and Star (1999).
17 It remains to be seen whether the model described here applies to sample journeys as well as to 
data journeys. Thanks to Carlos Andrés Barragán for emphasizing this point.
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publication as well, in data journals and dataset archiving services. There is, never-
theless, less standardization of data formats in dataset curation and publication as 
displayed in this case study, even if there is substantial standardization of some of 
the data content of datapoints due to the rise of data-centric biology and centralized, 
shared databases for datapoints.18

The lower degree of standardization is no doubt partly due to the fact that nearly 
every population geneticist running a lab today is (or is becoming) a coder who 
writes their own software in their own way, typically built to read and analyze data 
formatted anachronistically for their own lab’s purposes. It is a relatively manage-
able problem for others to gain access to such data and tools: if the software and the 
dataset can be downloaded and the provenance and versioning meta-data for the 
software is curated along with the dataset, one can (with effort) get the original 
software to analyze the original dataset. Nevertheless, it is a problem. And it entails 
different kinds of practices and workflows than biological research had required 
before the data and software coding revolutions of the last few decades.19

It means that data journeys may require software journeys: particular software 
versions (and perhaps operating systems or whole virtual machine execution envi-
ronments) may have to chaperone datasets in order for scientific analyses to be 
repeated and re-evaluated. Indeed, software versioning is a form of software journey 
in this middle-ground landscape between the small landscapes of datapoints and 
small facts on the one hand, and the big landscapes of research findings and big 
facts on the other.20

One more comparison of dataset-centric biology with the bioinformatics dimen-
sions of datapoint-centric biology will display some similarities and highlight dif-
ferences. Rosenberg also engages in dataset packaging practices which parallel 
Leonelli’s (2011, 2016) labeling story. Relevance labels, which signal the value of 
datapoints for particular kinds of journeys and analyses, are included in the dataset 
(or linked to it) by coding what are called “pre-defined” populations as part of the 
data records. These are names like Karitiana, for the name of the people/place of a 
certain culturally specific, geographically localized group of people; like Brazil, for 
the name of the nation-state in which the Karitiana are (largely) thought to reside at 
present; and like AMERICA, for the name of the “region” or “continent” of which 
the relevant nation-state is considered part (see Barragán 2016). As we saw, these 
“pre-defined” populations played no role in the cluster based inference of ancestry 

18 See Tempini, this volume a, b, for a case where infrastructures are built to systematize, institu-
tionalize and standardize the sourcing, hosting, manipulation and generation of datasets. See also 
Tempini (2017). Morgan’s two cases (this volume)—national income accounts and UN indicators 
of national “health”—also suggest different subject matters and principles may require or lead to 
different respects and degrees of both standards and infrastructure.
19 A recent trend in bioinformatics is to solve this problem by making the entire “execution environ-
ment” of a whole computational “scientific workflow” the basic unit to be prepared for data jour-
neys. Rather than just data, or software or both, this workflow-centric biology involves creating 
whole execution environments of data, software and computer operating system as the “basic 
units” (Meng and Thain 2017).
20 Thanks to Jason Oakes for pressing this point.
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relations in Rosenberg et al. (2002) directly, though they surely did play a role in 
attracting the attention of those who conducted the initial sampling effort because 
the collectors were interested in sampling human genetic diversity, especially 
among small groups that might soon disappear. It is no accident that the HGDP-
CEPH samples are not (all) drawn from nation-state capital cities, for example, nor 
from a conventional grid of equally spaced sample locations defined by the geom-
etry of the Earth (constrained by availability of time, money, skill, and interest of 
collectors in sampling at a particular geographic “scale”). The HGDP-CEPH sam-
ple panel was made after several years of inconclusive internal battle over what 
would be an appropriate sampling protocol for the HGDP (see NAS 1997, for exam-
ple), but it is not the focus of interest and concern here.

Leonelli’s “reliability” labeling practices are also included in Rosenberg’s data-
set curation practices, though the latter do not appear in “evidence codes” stored in 
an online accessible “bio-ontology” or “database.” Rather, they appear in the 
“Materials and Methods” sections of “ordinary” scientific papers or coded in 
archived, downloadable “data” (i.e. meta-data) files devoted to answering a research 
question or testing a model-driven hypothesis. Cross-referencing a DNA sequence 
dataset via joining ID field, “Pop ID,” is perhaps assurance of both reliability and 
readability of the data file.

It is common to describe the sources and methods used to generate a dataset in 
any scientific paper worthy of the name. In the case of human population genomics 
diversity papers, this extends to discussion of individual datapoints and, increas-
ingly, to a methods literature of papers like Rosenberg (2006) devoted to curation of 
datasets apart from the research papers devoted to reporting the “big”-fact findings 
of question-driven research projects. Interestingly, unlike the methods sections of 
ordinary “omics” papers from molecular biology labs, precious little, if any, space 
in the Materials and Methods sections is devoted to reporting on the protocols and 
technologies used to actually generate the sequence data. This may seem surprising, 
but the data curation tasks for these dataset-centric research programs are less con-
cerned with reporting on sequence data reliability than on sequence dataset reli-
ability for the question at hand.21

In the illustrative case of dataset-centric research discussed here, there are two 
aspects of the case that may require recalibrating the concept for use beyond my 
case study of a human population genomics data journey. First, the research is in the 
population sciences. Population sciences by their nature deal with collections of 
“individuals” (members of populations). There is a sense of compositionality of the 
relevant data that is integral to this kind of research. The very idea of a population 
is that it be composed of members (or parts, depending on one’s metaphysics). 
Surely attention in such contexts is focused on datasets since collections of data-
points tend to be used to represent data about populations, e.g. through statistical 
reasoning that treats the collected data as a sample from a population whose 

21 Studies of ancient human DNA are something of an exception, since the quality of sequence data 
deriving from ancient, even fossil, specimens is a special problem. See e.g. Veeramah and Hammer 
(2014) for a relatively recent overview of whole genome sequence data.
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unknown properties are subjects of theoretical inquiry, or through some other mode 
of aggregation, extrapolation or inference from information about members to a set 
or population. Inquiry may even focus on properties of individuals qua members of 
a population, in a form of research known in some fields as “downward causation,” 
whereby properties of the group cause (or determine) properties of the members. So 
perhaps the notion that the case discussed here illustrates dataset-centric biology 
may not generalize beyond population sciences.

A second kind of particularity of the case study is the way it focuses on humans. 
Data in human biology can be difficult to collect for familiar reasons of ethical or 
legal restraint or constraint, difficulty of access, expense, entanglement with politi-
cal, social or cultural differences between researchers, sponsors and potential “sub-
jects,” and for many other reasons (Barragán 2012). The constraints may be quite 
different than for social science data collection about humans (e.g. Morgan, this 
volume). Biological datasets collected from human subjects thus tend to be more 
“precious” to researchers than data collected from non-humans (though not always 
of course—natural history is often pursued in out of the way places that can be hard, 
expensive, or unpleasant to get to and work in). Human genome diversity data on 
members of the Karitiana in South America, for example, are critical for the story of 
human diversity in ways that make these people much more than mere “sample 
subjects” (see Barragán 2016).

The virtues of “model organisms” include features that tend to make data collec-
tion easy, cheap, and fast, and the data, in consequence, relatively disposable. As the 
unit cost of DNA sequencing falls with advances in technology, on top of scaling 
and standardizing effects of commercialization, researchers may find it easier to 
collect new fruit fly specimens, extract new DNA samples, and generate new collec-
tions of sequence data for their project-specific uses, than to rely on data already 
generated by other labs (that may have used doubtful or out-of-date methods, or 
with questionable expertise, or based on samples less specifically suited to a differ-
ent project’s questions and purposes).

I conclude by noting that the case study analysis and model of datapoint and 
dataset journeys sketched here indicates not only that new modes of data-centric 
science are emerging, but that old ones are transforming—particularly around the 
packaging, vehicles, conveyances, and infrastructure that gets organized or reorga-
nized to put research subjects, specimen samples, extracted materials, and data 
points and sets into motion on new kinds of journeys to new kinds of destinations.
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Sharing Data, Repairing Practices: 
On the Reflexivity of Astronomical Data 
Journeys

Götz Hoeppe

Abstract  This chapter probes into how scientists’ discursive interactions are ori-
ented not only to others’ arguments but also toward achieving an agreement on what 
data are like and how they ought to be used. It does so by attempting a reading of an 
episode of data re-use from recent astronomy that is mindful of researchers’ inter-
actional and discursive work. I focus on the presumed detection, in 2004, of a gal-
axy at record distance from Earth. The original data became public at the time of 
publication and were soon re-used and supplemented with new observations by 
other teams. Data re-using scientists sought to reconstruct the practices used in 
making the discovery claim, and found them at fault. This allowed them to suggest 
the repair of data and of data use practices, which were subsequently taken up by the 
scientists who had claimed the discovery. I argue that this work was enabled by 
astronomy’s discipline-specific architecture for observation, of which objectual, 
technological and institutional elements provide contexts and resources for achiev-
ing the reflexive repair of data and data use practices. These astronomers experience 
data journeys more as reflexive loopings in screen-mediated work than as itineraries 
across physical sites or geographies.

1  �Introduction

As Sabina Leonelli notices in her introduction to this volume, Bruno Latour’s notion 
of immutable mobiles – ‘objects which have the properties of being mobile but also 
immutable, presentable, readable and combinable with one another’ (Latour 1986, 
7) – has been a useful starting point for making sense of data journeys in the sci-
ences. In this contribution I take Latour’s notion as a point of departure for probing 
into how digital data become ‘tools for communication’ (Leonelli 2016, 69) in 
astronomical research, oriented not only to the production of specific results but 
also to the repair or correction of data analysis practices. In doing so I take note of 
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how data journeys in astronomy are shaped by its disciplinary setting in terms of 
researchers’ shared object of interest (the sky), their use of digital infrastructures 
and data standards, as well as their largely shared access to telescopes and data. This 
has pervasive effects on the mobility and uses of data in astronomy. One of these is 
how it enables practices to be reflexive, that is, how earlier observations and inter-
pretations can be witnessably revised in sequences of action.1

Hans-Jörg Rheinberger (1997, 106) has observed that, by making (traces of) 
transient events durable and available in many places and at various times, immu-
table mobiles are ‘able to retroact on other graphematic articulations – and, what is 
most important, not only on those from which they have originated.’ Drawing on 
William Ivins (1953) and Elizabeth Eisenstein (1979), Latour (1986, 19–20) can be 
read as illustrating this retroaction with the impact of printing technology on early 
modern astronomy, which made it possible for astronomers to notice differences 
and inconsistencies in data, allowing them to use new observations to re-assess 
prior ones.

The retroaction that Rheinberger describes is worth a closer look if one seeks to 
gain insights into contemporary data uses as social and material practices. For one 
thing, it brings the sequentiality and temporality of scientific work into focus. New 
data can lead researchers to re-consider prior records. They can spot differences 
where data were expected to show ‘the same,’ alerting data users to details of the 
unavoidably local and contextual production and interpretation of data. In its course, 
data may be used-as-is, be dismissed, or repaired.2

When conceived as machine-generated ‘inscriptions’ (Latour and Woolgar 
1979), digital data may appear to be text-like, a form of writing. The transmission 
of writing has been commonly regarded as fundamentally distinct from dialogical 
exchanges in co-presence (Peters 1999). Sybille Krämer expresses this view starkly 
when she writes that ‘[t]ransmission is precisely not dialogical: the goal of technical 
communication is emission or dissemination, not dialogue. We can thus clearly dis-
tinguish between the personal principle of understanding and the postal principle of 
transmission’ (Krämer 2015, 23). As conversation analysts have demonstrated, talk-
in-interaction (whether in face-to-face situations or mediated through telephones or 
screen-based media) is shaped by the ongoing repair of utterances: fellow conversa-
tionalists routinely resolve the meaning of indexical, context-dependent utterances 
in the ‘here and now’ of their interaction, and thus maintain mutual understanding 
and communicative order concurrently. For example, a speaker may correct an 
utterance upon noticing her recipient’s misunderstanding – a case of self-repair. In 
doing so participants maintain intersubjectivity (Schegloff 2006).

By contrast, uses of texts appear to be subjected less to the ‘tyranny of account-
ability’ (Enfield and Sidnell 2017) characteristic of social interaction in co-presence 

1 I shall elaborate on this ethnomethodological usage of reflexivity later in this text. Always under-
stood as temporal and sequential, it is different, for example, from the postmodern concern of 
ethnographers about their role in doing fieldwork.
2 The removal of an artifact and the (re-)construction of missing metadata would be two kinds of 
repair of scientific data.
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(Deppermann 2015). Interpreting texts is less constrained than the interpretation of 
utterances in conversation, but also more necessary (McHoul 1982; Livingston 
1995). But because of this, certain features of texts become more prominent and 
consequential for assuring the success of communication at a distance, including 
the resort to numbers (Porter 1995; Heintz 2007).

Some work on writing argues that the schism between transmission and dialogue 
is not as radical in practice as Krämer and others posit in principle. Thus, Dorothy 
Smith (2001, 175–176) suggested to conceive of the social, organizational and insti-
tutional uses of texts, especially of printed materials, as

text-reader conversations in which, unlike real-life conversations, one side of the conversa-
tion is fixed and unresponsive to the other’s responses. (…) However the reader takes it up, 
the text remains as a constant point of reference against which any particular interpretation 
can be checked. It is the constancy of the text that provides for the standardization effect. 
(…) Text-reader conversations are embedded in and organize local settings of work. (…) In 
standardizing one ‘party’ to every text-reader conversation, the terms of all conversations 
with the ‘same’ text are standardized. Among participants, an open-ended chain is created: 
text-reader-reader-reader-.

Much like Latour (1986), Smith explores the consequences of the spread of 
‘identical copies’ to multiple sites, yet she focuses on the institutional, regulatory 
and always again locally situated uses of texts. If digital media technologies provide 
new possibilities for communication, one may wonder if, in scientists’ work with 
digital data, the schism of transmission and dialogue is likewise challenged.

Building on studies of social interaction and Alfred Schütz’s (1967) phenome-
nology of the social world, Charles Goodwin illustrates how social actors perform 
‘co-operative, accumulative action on materials provided by predecessors who are 
not present’ (Goodwin 2018, 248). He argues that this pertains characteristically to 
scientific data production (Goodwin 2013, 8). Witnessing the training of an astron-
omy PhD student I observed that the work of combining data from different tele-
scopes is not only sequential, temporal, and contextual, but also reflexive (Hoeppe 
2014). That is, past actions and interpretations were commonly re-assessed, and 
repaired as this unfolding work was oriented to the (re-)construction of natural 
order. For example, when the output of an algorithm for parameter estimation was 
assessed and deemed implausible (yielding galaxies that were ‘too bright for their 
distance’), calibration exposures were re-inspected, resulting in the identification of 
an artifact of straylight that was subsequently subtracted to yield better calibrated 
‘science images’ on which the algorithm was re-run. Involving such instances of 
repair this work bears a resemblance with repair in talk-in-interaction and correc-
tion in instructional settings as it has been studied by ethnomethodologists and con-
versation analysts (Macbeth 2004; Schegloff 2006).3 It also resonates with studies 

3 Ethnomethodology is a sociological approach to the study of human sense-making practices 
rooted in phenomenology. Following Garfinkel (1967), it inquires into how people achieve mutual 
understanding and social order through practices that are inevitably embodied, witnessable, tem-
poral and sequential. See Lynch (1993: 15–17) for a refined account of ethnomethodological 
reflexivity.
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that have expanded and elaborated this notion of repair to address the maintainance 
of infrastructures and socio-material orders (Henke 2000; Graham and Thrift 2007; 
Schaffer 2011; Sims and Henke 2012).

My aim in this chapter is to make the notions of repair and reflexivity fruitful for 
the study of data journeys in the natural sciences. I do so by attempting a reading of 
an episode of data re-use from recent astronomy. I focus on the presumed detection, 
in 2004, of a galaxy at record distance from Earth. The original data became public 
at the time of publication and were soon re-used and supplemented with new obser-
vations by other teams. I inquire into how data re-using scientists sought to recon-
struct the practices used in making the discovery claim, and found them at fault. 
Doing so allowed them not only to suggest the repair of data (such as removing 
artifacts) but also the repair of data use practices, which were subsequently taken up 
by the scientists who had claimed the discovery. I shall argue that this work was 
enabled by astronomy’s discipline-specific ‘architecture for observation,’ of which 
objectual, technological and institutional elements provide contexts and resources 
for achieving the reflexive repair of data and data use practices. Before describing 
and interpreting this episode (in Sects. 3 and 4) I sketch the architecture of astro-
nomical observation in which it unfolded (Sect. 2).

While I draw mainly on published sources, the episode I describe happened 
when I worked as an editor and staff-writer of the popular astronomy magazine 
Sterne und Weltraum. I wrote two pieces about it (Hoeppe 2004, 2005). This maga-
zine’s editorial offices are located at the Max Planck Institute for Astronomy in 
Heidelberg (Germany), a leading research institute, where I benefitted from wit-
nessing rumour about the claimed discovery and assessments of it. This chapter is 
also informed by my subsequent 18 months of ethnography on digital astronomical 
research practices, conducted between 2007 and 2010, followed by re-visits between 
2010 and 2017, as well as by my own graduate training in astrophysics.

2  �An Architecture for Observation: Enabling Reflexive Uses 
of Data

Seeking to gain insights into data journeys in contemporary astronomy as a social 
and material practice, I first identify three recurrent disciplinary aspects that come 
to matter therein: It is marked by astronomers’ shared practices of observing and 
re-observing objects in the sky (a), by their data being almost exclusively digital and 
available in a standard format (b), and by the shared access to many observing 
facilities and much observational data (c). The first of these – an object or environ-
ment, of sorts – is specific to astronomy (although reference to shared environments 
or objects is common in other disciplines as well). The other two – a set of technolo-
gies and social institutions  – are shared to a certain degree with other scientific 
disciplines.

Together these aspects contribute essentially to what I shall call the architecture 
of contemporary astronomical observation. It is a relatively stable, and partly 
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institutionalized, configuration that is shared by diverse users throughout various 
projects. Today encompassing all branches of astronomy, this architecture has been 
shaped by the use of satellite observatories and radio telescopes (Hoeppe, in prepa-
ration). Data need not be digital or public to be able to travel, nor does the sky have 
to be fixed for this to succeed, but in contemporary astronomy the three aspects – 
(a), (b) and (c) – are central to researchers’ experience.4 Here I prefer ‘architecture’ 
to the notion of ‘knowledge infrastructure’ (Edwards 2010; Borgman 2015; Hoeppe 
2019a) for drawing attention to the discipline-specific, situated and material setting 
of observational astronomy and its pervasive effects on the mobility and uses of data.

My use of ‘architecture’ is informed primarily by Michael Lynch (1993) and 
Charles Goodwin (2010). Drawing on work by Gurwitsch, Merleau-Ponty and 
Foucault, Lynch (1993, 132) inquired into how acts of observation are shaped and 
constrained by disciplinary ‘archi-textural environments’ that comprise buildings, 
laboratory set-ups and other equipment. Goodwin (2010, 107) conceives of an 
‘architecture for perception’ as ‘a physical object that embodies a solution to a 
repetitive cognitive task posed in the work of the community using it.’ My use of 
‘architecture’ resonates more loosely, but still pertinently, with Knorr-Cetina’s 
(2003) notion, informed in turn by Fligstein (2001), of the reflexive architecture of 
financial markets, wherein traders engage (and co-constitute) a shared object (a 
financial market) through mediating digital technologies.

2.1  �Object: ‘Astronomy is About Observing and Re-Observing 
Sources on the Sky’

In a blog post, New York University astronomer David W. Hogg (2008) noted in 
passing that ‘[a]ll of astronomy and astrophysics is built on the observation and 
reobservation of sources on the sky.’ Doing so is contingent on the stability or 
‘immutability’ of the sky that has been a commonplace for astronomers since 
Antiquity (Evans 1998). While some objects are known to move in respect to this 
apparently stable background, most celestial objects can be found again by refer-
ence to patterns of stars or celestial coordinates. These are dominant organizing 
principles for accessing observational data.

Whereas some ancient Greek philosophers famously imagined the astronomical 
sky to be a material sphere surrounding all observers on Earth (Aristotle 1939), 
contemporary astronomers tend to define it as ‘a two-dimensional distribution of 
intensity of electromagnetic radiation’ (Léna 1989, 245). But it only becomes a 
‘two-dimensional distribution’ when thus represented using media like paper, pho-
tographs or digital technologies. The epistemic benefits of observing and re-
observing objects in the sky are contingent on this use of media. In using diverse 

4 These three aspects do not characterize astronomical work exhaustively. Other elements of this 
architecture would be, for example, the implicit cosmology (Hoeppe 2014) that astronomers share, 
as well as widely shared tools, including the SExtractor code mentioned below.
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media, astronomers’ ‘mundane reason’ is oriented to reflexively producing consis-
tent representations of the ‘same’ sky despite ever-present noise and artefacts in 
their data (Hoeppe 2014, 2019b; cf. Pollner 1987). In such work, cartographic refer-
ence posits the uniqueness of the world as a methodological maxim (Giere 2006) – 
an assumption that facilitates robustness reasoning in astronomy (cf. Wimsatt 2012 
[1981]; Wylie, chapter “Radiocarbon Dating in Archaeology: Triangulation and 
Traceability”, this volume).

2.2  �Technology: Astronomical Data Are Digital, and Utilize 
a Standard Format

A second aspect of contemporary astronomy’s architecture of observation is techno-
logical. Unlike the enormous diversity of materials that biologists, oceanographers 
or archaeologists can use (Leonelli 2016; Halfmann, this volume; Wylie,  this vol-
ume), almost all data in contemporary astronomy are digital recordings of cosmic 
radiation. To unpack the specific salience of the digital for the travel of data, it is 
necessary to refine Latour’s (1986) notion of immutable mobiles, which included, 
among others, hand-drawn maps, machine generated inscriptions and printed 
tabulations. Rheinberger (2011, 344) suggests that the traces produced in laboratory 
experiments become ‘data proper’ (and proper immutable mobiles) only when they 
can be easily stored and retrieved. In my reading, he appears to be close to suggesting 
that ‘data proper’ are symbols. In Peirce’s (1992 [1894]) classification of the relation 
between signs and their objects, traces are indices and represent their object by 
contiguity. Photographs are indices as well as icons, signs which correlate with their 
objects by resemblance. Beyond this, digital photographs are also symbols, since – 
constituted by arrays of numbers, in binary format or otherwise – they use notational 
conventions. This resonates with an understanding of the digital as the ‘encoding’ 
of ‘information’ that permits its subsequent retrieval without loss (e.g. Dourish 
2017, Chapter 1).

Invented in 1969, Charged-Coupled Devices (CCDs) are found in most digital 
cameras and at all observatories today (Smith and Tatarewicz 1985; McCray 2014). 
These detectors use the photoelectric effect to produce grid-shaped pixel images 
which can be read out and then stored, retrieved or transmitted as digital files. Not 
only are they very sensitive, and – once cooled with liquid nitrogen to reduce quan-
tum noise in the detector – can be exposed for several hours. CCDs also are very 
linear, recording incoming light in direct proportion to the exposure time. This 
implies that their outputs are directly amenable to arithmetic calculations, including 
the pixel-by-pixel addition, subtraction and division of images, with generative uses 
for epistemic work (Hoeppe 2019b). The linearity of CCDs also allows astronomers 
to calculate the exposure time necessary for reaching a specific sensitivity. This 
encourages conceiving of data in terms of the ‘abstract time’ of exposures and 
facilitates scheduling observing time – a requirement for the institutionalization of 
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service mode observing, in which observatory staff members produce data for 
absent data users (Hoeppe 2018).

In 1979, astronomers defined FITS (Flexible Image Transport System), a shared 
data format to ‘transfer regularly gridded astronomical image data between differ-
ent locations’ (Grosbøl et  al. 1988, 359; cf. also McCray 2014). It was quickly 
adopted and endorsed by all major observatories and space agencies. FITS files are 
calculable objects which link metadata to images and tables; they have been the 
dominant data format in astronomy for more than 30 years. The FITS format has 
shaped astronomers’ understanding of what their data are like.5 Its dominance con-
trast with the diversity of data formats in disciplines like biology (Leonelli 2016), 
the Earth sciences (Halfmann, this volume) and economics (Morgan, this volume).

2.3  �Social Institutions: Sharing Instruments and Data

The third aspect of astronomy’s architecture for observation is institutional.6 Since 
the 1960s, a dominant fraction of astronomical data has been produced by public 
observatories built and operated using tax money. In their process of allocating 
observing time, peer-review committees at major observatories and space agencies 
consider proposals from a diverse, international community of academic users. 
Current practices of observation and data management are deeply informed by how 
satellite telescopes and radio observatories have been operated since the late the 
1970s. These data have been digital throughout. Produced mostly at public institu-
tions, they were made exclusively available to applicant users only for a period of 
proprietary use (typically 6 or 12 months), after which they became public. The 
commitment to do so instigated the formation of public data archives. Another 
defining element of the operation of satellite and radio observatories was the intro-
duction of service-mode observing (Hoeppe 2018). Authors of observing projects 
can use data earlier, but they do not have preferential access to the local context of 
data production, including the ‘tacit knowledge’ of observatory staff members.

3  �Re-Using Data to Assess an Astronomical Discovery Claim

Given this background I now consider a discovery claim and its subsequent evalua-
tion, in which the original data, available publicly at the end of a period of proprie-
tary use, were re-used and re-assessed in the light of additional observations.

5 The dominant status of FITS as astronomy’s unique data format has been challenged recently.
6 Here I adopt Hart’s (2001, 136) convenient definition that an ‘institution is an established practice 
in the life of a community or it is the organization that carries it out.’
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3.1  �Record Distance: “A Lensed Galaxy at z = 10.0”

In 2004, a group of five astronomers led by Roser Pelló of the Observatoire Midi-
Pyrénées in Toulouse (France) announced the discovery of a galaxy at record dis-
tance from Earth (Pelló et al. 2004a). These researchers had used detectors at three 
large telescopes to observe clusters of galaxies, which, because of their considerable 
mass, are thought to act as gravitational lenses which focus the light emitted from 
faint distant background sources. By utilizing this ‘gravitational telescope,’ they 
hoped to exceed the sensitivity of previous searches for the most distant galaxies. 
What astronomers call redshift (abbreviated as z) is a measure of how much the 
wavelengths of the light emitted by cosmic objects are stretched due to cosmic 
expansion, shifting specific spectral features to longer wavelengths. Adopting a spe-
cific cosmological model allows computing both the distance and the look-back 
time, that is, how long this light has traveled to reach observers on Earth. Pelló et al. 
claimed to have discovered a galaxy at redshift 10.0 behind the galaxy cluster Abell 
1835, corresponding to a look-back time of more than 13 billion years. This was a 
momentous claim, given that spectroscopically confirmed, and thus presumably 
reliable, record-redshifts had increased more or less steadily from z = 5.7 in 1993 to 
‘only’ z = 6.5 in 2004, with a few redshift 7 candidates awaiting spectroscopic con-
firmation (Hu and Cowie 2006).

The Toulouse team relied on two lines of evidence. The first was a series of digi-
tal pixel images taken through a series of broad-band filters (each transmitting light 
of a specific wavelength range) in visible and near-infrared light using the Wide-
Field/Planetary Camera (WFPC2) of Hubble Space Telescope (HST), the 3.6-meter 
Canada-France Hawaii Telescope (CFHT) on Mauna Kea (Hawaii) and, with the 
Infrared Spectrometer And Array Camera (ISAAC) at one of the European Southern 
Observatory’s (ESO) four 8-meter Very Large Telescopes (VLT) on Paranal (Chile). 
These data, throughout in FITS format, were obtained in service mode. Pelló et al. 
first reduced the digital images of Abell 1835, detected objects using SourceExtractor 
(Bertin and Arnouts 1996), a code widely used in the community, and assembled a 
catalogue of photometric measurements of the detected sources in the exposures of 
all the filters used.

As in other attempts to find distant, young galaxies, Pelló et al. then searched for 
a discontinuity in the observed spectral energy distributions. To qualify as candidate 
high-redshift galaxies, objects had to be detected at longer (near-infrared) wave-
bands only, but not at shorter (visible) ones. The ‘break’ in-between, ascribed to the 
observed wavelength of the redshifted Lyman α spectral emission line of hydrogen, 
was expected from previous observations of distant galaxies and simulated model 
spectra.

Object #1916 in Pelló et al.’s catalogue was the most promising candidate. It was 
not detected in visible light, but in three near-infrared wavebands, with an apparent 
‘jump’ between the so-called J-band (around 1.26 μm) and the H-band (around 
1.65 μm; Fig. 1). This suggested a redshift around 10 to Pelló et al., even though 
detections in each single detection were only marginally statistically significant.
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The Toulouse team’s second line of evidence was a spectroscopic analysis. They 
recorded spectra of #1916  in the J-band, also with the ISAAC instrument at the 
VLT. Long exposures taken in two different observational set-ups suggested to them 
a statistically significant signal of a spectral line at a wavelength of 1.337 μm. 
Interpreting it as the redshifted Lyman α emission, they inferred a redshift of 10.0 
for #1916. Pelló et al. argued that finding a galaxy at such a high redshift, whose 
light was emitted only 460 million years after the big bang, was in accordance with 
theoretical models of galaxy formation and cosmology. On March 1, 2004, ESO 

Fig. 1  Figure 1 of Pelló et al. (2004a), showing digital photographic negatives of exposures of the 
Abell 1835 galaxy cluster using the Infrared Spectrometer And Array Camera (ISAAC) at the Very 
Large Telescope (VLT, Chile; above) with exposures of the field around the candidate high-redshift 
galaxy #1916, as taken with the WFPC2 camera on board the Hubble Space Telescope in the visual 
R band (bottom left) and the near-infrared J-, H-, and K-bands using ISAAC (bottom right). Pelló 
et al. claim the detection of #1916 in the J-, H- and K-bands. (Reproduced with permission © ESO)
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published a press release entitled ‘VLT smashes the record of the farthest galaxy 
known.’7 It was widely taken up by popular news media.

3.2  �Three Hot Pixels

Pelló et al.’s ISAAC/VLT observations became public through ESO’s data archive 
website on March 3, 2004, one year after the observations were recorded, and 2 days 
after publication of the press release. Several scientists retrieved the data for scruti-
nizing the analysis and for re-assessing the data in light of additional observations. 
Soon thereafter the Toulouse team’s second line of evidence was challenged. 
Stephen Weatherley from Imperial College London and colleagues processed the 
spectroscopic data with an independent approach (Weatherley et al. 2004). After 
failing to confirm the spectral line, they tried to identify the discrepancy with the 
analysis of the Toulouse team of Pelló et al. (2004a), which they refer to as P04, by 
replicating their procedure:

To find the cause of the discrepancy between our results for the Lyα line and those 
reported by P04, we re-reduced the data following the principles of P04, i.e. subtracting 
frames in pairs, then wavelength calibrating the frames, rebinning onto a linear wave-
length scale. In this process we made a careful check for bad data. We identified three 
variable hot pixels3 [pixels which did not record incoming light linearly and have to be 
excluded from the analysis] which result in spurious positive flux in four of the sky-sub-
tracted frames in the region of the emission line. We confirmed that these are very easily 
identified when the frames are registered to the nearest pixel, but are harder to spot when 
the data are rebinned in the wavelength calibration step. The summed spurious positive 
flux, when averaged into the entire data set, corresponds approximately to the flux mea-
sured by P04; therefore these variable hot pixels plausibly account for the difference 
between our results and those of P04.

3 These have coordinates (28, 761), (28, 836), (919, 790) in the raw frames. (Weatherley 
et al. 2004, L32)

Weatherley et al. recognized that one step in the reduction procedure adopted by 
Pelló et  al. (2004a)  – ‘rebinning the data onto a linear wavelength scale’  – had 
caused them to fail to identify the three hot pixels as artifacts that, in a proper analy-
sis, had to be removed from the data. In other words, Weatherley et al. could repli-
cate the signal reported by Pelló et  al. only if making what they thought was a 
mistaken use of the data. By listing the positions of the hot pixels in the raw frames 
in a footnote, Weatherley et al. made the Toulouse team accountable in detail to their 
treatment of the raw data.

7 http://eso.org/public/news/eso0405/ (accessed 20 April 2018).
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3.3  �A Transient Source?

It did not take long until the Toulouse team’s first line of evidence (an object detected 
with the photometric properties of a high-redshift galaxy) was challenged as well. 
Only in combination with the photometry measured through broad-band filters was 
the high-redshift interpretation of the spectral line plausible. A single spectral line 
itself would not have provided substantial evidence for any galaxy’s redshift, since 
the spectra of young, intensively star-forming galaxies exhibit several perspicuous 
spectral lines at widely different wavelengths. Their individual detection would 
point to different, and generally smaller, redshifts. Pelló et al.’s claim that the spec-
tral line detected of #1916 was the redshifted Lyman α emission of a galaxy criti-
cally depended on the detected discontinuity in emission between the near-infrared 
J and H wavebands.

However, as pointed out by a team led by Malcolm Bremer of the University of 
Bristol (UK), both of these detections were ‘not highly significant’ (Bremer et al. 
2004, L1). Shortly after the publication of Pelló et al.’s paper, Bremer and his col-
leagues were granted two blocks of Director’s Discretionary Time8 for using the 
NIRI (Near Infra-Red Imager) camera at the 8-meter Gemini North telescope on 
Mauna Kea (Hawaii) to obtain a deeper exposure of #1916 in the H-band. In their 
resulting publication, Bremer et al. (2004) state that they aim to ‘better constrain the 
H-band photometry (…) and to investigate the morphology of the source under the 
excellent seeing conditions that are often attainable at Gemini-North’ (Bremer et al. 
2004, L2). Thus, they write that they are not merely out to replicate Pelló et al.’s 
claim but seek to refine their interpretation.

Even though Bremer et al.’s (2004) Gemini NIRI observations had been taken 
under excellent conditions and being significantly deeper, i.e. more sensitive, than 
the ones taken for Pelló et al. at the VLT, they failed to detect #1916 in the H-band. 
Their paper is a comprehensive exercise in making sense of this non-confirmation. 
They did so by first re-reducing Pelló et al.’s H-band data, which they showed side-
by-side along with their deeper H-band image (Fig. 2), confirming that their photo-
metric calibration agrees well with that of Pelló et al. Next, Bremer et al. set out to 
probe whether, with their method and new data, they could have accidentally failed 
to detect #1916. For doing so they placed artificial objects into their digital expo-
sures and demonstrated that, using their source detection and photometry algo-
rithms, they could retrieve the properties of these objects, illustrating the soundness 
of their measurements. As such, they called the discontinuity between the J- and 
H-band fluxes into question, and with it a critical piece of evidence for the redshift 
of 10.0. Maintaining a cautious and considerate tone throughout, Bremer et al. dis-

8 Demonstrating that one aims to conduct observations on a ‘hot and highly competitive topic’ is 
one legitimate rationale for submitting a proposal for Director’s Discretionary Time at the European 
Southern Observatory. See: https://www.eso.org/sci/observing/policies/ddt_policy.html (accessed 
14 September 2017).
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cuss that #1916 may not existent or be intrinsically variable, considering if a 
transient object in the outer solar system could have been spotted in some expo-
sures. They conclude that ‘the reality of any source at this position [of #1916] has to 
be strongly questioned’ (Bremer et al. 2004, L4).

The lack of a detection at visible wavelengths was another piece of Pelló et al.’s 
evidence for the high redshift of #1916, an argument informed by model spectra 
energy distributions of young star-forming galaxies. To probe this further, mem-
bers of Bremer’s team, now under the lead of Matt Lehnert of the Max Planck 
Institute for extraterrestrial Physics in Garching (Germany), succeeded to obtain 
Director’s Discretionary Time at the VLT to obtain additional deep imaging in the 
(visible) V-band. They wrote: ‘A V-band detection would be decisive: it would 
demonstrate beyond any doubt that the source is not at z = 10’ (Lehnert et al. 2005, 
81, emphasis in original). Other than in their previous paper, their objective now 
appears to challenge Pelló et al.’s discovery claim. Despite going deeper than Pelló 
et  al.’s previous V-band images, which had been taken with the Hubble Space 
Telescope, and with assessing their detection limit by again placing faint artificial 
objects into their digital exposure and retrieving them using algorithms, Lehnert 
et al. fail to detect #1916 in the V-band. They note that, ‘[f]ormally, a nondetection 
is consistent with the candidate having a redshift of 10’ (Lehnert et al. 2005, 82), 
and then embarked on a long critical discussion of how a transient source, such as 
a supernova explosion or an object moving in the outer solar system, could have 
conspired to produce the signal that Pelló et al. claimed, finding none of these sce-
narios compelling.

Fig. 2  Figure 1 of Bremer et al. (2004), showing their re-reduction of Pelló et al.’s (2004a, b) 
H-band image taken with ISAAC at the VLT (right) along with new H-band observations made 
with the NIRI camera at the Gemini North telescope at Mauna Kea (Hawaii). Bremer et  al. 
emphasize that they have used the same display parameters as Pelló et al. Note that these images 
are rotated relative to those shown in Fig. 1. (© AAS. Reproduced with permission)
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3.4  �Lost in the Noise

Yet another group of astronomers combined new observations of #1916 with a re-
analysis of Pelló et al.’s ISAAC/VLT data. For an independent study of Abell 1835, 
Graham P. Smith of the California Institute for Technology and colleagues at the 
University of Arizona (USA) had been granted spectroscopic observations using 
LRIS, the Low-Resolution Imaging Spectrograph at the 10-meter Keck telescope on 
Mauna Kea (Hawaii), and infrared images taken with the Spitzer Space Telescope, 
a satellite observatory. These researchers were able to modify their observing run 
with LRIS so as to include the position of #1916, and to search for it in the Spitzer 
images which had been scheduled prior to Pelló et al.’s discovery announcement. 
Neither of these observations yielded a detection at the position of #1916. It is note-
worthy that Smith had been the principal investigator of the Hubble Space Telescope 
WFPC2 observations of A1835 that Pelló et al. (2004b) (re-)used.

Smith et al. (2006) then went on to re-analyze Pelló et al.’s H- and K-band data 
(see Fig. 3). After not detecting #1916 with what they regarded as a proper analysis 
set-up, they experimented with alternative algorithm settings (smoothing the 
images, varying the size of the detection area etc.) to find out under which condi-
tions Pelló et  al.’s near-infrared images would yield the detection they claimed. 
Doing so was similar to Weaverley et al.’s (2004) re-analysis of Pelló et al.’s ISAAC/
VLT spectra. Smith et al. (2006) wondered how the apparently elongated shape of 
#1916 (as seen in Fig. 1, center of the bottom panel, and Fig. 2, right image) could 
be reproduced. They found that only, and inappropriately, searching for objects at an 
angular scale smaller than the resolution of the exposures would yield the stated 
detection at the position of #1916. Doing so would make it one of 500 comparably 
large statistical fluctuations across the field, each of which could have been mistak-
enly held for a detection. They conclude that ‘there is no statistically sound evi-
dence for the existence of #1916’ (Smith et al. 2006, 580).

Fig. 3  Figure 1 of Smith et al. (2006), showing re-reductions of Pelló et al.’s (2004a, b) H and K 
near-infrared images of the field around the position of the high-redshift galaxy candidate #1916. 
Note that these images are rotated relative to those shown in Fig. 1. Using the same data, Smith 
et  al. fail to replicate Pelló et  al.’s H- and K-band detection. (© AAS.  Reproduced with 
permission)
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3.5  �The Toulouse Team Responds to Its Critics

Progressively faced with these accounts, the Toulouse team first endorsed Bremer 
et  al.’s speculation that #1916 might be variable and announced a more detailed 
investigation (Péllo et al. 2004b).9 Two years later they presented a comprehensive 
analysis of their search for distant galaxies in the fields of the galaxy clusters A1835 
and AC114 (Richard et al. 2006). It includes improved photometry of #1916, which 
they rename as A1835#8, and, in separate online material, a newly estimated red-
shift: z = 7.38, which is much lower than the claim of a record redshift (Richard 
et  al. 2006, Online Material, p. 4). Citing Lehnert et  al. (2005) and Smith et  al. 
(2006), Richard et al. acknowledge in their main paper that ‘the photometric proper-
ties of this source are still a matter of debate’ and notice that ‘its nature (and hence 
also its redshift) presents a puzzle’ (Richard et al. 2006, 873). They drop it from 
their list of high redshift galaxy candidates without addressing the alternative analy-
ses of Bremer et al. and Smith et al., whose data had meanwhile become public.10

All critics of the Toulouse team acknowledged communications with Roser Pelló 
in their publications (Weatherley et  al. 2004, L29, L30; Bremer et  al. 2004, L4; 
Lehnert et al. 2005, 84; Smith et al. 2006, 581). In their 2006 paper, the Toulouse 
team in turn acknowledges its critics’ ‘useful comments and discussions’, including 
Graham Smith and his co-author Egichi Egami (Richard et al. 2006, 879). A closer 
reading of their paper suggests that the Toulouse team’s refined data analysis is 
informed by their critics. The Online Materials to their paper are particularly inter-
esting. There they describe improvements in the data reduction and attend carefully 
to the assessment ‘false-positive detections.’ Not only did they now probe their 
completeness statistics with inserting (and algorithmically retreiving) artifical stars 
into their digital images (Richard et al. 2006, 867), as Bremer et al. (2004) had done 
(see above). They also argue for a careful analysis of the noise properties of near-
infrared images that echoes the comments and recommendations of Smith et  al. 
(2006). These Online Materials thus communicate the Toulouse team’s adoption of 
specific sequential operations of work with near-infrared exposures first adopted by 
secondary data users. As such, members of the Toulouse team repaired (or cor-
rected) its data analysis practices.

On September 27, 2010, the European Southern Observatory added a note to the 
2004 press release on its website, stating that the ‘identification of this object with 

9 Since the field observed by Pelló et al. (2004a) is located in a position on the sky where models 
of gravitational lensing in the gravitational field of A1835 predict large magnifications of sources 
at a wide range of cosmic distances the probability of detecting variable sources is increased.
10 It is only in a non-peer reviewed venue, ESO’s quarterly magazine The Messenger, that members 
of the Toulouse team defended their analysis against the criticism of Bremer et al. (2004), Lehnert 
et al. (2005) and Smith et al. (2006). Notably, this paper (Schaerer et al. 2006) is co-authored by 
Egichi Egami, a co-author of Smith et al. (2006). It did not elicit a response in a peer-reviewed 
publication.
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a galaxy at very high redshift is no longer considered to be valid by most 
astronomers.’11

4  �Discussion and Conclusions

This discovery claim and its subsequent dismissal is an episode of astronomical data 
journeys that involved 18 astronomers and data from seven different detectors 
attached to four large ground-based telescopes (one in Chile, three in Hawaii) and 
two satellites. These diverse data ‘met’ in ‘cartographic’ digital images, as well as 
in discipline-specific representational spaces: in tables listing measured radiation 
fluxes as a function of wavelengths, and in their graphical representation as spectral 
energy distributions (SEDs), typically with model SED shapes overlaid (as in Fig. 1 
of Pelló et al. 2004a). Once its proprietary period had ended, Pelló et al.’s (2004a) 
ISAAC/VLT data were being successively re-analysed in the light of additional 
observations, and the question turned to what Pelló et al. had done with the data to 
see what they saw. Given that their observations were done in service mode, Pelló 
et al. did not have preferential access to the local context of data production at the 
observatory.

To see (or not to see) #1916 in the reduced images was distinctly shaped by spe-
cific equipments and work practices (cf. Lynch 2013). Bremer et al. and Smith et al. 
present images of their re-reductions of Pello et al.’s VLT/ISAAC data used for the 
discovery claim alongside reductions of their supplementary data. The critics insist 
that one has to make specific identifiable and describable mistakes to make #1916 
visible as a high-redshift galaxy. Weatherley et al. (2004) claim that the presumed 
spectral line becomes visible only when three hot pixels are not properly deleted 
from the data set, and Smith et al. (2006) found that only when parameters are set to 
values they consider inappropriate did the search algorithm identify #1916 as a 
proper source. All participants agreed that at least two lines of evidence were neces-
sary to claim the discovery of a high-redshift galaxy, a shared demand for the 
robustness of evidence (see the chapters by Halfmann, Parker and Wylie).

Pelló et al.’s (2004a) discovery announcement elicited the critical responses and 
was as such generative of a sequence of actions. The unfolding ‘text-reader conver-
sation’ (Smith 2001) was marked by a series of comparisons involving re-analyses 
of Pelló et al.’s VLT/ISAAC ‘raw’ data (as available on the observatory website) and 
re-assessments of the initial detection. The results of these re-analyses were made 
witnessably visible (see Figs. 2 and 3). This conversation was not entirely virtual, 
with scientists reading each other’s papers and working with the original data set in 

11 http://eso.org/public/news/eso0405/ (accessed 20 April 2018).
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different ways. As mentioned above, all critics acknowledge communications with 
Roser Pelló, the lead author of the Toulouse team.12

While any description of action is unavoidably incomplete at some level of detail 
(Livingston 2008, 161), the critics of the Toulouse team point to omissions of 
descriptive detail in the Pelló et al. (2004a) article that could challenge their repli-
cability. Thus, Weatherley et  al. (2004, L31) miss a proper description of Pelló 
et al.’s bad pixel rejection methods, Bremer et al. (2004, L3) bemoan the unspecified 
observing time of the H-band exposure, and Smith et al. (2006, 576) note that Pelló 
et al. ‘neither explain how they reduced the [Hubble Space Telescope WFPC2] data 
nor how the detection limit was calculated.’ However, these critics claim to have 
been able to re-construct what Pelló et al. had done nevertheless (perhaps thanks to 
Roser Pelló’s clarifications; see above) – at least to their own satisfaction and expec-
tation of what they themselves could be held accountable to. In this sense, the open 
access to data made analysis practices available for inspection by other researchers. 
This opens the way to a deeper mutual understanding, and possibly agreement, of 
what proper procedures for using these data are.

As such, this episode can be read as an instance of the repair of data use prac-
tices. Members of the Toulouse team ended up learning from secondary users of 
‘their’ data, making their revised understanding witnessable in the Online Materials 
of their Richard et al. (2006) article. It seems, then, that it was through the (separate) 
circulation of a discovery claim and the ‘raw’ data on which it was based that prac-
tices could travel from data re-users ‘back’ to those for whom the data were origi-
nally recorded. The ‘raw’ data themselves were not repaired, but remained fixed as 
the first element of a ‘text-reader conversation’ (Smith 2001). The work described 
was reflexive, inasmuch as past actions were re-interpreted in the light of new data 
and analyses, and made witnessable as such. In terms of its mediated character and 
its episodic temporality that extended over 2 years, the repair of practices in this 
episode was markedly different from conversational repair or instructional correc-
tion (Macbeth 2004; Schegloff 2006). However, as argued previously for cases of 
maintaining, or re-establishing the functioning of, motor boats (Sohn-Rethel 1990), 
buildings (Henke 2000), scientific instruments (Schaffer 2011), infrastructures 
(Graham and Thrift 2007) and credibility (Sims and Henke 2012), the notion of 
repair is illuminating in its orientation to social, material and natural orders.

The architecture for observation that I described in Sect. 2 provided resources for 
the assessment and repair of data and data use practices. First, there are its objectual 
features. The ‘immutability of the heavens’ has been instrumental already for 
assembling the data set that the Toulouse team gathered over a period of 2 years 
(Pelló et al. 2004a). The use of celestial coordinates for achieving reference was not 
described as being problematic in this episode. Only in respect to the possibility that 
Pelló et al. may have detected a transient source were time-variable phenomena, 

12 I restrict my discussion to articles that appeared in peer-reviewed journals. The chronology of 
events is unavoidably affected different periods of review, re-submission and publication.
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such as small objects moving in the outer solar system or supernovae, invoked (by 
Lehnert et al. and Smith et al.) as interpretive resources.

Secondly, there are its technological and medial features. The importance of the 
digitality of data is illustrated not only by its apparent mobility (through information 
infrastructures), which – like the FITS data format – is presumed throughout and 
not mentioned in the publications cited, but also by the possibilities of analysis 
afforded by this medium, including Smith et al.’s experimenting with inserting arti-
ficial objects into their images and their detailed assessment of the statistical proper-
ties of noise in their infrared images. The Toulouse team later adopted these 
techniques.

Thirdly, this episode was shaped institutionally not only by the open access to 
Pelló et al.’s VLT/ISAAC data after the proprietary period, which made it possible 
for others to reconstruct and criticize their actions. With the exception of having 
access to the data earlier, Pelló et al. used ESO’s data archive just like those who 
later scrutinized, and contested, their discovery claim.

The possibility of re-using data for making sense of what the Toulouse team had 
done to see what they saw arguably contributed to avoiding a discourse in which a 
discovery claim was directly confronted with counter-evidence, resulting in its dis-
missal. As interest turned from the presumed discovery of a specific galaxy at record 
distance to the viability of the method of using galaxy clusters as ‘gravitational 
telescopes’ for such work, the reputation of the Toulouse team was not damaged 
beyond repair. Indeed, its members have continued to do much respected research 
in the field.13 Since their data had been taken by observatory staff in service mode, 
Pelló et al. could not be blamed for lacking technical skill or manipulative intentions 
in producing their data. Although Pelló et al. were informally blamed for having 
issued an overly bold and ultimately mistaken claim, nobody accused them of fraud. 
Galison (2003) and Leahey (2016) have pointed out that scandals of fraud are rare 
or even absent in contemporary astronomy, ascribing this mostly to the dearth of 
commercial interest and the large team sizes in the discipline. Going beyond this 
claim it seems that if there is a particular ethos of sharing in astronomy, it may well 
be constituted by the ‘tyranny of accountability’ (Enfield and Sidnell 2017) of this 
work with open access data in astronomy’s architecture for observation.
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Evaluating Data Journeys: Climategate, 
Synthetic Data and the Benchmarking 
of Methods for Climate Data Processing

Wendy S. Parker

Abstract  This chapter concerns the benchmarking of methods used to process data 
in climate science. It explores the nature and value of benchmarking in this context 
by examining an ongoing initiative – the International Surface Temperature Initiative 
(ISTI) – that is developing a public databank of temperature observations as well as 
a system for benchmarking the methods that databank users employ to further pro-
cess the data. Interestingly, the benchmarking system will make use of “synthetic 
data” generated with the help of computer simulation models. It is argued here that 
the benchmarking system has crucial scientific and gatekeeping roles to play in the 
context of ISTI. It is further suggested that, once we appreciate how synthetic data 
are to be produced and used by ISTI, we uncover yet another variety of what Paul 
Edwards (A vast machine: computer models, climate data, and the politics of global 
warming. MIT Press, Cambridge, MA, 2010) has described as “model-data symbio-
sis” in the practice of climate science.

1  �Introduction

In November 2009, email exchanges among climate scientists were taken without 
authorization from servers at the U.K.’s Climatic Research Unit and made public on 
the Internet. Dubbed “Climategate” in blogs and popular media, the contents of the 
emails gave rise to allegations of fraud and scientific misconduct on the part of cli-
mate scientists and called attention to an ongoing struggle between climate scien-
tists and climate contrarians over data access. Several independent reviews 
exonerated climate scientists of the charges of fraud and misconduct but did fault 
them in one significant respect: for being insufficiently open and transparent in their 
dealings with contrarian requests for information, including Freedom of Information 
requests for raw data used to estimate changes in global mean surface temperature 
over land (see e.g. Russell et al. 2010).
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The International Surface Temperature Initiative (ISTI) was launched in 2010, in 
the wake of the Climategate episode, and seeks to promote transparency and open-
ness in the process of producing temperature change estimates (Thorne et al. 2011). 
Spearheaded by leading climate data experts in the UK and around the world, ISTI 
is working to construct a comprehensive, publicly-accessible global databank of 
historical surface meteorological observations taken over land, providing data at 
monthly, daily and even sub-daily resolutions. This is a substantial undertaking.1 It 
involves not only obtaining observational data from numerous sources around the 
world, but also getting the data and any available metadata into a common format 
and then merging the data records with the aim of maximizing station coverage and 
data quality while minimizing duplication. Release of the first version of the merged 
data, focused on monthly mean temperatures, occurred in June 2014 (Rennie et al. 
2014), with an updated release in October 2015. These releases included data from 
over 30,000 observing stations worldwide, several times the number typically used 
in estimating global surface temperature changes over land.

In addition, ISTI intends to develop a set of benchmarking tests for users who 
generate “data products” from the databank (see also Tempini, this volume a, b on 
“derivative datasets”). These products include reconstructions of the evolution of 
global and regional temperature over time, from which trends and other changes are 
often calculated. Arriving at such data products requires the application of quality 
control and “homogenization” algorithms to data in the databank. Homogenization 
is a process that aims to remove jumps and trends in station time series that are due 
to non-climatic factors, e.g. because an instrument is replaced with a new one, a 
building is constructed nearby, or the timing of observations changes. In the envi-
sioned benchmarking tests, users would apply their algorithms to synthetic data that 
contain deliberately-introduced artefacts (known as “inhomogeneities”) that are not 
known to the users in advance. The idea is to test how well the different homogeni-
zation methodologies work by checking their performance on data that are like real 
climate data in many important respects, but for which the “true” underlying climate 
signal is known (Willett et al. 2014). ISTI hopes to host all data products developed 
using the databank on its website, along with information about benchmarking per-
formance for the generating methodologies (Thorne et al. 2011).

This chapter discusses and reflects upon the data journeys envisioned by ISTI, 
with special attention to the accompanying benchmarking scheme. As outlined fur-
ther in Sect. 2, these journeys include the traveling of temperature data from a 
source or holder, through a processing and merging procedure by ISTI, followed by 
subsequent quality control and homogenization processes undertaken by third par-
ties, which deliver “data products”. We will see that, given methodological deci-
sions along the way, only some data will make the full journey. Section 3 turns to 
ISTI’s envisioned benchmarking scheme, explaining how its synthetic data are to be 
produced with the help of simulation models that serve as analogues to the real 

1 It is also largely unfunded. Progress has been somewhat slower than desired, in part because 
participating researchers are largely volunteering their time (with in-kind support from some of 
their institutions).
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world. The benchmarking scheme and its synthetic data are, in a sense, “external to” 
the envisioned data journeys, but it is argued that they are far from ancillary compo-
nents of the ISTI project. On the contrary, benchmarking has crucial roles to play, 
not only in advancing the scientific goals of the project but also by serving an 
important gatekeeping function in the complex and politicized context of climate 
change research. Section 4 contends that the proposed use of synthetic data in ISTI’s 
benchmarking scheme constitutes a distinctive variety of what Paul Edwards (2010) 
has called “model-data symbiosis” in the practice of climate science. Finally, Sect. 
5 offers some concluding remarks.

2  �Data Journeys Envisioned by ISTI

Today, there are thousands of land-based weather stations around the world making 
regular observations of temperature, pressure, humidity and other weather condi-
tions, often overseen by national meteorological services. It was not always so, of 
course. Regular observations of temperature began at a few sites in Western Europe 
in the seventeenth century (Camuffo and Bertolin 2012), but it was not until the 
mid-nineteenth century that coordinated networks of land-based observing stations 
began to emerge; they expanded rapidly in the twentieth century (Fleming 1998, Ch. 
3). In recent decades, there have been major efforts to locate and bring together 
records of these past surface observations in support of climate change research 
(e.g. Menne et al. 2012). These ongoing efforts require international cooperation 
and involve significant “data rescue” activities, including imaging and digitizing of 
paper records.

ISTI’s envisioned journeys for surface temperature data – from individual records 
held by sources to data products of use in regional and global climate change 
research  – are conceptualized in terms of six stages (Thorne et  al. 2011). Paper 
records from observing stations, as well as digital images of those records, are what 
ISTI call “Stage 0” data. Many of the data obtained by ISTI in constructing their 
databank, however, are Stage 1 data: “digitized data, in their native format, provided 
by the contributor” (Rennie et al. 2014, 78). In the simplest case, Stage 1 data might 
have been produced from Stage 0 data by typing into a computer file what is shown 
on a paper record.2 In other cases, Stage 1 data already reflect substantial processing 
by the contributor. For instance, many of the Stage 1 data obtained by ISTI had 
already been subjected to quality control and homogenization algorithms by their 
contributors; though “raw” data are preferable for the databank, these are not what 
some sources are willing or able to provide, whether for practical or proprietary 
reasons.

2 That person might have translated or transformed the original data record into a preferred format 
of her own, so it seems that the “native format” here should be understood as whatever format the 
contributor to ISTI provides.
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At Stage 2, data are converted by ISTI from their native format – units, temporal 
resolution, etc. – to a common format that also includes some metadata. The conver-
sion to a common format sometimes involves averaging, e.g. in order to convert 
hourly data to daily or monthly average values. The metadata at Stage 2 indicate not 
only such things as the station’s ID, latitude, longitude and elevation, but also 
whether the data have undergone quality control or homogenization by the contribu-
tor, how a daily or monthly average value was calculated from observations (if this 
was necessary), and the mode of transmission from contributor to ISTI (ibid., 79). 
The documentation accompanying the first release of ISTI data indicates that some 
58 source collections were converted to Stage 2 data (see Table 1 for a snapshot). 
Many of these data collections were obtained from national meteorological ser-
vices, universities and research stations.

At Stage 3, the data sources are prioritized and then subjected to a merge algo-
rithm, with the aim of maximizing station coverage and data quality while minimiz-
ing duplication. In the merge performed for monthly data, ISTI chose to give higher 
priority to sources “that have better data provenance, extensive metadata, come 
from a national weather or hydrological service, or have long and consistent periods 
of record” (Rennie et al. 2014, 82). The highest priority source – in ISTI’s case the 
Global Historical Climatology Network – Daily (GCHN-D) dataset, which contains 
on the order of a billion observational records (Durre et al. 2010) – becomes the 
starting point for building the merged dataset.

The merge algorithm then works through the remaining data sources according 
to their priority. Each record provided by a source is a candidate station. The algo-
rithm first compares the record to a list of stations with known issues in their data or 
metadata; this list was generated using another algorithm that looks for signs of 
problems, such as an undocumented shift in units, or flipping the sign of the sta-
tion’s longitude, etc. If the record/candidate station is not withheld (“blacklisted”) 
following this comparison, the merge algorithm continues, trying to determine 
whether the candidate station is unique or matches an existing station. This is a non-
trivial task, given that different data sources can use different names for the same 
station, can represent latitude and longitude with different precision, etc. ISTI 
describes the merge algorithm as employing a “quasi-probabilistic approach” that 
“attempts to mimic the decisions an expert analyst would make manually” (Rennie 
et al. 2014, 81). It involves comparing features of the metadata of station records, 
and in some cases of the temperature data themselves, and then assigning scores on 
a set of metrics. Depending on whether those scores pass particular thresholds, the 
station records are either withheld, added to the dataset as new stations, or merged 
with records for existing stations (see Fig. 1). The merge algorithm is made avail-
able on the ISTI website, and ISTI emphasizes that users can change the threshold 
settings to produce alternative merged datasets, as ISTI did themselves (see Rennie 
et al. 2014, Table 12).

In ISTI’s analysis, their “databank” project encompasses the journeys of data 
from Stage 0 to Stage 3. The final two stages of the envisioned journeys are left to 
users of the databank; since the databank is publicly available, in principle these 
users might be anyone. At Stage 4, quality control procedures are applied to Stage 3 
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data. It turns out that the GCHN-D data, which form the starting point for construct-
ing the ISTI monthly merged dataset, have already been subjected to quality control 
by the U.S. National Center for Environmental Information (NCEI).3 The procedure 
there involves 19 automated tests designed to detect duplicate data, climatological 
outliers and spatial, temporal and internal inconsistencies; a small number of 
problematic data (well under 1%) are consequently excluded (Durre et al. 2010). 

3 This was formerly called the National Climatic Data Center (NCDC).

Table 1  Partial list of sources of temperature data that were converted to Stage 2 data

Name Source
Time 
scale

Raw/QC/
homogenized TMAX TMIN TAVG

Antarctica SCAR Reader Project Monthly Raw N N Y
Antarctica (AWS) Antarctic 

Meteorological 
Research Center

Daily Raw Y Y N

Antarctica (Palmer 
Station)

Antarctic 
Meteorological 
Research Center

Daily Raw Y Y Y

Antarctica (South 
Pole Station)

Antarctic 
Meteorological 
Research Center

Monthly Raw Y Y Y

Arctic IARC/Univ of Alaska 
Fairbanks

Monthly Homogenized N N Y

Argentina National Institute of 
Agricultural 
Technology (INTA)

Daily Raw Y Y N

Australia Australia Bureau of 
Meteorology

Daily Homogenized Y Y Y

Brazil INPE, Nat. Institute 
for Space Research

Daily Raw Y Y N

Brazil-In met INMET Daily Raw Y Y N
Canada Environment Canada Monthly Homogenized Y Y Y
Canada Environment Canada Monthly Raw Y Y Y
Central Asia NSIDC Monthly Homogenized Y Y Y
Channel Islands States of Jersey Met Daily Raw Y Y N
Colonial Era 
Archives

Griffith Monthly Raw Y Y N

CRUTEM4 UKMO Monthly Homogenized N N Y
East Africa Univ. of Alabama 

Huntsville
Monthly Raw Y Y Y

Ecuador Inst. Nacional De 
Met E Hidrologia

Daily Raw Y Y N

Europe/N. Africa European Climate 
Assessment (Daily, 
Non-Blended)

Daily Raw Y Y Y

Source: Rennie et al. (2014, Table 1)
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Many other sources in the ISTI databank, however, have not been subjected to qual-
ity control (as their metadata communicates), and it is up to users to address this.

Stage 5 data have, in addition, been homogenized. That is, the data at Stage 5 
have been subjected to further processing to try to remove jumps and trends in sta-
tion time series due to non-climatic factors. When station metadata are available 
(e.g. reporting a shift in instrument location), this can aid homogenization, but often 
such metadata are not available. Many homogenization methods thus are statistical 
methods that compare station records to those of neighbouring stations or of refer-
ence stations, identifying and correcting for inhomogeneities based on expected 
relationships among the records (see e.g. Costa and Soares 2009; Venema et  al. 
2012). There is substantial uncertainty about how best to identify and correct for 
inhomogeneities; statistical methods for doing so, for instance, can plausibly 
employ any of a number of approaches and assumptions. Table 2 summarizes fea-
tures of several different homogenization algorithms. Even without going into the 
technical details, one can see that there are differences in what data are compared to 
(comparison), in how data are searched for potential inhomogeneities (search), and 
in the form of tests used to identify the presence of inhomogeneities (criterion); 
there are also differences in how corrections are applied to data once an inhomoge-
neity has been detected (not shown in Table 2). Attempting to correct for inhomoge-
neities is particularly important when data will be used to quantify changes in 

Fig. 1  Workflow for ISTI merge algorithm. (Source: Rennie et al. 2014, Fig. 5)
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climate, since trends in the data introduced by non-climatic factors can be of similar 
size to the changes expected due to increased greenhouse gas emissions.

In contrast to the “data” of Stages 0–3, ISTI refers to Stage 4 and 5 results as 
“data products” (Thorne et al. 2011). It may be tempting to think that this shift in 
terminology reflects a substantive change, with later-stage data being, for instance, 
somehow more heavily processed. This is not really the case, however. As noted 
above, even some Stage 1 data held by ISTI have been subjected to quality control 
and homogenization by their sources (see Table 1 above). Thus, while Stage 4 and 
Stage 5 data will in fact reflect some additional processing by users, similar process-
ing efforts will have already been made with respect to some of the data at earlier 
stages. ISTI’s distinction between “data” and “data products” primarily marks the 
boundary of ISTI’s control; results generated by third parties using ISTI’s databank 
are “data products”.

Table 2  Homogenization algorithms differ in a number of respects

Comparison Detection References
Method Comparison Time step Search Criterion

MASH Multiple 
references

Annual, 
parallel 
monthly

Exhaustive Statistical test 
(MLR)

Szentimrey (2007, 
2008)

PRODIGE Pairwise, 
human 
synthesis

Annual, 
parallel 
monthly

DP Penalized 
likelihood

Caussinus and 
Mestre (2004)

USHCN Pairwise, 
automatic 
synthesis

Serial 
monthly

HBS Statistical test 
(MLR)

Menne et al. (2009)

AnClim Reference 
series

Annual, 
parallel 
monthly

HBS, 
moving 
window

Statistical test Štepanek et al. 
(2009)

Craddock Pairwise, 
human 
synthesis

Serial 
monthly

Visual Visual Craddock (1979) 
and Brunetti et al. 
(2006)

RhtestV2 Reference 
series or 
absolute

Serial 
monthly

Stepwise Statistical test 
(modified 
Fisher)

Wang (2008)

SNHT Reference 
series

Annual HBS Statistical test 
(MLR)

Alexandersson and 
Moberg (1997)

Climatol Reference 
series

Parallel 
monthly

HBS, 
moving 
window

Statistical test Guijarro (2011)

ACMANT Reference 
series

Annual, 
joint 
seasonal

DP Penalized 
likelihood

Domonkos et al. 
(2011)

Source: Venema et al. (2012, Table 1)
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3  �Evaluating Data Journeys: Benchmarking and Its 
Importance

ISTI scientists hope that users of the databank will develop multiple, independent 
data products for a given region and period. They hope, for instance, that a variety 
of reconstructions of global and regional temperature evolution over the twentieth 
century will be developed, where users apply their own preferred methods for qual-
ity control and homogenization to Stage 3 data. Such independent estimates, it is 
thought, could help to shed light on the extent to which there is uncertainty about 
temperature trends and other quantities commonly derived from such reconstruc-
tions: “Multiple products are the only conceivable way to get even a simple estimate 
of the structural (methodological choices) uncertainty; we need to attack the prob-
lem from many different a priori assumptions to create an ensemble of estimates” 
(Thorne et al. 2011, ES44). Although there are various climate data products already 
in existence, “quality assurance information is sparse, documentation quality is 
mixed, and different source data choices and methods can make meaningful inter-
comparison hard” (ibid). One reason that quality assurance information is sparse is 
that it is difficult to produce such information in a reliable way. Climate scientists 
do not have access to the true evolution of regional and global temperatures, nor to 
some known-to-be-accurate estimates, against which data products can be evaluated.

Benchmarking exercises are now emerging as one approach to learning about the 
reliability of methodologies used in generating climate data products – that is, in 
evaluating particular parts of climate data journeys. In very general terms, a bench-
mark can be understood as “a test or set of tests used to compare the performance of 
alternative tools or techniques” (Sim et al. 2003). The most ambitious benchmark-
ing exercise to date in climate science is the COST-HOME (European Cooperation 
in Science and Technology  – Advances in Homogenization Methods of Climate 
Series) project. COST-HOME developed a benchmark dataset and published it 
online, allowing anyone to attempt to homogenize it and submit data products for 
evaluation (see Venema et al. 2012). The COST-HOME benchmark dataset included 
three different types of data, but most contributors focused on the “surrogate data” 
portion, which was considered the “most realistic” of the three types (ibid., 92). 
These surrogate data, which represented conditions at a number of small networks 
of observing stations, were produced with the help of statistical methods, such that 
they reproduced important statistical features of real homogenized data, such as 
their “distribution, power spectrum and cross spectra”; several known types of inho-
mogeneities and other “data disturbances” were then added, and the task for partici-
pants was to recover the homogenous surrogate data (ibid.). Importantly, those 
homogenous data were not disclosed to participants until after a deadline for sub-
mission of data products. Twenty-five submissions were received, based on 13 dif-
ferent homogenization methods, including some manual methods (ibid.). These 
were evaluated on a variety of metrics that measure similarities between the submit-
ted data product and the homogeneous surrogate data (i.e. “truth”).
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ISTI envisions a benchmarking scheme that is similar to that of COST-HOME in 
some respects. Participants submitting data products for evaluation will not know in 
advance the “true” underlying data to which inhomogeneities were added. In addi-
tion, the benchmarking exercise will be open to all. In fact, ISTI “strongly advo-
cates” that anyone producing Stage 5 data products from the databank take part in 
benchmarking exercises (Willett et al. 2014). But there are also some differences. 
Rather than data for small networks of stations, ISTI plans to construct global 
benchmark datasets, representing what they refer to as “analog inhomogeneous 
worlds” (ibid.; Thorne et al. 2011), i.e. analogues to the inhomogeneous data col-
lected in the real world. In addition, the construction of these benchmarks will begin 
not from homogenized real data, but from computer simulations from global cli-
mate models.4 These simulation results, which include values of temperature on a 
regular grid, will be interpolated to a set of 30,000+ stations analogous to those in 
the databank (Willett et  al. 2014). Inhomogeneities will then be added to these 
“analog-clean worlds”, to produce “synthetic data”. The inhomogeneities are 
intended to be “physically plausible representations of known causes of inhomoge-
neity (e.g. station moves, instrument malfunctions or changes, screen/shield 
changes, changes to observing practice over time, and local environment changes)” 
(ibid., 192). See Fig. 2 for a depiction of some of the ways in which the benchmark-
ing exercise mirrors the analysis of the “real” ISTI databank data.

ISTI highlight several positive features of their envisioned simulation-based 
approach to the generation of benchmarking datasets. Time series of temperature 
values from a climate model will be free from inhomogeneities, so the “true” cli-
mate signal will be known. In addition, the data will include “globally consistent 
variability”, including coherent variability associated with events like El Nino  – 
Southern Oscillation (ENSO). Moreover, it will be possible to generate inhomoge-
neous worlds with different levels of background climate change, since climate 
models can be run under a variety of scenarios in which greenhouse gas concentra-
tions are rising rapidly, held constant, etc.; at least some information then can be 
obtained about how the skill of different homogenization algorithms varies, if at all, 
with the level of background climate change.

ISTI proposes to provide ten inhomogeneous worlds/synthetic datasets in a given 
benchmarking cycle, each based on a different simulation, with the cycle of analysis 
and evaluation repeating roughly every 3 years (ibid.). The aim is for these different 
worlds to incorporate inhomogeneities with a range of frequencies and magnitudes, 
seasonality, and geographical pervasiveness (e.g. when a whole network changes 
observing practices at once). Participants would submit their homogenized bench-
mark data for evaluation by ISTI. The results of this assessment as well as “truth” 

4 These climate models incorporate both basic physical theory (from fluid dynamics, thermody-
namics, etc.) and some simplified/idealized representations of small-scale processes; the latter are 
necessary in part because limited computational power constrains the resolution at which the cli-
mate system can be represented. The knowledge on which the models are based, including the 
theoretical knowledge, is of course empirical, but the climate models are not data-driven models 
obtained by fitting curves to observations.
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for the ten cases – i.e. the clean analog worlds produced by sampling/interpolating 
simulation results – would subsequently be unveiled. The cycle would then repeat.

ISTI’s envisioned benchmarking system is intended to support three important 
scientific goals of the ISTI project: quantification of the potential structural uncer-
tainty of a given climate data product; objective intercomparison of such data prod-
ucts; and advancing homogenization algorithm development (Willett et  al. 2014, 
192). These are discussed here in reverse order.

The benchmarking scheme aims to support homogenization algorithm devel-
opment by helping developers to learn more about the strengths and weaknesses 
of their algorithms – which sorts of inhomogeneities they are good at detecting 
and correcting, which they are not, etc. In further support of this goal, ISTI plans 
to provide some “open benchmarks” for which “truth” is also immediately avail-
able, so that participants can conduct some preliminary tests of their algorithms 
before submitting to the evaluation exercise. But the task of homogenizing data 
for which “truth” is not known to algorithm developers remains very important, 
since for these cases developers cannot optimize their algorithms to specific fea-
tures of known inhomogeneities in the data; such optimization can make an algo-
rithm a good performer on that particular dataset, even though it might perform 
poorly on datasets with somewhat different (but still plausible) inhomogeneity 
profiles.

It is important to recognize that, insofar as what is learned via ISTI’s benchmark-
ing exercises leads to changes in homogenization algorithms, data journeys of the 
future that involve the application of those algorithms will be somewhat different too. 

Fig. 2  Envisioned benchmarking of homogenization algorithms. ISTI’s analogue worlds allow for 
testing of homogenization algorithms in cases where “truth” is known. The aim is to learn about 
how these algorithms are likely to perform on real data where similar inhomogeneities are present 
but truth cannot be known
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Reconstructions of the evolution of global and regional surface temperatures since 
pre-industrial times will be produced again and again as new observations are made 
and additional past data are rescued and digitized; with homogenization algorithms 
that are changed in light of past benchmarking exercises, those reconstructions will be 
somewhat different than they otherwise would have been. Thus, while the sort of 
benchmarking exercises envisioned by ISTI can be considered “external” to data jour-
neys involving real data, they can influence those journeys by prompting adjustments 
to homogenization algorithms whose application constitutes part of the journey.

Second, the benchmarking scheme supports the goal of objective and meaningful 
intercomparison of climate data products, such as reconstructions of global tem-
perature change over the twentieth century. As noted earlier, for some types of data 
product there already have been multiple products developed by different scientific 
groups, but it is often difficult to compare the quality of these products, in part 
because they are constructed from somewhat different source data and in part 
because there can be no appeal to “truth” to settle the matter. In the benchmarking 
exercise, participants will all be starting from the same synthetic dataset; differ-
ences in their performance will be attributable to differences in their processing 
methodologies. Moreover, performance on the synthetic data will be objectively 
assessable, since for these data “truth” is known. Learning about such performance 
can be useful not only for homogenization algorithm developers (as just noted 
above), but also for users of climate data products. For instance, if such evaluation 
reveals that some homogenization algorithms are particularly good at correcting for 
some types of errors that are, for a user’s intended application, particularly impor-
tant to avoid, users can choose to work with data products generated with those 
homogenization algorithms. (In effect, users would then be selecting data products 
on inductive risk grounds, informed by what is learned via benchmarking activi-
ties.) This is just one important way in which the ISTI project can support climate-
related research, including research intended to inform societal decision making 
(often called “climate services”).

Finally, and relatedly, the benchmarking exercise supports ISTI’s goal of provid-
ing information about uncertainties associated with climate data products, in par-
ticular uncertainties stemming from the process of homogenization. One of the 
potential benefits of an open-access observational databank is that multiple, inde-
pendent groups can use the databank to construct data products for the same regions 
and periods; since there are uncertainties about how best to carry out that construc-
tion process, especially in the homogenization step, and since different groups will 
make somewhat different methodological choices in the face of that uncertainty (see 
Sect. 2 and Table 2), the products generated by the different groups can, in principle, 
sample current scientific uncertainty about past conditions in a particular region/
period. This is analogous to the way in which a set of forecasts from different 
weather prediction models can, in principle, sample current scientific uncertainty 
about tomorrow’s weather conditions. But just as there may be weather prediction 
models that have strong biases in particular regions – and whose forecasts for those 
regions we thus wouldn’t want to take at face value – so can there be homogeniza-
tion methods that have particular strengths and weaknesses that (if known) should 
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affect how we interpret their results. By helping to reveal those strengths and weak-
nesses, the benchmarking exercise can aid the interpretation of the set of data prod-
ucts generated, including whether their face-value spread should be considered a 
lower bound on current uncertainty.

Closely related to this is another important, beneficial function that the bench-
marking scheme can serve, though it is not often emphasized by ISTI: a gate keep-
ing function. When it comes to the generation of data products using the databank, 
ISTI explicitly encourages “contributions from non-traditional participants” 
(Thorne et al. 2011, ES44). They recognize the possibility of “useful insights from 
people tackling the problem by thinking “outside the box”” (ibid.). But while this is 
indeed a potential benefit of an open-access databank, there is also the risk that users 
with insufficient expertise, political motivations, and so on will decide to generate 
their own data products, e.g. their own reconstructions of global temperature change 
over the twentieth century. Such data products may, either unintentionally or inten-
tionally, give a highly misleading picture of the evolution of past climate conditions. 
For example, suppose that a homogenization algorithm effectively guaranteed that 
temperature reconstructions would show very little twentieth century warming, 
almost regardless of the data; the worry arises that such a reconstruction would be 
touted in sceptical blogs, newspapers, etc. and would add further confusion to pub-
lic discussion of climate change. If those generating the reconstruction were to par-
ticipate in ISTI’s benchmarking exercises, however, it might be revealed that their 
methodologies were highly flawed, in the sense that they did not recover anything 
like the “truth” in the benchmark cases. The benchmarking system thus could pro-
vide “a way of separating the wheat from the chaff” (Stott and Thorne 2010, 159) 
when it comes to data products generated from the ISTI databank. Of course, any-
one might refuse to participate in ISTI’s benchmarking exercises, but this refusal 
could itself constitute reasonable grounds for questioning the reliability of data 
products that differ markedly from those produced by others.

Thus, far from being an ancillary component of the ISTI project, synthetic data 
have crucial roles to play alongside “real” climate data when it comes to learning 
about past climate change; without synthetic data, and the accompanying bench-
marking scheme, some of the primary scientific goals of the ISTI project would be 
in jeopardy. This does not mean, of course, that there are no limits to what bench-
marking can achieve. The kinds of benchmarking exercises envisioned by ISTI can 
only gauge the performance of homogenization algorithms with respect to the par-
ticular inhomogeneities inserted into the synthetic data; even if an algorithm were 
to consistently and perfectly recover the “truth” in benchmarking exercises, this 
would be no guarantee that it performs similarly well on real climate data, since 
there is no guarantee that the inhomogeneities in the latter are fully encompassed 
by the inhomogeneity types present in the benchmark data. There may be types of 
inhomogeneities in actual climate data that go beyond those that current scientists 
have good reason to believe are sometimes present. Moreover, though the use of 
synthetic data generated with the help of simulation models has the attractive fea-
tures discussed above, it is also true that simulation results (and synthetic station 
data interpolated from them) may lack some spatial and temporal characteristics of 
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real climate data, due to limitations of the climate models used (e.g. their omis-
sions, simplifications, etc.). The ISTI benchmarking team suggests checking 
empirically whether synthetic data display key statistical properties of real climate 
data (e.g. levels of correlation among data for nearby stations, station autocorrela-
tion, etc.), using real data that are thought to be of relatively high quality (Willett 
et al. 2014, 191).

4  �Another Variety of Model-Data Symbiosis

In his insightful analysis of the development of modern meteorology and climate 
science, Paul Edwards (1999, 2010) argues that we find in these domains a kind of 
symbiosis between models and data – a mutually beneficial but mutually dependent 
relationship. Computer models of the atmosphere and climate system, he points out, 
are data-laden to a certain extent: in addition to equations from fundamental physi-
cal theory, they require various “semi-empirical parameters” that are derived (in a 
loose sense) from observations. At the same time, weather and climate data are 
often model-filtered. Here he has in mind several kinds of models.

Most striking is the use of computer simulation models in a process known as 
“data assimilation”. A weather forecast from a computer simulation model pro-
vides a first-guess estimate of the atmospheric state, which is then updated in light 
of available observations to arrive at a revised, best-guess estimate of the state; 
this best-guess estimate then serves as the initial conditions for the next set of 
forecasts from the weather model. The same sort of technique has been used ret-
rospectively in climate science, to generate long-term gridded datasets from 
gappy, irregular historical observations. These “reanalysis” datasets complement 
the kinds of climate data products described in previous sections of this paper 
(Parker 2016). When it comes to those data products, Edwards notes that what 
might be called “intermediate models”  – which include models of instrument 
behaviour, techniques for quality control and many other methods (1999, 450) – 
are essential to their production; he explicitly notes their use in the process of 
homogenization.

ISTI’s benchmarking scheme employing synthetic data illustrates yet another 
variety of model-data symbiosis in climate science, once again involving computer 
simulation models. Here, however, simulation models are used not to fill in gaps in 
datasets (as they in effect are used in data assimilation) but rather to help evaluate 
the quality of datasets/data products, by helping to assess the strengths and weak-
nesses of some of the methods used in the production of those datasets/data prod-
ucts. An understanding of the quality is in turn important for using the datasets 
effectively for various purposes, including for the evaluation of computer simula-
tion models themselves. Indeed, one of ISTI’s stated motivations for constructing an 
open-access observational databank that includes not just monthly but daily data, is 
that sub-monthly data are needed for studies of changes in climate extremes, like 
floods and heatwaves, as well as for evaluating today’s climate models’ ability to 
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simulate such extremes. Thus, we have climate models assisting in the evaluation of 
climate data products, so that those climate data products in turn can assist in the 
evaluation of climate models  – a mutually beneficial, but mutually dependent 
relationship.

5  �Concluding Remarks

ISTI is a major effort to promote transparency and openness in the management 
of surface temperature data, one which has the potential not only to help circum-
vent the kinds of skirmishes over access to climate data that have occurred in the 
recent past but also to provide better insight into the uncertainties associated with 
existing estimates of changes in temperature since pre-industrial times. Its suc-
cess in the latter, however, depends not only on users actually generating data 
products that reflect a range of different methodological choices, but also on there 
being a means of ensuring that these products are of sufficient quality. While still 
under development, an ingenious benchmarking scheme, involving tests of data 
processing algorithms on synthetic data, is meant to serve as one important way 
of gauging the quality of user-generated data products. Far from being an ancil-
lary component of the ISTI project, the benchmarking system has crucial roles to 
play, not only in advancing the scientific goals of the project but also by serving 
an important gatekeeping function in the complex and politicized context of cli-
mate change research.

The use of synthetic data in benchmarking efforts like that envisioned by ISTI 
also illustrates a distinctive variety of Edwards’ model-data symbiosis in climate 
science. While he calls attention to cases in which computer simulation models 
have been used to help fill in gaps in observational data, the envisioned use of 
synthetic data in benchmarking exercises would involve simulation models aiding 
the process of evaluating climate datasets, including their attendant uncertainties. 
These datasets in turn are to be used for, among other purposes, evaluating climate 
models themselves. Once again, we find climate models and climate data standing 
in a mutually beneficial but mutually dependent relationship.
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of Evidential Pluralism in Pharmaceutical 
Regulation and Regulatory Data Journeys
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Abstract  Throughout the last century, pharmaceutical regulators all over the world 
have used various methods to test medical treatments. From 1962 until 2016, the 
Randomized Clinical Trial (RCT) was the reference test for most regulatory agencies. 
Today, the standards are about to change, and in this chapter we draw on the idea of 
the data journey to illuminate the trade-offs involved. The 21st Century Cures Act 
(21CCA) allows for the use of Electronic Health Records (EHRs) for the assessment 
of different treatment indications for already approved drugs. This might arguably 
shorten the testing period, bringing treatments to patients faster. Yet, EHR are not 
generated for testing purposes and no amount of standardization and curation can 
fully make up for their potential flaws as evidence of safety and efficacy. The more 
noise in the data, the more mistakes regulators are likely to make in granting market 
access to new drugs. In this paper we will discuss the different dimensions of this 
journey: the different sources and levels of curation involved, the speed at which 
they can travel, and the level of risk of regulatory error involved as compared with 
the RCT standard. We are going to defend that what counts as evidence, at the end 
of the journey, depends on the risk definition and threshold regulators work with.

1  �Introduction

Since the early 1900s, the US Food and Drug Administration (FDA) has been using 
laboratory and clinical experiments to test toxicity and safety of pharmaceutical 
compounds before approving their release to the market (Carpenter 2010). In other 
words, the FDA sets the threshold of risk that patients can take when they decide 
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between treatment options. However, for the last 50 years, only data from highly 
standardized experiments, Randomized Clinical Trials (RCTs), has counted as 
legitimate regulatory evidence for market approval. This regime is changing. The 
21st Century Cures Act (21CAA) invites the FDA to consider new evidentiary 
standards in assessing treatments, including data from Electronic Health Records 
(EHR).1 For more than 50  years pharmaceutical regulators dealt with evidence 
mainly originating in single-purpose drug tests. The 21CCA allows them to use data 
(1) generated with goals different than testing and, (2) repackaged and re-purposed 
to assess the safety and efficacy of a treatment. Travelling data (Leonelli 2016) 
enter the field of pharmaceutical regulation.2 This chapter tries to understand what 
the use of different kinds of data for pharmaceutical regulation means for the 
assessment and comparison of risks linked to different drugs.

The FDA is a unique institution. Its gatekeeping power is based on scientific 
evidence: successful tests are a pre-condition for market access. It is the most influ-
ential regulatory agency, setting the regulatory paradigm and benchmarks that oth-
ers all over the world follow. Any shift has great magnitude, as FDA decisions shape 
a global market for prescription drugs: in 2016, worldwide sales have been esti-
mated in 768$bn (EvaluatePharma 2017).

Pharmaceutical regulators have to strike a balance between very powerful and 
conflicting institutional principles: access to worthy new compounds should be 
granted quickly, while guaranteeing strict thresholds of safety and efficacy. They 
also need to face conflicts of interest in the industry (e.g., patent versus generic 
manufacturers) and also among patients (e.g., depending on their risk aversion in 
trying new drugs). Regulatory tests have enforced the epistemic standard that arbi-
trates these conflicting principles: if a promising drug fails, the sponsor will lose the 
investment and patients their hope, but the result will be accepted.

The 21CCA introduces evidentiary pluralism in drug testing: instead of a single 
source of regulatory objectivity (Cambrosio et al. 2006), the FDA will define differ-
ent standards about what counts as evidence of safety and efficacy in a treatment for 
each research design allowed, including how to evaluate EHR that can now be put 
in motion and journey towards yet new uses (Leonelli, this volume, Chap. 1). The 
implications are not clear. Some welcome the initiative as necessary for bringing 

1 Signed by President Obama on December 13, 2016, the 21CCA is law aimed at expediting “the 
discovery, development, and delivery of new treatments and cures and maintain America’s global 
status as the leader in biomedical innovation.” Section 2061 invites the FDA “to issue guidance that 
addresses using alternative statistical methods in clinical trials and in the development and review 
of drugs.” Section 2062, on which this papers focus, claims: “To support approval of a drug for a 
new indication, the FDA must evaluate the use of evidence from clinical experience (in place of 
evidence from clinical trials) and establish a streamlined data review program”. For the full text, 
see: https://www.congress.gov/bill/114th-congress/house-bill/6 (Accessed on August 24, 2107)
2 Sabina Leonelli theorizes the travelling of data as the achievement of purposeful strategies aimed 
at enabling the reuse of scientific data in situations and for uses that can be different from those 
originating the same data (Leonelli, this volume). To travel, it is paramount that data keep the 
capacity to hold evidential value in new stages of the inquiry (Leonelli 2016). She calls these strat-
egies of data repurposing packaging.
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new treatments to the market, others denounce it as paving the way for pharmaceuti-
cal fraud.3 We contribute to this ongoing debate with an analysis of the epistemic 
and political implications of the use of EHR for drug assessment: what can we 
expect from regulatory decisions based on these data?

EHR are systems digitalizing medical records in standardized formats, to gather 
information regarding a) patients, as obtained during their visits to medical facilities 
(e.g. clinical interview, anamnesis and assessment, or diagnosis in an emergency 
room); b) the complementary evidence generated by those visits (e.g., medical 
imagery, test results); and c) data gathered by measurement devices that patients 
wear and use while away from the point of care (e.g., glucose sensors inserted under 
the skin). EHR data are generated in the context of routine activities that are shaped 
not only by standards of care but also statistics, administration and billing. They are 
not a record of scientific observation and intervention performed in isolation. They 
are a product of hybrid accounting practices, a record of clinical care just as much 
as of auditable administration (cfr. Ramsden, this volume, Chap. 17; Power 1997). 
It is very difficult to clean the data from the traces of interactions that are not of 
interest, and as such the re-use of EHR requires complex arrangements and special-
ised expertise (Tempini and Leonelli 2018).

To use EHR for regulatory activity requires different standards of practice and 
evidence than those involved in the evaluation of RCT results. Drawing on the 
Guidance documents so far issued by the FDA and on our own fieldwork in EHR 
reuse,4 in Sect. 4 we argue that the successful use of EHR in tests depends on ade-
quate data management. In order to control for bias, experts need information about 
potential confounders. This should be included in the travel package (cfr. Leonelli 
2016) of the EHR, or be otherwise available. Against a popular belief, we shall here 
rehearse an old statistical argument about how Big Data, on its own, is not going to 
correct for such biases (also Boyd and Crawford 2012). The implication is that the 
evidential standards of the new regulatory pluralism will be different: what counts 
as evidence will depend on the risk threshold one works with. Risk involved in using 
drugs approved through new testing standards might be passed downstream, to 
patients and their carers. They will have to decide whether to take the risks involved 
in taking drugs tested with inferior evidentiary standards.

In Sect. 2, we will defend the claim that the pre-21CCA regulatory regime hinged 
on two value judgments: the FDA should (a) behave as a strongly paternalist regula-
tor and (b) adopt the RCT as sole source of evidence for safety and efficacy. In Sect. 

3 For a glimpse of this debate, see (Avorn and Kesselheim 2015) and the responses in the same 
issue, plus (Kesselheim and Avorn 2017)
4 This paper draws on the qualitative fieldwork of one of us (Tempini) on two leading EHR-reuse 
infrastructures: the Secure Anonymised Information Linkage databank (SAIL) and the Medical 
and Environmental Data Mashup Infrastructure (MEDMI). Visiting and interviewing developers, 
managers, data scientists and clinical researchers between September 2015 and January 2017, he 
approached these infrastructures with a view to document the associations between organisational 
forms and processes, activities of infrastructure development, data practices, and scientific research 
practice that underlie the debate on EHRs.
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3, we show how the relaxation of standards of evidence (b) has also relaxed regula-
tory paternalism, giving patients more access to treatments approved on different 
sources of evidence. Regulating with travelling EHR data would imply a further 
step away from paternalism: we still don’t know how good this evidence is as a 
source of decisions about treatments. In Sects. 4 and 5, we review some of the chal-
lenges involved in standardizing evidence from EHR. We advise paternalistic cau-
tion arguing that even the most libertarian patients would want to know how reliable 
a testing standard is, in order to make an informed decision about treatment options.

2  �Regulation with Non-travelling Data

For more than half a century, the international paradigm in drug regulation was set 
by the 1962 amendment to the FDA Act: a pharmaceutical company seeking 
approval for the commercialization of a new treatment should submit “adequate and 
well-controlled clinical studies” for evidence of efficacy and safety. The definition 
of a well-controlled study would not be clarified until 1970, when it was defined as 
two well-controlled clinical trials.

Testing treatments with RCTs is a long process. RCT data are gathered according 
to a research protocol in which statistical considerations are paramount. Treatment 
effects should be estimated in trials that have a given statistical power: the patients’ 
sample size will determine the probability of making a type I error (accepting into 
the market inferior treatments). Once the administration of the treatment and the 
measurement intervals are pre-established in the trial protocol, the duration of the 
trial will mostly depend on the amount of time it takes to enroll the predesignated 
number of patients and consequently execute the protocol. According to (DiMasi 
et al. 2016), the average time from the start of clinical testing to marketing approval 
is 96.8 months. Administering a treatment to a patient may take weeks or months 
until the time comes to measure the target outcome. Gathering the data for enough 
completed treatment protocols may take years, as enrolment is difficult and time-
consuming and depends on the condition of interest and the eligibility criteria for 
the participants. Even well-funded, high-impact research fields suffer from slow 
trials: for instance, only 3–5% of cancer patients enrol in trials (Bell and 
Balneaves 2015).

From the standpoint of many patients, the wait is too long. Although some of 
them might have early access to the drug through trial participation (e.g., via Right 
to Try Laws: Carrieri et al. 2018), everybody else wait till market approval to benefit 
from the treatment. Even the “luckiest” few, those patients who benefit from an 
effective drug within the trial, might have to wait for years after the protocol com-
pletion before they can access the drug again in the market. Also the industry argues 
that the process is too long, although for different reasons. A company will reap 
most profits from a compound during patent time, and this starts counting before the 
RCTs even start. The longer the testing and approval process, the less patent time to 
exploit commercially.
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Why then did regulatory authorities choose this route? The main reason is norma-
tive: the 1962 Act gave the FDA a paternalistic gatekeeping power on pharmaceutical 
markets in order to protect patients from repeats of past pharmaceutical catastrophes 
(e.g., Thalidomide). The safety and efficacy of a product should be assessed ex ante, 
before market release. RCTs were chosen as the sole regulatory yardstick thanks to 
the advocacy of American pharmacologists, who defended their superiority to grasp 
treatment effects on the basis of a sample of patients (Marks 1997; Podolsky 2015). 
Other sources of evidence about treatments (e.g., case studies), until then in use to 
assess their effects by doctors, were discarded in regulation.5

The 1962 Act hinged then on two value judgments (Teira Forthcoming). First, 
the 1962 FDA ACT established a strongly paternalist regulatory body. Physicians 
and patients were deprived of treatments lacking safety and efficacy without their 
consent and for their own good. Second, the RCT was selected as the gold standard 
for determining whether a treatment was safe and efficacious. Any concerns are 
subordinated to the greatest good the regulator should protect: the safety and secu-
rity of the pharmaceutical consumer.

With this normative justification, the regulator exclusively evaluates non-
travelling data. Trial data are indeed designed for one-use only: testing the safety 
and efficacy of treatments. RCTs are not experiments to learn in which the experi-
menter is free to try as many things as she may see fit, in order to find out how a 
treatment works. RCTs are experiments to prove (Teira 2013), in which the whole 
test design serves the purpose to convince the regulators that a treatment is safe and 
effective. They are a paradigmatic example of hypothesis-driven research. RCT data 
are rarely re-purposed for other ends and their ‘travel equipment’ is consequently 
basic: datasets store the outcomes for the different variables measured, in a format 
suitable for statistical analysis. These data are seldom portable onwards, to the clin-
ics where patients receive care after the trial.6 The situation of inquiry within which 
trial data are used does not usually change.

Yet, trial data move. Trials are often distributed over a number of different sites 
and for this reason their organization requires to carefully consider issues related to 
metadata and the standardization of practices. In order to speed up the testing pro-

5 Case reports provided evidence about safety and efficacy in the first decades of the twentieth 
century, but they were gradually displaced by statistical trials from the 1930s onwards. The rise of 
Evidence Hierarchies in the 1990s consecrated the principle that statistically designed experiments 
could deal with the biological variability of treatment effects in patient populations. However, case 
reports have since attracted efforts of standardization, as Rachel Ankeny shows in her chapter this 
volume, aimed at reclaiming their evidential value. The developments on the regulatory use of 
EHR we are focusing on here can be seen, in Ankeny’s terms, as part of those “emerging efforts to 
develop deeper understandings of appropriate, effective, and rigorous ways of using observation-
based methodologies in the biomedical sciences”. In this chapter we will point out some of the 
limitations of these initiatives as well.
6 As a matter of fact, experienced researchers have found difficult to simply handle them: according 
to (Gøtzsche 2013), the clinical documentation for just three drugs he tried to access in 2010 from 
the Swedish regulatory agency was compiled in 70 meters of binders, about half a million printed 
pages.
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cess, trials are conducted in multiple clinical facilities, where patients are admitted 
and treated in accordance to a shared protocol. For the first three decades after the 
1962 Act, these facilities were standard health institutions in which the trial partici-
pants were recruited among the accruing patients. From the 1990s onwards, the 
industry has sponsored the rise of Contract Research Organizations (CRO) that find 
patients wherever they are and enroll them in the trial protocol on a dedicated site, 
not always a conventional medical facility. By 2005, only 25% of all pharmaceutical 
research was conducted in academic medical centers (as opposed to 80% before 
1990) (Fisher 2009).

The mobility of data is monitored by regulatory bodies with careful audit rules 
(Helgesson 2010). For almost 20 years now, the FDA has developed guidance docu-
ments establishing the ALCOA principles of data quality to be observed in either 
electronic or paper records (e.g., CDER 2018). Data should be Attributable, Legible, 
Contemporaneous, Original and Accurate. The records should document who cre-
ated or changed a record; they should be readable (to third parties); they must con-
tain a time stamp of its generation; they should be the first place where the data are 
recorded; and they should be faithful to the actual measurement. The major problem 
with trial data is that their mobility stops as soon as they reach the sponsoring com-
pany headquarters: according to a recent study, an astonishing 45,2% of the out-
comes of the approximately 25.927 RCTs registered at ClinicalTrials.gov by major 
trial sponsors have not been published (Powell-Smith and Goldacre 2016). There 
have been prominent campaigns advocating for a legal mandate to register all the 
conducted trials and release the raw outcomes (e.g., AllTrials.net) and the European 
Union is about to implement a systematic policy in that regard.7

Yet, even if trial data were routinely released to the public, it would be mostly for 
replication and validation of the sponsor analyses. As of today, there are no system-
atic plans of curating these data into databases for general research purposes.8

3  �Regulation with Travelling Data

The 1962 FDA Act established a paternalistic pharmaceutical regulator with a single 
standard of evidence for testing safety and efficacy. But if the FDA approaches phar-
maceutical regulation with different value judgments, we may let other kinds of data 
to travel and be used as evidence in regulation. Already in the 1970s, libertarian 
critics of the FDA made this possibility explicit (Wardell and Lasagna 1975). If 
patients were allowed access to experimental treatments (under the prescription of a 
qualified physician and an informed consent form) regulatory agencies would ‘sim-
ply’ need to collect adverse event reports as promptly as possible. They could then 
proceed, when necessary, to withdraw unsafe treatments. In this anti-paternalist 

7 Through the Clinical Trial Regulation EU No. 536/2014 to be implemented in 2019.
8 See, for instance, http://www.alltrials.net/find-out-more/all-trials/ (Accessed on August 26, 2017)
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approach, physicians and patients are free to explore treatment options. Pharmaceutical 
regulators exploit the data users generate with whatever statistical tools available. 
Adverse event data from any source should travel to the regulator’s desk.

However, pharmaceutical regulation is not only about ends: it is also a matter of 
means. In the 1970s, such a reporting system would have been probably paper-
based and relatively slow in processing and acting upon information. Contergan, the 
German brand name of the sleeping pill sold in the US as Thalidomide, was with-
drawn from the German market ‘only’ a couple of months after its adverse effects 
were noticed in a medical journal. But at that point, 4000 children had already been 
born with severe deformations (Gaudillière and Hess 2012, pp. 1–2). Even a liber-
tarian regulator could be averse to the possibility of a pharmaceutical catastrophe 
with too many patients harmed for delayed reporting, detection and reaction.

Both ends and means have shifted throughout the last five decades. First of all, 
regulatory paternalism has been gradually relaxed, mostly after the participants’ 
revolts during the antiretroviral AZT trials in the 1980s (Epstein 1996). AIDS patients 
advocated for their freedom to decide which treatment to take, against trial designs 
that imposed placebos on some of them. In response to their demands, the FDA 
introduced an early access system based on quicker trials with surrogate endpoints: 
instead of following the treatment until its final outcome, the trials tracked a variable 
that predicted this outcome, shortening the testing process. However, this prediction 
may fail. Critics of the pharmaceutical industry have denounced that treatments 
tested in trials with surrogate outcomes have a different level of safety and efficacy 
than compounds tried in standard RCTs (Gonzalez-Moreno et al. 2015; Pease et al. 
2017). In other words, the FDA offers different levels of patient protection according 
to the testing standard it chooses. Nonetheless, patients (with or without the support 
of the pharmaceutical industry) have continued to advocate their right to try experi-
mental treatments, even when there is no solid RCT evidence to support them.9 
Although the FDA remains the gatekeeper to the pharmaceutical marketplace, its 
paternalism has been implicitly softened with the relaxation of its testing standards.

As to the means, during the last decade, the rise of computing and digital net-
works enabled the diffusion of the electronic health record (EHR): according to the 
regulator, EHR systems are “electronic platforms that contain individual electronic 
health records for patients and are maintained by health care organizations and insti-
tutions.” (FDA 2016, p. 4). With EHR clinical data can start travelling more easily, 
but the landscape is fragmented. There are multiple sources for EHR and many dif-
ferent ways to exploit them. In the first place, there are hospitals and all sorts of 
medical institutions (from physician offices to multi-speciality practices), but also 
insurance claims databases and registries. The multitude of vendors providing EHR 
systems has made the achievement of data interoperability and comparability a 
long-term issue requiring sustained standardization efforts. Recently, relative 
advancements in standardization united with cheap availability of enormous com-

9 See, for instance, the recent FDA decision to approve eteplirsen (Exondys 51), against the recom-
mendation of its own scientific board but accepting the demands of patients with Duchenne mus-
cular dystrophy (Kesselheim and Avorn 2016).
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puting capabilities have made it possible for some infrastructures to achieve a scale 
of data integration that could only dreamed of only a decade ago.

E.g., Kaiser Permanente is a US based integrated managed care consortium with 
11.7 million health plan members as of October 2017 (Wikipedia, March 1, 2018). 
It is now constructing a virtual data warehouse, with a view to study the effective-
ness and safety of the treatments prescribed. Kaiser Permanente is just one of the 
sources feeding the Sentinel initiative (FDA 2018), by which the FDA is monitoring 
the safety of medical products already in the market, drawing on normalized and 
validated records from a group of data partners. As of 2017, Sentinel was accessing 
data from 193  million individuals. At an international level, the Observational 
Health Data Sciences and Informatics (OHDSI) is a collaboration between 
researches in 12 countries based on a Common Data Model that specifies how to 
encode and store clinical data. As of 2016, there were 52 databases, with a total of 
682 million patient records (Hripcsak et al. 2016).

Yet, as of today, these are all pioneering initiatives: database interoperability and 
standardization is not the norm (Fleming et al. 2014; Ford et al. 2009; Lyons et al. 
2009). EHR are extensively used in healthcare management, both for administrative 
and clinical purposes. The use of EHR for other purposes is mostly derivative. 
Scientific concerns have not been top priority in EHR design and practice. The gen-
eration and maintenance of EHR data has instead been shaped by the situated 
requirements of healthcare, local information infrastructure and institutional rou-
tines and reporting policies. It is thus difficult to render different sets of EHRs com-
parable (Demir and Murtagh 2013). This requires intensive “cleaning”, curation and 
external validation. Furthermore, there are serious privacy issues: EHR contain per-
sonal information and there are a number of legal and procedural principles that 
should be observed in their handling. Most EHR are not ready-made to travel 
onwards for scientific reuse.

The travelling of EHR data thus needs to be achieved through methodological, 
technological and organizational solutions. An increasingly frequent approach has 
been the creation of secure analytical environments, where researchers can trans-
form datasets to suit their research needs (see Tempini, this volume, Chap. 13). Data 
transform operations are carried out through a combination of automated pipelines 
and human judgement and intervention. A deep knowledge of the idiosyncrasies of 
each dataset is paramount and some data infrastructures have dedicated data ana-
lysts to provide just such expertise (Tempini and Leonelli 2018).

New developments in respect to both ends and means of regulation set the foun-
dations for the 21st Century Cures Act (21CCA). Epistemic and methodological 
novelties come together in section 2062 of the 21CCA, which opens up the possibil-
ity of using electronic health records to assess new indications for already approved 
treatments. It mandates the FDA “to use of evidence from clinical experience (in 
place of evidence from clinical trials)” and “establish a streamlined data review 
program” in order to support approval of a drug for new indications.

Drug repositioning is indeed a booming field (Institute of Medicine 2014). Once 
drugs are in the market, physicians are free to prescribe them as they see fit. 
Pharmaceutical companies cannot promote off-label prescription, since regulatory 
protection against any adverse effect liability extends as far as the indications 
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recorded in the treatment label – those tested with an RCT. Nonetheless off-label 
use is sometimes successful, at least prima facie. The 21CCA intends to capitalize 
on the wealth of information on off-label use captured in EHR systems to faster 
evaluate alternative indications. Assuming that any safety issue neglected in the 
original trial would have already emerged in the market, the 21CCA focuses on an 
alternative approach to efficacy testing: the clinical data may be sourced from many 
different contexts and the statistical techniques for the analysis of treatment effects 
should go beyond RCT hypothesis-testing.

The 21CCA has been a controversial bill: to name just a few of the lobbying 
groups involved, pharmaceutical, device and biotech companies reported more than 
$192 million in lobbying expenses; more than two dozen patient groups reported 
spending $6.4  million in disclosures that named the bill as one of their issues 
(Lupkin and Findlay 2016). Not all these groups were focusing on the testing stan-
dards for drug approval: the legislation is tied to a huge raise in funding for the 
National Institutes of Health, enough for many stakeholders in the biomedical com-
munity to support it. Yet, the 21CCA has initiated a paradigm shift in drug testing 
that, according to very qualified critics, will not promote “a 21st century of cures, 
but a return to the 19th century of frauds” (Gonsalves et al. 2016). If the new evi-
dentiary standards for drug approval admit inferior drugs into the market, in the 
absence of counter-measures many patients may return to an era in which they could 
not tell apart good and bad treatments.

However, preferences about testing standards depend on value judgments. Many 
patients might want to be protected (to a given degree) by a paternalist regulator. 
The degree of protection they should expect depends on the testing standard for 
safety and efficacy. Of course, patients might be willing to take more or less risk 
depending on the situation, and conditions such as access to expert counselling and 
high quality information, ability to process complex information, and the range of 
options afforded by each one’s insurance plan. Our assumption is that, faced with 
the increasing complexity involved in evaluating treatment options, most decision 
takers would welcome the availability of estimates of a testing standard’s reliability. 
As we are going to discuss in the following section, the use of travelling data (via 
EHR) for drug testing poses precisely this question. Whereas so far EHR have been 
packaged without paying any attention to regulatory needs, the 21CCA opens up the 
possibility of converting EHR for regulatory purposes. If so, we may ask when do 
EHR provide reliable evidence for assessing new drug indications? How shall we 
measure and share the risks involved in a regulatory decision based on EHR?

4  �How Far Can EHR Data Travel?

Perhaps it is too early for a conclusive answer. As we are writing (March 2018), the 
US Office of the National Coordinator for Health Information Technology is open-
ing to public discussion how to articulate the 21CCA “trusted exchange frame-
work”, a first step towards achieving a flow of interoperable health information 
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across different networks in the country. The FDA should still issue guidance docu-
ments in order to implement the new testing standards promoted by the 21CAA. It 
will take years until we see the full consequences of the incorporation of travelling 
data into drug regulatory testing.

Yet, the debate about how to use EHRs for regulatory purposes does not start 
from scratch. There are already a number of FDA guidance documents about the use 
of EHR in both clinical trials and epidemiological studies. E.g., the FDA guidance 
on the Use of Electronic Health Record Data in Clinical Investigations, issued in 
July 2018, refers to the use of EHR in standard regulatory trials (CDER 2018). In 
accordance with the ALCOA principles mentioned above, the main goal of the doc-
ument is to guarantee the auditability of every data record presented for regulatory 
use. More relevant for our purposes is the Best Practices for Conducting and 
Reporting Pharmacoepidemiologic Safety Studies Using Electronic Healthcare 
Data, an FDA guidance issued in May 2013 (CDER and CBER 2013). It imple-
ments the same approach to data audit, but adds some significant methodological 
caveats:

Investigators should demonstrate a complete understanding of the electronic healthcare 
data source and its appropriateness to address specific hypotheses. Because existing elec-
tronic healthcare data systems were generated for purposes other than drug safety investiga-
tions, it is important that investigators understand their potential limitations and make 
provisions to use the data systems appropriately. (FDA 2013, p. 13)

The implicit principle is that RCT (non-travelling) data are the evidentiary 
benchmark for assessing the appropriateness of EHR for drug safety investigation. 
If this is the case, the regulator may expect that the packaging of the EHR should 
include enough information for the investigator to perform the assessment of their 
limitations (as compared to RCTs), and/or human expertise to be otherwise avail-
able. But the Guidance assumes no standardized curation defining a suitable EHR. It 
rather leaves in the investigator’s hands, the internal and external evaluation of the 
EHR. As to the internal assessment, the investigator should evaluate best strategies 
for data coding (a key step of data repurposing): “Safety outcomes that cannot be 
identified using International Classification of Diseases (ICD) codes cannot be 
appropriately studied using data sources that rely solely on ICD codes in claims 
data” (FDA 2013, p. 14). As to the external assessment, using again an example 
from the Guidance, administrative claims data generated to support payment for 
care should be used taking into account the payor’s policies governing the approval 
and denial of such payments, in order not to introduce a selection bias in the analy-
sis (e.g., patients who should have been included for clinical reasons do not leave a 
record if payment is denied and treatment discontinued). Investigators will need to 
dispose of a wealth of informal knowledge about the practices and institutional 
shifts that shape clinical reporting. As other auditing practices, the assessment of 
EHR remains opaque as to the definition of its own core matter, and is shaped by 
economic constraints and attitudes towards cost-benefit trade-offs (see Power 1997).

The Guidance lists, without any pretence of completeness, a number of dimen-
sions in the EHR that investigators should consider when assessing their databases. 
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In order to grasp the general principle behind this assessment, we need to under-
stand first how the comparative benchmark works. RCTs are experiments designed 
to generate data that would allow for a clear test of a pharmacological hypothesis: 
for a given population, is the new treatment for condition X equal or better than an 
already established alternative? The design should exclude whatever potential con-
founders may interfere in the outcome variables measured. RCTs should compare 
like with like: the circumstances of the patients in every arm of the trial should be 
the same except for the interventions under study, so that if any difference is 
observed in the outcome, we may safely attribute it to the treatment administered. 
Sameness between trial arms is constructed by adopting control measures for a list 
of potential confounders (e.g., since the expectations of patients on the treatments 
they receive may play a role in the outcome, they should be administered in a way 
that no patient can discern which of the treatments in the test they are receiving – 
blinding). Throughout the last five decades, trialists have accumulated a good 
understanding of the different sources of bias in their experimental setups and have 
organized checklists to score the reliability of a test (Higgins et al. 2011).

In order to match this level of experimental control of the treatment effect, obser-
vational studies should measure potential confounders associated with the outcome 
and conduct an adjusted statistical analysis that accounts for differences in the dis-
tribution of these factors between intervention and control groups. Exceptionally, 
the size of the treatment effect might be so large as to swamp all the potential con-
founders (Glasziou et al. 2007). But most RCTs do not observe very large effects –
and when they do, they are not necessarily reliable (Nagendran et al. 2016). The 
regulator using EHR data must expect that they are packaged for travel with enough 
information about potential confounders as to grant a solid assessment. It is then 
necessary that experts construct one such list of items for EHR studies, scoring the 
degree of control on the treatment effects allowed by a given EHR dataset. They will 
need to ensure that procedures are in place to operationalize expert knowledge of 
the specific datasets in ways that are accountable to the regulator. For these data to 
travel, researchers will need to explicitly account for the uniquely contextual fea-
tures of each data ‘assemblage’ used in a study.

As of now, best experiences in EHR re-use (exemplified in infrastructures like 
SAIL in the United Kingdom – Ford et al. 2009; Lyons et al. 2009) suggest that 
dedicated data analysts are in the best position to develop deep knowledge of the 
potential sources of bias in the EHR they specialise in. Specialised data analysts 
flank researchers in the selection, modelling, extraction and analysis of the dataset 
while at the same time relying on the clinical expertise of the researchers (Fleming 
et al. 2014). Knowing directly about the quality of the data and getting past the ini-
tial selection of variables from a list of available sources is of paramount importance 
(see Tempini and Leonelli 2018). Issues such as missing, unknown or uncertain 
values are endemic in EHR datasets. Data collection practices in the health care 
system are greatly variable. Even a high quality curated EHR cohort can sometimes 
offer only limited coverage for important confounders. For example, in the creation 
of an electronic cohort of children living in Wales (the Welsh Electronic Cohort for 
Children), data about maternal smoking could be missing for up to 50% and contrib-

The Babel of Drugs: On the Consequences of Evidential Pluralism in Pharmaceutical…



218

uted to the redefinition of the sample set (in this case, the cohort came to comprise 
children born in Wales, because children who moved to Wales after birth had com-
paratively poorer data). Source databases could disagree on the sex of a child, 
requiring researchers to harmonize even ‘basic’ data. More generally, missing data 
can be detected a) at the level of the individual records; b) at the institutional level 
(values can be missing from all the records contributed by one organization); or c) 
at the infrastructural level (all records from a particular EHR software vendor). US 
and UK systems are fragmented into multiple infrastructures marketed by compet-
ing vendors, though industry concentration is increasing. EHR data to be made 
available for re-use and travel are sometimes selected by vendor, again with an 
uncertain effect on sampling.

There is a growing literature on the EHR study biases (Pivovarov et al. 2014; 
Rusanov et al. 2014; Vawdrey and Hripcsak 2013). A key concern is with the event-
based nature of EHR data (see Jorm 2015): data are collected in the occasion of 
patient encounters with the healthcare system. The timing and reason for these 
encounters have not been pre-emptively stipulated by a study protocol and are 
instead associated to patient needs. Data about healthier patients are thus scarcer, 
and this can have implications for sample selection. Shifting reporting policies 
(administrative, accounting and fiscal frameworks) and other circumstances of 
health care coverage can mean certain phenomena are under- or over-reported 
(Dixon et al. 2015; Fleming et al. 2014). In addition, algorithms used for curation 
and modelling need to be validated: coding can be simplistic and/or overlapping, 
often requiring researchers to create custom code-lists and control for duplication. 
A complex ecosystem of practices, solutions and institutions is necessary to make 
scientific reuse of EHR possible (Hripcsak and Albers 2013). In 2014, a review of 
the state of EHR implementations in the US found that only a small proportion of 
systems meet “meaningful use guidelines”; while most systems met basic standards 
for data collection, only by 40–60% of systems satisfied criteria for the sharing of 
data between points of care and with public health agencies (Adler-Milstein et al. 
2014). Underperforming systems are not randomly distributed and have a higher 
share in small and rural hospitals.

How should we think about these caveats? A quick rejoinder would contest the 
status of RCT data as benchmark in this comparison: many philosophers of science 
have defended evidentiary pluralism regarding medical causality, contesting the gold 
standard status of RCTs – for a review, see (Reiss 2017). Although, a priori, RCTs 
allow a high degree of causal control on an intervention, the theoretical assumptions 
behind this superiority may not hold empirically and, depending on the context, 
observational studies might be equally defensible. In other words, biases may equally 
harm RCTs and observational studies – see (Senn 2013) for a discussion. Thanks to 
EHR, observational studies may reach a sample size that no RCT can match and, 
with adequate data mining processes, true treatment effects may be detected.

Following (Senn 2008), it is worth recalling here that observational studies can 
improve only to a limited extent solely thanks to the addition of data. In assessing 
the reliability of a statistical estimator (e.g., of a treatment effect), we depend on two 
magnitudes. On the one hand, we have the underlying biases in the measurement 
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process, arising from the methodological limitations in the study we discussed 
above: e.g., not properly blinded patients may distort the treatment outcome. On the 
other hand, there is the standard error of the measurement process, arising from the 
sheer variability between the subjects measured: not every patient reacts in the same 
way to the treatment and we need to find a reasonable average. The standard error is 
(roughly) inversely proportional to the number of subjects in the study. Here comes 
the power of big data: the bigger the number of EHR, the lower the standard error. 
But even if the standard error tends to zero as the sample size grows, the bias will 
remain constant. The only reliable approach to controlling for biases is in the design 
of the study, and here is where RCTs dominate. This seems to be the position of the 
FDA research staff as of the end of 2016:

EHR and claims data are not collected or organized with the goal of supporting research, 
nor have they typically been optimized for such purposes, and the accuracy and reliability 
of data gathered by many personal devices and health-related apps are unknown. (Sherman 
et al. 2016)

5  �“Delivering the Proof in the Policy of Truth”

There is thus no a priori reason to expect that EHRs can be as reliable as conven-
tional RCTs for regulatory purposes. If so, the 21CCA is set to push further the 
methodological relaxation of the FDA’s regulatory paternalism. The FDA will still 
act as a gatekeeper, but it will allow into the pharmaceutical marketplace drugs with 
as many different levels of safety and efficacy as the testing standards that are used. 
Just as trials with surrogate outcomes turned out to be often less reliable than old-
fashioned RCTs, the assessment of new indications for already approved drugs with 
EHRs may introduce a new safety and efficacy threshold, and one that lowers the 
levels of protection for pharmaceutical consumers. The incommensurability 
between FDA approvals based on RCT vs EHR evidence generates a risk for clini-
cians and patients taking a therapeutic decision between heterogeneous options. As 
we put forth in the introduction, what counts as data depends on the risk threshold 
one works with. The FDA, we argue, is lowering its risk threshold, and this is allow-
ing different kinds of data to travel and be used as evidence. Clinicians and patients 
will then have to set their own threshold in turn.

The residual risk involved by EHR-based regulation (i.e. risk that is not con-
trolled by FDA regulatory activity) is thus passed downstream to patients. Each 
patient will take decisions based on different risk thresholds and standards of 
evidence. Their decision will also depend on standards of care patients are able to 
access and the specialists they will consult with. Will patients accept drugs based on 
different kinds of evidence? All evidence points to a positive answer, especially if 
we consider the influence that pharmaceutical marketing, once deployed to promote 
newly approved uses, can exert on the entire cultural frame in which health is under-
stood and evaluated (Dumit 2012). The trend, Dumit shows, is for more and the 
most profitable drugs to succeed.
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It remains to be seen whether and how international regulatory agencies other than 
the FDA will revise their position with respect to the use of EHRs in regulation. At 
stake, we have competing forces in pharmaceutical markets. The 21CCA is suppos-
edly addressing the crisis of innovation in the pharmaceutical industry and bringing 
new treatments to patients. In adopting evidentiary pluralism, the 21CCA implicitly 
sanctions a popular hypothesis on the causes of the crisis: it is partly due to the high 
amount of treatments that are lost to inadequate testing standards. Using different 
sources of evidence, regulatory agencies will be able to minimize these treatment 
losses. From a political standpoint, the question with this regulatory shift is whose 
interests it serves. If all evidentiary standards were equally reliable, the interests of 
the industry and of many patients might be aligned. But if we are right in our diagno-
sis, and we are left with uncertainty as to the comparability of RCT vs EHR tests, 
patients may have a dilemma. In the best case scenario, new tests would bring more 
cures to the market, but some of these may be ineffective or even harmful. Is it worth 
having more treatment options available even if not all of them are equally reliable?

These shifts point negotiate the core of liberal democratic polities: the move of 
the FDA further away from regulatory paternalism marks a retreat of the State from 
protecting its citizens from harm (through legal and bureaucratic devices such as 
regulatory activity).10 A drug regulation framework stipulates what is the acceptable 
evidence of risk magnitude and risk structure (e.g., bias vs standard error) for grant-
ing approval of experimental treatments. Thus the 1938 and 1962 acts created an ex 
ante protection from harm. Before then, and since the last 150 years, only tort law 
was available (and still is) (Gibbs and Mackler 1987) – an ex post reparation for the 
injury caused by a compound. Following Agamben (1998), we can interpret both 
tort law and the FDA regulatory frameworks as core institutions of the liberal demo-
cratic polity: they protect one citizen from harm inflicted by another.

The protective power of the FDA mark of approval is complex. On the one hand, 
the prohibition of releasing and administering drugs that have not been tested is an 
example of how regulation anticipates potential harm and protects from it. On the 
other hand, when a drug is tested according to stipulated testing regimes and con-
sidered safe enough after evaluation of the supporting evidence, its approval by the 
FDA is voucher for the limited liability of the manufacturer for the harms that a 
pharmaceutical might still cause.11 Harm eventually inflicted by the off-label use of 

10 The political metaphysics of the 21CCA shift in pharmaceutical regulation are stark. According 
to Agamben (1998), the dispositif of law is intended to demarcate a field of social relations that are 
protected from harm. Harm inflicted within the field will be punished through sanctions. However, 
a field cannot be demarcated without creating an opposing field outside protection. Key to the 
cultural and legal evolution of Western polities at least since Roman law has thus been the exis-
tence of a field of social relations that is outside the scope of law, and most importantly the continu-
ous negotiation and redefinition of its boundaries. This is the field of nuda vita. Agamben argues 
that the existence of such a field is a necessary precondition of the social contract – complete 
protection of all the living would immobilize society. Note that here we are not taking a strange 
turn: this is the theme of the crisis of innovation, elaborated from a different perspective.
11 The policy defines a case logic whereby the harm inflicted despite fulfilment of due process is not 
to be sanctioned in the same way that harm otherwise inflicted is culpable. Any changes in drug 
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a drug is consequently more easily sanctioned (and pharmaceutical companies do 
not promote such uses for this reason).

There are of course exceptions where the manufacturer can still be liable after 
drug approval. This can be for negligence (defect in design, testing, manufacturing 
or labelling); strict liability (injury caused by avoidable reasons: does not apply if 
“the product is properly prepared and accompanied by proper directions and warn-
ing”); and breach of contract (does not usually apply to drugs). Key here is the 
assumption by the legislator that drugs have unavoidable risks: perfect knowledge 
about them is impossible. To receive satisfaction, the plaintiff should then argue that 
the risks were avoidable for either improper design, manufacturing or labelling.

However, for the last five decades, the existence of FDA approval has ruled out 
improper design or testing as a litigation pathway. The courts rarely failed manufac-
turers for the harm caused by properly produced and labelled FDA-approved drugs. 
The FDA regulation has been until now authoritatively demarcating what epistemic 
risks (as implied by each accepted test design) will be treated as unavoidable and 
therefore not culpable.

A framework less centred on safety such as that the 21CCA is introducing, we 
argue, increases patient choice while shifting some of the harm involved in taking 
drugs from ex ante to ex post protection devices. Whether the 21CCA will then open 
a new space of litigation (thus undermining the evidentiary power of FDA approv-
als), or if instead it will simply mean that more harms will be unsanctionable (if 
American courts continue the practice of accepting FDA approval as evidence of 
test quality), it remains to be seen. With potentially inferior testing standards regu-
lating access to market, it becomes possible that some harm is inflicted because of 
failure of the inferior safety standard and which could have been avoided by a supe-
rior standard. Until the reliability of the new standards is fully grasped, patients will 
have to suffer the eventual consequences of lesser State protection.

In the while, we expect that individual risk aversion will shape market outcomes: 
some patients (and their caretakers and doctors) will welcome uncertain but more 
abundant treatment choices; others will not. The attitudes of US citizens towards 
pharmaceutical risks changed throughout the twentieth century to support increas-
ingly strict safety regulations, at least if we judge it by Congress decisions (Carpenter 
2010). Is there a public demand for more cures offsetting this previous risk aver-
sion? And is it a well-formed demand or does it rather reflect the marketing pressure 
of pharmaceutical lobbies, as critics contend?

In sum, the 21CCA paves the way for the regulatory use of EHR. We have argued 
that, before these data start their journey to the regulator’s desk, it is crucial that we 
debate how to package EHR in order to make the best use of the information they 
provide. In designing the journey, one crucial point is how to convey the informa-
tion about its potential limitations for regulatory use in a standardized format. Only 

testing regulation are thus concerned with redefining the boundary between one type of harm risk 
(not culpable) and the other (culpable). Paternalistic policies following scandals such as 
Thalidomide expanded the field of protected life. With the 21CCA’s prospect of easier approval to 
more drugs through inferior testing standards, the boundary between the two harms is moving 
again but in the opposite direction.
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with some degree of package standardization, we can estimate the reliability of 
EHR in making regulatory decision, how often they yield to error, as compared to 
other sources of evidence. And this is the sort of information that a robust public 
sphere needs to debate whether the sort of evidentiary pluralism promoted by the 
21CCA is welcome. If the journey of EHR data becomes so long as to require clini-
cians and patients to evaluate the evidence in favour of a treatment option, it might 
be travelling that eventually can go too far.
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Most Often, What Is Transmitted Is 
Transformed

Theodore M. Porter

Abstract  This short interlude prompts reflection on the transformations involved 
in data mobilization through a vivid discussion of the changing circumstances of the 
visualization of data about family histories of mental illness – and their interpreta-
tion in relation to questions around inheritability and underpinning biological 
causes – through graphs and tables produced between the mid-nineteenth century 
and the early twentieth century.

Henri Legrand du Saulle used the title phrase above to encapsulate his teacher 
B. A. Morel’s doctrine of hereditary degeneration. Degenerative heredity was defined 
not by stable transmission of traits from generation to generation, but as a trajectory 
of decline leading often to extinction of the line (Legrand du Saulle 1873, 9). This 
theory was a hit with doctors, novelists, and other authorities on human heredity for 
about half a century. Its fall from favor cannot be attributed to any shortage of data. 
It was not easy, however, to reach agreement as to what the data meant. One notable 
collection of family records that came to be cited in support of Morel’s theory had 
been published in 1859 by a Norwegian asylum doctor and researcher, Ludvig Dahl. 
His tables of mental illness were redrawn and republished half a century later by 
English biometricians, then relabeled as evidence of Mendelian degeneration for a 
German health exposition. In each case, Dahl’s data was assigned new meanings. 
Often, when data travels, it will be transformed (Porter 2018, 131–142 and 179).

Dahl created a partly novel visual technology, the pedigree table, to convey his 
understanding of pathological inheritance. Although he admitted variability in the 
manifestation of hereditary elements for mental disease, he regarded a close resem-
blance between parent and child as the most compelling indication of inheritance. 
His book on the subject attracted immediate attention across northern Europe for its 
insights on the causes and transmission of mental illness. Although he wrote in a 
somewhat inaccessible language, Danish/Norwegian, he attracted knowledgeable 
commentators in French, English, and especially German. They did not need to be 
convinced that heredity was key to the perpetuation of insanity, and likely its most 
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fundamental cause. Cascades of annual asylum reports from Europe and North 
America included lists of the “presumed causes” of illness for newly-admitted 
patients, and heredity was consistently at or near the top. Dahl’s book was distinc-
tive for its fine-grained studies at a local level, typically of a single parish, which he 
compared with numbers from the much-admired Norwegian decennial census of 
insanity, first taken from 1825 to 1828, and with data from the new asylum of 
Gaustad in the hills above Christiania (Oslo). Records of the 1855 census gave him 
access to the unpublished names of individuals reported as insane, which he supple-
mented by surveying parishes of interest, talking with doctors, priests and families 
of these unfortunate souls. This information, the basis for his kinship tables, per-
tained specifically to the question of hereditary transmission.

Dahl, a data guy, resisted the temptations of dogmatism. Often, children had 
cases very similar to their parents, but not always. He had enough examples of dis-
parate forms of illness within a single family to declare with some assurance that a 
hereditary Anlæg or factor could have diverse manifestations. Insanity he under-
stood as an “acquired” condition, distinguished by its invisibility until late adoles-
cence. Madness was easily distinguished from idiocy, or mental weakness, which 
was typically congenital and often appeared in association with bodily deformities, 
especially of the cranium. Yet he turned up many families manifesting both condi-
tions. Idiocy, in turn, was not only linked by heredity to deaf-mutism, but often 
appeared alongside it in the same individual. Dahl also mentioned albinism and 
even leprosy, a relatively common and much-studied condition in Norway, as other 
afflictions that were often allied to idiocy. The proliferation of mental and physical 
defects seemed to be more common where there was intermarriage, especially if a 
hereditary factor was present in the family (Dahl 1859, 82–86). In a section on 
hereditary causes, Dahl printed eight pedigrees of kin groups showing a high level 
of inherited illness. The most extensive of these came from the parish of Kinservik 
on the Hardanger fjord, east of Bergen, where the inhabitants (he said) were espe-
cially attentive to the memory of their ancestry and where the priest zealously aided 
the research. Despite using two foldout pages, Dahl had to divide this extended 
family into two charts, kin groups 4 and 5. They revealed a variety of conditions that 
seemed to be joined together by heredity, including deaf-mutism, epilepsy, leprosy, 
blindness and albinism as well as insanity and idiocy (Dahl 1859, tables 4–5 and 
pp. 82–86). To this extent his tables resembled those of Morel’s students, but Dahl 
found no directional tendency. His tables also documented intermarriage of close 
relatives, which, he speculated, may strengthen a hereditary tendency, but he wanted 
more data to be confident.

A German commentator and translator expressed puzzlement that an Anlæg (in 
German, Anlage) could be expressed in such heterogeneous forms, sometimes even 
without cousin marriages. Such instability of types of insanity was an old story, and 
not only as heredity. A patient admitted to an asylum with a diagnosis based on one 
set of symptoms might have to be assigned another when these manifestations 
changed. The boundary between madness and idiocy, in contrast, was mostly 
reliable, and neither of these could be confused with albinism or leprosy (von dem 
Busch 1861, 483–485).
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Although the work was enthusiastically received, Dahl’s tables did not at first 
inspire imitators. In 1877, the alienist William Ireland translated a few of them 
into English for his book on mental defect (Ireland 1877, tables at back). But it 
was not until the new century that pedigree tables emerged as the indispensable 
tool for documenting inherited defect. The most important site of their reappear-
ance was in the Treasury of Human Inheritance, a reference work funded by 
Francis Galton’s Eugenics Laboratory, now under the direction Karl Pearson. 
The conditions documented in the initial fascicules, issued in 1909, included 
some anatomical abnormalities that could be described very precisely. For condi-
tions such as mental illness and tuberculosis, however, Pearson and his cowork-
ers preferred to speak of diathesis or constitutional susceptibility, to be identified 
from readily-apparent symptoms. Pearson was, after all, a statistician, not a doc-
tor, and he was in no position impose any system of classification on such a slip-
pery subject. Also, since these maladies were not often identified before age 20 
or 25, it might well be impossible to examine ancestors beyond a single genera-
tion. Dahl had relied on written records and family recollections to compile his 
kinship tables.

Pearson, who stressed the painstaking labor of checking and rechecking 
required to assemble even one solid table of this kind, treated “Dahl’s case” as 
having met this high standard of quality. That meant they were fit to serve as a 
data resource, to be compared and analyzed in pursuit of scientific conclusions 
on the transmission of human defects. He indicated provenance but did not call 
attention to singularities, and he printed tables of multiple families by multiple 
researchers on the same page. There is no discussion of the sites of research, and 
individual names were omitted. By redrawing all pedigrees in a common format, 
he has made them almost interchangeable. Pearson’s formidable erudition 
included a working knowledge of the Norwegian language, which he had studied 
in order to read Ibsen in the original, so it is quite possible that he had a hand in 
the excavation of Dahl’s data. Yet there is not a word here about Dahl, his site, or 
his methods.  Pearson’s  ambition was to create a database of interchangeable 
data, one that did not require researchers to go back into the sources. He also did 
not use this work to defend hereditary theories or to take shots at Mendelian 
reductions of complex traits and behaviors. Rather, he sold his numbers as inde-
pendent of all theories (Pearson 1912 [these sheets first printed 1909] plate 10; 
Porter 2004).
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In one important sense, his effort to create a neutral database of heredity was a 
success. Dahl’s kinship tables from Hardanger, as redrawn for the Treasury of 
Human Inheritance, gained instant recognition, and were featured, for example at 
the 1911 International Hygiene Exposition in Dresden. The German organizers and 
editors, Max von Grüber and Ernst Rüdin, simply reprinted the redrawn Norwegian 
material alongside other graphs and tables of inherited mental and nervous condi-
tions, without even translating loose English words on these charts. As data they 
took Pearson’s tables to be authoritative (See Nikolow 2001 on the Dresden 
Exhibition).

The treatment in the catalogue of Dahl’s case (Fall von Dahl), however, involves 
some perplexing little oddities, and was anything but atheoretical. Grüber and Rüdin 
put to the side what Dahl had understood as the most remarkable feature of this 
chart, the juxtaposition of so many conditions there. The German heading for the 
Hardanger table reduced its multifarious defects to just one, deaf-mutism 
(Taubstummheit). Clearly they were looking for a striking example of Mendelian 
neurological inheritance. This fixation on Mendelian inheritance, nonetheless, was 
perfectly compatible with a relentlessly statistical presentation. And this was not all. 
In the course of the work, they came to be tantalized by the hopes of demonstrating 
Morel’s mechanism of hereditary degeneration.

The printed record, consisting of two editions of the exhibition catalogue (both 
dated 1911), and a crowd of inconsistencies gives evidence of momentary thoughts 
and dreams, rushed into print and then disappearing into smoke. In the first cata-
logue, for example, the authors describe the crucial Table 113 as omitted just a few 
lines before it appears (von Grüber and Rüdin 1911a, 73). The pages instance hemo-
philia, congenital night blindness, and brachydactyly (shortened fingers) as known 
to be inherited independently and to segregate (mendeln), and indeed to be governed 
by a single genetic unit (Erbeinheit) or gene (Gene). The catalogue next refers back 
to “Table 112 Dahl’s case on deaf-mutism,” here described displaying a remarkable, 
simultaneous appearance of deaf-mutism and insanity in distant relatives in the fifth 
generation. The crucial point here is that the third and fourth generations were 
“practically free” of these conditions. More mistakes: 112, though from Dahl, was 
a different table, also copied from Pearson’s Treasury. It showed no such eruption 
of hereditary illness. Table 113, they now declare, referring to the important table 
they claimed earlier to have omitted, “is entirely similar.” But their topic here was 
degeneration, whereas Table 113 concerned Mendelism.

They come finally to the most astonishing result of all, the reconciliation of 
Mendel and Morel. The catalogue text veers back to speculate that Dahl’s kinship 
table of deaf-mutism might supply a concrete instance of hereditary degeneration. 
In the next line they tried out a fusion of theories, Mendelism and degeneration. 
“Supposing the information (Angaben) in the kinship tables is complete in this 
respect, it gives the impression that an abnormal gene or an abnormal combination 
of genes from the shared heritage of the progenitors has at last attained so great a 

T. M. Porter



235

degree of degeneration that manifest derangements can occur.” The degenerative 
force, they were suggesting, must have been intensified by family relationships and 
shared heredity – that is, cousin marriages. What else could explain the simultaneous 
appearance of a new irregularity in distinct lines of this kin group (von Grüber and 
Rüdin 1911a, 71–77, quotes 76–77)?

So many inconsistencies seem to reflect a momentary but irrepressible excite-
ment regarding a putative demonstration from Dahl’s data of Morel-style degenera-
tion. In the “enlarged and completed” edition issued later the same year, the 
mistakes  in the identification and numbering of tables were rectified. Rüdin, the 
psychiatrist, who presumably was responsible for this material, hints now at doubts 
as to the evidence for Morel-type degeneration by inserting a question mark: 
“Supposing the information… is complete (?)” Complete information on genera-
tions long dead may be depicted as a tree, but it does not grow on trees. Both edi-
tions, however, include an example of polydactyly (extra finger or toes) as an 
instance of the intensification of heredity, a tendency that Dahl, too, had endorsed. 
Certainly the authors did not rule out degeneration. This passage concludes by call-
ing for more information (or data), that is more family trees of inherited illness (von 
Grüber and Rüdin 1911b, 75, 78, 81).

The investigation of madness and heredity was, by 1859, a recognized and even 
exemplary focus of data production. The hope that this data could be consolidated 
into databases of ever greater scale, to be analyzed in offices and exhibited in muse-
ums, burned brightly in those years, as it does in our own. But the detachment of 
data from the concrete conditions of its production is always risky. Data, as it moves, 
is most often thinned, and what is thinned is necessarily transformed.
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Science

Niccolò Tempini

Abstract  This chapter is concerned with the relationship between the materiality of 
digital computer data and their reuse in scientific practice. It builds on the case study 
of a ‘data mash-up’ infrastructure for research with environmental, weather and 
population health data. I problematise the extent to which scientists reusing digital 
computer data heavily manipulate the sources through complex and situated calculative 
operations, as they attempt to re-situate data well beyond the epistemic community in 
which they originated, and adapt them to different theoretical frameworks, methods 
and evidential standards. The chapter interrogates the consequent relationship between 
derivative data and the data sources from which they originate. The deep relationality 
of scientific computer data is multi-layered and scaffolded, as it depends on relations 
between various kinds of data, computing technologies, assumptions, theoretical 
scaffoldings, hypotheses and other features of the situation at hand.

1  �Introduction

This chapter is concerned with the relationship between the materiality of digital 
computer data and their reuse in scientific practice. It builds on the case study of the 
Medical and Environmental Data Mash-up Infrastructure, a project born at the inter-
disciplinary crossroads between environmental and weather sciences and popula-
tion health research. Studying the practices of development and use and the 
operational characteristics of the infrastructure, I aim to show the extent to which 
scientists reusing digital computer data proceed to heavy manipulation of the 
sources through complex, intermediated and situated calculative operations. 
Consequently, this chapter interrogates the relationship between derivative data and 
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the data sources from which they originate. It argues that systematic transformation 
and recombination of both data source values and structures, involved in the reuse 
of computer data, lead to the creation of deeply derivative data that are best consid-
ered new digital and epistemic objects.1

This is important to advance our understanding of the journeys of computer data, 
and especially so since much novelty of big data innovations seems to hang on suc-
cessfully repurposing a great variety of digital traces that must be available in great 
quantity. Indeed, any initial assessment of what is happening with the advent of 
huge digital infrastructures that warp our understanding of notions such as scale, 
size, speed and boundary of information begs the question, in what way does digital 
materiality make a difference for scientific practice, and what is the purchase of an 
account of data practices that is specific about digital data? The chapter builds 
on empirical material gathered through participant observation, first-person involve-
ment in data science exercises, and insights from literature in information science, 
media studies and the philosophy of technology and of science. The aim is to offer 
an original angle for data and data reuse theorisation, one that more deeply considers 
the specific characteristics of digital technologies while attending to the epistemic 
practices of human actors at the same time.

The topic has started to surface in the philosophy and sociology of science litera-
ture interested in digital data, but has not raised sufficient attention. Thanks to an 
increasing interest in empirically attending to scientific practices, philosophers of 
science and STS scholars have started to ask questions of definition, character and 
materiality of data that were once absent from the debate. Discussions relating ques-
tions of materiality to the epistemic and social role of data have necessarily featured 
in the debate (Rheinberger 2010), and feature in this volume accordingly (Halfmann 
this volume; Wylie this volume). For instance, starting from the study of data prac-
tices in archaeology, Wylie argued that the materiality of an object is crucial in 
shaping the ways it can serve as data (Chapman and Wylie 2016; Wylie 2017). 
Observing how scientists can return several times to the same object in order both 
to challenge and to reaffirm hypotheses, and to discover new lines of interpretation, 
she shows that over time the “same” object can be mobilised to serve completely 
different lines of argument. Objects can take new roles because their specific 
materiality can confer to them a persistent, residual character that is not fully 
exhausted by their mobilisation in previous lines of inquiry.

Focusing on data sharing through online databases and its impact in the prac-
tices and culture of biology, Leonelli (2016) develops a relational definition of data 
from a pragmatist perspective. She holds that in the first place, what counts as data 
depends on situated evaluations. Data can be any object that can be used in support 

1 In this volume, Parker discusses the case of “data products” in climate science: data that are 
manipulated by third parties from data sources. She highlights how different methods for manipu-
lating data sources create completely different data products that retain a “potential structural 
uncertainty”. She also highlights how data products have a role of social intermediation: they are 
mobilised on a new ground (the heated political arena of climate change), outside the institutional 
boundaries within which data sources are used (Parker this volume).
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of evidential claims at specific moments of the scientific inquiry. A number of 
conditions shape an object’s potential to be used as data, which include material 
issues. Key to ensuring reuse are what she calls “packaging strategies”: the activi-
ties aimed at preparing the data for de-contextualisation, transfer, and re-contextu-
alisation in the new situation of use. Leonelli points out that packaging frequently 
intervenes on the material characteristics of the data and “often change format, 
medium and shape of the data” (Leonelli 2016:76); consequently, “biological data 
are anything but stable objects” (ibid.). An example are sequencing data: these can 
come in different formats, which might or not be compatible with the machinery 
employed downstream in the journey. Data formats change as “data start their 
journeys across screens, printouts and databases around the world” (2016:84).2 She 
argues that the identity of data can be traced throughout and despite these material 
discontinuities if one focuses on the association between “researchers’ perceptions 
of what counts as data and the type and stage of inquiry in which such perceptions 
emerge” (2016:77).3

1.1  �Scientific Data vs Computer Data

The argument of this chapter starts from a juxtaposition between the meaning of 
data as in scientific data, and data as in computer data. This is to demonstrate, as I 
have already anticipated, that the use of big data in science depends on successful 
strategies of computation and transformation of digital data qua computational 
objects. The data journey is underpinned by a rather continuous and tightly inter-
locked chain of custody granted by technical operations on digital equipment. These 
are complex manipulations that selectively transform symbolic values at the level of 
specific fields or portions of the semantic content, while leaving other components 

2 It is relevant to point out the standpoint of Leonelli’s analysis. Focusing on the practices of scien-
tists, she observes that scientists work with all kinds of object with no stable or predilected feature 
to be discerned. From this perspective she elaborates a ‘general’ philosophy of science framework 
that aims to apply both to practices with digital objects, as with any other object used by scientists 
as data.
3 The theory of data travel is grounded with two further conditions. First is that to assign, to two 
materially different objects, same identity as data should be a criterion of epistemic function conti-
nuity. If despite (or rather thanks to) the changes to their “format, media and shape,” data objects 
keep an identity as objects that can be used for knowledge claims, the travelling continues. The 
specific function will change depending on the situation of use, but continuity has to be of the ‘data-
ness’ of the object: whether something can endure these shifts and still be used by somebody as 
data. The second condition immediately follows from the first. It deals with the problem of how to 
account for the relationship between “type” (the semantically unique) and “token” (the material 
instantiation), when data are translated multiple times over various formats and media. Leonelli 
questions altogether the usefulness of this distinction for understanding data journeys: even the 
‘same’ data change meaning with a change in situation (can be interpreted differently in different 
situations), so we will often lack a strong grounding for an identity of the ‘original’ in the first place.
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untouched. They allow the repurposing of data sources that were not designed for 
travel and reuse.4

In thinking about the relationship between the scientific use of big data and the 
computational transformations that they undergo, I want to take the opportunity to 
open the data object blackbox. As it has been duly noted (Leonelli 2016), changes 
in format and media can often disrupt the reuse process; but from a computer data 
perspective, these might amount to as little as a change in file headers (a form of 
machine-readable metadata). The data reuse operations I am interested in run 
deeper, to the heart of a digital object, and can completely undo its semantic fabric.

To avoid any hesitation in linking specific material characteristics of data objects 
to their epistemic roles, it is useful to recognise the specific angle that philosophers 
and science studies scholars often take on the category of data, and the theoretical 
assumptions and goals that inform it. According to Leonelli’s account of data, the 
status of an object as data depends on situated evaluations by actors relative to 
goals, expectations, resources and background theories. Consequently, in this chap-
ter I will use the term scientific data to refer to objects that are held to satisfy the 
following key requirements:

–– The object has epistemic value because a social actor considers it to be usable to 
stake a claim about the world (Leonelli stresses this value is evidential – 2016).

–– Scientific practice determines its data status: does it satisfy the needs of a spe-
cific situation of inquiry?

–– Relational objecthood: the object can change materially yet retain data status if 
above conditions are granted – it continues to be usable in scientific inquiry.

The data word has a number of other uses. Mind-numbing advances in computa-
tional and networking technologies have left no domain of social life untouched. In 
studies primarily concerned with the impact of computing technologies on social 
process and culture the term data is often used to refer to the digital records stored 
on a computing machine,5 the existence of which is a precondition to the everyday 
operation of digital systems. In this perhaps most common use of the word, data are 
digital objects at the centre of socio-technical practices of computation. Accordingly, 
in this chapter I use the term computer data to refer to digital objects that are held 
to satisfy the following key requirements:

–– The digital object is an object described through binary numbers and which can 
be accordingly manipulated through mathematical functions, as commonly 
embedded through software in programmable computer machines.

4 A case in point are routine data generated through encounters at the points of care within the 
health system (see Tempini and Teira this volume), but also, as the case I present illustrates, 
weather and environmental data. As Parker’s chapter in this volume (Parker this volume) also 
shows, this kind of operations are often carried out by 3rd parties to the original data producers.
5 Hui (2012) makes a somewhat similar point, while juxtaposing data as “given” to data as “trasmit-
table information.”
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–– The object has cognitive value because it can be used to access or generate new 
information through computation, and is a required resource for the functioning 
of digital systems.

–– Socio-technical practice of computation determines its data status: is it comput-
able? Is it integrated in a technological milieu such that it is interacted with in a 
way that is socio-technically meaningful?

–– Relational objecthood: the object can change materially at the level of its sym-
bolic constitution yet retain data status if above conditions are granted (it contin-
ues to be usable in socio-technical practices of computation).

Note how the first of these requirements is a specific material condition. Note 
also how the two terms of scientific vs computer data are broadly parallel, often but 
not necessarily overlapping, and the second is narrower than the first. By and large, 
existing accounts of data have so far neglected this juxtaposition, working instead 
from the single standpoint offered by either of the two meanings.6 Others did worse 
and conflated them.7 I would like instead to stay as long as possible in the uncom-
fortable zone where objects could be (both, either, or neither) computer and/or sci-
entific data (Fig. 1).

A host of research questions arise as we try to hold this juxtaposition alive. For 
instance, one may ask: Computational socio-technical practices can generate new 
objects easily from existing digital material, but will they be epistemic objects? How 

Fig. 1  Scientific data, computer data, and scientific computer data

6 Hence confusion ensues with everyday use of both meanings of data. People can complain ‘my 
data are lost!’ after a virus wiped out indiscriminate portions of their disk or file system; but they 
can also look at charts on their screen and cry ‘these data are rubbish!’
7 See for instance, Mayer-Schönberger and Cukier (2013), conflating the existence of a record, and 
the record’s power to evidence. This confusion is best exemplified by expressions such as “let the 
data speak”, suggesting records truth-tell if only humans remove the encumbrances. However, lit-
erature has overwhelmingly justified why we need a definition of scientific data that is different 
from that of computer data, by focusing on the conditions that take data to evidence (e.g. Gitelman 
2013; Leonelli 2016; Tempini 2015).
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can certain objects have epistemic value in scientific practice when their digital 
sources are not directly useful in science?

In the next section, I will introduce the empirical material that can help us in 
relating computer data to the problem of scientific data reuse. This is a case study 
of a data linkage infrastructure and the practices associated to its development and 
use in research. The term of art, data linkage, is used in public health research to 
speak about the combined re-use of datasets of different origins. Records of a 
patient’s interactions with a hospital or a GP practice can be combined with records 
from other institutions and sites of data generation (e.g. genetic profiles, environ-
mental and weather data, and socio-economic data among others), to investigate 
multi-sited relations between phenomena. More about what data linkage is and its 
current relevance is offered in the beginning of the next section. In the following 
section, I discuss a framework to understand the digital apparatus affording big data 
practices in science, first by analysing key characteristics of computational technol-
ogy, then its operations on computer data. Elaborating on the case material in light 
of the framework, the concluding section will argue that working from a perspective 
that is specific on digital objects in science is worth the effort and makes an original 
contribution to the fields of philosophy and social studies of science.

2  �Unpacking Digital Data Reuse in Data Linkage Practice

Data linkage can open new spaces of research, allowing to investigate questions that 
would be otherwise very difficult to pursue and for which no pre-existing data 
source, taken alone, can provide enough information. Itself, the term already stresses 
how in some situations data can be productively used only if they are put in some 
kind of relation with other data. In particular we are concerned with an additive 
process here: linkage tries to make data usable for more purposes.

2.1  �Introduction to MEDMI

Accordingly, data linkage infrastructures are projects aimed at enabling the re-use 
of certain datasets well beyond their original use cases. The case study I present in 
this chapter is the one I conducted of the Medical and Environmental Data Mash-up 
Infrastructure (MEDMI).8 It is an infrastructure and data repository developed to 

8 The following empirical narrative is built on an extensive qualitative case study that I have con-
ducted in 2015–2017 on several infrastructures for the reuse of heterogenous data sources in bio-
medical research. I approached these infrastructures with a general view to document the 
associations between organisational forms and processes, infrastructure development, specific data 
science and data reuse practices, and scientific research concerns, standards and outcomes. Data 
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foster interdisciplinary research on the links between weather, environment and 
human health. MEDMI brings together four leading UK research organisations: 
University of Exeter Medical School, Met Office, Public Health England and the 
London School of Hygiene and Tropical Medicine. MEDMI aims to develop at once 
new data linkage methods, technology and demonstrative research. This requires 
the fulfilment of a few interdependent goals.

First, MEDMI sources and hosts datasets that are relevant for the kinds of 
research it purports to foster. Human health data were sourced from governmental 
health surveillance databases or GP practice software providers, which are third 
parties to the project, while environmental and weather data are mainly provided by 
the data owner the Met Office, who is project partner. MEDMI has datasets of grid-
ded weather variables values (NCIC), surface station observed and derived param-
eters (MIDAS), and automatically-collected air quality data (AURN) and ozone 
data from the UK DEFRA9; health data include, among others, datasets about 
observed cases of infections caused by seasonal pathogens (Second Generation 
Health Surveillance System – SGSS), but on a more restricted basis researchers 
have had access to mortality data from the Office for National Statistics, and GP 
practice data shared by one of the major software vendors in the UK (TPP). Several 
other health datasets owned by individual researchers have also been linked to 
MEDMI data for specific research projects. The task of making these datasets avail-
able includes their curation and harmonisation (more later).

Second, MEDMI researchers develop data linkage methods and infrastructures 
needed to make the combined re-use of these datasets possible. The linkage meth-
ods were devised through a collective interdisciplinary effort involving mathemati-
cians, statisticians, weather and environmental scientists, informaticians, and health 
researchers. Results are a distributed and optimised data storage architecture and a 
library of highly configurable tools, developed in Python programming language 
scripts, that allow the researcher to connect to the hosting server and start to probe 
the depths and shape of the datasets. How these tools interface the researcher with 
the data is key for this investigation into data materiality and use, as we will see.

Third, MEDMI aims to demonstrate the research that new infrastructures for 
data linkage can make possible. The emphasis on demonstration highlights how the 
value of research thus conducted was not to be defined solely by the knowledge they 
contributed, but also and especially because of the way they exemplify, and let others 

collection included both primary data (in the form of noted observations, interviews, and screen-
shots), and secondary data (mainly in the form of documents, spreadsheets and presentations) and 
was executed in the occasion of site visits, participation in meetings, and computer-mediated data 
gathering. I conducted a total of 24 interviews with MEDMI researchers at all levels, all focused 
on documenting data reuse and linkage practices and the experiences and challenges associated to 
them, visiting teams in Truro, Exeter, Colindale, Swansea and London in the UK. Recorded obser-
vations included auto-ethnographic notes that I performed by using first-hand the MEDMI data 
linkage infrastructure, in training sessions hosted at the UK MET Office and from my own home 
through SSH remote terminal connection.
9 Department for Environment, Food and Rural Affairs.
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imagine, a new way of doing research with and through the infrastructure. Three 
larger demonstrative projects were part of the initial project plan. At a later stage 
and close to the expiration of grant funding, the re-allocation of some financial 
resources allowed to also sponsor some “pilot projects” of shorter duration. A highly 
heterogeneous set of projects tested the infrastructure – some examples will be men-
tioned shortly – and provided feedback about the new research tools and linkage 
infrastructure.

2.2  �Data Relations and Epistemic Relations

The overarching premise of MEDMI is that researchers can use combined weather, 
environment and human health data to understand the effects of climatic and envi-
ronmental change on human health. In order to do so, they need to access heteroge-
neous data that originated in different epistemic communities in response to various 
research questions, standards and assumptions. To make conjoint use of different 
data in new situations of inquiry, researchers need to define some parameters to be 
the invariants that can act as shared reference point, the contact points or pivots, as 
it were, that allow juxtaposed datasets to be analysed consistently. For instance, 
Leonelli and Tempini (2018) examined how location is constructed and used as 
invariant parameter by finding ways to commensurate between very different defini-
tions of space (e.g. grids, postcodes, catchment areas, ground observations – see 
also Shavit and Griesemer 2009). The interdisciplinary questions of the kind that 
MEDMI researchers study hypothesize relations between phenomena (e.g. ‘a patho-
gen responding to weather fluctuations will cause occurrence of health cases with 
variable incidence’) that require these kinds of data linkage through invariants in 
order to be investigated.

In one such project, MEDMI researchers aimed at investigating pathogen season-
ality – and more specifically the relation between certain cases of human infections 
(e.g. food poisoning), the pathogen populations, and weather variation. A hypothesis 
of this kind implies a complex causal chain, as researchers try to understand the rela-
tive weight of different components of climate (e.g., rainfall vs temperature) on the 
growth of various strains of pathogens, and finally the relation of fluctuating patho-
gen populations to the number and timing of the observed cases of infection. It 
requires also to try and account for external confounders such as, for instance, vac-
cination campaigns. To do this, researchers used national health surveillance data, 
provided with some location information (in this case, lab postcodes), and weather 
data on a number of parameters and for a time range of up to 25 years (Djennad et al. 
2017). Since the spatial coordinates for a food poisoning event had to be based on the 
location of the testing lab (and the specific rationalisation of space embedded in its 
postcode) researchers needed to decide how to spatially partition weather dataset 
(originally modelled on grid space). Consequently, they would decide what portions 
would be capturing information about weather events that are deemed to be relevant 
for explaining swings in pathogen populations.
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However, and before examining the more traditionally recognisable scientific 
work, the focus of this chapter requires us to examine in detail how the data in 
MEDMI are operationally prepared, accessed, and worked with – in other words, 
the computational strategies and operations that are put in place in order to mediate 
and enable the re-use of these scientific data. What the empirical material shows is 
that a crucial feature of data linkage practices is that linkage is not an operation that 
stops at the surface level of the dataset. Instead, data linkage practices open up the 
datasets from the ‘inside’, to select among available source data, transform the data 
into different constructs, and compile a derivative dataset (the ‘linked data’) that is 
an exportable product of this data processing activity. In MEDMI there is no such 
thing as ‘prêt-à-porter’ linked data. The sheer size of datasets would make this prac-
tically cumbersome when at all meaningful. Instead, the way the dataset is inter-
acted with is as a navigable space, of which no comprehensive ‘view’ is possible, 
but one that the user can probe via the terminal interface. Despite these interface 
constraints, datasets are not a monolith object, of which only pre-determined chunks 
can be exported.

Editing datasets in order to link them with one another is an activity made com-
plex by the fact that the different components of source datasets are structurally 
related to one another. Understanding the repercussions of each applied change is 
crucial. When stored in industry-standard relational databases, data values are 
organised in tables. The structure of a table, organised in rows and columns, reflects 
a statement about how groups of data values relate to one another: in the case of a 
food poisoning pathogen, a basic set comprising the time of the scientific observa-
tion, the place of the observation and the object of the observation are some of the 
values that are related. Each of them complements the information that the other 
provides. The relations between data values thus encoded by the database structure 
make part of the informational context in which every data value is embedded and 
evaluated. Metadata are thus themselves data; the designation of metadata simply 
reflects assumptions as to what data values are seen as central in a particular – data 
values that are seen more as context are the meta-. The existence of a structure of 
epistemic relations between various data fields stored in a database makes it very 
sensitive to ‘lift’ certain values from a table without the others following as well, or 
to ‘manipulate’ them. And yet, databases’ granular10 structure is powerful precisely 
because it can be easily changed, its components can be unbundled, modified and 
reassembled in new tables. Researchers will hope them to reflect those putative rela-
tions between phenomena that can be statistically analysed further.

Hence, far from a digital equivalent of a well-ordered library to upload and 
download packaged volumes of data, the full reuse of MEDMI data is made possible 
only once the researcher: is granted remote access to the server; has selected a few 

10 In this chapter, I define granular a complex object including parts that are in homogeneous and 
commensurable. In this volume, Cambrosio and colleagues also use the term granularity to talk 
about differences of resolution in knowledge about cancer (Cambrosio et al. this volume): “while 
knowledge at the level of a gene, as captured in guidelines and regulatory documents might be 
relatively stable and/or robust, the same does not necessarily apply to gene variants.”
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of the available datasets, has then further selected subsets of data from the datasets 
(i.e. specific columns in each table, and specific spatial and time ranges); has set the 
parameters for the computation of derivative data values and eventually transformed 
some into the set linkage denominators (e.g. calculating equivalences between dif-
ferent spatial or temporal resolutions, or other quantitatively measured dimensions; 
but also establishing commensurability between different qualitative or non-numer-
ical denominators); has linked the data (by retrieving the matching records from 
different database storage locations, computing them and storing the results into a 
new working table); and has eventually exported the new dataset into a standard 
format file to further model and analyse them with statistical packages and other 
tools of choice.

This is a process which researchers can repeat multiple times, if needed, to tweak 
parametric choices. But it eventually leads to the production of a new heterogeneous 
composite which I will call the data mix, which can be exported in new CSV files.11 
For the researcher performing the linkage, the data mix is a new epistemic object 
that joins together, in a stable form, information about different phenomena that was 
previously unavailable, latent or separate, and that will be further analysed with 
computational technology. The data mix  – in the words of a population health 
researcher: “something that can be used again and again” – will be taken to the 
researcher’s computational environment of choice. With the help of various soft-
ware packages (e.g., R, Stata, MatLab, etc.) it will be further modelled, analysed, 
used as evidence for evaluating knowledge claims about the world, and eventually 
further transformed into the material for publications: tables of aggregate values, 
diagrams, etc.

All MEDMI researchers thus navigate the datasets and evaluate between various 
possibilities of configuration and recombination of the data sources. This interac-
tion between the human actor, the computational infrastructure and the available 
digital computer data is a necessary step without which reuse of the data in scientific 
practice is not possible. The infrastructure is a flexible virtual analytical environ-
ment12 that is used to explore and understand the properties of datasets, as well as to 
construct, generate and export new data mixes.

From an infrastructure architecture perspective, the data mix construction work-
flow I built around computational interactions with two classes of software objects: 
“imports”, to be used by infrastructure developers for importing source datasets and 
performing data management and preparatory curation; and “datasets”, which are 
used to construct the linked data from the imports, by selection, manipulation and 
extraction of the data, in the way I have just described. For more detail, Box 1 gives 
a simple example of a data linkage commands sequence that can be executed in 
order to prepare the data mix needed to analyse the relationship between nettle 
pollen and humidity.

11 Comma-separated values, a standard format for spreadsheet like tabulations.
12 I use ‘virtual’ here as ‘a space of prefigured combinatorial possibilities,’ that shape the potential 
operations to be done with the data  – a space of potentialities that are not spontaneous upon 
occurrence.

N. Tempini



249

13 I am indebted to Christophe Sarran, MEDMI developer and MET Office scientist, for welcoming 
me to the MEDMI training sessions and allowing me to reproduce and explain some of the steps 
involved.

Box 1: Basics of Data Linkage
This data linkage exercise was part of the MEDMI researcher training sessions 
I took part in at the UK MET Office.13 The computer commands reported 
below are executed in live Python environment (Python is a programming 
language very popular in data science practice). In order to be able to input 
these commands, a researcher needs only a conventional computer connected 
to the Internet. She has successfully used an operating system shell (a com-
mand-line interface for entering computer commands) to securely connect via 
remote terminal to the MEDMI servers, which host the source data and 
execute the data linkage computations. Once connected, the system assigns 
her with a working folder, hosted remotely. This is a space to store the files 
resulting from data linkage operations. By inputting sequences of custom 
commands, she can thus proceed to select, manipulate, generate and extract 
the data of interest.

The following commands are an example of selection of environmental 
and weather data (pollen and humidity measurements). Their juxtaposition 
with one another (linkage) is made possible by the selection of common 
spatial and temporal denominators and the consequent computation of the 
source data according to the new denominators.

d1  = Dataset({‘Source reference’: ‘midas.pollen_drnl_ob.urtica’, ‘Time 
range’: [‘2014-8-1’, ‘2014-9-1’]})1’]})

The researcher selects measurements for nettle pollen from August 2014 
which were originally imported from the MIDAS dataset, and notes it as 
d1.

d1b = Dataset({‘Source reference’: ‘midas.weather_hrly_ob.rltv_hum’})
The researcher selects humidity data from another dataset originating from 

MIDAS and notes it as d1b.

d1b.process({‘Method’: ‘sp_mean’, ‘Radius’: 100000})
d1b.process({‘Method’: ‘tp_mean’})
The hourly humidity needs to be averaged. The first command will average 

humidity spatially, selecting all data points falling in a radius of 100 km 
around the site of nettle pollen measurement. The second command will 
average measurements for the selected time range.

d2.link(d2b)
The two datasets are linked, by executing extraction processes and the 

transformations as they have been set up by previous commands.

(continued)
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2.3  �The Computational Logistics of Digital Data Mixing

To make the data linking process possible, several ‘staging’ operations need to take 
place to load the data in the infrastructure and make them computable by the 
research software. Here developers consider an entire set of concerns that I call the 
computational logistics of working with very large datasets. In spite of its apparent 
straightforwardness, MEDMI easily tested the limits of the MET Office’s super-
computer, one of the most powerful in the UK. Environmental and weather data 
alone include more than 9.5 billion values over more than 400 parameters, and when 
initial versions of the linkage software were run computations could take months to 
complete. Technological architectures can intermediate interaction with data in 
such extremely different ways from one another, that some approaches can simply 
make the work impossible, while others reduce costs to irrelevance and make for 
‘seamless’ experiences.

Computational logistics are shaped by how digital data are structured and stored, 
and how programs access and operate on them. They are determined by the relation 
between computer data and the computational software that process them. A pro-
grammer can conceive of a number of different approaches to data structure, with-
out an end user at the interface level knowing any difference about the rules that 
computer software must consequently follow to access them. Similarly the pro-
grammer can conceive of a great number of algorithms for accessing, processing 
and storing data according to the same operational specification; each algorithm can 
execute a different sequence of operations, while all produce, once processing is 
complete, to the interface results that are all the same from a symbolic point of view. 
Different combinations of choices for data structure and algorithm sequence, 
respectively, can have completely different implications for hardware usage patterns 
and costs.

Hence, if data are structured and stored in ways that favour the most likely styles 
of retrieval and processing, data re-use will be faster and more reliable from the 
point of view of scientific research activity and its shifting, situated demands. 
Developers aim to integrate expectations, demands and models of the scientist’s 
workflow in the design specifications they implement. Consequently, in MEDMI 

Box 1  (continued) 
d2.save_csv(‘exercise2’)
The linked data are exported to a CSV file, and the file can be transferred to 

other packages and machines.

Myriad other combinations of extraction and transformation requirements 
can be set up. The parameters can be changed at will by the researchers to 
further explore the correlation of interest, and similarly can be exported 
multiple times.
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imported source datasets undergo a number of deeply restructuring operations, to 
the point that the dataset ‘as a file’ or single object disappears. The data are broken 
down in many fragments according to a few structuring principles (e.g., by time 
range  – date of observation), for each fragment to then be pooled, by the same 
token, together with heterogeneous fragments originating from other source datas-
ets. This pooling is not a linkage in itself, but by pooling data together that are most 
likely to be computed and linked together, the structure is intended to prefigure a set 
of ‘styles’ and ‘choices’ of data linkage, in a form of expectant organizing that is 
coded in the infrastructure.

Accordingly, the MEDMI software workflow was optimized to this database 
structure. Linkage steps had to be broken down in piecemeal operations that would 
retrieve, compute and store data efficiently. Sub-steps should be integrated in 
sequences so as to enforce a specific order of execution, that is optimised for the 
retrieval and storage computational logistics that the data structure best affords: as 
Box 1 exemplifies, MEDMI infrastructure requires the user to fully specify the link-
age requirements before the processes of data retrieval and computational transfor-
mation start. Early MEDMI prototypes allowed a more piecemeal configuration of 
linkage parameters and computation of linked data. While this would arguably 
allow researchers more flexibility, data processing times inflated beyond feasible. 
Refinement of data structure and processing sequences according to computational 
logistics requirements allowed to shrink completion times.

With the development of infrastructure, linkage is thus part under way. Yet, the 
interface user (and the philosopher or social scientist that takes the same standpoint) 
is unaware of it. For the user not to know how the data are fragmented and pooled 
‘underneath,’ the interface software layer virtualises each dataset – describing it as 
a whole so that it can be ‘navigated’ seamlessly. Guessing the logistical state of the 
data from the interface is quite like trying to guess the catch under the waterline 
with a fishing rod.

Computational logistic strategies reconfigure the way different data structures 
and technologies relate to each another, and are greatly relevant for our understand-
ing of digital epistemic practices. As computational infrastructure data, data are 
structured differently from how they are structured in the upstream context of origi-
nation and the downstream context of reuse. Data are here structured according to 
considerations of (1) their provenance; (2) the pluripotential, prefigured uses they 
will be put to in the creation of new linked data datasets, and the related assumptions 
about the epistemic relations between phenomena that the researchers will seek to 
investigate analysing the dataset;14 and (3) constraints on feasible and efficient 
computation. The three dimensions are interdependent.

14 In an interesting parallel with Hoeppe’s chapter on digital data in astronomy: the digital then is 
not only what facilitates a certain culture and practice of accountability, but is also a regime of 
interaction and communication that has logistics and economics shaping that culture in turn (cfr. 
Hoeppe this volume). Karaka’s chapter on data acquisition in high-energy physics also shows the 
importance of what I call computational logistics in enabling generation and mobilisation of digital 
data (Karaca this volume).
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2.4  �“You Need to Say Exactly What You Want”: Data Mixing 
and Boundaries of Practice

It is very important to take stock of the breadth of operations that the infrastructure 
supports, and their epistemological relevance. MEDMI researchers use the infra-
structure to prepare a derivative dataset that suits the context of further scientific 
inquiry and research questions, working hypotheses and assumptions among others. 
For this, the library of Python modules affords operations such as moving, separat-
ing and joining subsets of columns and rows from available tables; and various 
calculations that generate new variables, which include coding or translating values, 
interpolations and other estimations, and sampling.

Data management and the kinds of data manipulations involved in shuffling data 
between relational tables have often been considered a sort of backstage operation 
of no epistemic relevance. Yet such a range of computational operations on source 
datasets challenges us to see the entire spectrum of activities so far described as part 
of scientific data reuse activity, and the data infrastructure developer as a scientist. 
As we have seen, through careful consideration of different epistemic strategies and 
their purchase for further data reuse developers optimize data sources and computa-
tional infrastructure.

Data linkage operations also have deep implications for the sophisticated analy-
ses that will follow and are as such performed by researchers fully within the con-
text of an active scientific inquiry. They depend on the specific research question 
that is pursued and the background theoretical scaffolding. Even simple transforma-
tions (e.g., the computation of time and spatial arithmetic means) can deeply affect 
the structure of relations between data fields in a relational table. Results of statisti-
cal analyses of the derivative vs source data are differently able to lend evidential 
support to hypotheses under testing.15 Once a derivative dataset is created and 

15 Common operations to transform data to the desired level of spatial and temporal resolution and 
definition are arithmetic mean and minimum and maximum values. These operations can be 
applied to both space and time values and involve very important trade-offs. An infrastructure 
developer provided a telling example with the problem of repurposing wind magnitude and direc-
tion data captured at a specific time and place:

You can get a complex mean, which is a mean of the vectors, as opposed to a mean of the 
magnitude. […] If you have two vectors of the same magnitude in opposite directions then 
the mean will be zero. While obviously if you just take a mean of the magnitude it will just 
be the magnitude. […] If it’s an atmospheric dispersion question, if you want wind com-
bined with pollen, then you want the mean of the vectors because you want to know where 
the pollen is going. If you want wind as an exposure value for somebody then the person is 
exposed to the mean of the magnitudes. If it’s windy in every direction, as far as the indi-
vidual is concerned their exposure is not going to reduce to zero. So, while for pollen, the 
pollen grain will be moved this way when the wind is in this direction, and it will come back 
if the wind comes back. So that comes as if it’s a wind of zero. So, it really means that the 
user really needs to think through, ‘Actually what is it [that] I want?’

That operations of data processing including estimate and interpolation of new or missing vari-
ables have great relevance for consequent analyses should be beyond doubt. In a seminal paper, 
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exported, it has long departed from the sources that it was built from, but despite its 
‘newness’, it is considered the working material that can be used in further stages of 
statistical analysis. As it should be clear by now, no reuse of ‘as is’ MEDMI source 
data is likely to be ever made.

Negotiation of the epistemic assumptions that the data linkage technology was a 
central concern. It is precisely for the appreciation of the deep implications of data 
linkage operations that MEDMI developers opted for a conservative approach as 
they set which data linkage choices and parameters should be pre-empted by default. 
They chose to provide researchers with very granular control on data linkage 
configurations.

The first approach MEDMI scientists took was to default enough linkage param-
eters so as to build and make available a huge database of already linked datasets. In 
this approach, a researcher would have needed to perform fewer operations in order 
to retrieve the data of interest (for instance, selecting subsets of data by specifying 
time and spatial ranges) and extract the mix. There would be few ‘moving parts’ to 
be configured by the researchers, and greater logistical efficiency: datasets could be 
pre-linked so that many calculations could be performed in advance, and accord-
ingly optimised for faster navigation and retrieval. This approach was abandoned 
after 1 year of development as the team grew uncomfortable about the amount of 
assumptions now embedded in hundreds of defaulting parametric choices, and how 
these choices could remain opaque to end users.16

To avoid grafting too many assumptions in the data, the current approach offers 
instead a different trade-off in the support of scientific inquiries: a steeper learning 
curve for a more flexible data reuse infrastructure. Importantly, even an approach 
that postpones many manipulations to a latter stage requires a combined data 
structure and computational optimization strategy of computational logistics. The 
datasets were then re-factored once again to reduce some computational tasks from 
2 weeks of computer time to less than 1 day, and the emphasis moved on program-
ming more powerful data linkage technologies.

leading statistician Meng (1994) clarified the downstream implications of this kind of generative 
pre-processing: “imputation is not (merely) a computational tool but rather a mode of inference, 
which allows hierarchical and sequential input of assessment and information” (539). Meng intro-
duced the notion of uncongeniality to highlight how assumptions and frameworks informing the 
data processor can be at odds with those of the end analyst and, most problematically, difficult to 
scrutinize (Xie and Meng 2016).
16 An informant explained the compromise:

That unfortunately meant that we’d potentially have had to go through each of the 400–500 
parameters that are in the environmental datasets and determine what are the sensible 
defaults. We found first of all users were not going into the code to use the code [i.e. to 
understand the defaults], simply because they are not used to that, I think, in the health sec-
tor. In particular, coding is not a huge skill. We also found that how the data was being 
processed, these defaults were not transparent enough. So users were still not really under-
standing what was happening to the data before it was being released to them. So the new 
approach will get rid of all that and we would simply say, ‘All of these data are available. 
These tools are available to process the data. You need to say exactly what you want.’ 
[emphasis mine]

The Reuse of Digital Computer Data: Transformation, Recombination and Generation…



254

3  �Discussion: The Relationality of Scientific Computer Data

My main argument is that attending to computer data and the practices aimed at 
turning them into data that can be used as evidence in scientific investigations (sci-
entific data) is key to fully understand the conditions shaping digital data reuse and 
big data innovations in the sciences.17 The MEDMI case indeed shows how the 
specific materiality of computer data is implicated in their epistemic journey. In this 
section I outline a way in which we can further think about digital materiality and 
computer data productively with respect to our interest in scientific data practices.

3.1  �Computer Data as Socio-Technical Relational Objects

Philosophers of technology following Simondon see digital objects as technical 
objects (Hui 2017; Feenberg 2017), a form of standardised and ‘concretised’ social 
practice, whose significance and social role depends on the ways in which it is 
embedded in the fabric of society and the life-world. Importantly, they understand 
computer data as relational. The ways in which digital objects interact with other 
technical objects and forms of social activity shape the ways in which these objects 
are defined.18 Because of digital objects’ extreme level of physical abstraction (inac-
cessible to us in any direct way, we require several layers of computing technology 
to interact with them), they are an excellent example of a socio-technical relational 
object: digital data exist, and are interacted with, only through a milieu of other 
socio-technical elements forming a computational system. Understanding computer 
intermediation is thus a key step to understand the ways in which a social actor 
relates to computer data.

3.2  �Computer Data as Programmable, Granular 
and Composite

As new media theorist Manovich reminds us (2001), digital objects are ultimately 
described in numbers. This makes digital objects programmable, amenable to com-
putational manipulation (through any mathematical function that can be success-
fully scripted as algorithm) at the very lowest level of representation (Borgmann 

17 This has been a key point in my research (e.g., Kallinikos and Tempini 2014; Tempini 2015, 
2017).
18 Ultimately, Hui argues (2017) reading Heidegger (1962), all objects are. The situations of human 
activity are understood as shaped in time through the nexus relating beings with one another 
(Dreyfus 1991). Context is a web of constitutive relations.
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1999). This also means that digital objects are inherently open and interactive 
(Manovich 2001): their symbolic nature makes it possible to selectively scan, and 
interact with, at the level of their constituent components.19 Components can thus 
make up a larger object but remain identifiable within it. For instance, one can apply 
piecemeal changes of an individual data field in a large table. By the same token, I 
can now create a copy of this Word file, rename it, then open the copy, change a few 
words in a specific point, leave the rest untouched and save the file. The way in 
which a selective intervention – swapping characters for one another – can be car-
ried out within the document or at other levels of abstraction (such as at the bound-
ary of the file object in the case of a format conversion), is specifically “afforded” 
(Gibson 2013; Faraj and Azad 2012) by a situated socio-technical assemblage in 
which computing technologies take centre stage.20

As we have seen, in MEDMI data linkage practice specific data values (com-
ponents of the dataset object) within the same table are indeed discriminated 
from one another and differently manipulated. And at the same time, digital tech-
nology also supports developers to carry out computational logistics manipula-
tions at a comprehensive level of abstraction (at the level of a plurality, data pool 
or set). Therefore, we should highlight two key relational features of what digital 
data offer to the data scientist. First, computable data sets are granular (granular 
is a complex object including parts that are in some respect homogeneous and 
commensurable – granules are kin to one another). A dictionary definition defines 
granularity as “the scale or level of detail in a set of data” (Oxford Dictionary of 
English 2018; also Aaltonen and Tempini 2014; Dourish 2014; Kallinikos et al. 
2013). Second, computable data sets are composite (composite is a complex 
object including parts that are in some respect heterogeneous and incommensu-
rable – composites are made of alterities). It is because a dataset is granular and 
composite that we can say that the socio-technical relationality of MEDMI data 
applies at the level of individual values – it is not only the computer file object as 
a whole that is relational, but also its components.

19 On this backdrop, Kallinikos et al. (2010) identify as the key attributes of digital objects: edit-
ability, interactivity, openness and distributedness. Datasets can be reordered, navigated and made 
sense of in myriad of ways, and through multiple tools and interfaces. Often, their specific design 
or their size imply that they are distributed and not accessible in their entirety in an individual site 
at a given moment – this is often the case with distributed infrastructures.
20 Aaltonen and Tempini (2014), focusing on data pools and big data practices in a commercial 
setting, highlight how big data work is often articulated at a different scale than that of the indi-
vidual record, where the sets of data that are relevant for a specific purpose do not necessarily have 
fixed boundaries. They suggest to be key characteristics of the elusive data pool objects: compre-
hensiveness (data work can survey the entirety of a big data collection), granularity (data work can 
parse through highly granular, individually irrelevant, data points) and unboundedness (data work 
can span beyond clearly perceived boundaries of use). A different use of granularity in relation to 
data is in Dourish (2014).
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3.3  �Socio-Technical Relations and Epistemic Relations

Data linkage technology, with its capacity to translate, calculate, juxtapose and 
recombine large quantities of data about select observational variables thus allows 
researchers to explore relations between data found within the same dataset or 
across different datasets. By mixing data over common definition and resolution of 
space and time, and by computing means, vectors or other derivative values, data 
linkage juxtapositions enable the observation of relations between data that are 
latent within or across datasets. These data relations, of the (here oversimplified) 
sort of ‘warming weather patterns correlate with incidence of food poisoning 
infections’ can then be used to test working hypotheses of the climate change con-
sequences on pathogen seasonality.

Here it is key to appreciate the crucial effect that the recording of scientific infor-
mation about observed phenomena over symbolic notation has on the possibilities 
of reuse of the data in computationally transformed and mixed form. Of the huge 
material diversity of the scientific data that the philosophy of science discusses 
(including, for instance, biological specimens; artefacts; systematic collections; 
photographic slides; printed maps; graphs; networks; texts; numerical tables; 
sequences), the material-agnosticity of symbols makes them the form of data that, 
in order to generate new meaning, is easiest to aggregate in sets, to mix at the granu-
lar level of the individual data token or datum, and to enable the computer to inter-
vene inside the dataset object along the ways I have been describing so far. For this 
reason symbolic data are enjoying the vastest possibilities of reuse in data linkage, 
analytics, and other big data science applications. As an incomparably vast array of 
methods for symbol manipulation is then available for implementation over digi-
tal means.

From the same infrastructure of methods and calculative procedures, an infinite 
variety of outcome data mixes is possible, each of which can have different epis-
temic performance (from each other and from the data sources), depending on the 
characteristics of the situation at hand. Data mixes of the sort I have been describing 
can now be a central development in the sciences because they are mixes of sym-
bols. Of course, digital objects are, strictly speaking, entirely symbolic and so, 
change is always bound to be symbolic at its most fundamental layer of description 
(for instance, changes in file formats that can make it more difficult to feed a file to 
software). But here I am trying to work with a distinction between symbolic change 
‘at the boundary’ and what I call selective and granular change, which is change of 
a select part of the composite object that in turn changes the kinds of epistemic rela-
tions that the object can entertain. Many data manipulations such as the estimation 
of a wind vector from multiple sources are aimed at refining and enabling a certain 
epistemic performance of the data in a statistical analysis.
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3.4  �The Scaffolded Relationality of Scientific Computer Data

We must now return to the distinction set out in the introduction, and observe how 
the status of objects that are at once scientific data and computer data is thus rela-
tional at several levels. Thinking about scientific computer data as embedded in a 
computational system allows us to think about these objects as characterised by a 
scaffolded relationality dependent on both the socio-technical relationality of com-
puter data and the epistemic relationality of research data. The relational openness 
of digital objects is dependent on a technical milieu (Hui 2017; Feenberg 2017) 
whereby computing technologies shape the levels of detail and abstraction, and the 
operations, through which interaction with data objects takes place. Key operations 
aimed at assessing, exploring, refining, developing and operationalising their epis-
temic value can only be applied through computing technologies that, ultimately, 
are developed according to principles of computer data use and manipulation. As 
computer data’s ineliminable ‘other’, it is key to hold into account the computing 
technologies and computational operations through which data practices unfold. 
Manovich (2001) argues that paying attention to computational operations allows us 
not to reduce computer technology to ‘tool’ or ‘medium’ – a common shortcoming 
in the philosophy and social studies of science. Dourish (2014) points out that the 
word database has often been used inconsistently and often with the effect of eras-
ing differences in concept and implementation that have implications for data 
practices.

It is important here to understand that the two different kinds of relationality of 
scientific computer data are closely interdependent, and this can be explained by 
looking at the way in which, in data linkage research, the exploration of epistemic 
relationships between data points recording certain events is grounded on the capa-
bilities of relational databases and the computational data work they afford. As I 
have already pointed out, scientists linking different datasets in order to explore 
relations between environmental and public health phenomena work by choosing a 
parameter that can act as a common invariant (see also Leonelli and Tempini 2018).

At a computational level, relational databases revolutionised the way computer 
data are stored and accessed because of the way in which they allowed to generate 
new relations between data (Hui 2017; Manovich 2001).21 Dourish (2014) high-
lights two main ways. First, relational databases are structured through tables, 
whereby relations between values are expressed as a row conjoins data points dis-
tributed over the different columns in a plurality that is more than the sum of its 
parts. A row recording, over different columns, my demographic details (name, 
address, gender, age, …) implies that a phenomenic relation exists in the world that 
holds these values together – this relation is meant to map to myself. Second, the 
methods to query relational databases with allow the data scientist to explore 
further relations that link different tables to one another. Here a common point of 

21 Dourish (2014) postulates three key relational database operations (edit data values; insert new 
row-relation; delete row-relation).
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invariance is required between them: if my demographic data were split over two 
tables (name, address; and name, gender, age) the ‘name’ data can be used to draw 
relations across the two tables and between all data points involved, parsing all the 
demographic data points about myself together again.

MEDMI data linkage practices closely track these two ways of exploring rela-
tions between data: first, researchers assess different dataset sources and explore the 
potential for juxtaposition and the elicitation of latent relations between heteroge-
neous data; second, they complete the linkage by transforming and pulling data into 
the new tables of the derivative dataset. Crucially, data linkage practices move from 
the more flexible and precarious arrangement for exploring epistemic relations 
between data (screening and exploring source datasets and their metadata) to the 
more inflexible and stabilised socio-technical arrangement: a unified dataset table, 
where data values are interrelated through their distribution in rows and columns, 
that can be more easily exported and analysed with statistical software of choice. 
The way of relational databases of relating data with one another is closely mapped 
by the way data linkage researchers are working with data sources and prepare them 
for reuse.

We can thus recast the scientific practice of data linkage in a new light, if we 
understand the way in which the relational database and associated computing tech-
nology are a key enabling factor enabling methodological strategies based on the 
construction of invariant parameters. As I have argued throughout, to do this we 
need to pay attention to computational operations aimed at constructing new com-
puter data relations and storing them in new dataset objects, and how these rela-
tions are linked to the epistemic relations of interest at a specific stage of the 
scientific inquiry. We must also be asking what kinds of relations between phenom-
ena are the researchers investigating, and in what ways are the data deemed to speak 
to them.

The digital dataset, I have argued, is a kind of data object that must be closely 
studied. I paid special attention to the role of a set of lower level operations that 
explore and manipulate the composite structure of a dataset. Operations such as 
those that change the format, code, arrangement and value of symbolic content of 
digital data in ways that alter the set of uses that the object can undergo in the social 
settings of scientific practice are key epistemic object transformations, that can be 
now linked to questions of data identity, functional continuity, and data travelling 
and packaging.

3.5  �Computational Data Journeys

The data mixing practices that we have observed in the case of MEDMI in particular 
stress how in certain situations of scientific inquiry, data can be productively reused 
only if they related with other data, and this relation is stabilised in a new relational 
dataset object. What does this say to the concern of this volume in the travelling of 
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data?22 As it has become clear through this chapter, in MEDMI there is no data that 
travel in any straightforward sense. Travel evokes a principle of continuity, but 
neither material nor functional continuities are at play here. Datasets are systemati-
cally disassembled in several different ways, transformed and mixed with others. 
Data about wind measurements needs to be transformed into data about mean wind 
direction, in the example of pollen dispersion research (see endnote xiii). Source 
datasets and derivative mixes have very different uses from one another. The mix 
must fit assumptions, frameworks, methods and research questions of the investiga-
tion at hand in a way that the neither of the sources does. New digital mixes have 
new identity from both a material and epistemic function point of view.

Yet, there is a lot of data movement in the closed confines of a MEDMI’s virtual 
analytical environment, which acts as a sort of template builder, a ‘system of infinite 
dataset generation’ somehow recalling what Borges’ Library of Babel could make 
of books. With its collection of computational scripts and methods this digital 
“library of predefined choices” (Manovich 2001) virtually (and partially) prefigures 
the data mixes that users produce. Database structures, together with the algorithms 
that enable to access and edit them, shape digital data reuse by prefiguring and 
concatenating operations of certain kinds.

We can thus understand the relationship between data sources and derivative mixes 
only if we account for what computational technology does and the computational 
strategies and methods that it embeds. The operations that are carried out on the data 
(e.g. comparison, averaging, estimation) are prescribed in the ‘memory space of the 
algorithm technology,23 and the programmability of digital computational machines 
allows concatenations of simple operations to be inscribed as steps and combined in 
complex automated sequences. As obvious as this may all seem, it stresses that com-
putational technologies should not be described as ‘tool’ or ‘media’, as they often are, 
and should rather be approached as complex procedural systems. Computational tech-
nology and data should thus be studied together. Digital data are neither a static object 
not an undefinedly dynamic one, but certainly one that is in a permanently dynamic 
relationship with the computational technology that access and process them.

Lacking an object that traverses the infrastructure without dissolution and re-
assembly, it is at this relationship between data and computer that we shall return to 
explain how digital data ‘journey.’24 Indeed, the gap separating the source dataset and 
its derivative (which, as I observed, undermines an intuitive interpretation of the jour-
ney) can be filled only by taking the procedural continuity of algorithmic computa-
tions as the missing link in the chain of data travel steps. This is the anchor that 
materially connects two dataset objects through a traceable path of calculations. A 
traceable path of computational instructions allows to account for the metamorphosis 

22 Other chapters also discuss relations entertained between data (Morgan this volume), and the 
dataset as a context that holds these relations together (Griesemer this volume). In her afterword, 
Longino mentions relations between data (and operations of recording and selection) as a key focal 
point to overcome a naïve opposition between ‘naturalistic’ vs ‘interpretive’ approaches to data 
(Longino this volume).
23 Of course, complex software often use structured storage in turn, to support execution.
24 Needless to say, what I have called so far the digital data journey in MEDMI is just a sub-section 
of a longer journey.

The Reuse of Digital Computer Data: Transformation, Recombination and Generation…



260

of datasets, as operations are standardised and remain available for scrutiny and repro-
duction. The specification of concatenated computational operations allows the chain 
of custody of the data’s power to evidence to be continued despite the literal symbolic 
transformation and manipulation occurring within the dataset objects. Despite the 
lack of a data object that can be ostensibly referred to, this intermediate step of the 
data journey is standing, for a relatively short time, on the shifting ground of compu-
tational processes’ own determination. Traceable computational procedures here help 
to secure evidence’s chain of custody (cfr. Wylie 2017, this volume), and to recom-
pose the journey. This data journey thus moves between data and computational tech-
nology, linking together a source dataset object, the intermediate set of computational 
transformations executed by technology, and a derivative dataset object.

4  �Conclusion

Manovich (2001) provocatively argues the mix to be the key cultural form of new 
media and the DJ its artist, highlighting their post-industrial, post-modern roots. I 
took this as an opportunity to think of new data science methods as data mixing and 
of the data mix as a quintessential object of big data innovation. The metaphor 
choice of the data mix strongly resonates with MEDMI actors’ own use of the data 
mashup category,25 but has better theoretical grounding.

In this chapter I argued that the technology-intermediated practices of manipula-
tion of computer data relations are key to epistemic practices concerned with devel-
oping new data objects. In these new data objects, scientists isolate and point to 
specific epistemic relations, bestowing the content of the dataset with the status of 
scientific data relative to specific situations of inquiry (Leonelli 2016). I argued that 
the computational processes underpinning these practices bear the chain of custody 
that enables derivative data to be used as a source of scientific evidence. I claimed 
that, ultimately, digital materiality bears a difference for scientific practice that is 
worth understanding. The intention was, all along, to invite philosophers and social 
scholars of science to study digital technology more closely.

Key strengths of the framework for the study of scientific computer data that I 
have been proposing include:

•	 Understanding computer data allows to problematise their relational objecthood with 
questions on the computability of data, the relationality between data and computa-
tional systems, and the epistemic consequences of technological intermediation.

•	 Understanding computer datasets as granular and composite, amenable to dis-
crete intervention, highlights how scientists achieve their reuse through complex 
chains of operations of disassembly, transformation and re-assembly; and puts 
into focus the relationship between the dataset and the data point by highlighting 
how data components, such as a string or data point, are usually not mobilised as 
individual tokens, but rather, together with others and as a set.

25 As they observe, the mashup terminology has roots in jazz (Fleming et al. 2014). It comes to data 
science through systems engineering (Daniel and Matera 2014).
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•	 Understanding digital objects as technical relational objects allows to pay special 
attention to the role of computing technology as a key intermediary and step of the 
data journey; and to understand of the epistemological implications of computa-
tional logistics, optimisation choices and alternative computational strategies and 
infrastructure architectures – steps in the data journey that are epistemically rele-
vant yet fall between clearer stages of scientific data origin and reuse.

•	 Studying the kinds of operations that computational technology carries out 
uncovers the key importance of computer systems’ focus on the creation and 
organization of relations between computer data that feed in scientific practice, 
where they are evaluated; and it demonstrates the link between the creation of 
new computer data relations in computer systems and their potential role in sup-
port of evidential claims about the world, relative to hypotheses and assumptions 
about relations between phenomena of interest.

•	 Through this ‘cascade’ of observations about what makes computer vs scientific 
data, we can then grasp that the intense relationality of scientific computer data 
is multi-layered and scaffolded, as it depends on relations between various kinds 
of data, computing technologies, assumptions, theoretical scaffoldings, hypoth-
eses and other features of the situation at hand.
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Data, Meta Data and Pattern Data: How 
Franz Boas Mobilized Anthropometric 
Data, 1890 and Beyond

Staffan Müller-Wille

Abstract  Between 1890 and 1911, the German-American anthropologist Franz 
Boas conducted a whole suite of anthropometric studies, which all in all generated 
data from body measurements carried out on about 27,000 individuals. To this day, 
this data is being re-analyzed by researchers with a range of disciplinary interests. 
In my chapter, I will take a close look at a small subset of the original datasheets 
Boas used in his surveys, and how he and other scientists processed the data in later 
publications. My analysis will reveal that the extraordinary potential for travel and 
re-use of Boas’s data crucially depended on the way in which he designed his sur-
veys. Alongside recording standard anthropometric variables, Boas collected genea-
logical and geographical information on the individuals measured, which allowed 
him to flexibly classify data in a variety of ways. It is this richness in structure, or 
“pattern data,” that explains why the data from Boas’s anthropometric projects 
remain valuable for researchers from a variety of disciplines to this very day.

1  �Introduction

In June 2003, in a special section of the journal American Anthropologist entitled 
“Did Boas Get It Right or Wrong?,” a debate played out between two teams of 
researchers under the journal’s rubric “Exchange Across Differences”. The subject 
of the debate was a large-scale anthropometric study carried out by the German-
American anthropologist Franz Boas (1858–1942) on a cohort of European immi-
grants to the US and their American-born children (Gravlee et al. 2003b; Sparks and 
Jantz 2003). That Boas’s study, by then more than 90 years old, should still spark 
debate after such a long time is not surprising. Boas had found statistical evidence 
for slight but significant changes in physical traits such as head-form among descen-
dants of immigrants pointing to changes in “type”. This finding formed one of the 
empirical cornerstones of his sustained critique of racial typologies  (Boas 1911, 
p. 53–58), and this critique, in turn, has been framing debates among anthropologists 
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and population geneticists about the biological and political meaningfulness of the 
concept of race to this very day (Jackson and Depew 2017). What is more surprising 
is that each of the two opposing teams of researchers reached their divergent assess-
ments by an independent reanalysis of the very same data that Boas had collected in 
his original study.

What are the conditions that make such re-use of data across time and changing 
disciplinary contexts possible? Or to ask the same question in the terms favored by 
this volume: What enabled Boas’s data to journey from their original site of produc-
tion in early twentieth-century New  York, across the changing landscape of 
twentieth-century physical anthropology and human population genetics, and into 
the electronic databases of twenty-first century researchers? Historians and philoso-
phers of science as well as STS scholars have emphasized in recent years the key 
role that metadata play in enabling data to travel. But metadata is a deceivingly 
simple concept; it is usually understood to refer to information that helps evaluating 
and analyzing data by providing information regarding the circumstances of their 
production (Leonelli 2014, 4–5; for a more detailed discussion, see Leonelli 2016, 
ch. 4). Complexities arise, however, from the fact that, in any given study, it is not 
obvious what counts as relevant metadata, and what standards should be followed in 
annotating them. While there exist regimes of data-production that can rely on 
notions of metadata that have remained stable for centuries – e.g. in bibliography or 
taxonomy – ongoing research often involves improvised and shifting sets of meta-
data (Edwards et al. 2011). What counts as data, and what counts as metadata – or 
what counts as product, and what counts as circumstance of a given experiment or 
observation – is hardly down to an analytical distinction, but depends on the theo-
retical perspective of, and questions being asked by, researchers.

In this chapter, I am going to explore these complexities by taking a close look at 
the data collected by Boas in his statistical studies of physical variation among dif-
ferent human “races” and “tribes,” and how these data were reused not only by Boas 
himself, but also by later researchers. Boas conducted a whole suite of anthropomet-
ric studies between 1890 and 1911, which all in all generated data from body mea-
surements carried out on about 27,000 individuals. These anthropometric campaigns 
where funded by various organizations, including the British Association for the 
Advancement of Science, the Bureau of American Ethnology and the US 
Immigration Commission, and peaked twice: once, in 1891 and 1892, when Boas 
and about 50 field observers collected data on c. 12,000 persons of Native American 
origin; and a second time in 1909, when Boas took measurements on c. 10,000 
immigrants to the United States and their children (for a succinct overview and 
assessment of Boas’s anthropometric surveys, see Jantz 2003).

I am going to approach this case study, first, by analyzing early programmatic 
statements by Boas that cast light on his statistical outlook on human diversity, 
which placed emphasis on individuals, not types. In the second section, I will zoom 
in on a sample of the data sheets that Boas used in his surveys in order to provide a 
detailed reconstruction of how the original data was coproduced by Boas, his field 
observers, and their informants. The final section will then look at how Boas, but 
also various anthropologists in the twentieth century, used this data to draw out a 
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variety of general conclusions about the evolution of human populations. Sustained 
data journeys in human population studies, I will conclude, are not only made pos-
sible by “fixing” data once and for all in some durable numerical and tabular form, 
but more importantly by including qualitative “pattern data” in the study. “Pattern 
data” sit uneasily within the distinction of data and metadata, referring to structures 
within a population such as genealogical or geographic origin that can both be seen 
as data about the study subjects and describing the circumstances under which data 
are produced. They play a crucial role, however, in mobilizing data for re-use by 
allowing for the flexible re-arrangement of data in order to employ new statistical 
methods or address new questions.

2  �Boas’s Statistical Outlook

George Stocking has assigned Boas the role of a founding father of the “modern 
anthropological culture concept” characterized by “historicity, plurality, behavioral 
determinism, integration, and relativism” (Stocking Jr 1983, 230). At the same time, 
Stocking has portrayed Boas’s work in physical anthropology as instrumental in the 
“passing of a romantic conception of race – of the ideas of racial ‘essence,’ of racial 
‘genius,’ of racial ‘soul,’ of race as a supra-individual organic identity.” In particular 
it was Boas’s statistical approach that was, as Stocking put it, “subversive of tradi-
tional racial assumptions” (Ibid., 192–94; see also Xie 1988). And this “critique of 
racial formalism”, as he dubbed it, was not just theoretical. Boas, as we will see in 
the next two sections of this chapter, was an ardent and up-to-date practitioner of 
physical anthropology and biometry, highly aware of the intricate problems of the 
“personal equation” involved in anthropometric measurement, innovative in the 
design of anthropometric surveys, and creating new mathematical and visual tools 
for studying statistical correlations. But in order to understand his statistical 
approach, it is useful to leave anthropometry aside and turn to some early program-
matic statements in which Boas advocated the use of statistical methods for the 
study of culture.

In 1887, Boas became involved in a debate about museum displays (Jacknis 
1985; Jenkins 1994). Otis Tufton Mason, curator of ethnology at the Smithsonian 
Institution, had suggested to arrange ethnological displays at the United States 
National Museum according to a classification of the objects displayed; exemplars 
of different varieties of artifacts, he maintained, should be arranged in series, each 
representing a stage in the evolution of its kind; the rationale on which this presenta-
tion rested was borrowed from evolutionary biology. As Boas quoted Mason (with-
out specifying his source):

[Human inventions] may be divided into families, genera, and species. They may be studied 
in their several ontogenies (that is we may watch the unfolding of each individual thing 
from its raw material to its finished production). They may be regarded as the products of 
specific evolution out of natural objects serving human wants and up to the most delicate 
machine performing the same function. They may be modified by their relationship, one to 

Data, Meta Data and Pattern Data: How Franz Boas Mobilized Anthropometric Data…



268

another, in sets, outfits, apparatus, just as the insect and flower are co-ordinately trans-
formed. They observe the law of change under environment and geographical distribution. 
(Boas 1887a, 485)

The alternative Boas proposed was to arrange collections “according to tribes, in 
order to teach the peculiar style of each group.” The reasons he adduced for this 
position were epistemological:

In regarding the technological phenomenon as a biological specimen, and trying to classify 
it, [Mason] introduces the rigid abstractions species, genus, and family into ethnology, the 
true meaning of which it took so long to understand. It is only since the development of the 
evolutional [sic] theory that it became clear that the object of study is the individual, not 
abstractions from the individual under observation. We have to study each ethnological 
specimen individually in its history and in its medium […]. Our objection to Mason’s idea 
is, that classification is not explanation. (Ibid. 485)

This seems to be a strange way of reasoning: first of all, “studying each ethno-
logical specimen individually in its history and in its medium” would, taken liter-
ally, be an endless task, and both Mason as well as other participants in the debate 
pointed out the practical difficulties that an arrangement by tribes would imply (Dall 
1887, 587; Powell 1887, 612–13). Secondly, an arrangement according to tribes 
seems to involve as much classification as that proposed by Mason. What, one can 
ask, defines a “tribe,” especially since tribal identity is highly fluid over time? Also 
this criticism was raised in the debate, accompanied by the remarkable observation 
that “a museum collected to represent the tribes of America … to be properly repre-
sentative, would have to be collected as the census of the native inhabitants of India 
has been taken, all in one day, by an army of collectors” (Powell 1887, 612). To this 
criticism, Boas only had a short, categorical reply: “Such groups [i.e. tribes, and 
groups of tribes] are not at all intended to be classifications” (Boas 1887b, 614).

Boas’s studies of native myths along the North-Pacific coast carried out between 
1888 and 1895 can serve as an example to elucidate what he had in mind with this 
strange assertion. In these studies, Boas broke down the myths into constituent “ele-
ments” and recorded their distribution within a group of geographically contiguous 
“tribes”. “We can in this manner,” as Boas explained in a paper summarizing the 
results of his mythological studies, “trace what we might call a dwindling down of 
an elaborate cyclus [sic] of myths to mere adventures, or even to incidents of adven-
tures, and we can follow the process step by step.” In more detail, he described this 
method as follows:

If we have a full collection of the tales and myths of all the tribes of a certain region, and 
then tabulate the number of incidents which all the collections from each tribe have in com-
mon with any selected tribe, the number of common incidents will be larger the more inti-
mate the relation of the two tribes and the nearer they live together. This is what we observe 
in a tabulation of the material collected at the North Pacific Coast. On the whole, the nearer 
the people, the greater the number of common elements; the farther apart, the less the num-
ber. (Boas 1896, 2–3)

The article from which this quote is taken does not contain any “tabulation,” but 
so does a German monograph to which it refers and that Boas had put together in 
1895 from earlier reports documenting North Western myths in the Proceedings of 
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the Berlin Society for Anthropology, Ethnology and Prehistory (on Boas’s early 
publication strategy, which relied on German academic periodicals, see L. Müller-
Wille 2014). From the tables included in the final chapter of this monograph, it 
becomes clear that, for Boas, it was the unequal distribution of “incidents of adven-
tures” that defined them as constituent elements of myths in the first place. The table 
arranges the data – page references to the preceding collection of tales that Boas had 
“recorded from the mouth of Indians” (Boas 1895a, v: aus dem Munde der Indianer 
aufgezeichnet) during field research in the late 1880s – in such a way that one can 
immediately see how the full cycle of a particular myth is present in a small group 
of neighboring tribes while it “dwindles down  ...  to mere adventures, or even to 
incidents of adventures” to the left and the right of the table occupied by more dis-
tantly related tribal groups (see Fig. 1).

Such a “statistical inquiry”, as Boas called his investigation of Northwestern 
myths (Boas 1896, 3) rested on a “fundamental condition”, which “differentiates 
our method from other investigators […], who see a proof of dissemination or even 
blood relationship in each similarity that is found between a certain tribe and any 
other tribe of the globe.” The material, on which an investigation was based, had to 
be “collected in contiguous areas” (Ibid., p. 6). This contiguity was largely, but not 
necessarily a geographical one, as Boas emphasized; in addition, marriage, kinship, 
and social structure entered the picture. “The social customs of the Kwakiutl” – the 
ethnic group most intensely studied by Boas during several field trips  – are, he 
maintained, “based entirely upon the division into clans and the ranking of each 
individual is the higher – at least to a certain extent – the more important the legend 
of the clan.” Moreover, “the customs of the tribe are such that by means of a mar-
riage the young husband acquires the clan legends of his wife, and the warrior who 
slays an enemy those of the person whom he has slain. By this means a large num-
ber of traditions of the neighboring tribes have been incorporated in the mythology 
of the Kwakiutl” (Ibid., p. 8–9). The clan system that Boas had detected among the 
Kwakiutl was actually even more complex than described in this quote; through 

Fig. 1  Table from Franz Boas, Indianische Sagen von der Nord-Pacifischen Küste Amerikas 
(Berlin: A. Asher, 1895a), pp. 338–39. The columns relate to groups of tribes, the rows to narrative 
elements of the myth in question. The full suite of incidents making up the myth is only prevalent 
among the Kwakiutl, while individual elements can be found in more distant tribes. The fields of 
the table contain page references to the preceding collection of mythical material collected and 
documented by Boas

Data, Meta Data and Pattern Data: How Franz Boas Mobilized Anthropometric Data…



270

marriage, the husband did not personally acquire the clan status of his wife, but he 
acquired it “for his son” (Boas 1897, 334–35).

By relating the distribution of mythical elements to a space whose contigu-
ity could be ascertained in terms of geographic and socio-political relations among 
individuals  – alliances as well as antagonisms – Boas wanted to circumvent the 
pitfalls of analogical reasoning in anthropology that he warned his colleagues of in 
the museum debate. Ironically, however, the grand picture that Boas came up with 
on the basis of this approach was disconcertingly fractional, and Boas would even-
tually give up his initial attempt to reduce the data he was presented with to some 
universal transmission pattern (Levi-Strauss 1988). Rationalizations of myths, 
whether proposed by anthropologist observers, or by the observed informants them-
selves, were not to be trusted:

A great many [...] important legends prove to be of foreign origin, being grafted upon 
mythologies of various tribes. This being the case, I draw the conclusion that the mytholo-
gies of the various tribes as we can find them now are not organic growths, but have gradu-
ally developed and obtained their present form by accretion of foreign material. Much of 
this material must have been adopted ready-made […]. We are, therefore, led to the conclu-
sion that from mythologies in their present form it is impossible to derive the conclusion that 
they are mythological explanations of phenomena of nature […], but that many of them, at 
the place where we find them now, never had such a meaning. If we acknowledge this con-
clusion as correct, we must […] admit that, also, explanations given by the Indians them-
selves are often secondary, and do not reflect the true origin of the myths. (Boas 1896, 5)

What is remarkable about Boas’s “statistical inquiry” into myth is that it did not 
rest content with just collecting and reproducing mythical material. In order to be 
useful for the kind of comparative and critical analysis that Boas accomplished, this 
material had to be accompanied by information on how myths were produced and 
communicated in the places and communities from which they were originally 
recorded. As Stocking Jr (1974, 8) has argued, for Boas, integration of data “was not 
a matter of necessary or logical relations of elements.” He favored “historical inte-
gration” instead, notwithstanding, or rather, precisely because of his statistical 
approach.

3  �Boas’s Data Sheets

From Boas’s anthropometric surveys, a large number of original data sheets have 
been preserved in the archives of the American Museum for Natural History and the 
American Philosophical Society in Philadelphia (Jantz et al. 1992, 437). Many of 
these pertain to Native American tribes, and were produced in anthropometric cam-
paigns carried out in 1891 and 1892 by Boas in preparation of an exhibition on 
physical anthropology he had been commissioned to organize for the World’s 
Columbian Exposition, which was held in Chicago in 1893 (Jacknis 1985).

In this section, I am going to offer a description and detailed analysis of a small 
sub-set of these data sheets in order to reconstruct not only what data Boas collected, 
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but also how he did it, paying particular attention to the role that field observers, but 
also informants, played in the generation of the data. The subset in question is pre-
served at the American Philosophical Society, and pertains to Chickasaw individu-
als living in Stonewall and Tishomingo in the Indian Territory, now Oklahoma.1 The 
Chickasaw had been forced to remove from the Southeastern Woodlands in 1832, 
and decided to settle with a closely related tribe, the Choctaw, in the Indian Territory. 
By the 1850s they had established settlements, including Tishomingo as the capital, 
and successfully resisted subsequent attempts to merge them with the Choctaw, 
forming a polity of their own to this day (St. Jean 2011).

The data sheets consist of forms printed on both sides that were filled out by hand 
(see Fig. 2). At the front top of the form, the field observer is asked to “[n]umber 
each record and write your name after number.” From this, we know that one 
“Richard T. Buchanan,” who indeed entered a serial number for each record taken, 
collected the data for Chickasaw.2 The form consists of three sections: a first one 

1 Franz Boas field notebooks and anthropometric data, American Philosophical Society, Box 2, 
Anthropometric Data Sheets Recorded at Stonewall and Tishomingo, Indian Territory (Oklahoma).
2 I have been unable to identify this person. It is not unlikely, though, that Buchanan was a local 
resident of Tishomingo; findagrave.com lists several gravestones on Tishomingo cemeteries from 
the nineteenth century that show the last name Buchanan, and a transcription by Tom Blake of the 
“largest slaveholders from the 1860 slave census schedules” in Chickasaw County lists a T.  J. 

Fig. 2  Recto and verso of the data collection forms used by Franz Boas in anthropometric surveys 
in 1891 and 1892. Franz Boas field notebooks and anthropometric data, American Philosophical 
Society, Box 2, Anthropometric Data Sheets Recorded at Stonewall and Tishimingo, Indian 
Territory (Oklahoma). The name has been blackened by the author for anonymization. With kind 
permission by the American Philosophical Society
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providing metadata in the form of “Place” and “Date of observation” as well as 
information on the person observed: “Name of individual recorded,” “Age,” “Tribe,” 
“Tribe of father,” “Tribe of mother,” relationships to other persons recorded 
(“Mother of … Daughter of … Sister of …”), “Mode of Life” and finally, “Number 
of sons” and “daughters”. This is followed by a section that records a large number 
of qualitative physical traits, such as hair form or eye color, by offering default 
descriptive categories for selection. In the case of skin color, a color chart seems to 
have been used, as indicated by the numerals used to describe this parameter. Only 
then, on the verso side of the sheet, follow anthropometric variables in a separate 
section entitled “Measurements.” The first six of these refer to overall stature, fol-
lowed by six further measurements taken on head, face and nose. A third and final 
section is entitled “Indices,” and separated from the rest of the form by a horizontal 
line above which it states that the field observer is not to pay “attention … to lines 
below this rule.” As we will see further below, this section was reserved for Boas to 
process the data given by the measurements. The form ends with the prompt “This 
form when filled to be returned to Franz Boas, Worcester, Mass.” There are separate 
forms for males and females, since some of the kin designations used, as well as 
some of the qualitative traits differ by gender (male forms ask for detailed informa-
tion on “Beard,” for example).

What is particularly striking in the series of filled out forms is that a lot of effort 
was spent on ascertaining the genealogical relationships between recorded individu-
als. Alongside relatively straightforward parental and sibling relationships, the cat-
egories of “Tribe of father” and “Tribe of mother” provide the most intriguing 
information in this respect. As one might expect, for each and every one  of the 
individuals measured, “Chickasaw” is stated for the tribe he or she belongs to. Yet, 
answers to the questions relating to the “tribe” of their mother and father reveal very 
complex, mixed ancestral backgrounds. “Half-breed” is a frequently recurring des-
ignation. On the sheet reproduced in Fig. 2, for example, it is given as an answer for 
“Tribe of father” while the mother is stated as being “Chickasaw.” If one looks at the 
records of the children of the female in question (sheets no. 8, 9 and 10), which 
record “ 3

4  Chickasaw 14  white” for the tribe of mother, “half-breed” reveals 
itself as referring to individuals with one parent of Native American descent and one 
parent of European descent. Many sheets also record mixed Chickasaw and 
Choctaw, or “Choctaw half-breed,” ancestry (sheet no. 14). The Chickasaw had 
been a slave-owning tribe, and while in contrast to the Choctaw they did not adopt 
their freedmen after emancipation in 1863 (St. Jean 2011, ch. 3), one does find quite 
a number of sheets were the tribe of father or mother is stated as “Chickasaw and 
negro” (e.g. sheets no. 2–3 and 18–19). Such assessments of mixed ancestry could 
reach considerable complexity. On one sheet, the tribe of mother is recorded as 
“ 2

3  Chickasaw 13  white” (sheet 35). The only way to make sense of this propor-
tion is to note that cousin marriage in the parental generation reduces the number of 

Buchanan with 63 slaves (see http://freepages.genealogy.rootsweb.ancestry.com/~ajac/mschicka-
saw.htm; accessed 19/09/2018).

S. Müller-Wille

http://freepages.genealogy.rootsweb.ancestry.com/~ajac/mschickasaw.htm
http://freepages.genealogy.rootsweb.ancestry.com/~ajac/mschickasaw.htm


273

grandparents to six individuals, and to assume that ancestry may have been described 
with reference to the grandparents.

Although relatively little genealogical information is asked for by the form itself, 
the answers thus allow to carry out an almost complete analysis of kin relations 
within the cohort studied that reaches back to the grandparental, and in some cases, 
great-grandparental generation. Husband-wife relationships are not recorded, but 
can be inferred, though slightly tediously, by comparing number of children and 
ancestry. Conveniently, the data seems to have been recorded household by house-
hold, so that sheets for parents and their children often follow each other consecu-
tively (e.g. sheets no. 7–10). Boas’s anthropometric field campaigns were probably 
modeled on the 1890 US Census, which also asked for genealogical (“relationship 
to head of family”) and racial information (“whether white black mulatto, quadroon, 
octeroon, Chinese, Japanese, or Indian”). He could thus assume that both his field 
observers, and their informants, were used to these kind of questions, the logic of 
genealogical analysis they presupposed, and the procedure of filling in a 
questionnaire.3

The apparent discrepancy between assigning “Chickasaw” as the tribe of persons 
recorded, and the mixed ancestry of their parents, is easily explained. The Chickasaw 
were organized by exogamous matrilineal clans, and both tribal affiliation and 
belongings were passed on along maternal lines (Champagne 1992, 40–41). One 
can therefore safely assume that the persons recorded regarded not only themselves, 
but also their parents as Chickasaw, as long as their parent’s mothers in turn were 
Chickasaw. This raises the suspicion that the information on mixed ancestry might 
actually not have been provided by them, but by the observer. That this is not the 
case, however, is evident from occasional notes that the observer jotted down in the 
space left in the form between “Measurements” and the section “Indices,” which 
was reserved for Boas’s calculations. In these notes, Buchanan expressed doubts 
about the information filled in under “Tribe of father” and “Tribe of mother”. Sheet 
no. 26, for example, where tribe of father is given as “½ Chickasaw ½ Choctaw” and 
tribe of mother as “Chickasaw” carries the following statement on its verso side: 
“The gentleman says he has heard two parents say that they had some French blood 
in them. He shows white blood.” In another case, where tribe of both father and 
mother is stated as “Chickasaw,” Buchannan added the note “Negro blood appears 
in complexion … and in shape of face” (sheet no. 53). Tribal (or racial) affiliation 
seems occasionally to have been a matter of negotiation between observer and infor-
mant, but in the end, the latter seems to have had the last word when it came to fill-
ing in the answers on the top front of the sheet.

3 The form used in the 1890 United States Census is available at https://en.wikipedia.org/
wiki/1890_United_States_Census#/media/File:1890B.jpg. On the complex history of racial cate-
gories in US censuses between 1850 and 1930, see Hochschild and Powell (2008). Boas himself 
will have had personal experience of the Prussian censuses which according to historian Christine 
von Oertzen developed into a data-driven exercise moving enormous amounts of paper in the 
1860s and 70s; see von Oertzen (2017).
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This reflects the role of mere “recorders” that Boas assigned to his field assistants. 
The sections of the forms dedicated to qualitative traits and anthropometric measure-
ments leave no freedom to add personal observations. It is well known that Boas 
especially trained the 50 or so assistants that collected data for him in preparation of 
the World’s Columbian Exhibition. He also modified the instruments used for mea-
surements (Boas 1890), restricted himself to measurements where “the starting 
points are easily ascertained,” and had the assistants perform measurements on each 
other, or let two observers take measurements on the same set of persons; all this in 
order to “reduce the personal equation, as far as possible, to a minimum” (die persön-
liche Gleichung möglichst auf ein Minimum zu reduzieren). In addition, he restricted 
his survey to measurements that could be performed “without disrobement” (ohne 
Entkleidung), since this would “necessarily limit the number of measured individu-
als” (Boas 1895b, 367). Minimizing the personal equation and maximizing popula-
tion number thus actually lead to a very impoverished ontology. Observers were 
reduced to deleting descriptive categories prescribed on the form, and filling in a 
small number of mechanical measurements in generating data on the survey subjects.

Yet Boas was able, as we will see in the next section, to make a lot out of his data. 
Hints at how he proceeded in this can be found in the subset of data sheets on the 
Chickasaw. Only about a third of these show entries in Boas’s hand in the section 
headed “Indices.” Many of these entries calculate the cephalic index, i.e. the ratio of 
breadth of head to the length of head, and some of them the facial index in addition. 
What is striking about these entries is that they exclusively appear on data sheets on 
which the tribe of both father and mother is stated as “Chickasaw” and/or “Choctaw.” 
In processing data, Boas apparently proceeded by grouping the data sheets, in this 
case separating sheets on individuals of “pure” Native American descent from those 
on individuals with mixed racial backgrounds. And in making this decision, Boas 
exclusively trusted the genealogical information that informants provided. The data 
sheets mentioned above, on which Buchanan had expressed his doubts about pos-
sible admixture of “French” and “negro blood,” were included in the set of sheets 
that Boas processed in order to calculate the cephalic index. Even here, the observ-
er’s personal expertise was erased in favor of “self-identified” tribe or race, as we 
would say today.

4  �Use and Re-use of Data

Forensic anthropologist Richard L. Jantz, who has probably done more than anyone 
else for recovering Boas’s data from the obscurity of historical archives, expresses 
great admiration for the “incredible computational feat” that Boas achieved by com-
puting “the means of height and cranial index for some 4000 individuals distributed 
over 60 tribes, all with pencil and paper” (Jantz 2003, 279). In this, he is referring 
to the only article in which Boas summarized results from the anthropometric sur-
vey carried out in preparation of the World’s Columbian Exhibition. It appeared in 
the German Journal for Ethnology (Zeitschrift für Ethnologie) in 1895, and made 
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liberal use of tables and curve diagrams to synthesize the findings, some of which 
had probably already been presented in the Physical Anthropology Department of 
the Exposition.4

Boas admitted right away in this article, that the qualitative data he had collected 
varied too much between observers to deliver comparable results. The article there-
fore focused exclusively on body stature and head form, but considered these two 
variables not only in populations of Native American adults, but in addition in chil-
dren and in “mixed bloods between Indians and other races, especially whites” (Boas 
1895b, 367). The first table spanned four pages, and showed the number of individu-
als measured, averages, and percentaged distribution of stature in steps of 1 cm for 
62 “tribes” in columns that were roughly arranged by geographic location on an East 
to West axis. This table was complemented by “curve plates” (Kurventafeln) that 
showed the distribution for each individual “tribe” (see Fig. 3). Boas then proceeded 

4 A guide to the Exposition states on its Ethnology Department: “For those who incline to this field 
of investigation, a section is devoted to physical anthropology. Here, in the skulls, charts, dia-
grams, and models gathered from many nations may be compared the past and present types of the 
human races” (Bancroft 1893, 629).

Fig. 3  Curve diagrams showing distribution of body height in several North American “tribes”. 
The vertical axis gives percentage, the horizontal axis body height in centimeters. From Franz 
Boas, “Zur Anthropologie der nordamerikanischen Indianer.” Zeitschrift für Ethnologie 27 
(1895b), p. 373
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to break down his overall population, as well as populations constituting individual 
“tribes,” by age, gender and racial descent (“full-blooded” [Vollblut-] vs. “half-
blooded Indians” [Halbblut-Indianer], ibid. p. 381) in ever more complex ways. The 
same procedure was then repeated for head form (cephalic index) and breadth of 
face. He found evidence, that both parameters were influenced by environmental and 
hereditary factors (Ibid., 376). Their distribution at the West Coast in particular 
showed similar complex geographic patterns as the ones he observed in his linguistic 
and mythological studies, but notably without simply reproducing the latter (Ibid., 
p. 402). One feature that particularly fascinated Boas was that distribution curves of 
“half-blooded” individuals did not show simple blending of parental types, but usu-
ally two maxima indicating a “law of inheritance” according to which a “reversion 
(Rückkehr) generally occurs towards the parental form” (Ibid., 406). He pursued this 
topic by looking at the distribution of breadth of face. By “classifying mixed-bloods 
in such a way, that one group includes individuals which have more than half of 
Indian blood, and other individuals, which have half or less Indian blood” he even 
tried to demonstrate that the “Indian type” was characterized by a “stronger heredi-
tary force” (grössere Vererbungskraft) with regard to this trait (see Fig. 4).

Jantz, like many others, has claimed that the 1895 article is the only one in which 
Boas presented and analyzed his data in detail (Jantz 2003, 279). This is not quite 
true. Rather, Boas seems to have re-used the data quite opportunistically in a num-
ber of publications to make particular points. Already in 1891, he published a very 
concise paper in the journal Science in which he argued for reversion, rather than 
blending, in human inheritance based on cephalic index data from “Oregonian 
Athapascans,” “Northern Californians” and their “crosses” (Boas 1891). In 1894, he 
published an article entitled “The Half-Blood Indian: An Anthropometric Study” 
that made many of the points, and contained many of the illustrations, of the 1895 
article, but started off with a curve diagram showing “number of children of Indian 
Women and of Half-Blood Women” in order to disprove the common belief that 
“hybrid races show a decrease in fertility” (Boas 1894, 2). And what is perhaps 
Boas’s most important anthropometric paper, a critique of the significance of the 
cephalic index for indicating human types, was also based on data he had gathered 
in his field campaigns, now of course relating to “full-blooded” individuals, because 
the critique could otherwise easily have been fended off by maintaining that stabil-
ity of type is generally compromised by mixture. In all of these cases, the relatively 
impoverished base of data was compensated by the myriad ways in which it was 
classified with respect to information collected on the measured individuals – place 
of birth, age, gender, and ancestry, in particular. While the data on physical traits 
covered few properties only, this data revealed that the populations under scrutiny 
were rich in structures that could be deployed again and again to answer different 
research questions relating to the role of environment and inheritance.

After 1900, Boas’s interest in the physical anthropology of Native Americans 
seems to have dwindled. The number of preserved observations abruptly drops to 2 
only in 1901, and then there are none for the remaining years. The reasons for this 
may have been political: With the Jim Crow laws and legislation increasingly 
enforcing allotment of tribal land to individual tribe members who could prove their 
“purity of blood” (Curtis Act 1898), having one’s ancestry “questioned” was increas-
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ingly becoming a highly delicate matter (see St Jean 2011, 55, for the Chickasaw). 
The fraught relationship between Native Americans and their “scientific observers” 
that this new situation must have created continues to this day and was exacerbated 
by the highly publicized conflicts around large-scale human genetics projects such 
as the Human Genome Diversity Project and the Genographic Project in the early 
1990s (Reardon and TallBear 2012). It is therefore not surprising that the data from 
Boas’s anthropometric survey have been eagerly taken up by anthropologists in past 
decades. While I have not found any direct mention of these conflicts in the sources 
I have worked with, it is revealing that one of them mentions in passing that “Boas’s 
data offer the only opportunity for systematic examination of anthropometric varia-
tion among North American Indians” (Jantz et al. 1992, 456; my emphasis).

A team of postgraduate students and researchers around Jantz was the first to 
convert Boas’s data into a “computerized database”, retaining data for “individuals 

Fig. 4  Table showing distribution of breadth of face for Ojibwa-men of different racial ancestry 
(“fullblooded”, “ 3

4  blooded” and “ 3
8 -blooded”). From Franz Boas, “Zur Anthropologie der 

nordamerikanischen Indianer.” Zeitschrift für Ethnologie 27 (1895b), p. 410
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who could be considered full-blooded” only, and replacing “obvious outlying val-
ues” with values “predicted from all others” following accepted statistical proce-
dures not available to Boas (Jantz et al. 1992, 439, 442). Their analysis revealed that 
the data showed “strong geographic patterning” supporting “climate-morphology 
correlations” with exception of head-shape which showed “considerable intertribal 
variation” (ibid., 457). Lyle W. Konigsberg and Stephen D. Ousley – noting their 
gratefulness to Boas for “what, for the time, was an unusual inclusion of pedigree 
data” (1995, 481; cf. Jantz 1995, 351) and to Jantz for granting them access to this 
data in its electronic form – used a small subset of the data to test an important 
assumption in quantitative genetics about the proportionality between phenotypic 
and genetic co-variation. Using a subset of data for five “tribes”, and normalizing it 
for sex and age, their mathematically sophisticated paper provides an impressive 
example for the degree to which Boas’s data rendered itself amenable to the applica-
tion of complex genealogical matrices (ibid., 484–485). Yet another research agenda 
was pursued by economic historians who drew conclusions about the historical 
development of nutritional status and living standards among nineteenth-century 
First Nations by looking at the variation of body height across time and across 
tribes, again thanking Jantz for granting them access to the data (Steckel 2010, 267; 
Carlson and Komlos 2014, 158).

The end of studies on Native Americans in 1901 did not mean the end of Boas’s 
interest in physical anthropology. Instead, he changed subject. Reducing the number 
of anthropometric variables even further, he carried out an anthropometric survey on 
some 16,000 immigrants from Eastern Europe and Italy and their children in order 
to determine whether the new environment they entered resulted in a change of 
physical type (Boas 1912). With their obvious political significance – Boas’s con-
clusions became part of the idea of America as a “melting pot” –, these studies as 
well have invited reanalysis again and again, especially since Boas took the unusual 
step to publish his raw data (Boas 1928). R. A. Fisher was among those who re-used 
this data to throw doubt on Boas’s conclusions. Part of the argument pertained to the 
quality of Boas’s data; Fisher and his collaborator Horace Gray, a medical doctor 
from Stanford University Hospital, suspected that it was compromised by wrongly 
reported paternity and inter-observer variability. This did not keep them, however, 
from subjecting it to Fisher’s “method of analysis of variance” for the purpose of 
making this point by demonstrating that variability and regressions within families 
did not meet expectations informed by “previous biometrical work” (Fisher and 
Gray 1937, 92). An earlier study by Geoffrey Mackay Morant, a student of Karl 
Pearson, and Otto Samson had followed a similar strategy, arguing that Boas’s 
results had been confounded by variation in age and sex while using his published 
raw data as evidence in favor of precisely this claim (Morant and Samson 1936).

Fisher and Gray’s doubts let me return to the recent debate about whether Boas 
got it “right or wrong” with which I opened this chapter. The debate was sparked by 
another paper by Jantz, co-authored with a former graduate student of his depart-
ment, Corey S. Sparks, in which the authors tested what they took to be the central 
conclusion of Boas’s immigrant study, namely that it demonstrated “the plastic 
nature of the human body in response to changes in the environment.” They did so 
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by reassessing his data “within a modern statistical and quantitative genetic frame-
work”, in particular “using pedigree information contained in Boas’ data [to esti-
mate] narrow sense heritability”. The outcome was negative, with results indicating 
“very small and insignificant differences between European- and American-born 
offspring, and no effect of exposure to the American environment on the cranial 
index” (Sparks and Jantz 2002, 14, 636).

Unbeknownst to Sparks and Jantz, three other researchers had been carrying out 
a similar re-analysis on Boas’s published data, the results of which they published 
in the March 2003 issue of American Anthropologist. “Using methods unavailable 
to Boas,” just like Sparks and Jantz were doing, medical anthropologist Clarence 
C.  Gravlee and his co-authors were led to the opposite conclusion, namely that 
“modern analytical methods provide stronger support for Boas’s conclusion than 
did the tools at his disposal” (Gravlee et al. 2003a, 125). In the ensuing exchange 
between the two sets of authors, which was published in the June issue of American 
Anthropologist, some degree of reconciliation was reached by agreeing that Boas’s 
claim that human head form changed with immigration was generally confirmed by 
his data, but that doubts remained regarding the biological significance of these 
changes and the nature of the causes responsible for them (Gravlee et al. 2003b, 
331; Sparks and Jantz 2003, 335). What is notable about this reconciliation is that it 
did not hinge so much on the data used, than on the questions being asked from it. 
Gravelee et al. had set out to test claims that Boas had expressly made, whereas 
Sparks and Jantz questioned a common assumption about these claims that over the 
90 years that had passed since Boas study had become part and parcel of disciplin-
ary lore and that they considered “a burr in our bed for 90 years” (Holden 2002).

5  �Conclusion

If we consider the “journey” of Boas’s data as a unit of analysis, as suggested by 
Sabina Leonelli in the introduction to this volume, it is a journey in which the body 
of Boas’s data as a whole did not remain untouched. Quite on the contrary, that body 
of data was variously partitioned, cleansed of outliers, adjusted for confounding 
variables like age or sex, and processed by a bewildering range of statistical proce-
dures to produce ever new numerical and visual representations.5 In part, as 
evidenced by the re-use of Boas’s immigrant data, these renewed analyses of his-
torical data sets were motivated by the impact that his critique of the race concept 
had on the disciplinary self-understanding of American anthropologists. The rele-
vance of Boas’s data may hence be seen to be partly due to their direct relevance for 
a framework of concepts and theories that had been travelling alongside them 
through the twentieth century. But even those who disagreed with this framework, 

5 On “data cleaning”, see Boumans and Leonelli’s contribution to this volume. The chapters by 
Porter and Bechtel, both in this volume, discuss the importance of visualizations as a medium of 
data travel.
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like Fisher or Jantz, made use of the data, and it was also used by researchers in 
other disciplines, like quantitative genetics or economic history. What generated 
this astounding surplus of Boas’s data in terms of usability in a variety of theoretical 
and disciplinary contexts?

My case study suggests two points in response to this question. The first con-
cerns the importance of what I suggest to call “pattern data” for making data rele-
vant to a variety of contexts. These are data that do not describe single, manifest 
properties of individual entities under scrutiny, but rather relationships among them, 
and hence precisely occupy the middle ground between data and metadata that I 
have outlined at the outset of this article. Typically, they relate to categories that 
allow researchers to group the subjects under study, and hence the data produced 
about them, in a variety of ways that are believed to be of causal relevance for simi-
larities exhibited among these subjects.6 Thus, Boas’s anthropometric surveys are 
not only renowned today for their sheer scale, but also for their careful design which 
included collection of basic geographical and genealogical information on observed 
individuals (Jantz 2003, 280).7 This information allowed Boas to classify the data 
that he had collected on a modest number of anthropometric variables in ways that 
enabled him to address an array of questions in his publications, and also explains 
why later researchers could turn to his data again and again to carry out new 
research. The poverty of data on physical traits collected by Boas, that is, was com-
pensated by the richness of pattern data that allowed for meaningful classification 
(on the significance of data classification, see also Leonelli 2012; Müller-Wille 2018).

However, this richness – and this is my second point – depended on information 
that was provided in situational contexts in which the measured individuals them-
selves took on an active role, rather than simply being the passive subjects of mea-
surement procedures. The “pattern data” Boas used in his anthropometric survey, 
that is, were “given” in a literal sense; in contrast to the data on stature and head 
form, which was extracted from individuals in a more or less mechanical manner, 
information on age, sex, birth place, next-of-kin, as well as tribal and racial affiliation 
had to rely on interviews, and was hence partly informed by common-sense notions 
of the persons observed. While these categories proved to be an extremely versatile 
tool for classifying the data in ever new ways, it also irretrievably tied it to the histori-
cal context of its production. Especially tribal and racial affiliation are categories the 
meaning of which, at any given point in time, has been molded by centuries of politi-
cal struggle and whose application will continue to be of political relevance.

The tens of thousands of datasheets that Boas took care to preserve in his papers, 
and that are still accessible to researchers, thus does not only form a repository of 
data to be explored scientifically for what it tells us about the physical appearance 

6 In this, I take inspiration from, but do not strictly follow, the American botanist and geneticist 
Edgar Shannon Anderson, who distinguished between “pattern data” and “pointer data” in an 
intriguing article arguing for the continued relevance of natural history in genetics (Anderson 
1956; see Kleinman 2016). The case of radiocarbon dating and the necessity to calibrate it by 
other, “relative” dating technologies described by Wylie (this volume) provides a comparable case.
7 Ramsden provides a fine case study in this volume on the efforts that went into the design of 
survey technologies to satisfy the needs for date of housing planners in mid-twentieth century 
United States.
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and genetic constitution of historic populations. Every single sheet also gives us 
glimpses of the life story of an individual person, and the collection of datasheets as 
a whole therefore forms a historical archive in its own right that can also be used to 
reconstruct the power relations that informed the original surveys. It is therefore 
unlikely that any answer to the question whether Boas got it “right or wrong” will 
ever bring the journey of his data to a an end. They will remain relevant as long as 
the historical circumstances under which they were produced, and the intervention 
that Boas and his collaborators made on these circumstances through their surveys, 
have historical bearing for the present situation.
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Radiocarbon Dating in Archaeology: 
Triangulation and Traceability

Alison Wylie

Abstract  When radiocarbon dating techniques were applied to archaeological 
material in the 1950s they were hailed as a revolution. At last archaeologists could 
construct absolute chronologies anchored in temporal data backed by immutable 
laws of physics. This would make it possible to mobilize archaeological data across 
regions and time-periods on a global scale, rendering obsolete the local and relative 
chronologies on which archaeologists had long relied. As profound as the impact of 
14C dating has been, it has had a long and tortuous history now described as proceed-
ing through three revolutions, each of which addresses distinct challenges of captur-
ing, processing and packaging radiogenic data for use in resolving chronological 
puzzles with which archaeologists has long wrestled. In practice, mobilizing radio-
genic data for archaeological use is a hard-won achievement; it involves multiple 
transformations that, at each step of the way, depend upon a diverse array of techni-
cal expertise and background knowledge. I focus on strategies of triangulation and 
traceability that establish the integrity of these data and their relevance as anchors 
for evidential reasoning in archaeology.

1  �The Quest for an Absolute Chronology

If any data are “tragically local” (Latour 1999: 59), the fragmentary traces that make 
up the archaeological record would seem to fit the bill. Detached from the originat-
ing cultural events and contexts of interest to archaeologists, subject to the vagaries 
of preservation and the contingencies of recognition and recovery as a “record,” 
archaeological data are often seen as presenting insurmountable obstacles to their 
use as anchors for evidential claims about the past.1 A major breakthrough, founda-
tional to the formation of archaeology as a field, was development in the nineteenth 
century of methods for discerning the temporal structure of the material record 

1 See Currie’s reprise of and rebuttals to arguments that give rise to such pessimism (2018, 
chapter 4).
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(Trigger 1989). The most influential of a number of chronological systems dating to 
this period  – the “Three Age System” developed in the 1830s by Thomsen in 
Denmark and by Nilsson and Worsaae in Sweden – posited a cultural sequence of 
stone, bronze and iron ages based on the observation that, in undisturbed deposits, 
artifacts of these materials regularly occur together and in stratigraphic sequence 
(Trigger 1989: 124; Rowley-Conwy 2007: 32–47). Drawing on geological princi-
ples of superposition these assemblages were interpreted as chronological markers 
(Renfrew 1973: 24). To extend these sequences beyond the locales where they were 
established, archaeologists built fine-grained stylistic seriations that capture the 
orderly succession of form and design within classes of artefacts found in stratified 
deposits (e.g. Deetz and Dethlefsen 1967); artifacts of a similar material and design 
could be compared across sites and slotted into a design sequence presumed to hold 
for a cultural tradition or horizon. These attributions of “age” were, however, rela-
tive and of limited scope so, where possible, archaeologists made use of textual or 
epigraphic records to tie chronologies based on artifact typologies, seriation and 
stratigraphy to historically documented events and, thus, to one another. For exam-
ple, coins and inscriptions testify to Roman presence in geographically distant 
regions, establishing (respectively) the earliest and latest dates at which the material 
associated with them could have been deposited. They also made use of dendro-
chronology and varve dating (annual sequences of tree-rings and glacial lake depos-
its) to anchor cultural to physical chronologies, but these too were of limited scope. 
The challenge was to link up chronologies of limited reach so that the trajectory of 
culture-transforming processes – the spread of farming, migrations and trade rela-
tions, the expansion and contraction of cultural spheres of influence  – could be 
traced through space and time.

When radiocarbon dating was introduced in the early 1950s it was hailed as the 
solution to a range of chronological problems in archaeology; indeed, many 
expected that it would render obsolete these longstanding methods of constructing 
relative chronologies. The principle is straightforward. Radioactive carbon isotopes 
decay at a stable rate – their half-life is ~5730 years – so if you know the ratio of 
radioactive (14C) to stable carbon (12C and 13C) in the environment in which a sample 
of organic material originated, you can use the difference between the proportion of 
radioactive carbon in the sample and this baseline ratio to estimate the time elapsed 
since “sample death” (Hamilton and Krus 2018: 198): the point at which the organic 
source of the sample stopped absorbing carbon and the decay process began. As 
Libby described the temporal data that could be captured by this means, the crucial 
warrant for its use as the anchor for an absolute chronology is the stability of the 
process of radioactive decay, a physical process that is not affected by other proper-
ties of the sample itself or its geological, much less its cultural, context.

The rate of disintegration of radioactive bodies is extraordinarily immutable, being inde-
pendent of the nature of the chemical compound in which the radioactive body resides and 
of the temperature, pressure, and other physical characteristics of its environment. (Libby 
1952: 9, as cited by Francis 2002: 297)

By contrast to the temporal data on which archaeologists had relied, this measur-
able ratio of time-dependent radioactive to stable carbon clearly seemed to qualify 
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as “mobile immutables” in Latour’s sense  (Latour 1999; see also Morgan 2008, 
2011). And, indeed, radiocarbon dating has had a profound impact on archaeology; 
in a recent retrospective Manning describes it as having “entirely restructured the 
practice and understanding of prehistoric archaeology around the world” (2015: 
128). That said, the process of realizing its promise as a game-changing innovation 
has been a long, tortuous process. It is now described as proceeding through three 
radiocarbon revolutions (Manning 2015), each of which addresses distinct chal-
lenges posed by the multiple transformations involved in capturing, processing, 
packaging and interpreting radiogenic data for use in archaeological contexts.2 In 
the process the Latourian ambitions that attended its initial introduction have been 
significantly rescaled. The radiogenic data made available by these successive revo-
lutions is anything but “raw”; the ongoing process of refinement, calibration and 
interpretation affirms the robustly relational conception of data that frames this vol-
ume. I focus on two aspects of the transformations required to mobilize these data 
for archaeological purposes: the role of mediators, in the form of the inferential 
warrants and scaffolding of various kinds that make it possible to constitute material 
traces as temporal data; and the strategies archaeologists use to ensure the integrity 
of these data and, crucially, their credibility as anchors for evidential reasoning 
relevant to archaeological inquiry.

My aim here is to illustrate the irreducibly relational nature of data in this context 
where, at its inception, the radiocarbon revolution seemed poised to fulfill the most 
unqualified of foundationalist ambitions. I will identify a great many different kinds 
of objects and claims that function in archaeological contexts as data, extending an 
account I have developed elsewhere for a relational conception of evidence (Wylie 
2011a; Chapman and Wylie 2016). On this view evidential claims are the terminus 
of practical arguments that, as characterized by Toulmin, originate with some “fact” 
or “datum” and are mediated by warrants that licence the inferential move from 
datum to conclusion (Toulmin 1958: 98, 218–221; Chapman and Wylie 2016: 
34–36). Whether a claim counts as a mediating warrant or an evidential claim is a 
function of its role in an evidential argument; the material warrants that figure prom-
inently in archaeological contexts are themselves the terminus of evidential argu-
ments. The same is true of “data”; I concur with Leonelli that what counts as a 
“datum” is a function of its potential for use as evidence (Leonelli 2015, 2016) and 
that data are never simply “given”; they are themselves the terminus of an extended 
process of practice and inference that configure them as useable in a particular 
research context. In the case of radiocarbon data, literal journeys are involved; 
material traces are excavated, transported, curated, processed and incorporated into 
chronological models, and then put to work as archaeological evidence in a great 
many different contexts. But what I focus on here are primarily journeys across 
methodological frames. This account is itself a chronological; I chart the process by 

2 See Chapman and Wylie (2016: 147–151) for a more detailed account of the complex story of 
enthusiasm and ambivalence, institutional manoeuvring and competition that characterize the his-
tory of radiocarbon dating; we compare this with the reception and life history of other “external 
resources” imported to archaeology in recent decades.
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which radically diverse types of expertise and bodies of background knowledge 
were brought together to refine the techniques and establish the standards that con-
figure evolving practices for handling radiogenic data in archaeological contexts.

2  �Capturing Radiogenic Data

Within a decade of the initial introduction of radiocarbon dating – the first radiocar-
bon revolution set in motion by Libby in the 1950s – it had become clear that its 
successful application to archaeological material would require a great deal of tech-
nical scaffolding. This first revolution is defined by two sets of issues: the need to 
establish archaeological field practices for recovering and handling samples that 
minimize contamination by younger or older organic material, and to refine the 
methods by which radiocarbon laboratories measure 14C in archaeological samples.

In a Latourian analysis that provides a useful framework for considering the first 
of these challenges, Lucas characterizes archaeological fieldwork as an iterative 
process of intervention on field sites and materials – practices of disaggregation and 
assembly – by which an archive of material, both “found and made,” is assembled 
in ways  that are  configured by the anticipated requirements of data mobility. 
Invoking Latour (1999), he observes that “it is precisely what is portable or mobile 
that…defines the archive” (2012: 244). Field sites are, in a literal and documentary 
sense, standardized to approximate the material form of the archive, creating legible 
assemblages that can be “carried over” from the field to other sites of knowledge 
making (2012: 230, 234, 244). Lucas’s primary examples of these archive-producing 
processes are site survey, excavation and recording practices that are standardized 
within and across sites (at least, within research traditions), and designed to facili-
tate the translation of objects and observations “from one material form into 
another”: “the way we intervene with [a site] is set up precisely for the manner in 
which we [will] read it in translation” (2012: 238–239). So, for example, the prac-
tice of excavating in stratigraphic levels, cleaning exposed features and preparing 
the vertical walls of excavation units is keyed to photographic documentation, and 
to drawing plan views and stratigraphic profiles; the site is prepared, “sculpted,” so 
that it can be read “as if it were a drawing” or a photograph (2012: 239).

The archive in Lucas’ sense is, then, an active construct, designed to encode 
information about context and associations that will make it possible to retrace the 
steps by which the contents of the archive were produced, linking material samples 
and artefacts, drawings and photographs, field records and notes to one another and 
to features of their depositional context long after they have been removed, textually 
translated, and dispersed to distant museums, labs, offices and classrooms. Latour 
describes exactly this process in connection with the stratigraphic drawings created 
by the team of field biologists, ecologists, and soil scientists he observed in Brazil 
(1999: 57–58), and it figures in Bouman and Leonelli’s account of “data cleaning” – 
a practice documented within archaeology by Gero (2007). Traceability is crucial, 
especially when the field interventions are destructive, as in the case of excavation. 
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It is what makes possible the “iterative” analysis of an archaeological site that, on 
Lucas’ account, constitutes the mobility of the archive; it enables archaeologists to 
reassess, reposition and reinterpret the data that make up an archive, and sometimes 
to extract from it entirely new and unanticipated data (2012: 234; Wylie 2011b; 
2016). Traceability is the key to establishing “sample-to-context” relationships that 
make the results of radiocarbon analysis useable in archaeological contexts  – a 
fraught set of issues that have come into sharp focus in the last few decades and a 
point to which I return shortly.3 But first, consider in a bit more detail the transla-
tional processes by which radiocarbon data – the ratios of 14C to 12C and 13C in 
archaeological samples – are generated.

Radiocarbon dating was initially applied to organic artefacts of known age held 
in well documented museum collections (e.g., Egyptian funerary furnishings). But 
as it became more widely available archaeologists reconfigured their field practices 
to anticipate the requirements of a new network of data-generating sites, specifi-
cally, radiocarbon dating laboratories. Material they had not routinely collected or 
that had been of marginal interest took on new significance – fragments of wood and 
bone, seeds and grains, the non-artefactual contents of storage and fire pits – and 
questions about sample collection, storage, and transport had to be addressed. 
As radiocarbon dating techniques evolved, the range of materials and the size of 
samples viable for dating changed, sometimes dramatically. With the use of 
Accelerator Mass Spectrometry (AMS) – based on direct detection of radiocarbon 
atoms – it is possible to work with samples as small as 20 milligrams, compared to 
the typical requirement of 10–100 grams for radiometric methods (Bronk Ramsey 
2008: 258–259). At the same time the list of contaminants to be avoided has 
expanded from the obvious – cigarette ash and campfire charcoal – to include, for 
example, various types of glue, paper and cardboard that incorporate polyvinyl ace-
tates; skin creams and lubricants in which polyethylene glycol is an ingredient; 
hydrocarbon-based fuels; and pesticides (biocides). Fieldworkers are advised to use 
glass or aluminium containers, but the specifics vary depending on type of sample, 
storage conditions and lab protocol; not surprisingly, given its greater precision, 
AMS dating is especially sensitive to contaminants.

Alongside the standardization of protocols for the recovery and handling of dat-
able samples, radiocarbon laboratory techniques for processing them also had to be 
refined to control for a range of other confounds: the second set of issues that had to 
be resolved. These include, for example, the effects of elecromagnetic impurities, 
ambient radiation, radon contamination and fractionation in reactions that do not go 
to completion, and the need to standardize count-time and conventions for calculat-
ing and reporting margins of error. By the early 1980s protocols ensuring inter-lab 
reliability had been instituted, but in a review of Radiocarbon After Four Decades 
(Taylor et al. 1992), Browman observed that, while “error magnitude is no longer 
linked clearly to lab type,” differences in the standards employed by different 

3 Shavit and Griesemer’s account of “locality in biodiversity surveys” (2009) illustrates just how 
complex traceability to “locality” can be, even when the original methodologies of data capture are 
not destructive (2009).
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laboratories were still an issue (1994: 378). Fifteen years later Bronk Ramsey could 
report that “the measurement stage of the process is no longer the most critical 
element in determining precision and accuracy, except for the very smallest 
samples” (2008: 259), but problems persisted with the pre-treatment of samples. In 
short, fine-tuning laboratory protocols to ensure the reliable translation of radiocar-
bon samples from field to laboratory has been a long and ongoing process.

As these challenges were met, a growing number of anomalies were identified in 
the 14C dates reported for archaeological material that could not be attributed to 
contamination or processing error. These drew attention to the complexity of the 
physical processes that radiocarbon dating exploits; much more background knowl-
edge is required to estimate time elapsed since sample death than the “immutable” 
decay rate of radioactive carbon. In short, it was the interpretation of radiocarbon 
ratios as temporal data that came into sharp focus as needing attention. It was this 
recognition that set in motion the second radiocarbon revolution (Manning 2015: 
129): a long process of calibrating radiocarbon dates that began in the mid-1960s.

3  �Calibration: Refinement and Conversion

The second radiocarbon revolution was catalysed by two concerns: that, even if the 
half-life of radioactive carbon is stable, the ratio of 14C to 12C and 13C in the atmo-
sphere is not necessarily uniform over time or space; and that plants and animals 
take up carbon in different ways which affect its concentration in their tissues. 
Together these raise questions about what baseline should be used in determining 
how long the 14C in a particular sample had been decaying. These were first 
addressed in connection with the “industrial” and “bomb” effects. By mid-century 
the widespread use of fossil fuels had dumped an enormous amount of “dead” 
carbon into the atmosphere, depressing the proportion of radioactive to stable 
carbon isotopes, while Cold War era nuclear bomb tests had “almost doubl[ed] the 
concentration of radiocarbon in the atmosphere” (Bronk Ramsey 2008: 251; 
Gillespie 1986: 20). In the event, the global standard, as “agreed internationally by 
the radiocarbon community,” was the average count rate for terrestrial wood dating 
to 1950, a choice of baseline described in the 1986 Oxford Radiocarbon User’s 
Handbook as “arbitrary”; “other values could have been used with perhaps more 
theoretical justification” (Gillespie 1986: 18).

Establishing a global convention for calculating elapsed radiocarbon years was 
just a beginning. What has ensued is a process of identifying and compensating for 
more localized effects of sample context and composition that has depended on 
recruiting an enormously wide range of substantive background knowledge about 
the “radiocarbon life cycle”: how carbon is produced, dispersed, and sequestered in 
diverse local environments, and how it is taken up and fixed by different types of 
organism (Bronk Ramsey 2008: 249–252). Where baseline carbon ratios are con-
cerned, the complications now recognized include, for example, variation over time 
in the rates of radiocarbon carbon production in the upper atmosphere, which is an 
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effect of sunspot activity and dipole movement. This can have an impact on tem-
perature which, in turn, affects the mixing and circulation of atmospheric 14C as 
well as its rate of absorption into carbon reservoirs. The most significant reservoirs 
are marine; the rate at which radiocarbon is exchanged with the surface ocean is 
much slower than its dispersal in the atmosphere, and slower again in deep ocean 
reservoirs. A “marine offset” affects organisms sequestered in carbon sinks created 
by ocean currents where the proportion of radiocarbon may be considerably lower 
than in the atmosphere, the radioactive carbon in such an environment having 
decayed without being replenished. The atmospheric ratio also varies temporally 
and regionally. By the early 1980s it was recognized that there is a hemispheric dif-
ference in the concentration of 14C, given proportionately more ocean surface in the 
southern than the northern hemisphere (Browman 1981: 249–67; Gillespie 1986: 
26–7). In addition, as recently as 2001 two articles that appeared in Science reported 
that “a regional, time-varying 14C offset can occur within a hemisphere” (Kromer 
et al. 2001; Manning et al. 2001; Reimer 2001). Wood samples from Anatolia and 
southern Germany, dated to the fifteenth through the seventeenth centuries AD on 
the basis of tree-ring sequences, had produced radiocarbon dates that diverged as 
much as 200 years. This discrepancy was attributed to a solar minimum that raised 
14C levels in the atmosphere, depressing radiocarbon relative to calendric ages, and 
an associated cooling effect that had seasonally different impact on trees with dif-
ferent growth periods (Kromer et al. 2001: 2529–30; Manning et al. 2001: 2533).

The challenges of determining baseline ratios of radiocarbon concentration for 
the environments in which organic samples originated is further complicated by an 
appreciation that processes of carbon uptake differ by type of organism. This has 
implications for how samples should be processed and how their measured carbon 
ratios should be interpreted. For example, plants that take up carbon directly from 
their environments have different concentrations of 14C depending on whether they 
are terrestrial or marine, that is, whether they absorb carbon in the form of carbon 
dioxide or as bicarbonate. If they are terrestrial, uptake depends on the photosyn-
thetic pathway by which they fix carbon, which differs between arid, succulent, and 
temperate zone plants. Radiocarbon concentrations also differ between herbivores 
that ingest photosynthesized carbon directly, and carnivores that get their carbon by 
“a more circuitous route through the food chain” (Bronk Ramsey 2008: 253). In 
addition, their metabolic processes may discriminate against heavy isotopes (e.g., in 
bone collagen) or affect the absorption of carbon by specific types of tissue (e.g., 
horns and nails do not continue to absorb carbon once formed).

Far from providing an autonomous and incontrovertible empirical foundation for 
archaeological chronologies, radiocarbon data are the conclusions of extended prac-
tical arguments that depend upon a great deal of contingent and, I will argue, local 
scaffolding. To be sure, the data that anchor these arguments are measurements of 
the carbon content of archaeological samples. However, as the process of second 
revolution calibration makes clear, they are only usable as a source of temporal 
data – that is, an estimate of time elapsed since sample death – given a complex of 
chain of inferences that take into account the conditions of their recovery, transport, 
storage, processing, and the technical details of radiometric or AMS analysis. The 
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inferential moves by which these measurements are converted into temporal data 
depend, in turn, on an immense array of mediating warrants: substantive back-
ground knowledge drawn from organic as well as physical chemistry, atmospheric 
science, geology, marine and terrestrial biology, to name just a few of the fields that 
were enlisted in the process of standardizing analytic procedures, controlling for 
confounds, and establishing computational and reporting conventions for radiocar-
bon data.4 I use the terminology of “warrants” in the sense suggested by Toulmin 
(1958), to refer to all the background knowledge and assumptions that license infer-
ences from an originating observation or measurement, mark or inscription (a 
“datum” on his account), to a conclusion that, in this case, takes the form of a claim 
about the estimated time elapsed since “sample death”.

This emphasis on the substantive nature of these warrants resonates with Norton’s 
arguments for recognizing, more generally, that inductive inference is mediated by 
domain-specific “material postulates” (Norton 2003: 648). In a similar spirit 
Woodward insists that the assumptions “required to license…reliable inference from 
data [to phenomena]” are “empirical,” not “matters of stipulation” (2011: 172, 175). 
Alongside examples drawn from chemistry (determining the melting point of lead) 
and neuroscience (smoothing fMRI readings), he cites the assumptions on which 
archaeologists depend to infer temporal data (the date of a fossil) from radiocarbon 
decay counts: for example, “the way in which soil conditions and atmospheric expo-
sure may affect the presence of carbon” (2011: 172). As he argues, it does not follow 
from the fact that such assumptions “‘go beyond the data’” that they are “arbitrary, 
empirically unfounded, untestable, or matters of stipulation or convention” (2011: 
173). The credibility of the data claim – that a given observation or measurement 
tracks a phenomenon of interest – depends upon the credibility of these mediating 
warrants. As Woodward also notes, the epistemic goals of inquiry and “attitudes 
toward risk” are also constitutive of these arguments (2011: 172, 174). So, for exam-
ple, the claim that the radiocarbon content of an organic sample should be recognized 
as archaeological data depends not only on the background knowledge about con-
founds and offsets but also, prospectively, on its potential to serve as the point of 
departure for further inferences that support evidential claims about the age of a 
cultural feature, deposit, or site – the phenomena of interest to archaeologists.

For radiocarbon data to fulfil this function – to anchor a chronological claim that 
can serve as archaeological evidence – the crucial contribution of the second radio-
carbon revolution has been the development of finely tuned calibration programs 
based on datasets that integrate the most sophisticated knowledge available 
about offsets and confounds of the sort I have described. To identify sources of error 
and correct for them archaeologists routinely rely on strategies of triangulation. 
They may, for example, compare carbon isotope ratios measured in material of 
archaeological interest against samples of “known age” that come from the same 

4 In “Circulating Reference” Latour remarks that “one science always hides behind another,” regis-
tering some disappointment that the Brazilian fieldwork he observed did not, in fact, represent “the 
birth of a science ex nihilo” (1999: 32). What I foreground here is this networked interdependence 
among fields that comprise the trading zone in which archaeology operates (Chapman and Wylie 
2016: “Archaeology as a Trading Zone,” chapter 4).
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(or relevantly similar) environments. The determination of “known age” may also 
depend on historical chronologies and on dendrochronology as well as, in some 
cases, stratigraphic sequences and typological chronologies – precisely the sources 
of temporal data that radiocarbon dating was meant to displace. The Southern 
German/Anatolian case mentioned above illustrates how this works in the case of 
dendrochronology. The annual accretion of tree-rings yields patterned sequences 
that can be stitched together across species and regions, so that radiocarbon dating 
of these samples can provide a temporal (usually decadal) profile of regional fluc-
tuations in atmospheric radiocarbon. Varved lake sediments can support similar 
analyses that extend beyond the temporal reach of dendrochronological sequences. 
These local baseline data make it possible to refine the radiocarbon-based calcula-
tions of the time elapsed since sample death, but by no means do they resolve all the 
anomalies that signalled the need for calibration. At this point several 14C calibration 
systems are available (e.g. CALIB 7.1, Stuiver et  al. 2018; OxCal 4.3, Bronk 
Ramsey 2018). As these have been refined, “wiggle effects” have been identified 
such that, for some periods of archaeological interest, samples with different true 
ages correspond to the same radiocarbon ages, or the spread in their true ages is 
exaggerated, compressed, or even reversed. Here is Bronk Ramsey’s appraisal of the 
achievements and limitations of second revolution calibration techniques:

The problems of variable radiocarbon content in the atmosphere distort and defocus our 
view of the passage of time. The statistical methods now available to deal with calibrated 
dates act like a corrective lens to overcome these problems. However, with this clearer 
image other problems are also thrown into sharper focus: the statistical methods do not 
overcome methodological shortcomings in the radiocarbon method itself. (2008: 265)

The upshot is that, to use radiocarbon data as the basis for an “absolute” chronol-
ogy – a temporal framework that, in the ideal, extends to the whole of the global 
archaeological archive – it has been necessary to rely on a system of warrants that 
effectively add contextual data back in and are valuable precisely because they are 
local and limited in their mobility. This predicament of locality – that secure anchor-
ing to the local is a condition of mobility – is by no means unique to archaeology. 
Norton makes the point in general terms. The ‘portability’ of the material postulates 
that mediate inductive inference is invariably limited; they underwrite inference 
only within fields where the regularities and causal dynamics they capture can be 
shown to obtain (2003: 663).

4  �Traceability and Triangulation

The catalyst for a third radiocarbon revolution, associated with a program of “Bayesian” 
chronological modelling (Bayliss and Whittle 2015),5 is the further realization 
that various forms of “tragically local” data (Latour 1999: 59) are indispensable not 

5 Bayliss and Whittle describe this as a “pragmatic” Bayesian approach to archaeological problems 
(personal communication, 2014). Their central point, which resonates with Manning’s appraisal 
(2015), is that any assessment of the evidential bearing of radiocarbon data on questions about 
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only to ensure accuracy in the translation of radiogenic into temporal data, but also 
when it comes to transforming temporal into chronological data that can be used to 
address archaeological questions. The challenge here is to determine how a measure 
of time elapsed since the physical event of sample death relates the timing of 
cultural activities that are responsible for the production, use and deposition of the 
organic material from which samples are drawn. This is a problem that no amount 
of technical refinement – in standardizing sample collection and measurement prac-
tices, or in calibrating the translation of radiocarbon ratios into time scales – 
can resolve. As Manning describes this current and on-going revolution, it marks a 
decisive shift away from the quest for temporal data that approximate an ideal of 
absolute immutability and unconstrained mobility. Advocates of Bayesian 
approaches give up the epistemic ambitions that animated earlier revolutions; rather 
than expecting 14C dating to deliver foundational, physics-backed temporal data that 
can displace reliance on context-specific resources, they embrace a commitment to 
“fully integrate archaeological information with 14C dating,” including the “web” of 
background assumptions underlying relative chronologies (Manning 2015: 151). 
The emphasis in this third revolution is on integrating radiogenic data into chrono-
logical models that are archaeologically meaningful.

Whether the target of inquiry is an individual artefact or feature, a single short 
episode of use or occupation, a sequence of occupational layers in a densely strati-
fied site, or a regional cultural formation that extends over millennia, the first step in 
the process of transforming temporal into chronological data is to assemble and 
appraise a set of 14C dates that are potentially relevant to archaeological questions 
about age and chronological sequence. Traceability is crucial here. The determina-
tion of which samples to date when an archaeological archive is being created, and 
the choice of 14C dates to include in a chronological model, depends on an appraisal 
of their provenance and integrity. Hamilton and Krus emphasize the need for a 
“holistic understanding” of the archaeological and geological context in which a 
sample originated that requires “at the very least…a description of the dated sam-
ple, the specific laboratory methods, and the sample’s provenience in relation to the 
archaeological features” (2018: 193). In the case of legacy data this appraisal some-
times involves quite literally retracing the steps of those who originally recovered a 
sample back into the field or to the repositories and laboratories to which finds and 
records were dispersed, reconstructing a record of the context from which it was 
drawn and the processes by which it was transformed into radiogenic data (Wylie 
2011b: 312). Unless these data journeys can be reconstructed – unless the chains of 
recovery, transport, transformation, inscription, and relocation are “reversible,” as 
Latour puts it (1999: 61) – the samples have little value as a source of temporal data 
that can anchor archaeologically relevant evidential claims. Done well, this is a 
process of source criticism that exploits traceability as a means of making explicit 

archaeological chronology must take into account how well supported a chronological model is on 
other grounds (its prior probability), as well as the degree to which these data support lines of 
evidential reasoning that are discriminating with respect to the plausibility and accuracy of the 
model (an appraisal of the prior and posterior likelihood of the data that anchors evidential claims).
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and appraising the warrants that underpin attributions of integrity to individual sam-
ples and trustworthiness to the data claims based on them (Wylie 2011b).

In addition to traceability, triangulation provides a further check on accuracy and 
allows for a closer specification of the date ranges generated by 14C analysis. For 
example, when archaeologists aggregate 14C dates, rather than just calculating a 
mean or median date for the data set, they sometimes model the range of dates a 
hypothetical sample would generate, given standard margins of error, if the actual 
date of sample death was this calculated mean, a strategy of internal triangulation 
that can delimit the dispersion of pooled or averaged dates (Chapman and Wylie 
2016: 152; Shott 1992: 221–223). Typically, however, triangulation strategies make 
use of radiogenic data drawn from different sources to cross-check the accuracy of 
individual 14C dates and the credibility of the assumptions that inform the construc-
tion of chronological models. This may involve testing multiple samples from a 
single artefact or feature, sometimes submitting them to different laboratories, to 
control for contamination and laboratory error, or testing different types of samples 
drawn from a single depositional context to control for biases that can arise from 
relying on one type of material. It may also involve dating non-cultural, botanical 
and ecological samples that originated in the same environment as cultural samples 
in order to cross-check assumptions about baseline carbon ratios (Hamilton and 
Krus 2018: 195). Latour seems to have such strategies in mind when he mentions, 
in passing, a field practice of cross-field triangulation whereby the geomorphologist 
on the Brazilian field crew “adds her two cents to all the conversations, allowing her 
expatriate colleagues to ‘triangulate’ their judgments through hers” (1999: 47). 
Here credibility is a function of the capacity of these different types of radiogenic 
data to constrain one another, exposing sources of error that may not be identifiable 
by tracing data journeys and assessing the security of warrants for individual (cali-
brated) 14C dates.

More expansive strategies of triangulation typical of this third 14C dating revolu-
tion depend on mobilizing a range of different, non-radiogenic types of temporal 
data. Given practices of reuse, curation, trade and other forms of circulation that 
complicate the life histories of organic material in cultural contexts, datable samples 
may come from organisms that were cut, butchered, burned or otherwise taken out of 
the carbon cycle long before they were deposited in the archaeological contexts from 
which they are recovered. To establish a connection between the 14C-datable natural 
event of their death and the cultural target of interest to archaeologists, a premium is 
put on drawing samples from organic remains that can be assumed to be “function-
ally related to their deposit” (Hamilton and Krus 2018: 194), to have originated in a 
short timeframe, or to derive from a temporally ordered sequence of deposits. 
Articulated animal bone or undisturbed human burials are examples of the former; 
geologically sealed cave deposits and the association of human remains or artefacts 
with extinct mega-fauna are a classic example of the latter (Chapman and Wylie 
2016: 35), as are stratigraphic associations more generally: the location of a sample 
in relation to stratified occupational levels may set temporal bounds on its age in rela-
tion to other datable samples. The stylistic homogeneity of the artefact assemblages 
with which a sample is associated, and comparanda from related sites that support 
the seriation of particular types of artefact or feature, can also be used to establish 
contemporaneity or temporal sequence (Chapman and Wylie 2016: 151–155).
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The point of recruiting these diverse types of data is to re-embed the much-
manipulated 14C mobiles in a local context of inquiry, delimiting the range of physi-
cally possible dates and margins of error generated by radiocarbon analysis and, 
crucially, integrating discrete traces, features, and sites into an archaeologically plau-
sible chronology. As the number of distinct types of data built into these models is 
expanded, so too is the range of background knowledge – the substantive warrants – 
that are required to secure the inferences that link the temporal claims they support 
to an archaeological target. This vastly complicates the construction of chronological 
models, but it is also a source of epistemic credibility. The principle at work here is 
that the likelihood of spurious convergence on a specified range or sequence of dates 
is much reduced when mediating warrants are drawn from diverse sources and the 
material they configure as data are themselves generated by different causal pro-
cesses. The credibility of the resulting chronological models is not just a function of 
the aggregation of individual data points or sets assessed as trustworthy; it arises 
from the collective capacity of these data to reinforce and to constrain one another.

5  �Robustness Reasoning About Temporal Data

The strategies central to these practices of chronological modelling are recogniz-
ably a genre of “robustness” reasoning, as Wimsatt has described the diverse meth-
ods of “multiple determination” that he finds ubiquitous across the sciences 
(Wimsatt 1981: 123–4, 2012; Soler 2012: 3). In this case they are applied to the kind 
of problem Hacking explores in connection with microscopy (Hacking 1981, 1983: 
186–203). They are meant to ensure that the heavily scaffolded temporal data 
archaeologists rely on do, in fact, track the cultural phenomena of interest, counter-
acting the risk that they are artefacts of, or otherwise distorted by, practices of 
extraction and measurement, processing and packaging for travel as elements of an 
archaeological archive. I have argued elsewhere that, in constructing evidential 
claims, archaeologists routinely exploit the causal and epistemic independence 
between distinct lines of evidence that originate in a common target of inquiry 
(Wylie 2011a: 387–389). The strategies of triangulation characteristic of the second 
and third radiocarbon revolution suggest that this is true, as well, of 14C data. To use 
a metaphor of Norton’s (2014: 673), the empirical objects and claims that comprise 
the data recruited in support of various components of a chronological model are 
reciprocally strengthened by being bound into “highly connected, massively tan-
gled” and self-stabilizing systems of data-cum-evidence.

Strategies of multiple determination, coupled with traceability, can certainly 
mitigate the risk that convergence is spurious when diverse types of data and the 
evidential claims they anchor come together in support of a coherent chronological 
model. Nonetheless the worry remains that, absent “absolutes” in the form of immu-
table temporal data that can function as a decisive, wholly autonomous arbiter of 
chronological questions, there is an inherent nepotism in the process of mutual 
adjustment required to calibrate temporal data and integrate them into archaeologi-
cal chronologies. The strategies for identifying, controlling and correcting for error 
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developed in the course of successive radiocarbon revolutions suggest four condi-
tions that data-evidence tangles must meet if the risk of vicious, rather than virtu-
ous, patterns of self-stabilization is to be avoided.

The first condition is a requirement that the source data and the warrants backing 
data claims be “secure”: each, taken on its own, must be well substantiated in terms 
of the best technical and theoretical expertise available in the fields that make pos-
sible their capture and mobilization. This was the central preoccupation of the first 
radiocarbon revolution in which techniques for reliably measuring radiocarbon 
ratios in organic samples were the focus of attention. It figures, as well, in the long 
process of calibrating radiogenic data against a much expanded range of back-
ground knowledge about the nature of the samples, their contexts of origin, possible 
confounds that affect the measurement of carbon ratios, and their translation into 
the temporal scale of elapsed calendar years.

The second condition is a requirement of causal and conceptual independence 
between the various types of temporal data that are used to calibrate one another and 
to build chronological models. In the ideal, any given tangle of interlinked chains of 
data-cum-evidence should incorporate data that have causally distinct “life histo-
ries,” and the warrants mediating the various transformations these data and their 
use as evidence should derive from conceptually independent research traditions. At 
their most effective, the triangulation strategies that figure prominently in the sec-
ond and third radiocarbon revolution meet exactly this requirement.

By extension of this second condition, when one type of data is used to calibrate 
another, the tuning of measurement systems and the refinement of the warrants that 
underpin them should be justified on substantive grounds, not just because they 
ensure convergence. Manning describes several cases in which this was a central 
consideration in the process of reconciling early Cycladic and late Bronze Age 
Agean chronologies with sequences of radiocarbon dates (2015: 142–150), as do 
Bayliss and Whittle with reference to chronological models of artefact and occupa-
tional sequences of different scales (2015: 222–230). A striking example of such 
reasoning recently analysed by Bokulich (forthcoming) is the decision, in 2012, to 
base a significant revision of the Geological Time Scale on an independent, non-
radiometric measure of geologic time – a choice explicitly informed by a concern to 
preserve the independence of the two radiometric methods that are typically used to 
cross-check one another in geochronological dating.

The trajectory of the multiple radiocarbon revolutions makes it clear that trace-
ability as well as triangulation is required. The usefulness of 14C data depends on 
their mutability, which means that they are vulnerable to error and distortion in the 
course of their journeys. Detailed documentation and ongoing critical scrutiny of 
the transformations that comprise these journeys is crucial and, in fact, an explicit 
demand for traceability is a recurrent theme in the literature on chronological 
modelling. Hamilton and Krus emphasize the need for “transparency” with respect 
to model structure and the “choices and assumptions” that inform its construction 
(2018: 195); the hypothesized relationship between sample dates and the dates of a 
target event should be clearly specified, and the basis for these assumptions – back-
ground knowledge about the archaeological context and mediating warrants  – 
should be made explicit.
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A final condition might be described as a requirement of epistemic democratiza-
tion: a normative implication of the relational account of data. Assessments of secu-
rity and strategies of triangulation can justify privileging some types of temporal data 
over others as inherently more trustworthy, accurate and/or precise. However, none 
should be presumed to be empirically foundational “immutables,” exempt from re-
examination when discrepancies arise in data-evidence tangles, or when the process 
of retracing data journeys brings to light previously unrecognized confounds or as 
yet unaddressed uncertainties. This is the central motivation for the third radiocarbon 
revolution: that however compelling their physics-backing may be, 14C data must be 
accountable not only to standards of credibility in their field of origin but also those 
that are specific to their contexts of use. This norm underwrites a commitment to treat 
even the most promising “silver bullet” techniques of data extraction and mobiliza-
tion as tentative, the starting point for a process of epistemic iteration in which it is 
expected that they will be subject to continuous refinement and sometimes replace-
ment as an evolving empirical scaffolding for inquiry (Chang 2004: 43).

These are demanding ideals, rarely fully met in practice. Nonetheless, I suggest 
that they are orienting norms of practice exemplified by, and responsible for, the 
considerable achievements of the successive radiocarbon revolutions and that have 
unfolded since the 1950s.

6  �Conclusion

What exactly are the data in this sprawling story of extraction, processing and pack-
aging, calibration and circulation by which radiogenic data are captured and inte-
grated into chronological models in archaeological contexts? There are the organic 
artefacts and residues that survive in situ or are curated in the archaeological archive 
from which datable samples are retrieved; the carbon extracted from these samples; 
the isotope ratios produced by means of AMS or decay counts; the calibrated 
estimates of radiocarbon years elapsed since sample death; the translation of these 
radiocarbon dates into calendar years; and then their interpretation as dates when 
organic elements of the archaeological archive were created, used, and deposited. All 
of these constitute the “data,” now repeatedly transformed, that figure as the starting 
point for the evidential reasoning that grounds cultural/historical chronologies. There 
are also all the ancillary data that back the substantive assumptions – the warrants – 
that mediate each step in these tangled chains of reasoning from and about the mate-
rial samples, test results, and records that comprise the archaeological archive.

I submit that all of these count as data. Their status as data is a function of their 
role in anchoring practical arguments for a range of different types of evidential 
claim, not an intrinsic quality of ‘givenness’, closeness or similarity to the target of 
inquiry, much less their status as self-warranting or empirically foundational. The 
framing argument for recognizing that data are relational in this sense has been 
made by Leonelli (2015: 817, 2016: 79), and the recognition that they are as hard-
won an achievement as the evidential claims they support figures centrally in the 
philosophical and science studies sources on which I have drawn, diverse as they 
are. It is also a recurrent theme in internal discussion of the vagaries of archaeologi-
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cal inquiry. In addition to Lucas’ account of “the archaeological record,” Chippindale 
urges his fellow archaeologists to adopt the term “capta” rather than “data” (2000), 
a sentiment that resonates with Latour’s admonition that one should “never speak of 
‘data’ – what is given – but rather of ‘sublata’, that is, of achievements” (1999: 42).

An implication of this relational view is that the data that anchor evidential argu-
ments are themselves the terminus of further practical arguments that depend upon 
their own warrants; as such, their points of origin, and each of the steps involved in 
capturing and transforming them into useable data are also subject to critical scrutiny, 
and open to demands for further backing. In the case of archaeology, building these 
tangles of practical argument is an achievement that depends on a genre of robustness 
reasoning; it is a matter of enlisting not only the data generated by physical dating 
techniques but also a wide range of less transportable, context-specific data. The epis-
temic integrity and credibility of the resulting temporal data is a function of the trace-
ability of these transformations, a point that Latour acknowledges when he considers 
their “reversibility” (1999: 59, 74), not the immutability of these mobiles that he oth-
erwise emphasizes. Bronk Ramsey captures this point when he observes that, as radio-
carbon dating has become “markedly more precise (and hopefully not less accurate) 
we need to be even more careful…about the chain of reasoning that allows us to go 
from a radiocarbon measurement to an understanding of chronology” (2008: 266):

Radiocarbon dating should not be viewed as a black box, which occasionally has to be 
shaken because it does not give the right answer. (Bronk Ramsey 2008: 270)
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Abstract  In recent years, oncology transitioned from its traditional, organ-based 
approach to ‘precision oncology’ centered on molecular alterations. As a result, it 
has become to a significant extent a ‘data-centric’ domain. Its practices increasingly 
rely on a sophisticated techno-scientific infrastructure that generates massive 
amounts of data in need of consistent, appropriate interpretations. Attempts to over-
come the interpretation bottleneck have led to the establishment of a complex land-
scape of interrelated resources that, while displaying distinct characteristics and 
design choices, also entertain horizontal and vertical relations. Although there is no 
denying that the data-centric nature of contemporary oncology raises a number of 
key issues related to the production and circulation of data, we suggest that the 
focus on data use and re-use should be complemented by a focus on interpretation. 
Oncology practitioners refer to data interpretation resources as ‘knowledgebases’, 
an actor’s category designed to differentiate them from generic, multi-purpose data-
bases. Their major purpose is the definition and identification of clinically action-
able alterations. A heavy investment in human curation, of a clinical rather than 
exclusively scientific nature is needed to make them valuable, but each knowledgebase 
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appears to have its own peculiar way of connecting clinical and scientific state-
ments. In spite of their common goal, knowledgebases thus adopt very different 
approaches partly captured by the tension between trust and traceability.

1  �Introduction

In March 2018, responding to a request by the US Congress, the National Institutes 
of Health released a draft version of its “Strategic Plan for Data Science”.1 In its 
drive to modernize the “Data Repository Ecosystem”, the Plan introduced a distinc-
tion between databases and knowledgebases. It defined the first as “data reposito-
ries that store, organize, validate, and make accessible the core data related to a 
particular system or systems”, and the second as warehouses that “accumulate, 
organize, and link growing bodies of information related to core datasets”. While 
admitting to “a grey area … between databases and knowledgebases” and acknowl-
edging that some knowledgebase data “may eventually harden and become core 
data more appropriate for a database”, the document stipulated the NIH’s intention 
to “support each separately”. In other words, this was not mere semantics: it entailed 
organizational and financial consequences.

While most readers are doubtlessly unaware of the database/knowledgebase dis-
tinction, it came as no surprise to us. During fieldwork for this paper, numerous 
respondents invoked it to characterize the computerized resources they had devel-
oped to facilitate genomic data interpretation in oncology. Given oncology’s pio-
neering role in the development of ‘precision medicine’, recourse to the neologism 
‘knowledgebase’ deserves additional investigation. What does it entail and how 
does it relate to the molecular reconfiguration of oncology practices? More specifi-
cally, how and to what extent does the replacement of ‘data’ with ‘knowledge’ in the 
portmanteau word reflect actual differences in the origin, kind, and content of the 
information in knowledgebases? Does the ‘data journey’ metaphor (Leonelli this 
volume; Leonelli 2016; Bates et al. 2016), often used to characterize the dynamics 
of data repositories, continue to appropriately describe how information elicited 
from journal articles or databases is incorporated and organized within knowledge-
bases? To begin to answer these questions we need to examine how knowledgebases 
are located within the sequence of activities that define genomics-driven oncology, 
from the initial sequencing of a patient’s tumor to treatment decisions. 
Knowledgebases are specifically geared for data interpretation and as such impinge 
directly on discussions about the actionability and clinical utility of genomic results, 
i.e. the establishment of predictive relations between molecular profiling results and 
specific drugs (Nelson et al. 2013). Oncologists perceive them as potential solutions 
to a major ‘bottleneck’ that threatens the viability of their endeavor.

1 https://grants.nih.gov/grants/rfi/NIH-Strategic-Plan-for-Data-Science.pdf

A. Cambrosio et al.

https://grants.nih.gov/grants/rfi/NIH-Strategic-Plan-for-Data-Science.pdf


307

2  �The Data Interpretation Bottleneck

In his 2011 address to the American Society of Clinical Oncology, ASCO’s president 
discussed the challenges occasioned by the rapidly decreasing price of genomic 
sequencing and the ensuing ‘tsunami’ of genomic data:

When data are that cheap, every patient’s cancer will be informative for tumor biology. And 
things will get very, very complicated. (George Sledge, cited in Goldberg 2011, 4).

The issue was more than quantitative. Traditionally, tumors have been character-
ized by organ and/or tissue of origin and stage of development. Following the intro-
duction of genomic platforms that identify a wide range of molecular alterations 
(mutations, amplifications, etc.), clinical practitioners entertained the possibility of 
generating an alternative categorization of tumors based on shared alterations, thus 
“creating a new molecular taxonomy of cancer” (Titus 2014a). Early, simplistic 
attempts to implement genomic medicine using a ‘one cancer gene, one drug’ 
approach, have been replaced by a more detailed understanding of the molecular 
bases of therapies. Cancer-related genes harbor thousands of variants that require an 
unprecedented level of granularity in assessing their effects. The problem has thus 
less to do with the actual production of molecular data – the required logistics, their 
reliability and comparability across instruments – than with their interpretation and 
consequent translation into clinical practices (Jordan 2015). As one oncologist 
argued, “the fundamental problem is we’re generating more information than we 
can readily interpret as individuals” (Titus 2014b).

While precision medicine has its critics (e.g., Prasad 2016; see Subbiah and 
Kurzrock 2017 for a rebuttal), all major cancer centers and agencies have jumped on 
the genomic bandwagon. Publications commonly report on the experience of imple-
menting ‘omics’ approaches (Schwaederle et al. 2015; Subbiah and Kurzrock 2016; 
Meric-Bernstam et al. 2013; Johnson et al. 2015). Both descriptive and performa-
tive, these publications report on the ‘knowledge architecture’ (Amin and Cohendet 
2004) instituted by leading cancer organizations to operationalize cancer genomics. 
They simultaneously qualify precision oncology as an endeavor that has escaped the 
status of mere promissory note. All major cancers have been fragmented into a 
growing number of rare diseases defined not only by specific genomic variants, but 
also by their differential reaction to a new generation of ‘targeted’ and immuno-
therapy treatments (Vignola-Gagné et al. 2017).

The new approach associates clinical oncologists and pathologists with molecu-
lar biologists and bioinformatics specialists, modifying the equilibrium between the 
traditional components of oncology practices. Following the sequencing of tumor 
samples and the identification of tumor-specific events, these events must be anno-
tated to establish their functional significance. Potential tumor-driving events must 
be interpreted, prioritized, and summarized “in the context of published literature, 
clinical trials, and a multitude of knowledge bases” (Good et al. 2014). Clinicians 
then evaluate these findings by relating them to clinical data generated from the 
case history of a particular patient (Van Allen et al. 2013). The increasing use 
of large-scale approaches, such as whole-exome or whole-genome sequencing 
(as contrasted with limited gene panels), has made the situation even more fraught. 
As Ghazani et al. (2017, 787) noted:
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[A]ssigning clinical meaning to each somatic and germ-line variant, including the therapeu-
tic, prognostic, and diagnostic implications for individual patients, poses considerable dif-
ficulties in light of the inconsistent state of genome biological annotation.

This issue has recently become known, in the actors’ own words, as the ‘interpre-
tation bottleneck’.

3  �Knowledgebases and Databases

Instancing “the production of dozens to thousands of potential tumor-driving events 
that must be interpreted by a skilled analyst and synthesized in a report”, Good et al. 
(2014) explained that:

Each event must be researched in the context of current literature, drug-gene interaction 
databases, relevant clinical trials and known clinical actionability from knowledgebases. In 
our opinion, this attempt to infer clinical actionability represents the most severe bottleneck 
of the process.

The Good et al. (2014) paper predates the NIH distinction between databases and 
knowledgebases by 4 years, which suggests that the distinction has been in use for 
some time. While the term ‘database’ needs no further elaboration, having entered 
common parlance several decades ago, the notion of knowledgebase requires expla-
nation. Although both ‘bases’ act as repositories for ‘data’2 derived from published 
papers, conference abstracts, datasets established by large-scale collaborations, and 
results of tumor profiling analyses of patients enrolled in clinical trials or undergo-
ing routine treatment, it is not clear that we are talking about the ‘same’ kind of 
information. It is similarly unsure that both bases treat data in the same way. Are we, 
in other words, confronted with similar data journeys, and does this metaphor actu-
ally apply to knowledgebases?

Both kinds of repositories use equivalent software tools and packages, arguably 
making one a mere subtype of the other. But as scores of technology studies have 
shown (e.g. Bijker and Law 1992), it would be simplistic to reduce devices to their 
technical components. Moreover, the very fact that actors differentiate between 
them suggests important differences. While acknowledging that many genomic 
resources incorporate elements from both databases and knowledgebases, Pitel 
(2017) reiterates the usefulness of the distinction:

Although data and knowledge are dependent on each other, it is important to understand 
that data portals contain observations, like those typically seen in the results section of an 
article. … Knowledgebases, on the other hand, contain critically processed data, contextu-
alized for significance and meaning, much like what you might find in a conclusion section 
of an article, and are often more appropriate for immediate use in clinical laboratory 
practice.

At this point, we could be accused of uncritically adopting the actors’ categories. 
Social scientists often contrast native terminology with scholarly notions that enjoy 
epistemic privilege. A different take on this issue has been proposed by ethnometh-

2 Adopting an ethnographic stance, we consider as data anything that actors treat as such.
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odologists through the notion of ‘perspicuous phenomena’, i.e. “‘things’ (and activity 
settings) that re-tune our sensibilities, so that when we return to the familiar distinc-
tions, concepts, and debates of a social science, we can read them differently” 
(Lynch 2009, 114). We accordingly eschew the alternative, sometimes referred to 
as the topic/resource distinction (Lynch 1998, 867n88), that consists in either 
contenting ourselves with a description of the actors’ language or in developing an 
analytical meta-language divorced from the actors“ own meanings and practices. 
Instead, we seek intersections between the questions that actors ask and the ques-
tions we raise, between the practical answers they provide and the theoretical fram-
ing we offer. We focus on “topics or themes which preoccupy particular groups, and 
which resonate with social sciences issues” (M. Lynch, personal communication). 
As an actor-derived categorization, the database/knowledgebase distinction can be 
used both by analysts as a language of description, and by concerned groups as a 
language for action (Lynch 1993; Hatchuel 1996).

Figure 1 depicts the funnel running from the initial sequencing to the bottleneck 
of interpretation by/for the clinician. It appears that much of what precedes the bot-
tleneck (stage 5) can be categorized as the domain of databases, whereas the bottle-
neck and its knowledgebases interrupt the data journey. Knowledgebases come into 
play when oncologists receive a sequencing report listing mutations of possible clini-
cal import. Instead of manually scouring the entire published literature for informa-
tion about those mutations, they turn to one of several interpretation knowledgebases 
that offer a synthetic summary and description of a given variant’s clinical signifi-
cance. The ‘product’ of a knowledgebase is the interpretation itself, an assertion 
about the clinical actionability of a particular variant. Although it can be traced back 
to a specific reference (PubMed or otherwise), a given interpretation is likely to differ 
from those embedded in other knowledgebases for the ‘same’ variant. What differs is 
the statement or interpretation itself, the ‘level of evidence’ associated with a given 
statement, the suggested therapy or clinical action, and the references supporting the 
interpretation. In this context, ‘the data’ no longer enter, leave, or occupy space in 
the ‘base’ as immutable entities. The core content of the knowledgebase – the inter-
pretation – arises from the knowledgebase itself wherein the data are recombined 
and transmogrified into interpretative statements with multiple lineages.

Practitioners contrast databases with knowledgebases in two different (albeit 
complementary) ways. The first claims that knowledgebases contain interpretation-
laden and action-oriented data, as contrasted with raw data.3 The introduction of the 
database/knowledgebase distinction thus reifies the content of databases as theory-
neutral data unaffected by interpretation. The distinction also elevates the status of 
the interpretations embedded in knowledgebases as (temporarily) reliable knowl-
edge. The second demarcation refers to the practices and goals that establish those 
two infrastructures, which we can for now summarize as follows: whereas databases 
aim at the production of resources that will be available for use by different com-
munities of practice, oncology’s knowledgebases are typically the result of initia-

3 Arguably an oxymoron (Gitelman 2013), the term ‘raw data’ is easily found in scientific publica-
tions and laboratory discussions, where it makes pragmatic sense (Cambrosio and Keating 2000, 
263–265).
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tives derived from practical clinical concerns. As compared to much larger databases, 
knowledgebases address specific audiences. They are characterized by a high degree 
of ‘situatedness’ (Suchman 1987), i.e. they act as resources for clinical decision-
making that are grounded in a collective understanding of possible therapeutic 
pathways once the local contingencies of clinical work are considered. For instance, 
the fact that several knowledgebases consist of an outward-facing website that only 
reports information with literature support, and an internal component that can 
exclusively be accessed by members of that institution, is justified as follows:

In the absence of a community that understands the nuances of the potentially actionable, 
it’s a little harder to relay that [kind of genomic] information. The treating physicians at 
[our institution] get a report that says: “We think this is potentially actionable because of the 
following reasons”, and they can understand how grey that call is. That is a little more 
personal personalized therapy, therefore harder to do en masse, so that is indeed not reported 
currently on our outward-facing website. (Interview with Dr. Funda Meric-Bernstam, July 
2017; henceforth FMB).
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Fig. 1  “The interpretation bottleneck of personalized medicine” (Source: Good et  al. 2014; 
Creative Commons Public Domain image)
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4  �A Spectrum of Data Repositories

To further explore the distinction between different kinds of data repositories, con-
sider Leonelli’s (2013) analysis of an oncology database that explicitly refrained 
from selecting and interpreting data, namely the caBIG database, a bioinformatics 
initiative sponsored by the US National Cancer Institute (NCI). A key component of 
the ‘cyberinfrastructure’ destined to “empower a ‘third way’ in biomedical research” 
(Buetow 2005), caBIG was launched with great fanfare in 2003. Following recur-
rent criticism fueled by its overly ambitious plans, it was replaced in 2012 by a new 
National Cancer Informatics Program (Goldberg 2012; Thomas 2012). According 
to Leonelli (2013), caBIG was an “all-encompassing” database designed to provide 
a pluralistic community of clinical and basic researchers in oncology with easy 
access to a heterogeneous collection of cancer-related data. Interoperability was a 
key preoccupation, leaving “as much room for selecting and interpreting data as 
possible to their users”. Otherwise put, the motley of data to which caBIG gave 
access had to be general enough to allow for global circulation and specific enough 
to fit the needs of local expert communities. A paradigmatic ‘boundary object’ (Star 
and Griesemer 1989, 393), its inability to manage this tension between two oppos-
ing demands — “fostering the global circulation of data and facilitating their local 
adoption” — led to caBIG’s demise (Leonelli 2013). The relevant issue here is that 
the database design and structure were not predicated upon a shared understanding 
among a specific community of practice of its content and possible uses. Rather, it 
was supposed to “serve as many specialized uses of data as possible”, with data re-
use enabling collaboration or even integration across communities.

In contrast, the knowledgebases discussed in this paper seek to provide evidence-
based, actionable interpretations of genomic data for use by clinical practitioners 
engaged in the implementation of precision oncology. From this perspective, unlike 
the metaphorical travelers who maintain their identity in different locations, the 
constitution and handling of a knowledgebase cannot be reduced to the transfer of 
free-floating bits of information from publications to knowledgebases through 
nested database systems. The issue is not simply that each database channels 
and filters data. Rather, data experience a process of ‘extensive’ manual curation, 
whereby, after being extracted from publications, they undergo valuation and ordering 
by being paired with levels of evidence, levels of actionability, and summary state-
ments that vary from knowledgebase to knowledgebase. As a result, the information 
provided by knowledgebases qualifies as actionable claims or statements, rather 
than data, and becomes undistinguishable from the knowledgebases in which it is 
embedded. This fact also accounts for the difficulties encountered when curators 
attempt to compare or harmonize knowledgebases.

Prominent oncology knowledgebases include Vanderbilt’s My Cancer Genome 
(MCG), launched in 2011 as the first public somatic variant interpretation resource, 
MD Anderson’s Personalized Cancer Therapy (PCT), Memorial Sloan Kettering’s 
(MSK) OncoKB, and Wash U’s Clinical Interpretations of Variants in Cancer 
(CIViC). These knowledgebases rely on the biomedical literature collected in the 
PubMed database and in other databases such as the Catalogue Of Somatic 
Mutations In Cancer (COSMIC). Established in the UK at the Wellcome Trust 
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Sanger Institute in 2004 with just four genes, COSMIC has now become the “world’s 
largest and most comprehensive resource for exploring the impact of somatic muta-
tions in human cancer”.4 In addition to data manually curated from PubMed, 
COSMIC contains other datasets such as those produced by multi-center collabora-
tive networks (Forbes et al. 2015). In short, and as the knowledgebase developers 
admit, theirs and similar resources stand “on the shoulders of these other giants, 
these other resources that have many more variants, tens of thousands, hundreds of 
thousands, even millions of observations and variants” (Interview with Drs Obi and 
Malachi Griffith, December 2016; henceforth MOG1). Figure 2 (Ainscough et al. 
2016) illustrates this dependency structure.

Given the existence of multiple knowledgebases, oncologists are confronted with 
a complex landscape of interrelated resources that, despite recurrent harmonization 
initiatives, display distinct characteristics and design choices that promote their 
individuality. An informant spoke, in this respect, of a “very complicated landscape 
of resources that are pulling multiple different resources together, integrating them 
in some way, helping things be visualized, or making things more user friendly, and 
it’s a bit Wild West” (MOG1). Rather than standalone devices, these resources 
maintain both horizontal and vertical relations: some repositories, such as COSMIC, 
act as de facto quasi-standards on which others explicitly rely, extracting and 
embedding their content, while simultaneously maintaining an individuality that 
challenges the seamless interoperability of their data. CIViC, for instance, links its 
content to COSMIC, perceived as a complementary and yet distinct resource:

If you have a specific variant and you find it in CIViC, then you know that someone in 
CIViC believes it is clinically relevant, with some documented evidence, and we link out to 

4 https://cancer.sanger.ac.uk/cosmic

Fig. 2  CIViC in the context of related resources. Reprinted by permission from Springer Nature: 
Nature Methods, DOCM: A database of curated mutations in cancer, B.J.  Ainscough et  al., 
Copyright ©2016
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that variant’s record in COSMIC, so you can learn also what COSMIC says about that 
variant, about how many types of cancers have seen that variant before, and that is useful 
information. But there are many variants, most variants, that you won’t find in CIViC 
because they haven’t yet reached this level of documented clinical relevance, but they still 
exist in COSMIC and that’s still useful information that you could use to design an experi-
ment or understand something about that variant, but it just doesn’t reach that level of clini-
cal relevance for CIViC. (MOG1).

Far from being isolated and self-contained, knowledgebases function within an 
information ecosystem to whose intricacy and development they contribute. Their 
curatorial practices, for instance, include the active consulting of other databases 
and knowledgebases:

When curators receive a list of gene-variants to curate, they are also given instructions to 
not limit their search for information to PubMed. They are trained to reference other pub-
licly available knowledgebases such as COSMIC, Jackson Lab’s Jax CKB, and 
MyCancerGenome for example. Importantly, they are explicitly instructed to not copy or 
paraphrase the interpretations from these knowledgebases, but to use them as a resource for 
the primary literature on key gene variants. (Interview with Drs Debyani Chakravarty and 
J.J. Gao, May 2017; henceforth C/G).

They also openly relate to (or even embed) each other. As part of its data archi-
tecture, MSK has developed cBioPortal (now a multi-center endeavor), an advanced 
data visualization tool that draws on a number of different resources including, most 
obviously, OncoKB, but also CIViC, MCG, and, as one would expect given its pre-
eminence in the field, COSMIC. When viewing the record for a given variant in 
cBioPortal, a user can mouse over icons for each of the above resources to bring up 
a brief summary of the information they contain or click through to proceed to their 
website. The information excerpted from those resources can thus be accessed 
directly via the cBioPortal interface, but the kind of information provided in the 
pop-up windows is different for each resource, so that inclusion of different knowl-
edgebases provides complementary, rather than redundant information, about the 
‘same’ molecular entity.

5  �Practitioners’ Accounts of the Database/Knowledgebase 
Distinction

When asked to elaborate on the distinction between databases and knowledgebases, 
one of the developers of My Cancer Genome offered the following tripartite catego-
rization, borrowed from the ‘data-information-knowledge hierarchy’5:

You take data, say measurements or patient data, then you analyze or aggregate or present 
those data, and that would be the information, and then if you synthesize information across 
a bunch of different sources, that would be the knowledge. The point of MCG and CIViC 
and some of the other resources is really to be a ‘knowledgebase’. (Interview with Dr. 
Christine Micheel, July 2017; henceforth CM1).

5 See https://en.wikipedia.org/wiki/DIKW_pyramid
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Asked to clarify her statement by comparing, for instance, COSMIC and MCG, 
she answered that “COSMIC catalogues the alterations that have been observed in 
cancer, and MCG explains how that may impact therapeutic decisions” (Interview 
with Dr. Christine Micheel, August 2017). For his part, when asked a similar ques-
tion the COSMIC director replied:

We focused on the database angle until fairly recently. We wanted to collect as much infor-
mation in the one place to empower others to investigate it to look for new genes, new tar-
gets. And we kept feeding the database. The increasing breadth and depth of that database 
just gives other scientists more power for their investigations. … Are we a database or a 
knowledgebase? We’re probably focused more on the database angle of this than the knowl-
edgebase angle. (interview with Dr. Simon Forbes, May 2017; henceforth SF2).

Rather than attempts to build robust ontological categories, these definitions of 
the database/knowledgebase distinction qualify as pragmatic categorizations within 
a rapidly evolving context. They situate each kind of ‘base’ in relation to the afore-
mentioned spectrum that ranges from large-scale repositories, such as the now 
defunct caBIG, to single-purpose knowledgebases, via intermediate entities such as 
COSMIC that qualify as ‘information bases’ insofar as they systematically arrange 
information. The case of COSMIC, given its liminal position, is a useful starting 
point for clarifying this issue.

Compared to other endeavors COSMIC qualifies as a ‘giant’ because of the mil-
lions of data it contains in contrasted to the thousands typically found in a knowl-
edgebase. Because of its ‘database-ish’ nature, and its comprehensive reach, 
COSMIC “is different things for different people … in some sense, it is just a large 
bucket of information that you can sift through with different perspectives in mind” 
(interview with Dr. Simon Forbes, February 2017; henceforth SF1). COSMIC, how-
ever, is not an undifferentiated ‘bucket’, but a bucket of baskets: it includes data 
subsets targeted to specific users. For instance, the Cancer Gene Census subset that 
catalogues genes causally implicated in cancer has been recently upgraded by add-
ing annotations related to the traits that govern carcinogenesis, known as the ‘hall-
marks’ of cancer (Hanahan and Weinberg 2000, 2011). As noted by the director of 
COSMIC, the CGC “the way it looks at the moment is more ‘database-ish’ as well, 
but with the new hallmarks annotations we’re aiming more toward knowledge, we 
can describe the functional impact of each gene in cancer rather than just that it 
causes cancer” (SF2). This is part of a broader plan to transition from an exclusive 
focus on data acquisition, to the inclusion of annotations about the value of the 
information, leading, for instance, to the design of a “targeted, specific subset of the 
database toward clinicians and diagnostics”. As acknowledged, however, by the 
same informant:

If you’re a clinician you might want to get in [COSMIC] for some clues around the impact 
of mutations, but it’ not going to tell you that information because it wasn’t really built with 
that in mind. We built it to gather large quantities of information. (SF1). 

Is “looking for some clues around the impact of mutations” then the primary 
motivation for creating knowledgebases?
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6  �Why Knowledgebases?

Given COSMIC’s pre-eminent position in the field, why did oncology practitioners 
feel the need to develop knowledgebases? Part of the answer lies in the need for 
dedicated clinical information to guide therapy. As noted by a cancer genomics 
researcher:

COSMIC is just cataloguing pure genetics data online, so in the end we don’t know much 
about clinical outcomes of these cases. It’s very limited in scope. It still tells us whether a 
mutation has been observed more frequently than expected, which tells us something about 
whether it is likely to be a driver or not, but it still needs much more. We need much more 
data in these databases. (Interview with Dr. Marco Gerlinger, January 2016).

The missing data are bio-clinical, i.e. data that re-specify genomic entities by 
tying them to clinical insights; “what we’re really interested in, is the clinical data 
that will be useful for interpretation of the molecular data, and to integrate that” 
(C/G). According to the same respondents, “in the development of OncoKB one 
thing became very clear: without clinician insight, OncoKB will be useless for clini-
cal decision support”. The information embedded in OncoKB links biological, clin-
ical, and therapeutic information from multiple sources, which include not only the 
medical literature, but also FDA labeling, clinical guidelines, and abstracts from 
major conference proceedings, such as the American Society of Clinical Oncology 
(ASCO), the European Society of Medical Oncology (ESMO), and the American 
Association for Cancer Research (AACR).

Most importantly, in OncoKB annotations derived from these sources are not 
merely selected and organized by curators but vetted by a Clinical Genomics 
Annotation Committee (CGAC) consisting of MSK clinicians who represent leaders 
in their respective disease-specific fields:

MSK has some of the best clinical and research expertise in the country. For OncoKB it was 
not sufficient to simply curate the available literature, our loftier goal was to capture, in a 
database readable format, the interpretation of these data through the lens of MSK in-house 
clinical expertise. (C/G).

The following example illustrates the nature of the clinicians’ vetting:

Our initial OncoKB curation efforts cast a wide net, allowing inclusion of information with 
any possible opportunity for clinical intervention based on the presence of a genetic variant. 
However, it became very clear very quickly that MSK is conservative in its definition of 
precision oncology. Thus, for example, we had initially included TP53 as potentially clini-
cally actionable, based on an open phase I clinical trial testing a specific chemotherapy in 
TP53 mutant patients. However, the clinical committee made us immediately remove TP53 
based on their real-world experience, i.e. TP53 alterations are present in 40% of patient 
tumors, [but] to-date there have been no therapies that have been able to effectively utilize 
TP53 as a predictive biomarker of activity for a targeted therapeutic. (C/G).

CIViC also focuses on data interpretation: “the meat of what we’re trying to cre-
ate, the data or content that we’re creating, is actually the interpretation” (MOG1). 
The presence or absence of a clinical input is used to draw a line not only between 
CIviC and COSMIC but also between knowledgebases:
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Knowledgebases such as CIViC are great tools for use in the research space. They compre-
hensively capture the scientific literature and present this data in a research intuitive way. 
The development of knowledgebases such as MD Anderson’s PCT and our OncoKB have 
been, from their inception, guided with the clinician in mind as the end-user. For OncoKB, 
there was an institutional mandate that physician scientists who represent disease experts 
were to guide the curation by specifying which information would be useful for clinical 
treatment decisions, and which information was considered extraneous. (C/G).

CIViC developers counter that:

Resources like OncoKB and PCT talk a lot about their clinician review, but I haven’t seen 
much of a structured representation of what that is, like which clinician reviewed which 
elements in what ways. You’re just told: “You look at something in OncoKB or PCT, you 
should feel more confident in it because we have had it reviewed by clinicians.” But that fact 
doesn’t seem to be represented in the data model in any sophisticated way. (Interview with 
Drs Obi and Malachi Griffith, June 2017; henceforth MOG2).

The kind of curation, rather than the mere presence of curation, broadly defined, 
is thus at the very heart of the valuation processes that underlie the database/knowl-
edgebase distinction.

7  �Modes of Curation

During the Obama administration, when confronted with the challenges raised by 
precision medicine, the US FDA began considering a scenario according to which 
test developers might use information derived from a ‘regulatory quality database’ 
to support their claims. To qualify as ‘regulatory quality’, a database would be 
curated, have standards, and preferably provide levels of evidence, all of which dif-
ferentiates it from a data repository (interview with an FDA official, March 2015). 
So, here is a first distinction: a non-curated repository and a curated database. But 
things are not so simple, because when asked for an example of a repository, our 
respondent mentioned a database that maintained in fact a relatively large team of 
curators. It thus looks as if it is not curation per se that is at stake here, but the kind 
of curation, namely research-oriented vs. clinically oriented curation. For instance, 
having attended a meeting of the International Society of Biocuration, one of the 
developers of MCG explained:

Those are the folks that really started and maintained those research-oriented resources … 
I think the primary difference is the intended audience. When [Drs. Pao and Levy] con-
ceived of MCG they were really focused on the clinician audience … both were practicing 
oncologists, intimately familiar with the workflows of a clinician, the way a clinician 
thinks, and the amount of time they have to look at a resource. The research-focused 
resources are really not what a clinician needs. (CM1).

The issue is not simply to avoid wasting a clinician’s precious time, but, more 
importantly, to protect clinicians from being fed inaccurate or potentially damaging 
information derived from inappropriate contexts:

For example, a patient with early stage disease is annotated to have this alteration and there-
fore they should get this therapy, without recognition that really in that context it is not 
within clinical guidelines to make that actionable. … There are a lot of manuscripts written 
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without a clinical implication in mind, and saying this biomarker is associated with this 
drug sensitivity while the drug doses being used are clinically not relevant at all, or that 
biomarker association was really not a very strong one. (FMB).

This also accounts for the decision by more clinically oriented knowledgebases 
to include information from oncology conferences. While results presented at con-
ferences are “generally not held to the same standard of quality or validation that a 
publication will be” (MOG2), they do contain relevant clinical information that is 
not otherwise available:

When annotating the clinical implications of gene variants, our clinicians frequently 
referred us to interim clinical trial data from the proceedings of disease-specific and general 
clinical oncology conferences. Importantly, tumor-type specific negative data and informa-
tion as to whether a drug is being discontinued from further development due to poor effi-
cacy data is only available through conference proceedings. (C/G).

Several knowledgebases are deeply embedded in the clinical infrastructure of 
their parent organizations, thus providing further evidence of their situatedness. MD 
Anderson’s PCT, for example, acts as the external window of its Precision Oncology 
Decision Support (PODS) service (Meric-Bernstam et al. 2015; Kurnit et al. 2017, 
Dumbrava and Meric-Bernstam 2018). PODS is a prime internal resource for MD 
Anderson’s physicians who need assistance with the interpretation of genomic 
reports. It provides a rapid assessment of the quality of the testing platform, of the 
alterations seen in actionable genes, and of variant interpretation. In order to make 
it available for in-house physicians with similar patients, the information goes into 
a back-end database behind the institution’s firewall, whereas the information 
included in the external PCT knowledgebase concerns only those variants that have 
literature support.

A similar situation prevails at MSK, where thousands of patients are sequenced 
and subsequently matched with a large trial portfolio via a sophisticated IT infra-
structure (Eubank et al. 2016). OncoKB annotation is included in the sequencing 
report that provides summaries of relevant information about alterations for which 
there are FDA-approved biomarkers and drugs, or compelling clinical data justify-
ing enrolment in a specific clinical trial (C/G). The treating oncologist (who makes 
the final therapeutic decision) can then interact with the OncoKB team and other 
colleagues to further discuss the recommendations. As with MD Anderson, the pub-
lic version of OncoKB does not include all internal information.

8  �Trust and Transparency

Knowledgebases deploy different curatorial strategies that define how each posi-
tions itself vis-à-vis the others in a climate defined by both competition and collabo-
ration within the oncology community. Rather than clinical expert knowledge, 
CIViC resorts to crowdsourcing, arguing that the sheer amount of potentially rele-
vant references available in PubMed makes such an approach inescapable, a claim 
supported by the fact that the overlap between the publications curated by different 
knowledgebases is extremely low. CIViC’s Wikipedia-like crowdsourcing nonethe-
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less involves, in addition to external curators (any user can in principle be a curator), 
internal curators, site editors, and domain experts in charge of ensuring quality. 
Crowdsourcing offers the advantage of introducing a measure of transparency:

CIViC is the only database that actually allows a user to log in and comment and say: “Hey 
I disagree with this”, or “You’re missing this important paper”, or “I would like to modify 
this to make it clearer”. The other resources generally have behind the scenes a team of 
experts and they work as a sort of editorial board, almost like writing mini reviews about 
each variant and each gene, and they may have a collaborative process, but it’s hidden and 
it’s not occurring inside the interface and there’s not the same degree of provenance about 
who exactly said what, and how did the knowledge evolve from its initial state to the current 
state, and so on. (MOG1).

To which other practitioners counter:

Crowdsourcing as a theoretical concept is amazing. However, it comes with the assumption 
that clinicians, who have very limited time and bandwidth, will buy into that concept. I 
think one of the key factors contributing to the success of OncoKB is that MSK clinicians 
were mandated to guide OncoKB development since it was slated to be an institutional 
clinical decision support system. Additionally, we had carefully trained medical fellows and 
translational cancer biologists as curators who were well versed in the quality control of 
information that we would allow into OncoKB. (C/G).

The emergence of knowledgebases devoted to the same purpose is less an expres-
sion of redundancy than of the existence of different curatorial approaches that 
embed and enact each knowledgebase’s strategy held together by a tension between 
trust (in expert judgment) and transparency (of the curatorial process). When asked 
what motivates the proliferation of knowledgebases, a practitioner explained:

If you are a center or a company and you are interpreting a variant for an actual patient, a 
real patient, and you’re acting on that information, what information do you trust? [What 
information] gives you confidence that you could actually act on that mutation to do some-
thing for that patient? … So, what’s ended up happening is that every center just says: “We 
don’t know who we’re going to trust, so let’s just recreate the whole thing over again and 
we control it.” … There’s kind of this tension between openness and trust. (Interview with 
Dr. Ethan Cerami, April 2017).

This tension is reflected in the different solutions adopted by CIViC and 
OncoKB. Both knowledgebases originated in an attempt to streamline interpreta-
tion work. Their development, however, diverged as CIViC adopted traceability and 
transparency as its trademark, whereas OncoKB is vetted by, and therefore repre-
sentative of, MSK clinical expertise.

9  �Curation, Interpretation, and Levels of Evidence

Thanks to its transparent curatorial system, CIViC offers a more granular view of 
those practices. The debates between curators and editors are available on the CIViC 
interface, and although a vast majority of them are relatively short and ‘technical’, 
some involve choices that escalate to concerns about underlying principles and the 
meaning of curation and data interpretation. Here is an example:
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Curator A posts evidence concerning the EML4-ALK E20 variant on the webpage.
Editor B deletes part of the evidence summary arguing that it amounts to speculations. 

She also reduces the evidence trust rating from 5 to 3 stars.
Curator A replies that he recognizes the speculative nature of his summary, but that this 

is part of his philosophy of evidence-statement production and his interpretation of CIViC’s 
mission, namely, to add context and speculate on possible connections and significance.

In the ensuing discussion, Editor B asks Editors C, D, and E to weigh in on the discus-
sion of the group’s philosophy of interpretation and evidence-statement production.

She also attempts to clarify the meaning of a 5-star trust rating that should refer to 
highest-quality, standard-of-care studies, and be based on how well the evidence supports a 
given predictive statement, not the overall quality of the original paper.

Concerning the deleted passages, Editor B suggests that “the additional text would be 
well suited to a comment at the time of submission, but I believe it to be tangential to the 
main point.”

Editor D steps in, noting that information extracted from case reports warrants by defini-
tion a lower star rating, because of its anecdotal nature. He agrees with Editor B, and this 
ends the discussion.

This vignette shows how curation debates can be framed by the essential ten-
sion between the clinical purpose and utility of the knowledgebase (see the refer-
ence to standards of care), and the scientific validity and the future of evidence 
statements. Reminiscent of the work of guideline developers (Knaapen et  al. 
2010), it also highlights the textual dimension of curatorial practices, whereby 
data are polished into statements. A further example of this dynamic is provided 
by the following example:

Following the posting of a new evidence-summary statement, the discussion focuses on 
whether certain kinds of lower-evidence statements, in this case about mutation co-
occurrence, belong in CIViC because they could subsequently turn out to be useful.

–– Editor A questions the clinical utility of the evidence, whether the information actu-
ally fits into the evidence schema offered by CIViC, whether it qualifies as diagnos-
tic, and whether it has been given the appropriate evidence-quality grade. He 
nonetheless acknowledges the importance and potential usefulness of the study 
behind the evidence statement.

–– Editor A ultimately rejects the submission, but with an encouragement to produce a 
new evidence statement that more clearly articulates its relevance.

It thus appears that ‘data’ excerpted from publications or databases are trans-
formed through interpretation because they are turned into different kinds of evi-
dence, or evidence for different things. Again, the issue is not about data or evidence 
per se, but about the textual framing of evidence statements and their relation to 
clinical utility. A key device, in this respect, is the attribution of Levels of Evidence 
(LoE) to statements, which act as markers of the degree of uncertainty characteriz-
ing the actionability of that statement. All the knowledgebases we investigated 
include LoE, and this, once again, reminds us of the centrality of this device in rela-
tion to clinical utility:

I think the levels of evidence is instrumental, because for a clinical decision support tool to 
have any sort of utility a clinician needs to know: “What am I doing? Is it backed by con-
sensus?” (G/C).
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Knowledgebases have adopted different approaches to LoE.  For instance, 
OncoKB’s LoE are tied to the sum of evidentiary support that a specific mutational 
event is predictive of response to a targeted therapy, whereas CIViC’s LoE reflect 
the source of the evidentiary support that comes with the statement. CIViC items are 
additionally accompanied by a ‘Trust Rating’ that indicates how compelling that 
evidence is judged to be. There are, moreover, differences in how knowledgebases 
advertise their LoE component. For instance, CIViC is described as a “community 
knowledgebase for expert crowdsourcing” (Griffith et al. 2017), whereas OncoKB 
is presented as a “a precision oncology knowledge base” that includes a distinctive 
system of Levels of Resistance (LoR) predictive of resistance to a specific targeted 
therapy (Chakravarty et al. 2017).

These differences can be compounded with the fact that establishing LoE is 
notoriously contentious as it involves a large degree of interpretative flexibility and 
because of the conflicting sources that can be used to perform that task:

The interpretation of the genomic variants is subjective – I mean a fifty percent response 
rate for you is responsive? What about five percent? … For that individual patient, one of 
twenty that responded, this gene-drug-disease match was perfect. Just one out of twenty. 
Five percent. So, is this responsive if I consider a broader population? … We have one 
interpretation that is different from OncoKB: they have their own strengths because they 
have internal data, but [our source] is published, we have the connection. (Interview with an 
oncology data scientist, October 2016).

This brings us back to the tension between trust in the clinical expertise available 
at leading cancer centers and the traceability of statements to published sources. 
The process at MSK illustrates how the clinical consensus of an institute is captured 
by knowledgebase annotation:

Several MSK physician-scientists, who represent a broad spectrum of opinion have pro-
vided insight into what a given OncoKB annotation should or should not include. One key 
role of OncoKB is to generate a consensus of opinion from these varied voices. Discussions 
and compromise have taken place through this process, no one voice has dominated, and the 
OncoKB annotation represents the middle ground. (C/G).

The excerpt highlights the role of local context and shared understandings in the 
valuation processes underlying the trustworthiness of specific statements, and thus 
the worth of individual knowledgebases.

10  �Heterogeneity

Knowledgebases differ in terms of the kind and amount of information they carry 
and the assessment and interpretation of the evidence they include. In fact, they 
overlap very little in terms of the specific variants included and the literature they 
reference. When they do overlap, they may actually interpret variants differently, 
either because their curation relies on different publications, or because they inter-
pret those publications differently (Patel et al. 2016).

Knowledgebases contain interpretations rather than ‘data’ as such (Pitel 2017). 
These interpretations consist of statements about associations, i.e. claims about the 
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evidence that a given mutation plays a particular role in cancer, and the evidence 
that a drug or intervention may be associated with that variant and have clinical 
relevance. Even in a database such as COSMIC the ‘data’ is not the variant itself, 
but the pairing of a set of genomic coordinates that represent the variant with a given 
biopathological process. In the case of knowledgebases, the unit of analysis consists 
less of ‘data’ than evidence records, which amount to sets of locations, cross refer-
ences, and literature citations leading to an interpretation. The interpretation defines 
which variants are clinically relevant and the description of that clinical relevance 
varies from one knowledgebase to another. Factors that account for this variation 
include the sheer number of available publications, so that the overlap of the litera-
ture covered by a given knowledgebase can be quite small. Moreover, as noted by 
the developer of the PathOS decision support system (Doig et al. 2017), “a PubMed 
article is a pretty large body of data, and actually finding the sentence that confirms 
that the action is positive or negative or related to something is actually a very hard 
job” (Interview with Dr. Ken Doig, June 2017).

Other sources of heterogeneity include temporality and granularity. Temporality 
refers to the rapidly evolving knowledge in oncology, so that information presented 
at a conference, or even published, can be quickly disproved or replaced:

We get a lot of requests to add [information from conference abstracts] because there are 
clinicians who want the most amazing cutting-edge stuff, and then you have other clinicians 
where we have the feedback that this published NEJM paper from three years ago [is] not 
good enough because it was debunked by a subsequent JAMA paper two years later, with a 
much larger clinical trial that was better statistically powered. (MOG2).

As for granularity, while the knowledge at the level of a gene expressed in guide-
lines and regulatory documents might be relatively stable, the same does not apply 
to gene variants:

The FDA-labeling of approved targeted agents in a specific indication can be vague. For 
example, the FDA-approval of erlotinib in patients with EGFR-mutant non-small cell lung 
cancer was irrespective of EGFR mutation status. This is because in these cases, the drug’s 
approval predates much of the sequencing data that determined the specific patient popula-
tions that benefit from the targeted agent. (C/G).

Similar considerations apply to guidelines that include mutations for which there 
are established data:

But what does a clinician do when faced with a sequencing result that includes a known 
actionable gene but a lesser known variant? … That kind of information is critical in 
supporting clinical care, and that’s where the levels of evidence represent a practical and 
immediate way to communicate this information. (C/G).

Knowledgebase developers are well aware of the issue of heterogeneity which is 
viewed as both problematic and unsurprising given the extent of the field and the 
complexity of interpretation. They have recently established the Variant Interpretation 
for Cancer Consortium (VICC), to “harmonize global efforts for clinical interpreta-
tion of cancer variants”.6 Rather than building yet another knowledgebase (a ‘meta-

6 https:/ /genomicsandhealth.org/working-groups/our-work/variant-interpretation- 
cancer-consortium
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knowledgebase’), the idea is to construct a portal giving access to the content of 
multiple knowledgebases. Thus, the field may move toward addressing the problem 
of heterogeneity without having to sacrifice either the latent mistrust embedded in 
or the pragmatic role fulfilled by locally maintained knowledgebases. This suggests 
that rather than a solution to the ‘data interpretation bottleneck’, knowledgebases 
and their claims and statements are still part of that same bottleneck, requiring addi-
tional bioinformatic and expert clinical human work.

11  �Conclusion

Oncology has recently transitioned from its traditional, organ-based approach to a 
‘precision oncology’ of molecular alterations. As a result, it has become ‘data-centric’ 
(Leonelli 2016). Its practices increasingly rely on a sophisticated techno-scientific 
infrastructure that generates large amounts of data that demand consistent, appropriate 
interpretations. In turn, attempts to overcome the interpretation bottleneck have led to 
the establishment of a complex landscape of interrelated resources that, while display-
ing distinct characteristics and design choices, also entertain horizontal and vertical 
relations. Although there is no denying that the data-centric nature of contemporary 
oncology raises a number of key issues related to the production and circulation of 
data — issues that can be explored using the ‘data journeys’ metaphor — we suggest 
in this paper that the focus on data use and re-use should be complemented by a focus 
on interpretation. Interpretation here refers to both the ‘interpreting’ activities per-
formed by bio-clinical collectives, and to the outcomes of those activities under the 
guise of actionability claims or statements, rather than ‘data’.

Oncology practitioners refer to data interpretation resources as ‘knowledge-
bases’, an actor’s category designed to differentiate them from generic, multi-
purpose databases. While in most cases publicly accessible, albeit in a pared-down 
format compared to their in-house version, knowledgebases are deeply embedded 
in the clinical pathways of their home institutions. Their major purpose is the 
definition and identification of clinically actionable alterations, i.e. those that drive 
tumors and can be matched to treatments. This is no easy task, as shown by the 
existence of several knowledgebases that, in spite of their common purpose, adopt 
very different approaches partly captured by the tension between trust and trace-
ability. To investigate what makes different knowledgebases ‘valuable’ to genomic 
practitioners confronted with a rapidly evolving domain, we have examined their 
structure and dynamics. The nature, amount, and quality of curation underwriting 
each knowledgebase appear to be major contributors to these valuation processes. 
A heavy investment in human curation, of a clinical rather than exclusively scien-
tific nature is needed to make them valuable, but each knowledgebase appears to 
have its own way of connecting clinical and scientific statements elicited from 
publications, conference abstracts, clinical trials, genomic datasets, and even in-
house expert statements.

The main goal of the NIH “Strategic Plan for Datascience” mentioned at the 
beginning of this paper is to facilitate “the modernizing [of] the NIH-funded bio-
medical data-resource ecosystem”. The Plan refers to the development of core data 
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repositories to be used across different scientific domains, but also marks out a 
special place and a distinct role for knowledgebases within the data ecosystem. 
Knowledgebases that, as just mentioned, involve large amounts of human curation 
have been developed by “targeted communities for the benefit of scientists in that 
community”, and they are here to stay, as they will “still serve the functions of their 
own communities the way they always have, [as] distinct entities with their own 
priorities, their own goals and objectives” (Interview with Dr. Susan Gregurick, 
May 2018). While, according to the same respondent, part of the information they 
contain could be ‘hardened’, by for instance being made compliant with the FAIR 
principles for data management (Wilkinson et  al. 2016), and thus transferred at 
some future point to a data repository, the situated and ever-changing nature of the 
information collected in knowledgebases make such a prospect somewhat difficult 
to entertain, especially in clinical domains characterized by the ongoing realign-
ment of the normal and the pathological.

Admittedly, the database/knowledgebase distinction is ideal-typical, given that 
COSMIC, for instance, is shifting from its initial exclusive focus on data acquisition 
to highlighting the value of its data (SF2). Oncologists consult COSMIC for research 
purposes but also to gather information about alterations detected in their patients, 
although they might do so via local resources that embed COSMIC. While there is 
an overlap, in terms of use, between COSMIC and the more specialized knowledge-
bases, the latter lie at one end of a wide spectrum of resources that range from large 
databases to smaller interpretative resources. In the case of a database such as 
COSMIC that sits in the middle of this spectrum, the data journey metaphor may be 
used to describe how curators survey the literature, extract and refashion bits of infor-
mation, assess their evidentiary strength, and decide whether and how to include 
them in the database. The addition of the PubMed reference number to those data in 
principle should allow users to travel back to the original source although, as already 
mentioned, this is not a straightforward task given the amount of curatorial work 
needed to locate specific statements. Knowledgebases, however, are less a data 
repository than a tool for (clinical) action, and the data journey metaphor misses this 
key aspect. Within knowledgebases bits of information are triangulated with other 
evidence, associated with levels of evidence and actionability, and embedded in care-
fully crafted statements that re-specify their meaning. This explains, in part, the 
major differences between knowledgebases, whereby the ‘same’ genomic variant is 
transmogrified into different entities connected to different actions.

In a domain where genomic information is becoming increasingly important 
for clinical decision-making, but drastically outpacing the genomic literacy of 
the average oncologist/clinician, knowledgebases are an attempt to fill a trans-
lational gap and provide clinicians with information about the actionability of 
molecular alterations, and the kind and strength of the evidence that underpins it. 
Knowledgebases, in this context, are designed to act, in a sense, as a virtual, in-silico 
ersatz for the multi-disciplinary gathering of oncology practitioners, molecular 
biologists, and bioinformaticians who come together to reach a consensus about 
actionable suggestions (Bourret and Cambrosio 2019). In the case of institutions 
such as MSK, the sheer number of sequenced patients (Zehir et al. 2017; Eubank 
et  al. 2016) makes such a solution impossible. Instead, a tumor profiling report 
associated with a clinical decision support tool, OncoKB, is sent electronically to 
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the treating physician who can trust the provided clinical annotations because they 
are clinically vetted. “OncoKB”, in this context, refers not merely to the knowledge-
base, narrowly defined, but to the entire dispositif, that includes, for instance, the 
Clinical Genomics Annotation Committee staffed with leading clinicians.

Knowledgebases, rather than a mere data repository, embed and perform 
interpretations that deploy a distinctive form of bio-clinical expertise. Conversely, 
in data-centric oncology human expertise can only be enacted via bio-clinical 
collectives properly equipped with tools and devices such as those provided by 
knowledgebases. This apparently vicious circle becomes virtuous when those tools 
and devices are constituted and utilized at different places and different times by 
different collectives. Hence the temporal and relational nature of oncology databases 
and knowledgebases, which evolve in response to a number of other initiatives, for 
instance the introduction of new data-sharing projects sponsored by leading cancer 
centers. Last but not least, we should not forget the strictures that oncology, as a 
clinical domain, imposes upon knowledge production and knowledge flows, and 
which largely account for the difference between clinical-grade knowledgebases 
and the kind of databases deployed in other scientific domains.
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Abstract  The field of housing is dependent upon data from a wide range of sources, 
as issues of architecture, engineering, finance, sanitation, public health and social 
relations must all be considered in policy, planning and design. This chapter docu-
ments the efforts of housing and public health experts in mobilizing housing data 
across different disciplinary and social spaces in the 1930s and 40s. To overcome 
the immense challenge of making such extensive and diverse information available 
and useful, we will explore how actionability was built into the very methods of 
collecting, processing, and circulating information. New standards and appraisal 
techniques were devised by the Committee on the Hygiene of Housing of the 
American Public Health Association that would shape and determine housing data 
journeys in critically important ways. It was by devising new ways to simultane-
ously collect, organize, package and translate data in a way that was meaningful for 
planners and policy-makers, that led to healthful housing surveys and public health 
ideals playing a critical role in a period of intensive urban redevelopment and 
renewal in the mid-twentieth century United States.

1  �The Problem of Data in Housing

Huntington Williams, Baltimore’s Commissioner of Health, described the improve-
ment of housing as the health oficer’s “real opportunity” (Williams 1942, 1001). 
Williams was becoming a leading figure in the rapidly expanding movement to real-
ize public health goals through urban redevelopment. While the focus on housing 
offered unmatched potential for preventing physical and mental disease, for plan-
ners and architects, the subject of health legitimated their expanding role in the 
construction and design of urban environments. The growth of this health and hous-
ing nexus was, in turn, critically dependent on data. They needed information on 
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housing quantity and quality to identify shortages, specify problem areas, predict 
future needs, establish housing standards and promote new designs. They needed 
data on the relationship between health and housing that could travel from the labo-
ratory and field studies of the physical, medical and social sciences to the planning 
offices of federal, state and municipal government.

Data was of critical importance but also generated serious problems. The data 
required for housing reform and urban redevelopment was extraordinarily complex, 
involving such areas as child development, home economics, loans and finance, 
social relations, engineering and construction, architectural design, sanitation, men-
tal health and disease transmission. Data from a wide range of sources, such as 
physiological and engineering laboratories and social and epidemiological surveys, 
needed to be organized, condensed, and translated for use in the field by public 
health workers, builders and architects. A critical issue was, therefore, that of travel, 
of finding ways of transforming a highly heterogeneous mass of data into an 
evidence-base that would prove useful for policy and planning. In the building 
industry, James Baldwin of Armstrong Cork Company declared: “We must know 
what is going on, what has been done, and particularly what has been proven good 
or bad. Thus we product researchers have as our greatest problem---information. 
The problem is twofold…. first, how to find data, second, lack of data.”1

This chapter documents the efforts involved in mobilizing housing data across 
different disciplinary and social spaces. It takes the reconstruction of housing data 
journeys as a window into the intertwined roles played by research, public services, 
and policy demands in shaping American public health interventions and building 
developments in the 1930s and 40s. For data to travel it needed to be useful, trans-
mitted a way that would allow it to be applied to housing problems by a range of 
professionals such as James Baldwin and his fellow builders, planners, engineers 
and architects. This necessity of ensuring policy usefulness was an immense chal-
lenge and allows us to explore just how actionability was built into the very methods 
of data collection, processing, packaging and circulation, and would thus shape and 
determine housing data journeys in important ways.2

The chapter first examines attempts by public housing activists in the 1930s to 
integrate data from a variety of surveys carried out for different purposes. After 
building composite data on the consequences of housing quantity and quality for 
health, this was then circulated through public health and housing reports, newslet-
ters, manuals and memoranda. However, this approach was soon recognized as 
insufficient. The most serious problem was that of travel. The data presented in city-
wide surveys could not be interpreted in a way that served the practical purposes of 
government agencies. It was too scattered, raw, imprecise, incomparable and 

1 Building Research Advisory Board, BRAB Notes, February 5, 1954, E&IR: Building Res Adv 
Bd, 1950–1954, National Research Council, Archives of the National Academy of Sciences, 
Washington DC. Emphasis in original.
2 This parallels Alberto Cambrosio et al., emphasis on the specific infrastructures set up to make 
biomedical data actionable by clinical researchers: they remark that this generated all sorts of 
interesting differences in the ways data are treated.
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general.3 The paper will then turn to focus on the work of the Committee on the 
Hygiene of Housing (CHH) of the American Public Health Association (APHA), 
established in 1937 to address this problem.

Drawing on evidence provided through a variety of laboratory and field studies, 
the CHH generated a series of “principles” that would need to be met for housing to 
be considered “healthful” – to prevent mental and physical disease, rooms needed 
to be of a certain size and be sanitary, ventilated and heated to a certain temperature. 
Data was collected, codified, and published as a more specific set of “standards” for 
healthful housing. Standards systematized data and conferred the credibility, valid-
ity, and authority necessary to build consensus over the healthy home. But to travel 
successfully, data also needed to be presented in a way that was actionable by plan-
ning agencies in relation to local contexts.4 To this end, the Committee created an 
“appraisal technique”, a new survey technology that put their principles into prac-
tice. It was a device that generated, processed and applied data, making it compa-
rable across time and space. Its detailed statistical maps of urban environments 
served to transfer evidence on the relationship between housing and health, gener-
ated in the laboratories and field studies of medical, physical and social scientists, 
into the plans and designs of municipal governments.

The paper will argue that it was the CHH’s success in devising ways to simultane-
ously collect, process, package and translate data in a way that was meaningful for 
planners and policy-makers, that led to healthful housing surveys playing a critical 
role in a period of intensive urban redevelopment in the mid-twentieth century United 
States. In making data that travels into the realm of policy, ensuring that it is acted 
upon in particular ways and in accordance with pre-defined goals or principles, a key 
issue is that of control. In order to encourage and enable agencies to regulate housing 
in accordance with the principles of public health, the CHH also needed to determine 
what kind of data was being acted upon and ensure that it was consistent with their 
interests. Thus, rather than producing repositories of data that could be applied by 
local agencies in various ways and to their own ends, the series of tools constructed 
by the CHH, most notably their standards and appraisals, allowed them to continue 
to exert control over key stages of data journeys from production to application. 
Further, these tools were mutually reinforcing, ensuring that once local agencies 
availed themselves of CHH information and instruments, they were encouraged to 
understand the city and its problems in terms of physical measures and classifications 
of “healthful” housing and neighborhood environments.

3 Term “raw” will be used throughout as an actor’s category. In this case it is seen as data that is 
unprocessed for a particular use and hence not “actionable” in a specific context (although for 
another actor, this data may well have been sufficiently organized for the task at hand). See 
“‘Overcoming the bottleneck’: Knowledge architectures for genomic data interpretation in the 
oncology domain”, this volume.
4 On this point of actionability see Cambrosio et al. They also note the distinction between “raw” 
and “action-oriented” data made by their actors in accordance with the processing of data for use.
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2  �Re-considering Housing Data

At the height of the Depression, President Herbert Hoover addressed the pressing 
problem of housing the Republic’s rapidly growing population. The family, he 
declared, was “the social unit of the nation”, and the home essential for its “greater 
happiness”, a source of comfort, health, education, and morality. To provide homes 
for those of moderate to low-income, they needed “adequate investigation and study 
on a nation-wide scale”.5 In 1930 Hoover announced the President’s Conference on 
Home Building and Home Ownership, marking the entry of the federal government 
into the housing field. Civic leaders, administrators, planners, architects, lawyers, 
social scientists and medical experts were brought together and organized into 25 
sub-committees focused on issues such as slums, planning, finance, building types 
and homemaking. Six smaller “correlating committees” worked to pull together 
shared information, aims and methods regarding research, education, technology, 
legislation and administration.

A key member of the “correlating” Committee on Research was Edith Elmer 
Wood, a pioneer in the movement to realize public housing for the poorer sections 
of society. Wood had long argued for more objective research on which to build 
more successful housing policies. The organization and circulation of data identify-
ing the housing shortage and its consequences for mental and physical health would, 
she believed, generate social and political support for the clearance of slums and the 
construction of affordable dwellings. The Committee on Research duly reviewed 
the work carried out by the other sub-committees and made an inventory of past 
studies on housing problems. Its conclusions were damning. In its examination of 
the “best” housing research and literature, its members were struck both by the 
“large mass of material” and its “inadequacy”.6 Unjustifiable assumptions had been 
made from the thin census data that existed and while there were some small scale 
studies on topics such as housing and tuberculosis, these were too localized, uneven 
in quality, and not comparable. It was the “fragmentary nature” of the data that was 
the most “outstanding revelation”, and one that prevented adequate policies being 
devised.7 They needed a more centralized organization of statistical data and a care-
fully annotated inventory of all past researches – those containing good methods 
and evidence stored, circulated and replicated, and those lacking merit or out of 
date, discarded. They also needed to find ways of ensuring that findings were uti-
lized, as “many a housing survey revealing most undesirable conditions of living 
has resulted in no improvement of those conditions.”8

5 Preliminary Outline of the President’s Conference on Home Building and Home Ownership. 
Edith Elmer Wood Papers, Avery Drawings & Archives Collections, Columbia University 
Libraries, Box 2, Folder 8.
6 Preliminary Draft of Report of Committee on Research, Correlating Committee B, November 18, 
1931, Wood Papers, Box 2, Folder 14.
7 Ibid.
8 Ibid.
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Committee members felt that their overview contributed a more realistic “big 
objective”: to “stimulate interest in research and then determine what research 
should be done.”9 Wood’s role was critical in this regard. She had drawn up a list of 
the “basic facts which we need to know”. This included the extent of poor housing 
in the nation, how many of these could be reconditioned and how many required 
demolition, the most effective methods of rebuilding and rehousing, and the distri-
bution of income that determined what families could afford.10 She suggested a 
“special national census of housing and income”, or, at the very least, sample sur-
veys supported by foundations.11 While she had pushed, unsuccessfully, for a census 
of housing to be included in the decennial census of 1930, Wood’s advancing 
knowledge and activism was rewarded with a string of advisory posts in federal and 
municipal government committees, as housing became one of leading policy con-
cerns of the 1930s.12

First employed by the Housing Division of the Federal Emergency Administration 
of Public Works, Wood’s role was to pull together, process and circulate the wide 
range of available data, “gathering together and interpreting material already in 
existence, either uninterpreted or differently interpreted”.13 In effect, Wood was 
gathering what would now be called “big data”: she drew on a wide range of statis-
tics from various social, economic, and public health surveys to quantify the extent 
of poor housing in the United States and correlate it with measures of various social 
and physical pathologies, such as juvenile delinquency, a focus of the quantitatively-
minded Chicago sociologists.14 Most significant and original was her building of 
data composites focused on specific cities, a means of compensating for the frag-
mentary nature of the data available. Prominent in these composites was data pro-
vided through a new survey technology, the Real Property Inventory (RPI) in 1932. 
This had been promoted by the real estate industry and was “drafted by officials 
who were somewhat commercially-minded.”15 The RPI, devised by the statistician 
Howard Whipple Green in Cleveland, was organized around the census tract, rigid 

9 Mr. Gow (James Steele, Falk Foundation), First Meeting of Correlating Committee B on Research, 
September 11, 1931, Wood Papers, Box 2, Folder 12.
10 Committee on Research, Basic Facts Which We Need to Know, (Suggestions from Mrs. E. E. 
Wood), October 5, 1931, Wood Papers, Box 2, Folder 13.
11 Ibid.
12 The census of 1930 carried only 2 questions dealing with housing, namely, “home owned or 
rented” and “value of home, of owned; monthly rental, if rented”.
13 Wood to James Ford, Director, Research on Slums and Housing Policy, August 7, 1935, Wood 
Papers, Box 23, Folder 8. The Federal Emergency Adminstration of Public Works, later the Public 
Works Administration, was a construction agency established in 1933 to build in response to the 
Great Depression, stimulating the economy through employment and investment opportunities.
14 Particularly important for Wood was the work of Clifford Shaw in the late 1920s and 30s which, 
in privileging an ecological understanding of delinquency, suggested to Wood a “relationship 
between congestion and bad conduct” - Wood, “What do delinquency areas prove?”, Wood Papers, 
Box 69, Folder. 1 See Shaw et al. (1929).
15 Report of Central District, State of New Jersey, State Housing Authority, Arthur J. Quinn, Central 
District Manager, 1935, Wood Papers, Box 15, Folder 17.
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geographic units which allowed for the scientific mapping of urban areas and estab-
lishing disparities in health, wealth and social well-being.16 From 1934 to 1936, the 
RPI was applied to 64 cities in 48 states under the direction of the Department of 
Commerce as part of the New Deal work relief program.17 Comprising what was 
essentially a market survey in real estate, construction, and household equipment, 
the RPI collected and processed reams of data to generate a statistical portrait of a 
city. It carefully avoided analysis and left interpretation to individual users, the 
introduction to a New York City RPI declaring the uses of its data to be “probably 
as many as those of the Federal census.”18 The RPI included data on housing quality, 
defining a “substandard” dwelling to be one in need of major repairs or unfit for use, 
lacking in private flush toilet, bathing unit, running water, installed heating and 
electricity or gas for lighting. It also collected and published information on rent 
and occupancy. Wood promoted the RPI as the standard source of urban housing 
statistics, while reworking its data which had originally been generated in the inter-
ests of “hard-boiled” and unsentimental businessmen, to show just how bad 
things were.19

Wood’s resulting volume, Slums and Blighted Areas in the United States, pub-
lished in 1936, provided one of the most comprehensive overviews of the housing 
problem across the nation. It proved very successful, the go-to source for housing 
information. It was reissued in 1938 by the newly founded United States Housing 
Authority (USHA), an organization focused on the provision of public housing fol-
lowing the landmark Housing Act of 1937. Wood was then invited by the USHA to 
bring the volume “up-to-date and present additional graphic material.”20 In 
Introduction to Housing: Facts and Principles, Wood used the RPI as a base map on 
which to build a narrative that illustrated the threat posed by poor housing to 
American society and democracy. She adapted an earlier technique devised by 
Whipple Green of using transparent maps that spotted cases of disease, crime, vice, 
or delinquency, overlying a color map of monthly rentals by census tract.21 Carefully 
selecting a series of “statistically minded” cities, Wood constructed rate and spot 

16 Originally defined as “sanitary areas”, census tracts were a method developed by public health 
services in several cities and incorporated into the census in 1910s. By the 1930s, largely through 
the work of Whipple Green, they became more widely established and used by an increasing num-
ber of agencies to compare health statistics with a broad range of socioeconomic data. See Krieger 
(2006).
17 RPI employed architects and engineers for enumeration and tabulation with federal funds, who 
would otherwise be unemployed during the Depression.
18 Thomas S. Holden, “Foreword”, in Real Property Inventory, City of New York. Volume 4 (New 
York City Housing Authority, 1934), p. vii.
19 The origins of the RPI were very significant for Wood, allowing them to counter common accu-
sations of “sentimental bias” and for having exaggerated the failure of private enterprise to supply 
decent housing to unskilled labor. Wood, “Existing housing conditions in the United States”, 
Prepared for annual meeting of Milbank Memorial Fund (MMF), April 1937, Wood Papers, Box 
23, Folder 3.
20 Catherine Bauer to Wood, May 20, 1938, Wood Papers, Box 11, Folder 14.
21 See Wood (1936), for a discussion of this earlier method. She corresponded with numerous 
researchers and housing agencies to gather this statistical data.
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maps, illustrating graphically through dots and crosshatching the relationship 
between low rental areas and disease (tuberculosis) and delinquency (criminal con-
victions) (Wood 1936, 1940).22

Wood demonstrated how to adapt, combine and circulate data from a variety of 
different sources. Her work was, as she noted, “quoted constantly” in the push for 
policies of slum clearance and public housing.23 Wood’s many facts and her identi-
fication of important of information sources, helped secure a housing census for 
1940.24 As the planner Warren J. Vinton declared, a complete record of the nation’s 
homes, “like a mariner’s chart, will enable us to steer our programs safely and 
accomplish the results which the Congress expects of us.”25 They would now have 
nationwide, unified and comparable information on the characteristics of residential 
structures, occupancy status, rental and home value, the unit’s equipment, facilities, 
furniture and utilities, and home finance. Once the housing data was processed and 
published in a series of bulletins, it could be cross tabulated with data on family 
size, composition, economic status from the regular population census schedule.26

While housing reformers celebrated this advance from scattered local surveys, to 
the RPI, to a census of housing, there remained limits to use of this information. The 
census and RPI provided, as the urban planner Anatole Solow noted, “gross not 
precise data”.27 Only a few items were covered and categories such as “minor repairs 
needed” or “unfit for use” were general and loosely defined. As a member of the RPI 
unit in Washington admitted to Wood, the data on housing quality served merely to 
“roughly classify the buildings as to their need for repairs and demolition”.28 This 
data could be used to identify shortages and establish the approximate size of 
housing problem to politicians and the public, but it could not be used to specify 
how that problem was best resolved on the ground. It was useful for making a case 

22 The choice of Richmond was due to the quality of data available and the size of the city. By using 
a small city, they could “illustrate the principle of spot maps to show the correlation between slum 
areas and unfavorable social conditions.” Bauer to Dr. Kimball Young, University of Wisconsin, 
December 26, 1938, Wood Papers, Box 11, Folder 15.
23 Memorandum, Wood to Administrator, January 16, 1941, Wood Papers, Box 14, Folder 1.
24 Particularly popular was her off-cited estimate that one third of the population was ill-housed, 
see Wood, “Existing housing conditions”, ibid.
25 Testimony of Warren Jay Vinton Before Census Committee of the House, July 13, 1939, Warren 
Jay Vinton Papers, Division of Rare and Manuscript Collections, Cornell University Library, Box 
1, Folder: Census of housing.
26 The Census Bureau sponsored a series of housing bulletin’s that presented interrelationships 
between certain housing characteristics and other census data, such as characteristics of families or 
households occupying dwelling units. It also sponsored the production of analytical maps present-
ing these various housing characteristics by blocks to aid the location of problem areas and areas 
with inadequate housing.
27 Anatole A.  Solow, The Measurement of Housing Quality and Need: Public Health Gives a 
Practical Tool for Planning Action, May 1, 1947, Charles-Edward Amory Winslow Papers, 
Manuscripts and Archives, Yale University Library, Box 54, Folder 517.
28 Daniel Casey, Real Property Inventory Unit, Department of Commerce, to Wood, August 18, 
1934, Wood Papers, Box 5, Folder 6.
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for action; much less so for the mode of action itself. What was critical, therefore, 
was the need for data that could be transmitted and mobilized in a way that was 
actionable, data that served the practical purposes of planners, architects and public 
health workers employed by local government agencies.

3  �Public Health and Housing Standards: The Committee 
on the Hygiene of Housing

It was in the interest of generating more practical data which would travel into the 
plans and designs of municipal governments, that the CHH was founded in 1937. 
The Committee was organized by one of the nation’s leading figures in public health 
and the founder of Yale’s Department of Public Health, Charles-Edward 
A. Winslow.29 Winslow described the home as an “instrument of health… in the 
wide sense of emotional and social as well as physical well-being.”30 The CHH 
functioned as the “technical housing body” of the APHA, conducting research in 
aspects of housing design, construction and occupancy which affected mental and 
physical health.31 It also served as “national clearing agency”, sifting through and 
distributing information from existing studies (Solow and Twichell 1947, 22). By 
bringing these “results… to administrators and technicians in the fields of public 
health and housing”, the CHH was establishing itself as an important intermediary 
agency and was, in effect, bringing public health officials into the “national housing 
program”.32

The evidence generated by the CHH would travel from the experiments and sur-
veys of physical, social, biological and medical scientists to housing administrators 
and planners by means of a series of standards promulgated through its published 
reports. Standards covering occupancy, sanitation, light and air, had long played a 
central role in housing reform, a way of establishing and enforcing clear and work-
able codes to improve tenement living and defend against the unscrupulous opera-
tions of landlords and speculative builders. But, influenced by cultural norms and 
social interests, they had also been very inconsistent across the nation.33 The CHH 
would work to develop an extensive series of standards on which “comprehensive 
housing regulations” could be built, as was desired by health, building and housing 

29 The Committee was organized on the request of Housing Commission of the Health Organization 
of the League of Nations, in which Winslow played a leading role, and as one of the national com-
mittees corresponding with that Commission. Winslow founded the Yale Department of Public 
Health in 1915.
30 Winslow, The Physiology of Shelter, June 22, 1948, Winslow Papers, Box 129, Folder 731.
31 Committee on the Hygiene of Housing, Statement of program, 1939, Wood Papers, Box 22, 
Folder 16.
32 Ibid.
33 Dread diseases were critical to the cause of early housing reform; the threat of tuberculosis and 
cholera demanded clean water and light and air – see Lubove (1962).
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officials.34 They would also be objective, and thus irrefutable, based as they were on 
rigorous scientific inquiry.

In 1938, the CHH published the first of a series of influential documents, one that 
would help place health at the heart of the housing problem. Their pamphlet, “Basic 
Principles of Healthful Housing”, was described as a “preliminary attempt” to for-
mulate the basic health needs to be served through housing. Its principles were 
defined as “fundamental minima required for the promotion of physical, mental, 
and social health”, which were, in turn, based upon “fundamental biological require-
ments” (CHH 1938, 354). Thirty principles were then divided into four sections - 
physiological and psychological needs and protection against contagion and 
accidents. Discussion of the requirements needed to realize each principle consisted 
of a careful and deliberate exposition of the relevant facts, such as the need for an 
air change of 10 cu. ft. per person per minute to dilute atmospheric impurities. The 
standards proposed were tentative at this point, based on existing data that was 
drawn from a wide range of studies and agencies. But they noted that this data was 
incomplete in many areas. While the National Health Survey supplied epidemio-
logical data on household accidents, for example, the relationship between housing 
and disease could not be shown through “the usual lines of investigation.”35 To suc-
cessfully translate their principles for health into “concrete standards of perfor-
mance for the home of the future”, they needed new forms of interdisciplinary 
research (Winslow 1945, 20). Such ongoing studies would, in turn, continually 
modify such standards, making them more “precise and scientific”.36

The CHH established a series of research committees focused on specific prob-
lems, on which appointed members were leading experts. These included physical 
and engineering aspects, such as building construction and household equipment, 
administrative and legal problems, and social and human uses. For example, a sub-
committee on standards of occupancy, on which Wood served, focused on space 
requirements and the maximum number of individuals to be housed in each type of 
dwelling. They submitted ongoing reports, published in the American Journal of 
Public Health and printed as individual pamphlets by the U.  S. Public Health 
Service, which were circulated, reviewed and abstracted by leading public health, 
construction, real estate and housing associations. The work of each subcommittee 
culminated in a detailed report that was published as part of a series on “standards 
for healthful housing”. Winslow commented on the concluding volume on standards 
for occupancy published in 1950, they had presented “for the first time actual 

34 The CHH began its work with a canvassing of opinions from officials and agencies as to the most 
feasible types of housing control. Thirteenth Meeting of the Committee on the Hygiene of Housing, 
American Public Health Association, Tentative Report of the Subcommittee on Housing Legislation 
and Administration, February 2, 1942, Wood Papers, Box 22, Folder 16.
35 Woods reported in Minutes of Meeting of Sanitation Advisory Committee, Washington DC, June 
5, 1939, p. 6, Winslow Papers, Box 19, Folder 482.
36 Winslow, Report of the Round table on the Hygienic Aspects of Housing, MMF, 1937, Wood 
Papers, Box 23, Folder 5.
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concrete data on the space needed for families of various sizes.”37 The minimum 
space requirements were stipulated in relation to the number of individuals – 400 
square feet for one person, 750 for two, 1000 for three, and so on - based on labora-
tory studies that measured, for example, the “atmospheric impurities” that resulted 
from cooking, heat sources and the human body. Yet they were also concerned to 
move beyond such absolute standards and grapple with the “actual conditions of 
occupancy”, that is, how space was used by a family in its day-to-day life (CHH 
1950, vi). To achieve this, they gathered together observational data on family life 
provided by the Swedish sociologist and subcommittee member Svend Riemer and 
their long-standing collaborators, the John B. Pierce Foundation’s research labora-
tory in New Haven, a center for the study of physiological regulatory systems.38 The 
result was a much more practical series of requirements that stipulated floor space 
in relation to family needs and activities rather than merely relying on floor area or 
cubic content as had been the norm in earlier housing regulations which had left 
“space -- the most valuable commodity housing has to offer -- … poorly designed 
or wholly insufficient.”39 Through their detailed examination of livability they deliv-
ered an extremely detailed list of specifications, from room sizes and their design, 
to floor space in relation to furniture, the placement of the bed relative to windows, 
the distances between cots, and the dimensions of closets and work-spaces.

The volumes were packed with research data. This gave the standards credibility, 
showing them to be based on the best scientific information available. It also pro-
vided a degree of flexibility. While CHH members agreed with the provision of 
absolute standards regarding space, such as the 400 cu ft. minimum, they also 
expressed concern that these could too easily become rigid, static and fixed, “not 
only… frozen in the minds of the designers but… made unalterable in the form of 
permanent buildings.”40 Modern family needs did not remain stationary and, with 
the growing recognition of the need for optimum space for psycho-social well-
being, such crystallized standards would “likely to prove a drag upon progress 

37 Winslow to Frank Boudreau of the Milbank Memorial Fund, one of the main financial supporters 
of the CHH, April 27, 1950, Winslow papers, Box 54, Folder 513. The work the subcommittee was 
suspended during the war, as the work of other subcommittees was considered more relevant to 
federal agencies during the emergency, hence the delay in this final publication.
38 Notes of Report for Dr. Maxcy to the Governing Council, 1941, Winslow Papers, Box 54, Folder 
515; CHH, APHA, Essentials of Space Planning and Space Organization in Dwelling Units, 
Report of Subcommittee in Standards of Occupancy, March 1942, Wood Papers, Box 22, Folder 
16. The CHH also worked with a wide range of agencies across the United States, carrying out 
field studies into conditions of heating, ventilation, lighting, and noise in summer and winter in 
New York City, New Haven, and Charleston, Oklahoma City, and Tennessee Valley. APHA, CHH, 
Statement of program, 1939, Wood Papers, Box 22, Folder 16.
39 CHH, APHA, Essentials of Space Planning, ibid. 
40 CHH, APHA, Subcommittee on Standards of Occupancy, Principles of Space Planning and 
Space Organization for Low-rent Dwelling Units, Revised Draft Submitted for Criticism of the 
Subcommittee, prepared by Anatole Solow in cooperation with Allan A.  Twichell and Harold 
Sandbank, March 28, 1941, Wood Papers, Box 23, Folder 1.
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rather than a stimulus to progress.”41 By including such a wide-range of data, the 
CHH reports enabled local authorities to adapt the standards, mobilizing the data 
contained within them to suit their own particular requirements in terms of climate, 
building materials and equipment, costs and rental value, and the housing needs 
of particular types of families: “Local building agencies must have some leeway; 
otherwise there can be no variety, no adaptation to regional needs, no experiments, 
and therefore no real progress.”42 Consistent with features deemed to characterize 
successful databases, the volumes or manuals constructed by the CHH needed to be 
general and robust enough to encourage circulation, but also adaptable to local 
demands and situations.43

In this way, standards served as the conduit or vehicle for the movement of data 
from laboratory and field studies and into the plans and designs of the numerous hous-
ing associations that oversaw the mass construction of new dwellings following the 
1937 Housing Act and the regulatory bodies that controlled existing housing, usually 
overseen by local departments of health. The CHH had worked through, simplified 
and condensed masses of complex data, ranging from the physical issues of construc-
tion and sanitation, to the social, addressing the dual needs for individual privacy and 
the opportunity for family life through design. This tidying and organizing of data is 
comparable to the processes of “cleaning” data so that it is amenable to analysis that 
is discussed by Boumans and Leonelli in this volume.44 Drawing from Mary Douglas, 
Boumans and Leonelli argue that cleaning does not involve the removal of dirt, but is 
about ordering and classifying. In their studies of economic and plant science, this was 
achieved through “clustering” data into larger units of interrelated objects. The CHH 
similarly established groupings of data according to use by establishing standards 
relative to various aspects of housing, be it circulation, ventilation or occupancy. But 
here the categories were organized with an explicit emphasis on policy-usefulness, 
those relating to more fundamental problems of building structure clearly distin-
guished from those of building occupancy which could be attended to by local law 
enforcement or public health workers, for example. These were then communicated to 
the reader through the series of circulated reports or manuals which neatly divided and 
labelled the relevant information and contained clear and usable tables and charts to 
apply to a wide range of housing issues.

The CHH standards had considerable influence, demonstrated in new building 
code requirements of the National Bureau of Standards of the US Department of 
Commerce, the housing codes promoted by the National Association of Housing 
Officials (NAHO) with whom the CHH worked closely, and also regionally and 

41 Letter, Winslow to Bleecker Marquette, April 25, 1941, Wood Papers, Box 23, Folder 1. It is 
worth noting that Winslow argued that the public health department should have the role of adapting 
and improving space standards, rather than a housing agency.
42 A Housing Program for Now and Later, February 1948, National Public Housing Conference 
(NPHC), Vinton Papers, Box 2, NPHC-Releases.
43 On this point, see Cambrosio et al. who draw in turn on Leonelli (2013).
44 M. Boumans and S. Leonelli, this volume.
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locally, in committees of planning and housing regulation such as in New York City.45 
The CHH also pushed aggressively for improved standards in federal agencies 
charged with housing construction, declaring the lack of standards in many of the 
homes built for the defense industries during the war to be “shocking” and to consti-
tute a “national scandal.”46 At the request of the USHA, they reviewed the govern-
ment housing and occupancy standards for public housing, urging them to increase 
their room size specifications, lest they “produce a nation of neurasthenics”.47 The 
work of the CHH also stimulated further housing investigation and the sharing of 
data between experts and agencies, as Allan Pond, a public health expert and CHH 
member proclaimed: “Interest in housing standards and building code requirements 
currently is widespread and feverish. On every hand there is evidence that house 
design and construction standards and methods are subjects that attract the imagina-
tion of technicians and the public alike. Laboratories are humming with research 
activities designed to shed further light on new materials and modes of construction.”48

4  �The Appraisal Method: Transforming Standards Back into 
Data that Travels

The standards generated by the CHH expert committees had another important poten-
tial use. Whereas the RPI and census had provided rather crude measures of housing 
quality, planners and policymakers now had the means of clearly distinguishing good 
housing from bad, of identifying precise faults and their patterns. The CHH now sought 
to translate standards into a yardstick for measuring housing conditions, as public 
health and housing officials requested further help in ensuring their policies were “bet-
ter guided” (CHH 1942, 285). The CHH now set itself a new task: “developing a 
method of data analysis whereby final results could be readily summarized and inter-
preted by local health departments and various other agencies as a guide for their policy 
and practice.” This would supplement census and city-wide housing surveys which 
were useful in identifying general problem areas, but, with their breadth and generality, 
the “collected data do not readily lend themselves to a variety of purposes for local 
government agencies concerned with housing”(CHH 1942, 286).

45 Densities in New York City: A Report to the Citizen’s Housing Council, by The Committee on 
City Planning and Zoning, May 1944, Henry S. Churchill Papers, Division of Rare and Manuscript 
Collections, Cornell University Library, Box 2, Folder 24.
46 Vinton to Adminstrator, United States Housing Authority (USHA), September 23, 1941, Vinton 
Papers, Box 28, Defense Housing Program.
47 Wood to A. C. Shire of the USHA, November 3, 1941, Wood Papers, Box 1, Folder 21. It was this 
lengthy debate among and between members of the CHH and USHA that helped stimulate the 
CHH inquiries into family living habits and their use of space in the home. Minutes of Fourth 
Meeting of the Subcommittee on Standards of Occupancy, March 28, 1941, Wood Papers, Box 23, 
Folder 1.
48 Pond, The application of health standards to house construction, to Annual Meeting, Connecticut 
Society of Civil Engineers, March 17, 1948, Martin Allan Pond Papers, Yale University Library, 
Box 13, Folder 229.
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In order to transform standards into a workable survey technology, the complex 
of specifications needed to be simplified, as to conform precisely, surveys would 
become so large and data-laden they would lose their practical value. The solution 
was a “screening method”: an index consisting of a limited number of factors 
selected as indicators or proxies for a multitude of housing characteristics.49 For 
example, the presence of an inside flush toilet was not selected as an item simply 
because of an intense interest in the facility being present, “but because of its 
assumed intrinsic meaning as one element in an index of hygienic housing” (CHH 
1942, 287). Index items were also selected according to the degree to which they 
lent themselves to precise and objective measurement, as identical information 
needed to be collected by different enumerators. The result was a series of items that 
established the quality of the building itself, its structural integrity, sanitary and 
heating facilities, housekeeping and facilities, its occupancy, such as area per person 
and number of persons per room, and its surrounding neighborhood environment, 
considering specific industrial nuisances, the density of land coverage, usability of 
open spaces, public utilities and community facilities, and specific hazards, such as 
heavy traffic and noxious odors.

The second innovation of the new survey method was its scoring system that 
generated a new dataset. A series of penalty points were scored on a scale which 
captured any departures from the standards of acceptability as derived from the 
basic principles of healthful housing. These points were weighted: very serious 
issues, such as the lack of a safe water supply, granted 30 points, more minor defi-
ciencies, 1 or 2 [see Fig. 1]. These were then added together to give an overall score, 
and the building then placed into one of a series of quality classifications ranging 
from good, A, to bad, E. This method provided a more detailed and accurate analy-
sis of housing quality and removed bias through short standardized schedules 
“which call for practically no subjective judgment”.50 The enumerator could move 
quickly and only a few days training in the technique were necessary, Winslow not-
ing: “It’s very simple.”51 The schedules were then processed by a skilled clerk who 
did not need to see the dwellings. Using scoring templates and summary appraisal 
forms, the clerk could quickly translate the data on the field schedules into numeri-
cal scores. This was then transferred to cards of the marginal punch type, allowing 
“rapid sorting and tabulation. The data obtained is readily analyzed and yields a 
measurement of housing deficiencies on a valid quantitative basis.”52 Further, by 
mapping out these classified buildings over an area, tabular data could be used in a 

49 For a detailed analysis of the relationship between a larger body of data and the selection of 
indicators to help make sense of a more complex set of phenomena and their ease of travel, see 
Mary Morgan’s analysis of data and datum in this volume. Unlike Morgan’s case, the set of indica-
tors developed by the CHH were, necessarily for actionability, tightly bound together.
50 E. R. Krumbiegel, “An appraisal method for housing conditions and needs: Milwaukee enforces 
a new housing code”, Reprinted from The Municipality, December 1945, Pond papers, Box 13, 
Folder 230.
51 Winslow, Housing Principles, May 3, 1944, Winslow Papers, Box 110, Folder 198.
52 Krumbiegel, “An appraisal method”, ibid.
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Fig. 1  A table showing the scoring and classification of dwellings according to the appraisal 
method. From CHH (1943)
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geographical form, creating a “sketch portrait of the slum block” (CHH 1942, 292). 
As the CHH demonstrated in a pilot survey in New Haven, by sampling every 
seventh dwelling in a problem area of city, they could map the quality of individual 
blocks or individual sections within blocks.53 The maps provided a graphic 
representation of the data collected, identifying which areas were beyond saving 
and needed to be torn down, or areas which could be rehabilitated through some 
treatment to prevent further deterioration. The housing assets and liabilities of a city 
could now be accurately mapped to identify what problems existed and where they 
were concentrated: “It becomes possible to report objectively to the municipal 
administration the state of housing in any problem area.”54

The technology therefore simultaneously produced data while processing and pack-
aging it for travel into the policies and plans of local authorities.55 The series of reports 
on the new “appraisal method” published by the CHH from 1942, and its three final 
volumes from 1945, were well received by housing and public health authorities, and 
even more so in the postwar era, a period of so-called urban renewal, whereby the large-
scale building of new housing was to be tied to the mass clearance of slums dwellings 
across the nation. Programs of urban redevelopment intensified following the 1949 
Housing Act which increased federal funding, but also intensified government over-
sight regarding the kinds of housing to be removed, renovated, and rebuilt. As a health 
officer in Milwaukee observed, the appraisal method was particularly well-suited to 
this new and more expansive approach, the objective and sharp demarcation of prob-
lematic urban areas providing for systematic and long-term programs of rehabilitation, 
demolition and reconstruction, replacing the “futile patch-work” of laws and regula-
tions focused on individual dwellings on a case-by-case basis.56 Following Milwaukee’s 
adoption of the appraisal technique in its program of redevelopment, its city officials 
encouraged Philadelphia to follow suit, David Walker of the city’s Redevelopment 
Authority declaring the CHH’s yardstick to be “a most scientific method”.57 Decisions 
were not left to the personal judgment of the inspector, but scored objectively and “the 
mechanical brains of a punch card rate the quality and quantity of blight and give us an 
adequate appraisal of the neighborhood” (Walker 1947, 70).

The technology also encouraged closer working relationships among agencies in 
the city. In Milwaukee, Philadelphia, and soon Los Angeles, St. Louis, Washington 
DC, Baltimore, Boston, and Portland, Maine, Anatole Solow saw “the beautiful 
words” of “integration and cooperation”, so often used in planning literature, now 

53 Winslow, “Housing Principles”, ibid. The CHH carried out survey trials in 3 cities in Connecticut, 
New Haven, Waterbury and Stamford, testing the items and rating technique and identifying their 
uses for local authorities.
54 Solow, “The measurement of housing quality”, ibid.
55 As Sabina Leonelli (2015) argues “Packaging happens at several stages of data travel and is often 
implemented already at the point of data production”.
56 E. R. Krumbiegel, “An appraisal method”, ibid.
57 Milwaukee was the first city to adopt the appraisal technique, outside of trial studies, completing 
a survey of a 16-block substandard area of the city in 1945. The field secretary of the CHH, Emil 
A. Tiboni, instructed the city’s Health Department and Land Commission personnel in the use of 
the method (reported in City News in Brief, Journal of Housing, November, 1945, p. 204).

Realizing Healthful Housing: Devices for Data Travel in Public Health and Urban…



344

being realized, the police, health, building, and fire departments all using the rele-
vant punch card data to fulfill their specific roles in the problem areas as demarcated 
by the appraisal method.58 By providing a continuous record of local housing and 
neighborhood conditions, over time the method could generate the unity essential 
for successful policy. The diverse range of actors and agencies involved in housing 
could now visualize and interpret housing data in consistent and actionable ways. 
Solow described the survey as a “skeleton which gives strength to the body of plan-
ning programs. In the field of housing, a type of skeleton is now available which 
should permit more action than the mere rattling of bones.”59

But in doing so the survey privileged a public health perspective in the resolution 
of urban problems. The data that had been used to create and legitimate standards of 
healthful housing, was now stripped down and simplified for travel through translat-
ing those standards into index items to map urban areas. Further, once an area had 
been classified, its faults dissected and listed in the local authority’s survey report, the 
most effective means of correcting these failings, by either rehabilitating the housing 
that could be saved or demolishing and rebuilding in a way that would prevent future 
obsolescence, were to be found by turning back to the CHH standards for healthful 
housing. The result, therefore, were two powerful and mutually reinforcing technolo-
gies that encouraged urban agencies to understand housing in terms of preventing 
physical illness and accidents, disease transmission, and emotional disorder.

Finally, the appraisal method served a useful research tool. Committee members 
had long sought firmer evidence that better housing improved health and well-being. 
While the CHH publications were strong on physical illness, disease and accidents, 
mental health and social well-being were much harder things to measure. In their early 
reports they had, like Wood, relied on correlations between poor housing areas and 
data on delinquency and mental hospital admissions, as well as the statements of psy-
chiatrists and social workers. In 1945, a new Joint Committee on Housing and Health 
was established, bringing together the CHH and NAHO; its purpose “to study the 
actual results of the provision of good housing” and then “translate” this information 
into “into the administrative practice of operating housing agencies”.60 The culmina-
tion of this committee’s work was a further collaborative study with the Johns Hopkins 
School of Public Health and Hygiene in Baltimore.61 The work of the Johns Hopkins 
Longitudinal Study of the Effects of Housing on Health and Social Adjustment began 
in 1954, its director, the social psychologist, Daniel Wilner, describing it as the first 
systematic survey that analyzed “a discrete quite measurable change in physical envi-
ronment on behavior and health.” It compared the mental and physical health of those 
in “very bad slums” of Baltimore with those relocated to new “very good housing”, a 

58 Solow, “The Measurement of Housing Quality”, ibid.
59 Solow, “The Measurement of Housing Quality”, ibid.
60 Association News, Initial meeting of Joint Committee on Housing and Health, Journal of 
Housing, July 1945, p. 119.
61 The selection of Baltimore was largely the result of the active role played by Huntington Williams 
in the CHH. The study was housed at the Baltimore City Health Department and funded by the 
APHA. See George Huntington Williams Collection, Alan Mason Chesney Medical Archives of 
the Johns Hopkins Medical Institutions, Box 505.
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modern high-rise project for black Americans.62 In this survey, the CHH appraisal 
method allowed them to first divide up areas of the city into ecological units or experi-
mental zones of good and bad housing, and second, by using the precise appraisal 
data, relate specific features of the housing to specific social and psychological factors 
collected through a series of “psychosocial scales.” Wilner’s study duly showed how 
improved housing had led to lower rates of sickness, improved rates of school atten-
dance, and emotional well-being (Wilner et al. 1962). By turning the appraisal method 
into a research tool, the CHH was able to generate and integrate data that further 
promoted the value of its principles for healthful housing, using the very environments 
that its standards and surveys had created as laboratories for testing and legitimating 
the principles that had helped give them birth.

5  �Conclusion

By the 1960s, CHH’s standards and appraisal technique were used across urban 
America and endorsed by national and federal associations of construction, public 
health, architecture and urban planning.63 The “mariner’s chart” desired in the 1930s 
had not been provided through a census database, but through the careful processes 
of curation, presentation, and packaging that made data actionable in local contexts. 
The striking success of the CHH can be attributed first, to its ability to make data 
travel; second, its ability to continue exert control over the data being produced, 
circulated, analyzed and acted upon. Through a series of phases, information moved 
by means of the vehicles constructed by the CHH and into the practices of local 
authorities in urban planning, health and design. First, a sequence of principles 
brought together existing data on a wide variety of topics to construct an argument 
for the necessity of healthful housing. Second, these principles were detailed by 
formalizing them into standards. These worked to translate a mass of complex infor-
mation from a wide range of sources into clear and accessible manuals which tidied, 
organized and labeled data and provided flexible guidelines that allowed it to be 
applied to local situations. Third, the appraisal technique then translated these stan-
dards into a workable diagnostic tool that generated simple and concise information 
while simultaneously suggesting policy solutions. Finally, the appraisal functioned 
as a research tool, a means of generating further data that gave credibility to the 
original principles of healthful housing. We have, therefore, a certain circularity in 

62 Daniel Wilner in transcripts of Conference on the Physical Environment as a Determinant of 
Mental Health, Washington DC, May 28–29, 1956, John B. Calhoun Papers, National Library of 
Medicine, Box 63.
63 Where they were not used, they were often in some way adapted and simplified. One of the most 
common complaints was that, in spite of the emphasis on simplicity, the surveys were in fact com-
plex and expensive to complete. In Philadelphia, rather than redoing the appraisal when they 
needed more updated information, they devised their own version which simplified the CHH index 
making it less costly. Planning Division, Redevelopment Authority of the City of Philadelphia, 
Summary Report on the Central Urban Renewal Areas (CURA), March 1956, Churchill Papers, 
Box 3, Folder 27. On the CHH appraisal method and urban renewal, see Abramson (2016).
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movement and a reinforcing relationship between the tools devised by the 
Committee. Through these technologies, the CHH was able to control data at each 
critical phase of movement, from identifying and circulating the problems of poor 
housing to generating actionable evidence for local agencies. Both the standards 
and appraisal technique offered authorities instruments of regulation over housing 
and occupancy, powers that were in turn dependent on CHH’s designation, in hier-
archical, tabular and cartographic forms, of the data that mattered.

The ingenuity and creativity of the CHH in making masses of complex data 
retrievable and actionable by a wide range of disciplines and professions ensured 
the centrality of the public health field in urban redevelopment from the 1940s, so 
much so that one official observed: “It is becoming increasingly difficult to know 
whether health is ancillary to housing or housing is ancillary to health.”64 When the 
National Commission on Urban Problems was appointed by President Johnson to 
address the crisis of urban unrest and violence in the late 1960s, they turned to the 
issue housing standards. In their report of 1969, the CHH was credited for its role in 
the birth of the first “modern housing code” and for showing that so many cities in 
the United States were failing to provide the quality of housing so critical to the 
health and wellbeing of their citizens (Mood et  al. 1969, 10). The infrastructure 
generated by the CHH was sound, the Commission declared, but now needed to be 
updated and strengthened with more research into health and housing as there was 
a “paucity of valid data” (Mood et al. 1969, 33).

However, for a growing number of critics, it was precisely this entrenched and 
uncritical acceptance of quantitative data, housing codes and standards that was the 
problem. Some social scientists and activists saw the CHH as having been far too 
successful. While Committee members had urged flexibility and regular revision, 
worried that minimum standards could become obstacles to future progress, for 
critics it was the entire infrastructure developed by the CHH that was problematic.65 
Local governments and agencies were trying to resolve social problems through 
instruments that simply could not account for the complexity, variety and dynamism 
of urban life however regularly they might be informed by new data. In Boston the 
appraisal method had been put to work in the West End, designating most of the 
housing in a 48-acre site obsolete and beyond rehabilitation. The West End project 
report described the buildings as “dilapidated” and the area as “overcrowded” with 
a “severe lack of any open space.”66 On the basis of these findings, the Boston 
Redevelopment Authority razed the site, displacing some 2700 families, to make 

64 John C.  Leukhardt, “Health centers and health services in housing programs”, 18th Annual 
Conference, Milbank Memorial Fund, April 2–3, 1940, Wood Papers, Box 23, Folder 6.
65 As the editors have suggested, Bowker and Star’s notion of “infrastructural inversion” is a useful 
way of conceiving of the growing challenges to urban planning in this period emanating from the 
social sciences, as critics began to question the long held assumptions that advances in housing 
quality were to come from ever stronger and more precise housing codes and standards to which 
home-owners, landlords and tenants would be forced to comply. See Bowker and Star (2000, 
34–46).
66 West End Project Report: A Preliminary Redevelopment Study of the West End of Boston, March 
1953, Urban Redevelopment Division, Boston Housing Authority, Herbert Gans papers, Rare 
Book & Manuscript Library, Columbia University, Box 2, Folder 3. See also O’Connor (1993).
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way for five residential high-rise (and high-rent) apartment complexes that fulfilled 
the CHH specifications. The case of the West End became celebrated by opponents 
of urban renewal thanks largely to a research project carried out under the direction 
of Erich Lindemann, Chief of the Psychiatry Service at the nearby Massachusetts 
General Hospital. The West End project, titled “Relocation and Mental Health: 
Adaptation under Stress,” sought to devise new methods of understanding how indi-
viduals and communities adapted to severe stresses, such as the loss of home, and 
build a more effective social and psychiatric support network (Ramsden and Smith 
2018). The project’s publications, based on in-depth interviews and participant 
observation, documented the devastating effects of urban renewal on a community 
and criticized the CHH methods of classification (Fried and Gleicher 1961; Gans 
1962). The appraisal method relied on a series of items that could be objectively 
measured and translated into action and hence, they were straightforward, physical 
and quantitative. They allowed large sections of the city to be mapped and classified 
for demolition. While the CHH had enabled the clearance of slums and the building 
of new and better housing throughout the United States, with this attention to the 
physical, it could not hope to capture the complex social lives and varied need of 
different communities in the city. The portability of data had come at the cost of its 
detachment from the lived experiences of city dwellers and the social meanings of 
shared urban spaces. While the West End was crowded, its buildings dilapidated, it 
was a healthy and mutually supportive working-class community.

Having witnessed the power of the CHH’s technologies in the West End and 
using this experience as an exemplar to contest and critique methods of data pro-
cessing and application, social and behavioral scientists began to demand, collect 
and circulate new kinds of data. They devised questionnaires, surveys and observa-
tional studies that could better capture, organize and translate how people experi-
enced space and how it could be better designed in accordance with the interests of 
the users. While the APHA would continue to update its guidelines on healthy hous-
ing through to the 1980s (Mood 1986), long after the CHH had disbanded, the unity 
between planning, design, construction, medicine and the social sciences, contrib-
uted to in no small part by the Committee’s technologies, began to break down. 
With the CHH having played a critical intermediary role, there was now little to link 
together the large housing databases generated by the census and smaller user-
oriented surveys of environmental quality applied by independent agencies. The 
influence of the CHH had waned gradually, and in the wider social and political 
climate of the 1960s and 70s, this was hastened by growing criticism of large-scale 
urban renewal and public housing development from a wide range of sources, not 
only fiscal conservatives and neo-liberal policymakers, but liberal critics of the 
“urban bulldozer” that appeared to demolish communities as well as slums, and 
simply served to shift poverty to other parts of the city (Anderson 1964; Jacobs 1961).

In this study, we have seen how the CHH functioned very successfully as an 
intermediary organization that helped generate and circulate data that was credible, 
authoritative, easily transferred and acted upon. In the various cases brought together 
in this volume, patterns of data journeys have been examined and critical issues, 
conditions, and practices of configuration, visualization, transformation and linkage 
explored. In the case of housing data, with its explicit practical role in planning and 
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designing the built environment, grounding physical interventions in the world, we 
have had an opportunity to examine just how accountability and actionability can be 
built strategically into data journeys. We have seen how public health and planning 
experts, housing activists, and policymakers were attracted by the promise of big 
and open data which would grant authority, credibility and power to housing reform. 
Yet they also wanted to ensure that data was usable in specific contexts. The CHH 
managed to combine elements of universality in terms of the objective facts of the 
healthy home and the minimum standards required to construct and it, with local 
demands for usefulness, adaptability and actionability. By virtue of its role in the 
development of a centralizing infrastructure of new technologies that could simul-
taneously generate, process, standardize, organize and circulate data, and further, 
make these technologies available to local authorities, the CHH was able to determine 
the kind of data that was put to work in planning, building and design, and thereby 
secure the public health perspective in housing policy throughout the nation.
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From Washington DC to Washington 
State: The Global Burden of Diseases Data 
Basis and the Political Economy of Global 
Health

Jean-Paul Gaudilliere and Camille Gasnier

Abstract  This chapter takes the origins, development and uses of the Global 
Burden of Disease database as lens to interrogate the political economy of global 
health, focusing on the intended logic of this massive accumulation and manipula-
tion of epidemiological data, and the ways in which it informs the management of 
public health programs and activities. Following the GBD’s journey from its first 
embodiment as a World Bank tool in the early 1990s to its present day development 
at the Institute for Health Metrics and Evaluation helps understand how epidemio-
logical data travel to become actionable data, revealing the complex interactions 
between data gathering on political purpose and their effective uses (or non-use) in 
specific contexts. The GBD database was first conceived following an accounting 
logic closely linked with planning: by aggregating epidemiological as well as finan-
cial data, the aim was to achieve triage, i.e. balance health budgets and prioritize 
investments. Nevertheless, as we argue, the specific context of global health and its 
mode of government have given way to different and contrasting uses of the data-
base. GBD data are now most referred to as indicator: in global “donors” discourses 
they figure as numerical pictures of suffering distribution across the globe and signs 
of emergency.

1  �Introduction

Everybody paying a short visit to the Institute for Health Metrics and Evaluation’s 
website can experience the wealth of data on diseases and on their impact world 
wide it offers. Indeed, this research center in global health, financed by the Gates 
Foundation and located in Seattle at the University of Washington, has elaborated an 
impressive database on the “Global Burden of Disease” made available through the 
site’s interface. This software and its inexhaustible stock of charts and maps display 
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Disease Adjusted Life Years (DALYs) lost world wide because of illness, enabling 
the comparison of the burden of illness across time, countries and/or pathologies.

The logic underlying this unique tool is that the “burden of diseases” is measur-
able at a global level based on the aggregation of local and national data collected 
through a network of hundreds of institutions and ten times as many collaborators; 
and that the impact of mortality, disability and risks can be reduced to one single 
standard unit: the years of life lost as a consequence of illness (what they call the 
“DALYs”). The GBD data basis thus provides a general equivalent for assessing the 
“global” impact of health disorders – both in the geographical and the epistemic 
meanings of the world global. This burden is massive amounting to hundreds of 
millions of years of life lost and IHME’s implicit statement in making it visible is 
that such burden hinders the growth of the economy and the progress of social life 
on a grand scale.

But there is more to the GBD, specifically what it highlights is the question of 
non-communicable disorders and comorbidity. A long assumed vision of health in 
the global South stresses the importance of infectious disorders and a scenario of the 
epidemiological transition mimicking the twentieth century Northern history of the 
replacement of infectious diseases by chronic disorders. In contrast, the GBD data 
(Fig. 1) reveal that diseases in low- and middle-income countries are increasingly 
double in nature with infectious as well as non-communicable disorders like depres-
sion, cardiovascular or pollution related pathologies affecting the population of 
these countries and their people individually.

Who are the intended viewers of such data? To some extent they are research 
physicians and public health specialists but as IHME leadership and its sponsors 
explain in every presentation of the GBD: this is a tool for action (Gates 2013). Its 
envisioned users are in the first place donors, public or private, who must decide 
where to put their money and how to make the biggest difference in the future of the 
world’s health with their investments. Underlying the display of objective health 
data is therefore an ethos of intervention and fast response to emergencies: “we” 
(the donors) are able to know what counts in global health, we are able to know how 
to prioritize actions, we are able to know how to evaluate outcomes and measure 
efficiency or performance.

Critical analysts and actors of global health alike have commented on the emer-
gence of the GBD and its relations to global health (Adams 2016; Arnessen and 
Nord 1999; Birn 2009). One frequent thread of analysis is to approach it as the 
highly visible symbol of the transition from “international public health” to “global 
health”. This transition has been analyzed as shifting power alliances, the World 
Health Organization and its member governments finding their dominant role chal-
lenged by a series of organizations that emerged in the 1990s (nongovernmental 
organizations, transnational corporations, influential foundations such as the Gates 
Foundation) (Brown et  al. 2006; Muraskin 2005) to target specific emergencies 
(malaria, tuberculosis, HIV, and – rarely – non communicable diseases). This new 
political order was also reflected in a shift in practices, with the diffusion of new 
tools (standard programs for access to drugs and other technologies) sometimes 
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derived from corporations’ management (standard procedures, accounting systems, 
performance indicators) (Reubi 2018).

Private initiative, markets, management and individual choices are the keywords 
of this new world of health beyond nation states; a world, which has often been 
identified as one more manifestation of the big neoliberal transformation of govern-
ment originating in the 1980s critical evaluation of Keynesian economic poli-
cies  (Chorev 2007). Historians, anthropologists and sociologists have therefore 
regularly opposed global health and the postwar decades of international public 
health when development, nation-states, UN institutions and “health as a right” (as 
the WHO constitution proclaimed in 1946) dominated the landscape of health and 
population government, within and beyond the borders of nation-states (Brown 
et al. 2006; Chorev 2012; Randall 2016).

In this chapter, we use the GBD database as a lens to refine this contrast and 
interrogate the political economy of global health, focusing on the intended logic of 
this massive accumulation and manipulation of epidemiological data, and 

Fig. 1  Representing the burden of accidents, infectious and non-communicable diseases 
worldwide
Source: IHME website, GBD Data visualizations, GBD compare, http://www.healthdata.org/data-
visualization/gbd-compare, accessed November 10th, 2018
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particularly on the question of triage1 as key issue and core practice in the manage-
ment of public health programs and activities. The GBD’s journey from the World 
Bank in the early 1990s to present day IHME helps understand how epidemiologi-
cal data travel to become actionable data, revealing the complex interactions 
between data gathering on political purpose and their effective uses in specific con-
texts. Indeed, tracing the first GBD, the one, which surfaced in the World 
Development Report issued by the World Bank in 1993, the first programmatic 
document of this sort focusing on health, highlights the political goals grounding 
the invention of this new metrics whose main purpose was to allow the economic 
comparison and therefore the triage between different health interventions. In reso-
nance with M. Morgan’s analyses in the present book, we could say that the GBD 
database was first conceived following an accounting logic closely linked with plan-
ning: by aggregating epidemiological as well as financial data, the aim was to 
achieve triage, i.e. balance health budgets and prioritize investments. Nevertheless, 
as we argue, the specific context of global health and its mode of government have 
given way to different and contrasting uses of the database. GBD data as produced 
by the IHME are most referred to as indicators: in global “donors” discourses they 
figure as numerical pictures of suffering distribution across the globe and signs of 
emergency rather than tools for systematic comparison and prioritization. The jour-
ney from Washington to Seattle has therefore changed the nature of both the exer-
cise and the data.

2  �DALYs as Global Metrics: The World Bank and Economic 
Triage

The landmark in the World Bank sanitary turn was the publication of the 1993 
World Development Report “Investing in health” (thereafter 1993 WDR), which 
made official and rationalized the Bank investments in health as decisive elements 
in its strategy to alleviate poverty. It thus departed from decades-long commitments 
to a vision of development centered on the building of infrastructures, on the rise of 
agriculture productivity and – when it came to deal with populations as such – on 
birth control (Devesh 1997; Ruger 2005; Staples 2006).

The change was not a sudden, crisis-like event, solely grounded in the new sani-
tary disorder of the time associated, for instance, with the dramatic impact of the 
AIDS epidemics. Rather, it had deep roots in 1980s internal debates on the meaning 
and targets of development, which remain to be properly mapped. For instance the 
Bank’s Population, Health and Nutrition division priorities were deeply impacted 
by the 1970s and 1980s contestation of population control programs in the global 

1 Triage is a concept used so far by anthropologists to refer to “clinical triage”, i. e. the local deci-
sions regarding who will or not benefit from therapeutic and other interventions (see for instance 
Lachenal et al. 2014)
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South and the acknowledgment that some demographic transition was happening 
worldwide without much correlation with these programs. One critical aspect of 
these debates was the mounting importance of “human capital” as category for anal-
ysis and action as reflected in a wave of reports issued in the 1980s and 1990s (for 
instance Becker 1995). Human capital theories thus backed a gradual displacement 
of issues toward health, education and women empowerment reflected in the grow-
ing number of projects the PHN division launched and their shifting focus away 
from nutrition and population control.

A second dimension in the Bank’s sanitary commitment was the complex rela-
tionship the shift maintains to structural adjustment policies. Investing in health did 
not officially contradict the latter’s conditions for granting loans to nation-states 
caught in the debt crisis, namely the urgency of budget balancing and privatization. 
True, the Washington consensus singled out health and education as priorities. 
However, in practice, public investments in the social sector were very often severely 
cut as an effect of structural adjustment policies. Moreover, all along the 1980s cost 
recovery in the health system was a persistent motto in World Bank’s reports and 
memos of understanding with countries (De Ferranti 1985). This provided the back-
ground for the famous 1987 Bamako declaration through which African countries 
expressed their willingness to engage in the generalization of patients’ fees for hos-
pitals services and drugs with the background motive that these fees would ease the 
financial burden of health institutions, provide rolling funds to improve supply and 
make “pseudo-clients” more responsible and attentive to the quality of what was 
provided. This agenda deeply backlashed and critiques escalated beyond the usual 
circles including public health circles and international organizations like WHO 
and UNICEF.

In the early 1990s World Bank officials knew it even if they disagreed about the 
interpretation of such developments, i.e. whether they should be considered as 
intrinsic flaws of the policy or signs of a misguided implantation by governments 
marginally interested in human capital development. A World Bank paper issued in 
1995 thus tried to put adjustment’s impacts on health into perspective, stating that 
countries that had undergone adjustment policies were allowed to spend more on 
health when adjustment ended and when their economy recovered, their spending 
on health growing faster than in countries that had not followed adjustment poli-
cies.2 The 1993 WDR was a de facto response as it offered an alternative by strongly 
endorsing the idea that markets cannot by themselves provide for health care, which 
is in most instances a public good. Investing in health thus meant in the first place 
strengthening public, meaning nation-states based, health systems.

Strong elements of continuity with structural adjustments nonetheless prevailed. 
In the Bank’s eyes, public management of health was only thinkable if cost-effective, 
if performance was placed center-stage, if targets were carefully accounted and out-
comes measured. The introduction of the Disability Adjusted Life Years (DALYs) 

2 World Bank Archives, Folder 392721, Memo Yazbeck A., Tan J-P, Tanzi V, “Public Spending on 
health in the 1980s: the impact of adjustment lending programs”, Background Paper of the 1993 
World Development Report, August 1995.
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was therefore not only a way to take into account health problems neglected using 
the usual mortality/morbidity statistics but also and more importantly the introduc-
tion of a measure, which could help balance problems and solutions, could for 
instance help decide whether, in a world of limited resources, tuberculosis chemo-
therapy was worth doing and putatively more effective than HIV prevention. Even 
if the DALYs were eventually criticized internally for their medical rather than eco-
nomical nature – they could not help decide if states should invest in genetically 
improved crops or in health centers – the dream of a general equivalent, money-like, 
was not far away.

Calculating the DALYs implied aggregating mortality and morbidity data under 
the umbrella of lost years of life and therefore mobilized two different calculations. 
The first one amounted, for each disease category, to weighting the distribution of 
death numbers associated with age groups against the life expectancy specific to 
each country on the basis of coefficients factoring in the decreasing economic use-
fulness of people according to their age. The main novelty regarded the addition of 
a certain number of years of life lost due to “disability” based on a fractional equiva-
lence between a year of normal life and a year of impaired life with the disease in 
question. The coefficients applied for each disease to compute the impact of dis-
abilities, i.e. the number of years of life lost due to bad health were in fact defined 
by using an average of the answers of a small number of experts to adapted ques-
tions in surveys designed to reveal preferences: “You are a decision maker who has 
enough money to buy only one of two mutually exclusive health interventions. If 
you purchase intervention A, you will extend the life of 1000 healthy (non-disabled) 
individuals for exactly one year, at which point they will all die…. The alternative 
use of your scarce resources is intervention B, with which you can extend the life of 
n individuals with a particular disabling condition for one year. If you do not buy 
intervention B, they will all die today; if you do purchase intervention B, they will 
die at the end of exactly one year.” (Arnessen and Nord 1999, p. 1424). Experts had 
then to choose the value for n that would make them indifferent between the two 
programmes (Murray et al. 2002).

Following the publication of the 1993 report, the calculus of DALYs has been 
much discussed including the ways in which the GBD numbers incorporate a 
productivity-based understanding of the value of life or a quantified understanding 
of how valuable, how normal, is a year of life with tuberculosis, diabetes or cancer. 
Bringing the impact of disease down to a single indicator based on age, gender, the 
disability situation and the moment when the disease began was justified by the 
need to build a comparison tool allowing decision makers to choose their interven-
tions by comparing the incomparable, by evaluating, for instance, the difference 
between the cost of one year of life for a child suffering of vitamin deficiency and 
cost of one year of survival for a 50-year-old with cancer. Put it differently, the 
DALYs were an attempt to seize all kinds of suffering in a commensurable way, in 
order to compare the effects of very different health interventions and choose the 
most efficient ones in budget constraints contexts, i.e. to try to optimise investments 
in health by choosing the interventions that would be the most effective in relieving 
the “burden” of suffering. In resonance with M. Morgan’s analyses in the present 
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book, the invention of the GBD could be understood as accounting data, data linked 
to the government’s need to monitor the economy in a constraint budget, to arbitrate 
between different social investments (others than health, also education, see 
M. Morgan’s chapter) and to evaluate and optimize the returns.

From this point of view, the DALY works in a similar way to the QALY (Quality 
Adjusted Life Years) in health economics. In fact, the discussion of DALYs in the 
1990s was similar to the numerous debates about QALYs, their advantages and 
limitations; for example, targeting the coefficients used to give the deaths of chil-
dren or old persons less weight (Gavin 2002), or the arbitrary nature of the assess-
ments regarding the value of one year of life with various disabilities or the value of 
impaired functioning due to a disease, as if human misery, “evaluations of severity 
and its cost [could] be validly standardized across different societies, social classes, 
age cohorts, genders, ethnicities and occupational groups” (A. and J.  Kleinman 
1996). More important for this paper is however the connection the 1993 report 
made between the DALYs and the measurement of cost-effectiveness. This was a 
central ingredient in the valorization of the GBD as basis for triage. This linkage has 
been overlooked since – for reasons discussed below – it disappeared from the exer-
cise when the GBD machinery moved from the World Bank/Harvard/WHO com-
plex to the Gates/IHME nexus.

The calculus of DALYs was actually combined with a general evaluation of per-
formance in national health systems. For the poorest countries, the recommendation 
was to stop financing high-technology hospitals and expensive care infrastructure, 
only of benefit to the middle and upper classes, and to privilege interventions that 
would meet the needs of the most destitute, populations “at risk”, less because of 
their peculiar exposure to pathogens than because of their social and economic vul-
nerability. Hence, the World Bank experts recommended reorganizing protection by 
defining a publicly offered and freely accessible basic system of care (the only one 
for which direct, centralized and evaluable action was possible).

One should not be mistaken, the point was not to leave out private actors, on the 
contrary, but to make a critical distinction between basic and more individual needs, 
between countries rich enough to cover costs, whatever the mechanism (taxation, 
insurance or patients’ contribution) without drastic triage and low- and middle-
income countries with very limited resources, where most households were not in a 
position to provide for their health needs, where triage was operating de facto, with-
out much rationalization, favouring the urban middle class, and where the public 
provision of an “essential package” of interventions (through both public and pri-
vate, first of all NGOs, services) was indispensable: “Perhaps the most fundamental 
problem facing governments is simply how to make choices about health care. Too 
often, government policy has concentrated on providing as much health care as pos-
sible to as many people as possible, with too little attention to other issues. If gov-
ernments are to finance a package of public health measures and clinical services, 
there must be a way to choose which services belong in the package and which will 
be left out.” (World Bank 1993 p. 59).

This plea for targeted investments was delineated in a much more detailed and 
prescriptive way with the selection of 47 interventions for which the Bank panels of 
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economists and health specialists computed costs and numbers of years of life saved 
in order to provide cost-effectiveness ratio. This complex operation actually started 
before the writing of the 1993 WDR, namely in 1988, with the establishment of a 
“Disease Control Priorities” (DCP) working group within the PHN division of the 
Bank whose initial aim was to develop new tools for measuring the effectiveness 
(rather than the monetary benefits) of health investments.3

The DCP project relied on another kind of triage to define the rationale for gov-
ernment’s involvement in health, not only in prevention but also in curative services. 
Indeed, published as background material to the WDR report, the DCP working 
group final document relied on the attempts by panels gathering epidemiologists 
and economists working on one pathology, i.e. tuberculosis, or one medical issue, 
i.e. mental health, to assess legitimate interventions in their field, gather all available 
economic evidence on their costs and outcomes under optimal conditions and  – 
when possible – provide numbers for the cost per DALY avoided. These numbers 
were then used to rank interventions according to their effectiveness. A major result 
was that  – in contrast  – to the classical divide health economists were making 
between prevention and treatment with the former considered as “public good” due 
to the importance of externalities and the impossibility to accrue individual benefits 
to a putative buyer, economic legitimacy crossed the line with highly cost-effective 
clinical intervention such as tuberculosis chemotherapy and poorly cost-effective 
preventive intervention such as water sanitation (Fig. 2).

The final outcome of this ranking effort was the proposition of an “essential 
package of health services” in developing countries. Beyond effectiveness expressed 
in terms of cost for one DALY avoided, overall spending was critical in the selec-
tion: World Bank experts estimated unrealistic to bet on a massive increase of public 
expenditures in low- and middle-income countries even if they spend much less 
than developed ones in proportion of their GNP. The essential package was thus 
limited to a doubling of what low-income countries were already spending to reach 
the level of $12 per person per year. The package prolonged and provided new 
legitimacy to existing priorities like immunization, STD treatment, prenatal care, 
family planning or Aids prevention. Decisive novelty resided in a few items in the 
category of non communicable diseases prevention and clinical treatment: tobacco 
control or the more important “limited care” cluster focusing on the treatment of 
skin allergies and injuries on the one hand, access to medications for pain relief, 
diabetes, hypertension, and tuberculosis on the other hand (Bobadilla et al. 1994).

Cost-effectiveness and performance – the values imbedded in the first GBD as 
well as the associated expectations for an economically rationalized triage to some 
extent confirm the neo-liberal scenario with one qualification, which is to recognize 
that privatisation of health services was only marginally the issue while triage was 
the fundamental one. As C. Murray, the man who had so strongly pushed for the 
creation of the GBD summarized: « Decision-makers who allocate resources to 

3 World Bank Archives, Folder 19831130, de Ferranti, « Sector financing an overview of the issues 
», Draft Population Health & Nutrition Paper, November 30th, 1983.
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competing health programs must choose between the relative importance of differ-
ent health outcomes such as mortality reduction or disability prevention. Because 
money is one-dimensional, the allocation of resources between programs defines a 
set of relative weights for different health outcomes. The only exception to this is in 
a completely free market for health care where such decisions between competing 
health programs are not made by a central authority but by individuals, one health 
problem at a time. » (Murray 1994).

The logic of economic triage and package design thus exemplify the accounting 
nature of the DALYs calculus. The comparison of interventions for their cost-
effectiveness and their putative inclusion in a public package of services operated 
within the framework of an imaginary budget balancing exercise, namely a search 
for the “best” equilibrium between “inputs” (financial resources, most often com-
bining state and donors) and “outputs” (the costs of selected interventions) that may 
include increasing inputs but most often meant adjusting outputs to preset levels of 

Fig. 2  Benefits and costs of forty-seven health interventions
Source: Courtesy of the World Bank (Jamison et al. 1993)
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inputs (see below the example of Bangladesh). Thus, rather than privatizing, states 
were now mandated to focus on investment performance. They were invited to enter 
what may be described as an audit culture (Power 1997) based on the use of a whole 
new range of evaluation and ranking instruments (Gaudillière 2014, 2016).

It was therefore not mere rhetoric when the authors of the report made an unex-
pected link with the old WHO primary health care strategy, explaining in their over-
view of the report that: “Provision of cost-effective health services to the poor is an 
affective and socially acceptable approach to poverty reduction. Most countries 
view access to basic health care as a human right. This perspective is embodied in 
the goal “Health for all by the year 2000” of the conference held by the WHO and 
UNICEF at Alma-Ata in 1978, which launched today’s primary health care move-
ment. Private markets will not give the poor adequate access to essential clinical 
services or the insurance often needed to access such services. Public finance of 
essential health services is thus justified to alleviate poverty. Such public funding 
can take several forms: subsidies to private providers and NGOs that serve the poor; 
vouchers that the poor can take to a provider of their choice; and free or below-cost 
delivery of public services to the poor.” (1993 WDR, p. 5).

3  �Health System Data and Political Triage: Primary Health 
Care at WHO

In its own way, i.e. the equation of primary health care with an essential package of 
intervention, the World Bank homage highlights one of the main elements of conti-
nuity between global health and international public health as typified in the 1978 
Alma Ata strategy, namely the politics of scarcity and the permanence of triage. The 
Primary Health Care (PHC) strategy looked at health as human basic need whose 
fulfillment could not be thought of and worked out in isolation from other “sectors” 
of development. This had two major sequences.

The first one was that health was an object of planning. Late 1970s and early 
1980s WHO texts on PHC thus endlessly repeat that PHC is a national strategy that 
presupposes public investments that need to be coordinated in a plan for the entire 
country and for “all the people” with a special view on those at the periphery, the 
most needy rural populations. The second element was that health had to be inte-
grated in a general planning balancing investments in the health and other sectors 
with an eye on the multiple links between the various ingredients of progress. 
Deemed of special importance within this perspective were “boundary” questions 
of food and nutrition, water supply and sanitation, family planning and education 
policies.

PHC targeted “appropriate, affordable and acceptable technologies” and the 
establishment of “local” and “integrated” centers addressing “basic needs”. The 
critical question was therefore how would such needs be selected and become ingre-
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dients in the national health planning. The first response was that basic needs should 
be defined on the basis of epidemiological and public health knowledge mobilized 
by experts. The second and most forgotten response was to admit that the selection 
of “basic needs” was in the first place a political choice and that communities 
should – at least in the discourse – be granted a say.

Unsurprisingly political triage of the first sort dominated. Rooted in a long pro-
cess of internal consultation involving all regional offices of the health organiza-
tion – and in spite of a lack of transparency regarding the criteria and tools to achieve 
selection – the conference of Alma Ata ended with this list of targets: “education 
concerning prevailing health problems and the methods of identifying, preventing 
and controlling them; promotion of food supply and proper nutrition; an adequate 
supply of safe water, and basic sanitation; maternal and child health care, including 
family planning; immunization against the major infectious diseases; prevention 
and control of locally endemic diseases; appropriate treatment of common diseases 
and injuries; promotion of mental health; and a provision of essential drugs.”

Political triage however did not imply an absence of data and numbers but these 
were epidemiological in the first place but not exclusively. Long before WHO and 
the World Bank started to collaborate (with all the tensions some participants have 
highlighted) in the making of the GBD, WHO and the Bank’s PHN division had 
inaugurated exchanges of information, personnel and launched common ventures. 
Alma Ata was in this respect a turning point: from the World Bank perspective 
because it made its director and personnel consider that something new was happen-
ing at WHO that seized health as a system, linked to infrastructures and to other 
areas of development; on the later side because the Bank appeared not only as a 
resource for the funding of programs like sanitation projects but also as a source of 
expertise in the increasingly acrimonious debate on the feasibility of the PHC strat-
egy, its broadness and the alleged need for a more selective approach. WHO thus 
sought WB help in defining a strategy for financing PHC, obtained WB collabora-
tion for several new programs, including tropical disease research, maternal and 
reproductive health, extended immunization with the consequence that both institu-
tions engaged in regular almost yearly strategic consultations. One specific dimen-
sion of this emerging common ground was the problem of health systems evaluation. 
Soon after Alma Ata, the WHO Director General started to look for Bank’s know-
how in the evaluation of development projects and system analysis having in view 
WHO ability to help nation states in the design of systemic reforms rather than 
vertical, operation or disease oriented projects. This resulted in the creation of a 
dedicated team, which started to collect data and produced in 1980 the first refer-
ence document on ‘health systems’ indicators and evaluation, which ideally included 
non-epidemiological data on budget, personnel, buildings, access to care and 
coverage.4

4 WHO archives, draft memo « Indicators for monitoring progress toward ‘Health for all’ », 10 July 
1980.
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4  �Missing and Alternative Numbers: The Low Visibility 
of DALY-Based Triage

Once the intimate relations between the GBD and economic triage as well as their 
difference with political triage and its associated data are acknowledged, the ques-
tion becomes that of whether this unique global metrics is actuality used by donors 
or public health authorities. Such use has been postulated but rarely shown. It is true 
that DALYs figure in many discourses on global health emergencies or programs 
but this is in most instances as legitimizing argument, in isolation, with no connec-
tion to cost-effectiveness and without any significant comparison across interven-
tions or diseases.

A good example is that of tuberculosis chemotherapy. The disease and the treat-
ment figured prominently in the 1993 WDR as it appeared as one of the most cost-
efficient intervention with a ratio a little above $1 per DALY avoided. The calculation 
originated in a nation-wide experimentation of a new regimen based on the short-
course administration of standard antibiotics association conducted by the 
International Union Against Tuberculosis and Lung Disease (IUATLD) in Tanzania 
(and later in Malawi and Bostwana) during the 1980s (Gaudilliere et al. forthcom-
ing). Employing initially a vintage regimen that combined streptomycin, isoniazid 
and thiacetazone, the project focused on operational improvements, care, and epide-
miology to give existing regimens traction throughout the country. Examining what 
IUATLD introduced, we can imagine what was lacking before: systematic reporting 
of new cases and treatment was mandated; diagnosis through sputum microscopy – 
rather than X-ray – was made the compulsory standard; drugs were provided free 
of charge.

IUATLD experts kept an eager eye on efficiency of the program. Such efficiency 
was of course organizational, i.e. choosing the right protocol and building proper 
institutions. With the consequence that treatment failure would still be blamed on 
the non-compliant patient, while social conditions that drive epidemics and compli-
cate therapy drop from the radar. The issue of strains resistant to antibiotics and 
therefore of drug sensitivity testing was given low priority when developing the 
NTLP (National Tuberculosis and Leprosy Program) along IUATLD lines. While 
diagnostic and treatment capacities with regards to bacteriologically positive cases 
were greatly expanded, diagnostic facilities in relation to drug sensitivity testing 
remained insufficient with one functional sputum culture laboratory throughout the 
whole period 1979–1988. Efficiency was not only a problem of epidemiology. It 
was also a matter of costs and choice of priorities; for instance aiming for a cure rate 
above 90% was considered useless at it would disproportionately increase costs and 
therefore should be avoided.5 Cost efficiency was thus aimed at before the Tanzanian 
TB program got picked up in the World Bank calculus of DCP. Such interest resulted 

5 ERC GLOBHEALTH archives (Cermes3, Paris), Karel Styblo papers, Progress report «Results of 
the NTLP after the First Ten Years», June 1988.
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in joint publications of IUATLD main expert Karel Styblo and of Christopher 
Murray, the architect of GBD, who in those days worked for Harvard University’s 
Center for Population Studies (Murray et al. 1991a, b). Styblo and Murray com-
bined public health epidemiology with economic analysis. Their evaluation of cost-
effectiveness of short course therapy rested not just on curing more patients than 
standard therapy but also on the projected number of deaths averted or treatment 
costs avoided in future population.

Towards the end of the 1980s the Union project thus changed context and became 
the basis of a global strategy. The World Bank, from 1991, initiated a large-scale 
trial of the same regimen in China. The WHO, changing course after two decades of 
relative neglect for tuberculosis care, declared TB a global emergency in 1993. It 
used the IUATLD trials as examples and condensed the approach into the Directly 
Observed Treatment Short-course (DOTS) strategy that it put in practice from 1995 
onward. As defined at the time, DOTS consisted in five elements deemed critical for 
success: the existence of a national program with significant political priority, the 
reliance on passive detection rather than active search for patients, bacteriological 
diagnosis, proper supply of drugs and delivery free of charge, and what had strongly 
come to the fore in the shift from trial to strategy: directly observed treatment mean-
ing a form of ambulatory treatment such that patients would receive and absorb the 
drugs under the supervision of health personnel or of dedicated community work-
ers. Advocating for DOTS in the mid-1990s, WHO made an abundant use of the 
1993 World Bank cost-effectiveness calculus but dissociated what concerned tuber-
culosis chemotherapy from the entire discussion about an essential package of care 
and from the comparison with other interventions and their ranking. The $1 per 
DALY avoided was singled out and aligned with more clinical and epidemiological 
numbers like the regimen 90% efficiency or the projected numbers of deaths averted.

This did not imply that the logic of economic triage did not play a role in the 
1990s global government of tuberculosis. In 1997 the World Bank reached an agree-
ment with the Government of India, providing the latter $100 millions in order to 
reorganize its National Tuberculosis Program and implement the DOTS strategy. 
Launched in the 1960s the latter was the first program of its sort in developing coun-
tries and during the years WHO engaged in the PHC strategy, it played an exemplary 
role there. In the mid-1990s, when India began negotiations with the World Bank to 
get funding for a new programme, WHO and World Bank experts’ evaluating this 
legacy were barely impressed: the Indian old program had certainly suffered from 
“serious lack of funds”, but, according to the World Bank experts, it had been badly 
designed and organized with “insufficient trained staff (…), reliance on X-ray instead 
of sputum analysis for diagnosis (…), with a proliferation of drug regimens (…), a 
private sector which treat[ed] over 50% of new TB with an extraordinary variety of 
ineffective and potentially harmful drug regimens (…), a lack of quality control and 
regular supply of drugs (…), a reluctance of service providers to give adequate infor-
mation to patients because of stigma (…), a poor recording and monitoring system 
(…) a lack of quality control of laboratory results.” (World Bank 1997). In other 
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words, the programme was the opposite of the DOTS strategy, which was to be 
implemented on a massive scale, i.e., during the first 5 years, in 102 districts with a 
total population of 270 million persons.

Performance was not defined from the point of view of costs, which was done 
beforehand by calculating the total amount of the contract based on the average cost 
of chemotherapeutic treatment. The target criteria selected by the World Bank and 
the Indian Ministry of Health were medical and epidemiological: number of persons 
detected and treated (2 millions) and success rate of the cure (85%, where success 
is equal to the disappearance of TB-bacteria from examined sputum). All of this 
made it possible to anticipate a significant reduction in the incidence of tuberculosis.

Health data were however also proxys for another kind of performance, this time 
an administrative one, as is seen in the list of the specific risks of the programme 
identified by the World Bank experts, which were the risks of: difficulties in per-
suading providers and patients to accept the practice of directly observed treatment 
and the rigorous features of the DOTS strategy; poorly administered short-course 
chemotherapy and poor quality anti-TB drugs, which would increase the probabili-
ties of developing drug resistance; the inability of the Central and State TB Cells to 
provide the leadership and services required to ensure proper implementation of the 
programme; an uneven supply of drugs combined with the availability of large 
quantities of drugs which could be misused, especially in light of “the spotty record 
of drug deliveries in India”. (World Bank 2006).

Many development economists, including within the World Bank, however share 
the vision that GBD and the DALYs are not proper economic instruments since they 
favor an “internal” public health orientation that allow for comparison between dis-
eases or interventions but do not provide for any rational for core economic ques-
tions like the level of investments, the allocations of resources between health and 
other social and economic sectors, the kind of care provision that can be left to the 
market; all questions central to the management of national health systems. As a 
consequence there is a low visibility of DALYs-based cost-effectiveness calculus 
even in the Bank’s own assessment of health related investments and packages.

A good illustration of this is the late 1990s negotiation of health system reform 
in Bangladesh, during which the design of the basic package of essential services 
provided by the state took place without any mobilization of the kind of ranking 
involved in the 1993 WDR even if the process started with the $12 package pro-
posed in the 1993 WDR report. The donors’ mission and the local authorities had to 
take into account the fact that the Ministry of Health budget amounted to spending 
in the range of $3,5 per capita only. A technical group gathering practitioners, public 
health specialists and health authorities was gathered to select the interventions fall-
ing into four priorities areas: child health, reproductive health and population, com-
municable diseases, simple curative care whose costs would be computed with the 
help of an economist paid by WHO.  Assuming that no significant increase of 
resources was politically feasible, triage to align the package with the $3,5 ceiling 
was the preparation team’s next task. The technique used was not only cost-
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effectiveness ranking but a scoring of each intervention involving five criteria for 
triage: costs, provision feasibility, potential health impact, burden of disease and 
economic status (whether the intervention could be considered as public good and 
the importance of its externalities). The dominance of general economic criteria in 
the process was reinforced in the last stage of triage since eliminating interventions 
from the package through scoring proved very difficult: it failed meeting the $3,5 
target, leaving a deficit in the range of 15%. In order not to stall the negotiations 
with the donors and secure the help of World Bank, USAID and Northern Europe 
aid agencies, the preparation team finally agreed to draw a balanced “contingency 
plan”, which the Bengali considered as a first step. As the World Bank expert par-
ticipating in the negotiations later explained: “while (cost-effectiveness) is an eco-
nomic evaluation tool, public health specialists, much more so than economists, 
swear by it as a primary prioritization tool.” (Yazbek 2002).

One must add that the use of DALYs as instrument of economic triage has also 
been impaired by the difficulties associated with data collection for comparison on 
such grand scale and the recurrence of doubts or mistrust originating in its “miss-
ing” numbers and the complexity of the modeling involved in finding “proxys”. 
This may be illustrated with one of the major outcomes of GBD, which has been to 
give an unprecedented visibility to mental health and psychic disorders in the global 
South. In a recent study of global mental health in West-Africa Anne Lovell has thus 
shown that for most of the region the numbers available in the GBD did not rely on 
local studies, did not mobilize the data originating in the operations of local health 
institutions, but originated in a complex set of correlations between the burden of 
mental health disorders and various epidemiological, social and economical vari-
ables worked out in countries benefiting from more reliable statistics (Lovell 
forthcoming).

The absence of policy-oriented use of the GBD of the kind that was expected at 
its origins doesn’t mean that the GBD database is no longer conceived as data that 
could be used to enhance political decision-making relying on cost effectiveness 
analysis. Indeed, in spite of its infrequent use, the Disease Control Priorities project 
is still alive, at least as a modeling enterprise. In the mid-2000s, in parallel with its 
investment in IHME, the Gates Foundation started funding a follow up of the 1993 
WDR, helping Dean Jamison and his colleagues produce a second DCP, and more 
recently a third DCP. The latter, based on complex computer simulation models and 
selecting 93 interventions and updating their ranking, has become part of mounting 
contemporary debates about “universal health coverage”. Thus, economic triage 
based on DALYs has not disappeared, the irony being that it now finds renewal in 
debates regarding “universal health coverage”, which reveals strong stands in favor 
of public investments compared to private markets but also deep tensions regarding 
universality understood as access for all but also universality understood as care for 
all health “needs”, thus acknowledging although in an oblique manner the impor-
tance of political triage.
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5  �Conclusion

After its birth in between Washington DC and Harvard University, the GBD went 
through a period of difficult existence as its production was no longer supported by 
WHO or the World Bank (Smith 2015). It was finally rescued in 2007 when the 
Gates Foundation decided to fund the enterprise and have it relocated in Seattle at 
IHME, an independent institute at the University of Washington. The enterprise 
then took the form presented above, that of a global epidemiological data-basis 
whose connections with health economics is scant, namely embedded in the history 
of the DALYs on the one hand, acknowledged with the inclusion in the IHME data 
basis of financial information regarding global health investments on the other hand, 
thus leaving out of the scene the links between the two, i.e. cost-effectiveness, inter-
vention ranking and economic triage.

There is no doubt that data and the GBD machinery travelled from Washington 
(DC) to Washington (State), but can this journey account for the changing epistemic 
status of the enterprise, for the fact that economics and triage have been put at arms’ 
length? The response is certainly positive if the journey is considered not as a geo-
graphical displacement but as a shift from one social world to another. GBD moved 
from being strongly associated with a key financial institution whose main activity 
is the triage of development related loans to being inserted in one of the hotspots of 
global health academic life.

The move has been discussed as a consequence of personal tensions between its 
initiator, C. Murray, and other players in global epidemiology, or as an effect of 
WHO bureaucracy and entrenchment in outdated data production (Smith 2015). 
Given the origins and meaning of the first GBD, a much more critical question is 
that of the World Bank not following up and integrating the GBD in its operations; 
of the World Bank not producing any second WDR on health after 1993. As sug-
gested in this paper, in so far as a non-event can be interpreted, this non-investment 
has deep roots in the tensions underlying the genesis of the tool.

In her chapter “The Datum in Context: Measuring Frameworks, Data Series and 
the Journeys of Individual Datums” of this volume, Morgan stresses the multiplicity 
of data sets economists have designed emphasizing the importance of their internal 
logic, i.e. the relationship between bits and whole. She accordingly distinguishes 
the accounting logic typical of highly integrated data sets like the matrix of national 
economies and the indicators logic of loosely articulated sets of numbers like those 
associated with the Millennium Development Goals. The difference resonates with 
the distinction we make between the uses of the GBD as instrument of economic 
triage, central to the design of packages, the comparison and optimization of invest-
ments on the basis of their cost-effectiveness on the one hand, and the uses of GBD 
data in an isolated manner, as measurement of the worth of isolated interventions or 
projects in order to legitimize choices made on the basis of other metrics and/or 
criteria be they epidemiological, organizational or social. The $12 package of the 
1993 WDR report is emblematic of the accounting mode; WHO use of DALYs to 
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argue for the rationality of the DOTS strategy for controlling tuberculosis fits the 
indicator mode. Typical of the problematic life of the accounting mode is the fact 
that it is also in such a mode that the Gates Foundation uses the GBD. Analyzing the 
Bloomberg Initiative, a philanthropist association spearheaded by the Bloomberg 
and Gates Foundations and aiming at reducing tobacco use, David Reubi quotes an 
epidemiologist involved in the Initiative, explaining how Bill Gates relied on 
Murray’s work on the GBD to design the Initiative. (Reubi 2018).

Morgan’s perspective is also that these contrasted kinds of data strongly con-
strain their possible uses and ability to travel. Accordingly, the GBD data, originally 
elaborated to compare cost effective health interventions and choose the most effi-
cient one, are nowadays more often used as isolated indicators of the geographical 
distribution of suffering worldwide and linked to different causes rather than as 
accounting data with strong relations to the whole, here economic growth. The tra-
jectory of the GBD however reveals less direct relationship between kinds of data 
and political decision-making, more complex patterns for which the question of 
context in general, the political economy of global health in particular can’t be 
avoided. This is quite obvious when considering the rise of triage based on eco-
nomic data and performance assessment and the many ways in which this form of 
calculus and resource allocation contrasts the political triage of international public 
health and its logic of health needs. What this paper shows is that a simple reading 
of contemporary economic triage either as consequence of data sets design or as 
straightforward manifestation of the neo-liberal paradigm can’t account for GBD 
uses and non-uses. Multiple political economies of health as well as heterogeneous 
institutional configurations were and are at stake resulting in differentiated modes 
of accounting as the difference between the vision of health financing underlying 
the 1993 WDR and the more neo-liberal one the “Population Health and Nutrition” 
division of the World Bank developed in the mid-1980s.

An important factor to be considered is thus the fact that the global health field 
in which the World Bank operates since the late 1990s is no longer that of nation-
states “planning” development and making budget allocations. The global health 
world is a world of competing “causes” and vertical programs, which do not, or only 
marginally, target systems. It therefore does not require broad comparisons of inter-
ventions across the health sector, not even speaking of comparisons across the entire 
spectrum of development targets. Even the World Bank, that invented the GBD and 
that is supposed to be a development bank that invests in health systems strengthen-
ing, also massively targets vertical programs, mimicking its competing partners of 
“transnational humanitarianism” (Fassin, 2011). In fact, the global health move-
ment at large doesn’t seem to need a global metrics such as the GBD, its players 
being much more interested in indicators, that is to say data informing projects’ 
symbolic and technical performance (David 2018).
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Data Journeys in Art? Warranting 
and Witnessing the ‘Fake’ and the ‘Real’ 
in Art Authentication

Catelijne Coopmans and Brian Rappert

Abstract  This chapter approaches questions about data and data journeys by 
examining demonstrations of fakery and expertise in popular accounts by forgers 
and their pursuers. We examine how relations between tellers and audiences are 
configured – who can be trusted, and what can be relied on when it comes to know-
ing the real from the forged. The various ambivalences regarding the nature of art, 
of perception, and of expertise, as well as the ways in which moves and techniques 
(re)produce the expert-teller in fraught conditions, bring a shiftiness to the constitu-
tion of data and evidence in this domain. Taking our cue from STS scholarship on 
the fixation and circulation of visual evidence in scientific practice, we discuss 
moves and techniques that point to (particular) features of a work of art to resolve 
authenticity questions, as well as those that point away from and negate features. 
More though, at stake in the case of forgery is not just how individual objects get 
rendered discernible, but also whether there is anything to discern at all. This chap-
ter examines how experts find a place to stand as they account for the potentially 
unfaithful objects under their care.

1  �Introduction

The BBC’s Antiques Roadshow is a programme that has, for decades, featured 
experts travelling from town to town to appraise artworks owned by the locals. It 
banks on the element of surprise: frequently, what owners believe or assume about 
their possessions is turned on its head in the process of expert appraisal. In the early 
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days, Impressionist and Modern Art expert Philip Hook remembers being able to 
deliver delightful surprises regularly, by revealing bygone objects as prized 
treasures. Later, as “members of the public […] got more and more optimistic about 
their property” (Hook 2014, 263), the reversal went the other way, the surprise less 
pleasant: “‘Value? Not very much, I’m afraid. But it’s such an interesting thing. 
Take it home and enjoy it.’” (Hook 2014, 263).

The surprises and reversals on the Antiques Roadshow depend on experts recog-
nizing objects for what they are, positioning them relative to other objects (‘rare’, 
‘common’, ‘exquisite’, ‘decorative’, and so on), and assigning them prospective 
market value. The objects presented do not always make such identification and 
valuation easy. Akin to the way scientists review and process instrument traces or 
specimens (Lynch 1985; Amann and Knorr Cetina 1990; Halfmann this volume), a 
careful adjudication comes into play, a reckoning with the possibility that things 
may not be as they seem. Materials are read for their trustworthiness, and spoken 
of – as Martin and Lynch (2009, 262–263) have argued in relation to cell biology – 
“as agents of their own visibility and identity: as showing and hiding themselves; 
presenting deceptive appearances; obediently complying with procedures or remain-
ing recalcitrant.”

One reason why art experts account for the possibility of deceptive appearances 
is the risk posed by forgeries – works intentionally designed to pass as those by a 
valued artist. Part of the job of appraisal is precisely to distinguish a genuine 
Constable from “a modern painting in the style of Constable which has been oven-
baked in order to produce an apparent early-nineteenth-century craquelure in the 
paint surface and then claimed as a genuine Constable” (Hook 2014, 212). The mat-
ter of art forgery is not always black and white: the lines between a fake and an 
unintentional misattribution, a fake and a heavily restored item, or a high-quality 
fake and a low-quality original, are in specific instances blurred (Jones 1990; Hook 
2014). Yet because the determination of origins and authorship matters so greatly to 
the price an item can fetch on the market, the epistemic game of authentication pulls 
towards a binary: is it or isn’t it…

In this chapter, we complement this volume’s analyses of data journeys in the 
sciences with an excursion into the efforts and complications of making features of 
artworks warrantable and witnessable in light of questions about authenticity.  
We thereby follow Steven Shapin’s argument, in ‘The sciences of subjectivity’, that 
so-called subjective forms of knowledge-production merit study for how they are 
anchored and go beyond the idiosyncratic. Shapin observes, for instance, that much 
of the talk of wine connoisseurs, “is referential, that is, it points to characteristics in 
the wine that connoisseurs come to know about, and taste communities can and do 
coalesce around more or less stable way of designating these characteristics,” 
(Shapin 2010, 178).

In art authentication, the stakes involved in distinguishing the ‘fake’ from the 
‘real’ inform efforts to determine what’s given and what can be relied upon in the 
face of possible ambiguity and deception. When concerns about authenticity 
emerge, claims about what is known and knowable, seen and seeable, for whom and 
when, cast artworks in the role of would-be ‘data’ to be mobilized as evidence for 
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determining true origins. In this chapter we highlight some key dynamics and 
variations of such casting, and discuss the accountability relations between experts, 
audiences and works of art that are thereby enacted.

The following tour of some of the colourful characters, controversies and efforts 
at revelation in the artworld is based on published ‘insider accounts’, documentaries 
and news reports – materials aimed at inviting a broad audience into an appreciation 
of the ways artworks may be designed to deceive and how such deception may be 
detected. Adopting an agnostic perspective on the possibility of turning artworks 
into data that travel into public accessibility, we find in the metaphor of data jour-
neys an impetus for exploring what gets made available to make sense of contested 
works of art, how such warrants for sense-making are circulated beyond the expert 
realm, and what sorts of complications arise. Sabina Leonelli’s (2016, chapter 3) 
relational definition of data proposes we think of data as what can be circulated and 
exhibited to others in corroboration of claims; she also points to data becoming 
salient qua data in and through the material form or “packaging” of information. In 
the first part of the chapter, we discuss practices and complications of “packaging” 
visual difference so as to make fakery available for ‘all to see’. In the second part, 
we discuss practices and complications of treating artworks as material traces of 
their own origins. As our focus is on the public face of authentication, we will pay 
close attention to what becomes witnessable and portable, and for whom, amidst 
attempts to recognize objects for ‘what they really are’. We will also show how such 
attempts, in turn, cannot be divorced from those of producing and preserving art’s 
market value.

2  �Here, See

To begin then, how are artworks, or aspects of these, mobilized in relation to claims 
to knowledge? How does art get worked up such that what is passed off as one thing 
can be exposed – in ways warrantable and witnessable – as actually something else?

Let us consider one prominent attempt to both spot fakes and cement the status 
of the teller: Thomas Hoving’s (1996) False Impressions: The Hunt for Big-Time 
Art Fakes. In it he asserts that as much as 40% of the works he examined as the 
director of the New York Metropolitan Museum of Art were phony or tantamount to 
being so. Yet dealers, collectors, curators and artists were said to be reluctant pub-
licly to speak about this phenomenon and reveal the art world’s seedy underbelly – 
something Hoving took upon himself to remedy.

False Impressions forwards itself as an authoritative guide to the techniques and 
machinations of faking and ‘fakebusting’ in a number of ways. It ‘proves’ itself by: 
First, detailing years of experience and seniority of Hoving as a well-placed insider. 
Second, the extent of examples that serve as data points for the argument. Forgery, 
after forgery, after forgery (after forgery…) is presented to the reader: a sixth cen-
tury BC Greek bronze statue, a fourteenth century enamel plaque, a Renaissance 
cup, a twentieth century sketch, etc., etc., etc. in page after page after page. Third, 
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the specificity of claims. Hoving names names: former colleagues’ experiences and 
mishaps are detailed – friend, foe, and neutral person alike are identified. Such fea-
tures shore up the book’s said ability to spill the beans about “the real world of 
fakes.” (Hoving 1996, 7).

Especially given the rampant and yet largely unremarked deception said to be 
afoot, much is at stake in how Hoving practically marshals visual materials in sup-
port of contentions about the status of specific objects. To understand how he does 
so, consider one example. In the main text of False Impressions, Hoving describes 
his immediate appreciation of two versions, one authentic and one a forger’s copy, 
of a sketch of a boy called Henri Leroy by the nineteenth-century artist Jean-
Baptiste-Camille Corot. Hoving claims he had no trouble spotting the fake:

I, for one, instantly selected the drawing (figure 48) that combined an unmistakable heavy-
handed and academician’s touch […] with congeries of tiny mistakes, most of them in the 
rendering of the child’s costume. [The] phony seemed all too obvious, far too plodding and 
deliberate for the nervous and carefree genius of Corot (Hoving 1996, 193).

These sketches, which Hoving found in a book by art forger Eric Hebborn, are 
reproduced in a black and white photographic insert in False Impressions. They are 
accompanied by a caption specifying which is which, followed by another pointer 
regarding the grounds for this determination: “The academic correctness gives the 
phony away.” (Hoving 1996, insert, figures 15&16)

Both the main text and the caption provide a firm upshot of what is on display. 
Despite Hoving’s making a personal statement (“I, for one…”), readers are solicited 
plainly to ‘see’ for themselves certain observable features that make the imitation 
different from the original (“unmistakable heavy-handed and academician’s touch”, 
“mistakes”). They are instructed where to see some of these features (the child’s 
costume) and given to understand that these are tell-tale anomalous giveaways (“the 
phony seemed all too obvious”).1

Just as laboratory science proceeds on the assumption of the “in-principle distin-
guishability of ‘natural’ from ‘constructed’ objects” (Lynch 1985, 82), here the fake 
Corot is charged with exhibiting features of artificiality (“academic correctness”) in 
a way the genuine ‘specimen’ does not. In Hoving’s account, the distinction is deliv-
ered in the way his remarks work up the two sketches in relation to one another. This 
achieves a ‘fixation of evidence’ (Amann and Knorr Cetina 1990), whereby visual 
expectations regarding what fits the “nervous and carefree genius of Corot” are 
mobilized as the background against which tell-tale signs of fakery can be located.

Here we find the familiar dynamic of multiplying the witnessing experience 
(Shapin and Schaffer 1985, 25). Despite being clearly in a position of being pre-
sented to, in being shown the materials that gave rise to Hoving’s determination, 
readers can warrant the outcome of the comparison to themselves. By getting his 
audience to engage with the perceivable difference that bears out his assessment, 

1 We had wanted to show the sketches in this chapter, so readers could undertake their own visual 
comparison exercise, but did not get permission for reproducing the fake! To see them, try http://
mountshang.blogspot.com/2009/11/which-is-fake.html
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Hoving makes it at least notionally verifiable. The reader is invited to locate within 
the sketch designated as “the phony” the giveaway signs of its dubious status – and 
it is the comparison with the sketch designated as the Corot that makes for these 
signs’ repeatable, widespread witnessability.

By evoking the relevant background for seeing the difference, the figurative ges-
turing Hoving does is more akin to an open palm that casts regard rather than an 
index figure that surgically singles out. This opening of palms is both a showing of 
what’s at hand and a drawing of attention to who is providing this opening – that is, 
a gesturing back at the gesturer. The seeing enabled, then, warrants the fake at the 
same time as affirming that Hoving is in possession of the requisite knowledge and 
skills to know the significance of what is being displayed. It achieves a particular 
distribution of expertise, configuring the reader as one who does not know but can 
appreciate (cf Woolgar 1991). As an opening of palms, Hoving’s consideration of 
the sketches is also notable for its non-exhaustiveness and generality. As a result, the 
gesturing sets up a situation in which readers’ own efforts and abilities to see what 

is treated as plainly there for Hoving, are made accountable, as well.

3  �See It, See It Not

Hoving’s use of the sketches of Henri Leroy follows, as we have mentioned, an 
earlier such pairing by English forger Eric Hebborn in his autobiography Drawn to 
Trouble (1991). As part of his book, Hebborn too cites decades of professional expe-
rience, describes forgery, after forgery, after forgery (he crafted), and names names. 
And he too details a murky art world wherein the small-time scams of individual 
dealers and collectors complement the institutionalized dishonesty ingrained in the 
art trade.

As he claimed, anyway, Hebborn made it a point not to attribute his works. In his 
own dealings he simply offered the ‘fortuitously found’ works themselves (mainly 
old master drawings), letting those in the business of proffering attributions derive 
their own conclusions. Because of this practice, Hebborn argued that he did not 
delude; dealers, scholars, and collectors deluded themselves by seeing what they 
wanted to see. The frequency with which this happened he attributed to a number of 
factors, ignorance and greed among them, but also the mistaken belief that imita-
tions or forged works can be straightforwardly identified for being of inferior aes-
thetic quality.

Let us consider then how such arguments inform Hebborn’s presentation of the 
sketches of Henri Leroy. More directly than Hoving, and more playfully, too, 
Hebborn appeals to readers to get involved in appraisal by using their own eyes.  
The sketches are given side by side – the text reads:

It might perhaps amuse you to test your own abilities as a connoisseur, and decide for yourself 
which of two photographs (Figs 48 and 49) represent a detail from the original. Even if you 
happen to be Joe Bloggs in person, you will still have a fifty-fifty chance of being right. Look 
carefully, take your time, and seek the hesitant line of the copyist as opposed to the strong sure 
line of Corot. The answer is given at the bottom of the page. (Hebborn 1991, 226)
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Having teased readers regarding their ability to spot the difference, but also given 
them information to check if they picked the right original – in tiny letters at the 
bottom of p.226: “Answer: Fig 48” – Hebborn then goes further:

Now, having read the solution, look at the two drawings again and you will suddenly notice 
how poor my version is, how faulty the construction, how harsh the modeling, and all sorts 
of ghastly errors which escaped your notice before.

The guessing game from before here develops into distinct valuations. The 
tongue-in-cheek disparaging of the ‘fake’ that “suddenly” appears “poor” also prods 
readers to recognize the dependency of their seeing on their understanding of what 
they are looking at. When a work is branded a ‘fake’ the eye seeks features that 
confirm its inferior status.

In yet another twist though, Hebborn carries on from the previous text to state:

But what if I should now tell you that the answer at the bottom of the page is wrong?

With this, the features just established to anchor the distinction threaten to 
become mirage-like. Overall, the side-by-side juxtaposition combined with the tex-
tual instruction solicits a comparison between the sketches that ‘packages’ perceiv-
able difference into tell-tale signs, but ultimately in a way that renders these 
unreliable as evidence.

Didactic comparisons of the kind employed by Hoving and Hebborn are a famil-
iar device to educate non-experts about fakes; they have, for example, been a staple 
feature of museum exhibitions about fake art dating back to the 1950s (Lenain 2011, 
264; Casement 2015). Philosopher Nelson Goodman (1983) distils the utility of this 
technique by arguing that, for the novice, the side-by-side juxtaposition of original 
and forged works:

(1) stands as evidence that there may be a difference between them that I can learn to 
receive, (2) assigns the present looking a role as training toward such a perceptual discrimi-
nation, and (3) makes consequent demands that modify and differentiate my present experi-
ence in looking at the two pictures.

Through the deliberate placement of works side-by-side, Goodman claims nov-
ices become aware of the possibilities for learning-to-distinguish; by implication, 
proficient viewers can confirm their skill.

As we have seen in the previous section, Hoving sets the stage for comparison 
much in the manner that Goodman describes. The sketch identified as the real Corot 
is established as the measure by which the flaws of the other become perceivable. 
The reader is thereby aided in locating Hoving’s assessment about ‘academic cor-
rectness’ in the way the fake differs from the original. It is aid that is more akin to 
someone giving directions by waving their hand along a bearing rather than point-
ing to a dot on a map, but aid nonetheless. In Goodman’s terminology, the reader is 
cued to (1) see for themselves that the two sketches are different; (2) make sense of 
that difference in terms of the expert’s assessment of what this difference amounts 
to; and (3) appraise one as an original, whose features then are seeable as character-
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istic of Corot’s style, and the other as a fake, whose features then are seeable as 
flawed imitations.

By contrast, if there is any training at all in the twists and turns of Hebborn’s 
side-by-side game, it is to make readers aware of their susceptibility to priming. 
With his parody  – the pointing to what “suddenly” becomes apparent when the 
answer has been revealed, and then the playful reversal – Hebborn drives home this 
point. When a work is made seeable as derivative of another, the perceivable differ-
ence between the two is cast in terms that makes the former seem inferior to the 
latter. Goodman’s three features of the side-by-side technique are thereby ques-
tioned as enablers of learning. Readers are invited to recognize their own limits, and 
to become critical of the way a baseline for their seeing is provided. Hebborn doesn’t 
contest that there are differences between the two sketches, but questions the way 
these are mobilized as tell-tale signs from which the matter of authenticity can 
straightforwardly be resolved. Difference may be witnessable, and may thereby be 
forwarded as ‘data’ for authentication, but its status as prospective evidence is shaky.

Hebborn’s trickery seeks not only to confront his (lay) readers with their limita-
tions, but also to undermine trust in expert determinations. A key refrain in his book 
is his assertion that experts had on several occasions mistaken his work for old 
master drawings, even as they would categorically deny that forged art can be of 
high artistic quality. His side-by-side game suggests that their confident claims and 
their efforts to anchor verdicts in specific features, may be built on quicksand. Yet, 
while on the one hand thus undermining expertise, Hebborn also relies on it to bol-
ster his own status as a top-notch faker/artist:

Just as there could be little satisfaction in scoring a goal in the absence of a goalkeeper, so 
it is that to sell a master drawing to someone lacking the necessary expertise to make a 
proper appraisal of it is at best a hollow victory. In other words, only the experts are worth 
fooling, and the greater the expert, the greater the satisfaction of deceiving him. (Hebborn 
1991, 218)

As a result, for wanting to uphold the notion of “proper appraisal” as well as cast 
scathing doubt on the claims and warrants put forth by authentication experts, 
Drawn to Trouble is pitched in an arguably tension ridden tone. Amidst the exposure 
(again and again) of misattributions, self-deceptions, and bias rampant in the art 
world, Hebborn reaffirms the tradecraft expertise of the fooled. A similar tension is 
evident in the fact that the quality of Hebborn’s work is contested among art histo-
rians and connoisseurs, with some considering them to approximate ‘perfect’ fakes 
(Lenain 2011, 269), and others arguing that his fakes are not nearly as convincing as 
he claimed (Jones 1990, entry 257; Hoving above). The questions of which differ-
ences matter, how to demarcate what belongs and doesn’t to an artist’s visual signa-
ture, and who can reliably do so, thus add complexity to the assumption that there is 
something ‘wrong’ with the fake that, once located, becomes available for all to see.
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4  �In the Blink of an Eye

In the previous sections, consideration of the sketches of Henri Leroy provided an 
illustration of techniques through which fakery is made accountable and anchored 
in what is at hand, along with how this shores up the credibility of experts. The 
juxtaposition of the two sketches provided the basis for turning perceivable differ-
ence into ‘data’, for acknowledging how attributions direct the seeing of fakery, and 
for indicating how things can get, well, befuddling. Although Hoving and Hebborn 
differed in how they orientated to the sketches and what they demonstrated, for both 
the side-by-side placement opened the possibility, using the words of Cohen and 
Cohen (2012), for a kind of ‘hot’ authentication based on direct perception by view-
ers rather than the ‘cool’ authentication gained by reading expert pronunciations. In 
this sense, the visual ‘data’ warranting authenticity verdicts is made available 
to anyone.

In this section, we move from practices and complications of “packaging” visual 
difference to discussing how different approaches to authentication treat artworks as 
material traces of their own origins. We do so mainly on the basis of the well-known 
tale of Teri Horton, an American truck driver who tried to get a painting she had 
bought in a thrift shop for $5 authenticated as a Jackson Pollock. This story, particu-
larly as told in the documentary film ‘Who the #$&% Is Jackson Pollock?’ by Harry 
Moses (2006), also allows us to begin to explore how attempts to warrant authentic-
ity intersect with commercial stakes.

Moses’ and other accounts of the Horton case (Cole 2004, 2006; Hoving 2008; 
Grann 2010) feature two seemingly diametrically opposed forms of expertise that 
were brought to bear on the determination. The first is connoisseurship, focusing on 
the general stylistic impression of the painting and its resemblance (or lack thereof) 
to the general stylistic impression given off by Jackson Pollock’s work. In the docu-
mentary ‘Who the #$&% Is Jackson Pollock?’ by Harry Moses, Thomas Hoving 
appears as the poster boy for this type of expertise, proffering a negative verdict for 
the painting:

My instant impression, which I always write down, you know, the blink, the one-hundredth 
of a second impression, was: Neat. Dash. Compacted. Which is not good. He wasn’t neat. 
He wasn’t compacted. It’s pretty. It’s superficial and frivolous. And I don’t believe it’s a 
Jackson Pollock. (Moses 2006)

His nemesis in the film is art forensics expert Peter Paul Biro, who represents the 
second type of expertise. In a scene shot within his lab, Biro explains how he was 
able, with microscopes and high-powered photographic equipment, to locate a fin-
gerprint on the back of the painting, which he then successfully matched to another 
print lifted off a blue paint can in Jackson Pollock’s studio in East Hampton, 
New York. Another expert named Andre Turcotte demonstrates the match by point-
ing to the bifurcation pattern on both prints, presenting viewers with an animation 
that purports to demonstrate the overlay point by point. As Biro argued elsewhere in 
relation to his technique:
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Connoisseurship relies on an expert’s close comparisons of a given work with closely 
related examples in order to discern where it “belongs” in terms of place, date and maker. 
By applying forensic methods, the process of attribution takes a novel and remarkable turn: 
it can use the evidence of fingerprints to trace a work of art back literally to the artist’s hand. 
In effect, when the paper trail is missing or broken, forensics can at times fill in the gap. 
(Biro 2010, 157)

Biro’s emphasis on material traceability represents an effort to make art into data 
that is markedly different from stylistic appraisal. In addition to his use of finger-
prints, in the film Biro also explains how he matched gold particles found on 
Horton’s painting with gold particles found on Pollock’s studio floor.2 In his efforts 
to construct material provenance trails, Biro’s approach differs from the more cus-
tomary way imaging technologies and materials science are drawn upon as a line of 
defense against forgery – namely by testing for ‘deeper-layer’ manipulation that 
does not show on the surface of the work, and for “glaring anachronisms of materi-
als and technique” (Craddock 2009, 1).3 Too, most notably in the work of Simon 
Cole (2004, 2006), fingerprint expertise has been argued to be more similar to, than 
different from, connoisseurship in its reliance on comparative judgment.

But Biro nevertheless is the poster boy for ‘science’ in ‘Who the #$&% Is 
Jackson Pollock?’, and the difference between his and Hoving’s expertise appears 
large and unassailable. Connoisseurship appears highly inscrutable – certainly the 
caricatured way in which Hoving appears in the film makes him the epitome of an 
old-fashioned authority vested in the experience and trusted judgment of particular 
persons (privileged white males in particular), and offends modern sensibilities 
regarding the accountability of experts (Porter 1995). With Biro, on the other hand, 
the emphasis shifts from the expert to the evidence, in line with “the desire to 
democratize” art authentication by “scientificizing” it (Grann 2010). The making of 
new data from the work of art – fingerprints, paint sample readings – and the dem-
onstration of technical methods designed to make extraction and comparison of 
such data systematic, replicable and verifiable (having set the terms for fallibility4), 
correspond to cultural notions of objectivity in investigating material links between 
the art object and its maker. To Hoving’s put-down that “scientists are very interest-
ing but come after the true connoisseurs” Biro retorts that connoisseurs need to 
update their understanding of what is and isn’t a Pollock based on the evidence he 
uncovered (Moses 2006). ‘Who the #$&% Is Jackson Pollock?’ ends with the mat-
ter unresolved but also leaves viewers shaking their heads at ‘ivory-tower’ connois-
seurship that refuses to reckon with material findings.

Hoving’s approach gets a more positive billing in Malcolm Gladwell’s Blink: The 
Power of Thinking Without Thinking (2005). Far from anti-systematic, the “instant 

2 And, an exercise of a different order, he matched the drip patterns of Horton’s painting to those of 
an undisputed Pollock.
3 For example, the fate of a purported Frans Hals sold by Sotheby’s was sealed when scientific 
analysis in 2016 found “synthetic pigments that the artist, in the seventeenth century, could not 
have used” (Subramanian 2018).
4 We thank Niccolo Tempini for providing this articulation.
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impression” is here presented as a valid, if not easily explicable, way to know. The 
‘blink’ points to a special kind of learnt receptiveness, developed through deep study 
of an artist’s oeuvre. The knowledge that something is off can manifest in impres-
sions such Hoving’s above, or bodily reactions such as feeling cold (“as though there 
was a glass between me and the work”, said one connoisseur), repulsed or uncom-
fortable (Gladwell 2005, 5) – something in line with a “sixth sense” (Hoving 1996, 
19). The appeal to this acquired sense makes credible certain felt intuitions that might 
otherwise be dismissed as idiosyncratic reasonings, personal hunches, etc. The 
inability to isolate and nominate particular features as the grounds for a ‘fake’ verdict 
then does not invalidate such a verdict.5 To paraphrase Gladwell, it is possible to 
know without knowing why, to know without being able to articulate how.

In the way these different approaches to authentication position art, knowledge, 
and appraisal to the public, as Cole (2006) has commented, “the truth ultimately 
comes down to which expert you believe.” That ‘you’ are not yourself an expert is 
thereby underlined. At the same time, from the perspective of the artwork under 
investigation, the question of data remains highly relevant. Hans-Jörg Rheinberger’s 
(2011) distinction between ‘materials’, ‘traces’ and ‘data’ helps to outline this. The 
artwork is construed alternately as a material to be interacted with, from which 
traces can be generated – this is what Biro was doing in scanning Horton’s painting 
and Pollock’s lab for fingerprints and paint samples – and a complex trace in its own 
right, in its totality a manifestation of its own history of becoming – this is what 
Hoving was engaging with. For Rheinberger, writing about experimental practices 
in the life sciences, the conversion of ‘trace’ to ‘data’ is about storing the information-
content of precarious organic traces for future retrieval and pattern recognition 
(similar to Leonelli’s definition of data as that which has been organized for wit-
nessing, circulation, retrieval). In our case, treating art as trace is central and 
endemic to the work of authentication, but converting traces into data is not. ‘Blink’ 
thinking proceeds on a different basis than the ability to pinpoint data that can be 
appreciated or reactivated as key ingredients for authenticity adjudication; the sub-
jectivity of the appraiser and the materials on which the verdict is made are here 
much harder to separate (cf. Shapin 2010).

At the end of ‘Who the #$&% Is Jackson Pollock?, Teri Horton has not suc-
ceeded in having her work included in Pollock’s oeuvre, but she has received an 
offer for it, for $9 m. As one of her friends remarks in the film: “Horton brought this 
painting to life”: an “ugly” thrift shop painting nobody much cared about has been 
upgraded to a possible Pollock, disputed and in limbo. The expert appraisals have 
helped propel, if not exactly a data journey, a journey of valuation composed of a 
great many moves, including:

•	 A local art teacher pointing out to Teri that her painting ‘could be’ Pollock’s 
work (prompting from her the question with the curse word that gave the docu-
mentary its name);

5 Even as Hoving (1996), for one, recommends following it up with a detailed examination that 
might produce such features.
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•	 Teri and her son Bill’s persistent efforts to find experts and brokers in the art 
world who would not dismiss the painting out of hand;

•	 The technical investigation of Peter Paul Biro, which provided a turning point in 
giving the painting the ‘weight’ it needed to qualify as a possible Jackson 
Pollock;

•	 The favourable testimonies of Nick Carone, a friend and contemporary of Pollock 
(who said the painting is technically consistent with how Pollock painted) and art 
forger John Myatt (who said he could not have forged this work).

In and through these moves, a once-unremarkable object is shifted into a realm 
of ambiguity. Such a shift is also evident in relation to the work’s undocumented 
provenance, highlighted by experts in the film as a big problem. Initial dismissal out 
of hand – “there are no Jackson Pollocks in thrift stores” – gives way to ambiguity 
as we learn that Pollock apparently did throw away work he wasn’t happy with. 
Allan Stone, an art dealer, did get a genuine Pollock out of the dumpster in East 
Hampton. Lee Krasner, Pollock’s widow in charge of the inventory, may not have 
kept proper track of all paintings that left the studio, etc.

A particularly interesting additional character introduced in the film is Tod Volpe, 
an art dealer contacted by Horton after she read his book Framed: America’s Art 
Dealer to the Stars Tells All. Volpe gets involved to try and “put money behind the 
painting”, specifically by interesting a collective of Hollywood actors and Wall 
Street finance professionals to buy it from Horton as a way to improve its prove-
nance. Backed by such august owners, it can then be sold again, with a much-
enhanced exchange value.6 In an analysis of the case, Tay Yong Chiang (2016) 
called this effort to make the painting attract money a form of “commercial proof”. 
The term is significant for how it puts Volpe’s work on par with the authentication 
work of connoisseurs and scientists as three possible modes of proving that shape 
the object’s journey of valuation. New datapoints are added: dollars and owners’ 
names. The creation of commercial proof reminds of the way auction houses like 
Sotheby’s and Christie’s perform themselves as “temple[s] of civilised style and 
judgment” (Lacey 1998, 3).7 Through glossy catalogues, private viewings, staff in 
smart evening outfits, the presence and commentary of experts, the style and 
demeanour of the auctioneer, and the way items are prepared for their moment in the 
spotlight, objects attract hefty sums.

So a once-ignored thrift shop painting is brought to life through a combination of 
moves that include extracting material traces from it (Biro), constructing the possi-
bility of genuineness on the basis of testimony (Carone, Myatt), and offering it as an 
investment (Volpe) so it can begin to circulate in the artworld proper, as artwork 
proper. The way these moves together warrant the possibility of genuineness shows 
the entanglement between efforts to know Horton’s painting for ‘what it really is’ 
and efforts to build commercial success for it. Significant, too, is the way the film 

6 Volpe did not, in the end, succeed in getting the painting sold this way, partly because Horton 
would not part with it.
7 We thank CF Helgesson for suggesting this connection.
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exhibits the mechanisms of which it tells. The idea for the documentary came from 
none other than Tod Volpe, who thought introducing the story to a broad audience 
would help build the painting’s value, and who brought together the parties to make 
it happen. Clearly, the entanglement that shows up here between commercial stakes 
and authentication efforts  – both put before the public’s eye  – complicates the 
common-sense notion that authentication precedes, and is a prerequisite for, sales. 
The casting of artworks in evidential roles intersects with their circulation in the 
market in a more complex fashion, as we will continue to unpack in the next section.

5  �Is There Anything to See? Is There Anyone to See it?

Public demonstrations of the approaches by which works of art are made to speak 
to their own genuineness have their shadow side in the various ways that routes to 
knowing are presented as barred. The problem of revealing fakes is not only one of 
sizing up troublesome objects that trick our perceptions. It is also one of contending 
with a destabilizing doubt about the universe of objects deemed ‘art’ as well as the 
experts that speak for them. The knowing and knowability of art forgery entails a 
complex mix in which the truth is variously treated as available and elusive, pub-
licly demonstrable and beyond simple verification, given up and held back.

Let’s return to the writings of Hoving and Hebborn for examples of such 
oscillations.

Hoving moves from general arguments that fakes are easy to foil because there 
is always something that gives the fake away, to other general arguments that it may 
be difficult to know what to look for:

[One] work of art can be proven a fake because the drapery is too nervous in style; another 
because the drapery is not nervous enough. A statue of the fourteenth century can be fake 
because it is too refined, too beautiful. Another statue of the same period can be condemned 
because it is not sweet and pretty enough. (Hoving 1996, 22)

As well as appealing to ‘blink’ judgment as a basis for distinctions, Hoving also, 
at times anyway, appeals to the even less specifiable spiritual quality of art. As he 
writes, “I tend to look upon works of art as partly spiritual and mysterious and partly 
human and fragile. Their lofty nature helps me break free from the mundane” 
(Hoving 1996, 16). In contrast to this glimpse of the sublime, phony pieces are 
“nothing but mockeries, dead things” (Ibid., 333). In attributing such a “cult status” 
(Benjamin 1936) to art, the distinction between the fake and the real remains clear, 
but rather than located in visible material features it gets bound up in some way with 
that which transcends (and thereby also with the learned receptiveness and sensitiv-
ity of the connoisseur). Hebborn performs a similar slipperiness in denying the vis-
ibility of forgery in terms of lack, fault, or inferiority, while upholding a sense that 
there is ‘good’ and ‘bad’ art. The former is the domain in which he locates his own 
efforts, which he looks to genuine experts to confirm on the basis of “proper 
appraisal”.

More broadly, the nature of False Impressions and Drawn to Trouble as exposés 
of the art market does not allow us to rest entirely assured that there is a way out 
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from the havoc wreaked by ambiguities and close resemblances. The hidden nature 
of art forgery, the way in which it aims for close resemblance and for passing unno-
ticed, means that, as Sergio Sismondo has written for the practice of ghost manage-
ment in medical publications, “we cannot tell how common it is from published 
exposés,” (Sismondo 2007, 1429). Equally, discussions of the possibility of very 
convincing fakes that are hard to catch can be read as shoring up, but equally as 
destabilizing, the status of the teller by being self-serving without providing a stable 
reference point. Hoving attempts to uphold the notion that such reference points 
exist, while Hebborn embraces the slipperiness, acting as both exposer and trickster. 
These exposés then oscillate between upholding and destabilizing, for their audi-
ences, the prospect of seeing and knowing, begging the question what there is to be 
witnessed in this space.

Routes to knowing are also presented as obstructed in reports about the legal 
pressures that keep art experts from making public what they privately know. In its 
basic contours, the dilemma is not new (Easby and Colin 1968) – negative authen-
ticity assessments destroy market value, making owners and dealers lose money – 
but the large fortunes at stake in the art market now have made them more extreme. 
According to art lawyer Ronald Spencer, scholars are “nervous about taking a $500 
fee and getting sued for $10m” (quoted in the Economist 2012). There are reports 
of experts refusing to make their doubts about new discoveries public, and of a 
scheduled debate about the authenticity of a set of Francis Bacon drawings being 
“cancelled a week before it was to have taken place […] due to ‘the possibility of 
legal action’” (Economist 2012). The Andy Warhol Foundation dissolved its authen-
tication board in 2012, citing the exorbitant costs of defending against legal chal-
lenges as the reason (Kinsella 2012). Authors of the catalogue raisonné, the 
authoritative list of works by a particular artist, report having received bribes and 
death threats (Cohen 2012; Economist 2012).

At the same time, getting proof of art forgery to hold up in court is difficult, as 
was shown in a recent case against two art dealers allegedly working for a crime 
syndicate that was flooding fake Russian modernist art into Germany:

After five years of investigating the 1800-work collection in collaboration with more than 
10 international experts […] authorities were ultimately unable to determine the authentic-
ity of the bulk of the collection, after only four paintings were declared to be fakes. 
(Neuendorf 2018)

In this case, warring art experts making opposite claims did not help, and the 
court seems to have put most stake in the scientific analysis of paint samples, to 
which, for reasons the account does not provide, only a fraction of the works in the 
collection were subjected.

The rules of what to do with art that is assessed as fake are also not clear cut: the 
works may be confiscated or – in rare cases – destroyed, they may be stamped or 
marked in some way, but also may simply be returned to a dealer or previous owner 
in exchange for restitution. So it is not unheard of to have artworks previously dis-
credited as fakes resurface in the market after some time (Cohen 2012). Efforts to 
recognize a work for what it really is are hampered when it is difficult to mobilize 
evidence of fakery in a court of law, and comparatively easy to cut loose the ballast 
of unfavourable verdicts and re-enter an artwork into circulation.
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Such pressures and troubles encountered by art experts in turn affect the market: 
in the absence of a catalogue raisonné or the possibility of expert certification, 
“savvy art-buyers” are reportedly “spending less than they otherwise would” 
(according to a source quoted in the Economist 2012). They also change the account-
ability relations between experts, audiences and works of art. Some institutions 
have decided to do away with the catalogue raisonné in favour of something less 
definitive. For certain artists’ works, online repositories are being developed that 
allow collectors and others to make their own determinations. In the words of a 
representative of the foundation that maintains the estate of artist Alexander Calder: 
“You determine if your work is fake or not with the data we present” (Cohen 2012).

This last statement brings full circle this chapter’s survey of efforts to make fake 
vs. real art witnessable and warrantable. It leaves the viewer to assemble the case, 
as experts and the organizations that employ them put materials on display but stay 
clear from making evidential arguments. Such an outcome reminds of dynamics of 
devolved judgment and tension-ridden witnessing when expert testimony is cali-
brated to lay juror assessment, prompted by the question of whether evidence can 
and should ‘speak for itself’ (Goodwin 1994; Jasanoff 1998).

Overall, the knowing and knowability of art forgery is subject to shifting orienta-
tions. Firm grounds for determination are both gestured towards and withdrawn, 
and those giving accounts of the world of fakes can, among other things, displace 
offering a definite depiction; display fact after fact to build a credible argument; 
defer to some individuals as authoritative experts; devolve meaning making to view-
ers; and indicate obstacles to being able to see what is shown. As part of these 
strategies, expertise is varyingly circulated around, shifted in a zero-sum fashion, 
mutated, or pushed on to elsewhere. As a result, readers or viewers are varyingly 
barred, invited, and demanded to partake in the process of sense making.

6  �Conclusion: Varieties of Data and Journeys of Art

In Data-Centric Biology, Sabina Leonelli refers to Paul Edwards’ (2010) discussion 
of “data wars” in climate science to distinguish two ways in which data are handled 
and valued in scientific research. In one model, associated with weather forecast-
ing – where “original sensor data may or may not be stored; usually they are never 
used again” – “the idea of “raw data” is not highly valued and scientists tend to work 
with models of data built through statistical tools” (Leonelli 2016, 22). In the other 
model, associated with climate science, the collection and curation of diverse data 
supports work on “a variety of research questions”, and the point is for the data to 
be ‘there’ and available to be accessed at different points in time.

What we have described may be a third variety of how data and data journeys 
feature in the production of knowledge, one that applies to instances where the 
stakes revolve around recognizing things for what they are, and assigning them their 
proper ‘place’. Art authentication in this respect finds common ground with archae-
ology, which as Alison Wylie (this volume) asserts, “depends fundamentally on 
discerning the temporal structure of the material record of the cultural past.” In both 
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cases, inferences are made about the past from traces that endure into the present. 
Art authentication also finds common ground with forensics and medical diagnos-
tics, which use the “clues” provided by what we can access here and now to make 
inferences about a there and then (Ginzburg 1989). The speculative point here is that 
data gain significance (or don’t) insofar as they can be mobilized in relation to ques-
tions of origin, cause, perpetrator, instigating circumstances, etc.

Wylie shows such mobilization to be a “hard-won achievement”, dependent on 
background assumptions, procedures of triangulation and the specific arguments 
archaeologists seek to make. In art authentication, too, efforts to determine and 
demonstrate what’s given are informed by assumptions about art and authorship, 
about the craftiness of forgers (and the limits thereof), and, perhaps most fundamen-
tally, about the artwork as a trace that, given the right approach, will speak to where 
it came from. The shiftiness we have documented in this chapter, especially in 
attempts to create public witnessability, resides in the varying ways these assump-
tions are embraced or contested. It also resides in how art is produced as covetable 
commodity and as investment, with works by popular artists fetching increasingly 
large sums as they change ownership. On the one hand, the determination and 
demarcation of what is and is not original has become more important as prices have 
risen; on the other hand the mere possibility of genuineness can spur financial spec-
ulation, and the pressure to avoid lawsuits has generated interesting readjustments 
of accountability relations between experts and art buyers (“You determine if your 
work is fake or not with the data we present.”) As the epistemic challenge of 
authentication meets this commercial push-and-pull, what is extracted or pulled 
from the artwork, brought into view through comparison, gleaned through “blink” 
thinking, or added as information associated with the work, is attended to in various 
ways as secure or provisional.

More mobile than these data of different kinds, the examples in this chapter seem 
to suggest, is the artwork itself. What gets mobilized as evidence for inauthenticity 
at one point may not take the work out of circulation forever, and may be (temporar-
ily) forgotten, marginalized, or erased. And yet, with the circulation of a work also 
circulates the possibility of revisiting it as evidence of its own origins. When, how 
and by whom that possibility is activated is circumstantial, but the importance of 
assigning artworks their proper “place” (in the double sense of origin as well as 
resale value) positions works in what we might call a permanent state of being 
proto-data.

7  �Coda

It is worth noting that Hoving (at times anyway), Biro, and Hebborn all agree on the 
general availability of works of art to be open for inspection, despite differences in 
how they are made to speak and what they speak about. Whatever their varying 
moves, the underlying similarity those surveyed in this chapter share is the potential 
for discernment – if only we care to look properly.
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And yet, despite the manner objects are positioned as sites available for “close 
looking, the making of fine distinctions” (Nagel 2004, section 13), some accounts 
of successful art forgery point in an opposite direction. British forger John Myatt, 
who was involved in the “the biggest art fraud of the 20th century”, was known to 
have made poor-quality fakes for which he used “an easily detectable household 
emulsion paint developed in the mid-60s, decades after most of the paintings were 
supposed to have been executed. In some cases, he used K-Y Jelly as a medium to 
add body and fluidity to his brushstrokes” (Landesman 1999). American Mark 
Landis, a forger who successfully donated his works to prestigious museums, said 
of his method:

I know everybody’s heard about forgers that do all these complicated things with chemicals 
and what-have-you […] I don’t have that kind of patience. I buy my supplies at Walmart or 
Woolworth – discount stores – and then I do it in an hour or two at most. If I can’t get some-
thing done by the time a movie’s over on TV, I’ll give up on it. (quoted in Caffrey 2015)

Far from doing their utmost to confound scrutinizing gazes or scientific probes, 
Landis and Myatt present forgery as superficial. The commonplace notion of the 
gaze of the discerning viewer, expert, etc. that needs to fooled is thereby rendered 
into a mere trope. Just as deceptive objects are not what they seem, neither might be 
the practices of deception.

Acknowledgements  Thanks to the editors of this volume, and to members of the Values group at 
Tema-T in Linköping, for helpful comments on an early version of this chapter.
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Afterword: Data in Transit

Helen E. Longino

Abstract  The naïve fantasy that data have an immediate relation to the phenomena 
of the world, that they are “objective” in some strong, ontological, sense of that 
term, that they are the facts of the world directly speaking to us, should be finally 
laid to rest by the papers collected in this volume. In this afterword, I propose that 
these papers, investigating data journeys in fields from particle physics to urban 
planning, show that even the primary, original, state of data is not free from research-
ers’ value- and theory-laden selection and organization.

The naïve fantasy that data have an immediate relation to the phenomena of the 
world, that they are “objective” in some strong, ontological, sense of that term, that 
they are the facts of the world directly speaking to us, should be finally laid to rest 
by the papers collected in this volume. One might think that “data journeys” catalog 
the way that raw givens are transformed as they move from their original context to 
other contexts, whether higher levels of abstraction in the same field or other fields 
of inquiry. These papers, investigating data journeys in fields from particle physics 
to urban planning, show that even the primary, original, state of data is not free from 
researchers’ value- and theory-laden selection and organization. Once reactivated in 
a new context, once they have journeyed, the mutability of the data is even more 
starkly revealed. But it is just this mutability that demands of researchers’ creativity 
and diligence in the preparation and transport of data. Data are the currency of sci-
ence and, even though not nature announcing itself to us, must be protected as if 
they were, because they are the closest we have. Where philosophers have in the 
past treated data as brute, unanalyzed, givens for purposes of inference to hypothe-
ses or theories, the essays in this volume approach data as themselves the outcome 
of research practices. The practice perspective reveals a multiplicity of data produc-
tion and manipulation processes. I will underscore the ways activities reported in 
four of these papers demonstrate this point. I will then engage in some general 
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reflection on the lessons from the workshop that spawned this volume for thinking 
about data. The journeys are various, the fields even more so.

The contributions from Ramsden and Müller-Wille illustrate the challenges of 
obtaining information from data. Of course, one can count and measure any number 
of things. The trick is to measure the right things and to measure and report them in 
a way that will serve cognitive and practical purposes – one’s own and those of oth-
ers. Ramsden’s paper tracks the progressive improvement in the quality of data on 
housing in mid-twentieth century United States, setting it alongside changes in the 
perception of the lives of the poor by middle-class professionals. Mueller-Wille’s 
follows anthropologist Franz Boas’s even earlier development of standardization in 
anthropometrics. This is set alongside changing demographic preoccupations in the 
US. Both papers concern themselves with the technologies researchers developed to 
make physical data relevant to social and cultural questions, as well as with the 
institutions, norms, and practices within which those technologies were deployed.

Ramsden focuses on the efforts of Edith Wood to obtain data that could be used 
to create national housing standards. When she began her work in the early 1930s 
she could complain that what data existed were locally variable, so that generaliza-
tions across states and cities were not possible. Wood “knew” that housing stock 
was inadequate, but the available data sets measured different things and used dif-
ferent scales of measurement. A break came in the form of data collected for com-
mercial purposes: the Real Property Index collected for the real estate industry. This 
was a nationwide survey and classification of real property that made possible 
meaningful comparisons of residential housing. It included information on avail-
ability of utilities (gas, electricity), running water, bathing and toilet facilities). Its 
utility for Wood was its broad geographical reach and the consistency of items cata-
logued or measured. Wood was then able to find enough data on various indices of 
ill health (mortality, morbidity, delinquency) that she could map areas of more 
intense social ill health onto transparencies and overlay those on maps of housing 
quality created with the RPI. With correlations established in enough municipali-
ties, the housing data could come to signify the intensity of social ills without need 
for further study. Wood’s purpose was to advocate for minimum building standards 
as essential to a healthy society. Once her stress on comparability of data was 
accepted, the data became more fine-grained and the standards more demanding. 
Ramsden traces the trajectory from increased amounts of data, an increase that 
eventually made the data unusable, to the selection of key elements that could be 
taken as informative of a range of qualities. More is not always better.

What Ramsden also shows is that the impact of information depends on the aims 
of those with the power to use the information. The impact of uniform housing codes 
depended on the attitudes and aims of those for whom the data were produced. In 
Wood’s time the goal was to improve the quality of life of the poor and indeed rates 
of disease and crime were (initially) lower in those areas where housing stock con-
formed to the new standards. But it takes more than square footage and running 
water to create a good life. In an urban context, it takes transportation, jobs, shops, 
spaces for social life. In the 1950s and 1960s the social reformers’ goal of public 
health was replaced by urban renewal which came to mean the wholesale destruction 
of neighborhoods perceived as plagued with substandard housing (and the associated 
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social ills) and their replacement with high-rise, uniform apartment blocks. In some 
cases the residents of neighborhoods classified as substandard were moved whole-
sale into new areas and placed in housing that conformed to the physical require-
ments validated by the extensive data collection and analysis Ramsden chronicles. 
But, as the Boston example shows, the uprooting of families and neighbors destroyed 
social bonds that had come to flourish in less than ideal physical circumstances. 
Those social bonds, the relations of friendship and acquaintance as well as of com-
merce, are just as important in overall health as the physical requirements codified 
by housing advocates. New kinds of data sought and generated in the wake of the 
West End project in Boston signaled the lack of transportability of quality of life 
indicators that had to do with the interrelationships of residents with one another. 
The conclusion seems to be that these indicators are local, and the measurable indi-
ces too variable to be applicable across municipalities and states. It might be possible 
to read the lesson as that the conditions of “healthy” neighborhoods are plural: there 
is more than one way to make for good quality of life. Such a lesson is not generally 
welcome in a context looking for uniform and universal standards. And so, the story 
of data on housing and public health comes in some ways full circle, but through 
paths that demonstrated the importance of minimal standards, the relation between 
housing conditions and disease (especially communicable diseases such as tubercu-
losis) and what from one perspective one could call crime and from another, security.

Mueller-Wille’s study of Franz Boas’s anthropometric methods is, like 
Ramsden’s, a story of efforts to integrate physical with social information. Boas was 
a staunch environmentalist, believing that both environment and biology contrib-
uted to the expression of specific physical characteristics in individuals. To this end 
his anthropometric effort was directed at matching continuity and discontinuity of 
physical characteristics with genealogical relations and tribal identities. Boas 
selected a small number of physical variables but measured them on a large number 
of individuals. In particular he conducted a major study of the Chickasaw, a people 
of the southeastern United States that was relocated together with the Choctaw as 
Americans of European descent pushed into Indian lands. Mueller-Wille stresses 
the hybrid character of the data Boas developed. Height and cranial features could 
be measured with standardized measuring instruments. Genealogical information, 
including tribal affiliation of parents, was, however, provided by the subjects them-
selves. Tribal affiliation was, in turn, determined by the informants according to 
internal standards of kinship and belonging (whether mother or father was of the 
tribe, etc.). Boas was interested in these data for theoretical purposes. His interest in 
pursuing this line of research among American Indians flagged when the data came 
to be seen as relevant to the highly political issues of tribal membership and entitle-
ment. In spite of Boas’s loss of enthusiasm for his study, the data have been pre-
served and have now been used to ground longitudinal studies of the (descendants 
of) the populations Boas studied and in statistical reanalyses of the data themselves. 
Mueller-Wille alludes to some of the recent debates about Boas’s study of immi-
grants to the United States, a study he took up after abandoning the research on 
native Americans. This work, too, was caught up in political controversy, as Boas 
(and many after him) argued that his data showed the role of environment in the 
production of physical traits like cranial size. Such findings are not at all to the lik-
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ing of those who urge restricting immigration of certain ethnic groups based on the 
assumed immutability of certain of their physical characteristics.

The essays of both Ramsden and Mueller-Wille, like those of Cambrosio and col-
leagues, Bechtel, Boumans and Leonelli, and Ankeny, make evident the struggle to 
identify and provide usable data. In both cases, the data gathered in one context 
needed to be comparable with data taken in another context. This required identify-
ing what data could be found in all the contexts that needed to be compared, and 
selecting what among those variables would be most informative. Uniform measur-
ing tools were necessary as well as universally available targets of measurement. 
Observers needed to be trained to use the tools, such as calipers, and to perform the 
measurements of, for example, the right cranial dimensions. And, in both cases, tech-
niques of visualization are also required to make the import of the data evident. 
Overlaying transparencies marked by frequency of socially undesirable phenomena 
over municipal maps marked according to quality of housing stock enables even the 
non-statistically literate to see the connection between quality of housing and health. 
Drawing up kinship trees and putting information in tabular form again enables a 
“reading” of the anthropometric data not facilitated by mere reporting without atten-
tion to presentation. The first journey is the journey to comparability and association, 
facilitated by the selection of categories of data and of tools and the training required 
to use them; the second to visibility, facilitated by techniques of presentation. 
Furthermore, in both cases, the data are enlisted for further purposes. These purposes 
also leave their mark on the character of the data. So, the conceptions of public 
health current in mid-century support a focus on internal features of a home – square 
footage, running water, availability of a toilet – but not the elements of social glue 
that bind the inhabitants of those homes into a community. The need to have all 
members of a population represented for a comprehensive kinship mapping of the 
physical traits requires that obtaining the data involve no violation of modesty (dis-
robing) thus limiting what measurements can be performed. Finally, there is also a 
sense in which the data break free (or are broken free) from the contexts of their 
production and get deployed towards aims that the original research may not have 
envisioned and might not even endorse. The emphasis on the internal, physical 
requirements for healthy living determined the kinds of data that were available 
about neighborhoods and when urban planning shifted its emphasis slightly from 
public health, the welfare of the inhabitants, to urban renewal, a more comprehensive 
and impersonal value, the role of the data expanded from supporting building stan-
dards and encouraging or enforcing renovation to supporting destruction of neigh-
borhoods whose housing stock seemed unamenable to updating and displacing their 
former inhabitants. Boas could see how his data could be used not just for the theo-
retical environmentalism he advocated but also in debates about pure-bloodedness, 
tribal membership and access to the benefits associated with both. When data are 
comprehensive (that is, include information on selected variables for an entire or 
very large segment of a population) they lose some of the apparent mooredness to 
their context and take on an independent life that makes them available for reuse in 
other contexts. As Mueller-Wille reminds us however, in spite of appearances, a 
crucial part of the data Boas gathered on the Chickasaw was indissolubly rooted to 
its context, as tribal identity was recorded based on the testimony of the subjects.
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Koray Karaca takes us inside the black box of a particle detector. This is a 
research world characterized by very different challenges than the social worlds 
explored by Boas and by Edith Wood and her followers. His detailed description of 
the data preparation process in the ATLAS experiment at the CERN LHC neverthe-
less reveals some similar patterns as characterize the housing and anthropometric 
data generation, but at a vastly greater scale. The similarity is in the need to find the 
telling data among quantities of events, just as in the previous two cases the chal-
lenge was to identify the relevant variables. But whereas the issue in the previous 
two cases was to identify the particular variables that were both universal and vari-
able enough to enable data to exit the contexts of their production for comparison 
with similarly produced data, in the case of the High Energy Particle Physics world, 
the challenge is to winnow down the unmanageable amounts of data produced in 
any given run of the collider. A succession of triggers selects events that will be 
informative given the aims of any given experiment. Collision events produce 
masses of different kinds of particle at various energy levels. Many, perhaps most, 
of these are already well understood. The point of the experiments is to find the rare 
events that are evidence of predicted but not yet detected particles, like the Higgs 
boson was for ATLAS, or particles or events that indicate physics processes not 
foreseen in current physical theory, the Standard Model. At the first selection level, 
the point is to thin or prune the data to a more manageable size, so that events of 
interest, that is, potentially informative events, will be more salient. What remains 
as data are the products of (a very small proportion of) the collision events and at the 
next stage these are further reduced while the remaining products are amplified by 
adding information about the trajectories known to produce those particular prod-
ucts or signatures. So, the collision data is reintroduced based on theoretical under-
standings of the particle and energy properties. Finally, at the third level selection 
triggers reflecting just what it is the researchers hope to find are applied to the 
products of the second level of selection. The products of this third selection are the 
data that will be subject to analysis.

Clearly a great deal of theory is required to design the triggers. So, while the data 
are not theory-laden in the old Kuhnian sense they are certainly theory-mediated (to 
adopt a phrase of George Smith’s). Karaka describes a process of transforming the 
“blooming, buzzing confusion”1 of collision events into data suitable for analysis 
and for use as the basis of inferences about particles. While on a first reading it may 
seem that the sequence of triggers renders the data hopelessly theory-dependent, it 
is important to remember that their “provenance” remains available. Unless one 
wants to call into question the entire enterprise of High Energy Physics, the relation 
of the final data to the wild unmanageable dance in the collider is readable through 
the technical specifications of the series of triggers. Seen this way, on a second read-
ing, what Karaka has described at the LHC is in some ways a better documented 
production of data than most. James’s phrase refers first to the human infant’s expe-
rience of the sensible world, but can also apply to the indefinite number of ways we 
can individuate the contents of our sense perception. That we humans perceive as 
we do (three-dimensional medium sized objects perceived via wave lengths within 

1 To repurpose William James’ famous description of infant perception (James 1890).
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a small part of the full spectrum) is a product of our evolutionary history, but even 
within what we could perceive, we attend only to a small portion. While some of the 
selections we make can be reconstructed by reference to the interests we have in 
extracting information from a given perceptual experience, many of the criteria by 
which selections are made are buried in pre-conscious neural processes. Unlike the 
processes of the detector, our processes are opaque to us, revealed only by research-
ers studying mammalian perceptual systems. Whatever the world out there is like, 
its signals must be processed in order that we can begin to make some sense of 
them. In both the constructed detector and the human detector, what is important is 
that the selection processes, however much they may transform the inputs, retain the 
relationships (of relative magnitude, of time, of extension) as the data travel from 
input to cognitively accessible.

Finally, Coopmans and Rappert take us into the exotic (or, per their coda, per-
haps not so exotic) world of art and art forgery. Here the stakes are complicated. In 
the three previous contemplated papers, the stakes are faithfulness and accessibility 
in service to pragmatic or theoretical values. This paper makes clear that, in the art 
context, faithfulness and accessibility have more than an epistemic interest. 
Conceptually speaking, the appraisal of a (putative) work of art has (at least) two 
dimensions, not always distinguished, and often conflated. One is the identification, 
perception, and communication of the aesthetic values exhibited by a particular 
object: the interactions of color, form, figure, and meaning. The other is the attribu-
tion to a particular hand, the hand of Leonardo, Rembrandt, or skipping ahead a few 
centuries, Pollock. In the former case the aesthetic properties of a work and one’s 
abilities as a connoisseur (whether professional or amateur) who can detect them 
are at stake. In the latter, millions of dollars. The art world has always been a world 
of mixed motives and mixed values. Artists need to live, after all. But the twentieth 
century, in particular, has seen a boon in the secondary art market of dealers and 
auction houses, where works attributable to the hand of a Picasso, a van Gogh, a 
Monet, a Rembrandt, fetch sums the makers themselves never dreamed of. In such 
a world, the temptation to produce look-alikes, forgeries, is overwhelming. What is 
relevant to determining the real from the fake?

Coopmans and Rappert draw on the memoirs of various players in the art world 
to bring out the contested nature of evidence in this world. Hoving, the connoisseur, 
“knows” at a glance both whether a work possesses aesthetic value and whether it 
is a genuine work by the artist to whom it is attributed. Indeed, for him, there is no 
difference between these judgments. Like Boyle summoning credibility for his air-
pump by inviting gentlemen onlookers, Hoving tries to enlist us as witnesses by 
pointing to the telltale details of the work that give away a forgery as fake. We, the 
non-connoisseurs, ought to be able to see as well as he, once tutored (and given 
enough study and tutelage might even come to be able to make such judgments on 
our own). Is this a real X? Here, let me show you. But there is another kind of detail: 
the physical trace, especially the fingerprint, but chemical analysis, too. Chemical 
analysis can help identify a fake as a fake, but the fingerprint links the object to a 
body in a way that does not depend on our being able to appreciate what the con-
noisseur asks us to “see.”. Here the presumption is a causal chain from the print on 
the object to the hand of the painter and here we can see the orthogonal system of 
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value at work. A not very good Pollock or Picasso can still fetch higher sums at auc-
tion than a (judged by aesthetic criteria) better painting by an unknown. Does the 
worth of the work lie in its intrinsic aesthetic qualities or in its origin? If someone 
has been clever enough to produce a painting that looks every inch a Matisse or a 
Renoir (but is not), should we care? Would we put it up in our living room or 
entrance way? Would we enjoy it less? This depends on the nature of the pleasure it 
gives us, the pleasure of responding to aesthetic qualities or the pleasure of pride of 
ownership. Of course, there are complicated issues of originality, as well as of qual-
ity, that could be pursued in a fuller discussion of the relative value of originals 
versus forgeries, but this paper draws our attention to the wealth of data extractable 
from a work of art, as from “nature.” What data are relevant, what data will travel 
well and what data will not depend on the purposes for which data are sought and 
the contexts in which they are to be deployed.

These papers reveal a variety of forms of travel. Data can be made visible through 
juxtaposition with other data, can be repurposed (from commercial valuation pur-
poses to public health purposes, from theoretical to political), can be rearranged, 
can be reduced and recreated, can replace and be displaced. Other papers in the 
volume reveal how data from one source must be manipulated and adjusted in order 
to be compared or integrated with other data from different sources. Much discus-
sion centers on the importance of preserving metadata in order to preserve the integ-
rity and meaning of the data.

In all the tracings of data journeys we go back to the origin of the data, the start 
of the journey, and here the papers reveal the variety of means by which data are 
gathered, stored, and deployed. So, no, there is no such thing as “raw data.”2 There 
are the phenomena of the world, some perceptible to us, some not, always filtered 
by our means of perception. The resulting data, however closely linked to the phe-
nomena, are always symbolic representations in some medium. Even the samples 
collected by dragging a receptacle through the sea become symbolic of what is left 
behind. To be informative about those phenomena, a single datum must be set in the 
context of other data: as discussed by several chapters, and particularly Mary 
Morgan’s and James Griesemer’s, we must have a data set or a singularity set against 
a background of other data. The data are always selected and produced, a function 
of the techniques of observation, of measurement, of recording. The expression 
“raw” is, however, trying to get at some aspect of the process. As we study the jour-
neys we need to go back to some originary point where the data have been subjected 
to the least processing, a point closest to their context of generation. There are dif-
ferent ways to convey this notion. Niccolò Tempini suggested “source” versus 
“derivative.” In another context we might think of less versus more defeasible. If 
data travel, there is a place or a status from which they travel. So we might think in 
terms of base level measurements that can be used to plot against other base level or 
against higher level measurements to engage in comparative analysis or to tease out 
the significance of the measurements. What counts as base level will depend on the 
context and what counts as a higher-level set of correlations in one context may be 
base level in another.

2 A point also emphasized by the title and contents of Gitelman, ed. (2013).
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But even if there is no such thing as self-announcing data, it doesn’t follow that all 
data are “just interpretations.” A naturalistic versus an interpretive approach may be 
too coarse a distinction for data, although does reflect a difference in how science stud-
ies has approached data. The naturalistic approach (found among science practitioners 
and some philosophers) is accused of naiveté, not understanding the work that goes 
into generating data that can be used to support scientific inference. The interpretive 
approach (found among constructivist science studies scholars) is accused of under-
mining the trust we rightly place in science. While data need other data and sometimes 
also need theory in order to “speak”, to focus on the interpretative dimensions does not 
mean that the data are unreliable or fake, but that data must be selected, must be clas-
sified, must be set in relation to other data. What requires attention are the methods for 
obtaining, recording, and storing data and how well those methods serve the purposes 
for which data was sought in the first place. This doesn’t place data practices above 
criticism, but helps us see the multiple places where criticism can be directed and 
therefore the multiple places where data practices may require defense. The perspec-
tive of science practice reveals a wealth of epistemologically relevant moves in the 
research context. Our understanding both of the trustworthiness of science and of its 
limits will be enhanced by the attention to data practices manifested in these essays.
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Visual Metaphors: Howardena Pindell, 
Video Drawings, 1975
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Abstract  Closing reflections on data journeys through the contemplative reading 
of a visual work by Howardena Pindell.

As Grace Deveney reports (2018),1 the series Video Drawings came together when 
feminist African American artist, curator and educator Howardena Pindell took a 
sheet of acetate and drew signs, arrows and numbers upon it. Then she hung it on 
her television screen, taking advantage of the static that glues the light plastic to the 
screen glass. Using a camera, she took photographs of the transient juxtapositions 
that formed in front of her. Finally, she selected the set of most interesting combina-
tions from the lot, including “those that had a “weird” sense of movement” (153).

1 Deveney, Grace. 2018. Interrupting the Broadcast: Howardena Pindell’s Video Drawings. In 
Howardena Pindell: What Remains to Be Seen, Beckwith, Naomi and Cassel Oliver, Valerie (eds.), 
151–168. Munich: DelMonico Books-Prestel & Museum of Contemporary Art Chicago.
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Untitled (Video Drawing: Baseball Series), August, 1975. Chromogenic color print (Pindell, 
Howardena (b. 1943): Untitled (Video Drawing: Baseball Series), August, 1975. Chromogenic 
color print, 4 5/8 × 6 7/8″ (11.7 × 16.7 cm). Purchase. Acc. no.: 276.1976. New York, Museum of 
Modern Art (MoMA). © 2019. Digital image, The Museum of Modern Art, New  York/Scala, 
Florence. Courtesy the artist and Garth Greenan Gallery, New York.)

This Video Drawings work might speak as any other picture to the reflections 
about data and science practices that have been shared in this book. So many lines 
could be pursued that my few words here might sound arbitrary. I share them to 
invite, not to foreclose.

By juxtaposing notations to image Pindell prefigures something of data practices 
and analytics – “They resemble weather movement notations, dance notations, and 
particle tracks” (162). But just as with data, there is nothing obvious about them.

Let me first point out a few parallels, starting from the most immediate – Video 
Drawings is a curated collection of stills, selecting the compelling and the surpris-
ing. Highlighting some at the expense of others, the artist had to make certain 
assumptions consequential that shape the nature of what is shared with others and 
add explicit intention to an experiment. More interestingly, the works organised in 
this set are visual juxtapositions. They exploit the predilections of some materials to 
work together, and in so doing they facilitate the linking with one another of two 
heterogeneous records. The TV image becomes something else, as it is transformed 
by Pindell’s re-purposing practices. Through the stilling of the moving image in a 

N. Tempini
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photograph, a record of bodily and material configurations has been extracted (cfr. 
The digital ‘scraped’) from material released for public consumption rather than 
careful analysis – the broadcast of a sport performance. Like data, these are objects 
that can be repeatedly discovered to reveal something new. Their circulation can 
restart.

Deveney (2018) points out how the Video Drawings juxtaposition eventually col-
lapses the original image, erasing distinctions between foreground and background, 
body and field. The low resolution of the TV screenshot makes us think of instru-
ments pushed to the limits. It makes us wonder about the fragility of the processes 
with which data can be put to previously unimagined uses. The visual record is 
rescued from a rather adventurous path of transmission and yet, for all the loss of 
detail in the grainy still, other, new information seems to emerge in the juxtaposition 
with the acetate sheet. The artist, presumed spectator of the TV stream, reclaims a 
role and intervenes, highlighting the creative opportunities opened by constraints 
and omissions. New links are suggested, various relations between data points can 
be postulated. But the juxtaposition remains ultimately open-ended as to its most 
important message. Consensus remains controvertible, and several narratives might 
successfully navigate the visual space. The acetate sheet, with its pre-recorded con-
tent, seems to suggest the existence of frameworks and assumptions enabling and 
structuring ways of reading the record, which are now lost history. The drawn nota-
tions are not analysis of the picture themselves, but could they be abstractions 
obtained from other analyses? At least they seem available to participate in one.

Yet, for all the stimulation it offers, the composition refuses to promise that any 
new meaning can be found. As Deveney observes (2018), the composition hangs 
between order and chaos, predictability and randomness. It might not be what it 
seems. It remains unclear what its final use or destination might be. In this suspen-
sion, the work reminds us of many steps of data journeys that we have discussed in 
this book  – somewhere between the past moment of generation and the future 
moment of definite interpretation.
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