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Preface

This book is based on my Ph.D. thesis (by the same title), which I wrote at the Uni-
versity of California, Berkeley, with the wise guidance of Christos Papadimitriou.

In hindsight, it seems only natural that I ended up working on the complexity of
Nash equilibrium, a problem that has been so closely associated with Christos for
three decades. But the true story of how I came to work on equilibrium computa-
tion is completely different. During my first winter break at Berkeley, Abe Othman
contacted me1 and asked about the complexity of finding an Approximate Compet-
itive Equilibrium from Equal Incomes (A-CEEI). At the time, Abe was preparing for
the launch of Course Match, a system that implements a heuristic algorithm for
A-CEEI to assign students to courses at the Wharton School (University of Pennsyl-
vania). Chapter 10, based on joint work with Abe and Christos, is devoted to the
complexity of A-CEEI.

A-CEEI, like the rest of the problems in Part III, belongs to a special class
(PPAD) of intractable problems that are total: their solution always exists, but it
is hard to find it. Given our current understanding of computational complexity,
this implies that they are unlikely to be NP-hard. In Part IV we move on to a different
category of intractable problems: those that can be solved in quasi-polynomial
(nlog(n)) time; this is typically prohibitively slow to implement even in moderate
sized instances, but it is much faster than what we know or conjecture for problems
like Satisfiability. This suggests that these problems are also not NP-hard. In both
cases, proving intractability for problems that are not NP-hard requires both the
right conditional assumptions (P �= PPAD and the “Exponential Time Hypothesis”),
as well as special techniques.

The most difficult result in this book, for approximate Nash equilibrium (Part V),
lies in the intersection of the PPAD problems from Part III and the quasi-polynomial

1. Thanks to Anindya De for making the introduction!
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time problems from Part IV. It combines ideas from both parts, together with
new and old techniques from across theoretical computer science. It resolves an
outstanding open problem that, as a student, I didn’t really mean to solve. Well . . .
I’m glad I tried!
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1The Frontier of
Intractability

The combination of vast amounts of data, unprecedented computing power, and
clever algorithms allows today’s computer systems to drive autonomous cars, beat
the best human players at chess and Go, and live stream videos of cute cats across
the world. Yet computers can fail miserably at predicting outcomes of social pro-
cesses and interactions, elections being only the most salient example. And this is
hardly surprising, as there are two potent reasons for such unpredictability: One
reason is that human agents are driven by emotions and hormones and billions
of neurons interacting with a complex environment, and as a result their behav-
ior is extremely hard to model mathematically. The second reason is perhaps a bit
surprising, and certainly closer to the concerns of this book: Even very simple and
idealized models of social interaction, in which agents have extremely clear-cut objec-
tives, can be intractable.

To have any hope of reasoning about human behavior on national and global
scales, we need a mathematically sound theory. Game theory is the mathematical
discipline that models and analyzes the interaction between agents (e.g., voters)
who have different goals and are affected by each other’s actions. The central
solution concept in game theory is the Nash equilibrium. It has an endless list of
applications in economics, politics, biology, etc. (e.g., [Aumann 1987]).

By Nash’s theorem [Nash 1951], an equilibrium always exists. Furthermore,
once at a Nash equilibrium, players have no incentive to deviate. The main missing
piece in the puzzle is:

How do players arrive at an equilibrium in the first place?
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After many attempts by economists for more than six decades1 (e.g., [Brown
1951, Foster and Young 2006, Hart and Mas-Colell 2003, Kalai and Lehrer 1993,
Lemke and Howson 1964, Robinson 1951, Scarf 1967, Shapley 1964]), we still don’t
have a satisfying explanation.

About ten years ago, the study of this fundamental question found a surprising
answer in computer science: Chen et al. [2009b] and Daskalakis et al. [2009a]
proved that finding a Nash equilibrium is computationally intractable.2 And if no
centralized, specialized algorithm can find an equilibrium, it is even less likely that
distributed, selfish agents will naturally converge to one. This casts doubt over the
entire solution concept.

For the past decade, the main remaining hope for Nash equilibrium has been
approximation. The central open question in this field has been:

Is there an efficient algorithm for finding an approximate Nash equilibrium?

We give a strong negative resolution to this question: our main result rules out
efficient approximation algorithms for finding Nash equilibria.3

Our theorem is the latest development in a long and intriguing technical story.
The first question we computer scientists ask when encountering a new algorithmic
challenge is: is it in P, the class of polynomial time (tractable) problems; or is it
NP-hard, like Satisfiability and the Traveling Salesperson Problem (where the best
known algorithms require exponential time)? Approximate Nash equilibrium falls
into neither category; its complexity lies between P and NP-hard—hence the title
of our book. Let us introduce two (completely orthogonal) reasons why we do not
expect it to be NP-hard.

The first obstacle for NP-hardness is the totality of Nash equilibrium. When
we say that Satisfiability or the Traveling Salesperson Problems are NP-hard, we
formally mean that it is NP-hard to determine whether a given formula has a satis-
fying assignment, or whether a given network allows the salesperson to complete
her travels within a certain budget. In contrast, by Nash’s theorem an equilibrium
always exists. Deciding whether an equilibrium exists is trivial, but we still don’t
know how to find one. This is formally captured by an intermediate complexity
class called PPAD.

1. In fact, “more than six decades” is an understatement: Irving Fisher’s thesis from 1891 dealt
with the closely related question of convergence to market equilibria [Brainard and Scarf 2000].

2. Assuming P �= PPAD; see the discussion in the next section about this assumption.

3. Under a complexity assumption stronger than P �= PPAD that we call the Exponential Time
Hypothesis (ETH) for PPAD; see Section 1.2 for details.
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The second obstacle for NP-hardness is an algorithm (the worst kind of obstacle
for intractability). The best known algorithms for solving NP-hard or PPAD-hard
problems require exponential (≈ 2n) time, and there is a common belief (formu-
lated a few years ago as the “Exponential Time Hypothesis” [Impagliazzo et al.
2001]) that much faster algorithms do not exist. In contrast, an approximate Nash
equilibrium can be found in quasi-polynomial (≈ nlog n) time. Notice that this again
places the complexity of approximate Nash equilibrium between the polynomial
time solvable problems in P and the exponential time required by NP-hard prob-
lems. Therefore, approximate Nash equilibrium is unlikely to be NP-hard—or even
PPAD-hard, since we know of no quasi-polynomial algorithm for any other PPAD-
hard problem.

As illustrated in the last two paragraphs, approximate Nash equilibrium is very
far from our standard notion of intractability, NP-hardness. In some sense, it is one
of the computationally easiest problems that we can still prove to be intractable—
it lies at the frontier of our understanding of intractability. Unsurprisingly, the tech-
niques we had to master to prove the intractability of approximate Nash equilib-
rium are useful for many other problems. In particular, we also prove hardness of
approximation for several other interesting problems that either belong to the class
PPAD or have quasi-polynomial time algorithms.

1.1 PPAD: Finding a Needle You Know Is in the Haystack
Consider a directed graphG. Each edge contributes to the degree of the two vertices
incident on it. Hence the sum of the degrees is twice the number of edges, and in
particular it is even. Now, given an odd-degree vertex v, there must exist another
odd-degree vertex. But can you find one? There is, of course, the trivial algorithm,
which simply brute-force enumerates over all the graph vertices.

Now supposeG further has the property4 that every vertex has in- and out-degree
at most 1. Thus,G is a disjoint union of lines and cycles. If v has an outgoing edge
but no incoming edge, it is the beginning of a line. Now the algorithm for finding
another odd degree node is a bit more clever—follow the path to the end—but its
worst case is still linear in the number of nodes.

In the worst case, both algorithms run in time linear in the number of vertices.
When the graph is given explicitly, e.g., as an adjacency matrix, this is quite efficient
compared to the size of the input. But what if the graph is given as black-box oracles

4. This guarantee is actually without loss of generality [Papadimitriou 1994], but this is not so
important for our purposes.
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S andP that return, for each vertex, its successor and predecessor in the graph? The
amount of work5 required for finding another odd-degree vertex by the exhaustive
algorithm, or the path-following algorithm, is still linear in the number of vertices,
but now this number is exponential in the natural parameter of the problem, the
length of the input to the oracle, which equals the logarithm of the number of nodes.
In the oracle model, it is not hard to prove that there are no better algorithms.

Let us consider the computational analog of the black-box oracle model: the
oracles S and P are implemented as explicit (“white-box”) circuits, which are given
as the input to the algorithm. This is the End-of-a-Line problem, which is the
starting point for most of our reductions. The computational class PPAD (which
stands for Polynomial Parity Argument in Directed graphs) is the class of search
problems reducible to End-of-a-Line.

Definition 1.1 End-of-a-Line [Daskalakis et al. 2009a]. Given two circuits S andP , withm input
bits andm output bits each, such that P(0m)= 0m �= S(0m), find an input x ∈ {0, 1}m
such that P(S(x)) �= x or S(P (x)) �= x �= 0m.

How hard is End-of-a-Line? We believe that it is likely to be very hard, almost
as hard as the black-box variant. This belief is backed by relativized separations
[Morioka 2003] and cryptographic hardness [Bitansky et al. 2015, Garg et al. 2016,
Hubácek and Yogev 2017], as well as zero algorithmic progress, even on special
cases, since it was first introduced in Papadimitriou [1994]. More importantly, we
are embarrassingly bad at gaining insight to a circuit’s functionality by looking at
its structure (with some notable exceptions in cryptography [Barak 2004])— hence
it seems reasonable to conjecture that the white-box variant is easier than the black-
box problem.

Even more embarrassing is our inability to prove computational intractability.
Essentially all “proofs” of computational intractability (including the ones in this
book) are conditional; i.e., we assume that some problem is hard (e.g., End-of-a-
Line or Satisfiability), and reduce it to a new problem we want to “prove” is hard.
The intractability of the new problem only holds conditioned on the intractability of
the original hard problem. Without first resolving whether P=NP, we cannot prove
that End-of-a-Line is indeed hard. Furthermore, even merely proving that End-
of-a-Line is NP-hard would already imply unlikely consequences like NP= coNP

[Megiddo and Papadimitriou 1991]. The ultimate reason we believe that End-of-
a-Line is intractable is that we have no idea how to prove it.

5. Here work is measured by the number of oracle calls rather than running time; indeed this
model will be the starting point of our reductions for query and communication complexity.



1.1 PPAD: Finding a Needle You Know Is in the Haystack 7

Once we believe that End-of-a-Line is indeed intractable, any problem that is
PPAD-complete, i.e., “at least as hard as End-of-a-Line,” is also intractable. The
celebrated works of Chen et al. [2009b] and Daskalakis et al. [2009a] prove that
finding an exact Nash equilibrium is PPAD-complete. In Section 1.3 we describe
some variants of approximate Nash equilibrium that are also PPAD-complete.

We conclude this section with a few problems (other than variants of Nash
equilibrium) that we show are also PPAD-hard:

. Finding an approximate fixed point of an implicit function; Brouwer’s fixed
point theorem, which guarantees the existence of a fixed point, lays the
mathematical foundation for the rest of our PPAD-complete problems.

. Finding an approximate market equilibrium, which is the conceptual foun-
dation of neoclassical economics.

. Finding an Approximate Competitive Equilibrium from Equal Incomes (A-
CEEI), which is an algorithmic problem of practical interest due to its use
for allocating classes to students (CourseMatch).

1.1.1 Brouwer’s Fixed Point
Brouwer’s fixed point theorem, together with its generalizations (in particular,
Kakutani’s fixed point theorem), is the basis for many of the equilibrium concepts
in game theory and economics. It states that any continuous function f from a
compact convex set (in particular, the n-dimensional hypercube) to itself has a fixed
point, i.e., a point x∗ such that f (x∗)= x∗. Just like in the case of a Nash equilibrium
and the odd-degree vertex, the existence does not come with an algorithm for
finding the fixed point. Brouwer eventually became so unsatisfied with the non-
constructive nature of his proof that he founded intuitionism, a formalism of
mathematics mandating constructive proofs [Iemhoff 2016].

Before we discuss the computational tractability of finding a fixed point, there
are two subtle but important technicalities that we have to clear. The first is that
finding an exact fixed point may be “obviously” intractable when all the fixed points
are irrational. Fortunately there is a natural notion6 of approximate fixed point: find
x such that f (x)≈ x. The second issue is that we want a finite description of the
input to our algorithm. Naively, one can define the value of the function on a grid,
but then the set is no longer convex and a fixed point might not exist at all (see,
e.g., Roughgarden and Weinstein [2016]). It turns out that a better way to define

6. There is also a stricter notion that requires x to be close to an x∗ for which f (x∗)= x∗ exactly.
See, e.g., Etessami and Yannakakis [2010].
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the input is as an arithmetic circuit: this gives a local and easy-to-verify guarantee
that the function is indeed continuous.

Admittedly, there is something dissatisfying about proving computational hard-
ness of “circuit problems”: we are going to prove that this problem is PPAD-hard,
i.e., no easier than End-of-a-Line— but the reason we believe in the first place
that End-of-a-Line is intractable is that we don’t know how to gain insight to the
functionality of the circuit from staring at its structure. Nevertheless, we begin with
the complexity of Brouwer’s fixed point because: this is a fundamental question; it
is the starting point of many of our reductions; and, as we discuss later, even the
black-box hardness in this case is highly non-trivial.

We know of two algorithms for computing an approximate Brouwer fixed point:
there is Scarf’s algorithm [Scarf 1967], but its running time may be exponential in
the description of the function; the same holds for brute-force search.

On the complexity side, Daskalakis et al. [2009a] proved that even in three
dimensions, finding an exponentially close approximation (x such that ‖f (x) −
x‖∞ ≤ 2−n, wheren is the size of the input) is PPAD-complete; Chen and Deng [2009]
proved the same problem continues to be hard even with only two dimensions.
Notice that with a constant number of dimensions, any weaker approximation
desideratum becomes trivial for brute-force search. Chen et al. [2009b] showed that
in n dimensions, polynomial approximations are also PPAD-complete. We will later
prove that even constant approximations are PPAD-complete, i.e., there exists some
absolute constant ε > 0 such that it’s hard to find an x for which ‖f (x)− x‖∞ ≤ ε;
this is already a significant improvement over the existing state of the art.

We can prove an even stronger form of inapproximability for finding a Brouwer
fixed point: so far, we characterized the approximate fixed point with �∞-norm,
which means that f (x) and x must be close in every coordinate. Our main result in
this regard (Theorem 4.2) is that even if we only require that f (x) and x are close
in most of the coordinates, finding such x and f (x) remains PPAD-complete.

1.1.2 Market Equilibrium
Supply and demand is central to our modern understanding of economics: when
demand exceeds supply, raising the price makes it less attractive to consumers
and more attractive to producers, thereby reducing demand and increasing sup-
ply. Vice versa if the supply exceeds the demand. This simple idea marks the birth
of neoclassical economics [Jevons 1866, Menger 1871, Walras 1874], and continues
to inspire us today when we reason about free market economies. Since the con-
sumption and production of one good depends on other goods, we are interested
in a market equilibrium: a vector of prices where the supply and demand of every
good matches.
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The supply and demand argument has many weak spots, one of which is Giffen
goods [Marshall 1895]: Consider a poor 19th-century English family consuming
10,000 calories a day from meat and bread. They prefer to eat meat, but the bread
is cheaper—so they spend their daily income on 6 loaves of bread and 4 pounds of
meat (each provides 1,000 calories). What happens if the price of bread increases?
They have less free money to spend on the preferred luxury good (meat), which
increases their demand for the Giffen good (bread). The existence of Giffen goods in
practice has been contentiously debated for over a century [Edgeworth 1909, Stigler
1947], with evidence ranging from econometric analysis of historical market data
to experiments in lab rats [Battalio et al. 1991].

Despite counterintuitive issues like Giffen goods, Arrow and Debreu proved
that, under quite general conditions, a market equilibrium always exists [Debreu
and Arrow 1954]. In particular, in the Arrow-Debreu model, agents sell the goods
they own and use the revenue to buy other goods they want; this is in contrast to
Fisher markets, where agents with a monetary budget purchase from a centralized
seller. Market equilibria in both models exist, but can we find them? As in the
case of Nash equilibrium, this question is of particular importance because if a
centralized, omniscient algorithm cannot compute an equilibrium, it is hard to
expect a distributed market with selfish agents to converge to one. In the words of
Kamal Jain [Jain 2004, Nisan 2009b]:

If your laptop cannot find it, neither can the market.

In the same paper, Jain also gave an algorithm for computing Arrow-Debreu’s equi-
librium when consumers’ utilities are linear. Since then, there has been a long
sequence of algorithms for computing or approximating market equilibria (e.g.,
[Birnbaum et al. 2011, Codenotti et al. 2005, Cole and Fleischer 2008, Devanur et al.
2008, Garg et al. 2015, Garg and Kapoor 2006, Jain 2004, Jain and Vazirani, 2010]),
for certain models and utility functions, as well as intractability results in other
settings [Chen et al. 2009a, Deng and Du 2008, Garg et al. 2017, Vazirani and Yan-
nakakis 2011]. In particular, Chen et al. [2013] consider a setting of markets that
exhibit non-monotonicity: when the price of one product increases, its demand in-
creases. Giffen goods, described above, are one example of non-monotone markets;
Chen et al. [2013] construct examples in Arrow-Debreu markets when the increased
price of a product increases the revenue of the seller, who now has more available
money and demands more of the same good. Chen et al. show that for essentially
any class of utility function that exhibits some non-monotonicity, computing the
Arrow-Debreu market equilibrium is PPAD-hard.

We extend the PPAD-hardness proof of Chen et al. [2013] and show that even ap-
proximate market equilibrium is PPAD-hard (Theorem 9.1). We note that although
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our inapproximability factor is stronger than that showed by Chen et al., the results
are incomparable as ours only holds for the stronger notion of “tight” approxi-
mate equilibrium, by which we mean the more standard definition that bounds
the two-sided error of the market equilibrium. Chen et al., in contrast, prove that
even if we allow arbitrary excess supply, finding a (1/n)-approximate equilibrium
is PPAD-hard. Furthermore, for the interesting case of constant elasticity of sub-
stitution (CES) utilities with parameter ρ < 0, they show that there exist markets
where every (1/2)-tight equilibrium requires prices that are doubly exponentially
large (and thus require an exponential-size representation). Indeed, for a general
non-monotone family of utility functions, the problem of computing a (tight or
not) approximate equilibrium may not belong to PPAD. Nevertheless, the impor-
tant family of additively separable, concave piecewise-linear utilities is known to
satisfy the non-monotone condition [Chen et al. 2013], and yet the computation of
(exact) market equilibrium is in PPAD [Vazirani and Yannakakis 2011]. Therefore,
we obtain as a corollary that computing an ε-tight approximate equilibrium for
Arrow-Debreu markets with additively separable, concave piecewise-linear utilities
is PPAD-complete.

1.1.3 A-CEEI (CourseMatch)
University courses have limited capacity, and some are more popular than others.
This creates an interesting allocation problem. Imagine that each student has
ordered all the possible schedules—bundles of courses—from most desirable to
least desirable, and the capacities of the classes are known. What is the best way
to allocate seats in courses to students? There are several desiderata for a course
allocation mechanism:

Fairness. In what sense is the mechanism “fair”?

Efficiency. Are seats in courses allocated to the students who want them the
most?

Feasibility. Are any courses oversubscribed?

Truthfulness. Are students motivated to honestly report their preferences to
the mechanism?

Computational efficiency. Can the allocation be computed from the data in
polynomial time?

Competitive Equilibrium from Equal Incomes (CEEI) [Foley 1967, Thomson and
Varian 1985, Varian 1974] is a venerable mechanism with many attractive prop-
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erties: In CEEI all agents are allocated the same amount of “funny money”; next
they declare their preferences, and then a price equilibrium is found that clears
the market. The market clearing guarantees Pareto efficiency and feasibility. The
mechanism has a strong, albeit technical, ex post fairness guarantee that emerges
from the notion that agents who miss out on a valuable, competitive item will
have extra funny money to spend on other items at equilibrium. Truthfulness is
problematic—as usual with market mechanisms—but potential incentives for any
individual agent to deviate are mitigated by the large number of agents. However,
CEEI only works when the resources to be allocated are divisible and the utilities
are relatively benign. This restriction has both benefits and drawbacks. It ensures
computational feasibility, because CEEI can be computed in polynomial time with
a linear or convex program, depending on the utilities involved [Devanur et al. 2008,
Ghodsi et al. 2011, Varian 1974]; on the other hand, it is easy to construct exam-
ples in which a CEEI does not exist when preferences are complex or the resources
being allocated are not divisible. Indeed, both issues arise in practice in a variety
of allocation problems, including shifts to workers, landing slots to airplanes, and
the setting that we focus on here, courses to students [Budish 2011, Varian 1974].

It was shown in Budish [2011] that an approximation to a CEEI solution, called
A-CEEI, exists even when the resources are indivisible and agent preferences are
arbitrarily complex, as required by the course allocation problems one sees in
practice. The approximate solution guaranteed to exist is approximately fair (in
that the students are given almost the same budget), and approximately Pareto
efficient and feasible (in that all courses are filled close to capacity, with the possible
exception of courses with more capacity than popularity). This result seems to
be wonderful news for the course allocation problem. However, there is a catch:
Budish’s proof is non-constructive, as it relies on Kakutani’s fixed point theorem.

A heuristic search algorithm for solving A-CEEI was introduced in Othman et al.
[2010]. The algorithm resembles a traditional tâtonnement process, in which the
prices of courses that are oversubscribed are increased and the prices of courses
that are undersubscribed are decreased. A modified version of this algorithm that
guarantees courses are not oversubscribed is currently used by the Wharton School
(University of Pennsylvania) to assign their MBA students to courses [Budish et al.
2014]. While it has been documented that the heuristic algorithm often produces
much tighter approximations than the theoretical bound, on some instances it fails
to find even the guaranteed approximation [Budish 2011 (Section 9)].

Thus A-CEEI is a problem where practical interest motivates theoretical inquiry.
We have a theorem that guarantees the existence of an approximate equilibrium—
the issue is finding it. Can the heuristic algorithms currently used to assign



12 Chapter 1 The Frontier of Intractability

Wharton MBAs to their courses be replaced by a fast and rigorous algorithm for
finding an approximate CEEI? Theorem 10.3 answers this question in the negative,
showing that computing an A-CEEI is PPAD-complete.

1.2 Quasi-Polynomial Time and the Birthday Paradox
The following bilinear optimization meta-problem captures a wide range of ap-
plications, from areas like statistics Sparse Principle Component Analysis (Sparse
PCA), graph theory (Clique), and game theory (Nash equilibrium):

max
(x ,y)∈X

x	Ay . (1.1)

For all the applications we consider, once we fix some y∗, finding the best feasible x
that maximizes x	Ay∗ is a tractable problem. (Similarly, if we were given a good x∗,
finding a matching y is easy.) But optimizing x and y simultaneously is NP-hard.
What about approximations?

Caratheodory’s theorem states that a point v in the convex hull of n points
in Rd can be written as a convex combination of d + 1 points. In general, d + 1
points are necessary, but this number can be reduced drastically if we are willing
to settle for approximation. In particular, Barman7 [2015] proves an approximate
Caratheodory’s theorem that requires only r =O(p/ε2) points to express a point v̂
such that ‖v̂ − v‖p < ε, assuming the n points belong to a unit �p-ball. In particular,
v̂ can be written as an average over a multi-set of r out of the n points.

Viewing the columns ofA as n vectors in Rn, Barman observes that (after proper
normalization) the point v = Ay∗ is in their convex hull. If we only want to approx-
imately solve the bilinear optimization (1.1), we drastically reduce the dimension
of the problem by enumerating over all choices of v̂, and for each v̂ solving the
optimization problem Av̂. It turns out that in order to guarantee a good addi-
tive approximation of (1.1), we need to set p ≈ log n. The dominant term in the
running time of this meta-algorithm is the enumeration over all choices of v̂ (all

multi-sets of the columns ofA), which takes approximatelynr = nO
(

log n
ε2

)
, i.e., quasi-

polynomial time.
The above meta-algorithm provides evidence that the approximate variant of all

those problems is much easier than solving them exactly: in particular we believe
that NP-hard (respectively, PPAD-hard) problems like 3-SAT (resp. End-of-a-Line)

7. Both the approximate Caratheodory’s theorem and the resulting algorithm have been described
by many researchers (e.g., [Arora et al. 2012, Lipton et al. 2003]); however, the presentation in
Barman [2015] is our favorite.
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require approximately 2n time. This belief is formulated by the Exponential Time
Hypothesis, or ETH [Impagliazzo et al. 2001] (resp. ETH for PPAD [Babichenko
et al. 2016]). The reasons we believe in ETH are similar to the ones outlined in
the previous section for our belief that End-of-a-Line is intractable: on one hand,
we have a combination of unconditional lower bounds in analogous models and
little or no progress on algorithms; on the other hand, we are “forced” to believe
it because we have no idea how to prove it (in particular, ETH implies the much
weaker P �= NP).

However, quasi-polynomial time is still both unrealistic to implement in prac-
tice, and does not meet our gold standard of polynomial time in theory. The main
question we address in this section is:

Can the quasi-polynomial time be improved to polynomial time?

For Sparse PCA this is indeed possible [Alon et al. 2013, Asteris et al. 2015, Chan
et al. 2016]. But for several other problems we can prove that, assuming ETH, quasi-
polynomial time is actually necessary:

. Finding a k-subgraph that is almost a clique; this is one of the most funda-
mental approximation problems in theoretical computer science.

. Finding and counting stable communities in a friendship graph; this prob-
lem received a lot of attention in recent years with the emergence of online
social networks.

. Finding an approximately optimal signaling scheme; this resolves a recent
open question by Dughmi.

. Computing the VC and Littlestone’s Dimensions of a binary concept class,
two of the most fundamental quantities in learning theory.

A common approach to all our proofs is the birthday repetition framework due to
Aaronson et al. [2014]: construct a reduction from 3-SAT to any of the above prob-
lems, with reduction sizeN ≈ 2

√
n. Then, assuming ETH, one needs approximately

N log N ≈ 2n time to solve the problem on the larger instance. A key step in the re-
duction is to consider subsets of

√
n variables; then by the birthday paradox any two

subsets are likely to share at least one variable (hence the name “birthday repeti-
tion”).

1.2.1 Densest k-Subgraph
k-Clique is one of the most fundamental problems in computer science: given a
graph, decide whether it has a fully connected induced subgraph on k vertices. Since
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it was proven NP-complete by Karp [1972], extensive research has investigated the
complexity of its relaxations.

We consider two natural relaxations of k-Clique that have received significant
attention from both algorithmic and complexity communities: The first one is to
relax the “k” requirement, i.e., looking for a smaller subgraph: Given an n-vertex
graph G containing a clique of size k, find a clique of size at least δk for some
parameter 0< δ < 1.

The second natural relaxation is to relax the “Clique” requirement, replacing it
with the more modest goal of finding a subgraph that is almost a clique: Given an
n-vertex graph G containing a clique of size k, find an induced subgraph of G of
size k with (edge) density at least 1− ε, for some parameter 0< ε < 1.

The first relaxation has been a motivating example throughout a long line of
research that laid the foundations for NP-hardness of approximation [Arora and
Safra 1998, Arora et al. 1998, Feige et al. 1996, Håstad 1999, Khot 2001, Zuckerman
2007]. In particular, we now know that it is NP-hard to distinguish between a graph
that has a clique of size k, and a graph whose largest induced clique is of size at most
k′ = δk, where δ = 1/n1−ε [Zuckerman 2007]. Until our work, the computational
complexity of the second relaxation remained largely open. There are a couple of
(very different) quasi-polynomial algorithms that guarantee finding a (1− ε)-dense
k-subgraph in every graph containing a k-clique: the meta-algorithm by Barman,
which we outlined above, and an older algorithm due to Feige and Seltser [1997],
but nothing non-trivial was known about hardness of approximation.

In Chapter 12 we prove that, assuming ETH, even if one makes both relaxations
the problem remains intractable. In particular, even if the graph contains a clique
of size k, it takes quasi-polynomial time to find a (1− ε)-dense δk-subgraph, for
constant ε > 0 and δ = o(1).

1.2.2 Community Detection
Identifying communities is a central graph-theoretic problem with important appli-
cations to sociology and marketing (when applied to social networks), biology and
bioinformatics (when applied to protein interaction networks), and more (see, e.g.,
Fortunato’s classic survey [Fortunato 2010]). Defining what exactly is a community
remains an interesting problem on its own (see Arora et al. [2012] and Borgs et al.
[2016] for excellent treatment from a theoretical perspective). Ultimately, there is
no single “right” definition, and the precise meaning of community should be dif-
ferent for social networks and protein interaction networks.

In Chapter 13 we focus on the algorithmic questions arising from one of the
simplest and most canonical definitions, which has been considered by several
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theoretical computer scientists [Arora et al. 2012, Balcan et al. 2013, Braverman
et al. 2017, Mishra et al. 2008].

Definition 1.2 (α , β)-community. Given an undirected graph G= (V , E), an (α , β)-community
is a subset S ⊆ V that satisfies:

Strong ties inside the community. For every v ∈ S, |{v} × S| ∩ E ≥ α . |S|; and

Weak ties to nodes outside the community. For every u �∈ S, |{u} × S| ∩ E ≤
β . |S|.

This problem has been considered by several researchers before: Mishra et al.
[2008] gave a polynomial-time algorithm for finding (α , β)-communities that con-
tain a vertex with very few neighbors outside the community. Balcan et al. [2013]
give a polynomial-time algorithm for enumerating (α , β)-communities in the spe-
cial case where the degree of every node is	(n). Arora et al. [2012] consider several
semi-random models where the edges inside the community are generated at ran-
dom, according to the expected degree model. For the general case, the latter paper
by Arora et al. gave a simple quasi-polynomial (nO(log n)) time for detecting (α , β)-
communities whenever α − β is at least some positive constant. (Their algorithm
is essentially identical to the meta-algorithm for bilinear optimization that we out-
lined above.)

We show that, for every constants α > β ∈ (0, 1], community detection requires
quasi-polynomial time (assuming ETH). For example, when α = 1 and β = 0.01,
this means that we can hide a clique C, such that every single vertex not in C
is connected to at most 1% of C. Our main result is actually a much stronger
inapproximability: even in the presence of a (1, o(1))-community, finding any (β +
o(1), β)-community is hard.

Unlike all quasi-polynomial approximation schemes mentioned above, Arora
et al.’s algorithm has the unique property that it can also exactly count all the (α , β)-
communities. Our second result is that counting even the number of (1, o(1))-
communities requires quasi-polynomial time. A nice feature of this result is that we
can base it on the much weaker #ETH assumption, which asserts that counting the
satisfying assignment for a 3-SAT instance requires time 2	(n). (Note, for example,
that #ETH is likely to be true even if P= NP.)

1.2.3 VC and Littlestone’s Dimensions
A common and essential assumption in learning theory is that the concepts we
want to learn come from a nice, simple concept class, or (in the agnostic case)
that they can at least be approximated by a concept from a simple class. When the
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concept class is sufficiently simple, there is hope for good (i.e., sample-efficient
and low-error) learning algorithms.

There are many different ways to measure the simplicity of a concept class. The
most influential measure of simplicity is the VC Dimension [Vapnik and Chervo-
nenkis 1971], which captures learning in the Probably Almost Correct (PAC) model.
We also consider Littlestone’s Dimension [Littlestone 1987], which corresponds to
minimizing mistakes in online learning (see Section 2.5 for definitions). When ei-
ther dimension is small, there are algorithms that exploit the simplicity of the class,
to obtain good learning guarantees.

In Chapter 14 we consider the algorithmic challenge of computing either dimen-
sion. In particular, we study the most optimistic setting, where the entire universe
and concept class are given as explicit input (a binary matrix whose (x , c)-th entry is
1 iff element x belongs to concept c). In this model, both dimensions can be com-
puted in quasi-polynomial time. Interestingly, the algorithm does not go through
the bilinear optimization problem; instead, it exploits the fact that for concept class
C, both dimensions are bounded by log |C|. Two decades ago, it was shown that
quasi-polynomial time is indeed necessary for both dimensions [Frances and Lit-
man 1998, Papadimitriou and Yannakakis 1996]. The computational intractability
of computing the (VC, Littlestone’s) dimension of a concept class suggests that even
in cases where a simple structure exists, it may be inaccessible to computationally
bounded algorithms.

Theorems 14.1 and 14.2 extend the results of Frances and Litman [1998] and
Papadimitriou and Yannakakis [1986] to show that the VC and Littlestone’s Dimen-
sions cannot even be approximately computed in polynomial time.

1.2.4 Signaling
Many classical questions in economics involve extracting information from strate-
gic agents. Lately, there has been growing interest within algorithmic game theory
in signaling: the study of how to reveal information to strategic agents (see, e.g.,
[Cheng et al. 2015, Dughmi 2014, Dughmi et al. 2013, Emek et al. 2014, Miltersen
and Sheffet 2012] and references therein). Signaling has been studied in many inter-
esting economic and game theoretic settings. Among them, Zero-Sum Signaling
proposed by Dughmi [2014] stands out as a canonical problem that cleanly cap-
tures the computational nature of signaling. In particular, focusing on zero-sum
games clears away issues of equilibrium selection and computational tractability
of finding an equilibrium.

Definition 1.3 Zero-Sum Signaling [Dughmi 2014]. Alice and Bob play a Bayesian zero-sum
game where the payoff matrixM is drawn from a publicly known prior. The signaler
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Sam privately observes the state of nature (i.e., the payoff matrix), and then publicly
broadcasts a signal ϕ(M) to both Alice and Bob. Alice and Bob Bayesian-update
their priors according to ϕ(M)’s and play the Nash equilibrium of the expected
game; but they receive payoffs according to the true M . Sam’s goal is to design
an efficient signaling scheme ϕ (a function from payoff matrices to strings) that
maximizes Alice’s expected payoff.

Dughmi’s main result proves that assuming the hardness of the Planted
Clique problem, there is no additive Fully Polynomial Time Approximation
Scheme (FPTAS) for Zero-Sum Signaling. The main open question left by
Dughmi [2014] is whether an additive PTAS exists. Here we answer this question in
the negative: we prove that assuming the ETH [Impagliazzo et al. 2001], obtaining
an additive-ε-approximation (for some constant ε > 0) requires quasi-polynomial

time (n	̃(log n)). This result is tight thanks to a recent quasi-polynomial
(
n

log n
poly(ε)

)
time

algorithm by Cheng et al. [2015]. Another important advantage of our result is that
it replaces the hardness of Planted Clique with a more believable worst-case
hardness assumption (see, e.g., the discussion in Braverman et al. [2015]).

1.3 Approximate Nash Equilibrium
The main result in this book rules out the PTAS (polynomial time approximation
schemes) for two-player Nash equilibrium. Consider a game between two players,
each choosing between a large number (n) of actions. The inputs to the algorithm
are two n× n matrices with entries in [0, 1]. The goal is to find, for every constant
ε, an ε-approximate Nash equilibrium; i.e., a mixed strategy for each player, such
that either player can gain at most ε by deviating to a different strategy.

This has been the central open question in equilibrium computation for the
past decade. There were good reasons to be hopeful: there was a quasi-polynomial
time [Lipton et al. 2003], a series of improved approximation ratios [Bosse et al.
2010, Daskalakis et al. 2007, 2009b, Kontogiannis et al. 2009, Tsaknakis and Spi-
rakis 2008], and several approximation schemes for special cases [Alon et al. 2013,
Barman 2015, Daskalakis and Papadimitriou 2009, Kannan and Theobald 2007].
Our main result settles this question in the negative:

Theorem 1.1 Main theorem. There exists a constant ε > 0 such that, assuming ETH for PPAD,
finding an ε-approximate Nash equilibrium in a two-player n× n game requires
time T (n)= nlog1−o(1) n.

We supplement Theorem 1.1 with a series of other hardness of approxima-
tion results for Nash equilibrium in related settings, further establishing the point
that even approximate Nash equilibria are intractable. First, we consider different
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sources of complexity. Our main result shows intractability of approximate Nash
equilibria when the complexity of the game arises from each player choosing among
many actions. In Theorems 5.1 and 5.2, we prove that in games where each player
only has two actions, the complexity can arise from a large number of players; find-
ing an approximate Nash equilibrium inn-player, binary action games is PPAD-hard
(settling another open question from Daskalakis’s thesis [Daskalakis 2008]). Alter-
natively, even if there are only two players and the number of actions is constant,
a different source of complexity can be the players’ uncertainty; finding an approx-
imate Bayesian Nash equilibrium in such incomplete information games is also
PPAD-hard (Corollary 8.1).

We also prove intractability in different models: query complexity, communi-
cation complexity, and uncoupled dynamics (settling a long list of open questions
from Babichenko [2012, 2016], Chen et al. [2017], Fearnley et al. [2013], Hart and
Mansour [2010], Hart and Nisan [2013], Nisan [2009a], Roughgarden and Wein-
stein [2016]. The main advantage of these results is that they are unconditional, i.e.,
they do not rely on complexity assumptions such as ETH for PPAD, or P �= NP. In
particular, in the setting where each player knows her own utility function, even
computationally unbounded players have to communicate almost all their private
information in order to reach even an approximate equilibrium.
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Notation
We use 0n (respectively 1n) to denote the length-n vectors whose value is 0 (1) in
every coordinate. For vectors x , y ∈ Rn, we let∥∥∥x − y

∥∥∥
2
�
√

Ei∈[n](xi − yi)2

denote the normalized 2-norm. Unless specified otherwise, when we say that x and
y are �-close (or �-far), we mean �-close in normalized 2-norm. Similarly, for a
binary string π ∈ {0, 1}n, we denote∣∣π ∣∣� Ei∈[n]

[
πi
]

.

For a graph G= (V , E) and S ⊆ V , we use den(S) ∈ [0, 1] to denote the density
of subgraph S,

den(S) := |(S × S) ∩ E||S × S| .

2.1 Nash Equilibrium and Relaxations
A mixed strategy of player i is a distribution xi over i’s set of actions,Ai. We say that
a vector of mixed strategies x ∈ ×j�Aj is a Nash equilibrium if every strategy ai in
the support of every xi is a best response to the actions of the mixed strategies of
the rest of the players, x−i. Formally, for every ai ∈ supp(xi),

Ea−i∼x−i
[
ui
(
ai , a−i

)]=max
a′∈Ai

Ea−i∼x−i
[
ui
(
a′, a−i

)]
.

Equivalently, x is a Nash equilibrium if each mixed strategy xi is a best response
to x−i:

Ea∼x
[
ui(a)

]= max
x′
i
∈�Ai

Ea∼(x′
i
;x−i)

[
ui(a)

]
.
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Each of those equivalent definitions can be generalized to include approxima-
tion in a different way.

Definition 2.1 ε-approximate Nash Equilibrium. We say that x is an ε-Approximate Nash Equilib-
rium (ε-ANE) if each xi is an ε-best response to x−i:

Ea∼x
[
ui(a)

]≥ max
x
′
i
∈�Ai

Ea∼(x′
i
;x−i)

[
ui(a)

]− ε.

On the other hand, we generalize the first definition of Nash equilibrium in the
following stricter definition:

Definition 2.2 ε-well-supported Nash Equilibrium. x is an ε-Well-Supported Nash Equilibrium
(ε-WSNE) if every ai in the support of xi is an ε-best response to x−i: for every
ai ∈ supp(xi),

Ea−i∼x−i
[
ui
(
ai , a−i

)]≥max
a
′∈Ai

Ea−i∼x−i
[
ui
(
a
′
, a−i

)]− ε.

WeakNash
We can further relax the (already more lenient) notion of ε-ANE by requiring that
the ε-best response condition only hold for most of the players (rather than all of
them).

Definition 2.3 (ε , δ)-WeakNash [Babichenko et al. 2016]. We say that x is an (ε , δ)-WeakNash if
for a (1− δ)-fraction of i’s, xi is an ε-best mixed response to x−i:

Pr
i

[
Ea∼x

[
ui(a)

]≥ max
x
′
i
∈�Ai

Ea∼(x′
i
;x−i)

[
ui(a)

]− ε]≥ 1− δ.

Definition 2.4 (ε , δ)-well-supported WeakNash. x is an (ε , δ)-well-supported WeakNash if for a
(1− δ)-fraction of i’s, every ai in the support of xi is an ε-best response to x−i:

Pr
i

[
∀ai ∈ supp(xi)Ea−i∼x−i

[
ui
(
ai , a−i

)]≥max
a
′∈Ai

Ea−i∼x−i
[
ui
(
a
′
, a−i

)]− ε]g ≥ 1− δ.

2.2 PPAD and End-of-a-Line
The End-of-a-Line of a problem considers an implicitly represented, exponential-
size, directed graph whose vertices have in- and out-degree at most 1 (this is without
loss of generality). The special vertex 0n has in-degree 0, and the goal is to find
another odd-degree vertex. The graph is a union of lines and cycles, so in particular
the line starting at 0n ends with another odd-degree vertex.
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The graph is implicitly defined with functions S , P that, for each vertex, give its
Successor (outgoing neighbor) and Predecessor (incoming neighbor). In the com-
putational variant of End-of-a-Line, S , P are given as explicit circuits, whereas
in the query complexity variant they are given as oracles. There is also a commu-
nication complexity variant, whose definition is more involved and is deferred to
Section 3.4.

In the formal definition of the computational variant, we also have to consider
the case that S , P are inconsistent, i.e., for some u �= v we have S(u) = v, but
P(v) �= u; we also allow the algorithm to succeed by finding such an inconsistency.
(In the oracle model we can explicitly require that there are no inconsistencies.)

Definition 2.5 End-of-a-Line. The input to the problem is functions S , P : {0, 1}n→ {0, 1}n,
such that S(0n) = 0n �= P(0n). The output is another odd-degree vertex 0n �= v ∈
{0, 1}n such that P(S(v)) �= S(P (v)).

The computational complexity class PPAD is defined as the class of all total
search problems reducible to End-of-a-Line.

Membership End-of-a-Line
The following variant of End-of-a-Line is equivalent and more convenient for
some of our reductions. In particular, the problem is restricted to a subset of the
vertices. The restricted vertex-set is defined implicitly via a membership function
T : {0, 1}n→{0, 1}. Abusing notation, let T also denote the restricted set of vertices
whose T -value is 1. We think of S and P as only applying to vertices in T , and
connecting them to other vertices in T . Formally, we also allow the algorithm to
return any violations.

Definition 2.6 Membership End-of-a-Line. The input to the problem is functions S , P : {0, 1}n
→{0, 1}n and T : {0, 1}n→{0, 1}, such that S(0n)= 0n �= P(0n) and T (0n), T (S(0n))
= 1. The output is another odd-degree vertex 0n �= v ∈ {0, 1}n such that T (v)= 1 and
v satisfies at least one of the following:

End-of-a-line. P(S(v)) �= S(P (v)); or

Boundary condition. T (S(v))= 0 or T (P (v))= 0.

Lemma 2.1 End-of-a-Line is equivalent to Membership End-of-a-Line.

Proof Given an instance of End-of-a-Line, we can construct an equivalent instance of
Membership End-of-a-Line by setting T ≡ 1. In the other direction, we can add
self-loops to every vertex v such that T (v)= 0 (i.e., P(v)= S(v)= v); this guarantees
that v is never a solution to the new End-of-a-Line instance.
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We will be interested in restricted (but equally hard) variants of Membership
End-of-a-Line. For example, in Section 16.2 we define Local End-of-a-Line
where, among other restrictions, T , S , P are AC0 circuits. In particular, in Chap-
ter 3, we will consider a variant where each vertex is a priori restricted to have at
most two potential incoming/outgoing neighbors, and the functions S , P merely
specify which neighbor is chosen. We then abuse notation and let S , P output just
a single bit.

2.3 Exponential Time Hypotheses
Our quasi-polynomial hardness results are conditional on the following hypothe-
ses. We begin with the “plain” ETH:

Hypothesis 2.1 Exponential time hypothesis (ETH) [Impagliazzo et al. 2001]. 3SAT takes time
2	(n).

Since a Nash equilibrium always exists, we are unlikely to have a reduction (even
of subexponential size) from 3SAT to Nash equilibrium. Instead, we need to assume
the following analogue of ETH for the total class PPAD:

Hypothesis 2.2 ETH for PPAD [Babichenko et al. 2016]. Solving End-Of-A-Line requires time
2	̃(n).1

In Section 13.3 we will prove a quasi-polynomial lower bound on the running
time for counting the number of communities in a social network. This result is
also conditional, but requires the following much weaker #ETH assumption:

Hypothesis 2.3 #ETH [Dell et al. 2014]. Given a 3SAT formula, counting the number of satisfying
assignments takes time 2	(n).

2.4 PCP Theorems

2.4.1 2CSP and the PCP Theorem
In the 2CSP problem (Constraint Satisfaction Problem), we are given a graph G=
(V ,E)on |V | = n vertices, where each of the edges (u, v) ∈E is associated with some
constraint function ψu,v :� ×�→{0, 1} that specifies a set of legal “colorings” of
u and v, from some finite alphabet� (2 in the term “2CSP” stands for the “arity” of

1. As usual, n is the size of the description of the instance, i.e., the size of the circuits S and P .
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each constraint, which always involves two variables). Let us denote byψ the entire
2CSP instance, and define by OPT(ψ) the optimum (maximum) fraction of satisfied
constraints in the associated graph G, over all possible assignments (colorings)
of V .

The starting point of some of our reductions is the following version of the
Probabilistically Checkable Proof (PCP) theorem, which asserts that it is NP-hard
to distinguish a 2CSP instance whose value is 1, and one whose value is 1− η, where
η is some small constant:

Theorem 2.1 PCP Theorem [Dinur 2007]. Given a 3SAT instance ϕ of size n, there is a polyno-
mial time reduction that produces a 2CSP instance ψ , with size |ψ | = n . polylog n

variables and constraints, and constant alphabet size such that

. (Completeness) If OPT(ϕ)= 1 then OPT(ψ)= 1.

. (Soundness) If OPT(ϕ) < 1 then OPT(ψ) < 1− η, for some constant η=	(1).

. (Graph) The constraint graph is d-regular, for some constant d, and bipartite.

See, e.g., the full version of Braverman et al. [2017] or Aaronson et al. [2014] for
derivations of this formulation of the PCP theorem.

Notice that since the size of the reduction is near linear, ETH implies that solving
the above problem requires near exponential time.

Corollary 2.1 Letψ be as in Theorem 2.1. Then assuming ETH, distinguishing between OPT(ψ)=
1 and OPT(ψ) < 1− η requires time 2	̃(|ψ |).

Label Cover
Definition 2.7 Label Cover. Label Cover is a maximization problem, and a special case

of 2CSP. The input is a bipartite graph G = (A, B , E), alphabets �A, �B, and a
projection πe :�A→�B for every e ∈ E.

The output is a labeling ϕA :A→�A, ϕB :B→�B. Given a labeling, we say that
a constraint (or edge) (a , b) ∈ E is satisfied if π(a ,b)(ϕA(a))= ϕB(b). The value of a
labeling is the fraction of e ∈ E that are satisfied by the labeling. The value of the
instance is the maximum fraction of constraints satisfied by any assignment.

We often encounter an assignment that only labels a subset of A ∪ B but leaves
the rest unlabeled. We refer to such assignment as a partial assignment to an in-
stance; more specifically, for any V ⊆ A ∪ B, a V -partial assignment (or partial
assignment on V ) is a function φ : V →�. For notational convenience, we some-
times write �V to denote the set of all functions from V to �.
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Theorem 2.2 Moshkovitz-Raz PCP [Moshkovitz and Raz 2010 (Theorem 11)]. For every n and
every ε > 0 (in particular, ε may be a function of n), solving 3SAT on inputs of
size n can be reduced to distinguishing between the case that a (dA, dB)-bi-regular
instance of Label Cover, with parameters |A| + |B| = n1+o(1) . poly(1/ε), |�A| =
2poly(1/ε), and dA, dB , |�B| = poly(1/ε), is completely satisfiable, versus the case that
it has value at most ε.

Counting the number of satisfying assignments is even harder. The following
hardness is well-known, and we sketch its proof only for completeness:

Fact 2.1 There is a linear-time reduction from #3SAT to counting the number of satisfying
assignments of a Label Cover instance.

Proof Construct a vertex in A for each variable and a vertex in B for each clause. Set
�A � {0, 1} and let �B � {0, 1}3 \ (000) (i.e., �B is the set of satisfying assignments
for a 3SAT clause, after applying negations). Now if variable x appears in clause
C, add a constraint that the assignments to x and C are consistent (taking into
account the sign of x in C). Notice that: (i) any assignment to A corresponds to a
unique assignment to the 3SAT formula; and (ii) if the 3SAT formula is satisfied,
this assignment uniquely defines a satisfying assignment to B. Therefore there is
a one-to-one correspondence between satisfying assignments to the 3SAT formula
and to the instance of Label Cover.

2.5 Learning Theory
For a universe (or ground set) U , a concept C is simply a subset of U and a concept
class C is a collection of concepts. For convenience, we sometimes relax the def-
inition and allow the concepts to not be subsets of U ; all definitions here extend
naturally to this case.

The VC and Littlestone’s Dimensions can be defined as follows.

Definition 2.8 VC Dimension [Vapnik and Chervonenkis 1971]. A subset S ⊆ U is said to be
shattered by a concept class C if, for every T ⊆ S, there exists a concept C ∈ C such
that T = S ∩ C.

The VC Dimension VC-dim(C , U)of a concept class C with respect to the universe
U is the largest d such that there exists a subset S ⊆ U of size d that is shattered by C.

Definition 2.9 Mistake tree and Littlestone’s Dimension [Littlestone 1987]. A depth-d instance-
labeled tree of U is a full binary tree of depth d such that every internal node of the
tree is assigned an element of U . For convenience, we will identify each node in the
tree canonically by a binary string s of length at most d.
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A depth-d mistake tree (aka shattered tree [Ben-David et al. 2009]) for a universe
U and a concept class C is a depth-d instance-labeled tree of U such that, if we let
vs ∈ U denote the element assigned to the vertex s for every s ∈ {0, 1}<d , then, for
every leaf � ∈ {0, 1}d , there exists a conceptC ∈ C that agrees with the path from root
to it, i.e., that, for every i < d, v�≤i ∈ C iff �i+1= 1 where �≤i denotes the prefix of �
of length i.

The Littlestone’s Dimension L-dim(C , U) of a concept class C with respect to the
universe U is defined as the maximum d such that there exists a depth-d mistake
tree for U , C.

An equivalent formulation of Littlestone’s Dimension is through mistakes made
in online learning, as stated below. This interpretation will be useful in the proof
of Theorem 14.4.

Definition 2.10 Mistake bound. An online algorithm A is an algorithm that, at time step i, is
given an element xi ∈ U and the algorithm outputs a prediction pi ∈ {0, 1} whether
x is in the class. After the prediction, the algorithm is told the correct answer
hi ∈ {0, 1}. For a sequence (x1, h1), . . . , (xn, hn), a prediction mistake of A is defined
as the number of incorrect predictions, i.e.,

∑
i∈n 1[pi �= hi]. The mistake bound of

A for a concept class C is defined as the maximum prediction mistake of A over
all the sequences (x1, h1), . . . , (xn, hn), which corresponds to a concept C ∈ C (i.e.,
hi = 1[xi ∈ C] for all i ∈ [n]).

Theorem 2.3 Littlestone [1987]. For any universe U and any concept class C, L-dim(C , U) is
equal to the minimum mistake bound of C , U over all online algorithms.

The following facts are well-known and follow easily from the above definitions.

Fact 2.2 For any universe U and concept class C, we have

VC-dim(C , U)≤ L-dim(C , U)≤ log
∣∣C∣∣.

Fact 2.3 For any two universes U1, U2 and any concept class C,

L-dim
(
C , U1 ∪ U2

)≤ L-dim
(
C , U1

)+ L-dim
(
C , U2

)
.

2.6 Information Theory
In this section, we introduce information-theoretic quantities used mostly in Chap-
ter 12. For a more thorough introduction, the reader should refer to Cover and
Thomas [2012]. Unless stated otherwise, all log’s in this book paper are base-2.
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Definition 2.11 Letμ be a probability distribution on sample space	. The Shannon entropy (or just
entropy) of μ, denoted by H(μ), is defined as H(μ) :=∑ω∈	 μ(ω) log 1

μ(ω)
.

Definition 2.12 Binary entropy function. For p ∈ [0, 1], the binary entropy function is defined as
follows (with a slight abuse of notation): H(p) :=−p log p − (1− p) log(1− p).

Fact 2.4 Concavity of binary entropy. Let μ be a distribution on [0, 1], and let p ∼ μ. Then
H(Eμ[p])≥ Eμ[H(p)].

For a random variable A, we shall write H(A) to denote the entropy of the
induced distribution on the support of A. We use the same abuse of notation for
other information-theoretic quantities appearing later in this section.

Definition 2.13 The conditional entropy of a random variable A conditioned on B is defined as

H
(
A|B)= Eb

(
H
(
A|B = b)).

Fact 2.5 Chain rule.

H(AB)=H(A)+H (B|A).
Fact 2.6 Conditioning decreases entropy. H

(
A|B)≥H (A|BC).

Another measure we will use (briefly) in our proof is that of mutual information,
which informally captures the correlation between two random variables.

Definition 2.14 Conditional mutual information. The mutual information between two random
variables A and B, denoted by I (A;B), is defined as

I (A;B) :=H(A)−H (A|B)=H(B)−H (B|A).
The conditional mutual information betweenA andB givenC, denoted by I (A;B|C),
is defined as

I
(
A;B|C) :=H (A|C)−H (A|BC)=H (B|C)−H (B|AC).

The following is a well-known fact on mutual information.

Fact 2.7 Data processing inequality. Suppose we have the following Markov Chain:

X→ Y → Z

where X⊥Z|Y . Then I (X; Y )≥ I (X;Z) or, equivalently, H(X|Y )≤H(X|Z).
Mutual information is related to the Kullback Leiber Divergence similarity mea-

sure (also known as relative entropy).
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Definition 2.15 Kullback-Leiber Divergence. Given two probability distributionsμ1 andμ2 on the
same sample space 	 such that (∀ω ∈ 	)(μ2(ω) = 0⇒ μ1(ω) = 0), the Kullback-
Leibler Divergence between them is defined as

DKL
(
μ1

∥∥μ2
)=∑

ω∈	
μ1(ω) log

μ1(ω)

μ2(ω)
.

The connection between the mutual information and the Kullback-Leibler di-
vergence is provided by the following fact.

Fact 2.8 For random variables A, B , and C we have

I
(
A;B|C)= Eb,c

[
DKL

(
Abc

∥∥Ac)] .

2.7 Useful Lemmata

2.7.1 Concentration
Lemma 2.2 Chernoff bound. Let X1, . . . , Xn be independent and identically distributed

(i.i.d.) random variables taking value from {0, 1} and let p be the probability that
Xi = 1; then, for any δ > 0, we have

Pr
[ n∑
i=1

Xi ≥ (1+ δ)np
]
≤
{

2−δ2np/3 if δ < 1,

2−δnp/3 otherwise.

2.7.2 Pseudorandomness
Theorem 2.4 k-wise independence Chernoff bound [Schmidt et al. 1995 (Theorem 5.I)]. Let

x1 . . . xn ∈ [0, 1] be k-wise independent random variables, and let μ� E[
∑n
i=1 xi]

and δ ≤ 1. Then

Pr
[∣∣∣ n∑
i=1

xi − μ
∣∣∣> δμ]≤ e−	(min{k ,δ2μ}).

2.7.3 λ-Biased Sets
Definition 2.16 λ-biased sets. Let G be a finite field, and t > 0 an integer. A multiset S ⊆ Gt

is λ-biased if for every non-trivial character χ of Gt ,∣∣∣Ey∼S
[
χ(y)

]∣∣∣≤ λ.

Lemma 2.3 [Azar et al. 1998 (Theorem 3.2)]. A randomly chosen multi-set S ⊆ Gt of cardinality
�(t log |G|/λ2) is λ-biased with high probability.
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For many applications, an explicit construction is necessary. In our case, how-
ever, we can enumerate over all sets S of sufficient cardinality in quasi-polynomial
time.2 The following Sampling Lemma due to Ben-Sasson et al. [2003] allows
us to estimate the average of any function over Gt using only one line and (1+
o(1)) log2 |Gt | randomness:

Lemma 2.4 Sampling Lemma [Ben-Sasson et al. 2003 (Lemma 4.3)]. Let B : Gt→ [0, 1]. Then,
for any ε > 0,

Pr
x∈Gt
y∈S

[∣∣∣Eβ∈G
[
B(x + βy)

]− Ez∈Gt
[
B(z)

]∣∣∣> ε]≤ ( 1
|G| + λ

)
Ez∈Gt [B(z)]

ε2
.

2.7.4 Partitions
Given a 2CSP formula, we provide a few techniques to deterministically partition
n variables to approximately

√
n subsets of approximately

√
n variables each, so

that the number of constraints between every pair of partitions is approximately as
expected.

Greedy Partition
Lemma 2.5 LetG= (V ,E)be a d-regular graph andn� |V |. We can partitionV inton/k disjoint

subsets {S1, . . . , Sn/k} of size at most 2k such that:

∀i , j
∣∣∣(Si × Sj) ∩ E∣∣∣≤ 8d2k2/n. (2.1)

Proof We assign vertices to subsets iteratively, and show by induction that we can always
maintain (2.1) and the bound on the subset size. Since the average set size is less
than k, we have by Markov’s inequality that at each step less than half of the subsets
are full. The next vertex we want to assign, v, has neighbors in at most d subsets. By
our induction hypothesis, each Si is of size at most 2k, so on average over j ∈ [n/k],
it has less than 4dk2/n neighbors in each Sj . Applying Markov’s inequality again,
Si has at least 8d2k2/n neighbors in less than a (1/2d)-fraction of subsets Sj . In
total, we ruled out less than half of the subsets for being full, and less than half
of the subsets for having too many neighbors with subsets that contain neighbors

2. Note that we need an ε-biased set for a large field G = F2�. Such constructions are not as
common in the literature, which mostly focuses on the field F2. To the best of our knowledge,
existing explicit constructions for larger fields require much larger cardinality. Nevertheless, for
our modest pseudo-randomness desiderata, we could actually use the explicit construction from
Alon et al. [1992]. For ease of presentation, we prefer to brute-force derandomize the construction
from Azar et al. [1998].
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of v. Therefore there always exists some subset Si to which we can add v while
maintaining the induction hypothesis.

Derandomized Partition
We use Chernoff bound with �(log n)-wise independent variables to determinis-
tically partition variables into subsets of cardinality ≈√n. Our (somewhat naive)
deterministic algorithm for finding a good partition takes quasi-polynomial time
(nO(log n)), which is negligible with respect to the sub-exponential size (N = 2Õ(

√
n))

of our reduction.3

Lemma 2.6 LetG= (A, B , E)be a bipartite (dA, dB)-bi-regular graph, and let nA� |A|, nB � |B|;
set alson� nB + nA andρ �√n log n. LetT1, . . . , TnB/ρ be an arbitrary partition ofB
into disjoint subsets of size ρ. There is a quasi-polynomial deterministic algorithm
(alternatively, linear-time randomized algorithm) that finds a partition of A into
S1, . . . , SnA/ρ, such that:

∀i
∣∣∣∣∣Si∣∣− ρ∣∣∣< ρ/2, (2.2)

and

∀i , j
∣∣∣∣∣∣(Si × Tj) ∩ E∣∣− dAρ2

nB

∣∣∣∣< dAρ2

2nB
. (2.3)

Proof Suppose that we place each a ∈ A into a uniformly random Si. By Chernoff bound
and union bound, (2.2) and (2.3) hold with high probability. Now, by Chernoff
bound for k-wise independent variables (Theorem 2.4), it suffices to partitionA us-
ing a �(log n)-wise independent distribution. Such distribution can be generated
with a sample space of nO(log n) (e.g., [Alon et al. 1986]). Therefore, we can enumer-
ate over all possibilities in quasi-polynomial time. By the probabilistic argument,
we will find at least one partition that satisfies (2.2) and (2.3).

2.7.5 How to Catch a Far-from-Uniform Distribution
The following lemma due to Daskalakis and Papadimitriou [2009] implies that

Lemma 2.7 Lemma 3 in the full version of Daskalakis and Papadimitriou [2009]. Let {ai}ni=1 be
real numbers satisfying the following properties for some θ > 0: (1) a1≥ a2 ≥ . . .≥
an; (2)

∑
ai = 0; (3)

∑n/2
i=1 ai ≤ θ . Then

∑n
i=1 |ai| ≤ 4θ .

3. Do not confuse this with the quasi-polynomial lower bound
(
NÕ(log N)

)
we obtain for the

running time of the community detection problem.
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2.7.6 Simulation Theorem
Let D : {0, 1}N → {0, 1} be a decision problem. We consider the following query
complexity model (called also decision tree complexity). Each query is an index
k ∈ [N ] and the answer is the k-th bit of the input. The randomized query complexity
of D is denoted by BPPdt

δ
(D), where δ is the allowed probability of error.

We also consider the following communication complexity model. Here, for
every k ∈ [N ], Alice holds a vector αk ∈ {0, 1}M and Bob holds an index βk ∈ [M], for
someM = poly(N). Their goal is to computeD for the input (α1(β1), . . . , αN(βN)).
The standard bounded error two-party probabilistic communication complexity of
the simulated problem D is denoted by BPPcc

δ
(Sim−D).

To “lift” from query complexity hardness to communication complexity, we use
the following recent simulation theorem for BPP, due to Göös et al. [2017].

Theorem 2.5 BPP simulation theorem, [Göös et al. 2017]. There exists M = poly(N) such that
for any constants 0< δ < 1/2,

BPPcc
δ
(Sim−D)=	

(
BPPdt

δ
(D)(log N)

)
.
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The main motivation for studying the complexity of approximate Nash equilibrium
is the insight about the relevance of Nash equilibrium as a predictive solution
concept: if specialized algorithms cannot compute an (approximate) equilibrium,
it is unreasonable to expect selfish agents to “naturally” converge to one. (See
also discussions in the introduction, as well as Daskalakis et al. [2009a], Hart and
Mansour [2010], Nisan [2009b].) Although extremely useful and the main focus
of this book, lower bounds on computational complexity suffer from an obvious
caveat: we actually don’t know how to truly prove any computational lower bounds:
All our computational lower bounds inherently rely on complexity assumptions
(such as NP �= P or PPAD �= P); even though these assumptions are widely accepted
by computer scientists, they make these theorems less accessible to game theorists
and economists. For example, it is not clear how they relate to the uncoupled
dynamics model studied in game theory [Babichenko 2012, Hart and Mas-Colell
2003, 2006].

In this part of the book, we prove unconditional lower bounds on the com-
munication complexity of approximate Nash equilibrium. In the communication
complexity model, each player knows her own utility function, and we restrict the
amount of information exchanged between players in order to agree on an ap-
proximate Nash equilibrium. The players in this model are unreasonably powerful
beings with unlimited computational power. In this sense, obtaining lower bounds
even in this setting is more convincing than our computational complexity results.
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Furthermore, our lower bounds on communication complexity translate immedi-
ately to the uncoupled dynamics model mentioned above (see also Subsection 3.1).
The tradeoff is that the computational complexity lower bounds we can prove are
stronger. Take two-player games with N actions, for example. The main result in
this book is that no polynomial time algorithm can find an approximate equilib-
rium. In the communication complexity model, per contra, it is trivial for both
players to send their entireN ×N utility matrix; hence the most we can hope for is
a polynomial lower bound.

Indeed, our communication complexity results do not directly fit into the “be-
tween P and NP” theme of this book. However, we chose to include them because
they provide further evidence that real players may not converge to a Nash equi-
librium. More importantly, en route to obtaining our communication complexity
lower bounds, we develop a construction of a hard-to-find Brouwer fixed point. This
construction will be useful in Chapters 6 and 16.

Our Results
We study both two-player games with a large number (N ) of actions, and two-action
games with a large number (n) of players. The trivial solution of communicating
every player’s entire utility function in normal form requires O(N2) and O(n2n)
communication, respectively.1 For constant approximation, no non-trivial lower
bounds were previously known for the general model, and even for the restricted
case of randomized query complexity (see Subsection 3.3) both settings were stated
as open questions in Fearnley et al. [2013] and Babichenko [2016], Chen et al.
[2017], Hart and Nisan [2013], respectively. For n-player, Hart and Mansour [2010]
gave an exp(n) lower bound on the communication complexity of exact Nash equi-
librium in n-player games as also exp(n),2 and even for an approximate parameter
of 1/ poly(n) the problem was open [Nisan 2009a].

For two-player games, we prove a polynomial lower bound on the communica-
tion complexity:

Theorem 3.1 There exists a constant ε > 0 such that the randomized communication complexity
(BPPcc) of ε-Nash equilibrium in two-player N ×N games is at least Nε.

1. Since we care about ε-approximate equilibrium for constant ε, it suffices to represent the utility
with constant precision.

2. The unique Nash equilibrium in the game considered by Hart and Mansour [2010] requires
probabilities that are doubly exponentially small. Hence their lower bound is exponential in the
number of players, but only polynomial in the size of the description of the equilibrium; see Nisan
[2009a].
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For n-player games, we consider a two-party communication problem where the
set of players [n] is divided into two disjoint subsets [n]= nA .∪ nB. Alice holds the
utilities of the players in nA, and Bob holds the utilities of the players in nB. In par-
ticular, this communication problem is easier than the n-parties communication
problem where each player holds his own utility function. Furthermore, our nega-
tive result holds for the notion of weak approximate Nash equilibrium [Babichenko
et al. 2016], which in particular implies the same negative result for the standard
notion of approximate Nash equilibrium (see also Definition 2.3).

Theorem 3.2 There exists a constant ε > 0 such that the randomized communication complex-
ity (BPPcc) of (ε , ε)-weak approximate Nash equilibrium in n-player binary-action
games is at least 2εn.

3.1 Uncoupled Dynamics
An underlying assumption of the Nash equilibrium solution is that players predict
correctly the (mixed) action of their opponents (or alternatively predict correctly
their expected payoff at each action). One justification for this problematic assump-
tion, which appears in the seminal work of John Nash [Nash 1951], is that in some
scenarios players may learn the behavior of their opponents in cases where the game
is played repeatedly. This idea led to an extensive study of learning dynamics and
their convergence to Nash equilibrium (see, e.g., [Young 2004, Hart and Mas-Colell
2013, Kalai and Lehrer 1993]). One natural, and general, class of adaptive dynamics
is that of uncoupled dynamics [ Hart and Mas-Colell 2003, 2006], where it is assumed
that players do not know the utilities of their opponents (but observe their past be-
havior). The question on the existence of uncoupled dynamics that lead to Nash
equilibrium is quite well understood [Babichenko 2012, Foster and Young 2006,
Germano and Lugosi 2007, Hart and Mas-Colell 2006]. Several uncoupled dynamics
that converge to approximate Nash equilibrium (or pure Nash equilibrium [Young
2009]) are known. All these dynamics are based on an exhaustive search princi-
ple, where at the moment a player realizes she is acting sub-optimally she updates
her action to a random one (rather than to an optimal one or a better one). One
criticism of these dynamics is that convergence to equilibrium may take an un-
reasonably long time in large games where the exhaustive search is done over a
large space. This led to the study of the rate of convergence of uncoupled dynam-
ics. As pointed out by Conitzer and Sandholm [2004], for every solution concept
(in particular equilibria solutions), the (randomized) communication complexity
of a solution is identical (up to a logarithmic factor) to the rate of convergence
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by any (randomized) uncoupled dynamics to the solution. This observation initi-
ated the communication complexity study in games. As was mentioned above, the
communication complexity, and thus also the rate of convergence of uncoupled
dynamics, was known only for exact or pure Nash equilibrium. The question on
the rate of convergence of uncoupled dynamics to approximate Nash equilibrium
was an open question. Given the fact that all known positive results introduce dy-
namics that converge to approximate Nash equilibrium, this question is central.
Our results for communication complexity resolve this open question, yielding the
following negative results for uncoupled dynamics:

Corollary 3.1 Uncoupled dynamics. There exists a constant ε > 0 such that any uncoupled
dynamics require:

2-player. At least poly(N) rounds to converge to an ε-Nash equilibrium in two-
player N ×N games.

n-player. At least 2	(n) rounds to converge to an ε-Nash equilibrium (or even
(ε , ε)-weak approximate Nash equilibrium) in n-player binary-action games.

3.2 Techniques
Proving communication complexity lower bounds for Nash equilibrium is notori-
ously challenging for two reasons. The first reason, as is common in hardness of
Nash equilibrium in other models, is totality: there always exists at least one (exact)
equilibrium, and the proof of existence induces a non-trivial (yet inefficient) algo-
rithm for finding it. In order to construct hard instances we must carefully hide the
equilibrium (we can’t just remove it), and make sure that the above algorithm is
indeed inefficient for our instances.

Another reason for the communication complexity of approximate equilib-
rium being an open question for a long time is the fact that there exist efficient
non-deterministic communication protocols (polylog(N) for two-player, poly(n) for
n-player): verification of equilibrium (exact or approximate) requires only con-
stant communication, and small-representation approximate equilibria always
exist (e.g., by Lipton et al. [2003]). Therefore, the communication complexity lower
bounds for approximate equilibria, as we prove in this chapter, show an exponen-
tial gap between the non-deterministic and randomized (or even deterministic)
communication complexity of a total search problem. We are certainly not the
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first to show such separations (see, e.g., [Karchmer et al. 1995, Raz and McKenzie
1999, Raz and Wigderson 1990]).3 But such separations are still not very common
in communication complexity, and for a good reason: for decision problems, they
are impossible! The deterministic communication complexity is upper-bounded
by the product of the non-deterministic and co-non-deterministic communication
complexities [Aho et al. 1983].

The first ingredient in our proof is a construction of a special continuous func-
tion f : [0, 1]n→ [0, 1]n whose approximate fixed points are hard to find. The con-
struction is inspired by that of Hirsch et al. [1989], and the main new ingredient is
the use of error-correcting codes to replace the �∞ inapproximability with �2 inap-
proximability. The construction appears in Chapter 4. The second ingredient in our
proof is the simulation theorems for randomized communication complexity due to
Anshu et al. [2017] and Göös et al. [2017].

The main steps in our proofs are as follows. First, we prove a randomized query
complexity hardness result for the problem of finding the end of a line in a particu-
lar constant-degree graph. Then we use a simulation theorem of Anshu et al. [2017]
and Göös et al. [2017] to “lift” this query complexity hardness result to random-
ized communication complexity hardness. We use the construction in Chapter 4 to
embed this line as a continuous Lipschitz function f : [0, 1]n→ [0, 1]n. Finally, we
build on ideas from Babichenko [2016], McLennan and Tourky [2005], and Shmaya
[2012] to construct a two-player (respectively n-player) “imitation game” that simu-
lates the short communication protocol for the computation of f , as well as a fixed
point verification. In particular, every (approximate) Nash equilibrium of the game
corresponds to an approximate fixed point of f , which in turn corresponds to an
end of a line.

Since in this chapter we are proving unconditional intractability results, we
have the privilege of reasoning about an explicit distribution of hard instances. In
particular, it suffices to begin with the End-of-the-Line special case of the End-
of-a-Line problem, where the graph consists of just one line—and we want to find
the end of that line. This hardly changes the proof, but it makes the notation a little
simpler. For example, it suffices to prove that a decision problem (find the most
significant bit of the end of the line) is hard. Furthermore, our hardness now holds
for the interesting case where the game has a unique Nash equilibrium.

3. It is interesting to remark that our result is arguably the first example of a natural problem
that exhibits such a gap: To the best of our knowledge, approximate Nash equilibrium is the first
problem that is not defined in order to exhibit a gap, but rather happens to have one.
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3.3 Additional Related Literature
Pure Nash Equilibrium. The communication complexity of pure Nash equilibrium
has been studied before: in two-player N × N games it is poly(N) [Conitzer and
Sandholm 2004], and in n-player games it is exp(n) [Hart and Mansour 2010].

Approximation Protocols. For two-player N × N games and ε ≈ 0.382, Czumaj
et al. [2015] show that polylog(N) communication is sufficient for computing an
ε-approximate Nash equilibrium (improving over a protocol for ε ≈ 0.438 due to
Goldberg and Pastink [2014]).

Query Complexity. There are several interesting results on the more restricted
model of query complexity of approximate Nash equilibria, where the algorithm is
assumed to have black-box access to the normal form representation of the utility
function. Note that our communication complexity lower bounds immediately
extend to this model as well.

Hart and Nisan [2013] prove that any deterministic algorithm needs to query
at least an exponential number of queries to compute any ε-well-supported Nash
equilibrium—and even any ε-correlated equilibrium. Babichenko [2016] showed
that any randomized algorithm requires an exponential number of queries to find
an ε-well-supported Nash equilibrium. Chen et al. [2017] extended Babichenko’s
result to an almost-exponential (2	(n/ log n)) lower bound on the query complexity
of ε-approximate Nash equilibrium. Note that our lower bound here is not only
bigger (saving the log n factor), but also holds for the more general notion of weak
approximate Nash equilibrium, and in the more general model of communication
complexity.

Goldberg and Roth [2016] give a polynomial upper bound on the query com-
plexity of ε-WSNE for any family of games that have any concise representation.
This result is to be contrasted with (a) Babichenko’s query complexity lower bound,
which uses a larger family of games, and (b) our lower bounds on the computational
complexity of succinctly represented games (Theorem 5.1).

A much older yet very interesting and closely related result is that of Hirsch et al.
[1989]. They show that any deterministic algorithm for computing a Brouwer fixed
point in the oracle model must make an exponential -in the dimension n and the
approximation ε- number of queries for values of the function. Our construction
here builds upon and improves over Hirsch et al. [1989] by working with the �2-norm
instead of the �∞-norm.

Correlated Equilibrium. For the related notion of correlated equilibrium, in n-
player games with a constant number of actions, it is known that even exact
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correlated equilibrium can be computed using only poly(n)-communication (see
[Hart and Mansour 2010, Jiang and Leyton-Brown 2015, Papadimitriou and Rough-
garden 2008]. Interestingly, for exact correlated equilibria, there is an exponential
gap between the above communication protocol and the query complexity lower
bound of Babichenko and Barman [2015] and Hart and Nisan [2013]. Goldberg
and Roth [2016] characterize the query complexity of approximate coarse corre-
lated equilibrium in games with many players. Further discussion on correlated
equilibria appears in Section 3.6.

Communication Complexity of Finding Fixed Points. For the related problem of find-
ing a fixed point, Roughgarden and Weinstein [2016] study the communication
complexity of an approximate fixed point of the decomposition. Namely, Alice holds
a Lipschitz function f :A→B and Bob holds a Lipschitz function g :B→A, where
A and B are compact convex sets, and their goal is to compute a fixed point of the
decomposition g ◦ f . Roughgarden and Weinstein prove that the following version
of this problem is communicationally hard: find an approximate fixed point of g ◦ f
on a grid ofA, when it is promised that such an approximate fixed point on the grid
exists (the problem is not total).

Complexity of Equilibrium and Price of Anarchy. As discussed earlier, the main mo-
tivation for studying the (communication) complexity of Nash equilibrium is un-
derstanding its relevance as a predictive solution concept. This is a good place to
mention a recent work of Roughgarden [2014], which highlights another impor-
tant motivation for studying the complexity of Nash equilibrium: understanding
the quality of equilibria. The Price of Anarchy (PoA) of a game is the ratio between
the social welfare (sum of players’ utilities) in an optimum strategy profile, and the
social welfare in the worst Nash equilibrium of that game. Roughgarden [2014]
provides the following widely applicable recipe for lower bounds on PoA: if a Nash
equilibrium can be found efficiently (in particular, via the non-deterministic pro-
tocol due to Lipton et al. [2003]), but approximating the optimal social welfare
requires a higher communication complexity (even for non-deterministic proto-
cols, e.g., by reduction from set disjointness), then clearly not all Nash equilibria
yield high social welfare.

3.4 Proof Overview
The formal proofs appear in Section 3.5. Below we present the main ideas of the
proof. As mentioned in the Introduction, the proof consists of four main steps.
Below we present the ideas of each step.
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Query Complexity of End-of-the-Line
Our proof starts with the following query complexity hardness result (Lemma 3.2):
There exists a constant degree graph G = (V , E) with 2�(n) vertices, such that
finding the end of a line inG requires 2	(n) queries. In fact, we prove the hardness
result for directed graph G where each vertex has outgoing and incoming degree
2. Therefore, the successor and predecessor of each vertex are binary variables.
In particular, for each v ∈ V , the information about its role in the line can be
represented using only three bits, which we denote I (v) � (T (v), P(v), S(v)) ∈
{0, 1}3:

(a) Whether the line goes through v, which is denoted by T (v),

(b) Who is the successor of v (if v is on the line), which is denoted by S(v),

(c) Who is the predecessor of v (if v is on the line), which is denoted by P(v).

Lemma 3.1 Query End-of-a-Line; informal. Finding an end of a line with high probability
requires 2	(n) queries to I .

From Query Complexity to Communication Complexity
We use a recent simulation theorem to “lift” our randomized query complexity lower
bound to a randomized communication complexity bound.

The simulated communicationally hard problem has the following form. For
each v ∈ V , Alice holds a triplet of vectors αT ,v , αS ,v , αP ,v ∈ {0, 1}M where M =
2O(n), and Bob holds a reasonably small input which is just a triplet of indexes
βT ,v , βS ,v , βP ,v ∈ [M]. T (v) is given by the decomposition T (v)= αT ,v(βT ,v) (sim-
ilarly for the successor and predecessor). The simulation theorem of Göös et al.
[2017] and Anshu et al. [2017] now implies:

Corollary 3.2 CC(Simulation End-of-a-Line); informal. Finding an end of a line requires
2	(n) bits of communication.

Embedding as a Continuous Function
Our next step is to reduce the problem of finding an end of a line to that of finding
a Brouwer fixed point. Here, we use the construction from Chapter 4.

We embed the vertices of the discrete graph G in the continuous space
[−1, 2]�(n). Specifically, we embed each vertex v of G into a point xv in [−1, 2]�(n)

and each edge (v , w) inG into a (continuous) path in [−1, 2]�(n) that connects the
corresponding points xv and xw. In particular, we construct a continuous Lipschitz
function f : [−1, 2]�(n)→ [−1, 2]�(n) such that:
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1. The computation of f can be done using local information about I . Namely,
for points that are close to xv it is sufficient to know I (v) to compute f . For
points that are close to a path that corresponds to the edge (v , w) but far
from the points xv , xw, it is sufficient to know whether (v , w) is an edge in
the line (in particular, knowing either I (u) or I (v) suffices). For points that
are far from all paths (v , w), f does not depend on I at all (and thus can be
computed without any communication).

2. Any (normalized) ‖ . ‖2-approximate fixed point of f can be mapped (effi-
ciently) back to an end of some line in I .

Property 1 induces the following efficient communication protocol for comput-
ing f (x): Bob finds v such that x is close to xv, and sends βT ,v , βS ,v , βT ,v; Alice
replies with I (v)= (αT ,v(βT ,v), αT ,v(βT ,v), αT ,v(βT ,v)

)
, and they each use I (v) to

locally compute f (x). (Similarly, if x is close to the path corresponding to edge
(v , w), they use a similar protocol to compute I (v) and I (w).)

By Property 2, we have:

Corollary 3.3 CC(Brouwer); informal. Finding a (normalized) ‖ . ‖2-approximate fixed point
of f requires 2	(n) bits of communication.

Two-Player Game
Naively thinking, we would like to design a game where Alice chooses a point
x ∈ [−1, 2]�(n) (on the ε-grid) and Bob chooses a point y ∈ [−1, 2]�(n) (on the ε-
grid). Alice’s utility will be given by −‖x − y‖2

2, and Bob’s utility will be given by4

−‖y − f (x)‖2
2. Then, by applying similar arguments to those in Babichenko [2016],

McLennan and Tourky [2005], Rubinstein [2016], and Shmaya [2012], we can de-
duce that every approximate Nash equilibrium corresponds to an approximate fixed
point, and thus also to an end of a line.

However, the above idea is obviously incorrect because Bob’s utility depends on
f , whereas in the communication problem his utility should depend on theβs only.
Our key idea is to use the fact that f can be computed locally to design a somewhat
similar game where similar phenomena to those in the “naive” game will occur in
approximate equilibria.

Bob doesn’t know f , but to compute f (x) he should only know the local infor-
mation about the vertex (or vertices) that corresponds to x. We incentivize Alice

4. Note that here it is crucial that we use the normalized ‖ . ‖2 to obtain payoffs bounded in [−9, 0];
using the non-normalized ‖ . ‖2 we get payoffs in [−√n, 0].
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and Bob to combine their private information about the corresponding vertex (or
vertices) by the following utilities structure.

. Alice’s first component of utility is given by−‖x − y‖2
2. As in the “naive” game,

in any approximate Nash equilibrium Alice will play points in the ε-cube of
the ε-grid that contains E[y] with probability close to one.

. Bob tries to guess the vertex v (or the vertices v , w) that corresponds to
the point x. Since x (almost always) belongs to the same ε-cube, in any
(approximate) Nash equilibrium, his guess should be correct (with high
probability). In addition, Bob should announce the β indexes βT , βS, and
βP of v (of v and w). Again, we incentivize him to do so by defining that he
should “guess” also these β indexes, and in an (approximate) equilibrium
his guess should be correct with high probability (w.h.p.).

. We want Alice to announce I (v) (similarly for w in the case of two vertices).
Thus, we ask her to guess the decomposition αvB(β

B) where vB and βB are
the announced v and β by Bob. In (approximate) equilibrium, since Bob
announces the correct v and β (w.h.p.), this incentivizes her to announce
the correct I (v) (w.h.p.).

. Now Bob uses the local information of I (v) (and I (w)) to compute f .
Namely, his last utility component is defined by−‖y − fIA(v),IA(w)(x)‖2

2 where
fIA(v),IA(w) is Bob’s “estimation” of f under the relevant local information
announced by Alice. In (approximate) equilibrium Alice announces the cor-
rect local information (w.h.p.); thus Bob computes f correctly (w.h.p.).

Summarizing, the (approximate) equilibrium analysis of the presented game is
similar to the analysis of the naive game, because in (approximate) equilibrium f is
computed correctly (w.h.p.). But unlike the naive game, here Alice’s utility depends
only on the αs and Bob’s utility only on the βs.

n-Player Game: ε-WSNE
Then-player game reduction is based on the same ideas as the two-player reduction.
For clarity, we present first the idea of a reduction that proves the following weaker
result:

There exists a constant ε > 0 such that the communication complexity of ε-
well-supported approximate Nash equilibrium in n-player games with a constant
number of actions for each player is at least 2cn for some constant c.
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After that, we explain how we can strengthen this result in two aspects: first
to improve the constant-number-of-action to binary-action, second to improve the
ε-well-supported Nash equilibrium to (ε , ε)-weak approximate equilibrium.

The idea is to replace a single player—Alice—who chooses x in the ε-grid of
[−1, 2]�(n) by a population of �(n) players {pxi}i∈�(n); each player pxi in the popu-
lation is responsible for the ith coordinate of x. The payoff of player pxi is given by
−|xi − yi|2. This incentivizes player pxi to play a single action, or two adjacent ac-
tions, in the ε-grid of the segment [−1, 2] (in every WSNE). By looking at the action
profile of all pxi players, we get the same phenomenon as in the two-player case:
every point x in the support of Alice’s players belongs to the same ε-cube of the
ε-grid.

Now, we replace the guess of v ∈ {0, 1}�(n), which is done by Bob, by population
of size�(n)where again each player is responsible to a single coordinate of v. Again,
in a WSNE all players will guess correctly.

Similarly for the guess of β: we think of β ∈ [M]3 as an element of {0, 1}3 log M

and we construct a population of 3 log M players; each controls a single bit.
Similarly for Alice’s guesses of IA(v) and IA(v): we construct 6 players, and each

chooses a bit.
Finally, we again replace the choice of y ∈ [−1, 2]�(n) by a population of �(n)

players pyi . Each is responsible to a single coordinate. The payoff of player pyi is
given by −|yi − [fIA(v),IA(w)(x)]i|2. The analysis of this game is very similar to the
two-player game analysis.

n-Player Game: (ε ,ε)-Weak ANE and Binary Actions
In the above reduction, the x-type (and y-type) players have 3/ε actions each. To
construct a binary action game, we use the technique of Babichenko [2016]. We
replace each such player by a population of 3/ε players, each located at a point in
the ε-grid of the segment [−1, 2]. A player that is located at j ∈ [−1, 2] (on the ε-grid)
has to choose between the two points j or j + ε. In a WSNE, all players located to
the left of yi will choose j + ε, and all players located to the right of yi will choose j .

More tricky is to generalize this reduction to weak approximate equilibria. Recall
that in weak approximate equilibria, a constant fraction of players may play an
arbitrary suboptimal action. Here we take into account both;

1. Players that are not ε-best replying, and

2. Players that are ε-best replying, but put small positive weight on the inferior
action (among the two) and the realization of their mixed action turns out to
be the inferior action.
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In order to be immune from this small constant fraction of irrational players, we
use error-correcting codes.5 Let Eβ:{0, 1}3 log M→ {0, 1}�(3 log M) be a good binary
error-correcting code. Instead of having a population of size 3 log M that tries to
guess β, we replace it by a population of size�(3 log M) where each player tries to
guess his bit in the encoding of β. Now even if a small constant fraction of players
will act irrationally, the decoding of the action profile of the β-type players will turn
out to be β. We use the same idea for all types of populations (x-type, y-type, v-type,
and I -type). This idea completes the reduction for weak approximate equilibria.

3.5 Proofs
In Subsection 3.5.1 we prove a randomized query lower bound for the end-of-the-
line problem. In Subsection 3.5.2 we show how the lower bounds of Subsection 3.5.1
can be “lifted” to get a hard problem in the randomized communication complexity
models. In Subsections 3.5.3, 3.5.4, and 3.5.5 we reduce the communicationally
hard end-of-any-line problem to the approximate Nash equilibrium problem.

3.5.1 A Randomized Query Complexity Lower Bound
LetGbe a directed graph with the verticesV = {0, 1}n× {0, 1}n× [n+ 1]. Each vertex
(v1, v2, k), where v1, v2 ∈ {0, 1}n and k ∈ [n], has two outgoing edges to the vertices
(v1, vk+1

2 (0), k + 1) and (v1, vk1
2 (1), k + 1), where vj(0)= (v1, . . . , vj−1, 0, vj+1, . . . ,

vn). We call (v1, vk+1
2 (0), k + 1) the 0-successor of v, and (v1, vk+1

2 (1), k + 1) the 1-
successor of v. Each vertex v = (v1, v2, n+ 1) has a single outgoing edge to the vertex
(v2, v1, 0). Note that the incoming degree of each vertex v = (v1, v2, k) ∈ V is at most
two. For k = 1 there is a single incoming edge from (v2, v1, n+ 1). For k > 1 there
are two incoming edges from (v1, vk2(0), k − 1) and from (v1, vk2(1), k − 1). We call
(v1, vk2(0), k − 1) the 0-predecessor of v, and (v1, vk2(1), k − 1) the 1-predecessor of v.

We define the Query End-of-the-Line to be the problem of finding the end
of a line inG that starts at the point 02n+1. More formally, we represent a line inG
by a triple I (v)� (T (v), S(v), P(v)) where T (v) ∈ {0, 1} indicates whether the line
goes through v, S(v) ∈ {0, 1} indicates who is the successor of v, and P(v) ∈ {0, 1}
indicates who is the predecessor of v (here we use the fact that each vertex has
outgoing and incoming degree of at most two). Throughout the chapter, we slightly
abuse notation and use S(v)/P(v) to refer both to the bits and to the corresponding

5. In fact, we use error-correcting codes even earlier, in Rubinstein’s [2016] modified construction
of a hard Brouwer function.
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vertices (i.e., the S(v)/P(v)-successor/predecessor of v). The end of the line is the
vertex v∗ such that T (v∗)= 1 but T (S(v∗))= 0.

Definition 3.1 Query End-of-the-Line.
Input: A line I = (T , S , P) over the graphG that starts at the point 02n+1.
Output: The first bit ([v∗]1) of the end-of-the-line vertex.
Queries: Each query is a vertex v ∈ V . The answer is the triplet of bits I (v) =
(T (v), S(v), P(v)) ∈ {0, 1}3.

Lemma 3.2 Randomized query complexity. For every constant δ < 1
2 , BPPdt

δ
(QueryEnd-

of-the-Line)=	(2n).
Proof By Yao’s Minmax Theorem it is sufficient to introduce a distribution over paths

such that every deterministic query algorithm requires	(2n) queries to determine
the first bit of the end-of-line vertex with probability of at least 1− δ. We choose a
permutation π over {0, 1}n \ {0n} uniformly at random, and set π(0)� 0n. π induces
a line of length�(2n . n)overG, starting at 02n+1, ending at (π(2n− 1), π(2n− 1), 0),
and where two consecutive vertices v = π(i) and w = π(i + 1) are mapped to the
following line of n+ 1 edges:

(v , v , 0)→ . . .→ (v , (w[1,k], v[k+1,n]), k)→
→ . . .→ (v , w, n)→ (w, w, 0).

Here (w[1,k], v[k+1,n]) denotes the vector with the first k coordinates as inw and the
last n− k coordinates as in v.

The information of a single query of Query End-of-the-Line (for the above
class of lines) can be extracted from π(i − 1), π(i), and π(i + 1). Therefore Query
End-of-the-Line is at least as hard as the problem of finding the first bit of the
last element in a random permutation, where each query returns the previous, the
current, and the next vertices. Conditioning on the answers to k queries π(q1−
1), π(q1), π(q1+ 1), . . . , π(qk − 1), π(qk), π(qk + 1), the last element of the permu-
tation is still uniformly random across all vertices that are notπ(q1), . . . , π(qk), π(q1

−1), . . . , π(qk − 1), π(q1+ 1), . . . , π(qk + 1). This proves that the latter problem re-
quires 	(2n) queries.

3.5.2 Communicationally Hard, Discrete End-of-Any-Line Problem
In order to use a simulation theorem (Theorem 2.5) for randomized communica-
tion complexity, we define the following simulation variant of Query End-of-the-
Line:

Definition 3.2 Simulation End-of-the-Line. We let N = 2n . 2n . (n+ 1) . 3.
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Input: For each v ∈ {0, 1}n× {0, 1}n× [n+ 1], Alice receives three vectors αT
v

, αS
v

, αP
v

∈ {0, 1}M , and Bob receives three indices βT
v

, βS
v

, βP
v
∈ [M].

We define

T (v)= αT
v

(
βT
v

)
, S(v)= αS

v

(
βS
v

)
, and P(v)= αP

v

(
βP
v

)
. (3.1)

We simulate the problem Query End-of-the-Line; therefore we restrict atten-
tion to inputs such that (T , S , P) that are defined in (3.1) meet all the requirements
of Query End-of-the-Line.
Output: The first bit ([v∗]1) of a non-trivial end or start of a line (v∗, v∗, 0) �= 02n+1.

Applying the randomized simulation theorem (Theorem 2.5) to the query com-
plexity lower bound (Lemma 3.2) gives a lower bound on the randomized com-
munication complexity of a discrete end-of-line problem SimulationEnd-of-the-
Line.

Corollary 3.4 BPPcc
0.3(SimulationEnd-of-the-Line)=	(2n).

3.5.3 Embedding a Line as a Local Lipschitz Function
We embed I as a Euclidean-norm hard continuous function à la Section 4.2. Below,
we recall some of the properties of the construction that will be useful for our
reduction.

It will be more convenient to think ofG as a graph over {0, 1}2n+log(n+1).
Let m=�(2n+ log(n+ 1))=�(n) and let E: {0, 1}2n+log(n+1)→ {0, 1}m denote

the encoding function of a good binary error-correcting code. We embed the dis-
crete graphG into the continuous cube [−1, 2]4m.

The vertex v is embedded to the point (E(v), E(v), 0m, 0m) ∈ [−1, 2]4m, which is
called the embedded vertex.

For two vertices v , w ∈ V such that (v , w) is an edge in the graph G, we define
five vertices:

x1(v , w)�
(
E(v), E(v), 0m, 0m

)
x2(v , w)�

(
E(v), E(v), 1m, 0m

)
x3(v , w)�

(
E(v), E(w), 1m, 0m

)
x4(v , w)�

(
E(v), E(w), 0m, 0m

)
x5(v , w)�

(
E(w), E(w), 0m, 0m

)
.

Note that x1(v , w) is the embedded vertex v, x5(v , w) is the embedded vertex w.
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The line that connects the points xi(v , w) and xi+1(v , w) is called a Brouwer line
segment. The union of these four Brouwer line segments is called the embedded edge
(v ,w). It is not hard to check that non-consecutive Brouwer line segments are	(1)-
far one from the other, and in particular it implies that non-consecutive embedded
edges are sufficiently far one from the other.

The following proposition shows that the End-of-the-Line problem can be
reduced to the problem of finding an approximate fixed point of a continuous Lip-
schitz function, when the function is “local” in the following sense: every edge
in G is embedded as a path in the continuous hypercube (as described above).
For points close to the embedding of an edge, f depends only on the “local behav-
ior” of the lines I at the endpoints of this edge; for all other points, f is independent
of the lines I .

Proposition 3.1 Theorem 4.2 and Fact 4.2. There exist constants δ , h > 0 such that given a line
I = (T , S , P) overG there exists a function f = f (I)=: [−1, 2]4m→ [−1, 2]4m with
the following properties:

1. ‖f (x)− x‖2 > δ for every x that is not h-close to the embedded edge of the
end of the line (i.e., the embedding of the edge (P (v∗), v∗).

2. f is O(1)-Lipschitz in ‖ . ‖2 norm.

3. f is local in the sense that it can be defined as an interpolation between a
few (in fact, 64) functions, {fI1,I2

: [−1, 2]4m→ [−1, 2]4m}Ii∈{0, 1}3, that do not
depend on the lines I and such that:

(a) If the firstm-tuple of coordinates of x is 6h-close to the encoded vertex
E(v), but the second m-tuple of coordinates of x is 6h-far from any
encoded vertex E(w), then fI (v),I2

(x)= f (x) for every I2 ∈ {0, 1}3.

(b) If the second m-tuple of coordinates of x is 6h-close to the encoded
vertex E(w), but the first m-tuple of coordinates of x is 6h-far from
any encoded vertexE(v), then fI1,I (w)(x)= f (x) for every I1 ∈ {0, 1}3.

(c) If the firstm-tuple of coordinates of x is 6h-close to the encoded vertex
E(v), and the second m-tuple of coordinates of x is 6h-close to the
encoded vertex E(w), then f(I (v),I (w)(x)= f (x).

(d) If none of the above conditions are satisfied, then fI1,I2
(x)= f (x) for

every I1, I2 ∈ {0, 1}3.

3.5.4 Two-Player Game
Theorem 3.3 Theorem 3.1, restated. There exists a constant ε > 0 such that the communication

complexity of ε-Nash equilibrium in two-player N ×N games is at least Nε.
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We construct a two-player game between Alice and Bob of size NA ×NB for

NA � (3/ε)4m . 23= 2�(n)

NB � (3/ε)4m .
(

22n+log(n+1))2 .M3= 2�(n),

such that Alice’s utility depends on {αT
v

, αS
v

, αP
v
}v only, Bob’s utility depends on

{βT
v

, βS
v

, βP
v
}v only, and all ε4-approximate Nash equilibria of the game correspond

to a δ-fixed point of f from Proposition 3.1. By property 1 in Proposition 3.1, any
fixed point of f corresponds to a non-trivial end or start of a line in I .

3.5.4.1 The Game
In this subsection we construct our reduction from Simulation End-of-the-Line
to the problem of finding an ε-WSNE.

Strategies. Recall that δ is the desired approximation parameter for a Brouwer
fixed point in the construction of Proposition 3.1. We let ε be a sufficiently small
constant; in particular, ε =O(δ) (this will be important later for Inequality (3.10)).

Each of Alice’s actions corresponds to an ordered tuple (x , IA
v

, IA
w
), where:

. x ∈ [−1, 2]4m, where the interval [−1, 2] is discretized into {−1, −1+ ε , . . . ,
2− ε , 2};

. IA
v

�
(
tA
v

, sA
v

, pA
v

) ∈ {0, 1}3 and IA
w

�
(
tA
w

, sA
w

, pA
w

) ∈ {0, 1}3.

Each of Bob’s actions corresponds to an ordered tuple
(

y , vB , wB , βB
v

, βB
w

)
,

where:

. y ∈ [−1, 2]4m, where the interval [−1, 2] is discretized into {−1, −1+ ε , . . . ,
2− ε , 2};

. vB , wB ∈ {0, 1}2n+log(n+1) are vertices in the graphG;

. βB
v
= (βB ,T

v
, βB ,S
v

, βB ,P
v

) ∈ [M]3 and βB
w
= (βB ,T

w
, βB ,S
w

, βB ,P
w

) ∈ [M]3 are
triples of indexes.

Utilities. Alice’s and Bob’s utilities decompose as

UA �UAImitation + UAGuessV + UAGuessW ,

UB �UBBrouwer + UBGuessV + UBGuessW.
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The first component of Alice’s utility depends only on the first components of her
and Bob’s strategies; it is given by:

UAimitation(x; y)�−
∥∥∥x − y

∥∥∥2

2
.

Given the first component x ∈ [−1, 2]4m of Alice’s strategy, we define two decoding
functions Dv ,Dw : [−1, 2]4m→ {0, 1}n as follows. Let Rv(x) ∈ {0, 1}m be the round-
ing of the first m-tuple of coordinates of x to {0, 1}m; let Dv(x) = E−1(Rv(x)) ∈
{0, 1}2n+log(n+1), whereE−1 denotes the decoding of the error-correcting code from
Subsection 3.5.3. We define Dw(x) ∈ {0, 1}2n+log(n+1) analogously with respect to
the second m-tuple of coordinates of x. The second component of Bob’s utility is
now given by UBGuessV = 1 iff he guesses correctly the vertex Dv(x), and the corre-
sponding β operation on this vertex. Namely, UBGuessV(v

B , βB
v

; x)= 1 if vB =Dv(x)
and βB

v
= (βT

Dv(x)
, βS
Dv(x)

, βP
Dv(x)

), andUBGuessV(v
B , βB

v
; x)= 0 otherwise. We similarly

define Bob’s third component UBGuessW with respect to Dw(x).
Note that Bob knows the indexes βT

v
, βS
v

, βP
v

(for every v); thus to achieve
UBGuess = 1 Bob needs to guess correctly only the vertices Dv(x), Dw(x) and an-
nounce the corresponding triplet of β indexes.

Going back to Alice, the second component of her utility is given byUAGuessV = 1
iff she guesses correctly the triplet I (vB)= (T (vB), S(vB), P(vB))when the calcula-
tion of T , S , P is done by the decomposition of α(βB). Namely,UAGuessV(I

A
v

; vB , βB)
= 1 if IA

v
= (αT

vB
(βB ,T
v
), αS

vB
(βB ,S
v
), αP

vB
(βB ,P
v
)), and UAGuessV(I

A
v

; vB , βB)= 0 other-
wise. We similarly define Alice’s third component UBGuessW.

Finally, the first component of Bob’s utility is given by:

UBBrouwer

(
y; x , eA

)
�−

∥∥∥fIAv ,IAw
(x)− y

∥∥∥2

2
,

where the function fI1,I2
is as defined in Proposition 3.1.

3.5.4.2 Analysis of Game
In this subsection, we prove the reduction from Simulation End-of-the-Line to
finding an ε4-ANE. The proof proceeds via a sequence of lemmas that establish the
structure of any ε4-ANE.

Lemma 3.3 In every ε4-ANE (A; B), it holds that
∥∥x − Ey∼B[y]

∥∥2
2 =O(ε2) with probability of at

least 1− ε2 (where the probability is taken over A).
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Proof We denote Ei(B)= Ey∼B[yi], E(B)= (E1(B), . . . , En(B)) as the vector of expecta-
tions, and Var(B)= (Vary∼B[y1], . . . , Vary∼B[yn]) as the vector of variances. For every
x we can rewrite

UAimitation(x , B)=−Ey∼B

∥∥∥x − y
∥∥∥2

2

=− 1
4m

∑
i∈[4m]

Ey∼B
[(
xi − yi

)2
]

=− 1
4m

∑
i∈[4m]

[(
xi − yi(B)

)2 + Vary∼B
[
yi
]]

=−
∥∥∥x − E(B)

∥∥∥2

2
−
∥∥∥Var(B)

∥∥∥2

2
.

(3.2)

Since the variance of the yi’s, as well as that of UAGuessV and UAGuessW, does not
depend on x, Alice’s best response to B is

x∗ =
([

E1(B)
]
ε

, . . . ,
[
En(B)

]
ε

)
where [.]ε denotes the rounding to the closest ε integer multiplication. x∗ yields a
payoff of at least

UAimitation(x
∗, B)≥−ε

2

4
−
∥∥∥Var(B)

∥∥∥2

2
.

Note that in every ε4-ANE Alice assigns a probability of at most 1− ε2 to actions
that are ε2-far from optimal. By Equation (3.2) this implies that the probability that
Alice choosing a vector x that satisfies

∥∥x − E(B)
∥∥2

2 ≥ ε2 + ε2

4 is at most ε2.

Lemma 3.4 In every ε4-ANE (A; B), if the first m-tuple of coordinates of Ey∼B[y] is 6h-close to
the binary encoding E(v) of a vertex v, then

vB = v βB
v
=
(
βT
v

, βS
v

, βP
v

)
(3.3)

with probability of at least 1−O(ε4) (where the probability is taken over B).

Proof By Lemma 3.3 and the triangle inequality, with probability of at least 1− ε2, the first
m-tuple of x is O(h)-close to E(v). Rounding to Rv(x) ∈ {0, 1}m can at most double
the distance toE(v) in each coordinate. Therefore, the Hamming distance ofRv(x)
and E(v) is O(h). Hence Rv(x) is correctly decoded as Dv(x)= v , with probability
of at least 1− ε2.

Since vB , βB
v

do not affect UBBrouwer + UBGuessW, Bob’s utility from guessing
vB = v, andβB

v
= (βT

v
, βS
v

, βP
v

)
is at least 1− ε2, whereas his utility from guessing any
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other guess is at most ε2. Therefore, Bob assigns probability at least 1− ε4/(1− 2ε2)

to actions that satisfy (3.3).

A similar lemma holds for the second m-tuple of x and the vertex w:

Lemma 3.5 In every ε4-ANE (A; B), if the second m-tuple of coordinates of Ey∼B[y] is 6h-close
to the binary encoding E(w) of a vertex w, then

wB = w βB
w
=
(
βT
w

, βS
w

, βP
w

)
with probability of at least 1−O(ε4) (where the probability is taken over B).

Since Alice receives the correct vB and βB, we also have:

Lemma 3.6 In every ε4-ANE (A; B), if the first m-tuple of coordinates of Ey∼B[y] is 6h-close to
the binary encoding E(v) of a vertex v, then

IA
v
=
(
αT
v

(
βT
v

)
, αS
v

(
βS
v

)
, αP
v

(
βP
v

))
with probability 1−O(ε4) (where the probability is taken over A and B).

Proof Follows immediately from Lemma 3.4 and the fact that IA
v

does not affect
UAImitation + UAGuessW.

A similar lemma holds for the second m-tuple of x and the vertex w:

Lemma 3.7 In every ε4-ANE (A; B), if the second m-tuple of coordinates of Ey∼B[y] is 6h-close
to the binary encoding E(w) of a vertex w, then

IA
w
=
(
αT
w

(
βT
w

)
, αS
w

(
βS
w

)
, αP
w

(
βP
w

))
with probability 1−O(ε4) (where the probability is taken over A and B).

Lemma 3.8 In every ε4-ANE (A; B), fIAv ,IAw
(x)= f (x) with probability 1−O(ε2).

Proof Follows immediately from Lemmas 3.6 and 3.7 and the “locality” condition in
Proposition 3.1.

The following corollary completes the analysis of the 2-player game.

Corollary 3.5 In every ε4-ANE (A; B),
∥∥Ex′∼A[x′]− f (Ex′∼A[x′])

∥∥
2 < δ.

Proof We recall that in Lemma 3.3 we have proved that∥∥∥x − Ey∼B[y]
∥∥∥2

2
=O(ε2) (3.4)
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with probability 1−O(ε2). This also implies that x is, with high probability, close
to its expectation:∥∥∥x − Ex′∼A[x′]

∥∥∥2

2
≤
(∥∥∥x − Ey∼B[y]

∥∥∥
2
+
∥∥∥Ex′∼A[x′]− Ey∼B[y]

∥∥∥
2

)2

≤ 2
∥∥∥x − Ey∼B[y]

∥∥∥2

2
+ 2

∥∥∥Ex′∼A[x′]− Ey∼B[y]
∥∥∥2

2

≤ 2
∥∥∥x − Ey∼B[y]

∥∥∥2

2
+ 2Ex′∼A

[∥∥∥x′ − Ey∼B[y]
∥∥∥2

2

]
=O(ε2), (3.5)

with probability 1−O(ε2). Where the first inequality follows from the triangle in-
equaltiy, the second follows from the Arithmetic-Mean Geometric-Mean inequality
(AM-GM inequalty), the third follows from convexity of ‖ . ‖2

2, and the last follows
from Lemma 3.3.

Using that f is O(1)-Lipschitz together with Equation (3.5), we get that∥∥∥f (x)− f (Ex′∼A
[
x′
])∥∥∥2

2
=O(ε2) (3.6)

with probability 1−O(ε2).
By Lemma 3.8 we know that fIAv ,IAw

(x)= f (x) with probability 1−O(ε2), which
implies that ∥∥∥Ex′∼A

[
fIAv ,IAw

(
x′
)]− Ex′∼A

[
f
(

x′
)]∥∥∥2

2
=O(ε2). (3.7)

Using similar arguments to those of Lemma 3.3 we can show that∥∥∥y − Ex′∼A
[
fIAv ,IAw

(
x′
)]∥∥∥2

2
=O(ε2) (3.8)

with probability 1−O(ε2). As in the derivation of Equation (3.5), this implies:∥∥∥y − Ey′∼B
[
y′
]∥∥∥2

2
=O(ε2) (3.9)

with probability 1−O(ε2).
With probability 1−O(ε2), Inequalities (3.5), (3.4), (3.9), (3.8), (3.7), (3.6) hold

simultaneously. In such a case, by the triangle inequality and by applying the
inequalities in the exact order above, we have∥∥∥Ex′∼A

[
x′
]− f (Ex′∼A

[
x′
])∥∥∥2

2
=O(ε2)< δ2. (3.10)
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Proof Proof of Theorem 3.1. Any communication protocol that solves the ε4-Nash equi-
librium problem in games of size N × N for N = 2�(n) induces a communication
protocol for the problem Simulation End-of-the-Line: Alice constructs her util-
ity in the above presented game using her private information of the αs, Bob con-
structs his utility using the βs. They implement the communication protocol to
find an ε4-Nash equilibrium, and then both of them know Ex∼A[x], which is a δ-
approximate fixed point of f (by Corollary 3.5). UsingDv, they decode the vertex v∗

and they know the first coordinate of v∗.
Using Corollary 3.4, we deduce that the communication complexity of ε4-Nash

equilibrium in games of size 2�(n) × 2�(n) is at least 2	(n).

3.5.5 n-player Game
Theorem 3.4 Theorem 3.2, restated. There exists a constant ε > 0 such that the communication

complexity of (ε , ε)-weak approximate Nash equilibrium in n-player binary-action
games is at least 2εn.

The proof follows similar lines to those in the proof of Theorem 3.1. Rather
than two players whose actions correspond to �(n)-long vectors, we have a player
for each bit of (an encoding of) those vectors. We construct a game with 8m′-players
for m′ =�(n) such that Alice holds the utility function of (the first) 3m′ players,
Bob holds the utilities of (the last) 5m′ players, Alice’s players’ utilities depend only
on the αs, Bob’s utilities depend only on the βs, and every (ε5/82, ε5/82)-weak
approximate Nash equilibrium corresponds to a δ-fixed point of the function f
from Proposition 3.1.

Players and Actions. In subsection 3.5.4 we used error-correcting code to encode
vertices that are deduced from x and y. Here, since we consider weak approximate
equilibria, we should add additional encodings for IA

v
, IA
v

, vB ,wB , βB
v

andβB
w

. Since
we want to use the same number of players for each of the above objects, it will
be convenient to encode them in the same space {0, 1}m′. We let the following
be encoding functions of binary error-correcting codes with constant (relative)
distance:

. EI : {0, 1}3→ {0, 1}m′.

. Eu : {0, 1}2n+log(n+1)→ {0, 1}m′.

. Eβ : {0, 1}3 log M→ {0, 1}m′ (note that 3 log M =�(n)).
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Let E and m denote encoding function and block length of the error-correcting
code from Subsection 3.5.3, i.e.:

. E : {0, 1}2n+log(n+1)→ {0, 1}m.

For vectors x , y ∈ [−1, 2]4m, we use ( 3
ε
− 1) bits to encode each continuous coor-

dinate (up to precision ε) in unary encoding. We choosem′ such thatm′ = 4( 3
ε
− 1)m,

so the encoding of each of x , y also takes m′ bits. (For Eβ, we must also have
m′ > 3 log M .) Here and henceforth, ε is a sufficiently small constant, satisfying
ε =�(δ).

Instead of having a single player, Alice, with actions (x , IA
v

, IA
w
) ∈ {−1,

−1+ ε , . . . , 2− ε , 2}m × {0, 1}3× {0, 1}3, we replace her by 3m′ players with binary
actions. We have three types of Alice players:

. x-type players. Player xij chooses one of the actions aij ∈ {j , j + ε} for every
i ∈ [4m] and j ∈ {−1, −1+ ε , . . . , 2− 2ε , 2− ε}. Note that the total number
of x-type players is 4m( 3

ε
− 1)=m′.

. I v-type players. Player I v
i

chooses a bit 0 or 1 for every i ∈ [m′].
. Iw-type players. Similarly player Iw

i
chooses a bit 0 or 1 for every i ∈ [m′].

In the communication problem, we assume that Alice knows the utilities of all the
above players.

Instead of having a single player, Bob, with actions (y , vB ,wB , βB
v

, βB
w
) ∈ {−1,−1

+ε , . . . , 2− ε , 2}m × {0, 1}2n+log(n+1) × {0, 1}2n+log(n+1) × [M]3 × [M]3, we replace
him by 5m′ players with binary actions. We have five types of players:

. y-type players. Player yij chooses one of the actions bij ∈ {j , j + ε} for every
i ∈ [4m] and j ∈ {−1, −1+ ε , . . . , 2− 2ε , 2− ε}.

. v-type players. Player vi chooses a bit 0 or 1 for every i ∈ [m′].

. w-type players. Similarly, player wi chooses a bit 0 or 1 for every i ∈ [m′].

. βv-type players. Player βv
i

chooses a bit 0 or 1 for every i ∈ [m′].
. βw-type players. Similarly player βw

i
chooses a bit 0 or 1 for every i ∈ [m′].

In the communication problem, we assume that Bob knows the utilities of all the
above players.

Utilities. Before getting to the description of the utilities we define the notions of
realized number and realized point by a set of players. For every i ∈ [m], for simplicity
of notation we add a dummy player xi2 who has a single action ai2 = 2. Given an
action profile ai = (ai−1, ai−1+ε , . . . , ai2) of the players {xij}j , the realized number
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r(ai) ∈ [−1, 2] is defined to be the minimal j such that aij = j . Note that r(ai) is

well defined because the last player xi2 plays 2. Given an action profile a = (aij )i ,j
of all x-type players, we denote by r(a)= (r(ai))i ∈ [−1, 2]m the realized point. We
similarly define the realized point of y-type players.

The utilities are defined similarly to the two-player case with the following
differences:

1. x-type/y-type players’ utilities are defined with respect to the realized points
of the opponents. In addition, the player that is responsible to the i-th
coordinate of the point pays the distance from the i-th coordinate of the
opponent’s point (or the i-th coordinate of the f operation of the opponent’s
point).

2. For all other types, the i-th player chooses the value of the i-th bit in the
(alleged) codeword in {0, 1}m′.

Formally the payoffs are defined as follows:

. For x-type players, U xi
j (aij ; bi)�−|aij − r(bi)|2, where we recall that player xij

is allowed to choose only ai ,j = j or ai ,j = j + ε, and bi is the profile of action
played by players {yij}j .

. For a v-type player vi, we define Uvi(vi; a) = 1 iff he announces the bit[
Eu(Dv(r(a)))

]
i

(where the decoding function Dv is as defined in Sub-
section 3.5.4.1). Otherwise, Uvi(vi; a) = 0. Namely, the i-th player tries to
guess the i-th coordinate of the encoded vector Eu(v) ∈ {0, 1}m′, where v
is computed using the decoding operation Dv on the realized point r(a) ∈
[−1, 2]4m. We similarly define the utility of a w-type player.

. For a βv-type player βv
i

, we define Uβ
v
i (βv

i
; a) = 1 iff he announces the bit[

Eβ(β
S
Dv(r(a))

)
]
i
. Namely, the i-th player tries to guess the i-th coordinate of

the encoded vector Eβ(β
S
v
), where v, as in the previous bullet, is computed

using decoding. We similarly define the utilities of βw-type players.

. For a I v-type player I v
i

, we define UI
v
i (I v
i

, βv)= 1 iff she announces the bit[
Eu(α

T
v
([β
]

1), α
S
v
([β]2), α

P
v
([β]3))]i where v is the decoded vertex announced

by v-type players andβ is the decoded vector of indexes announced byβv-type
players. We similarly define the utilities of Iw-type players.

. For y-type players,Uyi
j
=−|bij − fIv ,Iw(r(a))|2, where I v and Iw are the decod-

ing of the vertices announced by I v-type and Iw-type players. We recall that
the function fIv ,Iw is defined in Proposition 3.1.
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3.5.5.1 Analysis of Game
We analyze (ε̄ , ε̄)-weak approximate equilibria for ε̄ = ε5/82. The analysis of the
game follows the same sequence of lemmas as the analysis in the two-player case
(Subsection 3.5.4.2). The analogue of Lemma 3.3 is the following.

Lemma 3.9 In every (ε̄ , ε̄)-weak approximate equilibrium (A, B), the realized point by the x-type
players r(a) satisfies ∥∥∥r(a)− Eb∼B

[
r(b)

]∥∥∥2

2
≤ ε2 (3.11)

with high probability6 (the probability is over the mixed strategy of the x-type
players).

Proof We say that player xij ’s action j is wrong if Ebi∼B[r(bi)]≥ j + ε; similarly, we say that

action j + ε is wrong if Ebi∼B[r(bi)]≤ j . Note that if for some coordinate i, no player
xij plays a wrong action, then the realized number ri(ai) is ε-close to Ebi∼B[r(bi)].
We show that indeed in an (ε̄ , ε̄)-weak approximate equilibrium we will have many
such coordinates i.

Recall that player xij ’s utility when she plays j is given by

u(j)� Ebi∼B

[
U

xi
j
(
j ; bi

)]
= Ebi∼B

[
−
∣∣∣j − r(bi)∣∣∣2]

=−
∣∣∣j − Ebi∼B

[
r
(
bi
)]∣∣∣2 − Varbi∼B

[
r
(
bi
)]

.

Similarly, when she plays j + ε her utility is given by

u(j + ε)� Ebi∼B

[
U

xi
j
(
j + ε; bi

)]
= Ebi∼B

[
−
∣∣∣j + ε − r(bi)∣∣∣2]

=−
∣∣∣j + ε − Ebi∼B

[
r
(
bi
)]∣∣∣2 − Varbi∼B

[
r
(
bi
)]

.

6. Here and throughout this section, we use “with high probability” to mean with probability
approaching 1 as n grows (in fact, with an exponential dependence); in particular, the probability
is approaching 1 faster than any polynomial in ε.
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When j is wrong (i.e., Ebi∼B[r(bi)]≥ j + ε), the difference in the utilities u(j + ε)−
u(j) is given by

u(j + ε)− u(j)=−
(
Ebi∼B

[
r
(
bi
)]− j − ε)2 +

(
Ebi∼B

[
r
(
bi
)]− j)2

=
(

2Ebi∼B
[
r
(
bi
)]− 2j − ε

)
ε ≥ ε2.

When j + ε is wrong (Ebi∼B[r(bi)]≤ j ), the difference in the utilities u(j)− u(j + ε)
is given by

u(j)− u(j + ε)=−
(
j − Ebi∼B

[
r
(
bi
)])2 +

(
j + ε − Ebi∼B

[
r
(
bi
)])2

=
(

2j − 2Ebi∼B
[
r
(
bi
)]+ ε) ε ≥ ε2.

Therefore, player xij can always increase her payoff by at least ε2 by deviating from

a wrong action. Note that if player xij is ε̄-best replying, she assigns a probability
of at most ε̄/ε2 to a wrong action. In addition, the fraction of x-type players that
are not ε̄-best replying is at most 8ε̄ (because we have 8 types of players of equal
cardinality). Therefore, in the expected fraction of x-type players, playing a wrong
action is at most 8ε̄ + 2ε̄/ε2 < 2.5ε̄/ε2. Therefore, with high probability over x-
type players’ mixed strategies, at most a 3ε̄/ε2-fraction play a wrong action (e.g.,
by Chernoff bound). Therefore the fraction of coordinates i ∈ [4m] where at least
one player xij plays a wrong action is at most 9ε̄/ε3 (because we have 3/ε players
in each coordinate). So in a (1− 9ε̄/ε3) fraction of coordinates, we have |ri(ai)−
Ebi∼B[r(bi)]| ≤ ε, which implies∥∥∥r(a)− Eb∼B[r(b)]

∥∥∥2

2
= 1

4m

∑
i

∣∣∣r(ai)− Eb∼B
[
r
(
bi
)]∣∣∣2

≤
(

1− 9ε̄
ε3

)
ε2 + 9ε̄

ε3
32 <

82ε̄
ε3
= ε2.

The analogue of Lemma 3.4 is the following.

Lemma 3.10 In every (ε̄ , ε̄)-weak approximate equilibrium (A, B), if the first m-tuple of coordi-
nates of Eb∼B[r(b)] is 6h-close to the binary encoding E(v) of a vertex v, then

1. The decoding of the action profile of the v-type players is v with probability
1− o(ε).

2. The decoding of the action profile of the βv-type players is
(
βT
v

, βS
v

, βP
v

)
with

probability 1− o(ε).
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Proof Whenever (3.11) holds,Dv(r(a))= v. In particular, for each i ∈ [m′], [Eu(Dv(r(a)))]i
= [Eu(v)]i with high probability. Therefore, by playing the action [Eu(v)]i player
vi has expected utility of 1− o(1), whereas by playing the action 1− [Eu(v)]i his
expected utility is o(1).

Every player that is ε̄-best replying assigns probability of at least 1−O(ε̄) to the
correct bit. In addition, we have at most an 8ε̄ fraction of v-type players who are not
ε̄-best replying (because we have 8 types of players of equal cardinality). Therefore
the expected fraction of v-type players who play the wrong bit is O(ε̄). By Chernoff
bound, it also holds that with high probability at most an O(ε̄)-fraction of v-type
players play the wrong bit. Whenever this is the case, v is indeed decoded correctly.

We similarly prove the second claim in the lemma for βv-type players.

In a similar way we can show that analogues of Lemmas 3.5, 3.6, 3.7, and 3.8
hold for the n-player game. In particular,

Lemma 3.11 In every (ε̄ , ε̄)-weak approximate equilibrium (A, B), fIAv ,IAw
(x) = f (x) with high

probability.

Now we get to the analogue of the last Corollary 3.5.

Corollary 3.6 In every (ε̄ , ε̄)-weak approximate equilibrium (A, B), the expectation of the realized
point Ea∼A[r(a)] is a δ-approximate equilibrium of f ; i.e.,∥∥∥Ea∼A

[
r(a)

]− f (Ea∼A
[
r(a)

])∥∥∥
2
≤ δ.

Proof The proof is similar to the proof of Corollary 3.5. We recall that in Lemma 3.9 we
have proved that ∥∥∥r(a)− Eb∼B

[
r(b)

]∥∥∥2

2
≤ ε2 (3.12)

with high probability. This, in particular, implies that r(a) is, with high probability,
close to its expectation:∥∥∥r(a)− Ea′∼A

[
r
(
a′
)]∥∥∥2

2
(3.13)

≤ 2
∥∥∥r(a)− Eb∼B

[
r(b)

]∥∥∥2

2
+ 2

∥∥∥Ea∼A
[
r(a)

]− Eb∼B
[
r(b)

]∥∥∥2

2

≤ 2
∥∥∥r(a)− Eb∼B

[
r(b)

]∥∥∥2

2
+ 2Ea′∼A

[∥∥∥r(a′)− Eb∼B
[
r(b)

]∥∥∥2

2

]
=O(ε2), (3.14)
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with high probability. Where the first inequality follows from the triangle inequality,
the second follows from convexity, and the last is Lemma 3.9.

Using the O(1)-Lipschitzness of f we deduce that∥∥∥f (r(a))− f (Ea′∼A
[
r
(
a′
)])∥∥∥2

2
=O(ε2) (3.15)

with high probability.
Using similar arguments to those of Lemma 3.9, we can show that∥∥∥r(b)− Ea′∼A

[
f
Iv ,Iw

(
r
(
a′
))]∥∥∥2

2
=O(ε2) (3.16)

with high probability, where we recall that I v , Iw denote the decoded line infor-
mation of the action profile played by the I v and Iw-type players. By an analogous
argument to (3.13), ∥∥∥r(b)− Eb′∼B

[
r
(
b′
)]∥∥∥2

2
=O(ε2) (3.17)

with high probability.
By Lemma 3.11,∥∥∥Ea′∼A

[
f
Iv ,Iw

(
r
(
a′
))]− Ea′∼A

[
f
(
r
(
a′
))]∥∥∥2

2
=O(ε2). (3.18)

By Equations (3.13), (3.12), (3.17), (3.16), (3.18), (3.15) (applied exactly in this
order) and the triangle inequality, we get∥∥∥Ea∼A

[
r
(
a′
)]− f (Ea∼A

[
r
(
a′
)])∥∥∥2

2
=O(ε2)< δ2. (3.19)

Proof Proof of Theorem 3.2. Any communication protocol that solves the (ε5/82, ε5/82)-
weak approximate Nash equilibrium problem in �(n)-player games with binary
actions induces a communication protocol for the problem Simulation End-of-
the-Line: Alice constructs the utilities of her players using her private information
of the αs, Bob constructs his utility using the βs. They implement the commu-
nication protocol to find an (ε5/82, ε5/82)-weak approximate Nash equilibrium,
and then both of them know Ea∼A[r(a)], which is a δ-approximate fixed point of f
(by Corollary 3.6). Finally, they round and decode the approximate fixed point to
recover the end of the line.

Using Corollary 3.4, we deduce that the communication complexity of the
(ε5/82, ε5/82)-weak approximate Nash equilibrium problem in�(n)-player games
with binary actions is at least 2	(n).
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3.6 An Open Problem: Correlated Equilibria in 2-Player Games
As mentioned in Subsection 3.3, it is known that for n-player, O(1)-action games,
even exact correlated equilibrium can be found with poly(n) deterministic commu-
nication complexity (see [Hart and Mansour 2010, Jiang and Leyton-Brown 2015,
Papadimitriou and Roughgarden 2008]).

In two-player N × N games, for approximate correlated equilibrium with con-
stant value of approximation, to the best of our knowledge, no non-trivial results
are known (neither positive nor negative). Does a polylog(N) communication proto-
col for approximate correlated equilibrium exist? Is there a poly(N) communication
lower bound? For small values of approximation, recently Ganor and Karthik [2017]
have shown that 1/N -correlated equilibrium requires poly(N) communication.



4Brouwer’s Fixed Point

Brouwer’s fixed point theorem guarantees that any continuous function f : [0, 1]n

→ [0, 1]n has a fixed point, i.e., a point x ∈ [0, 1]n such that f (x)= x. In this sec-
tion we construct continuous functions f : [0, 1]n→ [0, 1]n where even finding an
approximate fixed point (i.e., x such that x ≈ f (x)) is hard.

In particular, we reduce the End-of-a-Line problem to the problem of finding
an approximate fixed point. Our reductions require only local, computationally
efficient, black-box access to the End-of-a-Line instance. Thus they immediately
apply both to the computational setting (defined in Section 2.2) and the query-
complexity model (which is the focus of Chapter 3).

We present two reductions. We begin with an easier construction, where we
think of the error x − f (x) in terms of �∞-norm; it is a good starting point for
introducing the main ideas, and the special structure of the construction is also
useful for the results in Chapter 6. We then add error-correcting codes to obtain a
stronger construction for �2-norm.

4.1 Brouwer with �∞
Below we state and prove the hardness of finding an approximate fixed point in
�∞-norm. For the results in Chapter 6 we require a stronger characterization of
the construction, which we omit from the theorem statement for simplicity (see
Fact 4.1 for details).

Theorem 4.1 �∞ Brouwer. There exists a constant ε > 0 such that the following holds. Given
(local, black-box access to) an instance of End-of-a-Line, we can construct a
computationally efficient, continuous function f : [0, 1]O(n)→ [0, 1]O(n), such that:

. f is O(1)-Lipschitz in �∞-norm; and

. given x for which ‖f (x)− x‖∞ < ε, we can efficiently reconstruct a solution
to the End-of-a-Line instance.
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Proof In the first step (Subsection 4.1.2), we embed the End-of-a-Line problem (over
{0, 1}n) as a collection H of vertex-disjoint paths over the (2n + 1)-dimensional
hypercube graph. Given H , our second step (Subsection 4.1.3) is to construct a
continuous mapping f : [0, 1]2n+2 → [0, 1]2n+2 whose fixed points correspond to
ends of paths in H . This step generalizes a construction of Hirsch et al. [1989] for
embedding a single path.

4.1.1 Preliminaries: �∞-Norm Geometry
Throughout this section, we work with the �∞-norm. This has some implications
that may contradict our geometric intuition. For example: in an �∞-norm world, a
circle is a square.

�∞-norm interpolation. Given coordinates x , y ≥ 0, we define the �∞-norm angle1

that point (x , y) forms with the x-axis (in the xy-plane) as

θ∞(x , y)= y

x + y .

The �∞-norm angle is useful for interpolation. Given the values of f : [0, 1]n→
[0, 1]n on two neighboring facets of the hypercube, we can extend f to all points of
the hypercube by angular interpolation: interpolate according to the �∞-norm angle
θ∞(xi , xj)where xi and xj are the respective distances from the two facets. When f
is defined on two opposite facets, we can simply use Cartesian interpolation, which
again means to interpolate according to the distance from each facet.

�∞-norm local polar coordinates. Given a point z ∈ Rn, we define a new local �∞-
norm polar coordinate system around z. Every x ∈ Rn is transformed into 〈r , p〉z ∈
R× Rn where r = ‖x − z‖ is the �∞-norm radius, and p= (x − z)/r is the �∞-norm
unit vector that points from z in the direction of x.

4.1.2 Embedding the End-of-a-Line Graph as Paths in {0,1}2n+1

Our first step in the reduction is to embed an End-of-a-Line graph GS ,P as
vertex-disjoint paths on the (2n+ 1)-dimensional hypercube graph. We construct
a collection H of vertex-disjoint paths and cycles over the (2n + 1)-dimensional
hypercube graph, such that there is a 1-to-1 correspondence between starting and
end points of paths in H and starting and end points of lines inGS ,P .

In order to construct our embedding, we divide the 2n+ 1 coordinates as fol-
lows: the first n coordinates store the current vertex u, the next n coordinates for

1. Our �∞-norm angle was called unit in Hirsch et al. [1989].
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the next vertex in the line, v, and finally, the last coordinate b stores a compute-next
vs copy bit. When b= 0, the path proceeds to update v← S(u), bit-by-bit. When this
update is complete, the value of b is changed to 1. Whenever b = 1, the path pro-
ceeds by copying u← v bit-by-bit, and then changes that value of b again. Finally,
when u= v = S(u) and b = 0, the path reaches an end point. For example, the edge
u→ v maps into the path:

(u, u, 0)→ . . .→ (u, v , 0)→ (u, v , 1)→ . . .→ (v , v , 1)→ (v , v , 0).

Notice that the paths in H do not intersect. Furthermore, given a vector in
p ∈ {0, 1}2n+1, we can efficiently output whether p belongs to a path in H , and if
so, which are the previous and consecutive vectors in the path. Finding a starting
or end point of any path in H (other than 02n+1) is therefore equivalent to finding
an odd-degree vertex (other than 0n) inGS ,P .

4.1.3 Continuous Mapping on [0,1]2n+2

In order to construct a hard instance of Brouwer function, we use techniques
introduced by Hirsch et al. [1989]. The continuous Brouwer function is denoted by
f : [0, 1]2n+2 → [0, 1]2n+2, while the associated displacement function is denoted
by g(x) � f (x) − x. The following lemma (proven below) completes the proof of
Theorem 4.1.

Lemma 4.1 The displacement g satisfies:

1. g is O(1)-Lipschitz (thus, f is also O(1)-Lipschitz).

2. ‖g(x)‖∞ =	(1) for every x that does not correspond to a starting or end point
in H .

3. The value of g at each point x can be computed (efficiently) with local, black-
box access to S , P .

4.1.3.1 Overview of the Construction
The domain of f is the 2n+ 2-dimensional (solid) hypercube. The hypercube is
divided into subcubes, of side length h (we fix h= 1/4). We define f separately on
each subcube such that it agrees on the intersections (no interpolation is needed
in this sense).

The last ((2n+ 2)-th) dimension is special; we use “up” (resp. “down”) to refer to
the positive (negative) (2n+ 2)-th direction. All the action takes place in the second-
from-bottom (2n+ 1)-dimensional layer of subcubes; this layer is called the slice.
Within the slice, we also ignore the subcubes that are near the boundary of the
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hypercube (those compose the frame); we are left with the subcubes in the center of
the slice, which we call the picture. We identify between the vertices of the (2n+ 1)-
dimensional hypercube graph (over which H was defined) and the 22n+1 subcubes
of the picture.

The subset of subcubes into which we embed each path or cycle from H is
called a tube. The home subcube, the subcube that corresponds to the 02n+1-vertex,
is special: all the flow from all subcubes that do not belong to any tube leads to this
subcube.

Below we define the displacement in the following regions, and argue that it
satisfies the desiderata of Lemma 4.1:

. inside the picture, but not in any tube;

. inside a tube; and

. outside the picture.

4.1.3.2 Default Displacement
Most of the slice has the same default displacement: directly upward, i.e., g(x)=
δξ2n+2, where ξ2n+2 is the (2n+ 2)-unit vector, and δ > 0 is a small constant. For-
mally,

Fact 4.1 g(x)= δξ2n+2, for every x such that at least one of the following holds:

1. x lies on a corner, i.e., the intersection of two or more facets of a subcube;

2. x lies on an outer facet of a tube subcube, i.e., a facet other than the two facets
that continue the path; or

3. x lies in a subcube that does not belong to any tube.

Intuitively, Property 2 implies that all subcubes—whether they belong to the tube
or not—look the same from the outside (except for the two facets that continue the
path). In particular, the displacement on both sides of each facet is the same; so
if the displacement isO(1)-Lipschitz on each subcube, it is alsoO(1)-Lipschitz on
the entire hypercube.

Property 1, stating that all corners look the same, is key to the sampling gadgets
in Chapter 6, because it liberates us from having to disambiguate the position of a
point near the corners (that is, deciding exactly to which subcube it belongs).

4.1.3.3 Displacement at a Tube
The mapping is defined so that in the center of the tube, the flow goes along the
direction of the path; slightly outside the center, the flow points toward the center
of the tube; further away from the center, the flow goes against the direction of the
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path; at the outer boundary of the tube, as we previously described, the flow goes
upward.

We first define g on facets. Let 〈r , p〉z be a point on the facet centered at z, and
suppose that the tube enters the subcube through z, advancing in the positive i-th
coordinate. We define

g(〈r , p〉z)�

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
δξi r = 0

−δp r = h/8

−δξi r = h/4

δξ2n+2 r = h/2.

(4.1)

(Recall that h is the subcube side length, and δ is some small constant.) Notice that
at each r , the displacement g isO(1)-Lipschitz and has magnitude ‖g(x)‖∞ =	(1)
(thus satisfying the first two desiderata of Lemma 4.1).

For r ∈ (0, h/8), interpolate between δξi and −δp (Hirsch et al. [1989] call this
radial interpolation), and similarly for r ∈ (h/8, h/4) and r ∈ (h/4, h/2). See also
the illustration in Figure 4.1. It is easy to see that the O(1)-Lipschitz property is
preserved. Notice also that ξi is orthogonal to p and ξ2n+2; this guarantees that the
interpolation does not lead to cancellation, i.e., we still have ‖g(x)‖∞ =	(1).

In the last couple of paragraphs we defined g on two facets for each subcube
that belongs to the tubes; for all other points in the tubes we interpolate (angular
interpolation) between those two facets: Consider a point x in the tube, and assume
(w.l.o.g.) that xi , xj > 1/2, and suppose that the value of f (.) on the yi = 1/2 and
yj = 1/2 facets of the subcube containing x is determined by (4.1). Let

xi =
(

x−i ,j ,
1
2

, max
{
xi , xj

})
xj =

(
x−i ,j , max

{
xi , xj

}
,

1
2

)
denote the corresponding “�∞-norm projections” to the respective yi = 1/2 and
yj = 1/2 facets. We set

g(x)= θ∞
(
xi − 1

2
, xj − 1

2

)
go
(

xi
)+ (1− θ∞

(
xi − 1

2
, xj − 1

2

))
g
(

xj
)

.

Notice that xi and xj are at the same distance from the respective facet centers,
i.e., they correspond to the same r . For each case of (4.1), the (i , j)-components of
the displacements at xi and xj are orthogonal, and for the rest of the components
they are aligned. Therefore, when we interpolate between g(xi) and g(xj ) there
is again no cancellation, i.e., ‖g(x)‖∞ = 	(‖g(xi)‖∞) = 	(1). Finally, recall that
the displacement on each facet is O(1)-Lipschitz, and the displacements agree
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Figure 4.1 An illustration of the displacement on a facet between two subcubes in a tube; the
direction of the path is into the paper. In the center (red), the displacement points into
the paper; slightly further outside (blue), the displacement points toward the center;
further outside (yellow), the displacement points out of the paper; finally, in the outer
layer (green), the displacement points in the special 2n+ 2 dimension.

on the intersection of the facets. Therefore the interpolated displacement is O(1)-
Lipschitz over the entire subcube by a triangle-inequality argument.

The home subcube is defined using (4.1) as if the tube enters from above, i.e.,
coming down the (2n+ 2)-dimension, and exits through another facet (in one of
the first (2n + 1) dimensions) in the direction of the path (here again we have
‖g(x)‖∞ =	(1)). For all other starting and end points, we define g(x)= δxi2n+2 on
the facet opposite the one that continues the tube, and interpolate between the
opposite facets using Cartesian interpolation. Notice that this gives a fixed point
when the interpolation cancels the default displacement at the opposite facet, with
the displacement−δξ2n+2 at the point on the tube facet that is at distance h/8 above
the path.

4.1.3.4 Outside the Picture
For all points in the frame and below the slice, the displacement points directly
upward, i.e., g(x)= δξ2n+2. Moving above the slice, let z[top] be the point on the top
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facet of the hypercube that is directly above the center of the home subcube. For
all points 〈r , p〉z[top] on the top facet of the hypercube, define the displacement as
follows:

g
(
〈r , p〉z[top]

)
=
{−δξ2n+2 r = 0

−δp r ≥ h/8

and interpolate for r ∈ (0, h/8). Notice that this displacement isO(1)-Lipschitz and
has 	(1)magnitude for each r , and this is preserved after interpolation.

Notice that the definition of g on the slice from the previous subsection implies
that all the points in the top facet of the slice, except for the top of the home
subcube, point directly upward. Let z[home] denote the center of the top facet of
the home subcube. We therefore have that for any 〈r , p〉z[home] in the top facet of
the slice,

g
(
〈r , p〉z[home]

)
=

⎧⎪⎨⎪⎩
−δξ2n+2 r = 0

−δp r = h/8

δξ2n+2 r ≥ h/4

where we again interpolate radially for r in (0, h/8) and (h/8, h/4).
Finally, to complete the construction above the slice, simply interpolate (using

Cartesian interpolation) between the top facets of the slice and the hypercube. See
also the illustration in Figure 4.2.

PictureHome

Figure 4.2 An illustration of the displacement outside the picture.
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4.2 Euclidean Brouwer

Theorem 4.2 Euclidean Brouwer. There exist constants δ , h > 0 such that the following holds.
Given (local, black-box access to) an instance I = (T , S , P) of Membership End-
of-a-Line, we can construct a computationally efficient, continuous function f :
[0, 1]O(n)→ [0, 1]O(n), such that

. f is O(1)-Lipschitz in �2-norm; and

. given x for which ‖f (x)− x‖2< ε, we can efficiently reconstruct a solution to
the Membership End-of-a-Line instance.

4.2.1 Discrete Embedding of a Graph in the Euclidean Space
Each vertex v is embedded to the point (E(v), E(v), 0m, 0m) ∈ [−1, 2]4m, which is
called the embedded vertex.

For every edge (v , w) we define five vertices:

x1(v , w)�
(
E(v), E(v), 0m, 0m

)
x2(v , w)�

(
E(v), E(v), 1m, 0m

)
x3(v , w)�

(
E(v), E(w), 1m, 0m

)
x4(v , w)�

(
E(v), E(w), 0m, 0m

)
x5(v , w)�

(
E(w), E(w), 0m, 0m

)
.

The vertices xi(v , w) are called Brouwer vertices. Note that x1(v , w) is the em-
bedded vertex v, and x5(v , w) is the embedded vertexw. The line that connects the
points xi(v , w) and xi+1(v , w) is called a Brouwer line segment. The union of these
four Brouwer line segments is called the embedded edge (v , w).

4.2.2 The Function f
We set h to be a sufficiently small constant such that the

√
h neighborhood of any

two Brouwer vertices will not intersect and such that the 3h neighborhood of any
two Brouwer line segments will not intersect—unless they share the same common
Brouwer vertex. We take δ to be a constant arbitrarily smaller thanh (δ = h3 suffices).
We define a displacement function g : [−1, 2]4m→ [−δ , δ]4m and f (x)� x + g(x). In
order to satisfy properties (1)–(3) of Proposition 3.1, we should define g such that:

1. ‖g(x)‖2=	(δ) for every x that is not 2
√
h-close to the Brouwer line segments

of any non-trivial end or starting of a line.

2. g is O(1)-Lipschitz.
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3. g is defined “locally,” which will allow us to generate the class of functions
{fI1,I2

}.

We think of the 4m coordinates as partitioned into four parts. The first m-
tuple of coordinates represent the current vertex in the line; the second m-tuple
represent the next vertex in the line. We think of the third m-tuple as all being
equal to a single bit that switches between computing the next vertex, and copying
from the second to firstm-tuple. Finally, the lastm coordinates represent a special
default direction in which the displacement points when far from all Brouwer line
segments (similarly to the single special coordinate in Hirsch et al. [1989]).

We consider a path starting at (03m, 2 . 1m), i.e., the concatenation of 0 on the
first 3m coordinates, and 2 on the lastm coordinates. The path first goes to (04m) (in
a straight line), and thereafter the lastm coordinates remain constantly 0 (note that
every Brouwer vertex has 0m in its lastm-tuple). The first 3m coordinates follow the
line according to the embedding in Subsection 3.5.3. This path corresponds to the
line starting at 02n+1; for any additional line starting at vertex u, we have another
path starting at (E(u), E(u), 02m).

We say that a point x is in the picture if 1
m

∑4m
i=3m+1 xi < 1/2. We construct g

separately inside and outside the picture (and make sure that the construction
agrees on the hyperplane 1

m

∑4m
i=3m+1 xi = 1/2).

Truncation. In order for g(.) to be a displacement function, we must ensure that
it never sends any points outside the hypercube, i.e., ∀x ∈ [−1, 2]4m; we require
that also x + g(x) ∈ [−1, 2]4m. Below, it is convenient to first define an untrun-
cated displacement function ĝ : [−1, 2]4m→ [−δ , δ]4m that is not restricted by
the above condition. We then truncate each coordinate to fit in [−1, 2]: [g(x)]i =
max{−1, min{2, xi + [ĝ(x)]i}} − xi. It is clear that if ĝ(.) is (M − 1)-Lipschitz, then
g(.) isM-Lipschitz. It is, however, important to make sure that the magnitude of the
displacement is not compromised. Typically, some of the coordinates may need to
be truncated, but we design the displacement so that most coordinates, say 99%,
are not truncated. If ĝ(x) has a non-negligible component in at least 5% of the
coordinates, then in total g(x)maintains a non-negligible magnitude.

4.2.2.1 Inside the Picture
The line 0= v0, v1, . . . , v∗ is embedded to a path in [−1, 2]4m that goes in straight
lines through the following sequence of Brouwer vertices:(

03m, 2 . 1m
)

,
(

04m
) = x1 (v0, v1

)
, x2 (v0, v1

)
, . . . , x5 (v0, v1

)
= x1 (v1, v2

)
, x2 (v1, v2

)
, . . . , x5 (P (v∗) , v∗

)
.
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Similarly, if I contains another line u, . . . , w, it is embedded as a path through:(
E(u), E(u), 02m

)= x1 (u, S(u)) , . . . , x5 (P (w), w)= (E(w), E(w), 02m
)

,

and analogously for cycles.
Now we cut the corners of this path as follows: For two consecutive Brouwer

vertices s, y in the embedded path we let z1
(s→y) be the point in the Brouwer line

segment [s, y] that is exactly
√
h-far from s. Similarly, z2

(s→y) is the point in [s, y]

that is exactly
√
h-far from y; for three consecutive Brouwer vertices s→ y → t, the

path after “cutting the corners” goes in straight lines through

. . . , z1
(s→y), z2

(s→y), z1
(y→t), z2

(y→t), . . .

instead of going through s→ y → t.
First, for all points inside the picture that are 3h-far from the embedded path

after cutting the corners, we use the same default displacement, which points in the
positive special direction: ĝ(x)= (03m, δ . 1m). Because x is inside the picture, the
truncated displacement g(x) is close to ĝ(x), and therefore satisfies ‖g(x)‖2=	(δ).

Now we define the displacement 3h-close to the embedded path in two regions:

1. for points that are 3h-close to a segment of the form
[
z1
(s→y), z2

(s→y)

]
but

(approximately2)
√
h-far from both Brouwer vertices s, y;

2. for the remaining points, those that are 3h-close to a segment of the form[
z2
(s→y), z1

(y→t)

]
and (approximately2)

√
h-close to the Brouwer vertex y.

We make sure that the definitions agree on the interface between the two regions,
as well as on the interface with the points that receive the default displacement.

4.2.2.2 Close to the Path but Far from a Brouwer Vertex
On the Brouwer line segment, the displacement points in the direction of the
path; at distance h from the Brouwer line segment, the displacement points in
toward the Brouwer line segment; at distance 2h from the Brouwer line segment,
the displacement points against the direction of the path; at distance 3h, the
displacement points in the default direction.

Formally, let σ(s→t)(x) denote the magnitude of the component of x − s in the
direction of line (s→ t),

2. It will be more convenient to set the threshold of points x that are “far”/“close” from/to a
Brouwer vertex using the expression σ(s→y)(x) that is defined below. σ(s→y)(x) is closely related to

the distance of x from the points s, y but is not precisely the distance.
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σ(s→t)(x)�
(t − s)∥∥s− t

∥∥2
2

. (x − s),

where . denotes the (in-expectation) dot product. Let z= z(x) be the point nearest
to x on the Brouwer line segment; notice that z satisfies

z= σ(s→t)(x)t +
(

1− σ(s→t)(x)
)

s.

For points near the Brouwer line segment (‖x − z‖2≤ 3h), but far from its end points
(σ(s→t)(x) ∈ [

√
h, 1−√h]), we define the displacement:

ĝ(x)�

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

δ
(t−s)
‖t−s‖2

∥∥x − z
∥∥

2 = 0

δ
(z−x)
h

∥∥x − z
∥∥

2 = h
δ
(s−t)
‖t−s‖2

∥∥x − z
∥∥

2 = 2h

δ(03m, 1m)
∥∥x − z

∥∥
2 = 3h.

(4.2)

At intermediate distances from the Brouwer line segment, we interpolate: at
distance ‖x − z‖2= 1

3h, for example, we have ĝ(x)= 2
3δ

(t−s)
‖t−s‖2

+ 1
3δ
(z−x)
h

. Notice that
(t − s) is orthogonal to both (z − x) and (03m, 1m), so the interpolation does not
lead to cancellation. Also, every point z on the Brouwer line segment is 	(1)-far
in every coordinate from {−1, 2}, so the truncated displacement g(x) still satis-
fies ‖g(x)‖2 =	(δ). For each case in (4.2), ĝ(.) is either constant, or (in the case
of ‖x − z‖2 = h) O(δ/h)-Lipschitz ( (z−x)

h
is O(1/h)-Lipschitz because two “antipo-

dal” points at distance 2h have opposite directions, both pointing parallel to the
Brouwer line segment); by choice of δ� h, it follows that ĝ(.) is in particularO(1)-
Lipschitz. Furthermore, notice that ‖x − z‖2 is 1-Lipschitz, so after interpolating
for intermediate distances, ĝ(.) continues to be O(1)-Lipschitz. Notice also that at
distance 3h the displacement defined in (4.2) agrees with the displacements for
points far from every Brouwer line segment, so Lipschitz continuity is preserved.

4.2.2.3 Close to the Path and a Brouwer Vertex
Let Ly be the line that connects the points z(s→y) and z(y→t). Given x, we let z be the
closest point to x on Ly.

Our goal is to interpolate between the line displacement for (s→ y) (which is
defined up to σ(s→y)(x) = 1−√h), and the line displacement for (y → t) (which
begins at σ(y→t)(x) =

√
h). Let �(s→y)(x) � σ(s→y)(x) − (1−

√
h), and �(y→t)(x) �√

h − σ(y→t)(x). We set our interpolation parameter τ = τ(x) � �(y→t)(x)
�(y→t)(x)+�(s→y)(x)

,

and set

z � τz(s→y) + (1− τ)z(y→t). (4.3)
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For points x near y such that �(s→y)(x), �(y→t)(x) ≥ 0, we can now define the
displacement analogously to (4.2):

ĝ(x)�

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

δ .
[
τ
(y−s)
‖y−s‖2

+ (1− τ) (t−y)
‖t−y‖2

] ∥∥x − z
∥∥

2 = 0

δ
(z−x)
h

∥∥x − z
∥∥

2 = h
δ .
[
τ
(s−y)
‖y−s‖2

+ (1− τ) (y−t)
‖t−y‖2

] ∥∥x − z
∥∥

2 = 2h

δ(03m, 1m)
∥∥x − z

∥∥
2 ≥ 3h

. (4.4)

At intermediate distances, interpolate according to ‖x − z‖2 (see Figure 4.3).
Notice that for each fixed choice of τ ∈ [0, 1] (and z), ĝ is O(δ/h) = O(1)-

Lipschitz. Furthermore, �(s→y) and �(y→t) are 1-Lipschitz in x. For any z ∈ Ly,
�(y→t)(z)+�(s→y)(z)=

√
h. For general x, we have

�(y→t)(x)+�(s→y)(x)≥�(y→t)(z)+�(s→y)(z)− 2
∥∥x − z

∥∥
2 =

√
h− 2

∥∥x − z
∥∥

2;

(4.5)

so τ is O(1/
√
h)-Lipschitz whenever ‖x − z‖2 < 3h, and otherwise has no effect

on ĝ(x). We conclude that ĝ is O(1)-Lipschitz when interpolating across different
values of τ . At the interface with (4.2) τ is 1 (0 near z(y→t)), so (4.2) and (4.4) are
equal. Therefore ĝ is O(1)-Lipschitz on all of [−1, 2]4m.

To lower bound the magnitude of the displacement, we argue that (z − x) is
orthogonal to [τ (y−s)

‖y−s‖2
+ (1− τ) (t−y)

‖t−y‖2
]. First, observe that we can restrict our at-

tention to the component of (z− x) that belongs to the plane defined by s, y , t (in
which z also lies). Let Ps, y , t(x) denote the projection of x to this plane. We can write
points in this plane in terms of their�(.)� (�(s→y)(.),�(y→t)(.)) values. (Recall that
(s→ y) and (y → t) are orthogonal.)

First, observe that �(z(s→y)) = (0,
√
h), �(z(y→t)) = (

√
h, 0) and �(y) = (√h,√

h). Notice also that[
τ

(
y − s

)∥∥y − s
∥∥

2

+ (1− τ) (t − y
)∥∥t − y
∥∥

2

]
=
[
τ

(
y − z(s→y)

)
√
h

+ (1− τ)(z(y→t) − y
)

√
h

]
.

Putting those together, we have that

�

([
τ

y

‖y − s‖2
+ (1− τ) t

‖t − y‖2

])

−�
([
τ

s
‖y − s‖2

+ (1− τ) y

‖t − y‖2

])
= (τ , 1− τ). (4.6)
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S

x

y

Z(s→y)

Z(y→t)
t

z

Figure 4.3 The figure (not drawn to scale) shows some of the important points near a Brouwer vertex
y: There is an incoming Brouwer line segment from s through z(s→y), and an outgoing
Brouwer line segment to t through z(y→t). For each point x between the dashed lines,
we assign a point z on the line Ly as in (4.3), and define the displacement according to
(4.4). Outside the dashed lines (including at y itself), we use the default displacement
δ(03m, 1m).

For z, we have

�(z)= τ�(z(s→y)
)+ (1− τ)�(z(y→t)

)=√h(1− τ , τ).

Finally, for Ps, y , t(x), we can write

�
(
Ps, y , t(x)

)= (�(y→t)(x),�(s→y)(x)
)

= 1
�(y→t)(x)+�(s→y)(x)

(1− τ , τ).

Therefore�(z)−�(Ps, y , t(x)
)

is orthogonal to (4.6).

4.2.2.4 Close to an End-of-Any-Line
Close to the non-trivial end or start of any line, we don’t have to be as careful with
defining the displacement: any Lipschitz extension of the displacement we defined
everywhere else would do, since here we are allowed (in fact, expect) to have fixed
points.
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For concreteness, let (s→ t) be the last Brouwer line segment in a path. In
(4.2), we defined the displacement for points x such that σ(s→t)(x) ≤ 1−√h. For
points such that σ(s→t)(x)= 1 (i.e., at the hyperplane through t and perpendicular to
(s→ t)), we simply set the default displacement ĝ(x)� δ(03m, 1m). For intermediate
values ofσ(s→t)(x) ∈ [1−√h, 1], we simply interpolate according toσ(s→t)(x). Notice
that this induces a fixed point for some intermediate point, since for x directly
“above” the Brouwer line segment, δ z−x

h
perfectly cancels δ(03m, 1m). Define the

displacement analogously at the (non-trivial) start of a path.

4.2.2.5 Outside the Picture
The displacement outside the picture is constructed by interpolating the displace-
ment at 1

m

∑4m
i=3m+1 xi = 1/2, and the displacement at points in the “top” of the

hypercube, where xi = 2 for every i in the last m coordinates. The former displace-
ment, where Ei∈{3m+1, . . . , 4m}xi = 1/2, is defined to match the displacement inside
the picture. Namely, it is the default displacement everywhere except near the first
Brouwer line segment that goes “down” from s= (03m, 2 . 1m) to t = (04m). Near this
line, it is defined according to (4.2). (Notice that ‖t − s‖2 = 1.)

Formally, let z1/2 =
(

03m, 1
2

. 1m
)

; for x on the boundary of the picture, we have:

ĝ(x)�

⎧⎪⎪⎪⎨⎪⎪⎪⎩
δ(03m, −1m)

∥∥x − z1/2

∥∥
2 = 0

δ
(z1/2−x)
h

∥∥x − z1/2

∥∥
2 = h

δ(03m, 1m)
∥∥x − z1/2

∥∥
2 ≥ 2h.

(4.7)

For points x such that
∑4m
i=3m+1 xi is very close to 2, the displacement δ(03m, 1m) is

not helpful because it points outside the hypercube, i.e., it would get completely
erased by the truncation. Instead, we define the displacement as follows:

ĝ(x)�
{
δ(03m, −1m)

∥∥x − z2

∥∥
2 = 0

δ
(z1−x)
h

∥∥x − z2

∥∥
2 ≥ h,

(4.8)

where z2 = (03m, 2 . 1m). When θ �
∑4m
i=3m+1 xi ∈ (1/2, 2), we interpolate between

(4.7) and (4.8) according to θ−1/2
3/2 .

4.2.3 Locally Computing the Brouwer Function
The function f defined above is local in two different ways: First, in order to
compute f (x) at a point x that is close to the embedding of one or a few vertices
in the Membership End-of-a-Line instance I , we only need to understand I at
those vertices. The second type of locality observes that in order to compute just a
single coordinate fi(x), we only need partial information about x.
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Locality in the Membership End-of-a-Line Instance
Fact 4.2 The function f is local in the sense that there exists a class of functions {fI1,I2

:
[−1, 2]4m→ [−1, 2]4m} that do not depend on I , and f can be defined as an inter-
polation between these functions such that:

1. If the first m-tuple of coordinates of x is 12
√
h-close to the encoded vertex

E(v), but the second m-tuple of coordinates of x is 12
√
h-far from any en-

coded vertex E(w), then fI (v),I2
(x)= f (x) for every I2.

2. If the secondm-tuple of coordinates of x is 12
√
h-close to the encoded vertex

E(w), but the firstm-tuple of coordinates of x is 12
√
h-far from any encoded

vertex E(v), then fI1,I (w)(x)= f (x) for every I1.

3. If the first m-tuple of coordinates of x is 12
√
h-close to the encoded vertex

E(v), and the secondm-tuple of coordinates of x is 12
√
h-close to the encoded

vertex E(w), then fI (v),I (w)(x)= f (x).
4. If none of the above conditions are satisfied, then fI1,I2

(x)= f (x) for every
I1, I2.

Locality in Single Coordinates
In order to compute all of f (x) exactly, we essentially need to know x in every
coordinate. However, in order to compute fi(x) (the i-th coordinate of f (x)), it
suffices to know xi and that x is one of the following:

1. inside the picture, but far from every Brouwer line segment

2. close to some point z on Brouwer line segment (s→ t) (but far from s and t)

we also need to know si , ti , zi, ‖x − z‖2, and ‖t − s‖2

3. close to some point z on line Ly for Brouwer vertex y on the intersection of
Brouwer lines (s→ y) and (y → t)

we also need to know si , yi , ti , zi, ‖x − z‖2, ‖y − s‖2, ‖t − y‖2, and α

4. outside the picture

we also need to know Ei∈{3m+1, . . . , 4m}xi and ‖x − z‖2, where z is the
(Ei∈{3m+1, . . . , 4m}xi)-weighted average of z1/2 and z2

By Lipschitz continuity, if we only want to compute fi(x) to within±O(ε), it suffices
to know all the quantities above to within ±ε. Furthermore, at distance ±ε near
interfaces between the different cases (inside/outside the picture, close to 0/1/2
lines), we can use the wrong displacement, and still be within ±O(ε) of fi(x).
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5PPAD-Hardness
of Approximation

In this part we introduce and prove our PPAD-hardness of approximation results,
in particular for finding Nash equilibria. As we discussed in the introduction, for a
constant number of players, we are unlikely to prove PPAD-hardness since a quasi-
polynomial time approximation algorithm exists [Lipton et al. 2003]. Our main
focus in this part is games with a large number of players. For such games, there is
a question of representation: the normal form representation is exponential in the
number of the players. Instead, we consider three natural and well-studied classes
of many-player games that have succinct representations:

Definition 5.1 Polymatrix games. In a polymatrix game [Yanovskaya 1968], each pair of play-
ers simultaneously plays a separate two-player game. Every player has to play
the same strategy in every two-player subgame, and her utility is the sum of
her subgame utilities. The game is given in the form of the payoff matrix for
each two-player game.

Graphical games. In a graphical game [Kearns 2007], the utility of each player
depends only on the action chosen by a few other players. This game now
naturally induces a directed graph: we say that (i , j) ∈E if the utility of player
j depends on the strategy chosen by player i. When the maximal incoming
degree is bounded, the game has a representation polynomial in the number
of players and strategies.

Succinct games. Most generally, in a succinct game [Schoenebeck and Vadhan
2012]1 the normal form representation is succinctly described by some small
circuit.

1. Related notions for two-player games have also been considered by Feigenbaum et al. [1995]
and Fortnow et al. [2008].
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Any of the above restrictions suffices to guarantee that the game has a succinct
representation. Our main result in this part is that even for games that satisfy all
restrictions simultaneously, finding an ε-approximate Nash equilibrium is PPAD-
complete.

Theorem 5.1 There exists a constant ε > 0, such that given a degree 3, bipartite, polymatrix game
where each player has two actions, finding an ε-approximate Nash equilibrium is
PPAD-complete.

The notion of ε-approximate Nash equilibrium used in Theorem 5.1 requires
that every player plays ε-optimally. The most interesting question left open in this
part is whether the equilibrium computation problem remains PPAD-hard even if
we only require that most of the players play ε-optimally. This is the “PCP Conjecture
for PPAD”:

Conjecture 5.1 PCP for PPAD. There exist constants ε , δ > 0 such that given a degree 3, bipartite,
polymatrix game where each player has two actions, finding an (ε , δ)-WeakNash is
PPAD-complete.

While proving (or disproving) the “PCP Conjecture for PPAD” remains open (see
additional discussion in Subsection 16.1.1), we do prove in this section that for the
more general class of succinct games, finding an (ε , δ)-WeakNash is indeed PPAD-
hard.

Theorem 5.2 There exist constants ε , δ > 0 such that finding an (ε , δ)-WeakNash is PPAD-hard
for succinct multiplayer games where each player has a constant number of actions.

Besides Theorem 5.2, all our results in this part rely on the hardness of ap-
proximation for the generalized circuit problem. Generalized circuits are similar
to standard algebraic circuits, the main difference being that generalized circuits
contain cycles, which allow them to verify fixed points of continuous functions. A
generalized circuit induces a constraint satisfaction problem, ε-Gcircuit [Chen
et al. 2009b]: find an assignment for the values on the lines of the circuit that si-
multaneously ε-approximately satisfies all the constraints imposed by the gates
(see Chapter 6 for a formal definition). ε-Gcircuit was implicitly proven PPAD-
complete for exponentially small ε by Daskalakis et al. [2009a], and explicitly for
polynomially small ε by Chen et al. [2009b]. Here we prove that it continues to be
PPAD-complete for some constant ε.

Theorem 5.3 Generalized circuit. There exists a constant ε > 0 such that ε-Gcircuit with fan-
out 2 is PPAD-complete.
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This result, in turn, builds on the hardness of finding an �∞-approximate fixed
point, which we proved in Theorem 4.1.

We note that except for the hardness of the course allocation problem (Chap-
ter 10), all the problems we consider in this part were previously known to be
PPAD-hard for polynomial approximation factors.





6The Generalized
Circuit Problem

Generalized circuits are similar to the standard algebraic circuits, the main dif-
ference being that generalized circuits contain cycles, which allow them to verify
fixed points of continuous functions. We restrict the class of generalized circuits to
include only a particular list of gates described below. Formally,

Definition 6.1 Generalized circuits, [Chen et al. 2009b]. A generalized circuit S is a pair (V , T ),
where V is a set of nodes and T is a collection of gates. Every gate T ∈ T is a 5-
tuple T =G(ζ | v1, v2 | v), in whichG ∈ {Gζ ,G×ζ ,G=,G+,G−,G<,G∨,G∧,G¬} is
the type of the gate; ζ ∈ R ∪ {nil} is a real parameter; v1, v2 ∈ V ∪ {nil} are the first
and second input nodes of the gate; and v ∈ V is the output node.

The collection T of gates must satisfy the following important property: For
every two gates T =G(ζ | v1, v2 | v) and T ′ =G′(ζ ′ | v′1, v′2 | v′) in T , v �= v′.

Alternatively, we can think of each gate as a constraint on the values on the
incoming and outgoing wires. We are interested in the following constraint satis-
faction problem: given a generalized circuit, find an assignment to all the wires
that simultaneously satisfies all the gates. When every gate computes a continuous
function of the incoming wires (with inputs and output in [0, 1]), a solution must
exist by Brouwer’s fixed point theorem.

In particular, we are interested in the approximate version of this CSP, where
we must approximately satisfy every constraint.

Definition 6.2 Given a generalized circuit S = (V , T ), we say that an assignment x: V → [0, 1] ε-
approximately satisfies S if for each of the gates shown in Table 6.1, x satisfies the
corresponding constraints.

Given a generalized circuit S = (V , T ), ε-Gcircuit is the problem of finding an
assignment that ε-approximately satisfies it.
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Table 6.1 Gates for the ε-Gcircuit Problem

Gate Constraint

Gζ(α || a) x[a]= α ± ε
G×ζ (α | a | b) x[b]= α . x[a]± ε
G=(| a | b) x[b]= x[a]± ε
G+(| a , b | c) x[c]=min(x[a]+ x[b], 1)± ε
G−(| a , b | c) x[c]=max(x[a]− x[b], 0)± ε
G<(| a , b | c) x[c]=

{
1± ε x[a]< x[b]− ε
0± ε x[a]> x[b]+ ε

G∨(| a , b | c) x[c]=
{

1± ε x[a]= 1± ε or x[b]= 1± ε
0± ε x[a]= 0± ε and x[b]= 0± ε

G∧(| a , b | c) x[c]=
{

1± ε x[a]= 1± ε and x[b]= 1± ε
0± ε x[a]= 0± ε and or x[b]= 0± ε

G¬(| a | b) x[b]=
{

1± ε x[a]= 0± ε
0± ε x[a]= 1± ε

Note: WhereGζ andG×ζ also take a parameter α ∈ [0, 1].

Brittle Comparators. Intuitively, in order for (approximate) solutions to the circuit
problem to correspond to (approximate) equilibria, all our gates should implement
continuous (Lipschitz) functions. The gateG<(| a , b | c), for example, approximates
that the function

c(a , b)=
{

1 a < b

0 a ≥ b,

which is not continuous. To overcome this problem, Daskalakis et al. [2009a]
defined the brittle comparator: when a is (ε-) larger than b, it outputs 0; when b is
(ε-) larger than a, it outputs 1. However, when a and b are (ε-approximately) equal,
its behavior is undefined.

Brittleness introduces difficulties in the transition from continuous to discrete
solutions. This challenge is overcome by an averaging gadget, which is described
in detail in Section 6.2.

Our Results
ε-Gcircuit was implicitly proven PPAD-complete for exponentially small ε by
Daskalakis et al. [2009a], and explicitly for polynomially small ε by Chen et al.
[2009b]. Here we prove that it continues to be PPAD-complete for some constant ε.



6.1 Proof Overview 85

Theorem 6.1 Generalized circuit; Theorem 5.3 restated. There exists a constant ε > 0 such that
ε-Gcircuit with fan-out 2 is PPAD-complete.

6.1 Proof Overview
The key idea that enables us to improve over previous hardness of approximation
for ε-Gcircuit (and Nash equilibrium) [Chen et al. 2009b, Daskalakis et al. 2009a] is
our particular choice of hard fixed point instance in Section 4.1. The first advantage
is that our instance is simply harder to approximate: finding an ε-approximate fixed
point (i.e., x such that ‖f (x)− x‖∞ ≤ ε) is PPAD-hard for ε =	(1) (as opposed to
ε = 1/ exp(n) for Daskalakis et al. [2009a] and ε = 1/ poly(n) in Chen et al. [2009b]).

A Simpler Averaging Gadget. Our construction of hard instances of Brouwer func-
tions, as do the ones from previous works, partitions the (continuous) hypercube
into subcubes, and defines the function separately on each subcube. When we con-
struct a circuit that approximately simulates such a Brouwer function, we have a
problem near the facets of the subcubes: using approximate gates and brittle com-
parators (see Table 6.1), one cannot determine to which subcube the input belongs.
This is the most challenging part of our reduction, as was also the case in Chen et al.
[2009b] and Daskalakis et al. [2009a].

Originally, Daskalakis et al. [2009a] tackled this obstacle by approximating f (x)
as the average over a ball around x. The key observation is that even if x is close to a
facet between subcubes, most of the points in its neighborhoods will be sufficiently
far. Yet if f is Lipschitz they are mapped approximately to the same point as x.
This works fine in O(1) dimensions, but then the inapproximability parameter is
inherently exponentially small (in constant dimensions, it is easy to construct a
1/ poly(n)-net over the unit hypercube). For poly(n) dimensions, the (discretization
of the) ball around x contains exponentially many points.

Chen et al. [2009b] overcome this problem using equiangle sampling: consider
many translations of the input vector by adding small multiples of the all-ones
vector; compute the displacement for each translation, and average. Since each
translation may be close to a facet in a different dimension, Chen et al. consider
a polynomial number of translations. Thus, all translations must be polynomially
close to each other—otherwise they will be too far to approximate the true input.

We avoid this problem by observing another nice property of Hirsch et al.’s
[1989] construction: when the input vector lies near two or more facets, the dis-
placement is (approximately) the same, regardless of the subcube. Once we rule
out such points, it suffices to sample only a constant number of points (as at most
one of them may be too close to a facet). See also the illustration in Figure 6.1.
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x

Daskalakis et al
[Daskalakis et al. 2009a]

x

Chen et al
[Chen et al. 2009b]

x

New construction

Figure 6.1 A comparison of the averaging gadgets of Daskalakis et al. [2009a] and Chen et al. [2009b],
and ours. The red x is the point whose displacement we would like to estimate using
imprecise gates and brittle comparators. Points that are too close to a facet between
subcubes are denoted by red triangles, while points that are sufficiently far are denoted
by black circles. Finally, our construction has a “safe” zone (shaded green) around the
corner where we don’t need to parse the subcube; thus we only need to avoid one facet.

Completing the Proof. Given a point x
′ ≈ x that is safely in the interior of one

subcube, we can parse the corresponding binary vector, use logical operator gates to
simulate the End-of-a-Line circuit, and then approximately compute f (x

′
). This

is tedious, but mostly straightforward.
One particular challenge that nevertheless arises is preventing the error from

accumulating when concatenating approximate gates. Of course this is more dif-
ficult in our setting where each gate may err by a constant ε > 0. Fortunately,
the definition of ε-Gcircuit provides logical operator gates that round the out-
put to {0, 1} before introducing new error. As long as the inputs are unambiguous
bits, approximate logical operator gates can be concatenated without accumulating
errors.

In order to carry out the reduction to Nash equilibrium (Section 7.1), we must
first ensure that every gate in our generalized circuit has a constant fan-out (Sec-
tion 6.3). We can replace each logical operator gate with a binary tree of fan-out 2,
alternating negation gates (that do not accumulate error). Given an arithmetic gate
with large fan-out, we convert its output to unary representation1 using a constant

1. Unary representation of numbers with constant precision is prevalent throughout our imple-
mentation of the generalized circuit. We prefer unary representation over binary, because in the
former at most one bit can be ambiguous due to the use of brittle comparators.
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number of (fan-out 2) gates. Then we copy the unary representation using a binary
tree of negation gates. Finally, we convert each copy back to a real number using a
constant number of gates.

6.2 From Brouwer to ε-Gcircuit
In this section we prove a slightly easier version of Theorem 5.3, for a generalized
circuit with unbounded fan-out. We reduce to constant fan-out in the next section.

Proposition 6.1 There exists a constant ε > 0 such that ε-Gcircuit is PPAD-complete.

Proof We continue to denote the hard Brouwer function by f : [0, 1]2n+2→ [0, 1]2n+2, and
its associated displacement by g(y)= f (y)− y. We design a generalized circuit S
that computes f and verifies that the output is equal to the input. We show that
every ε-approximate solution to S corresponds to an O(ε1/4)-approximate fixed
point of f .

Recall that the construction from Section 4.1 divides the hypercube into equal-
sized subcubes (of length 1/4). Furthermore, all the paths in H are embedded in
the 22n+1 subcubes that belong to the picture. For ease of exposition, we present
a construction that only works for points in the picture, i.e., y ∈ [1/4, 3/4]2n+1×
[1/4, 1/2]. It is straightforward to use the same ideas to extend the circuit to deal
with all y ∈ [0, 1]2n+2.

The most challenging part of the construction is the extraction of the informa-
tion about the local subcube: Is it part of a tube? If so, which are the entrance and
exit facets? This is done by extracting the binary representation of the current sub-
cube, and feeding it to the (Boolean) circuit that computes H (recall that H is our
collection of paths and cycles from Subsection 4.1.2). Notice that whenever we have
valid logic bits, i.e., x[b]< ε or x[b]> 1− ε, we can perform logic operations on them
without increasing the error.

Once we know the behavior of the path on the current subcube, we simply have
to locally implement the mapping from the previous section, for which we have a
closed form description, using the available gates in the definition of generalized
circuits. Since this definition does not include multiplication and division, we
implement multiplication and division in Algorithms 6.2 and 6.3 in Subsection
6.2.1.

Our construction has four parts: (1) equiangle sampling segment, (2) computing
the displacement, (3) summing the displacement vectors, and (4) closing the loop.
The first part contains a new idea: using only a constant size sample. The second
part is a more technical but straightforward description of the implementation
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Algorithm 6.1 If-Else(| a, b, c | d)
1. G¬(| a | a) � a is the negation of a
2. G−(| b, a | b′) � b′ is (approximately) equal to b iff a = 1
3. G¬(| a | a) � a is the rounding of a to {0, 1}
4. G−(| c, a | c′) � c′ is (approximately) equal to c iff a = 0
5. G−(| b′, c′ | d)

of the closed-form mapping by approximate gates. The third and fourth parts are
essentially identical to Chen et al. [2009b].

6.2.1 Subroutines
In this subsection we show how to implement a few useful subroutines using the
gates in the definition of ε-Gcircuit.

6.2.1.1 If-Else
We begin by describing how to implement a simple if-else. Similar ideas can be
used to implement more involved cases such as (4.1).

Claim 6.1 In any ε-approximate solution to If-Else(| a , b, c | d),

x[d]=
{

x[c]±O(ε) if x[a]<
√
ε

x[b]±O(ε) if x[a]> 1−√ε.

Proof By definition ofG¬, we have that

x[a]=
{

1± ε if x[a]<
√
ε

0± ε if x[a]> 1−√ε.

Therefore by definition ofG−,

x[b′]=
{

0±O(ε) if x[a]<
√
ε

x[b]±O(ε) if x[a]> 1−√ε.

Similarly,

x[c′]=
{

x[c]±O(ε) if x[a]<
√
ε

0±O(ε) if x[a]> 1−√ε.

Finally, the claim follows by definition ofG+.
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Algorithm 6.2 Multiply(| a, b | c)
1. Gζ(0 || h0)

2. for each k ∈ [1/
√
ε]:

(a) Gζ(k
√
ε || ζk),G<(| a , ζk | ak)

�# The vector (ak) is the unary representation of a:∑
k:x[ak]<ε

√
ε =maxk:x[ak]<ε k

√
ε = x[a]±O(√ε),

(b) G×ζ (
√
ε | b | dk),

�# The vector (dk) is simply, equal to b .√ε everywhere:∑
k:x[ak]<ε x[dk]=

(∑
k:x[ak]<1−ε

√
ε
)

. x[b]±O(√ε)= x[a] . x[b]±O(√ε)
(c) G−(| dk , ak | ek)
�# The vector (ek) is b .√ε only when (ak) < ε:∑

k:x[ak]<ε x[ek]= x[a] . x[b]±O(√ε)
(d) G+(| hk−1, ek | hk)
� Finally, we sum the ek’s to get a . b:

x
[
h1/

√
ε

]
= x[a] . x[b]±O(√ε)

3. G=
(
| h1/

√
ε | c

)

6.2.1.2 Multiply
Claim 6.2 In any ε-approximate solution to Multiply(| a , b | c),

x[c]= x[a] . x[b]±O(√ε).
Proof For any k, the first gate implies that

x
[
ζk
]= k√ε ± ε.

The second gate thus gives

x
[
ak
]= { 0± ε if x[a]> k

√
ε +O(ε)

1± ε if x[a]< k
√
ε −O(ε). (6.1)

Notice that the above equation is ambiguous for at most one value of k. In particular,∑
k

(
1− x

[
ak
])√

ε = x[a]±O(√ε). (6.2)

We also have

x
[
dk
]= x[b] .

√
ε ± ε.
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The subtraction gate zeros x[dk] for all k such that x[a]< k
√
ε − O(ε), and has

negligible effect for k such that x[a]> k
√
ε +O(ε):

x[ek]=
{

x[b] .√ε ± 2ε if x[a]> k
√
ε +O(ε)

0± 2ε if x[a]< k
√
ε −O(ε).

The sum of the x[ek]’s satisfies:∑
k

x
[
ek
]= x[a] . x[b]±O(√ε),

where we have an error of±O(√ε) arising from aggregating±2ε for 1/
√
ε distinct

k’s, and another ±O(√ε) from (6.2).
By induction, each hk is approximately equal to the sum of the first x[ej ]’s:

x
[
hk
]= k∑

j=1

x
[
ej
]± kε.

In particular, we have

x
[
h1/

√
ε

]
=
∑
k

x
[
ek
]±√ε

= x[a] . x[b]±O(√ε).
6.2.1.3 Divide

Claim 6.3 In any ε-approximate solution to Divide(| a , b | c),
x[c] . x[b]= x[a]±O(√ε).

Notice that for Algorithm 6.3, in any ε-approximate solution, x[c]= x[a]/x[b]±
O(
√
ε)/x[b]; when x[b] and ε are bounded away from 0, this is only a constant factor

increase in the error.

Proof For each k, we have

x
[
bk
]= k√ε . x[b]± ε.

Thus also

x
[
dk
]= { 1± ε if x[a]> k

√
ε . x[b]+O(ε)

0± ε if x[a]< k
√
ε . x[b]−O(ε).

Notice that x[dk] is ambiguous for at most k. Furthermore, aggregating the±ε error
over 1/

√
ε distinct k’s, we have:∑

x
[
dk
]

.
√
εx[b]= x[a]±O(√ε).
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Algorithm 6.3 Divide(| a, b | c)
1. Gζ(0 || h0)

2. for each k ∈ [1/
√
ε]:

(a) G×ζ
(
k
√
ε | b | bk

)
,G<(| bk , a | dk)

� The vector (dk) is the unary representation of a/b:(∑
k:x[dk]>ε

√
ε
)

. x[b]=
(

maxk:x[dk]>ε k
√
ε
)

. x[b]= x[a]±O (√
ε
)

(b) G×ζ
(√
ε | dk | ek

)
� The vector (ek) is a

(√
ε
)

-scaled version of (dk):(∑
x[ek]

)
. x[b]= x[a]±O (√

ε
)

(c) G+(| hk−1, ek | hk)
� Finally, we sum the ek’s:

x
[
h1/

√
ε

]
. x[b]= x[a]±O (√

ε
)

3. G=
(
| h1/

√
ε | c

)

x[ek]’s are a step closer to what we need:

x
[
ek
]= x

[
dk
]√
ε ± ε ,

and therefore also ∑
x
[
ek
]

. x[b]= x[a]±O(√ε). (6.3)

Finally, by induction

x
[
h1/

√
ε

]=∑ x
[
ek
]±√ε ,

and the claim follows by plugging into (6.3).

6.2.1.4 Max
Claim 6.4 In any ε-approximate solution to Max(| a1, . . . an | b),

x[b]=max x[ai]±O(
√
ε).

Proof Similarly to (6.1), we have that for each i , k

x[ck , i]=
{

0± ε if x[ai]< k
√
ε −O(ε)

1± ε if x[ai]> k
√
ε +O(ε).
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Algorithm 6.4 Max(| a1, . . . an | b)
1. Gζ(0 || h0)

2. for each k ∈ [1/
√
ε]:

(a) Gζ
(
k
√
ε || ζk

)
(b) Gζ(0 || dk , 0)

(c) for each i ∈ [n]:

(i) G<(| ζk , ai | ck , i)

� The vector (ck , i)k is the unary representation of ai:

∀i
(

maxk:x[ck , i]>ε k
√
ε
)
= x[ai]±O

(√
ε
)

(ii) G∨(| dk , i−1, ck , i | dk , i)

� The vector (dk ,n) is the unary representation of max ai:(
maxk:x[dk , n]>ε k

√
ε
)
=max x[ai]±O

(√
ε
)

(d) G×ζ
(√
ε | dk ,n | ek

)
� The vector (ek) is a

(√
ε
)

-scaled version of (dk):(∑
x[ek]

)=max x[ai]±O
(√
ε
)

(e) G+(| hk−1, ek | hk)
� Finally, we sum the ek’s:

x
[
h1/

√
ε

]
=max x[ai]±O

(√
ε
)

3. G=
(
| h1/

√
ε | b

)

For each k, taking OR of all the ck , i’s gives (approximately) 1 iff any of the x[ai]’s is
sufficiently large; in particular if the maximum is:

x[dk ,n]=
{

0± ε if maxi x[ai]< k
√
ε −O(ε)

1± ε if maxi x[ai]> k
√
ε +O(ε).

Therefore also (similarly to (6.2)):∑
k

x[dk ,n]
√
ε =max

i
x[ai]±O(

√
ε).

The x[ek]’s take care of scaling by
√
ε:∑

k

x
[
ek
]=max

i
x
[
ai
]±O(√ε).

Finally, by induction,

x
[
h1/

√
ε

]=max x
[
ai
]±O(√ε).
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Algorithm 6.5 Interpolate(a,wa , b,wb | c)
1. G×ζ (1/2 | wa | wa/2) andG×ζ (1/2 | wb | wb/2)

�We divide by 2 before adding in order to stay in [0, 1]
2. G+(| wa/2, wb/2 | wa/2+b/2)

� Add the weights
3. Divide(| wa/2, wa/2+b/2 | wa) and Divide(| wb/2, wa/2+b/2 | wb)
� wa and wb are the normalized weights:

x[wa] . (x[wa]+ x[wb])= x[wa]±O (√
ε
)

4. Multiply(| wa , a | ca) and Multiply(| wb , b | cb)
� ca and cb are the a and b components, respectively, of c:

x[ca]= x[wa] . x[a]/(x[wa]+ x[wb])±O (√
ε
)
/(x[wa]+ x[wb])

5. G+(| ca , cb | c)
� Finally, c is the interpolation of a and b:

x[c]= (x[wa] . x[a]+ x[wb] . x[b])/(x[wa]+ x[wb])
±O (√

ε
)
/(x[wa]+ x[wb])

6.2.1.5 Interpolate
Claim 6.5 In any ε-approximate solution to Interpolate(a , wa , b, wb | c),

x[c]
(

x
[
wa
]+ x

[
wb
])= (x[wa] . x[a]+ x

[
wb
]

. x[b]
)±O(√ε).

Proof By Claim 6.3, we have

x
[
wa
]

.
(

x
[
wa
]+ x

[
wb
])= x

[
wa
]±O(√ε)

x
[
wb
]

.
(

x
[
wa
]+ x

[
wb
])= x

[
wb
]±O(√ε).

Therefore, by Claim 6.2,

x
[
ca
]

.
(

x
[
wa
]+ x

[
wb
]
)= x[wa

]
. x[c]±O(√ε)

x
[
cb
]

.
(

x
[
wa
]+ x

[
wb
]
)= x

[
wb
]

. x[c]±O(√ε).
The claim follows by definition ofG+.

6.2.2 Equiangle Sampling Segment
The first information we require in order to compute the Hirsch et al. mapping f (y)
is about the subcube to which y belongs: Is it part of the tube? If so, which are the
entrance and exit facets? In order to answer those questions, we extract the binary
representation of the cube. Recall that our circuit uses brittle comparators; thus
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when y is close to a facet between subcubes, the behavior of the brittle comparators
may be unpredictable. We start with the easy case, where y is actually far from every
facet:

Definition 6.3 We say that y is an interior point if for every i, |yi − 1/2|> ε; otherwise, we say that
y is a boundary point.

A very nice property of the Hirsch et al. construction is that whenever y is at
the intersection of two or more facets, the displacement is the same: g(y)= δξ2n+2.
Thus, by the Lipschitz property of g, whenever y is close to the intersection of two or
more facets, the displacement is approximately δξ2n+2. For such y’s, we don’t care
to which subcube they belong.

Definition 6.4 We say that y is a corner point if there exist distinct i , j ∈ [2n+ 2] such that |yi −
1/2|< ε1/4 and |yj − 1/2|< ε1/4.

(Notice that y may be an interior point and a corner point at the same time.)
We still have a hard time handling y’s that are neither an interior point nor

a corner point. To mitigate the effect of such y’s we use an equiangle averaging
scheme. Namely, we consider the set:

Eε(y)= {yl = y + (6l . ε)1: 0≤ l < 1/
√
ε
}

where 1 denotes the all-ones vector. Notice that since g is λ-Lipschitz for constant
λ, g(yl) will be approximately the same for all yl ∈ Eε(y).

Fact 6.1 If any yl ∈ Eε(y) is not a corner point, then at most one yl
′ ∈ Eε(y) is a boundary

point.

Proof For each dimension, at most one element inEε(y) can be ε-close to the (1/2) facet.
Thus if two elements in Eε(y) are boundary points, it must be because of distinct
dimensions—and therefore every yl is a corner point.

Given input y, we compute the displacement g(.) separately and in parallel for
each yl ∈ Eε, and average at the end. Since at most one yl is a boundary point, this
will incur an error of at most

√
ε.

In the generalized circuit we can constructEε using (1/
√
ε) auxiliary nodes and

Gζ andG+ gates:

x
[
yl
i

]
=min

{
x
[
y0
i

]+ (6l . ε), 1
}± 2ε.
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6.2.3 Computing the Displacement
For each yl ∈Eε, we construct a disjoint circuit that approximates the displacement
g(yl). In the description of the circuit below we omit the index l.

Lemma 6.1 The circuit below O(
√
ε)-approximately simulates the computation of the Hirsch

et al. displacement:

1. Whenever (x[yi])i∈[2n+2] is an interior point,

x
[
g+i
]− x

[
g−i
]= gi(x[y])±O(ε1/4).

2. Furthermore, whenever (x[yi])i∈[2n+2] is a corner point,

x
[
g+2n+2

]− x
[
g−2n+2

]= δ ±O(√ε),

and ∀i < 2n+ 2:

x
[
g+i
]− x

[
g−i
]= 0±O(√ε).

Proof We construct the circuit in five stages: (1) given y, we extract b, that is the binary
representation of the corresponding subcube in {0, 1}2n+2; (2) we then compute
whether b belongs to a path inH , and if so which are the previous and next vertices;
(3) we compute the centers of the coordinate systems corresponding to the entrance
and exit facets, and label them zin and zout ; (4) we project y to each facet, and
transform this projection to the local polar coordinate systems, (rin, pin); and (5)
finally, we use all the information above to compute the displacement g = g(y).

The correctness of Lemma 6.1 follows from Claims 6.6–6.12.

Extract b ∈ {0, 1}2n+2

Our first step is to extract the binary vector b, which represents the subcube to
which y belongs. In other words, we want bi to be the indicator of yi < 1/2. We do
that by adding the following gadgets:Gζ(1/2 || c1/2) and, for each i,G<(| yi , c1/2 | bi).
Observe that now

x[bi]=
{

0± ε x
[
yi
]
< x

[
c1/2

]− ε
1± ε x

[
yi
]
> x

[
c1/2

]+ ε.

Claim 6.6 If x[y] is an interior point, x[b] is the correct representation (up to ε error) of the
corresponding bits in {0, 1}2n+2.

Neighbors inH
Given x[b], we can construct, using G∧’s and G¬’s and a polynomial number of
unused nodes, the circuits SH and PH that give the next and previous vertex visited
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by our collection of paths, H . The output of each circuit is represented by 2n+ 2
unused nodes {PH

i
(b)} and {SH

i
(b)}.

Recall thatH is defined in {0, 1}2n+1, so the last input bit is simply ignored (inside
the picture it is always 0); the last output bit is used as follows. Our convention
is that starting points and end points correspond to PH(b) = b and SH(b) = b,
respectively, and likewise for points that do not belong to any path. An exception
to this is the 0 starting point, which will correspond to PH(0) = (02n+1; 1): This
is in accordance with the Hirsch et al. construction, where the home subcube is
constructed as if it continues a path from the subcube above it.

Claim 6.7 If x[b] is an ε-approximate binary vector, i.e., x[b] ∈ ([0, ε]∪ [1− ε , 1])2n+2, then
x[PH(b)] and x[SH(b)] correctly represent (up to ε error) the previous vertex and
next vertex in H .

Entrance and Exit Facets
Let b+in

i = bi ∧ ¬PHi (b), i.e., b+ini is 1 if the path enters the current subcube via the
positive i-th direction; define b−ini analogously. Let bini denote the OR of b+ini and
b−ini .

The center of the entrance facet is constructed viaGζ ,G×ζ ,G+, andG− accord-
ing to the formula:

zin
i
=

⎧⎪⎪⎨⎪⎪⎩
1/2− h/2 bini = 0 AND bi = 0

1/2+ h/2 bini = 0 AND bi = 1

1/2 bini = 1

Construct zout analogously.
Notice that if we know on which coordinate the path enters, in {0, 1}2n+2 it has

only one possible direction; in the Hirsch et al. hypercube this corresponds to
always entering from the center (i.e., from the yi = 1/2 facet). Also, if b corresponds
to a non-trivial starting point, bin = 0 and zin is simply the center of the subcube
(and similarly for bout , zout when b is an end point).

Claim 6.8 If x[b], x[PH(b)], and x[SH(b)] are ε-approximate binary vectors, then x[zin] and
x[zout] areO(ε)-approximations to the centers of the entrance facet and exit facets,
respectively.

Max-Norm Polar Coordinates
We are now ready to compute the local max-norm polar coordinates of the projec-
tions of y on the entrance and exit facets.
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The max-norm radius is given by

rin = max
i:bin
i
=0

∣∣∣zini − yi∣∣∣ .

Finding the maximum of a (length 2n+ 1) vector requires some care when on
each gate we can incur a constant error; the details are described in Algorithm 6.4.

The direction (max-norm) unit-vector, p, is given by

pin
i
=
(
zin
i
− yi

)
/rin.

Division is computed using Divide, introducing an error ofO(
√
ε/rin); this approx-

imation suffices because for rin < h/8, we multiply pini by rin when we interpolate.
Also, we will use two nodes for eachpini to represent the positive and negative values.
We do the same for (rout , pout).

Claim 6.9 If x[y] is an interior point, then x[rin] and x[rout] are O(
√
ε)-approximations to the

distances of x[y] from x[zin] and x[zout], respectively. Furthermore, x[pin] and x[pout]
are O(

√
ε/x[rin]) and O(

√
ε/x[rout]) to the unit-length vectors that point from x[y]

in the directions of x[zin] and x[zout], respectively.

The Final Displacement
Given pin and bin, we can compute gin for the special values of rin. Recall that

gin
(〈
rin, pin

〉)=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
δ
(

b+in − b−in
)
rin = 0

−δpin rin = h/8

δ
(

b−in − b+in
)
rin = h/4

δξ2n+2 rin = h/2

We use Algorithm 6.5 to interpolate for intermediate values of rin. We also need
to interpolate between gin and gout . The ratio at which we interpolate is exactly
the ratio between the distance of y from the entrance and exit facets. We label
the positive and negative components of this last interpolation g(interior)+ and
g(interior)−, respectively.

When y is close to both facets, the interpolation may be inaccurate; however,
in this case it is a corner point. (We remark that this seems to be the only part
of the proof that requires us to set the threshold for a corner point and the final
error at �(ε1/4) rather than �(

√
ε); this issue may be avoidable by a more careful

construction of Algorithms 6.3 and 6.5.)
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Claim 6.10 If x[y] is an interior point of an intermediate subcube in the tube, and it is not a
corner point, then (x[g(interior)+]− x[g(interior)−]) is anO(ε1/4)-approximation of the
Hirsch et al. displacement g(x[y]).

Corner Points. We must ensure that if y is a corner point, we set g(corner)+ = δξ2n+2

and g(corner)− = 0: check over all pairs of coordinates whether |x[yi]− 1/2|< 2ε1/4

and |x[yj ]− 1/2|< 2ε1/4. Let zbe the variable representing the OR of those
(2n+2

2

)
in-

dicators. Interpolate (e.g., using Algorithm 6.5) between the (g(interior)+, g(interior)−)
we computed earlier and δξ2n+2 with weights z and¬z. Label the result of the inter-
polation (g(tube)+, g(tube)−).

We remark that whenever z is ambiguous, i.e., the second smallest |x[yi]− 1/2|
is very close to 2ε1/4, then we cannot predict the value of x[z]; it can take any value
in [0, 1]. Nevertheless, in this case x[y] is not a corner point, thus for most yl ∈ Eε,
x[yl] is an interior point. This means that by Claim 6.10, we would compute the
(approximately) correct interior displacement (x[g(interior)+]− x[g(interior)−]). Since
x[y] is close to a corner point, this value is very close to δξ2n+2 = (x[g(corner)+]−
x[g(corner)−]). Therefore, although we don’t know the value of x[z], we use it to
interpolate between two (approximately) equal vectors—so the result is guaranteed
to be (approximately) correct regardless of the value of x[z].

Claim 6.11 If x[y] is a corner point, then (x[g(tube)+]− x[g(tube)−]) is an O(
√
ε)-approximation

of δξ2n+2, and thus also anO(ε1/4)-approximation of the Hirsch et al. displacement
g(x[y]). Furthermore, Claim 6.10 continues to hold for (g(tube)+, g(tube)−).

Start/End Subcubes and Subcubes Outside the Tube. For start/end subcubes (except
the home subcube), we use a slightly different (Cartesian) interpolation that yields
a fixed point in the center of the subcube, and a displacement of δξ2n+2 on all facets
but the exit/entrance facet, respectively. For subcubes in the picture but outside the
tube, we again set g = δξ2n+2.

Notice that we can infer the type of subcube from the following two-bits vector:

T = (∨ibini , ∨ibouti
)

.

If T = (0, 0), the subcube is outside the tube; when T = (0, 1), we are at a start sub-
cube, while T = (1, 0) corresponds to an end subcube; T = (1, 1) is an intermediate
subcube in the tube. Finally, interpolate between the displacement for each type of
subcube using T and ¬T ; label the result of the interpolation (g+, g−).
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Claim 6.12 If x[y] is either an interior point or a corner point of any subcube in the slice,
then (x[g+]− x[g−]) is anO(ε1/4)-approximation of the Hirsch et al. displacement
g(x[y]).

6.2.4 Summing the Displacement Vectors
We are now ready to average over the displacement vectors we computed for each
yl. UsingG×ζ andG+ we have that

x
[
g+i
]= 1/

√
ε∑

l=1

(√
εx[gl+i ]

)±O(√ε) and x
[
g−i
]= 1/

√
ε∑

l=1

(√
εx[gl−i ]

)±O(√ε).
Lemma 6.2 For every input x[y] and every i ∈ [2n+ 2],

x
[
g+i
]− x[g−i ]= gi

(
x[y]

)±O(ε1/4).
Proof By Fact 6.1, every yl ∈ Eε, except at most one, is either an interior point or a corner

point. By Lemma 6.1, for all those yl, (x[g+li ]− x[g−li ]) is at most O(ε1/4)-far from
the right displacement. The single point, which is neither an interior point nor a
corner point, increases the error by at mostO(

√
ε), as does the summation above.

Because g is λ-Lipschitz for constant λ, the error added due to the distance between
the yl’s is again at most O(

√
ε).

6.2.5 Closing the Loop
Finally, for each i ∈ [2n+ 2]:G+

(| y1
i

, g+i | y′i
)

,G+
(| y′

i
, g−i | y′′i

)
andG=(| y′′i | y1

i
).

6.3 Gcircuit with Fan-out 2
In the previous section, we proved that ε-Gcircuit is PPAD-complete for some
constant ε > 0. Each generalized circuit gate has fan-in at most 2, which would
eventually correspond to a bound on the incoming degree of each player in the
graphical game. In order to bound the total degree (as well as for the application
to A-CEEI), we need to also bound fan-out of each gate.

Proof Proof of Theorem 5.3. We present a black-box reduction that converts a general
ε′-Gcircuit instance to an instance of ε-Gcircuit with fan-out 2, for ε′ =�(√ε).
Daskalakis et al. [2009a] bound the fan-out of the generalized circuit by introducing
a binary tree of G= gates. Unfortunately, this blows up the error: each G= gate
introduces an additive error of ε, so the increase is proportional to the depth of
the tree, i.e., �(ε . log n). While this was acceptable for Daskalakis et al. [2009a]
who used an exponentially small ε, it clearly fails in our setting.



100 Chapter 6 The Generalized Circuit Problem

Algorithm 6.6 Real2Unary(| a | b1, . . . b4/ε′)

1. G=(| a | c0)

2. for each k ∈ [4/ε′]:
(a) G=(| ck−1 | ck)
� The ck’s are simply copies of a, ensuring that each gate has fan-out at most 2:

∀k x[ck]= x[a]± (k + 1)ε
(b) Gζ(kε

′/4 || ζk)
(c) G<(| ζk , ck | bk)
� The vector (bk) is the unary representation of a:

∀i
(

maxk:x[bk]>ε kε
′/4
)
= x[a]± ε′/2

Algorithm 6.7 Unary2Real(| b1, . . . b4/ε′ | a′)
1. Gζ(0 || d0)

2. for each k ∈ [4/ε′]:
(a) G×ζ (ε′/4 | bk | ck)
� The sum of the ck’s is approximately a:∑

x[ck]= x[a]± (ε′/2+ ε . 4/ε′)

(b) G+(| dk−1, ck | dk)
3. G=(| dk | a′)
� a′ approximately recovers the original a:

x[a′]= x[a]± ε′

We overcome this obstacle by resorting to logical gates (G<, G∨, G∧, and in
particular G¬). Recall that the logical gates are at most ε′-far from the correct
Boolean value. Therefore, concatenating multiple logical gates does not amplify
the error. In particular, if any logical gate has a large fan-out, we can distribute its
output using a binary tree ofG¬ gates (we use trees of even depth). When the gate is
arithmetic (Gζ ,G×ζ ,G=,G+, orG−), we convert its output to unary representation
over �(ε′) logical gates (Algorithm 6.6). Then, we copy the unary representation
using trees of G¬ gates. Finally, we use G×ζ and G+ gates to convert each copy of
the unary representation back to a real value in [0, 1] (Algorithm 6.7).

It is interesting to note that for constant ε and ε′, the unary representation has
constant size, so the number of new gates is proportional to the original fan-out
(i.e., the number of leaves of the binary tree that copies the unary representation).
In particular, this reduction increases the size of the circuit by a factor of �(1/ε′).
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In this chapter we prove our hardness results for games with a large number of
players. We begin in Section 7.1 with our result for the more restricted class of
graphical and polymatrix games, and then in Section 7.2 prove a stronger hardness
of approximation for the more general class of succinct games. The two results
follow relatively easily from Theorems 5.3 and 4.1, respectively.

Related Works: Tractable Special Cases
For games with many players and a constant number of strategies, PTAS were given
for the special cases of anonymous games by Daskalakis and Papadimitriou [2015]
and polymatrix games on a tree by Barman et al. [2015]. Finally, let us return to
the more general class of succinct n-player games, and mention an approximation
algorithm due to Goldberg and Roth [2016]; their algorithm runs in exponential
time, but uses only a polynomial number of oracle queries.

7.1 Graphical, Polymatrix Games

Theorem 7.1 Theorem 5.1 restated. There exists a constant ε > 0, such that given a
degree 3, bipartite, polymatrix game where each player has two actions, finding an
ε-approximate Nash equilibrium is PPAD-complete.

The proof proceeds in two steps. First, we reduce to the problem of finding an
ε-well-supported Nash equilibrium in a polymatrix (degree 3, bipartite) graphical
game. This reduction is implicit in Daskalakis et al. [2009a].1 In the second step we
use the fact that our graphical games have a constant degree to reduce to the more
lenient notion of ε-approximate Nash equilibrium.

1. In Daskalakis et al. [2009a], polymatrix games are called games with additive utility functions.
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7.1.1 Hardness of Well-Supported Nash Equilibrium
Proposition 7.1 Essentially Daskalakis et al. [2009a]. 2ε-Gcircuit with fan-out 2 is polynomial-

time reducible to finding an ε-well-supported Nash equilibrium in a graphical
(bipartite, degree 3), polymatrix binary action game.

The reduction closely follows the lines of Daskalakis et al. [2009a]. We replace
each gate in the generalized circuit with a subgame over a constant number of
players. Each subgame has one or more designated input players, a single output
player, and potentially some auxiliary players. The utility of the input players does
not depend on the subgame at all. The guarantee is that in any ε-WSNE of the
subgame, the mixed strategy profileO(ε)-approximately implements the gate, that
is, the probability that the output player assigns to strategy 1 is (approximately)
equal to the gate function applied to the corresponding probabilities for the input
players.

Finally, we concatenate all the subgames together, i.e., we identify between the
output player of one gadget and an input player of (at most two) other gadgets. Any
ε-WSNE in the resulting large gameO(ε)-approximately implements all the gates in
the generalized circuit—so we can extract valid assignments to all the generalized
circuit lines from the probability that each output player assigns to strategy 1.

In the gadget constructions below, every input and output player has degree 1
(i.e., it only interacts with one other player, in the sense of Definition 5.1). Each
player participates in at most one gadget as an output player, and at most two
gadgets as an input player (since the circuit has maximum fan-out 2). Therefore,
the total degree of each player is ≤ 3.

Below we construct the gadgets for each of the gates. By the above argument,
Lemmata 7.1–7.4 together imply Proposition 7.1.

Lemma 7.1 G×ζ , Gζ , G+, G= gadgets. Let α , β > 0. Let vin1, vin2, vout, w be players in a
graphical game, and suppose that the payoffs of vout and w are as follows.

Payoff for vout: w plays 0 w plays 1

v2 plays 0 0 1

vout plays 1 1 0

Payoffs for w: vin1 plays 0 vin1 plays 1

game with vin1: w plays 0 0 α

w plays 1 0 0
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vin2 plays 0 vin2 plays 1

game with vin2: w plays 0 0 β

w plays 1 0 0

vout plays 0 vout plays 1

game with vout: w plays 0 0 0

w plays 1 0 1

Then, in every ε-WSNE,

p[vout]=min
(
αp[vin1]+ βp[vin2], 1

)± ε , (7.1)

where p[u] denotes the probability that u assigns to strategy 1.

Notice that each of G×ζ , Gζ , G+, G= can be implemented using (7.1): for G×ζ
set α = ζ , β = 0; for Gζ set the same α , β, and modify w’s game with vin1 as if the
latter always plays strategy 1; etc.

Proof Proof of Lemma 7.1. Assume by contradiction that (7.1) is violated:

. If p[vout]> αp[vin1]+ βp[vin2]+ ε, then in every ε-WSNE p[w]= 1. But then
vout is incentivized to play strategy 0, which contradicts p[vout]> ε.

. Similarly, if p[vout]< αp[vin1]+ βp[vin2]− ε, then in every ε-WSNE p[w]= 0.
Therefore, p[vout]≥ 1− ε.

Lemma 7.2 G¬,G− gadgets. Let vin1, vin2, vout,w be players in a graphical game, and suppose
that the payoffs of vout and w are as follows.

Payoff for vout: w plays 0 w plays 1

v2 plays 0 0 1

vout plays 0 1 0

Payoffs for w: vin1 plays 0 vin1 plays 1

game with vin1: w plays 0 0 1

w plays 1 0 0

vin2 plays 0 vin2 plays 1

game with vin2: w plays 0 1 0

w plays 1 0 0

vout plays 0 vout plays 1
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game with vout: w plays 0 0 0

w plays 1 0 1

Then, in every ε-WSNE,

p[vout]=max
(

p[vin1]− p[vin2], 0
)± ε , (7.2)

where p[u] denotes the probability that u assigns to strategy 1.

Notice that each ofG¬,G− can be implemented using (7.2).

Proof Proof of Lemma 7.2. Assume by contradiction that (7.2) is violated:

. If p[vout]> p[vin1]− p[vin2]+ ε, then in every ε-WSNE p[w]= 1. But then vout

is incentivized to play strategy 0, which contradicts p[vout]> ε.

. Similarly, if p[vout]< p[vin1]− p[vin2]− ε, then in every ε-WSNE p[w]= 0.
Therefore, p[vout]≥ 1− ε.

Lemma 7.3 G< gadget. Let vin1, vin2, vout,w be players in a graphical game, and suppose that
the payoffs of vout and w are as follows.

Payoff for vout: w plays 0 w plays 1

vout plays 0 0 1

vout plays 1 1 0

Payoffs for w: vin1 plays 0 vin1 plays 1

game with vin1: w plays 1 0 0

w plays 0 1 1

vin2 plays 0 vin2 plays 1

game with vin2: w plays 0 1 0

w plays 1 0 0

Then, in every ε-WSNE,

p[vout]=
{≥ 1− ε p[vin1]< p[vin2]− ε
≤ ε p[vin1]> p[vin2]+ ε,

(7.3)

where p[u] denotes the probability that u assigns to strategy 1.
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Proof The payoff for playerw for action 0 is 1+ p[vin1]− p[vin2], whereas for action 1 it is
1− p[vin1]+ p[vin2]. Therefore, in every ε-WSNE,

p[w]=
{≤ ε p[vin1]< p[vin2]− ε
≥ 1− ε p[vin1]> p[vin2]+ ε.

(7.3) follows immediately because player vout wants to play the opposite of w.

Lemma 7.4 G∨,G∧ gadgets. Let vin1, vin2, vout,w be players in a graphical game, and suppose
that the payoffs of vout and w are as follows.

Payoff for vout: w plays 0 w plays 1

vout plays 0 0 1

vout plays 1 1 0

Payoffs for w: vin0 plays 1 vin1 plays 1

game with vin1: w plays 0 1 0

w plays 1/2 0 1

vin2 plays 0 vin2 plays 1

game with vin2: w plays 0 1 0

w plays 1/2 0 1

Then, in every ε-WSNE,

p[vout]=
{≥ 1− ε p[vin1]+ p[vin2]< 2/3− ε
≤ ε p[vin1]+ p[vin2]> 2/3+ ε,

(7.4)

where p[u] denotes the probability that u assigns to strategy 1.

Notice that (7.4) implements a G∨ (OR) gadget when the input values are ap-
proximately Boolean. A G∧ (AND) gadget can be implemented analogously by in-
terchanging the 1 and 1/2 values in w’s payoff matrices.

Proof Proof of Lemma 7.4. The payoff for player w for action 0 is p[vin1]+ p[vin2],
whereas for action 1 it is (1− p[vin1])/2+ (1− p[vin2])/2= 1− (p[vin1]+ p[vin2])/2.
In particular, the latter payoff from action 1 is larger whenever p[vin1]+ p[vin2]<
2/3.

Therefore, in every ε-WSNE

p[w]=
{≤ ε p[vin1]+ p[vin2]< 2/3− ε
≥ 1− ε p[vin1]+ p[vin2]> 2/3+ ε.

(7.4) follows immediately because player vout wants to play the opposite of w.
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7.1.2 From
√
ε-WSNE to�(ε)-ANE

The reduction above shows hardness for the slightly stronger notion (therefore
weaker hardness) of ε-WSNE. Daskalakis et al. [2009a] show a reduction from

√
ε-

WSNE to �(ε)-ANE for games with a constant number of players. It is easy to see
that the same reduction holds for graphical games with constant degree. We sketch
the proof below.

Lemma 7.5 Essentially Daskalakis et al. [2009a]. Given an ε-ANE of a graphical game with
payoffs in [0, 1] and incoming degree din, we can construct in polynomial time a√
ε . (

√
ε + 1+ 4din)-WSNE.

Proof Let V be the set of players, where each v ∈ V has utility Uv and action set Av.
Let x = (xv

a
) ∈�(×vAv) be an ε-ANE. Let Uv

a
(x−v) denote the expected payoff for

playing a when all other players play according to x. Note thatUv
a
(x−v)=Uv

a
(xNin(v))

depends only on the distributions of the players in the incoming neighborhood of
v, which we denote Nin(v). Finally, let Uvmax(x

−v)=maxa∈Av Uva (x
−v).

Let k = k(ε) > 0 be some large number to be specified later. We construct our
new approximate equilibrium by taking, for each player, only the strategies that are
within εk of the optimum:

x̂v
a
=
{

xva
1−zv Uv

a

(
x−v

)≥ Uvmax

(
x−v

)− εk,

0 otherwise,

where zv is the total probability that player v assigns to strategies that are more
than εk away from the optimum.

The above division is well defined because for k > 1, zv is bounded away from
1. Moreover, the following claim from Daskalakis et al. [2009a] formalizes the
intuition that when k is sufficiently large, the total weight on actions removed is
small, so x̂v is close to xv:

Claim 7.1 Claim 6 of Daskalakis et al. [2009a].

∀v ∈ V
∑
a∈Av

∣∣x̂v
a
− xv

a

∣∣≤ 2
k − 1

Now, the total change to the expected payoff to player v for each action a is
bounded by the total change in mixed strategies of its incoming neighbors:∣∣Uv

a

(
x−v

)− Uv
a

(
x̂−v

)∣∣ = ∣∣∣Uva (xNin(v)
)− Uv

a

(
x̂Nin(v)

)∣∣∣
≤

∑
a∈AN (v)

∣∣∣x̂Nin(v)
a − xNin(v)

a

∣∣∣≤ ∑
w∈N (v)

∑
a∈Aw

|x̂w
a
− xw

a
| ≤ 2din
k − 1

.
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It follows that x̂v
a

is a
(
kε + 4din

k−1

)
-WSNE:

Uv
a

(
x̂−v

)≥ Uv
a

(
x−v

)− 2din
k − 1

≥ Uvmax

(
x−v

)− εk − 2din
k − 1

≥ Uvmax

(
x̂−v

)− εk − 4din
k − 1

.

Finally, take k = 1+ 1/
√
ε to get that

kε + 4din
k − 1

≤√ε .
(√
ε + 1+ 4din

)
.

7.2 Succinct Games

Theorem 7.2 Theorem 5.2 restated. There exist constants ε , δ > 0, such that finding an (ε , δ)-
WeakNash is PPAD-hard for succinct multiplayer games where each player has a
constant number of actions.

Proof Let f be the hard function guaranteed by Theorem 4.1. We construct a game
with two groups of n players each. The action set of each player corresponds to
{0, 1/k , 2/k , . . . , 1} for a sufficiently large constant k > 0. We denote the choice of
strategies for the first group a � (a1, . . . , an), and b � (b1, . . . , bn) for the second
group.

Each player (A, i) in the first group attempts to imitate the behavior of the
corresponding player in the second group. Her utility is given by

ui
(
ai , bi

)
�−∣∣ai − bi∣∣2.

The second group players attempt to imitate the value of f , when applied to the
vector of actions taken by all the players in the first group. The utility of the j -th
player, (B , j), is

vj
(
bj , a

)
�−∣∣fj(a)− bj ∣∣2,

where fj denotes the j -th output of f .
Observe that the expected utility for (A, i) is given by:

E
[
ui
(
ai , bi

)]=−∣∣ai − E
(
bi
)∣∣2 − Var

(
bi
)

.

For any value of E(bi), player (A, i) has an action αi ∈ [E(bi)− 1/2k , E(bi)+ 1/2k].
Her utility when playing αi is lower bounded by:

E
[
ui
(
αi , bi

)]≥− 1
4k2

− Var
(
bi
)

.
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On the other hand, for any âi �∈ {αi , αi + 1/k},

E
[
ui
(
âi , bi

)]≤− 1
k2
− Var

(
bi
)

.

Therefore in every (δ , δ/k2)-WeakNash, it holds for all but a 2δ-fraction of i’s that
player (A, i) assigns probability at least (1−O(δ)) to strategies {αi , αi + 1/k}. In
particular, with high probability over the randomness of the players, it holds that
all but an O(δ)-fraction of the players play one of those strategies. Therefore with
high probability ∥∥a − E(b)

∥∥
2 =O

(√
δ + 1/k

)
. (7.5)

Similarly, player (B , j) (the j -th player in the second group) has an action
βj ∈ [E(fj(a))− 1/2k , E(fj(a))+ 1/2k]. Therefore in every (δ , δ/k2)-WeakNash, it
holds for all but a 2δ-fraction of j ’s that player (B , j) assigns probability at least
(1−O(δ)) to strategies {βj , βj + 1/k}. In particular, with high probability over the
randomness of the players, it holds that all but anO(δ)-fraction of the players play
one of those strategies. Therefore with high probability∥∥b− E

(
f (a)

)∥∥
2 =O

(√
δ + 1/k

)
.

Now, by the Lipschitz condition on f , whenever (7.5) holds,∥∥f (a)− f (E(b))∥∥2 =O
(√
δ + 1/k

)
.

Therefore E(a) and E(b) are both solutions to the �(
√
δ + 1/k)-approximate

Euclidean Brouwer instance.

7.2.1 Binary Actions
Corollary 7.1 There exist constants ε , δ > 0, such that finding an (ε , δ)-WeakNash is PPAD-hard

for succinct multiplayer games where each player has two actions.

Proof We replace each player (A, i) (respectively, (B , j)) in the proof of Theorem 5.2 with
k + 1 players, denoted: (A, i , 0), (A, i , 1/k), . . . , (A, i , 1). Each new player has two
actions: {+,−}. Given a (k + 1)-tuple of actions for players {(A, i , .)}, we define the
realized value ri ∈ [0, 1] to be

ri � max{x s.t. (A, i , x) plays action +}.

Let the realized value qj for players (B , j , 0), . . . , (B , j , 1) be defined analogously.
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We let player (A, i , x)’s utility be:

ui ,x(+, b)�−
∣∣∣∣(x + 1

k

)
− qi

∣∣∣∣2
ui ,x(−, b)�−

∣∣∣∣(x − 1
k

)
− qi

∣∣∣∣2 .

Similarly, for player (B , j , y), we have

uj ,y(±, a)�−
∣∣∣∣(y ± 1

k

)
− fi(r)

∣∣∣∣2 ,

where r � (r1, . . . , rn) is the vector of realized values on the first group.
For any (A, i , x), we have

E
[(
ui ,x(±, b)

)]=− ∣∣∣∣(x ± 1
k

)
− E

[
qi
]∣∣∣∣2 − Var

[
qi
]

.

Subtracting her two possible payoffs, we have

E
[(
ui ,x(+, b)

)− (ui ,x(−, b)
)]= ∣∣∣∣(x − E

[
qi
])− 1

k

∣∣∣∣2 − ∣∣∣∣(x − E
[
qi
])+ 1

k

∣∣∣∣2
=−4

k

(
x − E

[
qi
])

.

In particular, if E[qi]> x + k
√
ε, player (A, i , x)must assign probability at most

√
ε

to action {−} in order to play ε-optimally. For any i such that all players (A, i , .) use
ε-optimal mixed strategies, we have that∣∣E[qi]− E

[
ri
]∣∣=O(k√ε + 1/k). (7.6)

In any (ε , δ)-WeakNash, for all but a 2δk-fraction of i’s it holds that all players
(A, i , .) use ε-optimal mixed strategies; thus (7.6) holds for all but a 2δk-fraction of
i’s. Therefore, ∥∥E[q]− E[r]

∥∥
2 =O

(√
δk + k√ε + 1/k

)
.

By the Lipschitz condition on f , the latter also implies∥∥f (E[q]
)− f (E[r]

)∥∥
2 =O

(√
δk + k√ε + 1/k

)
.
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Similarly, for every j such that all players (B , j , .)use ε-optimal mixed strategies,
we have that ∣∣E[qj]− fj(E[r]

)∣∣=O(k√ε + 1/k
)

.

Thus in any (ε , δ)-WeakNash,∥∥E[q]− f (E[r]
)∥∥

2 =O
(√
δk + k√ε + 1/k

)
.

Therefore E(q) and E(r) are both solutions to the �(
√
δ + 1/k)-approximate

Euclidean Brouwer instance.



8Bayesian Nash
Equilibrium

In this short chapter we supplement our hardness of approximation of Nash equi-
librium in many-player games and many-actions games, by showing a different
reason of complexity: players’ uncertainty. Specifically, we prove that finding an
approximate Bayesian Nash equilibrium in two-player games with incomplete in-
formation is PPAD-complete, even when the players have only a constant number
of actions.

In a game with incomplete information, each player i has a type ti known only
to her, and the players’ types t = (t1, t2) are drawn from a joint distribution that is
known to everyone. The payoff for player i is a function ui(a, ti) of her own type and
all the players’ actions.

Definition 8.1 (e.g., Singh et al. [2004]). In a Bayesian Nash equilibrium, for every player i and
every type ti, the mixed strategy xi(ti) must be a best response in expectation over
the other players’ types and actions:

Et|ti
[
E

a∼
(
xi(ti), x−i(t−i)

)[ui(a; ti)
]]≥ max

x
′
i
(ti)∈�Ai

Et|ti
[
Ea∼

(
x
′
i
(ti), x−i(t−i)

)[ui(a; ti)
]]

.

Similarly, in an ε-approximate Bayesian Nash equilibrium, for every player i and every
type ti, the mixed strategy xi(ti)must be an ε-best response in expectation over the
other players’ types and actions:

Et|ti
[
E

a∼
(
xi(ti), x−i(t−i)

)[ui(a; ti)
]]≥ max

x
′
i
(ti)∈�Ai

Et|ti
[
E

a∼
(
x
′
i
(ti), x−i(t−i)

)[ui(a; ti)
]]− ε.

Before we prove our main corollary for incomplete information games, it is
helpful to prove the following slightly weaker statement, for two players with many
strategies.
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Lemma 8.1 There exists a constant ε > 0, such that given a two-player game with incomplete
information where each player has n actions, finding an ε-approximate Bayesian
Nash equilibrium is PPAD-complete.

Proof We reduce from a bipartite polymatrix game, and let the type set for each of the two
players in the incomplete information game correspond to one side of the bipartite
graph. The utility of player i on edge (i , j) of the polymatrix game depends on her
identity (i), as well as the identity (j ) of the vertex on the other side of that edge. We
use the types of the incomplete information game to encode i. We encode j using
the strategies of the second player in the incomplete information game.

In more detail, consider a bipartite polymatrix game for which it is PPAD-hard
to compute a 4ε-approximate Nash equilibrium. Use an affine transformation to
change all the payoffs from [0, 1] to [1/2, 1]. It is PPAD-hard to find a 2ε-approximate
Nash equilibrium in the transformed game.

We now construct the two-player incomplete information game: As we hinted
before, we let the type set of each player correspond to the vertices on one side of
the bipartite graphical game. Player i has

∣∣Ti∣∣ types and 2
∣∣Ti∣∣ strategies, where each

strategy corresponds to a pair of a vertex and a strategy for that vertex. If a player
plays a strategy whose vertex does not match her type, her payoff is 0. Therefore in
every ε-approximate Bayesian Nash equilibrium, every player, on every type, plays
the two strategies that correspond to her type with probability at least 1− 2ε.

Let the joint distribution over types be as follows: pick a random edge in the
bipartite graph, and assign the types corresponding to its vertices. Whenever both
players play strategies that match their respective types, their payoffs are the payoffs
in the (transformed) bimatrix game on that edge. In every ε-approximate Bayesian
Nash equilibrium, every player, on every type, plays a mixed strategy which is
the ε-best response. Since the other player plays strategies that correspond to the
correct vertex with probability at least 1− 2ε, the same mixture must be a 2ε-best
response for the vertex player in the bipartite game.

In order to prove the main corollary, we need to reduce the number of actions
in the above construction. Observe that we don’t need each player to choose an
action that uniquely identifies her type. Rather, it suffices to specify which neighbor
of the other player’s vertex is chosen. This can be done concisely via a coloring of
the vertices such that every pair of vertices of distance exactly two have different
colors; i.e., a coloring of the square of the polymatrix game’s graph. The squared
graph has degree 3 . (3− 1)= 6, and therefore we can efficiently find a 7-coloring. It
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suffices for each player to specify one of 7 colors, together with one of 2 strategies
for the vertex with that color. Therefore we can encode this choice using only 14
strategies.

Corollary 8.1 There exists a constant ε > 0, such that given a two-player game with incomplete
information where each player has 14 actions, finding an ε-approximate Bayesian
Nash equilibrium is PPAD-complete.





9Market Equilibrium
In this chapter we formally introduce our result for non-monotone markets, discuss
it, and compare it to the original result of Chen et al. [2013]. A sketch of the proof
appears in the next section.

Intuitively, a market is monotone if increasing the price of some good, while
fixing the rest of the prices, never increases the excess demand for that good.
Formally, we have the following definition by Chen et al.:

Definition 9.1 Chen et al. [2013]. Let M be a market with k ≥ 2 goods. We say that M is non-
monotone at price vector π if there exist c > 0, and a good g1 such that:

. the excess demand Z1(y1, . . . , yk) is a continuous function (rather than cor-
respondence) over y ∈ B(π, c);

. Z1(π) > 0;

. the partial derivative of ∂Z1/∂y1 exists and is continuous over B(π, c); and

. ∂Z1/∂y1(π) > 0.

We say that a market M is non-monotone if there exists such a rational price
vector π ≥ 0, and Z1(π) is moderately computable; i.e., for any γ > 0, Z1(π) can be
approximated to within γ in time polynomial in 1/γ .

In general, we want to talk about non-monotone families of utility functions,
i.e., ones that support non-monotone markets. Formally,

Definition 9.2 Chen et al. [2013]. We say that a family U of utility functions is non-monotone if:

. U is countable;

. if u: [0,∞)k→ R is in U , then so is u′(x1, . . . , xm)= a . u(xl1/b1, . . . , xlk/bk)
for any indices l1, . . . , lk ∈ [m] and positive (rational) a , b1, . . . , bk;

. u(x)= g∗(xi) is in U for some strictly increasing g: [0,∞)→ R; and

. there exists a non-monotone marketMU with utilities from U .

We need to include one more definition: that of ε-tight market equilibrium.
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Definition 9.3 A price vector π is an ε-tight approximate market equilibrium ofM if there exists a
z ∈ Z(π) (the excess demand at π) such that for every good j , |zj | ≤ εWj , whereWj
is the sum of the endowments of good j .

Our main result for non-monotone market equilibria is now formally defined:

Theorem 9.1 Non-monotone market. Let U be any non-monotone family of utility functions.
There exists a constant εU > 0 such that given a marketM where the utility of each
trader is either linear or taken from U , finding an εU -tight approximate market
equilibrium is PPAD-hard.

9.1 Why Are Non-Monotone Markets Hard?
Before delving into the details of the construction, we attempt to reach some
intuition: why should we expect equilibrium computation to be hard in non-
monotone markets? Probably the most intuitive algorithm for finding market equi-
librium is via tâtonnement: raise the prices of over-demanded goods, and decrease
the prices of under-demanded goods. For many markets, the tâtonnement process
is also computationally efficient [Codenotti et al. 2005]. One obvious problem is
that when the market is non-monotone, the tâtonnement step actually takes us
further away from equilibrium. However, the non-monotonicity is only local: if
we set the (relative) price of the non-monotone good high enough, even the most
enthusiastic traders can only afford a small amount.

The “real” reason that tâtonnement fails to converge efficiently for non-mono-
tone markets is a little more subtle. What happens when the demand for the non-
monotone goodg increases by a factor of (1+ δ) for some small δ? The tâtonnement
increases the price of g, which further increases the demand. Eventually, the price
is high enough, and the demand is reduced; but due to the non-monotonicity
we may have to increase the price by a larger factor, i.e., (1+ δ′) for δ′ > δ. Now,
another trader with a positive endowment of g has increased her spending budget
by (1+ δ′), further increasing the demand for yet another good (by a larger factor).
Thus a small change in the demand for one good may cause a much larger change
in the demand for another good. Exploiting this “butterfly effect” lies at the heart
of Chen et al.’s construction.

9.2 High-Level Structure of the Proof
Our reduction from polymatrix games to non-monotone markets closely follows
the footsteps of Chen et al. [2013]. To gain some intuition, consider two goods
g2i−1 and g2i for each player i, corresponding to her two available strategies (soon
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each of those goods will become a subset of goods). Let π(g2i−1) and π(g2i) denote
their corresponding prices; those prices correspond to the probabilities that player
i assigns to her respective strategies. For every i , j ∈ [n], we add a trader who is
interested in selling g2i−1 and buying g2j−1 (and similarly for (2i , 2j − 1), (2i −
1, 2j), and (2i , 2j)). This trader has an endowment of g2i−1 that is proportional to
P2i−1, 2j−1, the utility of player j in the bimatrix game with player i, when they both
play the first strategy. Qualitatively, if the price π(g2i−1) is high (player i assigns a
high probability to her first strategy), and P2i−1, 2j−1 is high (player j receives a high
utility from playing her first strategy to i’s first strategy), then the demand for good
g2j−1 is high—implying a high price in every approximate market equilibrium (i.e.,
player j indeed assigns a high probability to her first strategy).

In order to turn this qualitative intuition into a proof, we use a more complex
construction. The main difficulty comes from the need to amplify the effect of a
higher income for one trader on the incomes of other traders. To this end we con-
sider, for each i ∈ [n], two sequences of goods:g2i−1= g2i−1, 0, g2i−1, 1, . . . , g2i−1, 4t =
h2i−1 and g2i = g2i , 0, g2i , 1, . . . , g2i , 4t = h2i. The trader mentioned in the previous
paragraph actually owns P2i−1, 2j−1 units of good h2i−1; she is still interested in
good g2j−1. Now we construct (in Lemma 9.7) a chain of gadgets that use copies
of the non-monotone markets in U to amplify the small gap guaranteed between
π(g2j−1) and π(g2j ) to a larger gap between π(h2j−1) and π(h2j ).

Additionally, we want to bound the range that these prices may take. In Lemma
9.4 we use a price-regulating gadget [Chen et al. 2009a, Vazirani and Yannakakis
2011] to control the relative prices of π(g2i−1,j ) and π(g2i ,j ). In Lemma 9.6 we
show that the sums πi ,j = π(g2i−1,j )+ π(g2i ,j ) are approximately equal. Finally,
in Subsection 9.4.5 we combine these lemmata to formalize a quantitative version
of the qualitative intuition described above.

9.3 Adaptations for Constant Factor Inapproximability
As mentioned in the introduction, Theorem 9.1 has a weakness in comparison
to the results of Chen et al. [2013]: it only applies to tight approximate market
equilibrium.

Maintaining the constant hardness of approximation through most of Chen,
Paparas, and Yannakakis’s proof is rather straightforward, but there are a few
hurdles along the way. To understand the first obstacle, we must consider a subtle
issue of normalization. Chen et al. normalize the bimatrix game between every pair
of players to have an average value of 1/2. While this does not change the absolute
utility gained from any deviation, the relative utility from deviation is now divided
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by a factor of�(n). In contrast, in Theorem 5.1 we prove hardness for a constant ε
when normalizing with respect to a constant degree (3), i.e., each player participates
in only a constant number of bimatrix games. We overcome this difficulty by using
a different normalization: only edges (i.e., bimatrix games) that belong to the game
graph will have an average utility of 1/2, while the utility on other edges remains
0. Since we proved hardness for a degree 3 graphical game, the normalization only
costs us a constant factor.

More serious complications arise when trying to prove Chen, Paparas, and
Yannakakis’s Lemma 31 for a constant ε. This lemma says that certain prices (in
fact, these are sums of prices), denoted πi , 0 for i ∈ [n], are approximately equal. A
key step in the proof of Chen et al. [2013] is to show, roughly, that in every ε(n)-
approximate market equilibrium,

πi , 0 ≥ 1
n

∑
j∈[n]

πj , 0 −O(ε(n)).

When ε(n) is polynomially small, this immediately implies that mini∈[n] πi , 0 is
within O(ε(n)) of the average, and therefore it must also be that maxi∈[n] πi , 0 is
withinO(n . ε(n)) of the average. When taking a larger ε(n), this reasoning breaks.
The first modification we make to overcome this obstacle is to require ε(n)-tight
approximate market equilibrium. This gives a two-sided bound:∣∣∣πi , 0 − 1

n

∑
j∈[n]

πj , 0

∣∣∣=O(ε(n)). (9.1)

A second issue that arises in the same inequality is that with our new normaliza-
tion, which depends on the game graphG, we can only prove thatπi , 0 approximates
the values of its neighbors, denoted NG(i). In other words, (9.1) becomes∣∣∣πi , 0 − 1

|NG(i)|
∑

j∈NG(i)
πj , 0

∣∣∣=O(ε(n)). (9.2)

In order to relate πi , 0 to other πj , 0’s (i.e., the corresponding values of the neighbor-
ing vertices), we consider T consecutive applications of (9.2): πi , 0 is O(T . ε)-close
to the expectation over πj , 0 where j is taken from the distribution of a T -steps ran-
dom walk onG starting from i. For example, ifG is a constant degree expander, the
random walk converges in O(log n) steps, yielding a (1/ log n)-inapproximability
result.

1. Compare with our Lemma 9.6. The reader may also want to refer to Lemma 6 in the full version
of Chen et al. [2013].
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Achieving Constant Hardness
Finally, in order to achieve hardness for a constant ε, we want a graph with constant
mixing time—and this clearly cannot be done with a constant degree.2 Instead, in
Section 9.4.2 we construct a normalized game whose graph has a constant mixing
time, each vertex has degree O(

√
n), and yet approximating Nash equilibrium is

hard for a constant ε. In short, we take n copies of the original n-player game (our
new game has n2 players). For any pair of players that play a (non-trivial) bimatrix
game in the original game, we have a copy of the same bimatrix game between all(
n
2

)
pairs of their respective copies. We also add a trivial bimatrix game between

every pair of players that belong to the same copy of the original game. In Section
9.4.2 we argue that these newly added trivial edges are only a constant fraction of
all edges in the new game graph, yet this graph has a constant mixing time.

9.4 Non-Monotone Markets: Proof of Inapproximability
In this section we prove our main inapproximability result for non-monotone mar-
kets (Theorem 9.1).

9.4.1 Normalized Polymatrix Games
We identify n-player, 2-strategy polymatrix graphical games with 2n× 2n matrices
by letting the (i , j)-th 2× 2 block correspond to the payoff matrix of player j in the
bimatrix game with player i.

Given a game G, let P′ be the 2n× 2n induced payoff matrix. We normalize P′ as
follows:

P2i , 2j−1=
{

1/(2�)+
(
P
′
2i , 2j−1− P

′
2i , 2j

)
/(2�) (i , j) ∈ E,

0 otherwise,
(9.3)

where E is the edge set for the graphical game3 and� is the maximum degree. We
define P2i , 2j , P2i−1, 2j−1, P2i−1, 2j analogously. Notice that P and P

′
have the same

ε-WSNE, up to the normalization by the degree �. In particular, finding an (ε/�)-
WSNE in P continues to be PPAD-complete.

Observe that in this formulation, finding an ε-WSNE is equivalent to finding a
vector x ∈ [0, 1]2n s.t. x2i−1+ x2i = 1 and

x	 . P2i−1> x	 . P2i + ε  ⇒ x2i = 0,

x	 . P2i−1< x	 . P2i − ε  ⇒ x2i−1= 0.

2. In fact, it seems that a graph where the random walks starting from any pair of neighbors
converge in constant time would suffice. We do not know whether such graphs can be constructed
with constant degree.

3. Notice that this definition allows self-loops in the game graph.
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9.4.2 Games on Graphs with a Constant Mixing Time
Given the correspondence defined above between n-player games and 2n× 2nma-
trices, we see that the structure of the game graph plays a non-trivial role in the
construction. In particular, adding trivial edges between vertices, i.e., adding zero-
utility bimatrix games between players, has no effect on the utility of the players,
but changes the corresponding normalized matrix. For reasons that will become
clear much later in the proof, we would like our game graph to have a constant
mixing time.

Indeed, a trivial candidate with very fast mixing is the complete graph. However,
such a blowup in the degree would dilute our inapproximability factor in the nor-
malized game. Instead, we consider n copies (v1, . . . , vn) of each player v ∈ V in the
original game. If players u and v play a bimatrix game Gu,v in the original game G,
then for every i , j ∈ [n], we construct the same bimatrix game Gu,v between ui and
vj . Our game graph now consists of n2 vertices, each with degree4 3n. Finally, within
each copy V i, we add trivial edges between all the vertices not otherwise connected
(including self-loops). Normalize this game using (9.3). We use G to denote the new
game and G for the new game graph; we henceforth let �= 4n− 3 denote the de-
gree. In the next two lemmata we show that this game satisfies the two properties
we need: finding an ε-WSNE of G is PPAD-complete, and the mixing time of G is
constant.

Lemma 9.1 Given an ε-WSNE in G, we can (efficiently) construct a (4ε/3)-WSNE for G.

Proof For each player v, we take the average of the mixed strategies of v1, . . . , vn. The
utility of v is the same as the average of utilities of v1, . . . , vn, and if v has a (4ε/3)-
improving deviation, then at least one of the copies vi has an ε-improving deviation.
(The (4/3) factor comes from the change in the degree.)

Lemma 9.2 Let πvi ,T be the distribution of a random walk onG after T steps, starting from vi,
and let π∗ be the uniform distribution on the vertices ofG. Then

∥∥πvi ,T − π∗∥∥1≤
(

1
4

)T/2

+
(

3
4

)T/2

= 2−O(T ).

Proof At each step of the random walk, there is a constant probability (greater than 3/4) of
walking on a non-trivial edge, which takes us to another (uniformly random) copy
of the original game; thereafter the copy of the game remains uniformly random.
Similarly, at each step there is a constant probability (greater than 1/4) of moving

4. Theorem 5.1 promises a graphical game of degree at most 3. It is not hard to extend to a 3-regular
graph game with only a constant loss in the approximation factor.
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to a vertex within the same copy (again, uniformly random). Thus conditioned on
having walked on a non-trivial edge, and then on an edge within the same copy,
the distribution is uniform. Since all vertices have the same degree, this is also the
stationary distribution, and we never leave it.

For simplicity, in the following we redefine n to be the size of G (and hence
�≈ 4

√
n).

9.4.3 Construction
Let N be a sufficiently large constant, and let t = log N . Note that N depends on
the parameters of the non-monotone market in U , but not on the size n of our
construction. We use the notation ON(.) to denote the asymptotic behavior when
N goes to infinity (but arbitrarily slower than n). We prove that it is PPAD-hard to
find an η-tight approximate market clearing equilibrium for η = N−8ε, where ε is
the inapproximability factor from Lemma 9.1.

For each vertex i ∈ [n] we construct a series of 4t + 1 gadgets Ri ,j , for j ∈ [0 : 4t].
Each gadget is composed of the following:

Main goods. g2i−1,j and g2i ,j are the main goods in the reduction. They are
used to encode the weights assigned to strategies x2i−1 and x2i, respectively.

Non-monotone gadget. For each j ∈ [4t], we include additional goods si ,j , 3,
. . . , si ,j ,k and a non-monotone gadget

NM
(
μ, γ , g2i−1,j , g2i ,j , si ,j , 3, . . . , si ,j ,k

)
.

This means that we scale the non-monotone market guaranteed to exist
in U according to parameters γ and μ such that when all the prices are
approximately the same, the excess demand of g2i−1,j increases linearly with
its price. Formally, we have the following lemma by Chen et al.

Lemma 9.3 Lemma 3.1 of Chen et al. [2013]. There exist two (not necessarily rational)
positive constants c and d with the following property. Given any γ > 0, one
can build a market Mγ with utilities from U and goods g2i−1,j , g2i ,j , si ,j , 3,
. . . , si ,j ,k in polynomial time in 1/γ such that the following is true.

Let fγ ,μ(x) denote the excess demand function of g2i−1,j when the price
of g2i−1 is 1+ x, and the prices of all other k − 1 goods are 1− x. Then fγ ,μ is

well defined over [−c, c] with |fγ ,μ(0)| ≤μγ and its derivativef
′
γ ,μ(0)= d > 0.

For any x ∈ [−c, c], fγ ,μ(x) also satisfies∣∣fγ ,μ(x)− fγ ,μ(0)− μdx
∣∣≤ ∣∣μx/D∣∣ whereD =max{20, 20/d}.
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Finally, we would like to set μ=�/d; in particular, this would imply that
fγ ,μ(x)≈�x. However, as mentioned above, dmay be irrational. Instead, let
d∗ be a positive rational constant that satisfies

1− 1/D ≤ d∗ . d ≤ 1.

We set the parameters μ= d∗� and γ = 1/N6.

Price-regulating gadget. For j ∈ [4t], we include a price-regulating gadget

PR
(
τ , αj , g2i−1,j , g2i ,j , si ,j , 3, . . . , si ,j ,k

)
,

whereas for j = 0, we don’t have goods si , 0, 3, . . . , si , 0,k, and simply include
the gadget

PR
(
τ , α0, g2i−1, 0, g2i , 0

)
.

The parameters are set to τ =N� and αi = 2i/N5. Notice that α0 =N−5 and
α4t =N−1= β.

This gadget ensures that in any approximate equilibrium, the price ratio

π(g2i−1,j )/π(g2i ,j ) is always in the range
[

1−αj
1+αj ,

1+αj
1−αj

]
. Furthermore, within

each gadget Ri ,j , the prices of all the goods besides g2i−1,j are exactly equal:

π
(
g2i ,j

)= π(si ,j , 3
)= . . .= π(si ,j ,k

)
.

More specifically, we have two traders T1 and T2 as follows. T1 has (k − 1)τ
endowment of g2i−1,j ; T2 has τ endowment of each of the other goods in the
gadget (g2i ,j and si ,j , 3, . . . , si ,j ,k). Their utilities are defined as

u1=
(

1+ αj
)
x
(
g2i−1,j

)+ (1− αj)
(
x
(
g2i ,j

)+ k∑
l=3

x
(
si ,j , l

))

u2 =
(

1− αj
)
x
(
g2i−1,j

)+ (1+ αj)
(
x
(
g2i ,j

)+ k∑
l=3

x
(
si ,j , l

))
.

In particular, T1 and T2 do not trade whenever

π
(
g2i−1,j

)
/π
(
g2i ,j

) ∈ (1− αj
1+ αj

,
1+ αj
1− αj

)
.

Auxiliary goods. For j = 0, we also include an auxiliary good auxi. Its eventual
purpose is to disentangle the price of g2i−1, 0 and g2i , 0 from the utility that
the actions of player i cause to other players.
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Single-Minded Traders Graph
We connect the groups of goods (Ri ,j ’s) using the following single-minded traders.
We use (w, g1: g2) to denote a trader with endowment w of good g1 who only wants
good g2. Similarly, we use (w, g1, g2: g3) to denote a trader who has an endowment
w of each of g1 and g2, and only wants g3.

1. For each i ∈ [n] and j ∈ [0 : 4t − 1], we add two traders from Ri ,j to Ri ,j+1:
(�, g2i−1,j : g2i−1,j+1) and (�, g2i ,j : g2i ,j+1). These traders help propagate
price discrepancies from gi , 0 to gi , 4t .

2. Recall that we use gi as short for gi , 0 and hi for gi , 4t . For each pair (i , j) ∈ E
we add the following four traders: (�P2i−1, 2j−1, h2i−1 : g2j−1), (�P2i , 2j−1, h2i :
g2j−1), (�P2i−1, 2j , h2i−1 : g2j ), (�P2i , 2j , h2i : g2j ). Since P is normalized, we
have

�P2i−1, 2j−1+�P2i−1, 2j =�P2i , 2j−1+�P2i , 2j = 1.

These traders will enforce the approximate Nash equilibrium.
3. Connect the auxiliary goods: We let

r2j−1= 2�−�
∑
i∈N (j)

(
P2i−1, 2j−1+ P2i , 2j−1

)
> 0

r2j = 2�−�
∑
i∈N (j)

(
P2i−1, 2j + P2i , 2j

)
> 0;

note that r2j−1+ r2j = 2�.
We add the following traders: ((1− β)r2j−1, auxj : g2j−1), ((1− β)r2j ,

auxj : g2j ), and ((1− β)�, g2j−1, g2j : auxj ).

Notice that the economy graph is strongly connected (because G is strongly con-
nected); therefore an equilibrium always exists [Maxfield 1997]. The supplies and
demands for each good are summarized in Table 9.1.

9.4.4 Structure of a Market Equilibrium
We now prove some properties that every η-tight approximate equilibrium π must
satisfy. Recall that η = N−8ε, where ε is the inapproximability factor for the poly-
matrix game.
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Table 9.1 Goods and traders

Good

[Total Supply] Supplied By Demanded By

g2i−1, g2i

[N�(1+ oN(1))]

pr trader;

(�, g2i−1 : g2i−1, 1),
(�, g2i : g2i , 1);

((1− β)�, g2i−1, g2i : auxi)

pr traders;

(�P2j−1, 2i−1, h2j−1 : g2i−1),...
(�P2j , 2i , h2j : g2i);

((1− β)r2i−1, auxi : g2i−1),
((1− β)r2i , auxi : g2i)

h2i−1

[(k − 1)N�(1+ oN(1))]

pr trader;

nm traders;

(�P2i−1, 2j−1, h2i−1 : g2j−1),
(�P2i−1, 2j , h2i−1 : g2j )

pr traders;

nm traders;

(�, g2i−1, 4t−1 : h2i−1)

h2i

[N�(1+ oN(1))]

pr trader;

nm traders;

(�P2i , 2j−1, h2i : g2j−1),
(�P2i , 2j , h2i : g2j )

pr traders;

nm traders;

(�, g2i , 4t−1 : h2i)

g2i−1,j

[(k − 1)N�(1+ oN(1))]

pr trader;

nm traders;
(�, g2i−1,j : g2i−1,j+1)

pr traders;

nm traders;

(�, g2i−1,j−1 : g2i−1,j )

g2i ,j

[N�(1+ oN(1))]

pr trader;

nm traders;

(�, g2i ,j : g2i ,j+1)

pr traders;

nm traders;

(�, g2i ,j−1 : g2i ,j )

si ,j , l

[N�(1+ oN(1))]

pr trader;

nm traders;

pr traders;

nm traders;

auxi

[N�(1+ oN(1))]

((1− β)r2i−1, auxi : g2i−1),
((1− β)r2i , auxi : g2i)

((1− β)�, g2i−1, g2i : auxi)
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We begin with the application of the price regulating markets:

Lemma 9.4 For every i ∈ [n] and j ∈ [0 : 4t],

1− αj
1+ αj

≤ π
(
g2i−1, j

)
π
(
g2i , j

) ≤ 1+ αj
1− αj

and

π
(
g2i , j

)= π(si ,j , 3
)= . . .= π(si ,j ,k

)
.

Proof Follows from the construction of the price-regulating markets. For more details see
the proof 5 of Lemma 6 in the full version of Chen et al. [2013], or previous works
that use similar gadgets [Chen et al. 2009a, Vazirani and Yannakakis 2011].

We henceforth use πi ,j to denote the sum of the (i , j)-th main goods: πi ,j =
π(g2i−1,j )+ π(g2i ,j ).

Lemma 9.5
(1−ON(η))πi , 0/2≤ π(auxi)≤ (1+ON(η))πi , 0/2.

Proof The total supply of auxi is 2(1− β)�, yet the demand from the single-minded trader
((1− β)�, g2i−1, g2i : auxi) is (1− β)� πi , 0

π(auxi)
. (For the upper bound we use the fact

that π is a tight approximate market equilibrium.)

We are now ready to prove that the cost of every pair of main goods is approxi-
mately the same. Let δ =N2η.

Lemma 9.6 Let πmax =maxi ,j πi ,j and πmin =mini ,j πi ,j ; then

πmax/πmin ≤ 1+ON(δ).
Proof The proof of this lemma is the main obstacle that requires the tightness assumption

of the market equilibrium, as well as our bound on the mixing time from Lemma
9.2.

Recall that by Lemma 9.4, the prices of all the goods in each gadget Ri ,j are
approximately equal. Thus, using our bound on the clearing error, we have that for
each (i , j) ∈ [n]× [0 : 4t],∣∣total spent on Ri ,j − total worth of Ri ,j

∣∣
≤ON(η . kN�)πi ,j =ON(η .N�)πi ,j . (9.4)

5. In their statement, Chen et al. require an ε-additively approximate equilibrium, and for a much
smaller ε. However, their proof continues to hold with our parameters.
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By Walras’s Law, the traders within each Ri ,j (i.e., the price-regulating and non-
monotone gadgets) contribute the same to both quantities in (9.4). Similarly, by
Lemma 9.5, the auxiliary traders contribute ON(η�πi , 0)-approximately the same
(for j = 0). Therefore the money spent on Ri ,j by the single-minded traders is
approximately the same as the total worth of endowments in Ri ,j of single-minded
traders:

Comment 9.1 ∣∣∣ ∑
u∈N−(v)

wu,vπu −
∑

u∈N+(v)
wv ,uπv

∣∣∣≤O ((
η′/ log n

)
. kπv

)
. For each (i , j) ∈ [n]× [4t], the restriction of (9.4) to the single-minded traders

gives ∣∣�πi ,j−1−�πi ,j
∣∣=ON(η .N�)πi ,j . (9.5)

. Similarly, for each group Ri , 0, we have∣∣∣ ∑
l∈N (i)

πl , 4t −�πi , 0

∣∣∣=ON(η .N�)πi , 0. (9.6)

Applying (9.5) inductively, we have that for any i ∈ [n] and for any j , l ∈ [0: 4t],∣∣πi ,j − πi , l∣∣=ON(η .Nt)πi , l .

Combining with (9.6) we have∣∣∣πi , 0 − 1
�

∑
l∈N

GG(i)

πl , 0

∣∣∣=O(η .Nt)πi , 0.

Thus for each i, πi , 0 is O(η .Nt)-approximately equal to the average of its neigh-
bors in G. Repeating this argument T times, we have that πi , 0 is ON(T η .Nt)-
approximately equal to the expectation over a T -step random walk in G starting
from i. By Lemma 9.2, after T =O(log δ) steps the random walk δ-approximately
converges to the uniform distribution, and we have∣∣∣πi , 0 − 1

n

∑
l∈[n]

πl , 0

∣∣∣=ON(T η .Nt)
1
n

∑
l∈[n]

πl , 0 + δ max
l∈[n]

πl , 0

=ON(δ)max
l∈[n]

πl , 0.

Finally, we have the following lemma, which describes the action of the non-
monotone gadgets.
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Lemma 9.7 Lemma 6 of Chen et al. [2013].

1+ αj−1

π
(
g2i−1,j−1

) = 1− αj−1

π
(
g2i ,j−1

)  ⇒ 1+ αj
π
(
g2i−1,j

) = 1− αj
π
(
g2i ,j

) and

1− αj−1

π
(
g2i−1,j−1

) = 1+ αj−1

π
(
g2i ,j−1

)  ⇒ 1− αj
π
(
g2i−1,j

) = 1+ αj
π
(
g2i ,j

)
Proof The demand for g2i−1,j and g2i ,j comes from three sources: the single-minded

traders, (�, g2i−1,j−1 : g2i−1,j ) and (�, g2i ,j−1 : g2i ,j ); the non-monotone gadget;
and the price regulating gadget. Assume without loss of generality that the first

premise holds, i.e.,
1+αj−1

π(g2i−1, j−1)
= 1−αj−1
π(g2i , j−1)

. When the prices of g2i−1,j and g2i ,j are

equal, the demand from (�, g2i−1,j−1 : g2i−1,j ) is larger since she has more income
from g2i−1,j−1. In order to account for this difference, π(g2i−1,j )must be higher—
but then the demand from the traders in the non-monotone market increases. Thus
we have to further increase π(g2i−1,j ), until we reach the threshold of the price
regulating traders: (1+ αj)/(1− αj).

Formally, normalize π such thatπi ,j = π(g2i−1,j )+ π(g2i ,j )= 2. Thus by Lemma
9.6, πi ,j−1 is also ON(δ)-close to 2. Let f (x) denote the excess demand from the
traders in the non-monotone gadget when π(g2i−1,j ) = 1+ x and π(g2i−1,j ) =
π(si ,j , 3)= . . .= π(si ,j ,k)= 1− x (recall from Lemma 9.4 that the latter prices are
always equal to each other). By Lemma 9.3, we have that |f (0)| ≤ μγ , and for all
x ∈ [−c, c]: ∣∣f (x)− f (0)− μdx∣∣≤ ∣∣μx/D∣∣.

Now, let π(g2i−1,j−1)= 1+ y; notice that by Lemma 9.6, y = αj−1±ON(δ). Let
h(x , y) denote the excess demand from all traders besides the two that belong to
the price regulating gadget. Then,

h(x , y)= f (x)+ �(1+ y)
1+ x −�= f (x)− �x

1+ x +
�y

1+ x .

For small x, we show that f (x)≈�x/(1+ x). More precisely,∣∣f (x)−�x/(1+ x)∣∣≤ ∣∣f (x)− μdx∣∣+ ∣∣μdx −�x∣∣+�∣∣x − x/(1+ x)∣∣
≤ ∣∣f (0)∣∣+ 2

∣∣μx/D∣∣+ 2�x2

≤� . (d∗ . γ + 2x/20+ 2x2)

≤ �y
3

,
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where the first inequality follows from the triangle inequality; the second follows
by application of Lemma 9.3 for the first difference and the definitions of μ and d∗

for the second; the third inequality applies Lemma 9.3 again; and finally the last
inequality holds because for sufficiently large constant N , the parameters γ and x
are sufficiently small.

Therefore, the excess demand must be balanced by the demand from the price
regulating traders, implying that indeed

1+αj
π(g2i−1, j )

= 1−αj
π(g2i , j )

.

9.4.5 From Market Equilibrium to Nash Equilibrium
To complete the proof of Theorem 9.1, we must construct an ε-WSNE from any
η-tight approximate market equilibrium.

Proof For each i ∈ [n], let θi = (π(h2i−1)+ π(h2i))/2. We define

x2i−1=
π(h2i−1)/θi − (1− β)

2β
and x2i = π(h2i)/θi − (1− β)

2β
. (9.7)

Observe that x2i−1+ x2i = 1.
Suppose that

x	 . P1≥ x	 . P2 + ε.

We show that this forces x1= 1 and x2 = 0; by the discussion in Section 9.4.1 this
implies that x is indeed an ε-WSNE.

The following traders spend money on g1:

1. (�Pi , 1, hi; g1) traders: for each i ∈N
G
(1), there is one. The total money these

traders spend on g1 is∑
�Pi , 1 . π

(
h1
)=∑�Pi , 1

(
1− β + 2β . xi

)
θ!i/2"

2. (�Pi , 2, hi; g2) traders: for each i ∈N
G
(2), there is a one. The total money

these traders spend on g2 is∑
�Pi , 2 . π

(
h2
)=∑�Pi , 2

(
1− β + 2β . xi

)
θ!i/2"

3. ((1− β)r1, aux1 : g1) and ((1− β)r2, aux1 : g2) traders

LetM1 be the total amount that these traders spend on g1. Then

M1=
∑

i∈N
G
(1)

�Pi , 1
(

1− β + 2β . xi
)
θ!i/2" +

(
1− β)r1π(aux1

)
.
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Normalizing the prices such that 1
n

∑n
i=1 θi = 1/�, this means that

M1≥ 2
(

1− β)+ 2βx	 . P1−ON(δ).
Similarly,

M2 ≤ 2
(

1− β)+ 2βx	 . P2 +ON(δ).
Therefore,

M1≥M2 + 2βε −ON(δ)=M2 +�N
(
βε
)

,

so the difference between the demands for g1 and g2 from these traders is

M1

π
(
g1
) − M2

π
(
g2
) ≥ M2 +�N

(
βε
)

π
(
g1
) − M2

(
1+ α0

)
π
(
g1
)(

1− α0
) =�N(βε).

Thus the price-regulating traders T1 and T2 must have different demands for g1 and
g2—but this can only happen when

1+ α0

π
(
g1
) = 1− α0

π
(
g2
) .

Therefore, by consecutive applications of Lemma 9.7,

1+ β
π
(
h1
) = 1− β

π
(
h2
) .

Finally, by (9.7) this implies that x1= 1 and x2 = 0.





10CourseMatch
In this chapter we characterize the computational complexity of computing an
approximate competitive equilibrium from equal incomes (A-CEEI). CEEI is a ubiq-
uitous mechanism for fair allocation of divisible goods. In settings with indivisible
goods, a CEEI often does not exist, but a theorem of Budish [2011] guarantees an
approximate CEEI (see definition below) with favorable economic properties. This
mechanism is used in practice to allocate seats in university courses to students
[Budish et al. 2014]. Budish’s existence proof does not come with an efficient algo-
rithm for finding an A-CEEI. In applications a heuristic search algorithm without
provable convergence guarantees is used. Understanding the computational com-
plexity of A-CEEI is thus an important problem with both theoretical and practical
implications.

Theorem 10.1 Theorem 10.3, informal statement. The problem of finding an A-CEEI as guaran-
teed by Budish [2011] is PPAD-complete.

10.1 The Course Allocation Problem
Even though the A-CEEI and the existence theorem in Budish [2011] are applica-
ble to a broad range of allocation problems, we shall describe our results in the
language of the course allocation problem.

We are given a set of M courses with integer capacities (the supply) (qj)
M
j=1,

and a set of N students, where each student i has a set �i ⊆ 2M of permissible
course bundles, with each bundle containing at most k ≤M courses. The set �i
encodes both scheduling constraints (e.g., courses that meet at the same time) and
any constraints specific to student i (e.g., prerequisites).

Each student i has a strict ordering over her permissible schedules, denoted by
�i. We allow arbitrarily complex preferences—in particular, students may regard
courses as substitutes or complements. More formally:

Definition 10.1 Course allocation problem. The input to a course allocation problem consists of:

. for each student i a set of course bundles
(
�i
)N
i=1;
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. the students’ reported preferences,
(
�i
)N
i=1; and

. the course capacities,
(
qj
)M
j=1.

The output to a course allocation problem consists of:

. prices for each course
(
p∗
j

)M
j=1,

. allocations for each student
(
x∗
i

)N
i=1, and

. budgets for each student
(
b∗
i

)N
i=1.

How is an allocation evaluated? The clearing error of a solution to the allocation
problem is the L2 norm of the length-M vector of seats oversubscribed in any
course, or undersubscribed seats in courses with positive price.

Definition 10.2 The clearing error α of an allocation is

α ≡
√∑

j

z2
j ,

where zj is given by

zj =
⎧⎨⎩
∑
i x
∗
ij
− qj if p∗

j
> 0;

max
[(∑

i x
∗
ij
− qj

)
, 0
]

if p∗
j
= 0.

We can now define the notion of approximate CEEI. The quality of approxima-
tion is characterized by two parameters:α, the clearing error (how far is our solution
from a true competitive equilibrium?), and β, the bound on the difference in bud-
gets (how far from equal are the budgets?). Informally, α can be thought of as the
approximation loss on efficiency, and β can be thought of as the approximation
loss on fairness.

Definition 10.3 An allocation is an (α, β)-CEEI if:

1. Each student is allocated their most preferred affordable bundle. Formally,

∀i : x∗
i
= arg max

�i

[
xi ∈�i :

∑
j

xijp
∗
j
≤ b∗

i

]
.

2. Total clearing error is at most α.

3. Every budget b∗
i
∈ [1, 1+ β].

In Budish [2011] it is proved that an (α , β)-approximate CEEI always exists, for
some quite favorable (and as we shall see, essentially optimal) values of α and β:
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Theorem 10.2 Budish [2011]. For any input preferences, there exists an (α , β)-CEEI with α =√
kM/2 and any β > 0.

Recall that k is the maximum bundle size.
The bound ofα =√kM/2 means that, for a large number of students and course

capacities, the market-clearing error converges to zero quite fast as a fraction of the
endowment. It is also shown in Budish [2011] that the mechanism that allocates
courses according to such an A-CEEI satisfies attractive criteria of approximate
fairness, approximate truthfulness, and approximate Pareto efficiency. The reader
may consult Budish [2011] for the precise definitions of the economic properties
of the A-CEEI mechanism.

10.1.1 Our Results
We are now ready to formally state our result for the complexity of A-CEEI:

Theorem 10.3 Computing a
(√

kM
2 , β

)
-CEEI is PPAD-complete, for some small constant β > 0.

In Section 10.2, we prove that computing a
(√

kM
2 , β

)
-CEEI is PPAD-hard; this

is accomplished by a reduction from ε-Gcircuit. Then, in Section 10.3, we prove
that the same problem also belongs to the class PPAD; this proof mostly follows
along the lines of Budish’s existence proof [Budish 2011], but certain probabilistic
arguments must be constructively derandomized.

10.2 A-CEEI Is PPAD-Hard
Informally, in this section we provide a construction demonstrating that it is pos-
sible to define a set of courses, students, and preferences such that the price of the
courses in an A-CEEI simulates the various “basic circuit functions” (e.g., an OR
gate) that, when combined and wired together, are the necessary building blocks
sufficient to emulate any continuous function. Therefore, any algorithm capable
of solving A-CEEI in polynomial time would also suffice to solve ε-Gcircuit, and
hence any problem in PPAD, in polynomial time as well.

Overview of the Reduction
We shall reduce ε-Gcircuit with fan-out 2 to the problem of finding an (α , β)-
CEEI, with approximation parameters α =�(N/M) and ε = ε(β). (Note that, by
increasing N , we can make α arbitrarily large as a function of M ; in particular,
α >

√
kM/2.)

We will construct gadgets (that is, small sets of courses, students, capacities and
preferences) for the various types of gates in the generalized circuit problem. Each
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gadget that we construct has one or more dedicated “input course,” a single “output
course,” and possibly some “interior courses.” An output course of one gadget can
(and will) be an input to another. The construction will guarantee that in any A-
CEEI the price of the output course will be approximately equal to the gate applied
to the prices of the input courses.

10.2.1 The NOT Gate (G¬) Gadget
To illustrate what needs to be done, we proceed to construct a gadget for the G¬
gate; in particular, this implements a logical NOT.

Lemma 10.1 NOT gate (G¬) gadget.
Let nx > 4α and suppose that the economy contains the following courses:

. cx (the “input course”);

. c1−x with capacity q1−x = nx/2 (the “output course”);

and the following set of students:

. nx students interested only in the schedule {cx , c1−x};
and suppose further that at most n1−x = nx/4 other students are interested in

course c1−x.
Then in any (α , β)-CEEI,

p∗1−x ∈
[
1− p∗

x
, 1− p∗

x
+ β].

Proof Observe that:

. If p∗1−x > 1− p∗
x
+ β, then none of the nx students will be able to afford the

bundle {cx , c1−x}, and therefore there will be at most n1−x = nx/4 students
enrolled in the c1−x—much less than the capacity nx/2. Therefore z1−x ≥
nx/4.

. On the other hand, if p∗1−x < 1− p∗
x

, then all nx students can afford the
bundle {cx , c1−x}—therefore the course will be overbooked by nx/2; thus,
z1−x ≥ nx/2.

Therefore if p∗1−x �∈ [1− p∗
x

, 1− p∗
x
+ β], then ‖z‖2 ≥ nx/4> α—a contradiction to

(α , β)-CEEI.

Similarly, in Section 10.2.3, we construct gadgets that simulate all the gates of
the generalized circuit problem.
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10.2.2 Course-Size Amplification
In the next subsection, we will construct gadgets that compute all the gates neces-
sary for the circuit in the reduction from ε-Gcircuit. What happens when we try to
concatenate them to form a circuit? Recall the penultimate sentence in the state-
ment of Lemma 10.1: It says that the output course’s price continues to behave like
the output of the simulated gate, as long as there are not too many additional stu-
dents that try to take the output course. (If there are more students, they may raise
the price of the course beyond what we expect.) In particular, the number of addi-
tional students that may want the output course is smaller than the number of students
that want the input course.

If we concatenated the gadgets without change, we would need to have larger
course sizes as we increase the depth of the simulated circuit. This increase in
course size is exponential in the depth of the circuit. Things get even worse—since
we reduce from generalized circuits, our gates form cycles. If the course size must
increase at every gate, it would have to be infinite!

To overcome this problem, we construct a special G= gadget that (approxi-
mately) preserves the price from the input course, but is robust to twice as many
additional students:

Lemma 10.2 Course-size amplification gadget. Let nx ≥ 100α and suppose that the economy
contains the following courses:

. cx (the “input course”)

. for i = 1, . . . , 10, ci with capacities qi = 0.5 . nx (“interior courses”);

. cx′ with capacity qx′, s.t. qx ≤ qx′ ≤ 4nx (“output course”);

and the following sets of students:

. nx students interested in schedules ({cx , ci})10
i=1 (in this order);

. ni = 0.49 . nx students (∀i) interested in schedules ({cx′ , ci}, {ci}, {ci+1}, . . . ,
{c10}) (in this order);

and suppose further that at most nx′ = 2nx other students are interested in course
cx′.

Then in any (α , β)-CEEI,

p∗
x′ ∈

[
p∗
x
− β , p∗

x
+ β].

In particular, notice that the price of cx′ is guaranteed to approximate the price
of cx, even in the presence of additional nx′ = 2nx students—twice as many students
as we added to cx.
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Proof We start by proving that all the ci’s simulate NOT gadgets simultaneously, i.e., for
every i and every (α , β)-CEEI, p∗

i
∈ [1− p∗

x
, 1− p∗

x
+ β].

. If p∗
i
> 1− p∗

x
+ β, assume w.l.o.g. that it is the first such i, i.e., p∗

j
≤ 1− p∗

x
+

β < p∗
i

for every j < i.
None of the nx students can afford buying both cx and ci. Furthermore,

for every j < i, none of the nj students will prefer ci over cj . Therefore at most
ni students will take this course: z∗

i
≥ 0.01nx.

. If, on the other hand, p∗
i
< 1− p∗

x
, then all nx students will buy course ci or

some previous course cj (for j ≤ i); additionally, for every j ≤ i, each of the
nj corresponding students will buy some course ck for j ≤ k ≤ i. Therefore
the total overbooking of courses 1, . . . , i will be at least

∑
j≤i z∗j ≥ nx . (1−

0.01i)—a contradiction to (α , β)-CEEI.

Now that we have established thatp∗
i
∈ [1− p∗

x
, 1− p∗

x
+ β], we shall prove the main

claim, i.e., that p∗
x′ ∈ [p∗

x
− β , p∗

x
+ β].

. Ifp∗
x′ >p

∗
x
+ β, then none of theni students, for anyni, can afford buying both

cx′ and ci. Therefore, even in the presence of additional nx′ = 2nx students
who want to take cx′, the course will be undersubscribed by z∗

x′ ≥ qx′ − nx′ =
2nx.

. If p∗
x′ < x + β, then all ni students, for each i, can afford to buy their top

schedule—both {ci , cx′}. Therefore cx′ will be oversubscribed by at least z∗
x′ ≥

0.9 . nx—a contradiction to (α , β)-CEEI.

Finally, given an instance of ε-Gcircuit with fan-out 2, we can use the gadgets
we constructed in Lemmata 10.1–10.2 to construct an instance of (α , β)-CEEI that
simulates the generalized circuit. We concatenate gadgets by identifying the output
course of one gadget with the input course of the next two gadgets. In particular,
after each gate gadget, we insert a series of course-size amplifying gadgets. Each
amplifying gadget doubles the number of additional students that the gadget can
tolerate, so a constant number of amplifying gadgets suffice; thus the blowup in
error is also constant. As for the size of the reduction, each gadget introduces a
constant number of new courses, and �(α) new students; thus M =�(|V |) and
N =�(α . |V |), where |V | is the number of gates in the generalized circuit.

10.2.3 Additional Gate Gadgets
In this section we construct the rest of the gate gadgets, completing the proof of
PPAD-hardness.
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In the lemma below we construct gadgets for a slightly modified set of gates.
In particular, instead of implementing gates Gζ and G×ζ from Definition 6.2,
we only consider the special cases corresponding to ζ = 1

2 (denoted G 1
2

and G/2,
respectively).

Lemma 10.3 Let nx ≥ 28 . α and suppose that the economy has courses cx and cy. Then for any
of the functions f listed below, we can add a course cz, and at most nx students
interested in each of cx and cy, such that in any (α , β)-CEEI p∗

z
∈ [f (p∗

x
, p∗
y
) −

2β , f (p∗
x

, p∗
y
)+ 2β].

1. HALF: fG/2
(x)= x/2

2. VALUE: fG 1
2

≡ 1
2

3. SUM: fG+(x , y)=min(x + y , 1)

4. DIFF: fG−(x , y)=max(x − y , 0)

5. LESS: fG<(x , y)=
{

1 x > y + β
0 y > x + β

6. AND: fG∧(x , y)=
{

1
(
x > 1

2 + β
) ∧ (y > 1

2 + β
)

0
(
x < 1

2 − β
) ∨ (y < 1

2 − β
)

7. OR: fG∨(x , y)=
{

1
(
x > 1

2 + β
) ∨ (y > 1

2 + β
)

0
(
x < 1

2 − β
) ∧ (y < 1

2 − β
)

In particular, p∗
z
∈ [f (p∗

x
, p∗
y
)− 2β , f (p∗

x
, p∗
y
)+ 2β] in every (α , β)-CEEI even if up

to nz ≤ nx/28 additional students (beyond the ones specified in the proofs below)
are interested in course cz.

Proof HALFG/2

Let cz have capacity qz = nx/8, let nz = qz/2, and consider three auxiliary courses
c1, c2, and cx of capacities q1= q2 = qz and qx = nx/2. Using Lemma 10.1, add
nx students that will guarantee px ∈ [1− p∗

x
, 1− p∗

x
+ β]. Additionally, consider

nx = nx/4 students with preference list ({cz, c1, cx}, {cz, c2, cx}, {c1, c2, cx}) (in this
order), then:

. If the total price p∗
i
+ p∗

j
of any pair i , j ∈ {1, 2, z} is less than p∗

x
− β, then all

nx students will be able to afford some subset in their preference list, leaving
a total overbooking of at least z∗

z
+ z∗1 + z∗2 ≥ 2nx − 3qz = nx/8, which violates

the (α , β)-CEEI conditions.

. If the total price of any of the pairs above (wlog, p∗1 + p∗2) is greater than p∗
x
+

β, then none of the nx students will be able to afford the subset {c1, c2, cx}.
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Therefore the number of students taking cz will be at least the sum of stu-
dents taking c1 or c2. Therefore, even after taking into account nz additional
students, we have that z∗

z
+ z∗1 + z∗2 ≥ qz − nz = nx/16.

VALUEG 1
2

Similarly to the HALF gadget, consider two auxiliary courses c1 and c2, and let nx
students have preferences ({cz, c1}, {cz, c2}, {c1, c2}). Then, following the argument
for the HALF gadget, it is easy to see that p∗

z
∈ [ 1

2 , 1
2 + β] in any (α , β)-CEEI, with

nz = nx/8.

DIFFG−
Let cx be a course with price p∗

x
∈ [1− p∗

x
, 1− p∗

x
+ β], qx = nx/2, and consider

nx = nx/4 students willing to take {cx , cy , cz}. Then it is easy to see that

p∗
z
∈ [1− p∗

x
− p∗

y
, 1− p∗

x
− p∗

y
+ β]

⊆ [p∗
x
− p∗

y
− β , p∗

x
− p∗

y
+ β]

with nz = nx/16.

SUMG+
Concatenating NOT and DIFF gadgets, we have:

p∗
x
∈ [1− p∗

x
, 1− p∗

x
+ β]

p∗
z
∈ [p∗

x
− p∗

y
− β , p∗

x
− p∗

y
+ β]

p∗
z
∈ [1− (p∗

x
− p∗

y
+ β), 1− (p∗

x
− p∗

y
− β)+ β]

⊆ [p∗
x
+ p∗

y
− 2β , p∗

x
+ p∗

y
+ 2β

]
for nz = nx/28.

LESSG<

Let cx be a course with price p∗
x
∈ [1− p∗

x
, 1− p∗

x
+ β], qx = nx/2; let qz = nx/8 and

nz = nx/16. Consider nx/4 students wishing to take ({cx , cy}{cz}), in this order:

. If p∗
y
> p∗

x
+ β, then p∗

x
+ p∗

y
> 1+ β, and therefore none of the nx/4 students

will be able to afford the first pair; they will all try to sign up for cz, which will
be overbooked unless p∗

z
> 1.

. If p∗
x
> p∗

y
+ β, then all nx/4 students will sign up for the first pair, forcing

p∗
z
= 0 in any (α , β)-CEEI.
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ANDG∧
Let c 1

2
be a course with pricep∗1

2
∈ [ 1

2 , 1
2 + β] and n 1

2
= nx/8, as guaranteed by gadget

VALUE; let qz = nx/32 and nz = nx/64. Consider nx/16 students wishing to take
({cx , c 1

2
}, {cy , c 1

2
}, {cz}), in this order.

. If (p∗
x
> 1

2 + β) ∧ (p∗y > 1
2 + β), then the nx/16 students can afford neither

pair. They will all try to sign up for cz, forcing p∗
z
> 1, in any (α , β)-CEEI.

. If (x < 1
2 − β) ∨ (y < 1

2 − β), then the nx/16 students can afford at least one
of the pairs and will register for those courses. Thus p∗

z
= 0.

ORG∨
Similar to the AND gadget; students will want ({cx , cy , c 1

2
}, {cz}), in this order.

10.3 A-CEEI ∈ PPAD
In this section we establish that computing a (

√
σM
2 , β)-CEEI is in PPAD, for σ =

min{2k ,M}. We follow the steps of the existence proof in Budish [2011], and show
that each one can be carried out either in polynomial time, or through a fixed point.
One difficulty is that certain steps of Budish’s proof are randomized and must be
constructively derandomized in polynomial time.

Remark 10.1 We assume that the student preferences (�i) are given in the form of an ordered
list of all the bundles in�i (i.e., all the bundles that student i prefers over the empty
bundle). In particular, we assume that the total number of permissible bundles is
polynomial.

Remark 10.2 In fact, we prove that the following, slightly more general problem, is in PPAD:
Given any β , ε > 0 and initial approximate-budgets vector b ∈ [1, 1+ β]N , find a(√

σM
2 , β

)
-CEEI with budgets b∗ such that |bi − b∗i |< ε for every i.

Our proof will follow the steps of the existence proof by Budish [2011]. We will
use the power of PPAD to solve the Kakutani problem, and derandomize the other
nonconstructive ingredients.

10.3.1 Preliminaries
Our algorithm receives as input an economy

(
(qj)

M
j=1, (�i)

N
i=1, (�i)Ni=1

)
, parameters

β , ε > 0, and an initial approximate-budgets vector b ∈ [1, 1+ β]N . We denote β̄ =
min{β , ε}/2.

We will consider M-dimensional price vectors in P = [0, 1+ β + ε]M . In order
to define a price adjustment function, we consider an enlargement P̃ = [−1, 2+
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β + ε]M , as well as a truncation function t : P̃ → P (whose j -th coordinate is given
by tj (p̃j )=min{max{p̃j , 0}, 1+ β + ε}).

For each student i, we denote her demand at prices p̃ with budget bi by

di
(

p̃, bi
)=max(�i)

{
x′ ∈�i: p̃ . x′ ≤ bi

}
.

Given the total demand of all the students, we can define the excess demand to be:

z
(

p̃, b
)= N∑

i=1

di
(

p̃, bi
)− q.

A key ingredient to the analysis is the budget-constraint hyperplanes. These are
the hyperplanes in price space along which a student can exactly afford a specific
bundle. For each student i and bundle x, the corresponding budget-constraint
hyperplane is defined as H(i , x)= {p̃ ∈ P: p̃ . x = bi}.

10.3.2 Deterministically Finding a “General Position” Perturbation (Step 1)
It is convenient to assume that the budget-constraint hyperplanes are in “general
position,” i.e., there is no point p̃ ∈ P at which any subset of linearly dependent
budget-constraint hyperplanes intersect (in particular, no more than M hyper-
planes intersect at any point). In the existence proof, this is achieved by assigning a
small random reverse tax τi ,x ∈ (−ε , ε) for each student i and bundle x; i’s modified
cost for bundle x at prices p̃ becomes p̃ . x − τi ,x. Given taxes τ = (τi ,x)i∈S ,x∈�i , we
redefine di(p̃, bi , τi), z(p̃, b, τ), and H(i , x , τi ,x) analogously.

In this section, we show how to deterministically choose these taxes.

Lemma 10.4 There exists a polynomial-time algorithm that finds a vector of taxes τ =
(τi ,x)i∈S ,x∈�i such that the following desiderata are satisfied:

1. −ε < τi ,x < ε (taxes are small),

2. τi ,x > τi ,x′ if x #i x′ (taxes prefer more-preferred bundles),

3. 1≤ mini ,x{bi + τi ,x} ≤ maxi ,x{bi + τi ,x} ≤ 1+ β (inequality bound is pre-
served),

4. bi + τi ,x �= bi′ + τi′ ,x′ for (i , x) �= (i′, x′) (no two perturbed prices are equal),

5. there is no price p̃ ∈ P at which any subset of linearly dependent budget-
constraint hyperplanes intersect.1

1. The original existence proof of Budish [2011] requires only that no more thanM hyperplanes
intersect at any point; this causes problems in the conditional expectation argument [Budish 2011
(Step 5)].
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Proof Assume w.l.o.g. that b is rounded to the nearest integer multiple of β̄M−M : other-
wise we can include this rounding in the taxes.

We proceed by induction on the pairs (i , x) of students and bundles: at each
step let τi ,x be much smaller in absolute value than all the taxes introduced so far.
(For each i, we consider the (i , x)’s either in the order �i or in the reverse order,
maintaining Desideratum 2 depending on the sign of τi ,x.)

More precisely, if (i , x) is the νth pair to be considered, then we set

τi ,x ∈ ±β̄M−2νM ,

where the sign is chosen such that Desideratum 3 in the statement of the lemma
is preserved.

Now, assume by contradiction that there exists a k-tuple H(i1, x1, τi1,x1
), . . . ,

H(ik , xk , τik ,xk) of hyperplanes that intersect at price vector p̃, and such that the xi’s
are linearly dependent. (Note that the latter holds, in particular, for every (M + 1)-
tuple.)

Assume further, wlog, that this is the first such k-tuple, with respect to the
order of the induction. In particular, this means that {x1, . . . , x

k−1
} are linearly

independent. Now consider the system(
xT1 . . . xT

k−1

)(
α
)= (xk).

Notice that it has rank k − 1. We can now take k − 1 linearly independent rows
j1, . . . , jk−1 such that the following system has the same unique solution α:⎛⎜⎝ x1,j1

. . . xk−1,j1...
. . .

x1,jk−1
xk−1,jk−1

⎞⎟⎠ (α)=
⎛⎜⎝ xk ,j1...

xk ,jk−1

⎞⎟⎠ .

Denote

X =
⎛⎜⎝ x1,j1

. . . xk−1,j1...
. . .

x1,jk−1
xk−1,jk−1

⎞⎟⎠ .

Since X is a square matrix of full rank, it is invertible, so we have that

α =X−1

⎛⎜⎝ xk ,j1...

xk ,jk−1

⎞⎟⎠ .
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Now, recall that

X−1= 1
det X

⎛⎜⎝ X1, 1 . . . Xk−1, 1
...

. . .

X1,k−1 Xk−1,k−1

⎞⎟⎠ ,

whereXi ,j is the (i , j)-cofactor ofX. Finally, sinceX is a Boolean matrix, its deter-
minant and all of its cofactors are integers of magnitude less than (k − 1)k−1≤MM .
The entries ofα are therefore rational fractions with numerators and denominators
of magnitude less thanMM .

Now, by our assumption by contradiction, k hyperplanes intersect at p̃:⎛⎜⎝ x1
...

xk

⎞⎟⎠ (p̃)=
⎛⎜⎝ bi1 + τi1, x1...

bik + τik , xk

⎞⎟⎠ .

Therefore,

bik + τik , xk
= xk . p̃=

k−1∑
l=1

αl
(
xl . p̃

)= k−1∑
l=1

αl
(
bil + τil , xl

)
. (10.1)

However, if (ik , xk) is the νth pair added by the induction, then the following is an
integer:

k−1∑
l=1

(
det(X) . αl

)
. M

2(ν−1)M

β̄

(
bil + τil , xl

)
.

By our assumption that all the budgets are rounded, M
M

β̄
. bik is also an integer. Yet∣∣det(X) . M2(ν−1)M

β̄
. τik , xk

∣∣ ≤ ∣∣M(2ν−1)M

β̄
. τik , xk

∣∣ ≤M−M is not an integer. This yields a
contradiction to Equation (10.1).

10.3.3 Finding a Fixed Point (Steps 2–4)
This subsection describes the price adjustment correspondence of Budish [2011],
and is brought here mostly for completeness.

We first define the price adjustment function:

f (p̃)= t (p̃)+ 1
2N

z
(
t (p̃); b, τ

)
.
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Observe that if p̃∗ is a fixed point p̃∗ = f (p̃∗) of f , then its truncation t (p̃∗)= p∗

defines an exact competitive equilibrium.2 Yet we know that the economy may not
have an exact equilibrium—and indeed f is discontinuous at the budget constraint
hyperplanes, and so it is not guaranteed to have a fixed point.

Instead, we define an upper hemicontinuous, set-valued “convexification” of f :

F(p)= co {y: ∃ a sequence pw → p, p �= pw ∈ P such that f (pw)→ y
}

.

The correspondence F is upper hemicontinuous, non-empty, and convex; there-
fore, by Kakutani’s fixed point theorem it has a fixed point (i.e., a price vector that
satisfies p̃∗ ∈ F(p̃∗)).

By Papadimitriou [1994], finding a Kakutani fixed point of F is in PPAD.

Working with Finite Precision
To be rigorous, we need to complete a few subtle numerical details about finding
a fixed point of F . We round all price vectors to the nearest integer multiple of δ :=
(β̄M

1
2−2(νmax+1)M) (this precision suffices to implement the algorithm in Lemma

10.4).
At any point on the δ-grid, the price of any bundle is an integer multiple of δ, so

any budget-constraint hyperplane that does not contain p must be at (L1) distance
at least δ. In particular, this means that every δ/2-approximate fixed point of F is
also an exact fixed point. Finally, we can use the PPAD algorithm of Papadimitriou
[1994] to find a δ/2-approximate fixed point.

There is also an issue of computing the correspondence F . From the proof
of Papadimitriou [1994] it follows that it suffices to compute just a single point
in F(p) for every p. This is important because the number of points in F(p) on
the δ-grid may be exponential. As we mentioned earlier, every budget-constraint
hyperplane that does not contain t (p)must be at least δ-far. Therefore, we can take
any point p′ whose truncation t (p′) is at distance δ/2 from t (p), and does not lie
on any hyperplanes. (p′ will not be on the δ-grid.) Because no budget-constraint
hyperplanes lie between t (p′) and t (p), it follows that t (p)+ 1

2N z(t (p′); b, τ) ∈ F(p).

10.3.4 From a Fixed Point to an Approximate CEEI (Steps 5–9)
Lemma 10.5 Given a fixed point p∗ of F , we can find in polynomial time a vector of prices pφ

′

such that ‖z(pφ
′
, b, τ)‖2 ≤

√
σM
2 .

2. See Budish [2011, Appendix A, Step 2] for more details.
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Proof We use the method of conditional expectation to derandomize Step 8 of Budish
[2011].

Recall from the previous subsection that there exists a neighborhood around
p∗ that does not intersect any budget-constraint hyperplanes (beyond those that
contain p∗). Let 1, . . . , L′ be the indices of students whose budget-constraint hy-
perplanes intersect at p∗. For student i ∈ [L′], letwi be the number of corresponding
hyperplanesH(i , x1

i
, τi ,x1

i
), . . . ,H(i , xwii , τ

i ,x
wi
i

) intersecting at p∗, and assume wlog

that the superindices of x1
i

, . . . , xwii are ordered according to �i.
Let d0

i
be agent i’s demand when prices are slightly perturbed from p∗ such

that all xj
i ’s are affordable. Such a perturbation exists and is easily computable

because the hyperplanes are linearly independent.3 Similarly, let d1
i

denote agent
i’s demand when x2

i
, . . . , xwii are affordable, but x1

i
is not, and so on. Finally, let

zS\[L′](p
∗, b, τ)= dS\[L′](p

∗, b, τ)− q be the market clearing error when considering
the rest of the students. (The demand of S \ [L′] is constant in the small neighbor-
hood p∗ that does not intersect any additional hyperplanes.)

By Lemma 3 of Budish [2011], there exist distributions afi over dfi :

a
f

i ∈
[
0, 1

]∀i ∈ [L′], ∀f ∈ {0} ∪ [wi]
wi∑
f=0

a
f

i = 1∀i ∈ [L′],

such that the clearing error of the expected demand is 0:

zS\[L′]
(

p∗, b, τ
)+ L′∑

i=1

wi∑
f=0

a
f

i d
f

i = 0.

We first find such afi in polynomial time using linear programming.
The existence proof then considers, for each i, a random vector �i = (�1

i
, . . . ,

�
wi
i ): the vectors are independent and in any realization θi satisfy

∑wi
f=0 θ

f

i = 1,

while the variables each have support supp(�fi ) = {0, 1}, and expectation

E[�fi ]= afi .

3. This perturbation eventually guarantees the existence of pφ
′
. As we mentioned in Footnote

1, Budish does not require that the hyperplanes are linearly independent, so pφ
′

may not exist.
However, it seems that pφ

′
is not actually crucial to the overall existence proof. In particular, as

Budish points out, even if it exists it may be infeasible (i.e., require negative prices), so the final
solution uses p∗ instead.
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By Lemma 4 of Budish [2011], the expected clearing error is bounded by:

E�!. . .�L′

∥∥∥∥∥
L′∑
i=1

wi∑
f=0

(
a
f

i − θfi
)
d
f

i

∥∥∥∥∥
2

2

=
L′∑
i=1

E�i

∥∥∥∥∥
wi∑
f=0

(
a
f

i − θfi
)
d
f

i

∥∥∥∥∥
2

2

≤ σM
4

.

We now proceed by induction on the students. For each i, if the conditional expec-
tation on (θ̂j )j<i satisfies

E�i . . .�L′

⎡⎣∥∥∥∥∥
L′∑
i=1

wi∑
f=0

(
a
f

i − θfi
)
d
f

i

∥∥∥∥∥
2

2

| θ̂1, . . . , θ̂i−1

⎤⎦≤ σM
4

,

then at least one θ̂i must also satisfy the above bound. We can find such θ̂i in
polynomial time by computing the conditional expectation for every feasible θ̂

′
i
:

E�i+1. . .�L′

⎡⎣∥∥∥∥∥
L′∑
j=1

wj∑
f=0

(a
f

j − θfj )dfj
∥∥∥∥∥

2

2

| θ̂1, . . . , θ̂i

⎤⎦= i∑
j=1

∥∥∥∥∥
wj∑
f=0

(
a
f

j − θ̂ fj
)
d
f

j

∥∥∥∥∥
2

2

+
L′∑

j=i+1

E�j

∥∥∥∥∥
wj∑
f=0

(
a
f

j − θfj
)
d
f

j

∥∥∥∥∥
2

2

+
∑
j �=h≤i

wj∑
f=0

wh∑
g=0

(
a
f

j − θ̂ fj
) (
a
g

h − θ̂ gh
)

.

Finally, the choice of (θ̂i)
L′
i=1 induces the promised price vector pφ

′
.

Completing the Proof of A-CEEI ∈ PPAD

The chosen (θ̂i)
L′
i=1 define an allocation x∗ with bounded clearing error. We now

follow step 9 of Budish [2011] in order to define budgets b∗ such that x∗ is the
preferred consumption by all the students at price p∗.

We define, for every i, b∗
i
= bi + τi ,x∗

i
. For i > L′ we have x∗

i
= di(p∗, bi , τi). By

Desideratum 2 of Lemma 10.4, every bundle that student i prefers over x∗
i

had a
greater tax and was still unaffordable at p∗; it now costs more than bi + τi ,x∗

i
.

For i ≤ L′, notice that every bundle x⊥
i

that i prefers over x∗
i

and was exactly
affordable at p∗ with taxes τ and budget b, x⊥ must cost strictly more than i’s new

budget b∗
i

. Therefore, (x∗, b∗, p∗) is a
(√

σM
2 , β

)
-CEEI. This completes the proof that

finding a
(√

σM
2 , β

)
-CEEI is in PPAD, and thus, together with section 10.2, also the

proof of Theorem 10.3.
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11Birthday Repetition
This part of the book deals with several fundamental problems that admit quasi-
polynomial (nlog n) time algorithms. What can we learn from such an algorithm? On
one hand, assuming the Exponential Time Hypothesis (ETH, see Hypothesis 2.1),
it means that they are not NP-hard. On the other hand, it does not meet our gold
standard of efficiency, polynomial time (P). Furthermore, in practical applications
the logarithmic factor in the exponent is still prohibitive.

The approach we take in this book is inspired by the birthday repetition meta-
reduction due to Aaronson et al. [2014]. The birthday repetition is best explained
as a game1 between two provers (Alice and Bob) and a verifier. The omniscient
but untrusted provers want to convince the verifier that a certain 3-SAT formula
is (approximately) satisfiable. The provers agree in advance on an assignment, and
are then placed in separate rooms. The verifier asks Alice for the assignments of 3
variables on one randomly chosen clause, and asks Bob for the assignment of one
of the variables in the same clause. It is not hard to see that if at most 90% of
the clauses are satisfiable, the provers have probability at most 90% to succeed in
sending assignments that both satisfy Alice’s clause and agree on Bob’s variable.
Otherwise, the verifier can detect that Alice and Bob are lying and the 3-SAT formula
is not satisfiable. But this requires coordinating the challenge-messages sent to
Alice and Bob.

In the birthday-repetition version of the same two-prover one-verifier game, the
verifier sends Alice a random selection of

√
n clauses, and sends Bob an indepen-

dently random subset of
√
n variables. By the birthday paradox, we expect that one

of Bob’s variables appears in one of Alice’s clauses. Thus their probability of trick-
ing the verifier into believing that a far-from-satisfiable formula is satisfiable is not
much higher than in the original (no-repetition) two-prover one-verifier game. The
main advantage in this approach is that the challenges sent to Alice and Bob are
independent; this is sometimes called a free game. This is particularly helpful when

1. The sense in which we use the word “game” here is unrelated to the game theoretic “game.”
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reducing to bilinear optimization problems such as Densest k-Subgraph or Nash
equilibrium (recall (1.1) in the introduction).

The other interesting feature of the birthday repetition game is that it blows
up the number of possible questions to Alice and Bob, and (more importantly) the
length of their answers. In particular, given a list of

√
n variables, Bob hasN � 2

√
n

distinct choices of truth assignments to those variables. Therefore, if Alice and Bob
can devise an (approximately) optimal strategy much faster than N log N = 2n, they
would violate ETH. Hence with this approach we can obtain quasi-polynomial lower
bounds on the running time that almost exactly match the running time of the best
known algorithms.

There is one more property that is common to all our quasi-polynomial lower
bounds: while they are all based on the birthday repetition approach, each problem
introduces new obstacles and requires new ideas.

11.1 Warm-Up: Best ε-Nash
In order to introduce the “birthday repetition” framework, we begin with a partic-
ularly simple application. As we have already discussed, proving hardness of total
problems is notoriously difficult both conceptually and technically. Often, however,
there are related decision problems that admit much easier proofs of intractabil-
ity. For example, Gilboa and Zemel [1989] proved that deciding whether a Nash
equilibrium with certain welfare guarantees exists is NP-hard.

By looking at the analogous question for approximate Nash equilibrium, we
circumvent the difficulty of totality. But the quasi-polynomial algorithm of Lipton
et al. [2003] can approximately2 solve this question as well. Hence, assuming ETH,
this problem is still not NP-hard.

Braverman et al. [2015] showed a nearly matching quasi-polynomial lower
bound on the running time for approximating the best ε-Nash equilibrium. The
theorem below obtains slightly better parameters. More importantly, our proof is
significantly simpler.3

2. This is a bi-criteria approximation: in quasi-polynomial time the algorithm can distinguish
between a game that has a high-payoff exact (or ε/2-approximate) Nash equilibrium, and a game
where every ε-approximate Nash equilibrium has low payoff. Notice, however, that this does
not imply that the algorithm can approximate (to within an additive ε) the value of the best ε-
approximate Nash equilibrium.

3. Briefly, in our proof we focus on a single partition of the variables, where it is guaranteed
that every pair of subsets induces approximately the right number of constraints. In contrast,
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Theorem 11.1 There exists a constant ε > 0 such that, given a two-player, N -strategy game with
utilities in [0, 1] distinguishing between the following requires N	̃(log N) time (as-
suming the Exponential Time Hypothesis):

Completeness. The game has an exact Nash equilibrium with expected payoff
> 0.99 for both players.

Soundness. In every ε-approximate Nash equilibrium, both players have ex-
pected payoff < 0.01.

The rest of this section is devoted to the proof of Theorem 11.1. We first prove a
small (O(ε)) additive gap between completeness and soundness. This is the main
step that exhibits the birthday repetition. We then achieve a large gap by a simple
amplification step, where we introduce a new action for each player, and a spurious
low-payoff pure equilibrium: in the completeness case, the players don’t want to
deviate from the high-payoff mixed equilibrium; but for the soundness, they are
lured by unilateral deviations into the low-payoff equilibrium.

11.1.1 Constructing the First Gap
Lemma 11.1 There exist absolute constants ε , δ > 0 such that the following holds. Given a two-

player,N -strategy game with utilities in [0, 1] distinguishing between the following
requires N	̃(log N) time (assuming the Exponential Time Hypothesis):

Completeness. The game has an exact Nash equilibrium with expected payoff
c for both players.

Soundness. In every ε-Nash equilibrium, at least one player has expected payoff
s ≤ c − δ.

Proof We reduce from a bipartite, constant alphabet 2CSP. By the PCP Corollary 2.1,
distinguishing between a completely satisfiable instance and one where only
(1− η)-fraction (for some constant η > 0) of the clauses are satisfiable requires
time 2	̃(n), assuming ETH. We construct a game where, at every approximate Nash
equilibrium, Alice’s and Bob’s respective mixed strategies encode an assignment
(or distribution over assignments) to the 2CSP.4 Alice’s and Bob’s expected payoff
will depend on the number of satisfied clauses.

Braverman et al. [2015] enumerate over all the subsets of size≈√n. Then it is only true that most
pairs of subsets induce the right number of constraints, which somewhat complicates the proof.

4. Note that so far every approximate equilibrium encodes some assignment (or distribution over
assignments), even in the soundness case.
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Construction
At a high level, our construction is composed of three subgames. The main subgame
will test the 2CSP assignment; in this subgame we perform the “birthday repeti-
tion.” The remaining two auxiliary subgames enforce the structure of (approximate)
equilibria; in particular, they force the players to assign (approximately) uniform
probabilities in the main subgame to (almost) all 2CSP variables; this step uses a
construction due to Althofer [1994].

The players’ final payoff is a weighted average of the payoffs in the three sub-
games. Since we want to make sure that the structural constraints on the equilibria
are enforced, we place only ε weight on the main subgame, and weight 1−ε

2 on each
of the auxiliary subgames.

Main Subgame. We partition Alice’s and Bob’s respective sets of variables into
√
n

subsets {Si} and {Tj}, respectively. By Lemma 2.5, we can guarantee that each subset
has at most 2

√
n variables, and that the number of constraints between any pair

Si , Tj is at most 8 times the expectation.
In the main subgame, each player chooses an index i , j ∈ [

√
n] and a partial

assignment for the corresponding respective subsets σ ∈ �ASi , τ ∈ �BTj . If the
partial assignments jointly satisfy all the induced constraints, both players receive
payoff 1; otherwise they receive payoff 0.

Auxiliary Subgames. In addition to the choices of i , σ in the main subgame, Alice
chooses a subset CA ⊂ [

√
n] of cardinality |CA| =

√
n/2. In the first auxiliary sub-

game, Alice wants to use the set CA to “catch” Bob’s index j : Alice has payoff 1 if
j ∈ CA, and 0 otherwise. Bob, on the other hand, tries to “escape”: his payoff is 0 if
j ∈ CA, and 1 otherwise.

The second auxiliary subgame is defined analogously (Bob chooses a set CB of
cardinality |CB| =

√
n/2 and tries to catch Alice’s index i).

Analysis
Game Size. Each player has an action set of size N ≤√n .�2

√
n .
( √n√
n/2

)= 2O(
√
n).

Therefore, assuming ETH, finding an (approximately) satisfying assignment to the
Label Cover instance requires time 2	(n) =N	̃(log N).

Completeness. If the 2CSP has a satisfying assignment, the players can play the
following high-welfare equilibrium: in the main subgame, Alice and Bob choose
i , j uniformly at random, and σ , τ as the respective restrictions of the satisfying
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assignments. In the auxiliary subgames, Alice and Bob chooseCA, CB uniformly at
random.

Because i , j are chosen uniformly at random, they have no incentives to deviate
from their choice ofCA, CB; similarly, sinceCA, CB are chosen uniformly at random
(and the payoff in the main subgame is always 1), neither player has an incentive
to deviate from the choice of i , j . Therefore this is indeed a Nash equilibrium.

Finally, the expected payoff for each player in each auxiliary subgame is 1/2
(they have probability 1/2 of winning), and 1 in the main subgame; in total it is
c � 1/2+ ε/2.

Soundness
First, we claim that in every ε-approximate Nash equilibrium (ε-ANE), the players’
respective distributions over i , j are O(ε)-close to uniform. Assume by contradic-
tion that Alice’s distribution over i is 36ε-far from uniform. By Lemma 2.7, Bob can

pick a setCB ∈
( [
√
n]√
n/2

)
such that i ∈ CB with probability 1/2+ 9ε. Therefore Bob can

guarantee a payoff of at least 1/2+ 9ε from the second auxiliary subgame (without
affecting his payoffs from the other subgames). Therefore at any ε-ANE, he guaran-
tees himself more than 1/2+ 6ε (otherwise, having a 3ε-improving deviation on the
auxiliary subgame implies a> ε-deviation in total). Therefore Alice’s payoff on this
subgame is less than 1/2− 6ε, whereas she can guarantee herself a payoff of 1/2
by picking i uniformly at random. Thus she can improve her total payoff by more
than 2ε, which is a violating deviation even after we subtract ε for potential loss of
payoff due to changing her strategy in the main subgame.

Any mixed strategy profile induces a distribution over assignments to the orig-
inal 2CSP instance: for each set Si, we take the distribution over �A

Si induced by
Alice’s mixed strategy restricted to actions where she picks index i (if she never
picks i, choose an arbitrary assignment for Si). Alice’s expected payoff in the main
subgame is equal to the probability that an assignment drawn from the induced dis-
tribution satisfies the constraints on a random pair (Si , Tj), where i and j are drawn
according to Alice and Bob’s respective mixed strategies. Since those strategies are
O(ε)-close to uniform, Alice’s expected payoff in the main subgame is withinO(ε)
of the probability that the constraints between a uniformly random (Si , Tj) are sat-
isfied. If the value of the 2CSP is 1− η, then the probability that any consistent
assignment (in particular, one drawn from the induced distribution) satisfies a
uniformly random (Si , Tj) is at most 1− η/8; this is true because, by our construc-
tion of the partition, the η-fraction of unsatisfied constraints cannot concentrate
on less than η/8-fraction of pairs. Therefore Alice’s (respectively Bob’s) expected
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payoff in the main subgame is at most 1− η/8+O(ε). Since the auxiliary subgames
are 1-sum games, at least one of Alice or Bob must have total expected payoff at
most 1/2+ ε/2(1− η/8+O(ε)) < c− ηε/16+O(ε2). Choosing ε sufficiently small
compared to η (yet still constant) completes the proof.

11.1.2 Gap Amplification
Proof Proof of Theorem 11.1. Consider the game from Lemma 11.1. First, we scale all

the payoffs by a 10−4-factor and shift them so that they are between 1− 10−4 and
1. Now, by Lemma 11.1, it is hard to distinguish between the game having an exact
Nash equilibrium with expected payoff c′ and every ε′-Nash equilibrium having at
least one player with expected payoff < c′ − δ′. We choose ε sufficiently small; in
particular, ε < ε′/4, δ′/4< 10−4.

We add one new action to each player. When both players play old actions, their
payoffs are as in the game from Lemma 11.1 (with modified payoffs). When Alice
plays the new action and Bob plays an old action, Alice’s payoff is c′ − δ′/2, and
Bob’s payoff is 0. Similarly, when Alice plays an old action and Bob plays his new
action, Alice’s payoff is 0 and Bob’s payoff is c′ − δ′/2. Finally, when they both play
their new actions, their payoff is 10−3.

Notice that playing the new action is an (exact) pure Nash equilibrium. Notice
further that when the 2CSP is satisfied, the original equilibrium from the complete-
ness of Lemma 11.1 is still a Nash equilibrium since the average payoff to both
players from that equilibrium is higher than what they would get by deviating to
the new strategy.

To complete the proof, we need to argue for soundness. In particular, we claim
that if the value of the 2CSP is only 1− η, then every ε-approximate Nash equilib-
rium is 10−3-close (in total variation distance) to the new strategy pure equilibrium.
Assume by contradiction that this is not the case, i.e., there is an ε-approximate
equilibrium where (wlog) Alice assigns probability more than 10−3 to old strate-
gies. First, notice that Bob must assign at least 1/2 probability to old strategies:
whenever Bob plays the new strategy, Alice has a large incentive to deviate to her
new strategy. Therefore, by a symmetric argument, Alice must also assign at least
1/2 probability to old actions.

Finally, the mixed strategy profile restricted to the old strategies must be a 4ε-
approximate Nash equilibrium of the scaled old game. By Lemma 11.1, the expected
payoff to one of the players is at most c′ − δ′. But then that player has at least δ′/4> ε
incentive to deviate to her new strategy.



12Densest k-Subgraph

k-Clique is one of the most fundamental problems in computer science: given a
graph, decide whether it has a fully connected induced subgraph on k vertices. Since
it was proven NP-complete by Karp [1972], extensive research has investigated the
complexity of relaxed versions of this problem.

This work focuses on two natural relaxations of k-Clique that have received
significant attention from both algorithmic and complexity communities: The first
one is to relax “k,” i.e., to look for a smaller subgraph:

Problem 12.1 Approximate max clique, informal. Given an n-vertex graphG, decide whetherG
contains a clique of size k, or all induced cliques ofG are of size at most δk for some
1> δ(n) > 0.

The second natural relaxation is to relax the “Clique” requirement, replacing it
with the more modest goal of finding a subgraph that is almost a clique:

Problem 12.2 Densest k-subgraph with perfect completeness, informal. Given an n-vertex graph
G containing a clique of size k, find an induced subgraph ofG of size k with (edge)
density at least (1− ε), for some 1> ε > 0. (More modestly, given an n-vertex graph
G, decide whether G contains a clique of size k, or all induced k-subgraphs of G
have density at most (1− ε).)

Today, after a long line of research [Arora and Safra 1998, Arora et al. 1998, Feige
et al. 1996, Håstad 1999, Khot 2001, Zuckerman 2007], we have a solid understand-
ing of the inapproximability of Problem 12.1. In particular, we know that it is NP-
hard to distinguish between a graph that has a clique of size k, and a graph whose
largest induced clique is of size at most k′ = δk for δ = 1/n1−ε [Zuckerman 2007].
The computational complexity of the second relaxation (Problem 12.2) remains
largely open. There are a couple of (very different) quasi-polynomial algorithms that
guarantee finding a (1− ε)-dense k subgraph in every graph containing a k-clique
[Barman 2015, Feige and Seltser 1997], suggesting that this problem is not NP-hard.
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Yet we know neither polynomial-time algorithms, nor general impossibility results
for this problem.

In this work we provide strong evidence that the aforementioned quasi-
polynomial time algorithms for Problem 12.2 [Barman 2015, Feige and Seltser
1997] are essentially tight, assuming the (deterministic) Exponential Time Hypoth-
esis (ETH) (Hypothesis 2.1). In fact, we show that under ETH, both parameters of
the above relaxations are simultaneously hard to approximate:

Theorem 12.1 Main result. There exists a universal constant ε > 0 such that, assuming the (de-
terministic) Exponential Time Hypothesis, distinguishing between the following
requires time n	̃(log n), where n is the number of vertices ofG.

Completeness. G has an induced k-clique.

Soundness. Every induced subgraph of G size k′ = k . 2
−	
(

log n
log log n

)
has density

at most 1− ε.

Our result has implications for two major open problems whose computational
complexity remained elusive for more than two decades: the (general) Densest
k-Subgraph problem, and the Planted Clique problem.

Densest k-Subgraph
The Densest k-Subgraph problem, DkS(η, ε), is the same as (the decision version
of) Problem 12.2, except that in the “completeness” case,G has a k-subgraph with
density η, and in the “soundness” case, every k-subgraph is of density at most
ε, where η& ε. Since Problem 12.2 is a special case of this problem, our main
theorem can also be viewed as a new inapproximability result for DkS(1, 1− ε).
We remark that the aforementioned quasi-polynomial algorithms for the “perfect
completeness” regime completely break in the sparse regime, and indeed it is
believed that DkS(n−α , n−β) (for k = nε) in fact requires much more than quasi-
polynomial time [Bhaskara et al. 2012]. The best to-date approximation algorithm
for Densest k-Subgraph, due to Bhaskara et al., is guaranteed to find a k-subgraph
whose density is within an ∼ n1/4-multiplicative factor of the densest subgraph of
size k [Bhaskara et al. 2010], and thus DkS(η, ε) can be solved efficiently whenever
η& n1/4 . ε (this improved upon a previous n1/3−δ-approximation of Feige et al.
[2001]).

Several inapproximability results for Densest k-Subgraph were known against
specific classes of algorithms [Bhaskara et al. 2012] or under incomparable as-
sumptions of Unique Games with expansion [Raghavendra and Steurer 2010] and
hardness of random k-CNF [Alon et al. 2011, Feige 2002]. The most closely related
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result is by Khot [2006], who shows that the Densest k-Subgraph problem has
no PTAS unless SAT can be solved in time 2n

ε
, as opposed to 2n

1/2+ε
in this book.

While Khot’s work uses a slightly weaker assumption, an important advantage of
our work is simplicity: our construction is very simple, especially in contrast to
Khot’s reduction.

We stress that the results of Khot [2006], as well as other aforementioned works,
focus on the sub-constant density regime, i.e., they show hardness for distinguish-
ing between a graph where every k-subgraph is sparse, and one where every k-
subgraph is even sparser. In contrast, our result has perfect completeness and
provides the first additive inapproximability for Densest k-Subgraph—the best
one can hope for as per the upper bound of Barman [2015].

Planted Clique
The Planted Clique problem is a special case of our problem, where the inputs
come from a specific distribution (G(n, p) versus G(n, p)+ “a planted clique of
size k,” where p is some constant).1 The Planted Clique Conjecture [Alon et al. 1998,
2007, Dekel et al. 2010, Feige and Krauthgamer 2000, Jerrum 1992, Kucera 1995] as-
serts that distinguishing between the aforementioned cases for p = 1/2, k = o(√n)
cannot be done in polynomial time, and has served as the underlying hardness
assumption in a variety of recent applications including machine-learning and
cryptography (e.g., Alon et al. 2007, Berthet and Rigollet 2013) that inherently use
the average-case nature of the problem, as well as in reductions to worst-case prob-
lems (e.g., Alon et al. 2011, Badanidiyuru et al. 2016, Balcan et al. 2013, Chen et al.
2015, Hazan and Krauthgamer 2011, Koiran and Zouzias 2011).

The main drawback of average-case hardness assumptions is that many average-
case instances (even those of worst-case-hard problems) are in fact tractable. In
recent years, the centrality of the planted clique conjecture inspired several works
that obtain lower bounds in restricted models of computation [Barak et al. 2016,
Deshpande and Montanari 2015, Feldman et al. 2013, Hopkins et al. 2016, Meka
et al. 2015]. Nevertheless, a general lower bound for the average-case planted clique
problem appears out of reach for existing techniques. Therefore, an important
potential application of our result is replacing average-case assumptions such as
the planted-clique conjecture, in applications that do not inherently rely on the

1. Planted Clique typically refers top = 1/2, while our hardness result is analogous top = 1− δ,
for a small constant δ > 0. Nevertheless, in almost all applications of Planted Clique, hardness
for any constant p suffices.
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distributional nature of the inputs (e.g., when the ultimate goal is to prove a worst-
case hardness result). In such applications, there is a good chance that planted
clique hardness assumptions can be replaced with a more “conventional” hardness
assumption, such as the ETH, even when the problem has a quasi-polynomial
algorithm. Recently, such a replacement of the planted-clique conjecture with ETH
was obtained for the problem of finding an approximate Nash equilibrium with
approximately optimal social welfare [Braverman et al. 2015].

We also remark that, while showing hardness for Planted Clique from worst-
case assumptions seems beyond the reach of current techniques, our result can
also be seen as circumstantial evidence that this problem may indeed be hard. In
particular, any polynomial time algorithm (if it exists) would have to inherently use
the (rich and well-understood) structure ofG(n, p).

Follow-up Work by Manurangsi
The soundness in our result was greatly improved by Manurangsi [2017], who
showed that even DkS(1, n−1/ poly log log n) may be intractable; i.e., in the NO case
the maximal density is almost inverse-polynomial.

Techniques
Our simple construction is inspired by the “birthday repetition” technique: given
a 2CSP (e.g., 3COL), we have a vertex for each 	̃(

√
n)-tuple of variables and assign-

ments (respectively, 3COL vertices and colorings). We connect two vertices by an
edge whenever their assignments are consistent and satisfy all 2CSP constraints
induced on these tuples. In the completeness case, a clique consists of choosing
all the vertices that correspond to a fixed satisfying assignment. In the soundness
case (where the value of the 2CSP is low), the “birthday paradox” guarantees that
most pairs of vertices (i.e., two 	̃(

√
n)-tuples of variables) will have a significant

intersection (nonempty CSP constraints), thus resulting in lower densities when-
ever the 2CSP does not have a satisfying assignment. In the language of two-prover
games, the intuition here is that the verifier has a “constant chance at catching the
players in a lie if they are trying to cheat” in the game while not satisfying the CSP.

While our construction is simple, analyzing it is intricate. The main challenge
is to rule out a “cheating” dense subgraph that consists of different assignments
to the same variables (inconsistent colorings of the same vertices in 3COL). In-
tuitively, this is similar in spirit to proving a parallel repetition theorem where the
provers can answer some questions multiple times, and completely ignore other ques-
tions. Continuing with the parallel repetition metaphor, notice that the challenge
is doubled: in addition to a cheating prover correlating her answers (the standard
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obstacle to parallel repetition), each prover can now also correlate which ques-
tions she chooses to answer. Our argument follows by showing that a sufficiently
large subgraph must accumulate many non-edges (violations of either 2CSP or
consistency constraints). To this end we introduce an information theoretic argu-
ment that carefully counts the entropy of choosing a random vertex in the dense
subgraph.

We note that our entropy-based argument is completely different from all other
known applications of “birthday repetition” to other problems. The main reason
is that enforcing consistency is much more difficult in the case of Densest k-
Subgraph than in other applications because the problem formulation is so sim-
ple. In fact, even the follow-up work on the same problem by Manurangsi [2017]
used a completely different (and quite elegant) argument that is based on counting
small bi-cliques in any given subgraph.

12.1 Construction (and Completeness)

12.1.1 Construction
Let ψ be the 2CSP instance produced by the reduction in Theorem 2.2, i.e., a
constraint graph over n variables with alphabet A of constant size. We construct
the following graphGψ = (V , E):

. Let ρ :=√n log log n and k := (n
ρ

)
.

. Vertices of Gψ correspond to all possible assignments (colorings) to all ρ-
tuples of variables in ψ , i.e., V = [n]ρ × Aρ. Each vertex is of the form v =
(yx1

, yx2
, . . . , yxρ) where {x1, . . . , xρ} are the chosen variables of v, and yxi is

the corresponding assignment to variable xi.

. If v ∈ V violates any 2CSP constraints, i.e., if there is a constraint on (xi , xj)
in ψ that is not satisfied by (yxi , yxj ), then v is an isolated vertex inGψ .

. Let u= (yx1
, yx2

, . . . , yxρ
)

and v =
(
y′
x′1

, y′
x′2

, . . . , y′
x′ρ

)
. (u, v) ∈ E iff:

(u, v) does not violate any consistency constraints: for every shared
variable xi, the corresponding assignments agree, yxi = y′xi ; and

(u, v) also does not violate any 2CSP constraints: for every 2CSP con-

straint on (xi , x
′
j
) (if it exists), the assignment

(
yxi , y

′
x′
j

)
satisfies the

constraint.
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Notice that the size of our reduction (number of vertices of Gψ) is N = (n
ρ

)
. |A|ρ =

2Õ
(√
n
)

.

Completeness. If OPT(ψ)= 1, thenGψ has a k-clique: Fix a satisfying assignment
for ψ , and let S be the set of all vertices that are consistent with this assignment.
Notice that |S| = (n

ρ

)= k. Furthermore, its vertices do not violate any consistency
constraints (since they agree with a single assignment) or 2CSP constraints (since
we started from a satisfying assignment).

12.2 Soundness
Suppose that OPT(ψ) < 1− η, and let ε0 > 0 be some constant to be determined
later. We shall show that for any subset S of size k′ ≥ k . |V |−ε0/ log log |V |, den(S) <
1− δ, where δ is some constant depending on η. The remainder of this section is
devoted to proving the following theorem:

Theorem 12.2 If OPT(ψ) < 1− η, then ∀S ⊂ V of size k′ ≥ k . |V |−ε0/ log log |V |, den(S) < 1− δ for
some constant δ.

12.2.1 Setting up the Entropy Argument
Fix some subset S of size k′, and let v ∈R S be a uniformly chosen vertex in S (recall
that v is a vector of ρ coordinates, corresponding to labels for a subset of ρ chosen
variables). For i ∈ [n], let Xi denote the indicator variable associated with v such
thatXi = 1 if the i-th variable appears in v and 0 otherwise. We let Yi represent the
coloring assignment (label) for the i-th variable whenever Xi = 1. Throughout the
proof, let

Wi−1=X<i , Y<i
denote the i-th prefix corresponding to v. We can write:

H
(
Yi|Wi−1, Xi

) = Pr
[
Xi = 0

]
.H
(
Yi|Wi−1, Xi = 0

)
+ Pr

[
Xi = 1

]
.H
(
Yi|Wi−1, Xi = 1

)
= Pr

[
Xi = 1

]
.H
(
Yi|Wi−1, Xi = 1

)
since H(Yi|Wi−1, Xi = 0)= 0. Notice that since (XY) and v determine each other,
and v was uniform on a set of size |S| = k′, we have

Observation 12.1 H(XY)= log k′.

Thus, in total, the choice of challenge and the choice of assignments should con-
tribute log k′ to the entropy of v. If much of the entropy comes from the assignment
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distribution (conditioned on the fixed challenge variables), we will show thatSmust
have many consistency violations, implying thatS is sparse. If, on the other hand, al-
most all the entropy comes from the challenge distribution, we will show that this
implies many CSP constraint violations (implied by the soundness assumption).
From now on, we denote

αi :=H (Xi|X<i , Y<i) text βi :=H (Yi|X≤i , Y<i).
When conditioning on the i-th prefix, we shall write αi(wi−1) :=H(Xi|X<i , Y<i =
wi−1), and similarly for βi(.). Also for brevity, we denote

qi := Pr
[
Xi = 1

]
and qi

(
wi−1

)
:= Pr

[
Xi = 1|wi−1

]
.

Prefix Graphs
The consistency constraints induce, for each i, a graph over the prefixes: the vertices
are the prefixes, and two prefixes are connected by an edge if their labels are
consistent. (We can ignore the 2CSP constraints for now—the prefix graph will be
used only in the analysis of the consistency constraints.) Formally,

Definition 12.1 Prefix graph. For i ∈ [n+ 1] let the i-th prefix graph,Gi = (Vi , Ei), be defined over
the prefixes of length i − 1 as follows. We say that wi−1 is a neighbor of σi−1 if they
do not violate any consistency constraints. Namely, for all j < i, if Xj = 1 for both
wi−1 and σi−1, then wi and σi assign the same label Yj .

In particular, we will heavily use the following notation: let N (wi−1) be the
prefix neighborhood of wi−1; i.e., it is the set of all prefixes (of length i − 1) that are
consistent withwi−1. For technical issues of normalization, we letwi−1 ∈N (wi−1),
i.e., all the prefixes have self-loops.

Notice that Gn+1 is defined over the vertices of S (the original subgraph). The
set of edges on S is contained in the set of edges ofGn+1, since in the latter we only
remove pairs that violated consistency constraints (recall that we ignore the 2CSP
constraints).

Unless stated otherwise, we always think of prefixes as weighted by their prob-
abilities. Naturally, we also define the weighted degree and weighted edge density
of the prefix graph.

Definition 12.2 Prefix degree and density. The prefix degree of wi−1 is given by:

deg
(
wi−1

)= ∑
σi−1∈N (wi−1)

Pr
[
σi−1

]
.
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Similarly, we define the prefix density ofGi as:

den
(
Gi
)=∑

wi−1

∑
σi−1∈N (wi−1)

Pr
[
wi−1

]
. Pr

[
σi−1

]
.

When it is clear from the context, we henceforth drop the prefix qualification,
and simply refer to the neighborhood or degree, etc., of wi−1.

Notice that in Gn+1, the probabilities are uniformly distributed. In particular,
den(Gn+1) ≥ den(S), since, as we mentioned earlier, the set of edges in S is con-
tained in that ofGn+1. Finally, observe also that because we accumulate violations,
the density of the prefix graphs is monotonically non-increasing with i.

Observation 12.2

den
(
G1
)≥ . . .≥ den

(
Gn+1

)≥ den(S).

Useful Approximations
We use the following bounds on αi and βi many times throughout the proof:

Fact 12.1

αi = E
[
H
(
qi
(
wi−1

))]≤H (
E
[
qi
(
wi−1

)])=H (qi).
Fact 12.2

βi = E
[
βi
(
wi−1

)]≤ E
[
qi
(
wi−1

)
. log |A|]= qi log |A|.

Proof The bound on αi follows from concavity of entropy (Fact 2.4). For the second bound,
observe that βi is maximized by spreading qi mass uniformly over alphabet A.

We also recall some elementary approximations to logarithms and entropies
that will be useful in the analysis. The proofs are deferred to the appendix.

Fact 12.3 For k = (n
ρ

)
, then,

log k = nH
(
ρ

n

)
±O(log n)=

(1
2
− o(1)

)
ρ log n.

More useful to us will be the following bounds on log k′:

Fact 12.4 Let ε1≥ 5ε0, and k , k′, V , n, ρ as specified in the construction. Then,

log k′ ≥max
{

log k , nH
(
ρ

n

)}
− ε1 log k/ log n︸ ︷︷ ︸

≈ ε12 .ρ

.
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This means that most indices i should contribute roughly H
(
ρ
n

)
entropy to the

choice of v.

We will also need the following bound, which relates the entropies of a very
biased coin and a slightly less biased one:

Fact 12.5 Let 1/n� |υ| � 1. Then

H
(1+ υ
n

)
=H

(1
n

)
− υ
n

log
1
n
− (log e)

υ2

2n

+O(n−2)+O
(
υ3

n

)
.

A Useful Lemma: Bias Implies Less Entropy
In Fact 12.1 we saw that, always, αi ≤H(qi). Equality happens only if the qi-mass
is evenly distributed across all prefixes. We argue that if qi is far from evenly dis-
tributed, then the inequality is also far from tight. In particular:

Claim 12.1 Let B ⊂ Vi be a subset of prefixes such that for some 0< a < b < 1,

1.
∑
wi−1∈B Pr

[
wi−1

]≤ b; but also

2.
∑
wi−1∈B Pr

[
wi−1

]
qi
(
wi−1

)
> a.

Then αi ≤H
(
qi
)− qiDKL

(
a
∥∥b).

Proof Abusing notation, let B(.) be the indicator variable for Wi−1 ∈ B. By the data pro-
cessing inequality (Fact 2.7),

αi =H
(
Xi |Wi−1

)
≤H (Xi | B(Wi−1

))
=H (Xi)− I(Xi;B (Wi−1

))
. (12.1)

Since we can write mutual information as expected Kullbeck-Leibler Divergence
(Fact 2.8), and Kullbeck-Leibler Divergence is non-negative, we get

I
(
Xi;B

(
Wi−1

))= Exi

[
DKL

(
B(Wi−1)|xi

∥∥B(Wi−1)
)]

≥ qiDKL
(

Pr[B(Wi−1)= 1 | xi = 1]
∥∥B(Wi−1)= 1

)
≥ qiDKL

(
a
∥∥b) ,

where the second inequality follows from the premise assumptions that
Pr[B(Wi−1)]≤ b and Pr[B(Wi−1= 0 | xi = 1]≥ a.
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Plugging into (12.1), we have:

αi ≤H
(
qi
)− qiDKL

(
a
∥∥b) . (12.2)

12.2.2 Consistency Violations
In this section, we show that if the total entropy contribution of the assignments
(
∑
i βi) is large, there are many consistency violations between vertices, which lead

to constant density loss. First, we show that if
∑
i βi > 5ε1 log k/ log n, then at least a

constant fraction of such entropy is concentrated on good variables that contribute
to both “types” of entropy.

Definition 12.3 Good variables. We say that an index i is good if

. αi ≥H
(
qi
)− 2qi log |A|;

. βi ≥ 1
2ε1qi,

where ε1 is a constant to be determined later in the proof.

Claim 12.2 For any constant ε1, if
∑
i βi > 5ε1 log k/ log n,

∑
good i’s

q2
i
≥
(1

5
ε1ρ

)2
/
(
n log2 |A|)=	(ρ2/n

)
.

Proof We want to show that many of the indices i have both a large αi and a large βi
simultaneously. Let ι⊆ [n] denote the set of i such that αi + βi < H(qi)− qi log |A|.
We can write ∑

i∈[n]

(
αi + βi

)=∑
i∈ι

(
αi + βi

)
.+

∑
i �∈ι

(
αi + βi

)
.

Using Facts 12.1 and 12.2, we have∑
i∈[n]

(
αi + βi

)≤∑
i∈ι

(
H
(
qi
)− βi)+∑

i �∈ι

(
H
(
qi
)+ βi). (12.3)

Because the subgraph is of size k′, from the expansion of log k′ (Fact 12.4),∑
i∈[n]

(
αi + βi

)≥ nH(ρ
n

)
− ε1 log k/ log n

≥
∑
H
(
qi
)− ε1 log k/ log n,
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where the second inequality follows from the concavity of entropy. Plugging into
(12.3), we have ∑

i �∈ι
βi ≥

∑
i∈ι
βi − ε1 log k/ log n

=
(∑
i

βi −
∑
i �∈ι
βi

)
− ε1 log k/ log n.

Rearranging, we get ∑
i �∈ι
βi ≥ 1

2

∑
i

βi − ε1 log k/ log n. (12.4)

For all the i’s in the LHS summation, αi ≥H(qi)− 2qi log |A| by Fact 12.2. From
now on, we will consider only i’s that satisfy this condition. Now, using the premise
on

∑
i βi and (12.4), we have:∑

i:αi≥H(qi)−2qi log |A|
βi ≥ (5/2− 1)ε1 log k/ log n

≥ 0.7ε1ρ ,

where the second inequality follows from our approximation for log k (Fact 12.3).
We want to further restrict our attention to i’s for which βi is at least 1

2ε1qi (aka
good i’s). Note that the above inequality can be decomposed to∑

good i’s

βi +
∑

i:αi≥H(qi)−2qi log |A|
βi<

1
2 ε1qi

βi ≥ 0.7ε1ρ .

Now via a simple sum bound,∑
i:αi≥H(qi)−2qi log |A|

βi<
1
2 ε1qi

βi ≤ 1
2
ε1

∑
i

qi = 1
2
ε1ρ .

Rearranging, we get ∑
good i’s

βi ≥ 1
5
ε1ρ .

By Cauchy-Schwartz we have: ∑
good i’s

β2
i
≥
(1

5
ε1ρ

)2
/n.
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Finally, since βi ≤ qi log |A|,∑
good i’s

q2
i
≥
(1

5
ε1ρ

)2
/
(
n log2 |A|).

In the same spirit, we now define a notion of a “good” prefix. Intuitively, condi-
tioning on a good prefix leaves a significant amount of entropy on the i-th index.
We also require that a good prefix has a high prefix degree; that is, it has many
neighbors it could potentially lose when revealing the i-th label.

Definition 12.4 Good prefixes. We say wi−1 is a good prefix if:

. i is good;

.

∑
σi−1∈N (wi−1)

qi(σi−1) Pr[σi−1]≥ (1− ε2)qi;

. βi(wi−1)≥ ε3qi(wi−1),

for ε3 = (ε4 + κ) log |A|, with ε4 an arbitrarily small constant that denotes the
fraction of assignments that disagree with the majority of the assignments, κ =
�(1/ log |A|), and ε2 a constant that satisfies δ = ( ε2

|A|2/ε2
)4, with den(S)= 1− δ.

In the following claim, we show that these prefixes contribute some constant
fraction of entropy, assuming that our subset is dense.

Claim 12.3 If den(S) > 1− δ, where δ = ( ε2
|A|2/ε2

)4 and ε1≥ 4ε2 log |A| + 8ε3, then for every good
index i, it holds that ∑

good wi−1’s

Pr
[
wi−1

]
βi
(
wi−1

)≥ βi/4.

Proof We begin by proving that most prefixes satisfy the degree condition of Definition
12.4. Let wi−1 be popular if i is a good variable and its degree in the prefix graph
Gi is at least deg(wi−1) :=∑σi−1∈N (wi−1)

Pr[σi−1]≥ 1−√δ. Recall that den(Gi) ≥
den(S) ≥ (1− δ) (by Observation 12.2). Thus by Markov inequality, at most

√
δ-

fraction of the prefixes are unpopular.
We now argue that: ∑

unpopular wi−1’s

Pr
[
wi−1

]
qi
(
wi−1

)≤ ε2qi . (12.5)

Otherwise, by Claim 12.1, αi ≥H(qi)− qiDKL

(
ε2

∥∥√δ). On the other hand, recall

that since i is good, αi ≥ H(qi) − 2qi log |A|. Recall also that δ =
(

ε2
|A|2/ε2

)4
, and

therefore DKL

(
ε2

∥∥√δ)≥ 2 log |A|. Thus, we get a contradiction.
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Inequality (12.5) implies that even if the assignment is uniform over the alpha-
bet, the contribution to

∑
βi from unpopular prefixes is small:

∑
unp.

Pr
[
wi−1

]
βi
(
wi−1

)≤∑
unp.

Pr
[
wi−1

]
qi
(
wi−1

)
log |A|

≤ ε2qi log |A|

≤ 1
4
ε1qi ≤ 1

2
βi ,

where the first inequality follows from Fact 12.2, the second from (12.5), the third
from our setting of ε1≥ 4ε2 log |A|, and the fourth from βi ≥ 1

2ε1qi since i is good.
Therefore,

∑
pop.

Pr
[
wi−1

]
βi
(
wi−1

)= βi −∑
unp.

Pr
[
wi−1

]
βi
(
wi−1

)
≥ βi/2.

Using a similar argument, we show that for any popular wi−1, most of the qi
mass is concentrated on its neighbors. Consider any popularwi−1, and let N C(wi−1)

denote the complement of N (wi−1). Then we can rewrite αi as:

αi =
∑

σi−1∈N (wi−1)

Pr
[
σi−1

]
αi
(
σi−1

)
+

∑
σi−1∈N C(wi−1)

Pr
[
σi−1

]
αi
(
σi−1

)
.

Notice that since wi−1 is popular, N C(wi−1) has measure at most
√
δ. Thus, if an

ε2-fraction of the qi mass is concentrated on N C(wi−1), Claim 12.1 implies:

αi ≤H(qi)− qiDKL

(
ε2

∥∥√δ) ,

which (as in (12.5)) would yield a contradiction to i being a good variable. Therefore
every popular prefix also satisfies the qi-weighted condition on the degree:

∑
σi−1∈N (wi−1)

Pr
[
σi−1

]
qi
(
σi−1

)≥ (1− ε2
)
qi . (12.6)
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Recall that a prefix wi−1 is good if it also satisfies βi(wi−1)≥ ε3 . qi(wi−1). Fortu-
nately, prefixes that violate this condition (i.e., those with small βi(wi−1)) cannot
account for much of the weight on βi:∑

βi(wi−1)<ε3qi(wi−1)

Pr
[
wi−1

]
βi
(
wi−1

)≤ ε3qi .

Since i is good and ε1≥ 8ε3, this implies:∑
good wi−1

′s
Pr
[
wi−1

]
βi
(
wi−1

)≥ βi/2− ε3qi ≥ βi/4

since

ε3qi ≤ 1
8
ε1qi ≤ 1

4
βi

where the last inequality follows from i being good.

Corollary 12.1 For every good index i, ∑
good wi−1

′s
Pr
[
wi−1

]
qi
(
wi−1

)≥ ε1

8 log |A|qi .

Proof ∑
good

Pr
[
wi−1

]
qi
(
wi−1

)≥∑
good

Pr
[
wi−1

]
βi/ log |A|

≥ βi/
(

4 log |A|)
≥ ε1

8 log |A|qi ,

where the first inequality follows by Fact 12.2, the second by Claim 12.3, and the
last by definition of good i’s.

With Claim 12.2 and Corollary 12.1, we are ready to prove the main lemma of
this section:

Lemma 12.1 Labeling entropy bound. If
∑
i H

(
Yi|X≤i , Y<i

)
>

5ε1 log k
log n , then den(S) < 1− δ.

Proof Assume for a contradiction that den(S)≥ 1− δ. For prefixwi−1, let Dwi−1
denote the

induced distribution on labels to the i-th variable, conditioned on wi−1 and xi = 1.
(If qi(wi−1)= 0, take an arbitrary distribution.) After revealing each variable i, the
loss in prefix density is given by the probability of “fresh violations”: the sum over
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all prefix edges (wi−1, σi−1) of the probability that they assign different labels to the
i-th variable:

den
(
Gi
)− den

(
Gi+1

)=∑
wi−1

∑
σi−1∈N (wi−1)

. . . (12.7)

(
Pr
[
wi−1

]
Pr
[
σi−1

]
qi
(
wi−1

)
qi
(
σi−1

))
Pr

Yi∼Dwi−1
Y ′
i
∼Dσi−1

[
Yi �= Y ′i

]
.

We now lower-bound PrDwi−1
×Dσi−1

[Yi �= Y ′i ] for goodwi−1 (notice that we assume

nothing about σi−1). A simple calculation shows that for κ < 1/2, if

βi
(
wi−1

)≥(
κ log |A| − κ log κ − (1− κ) log

(
1− κ))qi(wi−1

)
,

then the probability mass (under D(wi−1)) on the most common label is at most
1− κ . Observe that this probability is an upper bound on PrDwi−1

×Dσi−1
[Yi = Y ′i ]. For

good wi−1, we indeed have

βi
(
wi−1

)≥ ε3qi
(
wi−1

)≥ (ε4 log |A| − ε4 log ε4−
(

1− ε4
)

log
(

1− ε4
))
qi
(
wi−1

)
,

where the second inequality follows from the choice of ε4. Therefore

Pr
Dwi−1

×Dσi−1

[Yi �= Y ′i ]≥ ε4.

We now have, for every good index i,

den
(
Gi
)− den

(
Gi+1

)≥ ∑
good wi−1

′s

∑
σi−1∈N (wi−1)

ε4

.
(

Pr[wi−1
]

Pr
[
σi−1

]
qi
(
wi−1

)
qi
(
σi−1

))
≥ ε4qi

(
1− ε2

) ∑
good wi−1

′s
Pr
[
wi−1

]
qi
(
wi−1

)
≥ ε1ε4

10 log |A|q
2
i

,

where the first inequality follows by Eq. (12.7); the second by definition of good
prefix; and the last by Corollary 12.1 and ε2 < 0.2.



170 Chapter 12 Densest k-Subgraph

Finally, summing over all good i’s, we get a negative density for S, which is, of
course, a contradiction. By Observation 12.2 we have:

1− den
(
S
)≥ den

(
G1
)− den

(
Gn+1

)
=
∑
i

den
(
Gi
)− den

(
Gi+1

)
≥

∑
good i′s

den
(
Gi
)− den

(
Gi+1

)
≥

∑
good i′s

(
ε1ε4

10 log |A|
)
q2
i

≥
( ε3

1ε4

250 log3 |A|
)
ρ2/n=	(ρ2/n

)
,

where the last inequality follows by Claim 12.2.

12.2.3 2CSP Violation
Intuitively, if

∑
i H(Xi|X<i , Y<i) is large, then the subgraph approximately corre-

sponds to assignments to all subsets in
([n]
ρ

)
. More specifically, in this section we

show that most of the constraints appear approximately as frequently as we expect.
Since in any assignment a constant fraction of them must be violated, this implies
(eventually) that a constant fraction of the edges have a violated constraint.

First, we show that most of the variables appear approximately as frequently as
we expect by showing that most of them are “typical.”

Definition 12.5 Typical variables. Prefix wi−1 is typical if(
1− ε5

)
. ρ/n < Pr

[
Xi = 1|wi−1

]
<
(

1+ ε5
)

. ρ/n,

where ε5 is some constant such that
( log e

8

)
ε4

5 > 14ε1.
Similarly, we say that variable xi is typical if∑

typical wi−1
′s

Pr
[
wi−1

]≥ 1− ε5.

Claim 12.4 If
∑
i H

(
Xi|X<i , Y<i

) ≥ (1− 6ε1
log n

)
log k = log k −�(ρ), then all but at most ε5n

variables are typical.

Proof Assume by contradiction that there are ε5n atypical variables. That is, ε5n/2 vari-
ables xi appear with probability at least (1+ ε5) . ρ/n (or at most (1− ε5) . ρ/n)
for an (ε5/2)-fraction of the prefixes wi−1. Now, subject only to this constraint and
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maintaining the correct expected number of variables in each vertex, the entropy is
maximized by spreading the (ε3

5/4)-loss in frequency evenly across all other prefixes
and variables. That is, on the atypical prefixes, labels are assigned with probability

(1+ ε5)ρ/n, and with probability
(

1− ε3
5/4

1−ε2
5/4

)
ρ/n on the rest. Thus,

∑
i

H
(
Xi|X<i , Y<i

)
<
ε2

5

4
n .H

((
1+ ε5

)
ρ/n

)

+
(

1− ε
2
5

4

)
nH

((
1− ε3

5/4

1− ε2
5/4

)
ρ/n

)
.

Recall from Fact 12.5 the expansion of the entropy function:

H

(
1+ υ
n

)
=H

(
1
n

)
− υ
n

log
1
n
−
(

log e

2

)
υ2

n
+O (

n−2)+O (
υ3

n

)
.

Therefore,

∑
i

H(Xi|X<i , Y<i) <
ε2

5

4
n

[
H

(
ρ

n

)
− ε5

ρ

n
log

ρ

n
−
(

log e

2

)
ρ

n
. ε2

5 +O
((
ρ

n

)2
)
+O

(
ρ

n
ε3

5

)]

+
(

1− ε
2
5

4

)
n

[
H

(
ρ

n

)
+
(

ε3
5/4

1− ε2
5/4

)
ρ

n
log

ρ

n
+O

((
ρ

n

)2
)
+O

(
ρ

n
ε6

5

)]

= n
[
H

(
ρ

n

)
−
(

log e

8

)
ρ

n
. ε4

5 +O
((
ρ

n

)2
)
+O

(
ρ

n
ε5

5

)]
.

Recall that −2 log ρ
n
< log n. Thus for

(
log e

8

)
ε4

5 > 14ε1, we have that

(
log e

8

)
ρ

n
. ε4

5 −O
((
ρ

n

)2
)
−O

(
ρ

n
ε5

5

)
>
ρ

n
. 12ε1>−ρ

n
log

ρ

n
. 24ε1/ log n

>
(

12ε1/ log n
)
H

(
ρ

n

)
and therefore,∑

i

H
(
Xi|X<i , Y<i

)
<
(

1− 12ε1/ log n
)
nH

(
ρ

n

)
< (1− 6ε1/ log n) log k ,

where the second inequality follows from Fact 12.3. Thus we have reached a contra-

diction. Notice that the
(

log e
8

)
ρ
n

. ε4
5 term of missing entropy is symmetric (but not
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the negligible higher order terms); i.e., the same derivation can be used to show a
contradiction when many variables appear with probability less than (1− ε5)ρ/n.

Definition 12.6 Let I (u, v) be defined as the number of (i , j) pairs such that

. In the original 2CSP instance ψ , there exists an edge (constraint) between
typical variables xi and xj .

. Xi = 1 for u and Xj = 1 for v.

. ui−1 and vj−1 are typical prefixes, where ui−1 denotes the prefix represented
by u for X<i , Y<i, similarly for vj−1.

Intuitively, I (u, v) is the number of “tests” of 2CSP-constraints between vertices
u, v, when restricting to typical prefixes and variables. We now use the properties
of typical prefixes and constraints to show that I (u, v) behaves “nicely.”

Claim 12.5 Eu,v[I (u, v)]≥ (1− ε7)ρ
2/n and Eu,v[I 2(u, v)]≤ (1+ 2ε7)d

4(Eu,v[I (u, v)])2, where
ε7 is some constant ε7 ≥ 6ε5+�

(
ε2

5

)
.

Proof For any i , j ∈ [n], we say that i ∈N 2CSP (j) if there is a constraint on (xi , xj). For the
proof of this claim, we also abuse notation and denote i ∈ v when i is typical, vi−1

is a typical prefix, andXi = 1 for v. We also say that i ∈N (u) if i is a typical variable,
i ∈N 2CSP (j), and j ∈ u (for some j ∈ [n]). (Do not confuse this notation with prefix
neighborhood in the prefix graph.) We can now lower bound the expectation of
I (u, v) as:

Eu,v
[
I (u, v)

]≥ Eu

[ ∑
i∈N (u)

Pr
v

[
i ∈ v]].

Notice that this bound may not be tight since any i ∈ v can potentially have d
neighbors in u. Thus our upper bound is:

Eu,v
[
I (u, v)

]≤ d . Eu

[ ∑
i∈N (u)

Pr
v

[
i ∈ v]].

By definition of typical variables, for each typical i, i ∈ v with probability at least
(1− ε5)

2ρ/n; thus,

Eu,v
[
I (u, v)

]≥ Eu

[ ∑
i∈N (u)

(
1− ε5

)2
ρ/n]= (1− ε5

)2
ρ/n . Eu[

∣∣N (u)∣∣]. (12.8)

All but ε5n variables are typical, so all but 2ε5n variables are typical and have at least
one typical neighbor. We restrict our attention to the set of such variables and fix
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one typical neighbor for each; this neighbor appears in u with probability at least
(1− ε5)

2ρ/n. Therefore,

Eu
[∣∣N (u)∣∣]≥ (1− 2ε5

)
n .
((

1− ε5
)2
ρ/n

)≥ (1− 4ε5
)
ρ . (12.9)

Combining (12.8) and (12.9), we get the desired bound:

Eu,v
[
I (u, v)

]≥ ((1− ε5
)2
ρ/n

)(
1− 4ε5

)
ρ ≥ (1− ε7

)
ρ2/n. (12.10)

Similarly, for the variance we have

Eu,v
[
I 2(u, v)

]≤ d2 . Eu,v

( ∑
i∈v∩N lef t (u)

1
)2

= d2 . Eu,v

[ ∑
i �=j∈v∩N (u)

1+
∑

i∈v∩N (u)
1
]

≤ d2 . Eu

[
2

∑
i<j∈N (u)

Pr
v

[
i ∈ v] Pr

v

[
j ∈ v | i ∈ v]]+ d2 . Eu,v

[
I (u, v)

]
.

Since for every prefix, each variable receives a typical assignment with probability
at most (1+ ε5) . ρ/n, we have that

Eu,v
[
I 2(u, v)

]≤ 2d2 . Eu

[ ∑
i<j∈N (u)

((
1+ ε5

)
. ρ/n

)2
]
+ d2 . Eu,v

[
I (u, v)

]
≤ ((1+ ε5

)
. ρ/n

)2 . 2d2 . Eu

(|N (u)|
2

)
+ d2 . Eu,v

[
I (u, v)

]
. .(12.11)

We would like to bound Eu
(N (u)

2

)
.

Eu

(
N (u)

2

)
=
∑
i<j

∑
k∈N 2CSP (i)

∑
l∈N 2CSP (j)

Pr
u

[k ∈ u] Pr
u

[l ∈ u | k ∈ u]

=
∑
i<j

∑
k∈N 2CSP (i)
l∈N 2CSP (j)

and k<l

Pr
u

[k ∈ u] Pr
u

[l ∈ u | k ∈ u] (12.12)

+
∑
i<j

∑
k∈N 2CSP (i)
l∈N 2CSP (j)

and k>l

Pr
u

[l ∈ u] Pr
u

[k ∈ u | l ∈ u] (12.13)

+
∑
i<j

∑
k∈N 2CSP (i)∩N 2CSP (j)

Pr
u

[k ∈ u]. (12.14)
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For the first two summands, we can use the condition on the prefixes to
conclude that

(12.12)+ (12.13)≤
(
n

2

)
d2((1+ ε5

)
. ρ/n

)2,

whereas to bound the third summand, we first change the order of summation:

(12.14)=
∑
k

Pr
u

[k ∈ u] .
∣∣∣{(i , j): i �= j and k ∈N 2CSP (i) ∩N 2CSP (j)

}∣∣∣
≤ ((1+ ε5

)
. ρ
)(d

2

)
=O(ρ).

Summing the last two inequalities, we have

2 . Eu

(|N (u)|
2

)
≤ d2((1+ ε5

)
. ρ
)2 +O(ρ)≤ (1+ ε5

)3
d2ρ2.

Plugging back into (12.11):

Eu,v
[
I 2(u, v)

]≤ (1+ ε5
)5
d4ρ4/n2 + d2 . Eu,v[I (u, v)].

Using (12.10) and the fact that ρ =√n log log n&√
n, this gives

Eu,v
[
I 2(u, v)

]≤ d4(1+ ε5)
5

1− ε7

(
Eu,v

[
I (u, v)

])2 + d2 . Eu,v
[
I (u, v)

]
≤ (1+ 2ε7

)
d4(Eu,v

[
I (u, v)

])2.

It will also be convenient to count the number of tests between a pair of variables.

Definition 12.7 For any pair of typical (i , j) ∈ ψ , let I	(i , j) be defined as the number of (u, v) ∈
(S × S) pairs such that

. Xi = 1 for u and Xj = 1 for v.

. ui−1 and vj−1 are typical prefixes, where ui−1 denotes the prefix represented
by u for X<i , Y<i; similarly for vj−1.

We now have two ways to count the total number of tests between typical prefixes
to typical variables:

Observation 12.3
∑
(u,v)∈(S×S) I (u, v)=∑(i ,j)∈ψ I	(i , j).

Furthermore, since i and j are typical, the number of tests between also behaves
“nicely”:

Observation 12.4 For every typical (i , j) ∈ ψ , we have I	(i , j) ∈ |S|2ρ2/n2
[
(1− ε5)

4, (1+ ε5)
2
]
.
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Proof

I	(i , j)=
∑

typical ui−1’s

|S| . Pr
[
ui−1

]
Pr
[
Xi = 1 | ui−1

] ∑
typical vj−1’s

|S| . Pr
[
vj−1

]
Pr
[
Xj = 1 | vj−1

]
∈ |S|2ρ2/n2[(1− ε5

)4,
(

1+ ε5
)2].

Armed with these Claims 12.4 and 12.5 and Observations 12.3 and 12.4, we are
now ready to prove the main lemma of this section. Recall that the soundness of
the 2CSP we started with is 1− η for a small constant η.

Lemma 12.2 If
∑
i H(Xi|X<i , Y<i)≥

(
1− 6ε1

log n

)
log k, then δ(S) < 1− δ, where δ <

ε2
6

d4(1+2ε7)
and

ε6 = (η/2− ε5)(1/|A|2) (1−ε5)
4

(1+ε5)
2 .

Proof Let the mode assignment be the assignment A: [n]→A, which assigns to each vari-
able xi its most common typical assignment (i.e., assignment after a typical prefix),
breaking ties arbitrarily. In particular, at least 1/|A| of the typical assignments for
xi are equal to A(i). Of course, this assignment cannot satisfy more than a (1− η)-
fraction of the constraints in the original 2CSP; after removing the ε5n atypical
variables, (η/2− ε5)dn constraints out of the dn/2 constraints must still be unsat-
isfied.

Recall that the number of tests for each constraint over typical variables,

I	(i , j), is approximately the same for every pair of (i , j)—up to a (1−ε5)
4

(1+ε5)
2 -multi-

plicative factor (Observation 12.4). Therefore, the total fraction of tests over unsat-
isfied constraints, out of all tests, is approximately proportional to the fraction of
unsatisfied constraints:

∑
typical,

unsatisfied (i , j)′s

I	(i , j)≥ (1− ε5)
4

(1+ ε5)
2

. |{typical, unsatisfied(i , j)′s}|
|{typical (i , j) ∈ ψ}|

.
∑
(i ,j)∈ψ

I	(i , j)

≥ (1− ε5)
4

(1+ ε5)
2

. (η/2− ε5)dn

dn/2
.
∑
(i ,j)∈ψ

I	(i , j)

= (1− ε5)
4

(1+ ε5)
2

. (η − 2ε5) .
∑

(u,v)∈(S×S)
I (u, v). (Observation 12.3)
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For each such pair (i , j), on at least a 1/|A|2-fraction of the tests both variables
receive the mode assignment, so the constraint is violated.2 Thus the total number

of violations is at least ε6
∑
(u,v)∈(S×S) I (u, v) (where ε6= (η/2− ε5)(1/|A|2) (1−ε5)

4

(1+ε5)
2 ).

Finally, we show that so many violations cannot concentrate on less than a δ-
fraction of the pairs u, v ∈ S; otherwise:

∑
(u,v)∈(S×S)\E

I 2(u, v)≥ 1
δ|S|2

( ∑
(u,v)∈(S×S)\E

I (u, v)
)2

(Cauchy-Schwartz)

≥ 1
δ|S|2

(
ε6

∑
(u,v)∈(S×S)

I (u, v)
)2

= |S|
2ε2

6

δ

(
Eu,v

[
I (u, v)

])2;

yet by Claim 12.5,∑
(u,v)∈(S×S)\E

I 2(u, v)≤
∑

(u,v)∈S×S
I 2(u, v)≤ (1+ 2ε7

)
d4|S|2(Eu,v

[
I (u, v)

])2.

Thus we have a contradiction since d4(1+ 2ε7) < ε
2
6/δ by our setting of δ. Therefore

we have 2CSP-violations in more than a δ-fraction of the pairs u, v ∈ S.

With Lemma 12.1 and Lemma 12.2, we can now complete the proof of Theo-
rem 12.2.

Proof of Theorem 12.2 Recall that
∑
i αi + βi = log k′ ≥

(
1− ε1

log n

)
log k by Fact 12.4. If

∑
i βi >

(
5ε1

log n

)
log k,

then by Lemma 12.1, δ(S) < 1− δ. Otherwise, if
∑
i αi >

(
1− 6ε1

log n

)
log k, by

Lemma 12.2, δ(S) < 1− δ.

2. We remark that a more careful analysis of the expected number of violations would allow one
to save an |A|2-factor in the value of ε6. Since it does not qualitatively affect the result, we opt for
the simpler analysis.
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Identifying communities is a central graph-theoretic problem with important appli-
cations to sociology and marketing (when applied to social networks), biology and
bioinformatics (when applied to protein interaction networks), and more (see, e.g.,
Fortunato’s classic survey [Fortunato 2010]). Defining what exactly is a community
remains an interesting problem on its own (see Arora et al. [2012] and Borgs et al.
[2016] for excellent treatment from a theoretical perspective). Ultimately, there is
no single “right” definition, and the precise meaning of community should be dif-
ferent for social networks and protein interaction networks.

Here we focus on the algorithmic questions arising from one of the simplest
and most canonical definitions, which has been considered by several theoretical
computer scientists [Arora et al. 2012, Balcan et al. 2013, Mishra et al. 2008] (see
Section 13.1 for further discussion):

Definition 13.1 (α , β)-community. Given an undirected graph G= (V , E), an (α , β)-community
is a subset S ⊆ V that satisfies:

Strong ties inside the community. For every v ∈ S, |{v} × S| ∩ E ≥ α . |S|; and

Weak ties to nodes outside the community. For every u �∈ S, |{u} × S| ∩ E ≤
β . |S|.

Arora et al. [2012, Theorem 3.1] gave a simple quasi-polynomial (nO(log n)) time
for detecting (α , β)-communities wheneverα − β is at least some positive constant.
Similar to the meta-algorithm we described in the introduction, Arora et al.’s algo-
rithm enumerates overO(log n)-tuples of vertices. For each tuple, consider the set
of vertices that are neighbors of an (α + β)/2-fraction of the tuple; test whether this
candidate set is indeed a community.

Here we show that, for every constant α > β ∈ (0, 1], community detection re-
quires quasi-polynomial time (assuming ETH). For example, when α = 1 and β =
0.01, this means that we can hide a cliqueC, such that every single vertex not inC is
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connected to at most 1% ofC. Our main result is actually a much stronger inapprox-
imability: even in the presence of a (1, o(1))-community, finding any (β + o(1), β)-
community is hard.

Theorem 13.1 For every n there exists an ε = ε(n)= o(1) such that, assuming ETH, distinguishing
between the following requires time n	̃(log n):

Completeness. G contains a (1, ε)-community; and

Soundness. G does not contain a (β + ε , β)-community for any β ∈ [0, 1].

Unlike many related quasi-polynomial approximation schemes mentioned
above, Arora et al.’s algorithm has the unique property that it can also exactly count
all the (α , β)-communities. Our second result is that counting even the number of
(1, o(1))-communities requires quasi-polynomial time. A nice feature of this result
is that we can base it on the much weaker #ETH assumption, which asserts that
counting the satisfying assignment for a 3SAT instance requires time 2	(n). (Note,
for example, that #ETH is likely to be true even if P= NP.)

Theorem 13.2 For every n there exists an ε = ε(n) = o(1) such that, assuming #ETH, counting
(1, ε)-communities requires time nlog1−o(1) n.

13.1 Related Works
The most closely related work is a reduction by Balcan et al. [2013, Theorem 5.3]
from Planted Clique to finding (1, 1− γ )-communities, for some small (unspec-
ified) constant γ > 0. Note that our inapproximability in Theorem 13.1 is much
stronger in all parameters; furthermore, although formally incomparable, our ETH
assumption is preferable over the average-case hardness assumption of Planted
Clique.

Algorithms for Special Cases
Mishra et al. [2008] gave a polynomial-time algorithm for finding (α , β)-commun-
ities that contain a vertex with very few neighbors outside the community. Balcan
et al. [2013] give a polynomial-time algorithm for enumerating (α , β)-communities
in the special case where the degree of every node is 	(n).

Arora et al. [2012] consider several semi-random models where the edges inside
the community are generated at random, according to the expected degree model.
(In fact, their quasi-polynomial time algorithm is also stated in this setting, but
only their “Gap Assumption,” which is equivalent to α − β =	(1), is used in the
analysis.)
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Stochastic Block Model
Variants of the community detection problem on graphs generated by different
stochastic models are extremely popular (see, e.g., [Bandeira et al. 2016, Banks et al.
2016, Chen et al. 2016, Florescu and Perkins 2016, Hajek et al. 2016, Makarychev
et al. 2016, Moitra et al. 2016, Mossel and Xu 2016, Tremblay et al. 2016] for
papers in conference proceedings from June 2016). Perhaps the most influential
is the Stochastic Block Model [Holland et al. 1983]: The graph is partitioned into
two disjoint communities; the edges within each community are present with
probability α, independently, whereas edges between communities are present
with probability β. Hence this model can also be seen as a special case of the (α , β)-
Community Detection problem.

Stochastic models are extremely helpful in physics, for example, because atoms’
interactions obey simple mathematical formulas with high precision. Unfortu-
nately, for applications such as social networks, existing models do not describe
human behavior with atomic precision, hence casting a shadow over the applicabil-
ity of algorithms that work on ideal stochastic models. Recent works [Makarychev
et al. 2016, Moitra et al. 2016] attempt to bridge the gap from ideal model to prac-
tice by showing that certain SDP-based algorithms continue to work in a particular
semi-random model where a restricted adversary is allowed to modify the random
input graph. These success stories beg the question of how strong one can make
the adversary. This chapter illuminates some of the computational barriers.

Alternative Approaches to Modeling Communities
As we mentioned above, there are many different definitions of “communities” in
networks. For in-depth discussion of different definitions, see Arora et al. [2012] or
Borgs et al. [2016]. As pointed out by the latter, for some definitions even verifying
that a candidate subset is a community is intractable.

There is also an important literature on axiomatic approaches to the related
problem of clustering (e.g., [Ben-David and Ackerman 2008, Kleinberg 2002, van
Laarhoven and Marchiori 2014]); note that while clustering typically aims to par-
tition a set of nodes, our main focus is on detecting just a single community; in
particular, different communities may intersect.

13.2 Overview of Proofs
A good starting point for the technical discussion is the reduction from 3SAT to the
related problem of Densest-k-Subgraph we describe in Chapter 12. Let us recall
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the main two ingredients in that reduction: “birthday repetition” [Aaronson et al.
2014] and the “FGLSS graph” [Feige et al. 1996].

“Birthday repetition”. Starting with an instance of Label Cover (see defini-
tion in Section 2.4), the reduction considers a mega-variable for every ρ-tuple
of variables, for ρ ≈√n. By the birthday paradox, almost every pair of ρ-
tuples of variables intersect, inducing a consistency constraint on the two
mega-assignments. Similarly, we expect to see some Label Cover edges in
the union of the two ρ-tuples, inducing an additional Label Cover con-
straint between the two mega assignments. Notice that we have

(
n
ρ

)≈ 2
√
n

mega variables, and the alphabet size is also approximately N = 2
√
n. There-

fore, assuming ETH, finding an approximately satisfying assignment for the
mega-variables requires time 2	(n) ≈N log N .

FGLSS. Similarly to the classic reduction by Feige et al. [1996] for the Clique
problem in Chapter 12, we construct a vertex for each mega assignment to
each mega variable, and draw an edge between two vertices if the induced
assignments do not violate any consistency or Label Cover constraints.
Notice that if the Label Cover instance has a satisfying assignment, then
the graph contains a clique of size

(
n
ρ

)
where each mega variable receives

the mega assignment induced by the globally satisfying assignment. On the
other hand, any subgraph that corresponds to a consistent assignment that
violates many constraints must be missing most of its edges.

Unfortunately, this simple reduction is still quite far from working for the Commu-
nity Detection problem. Below we describe some of the obstacles and outline
how we overcome them.

Completeness
Surprisingly, the main problem with using the same reduction for Community
Detection is the completeness: even if the Label Cover instance has a satisfying
assignment, the resulting graph has no (α , β)-communities, for any constants
α > β! Observe, in particular, that the clique that corresponds to the satisfying
assignment does not satisfy the weak ties condition. For any vertex v in that clique,
consider any vertex v′ that corresponds to changing the assignment to just one
variable xi in v’s assignment. If v agrees with the assignments of all other vertices
in the clique, v′ agrees with almost all of them—except for the negligible fraction
that cover xi or its neighbors in the Label Cover graph.
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To overcome this problem of vertices that are “just outside the community,” we
use error-correcting codes. Namely, we encode each assignment as a low-degree
bivariate polynomial over finite field G of size |G| ≈ √n. Now vertices correspond to
low-degree assignments to rows/columns of the polynomial. This guarantees that
the assignments induced by every two vertices are far. If v agrees with all other
vertices in the community, then almost all of those vertices disagree with v′.

Soundness
The main challenge for soundness is ruling out communities that do not corre-
spond to a single, globally consistent assignment to the Label Cover instance.
The key idea is to introduce auxiliary vertices that punish such communities by
violating the weak ties desideratum.

Let us begin with the reduction to the counting variant (Theorem 13.2), which is
easier, mostly because we are not concerned with approximation (i.e., we only have
to show that subsets that are exactly (1, ε)-communities correspond to satisfying
assignments). Here we further simplify matters by sketching a construction with
weighted edges. The full reduction (Section 13.3) uses unweighted edges and is
only slightly more involved. Consider, for every g ∈ G, an auxiliary vertex that is ε-
connected to all proper vertices that do not correspond to assignments to the g-th
row/column. Now if a (1, ε)-communityC does not contain a vertex with assignment
to the g-th row/column, the auxiliary vertex must simultaneously: (i) belong toC so
as not to violate the weak ties desideratum; yet (ii) it cannot belong toC because all
its edges have weight ε (this would violate the strong ties desideratum). Therefore
every (1, ε)-community assigns values to every row/column in G2.

The reduction we described above suffices to show that (assuming ETH) decid-
ing whether the graph contains a (1, ε)-community also requires quasi-polynomial
time. To get the stronger statement of Theorem 13.1 we must rule out even (β , β +
ε)-communities in case the Label Cover instance is far from satisfiable. In par-
ticular, we need to show that subsets that do not correspond to unique, consistent
assignments are never (β , β + ε)-communities. Instead of a single column/row, we
let each proper vertex correspond to a subset of t ≈ log n columns/rows. Instead of
a single g ∈ G, each auxiliary vertex corresponds to subsetH ⊂ G of size |H | = |G|/2.
We draw an edge between an auxiliary vertex and a proper vertex if the indices of all
t columns/rows are contained in H ; if they are picked randomly this only happens
with polynomially small probability. If, however, a β-fraction of the community
is restricted to a small subset R ⊂ G, then there are auxiliary vertices for H ⊇ R
that connect to all those nodes and violate the weak ties desideratum. Roughly, we
show that at least a (1− β)-fraction of the vertices have assignments that are “well
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spread” over G2, and among those assignments there are many violations of the
Label Cover constraints.

13.3 Hardness of Counting Communities

Theorem 13.3 There exists an ε(n)= o(1) such that, assuming #ETH, counting (1, ε)-communities
requires time nlog1−o(1) n.

Construction
Begin with an instance (A, B , E , π) of Label Cover of size n = nA + nB where
nA � |A| and nB � |B|. Let G be a finite field of size

√
n/ε3, and let F ⊂ G be an

arbitrary subset of size |F | = √n. We identify between A ∪ B and points in F 2;
we also identify between a subset of G and �A ∪ �B. Thus there is a one-to-one
correspondence between a subset of assignments to PF : F 2 → G and assignments
to the Label Cover instance. We can extend any such PF to an individual-degree-
(|F | − 1) polynomial P : G2 → G. In the other direction, we think of each low-
individual-degree polynomial P : G2 → G as a (possibly invalid) assignment to the
Label Cover instance.

For every g ∈ G, and degree-(|F | − 1) polynomials p1, p2 : G → G such that
p1(g) = p2(g), we construct 1/ε vertices {vg ,p1,p2, i}1/εi=1 ⊂ V in the communities
graph. Each vertex naturally induces an assignment (p1, p2) on (G× {g})∪ ({g} × G).
We draw an edge between two vertices in V if they agree on the intersection of their
lines, and if their induced assignments satisfy all the Label Cover constraints.

For every g ∈ G and i ∈ [1/ε], we also add two identical auxiliary vertices ug , i,
which are connected to every vg′ ,p1,p2, i for g′ �= g (but not to each other).

Completeness
For each assignment to the Label Cover instance, we construct a (1, ε)-
community by taking the induced assignment PF : F 2 → G and extending it to
an individual-degree-(|F | − 1) polynomial P : G2 → G. Let C be all the vertices
vg ,p1,p2, i such that p1, p2 are the restrictions of P to (G × {g}), ({g} × G). This cor-
respondence is one-to-one and we need to show that the resulting C is actually a
(1, ε)-community.

Because all the vertices correspond to a consistent satisfying assignment, C is
a clique. Let vg ,q1,q2, i �∈ C; wlog q1 disagrees with the restriction of P to (G × {g}).
Since both q1 and the restriction of P are degree-(|F | − 1) polynomials, they must
disagree on all but at most (|F | − 1) elements of G. For all other h ∈ G, the vertex
vg ,q1,q2, i does not share edges with any vh,p1,p2,j ∈ C. Therefore, vg ,q1,q2, i has edges
to less than an (|F |/|G|)-fraction of vertices in C. Finally, every auxiliary vertex ug , i
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has edges to a |G|−1
|G| . ε < ε-fraction of the vertices in ε. Therefore, C is a (1, ε)-

community.

13.3.1 Soundness
Structure of (1, ε)-Communities

Claim 13.1 Every (1, ε)-community C contains exactly 1/ε vertices
{
vg ,p1,p2, i

}1/ε

i=1
for each g.

Proof First, observe that C cannot contain any auxiliary vertices: if C contains one copy
of ug , i, it must also contain the other; but they don’t have an edge between them,
so they cannot both belong to a (1, ε)-community.

Now, assume by contradiction that for some g ∈ G, C does not contain any ver-
tices with assignments for (G × {g}) ∪ ({g} × G). Then every vertex inC is connected
to (both copies of) ug , i, for some i ∈ [1/ε]. Therefore there is at least one i ∈ [1/ε]
such that ug , i is connected to an ε-fraction of the vertices in C. But this is a contra-
diction since ug , i �∈ C.

If we ignore the auxiliary vertices (which, as we argued, C does not contain),
the different vertices vg ,p1,p2, i that correspond to the same assignment to the same
lines (i.e., if we only change i) are indistinguishable. Therefore if C contains one of
them, it must contain all of them (hence, at least 1/ε vertices for each g).

Finally, since C is a clique, it cannot contain vertices that disagree on any
assignments. (In particular, it cannot contain more than 1/ε vertices for each g.)

Completing the Proof
Proof Proof of soundness. By Claim 13.1, every (1, ε)-communityC contains exactly 1/ε

vertices
{
vg ,p1,p2, i

}1/ε
i=1 for each g. Furthermore, since C is a clique, all the induced

assignments agree on all the intersections. So every (1, ε)-community corresponds
to a unique consistent assignment to the Label Cover instance. Finally, appealing
again to the fact that C is a clique, this assignment must also satisfy all the Label
Cover constraints.

13.4 Hardness of Detecting Communities

Theorem 13.4 There exists an ε(n)= o(1) such that, assuming ETH, distinguishing between the
following requires time n	̃(log n):

Completeness. G contains a (1, ε)-community; and

Soundness. G does not contain a (β + ε , β)-community for any β ∈ [0, 1].
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The rest of this section is devoted to the proof of Theorem 13.4. Our start-
ing point is the Label Cover of Moshkovitz-Raz (Theorem 2.2). We compose the
birthday repetition technique of Aaronson et al. [2014] with a bi-variate low-degree
encoding. We then encode this as a graph à la FGLSS [Feige et al. 1996]. We add aux-
iliary vertices to ensure that any (β + ε , β)-community corresponds, approximately,
to a uniform distribution over the variables.

Construction
Begin with a (dA, dB)-bi-regular instance (A, B , E , π) of Label Cover of size n=
nA + nB where nA � |A| and nB � |B|. Let ρ �√n log n; let G be a finite field of size
ρ/ε3= Õ(ρ), and let F ⊂ G be an arbitrary subset of size |F | = 2ρ. Let FA, FB ⊂ F
be disjoint subsets of size nA/ρ, nB/ρ, respectively. By Lemma 2.6, we can partition
A and B into subsets X1, . . . , X|FA| and Y1, . . . , Y|FB | of size at most |F | such

that between every two subsets there are approximately dAρ
2

nB
= dBρ

2

nA
constraints.

For i ∈ FA, we think of the points {i} × F ⊂ G2 as representing assignments to
variables inXi; for j ∈FB, we think of F × {j} ⊂ G2 as representing assignments to
variables in Yj . Notice that each point in F 2 may represent an assignment to both
a vertex fromA and a vertex fromB, to one of them, or to neither. In particular, any
assignment P : G2→ G induces an assignment for the Label Cover instance; note
that since |G|> |�A||�B|, one value P(f1, f2) ∈ G suffices to describe assignments
to both a ∈ A and b ∈ B.

Let t � log n .
( |G|
|FA| +

|G|
|FB |

)
= polylog(n). We say that a subset S ∈ (G

t

)
is balanced

if: |S ∩ FA| = |FA||G| . t and |S ∩ FB| = |FB ||G| . t . For every balanced subset S, consider

2t polynomials q�: G→ G of degree at most |F | − 1, representing an assignment1

Q: (S × G) ∪ (G × S)→ G. For balanced S and 2t -tuple of polynomials (q�), we
construct a corresponding vertex vS ,(q�) in the communities graph. Let V denote
the set of vertices defined so far. For g ∈ G we abuse notation and say that g ∈ vS ,(q�)

if g ∈ S. We construct an edge in the communities graph between two vertices in V
if their assignments agree on the variables in their intersection, and their induced
assignments to A ∪ B satisfy all the Label Cover constraints.

Additionally, for every H ⊂ G of size |H | = |G|/2, define |V |2 identical auxiliary
vertices uH in the communities graph. We draw an edge between auxiliary vertex
uH and vertex vS ,(q�) if S ⊂H . Similarly, for every HA ⊂ FA of size |HA| = |FA|/2,
we define |V |2 identical auxiliary vertices uHA with edges to every vertex vS ,(q�) such

1. We will only consider polynomials that correspond to a consistent assignmentQ; i.e., for each
point in S × S we expect the two corresponding polynomials to agree with each other.
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that (S ∩FA)⊂HA. ForHB ⊂FB of size |HB| = |FB|/2, we draw edges between uHB
and vS ,(q�) such that (S ∩ FB)⊂HB.

Completeness
Suppose that the Label Cover instance has a satisfying assignment. Let Z ⊆ G2

denote the subset of points that correspond to at least one variable in A or B.
Let PZ : Z → G be the induced function on Z that corresponds to the satisfying
assignment, and let P : G2 → G be the extension of PZ by setting P(f1, f2) = 0
for (f1, f2) ∈ F 2 \ Z (this choice is arbitrary), and then extending to an (|F | − 1)-
individual-degree polynomial over all of G2.

Let C be the set of vertices that correspond to restrictions of P to balanced
sets, i.e.,

C = {vS ,(P |S) : S is balanced},
where P |S denotes the restriction of P to (S × G) ∪ (G × S). Since all those vertices
correspond to a consistent satisfying assignment, C is a clique.

For any vertex vS ,(q�) �∈ C, at least one of the polynomials, q�∗, disagrees with
the restriction of P to the corresponding line. Since both q�∗ and the restriction
of P to that line are degree-(|F | − 1) polynomials, they must disagree on at least(

1− |F |
|G|
)

-fraction of the coordinates. The probability that a random balanced set

S′ is contained in the O(ε3)-fraction of coordinates where they do agree is smaller
than ε (and in fact polynomially small in n). Therefore vS ,(q�) has inconsistency
violations with all but (less than) an ε-fraction of the vertices in C.

For any auxiliary vertex uHA, the probability that a random vertex vS ,(P |S) ∈ C is
connected to uHA is 2−|S∩FA| < 1/n, and similarly for uHB and uH . Therefore, every
auxiliary vertex is connected to less than a (1/n)-fraction of the vertices in C.

13.4.1 Soundness
Lemma 13.1 If the Label Cover instance has value at most ε3, then there are no (β + ε , β)-

communities.

Auxiliary vertices.
Claim 13.2 Every (β + ε , β)-community does not contain any auxiliary vertices.

Proof There are |V |2 identical copies of each auxiliary vertex. Since they are identical, any
community must either contain all of them, or none of them. If the community
contains all |V |2 copies, then it has a vast majority of auxiliary vertices, so none of
them can have edges to an ε-fraction of the community.
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List decoding.
Claim 13.3 The vertices in any (β + ε , β)-community C induce at most 4/ε different assign-

ments for each variable.

Proof Suppose by contradiction that this is not the case. Then, wlog, there is a line
{g1} × G that receives at least 2/ε different assignments from vertices in C. Every
two assignments agree on at most |F | points (g1, g′) on the line, so in total there
are at most 2|F |/ε2 points where at least two assignments agree. Let R ⊆ G denote
the set of g′ such that no two assignments agree on (g1, g′); we have that |R| ≥
|G| − 2|F |/ε2 ≥ |G|/2. Therefore, by the weak ties property, for at most a β-fraction
of the vertices vS ,(q�) ∈ C, S ∩ R = ∅.

Consider the remaining (1− β)-fraction of vertices inC. Suppose that v assigns
a value to some (g1, g′) for g′ ∈ R: this value can only agree with one of the 2/ε
different assignments to (g1, g′). Therefore, in expectation, each of the 2/ε vertices
that assign different values for (g1, g′) is connected to at most a (β + ε/2)-fraction
of the vertices in C. This is a contradiction to C being a (β + ε , β)-community.

Completing the proof.
Proof Proof of Lemma 13.1. Suppose that at most an ε3-fraction of the Label Cover

constraints can be satisfied by any single assignment, and assume by contradiction
thatC is a (β + ε , β)-community. By Claim 13.3,C induces at most 4/ε assignments
on each variable, so at most anO(ε)-fraction of the constraints are satisfied by any
pair of assignments.

By Markov’s inequality, for at least half of the subsets Xi ⊂ A, only an O(ε)-
fraction of the constraints that depend onXi are satisfied. By Claim 13.2 at least (1−
β)-fraction of the vertices in C assign values to at least one such Xi. Consider any
such vertex vS ,(q�) where S ) i. By construction of the partitions (Lemma 2.6), each
Xi shares approximately the same number of constraints with each Yj . Therefore,
for all but an O(ε)-fraction of Yj ’s, Xi and Yj observe a violation—for all the
assignments given by vertices in C to the variables in Yj . In other words, vS ,(q�)

cannot have edges to any vertex vT ,(r�) such that T ) j , for a (1−O(ε))-fraction of
j ∈ [nB/kB]. Finally, applying Claim 13.2 again, at most a β fraction of vertices in C
do not contain any of those j ’s. This is a contradiction to vS ,(q�) having edges to a
(β + ε)-fraction of the vertices in C.



14VC and Littlestone’s
Dimensions

A common and essential assumption in learning theory is that the concepts we want
to learn come from a nice, simple concept class, or (in the agnostic case) they can
at least be approximated by a concept from a simple class. When the concept class
is sufficiently simple, there is hope for good (i.e., sample-efficient and low-error)
learning algorithms.

There are many different ways to measure the simplicity of a concept class. The
most influential measure of simplicity is the VC Dimension, which captures learn-
ing in the PAC model. We also consider Littlestone’s Dimension [Littlestone 1987],
which corresponds to minimizing mistakes in online learning (see Section 2.5 for
definitions). When either dimension is small, there are algorithms that exploit the
simplicity of the class, to obtain good learning guarantees.

Two decades ago, it was shown that (under appropriate computational complex-
ity assumptions) neither dimension can be computed in polynomial time [Frances
and Litman 1998, Papadimitriou and Yannakakis 1996]; and these impossibility re-
sults hold even in the most optimistic setting where the entire universe and concept
class are given as explicit input (a binary matrix whose (x , c)-th entry is 1 iff element
x belongs to concept c). The computational intractability of computing the (VC, Lit-
tlestone’s) dimension of a concept class suggests that even in cases where a simple
structure exists, it may be inaccessible to computationally bounded algorithms (see
discussion below).

In this work we extend the results of Frances and Litman [1998] and
Papadimitriou and Yannakakis [1996] to show that the VC and Littlestone’s Di-
mensions cannot even be approximately computed in polynomial time. We don’t
quite prove that those problems are NP-hard: both dimensions can be computed
(exactly) in quasi-polynomial (nO(log n)) time, hence it is very unlikely that either
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problem is NP-hard. Nevertheless, assuming the randomized Exponential Time
Hypothesis (ETH),1 we prove essentially tight quasi-polynomial lower bounds on
the running time that hold even against approximation algorithms.

Theorem 14.1 Hardness of approximating VC Dimension. Assuming randomized ETH, approx-
imating the VC Dimension to within a (1/2+ o(1))-factor requires nlog1−o(1) n time.

Theorem 14.2 Hardness of approximating Littlestone’s Dimension. There exists an absolute
constant ε > 0 such that, assuming randomized ETH, approximating Littlestone’s
Dimension to within a (1− ε)-factor requires nlog1−o(1) n time.

14.1 Discussion
As we mentioned before, the computational intractability of computing the (VC, Lit-
tlestone’s) dimension of a concept class suggests that even in cases where a simple
structure exists, it may be inaccessible to computationally bounded algorithms. We
note, however, that it is not at all clear that any particular algorithmic applications
are immediately intractable as a consequence of our results.

Consider, for example, the adversarial online learning zero-sum game corre-
sponding to Littlestone’s Dimension: At each iteration, Nature presents the learner
with an element from the universe; the learner attempts to classify the element, and
loses a point for every wrong classification; at the end of the iteration, the correct
(binary) classification is revealed. Littlestone’s Dimension is equal to the worst case
loss of the learner before learning the exact concept. (See Section 2.5 for a more
detailed definition.)

What can we learn from the fact that Littlestone’s Dimension is hard to com-
pute? The first observation is that there is no efficient learner that can commit to
a concrete mistake bound. But this does not rule out a computationally efficient
learner that plays optimal strategy and makes at most as many mistakes as the un-
bounded learner. We can, however, conclude that Nature’s task is computationally
intractable! Otherwise, we could efficiently construct an entire worst-case mistake
tree (for a concept class C, any mistake tree has at most |C| leaves, requiring |C| − 1
oracle calls to Nature).

On a philosophical level, we think it is interesting to understand the implica-
tions of an intractable, adversarial Nature. Perhaps this is another evidence that
the mistake bound model is too pessimistic?

1. The randomized ETH (rETH) postulates that there is no 2o(n)-time Monte Carlo algorithm that
solves 3SAT correctly with probability at least 2/3 (i.e., 3SAT �∈ BPTIME(2o(n))).
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Also, the only algorithm we know for computing the optimal learner’s decision
requires computing Littlestone’s Dimension. We think that it is an interesting open
question whether an approximately optimal computationally efficient learner exist.

Finally, let us note that in the other direction, computing Littlestone’s Dimen-
sion exactly implies an exactly optimal learner. However, since the learner has to
compute Littlestone’s Dimension many times, we have no evidence that an approx-
imation algorithm for Littlestone’s Dimension would imply any guarantee for the
learner.

Finally, we remark that for either problem (VC or Littlestone’s Dimension), we
are not aware of any non-trivial approximation algorithms.

14.2 Techniques
Our reductions in this chapter are also inspired by “birthday repetition,” but sur-
prising challenges arise.

VC Dimension. The first challenge we have to overcome in order to adapt this
framework to hardness of approximation of the VC Dimension is that the number
of concepts involved in shattering a subsetS is 2|S|. Therefore any inapproximability
factor we prove on the size of the shattered set of elements “goes in the exponent”
of the size of the shattering set of concepts. Even a small constant factor gap
in the VC Dimension requires proving a polynomial factor gap in the number
of shattering concepts (obtaining polynomial gaps via “birthday repetition” for
simpler problems is an interesting open problem [Manurangsi 2017, Manurangsi
and Raghavendra 2016]). Fortunately, having a large number of concepts is also
an advantage: we use each concept to test a different set of 3-Color constraints
chosen independently at random; if the original instance is far from satisfied, the
probability of passing all 2�(|S|) tests should now be doubly exponentially small(

2−2�(|S|)
)

! More concretely, we think of half of the elements in the shattered set as

encoding an assignment, and the other half as encoding which tests to run on the
assignments.

Littlestone’s Dimension. Our starting point is the reduction for the VC Dimension
outlined in the previous paragraph. Without going into the exact definition of
Littlestone’s Dimension, recall that it corresponds to an online learning model.
If the test-selection elements arrive before the assignment-encoding elements, the
adversary can adaptively tailor his assignment to pass the specific test selected in
the previous steps. To overcome this obstacle, we introduce a special gadget that
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forces the assignment-encoding elements to arrive first; this makes the reduction
to Littlestone’s Dimension somewhat more involved. Note that there is a reduction
by Frances and Litman [1998] from the VC Dimension to Littlestone’s Dimension.
Unfortunately, their reduction is not (approximately) gap-preserving, so we cannot
use it directly to obtain Theorem 14.2 from Theorem 14.1.

14.3 Related Work
The study of the computational complexity of the VC Dimension was initiated by
Linial et al. [1991], who observed that it can be computed in quasi-polynomial
time. Papadimitriou and Yannakakis [1996] proved that it is complete for the class
LOGNP, which they define in the same paper. Frances and Litman [1998] reduced
the problem of computing the VC Dimension to that of computing Littlestone’s
Dimension, hence the latter is also LOGNP-hard. (It follows as a corollary of our
Theorem 14.1 that, assuming ETH, solving any LOGNP-hard problem requires
quasi-polynomial time.)

Both problems were also studied in an implicit model, where the concept class
is given in the form of a Boolean circuit that takes as input an element x and
a concept c and returns 1 iff x ∈ c. Observe that in this model even computing
whether either dimension is 0 or not is already NP-hard. Schaefer proved that
the VC Dimension �P

3 -complete [Schaefer 1999], while Littlestone’s Dimension
is PSPACE-complete [Schaefer 2000]. Mossel and Umans [2002] proved that the
VC Dimension is �P

3 -hard to approximate to within a factor of almost 2; can be
approximated to within a factor slightly better than 2 in AM; and is AM-hard to
approximate to within n1−ε.

Another line of related work in the implicit model proves computational in-
tractability of PAC learning (which corresponds to the VC Dimension). Such in-
tractability has been proved either from cryptographic assumptions (e.g., [Feldman
et al. 2006, Kalai et al. 2008, Kearns and Valiant 1994, Kharitonov 1993, 1995,
Klivans 2016, Klivans and Sherstov 2009]) or from average case assumptions (e.g.,
[Daniely 2016, Daniely and Shalev-Shwartz 2016]). Blum [1994] showed a “com-
putational” separation between PAC learning and online mistake bound (which
correspond to the VC Dimension and Littlestone’s Dimension, respectively): if
one-way function exists, then there is a concept class that can be learned by a
computationally bounded learner in the PAC model, but not in the mistake-bound
model.

Recently, Bazgan et al. [2016] introduced a generalization of the VC Dimension,
which they call Partial VC Dimension, and proved that it is NP-hard to approximate
(even when given an explicit description of the universe and concept class).
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It is interesting to note that in contrast to other problems discussed in this part
of the book, VC’s and Littlestone’s Dimensions do not naturally fit into the bilinear
optimization framework, and they can be computed exactly in quasi-polynomial
time with completely different algorithms: For the VC Dimension, it suffices to
simply enumerate over all log |C|-tuples of elements (where C denotes the concept
class and log |C| is the trivial upper bound on the VC dimension) [Linial et al. 1991].
Littlestone’s Dimension can be computed in quasi-polynomial time via a recursive
“divide and conquer” algorithm (see our Theorem 14.5).

14.4 Inapproximability of the VC Dimension
In this section, we present our reduction from Label Cover to the VC Dimension,
stated more formally below. We note that this reduction, together with Moshkovitz-
Raz PCP (Theorem 2.2), with parameter δ = 1/ log n gives a reduction from 3SAT of
size n to VC Dimension of size 2n

1/2+o(1)
with gap 1/2+ o(1), which immediately

implies Theorem 14.1.

Theorem 14.3 For every δ > 0, there exists a randomized reduction from a bi-regular Label Cover
instance L= (A, B , E , � , {πe}e∈E) to a ground set U and a concept class C such
that, if n� |A| + |B| and r �√n/ log n, then the following conditions hold for every
sufficiently large n.

. (Size) The reduction runs in time |�|O(|E| poly(1/δ)/r) and |C|, |U | ≤
|�|O(|E| poly(1/δ)/r).

. (Completeness) If L is satisfiable, then VC-dim(C , U)≥ 2r .

. (Soundness) If val(L) ≤ δ2/100, then VC-dim(C , U) ≤ (1+ δ)r with high
probability.

14.4.1 A Candidate Reduction (and Why It Fails)
To best understand the intuition behind our reduction, we first describe a sim-
pler candidate reduction and explain why it fails, which will lead us to the eventual
construction. In this candidate reduction, we start by evoking Lemma 2.6 to parti-
tion the vertices A ∪ B of the Label Cover instance L= (A, B , E , � , {πe}e∈E) into
U1 � (S1, T1), . . . , Ur where r =√n/ log n. We then create the universe U and the
concept class C as follows:

. We make each element in U correspond to a partial assignment to Ui for
some i ∈ [r], i.e., we let U = {xi ,σi | i ∈ [r], σi ∈ �Ui}. In the completeness
case, we expect to shatter the set of size r that corresponds to a satisfying
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assignment σ ∗ ∈ �A∪B of the Label Cover instance L, i.e., {xi ,σ ∗|Ui | i ∈ [r]}.
As for the soundness, our hope is that, if a large set S ⊆ U gets shattered,
then we will be able to decode an assignment for L that satisfies many
constraints, which contradicts our assumption that val(L) is small. Note
that the number of elements used in this candidate reduction is at most
r . |�|O(|E| poly(1/δ)r) = 2Õ(

√
n) as desired.

. As stated above, the intended solution for the completeness case is {xi ,σ ∗|Ui |
i ∈ [r]}, meaning that we must have at least one concept corresponding to
each subset I ⊆ [r]. We will try to make our concepts “test” the assignment;
for each I ⊆ [r], we will choose a set TI ⊆A ∪ B of Õ(

√
n) vertices and “test”

all the constraints within TI . Before we specify how TI is picked, let us
elaborate what “test” means: for each TI -partial assignment φI that does not
violate any constraints within TI , we create a concept CI ,φI . This concept
contains xi ,σi if and only if i ∈ I and σi agrees with φI (i.e., φI |TI∩Ui = σi|TI∩Ui).
Recall that, if a set S ⊆ U is shattered, then each T ⊆ S is an intersection
between S and CI ,φI for some I , φI . We hope that the I ’s are different for
different T so that many different tests have been performed on S.

. Finally, let us specify how we pick TI . Assume without loss of generality that r
is even. We randomly pick a perfect matching over [r], i.e., we pick a random
permutation πI : [r]→ [r] and let (πI(1), πI(2)), . . . , (πI(r − 1), πI(r)) be the
chosen matching. We pick TI such that all the constraints in the matchings,
i.e., constraints betweenUπI(2i−1) andUπI(2i) for every i ∈ [r/2], are included.
More specifically, for every i ∈ [r], we include each vertex v ∈ UπI(2i−1) if at
least one of its neighbors lie in UπI(2i) and we include each vertex u ∈ UπI(2i)
if at least one of its neighbors lie in UπI(2i−1). (By Lemma 2.6, for every pair

in the matching the size of the intersection is at most 2|E|
r2 , so each concept

contains assignments to at most 2|E|
r

variables; so the total size of the concept

class is at most 2r . |�| 2|E|
r .)

Even though the above reduction has the desired size and completeness, it
unfortunately fails in the soundness. Let us now sketch a counterexample. For
simplicity, let us assume that each vertex in T[r] has a unique neighbor in T[r]. Note
that, since T[r] has quite small size (only Õ(

√
n)), almost all the vertices in T[r] satisfy

this property w.h.p., but assuming that all of them satisfy this property makes our
life easier.

Pick an assignment σ̃ ∈�V such that none of the constraints in T[r] is violated.
From our unique neighbor assumption, there is always such an assignment. Now,
we claim that the set Sσ̃ � {xi , σ̃ |Ui | i ∈ [r]} gets shattered. This is because, for every
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subset I ⊆ [r], we can pick another assignment σ ′ such that σ ′ does not violate any
constraint in T[r] and σ ′|Ui = σ̃ |Ui if and only if i ∈ I . This implies that {xi , σ̃i | i ∈ I } =
S ∩ C[r],σ ′ as desired. Note here that such σ ′ exists because, for every i �∈ I , if there
is a constraint from a vertex a ∈ Ui to another vertex b ∈ T[r], then we can change
the assignment to a in such a way that the constraint is not violated; by doing this
for every i �∈ I , we have created the desired σ ′. As a result, VC-dim(C , U) can still be
as large as r even when the value of L is small.

14.4.2 The Final Reduction
In this subsection, we will describe the actual reduction. To do so, let us first take
a closer look at the issue with the above candidate reduction. In the candidate
reduction, we can view each I ⊆ [r] as being a seed used to pick a matching. Our
hope was that many seeds participate in shattering some set S, and that this means
that S corresponds to an assignment of high value. However, the counterexample
showed that in fact only one seed (I = [r]) is enough to shatter a set. To circumvent
this issue, we will not use the subset I as our seed anymore. Instead, we create r
new elements y1, . . . , yr , which we will call test selection elements, to act as seeds;
namely, each subset H ⊆ Y will now be a seed. The benefit of this is that, if S ⊆
Y is shattered and contains test selection elements yi1, . . . , yit , then at least 2t

seeds must participate in the shattering of S. This is because, for each H ⊆ Y,
the intersection of S with any concept corresponding to H , when restricted to Y,
is always H ∩ {yi1, . . . , yit}. Hence, each subset of {yi1, . . . , yit} must come from a
different seed.

The only other change from the candidate reduction is that each H will test
multiple matchings rather than one matching. This is due to a technical reason:
we need the number of matchings, �, to be large in order to get the approximation
ratio down to 1/2+ o(1); in our proof, if �= 1, then we can only achieve a factor of
1− ε to some ε > 0. The full details of the reduction are shown in Algorithm 14.1.

Before we proceed to the proof, let us define some additional notation that will
be used throughout.

. Every assignment element of the form xi ,σi is called an i-assignment element;
we denote the set of all i-assignment elements by Xi, i.e., Xi = {xi ,σi | σi ∈
�Ui}. Let X denote all the assignment elements, i.e., X =⋃i Xi.

. For every S ⊆ U , let I (S) denote the set of all i ∈ [r] such that S contains an
i-assignment element, i.e., I (S)= {i ∈ [r] | S ∩ Xi �= ∅}.

. We call a set S ⊆ X non-repetitive if, for each i ∈ [r], S contains at most one i-
assignment element, i.e., |S ∩ Xi| ≤ 1. Each non-repetitive set S canonically
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Algorithm 14.1 Reduction from Label Cover to VC Dimension

Input: A bi-regular Label Cover instance L= (A, B , E , � , {πe}e∈E) and
a parameter δ > 0.

Output: A ground set U and a concept class C.
The procedure to generate (U , C) works as follows:
1. Let r be

√
n/ log n where n= |A| + |B|. Use Lemma 2.6 to partition A ∪ B

into r blocks U1, . . . , Ur .
2. For convenience, we assume that r is even. Moreover, for i �= j ∈ [r], let

Ni(j)⊆ Ui denote the set of all vertices in Ui with at least one neighbor in Uj
(w.r.t. the graph (A, B , E)). We also extend this notation naturally to a set of j ’s;
for J ⊆ [r], Ni(J ) denotes

⋃
j∈J Ni(j).

3. The universe U consists of two types of elements, as described below.
(a) Assignment elements: for every i ∈ [r] and every partial assignment σi ∈�Ui ,

there is an assignment element xi ,σi corresponding to it. Let X denote all
the assignment elements, i.e., X = {xi ,σi | i ∈ [r], σi ∈�Ui}.

(b) Test selection elements: there are r test selection elements, which we will call
y1, . . . , yr . Let Y denote the set of all test selection elements.

4. The concepts in C are defined by the following procedure.
(a) Let �� 80/δ3 be the number of matchings to be tested.

(b) For each H ⊆ Y, we randomly select � permutations π(1)H , . . . , π(�)H : [r]→ [r];

this gives us �matchings (i.e., the t -th matching is
(
π
(t)
H (1), π

(t)
H (2)

)
, . . . ,(

π
(t)
H (r − 1), π(t)H (r)

)
). For brevity, let us denote the set of (up to �) elements

that i is matched with in the matchings byMH(i). Let TH =
⋃
i Ni(MH(i)).

(c) For every I ⊆ [r], H ⊆ Y and for every partial assignment σH ∈�TH that does
not violate any constraints, we create a concept CI ,H ,σH such that each xi ,σi ∈ X
is included in CI ,H ,σH if and only if i ∈ I and σi is consistent with σH , i.e.,
σi|Ni(MH(i)) = σH |Ni(MH(i)), whereas yi ∈ Y is included in CI ,H ,σH
if and only if y ∈H .

induces a partial assignmentφ(S) :
⋃
i∈I (S) Ui→�. This is the unique partial

assignment that satisfies φ(S)|Ui = σi for every xi ,σi ∈ S.

. Even though we define each concept as CI ,H ,σH where σH is a partial assign-
ment to a subset TH ⊂A ∪ B, it will be more convenient to view each concept
asCI ,H ,σ where σ ∈�V is the assignment to the entire Label Cover instance.
This is just a notational change: the actual definition of the concept does not
depend on the assignment outside TH .
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. For each I ⊆ [r], let UI denote
⋃
i∈I Ui. For each σI ∈�UI , we say that (I , σI)

passes H ⊆ Y if σI does not violate any constraint within TH . Denote the
collection of H ’s that (I , σI) passes by H(I , σI).

. Finally, for any non-repetitive set S ⊆ X and anyH ⊆ Y, we say that S passes
H if (I (S), φ(S)) passes H . We write H(S) as a shorthand for H(I (S), φ(S)).

The output size of the reduction and the completeness follow almost immedi-
ately from definition.

Output Size of the Reduction. Clearly, the size of U is
∑
i∈[r] |�||Ui| ≤ r . |�|n/r ≤

|�|O(|E| poly(1/δ)/r). As for |C|, note first that the number of choices for I and H
are both 2r . For fixed I and H , Lemma 2.6 implies that, for each matching π(t)H ,
the number of vertices from each Ui with at least one constraint to the matched
partition in π(t)H is at most O(|E|/r2). Since there are � matchings, the number
of vertices in TH =N1(MH(1)) ∪ . . . ∪Nr(MH(r)) is at most O(|E|�/r). Hence, the
number of choices for the partial assignment σH is at most |�|O(|E| poly(1/δ)/r). In
total, we can conclude that C contains at most |�|O(|E| poly(1/δ)/r) concepts.

Completeness. If L has a satisfying assignment σ ∗ ∈ �V , then the set Sσ ∗ =
{xi ,σ ∗

i
| i ∈ [r]} ∪ Y is shattered because, for any S ⊆ Sσ ∗, we have S =

Sσ ∗ ∩ CI(S),S∩Y ,σ ∗. Hence, VC-dim(C , U)≥ 2r .
The rest of this section is devoted to the soundness analysis.

14.4.3 Soundness
In this subsection, we will prove the following lemma, which, combined with the
completeness and output size arguments above, implies Theorem 14.3. For brevity,
we will assume throughout this subsection that r is sufficiently large, and leave it
out of the lemmas’ statements.

Lemma 14.1 Let (C , U)be the output from the reduction in Algorithm 14.1 on input L. If val(L)≤
δ2/100, then VC-dim(C , U)≤ (1+ δ)r with high probability.

At a high level, the proof of Lemma 14.1 has two steps:

1. Given a shattered set S ⊆ U , we extract a maximal non-repetitive set Sno-rep ⊆
S such that Sno-rep passes many

(≥ 2|S|−|Sno-rep|) H ’s. If |Sno-rep| is small, the
trivial upper bound of 2r on the number of different H ’s implies that |S| is
also small. As a result, we are left to deal with the case that |Sno-rep| is large.

2. When |Sno-rep| is large, Sno-rep induces a partial assignment on a large fraction
of vertices of L. Since we assume that val(L) is small, this partial assignment
must violate many constraints. We will use this fact to argue that, with high
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probability, Sno-rep only passes very few H ’s, which implies that |S| must be
small.

The two parts of the proof are presented in Sections 14.4.3.1 and 14.4.3.2 respec-
tively. We then combine them in Section 14.4.3.3 to prove Lemma 14.1.

14.4.3.1 Part I: Finding a Non-Repetitive Set That Passes Many Tests
The goal of this subsection is to prove the following lemma, which allows us, given
a shattered set S ⊆ U , to find a non-repetitive set Sno-rep that passes many H ’s.

Lemma 14.2 For any shattered S ⊆ U , there is a non-repetitive set Sno-rep of size |I (S)| such that
|H(Sno-rep)| ≥ 2|S|−|I (S)|.

We will start by proving the following lemma, which will be a basis for the proof
of Lemma 14.2.

Lemma 14.3 Let C , C′ ∈ C correspond to the sameH (i.e., C = CI ,H ,σ and C′ = CI ′ ,H ,σ ′ for some
H ⊆ Y , I , I ′ ⊆ [r], σ , σ ′ ∈�V ).

For any subset S ⊆ U and any maximal non-repetitive subset Sno-rep ⊆ S such
that I (Sno-rep)= I (S), if Sno-rep ⊆ C and Sno-rep ⊆ C′, then S ∩ C = S ∩ C ′.

The most intuitive interpretation of this lemma is as follows. Recall that if S
is shattered, then, for each S̃ ⊆ S, there must be a concept CI

S̃
,H
S̃

,σ
S̃

such that

S̃ = S ∩ CI
S̃

,H
S̃

,σ
S̃

. The above lemma implies that, for each S̃ ⊇ Sno-rep, HS̃ must be

different. This means that at least 2|S|−|Sno-rep| different H ’s must be involved in
shattering S. Indeed, this will be the argument we use when we prove Lemma 14.2.

Proof Proof of Lemma 14.3. Let S , Sno-rep be as in the lemma statement. Suppose for
the sake of contradiction that there exists H ⊆ Y , I , I ′ ⊆ [r], σ , σ ′ ∈�V such that
Sno-rep ⊆ CI ,H ,σ , Sno-rep ⊆ CI ′ ,H ,σ ′ and S ∩ CI ,H ,σ �= S ∩ CI ′ ,H ,σ ′.

First, note that S ∩ CI ,H ,σ ∩ Y = S ∩H ∩ Y = S ∩ CI ′ ,H ,σ ′ ∩ Y. Since S ∩ CI ,H ,σ

�= S ∩CI ′ ,H ,σ ′, we must haveS ∩CI ,H ,σ ∩X �= S ∩CI ′ ,H ,σ ′ ∩X . Assume w.l.o.g. that
there exists xi ,σi ∈ (S ∩ CI ,H ,σ ) \ (S ∩ CI ′ ,H ,σ ′).

Note that i ∈ I (S) = I (Sno-rep) (where the equality follows by maximality of
Sno-rep). Thus there exists σ ′

i
∈�Ui such that xi ,σ ′

i
∈ Sno-rep⊆CI ,H ,σ ∩CI ′ ,H ,σ ′. Since

xi ,σ ′
i

is in both CI ,H ,σ and CI ′ ,H ,σ ′, we have i ∈ I ∩ I ′ and

σ |Ni(MH(i)) = σ ′i |Ni(MH(i)) = σ ′|Ni(MH(i)). (14.1)
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However, since xi ,σi ∈ (S ∩ CI ,H ,σ ) \ (S ∩ CI ′ ,H ,σ ′), we have xi ,σi ∈ CI ,H ,σ \ CI ′ ,H ,σ ′.
This implies that

σ
∣∣
Ni
(
MH(i)

)= σi∣∣Ni(MH(i)) �= σ ′∣∣Ni(MH(i)),

which contradicts (14.1).

In addition to the above lemma, we will also need the following observation,
which states that, if a non-repetitive Sno-rep is contained in a concept CI ,H ,σH , then
Sno-rep must pass H . This observation follows definitions.

Observation 14.1 If a non-repetitive set Sno-rep is a subset of some concept CI ,H ,σH , then H ∈
H(Sno-rep).

With Lemma 14.3 and Observation 14.1 ready, it is now easy to prove
Lemma 14.2.

Proof Proof of Lemma 14.2. Pick Sno-rep to be any maximal non-repetitive subset of
S such that I (Sno-rep)= I (S). Clearly, |Sno-rep| = |I (S)|. To see that |H(Sno-rep)| ≥
2|S|−|I (S)|, consider any S̃ such that Sno-rep ⊆ S̃ ⊆ S. Since S is shattered, there exists
IS̃ , HS̃ , σS̃ such that S ∩ CI

S̃
,H
S̃

,σ
S̃
= S̃. Since S̃ ⊇ Sno-rep, Observation 14.1 implies

that HS̃ ∈H(Sno-rep). Moreover, from Lemma 14.3, HS̃ is distinct for every S̃. As a
result, |H(Sno-rep)| ≥ 2|S|−|I (S)| as desired.

14.4.3.2 Part II: No Large Non-Repetitive Set Passes Many Tests
The goal of this subsection is to show that, if val(L) is small, then w.h.p. (over the
randomness in the construction) every large non-repetitive set passes only fewH ’s.
This is formalized as Lemma 14.4 below.

Lemma 14.4 If val(L)≤ δ2/100, then, with high probability, for every non-repetitive set Sno-rep of
size at least δr , |H(Sno-rep)| ≤ 100n log |�|.

Note that the mapping Sno-rep *→ (I (Sno-rep), φ(Sno-rep)) is a bijection from the
collection of all non-repetitive sets to {(I , σI) | I ⊆ [r], σI ∈�UI }. Hence, the above
lemma is equivalent to the following.

Lemma 14.5 If val(L) ≤ δ2/100, then, with high probability, for every I ⊆ [r] of size at least δr
and every σI ∈�UI , |H(I , σI)| ≤ 100n log |�|.

Here we use the language in Lemma 14.5 instead of Lemma 14.4 as it will be
easier for us to reuse this lemma later. To prove the lemma, we first need to bound
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the probability that the assignment σI does not violate any constraint induced by a
random matching. More precisely, we will prove the following lemma.

Lemma 14.6 For any I ⊆ [r] of size at least δr and any σI ∈ �UI , if π : [r]→ [r] is a random
permutation of [r], then the probability that σI does not violate any constraint
in
⋃
i∈[r] Ni(M(i)) is at most (1− 0.1δ2)δr/8 where M(i) denotes the index that i

is matched with in the matching (π(1), π(2)), . . . , (π(r − 1), π(r)).

Proof Let p be any positive odd integer such that p ≤ δr/2 and let i1, . . . , ip−1 ∈ [r] be
any p − 1 distinct elements of [r]. We will first show that conditioned on π(1)=
i1, . . . , π(p − 1) = ip−1, the probability that σI violates a constraint induced by
π(p), π(p + 1) (i.e., in Nπ(p)(π(p + 1)) ∪Nπ(p+1)(π(p))) is at least 0.1δ2.

To see that this is true, let I≥p = I \ {i1, . . . , ip−1}. Since |I | ≥ δr , we have
|I≥p| = |I | − p + 1≥ δr/2+ 1. Consider the partial assignment σ≥p = σI |UI≥p . Since

val(L)≤ 0.01δ2, σ≥p can satisfy at most 0.01δ2|E| constraints. From Lemma 2.6, we
have, for every i �= j ∈ I≥p, the number of constraints between Ui and Uj is at least
|E|/r2. Hence, there are at most 0.01δ2r2 pairs of i < j ∈ I≥p such that σ≥p does
not violate any constraint between Ui and Uj . In other words, there are at least(|I≥p|

2

)− 0.01δ2r2≥ 0.1δ2r2 pairs i < j ∈ I≥p such that σ≥p violates some constraints
between Ui and Uj . Now, if π(p)= i and π(p + 1)= j for some such pair i , j , then
φ(Sno-rep) violates a constraint induced by π(p), π(p + 1). Thus, we have

Pr
[
σI doesn’t violate a constraint induced by π(p), π(p + 1)

∣∣∣ p−1∧
t=1

π(t)= it
]

≤ 1− 0.1δ2. (14.2)

LetEp denote the event that σI does not violate any constraints induced by π(p)
and π(p + 1). We can now bound the desired probability as follows.

Pr
[
σI

doesn′t violate any
constraint in

⋃
i∈[r] Ni(M(i))

]
≤ Pr

[ ∧
odd p∈[δr/2+1]

Ep

]

=
∏

odd p∈[δr/2+1]

Pr
[
Ep

∣∣∣ ∧
odd t∈[p−1]

Et

]

(from (14.2))≤
∏

odd p∈[δr/2+1]

(
1− 0.1δ2)

≤ (1− 0.1δ2)δr/4−1,

which is at most (1− 0.1δ2)δr/8 for sufficiently large r (i.e., r ≥ 8/δ).
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We can now prove our main lemma.

Proof Proof of Lemma 14.5. For a fixed I ⊆ [r] of size at least δr and a fixed σI ∈ �UI ,
Lemma 14.6 tells us that the probability that σI does not violate any constraint
induced by a single matching is at most (1− 0.1δ2)δr/8. Since for each H ⊆ Y the
construction picks �matchings at random, the probability that (I , σI) passes each
H is at most (1− 0.1δ2)δ�r/8. Recall that we pick �= 80/δ3; this gives the following
upper bound on the probability:

Pr[(I , σI) passes H ]≤ (1− 0.1δ2)δ�r/8= (1− 0.1δ2)10r/δ2

≤
(

1
1+ 0.1δ2

)10r/δ2

≤ 2−r (14.3)

where the last inequality comes from Bernoulli’s inequality.
Inequality (14.3) implies that the expected number of H ’s that (I , σI) passes

is less than 1. Since the matchings MH are independent for all H ’s, we can apply
Chernoff bound, which implies that

Pr
[∣∣H(I , σI

)∣∣≥ 100n log |�|
]
≤ 2−10n log |�| = |�|−10n.

Finally, note that there are at most 2r|�|n different (I , σI)’s. By union bound,
we have

Pr
[
∃I ⊆ [r], σI ∈�UI s.t. |I | ≥ δr AND |H(I , σI)| ≥ 100n log |�|

]
≤ (2r|�|n)(|�|−10n)
≤ |�|−8n,

which concludes the proof.

14.4.3.3 Putting Things Together
Proof Proof of Lemma 14.1. From Lemma 14.4, every non-repetitive set Sno-rep of size at

least δr , |H(Sno-rep)| ≤ 100n log |�|. Conditioned on this event happening, we will
show that VC-dim(U , C)≤ (1+ δ)r .

Consider any shattered set S ⊆ U . Lemma 14.2 implies that there is a non-
repetitive set Sno-rep of size |I (S)| such that |H(Sno-rep)| ≥ 2|S|−|I (S)|. Let us consider
two cases:

1. |I (S)| ≤ δr . Since H(Sno-rep)⊆ P(Y), we have |S| − |I (S)| ≤ |Y| = r . This im-
plies that |S| ≤ (1+ δ)r .

2. |I (S)| > δr . From our assumption, |H(Sno-rep)| ≤ 100n log |�|. Thus, |S| ≤
|I (S)| + log(100n log |�|) ≤ r + o(r); when r is sufficiently large, the latter
expression is at most (1+ δ)r .

Hence, for sufficiently large r , VC-dim(U , C)≤ (1+ δ)r with high probability.
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14.5 Inapproximability of Littlestone’s Dimension
We next proceed to Littlestone’s Dimension. The main theorem of this section is
stated below. Again, note that this theorem, together with Theorem 2.2, implies
Theorem 14.2.

Theorem 14.4 There exists ε > 0 such that there is a randomized reduction from a bi-regular
Label Cover instance L= (A, B , E , � , {πe}e∈E) to a ground set U and a concept
class C such that, if n � |A| + |B|, r �√n/ log n and k � 1010|E| log |�|/r2, then
the following conditions hold for every sufficiently large n.

. (Size) The reduction runs in time 2rk . |�|O(|E|/r) and |C|, |U | ≤ 2rk

.|�|O(|E|/r).
. (Completeness) If L is satisfiable, then L-dim(C , U)≥ 2rk.

. (Soundness) If val(L)≤ 0.001, then L-dim(C , U)≤ (2− ε)rk with high prob-
ability.

14.5.1 Why the VC Dimension Reduction Fails for Littlestone’s Dimension
It is tempting to think that, since our reduction from the previous section works
for the VC Dimension, it may also work for Littlestone’s Dimension. In fact, thanks
to Fact 2.2, completeness for that reduction even translates for free to Littlestone’s
Dimension. Alas, the soundness property does not hold. To see this, let us build a
depth-2r mistake tree for C , U , even when val(L) is small, as follows.

. We assign the test-selection elements to the first r levels of the tree, one
element per level. More specifically, for each s ∈ {0, 1}<r , we assign y|s|+1 to
s.

. For every string s ∈ {0, 1}r , the previous step of the construction gives us a
subset of Y corresponding to the path from root to s; this subset is simply
Hs = {yi ∈ Y | si = 1}. Let THs denote the set of vertices tested by this seedHs.
Let φs ∈ �V denote an assignment that satisfies all the constraints in THs .

Note that, since THs is of small size (only Õ(
√
n)), even if val(L) is small, φs is

still likely to exist (and we can decide whether it exists or not in time 2Õ(
√
n)).

We then construct the subtree rooted at s that corresponds to φs by
assigning each level of the subtree xi ,φs|Ui . Specifically, for each t ∈ {0, 1}≥r ,
we assign x|t |−r+1,φt≤r |U|t |−r+1

to node t of the tree.

It is not hard to see that the constructed tree is indeed a valid mistake tree. This
is because the path from root to each leaf l ∈ {0, 1}2r agrees withCI(l),Hl≤r ,φl≤r (where
I (l)= {i ∈ [r] | li = 1}).
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14.5.2 The Final Reduction
The above counterexample demonstrates the main difference between the two
dimensions: order does not matter in VC Dimension, but it does in Littlestone’s
Dimension. By moving the test-selection elements up the tree, the tests are chosen
before the assignments, which allows an adversary to “cheat” by picking different
assignments for different tests. We would like to prevent this, i.e., we would like
to make sure that, in the mistake tree, the upper levels of the tree are occupied
with the assignment elements whereas the lower levels are assigned test-selection
elements. As in the VC Dimension argument, our hope here is that, given such a
tree, we should be able to decode an assignment that passes many different tests.
Indeed, we will tailor our construction to achieve such property.

Recall that, if we use the same reduction as VC Dimension, then, in the com-
pleteness case, we can construct a mistake tree in which the first r layers consist
solely of assignment elements and the rest of the layers consist of only test-selection
elements. Observe that there is no need for different nodes on the r-th layer to
have subtrees composed of the same set of elements; the tree would still be valid
if we made each test-selection element only work with a specific s ∈ {0, 1}r and cre-
ated concepts accordingly. In other words, we can modify our construction so that
our test-selection elements are Y = {yI , i | I ⊆ [r], i ∈ [r]} and the concept class is
{CI ,H ,σH | I ⊆ [r], H ⊆ Y , σH ∈ �TH } where the condition that an assignment ele-
ment lies in CI ,H ,σH is the same as in the VC Dimension reduction, whereas for
yI ′ , i to be in CI ,H ,σH , we require not only that i ∈H but also that I = I ′. Intuitively,
this should help us, since each yI , i is now only in a small fraction (≤ 2−r) of con-
cepts; hence, one would hope that any subtree rooted at any yI , i cannot be too
deep, which would indeed imply that the test-selection elements cannot appear in
the first few layers of the tree.

Alas, for this modified reduction, it is not true that a subtree rooted at any
yI , i has small depth; specifically, we can bound the depth of a subtree yI , i by
the log of the number of concepts containing yI , i plus one (for the first layer).
Now, note that yI , i ∈ CI ′ ,H ,σH means that I ′ = I and i ∈H , but there still can be as
many as 2r−1 . |�||TH | = |�|O(|E|/r) such concepts. This gives an upper bound of r +
O(|E| log |�|/r) on the depth of the subtree rooted at yI , i. However, |E| log |�|/r =
�(
√
n log n)= ω(r); this bound is meaningless here since, even in the complete-

ness case, the depth of the mistake tree is only 2r .
Fortunately, this bound is not useless after all: if we can keep this bound but

make the intended tree depth much larger than |E| log |�|/r , then the bound will
indeed imply that no yI , i-rooted tree is deep. To this end, our reduction will have
one more parameter k =�(|E| log |�|/r) where �(.) hides a large constant and
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the intended tree will have depth 2rk in the completeness case; the top half of
the tree (first rk layers) will again consist of assignment elements and the rest
of the tree comprises the test-selection elements. The rough idea is to make k
“copies” of each element: the assignment elements will now be {xi ,σi ,j | i ∈ [r], σi ∈
�Ui , j ∈ [k]} and the test-selection elements will be {yI , i ,j | I ⊆ [r]× [k], j ∈ [k]}.
The concept class can then be defined as {CI ,H ,σH | I ⊆ [r]× [k],H ⊆ [r]× [k], σH ∈
�TH } naturally, i.e.,H is used as the seed to pick the test set TH , yI ′ , i ,j ∈ CI ,H ,σH iff
I ′ = I and (i , j) ∈H , whereas xi ,σi ,j ∈ CI ,H ,σH iff (i , j) ∈ I and σi|(I ,σI ) = σH |(I ,σI ).
For this concept class, we can again bound the depth of a yI , i-rooted tree to be
rk +O(|E| log |�|/r); this time, however, rk is much larger than |E| log |�|/r , so
this bound is no more than, say, 1.001rk. This is indeed the desired bound, since
this means that, for any depth-1.999rk mistake tree, the first 0.998rk layers must
consist solely of assignment elements.

Unfortunately, the introduction of copies in turn introduces another technical
challenge: it is not true any more that a partial assignment to a large set only passes a
few tests w.h.p. (i.e., an analogue of Lemma 14.5 does not hold). By Inequality (14.3),
each H is passed with probability at most 2−r , but now we want to take a union
bound, and there are 2rk& 2r different H ’s. To circumvent this, we will define a
map τ : P([r]× [k])→ P([r]) and use τ(H) to select the test instead ofH itself. The
map τ we use in the construction is the threshold projection where i is included inH
if and only if, for at least half of j ∈ [k],H contains (i , j). To motivate our choice of
τ , recall that our overall proof approach is to first find a node that corresponds to an
assignment to a large subset of the Label Cover instance, then argue that it can pass
only a few tests, which we hope would imply that the subtree rooted there cannot
be too deep. For this implication to be true, we need the following to also hold:
for any small subset H⊆ P([r]) of τ(H)’s, we have that L-dim(τ−1(H), [r]× [k]) is
small. This property indeed holds for our choice of τ (see Lemma 14.13).

With all the moving parts explained, we state the full reduction formally in
Algorithm 14.2.

Similar to our VC Dimension proof, we will use the following notation:

. For every i ∈ [r], let Xi � {xi ,σi ,j | σi ∈�Ui , j ∈ [k]}; we refer to these elements
as the i-assignment elements. Moreover, for every (i , j) ∈ [r]× [k], let Xi ,j �
{xi ,σi ,j | σi ∈ �Ui}; we refer to these elements as the (i , j)-assignment ele-
ments.

. For every S ⊆ U , let I (S)= {i ∈ [r] | S ∩Xi �= ∅} and IJ (S)= {(i , j) ∈ [r]× [k] |
S ∩ Xi ,j �= ∅}.

. A set S ⊆ X is non-repetitive if |S ∩ Xi ,j | ≤ 1 for all (i , j) ∈ [r]× [k].
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Algorithm 14.2 Reduction from Label Cover to Littlestone’s Dimension

Input: A bi-regular Label Cover instance L= (A, B , E , � , {πe}e∈E).
Output: A ground set U and a concept class C.
The procedure to generate (U , C) works as follows:
1. Let r , U1, . . . , Ur , N be defined in the same manner as in Reduction 14.1 and

let k � 1010|E| log |�|/r2.
2. The universe U consists of two types of elements, as described below.

(a) Assignment elements: For every i ∈ [r], every partial assignment σi ∈�Ui , and
every j ∈ [k], there is an assignment element xi ,σi ,j corresponding to it. Let
X denote all the assignment elements, i.e., X = {xi ,σi ,j | i ∈ [r], σi ∈�Ui ,
j ∈ [k]}.

(b) Test-selection elements: There are rk(2rk) test-selection elements, which we will
call yI , i ,j for every i ∈ [r], j ∈ [k], I ⊆ [r]× [k]. Let Y denote the set of all
test-selection elements. Let Yi denote {yI , i ,j | I ⊆ [r]× [k], j ∈ [k]}. We call the
elements of Yi i-test-selection elements.

3. The concepts in C are defined by the following procedure.
(a) Let �� 1000 be the number of matchings to be tested.

(b) For each H̃ ⊆ [r], we randomly select � permutations π(1)
H̃

, . . . , π(�)
H̃

: [r]→ [r];

this gives us �matchings (i.e., the t -th matching is
(
π
(t)

H̃
(1), π(t)

H̃
(2)
)

, . . . ,(
π
(t)

H̃
(r − 1), π(t)

H̃
(r)
)

). Denote the set of elements that i is matched with

in the matchings byMH̃(i).Let TH =
⋃
i Ni(MH̃(i)).

(c) Let τ : P([r]× [k])→ P([r]) denote the threshold projection operation where
each i ∈ [r] is included in τ(H) if and only if H contains at least half of the
i-test-selection elements, i.e., τ(H)= {i ∈ [r] | |H ∩ Yi| ≥ k/2}.

(d) For every I ⊆ [r]× [k], H ⊆ [r]× [k] and for every partial assignment
στ(H) ∈�Tτ(H) that does not violate any constraints, we create a concept
CI ,H ,στ(H) such that each xi ,σi ,j ∈ X is included in CI ,H ,στ(H) if and only if
(i , j) ∈ I and σi is consistent with στ(H), i.e., σi|Ni(Mτ(H)(i)) = στ(H)|Ni(Mτ(H)(i)),
whereas each yI ′ , i ,j ∈ Y is included in CI ,H ,στ(H) if and only if (i , j) ∈H
and I ′ = I .

. We say that S passes H̃ if the following two conditions hold:

For every i ∈ [r] such that S ∩ Xi �= ∅, all i-assignment elements of S
are consistent on TH̃ |Ui , i.e., for every (i , σi , j), (i , σ

′
i

, j ′) ∈ S, we have
σi|Ui = σ ′i |Ui .
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The canonically induced assignment on TH̃ does not violate any con-
straint (note that the previous condition implies that such assign-
ment is unique).

We use H(S) to denote the collection of all seeds H̃ ⊆ [r] that S passes.

We also use the following notation for mistake trees:

. For any subset S ⊆ U and any function ρ : S→ {0, 1}, let C[ρ] � {C ∈ C | ∀a ∈
S , a ∈ C⇔ ρ(a)= 1} be the collection of all concepts that agree with ρ on S.
We sometimes abuse the notation and write C[S] to denote the collection of
all the concepts that contain S, i.e., C[S]= {C ∈ C | S ⊆ C}.

. For any binary string s, let pre(s)� {∅, s≤1, . . . , s≤|s|−1} denote the set of all
proper prefixes of s.

. For any depth-d mistake tree T , let vT ,s denote the element assigned to
the node s ∈ {0, 1}≤d , and let PT ,s � {vT ,s′ | s′ ∈ pre(s)} denote the set of
all elements appearing from the path from root to s (excluding s itself).
Moreover, let ρT ,s :PT ,s→ {0, 1} be the function corresponding to the path
from root to s, i.e., ρT ,s(s

′)= s|s′|+1 for every s′ ∈ pre(s).

Output Size of the Reduction The output size of the reduction follows immedi-
ately from a similar argument as in the VC Dimension reduction. The only differ-
ence here is that there are 2rk choices for I and H , instead of 2r choices as in the
previous construction.

Completeness. If L has a satisfying assignment σ ∗ ∈ �V , we can construct a
depth-rk mistake T as follows. For i ∈ [r], j ∈ [k], we assign xi ,σ ∗

i
,j to every node

in the ((i − 1)k + j)-th layer of T . Note that we have so far assigned every node
in the first rk layers. For the rest of the vertices, if s lies in layer rk + (i − 1)k + j ,
then we assign y

I (ρ−1
T , s
(1)), i ,j to it. It is clear that, for a leaf s ∈ {0, 1}rk, the concept

C
I(ρ−1

T , s
(1)),HT , s ,σ ∗ agrees with the path from root to s where HT ,s is defined as{

(i , j) | y
I (ρ−1

T , s
(1)), i ,j ∈ ρ−1

T ,s(1)
}

. Hence, L-dim(C , U)≥ 2rk.

14.5.3 Soundness
Next, we will prove the soundness of our reduction, stated more precisely below.
Note that this lemma, together with completeness and output size properties we
argue above, implies Theorem 14.4 with ε = 0.001.

Lemma 14.7 Let (C , U)be the output from the reduction in Algorithm 14.2 on input L. If val(L)≤
0.001, then L-dim(C , U)≤ 1.999rk with high probability.



14.5 Inapproximability of Littlestone’s Dimension 205

Roughly speaking, the overall strategy of our proof of Lemma 14.7 is as follows:

1. First, we will argue that any subtree rooted at any test-selection element must
be shallow (of depth≤ 1.001rk). This means that, if we have a depth-1.999rk
mistake tree, then the first 0.998rk levels must be assigned solely assignment
elements.

2. We then argue that, in this 0.998rk-level mistake tree of assignment ele-
ments, we can always extract a leaf s such that the path from root to s in-
dicates inclusion of a large non-repetitive set. In other words, the path to s
can be decoded into a (partial) assignment for the Label Cover instance L.

3. Let the leaf from the previous step be s and the non-repetitive set be Sno-rep.
Our goal now is to show that the subtree rooted as s must have small depth.
We start working toward this by showing that, with high probability, there
are few tests that agree with Sno-rep. This is analogous to Part II of the VC
Dimension proof.

4. With the previous steps in mind, we only need to argue that, when |H(Sno-rep)|
is small, the Littlestone’s Dimension of all the concepts that contain Sno-rep

(i.e., L-dim(C[Sno-rep], U)) is small. Thanks to Fact 2.3, it is enough for us
to bound L-dim(C[Sno-rep], X ) and L-dim(C[Sno-rep], Y) separately. For the
former, our technique from the second step also gives us the desired bound;
for the latter, we prove that L-dim(C[Sno-rep], Y) is small by designing an
algorithm that provides correct predictions on a constant fraction of the
elements in Y.

Let us now proceed to the details of the proofs.

14.5.3.1 Part I: Subtree of a Test-Selection Assignment Is Shallow
Lemma 14.8 For any yI , i ,j ∈ Y, L-dim(C[{yI , i ,j}], U)≤ rk + (4|E|�/r) log |�| ≤ 1.001rk.

Note that the above lemma implies that, in any mistake tree, the depth of the
subtree rooted at any vertex s assigned to some yI , i ,j ∈ Y is at most 1+ 1.001rk.
This is because every concept that agrees with the path from the root to s must be
in C[{yI , i ,j}], which has depth at most 1.001rk.

Proof Proof of Lemma 14.8. Consider any CI ′ ,H ,στ(H) ∈ C[{yI , i ,j}], U). Since yI , i ,j ∈
CI ′ ,H ,στ(H), we have I = I ′. Moreover, from Lemma 2.6, we know that

|Ni(Mτ(H)(i))| ≤ 4|E|�/r2, which implies that |Tτ(H)| ≤ 4|E|�/r . This means that
there are only at most |�|4|E|�/r choices of στ(H). Combined with the fact that there
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are only 2rk choices ofH , we have |C[{yI , i ,j}]| ≤ 2rk . |�|4|E|�/r . Fact 2.2 then implies
the lemma.

14.5.3.2 Part II: Every Deep Mistake Tree Contains a Non-Repetitive Set
The goal of this part of the proof is to show that, for mistake tree X , C of depth
slightly less than rk, there exists a leaf s such that the corresponding path from
root to s indicates an inclusion of a large non-repetitive set; in our notation, this
means that we would like to identify a leaf s such that IJ (ρ−1

T ,s(1)) is large. Since
we will also need a similar bound later in the proof, we will prove the following
lemma, which is a generalization of the stated goal that works even for the concept
class C[Sno-rep] for any non-repetitive Sno-rep. To get back the desired bound, we can
simply set Sno-rep = ∅.

Lemma 14.9 For any non-repetitive set Sno-rep and any depth-d mistake tree T of X , C[Sno-rep],
there exists a leaf s ∈ {0, 1}d such that |IJ (ρ−1

T ,s(1)) \ IJ (Sno-rep)| ≥ d − r .

The proof of this lemma is a double counting argument where we count a
specific class of leaves in two ways, which ultimately leads to the above bound.
The leaves that we focus on are the leaves s ∈ {0, 1}d such that, for every (i , j)
such that an (i , j)-assignment element appears in the path from root to s but
not in Sno-rep, the first appearance of (i , j)-assignment element in the path is
included. In other words, for every (i , j) ∈ IJ (PT ,s) \ IJ (Sno-rep), if we define ui ,j �
inf s′∈pre(s),vT , s′∈Xi , j |s′|, then sui , j must be equal to 1. We call these leaves the good
leaves. Denote the set of good leaves of T by GT ,Sno-rep.

Our first way of counting is the following lemma. Informally, it asserts that
different leaves agree with different sets H̃ ⊆ [r]. This can be thought of as an
analogue of Lemma 14.3 in our proof for the VC Dimension. Note that this lemma
immediately gives an upper bound of 2r on |GT ,Sno-rep|.

Lemma 14.10 For any depth-d mistake tree T of X , C[Sno-rep] and any different s1, s2 ∈ GT ,Sno-rep,
if CI1,H1,σ1

agrees with s1 and CI2,H2,σ2
agrees with s2 for some I1, I2, H1, H2, σ1, σ2,

then τ(H1) �= τ(H2).

Proof Suppose for the sake of contradiction that there exist s1 �= s2 ∈ GT ,Sno-rep,H1,H2, I1,
I2, σ1, σ2 such that CI1,H1,σ1

and CI2,H2,σ2
agree with s1 and s2 respectively, and

τ(H1)= τ(H2). Let s be the common ancestor of s1, s2, i.e., s is the longest string
in pre(s1) ∩ pre(s2). Assume w.l.o.g. that (s1)|s|+1= 0 and (s2)|s|+1= 1. Consider the
node vT ,s in tree T where the paths to s1, s2 split; suppose that this is xi ,σi ,j .
Therefore xi ,σi ,j ∈ CI2,H2,σ2

\ CI1,H1,σ1
.
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We now argue that there is some xi ,σ ′
i

,j (with the same i , j but a different
assignment σ ′

i
) that is in both concepts, i.e., xi ,σ ′

i
,j ∈ CI2,H2,σ2

∩ CI1,H1,σ1
. We do

this by considering two cases:

. If (i , j) ∈ IJ (Sno-rep), then there is xi ,σ ′
i

,j ∈ Sno-rep ⊆ CI1,H1,σ1
, CI2,H2,σ2

for

some σ ′
i
∈�Ui .

. Suppose that (i , j) �∈ IJ (Sno-rep). Since s1 is a good leaf, there is some t ∈
pre(s) such that vT , t = xi ,σ ′

i
,j for some σ ′

i
∈�Ui and t is included by the path

(i.e., s|t |+1= 1). This also implies that xi ,σ ′
i

,j is in both CI1,H1,σ1
and CI2,H2,σ2

.

Now, since both xi ,σi ,j and xi ,σ ′
i

,j are in the concept CI2,H2,σ2
, we have (i , j) ∈ I2

and

σi
∣∣
Ni
(
Mτ(H1)

)= σ2

∣∣
Ni
(
Mτ(H1)

)= σ ′
i

∣∣
Ni
(
Mτ(H1)

). (14.4)

On the other hand, since CI1,H1,σ1
contains xi ,σ ′

i
,j but not xi ,σi ,j , we have (i , j) ∈ I1

and

σi
∣∣
Ni
(
Mτ(H2)

) �= σ1

∣∣
Ni
(
Mτ(H2)

)= σ ′
i

∣∣
Ni
(
Mτ(H2)

), (14.5)

which contradicts (14.4) since τ(H1)= τ(H2).

Next, we will present another counting argument that gives a lower bound on
the number of good leaves, which, together with Lemma 14.10, yields the desired
bound.

Proof Proof of Lemma 14.9. For any depth-d mistake tree T of C[Sno-rep], X , let us
consider the following procedure, which recursively assigns a weight λs to each
node s in the tree. At the end of the procedure, all the weight will be propagated
from the root to good leaves.

1. For every non-root node s ∈ {0, 1}≥1, set λs← 0. For root s = ∅, let λ∅ ← 2d .

2. While there is an internal node s ∈ {0, 1}<d such that λs > 0, do the following:

1. Suppose that vs = xi ,σi ,j for some i ∈ [r], σi ∈�Ui and j ∈ [k].

2. If so far no (i , j)-element has appeared in the path or in Sno-rep, i.e.,
(i , j) �∈ IJ (PT ,s) ∪ IJ (Sno-rep), then λs1← λs. Otherwise, set λs0 =
λs1= λs/2.

3. Set λs← 0.

The following observations are immediate from the construction:

. The total of λ’s over all the tree,
∑
s∈{0, 1}≤d λd , always remains 2d .
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. At the end of the procedure, for every s ∈ {0, 1}≤d , λs �= 0 if and only if s ∈
GT ,Sno-rep.

. If s ∈ GT ,Sno-rep, then λs = 2|IJ (ρ
−1
T , s
(1))\IJ (Sno-rep)| at the end of the execution.

Note that the last observation comes from the fact that λ always get divided in half
when moving down one level of the tree unless we encounter an (i , j)-assignment
element for some i , j that has never appeared in the path or in Sno-rep before. For
any good leaf s, the set of such (i , j) is exactly the set IJ (ρ−1

T ,s(1)) \ IJ (Sno-rep).

As a result, we have 2d =∑s∈GT
2|IJ (ρ

−1
T , s
(1))\IJ (Sno-rep)|. Since Lemma 14.10 im-

plies that |GT ,S| ≤ 2r , we can conclude that there exists s ∈ GT ,Sno-rep such that
|IJ (ρ−1

T ,s(1)) \ IJ (Sno-rep)| ≥ d − r as desired.

14.5.3.3 Part III: No Large Non-Repetitive Set Passes Many Tests
The main lemma of this subsection is the following, which is analogous to
Lemma 14.4.

Lemma 14.11 If val(L)≤ 0.001, then, with high probability, for every non-repetitive set Sno-rep of
size at least 0.99rk, |H(Sno-rep)| ≤ 100n log |�|.

Proof For every I ⊆ [r], let UI �
⋃
i∈I Ui. For every σI ∈ �UI and every H̃ ⊆ Y, we say

that (I , σI) passes H̃ if σI does not violate any constraint in TH̃ . Note that this
definition and the way the test is generated in the reduction is the same as that
of the VC Dimension reduction. Hence, if we can apply Lemma 14.5 with δ =
0.99, this implies the following: with high probability, for every I ⊆ [r] of size at
least 0.99r and every σI ∈�UI , |H(I , σI)| ≤ 100n log |�|. Conditioned on this event
happening, we will show that, for every non-repetitive set Sno-rep of size at least
0.99rk, |H(Sno-rep)| ≤ 100n log |�|.

Consider any non-repetitive set Sno-rep of size 0.99rk. Let σI (Sno-rep) be an assign-
ment on UI(Sno-rep) such that, for each i ∈ I (Sno-rep), we pick one xi ,σi ,j ∈ Sno-rep

(if there is more than one such x, pick one arbitrarily) and let σI (Sno-rep)|Ui =
σi. It is obvious that H(Sno-rep) ⊆H(I (Sno-rep), σI (Sno-rep)). Since Sno-rep is non-
repetitive and of size at least 0.99rk, we have |I (Sno-rep)| ≥ 0.99r , which means
that |H(I (Sno-rep), σI (Sno-rep))| ≤ 100n log |�| as desired.

14.5.3.4 Part IV: A Subtree Containing Sno-rep Must Be Shallow
In this part, we will show that, if we restrict ourselves to only concepts that contain
some non-repetitive set Sno-rep that passes few tests, then the Littlestone’s Dimen-
sion of this restricted concept class is small. Therefore when we build a tree for the
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whole concept class C, if a path from root to some node indicates an inclusion of a
non-repetitive set that passes few tests, then the subtree rooted at this node must
be shallow.

Lemma 14.12 For every non-repetitive set Sno-rep,

L-dim(C[Sno-rep], U)≤ 1.75rk − |Sno-rep| + r + 1000k
√
r log(|H(Sno-rep)| + 1).

We prove the above lemma by bounding L-dim(C[Sno-rep], X ) and
L-dim(C[Sno-rep], Y) separately, and combining them via Fact 2.3. First, we can
bound L-dim(C[Sno-rep], X ) easily by applying Lemma 14.9 coupled with the fact
that |IJ (Sno-rep)| = |Sno-rep| for every non-repetitive Sno-rep. This gives the following
corollary.

Corollary 14.1 For every non-repetitive set Sno-rep,

L-dim(C[Sno-rep], X )≤ rk − |Sno-rep| + r .

We will next prove the following bound on L-dim(C[Sno-rep], Y). Note that Corol-
lary 14.1, Lemma 14.13, and Fact 2.3 immediately imply Lemma 14.12.

Lemma 14.13 For every non-repetitive set Sno-rep,

L-dim(C[Sno-rep], Y)≤ 0.75rk + 500k
√
r log(|H(Sno-rep)| + 1).

The overall outline of the proof of Lemma 14.13 is that we will design a predic-
tion algorithm whose mistake bound is at most 0.75rk + 1000k

√
r log |H(Sno-rep)|.

Once we design this algorithm, Theorem 2.3 immediately implies Lemma 14.13. To
define our algorithm, we will need the following lemma, which is a general state-
ment that says that, for a small collection ofH ’s, there is some H̃ ∗ ⊂ [r] that agrees
with almost half of every H in the collection.

Lemma 14.14 Let H⊆ P([r]) be any collection of subsets of [r]; there exists H̃ ∗ ⊆ [r] such that, for
every H̃ ∈H, |H̃ ∗�H̃ | ≤ 0.5r + 1000

√
r log(|H| + 1), where� denotes the symmet-

ric difference between two sets.

Proof We use a simple probabilistic method to prove this lemma. Let H̃ r be a random
subset of [r] (i.e., each i ∈ [r] is included independently with probability 0.5). We
will show that, with non-zero probability, |H̃ r�H̃ | ≤ 0.5r + 1000

√
r log(|H| + 1) for

all H̃ ∈H, which immediately implies that a desired H̃ ∗ exists.
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Fix H̃ ∈H. Observe that |H̃ r�H̃ | can be written as
∑
i∈[r] 1[i ∈ (H̃ r�H̃ )]. For

each i, 1[i ∈ (H̃ r�H̃ )] is a 0, 1 random variable with mean 0.5 independent of other
i′ ∈ [r]. Applying Chernoff bound here yields

Pr
[∣∣H̃ r�H̃ ∣∣> 0.5r + 1000

√
r log(

∣∣cH ∣∣+1)
]
≤ 2− log2(|H|+1) ≤ 1

|H| + 1
.

Hence, by union bound, we have

Pr
[
∃H̃ ∈H,

∣∣H̃ r�H̃ ∣∣> 0.5r + 1000
√
r log(

∣∣cH ∣∣+1)
]
≤ |H|
|H| + 1

< 1.

In other words, |H̃ r�H̃ | ≤ 0.5r + 1000
√
r log(|H| + 1) for all H̃ ∈H with non-zero

probability as desired.

We also need the following observation, which is an analogue of Observa-
tion 14.1 in the VC Dimension proof; it follows immediately from definition of
H(S).

Observation 14.2 If a non-repetitive set Sno-rep is a subset of some concept CI ,H ,στ(H), then τ(H) ∈
H(Sno-rep).

With Lemma 14.14 and Observation 14.2 in place, we are now ready to prove
Lemma 14.13.

Proof Proof of Lemma 14.13. Let H̃ ∗ ⊆ [r] be the set guaranteed by applying
Lemma 14.14 with H=H(Sno-rep). Let H ∗ � H̃ ∗ × [k].

Our prediction algorithm will be very simple: it always predicts according toH ∗;
i.e., on an input2 y ∈ Y, it outputs 1[y ∈H ∗]. Consider any sequence (y1, h1), . . . ,
(yw , hw) that agrees with a concept CI ,H ,στ(H) ∈ C[Sno-rep]. Observe that the number
of incorrect predictions of our algorithm is at most |H ∗�H |.

Since CI ,H ,στ(H) ∈ C[Sno-rep], Observation 14.2 implies that τ(H) ∈H(Sno-rep).

This means that |τ(H)�H̃ ∗| ≤ 0.5r + 1000
√
r log(|H| + 1). Now, let us consider

each i ∈ [r] \ (τ (H)�H̃ ∗). Suppose that i ∈ τ(H) ∩ H̃ ∗. Since i ∈ τ(H), at least k/2
elements of Yi are in H and, since i ∈ H̃ ∗, we have Yi ⊆ H ∗. This implies that
|(H ∗�H) ∩ Yi| ≤ k/2. A similar bound can also be derived when i �∈ τ(H) ∩ H̃ ∗. As
a result, we have

2. We assume w.l.o.g. that input elements are distinct; if an element appears multiple times, we
know the correct answer from its first appearance and can always correctly predict it afterward.
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∣∣H ∗�H ∣∣=∑
i∈[r]

∣∣(H ∗�H) ∩ Yi∣∣
=

∑
i∈τ(H)�H̃ ∗

∣∣(H ∗�H) ∩ Yi∣∣+ ∑
i∈[r]\(τ (H)�H̃ ∗)

∣∣(H ∗�H) ∩ Yi∣∣
≤ (∣∣τ(H)�H̃ ∗∣∣)(k)+ (r − ∣∣τ(H)�H̃ ∗∣∣)(k/2)

≤ 0.75rk + 500k
√
r log(

∣∣H∣∣+1),

concluding our proof of Lemma 14.13.

14.5.3.5 Putting Things Together
Proof Proof of Lemma 14.7. Suppose for the sake of contradiction that val(L) ≤ 0.001

but L-dim(C , U)≥ 1.999rk. Consider any depth-1.999rkmistake tree T of C , U . From
Lemma 14.8, we know that no test-selection element is assigned to any node in the
first 1.999rk − 1.001rk − 1≥ 0.997rk levels. In other words, the tree induced by the
first 0.997rk levels is simply a mistake tree of C , X . By Lemma 14.9 with Sno-rep = ∅,
there exists s ∈ {0, 1}0.997rk such that |IJ (ρ−1

T ,s(1))| ≥ 0.997rk − r ≥ 0.996rk.

Since |IJ (ρ−1
T ,s(1))| ≥ 0.996rk, there exists a non-repetitive set Sno-rep ⊆ ρ−1

T ,s(1)
of size 0.996rk. Consider the subtree rooted at s. This is a mistake tree of C[ρT ,s], U
of depth 1.002rk. Since Sno-rep ⊆ ρ−1

T ,s(1), we have C[ρT ,s]⊆ C[Sno-rep]. However, this
implies

1.002rk ≤ L-dim(C[ρT ,s], U)

≤ L-dim(C[Sno-rep], U)

(from Lemma 14.12)≤ 1.75rk − 0.996rk + r + 100k
√
r log(|H(Sno-rep)| + 1)

(from Lemma 14.11)≤ 0.754rk + r + 100k
√
r log(100n log |�| + 1)

= 0.754rk + o(rk),
which is a contradiction when r is sufficiently large.

14.6 Quasi-polynomial Algorithm for Littlestone’s Dimension

Theorem 14.5 Quasi-polynomial time algorithm for Littlestone’s dimension. Littlestone’s Di-
mension can be computed (exactly) in time

O
(
|C| . (2|U |)L-dim(C ,U)

)
≤ |C| . |U |O(log |C|).
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Proof We prove by induction on L-dim(C , U). Assume by induction that the bound on the
running time holds for all concept classes of smaller dimension. Enumerate over
all possible roots x ∈ U for the mistake tree. For each root x, partition C into Cx=1,
concepts that include x, and Cx=0 (this takes time O(|C|)). Now any mistake tree
rooted at x has depth exactly 1+min{L-dim(Cx=0, U), L-dim(Cx=1, U)}. We attempt
to compute both L-dim(Cx=0, U), L-dim(Cx=1, U) until one of the computations ter-
minates. Since one of Cx=0, Cx=1 has a lower Littlestone’s Dimension, it follows by
our induction hypothesis that we can compute it in timeO(|C| . (2|U |)L-dim(C ,U)−1).
Multiplying by 2 because we’re computing for two classes and by U because we’re
performing this computation for every root x, the total upper bound on the running
time follows.



15Signaling
Many classical questions in economics involve extracting information from strate-
gic agents. Lately, there has been growing interest within algorithmic game theory
in signaling: the study of how to reveal information to strategic agents (see, e.g.,
[Cheng et al. 2015, Dughmi 2014, Dughmi et al. 2013, Emek et al. 2014, Miltersen
and Sheffet 2012], and references therein). Signaling has been studied in many
interesting economic and game theoretic settings. Among them, Zero-Sum Sig-
naling proposed by Dughmi [2014] stands out as a canonical problem that cleanly
captures the computational nature of signaling. In particular, focusing on zero-sum
games clears away issues of equilibrium selection and computational tractability
of finding an equilibrium.

Definition 15.1 Zero-Sum Signaling [Dughmi 2014]. Alice and Bob play a Bayesian zero-sum
game where the payoff matrixM is drawn from a publicly known prior. The signaler
Sam privately observes the state of nature (i.e., the payoff matrix), and then publicly
broadcasts a signal ϕ(M) to both Alice and Bob. Alice and Bob Bayesian-update
their priors according to ϕ(M)’s and play the Nash equilibrium of the expected
game; but they receive payoffs according to the true M . Sam’s goal is to design
an efficient signaling scheme ϕ (a function from payoff matrices to strings) that
maximizes Alice’s expected payoff.

Dughmi’s main result proves that assuming the hardness of the Planted
Clique problem, there is no additive FPTAS for Zero-Sum Signaling. The main
open question left by Dughmi [2014] is whether there exists an additive PTAS. Here
we answer this question in the negative: we prove that assuming the Exponential
Time Hypothesis (ETH), obtaining an additive-ε-approximation (for some constant
ε > 0) requires quasi-polynomial time

(
n	̃(lg n)

)
. This result is tight thanks to a

recent quasi-polynomial
(
n

lg n
poly(ε)

)
time algorithm by Cheng et al. [2015]. Another im-

portant advantage of our result is that it replaces the hardness of Planted Clique
with a more believable worst-case hardness assumption (see, e.g., the discussion
in Braverman et al. [2015]).
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Theorem 15.1 There exists a constant ε > 0, such that assuming ETH, approximating Zero-Sum
Signaling with payoffs in [−1, 1] to within an additive ε requires time n	̃(lg n).

NP-Hard Variants
This chapter is based on Rubinstein [2017b], where we also proved two NP-hardness
of approximation results: first, we show that obtaining a multiplicative approxima-
tion is NP-hard. Then we introduce a new variant of the signaling problem where
the signaler may lie, i.e., he commits to one signaling scheme, but uses a different
scheme. In the lying variant, even an additive 1− 2−	(n)-approximation is NP-hard.

Concurrent Work of Bhaskar, et al.
In independent concurrent work by Bhaskar et al. [2016], quasi-polynomial time
hardness for additive approximation of Zero-Sum Signaling was obtained as-
suming the hardness of the Planted Clique problem (among other interesting re-
sults1 about network routing games and security games). Although we are not aware
of a formal reduction, hardness of Planted Clique is a qualitatively stronger as-
sumption than ETH in the sense that it requires average case instances to be hard.
Hence, in this respect, our result is stronger.

15.1 Techniques
Our starting point for this reduction is “birthday repetition.” We reduce from a 2-
ary constraint satisfaction problem (2-CSP) over n variables to a distribution over
N zero-sum N ×N games, with N = 2�(

√
n). Alice and Bob’s strategies correspond

to assignments to tuples of
√
n variables. By the birthday paradox, the two

√
n-

tuples chosen by Alice and Bob share a constraint with constant probability. If a
constant fraction of the constraints are unsatisfiable, Alice’s payoff will suffer with
constant probability. Assuming ETH, approximating the value of the CSP requires
time 2	̃(n) =N	̃(lg N).

The Challenge. The main difficulty is that once the signal is public, the zero-sum
game is tractable. Thus we would like to force the signaling scheme to output a sat-
isfying assignment. Furthermore, if the scheme would output partial assignments

1. For zero-sum games, Bhaskar et al. [2016] also rule out an additive FPTAS assuming P �=NP. This
result follows immediately from the NP-hardness for multiplicative approximation in Rubinstein
[2017b].
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on different states of nature (aka different zero-sum games in the support), it is
not clear how to check consistency between different signals. Thus we would like
each signal to contain an entire satisfying assignment. The optimal scheme may
be very complicated and even require randomization, yet by an application of the
Caratheodory Theorem the number of signals is, wlog, bounded by the number of
states of nature [Dughmi 2014]. If the state of nature can be described using only
lg N = �̃(√n) bits.2 how can we force the scheme to output an entire assignment?

To overcome this obstacle, we let the state of nature contain a partial assign-
ment to a random

√
n-tuple of variables. We then check the consistency of Alice’s

assignment with nature’s assignment, Bob’s assignment with nature’s assignment,
and Alice and Bob’s assignments with each other; let τA,Z , τB ,Z , τA,B denote the
outcomes of those consistency checks, respectively. Alice’s payoff is given by:

U = δτA,Z − δ2τB ,Z + δ3τA,B

for some small constant δ ∈ (0, 1). Now, both Alice and Bob want to maximize their
chances of being consistent with nature’s partial assignment, and the signaling
scheme gains by maximizing τA,B.

Of course, if nature outputs a random assignment, we have no reason to expect
that it can be completed to a full satisfying assignment. Instead, the state of nature
consists ofN assignments, and the signaling scheme helps Alice and Bob play with
the assignment that can be completed.

15.2 Near-Optimal Signaling Is Hard

Theorem 15.2 There exists a constant ε > 0 such that, assuming ETH, approximating Zero-Sum
Signaling with payoffs in [−1, 1] to within an additive ε requires time n	̃(lg n).

Construction Overview
Our reduction begins with a 2CSPψ over n variables from alphabet�. We partition
the variables into n/k disjoint subsets {S1, . . . , Sn/k}, each of size at most 2k for
k =√n such that every two subsets share at most a constant number of constraints.

Nature chooses a random subset Si from the partition, a random assignment
-u ∈�2k to the variables in Si, and an auxiliary vector b̂ ∈ {0, 1}�×[2k]. As mentioned
earlier in this chapter, -umay not correspond to any satisfying assignment. Alice and

2. In other words,N , the final size of the reduction, is an upper bound on the number of states of
nature.
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Bob participate in one of |�|2k subgames; for each -v ∈�2k, there is a corresponding
subgame where all the assignments are XOR-ed with -v. The goal of the auxiliary
vector b̂ is to force Alice and Bob to participate in the right subgame, i.e., the one
where the XOR of -v and -u can be completed to a full satisfying assignment. In
particular, the optimum signaling scheme reveals partial information about b̂ in
a way that guides Alice and Bob to participate in the right subgame. The scheme
also outputs the full satisfying assignment, but reveals no information about the
subset Si chosen by nature.

Each player has
(|�|2k × 2

)× (n/k × ( n/k
n/2k

)× |�|2k)= 2�(
√
n) strategies. The first

|�|2k strategies correspond to a�-ary vector -v that the scheme will choose after ob-
serving the random input. The signaling scheme forces both players to play (w.h.p.)
the strategy corresponding to -v by controlling the information that corresponds to
the next 2 strategies. Namely, for each -v′ ∈ �2k, there is a random bit b(-v′) such
that each player receives a payoff of 1 if they play (-v′, b(-v′)) and 0 for (-v′, 1− b(-v′)).
The b’s are part of the state of nature, and the optimal signaling scheme will reveal
only the bit corresponding to the special -v. Since there are |�|2k bits, nature cannot
choose them independently, as that would require 2|�|2k states of nature. Instead
we construct a pairwise independent distribution.

The next n/k strategies correspond to the choice of a subset Si from the speci-
fied partition of variables. The

(
n/k
n/2k

)
strategies that follow correspond to a gadget

due to Althofer [1994] whereby each player forces the other player to randomize
(approximately) uniformly over the choice of subset.

The last |�|2k strategies correspond to an assignment to Si. The assignment to
each Si is XOR-ed entry-wise with -v. Then, the players are paid according to checks
of consistency between their assignments, and a random assignment to a random
Si picked by nature. (The scheme chooses -v so that nature’s random assignment is
part of a globally satisfying assignment.) Each player wants to pick an assignment
that passes the consistency check with nature’s assignment. Alice also receives a
small bonus if her assignment agrees with Bob’s; thus her payoff is maximized
when there exists a globally satisfying assignment.

See formal construction below, as well as summary in Table 15.1.

Formal Construction
Let ψ be a 2CSP-d over n variables from alphabet �, as guaranteed by Theorem
2.1. In particular, ETH implies that distinguishing between a completely satisfiable
instance and (1− η)-satisfiable requires time 2	̃(n). By Lemma 2.5, we can (deter-
ministically and efficiently) partition the variables into n/k subsets {S1, . . . , Sn/k}
of size at most 2k = 2

√
n, such that every two subsets share at most 8d2k2/n=O(1)

constraints.
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Table 15.1 Variables in proof of Theorem 15.2

Variable Role in Reduction Chosen by . . .

Nature

i ∈ [n/k] Specifies subset Si Uniformly at random

-u ∈�2k Specifies (shifted) assignment for Si Uniformly at random

b̂ ∈ {0, 1}�×[2k] Force Alice and Bob into right subgame Uniformly at random

Alice a (Expected Behavior)

-vA, cA Force Alice into right subgame cA = b(-vA)
jA ∈ [n/k] Specifies subset SjA Uniformly at random

T A ⊂ [n/k] Force Bob to pick jB at random Random subset of size n/2k

-wA ∈�2k Assignment for SjA -α restricted to SjA

Signaler (Completeness)

-α ∈�n Assignment to entire 2CSP Satisfying assignment

-v ∈�2k Correct shift to Nature’s assignment -v ⊕� -u is -α restricted to Si

b(-v) ∈ {0, 1} Force Alice and Bob into -v-subgame Extracted from b̂

a. Bob’s variables are defined analogously to Alice’s.

States of Nature. Nature chooses a state (b̂, i , -u) ∈ {0, 1}�×[2k]× [n/k]× �2k uni-
formly at random. For each -v, b(-v) is the XOR of bits from b̂ that correspond to
entries of -v:

∀-v ∈�2k b(-v)�
( ⊕
(σ ,�):[-v]�=σ

[b̂](σ ,�)

)
.

Notice that the b(-v)’s are pairwise independent and each marginal distribution is
uniform over {0, 1}.
Strategies. Alice and Bob each choose a strategy (-v , c, j , T , -w) ∈ �2k × {0, 1} ×
[n/k]× ([n/k]

n/2k

) × �2k. We use -vA, cA, etc. to denote the strategy Alice plays, and

similarly -vB , cB, etc. for Bob. For σ , σ ′ ∈�, we denote σ ⊕� σ ′ � σ + σ ′ (mod |�|),
and for vectors -v , -v′ ∈�2k, we let -v ⊕� -v′ ∈�2k denote the entry-wise ⊕�.

Payoffs. Consider state of nature (b̂, i , -u) and players’ strategies (-vA, cA, jA,
T A, -wA) and (-vB , cB , jB , T B , -wB).

When -vA = -vB = -v, we set τA,Z = 1 if assignments -wA and (-v ⊕� -u) to subsets
SjA and Si, respectively, satisfy all the constraints in ψ that are determined by
(Si ∪ SjA), and τA,Z = 0 otherwise. Similarly, τB ,Z = 1 iff -wB and (-v ⊕� -u) satisfy
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the corresponding constraints in ψ ; and τA,B checks -wA and -wB . When -vA �= -vB,
we set τA,Z = τB ,Z = τA,B = 0.

We decompose Alice’s payoff as:

UA �UA
b
+ UAAlthofer + UAψ ,

where

UA
b

� 1{cA = b(-vA)} − 1{cB = b(-vB)},
UAAlthofer � 1{jB ∈ T A} − 1{jA ∈ T B},

and

UA
ψ

� δτA,Z − δ2τB ,Z + δ3τA,B , (15.1)

for a sufficiently small constant 0< δ�√
η.

Completeness
Lemma 15.1 Ifψ is satisfiable, there exists a signaling scheme and a mixed strategy for Alice that

guarantees expected payoff δ − δ2 + δ3.

Proof Fix a satisfying assignment -α ∈�n. Given state of nature (b̂, i , -u), let -v be such that
(-v ⊕� -u)= [-α]Si . The scheme outputs the signal (-v , b(-v), -α). Alice’s mixed strategy
sets (-vA, cA)= (-v , b(-v)), picks jA andT A uniformly at random, and sets -wA= [-α]S

jA
.

Because Bob has no information about b(-v′) for any -v′ �= -v, he has probability
1/2 of losing whenever he picks -vB �= -v, i.e., E[UA

b
]≥ 1

2 Pr[-vB �= -v]. Furthermore,
because Alice chooses T A and jA uniformly, E[UAAlthofer]= 0.

Since -α completely satisfiesψ , we have that τA,Z = 1 as long as -vB = -v (regardless
of the rest of Bob’s strategy). Bob’s goal is thus to maximize E[δ2τB ,Z − δ3τA,B].
Notice that -wA and (-v ⊕� -u) are two satisfying partial assignments to uniformly
random subsets from the partition. In particular, they are both drawn from the
same distribution, so we have that for any mixed strategy that Bob plays, E[τB ,Z]=
E[τA,B]. Therefore Alice’s payoff is at least(

δ − δ2 + δ3) Pr
[-vB = -v]+ 1

2
Pr
[-vB �= -v]≥ δ − δ2 + δ3.

Soundness
Lemma 15.2 If at most a (1− η)-fraction of the constraints are satisfiable, Alice’s maxmin payoff

is at most δ − δ2 + (1−	η(1))δ3, for any signaling scheme.
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Proof Fix any mixed strategy by Alice; we show that Bob can guarantee a payoff of at least
−(δ − δ2 + (1−	η(1))δ3). On any signal, Bob chooses (-vB , cB) from the same dis-
tribution that Alice uses for (-vA, cA). He chooses jB uniformly, and picks T B so
as to minimize E[UAAlthofer]. Finally, for each jB, he draws -wB from the same mar-
ginal distribution that Alice uses for -wA conditioning on jA = jB (and uniformly at
random if Alice never plays jA = jB). By symmetry, E[UA

b
]= 0 and E[UAAlthofer]≤ 0.

In this paragraph, we use Althofer’s gadget to argue that, wlog, Alice’s distri-
bution over the choice of jA is approximately uniform. In Althofer’s gadget, Alice
can guarantee an (optimal) expected payoff of 0 by randomizing uniformly over
her choice of jA and T A. By Lemma 2.7, if Alice’s marginal distribution over the
choice of jA is 8δ2-far from uniform (in total variation distance), then Bob can
guess that jA is in some subset T B ∈ ([n/k]

n/2k

)
with advantage (over guessing at ran-

dom) of at least 2δ2. Therefore E[UAAlthofer]≤ −2δ2; but this would imply E[UA]≤
−2δ2 + E[UA

ψ
]≤ δ − 2δ2 + δ3. So henceforth we assume wlog that Alice’s marginal

distribution over the choice of jA is O(δ2)-close to uniform (in total variation
distance).

Since Alice’s marginal distribution over jA is O(δ2)-close to uniform, we have
that Bob’s distribution over (jB , -wB) is O(δ2)-close to Alice’s distribution over
(jA, -wA). Therefore E[τB ,Z]≥ E[τA,Z]−O(δ2), and so we also get:

E
[
UA

]≤ E
[
UA
ψ

]≤ δ − δ2 + δ3E
[
τA,B]+O(δ4). (15.2)

Bounding E[τA,B]. To complete the proof, it remains to show an upper bound on
E[τA,B]. In particular, notice that it suffices to bound the probability that Alice’s
and Bob’s induced assignments agree. Intuitively, if they gave assignments to uni-
formly random (and independent) subsets of variables, the probability that their
assignments agree cannot be much higher than the value of the 2CSP; below we
formalize this intuition.

By the premise, any assignment to all variables violates at least an η-fraction
of the constraints. In particular, this is true in expectation for assignments drawn
according to Alice’s and Bob’s mixed strategy. This is a bit subtle: in general, it is
possible that Alice’s assignment alone doesn’t satisfy many constraints and neither
does Bob’s, but when we check constraints between Alice’s and Bob’s assignments
everything is satisfied (for example, think of the 3-Coloring CSP, where Alice colors
all her vertices blue, and Bob colors all his vertices red). Fortunately, this subtlety
is irrelevant for our construction, since we explicitly defined Bob’s mixed strategy
so that conditioned on each set Sj of variables, Alice and Bob have the same
distribution over assignments.
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The expected number of violations between pairs directly depends on the value
of the 2CSP. To bound the probability of observing at least one violation, recall
that every pair of subsets shares at most a constant number of constraints, so this
probability is within a constant factor of the expected number of violations. In
particular, an 	(η)-fraction of the pairs of assignments chosen by Alice and Bob
violate ψ .

Finally, Alice doesn’t choose jA uniformly at random; but her distribution is
O(δ2)-close to uniform. Therefore, we have E[τA,B]≤ 1−	(η)+O(δ2). Plugging
into (15.2) completes the proof.
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162-Player Approximate
Nash Equilibrium
For the past decade, the central open problem in equilibrium computation has
been whether two-player Nash equilibrium admits a PTAS. We had good reasons
to be hopeful: there was a series of improved approximation ratios [Bosse et al.
2010; Daskalakis et al. 2007, 2009b; Kontogiannis et al. 2009; Tsaknakis and Spi-
rakis 2008] and several approximation schemes for special cases [Alon et al. 2013,
Barman 2015, Daskalakis and Papadimitriou 2009, Kannan and Theobald 2007].
Yet most interesting are two inefficient algorithms for two-player Nash equilibrium:

. the classic Lemke-Howson algorithm [Lemke and Howson 1964] finds an
exact Nash equilibrium in exponential time; and

. a simple algorithm by Lipton et al. [2003] finds an ε-approximate Nash
equilibrium in time nO(log n).

Although the Lemke-Howson algorithm takes exponential time, it has a special
structure that places the problem inside the complexity class PPAD [Papadimitriou
1994]. Proving hardness for problems in PPAD is notoriously challenging because
they are total, i.e., they always have a solution, so the standard techniques from NP-
hardness do not apply. By now, though, we know that exponential and polynomial
approximations for two-player Nash equilibrium are PPAD-complete [Chen et al.
2009b, Daskalakis et al. 2009a]. However, ε-approximation for two-player Nash
equilibrium is unlikely to have the same fate: otherwise, the quasi-polynomial
algorithm of Lipton et al. [2003] would refute the Exponential Time Hypothesis
for PPAD. Thus the strongest hardness result we can hope to prove (given our
current understanding of complexity1) is a quasi-polynomial hardness that sits
inside PPAD:

1. Given this current understanding, refuting ETH for PPAD seems unlikely: there are matching
black-box lower bounds [Beame et al. 1998, Hirsch et al. 1989]. Recall that the NP-analogue ETH
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Theorem 16.1 Theorem 1.1 restated. There exists a constant ε > 0 such that, assuming ETH
for PPAD, finding an ε-approximate Nash equilibrium in a two-player n× n game
requires time T (n)= nlog1−o(1) n.

Additional Related Work
Previous attempts to show lower bounds for approximate Nash in two-player games
have mostly focused on limited models of computation [Daskalakis and Papadim-
itriou 2009] and lower bounding the support required for obtaining approximate
equilibria [Althofer 1994; Anbalagan et al. 2013, 2015; Feder et al. 2007] (in con-
trast, Lipton et al.’s algorithm runs in quasi-polynomial time because there exist
approximate equilibria with support size at most O

( log n
ε2

)
).

Best Nash Equilibrium. Hazan and Krauthgamer [2011] showed that finding an ε-
approximate Nash equilibrium with ε-optimal welfare is as hard as the Planted
Clique problem; Austrin et al. [2013] later showed that the optimal-welfare con-
straint can be replaced by other decision problems. Braverman et al. [2015] recently
showed that the hardness Planted Clique can be replaced by the Exponential
Time Hypothesis, the NP-analog of the ETH for PPAD we use here. (See also Theo-
rem 11.1.)

Multiplicative Hardness of Approximation. Daskalakis [2013] and our recent work
[Rubinstein 2015] show that finding an ε-relative well-supported Nash equilib-
rium in two-player games is PPAD-hard. The case of ε-relative approximate Nash
equilibrium is still open: our main theorem implies that it requires at least quasi-
polynomial time, but it is not known whether it is PPAD-hard, or even if it requires
a large support (see also discussion in Babichenko et al. [2016]).

Approximation Algorithms. The state of the art for games with arbitrary payoffs is
≈ 0.339 for two-player games due to Tsaknakis and Spirakis [2008] and 0.5+ ε for
polymatrix games due to Deligkas et al. [2017]. For two-player games, PTAS have
been given for the special cases of constant rank games by Kannan and Theobald
[2007], small-probability games by Daskalakis and Papadimitriou [2009], positive
semi-definite games by Alon et al. [2013], and sparse games by Barman [2015].

[Impagliazzo et al. 2001] is widely used (e.g., [Aaronson et al. 2014, Braverman et al. 2015, Cygan
et al. 2016, Karpinski and Schudy 2010, Lokshtanov et al. 2011] as well as the previous part of this
book), often in stronger variants such as SETH [Calabro et al. 2009, Impagliazzo and Paturi 2001]
and NSETH [Carmosino et al. 2016].
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16.1 Technical Overview
Given an End-of-a-Line instance of size n, we construct a two-playerN ×N game
forN = 2n

1/2+o(1)
whose approximate equilibria correspond to solutions to the End-

of-a-Line instance. Thus, assuming the “ETH for PPAD,” finding an approximate
equilibrium requires time 2n =N log1−o(1) N .

The main steps of the final construction are: (i) reducing End-of-a-Line to
a new discrete problem that we call Local End-of-a-Line; (ii) reducing Local
End-of-a-Line to a problem of finding an approximate Brouwer fixed point (this
step uses our reduction from Section 4.2); (iii) reducing from Brouwer fixed point
to finding an approximate Nash equilibrium in a multiplayer game over n1/2+o(1)

players with 2n
1/2+o(1)

actions each; and (iv) reducing to the two-player game.
The main novelty in the reduction is the use of techniques such as error-

correcting codes and probabilistically checkable proofs (PCPs) inside PPAD. In
particular, the way we use PCPs in our proof is very unusual.

Constructing the First Gap: Showing Hardness of Euclidean Brouwer
The first step in all known PPAD-hardness results for (approximate) Nash equi-
librium is reducing End-of-a-Line to the problem of finding an (approximate)
Brouwer fixed point of a continuous, Lipschitz function f : [0, 1]n→ [0, 1]n. Even
Theorem 4.1, which shows hardness of approximation in �∞-norm, does not suf-
fice for our purposes. In particular, it only implies that it is hard to find an x such
that f (x) is approximately equal to x on every coordinate. The first step in our proof
is to strengthen this result to obtain hardness of approximation with respect to 2-
norm (Theorem 4.2). Now, even finding an x such that f (x) is approximately equal
to x on most of the coordinates is already PPAD-hard.

Theorem 4.1 was obtained by adapting a construction due to Hirsch et al. [1989]
via the use of error-correcting code. The first obstacle to using PCP-like techniques
for problems in PPAD is totality: problems in PPAD always have a solution. For
NP-hard problems, the PCP verifier expects the proof to be encoded in some error-
correcting code. If the proof is far from any codeword, the verifier detects that (with
high probability), and immediately rejects. For problems in PPAD (more generally,
in TFNP),2 this is always tricky because it is not clear what it means “to reject.”
Hirsch et al.’s original construction has the following useful property: for the vast
majority of x’s (in particular, all x’s far from the embedding of the paths), the
displacement f (x)− x is the same default displacement. Thus, when an x is too

2. TFNP, a superclass of PPAD, is the class of total search problems whose solutions can be verified
in polynomial time.
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far from any codeword to faithfully decode it, we can simply apply the default
displacement.

The Main Challenge: Locality
Our ultimate goal is to construct a two-player game that simulates the Brouwer
function from Theorem 4.2. This is done via an imitation gadget: Alice’s mixed
strategy induces a point x(A) ∈ [0, 1]n; Bob’s strategy induces x(B) ∈ [0, 1]n; Alice
wants to minimize ‖x(A)− x(B)‖2, whereas Bob wants to minimize‖f (x(A))− x(B)‖2.
Alice and Bob are both satisfied at a fixed point, where x(A)= x(B)= f (x(A)). (Recall
also our construction of communicationally hard games for Theorem 3.1.)

The main obstacle is that we want to incentivize Bob to minimize ‖f (x(A))−
x(B)‖2 via local constraints (payoffs—each depends on one pure strategy), while
f
(

x(A)
)

has a global dependency on Alice’s entire mixed strategy.
Our goal is thus to construct a hard Brouwer function that can be locally com-

puted. How local does the computation need to be? In a game of size 2
√
n × 2

√
n,

each strategy can faithfully store information about
√
n bits. Specifically, our con-

struction will be n1/2+o(1)-local.
We haven’t yet defined exactly what it means for our construction to be “n1/2+o(1)-

local”; the exact formulation is quite cumbersome as the query access needs to
be partly adaptive, robust to noise, etc. Eventually (Section 16.4), we formalize the
“locality” of our Brouwer function via a statement about multiplayer games. On a
high level, however, our goal is to show that for any j ∈ {1, . . . , n}, the j -th output
fj(x) can be approximately computed, with high probability, by accessing x at only
n1/2+o(1) coordinates.

This is a good place to note that achieving any sense of “local computation” in
our setting is surprising, even if we consider just the error-correcting encoding for
our Brouwer function: in order to maintain constant relative distance, an average
bit of the output must depend on a constant fraction of the input bits!

Local End-of-a-Line
In order to introduce locality, we go back to the End-of-a-Line problem. “Wishful
thinking”: imagine that we could replace the arbitrary predecessor and successor
circuits in End-of-a-Line with NC0 (constant depth and constant fan-in) circuits
Slocal, P local : {0, 1}n→{0, 1}n, so that each output bit only depends on a constant
number of input bits. Imagine further that we had the guarantee that for each input,
the outputs ofSlocal, P local differ from the input on just a constant number of bits.
Additionally, it would be really nice if we had a succinct pointer that immediately
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told us which bits are about to be replaced. (We later call this succinct pointer the
counter, because it also cycles through its possible values in a fixed order.)

Suppose all our wishes came true, and furthermore the hard Brouwer function
from Theorem 4.2 used a linear error-correcting code. Then, we could use the en-
coding of the counter, henceforth C(u), to read only the bits that are about to be
replaced, and the inputs that determine the new values of those bits. Thus, us-
ing only local access to a tiny fraction of the bits (|C(u)| +O(1)), we can construct
a difference vector u− Slocal(u) (which is 0 almost everywhere). As we discussed
above, the encodings E(u), E(Slocal(u)) must differ on a constant fraction of the
bits—but because the code is linear, we can also locally construct the difference vec-
tor E(u)− E(Slocal(u))= E(u− (Slocal(u))). Given E(u)− E(Slocal(u)), we can
locally compute any bit of E(Slocal(u)) by accessing only the corresponding bit
of E(u).

Back to reality: unfortunately we do not know of a reduction to such a restricted
variant of End-of-a-Line. Surprisingly, we can almost do that. The problem Lo-
cal End-of-a-Line (formally defined in Section 16.2) satisfies all the guarantees
defined above, is linear-time reducible from End-of-a-Line, but has one caveat: it
is only defined on a strict subsetV local of the discrete hypercube (V local � {0, 1}n).
Verifying that a vertex belongs to V is quite easy: it can be done in AC0. Let us
take a brief break to acknowledge this new insight about the canonical problem of
PPAD:

Theorem 16.2 The predecessor and successor circuits of End-of-a-Line are, wlog, AC0 circuits.

The class AC0 is quite restricted, but the outputs of its circuits are not local
functions of the inputs. Now, we want to represent u in a way that will make it
possible to locally determine whether u ∈ V local or not. To this end we augment
the linear error-correcting encoding E(u) with a probabilistically checkable proof
(PCP) π(u) of the statement (u ∈ V local).

Our Holographic Proof System
Some authors distinguish between PCPs and holographic proofs:3 a PCP verifier
has unrestricted access to the instance, and queries the proof locally; whereas the
holographic proof verifier has restricted, local access to both the proof and (an

3. In a nutshell, PCPs or holographic proofs are proofs that can be verified “locally” (with high
probability) by reading only a small (random) portion of the proof; see, e.g., Arora and Barak
[2009, Chapter 18] for many more details.
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error-correcting encoding of) the instance. In this sense, what we actually want is
a holographic proof.

We construct a holographic proof system with some very unusual properties.
We are able to achieve these properties thanks to our modest locality desideratum:
n1/2+o(1), as opposed to the typical polylog(n) or O(1). We highlight here a few of
these properties; see Section 16.3 for details.

Local proof-construction. The most surprising property of our holographic
proof system is that the proofπ(u) can be constructed from local access to the
encoding E(u). In particular, note that we can locally compute E(Slocal(u))

because E(.) is linear—but π(.) is not. Once we obtain E(Slocal(u)), we can
use local proof construction to compute π(Slocal(u)) locally.

Very low random-bit complexity. Our verifier is only allowed to use (1/2+
o(1)) log2 n random bits; this is much lower even than the log2 n bits nec-
essary to choose one entry at random. In related works, similar random-bit
complexity was achieved by bundling the entries together via “birthday rep-
etition.” To some extent, something similar happens here, but our locality is
already n1/2+o(1) so no bundling (or repetition) is necessary. To achieve nearly
optimal random-bit complexity, we use λ-biased sets over large finite fields
together with the Sampling Lemma of Ben-Sasson et al. [2003].

Tolerant verifier. Typically, a verifier must reject (with high probability) when-
ever the input is far from valid, but it is allowed to reject even if the input
is off by only one bit. Our verifier, however, is required to accept (with high
probability) inputs that are close to valid proofs. (This is related to the notion
of “tolerant testing,” which was defined in Parnas et al. [2006] and discussed
in Guruswami and Rudra [2005] for locally testable codes.)

Local decoding. We make explicit use of the property that our holographic
proof system is also a locally decodable code. While the relations between
PCPs and locally testable codes have been heavily explored (see, e.g.,
Goldreich’s survey [Goldreich 2010]), the connection to locally decodable
codes is not as immediate. Nevertheless, related ideas of Locally Decode/
Reject Codes [Moshkovitz and Raz 2010] and decodable PCP [Dinur and
Harsha 2013] have been used before in order to facilitate composition of
tests (our holographic proof system, in contrast, is essentially composition-
free). Fortunately, as noted by Dinur and Harsha [2013], many constructions
of PCPs are already implicitly locally decodable.
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Robust everything. Ben-Sasson et al. [2006] introduce a notion of robust sound-
ness, where on an invalid proof, the string read by the verifier must be far
from any acceptable string. (Originally the requirement is far in expectation,
but we want far with high probability.) Another way of looking at the same
requirement is that even if a malicious prover adaptively changes a small frac-
tion of the bits queried by the verifier, the test is still sound. In this sense, we
require that all our guarantees, not just soundness, continue to hold (with
high probability) even if a malicious entity adaptively changes a small frac-
tion of the bits queried by the verifier.

How is local proof-construction possible? At a high level, our holographic proof
system expects an encoding of u as a low-degree t -variate polynomial, and a few
more low-degree t -variate polynomials that encode the proof of u ∈ V local. (This
is essentially the standard “arithmetization,” dating back at least to Babai and
Fortnow [1991] and Shamir [1992], although our construction is most directly
inspired by Polishchuk and Spielman [1994] and Spielman [1995].) In our actual
proof, t is a small super-constant, e.g., t �

√
log n; but for our exposition here, let

us consider t = 2, i.e., we have bivariate polynomials.
The most interesting part of the proof verification is testing that a certain low-

degree polynomial �: G2 → G, for some finite field G of size |G| = �(n1/2+o(1)),
is identically zero over all of F 2, for some subset F � G of cardinality |F | =
|G|/ polylog(n). This can be done by expecting the prover to provide the following
low-degree polynomials:

� ′(x , y)�
∑
fi∈F

�
(
x , fi

)
yi

� ′′(x , y)�
∑
fj∈F

� ′
(
fj , y

)
xj .

Then, � ′′(x , y) =∑fi ,fj∈F �(fj , fi)x
jyi is the zero polynomial if and only if �

is indeed identically zero over all of F 2. �(x , y) can be computed by accessing
E(u) on just a constant number of entries. Thus, computing � ′(x , y) requires
�(x , fi) for all fi ∈F , so a total of�(n1/2+o(1))queries toE(u). However, computing
even one entry of � ′′(.) requires 	(n) queries to E(u). The crucial observation is
that we don’t actually need the prover to provide � ′′. Instead, it suffices that the
prover provide� ′, and the verifier checks that

∑
fj∈F �

′(fj , y)xj = 0 for sufficiently
many (x , y).
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Putting It All Together Via Polymatrix Games
The above arguments suffice to construct a hard Brouwer function (in the sense of
Theorem 4.2) that can be computed “n1/2+o(1)-locally.” We formalize this statement
in terms of approximate Nash equilibria in a polymatrix game.

Definition 16.1 Polymatrix games. In a polymatrix game, each pair of players simultaneously plays
a separate two-player subgame. Every player has to play the same strategy in every
two-player subgame, and her utility is the sum of her subgame utilities. The game
is given in the form of the payoff matrix for each two-player subgame.

We construct a bipartite polymatrix game between n1/2+o(1) players with 2n
1/2+o(1)

actions each. By “bipartite,” we mean that each player on Alice’s side only interacts
with players on Bob’s side and vice versa. The important term here is “polymatrix”: it
means that when we compute the payoffs in each subgame, they can only depend
on the n1/2+o(1) coordinates described by the two players’ strategies. It is in this
sense that we guarantee “local computation.”

The mixed strategy profile A of all the players on Alice’s side of the bipartite
game induces a vector x(A) ∈ [0, 1]m, for somem= n1+o(1). The mixed strategy profile
B of all the players on Bob’s side induces a vector x(B) ∈ [0, 1]m. Our main technical
result is:

Proposition 16.1 Informal. If all but an ε-fraction of the players play ε-optimally, then
∥∥x(A) −

x(B)
∥∥2

2 =O(ε) and
∥∥f (x(A))− x(B)

∥∥2
2 =O(ε).

Each player on Alice’s side corresponds to one of the PCP verifier’s random
string. Her strategy corresponds to an assignment to the bits queried by the verifier
given this random string. On Bob’s side, we consider a partition of {1, . . . , m} into
n1/2+o(1) tuples of n1/2+o(1) indices each. Each player on Bob’s side assigns values
to one such tuple.

On each two-player subgame, the player on Alice’s side is incentivized to imitate
the assignment of the player on Bob’s side on the few coordinates where they inter-
sect. The player on Bob’s side uses Alice’s strategy to locally compute fj(x

(A)) on a
few j ’s in his (n1/2+o(1))-tuple of coordinates. This computation may be inaccurate,
but we can guarantee that for most coordinates it is approximately correct most of
the time.

From Polymatrix to Bimatrix
The final reduction from the polymatrix game to the two-player game follows more
or less from known techniques for hardness of Nash equilibria [Althofer 1994,
Babichenko et al. 2016, Daskalakis et al. 2009a]. We let each of Alice and Bob
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control one side of the bipartite polymatrix game. In particular, each strategy in
the two-player game corresponds to picking a player of the polymatrix game, and
a strategy for that player. We add a gadget due to Althofer [1994] to guarantee that
Alice and Bob mix approximately uniformly across all their players. See Section 16.5
for details.

16.1.1 The PCP Conjecture for PPAD

Recall our conjecture from Chapter 5:

Conjecture 16.1 PCP for PPAD; [Babichenko et al. 2016]. There exist constants ε , δ > 0 such that
finding an (ε , δ)-WeakNash in a bipartite, degree-three polymatrix game with two
actions per player is PPAD-complete.

The main original motivation was an approach to prove our main theorem given
this conjecture. As pointed out by Babichenko et al. [2016], it turns out that resolv-
ing this conjecture would also have interesting consequences for relative approx-
imations of two-player Nash equilibrium, as well as applications to inapproxima-
bility of market equilibrium.

More importantly, this question is interesting in its own right: how far can
we extend the ideas from the PCP Theorem (for NP) to the world of PPAD? The
PCP[r(n), q(n)] characterization [Arora and Safra 1998] is mainly concerned with
two parameters: r(n), the number of random bits, and q(n), the number of bits
read from the proof. A major tool in all proofs of the PCP Theorem is verifier
composition: in the work of Polishchuk and Spielman [1994, Spielman 1995], for
example, it is first shown that NP⊆ PCP[O(log n), n1/2+o(1)], and then via compo-
sition it is eventually obtained that NP= PCP[O(log n), O(1)]. In some informal
sense, one may think of our main technical result as something analogous4 to
PPAD⊆ PCP[(1/2+ o(1)) log2 n, n1/2+o(1)]. Furthermore, our techniques in Section
16.3 build on many existing ideas from the PCP literature [Babai et al. 1991, Ben-
Sasson et al. 2003, Ben-Sasson et al. 2006, Polishchuk and Spielman 1994, Spielman
1995] that have been used to show similar statements for NP. It is thus natural to
ask: Is there a sense in which our “verifier” can be composed? Can such composi-
tion eventually resolve the PCP Conjecture for PPAD?

More generally, some of the tools we use here, even as simple as error-correcting
codes, have been the basic building blocks in hardness of approximation for

4. We stress that our analogy is very loose. For example, we are not aware of any formal extension
of PCP to function problems, and it is well known that NP⊆ PCP[(1/2+ o(1)) log2 n, n1/2+o(1)].
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decades, yet to the best of our knowledge have not been used before for any problem
in PPAD. We hope to see other applications of similar ideas in this regime.

16.1.2 Organization
In Section 16.2 we introduce the restricted variant Local End-of-a-Line and prove
that it is also PPAD-complete. In Section 16.3 we construct our holographic proof
system. In Section 16.4 we bring together ideas from Sections 4.2, 16.2, and 16.3 to
prove our hardness for polymatrix games of subexponential size. Finally, in Section
16.5 we reduce from polymatrix to two-player games.

Small Constants
Our proof uses several arbitrary small constants that satisfy:

0< εPrecision� εNash� δ� h� εComplete� εSound � εDecode� 1.

By � we mean that we pick them such that εPrecision is arbitrarily smaller than
any polynomial in εNash, and εNash is arbitrarily smaller than any polynomial in
δ, etc. Although their significance will be fully understood later in the chapter, we
briefly mention that εPrecision is the precision with which the players can specify
real values; εNash is the approximation factor of Nash equilibrium in Proposition
16.2; δ and h are parameters of the Brouwer function construction; and finally,
εComplete, εSound, εDecode are parameters of our holographic proof system.

16.2 End-of-a-Line with Local Computation
In this section we introduce a local variant of End-of-a-Line with very simple
successor and predecessor circuits.

Definition 16.2 Local End-of-a-Line. The problem Local End-of-a-Line is similar to End-
of-a-Line, but the graph is defined on a subsetV local⊆ {0, 1}n. The input consists
of a membership circuit MV local: {0, 1}n→ {0, 1} that determines whether a string

u ∈ {0, 1}n corresponds to a vertex of the graph (i.e.,MV local(u)=
{

1 u ∈ V local

0 u �∈ V local ),

a special vertex u0 ∈ V local, and successor and predecessor circuits Slocal, P local :
{0, 1}n→{0, 1}n with the promise that every output bit depends only on a constant
number of input bits (i.e., Slocal and P local are in NC0). Furthermore, we require
that the outputs of Slocal andP local are identical to the respective inputs, except at
a constant number of coordinates. Similarly to End-of-a-Line, we are guaranteed
that P local(u0)= u0 �= Slocal(u0).



16.2 End-of-a-Line with Local Computation 233

The goal is to find an input u ∈ V local that satisfies any of the following:

. End-of-a-line: P local(Slocal(u)) �= u or Slocal(P local(u)) �= u �= u0; or

. Boundary conditions: Slocal(u) �∈ V local or P local(u) �∈ V local.

Notice that each vertex u ∈ V local only differs from Slocal(u) and P local(u) at a
constant number of bits, and the value of each of those only depends on a constant
number of bits of u. We will refer to all those bits as the criticial bits of u, and denote
their cardinality qcritical.

We now reduce End-of-a-Line to Local End-of-a-Line, proving that the latter
is PPAD-complete. In the following sections we use this reduction “white-box,” and
revisit some of its specific properties.

Theorem 16.3 There is a linear-time reduction from End-of-a-Line to Local End-of-a-Line.

Notice that there is a trivial reduction in the other direction: add self-loops to
all strings not in V local.

Proof Proof of Theorem 16.3. Given circuits S , P : {0, 1}n→ {0, 1}n, we construct new
circuits Slocal, P local : {0, 1}m→ {0, 1}m that satisfy Definition 16.2. We assume
wlog that the circuits have fan-out 2 (otherwise, replace gates with larger fan-outs
with a binary tree of equality gates; this only blows up the size of the circuit by a
constant factor). We setm= 4(|S| + |P |), where by |S| and |P |we mean the number
of lines (i.e., number of inputs+number of logic gates) in each circuit, respectively.
We think of them bits as representing two copies of each circuit (S1, P1 and S2, P2),
with each line represented by two bits, representing three possible states: value 0,
value 1, and inactive.

The path begins with circuit S1 containing the computation from 0n to S(0n),
and circuit P1 containing the reverse computation back to 0n; the lines of circuits
S2, P2 are inactive. This is the special vertex, u0.

Over the next n steps, the output bits of S1 are copied (one-by-one) to the input
bits of S2 (and the corresponding lines are activated). Over the next |S| − n steps,
the values on the lines of S2 are updated—one-by-one, starting from the inputs and
propagating to the outputs in a fixed order—until all the output bits are activated
and set to S(S(0n)). Then, over the next |P | steps, the input of P2 is set to S(S(0n)),
the values on the gates are updated (propagating in a fixed order from output to
input), and finally the output of P2 is set to S(0n).

Notice that so far, if we want to trace back a step (a.k.a. implement P local), we
simply need to deactivate the last activated line. We now start erasing values when
going forward, but we must do so carefully so that we can reconstruct them when
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going backward. We proceed by deactivating the lines in S1: line by line, in reverse
order from outputs to inputs. Indeed, in order to go back we can reconstruct the
output of any gate from its inputs. If we want to reconstruct an input to S1, this is
no problem as it is saved as the output of P1. Once we finish deactivating S1, we
deactivate P1, also in reverse order. Notice again that the input to P1 is saved as the
input to S2 and output of P2. Now, we copy the values from S2 and P2 to S1 and P1

in the same order that we used to deactivate the lines, starting from the outputs
of S1, to inputs, to outputs of P1, to inputs. Then we deactivate the lines in S2 and
P2; again, we use the same order in which they were activated, starting from inputs
of S2, to outputs, to inputs of P2, to outputs. So now we have S1 as a witness to the
computation of S(S(0n)) from S(0n) and P1 goes in the reverse order, while all the
lines of S2 and P2 are inactive.

We repeat the process from the last two paragraphs to find S(S(S(0n))), etc.
We letV local be the set of strings that correspond to a legal partial computation

as described above.MV local verifies that a string corresponds to one of the following
scenarios:

. S1 holding the computation from some x ∈ {0, 1}n to S(x), P1 holding the
computation from S(x) back to x, and S2 and P2 holding part of the compu-
tation from S(x) to S(S(x)) and back to S(x);

. S2 and P2 holding the computation from some x to S(x) and back to x, and
P1 and S1 in the process of erasing the computation from x to P(x) and back
to x;

. S2 and P2 holding the computation from some x to S(x) and back to x, and
S1 and P1 in the process of copying it; or

. S1 and P1 holding the computation from some x to S(x) and back to x, and
S2 and P2 in the process of erasing the same computation.

Notice that the joint active/inactive state of all the lines always belongs to one of
O(m) different states (that can be described by log2m+O(1) bits). Verifying that a
string corresponds to one of the above scenarios is equivalent to checking that the
joint active/inactive state is valid, and that the values on all the lines satisfy all of
the following local conditions:

. The i-th input of S1 is either inactive, equal to the i-th output of P1, or, if the
latter is inactive (during the copy phase), equal to the i-th input of S2.
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. The i-th input of P1 is either inactive, equal to the i-th output of S1, or, if the
latter is inactive (during the erase phase), equal to the i-th input of S2.

. The output of every gate in S1, P1 is either inactive, equal to the gate applied
to its inputs, or, if either of the inputs is inactive (during the copy phase),
equal to the respective line in S2, P2.

. The i-th input of S2 is either inactive, equal to the i-th output of P2, or, if the
latter is inactive (during the compute phase), equal to the i-th input of P2.

. The i-th input of P2 is either inactive, equal to the i-th output of S2, or, if the
latter is inactive (during the erase phase), equal to the i-th input of P1.

. The output of every gate in S2, P2 is either inactive, equal to the gate applied
to its inputs, or, if either of the inputs is inactive (during the erase phase),
equal to the respective line in S1, P1.

Notice that each line participates in at most three local constraints. Note also that
each of those conditions only depends on a constant number of bits so MV local,
which simply needs to compute their AND, is in AC0 (this proves Theorem 16.2).

In every step a line is either activated or deactivated, so there are no fixed
points; but fixed points of the original circuit lead to violations of the form
P local(Slocal(u)) �= u and Slocal(P local(u)) �= u �= u0. In particular, every solution
to the new Local End-of-a-Line instance corresponds to a valid solution to the
original End-of-a-Line instance.

Also, notice that in every step we change at most two bits (and at least one),
and deciding the next value of each bit can be done by looking only at a constant
number of bits (conditioned on being a legal vertex inV local): Which is the next line
to be activated/deactivated? If activated, what are the inputs to the corresponding
gate?

16.2.1 The Local End-of-a-Line Counter
Consider the instance produced in the reduction above. Notice that joint ac-
tive/inactive state of all the lines rotates among O(m) possible vectors. That is,
there is a (log m+O(1))-bit vector, henceforth called the counter, that describes
precisely which lines should be active. Furthermore, given the counter of some
u ∈ V local, it is easy to compute the counter of Slocal(u), i.e., we always know
which line should be activated/deactivated next—regardless of the values on the
lines. Similarly, for all u �= u0 ∈ V local, it is also easy to compute the counter of
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P local(u). An additional useful property is that, given the counter of u, we also
know the coordinates of the critical bits of u.

16.3 Holographic Proof
In this section we construct our holographic proof system for statements of the
form u ∈ V local. Note that we use the term “verifier” loosely, as our verifier’s re-
sponsibilities extend far beyond checking the validity of a proof—it is also expected
to perform local decoding, “local proof-construction,” etc.

Proposition 16.2 For sufficiently small constants εDecode & εSound & εComplete > 0, the following
holds. Fix any instance

(
Slocal, P local, V local) of Local End-of-a-Line, gen-

erated via the reduction in Section 16.2 from an instance (S , P) End-of-a-Line.
Given a vertex u ∈ V local, there is a polynomial time deterministic algorithm that
takes as input (S , P) and u, and outputs a holographic proof  (u)= (E(u), C(u),
π(u)) where:

. E(u) is an encoding of u with a linear error-correcting code of constant
relative distance.

. C(u) is an encoding of the counter of u (with a good error-correcting code).

. π(u) is a proof that u ∈ V local.

. Let n� |u|; then the total length of (u) is n1+o(1).

. Let t �
√

log n (in particular, t = ω(1), but also t = o( log n
log log n

)
). Let G be a

finite field of sizeO
(
n1/t+o(1)).E(u) andπ(u) can be written as functions over

domain Gt . In particular, we can talk about accessing E(u), π(u), or  (u) at
a point g ∈ Gt . (C(u) is much shorter and the verifier reads it entirely.)

. There is a quasi-polynomial5 time probabilistic verifier such that:

. Local Access. The verifier’s access to (u) is restricted as follows:

Querying Subspaces. The verifier reads no(1) axis-parallel (t/2)-dimen-
sional subspaces of  (u). Each subspace is defined by a restric-
tion of a (t/2)-tuple of coordinates. The tuple of coordinates that
is restricted is always one of a constant number of possibilities (ei-
ther {2, . . . , t/2+ 1}, or the union of any two of: {1, . . . , t/4}, {t/4+

5. The verifier of our holographic proof actually runs in polynomial time, except for the deran-
domization of the construction of λ-biased sets. As we discuss in Section 2.7.3, this could also be
obtained (with slightly worse parameters) in deterministic polynomial time, but quasi-polynomial
time suffices for the purpose of our main theorem.
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1, . . . , t/2}, {t/2+ 1, . . . , 3t/4}, and {3t/4+ 1, . . . , t}). We denote the
union of all the subspaces read by the verifierGAll. It will be useful
to decomposeGAll=GPCP ∪GLTC ∪Gcritical; another subset of in-
terest isGSample ⊂GPCP.

Partially Adaptive. GSample, GPCP , GLTC are chosen non-adaptively,
i.e., they depend only on the verifier’s internal randomness.Gcritical

is a union of affine translations of a subspace that is also chosen
non-adaptively, but the affine translations depend on C(u).

Randomness. The verifier uses only (1/2+ o(1)) log2 n bits of random-
ness to decide which subspaces to query.

Good Sample. For any function B: Gt→ [0, 1], and any G ∈ {GSample,
GPCP , GLTC, Gcritical}, with probability 1− o(1) over the verifier’s
randomness, ∣∣Eg∈G

[
B(g)

]− Eh∈Gt
[
B(h)

]∣∣= o(1).
. Soundness. If the verifier is given a string ′ that is εSound-far from (u) for

every u ∈ V local, the verifier rejects with probability 1− o(1).
Robust Soundness. Furthermore, with probability 1− o(1), the bits

read by the verifier are ε2
Sound-far from any string that would make the

verifier accept. In other words, the verifier continues to reject with
probability 1− o(1) even in the presence of an adaptive adversary,
who observes the queries made by the verifier, and then corrupts an
ε2

Sound/2-fraction of each ofGPCP ,GLTC.

. Completeness. If the verifier is given access to a string  ̂ that is εComplete-
close to a valid  (u) for some u ∈ V local, then the verifier accepts with
probability 1− o(1).

Robust Completeness. Furthermore, the verifier continues to accept
with probability at least 1− o(1) even in the presence of an adaptive
adversary, who observes the queries made by the verifier, and then
corrupts a

√
εComplete-fraction ofGPCP ,GLTC.

. Decoding. If the verifier is given access to a string  ̂ that is εDecode-close to
a valid (u) for some u ∈ V local:

Error-Correction on a Sample. With probability at least 1− o(1), the
verifier correctly decodes the entries of E(u) and π(u) on GSample.
In particular, with probability 1− o(1), the verifier can estimate the
distance between  ̂ and (u) to within an additive error of ±o(1).
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Error-Correction on the Critical Bits. The verifier can adaptively decode
and correct any qcritical-tuple of symbols from the proof with success
probability at least 1− o(1). LetGcritical ⊂ Gt denote the union of all
O(|G|2) axis-parallel subspaces queried in this process.

Proof-Construction. Given access as above to the counter C(u) and
the linear code E(u) (but not to the proof π(u)), the verifier can
output (with probability at least 1− o(1)) the correct values of π(u)
onGSample.

Robust Decoding. Both types of error-correction and the proof-con-
struction continue to hold even in the presence of an adaptive ad-
versary, who observes the queries made by the verifier, and then cor-
rupts a

√
εDecode-fraction of each ofGSample,GPCP ,GLTC,Gcritical.

The rest of this section is devoted to the proof of Proposition 16.2.

16.3.1 From Local End-of-a-Line to Coloring Graphs
Let t �

√
log n. Set �� log2 n

t−1 =�(√log n
)

, and �′ � �+ c log log n for some suffi-
ciently large constant c. Let p(z) be an F2-irreducible polynomial of degree �′, and
let G � F2[z]/ 〈p(z)〉 denote the field of size 2�

′
. We will focus our attention on a sub-

set F ⊂ G of polynomials (modulop(z)) of degree �; notice that |G|/|F | = poly log n.
Let α be a generator of G, and let E � {1, α , . . . , α5t�}. We define the Extended

Shuffle-F -Exchange graph on F t−1× E to be the directed graph such that each vertex
(x1, . . . , xt−1, αi) ∈F t−1× (E \ {α5t�}) has a static edge to vertex (x1, . . . , xt−1, αi+1),
a shuffle edge to vertex (x2, . . . , xt−1, x1, αi+1), and � exchange edges to all vertices
of the form (x1+ [zj ], . . . , xt−1, αi+1), for every j ∈ {0, . . . , �− 1}. Here [zj ] is the
element of G representing the equivalence class {zj + q(z)p(z): q(z) ∈ F2[z]}. Notice
that x ∈ F iff it can be written as x =∑j∈S[zj ] for some subset S ⊆ {0, . . . , �− 1}.
In particular, for any (x1, . . . , xt−1), (y1, . . . , yt−1) ∈ F t−1, the Extended Shuffle-F -
Exchange graph contains a path of length (t − 1)(�+ 1) from (x1, . . . , xt−1, 1) to
(y1, . . . , yt−1, α(t−1)(�+1)).

For eachαi ∈ E, we call the set of vertices {(x1, . . . , xt−1, αi)} a layer; in particular,
{(x1, . . . , xt−1, 1)} form the first layer, and {(x1, . . . , xt−1, α5t�)} form the last layer.

We encode each vertex u ∈ V local as a partial coloring of the Extended Shuffle-
F -Exchange graph, representing the assignments to the lines in the four circuits
S1, P1, S2, P2. Recall that |F | = 2� = n1/(t−1). We associate each line of S1, P1, S2, P2

(including input, gates, and output lines) with a vector x ∈ F t−1 arbitrarily. For the
first- and last-layer vertices (x , 1) and (x , α5t�), we assign colors that represent the as-
signments (from {0, 1,⊥}, where⊥ represents an inactive line) to the corresponding
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line. Recall from the “local conditions” in Section 16.2 that every line only partici-
pates in three constraints.

We would like the inputs to the line in (x1, . . . , xt−1, α5t�) to be propagated by
the Extended Shuffle-F -Exchange graph from the first layer. One important fea-
ture of the Extended Shuffle-F -Exchange graph is that we can do exactly that: By
using standard packet-routing techniques, we can route the assignments from the
first layer to the last layer so that every vertex on the way needs to remember at
most three assignments [Leighton 1992 (Theorem 3.16)]. Fix one such routing.
Our coloring now assigns the same color from {0, 1, ⊥} × {⊥}2 to each of the cor-
responding vertices on the first and last layers, and propagates this assignment
through the middle layers according to the routing scheme; each vertex has a color
in {0, 1, ⊥}3.

It is important to note that the middle layers do not perform any computation—
they only copy symbols according to a fixed routing. In particular, if we change
one entry in the representation of Local End-of-a-Line vertex u, we can locally
compute the difference of the old and new assignments for every middle layer node,
even if we don’t know the old assignment itself (which may correspond to up to
three values routed through that node).

Notice that in order to verify that u ∈ V local, we need to check that the ac-
tive/inactive pattern matches the counter, and the “local conditions.” Given a col-
oring of the Extended Shuffle-F -Exchange graph, checking the local conditions
reduces to checking that the color for each first-layer vertex is equal to the color on
the respective vertex on the last layer, and that the color of every vertex not in the
first layer is computed correctly from its incoming neighbors.

16.3.2 Arithmetization
We now want to represent the verification of u ∈ V local as constraints on polyno-
mials over G (do not confuse with polynomials over F2!).

We represent each vertex u ∈ V local as two polynomials: Tu: F t−1 × E → C
and Tcounter: F t−1→ C, where C ⊂ F is a subset of F of constant size. For each
(x1, . . . , xt−1, αi) ∈ F t−1× E, we set Tu(x1, . . . , xt−1, αi) to be equal to the color
assigned to the respective vertex. Tcounter(x1, . . . , xt−1) is assigned 1 if the cor-
responding line should be active, and 0 otherwise. Additionally, we construct a
polynomial TS ,P : F t−1× E→ C′, for C ⊂ C′ ⊂F of size |C′| =�(log3/2 n); TS ,P (.) rep-
resents the instance of End-of-a-Line: for each (x1, . . . , xt−1, α5t�) ∈F t−1× {α5t�},
it specifies the gate functionality, whereas for (x1, . . . , xt−1, αi) (i < 5t�) it specifies
the routing through this vertex. Note that each vertex takes its inputs from at most
3 out of�(

√
log n) incoming edges.
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Notice that Tu, Tcounter , TS ,P are all polynomials of degree at most |F |, |E| in
their respective variables. The verifier will expect low-degree extensions of Tu, TS ,P

on all of Gt , and analogously for Tcounter over Gt−1.
In the following, keep in mind that Tcounter is constructed implicitly (once we

decode all log2 n+O(1) bits of the counter), and TS ,P is part of the input of the
problem, so we only need to locally decode and verify the validity of Tu.

First, we construct a polynomial

�(x)�ψ
(
Tu(x)

)
�
∏
c∈C

(
Tu(x)− c

)
, (16.1)

such that ψ(Tu(x))= 0 iff Tu(x) ∈ C.
Similarly, we would like to construct a polynomial that verifies that the colors

are propagated correctly through the middle layers; for the last layer, it should
also verify that the gate functionality is implemented correctly. First, we describe
the edges of the Extended Shuffle-F -Exchange graph with the following affine
transformations:

ρStatic
(
x1, . . . , xt−1, αi+1)�

(
x1, . . . , xt−1, αi

)
ρShuffle

(
x1, . . . , xt−1, αi+1)�

(
xt−1, x1, . . . , xt−2, αi

)
ρ0
(
x1, . . . , xt−1, αi+1)�

(
x1+

[
z0], . . . , xt−1, αi

)
...

ρ�−1
(
x1, . . . , xt−1, αi+1)�

(
x1+

[
z�−1], . . . , xt−1, αi

)
(So each vertex x ∈F t−1× (E \ {1})has incoming edges from ρStatic(x), ρShuffle(x),
ρ0(x), . . . , ρ�−1(x).)

Now we can define a polynomial

!(x)� φ
(
Tu(x), Tu

(
ρStatic(x)

)
Tu
(
ρShuffle(x)

)
, Tu

(
ρ0(x)

)
,

. . . , Tu
(
ρ�−1(x)

)
, T(S ,P)(x)

)
, (16.2)

where for x ∈F t−1× (E \ {1, α5t�}), φ(. . .)= 0 iff the colors are propagated correctly
to the corresponding vertex, and for x ∈ F t × {α5t�}, φ(. . .) further checks that the
gate functionality is implemented correctly.

Finally, we add a third polynomial over F t−1,

"(x)� ξ
(
Tu
(
x1, . . . , xt−1, 1

)
, Tu

(
x1, . . . , xt−1, α5t�), Tcounter

(
x1, . . . , xt−1

))
,

(16.3)
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which is zero iff Tu(x1, . . . , xt−1, 1)= Tu(x1, . . . , xt−1, α5t�) and the corresponding
line is active or inactive as dictated by Tcounter(x1, . . . , xt−1).

We now have that u ∈ vlocal is equivalent to AND of the following conditions:

. values-in-domain: �(x)= 0 for all x ∈ F t−1× E;

. value-propagation and computation:!(x)= 0 for all x ∈F t−1× (E \ {1}); and

. active-vs-inactive: "(x)= 0 for all x ∈ F t−1.

Notice also that ψ , ξ are constant total degree polynomials, whereas φ has total
degree polylog n; thus � ,!, " are of degrees |F | . polylog n, |E| . polylog n≤ |G|/2
in their respective variables.

16.3.3 PCP
Our verifier should test that� ,!," are zero everywhere on the respective domains
(F t−1× E , F t−1× (E \ {1}), F t−1). We describe the test for �; the corresponding
tests for ! and " follow analogously.

In order to test that �(x) is zero over all of F t−1× E, consider the following
polynomials:

�
′(
x1, . . . , xt−1, αj

)
(16.4)

�
∑

fit/2+1
, . . . , fit−1∈F

j ′∈{1, . . . , 5t�}

(
�(x1, . . . , xt/2, fit/2+1

, . . . , fit−1
, αj

′) t−1∏
k=t/2+1

x
ik−1
k

.
(
αj
)j ′

�
′′(
x1, . . . , xt−1, αj

)
(16.5)

�
∑

fi1, . . . ,fit/2
∈F
�
′(
fi1, . . . , fit/2

, xt/2+1, . . . , xt−1, αj
) t/2∏
k=1

x
ik−1
k .

In particular, observe that

�
′′(
x1, . . . , xt−1, αj

)= ∑
fi1 , . . . , fit−1∈F
j ′∈{1, . . . , 5t�}

�
(
fi1, . . . , fit−1

, αj
′) .

t−1∏
k=1

x
ik−1
k

.
(
αj
)j ′.

The main point of this construction is that �
′′

is the zero polynomial if and
only if �(x)= 0 for every x ∈ F t−1× E. Now, by definition, �

′′
has degrees at most

|F |, |E| in each variable, respectively, so it suffices to test that it is indeed zero at
one random point from Gt .

The verifier should also ensure that�
′

and�
′′

are constructed correctly. This is
done by picking a uniformly random x ∈ Gt and verifying that (16.4) and (16.5) hold.
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If� is constructed correctly, then�
′
also has low-degree in each variable (compared

to |G|), so it suffices to test on a single x ∈ Gt . Similarly, the verifier should also check
that � is constructed correctly as in (16.1); thanks to the low-degree guarantee, a
single x ∈ Gt suffices here as well.

Notice that the verifier does not need to receive �
′′

explicitly. (This is cru-
cial later for the proof construction!) Testing that �

′′
is constructed correctly at

(x1, . . . , xt−1, αj) and that it is zero at the same point is equivalent to simply test-
ing that ∑

fi1, . . . ,fit/2
∈F
�
′(
fi1, . . . , fit/2

, xt/2+1, . . . , xt−1, αj
) t/2∏
k=1

x
ik−1
k = 0. (16.6)

We also need to test that all polynomials are indeed low-degree. We do this later,
in Section 16.3.7.

Define and test!
′
,"

′
analogously to�

′
. We conclude that if Tu,� ,!,",�

′
,!

′
,

"
′

are all indeed of low degree as promised and the verifier accepts with probability
greater than ε, then Tu, Tcounter represent a real vertex u ∈ V local. Notice that all
of our tests choose x ∈ Gt/2 with uniform marginal probabilities.

For simplicity of notation, we henceforth treat "(.) as a t -variate polynomial
(with the t -th variable being a dummy variable).

16.3.4 The Final Encoding
Our proof (u) consists of the following strings.

. C(u) consists of a good encoding of the “counter” ofu. (Notice that we require
a succinct encoding that can be fully decoded, and then the entire Tcounter

can be computed locally.)

. E(u) consists of the polynomial Tu: Gt→ G.

. π(u) consists of the polynomials � , �
′
,!,!′, ", "

′
: Gt→ G.

Although they have different lengths (in particular,C(u) is much shorter), we think
of them as having equal “weights,” i.e., we allow only a constant fraction of errors in
each. Also, we think of symbols in larger alphabets as encoded with a good binary
error-correcting code.

16.3.5 Local Decoding and Error Correction
When a typical PCP verifier is given a proof that is wrong even at a single bit, it
is already allowed to reject the proof. For our purpose, we want a more lenient
verifier that, when given a proof that is wrong at a small fraction of the bits, corrects
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those bits and accepts. Furthermore, we want to ensure that our verifier only uses
very little randomness: only (1/2+ o(1)) log2 n random bits. A second goal of this
subsection is to establish the desideratum that the verifier can adaptively decode
an arbitrary qcritical-tuple of entries from the proof.

We describe how to locally decode and correct �; Tu, �
′
, !, ", !

′
, "

′
follow

with minor modifications, whereas the counter has a succinct representation and
can be fully decoded. Specifically, the verifier needs to decode � in order to test
(16.1), (16.4). For (16.1) the verifier only needs to decode� at one uniformly random
point, so this is the easy case. For (16.4), the verifier wants to decode an entire axis-
parallel (t/2)-dimensional affine subspace,Q(x1, . . . ,xt/2)

� {(x1, . . . , xt/2)} × Gt/2, for

a uniformly random choice of (x1, . . . , xt/2) ∈ Gt/2.
Let S ⊂ Gt/2 be a (1/(t2 log |G|))-biased set of cardinality |S| = poly(t , log |G|) (as

guaranteed by Section 2.7.3). We pick a uniformly random x = (x1, . . . , xt/2) ∈ Gt/2,
and a uniformly random y = (y1, . . . , yt/2) ∈ S. We then consider the (t/2+ 1)-
dimensional affine subspace Rx , y �

⋃
β∈G Q(x+βy). If �̂ is O(εDecode)-close to �,

we have by Lemma 2.4 that with probability 1− o(1), the restriction of �̂ to Rx , y,
denoted �̂ |Rx , y

, is also O(εDecode)-close to � |Rx , y
. Whenever this is the case, the

verifier correctly decodes � on Rx , y.
Notice that so far, our verifier queries |G|t/2+1= n1/2+o(1) symbols, and uses

log2 |Gt/2| + log2 |S| = (1/2+ o(1)) log2 n random bits.
The local decoding for Tu, �

′
, !, ", !

′
, "

′
follows with minor modifications

that we now describe. Notice that we can reuse the same random bits from the
decoding of� to decode each of the other polynomials. For (16.5) the verifier wants
to decode�

′
(equivalently for!

′
,"

′
) on a subspace that fixes the second half of the

coordinates,Q
′
(xt/2+1, . . . ,xt)

� Gt/2 × {(xt/2+1, . . . , xt)}.
For (16.1) and (16.3), the verifier also needs to decode one or two entries of

Tu, but this is no harder than decoding an entire plane. For (16.2), there is some
subtlety: !(x) is a function of the values of Tu on a super-constant number (�+
3=�(√log n)) of points x , ρStatic(x), ρShuffle(x), ρ0(x), . . . , ρ�−1(x). Observe that
x , ρStatic(x), ρ0(x), . . . , ρ�−1(x) all belong to the same (t/2)-dimensional subspace
(only the first and last coordinates change); thus we only need to apply subspace-
decoding twice.

Notice that our decoding mechanism also suffices to locally correct errors (with
probability at least (1− o(1)), and assuming that we start with a function that is
close to low-degree). Furthermore, by Lemma 2.4, the distance |�̂ |Rx , y

−� |Rx , y
| is

within ±o(1) of the global distance |�̂ −�|. Handling the rest of the polynomials
as described in the previous paragraphs, we can thus estimate | ̂ |E ,π − (u) |E ,π |
to within ±o(1); for the bits that correspond to the counter, we can compute the
distance exactly.
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Decoding a Particular Subspace
Above, we described how to locally decode a random subspace. Suppose instead
that we want to locally decode � |Q(w1, . . . ,wt/2)

for some particular w ∈ Gt/2 (specifi-

cally, when Q(w1, . . . ,wt/2)
contains information about one of the critical bits). Since

we did not waste any random bits on picking w, we can afford to pick y uni-
formly from all of Gt/2. On the other hand, since w is arbitrary, there may still
be an �(εDecode) chance that |�̂ |Rw , y

−� |Rw , y
| is too large (> 1/2) to guaran-

tee correct decoding. Instead, we pick a third vector z ∈ S, and query �̂ on the
(t/2+ 2)-dimensional affine subspace Pw , y , z �

⋃
β ,γ∈G Q(w+β(y+γ z)); notice that

Pw , y , z �
⋃
γ∈G Rw , y+γ z. In expectation, for each (y + γ z), the restriction �̂ |Rw , y+γ z

is at distance at most O(εDecode) from � |Rw , y+γ z
. Therefore, by Lemma 2.4, with

probability 1− o(1), we have that |�̂ |Pw , y , z
−� |Pw , y , z

| =O(εDecode).

16.3.6 Local Proof-Construction
We now want to establish the following unusual property of our holographic proof
scheme: we can, with high probability, locally construct any subspace Q(x1, . . . ,xt/2)

of the proof π(u) by reading only a small part of the encoding E(u) (in particular,
we need to decode a constant number of (t/2+ 1)-dimensional subspaces from
E(u)). Here, it is important thatQ(x1, . . . ,xt/2)

is defined via a restriction of the first t/2
coordinates, but we assume access to decoded subspaces of E(u) with restriction
of any (t/2)-tuple of coordinates.

Recall that in order to compute�(x) or"(x), it suffices to know the values of Tu
at a constant number of locations ((16.1) and (16.3)), so here this property trivially
holds. For !(x), we need to know Tu at �(

√
log n) locations (16.2); however, as

we argue in Section 16.3.5, they belong to two axis-parallel subspaces, so it again
suffices to decode Tu on a constant number of subspaces.

In order to compute �
′
(x), !

′
(x), "

′
(x), we need to correctly decode the values

of � , !, " on (almost) an entire axis-parallel subspace Q(x1, . . . ,xt/2)
. The values of

� ,!, " are not given as part of E(u), but (as we argued in the previous paragraph)
we can reconstruct them from Tu. Specifically, in order to know the values of � or
" onQ(x1, . . . ,xt/2)

, we simply need to decode Tu onQ(x1, . . . ,xt/2)
. In order to construct

! on an entire subspace, observe that for every (x1, . . . , xt/2, fit/2+1
, . . . , fit−1

, αj) ∈
Q(x1, . . . ,xt/2)

, all the vectors ρStatic(x1, . . . , xt/2, fit/2+1
, . . . , fit−1

, αj), ρ0(x1, . . . , xt/2,

fit/2+1
, . . . , fit−1

, αj), . . . , ρ�−1(x1, . . . , xt/2, fit/2+1
, . . . , fit−1

, αj) belong to the same
subspaceQ(x1, . . . ,xt/2)

. Furthermore, all the vectors ρShuffle(x1, . . . , xt/2, fit/2+1
, . . .,

fit−1
, αj) = (fit−1

, x1, . . . , xt/2, fit/2+1
, . . . , fit−2

, αj) belong to the subspace

QShuffle
(x1, . . . ,xt/2)

� G × (x1, . . . , xt/2)× Gt/2−1. Therefore the value of !
′
(x) can also be

computed from the values of Tu on a constant number of subspaces.
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16.3.7 Local Robust Testing
So far, we assumed that we are given functions that are low-degree (Section 16.3.3),
or approximately low-degree (Section 16.3.5). However, we must verify that this is
indeed the case.

We will use results for locally testing tensor codes [Viderman 2015]. In order to
describe them, let us briefly introduce some minimal background and notation.
Given linear codes C1, C2 with respective generator matrices M1,M2, their tensor
product, denoted C1⊗ C2, is the linear code generated by the tensor product of the
matricesM1⊗M2. We say thatC1⊗C2 is a tensor code. In general, we can talk about
the tensor product of k codes, C1⊗ . . .⊗ Ck, which is defined recursively. We say
thatC1⊗ . . .⊗ Ck is the k-th power ofC (denotedCk), ifCi = C for all i ∈ [k]. In our
case, for example, the code C of all (|G|/2)-individual-degree polynomials T : Gt→ G
is the t -th power of the code of all (|G|/2)-degree polynomials t : G→ G.

Alternatively, we can think of any product code as a function from some product
domain to some range. The (axis-parallel) hyperplane tester picks a uniformly ran-
dom index i ∈ [k], and a uniformly random value vi from the i-th domain. It reads
the assignment of the function for all vectors that have vi in their i-th coordinate,
and tests whether they form (or are close to) a codeword from C1⊗ . . .⊗ Ci−1⊗
Ci+1⊗ . . .⊗ Ck. Going back to our setting, this could mean selecting a random
i ∈ {1, . . . , t} and a random value vi ∈ G, reading T (x) for all x such that xi = vi, and
verifying that the restricted (t − 1)-variate function is close to a low-degree poly-
nomial.

To optimize query complexity, it will be more convenient for us to think of the
code of (t/4)-variate (|G|/2)-individual-degree polynomials Tt/4: Gt/4 → G, hence-
forth denoted C1/4. The code C can now be written C = (C1/4)

4. The hyperplane tester
now chooses a random i ∈ {1, 2, 3, 4} and a random value vi ∈ Gt/4, and reads T (x)
for all x whose restriction to the i-th (t/4)-tuple of coordinates is equal to vi.

We can now apply the following theorem due to Viderman [2015]:

Theorem 16.4 [Viderman 2015 (Theorem 4.4)]. Let C = C1⊗ . . .⊗ Ck be the tensor product of
k > 2 linear codes of relative distances δ1, . . . , δk. Let M be a string that is ε-far
from the tensor code C. Then the restriction of M to a random hyperplane drawn

from the above distribution is, in expectation, at least
(
ε .
∏k

j=1 δj

2k2

)
-far from the

restricted code C1⊗ . . .⊗ Ci−1⊗ Ci+1⊗ . . .⊗ Ck.

LetS1/4⊂ Gt/4 be a (1/(t2 log |G|))-biased set of cardinality |S1/4| = poly(t , log |G|)
(for example, take the restriction of each y ⊂ S to its first t/4 entries). Sample x ∈ Gt/4

and y ∈ S1/4 uniformly at random. Run the hyperplane tester for (C1/4)
4 on each

alleged polynomial 4|G| times, taking all the possibilities for i ∈ {1, 2, 3, 4} and



246 Chapter 16 2-Player Approximate Nash Equilibrium

vi = (x + βy) for all β ∈ G. By Theorem 16.4, if the polynomial is εSound-far from

(C1/4)
4, then the expected distance on each of the 4|G| tests is

(
εSound .

∏k

j=1 δj

2k2

)
=

εSound/512 (since k = 4 and δj ≥ 1/2). By Lemma 2.4, the average over all the tests
is, with probability 1− o(1), within ±o(1) of this expectation.

So far the tester requires (1/4+ o(1)) log2 n random bits to sample a hyperplane,
but has prohibitively high query complexity: n3/4+o(1). In order to drive down the
query complexity, we can recurse on the test using fresh (1/4+ o(1)) log2 n random
bits: we re-partition (C1/4)

3 as a tensor product of three linear codes, and reapply
Viderman’s theorem. Our query complexity is now n1/2+o(1), the total random-bits
complexity is (1/2+ o(1)) log2 n, and the robustness guarantee is

(
εSound . 2−4

2.42
.

2−3

2.32

)− o(1) > εSound/105.
Finally, our tester accepts iff the average distance across all (t/2)-dimensional

subspaces from the nearest low-degree polynomial is less than 2
√
εComplete <

εSound/(2 . 105). Thus our tester accepts with high probability whenever �̂ is
εComplete-close to the true �, and rejects with high probability whenever �̂ is
εSound-far from any low-degree polynomial. (Testing T̂u, !̂, "̂, �̂ ′ , !̂′ , "̂′ follows
analogously.)

16.3.8 Summary
The verifier, on input  ̂= (Ê , Ĉ , π̂), does the following.

Randomness
In a preprocessing step, the verifier fixes in advance a (1/(t2 log |G|))-biased set S
of cardinality |S| = poly(t , log |G|). Let S1/4 denote the restriction of S to the first t/4
coordinates.

The tester then:

. draws x uniformly at random from Gt/2, and y uniformly at random from S;
and

. reusing the same randomness, draws x1, x2 ∈ Gt/4 and y1, y2 ∈ S1/4.

Queries
The verifier reads T̂u on all vectors z ∈ Gt such that one of {(z1, . . . , zt/2), (z2, . . . ,

zt/2+1)} is of the form (x + βy) for some β ∈ G. It also reads �̂ , !̂, "̂, �̂ ′ , !̂′ , "̂′on all
z ∈ Gt such that (z1, . . . , zt/2)= (x + βy) for some β ∈ G (denote those vectorsRx , y).

Similarly, it also reads�
′
,!

′
, and"

′
on all z ∈ Gt such that (zt/2+1, . . . , zt)= (x + βy)

(denote those vectorsR
′
x , y). The union of all those subspaces (i.e.,Rx , y ∪R′x , y) forms

GPCP, whileGSample �Rx , y.
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For each choice of i1 �= i2 ∈ {1, 2, 3, 4} and each β1, β2 ∈ G, the verifier reads
each polynomial on all vectors z ∈ Gt such that the i1-th (t/4)-tuple of z is equal to
x1+ β1y1, and the i2-th (t/4)-tuple of z is equal to x2 + β2y2. The union of all those
subspaces formsGLTC.

Finally, the verifier also reads the entire encodingC(u) of the counter of u. Given
C(u), the verifier also picks qcritical vectors w1, . . . , wqcritical ∈ Gt/2 that correspond
to each of the critical bits, and reads Tu on all vectors z ∈ Gt such that (z1, . . . , zt/2)=
(wi + β(x + βy)) for some β , γ ∈ G and i ∈ {1, . . . , qcritical}. Those areGcritical.

Test
The verifier uses the hyperplane tester from Section 16.3.7 to verify that all the
polynomials are indeed close to low-degree polynomials. (If not, it suffices to return
an error message and abort.)

Correct & Decode
For each subspace queried, the verifier finds the unique low-degree polynomials
Tu, � ,!, ", �

′
,!

′
, "

′
that are close to the values read.

Verify
The verifier checks that the corrected polynomials Tu, � , !, ", �

′
, !

′
, "

′
satisfy

(16.1), (16.2), (16.3), and (16.4) on all of Rx , y. It also checks that (16.6) (and its

analogues for !
′
, "

′
) are satisfied on all of R

′
x , y.

Estimate Distance
The verifier also computes the Hamming distance between the values of T̂u, �̂ , !̂,
"̂, �̂ ′ , !̂′ , "̂′ and Tu, � ,!, ", �

′
,!

′
, "

′
on Rx , y.

Extrapolate
Given C(u), the verifier can locally reconstruct C(Slocal(u)). Additionally, after the
verifier has decoded the values of Tu at the critical bits, it also knows the current
and new values of all the entries that change between u and Slocal(u). SinceE(.) is
a linear encoding, the verifier can also completely construct the difference vector
E(Slocal(u))− E(u). In other words, given the value of Tu(x) for any x, the verifier
can locally compute TSlocal(u)(x).

The verifier can also use the ideas from Section 16.3.6 to construct the values of
all the polynomials (� ,!, ", �

′
,!

′
, "

′
) for Slocal(u), on all of Rx , y.

For P local(u), the verifier must first check that u is not the special vertex u0.
This is easy to do since Tu and the respective Tu0

are both low-degree polynomials
and must differ (if u �= u0) on a constant fraction of their entries. If indeed u �= u0,
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recovering information about P local(u) is completely analogous to the procedure
for Slocal(u). Otherwise, we simply have P local(u0)= u0.

16.4 Polymatrix WeakNash
In this section we prove our main technical result:

Theorem 16.5 There exists a constant εNash > 0, such that there is a 2n
1/2+o(1)

-time reduction from
End-of-a-Line to finding an (εNash, εNash)-Well-Supported-WeakNash of a
complete bipartite polymatrix game between n1/2+o(1) players with 2n

1/2+o(1)
actions

each; the payoffs in each bimatrix subgame are in [0, 1/nB], [0, 1/nA], where nA, nB
denote the number of players on each side of the bipartite graph.

We construct a subexponential polymatrix game that implements a variant of
the hard Brouwer function constructed in Section 4.2. The new Brouwer function
is very similar, but we make the following modifications:

. We use the vertices of a Local End-of-a-Line instance instead of End-of-
a-Line.

. Instead of encoding each Local End-of-a-Line vertex u with an arbitrary
error-correcting code, the Brouwer vertices correspond to the holographic
proofs (u) from Section 16.3.

. For convenience of notation, instead of maintaining m coordinates (which
we expect to be identical anyway) for the auxiliary compute-vs-copy bit and
the special direction, we keep just one coordinate for each, but give each a
constant relative weight.

. In particular, the “first” Brouwer line segment goes from z2 � ( (u0), (u0),
0, 2) to ( (u0), (u0), 0, 0).

The rest of the proof proceeds as follows: In Section 16.4.1, we define the strategy
space for the players and relate it to the holographic proof system from Section 16.3.
In Section 16.4.2, we introduce some important notation used throughout this sec-
tion. In the next two subsections (16.4.3 and 16.4.4), we define the players’ payoffs,
and implement an imitation gadget, assuming that the Brouwer function f can be
locally computed. In Section 16.4.5, we translate the PCP guarantees from Proposi-
tion 16.2 to guarantees about approximate equilibria of our polymatrix game. This
completes the setup of the argument. The rest of this section (Sections 16.4.6 to
16.4.9) shows that we can indeed locally compute f in the different regions where
it is defined (outside the picture, close to a Brouwer line segment, etc.).
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16.4.1 Players and Strategies
Let RPCP denote the set of random strings used by the PCP verifier in Proposition
16.2. For each r ∈RPCP we construct a player (A, r) on one side of the bipartite
game. On the opposite side, we construct a player (B , q) for every q ∈ Gt/2. We refer
to the respective sides of the bipartite game as Alice’s players and Bob’s players. (In
Section 16.5 we will construct a bimatrix game between Alice and Bob where each
player “controls” the vertices on her or his side of the polymatrix game.)

Each player has (3/εPrecision+ 1)n
1/2+o(1)+2 actions. We think of each action as an

ordered tuple of:

. two vectors in [−1, 2]n
1/2+o(1)

, where the interval [−1, 2] is discretized into
{−1, −1+ εPrecision, . . . , 2− εPrecision, 2}; and

. two more variables in [−1, 2].

Recall that each Brouwer vertex corresponds to a pair (u, v) of either identical or
consecutive vertices from the Local End-of-a-Line instance. For player (A, r),
the two vectors allegedly correspond to bits read from two holographic proofs à la
Section 16.3, ( (u),  (v)) by the PCP verifier with random string r . For player
(B , q) the vectors represent (a binary encoding of) the counters C(u), C(v), and
the entries of E(u), π(u), E(v), π(v) on a (t/2)-dimensional subspace G(B , q) ⊂ Gt
to be specified below.

The additional two variables represent the compute-vs-copy bit and the special
direction.

In addition to the assignments described above, each player on Alice’s side
has an additional choice among (3/εPrecision + 1)n

1/2+o(1)
actions. These additional

actions allegedly correspond to 2qcritical (affine, (t/2+ 2)-dimensional) subspaces
from which we can decode the qcritical critical bits of each of the vertices. (We know
which entries are represented by reading the “counter” part of the proof.)

Bob’s SubspaceG(B , q)

Let G(A,r)
All ⊂ Gt denote the set of entries of E(.), π(.) read by the PCP verifier with

random string r . Recall that the PCP verifier picks a set of (t/2)-dimensional axis-
parallel affine subspaces; each subspace is an affine shift of a linear subspace,
spanned by one of a constant number of (t/2)-tuples of standard basis vectors.
We pick G(B , q) so that it is spanned by vectors that are linearly independent of all
those tuples. In particular, G(B , q) intersects each of (A, r)’s subspaces at exactly
one point.
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For any (t/2)-tuple of standard basis vectors of Gt , a uniformly random (t/2)-
tuple of new vectors in Gt completes it to a basis with high probability. To see
this, consider adding the new vectors one by one; at each step, there is at least
a (1− 1/|G|)-probability that it is linearly independent of the previously chosen
vectors; the claim follows by union bound and t = o(|G|). Therefore, a random
(t/2)-tuple of vectors will also, with high probability, be simultaneously linearly
independent of each of the relevant tuples of standard basis vectors. Fix any such
(t/2)-tuple (there are also efficient ways to deterministically find such a tuple, but
in quasi-polynomial time we can simply brute-force enumerate through all tuples).

Finally, we let G(B , 0t/2) be the linear subspace spanned by those vectors; for
general q ∈ Gt/2, we letG(B , q) be the same subspace shifted by (q, 0t/2).

16.4.2 Notation
We introduce some necessary additional notation for formally handling vectors in
this section. The notation for (A, r)’s assignment to the critical bits is analogous
in spirit but more subtle to formalize; we come back to it in Section 16.4.3.

Definition 16.3 We say that a player is happy if every strategy on her support is εNash-optimal.

Rounding
For x ∈ R, let ν(x)�

{
1 x > 1/2
0 otherwise

denote the rounding of x to {0, 1}; for x ∈ Rn,

we compute ν(x) coordinate-wise.

Coordinates
LetM � {1, . . . , 2m+ 2}denote the set of all coordinates. We partitionM into:M1 �
{1, . . . ,m} (the first proof),M2 � {m+ 1, . . . , 2m} (the second proof),M3 � {2m+ 1}
(the compute-vs-copy bit), and M4 � {2m+ 2} (the special direction). We will also
use the abbreviationsM1, 2 �M1 ∪M2 andM3, 4 �M3 ∪M4.

Fix some player (A, r) on Alice’s side; we further detail (A, r)’s strategy space as
follows. LetG(A,r)

Sample,G(A,r)
PCP ,G(A,r)

LTC ⊂ Gt denote the sets of entries of E(.), π(.) read

by the PCP verifier with random string r from the alleged proofs. Let I (A,r)
Sample, I (A,r)

PCP ,

I
(A,r)
LTC ⊂M1, 2 denote the indices of the corresponding bits, respectively. For player
(B , q) on Bob’s side, let I (B , q) ⊂M1, 2 denote the indices of the bits corresponding
to G(B , q). We also let K ⊂M1, 2 (K for Kounter) denote the set of indices that
correspond to the encodings of counters in both proofs. (Notice thatK is the same
for every player on both sides.)
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Finally, we will be particularly interested in the following sets:

J (A,r) �K ∪ I (A,r)
Sample ∪M3, 4

J (B , q) �K ∪ I (B , q) ∪M3, 4.

Partial Vectors
Player (A, r)’s strategy a naturally corresponds to a partial vector x(a)All ∈ ([−1, 2]∪ {⊥
})M . For i ∈K ∪ I (A,r)

PCP ∪ I (A,r)
LTC ∪M3, 4, we set the i-th coordinate of x(a)All to the value

that a assigns to the corresponding coordinate; for all other i’s, we let x(a)All |i�⊥.
In particular, we are interested in the partial vector x(a) ∈ ([−1, 2]∪ {⊥})M that

describes (A, r)’s partial assignment to J (A,r). For i ∈ J (A,r), we set the i-th coordi-
nate of x(a) to the value that a assigns to the corresponding coordinate; for all other
i’s, we let x(a) |i�⊥.

For action b taken by player (B , q), we can simply define one partial vector
x(b) ∈ ([−1, 2]∪ {⊥})M , where x(b) |i�⊥ for i �∈ J (B , q).

Partial Norms
All norms in this section are 2-norm: we henceforth drop the 2 subscript from ‖ . ‖2.
Instead, we will use the subscript to denote the subset of coordinates over which
we want to compute the norm. For example,∥∥∥x

∥∥∥2

K
� Ei∈K

[
x2
i

]
.

In fact, we are often interested in expectation with respect to a non-uniform distri-
bution; for example:∥∥∥x

∥∥∥2

J (A, r)
� 1

4
E
i∈I (A, r)

Sample

[
x2
i

]+ 1
4

Ei∈K
[
x2
i

]+ 1
2

Ei∈M3, 4

[
x2
i

]
∥∥∥x
∥∥∥2

J (B , q)
� 1

4
Ei∈I (B , q)

[
x2
i

]+ 1
4

Ei∈K
[
x2
i

]+ 1
2

Ei∈M3, 4

[
x2
i

]
.

The distribution is set such that each part (e.g., K , I (A,r)
PCP , I (B , q), or M1, . . . ,M4)

receives an equal weight (up to constant factors). The distribution will henceforth
be implicit, and only the subset of coordinates will be explicit.

This notation also allows us to talk about distances between partial vectors, e.g.,∥∥∥x(a) − x(b)
∥∥∥2

J (A, r)∩J (B , q)
� 1

4

∥∥∥x(a) − x(b)
∥∥∥2

K

+ 1
2

∥∥∥x(a) − x(b)
∥∥∥2

M3, 4
+ 1

4

∥∥∥x(a) − x(b)
∥∥∥2

I
(A, r)
Sample

∩I (B , q)
.
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Aggregate Vectors
Let A denote the joint (product) distribution over all Alice’s players’ mixed strate-
gies, and define B analogously for Bob’s players. We define x(A), x(B) ∈ [−1, 2]M to
be the weighted entry-wise average of x(a), x(b), respectively, where for each coordi-
nate we only take the expectation over vectors for which it is assigned a real (non-⊥)
value.

16.4.3 Alice’s Imitation Gadget
Our first goal is to incentivize player (A, r) to imitate x(B) on her assigned coordi-
nates. We break up her utility on each bimatrix subgame as follows:6

U(A,r) �U(A,r)
Sample + U(A,r)

PCP + U(A,r)
LTC + U(A,r)

Counter + U(A,r)
M3, 4

+ U(A,r)
critical.

For each player (B , q) on Bob’s side, we simply define the first five parts to
incentivize copying (B , q)’s strategy on each shared coordinate. Let a, b denote
(A, r) and (B , q) respective strategies; then

U
(A,r)
Sample �−

∥∥∥x(a)All − x(b)
∥∥∥2

I
(A, r)
Sample

∩I (B , q)

U
(A,r)
PCP �−

∥∥∥x(a)All − x(b)
∥∥∥2

I
(A, r)
PCP

∩I (B , q)

U
(A,r)
LTC �−

∥∥∥x(a)All − x(b)
∥∥∥2

I
(A, r)
LTC

∩I (B , q)

U
(A,r)
Counter �−

∥∥∥x(a)All − x(b)
∥∥∥2

K

U
(A,r)
M3, 4

�−
∥∥∥x(a)All − x(b)

∥∥∥2

M3, 4
.

Notice that

1
8
U
(A,r)
PCP + 1

8
U
(A,r)
LTC + 1

4
U
(A,r)
Counter +

1
2
U
(A,r)
M3, 4

=

−
∥∥∥x(a)All − x(b)

∥∥∥2

(K∪I (A, r)
PCP

∪I (A, r)
LTC

∪M3, 4)∩J (B , q) ,

6. For convenience of notation, we define bimatrix subgames with payoffs in [−54/nB , 0],
[−36/nA, 0]. Payoffs [0, 1/nB], [0, 1/nA] can be obtained by scaling and shifting.
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whereas

1
4
U
(A,r)
Sample +

1
4
U
(A,r)
Counter +

1
2
U
(A,r)
M3, 4

=−
∥∥∥x(a) − x(b)

∥∥∥2

J (A, r)∩J (B , q)
.

As we mentioned earlier, we also want (A, r) to encode the critical bits for each
Local End-of-a-Line vertex. The indices of this encoding depend on both:

. the indices of the critical bits—which depend on the “counter” of the two
Local End-of-a-Line vertices, allegedly encoded in both a and b; and

. the directions in Gt/2 that the PCP verifier uses to locally decode those bits—
which depend on the random string r .

We letG(A,r)
critical(a)⊂ Gt denote the set of additional entries that encode the critical

bits, as induced by (A, r)’s strategy x(a) |K and random string r ; let I (A,r)
critical(a)⊂

M1, 2 denote the corresponding bits’ indices. In order to define (A, r)’s utilities,
it is actually more convenient to use the critical bits determined by (B , q)’s b,
henceforth denoted I (A,r)

critical(b). (The superscript remains (A, r) because we still
decode those bits according to random string r .) This added level of indirection
prevents (A, r) from manipulating her encoding of the counter to increase her util-
ity from the critical bits. In other words, a includes an assignment to qcritical affine
(t/2+ 2)-dimensional subspaces of Gt . On each subgame, we subjectively interpret
a’s assignment as a partial vector x(a)critical with values in [−1, 2] on I (A,r)

critical(b). In
particular, we define

U(A,r)
critical �−‖x(a)critical − x(b)‖2

I
(A, r)
critical(b)∩I (B , q)

.

For some choices of b, the induced assignment to the counter may be ambiguous or
just far from every codeword. However, in that case we are probably far from every
Brouwer line segment, so we don’t care what (A, r) assigns to the critical bits.

Claim 16.1 For every happy player (A, r) on Alice’s side and any action a in her support, for
each I ∈ {I (A,r)

Sample, I (A,r)
PCP , I (A,r)

LTC }
∥∥∥x(a)All − x(B)

∥∥∥2

I
=O(εNash).
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Proof Recall that (A, r)’s total utility from her assignment to I (A,r)
LTC is given by

U
(A,r)
LTC =−Eq∈Gt/2Eb∼B[(B , q)]

[∥∥∥x(a)All − x(b)
∥∥∥2

I
(A, r)
LTC

∩I (B , q)

]
=−E

i∈I (A, r)
LTC

[(
x(a)All |i −Eb∼B[(B , q(i))]

[
x(b) |i

])2]
− E

i∈I (A, r)
LTC

[
Varb∼B[(B , q(i))]

[
x(b) |i

]]
, (16.7)

where (B , q(i)) is the player on Bob’s side for which i ∈ I (B , q(i)) (i.e., q(i) denotes
the value q ∈ Gt/2 such that bit i is part of the representation of some g ∈G(B , q)).

Notice that the second term of (16.7) does not depend on (A, r)’s strategy, so
she simply wants to maximize the first term. For every i, she can approximate
Eb∼B[(B , q(i))][x(b) |i] to within±εPrecision. Therefore, if a is an εNash-optimal strategy,
we have

U
(A,r)
PCP ≥−E

i∈I (A, r)
PCP

[
Varb∼B[(B , q(i))]

[
x(b) |i

]]− εNash − ε2
Precision︸ ︷︷ ︸

=O(εNash)

.

An analogous argument works for I (A,r)
Sample, I (A,r)

PCP .

The following claims follow along the same lines:

Claim 16.2 For every happy player (A, r) on Alice’s side and any action a in her support,∥∥∥x(a) − x(B)
∥∥∥2

K
=O(εNash).

Claim 16.3 For every happy player (A, r) on Alice’s side and any action a in her support,∥∥∥x(a) − x(B)
∥∥∥2

J (A, r)
=O(εNash).

Corollary 16.1 Let (A, B) be an (εNash, εNash)-Well-Supported-WeakNash; then∥∥∥x(A) − x(B)
∥∥∥2

M
=O(εNash).

16.4.4 Bob’s Imitation Gadget
We would also like to have the players on Bob’s side minimize ‖f (x(A))− x(b)‖2

J (B , q).
In order to implement this in a polymatrix game, we want to locally compute f (.)
given access only to the partial information provided by player (A, r)’s strategy a. In
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Section 4.2.3 we argued that we can locally compute fi(x) using only approximate,
partial information about x. The main goal of this section is to argue that for most
i ∈ J (A,r), we can compute this partial information from a, approximately and with
high probability over r . Before we do that, however, let us assume that we have some
estimate f (a) |i and derive the utility of player (B , q).

For any action a that (A, r)plays, we define a partial target vectorf (a) ∈ ([−1, 2]∪
{⊥})M that we would like (B , q) to imitate. In particular, (B , q) is incentivized to
play a strategy that is close to f (a) on the coordinates where both f (a) and x(b) are
defined. We define

U(B , q) �−
∥∥∥f (a) − x(b)

∥∥∥2

J (A, r)∩J (B , q)
.

Similarly to x(A) and x(B), let f (A) ∈ [−1, 2]M denote the weighted entry-wise
average of f (a), where for each i we take an average over f (a) |i for all a in the support
of (A, r), for r such that i ∈ J (A,r).

Claim 16.4 For every happy player (B , q) on Bob’s side and any action b in his support,∥∥∥x(b) − f (A)
∥∥∥2

J (B , q)
=O(εNash

)
.

Proof Analogous to Claim 16.1.

Corollary 16.2 Let (A, B) be an (εNash, εNash)-Well-Supported-WeakNash; then∥∥∥x(B) − f (A)
∥∥∥2

M
=O(εNash

)
.

For the rest of this section, our goal is to prove that f (A) is also close to f (x(B))—
this would prove that x(B) is an approximate fixed point of f .

16.4.5 Reading the Holographic Proofs
In this subsection we translate the desiderata from Proposition 16.2 to guarantees
about approximate equilibria in our game. Our first task in approximating f (x(B)) is
deciding whether x(B) is close to a Brouwer line segment, close to a Brouwer vertex,
or far from both. Close to any Brouwer vertex, both restrictions x(B) |M1

and x(B) |M2

are close to some  (u), (v), for some u, v ∈ V local; close to a Brouwer line, at
least one of x(B) |M1

and x(B) |M2
is close to some (u).

The first step of this first task is to decide whether x(B) |M1
is close to some

 (u). Formally, we have a game verifier that encourages rounding assignments in



256 Chapter 16 2-Player Approximate Nash Equilibrium

[−1, 2]M to {0, 1}M and making sure they satisfy the PCP verifier. Given that player
(A, r) chooses strategy a, we say that the game verifier accepts a |M1

if:

. x(a) |M1
is close to binary, i.e.,∥∥∥x(a) − ν(x(a) |M1

)

∥∥∥2

J (A, r)
<
√
εComplete;

. and the PCP verifier accepts the rounded bits it reads from the first proof,
ν
(

x(a)All |M1

)
.

If either of these does not hold, we say that the game verifier rejects a |M1
.

The main idea in all the lemmata below is that by the Good Sample desider-
atum in Proposition 16.2, G(A,r)

Sample, G(A,r)
PCP , G(A,r)

LTC , and G(A,r)
critical(a) are all repre-

senting samples of Gt . Therefore, if x(B) |M1
is close to {0, 1}M1, then we expect

that x(B) |
M1∩I (A, r)

PCP
is also close to {0, 1}M1∩I (A, r)

PCP . By Claim 16.1, we can then also

expect that x(a)All |M1∩I (A, r)
PCP

is close to the same vector in {0, 1}M1∩I (A, r)
PCP . Furthermore,

if x(a)All |M1∩I (A, r)
PCP

is ε-close to some binary vector ν
(

x(B) |
M1∩I (A, r)

PCP

)
, then its round-

ing, ν
(

x(a)All |M1∩I (A, r)
PCP

)
, is also O(ε)-close to ν

(
x(B) |

M1∩I (A, r)
PCP

)
: On each coordinate i,

if the two binary vectors disagree (if |ν(x(B) |i)− ν(x(a)All |i
)| = 1), then we must have

|ν(x(B) |i)− x(B) |i | + |x(B) |i −x(a)All |i | ≥ 1/2. Finally, if ν
(

x(a)All |M1∩I (A, r)
PCP

)
is close to

ν
(

x(B) |
M1∩I (A, r)

PCP

)
for most a, then we can argue that reading ν

(
x(a)All |M1∩I (A, r)

PCP

)
is al-

most like sampling ν(x(B) |M1
), and then letting an adaptive adversary corrupt a

small fraction of the entries. Therefore, we can use the guarantees of the PCP veri-
fier with robust soundness/decoding/completeness.

16.4.5.1 Soundness
Lemma 16.1 Let (A, B) be an (εNash, εNash)-Well-Supported-WeakNash. If ‖x(B) − (u)‖2

M1
>

4εSound for every u ∈ V local, then for a (1−O(εNash))-fraction of r ’s, the game
verifier rejects a |M1

for every strategy a in the support of (A, r).

Proof Suppose that ‖x(B) − (u)‖2
M1
> 4εSound. Then by triangle inequality we have that

at least one of the following holds:∥∥∥x(B) − ν(x(B))∥∥∥2

M1
> ε3

Sound, (16.8)

∥∥∥ν(x(B))− (u)∥∥∥2

M1
> εSound, (16.9)
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Far from {0, 1}M1

Assume first that (16.8) holds. We can further break (16.8) into its K-component
and (E , π)-component:∥∥∥x(B) − ν(x(B))∥∥∥2

M1
= 1

2

∥∥∥x(B) − ν(x(B))∥∥∥2

M1∩K
+ 1

2

∥∥∥x(B) − ν(x(B))∥∥∥2

M1\K
. (16.10)

When restricted to a random r ∈RPCP, we can learn the first term exactly, and
estimate the second term via the proxy:∥∥∥x(B) − ν(x(B))∥∥∥2

M1∩I (A, r)
Sample

.

By the Good Sample guarantee from Proposition 16.2, the (M1 ∩ I (A,r)
Sample)-restricted

distance between x(B) and ν(x(B)) concentrates (to within ±o(1), with high proba-
bility) around its expectation (the last term of (16.10)). Therefore, with probability
(1− o(1)) over the choice of r ∈RPCP,∥∥∥x(B) − ν(x(B))∥∥∥2

J (A, r)
≥ 1

4

∥∥∥x(B) − ν(x(B))∥∥∥2

M1 ∩ J (A,r)︸ ︷︷ ︸
=M1∩(I (A, r)

Sample
∪K)

=	(ε3
Sound

)
.

For any such r , if player (A, r) is also happy, we have by Claim 16.3 that for every
strategy a in her support,∥∥∥x(a) − ν(x(a))∥∥∥2

J (A, r)
=	(ε3

Sound

)&√
εComplete. (16.11)

Close to {0, 1}M1, but Far from Every (u)
Alternatively, assume that x(B) |M1

is close to {0, 1}M1, but (16.9) holds: we have a
binary vector ν(x(B) |M1

) that is εSound-far from a valid proof.
We assume wlog that (16.8) is false, namely∥∥∥x(B) − ν(x(B))∥∥∥2

M1
≤ ε3

Sound.

By the Good Sample guarantee in Proposition (16.2), we have that for (1− o(1))-
fraction of r ’s, also ∥∥∥x(B) − ν(x(B))∥∥∥2

M1∩I (A, r)
PCP

=O(ε3
Sound

)
. (16.12)

By Claim 16.1, for every happy (A, r) and every strategy a in her support,∥∥∥x(a)All − x(B)
∥∥∥2

M1∩I (A, r)
PCP

=O(ε3
Sound

)
.
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Therefore, combining with (16.12), we have:∥∥∥ν(x(a)All

)− ν(x(B))∥∥∥2

M1∩I (A, r)
PCP

=O(ε3
Sound

)
,

and analogous arguments hold forM1∩K andM1∩ I (A,r)
LTC . Therefore, by the Robust

Soundness guarantee in Proposition 16.2, the game verifier rejects every a |M1
for

all but an o(1)-fraction of happy (A, r)’s.

16.4.5.2 Completeness
Lemma 16.2 Let (A, B) be an (εNash, εNash)-Well-Supported-WeakNash. If ‖x(B) − (u)‖2

M1
≤

1
4εComplete for some u ∈ V local, then for a (1−O(εNash))-fraction of r ’s, and every
strategy a in the support of (A, r), the game verifier accepts a |M1

.

Proof First, notice that the premise implies that∥∥∥ν(x(B))− (u)∥∥∥2

M1
≤ εComplete (16.13)

(since for any i ∈M1, ‖ν(x(B))− (u)‖2
i
≤ 4‖x(B) − (u)‖2

i
).

Furthermore, we also have that∥∥∥x(B) − ν(x(B))∥∥∥2

M1
≤
∥∥∥x(B) − (u)

∥∥∥2

M1
≤ 1

4
εComplete.

Therefore, by the Good Sample guarantee from Proposition 16.2, we also have that
for a (1− o(1))-fraction of r ’s,∥∥∥x(B) − ν(x(B))∥∥∥2

M1∩I (A, r)
PCP

=O(εComplete
)

.

Combining with Claim 16.1, we get that whenever (A, r) is also happy,∥∥∥x(a)All − ν
(

x(B)
)∥∥∥2

M1∩I (A, r)
PCP

=O(εComplete
)

.

Thus, as in (16.13), we have∥∥∥ν(x(a)All

)− ν(x(B))∥∥∥2

M1∩I (A, r)
PCP

=O(εComplete
)

.

Analogous arguments hold for M1 ∩ K and M1 ∩ I (A,r)
LTC . Therefore, for a

(1−O(εNash))-fraction of (A, r)’s, sampling ν(x(a)All |M1
) satisfies the distance crite-

ria for the Completeness and Robust Completeness in Proposition 16.2.
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16.4.5.3 Decoding
Lemma 16.3 Let (A, B) be an (εNash, εNash)-Well-Supported-WeakNash. If ‖x(B) − (u)‖2

M1
≤

1
4εDecode for some u ∈ V local, then for a (1−O(εNash))-fraction of r ’s, and every
strategy a in the support of (A, r):

Error Correction. The game verifier can compute the restriction of  (u) to
M1 ∩ J (A,r) correctly.

Critical Bits. The induced assignment on the critical bits is approximately
correct: ∥∥∥x(a)critical − (u)

∥∥∥2

M1∩I (A, r)
critical(a)

=O(εDecode
)

.

Extrapolation. The game verifier can also compute the restrictions of
 (Slocal(u)) and (P local(u)) toM1 ∩ J (A,r) correctly.

Proof By analogous argument to Lemma 16.2 (replace εComplete with εDecode), we have
that, for a (1− O(εNash))-fraction of (A, r)’s, sampling ν(x(a)All |M1

) satisfies the
distance criteria for the Decoding and Robust Decoding in Proposition 16.2. Thus
the decoding of (u) onM1 ∩ J (A,r) follows from the Error-Correction on a Sample
desideratum of Proposition 16.2.

Critical Bits
By the premise, we have that∥∥∥x(B) − C(u)

∥∥∥2

M1∩K
=O(εDecode

)
. (16.14)

Thus, by Corollary 16.2, also∥∥∥f (A) − C(u)∥∥∥2

M1∩K
=O(εDecode

)
.

By Claims 16.2 and 16.4, for every εNash-optimal a and b we also have that∥∥∥x(a) − C(u)
∥∥∥2

M1∩K
=O(εDecode

)
. (16.15)

∥∥∥x(b) − C(u)
∥∥∥2

M1∩K
=O(εDecode

)
. (16.16)

Therefore, we have that for every εNash-optimal a and b, the counter’s encoding
C(u) is decoded correctly; and in particular,

M1 ∩ I (A,r)
critical(a)=M1 ∩ I (A,r)

critical(b). (16.17)
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LetU(A,r)
critical |M1

denote the portion ofU(A,r)
critical that is derived from assignments

to the critical bits in the first proof. For every happy player (A, r), and every strategy
a in her support, we have

U(A,r)
critical |M1

=−Eq∈Gt/2Eb∼B[(B , q)]

[∥∥∥x(a)critical − x(b)
∥∥∥2

M1∩I (A, r)
critical(b)∩I (B , q)

]
=−Eq∈Gt/2Eb∼B[(B , q)]

[∥∥∥x(a)critical − x(b)
∥∥∥2

M1∩I (A, r)
critical(a)∩I (B , q)

]
±O(εNash

)
=−

∥∥∥x(a)critical − x(B)
∥∥∥2

M1∩I (A, r)
critical(a)

− E
i∈M1∩I (A, r)

critical(a)

[
Varb∼B[(B , q(i))]

[
x(b) |i

]]±O(εNash),

where the second equality follows from (16.17). Therefore, for every εNash-optimal
strategy a,∥∥∥x(a)critical − x(B)

∥∥∥2

M1∩I (A, r)
critical(a)

=O(ε2
Precision + εNash

)=O(εNash
)

. (16.18)

By the Good Sample guarantee from Proposition 16.2, we have that for a (1− o(1))-
fraction of r ’s, ∥∥∥x(B) − (u)

∥∥∥2

M1∩I (A, r)
critical(a)

=O(εDecode
)

. (16.19)

Combining with (16.18), we have that for a (1−O(εNash))-fraction of r ’s,∥∥∥x(a)critical − (u)
∥∥∥2

M1∩I (A, r)
critical(a)

=O(εDecode
)

.

Extrapolation
Notice that (16.19) in particular implies∥∥∥x(B) − ν(x(B))∥∥∥2

M1∩I (A, r)
critical(a)

=O(εDecode
)

.

Combining with (16.18), we have that∥∥∥x(a)critical − ν
(

x(B)
)∥∥∥2

M1∩I (A, r)
critical(a)

=O(εDecode
)

.

Therefore, for a (1−O(εNash))-fraction of (A, r)’s, sampling ν(x(a)critical |M1
) satisfies

the distance criteria for the Decoding and Robust Decoding in Proposition 16.2.
Therefore, by the Error-Correction on the Critical Bits desideratum, for a (1−
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O(εNash))-fraction of (A, r)’s, the PCP verifier correctly decodes the assignment
to all the critical bits.

From the assignment to the critical bits, the PCP verifier can reconstruct the
complete difference vector E(u) − E(Slocal(u)). So now, accessing E(Slocal(u))

is equivalent to accessing E(u) (with the same error guarantees). Using the local
proof construction guarantee from Proposition 16.2, the PCP verifier can correctly
compute π(Slocal(u)) on I (A,r)

Sample. Finally, recall that once the PCP verifier has
successfully decoded C(u), it can also locally compute C(Slocal(u)).

16.4.6 Default Displacement
The simplest case is when the restrictions of x(B) to both proofs are far from any
 (u), (v). In this case x(B) is far from all Brouwer line segments, and f (A) needs
to apply the default displacement.

Lemma 16.4 If (A, B) is an (εNash, εNash)-Well-Supported-WeakNash, and both ‖x(B) − (u)‖2
M1

> 4εSound and ‖x(B) −  (v)‖2
M2
> 4εSound for every u, v ∈ V local, then ‖f (A)−

f (x(B))‖2
M
=O(εNash).

Proof By Lemma 16.1, for a (1−O(εNash))-fraction of r ’s and every strategy a in their
support, the game verifier rejects both proofs. In this case, for all those a’s, f (a)

implements the default displacement. If a is also an εNash-optimal strategy, then
‖x(a) − x(B)‖2

J (A, r) =O(εNash), in which case also

‖f (a) − f (x(B))‖2
J (A, r) =O(εNash).

Since the rest of Alice’s players can have at most an O(εNash) effect, we have that

‖f (A) − f (x(B))‖2
M
=O(εNash).

The following cases are handled with minor modifications:

. x(B) is outside the picture and far from the first line (z2 → ( (u0), (u0),
0, 0)).

. x(B) is inside the picture, both x(B) |M1
and x(B) |M2

are close to valid proofs,
but x(B) |M3, 4

doesn’t match any Brouwer line segment or vertex.

. x(B) is inside the picture, both x(B) |M1
and x(B) |M2

are close to valid proofs
 (u) and  (v), but u and v are not consecutive vertices in the Local End-
of-a-Line graph.
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16.4.7 Close to a Line (1)
Now suppose that x(B) is close to some Brouwer line segment (s→ t) from s =
( (u), (u), 0, 0) to t = ( (u), (v), 0, 0), for u, v ∈ V local such that v is the Lo-
cal End-of-a-Line-successor of u. (The case of a line from ( (u), (v), 1, 0) to
( (v), (v), 0, 1) follows with minor modifications.) Now, the line (s→ t) consists
of points of the form βs+ (1− β)t (for β ∈ [0, 1]). From player (A, r)’s assignment
toM1, we can locally decode and verify (u) on I (A,r)

PCP ∪ I (A,r)
LTC ∪K . Furthermore, we

can reconstruct both (u) and (v) on I (A,r)
Sample ∪K . Let s(a), t(a) denote the locally

reconstructed restrictions of s, t, respectively, to J (A,r).
If all the tests passed, then we want to locally apply the displacement close to a

line, as defined in (4.2). The assignments of x(a), s(a), t(a) also induce a partial vector
z(a), which is the point closest to x(a) on the line segment (s(a)→ t(a)). We can also
use ‖x(a) − z(a)‖J (A, r) , ‖t(a) − s(a)‖J (A, r) as estimates of ‖x − z‖M , ‖t − s‖M .

Lemma 16.5 Let (A, B) be an (εNash, εNash)-Well-Supported-WeakNash. Suppose that x(B) is
somewhat close to some Brouwer line segment,

ε2
Complete <min

β

∥∥∥x(B) − ( (u), β (u)+ (1− β) (v), 0, 0)
∥∥∥2

M
< εDecode,

(16.20)

but far from its end points,∥∥∥x(B) − ( (u), (u), 0, 0)
∥∥∥
M
> 2
√
h∥∥∥x(B) − ( (u), (v), 0, 0)

∥∥∥
M
> 2
√
h, (16.21)

where u, v ∈ V local satisfy v = Slocal(u) and u= P local(v).
Then ‖f (A) − f (x(B))‖2

M
=O(εNash).

Proof By Lemma 16.3, for a (1− O(εNash))-fraction of r ’s, and every strategy a in the
support of (A, r), the game verifier can compute (u) |

I
(A, r)
Sample

∪K and (v) |
I
(A, r)
Sample

∪K
correctly; let  ̂(u) and  ̂(v) denote the respective results of those computations.

Consider

β
(a)
(s→t) � arg min

β

∥∥∥x(a) −
(
β ̂(u)+ (1− β) ̂(v)

)∥∥∥2

M2∩(I (A, r)
Sample

∪K) (16.22)

and

z(β
(a)
(s→t)) �

(
 (u), β(a)

(s→t) (u)+
(

1− β(a)
(s→t)

)
 (v), 0, 0

)
∈ [−1, 2]M .



16.4 Polymatrix WeakNash 263

By (16.20), we have ∥∥∥x(B) − z
(
β
(a)
(s→t)

)∥∥∥2

M
> ε2

Complete. (16.23)

By the Good Sample guarantee from Proposition 16.2, whenever (u) |
I
(A, r)
Sample

∪K and

 (v) |
I
(A, r)
Sample

∪K are indeed decoded correctly,

∥∥∥x(a) − z(a)
∥∥∥2

J (A, r)
> ε2

Complete −O
(
εNash

)& (3h)2.

Therefore, for all those a’s, we have that f (a) correctly applies the default dis-
placement.

Lemma 16.6 Let (A, B) be an (εNash, εNash)-Well-Supported-WeakNash. Suppose that x(B) is
close to some Brouwer line segment,

min
β

∥∥∥x(B) − ( (u), β (u)+ (1− β) (v), 0, 0)
∥∥∥2

M
≤ ε2

Complete, (16.24)

but far from its end points,∥∥∥x(B) − ( (u), (u), 0, 0)
∥∥∥
M
> 2
√
h∥∥∥x(B) − ( (u), (v), 0, 0)

∥∥∥
M
> 2
√
h, (16.25)

where u, v ∈ V local satisfy v = Slocal(u) and u= P local(v).
Then ‖f (A) − f (x(B))‖2

M
=O(εNash).

Proof We show that f (a) correctly implements the displacement close to a line for s=
( (u), (u), 0, 0) and t = ( (u), (v), 0, 0).

By Lemma 16.2, for a (1−O(εNash))-fraction of r ’s, and every strategy a in the
support of (A, r), the game verifier accepts a |{1, . . . ,m}. Furthermore, by Lemma
16.3, it can compute  (u) |

I
(A, r)
Sample

∪K and  (v) |
I
(A, r)
Sample

∪K correctly; we again denote

the partial proofs locally computed by the game verifier  ̂(u) and  ̂(v). Denote
the induced partial vectors s(a) and t(a). Recall that for every ε-optimal a, ‖x(a) −
x(B)‖2

J (A, r) =O(εNash), and also, |‖s(a) − t(a)‖J (A, r) − ‖s− t‖M|2 = o(1).
Let

β
(a)
(s→t) �

(
t(a) − s(a)

)∥∥∥s(a) − t(a)
∥∥∥2

J (A, r)

.
(

x(a) − s(a)
)

,

where the (.) denotes a J (A,r)-restricted dot-product.
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For every ε-optimal a, ‖x(a) − x(B)‖2
J (A, r) = O(εNash); for most of them

 (u) |
I
(A, r)
Sample

∪K and  (v) |
I
(A, r)
Sample

∪K are also computed correctly, so s(a), t(a) are the

correct restrictions of s, t to J (A,r). Then, by the Good Sample guarantee from
Proposition 16.2, we have that with probability (1− o(1)), the J (A,r)-restricted dot-
product is a good approximation. Namely,∣∣∣(t(a) − s(a)

)
.
(

x(B) |J (A, r) −s(a)
)−(t − s) .

(
x(B) − s

)∣∣∣= o(1)
and ∣∣∣(t(a) − s(a)

)
.
(

x(a) − x(B) |J (A, r)
)∣∣∣=O(∥∥x(a) − x(B)

∥∥
J (A, r)

)
=O(√εNash

)
,

and thus also∣∣∣(t(a) − s(a)
)

.
(

x(a) − s(a)
)− (t − s) .

(
x(B) − s

)∣∣∣=O(√εNash
)

.

Because  (.) is a constant relative distance error-correcting code, ‖s− t‖M =
�(1). Therefore, ∣∣∣β(a)(s→t) − β(s→t)

(
x(B)

)∣∣∣2 =O(εNash
)

.

In particular, let

z(a) � β(a)
(s→t)s

(a) + (1− β(a)
(s→t)

)
t(a)

z � β(s→t)
(

x(B)
)

s+
(

1− β(s→t)
(

x(B)
))

t;

then for a (1−O(εNash))-fraction of r ’s, we have∥∥∥z(a) − z
∥∥∥2

J (A, r)
=O(εNash

)
.

By the triangle inequality, also:∣∣∣∥∥∥x(a) − z(a)
∥∥∥
J (A, r)

−
∥∥∥x(B) − z

∥∥∥
J (A, r)

∣∣∣2 =O(εNash
)

,

and thus by the Good Sample guarantee, also:∣∣∣∥∥∥x(a) − z(a)
∥∥∥
J (A, r)

−
∥∥∥x(B) − z

∥∥∥
M

∣∣∣2 =O(εNash
)

.

Finally, whenever a is εNash-optimal and satisfies all the above, we have by
Lipschitz continuity that:∥∥∥f (a) − f (x(B))∥∥∥2

J (A, r)
=O(εNash

)
.
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16.4.8 Close to a Line (2)
There are a few different scenarios where we expect the game verifier to accept both
proofs:

. x(B) may still be far from every Brouwer line segment; e.g., because the cor-
responding vertices are not neighbors in the Local End-of-a-Line graph,
or the values onM3, 4 don’t match.

. x(B) may be close to the “first” Brouwer line segment, where only the special
direction (M4) changes.

. x(B) may be close to a Brouwer line segment where only the compute-vs-copy
bit (M3) changes.

. x(B) may be close to a Brouwer vertex.

In the first case, simply apply the default displacement. In this subsection we briefly
describe the two cases corresponding to x(B) close to a single Brouwer line segment.
Finally, the case where x(B) is close to a Brouwer vertex is deferred to Section 16.4.9.

Close to the First Line
Near the “first” Brouwer line segment, locally computing the displacement is rel-
atively simple. First observe that this case is easy to recognize by local access: by
the Good Sample guarantee from Proposition 16.2, we can estimate the Hamming
distance of the first 2m+ 1 coordinates to ( (u0), (u0), 0). Furthermore, we know
s= z2 and t = ( (u0), (u0), 0, 0) exactly, and therefore also ‖t − s‖M = 1. Finally,
let z(a) be equal to ( (u0), (u0), 0) on its first 2m+ 1 coordinates, and x(a) |M4

on
the last one.

Close to a Line that Updates the Auxiliary Compute-Vs-Copy Bit
Suppose that x(B) is close to a Brouwer line segment from s= ( (u), (v), 0, 0) to
t = ( (u), (v), 1, 0), for u, v ∈ V local such that v is the Local End-of-a-Line-
successor of u. (The case of a Brouwer line segment from ( (v),  (v), 1, 0) to
( (v), (v), 0, 0) follows with minor modifications.)

By Lemma 16.3, we can locally decode both (u) and (v) (and verify that they
are valid proofs of consecutive vertices in the Local End-of-a-Line graph). We
can therefore construct partial vectors s(a), t(a) that are equal, for a (1−O(εNash))-
fraction of (A, r)’s, to the restrictions of the true s, t to J (A,r). Finally, let

z(a) �
(

x(a) |M3

)
t(a) + (1− x(a) |M3

)
s(a).
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16.4.9 Close to a Vertex
In this subsection we consider the case where x(B) is close to a Brouwer vertex rep-
resenting two different Local End-of-a-Line vertices. In particular, we assume
that it is close to a Brouwer vertex of the form y = ( (u), (v), 1, 0). The case of
( (u), (v), 0, 0) follows with minor modifications; we will return to the cases of
( (u), (u), 0, 0) and ( (v), (v), 1, 0) in a couple of paragraphs.

After the game verifier accepts both proofs and that v is the successor of u
in the Local End-of-a-Line graph, we are assured that x(B) is indeed close to
some Brouwer vertex y. Furthermore, we know that there is an incoming Brouwer
line segment from s= ( (u), (v), 1, 0) and an outgoing Brouwer line segment to
t = ( (v), (v), 1, 0). We can locally compute s, y , t on J (A,r) with high probability;
denote the resulting partial vectors s(a), y(a), t(a).

Alternatively, consider the case where y = ( (v), (v), 1, 0) (similarly for ( (u),
 (u), 0, 0)), with an incoming Brouwer line segment from s = ( (P local(v)),
 (v), 1, 0) and outgoing Brouwer line segment to t = ( (v),  (v), 0, 0). By the
Error-Correction guarantee in Lemma 16.3, we can (with high probability over r)
locally decode partial vectors y(a) and t(a) on J (A,r); furthermore, by the Extrapola-
tion guarantee in the same lemma, we can locally compute s(a).

It is left to show that we can also locally compute the more involved construction
of displacement next to a Brouwer vertex.

We know ‖y − t‖M = 1/2 exactly, and we can estimate ‖s − y‖M from ‖s(a) −
y(a)‖J (A, r). Now, we can locally compute z(s→y) and z(y→t) on the coordinates J (A,r)

for which we know the value of s, y , t; denote those partial vectors z(a)
(s→y) and z(a)

(y→t),
respectively.

Recall that

�(s→y)(x)= (y − s)∥∥s− y
∥∥
M

. (x − s)− (1−√h)
�(y→t)(x)=

√
h− (t − y)∥∥y − t

∥∥
M

. (x − y).

We can use x(a), s(a), y(a), t(a) to locally compute estimates�(a)
(s→y)(x) and�(a)

(y→t)(x),

and therefore also α(a) ≈ α(x(B)) and z(a) � α(a)z(a)
(s→y) + (1− α(a))z(a)(y→t).

Lemma 16.7 Let (A, B) be an (εNash, εNash)-Well-Supported-WeakNash, and let ‖x(B) − ( (u),
 (v), 1, 0)‖M ≤ 2

√
h for u, v ∈ V local such that v = Slocal(u) and u= P local(v).

Then ‖f (a) − f (x(B))‖2
M
=O(εNash/h).
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Proof By Lemmata 16.2 and 16.3, we have that for a (1−O(εNash))-fraction of (A, r)’s and
every strategy a in their supports, the game verifier recognizes that x(a) is close to
some Brouwer vertex y �( (u), (v), 1, 0). In particular, by the Error-Correction
desideratum in Lemma 16.3, the game verifier can construct y(a), s(a), t(a) ∈ {0, 1,⊥
}M that, for a (1−O(εNash))-fraction of (A, r)’s and every strategy a in their sup-
ports, are equal to y , s, t on J (A,r).

We also know ‖y − t‖M = 1/2 exactly, and by the Good Sample guarantee from
Proposition 16.2, ∣∣∥∥y(a) − t(a)

∥∥
J (A, r) −

∥∥y − t
∥∥
M

∣∣2 = o(1).
Furthermore, as we argue in the proof of Lemma 16.6,∣∣∣β(a)(s→y) − β(s→y)

(
x(B)

)∣∣∣2 =O(εNash
)

∣∣∣β(a)(y→t) − β(y→t)
(

x(B)
)∣∣∣2 =O(εNash

)
. (16.26)

Let�(a)
(s→y) � β

(a)
(s→y) − (1−

√
h), and�(a)

(y→t) �
√
h− β(y→t). If either quantity is neg-

ative, continue with the displacement close to a line as in Section 16.4.7. Recall
that f is O(1)-Lipschitz on [−1, 2]M , and in particular near the interface between
the line and vertex displacements (the hyperplanes defined by β(s→y)(x)= 0 and
β(y→t)(x)= 0). Therefore, whenever all the parameters are computed approximately
correctly, the displacement is also approximately correct—even if near the interface
we use the vertex displacement instead of the line displacement or vice versa. We
henceforth focus on�(a)

(s→y),�
(a)
(y→t) ≥ 0.

Define

α(a) �
�
(a)
(y→t)

�
(a)
(y→t) +�(a)(s→y)

,

and finally also

z(B) � α
(

x(B)
)

z(s→y) +
(

1− α(x(B)))z(y→t)

z(a) � α(a)z(a)
(s→y) +

(
1− α(a))z(a)

(y→t). (16.27)

We now consider two different cases depending on the value of ‖x(B) − z(B)‖M :

Case ‖x(B) − z(B)‖M > 10h:
The challenge is that when ‖x(B) − z(B)‖M is huge, �(y→t) +�(s→y) may be very
small, which could lead to α(a) being far from the true α(x(B)). Fortunately, in this
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case the true ĝ(x(B)) is just the default displacement, δ(02m+1, 1)—so we only have
to argue that f (a) also applies the default displacement (for most players (A, r)).

Observe that if α(x(B))= 1/2, the point onLy that is closest to x(B) is indeed z(B).
In general, this is not true, but ‖x(B) − z(B)‖M is at most

√
2-times larger than the

distance from x(B) to Ly. In particular, for any z(α
(a)) � α(a)z(s→y) + (1− α(a))z(y→t),

we have that ‖x(B) − z(α
(a))‖M > 7h.

Therefore by the Good Sample guarantee from Proposition 16.2 and Claim 16.3,
for a (1−O(εNash))-fraction of (A, r)’s and every strategy a in their supports, we
have ∥∥x(a) − z(a)

∥∥
J (A, r) > 7h−O(εNash

)
.

For all those a’s, f (a) correctly implements the default displacement.

Case ‖x(B) − z(B)‖M ≤ 10h:
From (16.26), ∣∣∣�(a)(s→y) −�(s→y)

(
x(B)

)∣∣∣2 =O(εNash
)

∣∣∣�(a)(y→t) −�(y→t)
(

x(B)
)∣∣∣2 =O(εNash

)
.

Plugging into (4.5), we have that

�
(a)
(s→y) +�(a)(y→t) ≥

√
h−O(h),

and therefore also ∣∣∣α(a) − α(x(B))∣∣∣2 =O(εNash/h
)

.

Similarly, also7

∥∥∥z(a) − z(B)
∥∥∥2

J (A, r)
=O(εNash/h

)
.

Finally, whenever a is εNash-optimal and satisfies all the above, we have∥∥∥f (a) − f (x(B))∥∥∥2

J (A, r)
=O(εNash/h

)
.

7. In fact, we actually have ‖z(a) − z(B)‖2
J (A, r) =O(εNash), because α interpolates between z(s→y)

and z(y→t), which are already at distance O(
√
h) from each other.
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16.5 From Polymatrix to Bimatrix
In this section we complete the proof of our main result, Theorem 1.1, by reducing
from multiplayer polymatrix games (à la Theorem 16.5) to two-player games.

16.5.1 From (
√
ε + ε ,δ)-Well-Supported-WeakNash to (ε ,δ)-WeakNash

Lemma 16.8 Consider a complete bipartite polymatrix game such that every two adjacent ver-
tices play a bimatrix subgame with payoffs in [0, 1/nB], [0, 1/nA], where nA, nB are
respectively the numbers of players on the two sides of the bipartite game. Given
an (ε , δ)-WeakNash, we can construct in polynomial time a (

√
ε . (
√
ε + 5), δ)-Well-

Supported-WeakNash.

Proof Let (VA; VB) be the sets of players, where each v ∈ VA ∪ VB has utilityUv and action
set Sv. Let x = (xv

s
) ∈�(×v∈VA∪VBSv)be an (ε , δ)-WeakNash. Finally, letUvmax(x

−v)=
maxs∈Sv U

v
s
(x−v). Since this is a polymatrix game, we can write

∀v ∈ VA Uvs (x)=
∑
u∈VB

Uv ,u
s

(
xu
)

,

∀v ∈ VB Uvs (x)=
∑
u∈VA

Uv ,u
s

(
xu
)

.

Let k = k(ε) > 0 be some large number to be specified later. We construct our
new approximate equilibrium as follows. For each of the (1− δ) players who play
ε-optimally in x, we take only the strategies that are within εk of the optimum:

x̂v
s
=
{

xvs
1−zv if Uv

s

(
x−v

)≥ Uvmax

(
x−v

)− εk
0 otherwise

where zv is the total probability that player v assigns to strategies that are more
than εk away from the optimum.

The above division is well defined because for k > 1 and v who plays ε-optimally,
zv is bounded away from 1. Moreover, the following claim from Daskalakis et al.
[2009a] formalizes the intuition that when k is sufficiently large, the total weight
on actions removed is small, so x̂v is close to xv:

Claim 16.5 (Daskalakis et al. 2009a, Claim 6)

∀v ∈ VA ∪ VB
∑
s∈Sv

∣∣∣x̂vs − xvs ∣∣∣≤ 2
k − 1

.

Now, the total change to the expected payoff of player v for each action s is
bounded by the total change in mixed strategies of its neighbors. In the following
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let v ∈ VA; the analogous argument for the utility of players inVB follows with minor
modifications.∣∣∣Uvs (x−v)− Uvs (x̂−v)∣∣∣≤ ∑

u∈VB

∣∣∣Uv ,u
s

(
xu
)− Uv ,u

s

(
x̂u
)∣∣∣

≤ 1
nB

.
∑
u∈VB

∑
s∈Su

∣∣∣x̂us − xus ∣∣∣≤ 2
k − 1

.

It follows that x̂ is a (kε + 2
k−1 , δ)-Well-Supported-WeakNash:

Uv
s

(
x̂−v

)≥ Uv
s

(
x−v

)− 2
k − 1

≥ Uvmax

(
x−v

)− εk − 2
k − 1

≥ Uvmax

(
x̂−v

)− εk − 4
k − 1

.

Finally, take k = 1+ 1/
√
ε to get that

kε + 4
k − 1

≤√ε .
(√
ε + 5

)
.

16.5.2 From (ε ,δ)-WeakNash to�(ε.δ)-ANE in a Bimatrix Game
Lemma 16.9 Suppose we are given a complete bipartite polymatrix game between n1/2+o(1)

vertices with 2n
1/2+o(1)

actions each; the payoffs in each bimatrix game are in
[0, 1/nB], [0, 1/nA], where nA, nB denote the number of players on each side of the
bipartite graph. Then we can construct a bimatrix game of size 2n

1/2+o(1)
such that

every ε-ANE of the new bimatrix game corresponds to a (δ , εpolymatrix)-WeakNash
of the polymatrix game, for sufficiently small ε =�(δ2 . ε2

polymatrix).

Proof The two players play three games simultaneously: the main game, which is the heart
of the reduction; and two games based on a construction due to Althofer [1994],
which impose structural properties of any approximate Nash equilibrium.

Main game. We let each of the two players “control” the vertices on one side of the
bipartite graphical game.

Alice’s actions correspond to a choice of vertex on her side of the polymatrix
game, and an action for that vertex. Similarly, Bob’s actions correspond to a choice
of vertex on his side, and a choice of action for that vertex. The utility for each
player is the utility to the corresponding vertex from the induced subgame, scaled
by a factor of λ . nB or λ . nA for Alice or Bob, respectively. Here λ& ε is a small
constant to be defined later.

Althofer Games. In addition to the main game, we use a construction due to
Althofer [1994] to introduce two auxiliary games that force players to spread their
mixed strategies approximately evenly across all vertices. Althofer’s original game
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is a one-sum game with payoffs in {0, 1} and size k × ( k
k/2

)
. In each column, exactly

half of the entries are 1’s, and the rest are 0’s. For example, for k = 4, the payoff
matrices are given by:

R = 1− C =

⎛⎜⎜⎜⎜⎝
1 1 1 0 0 0

1 0 0 0 1 1

0 1 0 1 0 1

0 0 1 1 1 0

⎞⎟⎟⎟⎟⎠ .

The value of this game is 1/2.
For our purposes, we consider two instantiations of Althofer’s gadget: a “primal”

Althofer game of size nA ×
(
nA
nA/2

)
, and a “dual” Althofer game of size

(
nB
nB/2

)× nB.
In any (approximate) Nash, both Alice and Bob must mix (approximately) evenly
among (almost) all of their actions.

The Final Construction
Finally, we compose all three games together by identifying Alice’s choice of ver-
tex in the main game with her choice of row in the primal Althofer game, and
Bob’s choice of vertex in the main game with his choice of column in the dual
Althofer game.

Analysis. Alice’s and Bob’s respective mixed strategies induce a mixed strategy
profile (A, B) on their vertices: Alice’s vertex (A, i)’s action is drawn from Alice’s
action conditioned on picking (A, i), and analogously for Bob’s (B , j). For any
vertex that is never picked by its player, fix an arbitrary strategy. Our goal is to show
that (A, B) is a (δ , εpolymatrix)-WeakNash of the polymatrix game.

Let U(A, i)(A[(A, i)], B) denote (A, i)’s expected utility when all players draw
their strategies according to (A, B), and analogously for U(B ,j)(B[(B , j)], A).

By Lemma 2.7, in every λ-ANE (and in particular in any ε-ANE), Alice’s and Bob’s
respective marginal distributions over their vertices are O(λ)-close to uniform.
Therefore, Alice’s expected utilities from the main game satisfy∣∣∣UAMain − λEi∈[nA]U

(A, i)
(
A
[
(A, i)

]
, B
)∣∣∣=O(λ2).

Suppose by contradiction that Alice and Bob are in an ε-ANE in the bimatrix game,
but a δ-fraction of Alice’s vertices have an εpolymatrix-deviating strategy in the poly-
matrix game. Let (Â, B) denote the deviating mixed strategy profile (notice that the
deviation of a player on Alice’s side does not affect the utilities of other players on
the same side). (Â, B) induces, without changing the marginal distributions over
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vertices, a profile of mixed strategies for Alice and Bob; Alice’s new expected utility
from the main game, ̂UAMain, also satisfies∣∣∣ ̂UAMain − λEi∈[nA]U

(A, i)
(
Â
[
(A, i)

]
, B
)∣∣∣=O(λ2).

Therefore,

̂UAMain ≥ λEi∈[nA]U
(A, i)

(
Â
[
(A, i)

]
, B̂
)
−O(λ2)

≥ λEi∈[nA]U
(A, i)

(
A
[
(A, i)

]
, B
)
+ λδ . εpolymatrix −O

(
λ2)

≥ UAMain + λδ . εpolymatrix −O
(
λ2).

Set λδ . εpolymatrix −O(λ2) > ε. Since Alice and Bob have not changed their mar-
ginal vertex utilities, this is an ε-deviating strategy.
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Max subroutine, 91–92
Membership End-of-a-Line problem

defined, 21
Euclidean Brouwer, 68, 75
variants, 22

Minmax Theorem, 45
Mistake bound, defined, 25
Mistake trees

defined, 24
Littlestone’s Dimension, 204, 206–208

Mode assignments in densest k-subgraph,
175

Moderately computable price vectors, 115
Monotone markets, 115
Moshkovitz-Raz PCP theorem

defined, 24
VC Dimension, 191

Multiplicative hardness of approximation
in 2-player approximate Nash
equilibrium, 224

Multiply subroutine, 89–90
Mutual information, conditional, 26

n-player game in communication
complexity of approximate Nash
equilibrium, 42–44, 53–59

Nash equilibrium, 3–4
2-player approximate. See 2-player

approximate Nash equilibrium
Bayesian, 111–113
intractability, 17–18
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Nash equilibrium (continued)
relaxations, 19–20

Near-optimal signaling
completeness, 218
construction, 215–218
soundness, 218–220

Neighborhoods in densest k-subgraph, 162
Neighbors95–96, 106–107
Non-deterministic communication

protocols, 36
Non-monotone markets, 9–10

construction, 121–123
defined, 115
games on graphs with constant mixing

time, 120–121
hardness, 116
from market equilibrium to Nash

equilibrium, 128–129
normalized polymatrix games, 119
structure of market equilibrium, 123–128

Non-repetitive sets
Littlestone’s Dimension, 206–210
VC Dimension, 193–194, 196–199

Normalized 2-norm, 19
Normalized games in non-monotone

markets
inapproximability, 120
polymatrix, 119

NOT gate (G¬) gadget in course allocation
problem, 134

Notation
2-player approximate Nash equilibrium,

250–252
overview, 19
PCP Theorem, 23

NP-hardness
Nash equilibrium, 4–5
signaling, 214
VC Dimension and Littlestone’s

Dimension, 188

O(1)-action games, correlated equilibria in,
60

O(1)-Lipschitzness of f, 59

Output players in many-player games, 102

PAC learning in VC Dimension, 190
Partial assignments in Label Cover

problem, 23
Partial norms in 2-player approximate Nash

equilibrium, 251
Partial VC Dimension, 190
Partial vectors in 2-player approximate Nash

equilibrium, 251
Partially adaptive samples in 2-player

approximate Nash equilibrium, 237
Partitions, 28

derandomized, 29
greedy, 28–29

Payoffs in signaling, 217–218
PCP. See Probabilistically checkable proof

(PCP)
Pictures in displacement function, 64
Planted Clique Conjecture, 157
Planted Clique problem

2-player approximate Nash equilibrium,
224

community detection, 178
densest k-subgraph, 157–158
quasi-polynomial time, 17
signaling, 213–214

Players in 2-player approximate Nash
equilibrium, 249–250

PoA (Price of Anarchy) game, 39
Polymatrix games

2-player approximate Nash equilibrium,
230–231

defined, 79
Polymatrix to bimatrix, 269–272
Polymatrix WeakNash, 248–269
Polynomial lower bounds in communi-

cation complexity of approximate
Nash equilibrium, 34

Polynomial time approximation schemes
(PTAS)

2-player approximate Nash equilibrium,
224

Nash equilibrium, 17–18
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signaling, 213
Polynomial upper bound in communication

complexity of approximate Nash
equilibrium, 38

PPAD (Polynomial Parity Argument in
Directed graphs)

A-CEEI, 10–12
Brouwer’s fixed point theorem, 7–8
End-of-a-Line, 20–22
exponential time hypothesis, 22
market equilibrium, 8–10
overview, 5–7

PPAD-completeness, 223–224
PPAD-hardness

2-player approximate Nash equilibrium,
225–226

A-CEEI, 133–139
of approximation, 79–81

Predecessors of vertices in communication
complexity of approximate Nash
equilibrium, 44

Prediction mistakes, 25
Prefixes in densest k-subgraphs

consistency violations, 165–167
degree, 161
density, 162
graphs, 161–162

Price of Anarchy (PoA) game, 39
Price-regulating gadgets, 122
Probabilistically checkable proof (PCP)

2-player approximate Nash equilibrium,
241–242

2CSP, 22–23
holographic proofs, 227–229
Label Cover problem, 23–24
PPAD conjecture, 231–232

Pseudorandomness theorem, 27
PSPACE-completeness, 190
PTAS (polynomial time approximation

schemes)
2-player approximate Nash equilibrium,

224
Nash equilibrium, 17–18
signaling, 213

Pure Nash equilibrium, 38

Quality of equilibria in Nash equilibrium,
39

Quasi-polynomial time
community detection, 14–15
densest k-subgraph, 13–14
Littlestone’s Dimension, 211–212
Nash equilibrium, 5
overview, 12–13
signaling, 16–17
VC and Littlestone’s dimensions, 15–16

Queries
2-player approximate Nash equilibrium,

246–247
approximate Nash equilibrium, 37
End-of-the-Line, 40
literature, 38–39
subspaces, 236

Query complexity, 38
Query End-of-a-Line lemma, 40
Query End-of-the-Line problem, 44–46

Radial interpolation in continuous mapping
in Brouwer’s fixed point theorem,
64

Random-bit complexity in 2-player
approximate Nash equilibrium,
228

Randomized query complexity lemma, 45
Randomized query complexity lower bound,

44–45
Randomness in 2-player approximate Nash

equilibrium, 237, 246
Rate of convergence in uncoupled dynamics,

35–36
Real2Unary algorithm, 100
Realized numbers, 54–55
Realized points, 54–55
Realized value in succinct games, 108–109
Reject codes in 2-player approximate Nash

equilibrium, 228
Relaxations

k-Clique problem, 14
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Relaxations (continued)
Nash equilibrium, 19–20

Robust Soundness guarantee, 258
Robustness in 2-player approximate Nash

equilibrium
completeness, 237
decoding, 238
soundness, 229, 237
testing, 245–246

Rounding in 2-player approximate Nash
equilibrium, 250

Sampling Lemma, 28
Satisfied constraints in Label Cover

problem, 23
Scarf’s algorithm, 8
Shannon entropy, 26
Shattered subsets, 24
Shuffle edges in 2-player approximate Nash

equilibrium, 238
Signaling

bounding, 219–220
completeness, 218
near-optimal, 215–220
quasi-polynomial time, 16–17
techniques, 214–215
Zero-Sum Signaling problem, 213–

214
Simplicity, measuring, 187
Simulation End-of-the-Line

communication complexity of approxi-
mate Nash equilibrium, 53, 59

defined, 45–46
reduction, 48–50

Simulation theorems
communication complexity of approxi-

mate Nash equilibrium, 37, 40
overview, 30

Single-minded traders graphs, 123–124
Slice layers in continuous mapping in

Brouwer’s fixed point theorem,
63–64

Social welfare in Nash equilibrium, 39

Soundness
2-player approximate Nash equilibrium,

237, 256–258
birthday repetition, 151, 153–154
community detection, 178, 181–182
densest k-subgraph, 156, 160–176
entropy argument, 160–164
hardness of counting communities, 183,

185–186
hardness of detecting communities, 183
Littlestone’s Dimension, 200, 204–211
near-optimal signaling, 218–220
PCP Theorem, 23
robust, 229
VC Dimension, 191, 195–199

Start subcubes in generalized circuit
problem, 98

States of nature, signaling, 217
Static edges in 2-player approximate Nash

equilibrium, 238
Stochastic block model, 179
Strategies

2-player approximate Nash equilibrium,
249–250

communication complexity of approxi-
mate nash equilibrium, 48

Strong ties inside communities, 15, 177
Subcubes

displacement function, 64
generalized circuit problem, 98

Subgames
birthday repetition, 152
many-player games, 102

Subspaces in 2-player approximate Nash
equilibrium, 244, 249–250

Subtrees in Littlestone’s Dimension, 208–
209

Succesors of vertices in communication
complexity of approximate Nash
equilibrium, 44

Succinct games
defined, 79
many-player games, 107–110
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Summing displacement vectors in
generalized circuit problem, 99

Tâtonnement process, 116
Tensor product in 2-player approximate

Nash equilibrium, 245
Test-selection elements

Littlestone’s Dimension, 200, 203, 205–
206

VC Dimension, 193–194
Testing 2-player approximate Nash

equilibrium, 245–247
TFNP in 2-player approximate Nash

equilibrium, 225
Threshold projections in Littlestone’s

Dimension, 202–203
Tolerant verifier in 2-player approximate

Nash equilibrium, 228
Totality

communication complexity of approxi-
mate Nash equilibrium, 36

Nash equilibrium, 4
Tractable special cases, 101
Traders in non-monotone markets, 124
Truncation in Euclidean Brouwer, 69
Tubes in displacement function, 64–66
Two-player game in communication

complexity of approximate Nash
equilibrium, 41–42, 47–48

Type players, 54
Typical variables in densest k-subgraph,

170–172

Unary2Real algorithm, 100
Unconditional lower bounds in communi-

cation complexity of approximate
Nash equilibrium, 33–34

Uncoupled dynamics in communication
complexity of approximate Nash
equilibrium, 34–36

University course matches, 10–12

Untruncated displacement function in
Euclidean Brouwer, 69

Utilities in communication complexity of
approximate Nash equilibrium,
48–49, 54–55

v-type players, 54–55
VC Dimension, 187–188

defined, 24
discussion, 188–189
inapproximability, 191–199
quasi-polynomial time, 16
reductions, 191–195
related literature, 190–191
soundness, 195–199
techniques, 189

Verifiers
2-player approximate Nash equilibrium,

247
PCP Theorem, 231

Vertices in Euclidean Brouwer, 68

w-type players, 54
Walras’s Law, 126
Weak approximate Nash equilibria,

53
Weak ties to nodes outside communities,

15, 177
WeakNash, 20
Well-Supported-WeakNash, 248

x-type players, 54–55

y-type players, 54–55
Yao’s Minmax Theorem, 45

zero-sum game in Littlestone’s Dimension,
188

Zero-Sum Signaling problem
quasi-polynomial time, 16–17
signaling, 213–214
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