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Foreword

The success of the United States Department of Defense (DoD) in the future
battlefield will hinge on the ability to protect the cyber infrastructure from loss
of personal identifiable information, tampering of sensitive data, and interrup-
tion of services. Although all cyber risks are critical and need to be addressed,
issues related to data integrity are most acute, as data tampering can have a
huge impact on mission critical services that depend upon reliable data. The
current cyber defense solutions are unable to combat data breaches effectively
and are typically reactive in nature, and cannot keep up with the exponentially
increasing cyber threats. Cyber defense solutions should be able to protect data
despite attempts by adversaries to derail their effectiveness.

There is a pressing need for a paradigm shift in the development of next
generation cyber defense strategies. Blockchain is an emerging technology that
could address cyber security challenges, such as identity management and data
provenance for distributed systems. Blockchain technology provides several
advantages in building resilient cyber defense solutions. First, blockchains are
shared, distributed, and fault-tolerant databases that every participant in the
network can share, but no entity can control, and is resilient to single point
of failure. Second, data integrity is ensured as tampering of blockchains is
extremely challenging due to the use of a cryptographic data structure and
lack of reliance on secrets. Third, blockchains assume the presence of adver-
saries in the network, making compromise by adversaries significantly expen-
sive. Blockchain solutions for cyber security could represent a paradigm shift
in how data manipulation will be defended by creating a trusted system in a
trustless environment. Cloud, the Internet of Things (IoT), and the Internet
of Battlefield Things (IoBT) are being used as distributed platforms. However,
these platforms are plagued by numerous vulnerabilities that allow adversaries
to gain access to sensitive information and disrupt services. A blockchain-
empowered security platform will ensure the integrity of the data exchanged
in these systems and reduce risks from data breach attacks.

Under the 2018 National Defense Authorization Act, the DoD will conduct a
comprehensive study of blockchain, particularly in the context of cybersecurity.
There have been DoD investments (research grants, SBIR/STTR awards, etc.)



xiv Foreword

in the investigation of blockchain for secure message delivery in tactical sce-
narios, additive manufacturing, and the protection of supply chains. On the flip
side, there is growing concern that malware or other illicit content, once intro-
duced into a blockchain, would be very hard to remove. There is also growing
concern about the threat to blockchain posed by quantum computing.

The focus of the book is on providing blockchain-based solutions to dis-
tributed systems to ensure a resilient and reliable cyberinfrastructure for oper-
ations and missions. Most current books on blockchain only focus on impacts
in the financial sector. There is a need for books to understand how the
blockchain’s impact goes beyond cryptocurrency, and to address security and
privacy issues in cloud and IoT/IoBT platforms. The topics in the book pro-
vide blockchain-empowered solutions to protect cloud and IoT/IoBT plat-
forms. The book also presents security challenges that must be addressed for
blockchain technologies to reach their full potential.

Dr. Ananthram Swami
Senior Research Scientist (ST) for Network Science,

ARL Fellow, IEEE Fellow
US Army Research Laboratory, Adelphi, MD
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Preface

Cyberattacks have increasingly targeted commercial, government, and mili-
tary enterprises with the goal to steal sensitive information and/or disrupt ser-
vice. There is an urgent need for cyber defense solutions to ensure traceable
and tamper-evident accountability and auditability of command and control,
logistics, and other critical mission data as future operations will involve the
convergence of multiple domains and a heavily contested cyberspace. Thus,
the emphasis needs to be on cyber defense solutions that can ensure resilient
operation during adversarial attempts to thwart normal operation. The existing
cyber defense solutions are reactive and are not able to combat the impact of
the exponential rise in cyber threats. Centralized or homogenous information
assurance systems and databases must evolve to possess distributed, disinter-
mediated, and secure capabilities.

The cyber warfare strategy will come down to the ability to conduct opera-
tions on data in a secure and trusted environment. In order to win the cyber
warfare, the military needs to protect data operations by (i) preventing adver-
sarial access to networks housing critical data, (ii) ensuring the integrity of data
despite the presence of the adversary on the network, and (iii) being resilient to
the adversary’s efforts to manipulate data. At the same time, the emergence of
cloud and the Internet of Things to support on-demand computing, dynamic
provisioning, and management of autonomous systems has increased the need
to improve their security. Security assurance of intracloud and intercloud data
management and transfer is a key issue. Cloud auditing can only be effective
if all operations on the data can be tracked reliably. Assured provenance data
can help detect access violations within the cloud computing infrastructure.
The Internet of Things (IoT) in the military context interconnects warfighting
resources, such as sensors, munitions, weapons, vehicles, robots, and wearable
devices, to perform tasks such as sensing, communicating, acting, and collabo-
rating with human warfighters. The massive scale and distributed nature of IoT
devices will create several security and privacy challenges. Firstly, the under-
lying IoT networking and communication infrastructure needs to be flexible
and adaptive to support dynamics military missions. This dynamic change to
the communication infrastructure needs to happen in an autonomous fashion
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without reliance on centralized maintenance services. Second, there is a need to
ensure the veracity of the information made available through the IoT devices.
There is a need for a trusted platform to ensure the information consumed by
the human warfighters are accurate.

Blockchain and distributed ledger technologies as a whole demonstrate the
potential of a truly distributed and disintermediated mechanism for account-
ability and auditability. Blockchains are shared, distributed, and fault-tolerant
databases that every participant in the network can share, but no entity can
control. Blockchains assume the presence of adversaries in the network and
nullify adversarial strategies by harnessing the computational capabilities of the
honest nodes, and the information exchanged is resilient to manipulation and
destruction. This ability allows leaders to continue military operations despite
adversarial attempts to cause disruption. Blockchain solutions for cyber secu-
rity will represent a paradigm shift in how data manipulation will be defended.
Blockchain has the ability to create a trusted system in a trustless environment.

Tampering of blockchains is extremely challenging due to the use of a cryp-
tographic data structure and no reliability of secrets. Blockchain has the poten-
tial to enhance cyber defense with its ability to prevent unauthorized actions
through distributed consensus mechanisms and provision of data integrity
through its immutability, auditability, and operational resilience (ability to
withstand a single point of failure) mechanisms. Though blockchain is not a
panacea for all cyber security challenges, the technology does have the ability
to help organizations tackle cyber security risk issues such as identity manage-
ment, provenance, and data integrity.

The focus of the book is on providing blockchain-based solutions to dis-
tributed systems to ensure a resilient and reliable cyberinfrastructure for oper-
ations and missions. There is a need to understand how blockchain’s impact
goes beyond cryptocurrency and can address distributed security and privacy
issues in cloud and IoT platforms. The topics in the book describe the prop-
erties underlying formal foundations of blockchain technologies and practical
issues for deployment in cloud and IoT platforms. In addition, the book also
presents security and privacy issues that must be solved for blockchain tech-
nologies to reach full potential. Three book chapters (Chapters 4,5, and 8) are
based on research articles that were voted as Top Blockchain papers at the 2019
Blockchain Connect Conference.1

This material is based on research sponsored by the Air Force Research Lab-
oratory (AFRL) under agreement number FA8750-16-0301, and we would like
to thank AFRL for their financial support, collaboration, and guidance. The
US Government is authorized to reproduce and distribute reprints for govern-
mental purposes notwithstanding any copyright notation thereon. The work

1 https://medium.com/blockchain-connect-conference/top-50-blockchainpapers-and-research-
team-lead-you-to-the-frontier-of-blockchainacademic-277b0358b784

https://medium.com/blockchain-connect-conference/top-50-blockchainpapers-and-research-team-lead-you-to-the-frontier-of-blockchainacademic-277b0358b784
https://medium.com/blockchain-connect-conference/top-50-blockchainpapers-and-research-team-lead-you-to-the-frontier-of-blockchainacademic-277b0358b784
https://medium.com/blockchain-connect-conference/top-50-blockchainpapers-and-research-team-lead-you-to-the-frontier-of-blockchainacademic-277b0358b784
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1

Introduction
Sachin S. Shetty,1 Laurent Njilla,2 and Charles A. Kamhoua3

1Old Dominion University, Virginia Modeling, Analysis and Simulation Center, Norfolk, VA, USA
2US Air Force Research Lab, Cyber Assurance Branch, Rome, NY, USA
3US Army Research Laboratory, Network Security Branch, Adelphi, MD, USA

1.1 Blockchain Overview

Blockchain technology has attracted tremendous interest from a wide range of
stakeholders, which include finance, healthcare, utilities, real estate, and gov-
ernment agencies [1–5]. Examples of potential applications of this technology
are claims processing, transparency and auditing of operations, identity man-
agement, supply chain provenance to address the threat of counterfeit prod-
ucts, and integrity of the information acquired from Internet of Things (IoT)
devices. Blockchains are a shared, distributed, and fault-tolerant database that
every participant in the network can share, but no entity can control. The tech-
nology is designed to operate in a highly contested environment against adver-
saries who are determined to compromise. Blockchains assume the presence
of adversaries in the network and nullify the adversarial strategies by harness-
ing the computational capabilities of the honest nodes, and the information
exchanged is resilient to manipulation and destruction. Blockchains facilitate
the development of trustworthy networks in a trustless environment.

The premise of blockchain is that applications do not need a trusted central
authority to operate and can function in a decentralized fashion. Blockchain
enables exchange of information among distrusting entities. Blockchain
enables trustless networks and allows entities to engage in transactions in the
absence of mutual trust. There is an assumption that a communication medium
could be compromised by insiders or outsiders. The reconciliation process
between entities is sped up due to the absence of a trusted central authority or
intermediary. Tampering of blockchains is extremely challenging due to the use
of a cryptographic data structure and no reliability of secrets. Blockchain net-
works are fault tolerant, which allows nodes to eliminate compromised nodes.

Blockchain for Distributed Systems Security, First Edition. Edited by Sachin S. Shetty,
Charles A. Kamhoua, and Laurent L. Njilla.
© 2019 the IEEE Computer Society, Inc. Published 2019 by John Wiley & Sons, Inc.



4 Blockchain for Distributed Systems Security

Blockchains have the following advantages over centralized databases: (i)
ability to directly share a database across diverse boundaries of trust in situ-
ations where it is difficult to identify a trusted, centralized arbitrator to enforce
constraints of proof of authorization and validity. In a blockchain, transactions
leverage their own proof of validity and authorization based on a verification
process managed by multiple validating nodes and a consensus mechanism that
ensures synchronization; and (ii) ability to provide robustness in an economical
fashion without the need for expensive infrastructure for replication and disas-
ter recovery. Blockchain requires no configuration to connect and synchronize
nodes in a peer-to-peer (p2p) fashion, with built-in redundancy and no need for
close monitoring. It can tolerate multiple communication link failures, allows
external users to transmit transactions to any node, and ensures disconnected
nodes will be caught up on missed transactions.

Blockchain’s distributed database maintains a continuously growing list of
records, called blocks, secured from tampering and revision by distributed stor-
age and continuous verification. The blocks contain a temporal listing of trans-
actions that are stored in a public ledger using a persistent, immutable, and
append-only data structure that is globally viewable by every participant in the
underlying p2p network. When such an elegant data structure is considered to
track data transactions in a distributed environment, the block structure con-
tains attributes such as the set of user transactions, a timestamp, a reference to
a previous block in the blockchain, Merkle root of the transactions, and so on.
In this manner, the blocks are linked together to form a chain, where the hash
of the previous blocks helps to maintain the integrity of the whole blockchain
(Figure 1.1).
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Figure 1.2 Blockchain architecture.

1.1.1 Blockchain Building Blocks

Blockchain technology’s effectiveness hinges on the following three main com-
ponents: a decentralized network, distributed consensus, and cryptographi-
cally secure algorithms. Figure 1.2 illustrates the basic blockchain architecture.

The key features of each of the components are as follows:

Decentralized Network—The function of the decentralized network is to ensure
the propagation of transaction messages among the nodes responsible for
maintaining the distributed ledger. The network protocol allows the transac-
tion message to be broadcast from any node to all nodes in the decentralized
network. However, the network is not a pure broadcast medium and allows
nodes to propagate messages that represent valid transactions. The network
can be part of a private or public blockchain that has ramifications on net-
work performance and security. Irrespective of whether the blockchain is
public or private, the decentralized network is based on a p2p architecture.
The nodes can join and leave freely. There is no centralized arbitrator. The
network has built-in redundancy and robustness to mitigate node and link
failures.

Distributed Consensus—Blockchain uses consensus protocols over a decentral-
ized p2p network for verification of transactions prior to adding blocks to
the public ledger. The consensus protocol receives messages from the p2p
network and inserts transactions in the distributed ledger. The consensus
protocol is responsible for mining blocks and reaching consensus on their
integration in the blockchain. The consensus protocol chooses the set of
transactions that is accepted after passing a verification process. The veri-
fication process is determined by users and does not require a centralized
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administrator. The consensus protocols ensure that the newly added trans-
actions are not at odds with the confirmed transactions in the blockchain
and maintain the correct chronological order. The newly added transactions
that are waiting to be confirmed are packed in a block and submitted to the
blockchain network for validation.

Cryptographically Secure Algorithm—The foundational component of
blockchain technology is the cryptosystem. State-of-the art blockchains’
cryptography systems use public key algorithms such as Elliptic Curve Cryp-
tography, and message digests such as SHA3-256. In a typical blockchain
application, an Elliptic Curve key pair that contains a public key and private
key is generated based on Secp256K1 curves. The private key has the
traditional usage of being kept secret and utilized to sign transactions. For
instance, in the case of bitcoin use, when a user exchanges bitcoins with
another user, the user will sign the transaction with their private key prior
to announcing to the network. Once the transaction is signed, the miners
in the network will use consensus algorithms to verify the validity of the
transaction signature, and validation is achieved.

1.1.2 Blockchain Commercial Use Cases

Home IoT—“Smart home” is an emerging Internet of Things (IoT) application
that aims to provide higher accessibility to all home accessories and person-
alized user experience for the appliances. To operate efficiently, IoT hubs in
smart homes collect and analyze a lot of sensible data from the home area net-
work of all smart devices. With the gathered data, it is easy to derive usage
patterns and user behaviors in the home environment, thus creating a dig-
ital trail of families in smart homes. However, this information could easily
fall into the wrong hands, or the vendors could use the information to pro-
mote additional products. Therefore, when more smart technologies are added
to smart homes, there is an increased possibility of a severe privacy breach.
Conventional approaches may fail to achieve credible security and privacy in
IoT because the IoT framework has particular characteristics. These charac-
teristics include decentralized topology, resource-constrained devices, limited
network performance, and minimal security standards for IoT devices. The
introduction of blockchain technology could potentially address smart home
challenges in an efficient manner because of the following facts: blockchain
does not rely on a centralized control; instead, it works in a distributed net-
work setting that is similar to IoT. As a result, blockchain avoids the problem of
single-point failure and improves scalability. Moreover, blockchain inherently
offers the anonymity that is required in the IoT environment, where identi-
ties must be kept private. Irrespective of the several advantages produced by
blockchain technology, integration in the smart home environment may create
the following obstacles: first, blockchain mining is computationally intensive
in nature, and this requires decent computing capabilities in the participating
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devices; however, IoT devices have a heterogeneous computational power that
may not be sufficient to mine blocks in a desirable amount of time. The second
problem is that of data storage since blockchain is nothing but a distributed
ledger stored locally to verify transactions; however, smart devices, such as var-
ious sensors, have a limited storage capacity. Finally, blockchain protocols also
consume significant network capacity for internal communication, which may
be undesirable for bandwidth-seeking smart devices.

Transportation Sector—In vehicle-to-vehicle (V2V) systems, vehicles com-
municate information with other vehicles. In vehicle-to-infrastructure (V2I)
systems, vehicles communicate with the road network infrastructure to
improve the safety and efficiency of the vehicle transportation infrastructure.
Early examples of such systems are web-enabled tools such as Waze, a tool that
provides real-time traffic conditions based on users, speed, and vehicle loca-
tion. Even simple systems, such as automatic toll collection, stem from the idea
of V2I. Futuristic examples are systems in which a car communicates its posi-
tion on the road with other cars around it to prevent collisions, or for that vehi-
cle to communicate with the transportation infrastructure, such as traffic sig-
nals, to provide better information on arriving vehicles to help it better manage
traffic. In a global sense, each vehicle, traffic controller, and piece of road infras-
tructure can potentially become an IoT device, and each piece is connected to
and can communicate through the Internet. The integrity of these devices must
be ensured; the data that they produce will be critical. Blockchain technology
can be applied to this area by confirming that a vehicle’s ID is what it says it is,
which is done by tracking its location on the road network. This would also pre-
vent spoofed vehicles from tampering with or maliciously affecting automated
systems. In 2014, Israeli students spoofed the Waze transportation application
to report heavy congestion on a road when there was no traffic [6]. The students
did this by reporting data on fake vehicles on the network at a particular road
segment. A blockchain solution could have helped to autonomously manage
vehicles IDs and their movements over the road network, and this would not
allow systems such as Waze to account for vehicles that have just dropped onto
particular segments. Moreover, the transportation infrastructure can ensure
the integrity of vehicle data to help the autonomous systems make decisions
based on a level of confidence in the data, backed by the knowledge of the valid
history of the data.

Energy Sector—Blockchain technology has been proposed for use in the
electric sector in the following application areas:

� Transactive energy—support distributed energy resource (DER) and its
interaction with DER management systems (DERMS)

� eMobility—ability to transact energy charging at stations in multiple service
territories

� Customer contracts—removing the middleman from the retail energy
market
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Blockchain technology can be used to provide supply chain security for the
electric sector. Utilities are constantly installing new operations technology
(OT) equipment and updating existing software and firmware in control system
devices. One problem with this method is ensuring the integrity of the software
and/or firmware. Some vendors use a digital signature when they distribute
software and/or firmware updates, but this does not address the initial deploy-
ment. In addition, some vendors use a hash (typically MD5) as an integrity
check. MD5 is not technically secure because it has a collision problem. That is,
the same hash value can be computed on two different messages. Blockchain
technology can be used to ensure software and/or firmware integrity in the
electric sector security supply chain.

Consumer Electronics—Blockchain technology will impact the Consumer
Electronics (CE) industry by providing cyber supply-chain provenance [7],
where the customers as well as providers expect transparency for product infor-
mation and delivery [8, 9]. Blockchain technology can mitigate cyber supply-
chain risks for the CE industry by providing open access to the processes of
planning, implementing, and controlling the movement of materials and fin-
ished goods to end users. Developing techniques and tools to provide prove-
nance assurance are the top priority for addressing cyber supply-chain risks
in the CE industry such as counterfeits, unauthorized production, tampering,
theft, insertion of malicious software and hardware, as well as poor manufac-
turing and development practices. The globalization of the cyber supply chain
has resulted in software and firmware being developed by offshore enterprises
and has resulted in tremendous savings for the electronic data systems (EDS)
sector. However, the dependency on third-party services has resulted in more
maliciousness across the stages of the cyber supply chain. Specifically, there is a
need for tools or technologies that can adequately address the risks involved in
supply-chain processes, sourcing, third-party vendor management (every actor
that has physical or virtual access to software code and/or systems), acquisi-
tion of compromised software or hardware purchases from suppliers, embed-
ded malware in hardware or counterfeit hardware, and third-party data stor-
age or data aggregators. Solutions exist, such as side-channel fingerprinting,
reverse engineering, and formal methods, which are mostly deployed at the
chip level to detect the presence of counterfeit chips. However, these methods
cannot be scaled to protect the whole cyber supply chain. Thus, there is a need
for blockchain-based methodology to maintain provenance across the supply-
chain stages, as depicted in Figure 1.3. Radical evolution of IoT technology also
attracts the majority of the CE industry to operate over cloud infrastructure
[10]; thus, building a data provenance system will preserve transaction integrity
and prevent malicious activities by alerting the users in real time.

Medical Sector—The recent influx of wearable medical devices promises
to bring rich dividends to healthcare stakeholders. Wearable medical devices
are networked computing devices equipped with sensors to track the patient’s
vital signs and physical activities. The data and the analytics can also be linked
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to Electronic Health Records (EHR), which can benefit patients by helping
them to monitor their personal health, aid doctors in prescribing personalized
medicine, and allow insurance providers to gain insight into the cost of provid-
ing medical care.

However, due to security and privacy concerns, it has been reported that
medical device manufacturers have only instrumented 20–30% of their net-
worked devices to be used in hospitals. There have been several vulnerabilities
reported with medical devices. For instance, ICS-CERT reported that Hospira’s
Symbiq drug infusion pump [11], used by medical facilities to automatically
administer doses of medication to patients based on the amount specified by
the caretaker, is vulnerable. The vulnerability allows an attacker to change doses
of the prescribed medicine and impact patient safety. In 2017, the US Food and
Drug Administration (FDA) reported vulnerabilities in St. Jude Medical’s heart
devices [12]. It is obvious that connected medical devices are here to stay, and
the likelihood for compromising medical devices will grow exponentially. The
current cyber-security solutions for identity management are inefficient and
lack the ability to immediately track failure and accountability.

In addition to compromised medical devices, there are several privacy con-
cerns with health data collected from both wearable devices and EHR sys-
tems. Patients are concerned about the lack of transparency in which a health-
care stakeholder has access to their data and how their data are used. Current
healthcare cyber-security solutions focus on improving data providers’ respon-
sibilities to detect data disclosure activities; however, it is equally important to
protect data access and provide immediate notifications of improper data dis-
closure risks. In addition, over 300 EHR systems use a centralized architec-
ture that is prone to single point of failure and suffers from lack of interoper-
ability that results in the absence of a holistic and thorough view of personal
health. It is reported that 62% of insured adults rely on their doctors to man-
age their health records [13], which limits their ability to interact with health-
care providers other than their primary doctor. Moreover, even though health
providers are supposed to follow rules or laws, such as HIPAA (Health Insur-
ance Portability and Accountability Act of 1996), there are still many entities
that are not covered by any laws. Therefore, it is crucial that any provider with
access to data should be accountable for their operations on the data, and any
operation on the data needs to be audited.

Blockchain’s capability to capture data provenance will facilitate secure track-
ing of medical devices from production to ongoing use. The provenance infor-
mation encoded in the blockchain provides immutable and reliable workflow
with a trusted ground truth. The ground truth can be used for transparent
traceability and accountability when any device malfunctions, accidentally or as
a result of a security attack. The capability will also be useful for autonomous
monitoring and preventive maintenance of medical devices. As compared to
existing cyber-defense solutions, blockchain’s distributed consensus protocols,
cryptography techniques, and decentralized control will reduce cyber threat
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risks for medical devices. Other benefits include streamlining the secure track-
ing of medical devices, cost savings, and improving patient privacy by secure
and targeted access to patient data.

Blockchain relies on pseudoanonymity (replacing names with identifiers) and
public key infrastructure (PKI) to maintain the privacy of users. The workshop
[14] co-conducted by the Office of the National Coordinator (ONC) for Health
IT and the National Institute for Standards and Technology (NIST) focused on
blockchain usage in healthcare and research, aiming to clarify the implications
of blockchain as an infrastructure for healthcare use cases including privacy
preservation for predictive modeling, increasing interoperability between insti-
tutions on a large scale, immutability of health records, health insurance claim
process improvement, health information exchange, healthcare delivery mod-
els with artificial intelligence, identity management, monetization strategies,
and data provenance requirements.

Data Provenance in the Cloud—Assured data provenance in cloud comput-
ing is needed to keep track of data transactions generated by data operations
in the cloud and detect malicious activities. The current state-of-the-art data
provenance technologies involve comparing logged data generated by execu-
tion of software on physical or virtual resources. However, they fail to detect
integrity violations and are typically conducted in a private setting to allow
better ownership of assets. Also, the process is not scalable to federated cloud
environments, is costly, and lacks transparency. Hence, there is a strong need to
develop a data provenance framework for the cloud computing environment,
where multiple representatives or virtual stakeholders can participate in main-
taining transparent and immutable provenance information. Blockchain tech-
nology, where data are stored in a public, distributed and immutable ledger
and maintained by a decentralized network of computing nodes, provides a
decentralized and permanent record-keeping capability, which is critical for
data provenance and access control in cloud data protection.

1.1.3 Blockchain Military Cyber Operations Use Cases

Blockchain as a distributed ledger system provides many features and function-
alities that are needed for cyber operations, such as auditing of historical infor-
mation, assured data provenance, guaranteed variability of integrity violations
of historical data, and auditing of contents from tampering. Besides, blockchain
has both cost effectiveness merits as well as transparency features, making it an
appealing system for military cyber operations.

� Generation of cyber assets—Blockchain can be utilized to generate cyber
assets that will enable applications that rely on direct interaction between
customers and assets. The blockchain system can aid in assuring the pro-
cesses of issuance, transaction processing, and housing of cyber assets and
identities.
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� Transfer of ownership of cyber assets—The blockchain system allows trans-
fer of cyber assets between owners by leveraging the property of blockchain
so that once a transaction is guaranteed, it cannot be reversed. Any changes
will have to be appended and will not result in change of an already validated
transaction, thereby ensuring nonreversibility of transfer of ownership.

� Transparent and assured data provenance—Every operation on the cyber
asset is encoded in the blockchain transaction using a publicly available and
immutable ledger. The blockchain system ensures that provenance of every
operation on the cyber asset is recorded and traceable.

� Verifiability and audit—The distributed ledger keeps track of transactions
pertaining to creation and transfer of cyber assets. The tamper-resistant
property of the ledger facilitates variability and audit of operations.

Military Cyber Operations—Ensuring traceable and tamper-evident
accountability and auditability of command and control, logistics, and other
critical mission data among international partners is paramount as our
future operations involve the convergence of multiple domains and a heavily
contested cyberspace. Centralized or homogenous information systems and
databases must evolve distributed, disintermediated, and secure capabilities.
As such, trust with respect to operations involving international entities must
not be rooted in one single entity. Trust must be decentralized and built around
robust, innovative cryptographic paradigms transcending the traditional PKI
typically utilized in most homogenous enterprises.

An innovative, distributed trust and identity management mechanism is a
crucial enabling technology assuring identification, authentication, and autho-
rization in a way that would further allow disintermediated accountability
and auditability. Emerging blockchain and distributed ledger technologies as
a whole demonstrate the potential of a truly distributed and disintermediated
mechanism for accountability and auditability. The current production applica-
tion of cryptocurrencies has already created unprecedented accountability and
auditability in a way that disrupts traditional fiat currencies and disintermedi-
ates the way people are able to transact internationally via pseudonymous iden-
tity management via wallets in permissionless and public blockchain imple-
mentations.

The nuances of disintermediated international partnerships and infor-
mation exchange involve some mutually exclusive research and develop-
ment challenges distinct from the permissionless and public implementations
of blockchain. For the level of identification, authentication, authorization,
accountability, and auditability challenges that encompasses overall integrity
concerns for international operations, even more robust distributed identity
management mechanisms must be investigated. Furthermore, the underlying
practice of consensus must vary from the latency-tolerant and performance-
heavy implementations observed in cryptocurrencies. Most importantly, the
distributed ledger technology mechanism may be private and permissioned;
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however, it must also not be vested in one single vendor’s implementation in
a way that inadvertently and ironically intermediates and centralizes informa-
tion exchanges. We must thoroughly assess and demand interoperability and
standardization among blockchain implementations for mission data, which
further enables the disintermediated accountability and auditability required
in our increasingly complex international operations in multiple domains.

1.1.4 Blockchain Challenges

Blockchain does have the potential to address cyber security issues in dis-
tributed systems. However, blockchain cannot be considered a panacea to
address all cyber security concerns. Blockchain does have inherent capabil-
ities to address integrity violations. However, assurance of confidentiality,
availability, and authenticity is not guaranteed by blockchain and will require
integration with several security solutions. Organizations that are considering
blockchain to address cyber security issues should carefully assess whether
the technology is a good fit. Specifically, the below outline is a good start to
identify whether the organization does need blockchain to replace the existing
solution [15]:
� Do you have concerns regarding the ability of the centralized database to

withstand failures?
� Are there multiple stakeholders responsible for modifying the contents of the

database?
� Do the multiple parties operate under differing trust domains?
� Are there clear defined rules to control data input?
� Is there a value proposition in having validators in the form of consensus?

Once the need for distributed blockchain has been justified, the next steps
are to identify the blockchain solution that’s a good fit for the organization.
There are several aspects that need to be addressed, such as the type of data
encoded in the blockchain transactions, frequency of transactions, the infras-
tructure used to store the blockchain (public or permissioned), key manage-
ment system, number of validators, bootstrap time, ability of smart contracts
to learn rules dynamically, attack surfaces in the blockchain solution, etc. For
instance, for the healthcare sector, the type of data stored in the blockchain
needs to be carefully identified as any sensitive information can be subjected to
confidentiality attacks. Any organization that would like to ensure that activi-
ties of participants in the blockchain are compliant would prefer permissioned
blockchain [16].

Below is a summary of key research challenges that need to be addressed for
realizing a practical blockchain solution.

Scalability—Bitcoin’s current implementations are not scalable due to the
fact that it takes 10 minutes or longer to confirm transactions and seven trans-
actions is the maximum throughput that can be achieved. There is a need for
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fundamental research to develop a scalable blockchain platform. Prior to devel-
oping a scalable blockchain platform, it is imperative to not only define scalabil-
ity in the context of blockchain, but also identify metrics to quantify scalability.
There have been efforts to improve the scalability in blockchain by modifying
parameters such as block size and block intervals. However, these efforts to
achieve scaling through reparameterization alone can only realize limited ben-
efits and do not address network performance issues. Network performance is
exacerbated due to blockchain’s p2p overlay network protocol, degree of decen-
tralization, and number of peers in the network. The throughput of blockchain
depends on the throughput of the overlay network that determines the rate at
which blocks propagate and the percentage of nodes involved in the exchange
of blocks in a given time interval. For example, if the transaction rate reaches
80% of the throughput, it is quite possible that 10–20% of the p2p nodes will
not be able to render services and reduce effective network mining power.

There is a need to develop new architectures for blockchain to ensure suf-
ficient scalability without sacrificing decentralization. The architecture should
involve protocol design strategies across several layers, namely network, con-
sensus, and storage. There is also a need to identify and measure scalability
metrics such as throughput, latency, bootstrap time, storage, cost of confirmed
transaction, fairness, and network utilization. The architecture will also need to
be designed to address issues such as, “Does exploitation of system parameters
to improve scalability sacrifice security properties?” and “What is the degree of
resilience of the system during a cyberattack?”

Network Layer—The objective of the network layer in the blockchain archi-
tecture is to provide an effective mechanism to propagate transaction messages.
The network layer ensures that messages from any participant can be transmit-
ted to all the nodes in the blockchain network. However, the network layer does
not operate in full broadcast mode and nodes exchange messages that contain
validated transactions. And, in most current implementations of the blockchain
network, the network is heavily underutilized and limits throughput. Thus, the
network layer in blockchain is a bottleneck in the processing of transactions.

Consensus Layer—The consensus layer is responsible for validating transac-
tions and uses the network layer to deliver messages and record the transactions
in the distributed ledger. The consensus protocols include proof of work (PoW),
proof of stake (PoS), and byzantine fault tolerance. Traditional blockchain tech-
nology relies heavily on the underlying PoW mechanism to achieve consensus
in the decentralized system where the miner has to spend its computational
power to solve the cryptopuzzle so as to successfully include its block in the
blockchain. With such an approach, miners opt for various specialized hard-
ware to achieve their computational ability. The eventual goal of the miners
is to win the block-adding race so that they can be rewarded, and a signifi-
cant amount of energy is required to do so. For a simple example, if we con-
sider the case of Bitcoin’s blockchain, the miners compete to get the reward of
25 Bitcoin, which is worth approximately $20,000 and is freshly minted for the
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winning miner every 10 minutes. Thus, the amount of reward per second is
$33.30, and if we assume the rate of industrial electricity is $0.01/KWhr, then we
can approximately state that Bitcoin miners use energy of 1100 MW per second.
This substantial quantity is spent to reach consensus using the PoW approach
and most of it is used in computing the irreversible SHA256 hashing function.
Since the value of direct incentives will diminish eventually, the critical ques-
tion of “how will the PoW miners be motivated to mine?" has to be addressed
so as to smoothly run the consensus process. PoS consensus protocol is inter-
estingly attractive; it provides block inclusion decision-making power to those
entities that have stakes in the system irrespective of the blockchain’s length
or history of the public ledger. The principal motivation behind this scheme is
to place the power of leader election in the blockchain update process into the
hands of the stakeholders. This is done to ensure that the security of the sys-
tem will be maintained while the members’ stakes are at risk. Roughly speaking,
this approach is similar to the PoW consensus except the computational part.
Hence, a stakeholder’s chances to extend the blockchain by including its own
block depend proportionately on the amount of stake it has in the system.

There is a need for developing a customized consensus engine that will not
require participants to make significant investments in computation and will
balance the tradeoff between the number of transactions processed, transac-
tion validation time, incentives, and security rules set by participators. The cus-
tomized consensus engine will choose the optimal combination of consensus
protocols to achieve the aforementioned objectives.

Privacy—Permissioned blockchain platforms, such as Hyperledger Fabric
and JP Morgan’s Quorum, claim that privacy is a goal; but the way they achieve
it is actually quite limited. These systems consist of several validating nodes,
each of which sees the entire transaction log in plaintext. That is, while the
systems are designed to provide availability/consistency even when some of
the nodes fail, they cannot guarantee privacy if one of the nodes suffers a data
breach. Some permissioned blockchain platforms offer a feature where you can
create a “private channel” comprising just a subset of these nodes; however,
among this subset, it is still the case that any data breach would leak the trans-
action data and then the private channel cannot interact with the other chan-
nels. With the existing systems, there is an inherent tradeoff between resilience
and expressiveness on the one hand, and privacy on the other.

There are a variety of technical approaches that can provide better oper-
ating points. These include threshold cryptography/multi-party computation,
zero knowledge proofs, and homomorphic encryption. The theory for these
approaches is well established in general, but in concrete terms it is a great open
challenge to (a) find efficient algorithms for applications of interest, and (b)
integrate with existing systems. So, focusing on building better privacy mech-
anisms could be a well-motivated and technically interesting challenge to add.

Security—Despite the advantages of using blockchain for distributed sys-
tems security, there have been numerous instances of reported security risks
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associated with this technology [17–19]. In 2016, it was reported that an
adversary was able to withdraw $50 million from “The DAO”, a decentralized
autonomous organization that operates on blockchain-based smart contracts
[20]. In June 2017, Bitfinex reported a distributed denial-of-service (DDoS)
attack that led to a temporary suspension. Several exchanges of Bitcoin and
Ethereum (a blockchain-based distributed computing platform) have also suf-
fered from DDoS attacks and Domain Name System (DNS) attacks frequently,
hampering service availability to the users.

The attack surfaces in blockchain can be broadly classified into the follow-
ing three main categories: (i) Threats associated with the techniques employed
for creating/maintaining the distributed ledger (e.g. blockchain forks, stale
blocks, orphaned blocks, etc.), (ii) threats to the blockchain system’s under-
lying network infrastructures (e.g. attacks on consensus protocols that cause
delays, decreased throughput, inconsistencies, DDoS attack, DNS attacks,
Fork After Withholding [FAW] attacks, etc.), and (iii) threats associated with
frontend/backend applications integrated with blockchain technology (steal-
ing of private keys, attacks on certificate authorities, attacks on membership
services in permissioned blockchain, blockchain ingestion, double spending,
wallet theft, etc.).

1.2 Overview of the Book

The book has encompassing themes that drive the individual contributions
including the broad theme of blockchain-based secure data management and
storage for cloud and IoT; data provenance in cloud storage; secure IoT model,
auditing architecture, and application of blockchain in military and health-
care domain; and empirical validation of permissioned blockchain platforms.
It will synthesize a mix of earlier works (on topics including data provenance
in blockcloud and blockcloud security analysis) as well as newer, cutting-edge
research findings that promise to attract strong interest (on topics including
invariant-based supply chain protection, information-sharing framework, and
trustworthy information federation). The contributions address security and
privacy concerns in blockchain in key areas, including the following: preventing
digital currency miners from launching attacks against mining pools, empiri-
cal analysis of the attack surface of blockchain, countering double spending in
blockchains, security analysis of blockchain consensus protocols, and privacy
in permissioned blockchain platforms.

1.2.1 Chapter 2: Distributed Consensus Protocols and Algorithms

Fault-tolerant consensus has been extensively studied in the context of dis-
tributed computing. By regulating the dissemination of information within the
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network of distributed processors, a fault-tolerant consensus mechanism guar-
antees that all processors agree on common data values and perform the same
course of action in response to a service request, in spite of faulty processors
and unreliable communication links. This consensus guarantee is crucial to
normal functioning of the distributed computing system. Similarly, as a real-
ization of a distributed system, blockchain requires a consensus protocol that
assures all nodes in the p2p network agree on a single chain of transaction
history (or “public ledger”) given the adverse effect of malfunctioning nodes
and unpredictable network conditions. At the time of writing, there are more
than a hundred blockchain primitives in the cryptocurrency market, embody-
ing more than 10 classes of consensus protocols. Aiming at the fundamentals
of distributed consensus, this chapter provides an overview of topics rang-
ing from classic fault-tolerant consensus in distributed computing to the cur-
rent stage of blockchain consensus protocols. Essentially, analysis of consensus
performance will be aided by mathematical modeling. In this chapter, we first
provide the basics of fault-tolerant consensus in distributed computing in a suc-
cinct manner. Next, we conduct formal analysis of the Nakamoto protocol—
the pioneering PoW blockchain consensus protocol for Bitcoin. We will also
present several emerging non-PoW blockchain consensus protocols and their
application scenarios. We will provide a qualitative evaluation and comparison
over the aforementioned blockchain consensus protocols.

1.2.2 Chapter 3: Overview of Attack Surfaces in Blockchain

In this chapter, we explore the attack surface of blockchains and the possi-
ble ways in which this technology can be compromised. Toward this goal, we
attribute attack viability in the attack surface to (i) blockchain cryptographic
constructs, (ii) the distributed architecture of the systems using blockchain,
and (iii) the blockchain application context. For each of those contributing fac-
tors, we outline several attacks, including selfish mining and associated peer
behaviors, 51% attack, DNS attacks, DDoS attacks, equivocation, consensus
delay (due to selfish behavior or DDoS attacks), blockchain forking, orphaned
and stale blocks, block ingestion, wallet thefts, and privacy attacks. We then
explore the causal relationship between these attacks and show how one fraud-
ulent activity can lead to the possibility of other attacks. A secondary contri-
bution of this work is outlining effective defense measures taken by blockchain
technology or proposed by researchers to mitigate the effects of these attacks
and patching the vulnerabilities in blockchains.

1.2.3 Chapter 4: Data Provenance in Cloud Storage with Blockchain

This chapter broadly covers the topic of data provenance in cloud storage and
key challenges. It presents ProvChain, a blockchain platform that provides
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assured data provenance, which achieves the following objectives: (i) real-time
cloud data provenance, (ii) tamper-proof environment, (iii) enhanced privacy
preservation, and (iv) provenance data validation. A detailed design to achieve
the aforementioned objectives within ProvChain is given. An implementation
of ProvChain on ownCloud, an open source cloud storage service, is provided.
Then, it presents detailed evaluation results to demonstrate the effectiveness
of ProvChain to provide assured data provenance with the desired privacy and
availability in cloud storage platforms. Finally, it describes and offers some solu-
tions to the challenge of processing graph data in the cloud.

1.2.4 Chapter 5: Blockchain-based Solution to Automotive
Security and Privacy

Smart vehicles are increasingly being connected to other vehicles in close
proximity and to roadside infrastructures, for example, traffic lights and over-
head displays at motorways, and more generally to the internet, thus mak-
ing the vehicles part of the IoT. This high degree of connectivity introduces
new, sophisticated personalized services for smart vehicle owners as well as
for vehicle manufacturers, suppliers, and service providers (SPs) such as insur-
ance companies. However, this high degree of connectivity makes smart vehi-
cles highly vulnerable to security threats and raises various privacy concerns.

In this chapter, we present a decentralized privacy-preserving and secure
blockchain-based architecture for a smart vehicle ecosystem. Smart vehicles,
Original Equipment Manufacturer (OEM) (i.e. car manufacturers), and other
SPs jointly form an overlay network where they can communicate with each
other. Nodes in the overlay are clustered and only the cluster heads are respon-
sible for managing the blockchain and performing its core functions. These
nodes are known as overlay block managers (OBMs). Transactions are broad-
cast to and verified by the OBMs, thus eliminating the need for a central broker.
To protect user privacy, each vehicle is equipped with in-vehicle storage to store
privacy-sensitive data, for example, location traces. The vehicle owner defines
which data (and the granularity) is traded to third parties for beneficial ser-
vices and which data should be stored in the in-vehicle storage. Consequently,
the owner has greater control over the exchanged data.

All transactions (i.e. communications) in the network are encrypted using
asymmetric encryption. Nodes are authenticated using their Private Keys
(PKs). Strong communication security and authentication introduced by
blockchain mitigates the risk of the vehicle being remotely hacked and thus
increases the safety of the passengers. We undertake a qualitative analysis on
the security and privacy of the proposed architecture. Multiple possible attacks
and the protection methods employed by our framework are discussed to show
the resilience of our framework against them. We develop an implementation
as a proof of concept to demonstrate the applicability of our approach and to
analyze its packet and delay overheads.
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1.2.5 Chapter 6: Blockchain-based Dynamic Key Management for
IoT-Transportation Security Protection

IoT is the next generation platform that aims to maximize the connection
between the cyber platform and the physical world including, but not limited
to, vehicles, infrastructures, home sensors, smart medical systems, and wear-
able electronics. However, security is still the main concern in IoT environ-
ments. Even though significant developments in security assurance schemes
have taken place over the past few years in the area of communication engi-
neering, application layer security, especially cross-domain and cross-scenario
(heterogeneity) security schemes, are still an open topic for research. More-
over, blockchain technology provides a feasible solution for these security chal-
lenges. This chapter describes a blockchain-based IoT platform for transporta-
tion security, specifically, a blockchain-based solution that suits one of the
emerging IoT use cases—Vehicular Communication Systems (VCS), one of the
most important IoT components and a subsystem of Intelligent Transporta-
tion Systems (ITS). The solution mainly adapts to simplify the distributed key
management in heterogeneous VCS domains. A dynamic transaction collec-
tion period is proposed to minimize the key transfer time during vehicle han-
dover. Furthermore, potential developments in the privacy prevention area are
demonstrated.

1.2.6 Chapter 7: Blockchain-enabled Information Sharing
Framework for Cybersecurity

This chapter examines the design, development, and evaluation process estab-
lished for a blockchain-based information sharing (BIS) framework. The BIS
at its core offers a mechanism for confidential information and infrastruc-
ture protection from future cyberattacks leveraging on blockchain technology.
Blockchain is the concept used in the Bitcoin system, currently explored to pro-
vide transparent p2p transactions in multiple domains. In BIS, multiple orga-
nizations share security-related information, while preserving their privacy, in
a bid to jointly protect their cyberspace. The bigger picture here is to collect
high-resolution cyberattack information from multiple organizations with the
organizations having no specific knowledge about the usage of other organiza-
tions’ data or exposure of information about a particular company’s cyberse-
curity attacks. BIS offers a decentralized approach for blockchain with transac-
tions being digitally signed to ensure identification of legitimate organizations.
This allows the detection of adversaries posing as legitimate users to learn from
the public ledger with hashed pointers. Furthermore, the activities of nonpar-
ticipating users of BIS for security attacks and defenses are analyzed using a
Stackelberg game.

Also included in the chapter is blockchain-based protocol for cyber
threat information sharing, an overview of integrated information-sharing
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framework (iShare), blockchain protocol that protects confidential information
from adversarial threats, and a game-theoretic approach to analyze security
attacks on iShare.

1.2.7 Chapter 8: Blockcloud Security Analysis

In this chapter, we focus on security analysis of blockchain-based data prove-
nance in cloud. Blockchain’s public and distributed p2p ledger capability ben-
efits cloud computing services, which require functions such as assured data
provenance, auditing, management of digital assets, and distributed consensus.
Blockchain’s underlying consensus mechanism allows the building of a tamper-
proof environment where transactions on any digital assets are verified by a set
of authentic participants or miners. However, achieving consensus demands
computational power from the miners in exchange for a handsome reward.
Therefore, greedy miners always try to exploit the system by augmenting their
mining power. In this chapter, we first discuss blockchain’s capability in provid-
ing assured data provenance in cloud and present vulnerabilities in blockchain
cloud. We model the block withholding (BWH) attack in a blockchain cloud
considering distinct pool reward mechanisms. BWH attack provides a rogue
miner ample resources in the blockchain cloud for disrupting honest miners’
mining efforts, which was verified through simulations.

1.2.8 Chapter 9: Security and Privacy of Permissioned and
Permissionless Blockchain

Most analysis of blockchain protocols we have seen so far, ranging from tra-
ditional consensus protocols like Paxos and PBFT to Nakamoto consensus, all
rely on the “majority honest” assumption, where we assume a majority of the
parties follow the protocol correctly. But why should we be willing to assume
that any of the peers will be honest and run the protocol exactly? In this chap-
ter, we discuss two security design considerations and apply them to both per-
missioned and permissionless models. The first design approach is committee
selection, by which a large population of participants are winnowed down into
a small, fairly sampled subset, where the attacker does not have much presence
in the committee. This design approach applies equally well in both permis-
sionless and permissioned blockchains since it can improve performance ver-
sus having the entire population active. The second issue we discuss is privacy.
Blockchain applications often need to provide privacy guarantees for users, for
example, if they involve sensitive information about financial transactions or
about the real-time location of Internet of Things devices. Here, cryptogra-
phy can be employed. If we have a high degree of trust in the peers, as in a
permissioned setting, secret sharing is a natural approach since we assume a
majority of the peers will not be breached. On the other hand, in a context with
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less trust, zero-knowledge proofs allow clients to prevent any of the peers from
seeing protected data.

1.2.9 Chapter 10: Shocking Public Blockchains’ Memory with Unconfirmed
Transactions—New DDoS Attacks and Countermeasures

In 2017, blockchain-based systems have seen a rise in their value. Consequently,
they have attracted several forms of denial-of-service attacks, and their attack
surface is being widely explored in the fields of security and distributed sys-
tems. In this chapter, we present a new form of attack that can be carried out
on the memory pools (mempools) of blockchain systems in general. Towards
that end, we study such an attack and explore its effects on transaction fee struc-
tures of legitimate users. We also propose countermeasures to contain such an
attack. Our countermeasures include fee-based and age-based designs, which
optimize the mempool size and help in countering the effects of this attack.
We further evaluate our designs by simulations and analyze their usefulness in
varying attack conditions. Our analyses can be extended to a wide variety of
blockchain systems using proof concepts, where fees are provided as an incen-
tive for participation.

1.2.10 Chapter 11: Preventing Digital Currency Miners From Launching
Attacks Against Mining Pools by a Reputation-Based Paradigm

The mining process in blockchain is very resource intensive; therefore, min-
ers form coalitions to verify each block of transactions in return for a reward
where only the first coalition that accomplishes the PoW will be rewarded. This
leads to intense competitions among miners and, consequently, dishonest min-
ing strategies such as BWH attack, selfish mining, eclipse attack, and stubborn
mining, to name a few. As a result, it is necessary to regulate the mining process
to make miners accountable for any dishonest mining behavior. In this chap-
ter, we propose a new reputation-based framework for PoW computation in
blockchain in which miners are not only incentivized to conduct honest min-
ing, but also disincentivized for committing any malicious activities against
other mining pools. We first illustrate the architecture of our reputation-based
paradigm, explain how the miners are rewarded or penalized in our model,
and subsequently, we provide game-theoretical analyses to show how this new
framework encourages the miners to avoid dishonest mining strategies. In our
setting, a mining game is repeatedly played among a set of pool managers and
miners where the reputation of each miner or mining ally is continuously mea-
sured. At each round of the game, the pool managers send invitations only to a
subset of miners based on a nonuniform probability distribution defined by the
miners’ reputation values. We show that by using our proposed solution con-
cept, honest mining attains Nash equilibrium in our setting. In other words,
it will not be in the best interest of the miners to employ dishonest mining
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strategies even by gaining a short-term utility. This is due to the consideration
of a long-term utility in our model and its impact on the miners’ utilities over
time.

1.2.11 Chapter 12: Private Blockchain Configurations for Improved IoT
Security

Blockchain has the potential to provide secure device authentication, trusted
event logs, and interoperability for IoT. There are several blockchain platforms
to realize the aforementioned requirements; however, there is no consensus on
the optimal blockchain platform and the necessary configuration that is appli-
cable to IoT deployments. In this chapter, we focus on the methodology to con-
figure the blockchain technology to meet the security requirements of IoT.

We describe, implement, and compare two possible private blockchain con-
figuration strategies—blockchain-enabled gateways and blockchain-enabled
end devices. Test use cases for both strategies are implemented on a net-
work of Raspberry Pi devices using the popular Ethereum and Hyperledger
Fabric blockchain frameworks, respectively. We show that while the more
popular blockchain gateway approach is better suited to the current archi-
tecture and computational requirements of leading blockchain frameworks,
the blockchain-enabled end device approach is technically feasible and highly
promising, enabling more trustworthy data collection and complex device
management strategies. The chapter focuses on the different roles that IoT
devices can play within a blockchain deployment as well as the security guar-
antees that the blockchain can provide an IoT device in a certain role. We
also identify system functionality and cyber security guarantees in scenarios
wherein IoT devices are configured as full nodes of the blockchain.

1.2.12 Chapter 13: Blockchain Evaluation Platform

In the final chapter, we provide a systematic methodology to simulate, test,
and evaluate blockchain platforms. The methodology described in this chapter
will provide empirical means to evaluate the efficacy of the approaches pre-
sented in preceding chapters. This chapter strives to provide some insight into
how blockchain theoretical models can be simulated and tested on a practical
platform. The chapter will describe the development of a blockchain simulator
that can be used to conduct performance and security evaluation. We will also
provide insights into blockchain implementation within a Hyperledger Fab-
ric, an open-sourced blockchain application and toolset managed by the Linux
Foundation. The Hyperledger Fabric example is a fully capable blockchain plat-
form that can be modified to work in a real environment. Both examples can
be scaled to test the performance of protocols and theories as needed, which
makes them both good examples to use. The software code will be available to
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the reader via an online repository and can be downloaded and run generally
on any system with some open-sourced software requirements.

References

1 J. Kelly and A. Williams, “Forty big banks test blockchain-based bond trading
system.” [Online]. Reuters, March 3, 2016. Available: https://www.reuters.com/
article/banking-blockchain-bonds/forty-big-banks-test-blockchain-based-
bond-trading-system-idUSL8N16A30H.

2 I. Kar, “Estonian citizens will soon have the world’s most hack-proof
health-care records.” [Online]. Quartz, March 3, 2016. Available:https://qz.
com/628889/this-eastern-european-country-is-moving-its-health-records-to-
the-blockchain/.

3 S. Lacey, “The energy blockchain: How bitcoin could be a catalyst for the
distributed grid.” [Online]. Green Tech Media, February 26, 2016. Available:
https://www.greentechmedia.com/articles/read/the-energy-blockchain-could-
bitcoin-be-a-catalyst-for-the-distributed-grid#gs.4cTkNvw.

4 D. Oparah, “3 ways that the blockchain will change the real estate market.”
[Online]. TechCrunch, February 7, 2016. Available: https://techcrunch.com/
2016/02/06/3-ways-that-blockchain-will-change-the-real-estate-market/.

5 A. Mizrahi, “A blockchain-based property ownership recording system.”
[Online]. 2015. Available: https://chromaway.com/papers/A-blockchain-
based-property-registry.pdf.

6 N. Tufnell, “Students hack Waze, send in army of traffic bots.” [Online]. Wired,
March 25, 2014. Available: http://www.wired.co.uk/article/waze-hacked-fake-
traffic-jam.

7 K. Toyoda, P. T. Mathiopoulos, I. Sasase, and T. Ohtsuki, “A novel
blockchain-based product ownership management system (POMS) for
anti-counterfeits in the post supply chain,” IEEE Access, vol. 5, no. 99,
pp. 17465–17477, 2017.

8 J. H. Lee and M. Pilkington, “How the blockchain revolution will reshape the
consumer electronics industry [future directions],” IEEE Consumer Electronics
Magazine, vol. 6, no. 3, pp. 19–23, July 2017.

9 D. Puthal, N. Malik, S. P. Mohanty, E. Kougianos, and C. Yang, “The
blockchain as a decentralized security framework,” IEEE Consumer Electronics
Magazine, vol. 7, no. 2, pp. 18–21, 2018.

10 J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things (IoT):
A vision, architectural elements, and future directions,” Future Generation
Computer Systems, vol. 29, no. 7, pp. 1645–1660, 2013.

11 M. Mellen, “Tip of the Iceberg: FDA’s alert to unplug Hospira’s drug infusion
pumps from clinical networks.” [Online]. August 4, 2015. Available: https://
researchcenter.paloaltonetworks.com/2015/08/tip-of-the-iceberg-fdas-alert-
to-unplug-hospiras-drug-infusion-pumps-from-clinical-networks/.

https://www.reuters.com/article/banking-blockchain-bonds/forty-big-banks-test-blockchain-based-bond-trading-system-idUSL8N16A30H
https://www.reuters.com/article/banking-blockchain-bonds/forty-big-banks-test-blockchain-based-bond-trading-system-idUSL8N16A30H
https://www.reuters.com/article/banking-blockchain-bonds/forty-big-banks-test-blockchain-based-bond-trading-system-idUSL8N16A30H
https://qz.com/628889/this-eastern-european-country-is-moving-its-health-records-to-the-blockchain/
https://qz.com/628889/this-eastern-european-country-is-moving-its-health-records-to-the-blockchain/
https://qz.com/628889/this-eastern-european-country-is-moving-its-health-records-to-the-blockchain/
https://techcrunch.com/2016/02/06/3-ways-that-blockchain-will-change-the-real-estate-market/
https://techcrunch.com/2016/02/06/3-ways-that-blockchain-will-change-the-real-estate-market/
let &hbox {char '046}https://chromaway.com/papers/A-blockchain-based-property-registry.pdf
let &hbox {char '046}https://chromaway.com/papers/A-blockchain-based-property-registry.pdf
https://chromaway.com/papers/A-blockchain-based-property-registry.pdf
https://chromaway.com/papers/A-blockchain-based-property-registry.pdf
let &hbox {char '046}http://www.wired.co.uk/article/waze-hacked-fake-traffic-jam
let &hbox {char '046}http://www.wired.co.uk/article/waze-hacked-fake-traffic-jam
http://www.wired.co.uk/article/waze-hacked-fake-traffic-jam
http://www.wired.co.uk/article/waze-hacked-fake-traffic-jam
https://researchcenter.paloaltonetworks.com/2015/08/tip-of-the-iceberg-fdas-alert-to-unplug-hospiras-drug-infusion-pumps-from-clinical-networks/
https://researchcenter.paloaltonetworks.com/2015/08/tip-of-the-iceberg-fdas-alert-to-unplug-hospiras-drug-infusion-pumps-from-clinical-networks/
https://researchcenter.paloaltonetworks.com/2015/08/tip-of-the-iceberg-fdas-alert-to-unplug-hospiras-drug-infusion-pumps-from-clinical-networks/
https://www.greentechmedia.com/articles/read/the-energy-blockchain-could-bitcoin-be-a-catalyst-for-the-distributed-grid#gs.4cTkNvw
https://www.greentechmedia.com/articles/read/the-energy-blockchain-could-bitcoin-be-a-catalyst-for-the-distributed-grid#gs.4cTkNvw
https://www.greentechmedia.com/articles/read/the-energy-blockchain-could-bitcoin-be-a-catalyst-for-the-distributed-grid#gs.4cTkNvw


24 Blockchain for Distributed Systems Security

12 A. Stark, “FDA issues safety communication on availability of firmware update
to address cybersecurity vulnerabilities identified in Abbott’s (formerly
St. Jude Medical’s) implantable cardiac pacemakers.” [Online]. 2018. Available:
https://www.fda.gov/NewsEvents/Newsroom/FDAInBrief/ucm573853.htm.

13 2016 connected patient report, https://www.salesforce.com/assets/pdf/
industries/2016-state-of-the-connected-patient-pr.pdf.

14 C. Ryan, “Use of blockchain in healthcare and research workshop.” [Online].
The Office of the National Coordinator (ONC) for Health IT, the National
Institute for Standards and Technology (NIST), November 2016. Available:
https://oncprojectracking.healthit.gov/wiki/display/TechLabI/Use+of+
Blockchain+in+Healthcare+and+Research+Workshop.

15 G. Greenspan, “Avoiding the pointless blockchain project.” [Online]. November
22, 2015. Available: http://www.multichain.com/blog/2015/11/avoiding-
pointless-blockchain-project/.

16 S. Friedman, “Before the blockchain: 4 questions to answer.” [Online]. June 25,
2018. Available: https://gcn.com/articles/2018/06/25/blockchain-questions
.aspx.

17 X. Li, P. Jiang, T. Chen, X. Luo, and Q. Wen, “A survey on the security of
blockchain systems.” [Online]. 2018. Available: http://arxiv.org/abs/
1802.06993.

18 I.-C. Lin and T.-C. Liao, “A survey of blockchain security issues and
challenges.” IJ Network Security, vol. 19, no. 5, pp. 653–659, 2017.

19 N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on Ethereum smart
contracts (SoK),” in Proceedings of the 6th International Conference on
Principles of Security and Trust—volume 10204, Sweden, 2017, pp. 164–186.

20 D. Siegel, “Understanding the DAO attack.” [Online]. June 25, 2016. Available:
https://www.coindesk.com/understanding-dao-hack-journalists/.

let &hbox {char '046}https://www.fda.gov/NewsEvents/Newsroom/FDAInBrief/ucm573853.htm
https://www.fda.gov/NewsEvents/Newsroom/FDAInBrief/ucm573853.htm
let &hbox {char '046}https://www.salesforce.com/assets/pdf/
https://www.salesforce.com/assets/pdf/
https://oncprojectracking.healthit.gov/wiki/display/TechLabI/Use+of+Blockchain+in+Healthcare+and+Research+Workshop
https://oncprojectracking.healthit.gov/wiki/display/TechLabI/Use+of+Blockchain+in+Healthcare+and+Research+Workshop
let &hbox {char '046}http://www.multichain.com/blog/2015/11/avoiding-pointless-blockchain-project/
let &hbox {char '046}http://www.multichain.com/blog/2015/11/avoiding-pointless-blockchain-project/
http://www.multichain.com/blog/2015/11/avoiding-pointless-blockchain-project/
http://www.multichain.com/blog/2015/11/avoiding-pointless-blockchain-project/
https://gcn.com/articles/2018/06/25/blockchain-questions.aspx
https://gcn.com/articles/2018/06/25/blockchain-questions.aspx
http://arxiv.org/abs/1802.06993
http://arxiv.org/abs/1802.06993
let &hbox {char '046}https://www.coindesk.com/understanding-dao-hack-journalists/
https://www.coindesk.com/understanding-dao-hack-journalists/


25

2

Distributed Consensus Protocols and Algorithms
Yang Xiao,1 Ning Zhang,2 Jin Li,3 Wenjing Lou,1 and Y. Thomas Hou1

1Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
2Washington University in St. Louis, St. Louis, MO, USA
3Guangzhou University, Guangzhou, China

2.1 Introduction

Fault-tolerant consensus has been extensively studied in the context of dis-
tributed systems. By regulating the dissemination of information within the
network of distributed components, a fault-tolerant consensus algorithm guar-
antees all components agree on common data values and perform the same
course of action in response to a service request, in spite of the presence of
faulty components and unreliable communication links. This consensus guar-
antee is crucial to the normal functioning of a distributed system.

Being a realization of a distributed system, a blockchain system relies on a
consensus protocol for ensuring all nodes in the network agree on a single chain
of transaction history, given the adverse influence of malfunctioning and mali-
cious nodes. At the time of writing, there are over a thousand initiatives in the
cryptocurrency plethora, embodying more than 10 classes of consensus pro-
tocols. This chapter provides an overview of the basics of classic fault-tolerant
consensus in distributed computing and introduces several popular blockchain
consensus protocols.

We organize the chapter as follows: Section 2.2 introduces the basics of fault-
tolerant consensus in a distributed system and two practical consensus pro-
tocols for distributed computing. Section 2.3 presents the Nakamoto consen-
sus protocol, a pioneering proof-of-work (PoW) based consensus protocol first
used by Bitcoin. Section 2.4 presents several emerging non-PoW blockchain
consensus protocols and their application scenarios. Section 2.5 gives a qual-
itative evaluation and comparison over the mentioned blockchain consensus
protocols. Section 2.6 concludes this chapter and summarizes the design phi-
losophy for blockchain consensus protocols.
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2.2 Fault-tolerant Consensus in a Distributed System

In a distributed system, all components strive to achieve a common goal in
spite of being separated geographically. Consensus, in the simplest form, means
these components reach agreement on certain data values. In an actual sys-
tem, the system components and their communication channels are prone to
unpredictable faults and adversarial influence. In this section, we discuss the
consensus problem of message-passing systems1 in the presence of two types
of component failures—crash failure and Byzantine failure. We then study two
practical consensus algorithms that tolerate these component failures in dis-
tributed computing. For convenience, the terms processor, node, and compo-
nent are used interchangeably in this section.

2.2.1 The System Model

There are three major factors of consensus in a distributed system—network
synchrony, component faults, and the consensus protocol.

2.2.1.1 Network Synchrony
Network synchrony is a basic concept in distributed systems. It defines the
degree of coordination of all system components. We need to assume a certain
network synchrony condition before any protocol development or performance
analysis. Specifically, there are three network synchrony conditions:
� Synchronous—operations of components are coordinated in rounds. This is

often achieved by a centralized clock synchronization service. In each round,
all components perform the same type of operations. For example, in round
r, all components broadcast messages to others and in round (r + 1), all com-
ponents process the received messages and broadcast the outputs.

� Asynchronous—operations of components are not coordinated at all. This is
often the result of no clock synchronization service or the drifting effect of
component clocks. Each component is not bound by any coordination rules
and performs its own routine in an opportunistic fashion. There is no guar-
antee on message delivery or an upper bound of message transmission delay
between components.

� Partially synchronous—operations of components are not coordinated, but
there is an upper bound of message transmission delay. In other words, mes-
sage delivery is guaranteed, though it may not be in a timely manner. This is
the network condition assumed for most practical distributed systems.

In most application scenarios, we assume the system is either synchronous
or partially synchronous. For example, the voting process of a democratic

1 There is another type of distributed system called shared-memory system. Please refer to
[1] for more details. In this chapter, we adhere to the message-passing system because of its
resemblance to blockchain.
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congress is considered synchronous while the Bitcoin network is considered
partially synchronous.2

2.2.1.2 Faulty Component
A component is faulty if it suffers a failure that stops it from normal functioning.
We consider two types of faulty behaviors that a component may suffer:
� Crash failure—the component abruptly stops functioning and does not

resume. The other components can detect the crash and adjust their local
decisions in time.

� Byzantine failure—the component acts arbitrarily with no absolute condi-
tion. It can send contradictory messages to the other components or simply
remain silent. It may look normal from outside and not incur suspicion from
others throughout the history of the network.

Byzantine failure got its name from Lamport, Shostak, and Pease’s work on
the Byzantine generals problem [2], which we will discuss later along with the
Oral Messaging algorithm (OM). A Byzantine failure is often the result of a
malfunctioning system process or the manipulation of a malicious actor. When
there are multiple Byzantine components in the network, they may collude to
deal even more damage to the network. Byzantine failure is considered the
worst case of component failure and crash failure is often seen as a benign case
of Byzantine failure.

2.2.1.3 Consensus Protocol
A consensus protocol defines a set of rules for message passing and process-
ing for all networked components to reach agreement on a common subject. A
message passing rule regulates how a component broadcasts and relays mes-
sages while a processing rule defines how a component changes its internal
state in response of received messages. As a rule of thumb, we say consensus is
reached when all no-faulty components agree on the same subject.

From security’s perspective, the strength of a consensus protocol is usually
measured by the number of faulty components it can tolerate. Specially, if a con-
sensus protocol can tolerate at least one crash failure, we call it crash-fault toler-
ant (CFT). Similarly, if a consensus protocol can tolerate at least one Byzantine
failure, we call it Byzantine-fault tolerant (BFT). Because of the inclusive rela-
tionship between Byzantine failure and crash failure, a BFT consensus is nat-
urally CFT. Moreover, consensus can never be guaranteed in an asynchronous
network with even just one crash failure, let alone Byzantine failures. Interested
readers may refer to [3] for the impossibility proof.

In the remainder of this chapter, we focus on the Byzantine fault tolerance of
consensus protocols in synchronous or partially synchronous networks.

2 Many research papers refer to the Bitcoin network as “asynchronous”. Since Bitcoin is based
upon the Internet, which guarantees message delivery, we follow the above taxonomy and con-
sider the Bitcoin network partially synchronous.
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2.2.2 BFT Consensus

Formally, we consider a distributed message-passing system with N compo-
nents C1, C2, ..., CN . Each component Ci has an input xi and an output yi that
is not assigned until the first round of consensus execution. Components are
interconnected by communication links that deliver output messages across the
network.

Consensus goal—the BFT consensus for the above system must satisfy the
following conditions [4]:
� Termination—every nonfaulty component decides an output.
� Agreement—all nonfaulty components eventually decide the same output ŷ.
� Validity—if all components begin with the same input x̂, then ŷ = x̂.
� Integrity—Every nonfaulty component’s decision and eventually ŷ must

have been proposed by some nonfaulty component.
The integrity condition ensures that the consensus result ŷ should not origi-

nate from an adversary. In many older textbooks and research papers, it is often
not included for the reason that the origin of ŷ is not important, as long as
ŷ is a legal result of the consensus process (validity) and accepted by all non-
faulty components (agreement). Here, we value a correct origin of the consen-
sus result and consider integrity as an essential part of the consensus goal.

For an algorithm to achieve BFT consensus, the super majority (more than
two thirds) of the components must be nonfaulty. A more precise statement is
given in Theorem 1.

Theorem 1: In a message-passing system with n components, if f components
are Byzantine and n ≤ 3f , then it is impossible for the system to reach the con-
sensus goal.

Theorem 1 can be conveniently proved by contradiction in a scenario where
components are partitioned into three groups, with one group consisting of all
the Byzantine components. Interested readers may refer to [1,5,6] for different
flavors of proofs, all of which are based on the partitioning scheme.

To better illustrate Theorem 1, a three-component system example is shown
in Figure 2.1. In this system component, C1, C2 are honest while component C3
is Byzantine. All input/decision values are taken from the bivalent set {v0, v1}.

Figure 2.1 Example for Theorem 1—a three-component message-passing system with one
component being Byzantine.
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Assume the initial input values for C1 and C2 are v1 and v2, respectively, and
the consensus algorithm is as simple as choosing the majority value of all the
values received. After C1, C2 broadcast their values, C3 sends v1 to C1 and v2
to C2. As a result, C1 decides v1 while C2 decides v2, violating the agreement
condition of the consensus goal. Therefore, in order to tolerate one Byzantine
component, the network size should be at least four. In a general case, for any
distributed system with N components and f being Byzantine, N ≥ 3f + 1 is
required to ensure consensus.

2.2.3 The OM Algorithm

First we describe the Byzantine generals problem. N Byzantine generals, each
commanding an equal-sized army, have encircled an enemy city. They are
geographically separated and can communicate only through messengers.
To break the stalemate, each general votes to attack or retreat by sending
messengers to other generals. Each general makes his/her decision locally
based on the votes received. To complicate the situation, there are traitors
within the generals who will sabotage the consensus by sending contradicting
votes to different generals. The ultimate goal is for all loyal generals to agree
on the same action, as a halfhearted attack or retreat will result in a debacle.

The Oral Messaging (OM) algorithm was proposed as a solution in the origi-
nal Byzantine generals problem paper [2]. It assumes that within the N generals,
there is a “commander” who starts the algorithm and the other N − 1 called
“lieutenants” who orally pass around the messages they received. The network
is synchronous and the protocol proceeds in rounds. Specially, we assume the
commander knows at most f generals will be faulty (including him/herself )
and starts the consensus process by executing the OM(f) algorithm. Note that
DEFAULT is a predetermined value, either “retreat” or “attack”.

Algorithm 1: OM(f ), f > 0

1 Commander sends its value to every lieutenant;
2 for i = 1 : N-1 do
3 Lieutenant i stores the value received from Commander as vi,i;

vi,i =DEFAULT if no value received;
4 Lieutenant i performs OM(f − 1) as Commander to send the value vi,i

to the other N − 2 lieutenants;
5 end
6 for i = 1 : N-1 do
7 for j = 1 : N-1 and j ≠ i do
8 Lieutenant i stores the value received from lieutenant j as vi,j;

vi,j =DEFAULT if no value received;
9 end

10 Lieutenant i uses majority{vi,1, vi,2, ..., vi,N−1};
11 end
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Algorithm 2: OM(0) (The base case for OM[f ])

1 Commander sends its value to every lieutenant;
2 for i = 1 : N-1 do
3 Lieutenant i stores the value received from Commander as vi,i;

vi,i =DEFAULT if no value received;
4 Lieutenant i uses vi,i;
5 end

Since the OM algorithm is executed in a recursive fashion in which the recur-
sion ends at OM(0), it requires f + 1 rounds of executions. Essentially, as long as
N ≥ 3f + 1, the f + 1 rounds of recursive executions guarantee that at the end
of the algorithm, every general has exactly the same set of votes, from which the
majority function then produces the same result—consensus is achieved. Due
to its recursive fashion, the OM(f ) algorithm has O(Nf +1) message complexity,
which is impractical when N is large.

2.2.4 Practical Consensus Protocols in Distributed Computing

Now we have discussed single-value consensus in a synchronous network. In a
typically distributed computing system, the clients spontaneously issue com-
puting requests while the distributed servers work as a consortium to pro-
vide correct and reliable computing service in response to these requests. The
correctness requirement means not only every single request should be pro-
cessed correctly, but also the sequence of requests from a client (or a group
of clients) should be processed in the correct order, which is called the total
ordering requirement. The combination of the two requirements makes dis-
tributed computing a significantly harder task than the single-value consensus
problem we have seen so far. Moreover, the asynchronous nature of real-world
networks further complicates the problem. In practice, we assume the real-
world distributed computing network is partially synchronous with bounded
communication delay between two nonfaulty servers.

Replication—in actual distributed computing systems, replication is the de
facto choice for ensuring the availability and the integrity of the service in
the face of faulty servers. A replication-based distributed system maintains a
number of redundant servers in case the primary server crashes or malfunc-
tions. The redundant servers are also called backups or replicas. There are
two major types of replication schemes—primary-backup and state-machine
replication.
� Primary Backup (PB)—PB is also known as passive replication. It was first

proposed in [7]. In a PB-based system of n replicas, one replica is designated
as the primary and the others are backups. The primary interacts with clients
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and processes clients’ operation requests. After the primary finishes one task,
it sends to the backups what it has done. If the primary crashes, a replica will
be selected to assume the role of the primary. PB only tolerates crash failures;
it does not tolerate any number of Byzantine failures.

� State-Machine Replication (SMR)—SMR is also known as active replica-
tion. It was proposed in [8]. In an SMR-based system, the consensus pro-
tocol is instantiated at each server that runs a deterministic state machine
that receives inputs, changes states, and produces outputs in an “organized”
manner. This enables the distributed network to provide fault-tolerant ser-
vice by replicating the state machine across server replicas and process-
ing clients’ operation requests in a coordinated way. A good SMR protocol
should guarantee two basic service requirements—safety, i.e. all processors
execute the same sequence of requests, and liveness, i.e. all valid requests are
executed.

Next we introduce two well-known SMR-based consensus protocols for dis-
tributed computing: Viewstamped Replication and Practical Byzantine
Fault Tolerance.

2.2.4.1 Viewstamped Replication (VSR)
VSR is an early protocol developed for distributed replication systems. Here,
we present an updated version of VSR proposed by Liskov and Cowling in 2012
[9]. Interested readers may refer to [10] for Oki and Liskov’s original design. In
a VSR system with N replicas, there is one primary and N − 1 backups. Each
replica operates a local state machine with the state variables listed in Table 2.1.
The “viewstamp” refers to the ⟨v, n⟩ pair, which essentially enables the replica-
tion network to process clients’ operation requests in the correct order.

Table 2.1 State variables at replica i in VSR.

Variable Description

i Self index
rep-list List of all replicas in the network
status Operation status: either normal, view-change, or recovering
v Current view number
m The most recent request message from a client
n Sequence number of m
e = execute(m), the execution result of m
c Sequence number of the most recently committed client request
log Record of operation requests received so far
client-table Record of the most recent operation for all clients
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Table 2.2 Messages in VSR.

Message From To Format

Request Cient Primary ⟨request, m⟩
Prepare Primary All backups ⟨prepare, m, v, n, c⟩
PrepareOK Replica i Primary ⟨prepareok, v, i⟩
Reply Primary Client ⟨reply, v, e⟩
Commit Primary All backups ⟨commit, v, c⟩
StartViewChange Replica i All replicas ⟨startviewchange, v + 1, i⟩
DoTheViewChange Replica i New primary ⟨dotheviewchange, v + 1, i⟩
StartView Primary All replicas ⟨startview, v + 1, log⟩
Recovery Replica i All replicas ⟨recovery, i⟩
RecoveryResponse Replica i The recoverer ⟨recoveryresponse, v, n, c, i⟩

VSR consists of three subprotocols; each is designed specially for one of the
three status cases. The messages involved are listed in Table 2.2. We will leave
out the message details and focus on the high-level work flow of these protocols.

(1) Normal operation protocol—the normal operation runs from session to
session when all functioning replicas hold the same view and the primary is in a
good condition. A session includes the client sending a request and the replicas
processing this request. A diagram of the normal operation protocol for a three-
replica system is shown in Figure 2.2. At the beginning of a session, the client
sends to the primary a Request message indicating a new operation request.

(a) Prepare—upon receiving a request message, the primary updates its n, log,
and client-table and then passes this request to all backups using Prepare
messages, which also include its n and c that were updated in the previous
session. Each backup executes the primary-committed operations if there
are any and updates its state accordingly.

(b) PrepareOK—each backup sends a PrepareOK message to the primary
showing its state is up to date. After receiving f PrepareOK messages, the

Figure 2.2 The normal operation protocol of VSR for a three-replica system.
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primary executes the requested operation and then updates c, log, and
client-table.

The primary then sends a Reply message to the client. Specifically, if the pri-
mary hasn’t received a client request for a long time, it sends a Commit mes-
sage to the backups indicating the updated c, as an alternative to the Prepare
message.

(2) View-change protocol—a view change is needed in the event of pri-
mary failure, which can be detected by a backup replica if no Prepare or Com-
mit message has been received for a long time. After detecting the need for a
view change, a replica updates its status to view-change and advances the
view number to v + 1. It then sends a StartViewChange message including the
new view number v + 1 to other replicas. When a replica receives at least f
StartViewChange messages with the new view number v + 1, it sends a DoThe-
ViewChange message to the backup that will become the primary. When the
new primary receives at least f + 1 DoTheViewChange messages, it updates its
state accordingly, sends to other replicas a StartView message with the updated
log and the new view number v + 1, and starts processing operation requests
from clients. In the meantime, backup replicas receive the StartView message
and update their state according to the log in the message, and finally change
the status to normal.

(3) Recovering protocol—when a replica recovers from a crash, it has to go
through the recovering protocol before participating in normal operation and
view change. It first sends a Recovery message to all other replicas. Each replica
responds with a RecoveryResponse message indicating the current v. The pri-
mary needs to respond with additional state information including log, n, and
c. The recovering replica waits until it has received at lease f + 1 RecoveryRe-
sponse messages, and then updates its state accordingly.

Fault tolerance—note that VSR can tolerate f crash failures if the total
number of replicas (including the primary) N ≥ 2f + 1. However, it has zero
tolerance of Byzantine failures. For example, if the primary is Byzantine
faulty due to adversarial manipulation, it can simply deny all client operation
requests while pretending to work normally with the backups. If a backup is
Byzantine on the other hand, it may maliciously initiate a view-change session
to oust the current primary.

Complexity analysis—we analyze the message complexity of the normal
operation. The communication overhead is primarily contributed by two
phases—the Prepare phase, in which the primary broadcasts a Prepare message
to all replicas; and the PrepareOK phase, in which all replicas send a PrepareOK
message to the primary. Therefore, the message complexity for VSR’s normal
operation is O(N).

2.2.4.2 Practical Byzantine Fault Tolerance (PBFT)
In the practical scenario where the distributed computing system may be com-
promised by malicious actors, both the primary and the backups are subject to
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Table 2.3 State variables at replica i in PBFT.

Variable Description

i Self index (0 for primary)
rep-list List of all replicas in the network
𝜎i Replica i’s key for signing messages
status Operation status—normal or view-change
v Current view number
m The most recent request message from a client
n Sequence number of m
d = digest(m), the digest of m
e = execute(m), the execution result of m
s The latest checkpoint
h Low-water mark, i.e. the sequence number of s
H High-water mark; ⟨h, H⟩ form a sliding window of length K .
 Set of all valid Checkpoint messages proving the correctness of s
t Set of a valid Pre-prepare message and all matching Prepare

messages for a request with the sequence number t
 Set of the t for every request t that is higher than n
 Set of all valid View-Change and View-Change messages
 Set of specially chosen Pre-Prepare messages
log Record of operation requests received so far

adversary manipulation, which falls into the realm of Byzantine failures. Pro-
posed by Castro and Liskov in 1999 [11], PBFT advances VSR for tolerating
Byzantine failures.

PBFT consists of three subprotocols—normal operation, checkpoint, and
view-change. The state variables at a replica are listed in Table 2.3 and the
messages involved are listed in Table 2.4. As an additional security measure,
each message is signed by the sender and verified by the receiver. In the fol-
lowing part, we assume there are at most f faulty replicas and the network
size N = 3f + 1. Later, we will show that N ≥ 3f + 1 guarantees the protocol’s
Byzantine fault tolerance.

(1) Normal operation protocol—similar to VSR, PBFT runs its nor-
mal operation from session to session. A diagram of normal operation
for a four-replica system is shown in Figure 2.3. A session starts with a
client operation request and goes through three sequential phases of replica
interaction, namely Pre-Prepare, Prepare, and Commit, before replying to
the client.
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Table 2.4 Messages in PBFT.

Message From To Format (signed)

Request Client Primary ⟨request, m⟩
𝜎c

Pre-Prepare Primary All backups ⟨pre-prepare, v, n, d⟩
𝜎0

Prepare Replica i All replicas ⟨prepare, v, n, d, i⟩
𝜎i

Commit Replica i All replicas ⟨commit, v, n, d, i⟩
𝜎i

Reply Replica i Client ⟨reply, e, i⟩
𝜎i

View-Change Replica i All replicas ⟨view-change, v + 1, n,, , i⟩
𝜎i

New-View Primary All replicas ⟨new-view, v + 1, ,⟩
𝜎0

Checkpoint Replica i All replicas ⟨checkpoint, n, d, i⟩
𝜎i

(a) Pre-Prepare—when the primary receives an operation request message
m, it assigns a sequence number n to the request and sends a Pre-Prepare
message along with the message m to all backups. After receiving a Pre-
Prepare message, a backup checks the associated signatures and the validity
of v, n, and d. If everything is valid and n is within the water marked range⟨h, H⟩, the backup accepts this message, updates its state accordingly, and
proceeds to the Prepare phase.

(b) Prepare—each backup sends a Prepare message to all other replicas. A
replica that has received at least 2f + 1 Prepare messages with the same
v, n, and d values updates its state accordingly and proceeds to the Commit
phase.

(c) Commit—each replica sends a Commit message to all other replicas. When
a replica receives at least 2f + 1 Commit messages with the same v, n, and d
values, it first finishes executing the old requests with sequence numbers
lower than n, then executes the current request m to produce the result e,
and finally updates its state accordingly.

Figure 2.3 The normal operation protocol of PBFT for a four-replica system.
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When a replica finishes the Commit phase, it sends the execution result e in
a Reply message to the client. The client accepts an execution result only after
it receives at least 2f + 1 Reply messages containing the same result e.

(2) Checkpoint protocol—the checkpoint protocol is used by the replicas
to safely discard old items in log and agree on a stable checkpoint that pro-
vides essential service state info for the view-change process. Each replica peri-
odically marks an executed client request as a checkpoint in log and records
its sequence number as h, which is called the low-water mark. It multicasts
the checkpoint to other replicas in the form of a Checkpoint message. When a
replica collects at least 2f + 1 Checkpoint messages with the same n and d, it
marks this checkpoint stable by assigning n to the variable h, and saves these
Checkpoint messages as the proof from the stable checkpoint. After that, the
replica can safely discard from its log all Pre-Prepare, Prepare, and Commit
messages with sequence numbers prior to h. In addition to h, each replica also
updates the high-water mark H so that the pair ⟨h, H⟩ form sliding window of
length K . Note K is user-defined.

(3) View-change protocol—since a view is bound to a known primary, when
the primary is suspected faulty, the backups carry out the view-change protocol
to choose a new primary. When a backup, received a request but has not exe-
cuted it for a certain timeout (for example, it stays in Phase2 of normal oper-
ation for too long), it stops receiving further messages related to the current
view v and updates the status to view-change before sending a View-Change
message for view v + 1 to all replicas. When the new primary receives at least
2f View-Change messages for view v + 1, it multicasts a New-View message to
all backups, updates its log and ⟨h, H⟩ pair, and proceeds into normal opera-
tion. A replica validates the received New-View message, updates its state, and
proceeds to normal operation as well.

Fault tolerance—in the normal operation, the separation of the pre-prepare
phase and prepare phase is essential to the correct ordering of request execu-
tion and faulty primary detection. When a primary sends a Pre-Prepare mes-
sage with an out-of-order request or stays silent for a long time, the backups
will consider the primary faulty and initiate the view-change protocol for a new
primary, as long as the majority of backups are nonfaulty. Now, we discuss the
condition for PBFT to tolerate f Byzantine replicas. In the normal operation, a
replica needs to receive 2f + 1 Prepare messages with the same state to proceed
to the Commit phase; it then needs to receive 2f + 1 Commit messages with the
same state to proceed to request execution. This is equivalent to the scenario we
discussed in the OM algorithm for the Byzantine generals problem—in a fully
connected network, consensus can be reached if more than two thirds of com-
ponents are nonfaulty. The same consensus routine is applied in the checkpoint
protocol and view-change protocol as well to guarantee the safety of the new
primary election. As we have assumed N = 3f + 1 in the beginning, messages
from 2f + 1 nonfaulty replicas are just enough to tolerate f Byzantine replicas.
In a general case where f is unknown (but N ≥ 3f + 1 is assumed), this number
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Table 2.5 A comparison between VSR and PBFT for partially asynchronous distributed
computing systems.

VSR PBFT

Year proposed 1988 1999
CFT condition N ≥ 2f + 1 N ≥ 2f + 1
BFT condition Not supported N ≥ 3f + 1
Message complexity O(N) O(N2)

should be updated to ⌊ 2N
3 ⌋ + 1 from 2f + 1 in the protocol to tolerate at least f

Byzantine failures.
Complexity analysis—we analyze the message complexity of the normal

operation. The communication overhead is primarily contributed by three
phases; in the Pre-Prepare phase, the primary broadcasts a message to all back-
ups [O(N)]; in the Prepare phase, every backup broadcasts a message to all other
replicas [O(N2)]; in the Commit phase, every replica broadcasts a message to
all other replicas [O(N2)]. Therefore, the overall message complexity of PBFT’s
normal operation is O(N2). This is acceptable for a network that is fully or near-
fully connected unless N is huge.

2.2.4.3 Comparison between VSR and PBFT
VSR and PBFT are compared in Table 2.5. To summarize, PBFT achieves
Byzantine fault tolerance with a more complex protocol scheme and higher
communication overhead. To date, PBFT has gained considerable interest in
the blockchain community for its application in blockchains with small net-
work size and permissioned access. We will introduce it in Section 2.3.

2.3 The Nakamoto Consensus

Since its inception in 2008, Bitcoin has become the leading figure in the cryp-
tocurrency plethora. As of the first quarter of 2018, the Bitcoin network has
about 10,000 mining nodes and market capitalization of more than 100 billion
dollars. The popularity of Bitcoin and other cryptocurrencies has brought huge
academic and industrial interest to blockchain, the enabling technology behind
the cryptocurrencies and many emerging distributed ledger systems.

Out of various aspects of Bitcoin, the celebrated Nakamoto consensus [12]
is the key innovation to its security and performance. Similar to distributed
computing systems, the consensus target for blockchain is the network’s entire
transaction history—not only the transactions’ content, but also their chrono-
logical order. In a practical blockchain system such as Bitcoin and Ethereum,
the consensus protocol also needs to consider various physical factors such
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as network connectivity, network size, and adversarial influence. In this sec-
tion, we introduce the Nakamoto consensus protocol from a distributed system
point of view.

2.3.1 The Consensus Problem

Consensus goal—the goal of the Nakamoto consensus is for all nodes to form
a unified view on the network’s transaction history. Similar to the four condi-
tions for BFT consensus in the previous section, the following are the adapted
conditions for the Nakamoto consensus:
� Finality (Probabilistic)—for every block that has been attached to the

blockchain, its drop-off probability asymptotically decreases to zero.
� Agreement—every block is either accepted or dropped off by all honest

nodes. If accepted, it should have the same block number in all blockchain
replicas. In other words, all honest nodes agree on the same blockchain.

� Validity—if all nodes receive the same valid block, then this block should be
accepted into the blockchain. The genesis block is a good example.

� Hash-chain integrity—the blockchain contains all blocks up to the current
block number. For block B with block number t and block B′ with block num-
ber t + 1, the hash value of the previous block in B′ is the hash of B.

2.3.2 Network Model

Like most public blockchain networks, the Bitcoin network is a peer-to-peer
overlay network based upon the Internet. Every node runs an instance of the
Nakamoto protocol and maintains a replica of the blockchain. We model the
network as an a partially synchronous message-passing system with bounded
transmission delay between two honest nodes, the same network model we
assumed for the distributed computing systems in Section 2.1. In addition to
network synchrony, the Bitcoin network also features permissionless access and
gossip-fashion information propagation.

Permissionless access—the Bitcoin system is the first permissionless
blockchain system and no authentication is required for a new player to instan-
tiate a node and participate in the network. Specifically, to join the network, a
fresh node needs to be set up in three steps:

1. Fetch a list of initial peers from several known DNS servers.
2. Search for new peers by asking its current peers and listening for sponta-

neous advertisements from other peers. Make sure the number of peers does
not go below a minimum value (currently 8 for Bitcoin).

3. Retrieve a blockchain replica from peers and start normal operation.

To leave the network, a node simply disconnects. It will gradually be purged
from the peer lists of its peers. Since the transactions containing the node’s
public addresses have been written in the blockchain, the node can reclaim the
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Figure 2.4 One-hop block propagation between two nodes.

same public address and hence its unspent transaction outputs when it rejoins
the network using the same private key.

Information propagation—the information propagation and message
passing dynamics were first analyzed in [13]. There are two types of messages
contributing to the consensus process—transaction and block. Figure 2.4 shows
the diagram of one-hop propagation of a block. The propagation of transac-
tions is in the same manner. The validation of a block consists of the validation
of all transactions in the block and the verification of the hash value of the
block header. The advertise message contains the hash of the validated block
(or a list of hashes of validated blocks). If node B sees a block that is new to
its blockchain replica, it sends to node A a get block message containing the
hash of the desired block. Finally, node A transmits the desired block to node
B, which then repeats this process with its own peers, except node A.

Note that once node B has an economic incentive to pass the block around.
When other nodes know this block, they are less likely to create conflicting
blocks (which will cause a fork) and more likely to accept the later block created
by B, which eventually helps B make better use of its computation power and
harvest more block benefits.

2.3.3 The Consensus Protocol

The Nakamoto consensus protocol is executed in a distributed fashion. Each
node runs the same protocol and manages its own blockchain replica indepen-
dently. The security of the consensus depends on the majority of nodes being
honest, i.e. running the correct version of the Nakamoto protocol. The protocol
can be summarized into the following four rules for a single node:

1. Message passing rule—all newly received or locally generated blocks and
transactions should be broadcast to peers in a timely manner.

2. Validation rule—blocks and transactions need to be validated before being
broadcast to peers or appended to the blockchain. Invalid blocks and trans-
action are discarded.

3. Longest-chain rule—the longest chain is always the desired chain. Mining
should be aimed at extending the longest chain by appending new blocks to
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it. If the node receives a valid block B∗ with the same height as the block B
that it is still working on, it discards B and appends B∗ to the blockchain and
starts working on the new chain.

4. Proof of Work (PoW)—the generation of a block includes inserting a nonce
into the block header. The hash of the header should be less than a particu-
lar value, which is also called the PoW difficulty. Higher PoW difficulty yields
more hashing operations expected for finding such a nonce. For security rea-
sons, the PoW difficulty is automatically adjusted so that the average block
generation interval of the network remains a constant value as the gross
hashing power fluctuates (currently 10 minutes for Bitcoin).

As a result, the majority decision of the network is represented by the longest
chain, which embodies the greatest amount of PoW computation effort.

Probabilistic finality—according to the longest-chain rule, blocks that end
up in a chain branch that is not the suffix of the longest chain shall be dis-
carded or “orphaned”. This means any block in the blockchain (except the gen-
esis block) can be revoked, since it is possible for a powerful attacker to start
from an early block and redo the proof of works all the way up to the current
blockchain height so that the network will acknowledge this new chain as the
longest. On the bright side, if the attacker has less than 50% of the network’s
gross hashing power, it will produce blocks slower than the rest of the net-
work. Let p denote the hashing power percentage controlled by the attacker
and p < 50%. Then the probability that the attack will eventually catch up from
behind m blocks is:

P{Catch-up} =
(

p
1 − p

)m
. (2.1)

Since p < 50%, this probability drops exponentially as m increases. In other
words, revoking such block from the blockchain is computationally impossi-
ble if more than half of the hashing power is owned by honest nodes and m is
large. Currently in Bitcoin, m = 6 is used as the transaction confirmation time.
All blocks that have at least six descendants are considered probabilistically
finalized.

2.4 Emerging Blockchain Consensus Algorithms

Due to the inherently tight trade-off between security and scalability in
PoW-based blockchains, researchers and developers have been exploring new
blockchain schemes to support higher transaction volume and larger network
size with lower energy consumption. This section introduces several promising
non-PoW consensus algorithms—proof of stake (PoS), PBFT-based consensus
protocols, Ripple consensus protocol, proof of elapsed time (PoET). These
algorithms are proposed either as alternatives to PoW for public blockchains
(PoS, PoET) or for domain-specific applications (PBFT-based, Ripple). We will
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go through their consensus protocols and briefly analyze their fault-tolerance
limits and security concerns.

2.4.1 Proof of Stake

Proof of Stake (PoS) was proposed by the Bitcoin community as an alterna-
tive to PoW. Compared to PoW, in which miners race for the next block with
brute computing force, PoS resembles a new philosophy of blockchain design,
according to which the race should be carried out in a “civilized” manner that
saves energy and maintains security. PoS maintains a set of validators who par-
ticipate in the block generation process by depositing an amount of currency
(stake) in the competition, which is designed in such a way that a bigger stake-
holder has a higher chance to win the competition.

There two major types of PoS are Chain-based PoS and BFT-style PoS.
Chain-based PoS is the original design of PoS and got its name from retaining
the longest-chain rule of the Nakamoto consensus. It was first implemented
in the cryptocurrency Ppcoin, later known as Peercoin [14]. In comparison,
BFT-style PoS leverages the established results of BFT consensus for finalizing
new blocks. In this section, we introduce the basics of chain-based PoS.
BFT-style PoS will be introduced along with other BFT consensus protocols in
Section 2.4.2.

Chain-based PoS—in chain-based PoS, the blockchain maintains a set of
validators who participate in the competition for the right to generate the next
block. For every block generation cycle, chain-based PoS runs in two steps:
� Step 1—every validator invests a stake in the competition for block genera-

tion. The deposited stakes are kept frozen until the end of this block genera-
tion cycle.

� Step 2—after a validator deposits its stake, it starts to generate new blocks
similar to Nakamoto’s proof of work, but with a limited difficulty which is
further discounted by its stake value. The first block produced is immediately
appended to the longest chain and the corresponding validator claims the
block reward.

Fault tolerance—analogous to PoW in the Nakamoto consensus, as long as
all honest validators follow the protocol and own more than half of the total
stake value, the probability of a block being revoked from the blockchain drops
exponentially as the chain grows. From an economical perspective, attackers
should be more reluctant to perform 51% attack in a PoS system than in a PoW
system. In most PoS blockchain systems any fraudulent behavior of a validator
is punishable by forfeiting its stake while in a PoW system only electricity is
wasted. Therefore for most attackers, losing all stakes is more economically
devastating than wasting computing power.

Other security concerns—nonetheless, there are many other practical
issues concerning the stability and security of chain-based PoS. Here we iden-
tify two of them.
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1. Time value of the stake PoS strongly resembles of capitalism, where a dom-
inant stakeholder can invest-profit-reinvest its capital and profit till it attains
a monopoly status. To alleviate the monopoly problem and encourage small
stakeholders to participate in the game, a practical method is to let the
unused stakes (of which the validators have not been a generator since the
initial deposit) appreciate in value with time. Once a validator is chosen as
the generator, its stake value returns to the default value at time zero. In the
meantime, the stakes of unchosen validators continue appreciating. In Peer-
coin for example, a validator’s stake value is measured by coin age, which is
the product of the deposited currency amount and the time elapsed since the
initial stake deposit. The winning probabilities for small stakeholders grow
in time as long as their stakes are kept unused. On the other hand, to prevent
a stake from accumulating too much time value, which can be exploited by
a malicious validator to lock in a future block, the time value of a stake is
limited by an upper bounded, for example 100 block generation cycles.

2. Double-bet problem—this is also known as the nothing-at-stake problem.
Since the longest-chain rule is still observed, when there are multiple parallel
chain branches (forks), a PoS validator has the incentive to generate blocks
on top of every branch at once without additional cost. In PoW, however,
a miner has to do that by divesting its precious computing power to each
additional branch. Therefore, the chain-based PoS system needs to incorpo-
rate a penalty scheme against those who place double bets. Possible choices
include forfeiting the frozen stake and nullifying the block benefit for the
correct bet. However, these penalty schemes will be ineffective if a group of
validators with more than 50% of the network’s total stake value collude to
maintain parallel chains.

2.4.2 BFT-based Consensus

BFT-based consensus protocols typically require high network connectivity
and all nodes to reveal their true identities to others—a good fit for permis-
sioned blockchains where the network size is small and the consortium of par-
ticipants are known a priori. Similar to that of the Nakamoto consensus, the
goal of BFT-based consensus is to ensure all participants agree on a common
history of blocks, which requires the correctness of block content and block
order. However, there is a major difference between them: the finality condition
for BFT-based consensus is deterministic. In other words, blocks will never be
tampered with once written into the blockchain.

2.4.2.1 PBFT for Blockchain
As we discussed in the previous section, PBFT is a classic consensus protocol
for distributed computing based on state machine replication. To be used in a
blockchain scenario, PBFT needs to adapt in the following ways:
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1. Parallelism—in PBFT, replicas are separated into a primary and backups
for every view. However, the decentralized nature of blockchain requires
that all nodes should be able to process client transactions as a primary
and relay other’s transactions. More specifically, when any node is ready to
broadcast its new block, it initiates a new instance of PBFT by broadcast-
ing a Pre-Prepare message containing this block. To deal with Pre-Prepare
messages from different sources, the Prepare phase and Commit phase need
to be modified in the way that the received blocks should be processed, in
chronological order. In other words, there can be multiple parallel protocol
instances running and interacting in the Prepare and Commit phase.

2. Dynamic view change—as there is only one primary in the original PBFT
for each view, the view-change protocol can be executed in a rather orderly
manner. In blockchain, since every node can act as the primary, the view-
change protocol should be able to update multiple primaries in a single
execution.

Theoretically, PBFT is able to tolerate f Byzantine nodes if the network size
N ≥ 3f + 1. In practical scenarios, there can be many implementation-related
issues preventing PBFT from realizing its full potential, with network connec-
tivity being the major bottleneck. The operational messages in PBFT are time
sensitive and a lowly connected network may not be able to execute PBFT in the
correct manner. To make PBFT work most reliably, a fully connected network
is required.

There are a handful of blockchain initiatives using an adapted version of
PBFT for consensus. Examples include Hyperledger Fabric3 [15] and Stellar
[16]. Interested readers may refer to their specific implementations of PBFT.

BFT-style PoS—BFT-style PoS has been used in Tendermint [17], EOS
[18], and Ethereum’s Casper initiative4 [19]. Instead of following Nakomoto’s
contention-based blockchain generation process, BFT-style PoS embraces a
more radical design in which the set of validators periodically finalize blocks
in the main chain through BFT consensus. Here, we use Ethereum Casper as
an example. Similar to PBFT, Casper finalizes blocks from checkpoint to check-
point. Each validator keeps a replica of the blockchain as well as a checkpoint
tree. In every checkpoint cycle, Casper runs in following steps:
� Step 1—every validator deposits an amount of currency (stake). The

deposited stakes are kept frozen until the end of this checkpoint cycle.
� Step 2—every validator grows new blocks from a justified checkpoint using

a block proposal mechanism and then broadcasts them in a timely manner.
No consensus is needed between validators at this time.

3 Although PBFT is used currently, Hyperledger Fabric is designed to support an arbitrary
consensus module in a plug-in fashion.
4 The Ethereum Foundation plans to partially convert the Ethereum main net from PoW to
Casper PoS by 2019.
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� Step 3—after a checkpoint interval is reached (100 blocks in Casper), the
validators begin to form a consensus on a new checkpoint. Every validator
casts a vote for a checkpoint block and broadcasts its vote to the network.
The vote message contains five fields—hash of the source checkpoint s, hash
of the voted target checkpoint t, height of s, height of t, and the validator’s
signature.

� Step 4—when a validator receive all the votes, it reweighs the votes by the
sender’s stake value and then computes the stake-weighted votes for each
proposed checkpoint block. If a checkpoint t has a 2∕3 approval rate (super
majority), then the validator marks t justified the source checkpoint s final-
ized. All blocks before s are also finalized.

A fundamental difference between chain-based PoS and BFT-style PoS is that
the latter offers deterministic finality. In other words, BFT-style PoS guarantees
a finalized block will never be revoked in the future, while chain-based PoS and
PoW don’t rule out this possibility. Importantly, the deterministic finality also
enables the punishment for double-betting validators (i.e. solving a nothing-at-
stake problem). Because every finalized block comes with the proposer’s public
address, a validator is accountable for all the finalized blocks it had proposed.
Once it is found double betting, the consensus protocol can legally forfeit the
frozen stake of the double-betting validator and revoke the conflicting blocks.

Fault tolerance—since a proposed checkpoint needs a 2∕3 approval rate
to be justified, this algorithm can tolerate up to 1∕3 faulty validators ideally.
Nonetheless, due to the immaturity of PoS, specially Casper PoS, there are
many security and performance concerns that haven’t been addressed. For
example, what is the optimal checkpoint interval for the trade-off between
security and communication efficiency, how to design a reliable and efficient
block proposal mechanism without consensus until the next checkpoint, etc.
The authors of this book will keep following the progress of Casper and other
BFT-style PoS blockchains.

2.4.3 Proof of Elapsed Time (PoET)

The concept of PoET was proposed by Intel in 2016 as an alternative to PoW. It
is currently used in Hyperledger’s Sawtooth project [20]. Compared to compet-
ing with computing power in PoW or currency ownership in PoS, PoET imple-
mented a contention scheme based on a random back-off mechanism, which
has widely been used in medium access control protocols for local area net-
works. For a single block generation cycle, PoET is as simple as the following
two steps:

� Step 1—each validator waits a random length of time (back-off).
� Step 2—the first validator finishing the back-off becomes the generator.
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Trusted random back-off—to ensure the back-off time of each validator
is truly random and fully elapsed, the back-off mechanism in each validator
should be verified and trusted by all others. In practice, this can be achieved
with a specially designed microprocessor that can execute sensitive programs in
a trusted execution environment (TEE) or simply an “enclave”. As as 2018, Intel
and ARM are the market leaders for such microprocessors. Take Intel for exam-
ple; some of its six-plus generation Core-series microprocessors are able to run
Intel’s Software Guard Extensions (SGX), which enables certain security ser-
vices such as isolation and attestation [21]. In a PoET-based blockchain, when a
validator joins the network, it acquires the trusted back-off program from peers
or a trusted server and runs it in an SGX-enabled enclave. If required by the
trusted server, the validator can send its enclave measurement in an attestation
report to the network indicating the authentic back-off program is loaded in its
enclave. After successfully finishing a back-off, the validator proceeds to gener-
ate the new block; meanwhile, the trusted back-off program in the enclave gen-
erates a certificate of completion along with the enclave measurement, which
will be broadcast along with the new block.

Fault tolerance—theoretically, the PoET scheme can tolerate any number
of faulty validators, as long as the back-off program running in a validator’s
enclave can be remotely attested by others, even if the hosting validator is not
trustworthy. However, since each enclave runs the same back-off program inde-
pendently, a rich validator can invest in multiple enclave instances to shorten
its expected back-off time. This resembles PoW’s economic model, with the
only difference that miners invest in TEE hardwares instead of mining devices.
Therefore, PoET needs to make sure more than 50% of enclaves are in the hands
of honest validators.

Hardware vendor dependency—another major drawback of PoET is its
dependence on TEE platform providers, namely Intel and ARM, for provid-
ing TEE-enabled hardware and remote attestation services. Take Intel SGX for
example; the security of the PoET system is bounded by the security of Intel’s
microprocessors and the reliability of Intel’s attestation server. This explicit
attack surface to some extent contradicts the blockchain’s robustness-through-
decentralization ideal.

2.4.4 Ripple

Operated by the Ripple company, Ripple is a real-time gross settlement
network (RTGS) providing currency exchange and remittance services. Unlike
public blockchain systems where anyone can participate in the validation
process, Ripple regulates a set of known validators that mainly consist of
companies and institutions. They run the Ripple server program and accept
transaction requests from clients. A Ripple client only needs to submit
transactions to their designated validator and the validator network will fulfill
this transaction through consensus. Essentially, validators run the Ripple
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consensus protocol [22] in a distributed manner and form consensus on a
common ledger of transactions.

Ripple consensus protocol—we will use “node” and “validator” inter-
changeably subsequently. In the validator network, each node p maintains a
Unique Node List (UNL) of nodes, which is the only subnetwork p needs to
trust partially (for not colluding). The Ripple consensus protocol is applied by
each node for every consensus cycle. For each cycle, the protocol proceeds in
four steps:
� Step 1—each node prepares a candidate set containing all the valid transac-

tions it has seen, which may include new transactions submitted by clients
and old transactions held over from the previous consensus cycle.

� Step 2—each node combines its candidate set with the candidate sets of its
UNL peers, votes “yes/no” on the validity of each transaction in the combined
set, and sends votes to its UNL nodes.

� Step 3—each node, upon receiving votes from its UNL nodes, discards from
its candidate set the transactions with a “yes” rate below a minimum thresh-
old. The discarded transactions may be reused in the next consensus cycle.

� Step 4—repeat steps 2 and 3 for several rounds. In the final round, the thresh-
old is increased to 80%. Each node appends the remaining transactions to its
ledger and ends the consensus cycle.

Fault tolerance—a transaction is finalized if it is approved by at least 80% of
the nodes of the UNL. As long as f ≤

1
5 (m − 1) where m is the size of a UNL

and f is the number of Byzantine nodes in the UNL, the Ripple consensus pro-
tocol is BFT. This is a rather strong security assumption as it should be satisfied
by every UNL clique. In practice, this is fulfilled by Ripple’s validator authen-
tication scheme, which ensures the true identity of any validator is known to
others.

Connectivity requirement—since every node only keeps communication
links with its UNL peers, different nodes may have disparate or even disjoint
UNLs, which leads to the network partitioning problem, as discussed previ-
ously. In a simple scenario, a group of nodes connected by UNL relationships
can form a clique which is fully connected; however, two UNL cliques may agree
on two conflicting ledgers in parallel if there is little communication between
them. To prevent this problem, the Ripple network puts the following connec-
tivity requirement for any two UNL cliques Si and Sj:

|Si ∩ Sj| ≥ 1
5
max{|Si|, |Sj|},∀i, j (2.2)

This requirement literally means any pair of UNL cliques should share at least
25% of nodes. This level of inter-clique connectivity guarantees that no two
UNL cliques can agree on two conflicting transactions, because otherwise they
would not pass the 80% approval requirement in the Ripple consensus protocol.
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Note that this connectivity requirement relies on the Ripple company’s supervi-
sion and thus is not realistic for public blockchains such as Bitcoin where there
are more than 10,000 pseudonymous validators (miners).

Complexity analysis—we assume every message has a fixed size, which is
approximately the size of all transactions in the candidate set. Since a node only
needs to communicate with its UNL peers, the message complexity of the Rip-
ple consensus protocol is O(Km2), where m is the size of the UNL and K is the
number of UNL cliques in the network.

2.5 Evaluation and Comparison

Table 2.6 qualitatively evaluates all the consensus protocols mentioned in this
chapter. Specifically, we consider the following aspects:
� Permission needed—yes means the blockchain participants need to be

authenticated at joining and reveal true identities to others. No means any
one can join the network freely and pseudonymously.

� Trusted third party needed—whether the network needs a trust third party
for a common service.

� Consensus finality—the finality of blocks in the blockchain. Probabilistic
means all written blocks (except the genesis block) are prone to revocation,
although with small probabilities. Deterministic means all written blocks will
never be revoked.

� Connectivity requirement—low means a node only needs to maintain a
minimum number of connections to peers. High means a node needs to con-
nect with a significant percentage of the network.

� Fault tolerance—what percentage of faulty participants the protocol can
tolerate. Different protocols have different adversarial models. For example,
hashing rate matters in PoW while stake value matters in PoS.

2.6 Summary

Consensus is a core function of a distributed system. We introduced the
basics of distributed consensus, two practical consensus protocols for dis-
tributed computing, the basics of the Nakamoto consensus, and several emerg-
ing blockchain consensus protocols. These consensus protocols are evaluated
qualitatively and compared based on security and complexity aspects. As of
the year 2018, some of the protocols are still under development, such as
Ethereum’s Casper PoS, Hyperledger Sawtooth, and Hyperledger Fabric, and
we will see more of them come out.

Generally, we need to take into account two models when designing a
blockchain consensus protocol—the network model and the trust model. A
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highly connected and amenable network allows the participants to propa-
gate transactions and blocks in a timely manner, which enables the use of
message-heavy consensus protocols with high security guarantees. On the
other hand, a benign trust model enables the utilization of highly efficient
consensus protocols with focus on performance rather than security. The
Nakamoto consensus protocol and PoW consensus algorithms in general have
limited transaction capacity because they are deigned to endure uncertain
network conditions and permissionless access scenarios with near-zero trust.
In comparison, BFT-based protocols and the Ripple consensus protocol
are highly efficient and support high transaction capacity because they are
deigned for domain-specific applications in which high network connectivity
is guaranteed and permissioned access is enforced.

In conclusion, the consensus protocol is vital to the balance between secu-
rity, performance, and efficiency for a blockchain system. A protocol designer
needs to carefully consider the security requirement and performance tar-
get, as well as the level of communication complexity the network can
undertake.
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3.1 Introduction

In this chapter, we explore the attack surface of Blockchains and possible ways
in which this technology can be compromised. Towards this goal, we attribute
attack viability in the attack surface to (i) Blockchain cryptographic constructs,
(ii) the distributed architecture of the systems using Blockchain, and (iii) the
Blockchain application context. For each of those contributing factors, we out-
line several attacks, including selfish mining and associated peer behaviors,
51% attack, Domain Name System (DNS) attacks, distributed denial-of-service
attacks, equivocation, consensus delay (due to selfish behavior or distributed
denial-of-service attacks), Blockchain forking, orphaned and stale blocks, block
ingestion, wallet thefts, and privacy attacks. We then explore the causal rela-
tionship between these attacks and show how one fraudulent activity can lead
to the possibility of other attacks. A secondary contribution of this work is out-
lining effective defense measures taken by the Blockchain technology or pro-
posed by researchers to mitigate the effects of these attacks and patch vulnera-
bilities in Blockchains.

Blockchain has recently stimulated many applications in the digital world,
such as cryptocurrency, smart contracts, ledger maintenance, and distributed
provenance, among others. Using Blockchain’s transparent and fully dis-
tributed peer-to-peer design, those applications can benefit from an append-
only model in which “transactions” accepted in the Blockchain cannot be
modified. The transparency of the Blockchain enables storing publicly veri-
fiable and undeniable records. Furthermore, the Blockchain’s peer-to-peer
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Charles A. Kamhoua, and Laurent L. Njilla.
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system provides verifiable ledger maintenance without a centralized authority,
thus addressing the single point of failure and single point of trust. For
example, Bitcoin (a popular cryptocurrency using Blockchain technology)
takes advantage of the aforementioned properties, making it easy to verify the
history of financial transactions.

Despite the functional features that Blockchain brings to those applications,
recent reports have highlighted the security risks associated with the tech-
nology. For example, in June 2016, an unknown attacker managed to drain
US$50 million from “The DAO”, a decentralized autonomous organization that
is running through rules on Blockchain-based smart contracts [1]. In August
2016, bitcoins worth US$72 million were stolen from the exchange platform
Bitfinex in Hong Kong [2]. In June 2017, Bitfinex also experienced a distributed
denial-of-service (DDoS) attack that led to its temporary suspension. Several
exchanges of Bitcoin and Ethereum (a Blockchain-based distributed computing
platform) have also suffered from DDoS attacks frequently, hampering service
availability to users. Those attacks have application-specific consequences. For
example, with Bitcoin, and due to the capital involved in its operation, those
attacks can cause devaluation of the cryptocurrency.

The security of Blockchain systems is paramount for their acceptability by
their potential users. For example, investors take the security of Bitcoin into
account when studying the risks associated with their investments and use of
this technology. Understanding the threats associated with Blockchain systems
in general is the first step towards realizing the potential of applications built
on Bitcoin. To this end, this work is dedicated to an in-depth look at the attack
surface of Blockchain.

We envision that Blockchain will be used in many applications, and we report
on the attacks that could jeopardize those applications. Namely, we classify
those attacks into three broad types: (i) attacks associated with the mathemat-
ical techniques used for creating the ledger (e.g. Blockchain forks, stale blocks,
and orphaned blocks), (i) attacks associated with the peer-to-peer architecture
used in the Blockchain system, (e.g. selfish mining, 51% attack, consensus delay,
DDoS attack, and DNS attack), and (iii) attacks associated with the application
context that uses the Blockchain technology (e.g. Blockchain ingestion, double
spending, and wallet theft). Our motivation is to highlight the key threats asso-
ciated with Blockchain technology by investigating its attack surface and also
potential remedies for the various attacks.

Contributions—our first contribution is the survey of possible attacks
related to design constructs of Blockchains, the peer-to-peer architecture, and
the application-oriented use of Blockchains. We highlight the nature of attacks
and the ways in which they affect Bitcoin. We also show the causal relationship
between sequences of attacks to outline how one attack can facilitate the pos-
sibility of another one. Understanding these links can help devise a common
cure that can fix multiple problems at the same time. Finally, for every attack,
we explore the defense strategies that are found in the literature.
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Organization—in Section 3.2, we review the design constructs of Blockchain
that enable various attacks, such as Blockchain forks, stale blocks, and orphan
blocks. In Section 3.4, we look into the features of distributed networks that cre-
ate possibilities for selfish mining, majority attack, DNS attacks, DDoS attacks,
consensus delays, etc. We go on to describe the aspects of peer-to-peer archi-
tecture that enable the possibility of their potential misuse in Blockchain appli-
cations. In Section 3.5, we outline the application-specific vulnerabilities found
in Blockchain and assess the threats that they face. That is followed by the con-
clusion and future work in Section 3.7.

3.2 Overview of Blockchain and its Operations

Conceptually, a Blockchain can be viewed as a database of public transac-
tions (ledger) that is tamper-evident due to its replication on a large num-
ber of peers in a peer-to-peer system. Having a single ledger in a Blockchain
means that all peers in the system that make the network must have a con-
sensus on the state of the Blockchain and the data it contains. To achieve
consensus, all blocks in the Blockchain require a proof of work (PoW) [3, 4],
which is a function that is computationally expensive to generate but easy
to verify.

In the case of Bitcoin, for example, a PoW involves solving a mathematical
challenge that is performed by special nodes in the network called miners. Min-
ers collect application-specific events (e.g. transactions in the case of Bitcoin)
and add them into a block. The process of “mining” is essentially solving chal-
lenges and verifying transactions; blocks are created by using computational
power. The challenge in Bitcoin is to come up with a nonce (i.e. a number used
once) that when hashed with a block, produces a hash value that is less than the
target threshold set by the system. The target threshold is a 256-bit unsigned
integer that is encoded in a 32-bit “compact” form (called the nBit), which is
stored in the block header. In the process of solving the challenge, miners spend
time and computational effort and, in return, get rewarded for solving a block
and adding it to the Blockchain. As of October 2017, the reward for solving a
block is 12.5 bitcoins. For more details about mining a block in Bitcoin, we refer
the reader to Reference [5].

As mentioned earlier, several attacks against Blockchain technology are to
do with the Blockchain itself, and how it is affected by the behavior of cer-
tain miners and the peer-to-peer architecture it is built upon. In the sub-
sequent three sections, we explore the possible attacks associated with the
Blockchain structure, attacks associated with the peer-to-peer architecture
used in the Blockchain system, and attacks associated with the application ser-
vices that use Blockchain technology (i.e. Bitcoin). We supplement each sec-
tion with possible defenses, countermeasures, and remedies to address those
attacks.
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3.3 Blockchain Attacks

3.3.1 Blockchain Fork

A fork represents a condition in which nodes in the network have diverging
views about that state of the Blockchain persisting over long periods of time or
even indefinitely. These forks can be created unintentionally through protocol
malfunctions or incompatibilities in client software upgrades. Forks can also be
caused by malicious intents such as implanting “Sybil nodes” that follow con-
flicting validation rules or by carrying out “selfish mining”, as discussed further
in Section 3.4.1. Furthermore, intentional forks can either be soft or hard forks,
the latter of which occur when new blocks that the network accepts appear
invalid to prefork nodes. On the other hand, soft forks occur when some blocks
appear invalid to postfork nodes. In either case, a Blockchain fork represents
an inconsistent state that can be exploited by adversaries to cause confusion,
fraudulent transactions, and distrust within the network [6]. Figure 3.1 demon-
strates a hard fork example that results from peers following conflicting rules
about the state of the Blockchain.

When “The DAO” was drained by more than one-third of its digital cash by
attackers [1], Ethereum used a hard fork to roll back transactions and retrieve
millions of dollars’ worth of ether (the “fuel” for the Ethereum network). How-
ever, this required consensus by the majority of nodes in the network. In such a
scenario, if a consensus delay happens due to a majority attack or DDoS event,
fraudulent activities become somewhat difficult to deal with and prolonged
delays can ultimately cause devaluation of cryptocurrency.

3.3.2 Stale Blocks and Orphaned Blocks

Two forms of inconsistencies can occur with the consensus process that can
leave valid blocks out of the Blockchain. The first form is a “stale block”, which
is a block that was successfully mined but is not accepted in the current best
Blockchain (i.e. the most-difficult-to-recreate chain). We will see in Section
3.4.1 that a form of Blockchain attack known as “selfish mining” can lead to
the creation of stale blocks in the network, which deprives an honest miner of
its reward.

The other form of inconsistency is an “orphan block”—a block whose previ-
ous (parent) hash field points to an unauthentic block that is detached from the

Figure 3.1 Hard fork resulting from a set of peers following conflicting rules.
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Figure 3.2 Stale vs. orphan blocks. Note that the stale block (block 2, bottom, and block 4)
are valid but they are not part of the Blockchain. Orphan block (block 5) does not have a
parent belonging to the Blockchain.

Blockchain and thus cannot be validated. These inconsistencies can be intro-
duced by an attacker or caused by race conditions in the work of the miners.
Stale blocks may be initially accepted by the majority of the network, but they
can be rejected later when proof of a longer Blockchain (i.e. the current best) is
received that does not include that particular block. Figure 3.2 demonstrates a
chain where stale and orphan blocks can be found. The first orphaned block in
Bitcoin was found on March 18, 2015, and that was the beginning of a period
in which the most orphaned blocks were created. The trend saw a decline in
2016, and from June 14, 2017 to the date of this chapter, no orphaned block has
been added to the list [7].

3.3.3 Countering Blockchain Structure Attacks

Resolving soft forks in a Blockchain network is a relatively easy process. All
peers in the network can come to a consensus about the true state of the
Blockchain and resume activities from there. Resolving hard forks can be chal-
lenging because conflicting chains can be lengthy with transaction activities
dating back to the time of the conflict. Although the stakes of rolling back from
a hard fork are high, they can be resolved by the same principle of consensus
that was discussed earlier. As was the case with Ethereum, a hard fork was used
to retrieve money for the investors after The DAO was attacked. Ultimately, the
process of solving a fork depends upon the agreement of peers in the network.

In Ethereum, stale blocks are actually rewarded and become part of the
Blockchain (as so-called uncle blocks) [8]. Recently, the number of orphan
blocks in Bitcoin has decreased due to the shift towards highly centralized min-
ing networks, thus reducing the high probability of orphan blocks prevalent in
decentralized mining networks.

3.4 Blockchain’s Peer-to-Peer System

The underlying peer-to-peer architecture is the primary reason why certain
guarantees are provided by Blockchain, including security. Counterintuitively,
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Figure 3.3 Illustration of selfish mining.

this peer-to-peer architecture that the Blockchain resides on actually con-
tributes to several attacks, which we explore in this section.

3.4.1 Selfish Mining

As introduced by [9], the selfish mining attack is a strategy opted for by cer-
tain miners who attempt to increase their rewards by deliberately keeping their
blocks private. Rather than releasing them to the public upon discovery, these
selfish miners continue to mine their own private blocks to obtain a longer
chain than the public Blockchain. Once the public Blockchain starts approach-
ing the length of their private chain, the selfish miners finally release their
blocks to the public to ultimately claim the reward. Figure 3.3 demonstrates
how a selfish mining attack is carried out.

Consider a Blockchain with blocks B1, B2,…,Bn. Suppose an honest miner
Mh has successfully mined the next block Bn + 1 and in the same network, a
selfish miner Ms has also solved Bn + 1. Instead of releasing his/her block, Ms
chooses not to publish it and successfully mines two more blocks, Bn + 2 and
Bn + 3. Assuming favorable situations for Mh, we show that Mh can still be
cheated despite having a majority of the network’s confidence in their work.
Let the hash value of Mh’s block Bn + 1 be lower than both the target threshold
and Ms’s block Bn + 1. If only these two blocks were presented to the network,
Mh’s block would be chosen (due to its greater computational complexity) over
Ms’s block and appended to the public Blockchain. After some time, Ms releases
all of his/her blocks Bn + 1, Bn + 2, and Bn + 3. Due to the design protocols of
Blockchain, the network will invariably shift to Ms’s blocks and discard block
Bn + 1 of Mh. The effort put forth by Mh in computing its block will be wasted
entirely due to the selfish behavior of Ms. The incentive in adopting this selfish
mining strategy is maximizing block rewards by publishing a longer chain. It
should be noted that excluding Mh’s block Bn + 1 from the Blockchain does not
destroy the block; rather, it leads to another significant problem in the network,
known as “stale blocks” (Section 3.3.2).

Selfish mining attacks can produce undesirable results for the rest of the
network by invalidating the blocks of honest miners who contribute to the
Blockchain. In a case where two selfish miners compete to add their chains
to the network, the chances of a “Blockchain fork” arise (Section 3.3.1). These
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forks can cause a delay of consensus in the network, which can further lead to
other potential attacks such as “double spending”, as discussed in Section 3.5.2.
One selfish activity in the network has the potential to disrupt the overall net-
work, and therefore it is imperative to study their relationship with one another.

3.4.2 The 51% Attack

The 51% attack happens when a single attacker, a group of sybil nodes, or
a mining pool in the network attains the majority of the network’s mining
hash rate to manipulate the Blockchain. As such, the attackers would be able
to (i) prevent transactions or blocks from being verified (thus making them
invalid), (ii) reverse transactions during the time they are in control to allow
double spending, and (iii) prevent other miners (verifiers) from finding any
blocks for a short period of time. Having a majority of the hashing power at their
disposal, the attacker’s blocks will be appended to the Blockchain with higher
probability, compared to others [10]. Also, these blocks can possibly have
fraudulent or double-spent transactions. For example, if an attacker performs
a transaction in exchange for any product with Alice, it can replicate the same
transaction with Bob and put it on the block. Transactions on Blockchains are
not reversible, and only one transaction can be considered valid among the two.

A 51% attack is not beyond the realm of possibilities. In July 2014, the mining
pool “GHash.IO” held over 51% of the hash rate for a day in Bitcoin [11], which
raised many concerns in the press and media about Bitcoin and its vulnerabil-
ities. “GHash.IO” later shrunk in size when miners left its pool and eventually
closed in October 2016. It should be noted that mining pools do not always
need 51% of the network’s hashing power to carry out the fraudulent activities
mentioned previously [48]. Even with less hashing power, similar targets can
be achieved with a significant probability of success. As shown by Bahack [12],
majority attacks are possible with one-quarter of the network’s hashing power.

3.4.3 DNS Attacks

When a node joins the Bitcoin network for the first time, it will be unaware of
the active peers in the network. To discover the active peers (identified by their
IP addresses) in the network, a bootstrapping step is required. The DNS can be
used as a bootstrapping mechanism, and DNS seeds are queried by nodes upon
joining the network to obtain further information about other active peers. As
pointed out in the developer’s guide of Bitcoin [13], DNS opens a wide attack
surface to the Bitcoin network; i.e. the DNS resolution is vulnerable to man-
in-the-middle attacks (resolver), cache poisoning, etc. As a result, by using the
attack surface of the DNS, an adversary can potentially isolate Blockchain peers
(by feeding them with an invalid list of peers), feed the peers with fake blocks,
invalidate transactions, etc. For more on DNS security in general, the reader
may refer to the work in Reference [14].
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3.4.4 DDoS Attacks

One of the most common attacks on online services is the DDoS attack [15,16].
Blockchain technology, despite being a peer-to-peer system, is still prone to
DDoS attacks. Blockchain-based applications, such as Bitcoin and Ethereum,
have repeatedly suffered from these attacks [8, 17–20]. DDoS attacks manifest
themselves in a number of ways, depending on the application nature, network
architecture, and peer behavior. For example, in the Bitcoin network, the 51%
attack can lead to denial of service. Specifically, if a group of miners acquire
a significant hashing power, they can prevent other miners from adding their
mined blocks to the Blockchain, invalidate ongoing transactions, and cause
service failure in the network. Intentional forks—forks that are the result of
malicious behavior—can turn into hard forks, resulting in similar outcomes of
denial of service.

Another possibility for the attack is due to the limited number of transac-
tions per block the Bitcoin network can process in a given time. For example,
on average, it takes the Bitcoin network 10 minutes to mine a block, which has
a maximum size of 1 MB. Although the size of transactions in Bitcoin varies,
the average size of a transaction in Bitcoin is approximately 500 bytes, allowing
approximately 2000 transactions per block on average—the maximum number
of transactions added to a block in Bitcoin is reported to be 2210 [7]. Further-
more, the average time needed to mine one block, based on the predefined dif-
ficulty, is approximately 10 minutes. As such, for all current transactions in the
network to be successfully included in the Blockchain, their number may not
exceed 200 transactions per minute. Taking that into account, and the fact that
each transaction requires a minimum of two peers (identified by two different
public identifiers) to be involved in a transaction, the total active peers served
by the network per minute (i.e. where a block containing their transaction will
be mined) will not exceed 200 peers.

An adversary may exploit the aforementioned operational reality of the Bit-
coin system by introducing Sybil identities; the same adversary may also control
multiple wallets. Furthermore, using those identities, the adversary may issue
several dust transactions (e.g. 0.001 BTC per transaction) between the various
Sybil identities under his/her control. By introducing a large number of transac-
tions of a small value over a short period of time, the network will be congested
by creating blocks containing those transactions, and service to legitimate users
in the network will be denied. As a result of this congestion, the adversary may
as well launch other attacks, e.g. double spending of tokens not mined due to
the congestion.

One may argue that miners may choose which transactions are to be included
in a block. However, this is discouraged by design in Bitcoin, as outlined
by Satoshi [13]. Blocks today even include transactions of values as low as
0.0001 BTC, which makes flooding the network with low-value transactions
possible.
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3.4.5 Consensus Delay

Another attack associated with the peer-to-peer nature of the network is con-
sensus delay. In this attack, an attacker may inject false blocks to delay or pre-
vent peers from reaching consensus in the Blockchain. Such delays can be intro-
duced by either forcing the network to mine small blocks with a small coin
base, or by forcing it to spend time to reach consensus on corrupted blocks.
In particular, because accepting or rejecting false blocks can be time consum-
ing, this process allows misbehaving nodes to game the system. The problem
is further exacerbated for time-critical applications, where resolution needs to
be achieved within a short period of time.

3.4.6 Countering Peer-to-Peer Attacks

Prior research has been conducted to address the problem of selfish min-
ing, and researchers have suggested several possible solutions [9, 21–24]. Solat
and Potop-Butucaru [25] proposed a “lifetime” for blocks that prevents block
withholding by selfish miners. If the expected lifetime of a block expires (cal-
culated by the honest miners), it is rejected by the network. Heilman [22],
impedes the profitability of selfish miners by introducing a defense scheme
called “Freshness Preferred.” Heilman [22] builds on top of previous work by
Eyal and Sirer [9], by adding unforgeable timestamps to blocks and prefers
blocks with more recent timestamps compared to older ones. Their work
reduces the incentive for selfish miners to withhold their blocks for long periods
of time.

Majority attacks have also been widely discussed with countermeasures pro-
posed to overcome a monopoly in Blockchain networks. Bastiaan [11] intro-
duced the concept of “two phase proof-of-work” (2P-PoW) to counter 51%
attacks. 2P-PoW is a continuous-time Markov chain (CTMC) model that incor-
porates two challenges for miners to solve instead of one. The states of the
CTMCs prevent the pool from increasing beyond an alarming size by shrinking
the incentive for miners in the pool. 2P-PoW prevents large pools from creating
a hegemony.

Johnson et al. [26] proposed a game theory model to address DDoS attacks
against mining pools. Other countermeasures include putting a cap on the
minimum amount in the transaction that a sender can have or increasing
the block size to accommodate more transactions. Yet another approach is
to reduce the target difficulty in mining blocks so that more blocks can be
mined with no transactions going to waste. Each of these propositions has its
own caveats. To prevent DNS-based attacks, there is an enormous amount of
literature that can be used to equip the Blockchain system with DNS attack
defenses [27–29]. The dimensions we explored in this chapter encourage addi-
tional research in Blockchain technology in the areas regarding DNS and DDoS
attacks.
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3.5 Application Oriented Attacks

The Blockchain and the associated peer-to-peer system are separate from
the application services using them. Based on the nature of the applica-
tions, they will have their own shortcomings. Thus, we expect a signifi-
cant number of attacks based on the application, which we address in this
section.

3.5.1 Blockchain Ingestion

Blockchain is a public ledger, making it accessible to anyone who wants to mine
it. As such, the analysis of public Blockchain can reveal useful information to
an adversary. This process is known as Blockchain ingestion and it might not
be desirable to the Blockchain application or its users. For example, a credit
card company in the open market can use data analytics to delve into public
information on the Blockchain and optimize its own schemes to compete with
the digital currency. To demonstrate the potential exploitation of public data,
Fleder et al. [30] used graph analysis to create links between Blockchain data of
Bitcoin and associated identities of the users.

3.5.2 Double Spending

To illustrate double spending with an example, consider the following scenario.
In cryptocurrency operations, a transaction transfers the ownership of asset
from a sender’s address to the receiver’s public address, and the value of the
transaction is signed by the signer with a private key. Once the transaction is
signed, it is broadcasted to the network upon which the receiver validates the
transaction. The validation at the recipient’s end happens when the receiver
looks up the unspent transaction output of the sender, verifies the sender’s
signature, and waits for the transaction to be mined into a valid block. The
process takes a few minutes, and in Bitcoin, the average time of block mining
is 10 minutes.

In an environment of fast transactions [31] or if a receiver is optimistic,
he/she may release the product to the sender before the transaction gets mined
into the Blockchain. As such, this gives the sender an opportunity to sign the
same transaction and send it to another recipient. This phenomenon of signing
the same transaction with a private key and sending it to two different receivers
is known as double spending. In double spending, there are two transactions
derived from the same unspent transaction output of the sender, and only one
of them gets incorporated into the Blockchain. Consensus delay in the network
(Section 3.4.5) or 51% attack (Section 3.4.2) can cause additional delays in the
verification process, which increase the chances of an adversary to carry out
the double spending.
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3.5.3 Wallet Theft

Where credentials, such as keys, associated with peers in the system are stored
in a digital wallet, the “wallet theft” attack arises with certain implications on
the application. For example, in Bitcoin, the wallet is stored unencrypted by
default, allowing an adversary to learn the credentials associated with it and
the nature of transactions issued by it. Even when a wallet is safely guarded on
a host, launching a malware attack on the host will allow the adversary to steal
the wallet. Finally, with many third-party services enabling storage of wallets,
those services can also be compromised and the wallets can be leaked to an
adversary [1].

3.5.4 Countering Application Oriented Attacks

Application-oriented attacks have various possible countermeasures. For
example, to secure blocks, it is advised to keep backups of the wallet and secure
the keys used for signing transactions. Passwords are easy to compromise, and
using a strong password is required. However, changing passwords does not
change the keys secured by them, making those keys vulnerable due to a previ-
ous compromise of the password. Wallet encryption, a standard practice in the
original Bitcoin design, is highly recommended to cope with vulnerable keys.
Another mechanism to cope with wallet security is insurance, which techni-
cally does not address the problem by remedying its consequences.

New models of cryptocurrency, such as “Zcash”, hide transactions and main-
tain anonymity on the Blockchain, thus preventing a block ingestion attack. The
double-spending attack is easily addressed in fast networks, but not when the
network is characterized by high latency. One possible approach to deal with
the problem is utilizing one-time (or a few time) signatures, such as Extended
Merkle Signature Scheme (XMSS) [32, 33]. However, this requires change in
the current signature algorithms that Blockchain applications have used. Other
proposals include reducing the difficulty parameter of Blockchain to enable
swift block mining, which is a reasonable approach, except that it would fur-
ther facilitate selfish mining.

3.6 Related Work

Blockchains are used in cryptocurrencies [34], smart contracts [35, 36],
electronic voting [37], cloud computing [38–40], online gaming [41, 42], and
supply chain provenance [43]. All of these applications use the cryptographic
constructs of Blockchains for ledger maintenance and the decentralized peer-
to-peer model for information flows. Therefore, they can possibly encounter
similar attacks and problems, as outlined in this chapter.

Kwon et al. [6], presented a new attack called Fork After Withholding (FAW).
Through an empirical analysis, they found it to be more rewarding for the
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attacker than selfish mining and block withholding. Apostolaki et al. [44] stud-
ied routing attacks on cryptocurrency and analyzed the hijacking of Bor-
der Gateway Protocol (BGP) announcements. Empirically, they show that an
attacker can isolate up to 50% of the hashing power of the network. Bradbury
[45] reviewed various attacks on Bitcoin, namely the 51% attack, code-based
attacks, double-spending, and dust transactions.

Eyal and Sirer [9], addressed selfish mining and its deterrence. Sapirshtein et
al. [21] analyzed optimal selfish mining strategies. Thwarting selfish mining has
been addressed by Heilman [22] and Solat and Potop-Butucaru [25]. Bastiaan
[11] studied the 51% attack by a stochastic analysis of 2P-PoW [46]. Eyal et al.
[47], introduced Bitcoin-NG, a scalable Bitcoin protocol. Their work can be
used to equip most Blockchain networks with better consensus mechanisms to
avoid unnecessary delays and block forks.

DDoS and DNS-related attacks have not been not investigated yet in the con-
text of Blockchain systems. Since DDoS attacks manifest themselves in a differ-
ent way in the peer-to-peer architecture, as opposed to a centralized system,
their prevention also requires nonconventional approaches.

3.7 Conclusion and Future Work

In this chapter, we explored the attack surface of Blockchain technology. We
attribute attacks to the cryptographic constructs of the Blockchain, the under-
lying communication architecture, and the context in which they are applied.
In doing so, we highlight major threats and ongoing defense research activi-
ties. We believe that various attacks against Blockchain can be still launched,
notwithstanding the current and existing defenses, and that some of those
attacks can be used to facilitate several others. In the future, we will explore
exact parameters and settings to empirically understand the cost of launching
those attacks, under various defense capabilities.
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4.1 Introduction

Cloud computing is widely adopted by the commercial and military environ-
ment to support data storage, on demand computing, and dynamic provision-
ing. Cloud computing environments are distributed and heterogeneous with a
diversity of software and hardware components that are provided by different
vendors, possibly introducing risks of vulnerabilities and incompatibility. The
security assurance of intracloud and intercloud data management and transfer
arises as a key issue. Cloud auditing can only be effective if all operations on
the data can be tracked reliably. Provenance is a process that determines the
history of a data product, starting from its original sources [1]. Assured prove-
nance data can help detect access violations within the cloud computing infras-
tructure. However, developing assured data provenance remains a critical issue
for cloud storage applications. Besides, provenance data may contain sensitive
information about the original data and the data owners. Hence, there is a need
to not only secure the cloud data but also ensure integrity and trustworthiness
of provenance data. State-of-the-art cloud based provenance services are vul-
nerable to accidental corruption or malicious forgery of provenance data [2].

Blockchain technology has attracted interest due to a shared, distributed,
and fault-tolerant database through which every participant in the network can
share the ability to nullify adversaries by harnessing the computational capabil-
ities of the honest nodes; the information exchanged is resilient to manipula-
tion. Blockchain network is a distributed public ledger where any single trans-
action is witnessed and verified by network nodes. Blockchain’s decentralized
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architecture can be leveraged to develop an assured data provenance capability
for the cloud computing environment. In a decentralized architecture, every
node participates in the network for providing services, thereby providing bet-
ter efficiency. Availability is also ensured because of blockchain’s distributed
characteristics. Since a centralized authority is frequently used in cloud ser-
vices, there is a need to safeguard personal data while maintaining privacy. With
blockchain-based cloud data provenance service, all data operations are trans-
parently and permanently recorded. Thus, the trust between users and cloud
service providers can easily be established. Furthermore, maintaining prove-
nance can assist in improving the trust of cloud users toward cyber-threat infor-
mation sharing [3, 4] to enable proactive cyber defense at a reduced security
investment [5, 6].

In this paper, we present ProvChain, a blockchain-based data provenance
architecture to provide assurance of data operations in a cloud storage appli-
cation, while enhancing privacy and availability at the same time. ProvChain
records the operation history as provenance data that will be hashed into
Merkle tree nodes [7]. A list of hashes of provenance data will constitute a
Merkle tree and the tree root node will be anchored to a blockchain trans-
action. A list of blockchain transactions will be used to form a block and the
block needs to be confirmed by a set of nodes in order to be included in the
blockchain. An attempt to modify a provenance data record will require an
adversary to locate the transaction and the block. Blockchain’s underlying cryp-
tographic theory will allow to modify a block record only if the adversary can
present a longer chain of blocks than the rest of the miners’ blockchain, which is
quite difficult to achieve. By leveraging the global-scale computing power of the
blockchain network, blockchain-based data provenance can provide integrity
and trustworthiness. In our architecture, we keep the hashed identity of users
in order to protect their privacy from the rest of the nodes in the blockchain
network.

The rest of the paper is organized as follows. Section 4.2 provides an overview
of state-of-the art data provenance efforts and blockchain technology. Section
4.3 describes the design of ProvChain, our blockchain-based data provenance
architecture. The detailed implementation is given in Section 4.4. Performance
evaluation of ProvChain is presented in Section 4.5. Finally, we conclude in
Section 4.6.

4.2 Background and Related Work

4.2.1 Data Provenance

The origins of the word provenance can be traced back to the French “provenir”,
which means “to come from”. So provenance describes the custodial chronology
of an object. From an information security perspective, data provenance refers
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to an auditing process that maintains a record of all operations conducted on
data generated by a workflow. In the context of a blockchain, data provenance
can be found in the distributed public ledger that catalogs all operations on
data related to an asset. The owner of an asset can authenticate a transaction
and facilitate transfer to another owner without the need for an arbitrator. Data
provenance in a blockchain can take advantage of capabilities such as verifiable
audit trail, creation and ownership transfer of digital assets, consensus agree-
ment, and crypto-based identities.

4.2.2 Data Provenance in the Cloud

Cloud computing environments are dynamic and heterogeneous and involve
several diverse and disparate software and hardware components that are
manufactured by different vendors and require interoperation. As businesses,
irrespective of whether they are private or public, have been adopting cloud
computing as a platform for data storage, processing, service provisioning, etc.,
protection of data in cloud has become the top priority for cloud providers.
For many, confidentiality reigns supreme; therefore, assurance of data transfer
within intracloud and intercloud environments is oftentimes a mandatory
requirement. Typical assurance of data focuses on ensuring the confidentiality,
integrity, and availability of the contents of the data. However, assurance of the
ancestry of the data (where the data came from) is a challenge in cloud envi-
ronments. Keeping track of each critical data object in the cloud environment
could potential ensure confidentiality, integrity, and availability of the data
content. This process, called data provenance, would record every transaction
on cloud data so that their ancestry information can be derived at any time to
prove their authenticity. Data provenance has the potential to prevent insider
attack and network intrusion scenarios by identifying the exact sources that
lead the state of data object to an abnormal state. Data provenance addresses
the ancestry of the data based on detailed derivation of the data object. If
true data provenance existed in the cloud for all data stored on cloud storage,
distributed data computations, data exchanges and transactions, detecting
insider attacks, reproducing research results, and identifying the exact source
of system or network intrusions would be achievable. Unfortunately, the state
of the art in data provenance in cloud does not provide such assurances and
there is a need to develop techniques to address this challenge.

Data provenance is very critical for cloud computing system administrators
to debug break-ins to the system or network. Cloud computing environments
are typically characterized by data transfers between diverse system and
network components. These data exchanges could take place within a data
center or across federated data centers. The data does not usually follow the
same path due to multiple copies of the data and diversity of paths taken to
ensure resilience. This design adds a degree of difficulty for administrators
to accurately identify the origin of the attack, what software and/or hardware
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components caused the attack, and the impacts of the attack. Security vio-
lations need to be identified at a fine granularity and provenance can assist.
Current state of the art provenance systems in the cloud support the above
tasks through logging and auditing technologies. These technologies are not
effective in cloud computing systems, which are complex in nature, due to
several layers of interoperating software and hardware components spread
across geographical and organizational boundaries. To identify the origin,
cause, and impact of security violations in cloud infrastructures, collection of
forensics and logs from the diverse and disparate sources is required, which
is an insurmountable task. At the same time, logs only provide a sequential
history of actions related to every application. The provenance data provides
the history of the origins of all changes to a data object, the list of components
that have either forwarded or processed the object, and users who have viewed
and/or modified the object and have enhanced requirements for assurance.

Cloud computing platforms are comprised of geographically distributed and
disparate physical machines, each of which hosts one or more virtual resource
(virtual machines [VM]). Each VM is owned by a cloud user and comprises an
operating system, software, data, etc. An executing VM creates dynamic data
that are key for provenance. As such, and in cloud computing today, prove-
nance is provided on cloud through the linking of log data (data that is gener-
ated through the execution of software on the given physical, virtual, or appli-
cation resource) and audit data (data that is created for the sole purpose of
provenance assurance). Provenance in the cloud is limited. Besides the limited
functionality of comparing logs to audit data, today’s provenance functions are
done in a private manner to establish ownership of digital assets. This, in turn,
has a few limitations. First, the cost of provenance is high and prohibitive, in
the sense that a provenance assurance should be established for each individ-
ual cloud service. Second, the process of provenance assurance, when multiple
players are involved as is typical in cloud computing, lacks transparency. As
such, moving to a more transparent, open, and public system is desirable.

Researchers have presented several data provenance related efforts. PASS is
the first scheme to address the collection and maintenance of provenance data
at the operation system level [8]. A file provenance system [9] is proposed to col-
lect provenance data by intercepting file system calls below the virtual file sys-
tem, which requires changes to operating systems. For cloud data provenance,
S2Logger [10] was developed as an end-to-end data tracking tool that provides
both file-level and block-level provenance in kernel space. In addition to data
provenance techniques and tools, the security of provenance data and user
privacy has also been explored. Asghar et al. [11] proposed a secure data prove-
nance solution in the cloud, which adopts the two-folder encryption method
to enhance privacy albeit at a higher computation cost. SPROVE [12] protects
provenance data confidentiality and integrity using encryption and digital
signature. However, SPROVE does not possess provenance data querying
capability. Progger [13] is a kernel-level logging tool that can provide log
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tamper evidence at the expense of user privacy. There are also efforts that
use provenance data for managing the cloud environment, such as discovery
of usage patterns for cloud resources, popularized resource reuse, and fault
management [14].

4.2.3 Blockchain

Blockchain technology has attracted tremendous interest from a wide range
of stakeholders, which includes finance, healthcare, utilities, real estate, and
government agencies. Blockchains are a shared, distributed, and fault-tolerant
database that every participant in the network can share, but no entity can con-
trol. The technology is designed to operate in a highly contested environment
against adversaries who are determined to compromise. Blockchains assume
the presence of adversaries in the network and nullify adversarial strategies by
harnessing the computational capabilities of the honest nodes; the informa-
tion exchanged is resilient to manipulation and destruction. The reconcilia-
tion process between entities is sped up due to the absence of a trusted central
authority or intermediary. Tampering with blockchains is extremely challeng-
ing due to the use of a cryptographic data structure and no reliability of secrets.
Blockchain networks are fault tolerant, which allows nodes to eliminate com-
promised nodes. Despite this, there are several vulnerabilities that exist [15],
which could potentially disrupt the integrity of the blockchain. However, it
requires the malicious node to have enormous computational power to con-
duct attacks, which may not even be cost worthy.

The decentralization and security characteristics of blockchain have
attracted researchers to develop various applications such as smart contracts,
distributed DNS, and identity management. Besides Bitcoin, Ethereum [16] is
also designed on top of public blockchain for simple and quick development of
decentralized applications. To implement the value transmitting function and
reward participants, Ethereum adopts a new type of cryptocurrency named
Ether, with a value unit called Wei. Ethereum can provide the function of a
smart contract, which can be supported and implemented by Solidity and
other high-level languages. On blockchain networks, those contracts will
be compiled into a binary format and be able to run on Ethereum Virtual
Machine (EVM). The Ethereum platform adopts a per-address transaction
model and each transaction is independent, which means a transaction is
simply transfering assets between participating nodes.

Multichain [17] provides an open-source permissioned blockchain net-
work, where developers can host their blockchain on a private cloud archi-
tecture. Multichain uses the per-output transaction model and can handle
high throughput [18]. The per-output transaction model means each trans-
action’s input has some relationship with the previous transaction’s output.
By using different addresses for the same user, this model provides a higher
degree of privacy. Multicurrency is supported by Multichain so that developers
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can utilize different kinds of assets for different transaction types. Futher,
Multichain project will add two features—blockchain messaging and database
synchronization—that will definitely benefit developers and other blockchain
users. By contrast, Ethereum is designed for simple and quick development of
blockchain applications, which is one of the most outstanding features of the
per-address transaction model. Besides, there is a great saving of space since
each transaction only requires one signature, one reference, and one output.

Hyperledger [19] is an open source permissioned blockchain project hosted
by The Linux Foundation, including leaders in finance, banking, the IoT, supply
chain, manufacturing, and technology. Hyperledger Fabric [20] is an architec-
ture delivering high degrees of confidentiality, resiliency, flexibility, and scal-
ability potentials on top of the Hyperledger platform, supporting pluggable
implementations of different customized components. Developers can benefit
from the Fabric framework by integrating customized and desired techniques
on the open platform.

Tierion [21] provides a platform for uploading and publishing data records
into the Blockchain network. With public application programming interfaces
(APIs) available, Tierion is convenient for integrating applications that demand
the need of blockchain. Developers can post metadata using an HTTP request
into the Tierion data store and fetch record information. Each data record has
a record ID that can be used to retrieve the blockchain receipt generated based
on blockchain transactions. The blockchain receipt contains the transaction ID,
which will be used to locate a transaction and the block that hosts the transac-
tion. In this way, the data record posted on the blockchain cannot be tampered
with and integrity is assured.

The Blockstack Labs from Princeton University proposed a decentralized
Public key infrastructure (PKI) service on top of Namecoin and a blockchain-
based naming and storage system [22]. Blockchain application in information-
centric networks for name-based security of content distribution has also been
proposed [23]. Enigma is a decentralized computation platform with guaran-
teed privacy, which uses the blockchain network to control the network, man-
age access control and identity, and create a tamper-proof log of events [24].
Guardtime provides industrial-scale blockchain services using Keyless Signa-
ture Infrastructure (KSI) and secure one-way hash function, which is quan-
tumimmune in contrast to asymmetric cryptographic algorithm (RSA) [25].
Guardtime also proposed a blockchain standard for digital identity and a pro-
tocol for authentication and digital signature that provides a simplified mech-
anism for revocation management and long-term validity [26].

4.2.4 Blockchain and Data Provenance

Blockchain technology provides such capability and resolves many needed
functionalities and properties for effective provenance in the cloud. In essence,
blockchain is a peer-to-peer ledger system, where information that constitutes
provenance for physical, virtual, and application resources can be stored
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publicly for transparent verifiability and audit. As such, both transparency
and cost effectiveness are provided, while access control and privacy for
individual users of the ledger are ensured through encryption techniques,
where individuals can see only parts of the ledger that are related to them.
Thus, blending blockchain technology into the cloud environment can lead to
achievement of the task of data provenance, where the cloud nodes implicitly
create a distributed network to record provenance data in the distributed and
fault-tolerant ledger that is secured with a strong cryptographic notion. This
distributed ledger of the blockchain is to be updated by all the nodes in the
cloud environment, but this depends on a certain rule that every node agrees
upon. Designing such a consensus mechanism that ensures consistency in the
blockchain is challenging.

4.3 ProvChain Architecture

ProvChain is a data provenance architecture built on a blockchain, which
will provide the ability to audit data operations for cloud storage. ProvChain
achieves the following four objectives.

� Real-time cloud data provenance—User operations are monitored in real
time to collect provenance data, which will further support access control
policy enforcement [27] and intrusion detection.

� Tamper-proof environment—Data provenance record is collected and then
published to the blockchain network, which protects the provenance data.
All data on the blockchain is shared among the nodes. ProvChain builds
a public time-stamped log of all user operations on cloud data without
the presence of a trusted third party. Every provenance entry is assigned a
blockchain receipt for future validation.

� Enhanced privacy preservation—Data provenance record is associated
with a hashed user ID to preserve privacy so that a blockchain network node
cannot correlate data records associated with a specific user. A provenance
auditor can access provenance data owned by the user but can never iden-
tify the true owner. Only the service provider can link each record with the
owner of the record data.

� Provenance data validation—Data provenance record is published globally
on the blockchain network, where a number of blockchain nodes provide
confirmation for every block. ProvChain uses blockchain receipt to validate
every provenance data entry.

To achieve the above objectives, we adopt the below methods to design
ProvChain’s architecture.

� Monitor user activities in real time using hooks and listeners so that every
user operation on files will be collected and recorded for generating prove-
nance data.
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Figure 4.1 ProvChain system interaction.

� Store all hashed data operations in the form of blocks in the blockchain. Every
node on the blockchain can verify the operations by mining the block so that
data provenance is authentic and tamper proof.

� Hash the user ID while publishing provenance data so that the blockchain
network and the provenance auditor cannot determine user identity and the
data operations.

� The provenance auditor validates provenance data by retrieving transactions
from the blockchain network by using the blockchain receipt that contains
block and transaction information.

4.3.1 Architecture Overview

An overview of ProvChain architecture is illustrated in Figure 4.1. The follow-
ing are the critical components of ProvChain:
� Cloud user—A user, who owns its data and has a sharing relationship with

other users’ data, may opt for the provenance service, where the provenance
data is stored on the public blockchain. Data changes made by the user can be
monitored and validated by blockchain nodes, but the nodes may not know
about details of other users’ activities. The provenance data will not expose
real user identity.

� Cloud Service Provider (CSP)—The cloud service provider offers a cloud
storage service and is responsible for user registration. A CSP can benefit
from our system in the following aspects: First, they can audit data changes
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all the time, and they can learn a lot about data operations performed by
all the users to better improve their service. Through provenance data, they
can also detect intrusion from anomalous behaviours. Besides, they can pro-
tect their own daily records just like normal users. As far as business aspects
are concerned, they can gain brand reputation from using blockchain prove-
nance services since they provide trustworthiness.

� Provenance database—The provenance database records all provenance
data on the blockchain network, which is used for detecting malicious behav-
iors. All data records are anonymized.

� Provenance Auditor (PA)—The PA can retrieve all the provenance data
from the blockchain, into the provenance database, and validate the
blockchain receipt. The PA maintains the provenance database but cannot
correlate the provenance entry to the data owner.

� Blockchain network—The blockchain network consists of globally partici-
pating nodes. All the provenance data will be recorded in the form of blocks
and verified by blockchain nodes.

4.3.2 Preliminaries and Concepts

ProvChain uses cloud file as the data unit and monitors file operations to pro-
vide data provenance service. After each file operation is detected, a provenance
entry will be generated. The cloud service provider will upload the provenance
entry onto the blockchain network. In this section, we describe the details on
file provenance use case and block structure.

File provenance use case—For each file provenance, we can record activi-
ties, such as file creation, file modification, file copy, file share, and file delete.
A file can be created by user A, which refers to the origin of file X. Then user
A copies file X to another location, probably for backup or other reasons. The
read and write operation of user A on file X can also be recorded. If user B asks
user A to share file X, there will also be a record both on user A and user B. User
A shares file X at a predefined location and user B creates a new file Y from the
shared file X. Then user B can operate on file Y just the same as user A did on
file X, such as read and write operations. If user B deletes the file, there will be a
record for deletion. At some point of time, user A decides to make file X public
so that file access is changed. Anyone who accesses it will also create a new file
at their own respective location. The history of files (different versions of the
file) can be backed up for future use.

Block structure—ProvChain uses blockchain network to provide data
record verification and resist tampering. The block structure is composed of
two parts—a block header and a list of transactions. The main attributes in the
header are block hash, height, confirmations, nonce, and Merkle root. Block
hash is computed using the previous block hash and a nonce. The height rep-
resents the block index in the global blockchain network. The confirmation
number of the block indicates the number of nodes that have mined this block
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and the nonce is used by blockchain nodes to check the integrity of the block.
The Merkle root is the root of the binary hash tree created out of all the transac-
tions in a block. Transaction lists come after the block header. Each transaction
has a hash, with inputs and outputs. In ProvChain, each data record is hashed
into a Merkle tree node. The Merkle tree root node will be anchored to one
transaction in a certain block.

4.3.3 Threat Model

Here, we analyze the potential vulnerabilities in ProvChain. The cloud service
provider offers data provenance service as well as cloud storage service, which
allow users to store data on the cloud platform and provide the option to enable
the data provenance service. The cloud service provider cannot guarantee that
data records will remain unchanged due to known vulnerabilities in hypervi-
sors and cloud operating systems. Once the data provenance service is enabled,
the user will be able to trace the data and the PA is allowed to access all the
provenance data. However, the PA cannot be completely trusted. The adver-
sary can potentially access or modify user data and/or user provenance data.
Since ProvChain’s main objective is to protect provenance data, we assume that
user data stored on the cloud are encrypted and are not accessible to anyone
without the decryption key.

4.3.4 Key Establishment

To use ProvChain, users are required to register the service and create their
credentials. For cloud storage applications, users generate data encryption key
pairs to encrypt their cloud data for confidentiality. If the user wants to share a
file, a data sharing key will be provided. For provenance data, the cloud service
provider generates key pairs to encrypt provenance data for privacy consider-
ations, because provenance data will further be uploaded and published to the
blockchain network. We describe each key as follows:
� User registration key KUR—In ProvChain, the user needs to register the

cloud storage service to store data on the cloud. We denote the key as KUR.
Every time the user wants to operate on cloud data, the registration key is
needed.

� Data encryption key KDE—After registration, the user generates an encryp-
tion key KDE , for encrypting all the data stored in the cloud. When a file is
created, the user has the option to encrypt the file, which limits file access to
only key holders.

� Data sharing public/private key pair (PKDS, PRDS)—For data sharing, a
public/private key pair will be generated, denoted as (PKDS, PRDS). For com-
mon cases, the private key is used to generate a signature from the owner,
while the public key is used by others to verify data ownership. When users
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share the data with others, they share the private key for data ownership
changes.

� Provenance verification key KPV —Each block on the blockchain holds sev-
eral provenance data entries; and provenance data entry is produced upon
detection of a file operation. Every data operation will trigger the cloud ser-
vice provider to generate a key KPV to encrypt the provenance data. The
key will be shared with the PA if the user assigns a PA to audit the prove-
nance data.

4.4 ProvChain Implementation

The implementation of ProvChain is conducted using a three-layer architec-
ture, comprising of a data storage layer, a blockchain layer, and a provenance
database layer, as in Figure 4.2. The functions for each layer are described as
follows:

� Data storage layer—ProvChain is implemented to support cloud storage
applications. Here we use one cloud service provider but our architecture
can be scaled to multiple providers.

� Blockchain network layer—We use the blockchain network to record each
provenance data entry. Each block can record multiple data operations. Here
we use the file as a data unit, so we record each file operation with a user-
name and file name. File access operations include Create, Share, Change,
and Delete.

� Provenance database layer—We build an extended database locally for
recording file operation as well as querying. In ProvChain, the service
provider can assign a PA to verify the data from the blockchain network.
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Figure 4.2 ProvChain system architecture.
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The response is a blockchain receipt that gets validated and appended in the
database.

There are three phases in the life cycle of data provenance for ProvChain,
namely provenance data collection, provenance data storage, and provenance
data validation.

4.4.1 Provenance Data Collection and Storage

Once a user performs actions on the data files stored in the cloud, the corre-
sponding operations get recorded. The operation can be denoted in a meta-
data, including all the file attributes. Note that for this phase, only RecordID,
Date and Time, Username, Filename, AffectedUser, and Action attributes are
recorded. The transaction hash, block hash, and validation field will be col-
lected after the PA queries the blockchain network. The AffectedUser attribute
is considered in two cases. One is data modification in which the same user
is operating on the data, using the data encryption key, where there are
no affected users other than the user itself. The other case is data sharing,
where user shares a file with someone else. In the second case, the attribute,
AffectedUser, in the file operation metadata, will include all the users in the
sharing group.

We build ProvChain on top of an open source application called ownCloud
[28] to collect the provenance data. ownCloud is a self-hosted file synchroniza-
tion and sharing server. OwnCloud provides both web-based cloud storage ser-
vices and a desktop client, similar to Dropbox and Google Drive, which provide
user control of personal data and universal file access to all of the data seam-
lessly. Besides, ownCloud is flexible and developers can utilize their functions
to develop various applications on top of it, allowing authorized users to enable
and disable features, set policies, create backups, and manage users. The server
also manages and secures API access to ownCloud client and developers, while
providing the internal processing engine needed to deliver high-performance
file-sharing services.

In order to collect provenance data, we use hooks to listen to file operations
in the ownCloud web interface. After an operation is monitored, a record will
be generated, which is then uploaded to the blockchain network and stored in
the provenance database. Figure 4.3 shows the architecture of our provenance
data collection and storage.

We take the file change operation as an example to demonstrate the original
provenance data in JSON format as follows:

{
"app":"files",
"type":"file_changed",



4 ProvChain: Blockchain-based Cloud Data Provenance 81

Database

Store

Blockchain Network

Upload

ListenFile

Operations

File

Hooks

OwnCloud App

Figure 4.3 Provenance data collection and storage.

"affecteduser":"test",
"user":"test",
"timestamp":"1475679929",
"subject":"changed_self",
"message":"",
"messageparams":"[]",
"priority":"30",
"object_type":"files",
"object_id":"142",
"object_name":"66.txt",
"link":"/apps/files/"
}

For provenance data storage after data collection, we use Tierion API [21]
to publish data records to the blockchain network. Tierion provides data API
primarily for collecting data, and for managing Datastores and Records in a
personal account. Accessing Tierion’s Data API requires an API Key, which is
required in every request to the Data API. The submission of credentials should
contain the headers X-Username and X-Api-Key for each data store owned by
the account. In addition to using the data API to create a record, we can choose
the option to submit an HTML form directly to Tierion, since our ownCloud
application is web based and the provenance data is coming from a web site,
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which is easier to implement. The following URL is used to submit a data record
to the blockchain network, by the POST method:

https://tierion.com/form/submit

For privacy consideration, ProvChain hashes user name. In that case, the PA
cannot know which user each provenance data belongs to. Only the service
provider can relate each user with the hashed user name since the provider
keeps a list of user names. ProvChain also keeps the provenance data in a local
provenance database for further update and validation.

For publishing data records to the blockchain network, the Chainpoint stan-
dard [29] is adopted. Chainpoint is an open standard for creating a timestamp
proof of any data, file, or series of events, which proposes a scalable protocol for
publishing data records on the blockchain and generating blockchain receipts.
By anchoring an unlimited amount of data to multiple blockchains and verify-
ing the integrity and existence of data without relying on a trusted third party,
the Chainpoint standard is widely used in blockchain applications. According
to Chainpoint 2.0, data records are hashed so that each Merkle tree can host a
large number of records, as is shown in Figure 4.4. The target hash of the spe-
cific record and the path to the Merkle root constitute the Merkle proof of the
provenance data, which is a JSON-LD document that contains the information
to cryptographically verify that a piece of data is anchored to a blockchain. It
proves the data existed at the time it was anchored. The Merkle root for each
Merkle tree is related to one transaction in the blockchain network.

Figure 4.4 Merkle tree.

https://tierion.com/form/submit
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4.4.2 Provenance Data Validation

To validate the data records that are published in the blockchain network, the
PA requests the blockchain receipt via Tierion API. The Data API offers a way
to validate blockchain receipts. Before validating the blockchain receipt, we use
Data API to request the record along with the blockchain receipt, using the
following URL and the GET method:

https://api.tierion.com/v1/records/<id>

The request header should include Content-Type: application/x-www-form-
urlencoded or Content-Type: application/json to set the data format to be
received. The requests to the Data API are made over HTTPS. The blockchain
receipt contains information of the blockchain transaction and the Merkle
proof used to validate the transaction. Figure 4.5 is a sample blockchain receipt.

We can reconstruct the Merkle tree from the blockchain receipt. Each prove-
nance record is stored along with other records in the blockchain network as
a transaction, which is accessible in blockchain Block Explorer [30]. Since the
transaction attribute height represents the block index, we can find the exact
block information as well (Figure 4.6). To validate the format and contents of a
blockchain receipt, and to confirm that the Merkle root of one record is stored
in the blockchain, we use the following URL and POST method, provided by
Tierion API:

https://api.tierion.com/v1/validatereceipt

Figure 4.5 Blockchain receipt.

let &hbox {char '046}https://api.tierion.com/v1/records/
https://api.tierion.com/v1/records/
let &hbox {char '046}https://api.tierion.com/v1/validatereceipt
https://api.tierion.com/v1/validatereceipt
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Figure 4.6 Transaction and block information.

Algorithm 1: Blockchain Receipt Validation Algorithm

1 Validate( proof, merkleRoot, targetHash )
nodeNum ← number of Merkle tree nodes in proof

2 h ← targetHash;
3 i ← 0;
4 while i < nodeNum do
5 if proof(i).key = right then
6 h ← hash(h + proof(i).value).
7 end
8 else
9 h ← hash(proof(i).value + h).

10 end
11 i ← i + 1
12 end
13 if h = merkleRoot then
14 return
15 end
16 true
17 return false

Algorithm 1 is used to validate the blockchain receipt by the PA. In the algo-
rithm, the proof, merkleRoot, and targetHash in the blockchain receipt are
inputs and the output is a validation result. If true is returned, then the data
record is validated based on the fact that the transaction and block are authen-
tic. If false is returned, it means the block has been tampered with and the data
record is forged. Note that all the hashes used in building Merkle trees and



4 ProvChain: Blockchain-based Cloud Data Provenance 85

proofs are handled in the binary format, according to the Chainpoint require-
ment. The anchors in the receipt indicate how the data record is anchored.
Blockchain receipt validation confirms that a receipt’s content is valid and true.
Specifically, the validation process will confirm the following four elements: the
receipt is a well formatted JSON document; all required fields are present; the
targetHash, merkleRoot, and proof values are valid; and the merkleRoot value
is anchored at the specified location(s).

After the validation of the blockchain receipt, the PA can update the data
record in the provenance database by filling in the remaining attributes, includ-
ing transaction hash, block hash, and validation result. If the validation result
is true, then the PA can make sure that the provenance data is authentic. If the
result is false, then the PA will report to the service provider that tampering has
happened.

4.5 Evaluation

4.5.1 Summary of ProvChain’s Capabilities

Prior to providing the performance evaluation of ProvChain, we summarize the
capabilities.
� ProvChain provides a real-time auditing for all data access in the cloud stor-

age application. We use a file as a data unit, and all the operations on the
cloud data objects are audited as well as recorded using blockchain. In this
way, evidence for all cloud data access events can be collected and monitored.

� For each of the access records, we transform the provenance data and upload
the record to the blockchain network. By doing so, we create an unalterable
fingerprint of file operations, with secure and permanent record keeping as
well as a tamper-proof timestamp. Any changes to the blockchain will be
detected by validating the blockchain receipt. Once the data record is pub-
lished, no one can maliciously rewrite or alter the records without exposure.

� By utilizing the blockchain network, we reduce the need for trust. There is no
need to trust the owner of the remote computers involved in the blockchain
network, thus removing the requirement for a trusted third party. Even the
cloud service provider is not trusted for keeping the provenance data record.
With decentralization, data records are confirmed and validated by contin-
ual system cross checking among computing nodes. Besides, the decentral-
ized method ensures the integrity of data records and each of the data record
has a copy with each node in the blockchain network, thereby resisting any
DDoS attack. Besides, there is no single point failure problem since no single
machine holds all the data records.

� Users can subscribe to the data provenance service while preserving their
privacy. User access records are anonymized in the blockchain network. The
PA cannot learn user activities. Anonymity is preserved in two aspects. On
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Table 4.1 Evaluation environment specification.

Software Name Version

Server operating system Ubuntu 14.04
Web server Apache server 2.4.6
Database MariaDB 5.5.44
Cloud storage OwnCloud 9.0
Performance benchmarking Apache JMeter 3.2

one hand, user identity will not be linked to provenance data entries since
the user ID is hashed. On the other hand, unlinkability between each user is
also achieved, especially for provenance of shared data.

4.5.2 Performance and Overhead

The evaluation environment setup includes three categories—the server side
software, the ownCloud application configuration, and a benchmarking tool.
For provenance collection, we use Apache Jmeter [31] as a benchmarking tool
to assess the performance of the provenance-enabled ownCloud application.
The specifications of the software and the version used are listed in Table 4.1.

Apache Jmeter is an open source and Java-based software designed to test
functions and behaviors on a large scale, with various performance measures
such as transaction time, response time, and throughput. Web applications are
the main cases where Jmeter plays an important role. Jemter uses test plans to
describe a series of steps that will execute when we run the test plan. A com-
plete test plan usually consists of one or more thread groups, logic controllers,
sample generating controllers, listeners, timers, scripts, and configuration ele-
ments. Jmeter provides data analysis and visualization plugins, allowing great
extensibility as well as personalization. User-defined functions can be used to
provide dynamic input to a test or handle data manipulation.

We build a test plan to measure the performance of file create using both
provenance-enabled ownCloud and nonprovenance ownCloud. Our test plan
aims to simulate the action of a user who logsin to ownCloud and then creates
a file using a filename. The simulation also uses random strings to represent the
file content to be stored when the user closes the file.

The test plan contains two controllers. One is for user login and the other
is for file create. When simulating user login, we use HTTP Get to request the
ownCloud server at our experimental server path /owncloud/index.php/login
for a request token. Using the request token, we use HTTP POST to send the
user credentials as well as the request token to the same path in exchange for the
access token. Here, we use a regular expression to extract the access token from
the returned HTML files. After acquiring the access token, we are able to create
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random files. Using HTTP POST, we can send the filename and file content at
the same time to the path /owncloud/index.php/apps/files/ajax/upload.php.
The following BeanShell Preprocessor script is used to simulate the file
content:

import org.apache.commons.io.FileUtils;
import org.apache.commons.lang3.Random
StringUtils;
import org.apache.commons.lang3.Random
Utils;
// create a temp file
File f = File.createTempFile("f-", "");
// generate random string
// and write to file
FileUtils.writeStringToFile(f,
RandomStringUtils.random(RandomUtils.
nextInt(1000, 10000)), "UTF-8");
// store file name
vars.put("fname", f.getCanonicalPath());

We perform file create with random file names and file contents for 500
repetitions in Jmeter [32]. The file size ranges from 1KB to 2MB. Figure
4.7 shows the average response time of both provenance-enabled ownCloud
and non provenance ownCloud. From Figure 4.7, we can conclude that the
provenance service brings an average of 6.49% of total overhead against
the original ownCloud application in terms of the response time, which is
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Figure 4.8 Bytes throughput over time.

acceptable considering the security features it provides. Besides, with the file
size increases, the overhead is generally not as much as it is when the file size
is smaller, since the larger the file size is, the more is the time that will be spent
on transmitting the file itself and the less is the time for provenance service.

Figure 4.8 shows the throughput for both original ownCloud 4.8(a) and
provenance-enabled ownCloud 4.8(b). We choose 64KB as the file size to assess
the performance where only one server is responsible for the provenance ser-
vice regardless of the production environment, which is comprised of a web
server and services for load balancing and network flow optimization. The
results show that both systems have the same amount of traffic received; how-
ever, there is a difference in the amount of traffic sent.
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The provenance-enabled ownCloud has a comparable transaction rate, as
depicted in Figure 4.9. Overall, the transaction time distribution is considered
acceptable, as shown in Figure 4.10. More evaluations can be conducted with
varying file types, operations, and file sharing statuses.

We use file create operation as a use case for our performance evaluation of
provenance data collection. The evaluation for other file operations follows the
same procedures.

For provenance retrieval, we focus on the efficiency of requesting blockchain
receipt for each of the provenance data entries. In our experiment, we query
10 records each time with a total size of 1.004KB, which uses an average time
of 221ms. For each retrieval of blockchain receipt, we record the retrieval time
for different file operations. Performance test for provenance data storage
follows the same way. Table 4.2 is the provenance retrieval overhead, from
which we can conclude that our retrieval methods have a low overhead for the
cloud storage system.

Table 4.2 Overhead for provenance data
retrieval.

Record Type Size of Data Transferred Average Time Cost

File create 1.07KB 0.838s
File change 1.06KB 0.676s
File delete 1.07KB 0.675s
File share 1.07KB 0.790s
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Figure 4.10 Response time distribution.

4.6 Conclusions and Future Work

In this paper, we present the design and implementation of ProvChain, a
blockchain-based data provenance system for cloud auditing, with preserved
user privacy and increased availability. Using blockchain technology, we
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make the record with unalterable timestamping and generate blockchain
receipt for each of the data records for validation. With each data provenance
record provided with a blockchain receipt, our system performs functions
with stability and scalability. Based on the current work, we can extend the
system to various use cases where globally verified proof is needed. Our
evaluation of cloud storage performance shows that provenance-enabled
ownCloud brings a low overhead. Instead of a file as the data unit, in the future
we can also use other granularity such as data chunk in cloud storage, at a
finer-grain level.

As for the rewards of blockchain miners, cloud users may have to pay a
fee to enable data provenance services by a cloud service provider. The ser-
vice provider can then pay for the blockchain network. In this way, miners can
be paid for continuous mining on blocks and validation of block authenticity.
The fee can be determined depending on the different level of data usage of
each user.

Currently, we collect provenance data inside one cloud service provider
and one cloud application. For future work, we plan to develop ProvChain
for federated cloud service providers. Cloud storage applications on feder-
ated cloud providers will require the need to address interoperability, cross-
provider data sharing, and management. We will collect data provenance
across different cloud providers and different cloud storage applications to
provide better provenance services and enhance data security. For prove-
nance validation, we currently use the Tierion API to validate the blockchain
receipt, which is effective and flexible regarding the way of API implementation
and usage.

For future work, we will implement the validation on top of an open source
architecture that will improve not only overall performance but also security
and reliability. The actual cost for each blockchain receipt should be analyzed
and calculated for business scenarios. We can also define the data attributes
to be recorded according to client user needs to prevent sensitive informa-
tion leakage, thus preserving privacy. We will use the collected provenance data
to check for access control violations [33] by way of machine learning strate-
gies. The automatically generated access control rules will better serve the pur-
pose of malicious behavior detection and intrusion prevention, which will in
return provide better protection for the cloud storage application. Meanwhile,
the same architecture can be applied to IoT scenarios where large a number of
mobile devices are responsible for data collection and processing.
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5.1 Introduction

Smart vehicles use wireless communication networks to connect to the road-
side infrastructure and traffic management systems, to other vehicles in close
proximity, and, more generally, to the Internet. Thus, connected vehicles are
becoming an essential part of the Internet of Things (IoT), and offer a plethora
of beneficial services and applications to the drivers, vehicle manufacturers (i.e.
OEM), service centers, insurance companies, and to a wide range of other Ser-
vice Providers (SP). Alongside the benefits of highly connected vehicles is their
increased vulnerability to a new range of security threats as well as serious pri-
vacy concerns.

Malicious entities can compromise a vehicle, which endangers not only the
security of the vehicle but also the safety of the passengers and even other road
users. In [1], the authors presented a sophisticated attack on a Jeep Cherokee
using the wireless interface of the infotainment system. In the worst case, this
attack allowed an attacker to remotely control the core functions of the vehicle
such as steering and braking.

Smart connected vehicles are equipped with a number of sensors and
devices (such as Global Positioning System [GPS]), dashboard cameras, and
Light Detection and Ranging [LIDAR]), allowing better perception of the
environment and facilitating independent decision making to avert accidents.
Resulting from this wide range of devices, a smart vehicle will produce a
large volume of data, which is predicted to be up to 4 TB per day [2]. This
data can be used by smart urban infrastructure to offer services, e.g. available
parking spots or green light assistance. However, this data, which is exchanged
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with other vehicles, and the infrastructure may contain privacy sensitive
information about the vehicle owner, e.g. the location of the vehicle. This could
be construed as a serious breach of personal privacy.

Conventional security and privacy methods used in smart vehicles tend to be
ineffective due to the following challenges:
� Centralization—Conventional smart vehicle architectures rely on central-

ized brokered communication models where all vehicles are identified,
authenticated, authorized, and connected through central cloud servers.
This model is unlikely to scale when a large number of vehicles are connected.
Additionally, the cloud servers will remain a bottleneck and a single point of
failure that can disrupt the entire network.

� Lack of privacy—Most of the current secure communication architectures
either do not consider the user’s privacy, e.g. they resort to exchanging all
data of the vehicle without the owner’s permission, or reveal noisy or sum-
marized data to the requester. However, in several smart vehicle applications,
the requester needs precise vehicle data to provide personalized services.

� Safety threats—Smart vehicles have an increasing number of autonomous
driving functions. A malfunction due to a security breach (e.g. by installing
malicious software) could lead to serious accidents, thereby endangering the
safety of the passengers and also of other road users in close proximity.

Blockchain (BC), an immutable, auditable, and timestamped ledger of blocks,
has attracted tremendous attention from academia and practitioners as a dis-
tributed, private, and secure solution to tackle the aforementioned challenges
in the automotive domain. In BC, the basic communication primitive between
participants is known as a transaction. All transactions are broadcast in the
network and verified by all participating nodes, thus eliminating the need for
central brokers. Particular nodes, known as miners, choose to form blocks con-
sisting of newly generated transactions and append blocks to the BC, a process
known as mining, by solving a computationally demanding, hard-to-solve, and
easy-to-verify puzzle. This puzzle underpins a trustless consensus algorithm
among untrusted nodes. The computation resources required to participate in
the consensus algorithm are typically large. This limits the number of blocks
that each miner can mine and thus offers protection against malicious mining
of blocks. Solving the puzzle involves a process that introduces randomness
among miners, thus increasing the BC security. Two widely used consensus
algorithms in BC are (i) Proof of Work (POW), which demands high compu-
tational resources to solve the puzzle [3], and (ii) Proof of Stake (POS), which
demands both computational and memory resources to solve the cryptographic
puzzle [4]. The blockchain is formed by linking together timestamped blocks.
Each block includes the hash of the previous block in the ledger. Any modifica-
tions to a block (and its transactions) can be readily detected as the hash main-
tained in the subsequent block will differ. This inherent immutability offered
by blockchains is a highly desirable property.
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BC users employ a changeable Public Key (PK) as their identity, which offers
some degree of anonymity, and thus helps in protecting the user’s privacy. Stor-
ing all transactions in the ledger in an immutable manner provides the ability
to audit any transaction at a later time. BC was first introduced in a cryptocur-
rency known as Bitcoin and since then has been widely used in other cryptocur-
rencies known as altcoins [5]. Despite its advantages, the existing instantiations
of BC cannot be readily adopted in the automotive industry due to the following
reasons:

Scalability and overhead—All new transactions and blocks are broadcast to
and verified by all participating nodes in BC. The broadcast traffic and pro-
cessing overhead would increase quadratically with the number of nodes in the
network, which limits BC scalability. Verifying all new blocks and transactions
is far beyond the capabilities of smart connected vehicles due to limited band-
width and processing resources.

Complex consensus algorithms—The consensus algorithms employed in
traditional BC systems (POW or POS) require significant computational
resources, which are far beyond the capabilities of smart connected vehicles.

Latency—Mining and verifying a transaction is associated with a nontriv-
ial delay, e.g. 30 minutes in Bitcoin. However, smart connected vehicles have
stricter delay requirements, e.g. the vehicles in close proximity should not
wait for several minutes to receive transactions, which may contain congestion
information from other vehicles.

Throughput—BC throughput is defined as the number of transactions
that can be mined per second. Conventional BC instantiations have limited
throughput. For example, Bitcoin throughput is 7 transactions per second.
However, smart connected vehicles will generate a large number of transac-
tions to communicate with close-proximity vehicles, roadside infrastructure,
and SPs that offer personalized services, thus requiring higher throughput.

In this chapter, we present a BC-based framework to address the outlined
security and privacy challenges in smart vehicles. To reduce the associated
overhead of conventional BCs, we base our framework on our previously
designed BC instantiation known as Lightweight Scalable BC (LSB) [6]. Smart
vehicles, OEMs, roadside infrastructure, service centers, and SPs jointly form
an overlay network where they can exchange transactions, i.e. communicate.
To ensure scalability, the overlay participants are clustered and only selected
nodes known as Cluster Heads (CHs) perform the core BC functions. New
transactions and blocks are broadcast to and verified by these CHs. CHs col-
late new transactions and form blocks by following a lightweight consensus
algorithm, thus reducing the processing overhead and delay in mining new
blocks. Privacy-sensitive data, e.g. location traces, of each vehicle are stored
in an in-vehicle storage unit, which further enhances the user’s privacy. After
defining our framework, we discuss multiple applications, including wireless
remote software updates, flexible insurance, charging of electric vehicles, and
car sharing.
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The rest of the chapter is organized as follows. An introduction to Blockchain
is provided in Section 5.2. Details of the proposed framework are outlined in
Section 5.3. Section 5.4 presents multiple applications of the proposed frame-
work. Detailed security analysis and performance evaluations are presented in
Section 5.5. Section 5.6 discusses related work, and finally Section 5.7 concludes
the chapter.

5.2 An Introduction to Blockchain

This section presents a brief overview of BC and outlines details of LSB. As
outlined in Section 5.1, in BC the basic communication primitive between par-
ticipants is known as a transaction. The basic structure of a transaction in BC
is represented below:

T ID||P.T ID||Input||Output||PK ||Sign

Depending on the BC instantiation, the transactions can have additional
fields. TID represents the unique identifier of the transaction, which is the hash
of all other fields of the transaction. P.TID refers to the ID of the previous trans-
action of the same node (or entity), which forms a ledger of transactions of
the same node. Each user requires a genesis transaction, which serves as the
first transaction in the ledger to which subsequent transactions can be chained.
The process of creating the genesis transaction depends on the BC instan-
tiation. There may exist dependences between transactions whereby certain
fields generated in one transaction (outputs) are referenced as inputs in another
transaction. The inputs and outputs are stored in the Input and Output fields,
respectively. Recall that in BC, each node is known by a PK. Participating nodes
might decide to change their PK for each transaction that they create as a way
to increase anonymity, and thus enhance their privacy. The hash of this PK is
stored in the PK field. Storing the hash of the PK reduces the size of the transac-
tion and secures the transaction against possible future attacks where malicious
nodes reconstruct the private key associated with the PK. Finally, the Sign field
contains the signature of the transaction generator, created using the private
key corresponding to the PK.

New transactions are broadcast to the network. Each miner verifies every
received transaction and adds it to a pending pool of transactions, i.e. received
transactions that are not yet mined in the BC. To verify a transaction, first the
miner validates the embedded signature using the corresponding private key.
Next, the miner checks whether the P.TID exists in the BC. Once the number
of pending transactions equals a predefined block size, the miner collates them
to form a block. The miner generates a Merkle tree [7] by recursively hashing
the constituted transactions of the block, which are stored as the leaves of the
tree, as shown in Figure 5.1. The root of the Merkle tree is stored in the block
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Figure 5.1 The structure of a Merkle tree.

header to speed up the process of verifying the membership of a transaction in
the block. A key feature of the Merkle tree is that the existence (or not) of a leaf
can be checked with a small overhead. As an illustrative example, to prove the
existence of ‘T1’ in the Merkle tree shown in Figure 5.1, one must store h(T2)
and h(T3,T4) locally. To verify T1’s existence, h(T1) is hashed with h(T2), and
the result is then hashed with h(T3,T4). If the final hash equals h(block1), then
the existence of ‘T1’ is proved.

The miner appends the block into the BC by following a consensus algorithm,
as outlined earlier in Section 5.1. The mined block is broadcast to all nodes.
Each node appends the new block to its local copy of the BC after validating all
constituent transactions.

As outlined in Section 5.1, the existing BC instantiations have limitations
including high (processing and packet) overhead and low scalability and
throughput. To address these challenges, we employ our previously designed
BC instantiation known as LSB [6], which is optimized for the IoT and large-
scale low-resource networks. LSB introduces a Distributed Time-based Con-
sensus (DTC) algorithm that replaces the demand for solving a computational
puzzle with a scheduled block generation process, thus eliminating the signif-
icant processing overhead of conventional consensus algorithms. Each miner
is permitted to store one block during a specific time period known as consen-
sus_period. To decrease the number of duplicate blocks resulting from simul-
taneously mined blocks, each miner waits for a random waiting_time prior to
storing the block in the BC. To address the scalability challenge, LSB clusters the
network and only the CHs manage the BC by verifying new transactions and
forming blocks. LSB dynamically adjusts the throughput using a Distributed
Throughput Management (DTM) method to ensure that the BC throughput
does not significantly deviate from the transaction load generated by the nodes
in the network. To achieve this, the CHs first try to adjust the consensus_period,
and if the consensus_period hits the predefined thresholds, then the network is
reclustered to change the number of CHs. The latter incurs significantly higher
overhead compared to the former as it requires reconfiguration of the overlay
network; thus, CHs prioritize the former. DTM ensures that LSB is self-scaling,
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Figure 5.2 An evaluation of the processing time for validating new blocks [6].

meaning that as the number of transactions increases, the BC throughput will
also increase.

In conventional BCs, all transactions of a new block must be validated by all
participating nodes that receive the block, which incurs significant processing
overhead on the miners. To reduce the associated overhead, LSB uses a dis-
tributed trust algorithm that gradually reduces the number of transactions that
need to be verified in each new block as CHs build up trust in one another.
Each CH maintains a list that records the total number of validated blocks that
other CHs have generated. As shown in Figure 5.2, as more blocks are stored in
BC, the Percentage of Transactions to be Verified (PTV) decreases. Thus, the
processing time for validating new blocks in LSB is significantly lower com-
pared to Bitcoin BC, which always validates every transaction in a block. This
is also supported by the simulation results presented in Figure 5.2. The pro-
cessing time of LSB for 60 blocks is roughly half of that of conventional BCs. In
LSB, the data of IoT devices is stored off-the-chain, i.e. in local or cloud stor-
age, and only the hash of the data is stored in the BC, which reduces the BC
memory footprint as well as the packet overhead on the network. LSB creates a
clear distinction between data and transaction flows. Data packets are routed in
the overlay toward destination using conventional routing protocols, e.g. Open
Shortest Path First (OSPF), while transactions are broadcast in the network.

Nodes use transactions to communicate with other nodes in the overlay. In
LSB, there are two types of transactions based on the number of signatures that
must be validated:

� Single signature—A single signature transaction requires one signature,
which is the signature of the transaction generator, to be considered valid.
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The structure of this type of transaction is similar to that of conventional
BC transactions; however, there is no input/output field in the transactions.
Thus, the single signature transaction can be shown as follows:

TID||P.TID||PK ||Sign
� Multisig—A multisig transaction requires two signatures, which are the sig-

natures of the transaction generator and recipient, to be considered valid.
The structure of this transaction is as follows:

TID||P.TID||PK .1||Sig.1||PK .2||Sig.2

The first two fields are as discussed in the beginning of Section 5.2. The
subsequent fields contain the PK and signatures (Sign) of the transaction gen-
erator and recipient, respectively.

All transactions are broadcast to all CHs. A multisig transaction that arrives
at the CH may not be valid as it may not yet have been signed by the recip-
ient, particularly when the recipient belongs to the cluster of that CH. Each
CH maintains a list of PK pairs (essentially an access control list), which iden-
tifies the nodes that are allowed to communicated with each other. The cluster
members (i.e. the overlay nodes) upload key pairs to the key list of their CH to
allow other overlay nodes to access them. If the CH finds a PK pair in its list
that matches with the PKs in the transaction (PK.1/PK.2), then it forwards the
transaction to the corresponding node that uploaded the key pair. Otherwise,
the transaction is broadcast to other CHs.

5.3 The Proposed Framework

In this section, we discuss the details of the proposed BC-based architecture
for automotive security and privacy. We use LSB as the underlying BC due to
its salient features, outlined in Section 5.2. This design is based on our previous
architectures proposed in [8, 9].

The proposed BC-based architecture is comprised of the following entities:
smart vehicles, roadside infrastructure, SPs, OEMs, service centers, cloud
storage providers, and mobile devices of the users such as smart phones,
laptops, or tablets. The vehicles are connected to the overlay by utilizing a
Wireless Vehicle Interface (WVI). Recall from Section 5.2 that only the CHs
manage the BC by adding new blocks and verifying new transactions and
blocks. Thus, the CHs must be selected from participants with low mobility
and high resource availability, e.g. OEMs, software providers, and roadside
infrastructure. Figure 5.3 shows an example of an overlay network.

Each vehicle is equipped with an in-vehicle storage unit, e.g. a portable
backup drive, that is used to store privacy-sensitive data, e.g. location and main-
tenance history, to protect the privacy of the user. The vehicle shares such
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Figure 5.3 An overview of the proposed method.

privacy-sensitive data with SPs only in case of necessity; e.g. in the event of an
accident, the vehicle may share data with the insurance company. Meanwhile,
the SP needs to ensure that the data has not been changed since generation.
To address this challenge, the vehicle generates single signature transactions in
predefined time intervals containing the signed hash of the data stored in the
in-vehicle storage unit during the corresponding time interval. The vehicle then
sends the transaction to its CH to be stored in the BC. Utilizing this transaction,
other participants in the BC can trust the data source (i.e. the vehicle creating
the data). As the in-vehicle storage has limited capacity, a back-up storage can
be considered in the smart home of the vehicle owner. The vehicle periodically
transfers data from the in-vehicle storage unit to the backup storage. In this
instance, the hash of the backup storage is stored in the BC.

Recall that in BC, each node is known by a changeable PK. Changing the
PK for each transaction introduces some level of anonymity, thus enhancing
user privacy. However, in some instances, other participating nodes may need
to know the real-world identity of a PK owner; e.g. the vehicles must identify
the owner of transactions introducing a new software update. To address this
challenge, the participating nodes whose identity must be known, including
OEMs, insurance companies, and cloud storage, use third party Certificate
Authorities (CAs) to certify their PK. Other participating nodes can verify the
CA’s certificate to confirm the identity of these nodes. Note that we rely on a
centralized approach, i.e. the existing public key infrastructure for this aspect
of identity verification. However, the rest of the functionality is achieved by our
proposed distributed architecture. It is worth noting that the aforementioned
nodes can also use changeable PKs for transactions where their identity is to
be kept private.

Recall that participating nodes send and receive transactions through
their CH. The mobility of the vehicles causes extended delays in receiving
responses from their CH due to increased communication delays. To address
this challenge, we propose a solution based on the soft handover method [10].
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Moving vehicles measure the communication delay with multiple CHs in their
neighborhood. The CH with the lowest delay is selected as the new CH. Then,
the vehicle updates the key list in this new CH with a set of key pairs that
allows other nodes to send transactions to this vehicle. Finally, the vehicle
clears the entries within the key list of the previous CH for the vehicle, and thus
disconnects from that CH. The vehicle experiences no delay or interruption
in receiving transactions from the overlay as all transactions are broadcast to
all participating nodes in BC; thus, the new CH will receive the transactions
of the new vehicle. As the vehicle has updated the key list of the new CH, the
CH will forward transactions to the vehicle. In case the vehicle fails to find a
suitable new CH, e.g. if the CHs are sparsely distributed, the vehicle remains
associated with the original CH.

5.4 Applications

In this section, we discuss various applications that can leverage the proposed
architecture.

5.4.1 Remote Software Updates

The process of upgrading the functionality of Electronic Control Units (ECUs)
of a vehicle, or fixing a bug in the software installed on one of the ECUs requires
a software update where the currently installed software is replaced by a new
software version. Traditionally, such updates are performed in local environ-
ments, such as service centers, using wired connections between the vehicle
and a dedicated diagnostic device. However, in the future, Wireless Software
Update (WSU) systems will see increased adoption. WSU will thereby provide
efficient update mechanisms within the entire lifecycle of a vehicle—in the vehi-
cle development and assembly phase, as well as for maintenance of the vehicle
in a service center. The automotive industry is investigating Wireless Remote
Software Update (WRSU), where the software update is performed while the
vehicle is out in the field. Securing WRSU is one of the most critical challenges
in the automotive domain, as it requires full access to the vehicle and its ECUs.
The current security architectures are centralized, e.g. Tesla utilizes a VPN
to perform remote software updates, which would not necessarily scale for a
very large number of vehicles. Furthermore, these architectures do not address
the privacy issues outlined in Section 5.1. Thus, WRSU demands a distributed
security method while maintaining the vehicle owner’s privacy.

The entire software update process based on our architecture is sketched in
Figure 5.4 and described below. Each OEM uses a cloud storage to store new
available software, and uses this storage to start the software distribution step.
An account is created in the cloud storage for each vehicle by the OEM, and the
account is associated with a public/private key pair. The keys are used to autho-
rize and authenticate nodes that request to download the software update.
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Figure 5.4 WRSU process utilizing the BC architecture.

First, the software provider, which can be a specific department of the OEM
or a supplier providing the ECU with the embedded software, creates a new
software version and stores it in the cloud storage provided by the OEM (step 1
in Figure 5.4). Then, the software provider creates a multisig transaction (Sec-
tion 5.2) and populates its own PK in the PK.1 field. The signed hash of the
stored software binary in the cloud is added to the Sig.1 field. As the binary is
stored in the cloud, the hash can be verified by other overlay nodes, thereby
ensuring data integrity. Following this, the software provider populates the PK
of the OEM in the PK.2 field. Recall that CHs use a key list to decide on how
to forward a transaction. The software provider sends the resulting multisig
transaction to its CH (step 2).

CHs broadcast the transaction (step 3). The CH of the cluster containing the
concerned OEM finds the match in its key list and thus forwards the transaction
to the OEM (step 4). The OEM verifies the new software version and signs the
received transaction, by populating the Sig.2 field. The OEM sends the transac-
tion to its CH (step 5), which is then broadcast to all CHs. The CHs verify the
multisig transaction by checking the signature of both the software provider
and the OEM using the PKs included in the transaction. Next, the CHs notify
their cluster members, i.e. vehicles, about the latest available software update
(step 6).

On receiving the transaction from the CH, the smart vehicle verifies it by
ensuring that the PK.2 field in the transaction equates with the PK of its OEM.
The vehicle subsequently downloads the software directly from the cloud stor-
age (step 7). Recall that each vehicle has a public/private key pair to authenticate
itself to the cloud. Next, the vehicle verifies the integrity of the downloaded
binary by comparing the signed hash of the software binary in the received
transaction, from the OEM and software provider, with the hash of the down-
loaded version. This ensures integrity during WRSU.

Using the outlined steps enhances the security and privacy of WRSU. We will
further elaborate on security and performance of the WRSU using our frame-
work in Section 5.5.
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5.4.2 Insurance

Insurance companies are beginning to use vehicular data (e.g. braking patterns
and speed) collected by in-vehicle systems or an additional device such as an
OBD (i.e. On-board Diagnostics) dongle connected to the vehicle, to record
driving behavior. This information is then used for a flexible insurance rate
scheme where responsible and hence safe drivers pay less than others. These
Pay As You Drive (PAYD) approaches can be beneficial for both the insurance
company as well as the driver. In this subsection, we discuss the suitability and
advantages of our architecture for the PAYD application.

To be able to communicate with the insurance company, the vehicle requires
a PK. This PK must be known by the insurance company so that the company
can associate the received data or transactions with the particular customer to
offer a flexible insurance. Once the customer chooses such a PAYD model, the
insurance company creates a public/private key pair for the car along with an
account in a cloud storage. The cloud storage account is used by the vehicle to
store data, as storing data in the BC incurs huge packet overhead. The vehicle
uses the key pair to secure communications with the insurance company. Using
the PK in each transaction, the insurance company can identify the real identity
of each account holder.

The data sent by the vehicle may contain privacy-sensitive data, e.g. the loca-
tion of the vehicle. This may compromise the privacy of the vehicle owner as
the insurance company knows the real identity associated with each key pair. In
the proposed architecture, such privacy-sensitive data is stored in the in-vehicle
storage unit and is not sent to the cloud to enhance the privacy of the customer.
When privacy-sensitive data is requested by the insurance company, e.g. when
an accident happens, the vehicle sends the data stored in the in-vehicle storage
unit to the insurance company to file an accident claim. Recall that the signed
hash of the in-vehicle storage unit is periodically stored in the BC. This hash
can be used by the insurance company to ensure that the data has not been
modified since the time when the hash is stored in BC.

At the end of the contract period or if the vehicle owner discontinues his/her
contract, the insurance company marks the associated keys, used for authenti-
cation and authorization, of the vehicle in the cloud as expired. Consequently,
further requests by the vehicle either for receiving personalized services or to
store data in the cloud storage are denied.

5.4.3 Electric Vehicles and Smart Charging Services

The number of electric vehicles is constantly growing due to their noticeable
advantages, including reduced environmental footprint. Thus, there is a grow-
ing trend in the demand for fast and efficient charging infrastructure. The
charging infrastructure may endanger the privacy of the vehicle owner as one
may track the frequency and the locations where the user charges his/her vehi-
cle to build a profile of the user’s activities. The vehicles can be interconnected
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with the mobile devices of the vehicle owner and more generally to the IoT to
offer sophisticated services to the user. For example, the charging process can
become more personalized if information about the travel habits of the user are
made available (e.g. through their calendar). This information can be used to
guarantee that the vehicle is fully charged when the user needs it. By intercon-
necting with the smart grid, the vehicles can not only be charged by avoiding
peak load times and thus with cheapest price, but can also sell the excess energy
with the highest price to increase user profit. However, ensuring the privacy of
the user is highly challenging.

Using the proposed architecture, the vehicles can communicate with other
participants, including IoT devices, the smart home of the user, and the smart
grid, in a secure and private manner. The user may employ multiple PKs to
enhance its privacy in the BC. Existing cryptocurrencies, e.g. Bitcoin, can be
used along with our architecture to pay the charging fee. This protects the pri-
vacy of the user as there is no link between the current and the previous pay-
ments of the user. To ensure user control over the exchanged data, the user (i.e.
the vehicle owner) defines which information can be shared between his/her
vehicle and other participants in the BC.

5.4.4 Car-sharing Services

Car-sharing services such as Car Next Door [11] are growing rapidly. These
services require the interconnection of smart vehicles, car-sharing SPs, and
the users of the services in a secure, private, and reliable way. The exchanged
data between these parties include privacy sensitive data, e.g. the location of
the vehicle, and confidential data, e.g. the keys to unlock the car and payment
details of the user.

Using the proposed architecture, multiple participants can communicate or
exchange messages or data in a secure, private manner. For example, the car
sharing SP can share the location of the vehicle with the user and authorize the
user to unlock the vehicle. All interactions between the participants are stored
(i.e. logged) in BC in an immutable manner, making the BC a trusted party to
solve disputes between the participants. For example, consider a situation when
the user is unable to unlock the vehicle for the period he/she booked the car as
the SP has not yet shared the key or shared a wrong key. The user can request a
refund of his/her money and BC can serve as the trusted evidence that the user
was unable to unlock the vehicle.

5.4.5 Supply Chain

Sustainable Supply Chain Management (SSCM) for smart connected vehi-
cles has received significant attention from consumers, OEMs, and govern-
ments as it considers three important dimensions of sustainable development,
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namely economic, environmental, and social [12]. The consumers are increas-
ingly demanding that the parts installed on their vehicle be genuine to ensure
their safety. The OEMs purchase raw materials, parts, or sensors and devices
installed on smart vehicles from other manufacturers or suppliers distributed
around the globe. A supplier may supply parts or raw material for more than
one OEM and vice versa. The OEMs collaborate with each other or suppliers to
reduce the final cost of a vehicle. As outlined by the authors in [13], the supply
chain of smart vehicles should also consider vehicle recycling as some parts of
the vehicle can be reused to prevent environmental hazards.

The supply chain contains privacy-sensitive information about the partici-
pants, e.g. the total number of parts produced by a supplier. Some information
in the supply chain, e.g. the type of devices installed in a vehicle, have to remain
confidential as an attacker might attempt to break into a vehicle by using the
vulnerabilities of the installed parts or devices. Thus, it is important to consider
privacy and security in supply chain solutions for smart connected vehicles.

The proposed BC-based framework has the potential to serve as a secure,
trusted, private, and distributed solution to SSCM. All involved parties in the
vehicle supply chain join the distributed BC and store all their communica-
tions in the BC. The provider of raw materials or parts creates a ledger for each
material/part that is used to record all trade history of that material/part. As
all transactions are stored in the BC, all participants, including consumers, can
check whether the parts they purchased are genuine using the PK of the sup-
plier. The latter is known to the BC participants using CA. By employing exist-
ing cryptocurrencies along with our architecture, the participants can trade
distributedly, and thus eliminate the demand for central banks.

5.4.6 Liability

As the vehicles are being increasingly connected to other vehicles and road-
side infrastructure as well as the Internet, identifying the party that should be
blamed for an accident is getting more complicated. This issue is highly critical
for insurance companies to pay the compensation and is referred to as the lia-
bility challenge in the literature. Liability can be attributed to different parties,
e.g. the OEM if the accident happens when the vehicle is in autonomous mode,
the software provider when the software program is deemed to have led to an
accident, or the service center when the accident happens due to the action that
the service technician conducted on the vehicle. The authors in [14] outlined six
fundamental requirements for liability frameworks in smart connected vehi-
cles, namely evidence integrity, secure storage, nonrepudiation, decentraliza-
tion, authorization, and privacy. Due to its salient features, BC can serve as an
effective solution to address the outlined challenges in liability.

Recall that in the proposed framework, all interactions between participants
are stored in the BC as transactions. The stored transactions are immutable,
so any change to the transactions can be readily detected. Thus, the proposed
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framework can serve as a trusted party to facilitate the collection of compre-
hensive evidence for making liability decisions. The collected evidence includes
interactions between the vehicle and other parties. The stored transactions
might also contain the hash of the exchanged data between parties; thus, mod-
ifications to data can also be readily detected.

5.5 Evaluation and Discussion

In this section, we provide qualitative discussions on the security and privacy
of the proposed framework as well as qualitative performance evaluations.

5.5.1 Security and Privacy Analysis

This section provides an analysis of the security and privacy of the proposed
framework.

Privacy—In the proposed method, each participating node employs a PK as
its identity, which introduces some level of anonymity and thus enhances user
privacy. An attacker might attempt to deanonymize a user by either tracking
multiple identities of a user and linking them together or monitoring the fre-
quency with which the transactions are generated. This attack is known as a
linking attack in the literature. In the proposed framework, each user employs
a fresh PK for communicating with different parties in the network. Each par-
ticipant can have multiple ledgers in the BC, enabling them to have PKs that
are known by the transaction receiver. This reduces the chance of a successful
linking attack and thus enhances user privacy.

The vehicles generate privacy-sensitive data, e.g. the vehicle location. To
enhance the privacy of the vehicle owner, in the proposed framework, such
privacy-sensitive data are stored in an in-vehicle data storage unit. The hash
of the data is stored periodically in the BC; thus, other parties can trust that
the data received by the vehicle is not modified by matching the hash of the
received data with the hash of the stored transaction in the BC.

Each vehicle is equipped with a wide range of sensors and devices that collect
data from the vehicle. These devices exchange the produced data with multi-
ple parties to receive service. To ensure user privacy, the user must be able to
identify which participants can access his/her devices or data and with what
frequency. Using the proposed framework, the user can authorize other par-
ticipants to access the vehicle using the key lists in the CHs (Section 5.2). All
interactions between participants is stored in the BC; thus, the user can moni-
tor the frequency with which his/her devices are accessed.

Security—The security of the proposed architecture is inherited from the
BC. The transactions (and data) are encrypted using asymmetric encryption,
which ensures confidentiality. The signed hash of each transaction is stored in
the BC, which ensures integrity. Each CH maintains a key list that enables the
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associated participants to authorize other participants to access them, which
ensures authorization.

In the following paragraphs, we evaluate the resilience of the proposed archi-
tecture to selected security attacks. We define different attack scenarios that
allow the attacker to control a smart vehicle:

Data manipulation—In this attack, the attacker changes the data stored in a
cloud storage. The aim of this attack varies based on the entity that performs the
attack. For example, an attacker may manipulate the software binary in a cloud
to install malware in vehicles, or an insurance company may alter the data sent
by a vehicle to falsely make the vehicle owner responsible for an accident and
thus not pay the compensation. Recall that the signed hash of the exchanged
data between participants is stored in the BC. Thus, any modification of the
data can be readily detected as the singed hash in the BC does not match with
the hash of the modified data.

Masking attack—In this attack, the attacker pretends to be another node
and performs action on behalf of that node; e.g. a malicious node may pretend
to be an OEM and distribute malicious software updates. Recall that in the
proposed architecture, all participating nodes are anonymous. Thus, the attack
is only possible in cases where a node is known by other overlay nodes. The
PKs of such nodes are known by all participants and can be verified using CA.
Thus, the attacker cannot claim to be another node as it will require the private
key associated with the PK of the relevant node.

Distributed Denial of Service (DDoS) attack—To perform a DDoS attack,
the attacker first compromises a large number of participating nodes in the
overlay. These compromised nodes are then orchestrated to send a large
number of transactions to a targeted overlay node in order to overwhelm it.
Recall that a CH forwards a transaction to one of its cluster members only if
the keys in the transaction (i.e. PK.1 and PK.2) match with a key pair in its
key list. The transactions generated by the compromised nodes participating
in the DDOS attack will not match with any key pair in the key list, and thus
are eventually dropped and do not impact the target node. However, this large
number of transactions incur packet overhead on CHs. Since the transactions
require the signature of the target node to be considered valid, none of them
are stored in the BC.

5.5.2 Performance Evaluation

In order to evaluate the performance of the proposed method with a particular
focus on the WSU case (see [15] for more information), we implement our
BC infrastructure using BeagleBone Black boards (BBB) and an additional
communication cape that allows a BBB to connect to a vehicle via CAN/OBD.
Figure 5.5a depicts the devices used in our implementation. We implement
the overlay nodes in Java in the same host, except for those that are placed in
devices, e.g. BBB. We store the software update in the storage and distribute



110 Blockchain for Distributed Systems Security

(a) (b)

Figure 5.5 (a) The WVI prototype based on a BeagleBone Black and our developed
communication cape; (b) target ECU: Infineon AURIX ECU in the AURIX application kit
TC277 TFT.

it using the proposed framework to evaluate the performance of the vehicles.
As target ECU for the software update, we use an Infineon AURIX ECU, an
automotive multi-core ECU, assembled in the AURIX application kit TC277
(Figure 5.5b).

The WVI, the vehicle, and the Diagnostic Tester (DT) are interconnected
using an IEEE 802.11s mesh network. We chose this protocol as the mesh
characteristics of an IEEE 802.11s network increases the flexibility as well as
the reliability of the network due to its multihop capability and the resulting
redundancy.

To compare our method, we have implemented a baseline that is similar to
the state-of-the-art method where the software is distributed by the OEM to all
the vehicles and the vehicles use a digital certificate to verify the identity of the
OEM and the authenticity of the software. We measured two metrics, which
are as follows:
� Packet overhead—This refers to the total number of packets generated to

distribute the new software.
� Latency—Herein we measure the incurred processing overhead by BC for

distributing new software.

In the following, we discuss the evaluation results.
Packet overhead—To evaluate the packet overhead, we first evaluate the

incurred overhead resulting from using BC for distributing new software. We
collect the exchanged packets in the overlay and group them into data-related
(i.e. packets that contain the new software itself ), BC-related, and initializa-
tion packets that are required to initialize the network. The packet overhead is
affected by the number of vehicles, the size of the software binary, and the total
number of performed updates, which are 20 vehicles, 32KB, and 100 software
updates, respectively, in our evaluation. The corresponding results demon-
strate an incurred overhead of 3.4%, which is increased to 7.3% when only one
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Figure 5.6 A comparison of the packet overhead of BC-based and certificate-based
frameworks.

of the vehicles performs the update. As evident from the results, by increasing
the number of vehicles in the overlay, the total ratio of the packet overhead for
software update is reduced.

Next, we measure the packet overhead incurred by the proposed framework
compared to conventional certificate-based software updates. We implement
both the studied methods in a network formed by 10 devices (including BBBs,
Raspberry Pi3’s, and a laptop). We study the packet overhead as a function of
the total number of vehicles, the number of packets, and the total number of
updates per vehicle. Figure 5.6 outlines the implementation results. As is evi-
dent, BC sligthly reduces the packet overhead for software updates compared
to a certificate-based method.

Latency—In this part, we evaluate the delay incurred by the proposed frame-
work. We first measure the latency to install and distribute the software update.
For this, we measure the following: (i) the latency required for distributing the
software using our LSB infrastructure and (ii) the latency for installing the soft-
ware itself. This is essentially the last step in the proposed framework where
the new received software is installed on an ECU, as described in [15] in more
detail. Table 5.1 summarizes the implementation results.

The implementation results demonstrate that the installation of a new soft-
ware binary on an ECU using a wired in-vehicle bus takes more than five times

Table 5.1 Study on the latency of software update.

Software Distribution Wireless Local Update WVI Installation

2682.3 ± 8.3 ms 16271.0 ± 323.4 ms 13831.7 ± 228.3 ms
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Figure 5.7 A comparison of the latency of BC-based and certificate-based frameworks.

longer than the software distribution from an emulated software provider to
the vehicle using the proposed BC-based framework. The software update dis-
tribution in the proposed framework is six times faster than the local software
update process (such as that performed in a service center). It is worth noting
that the software distribution does not include delay resulting from the verifi-
cation of new software performed by the OEM.

We next compare the latency in the proposed method with conventional
certificate-based software updates. We implement both studied methods in a
network formed by 10 devices (including BBBs, Raspberry Pi3’s, and a laptop).
As is evident from the implementation results shown in Figure 5.7, the pro-
posed framework reduces the latency for software update compared to con-
ventional certificate-based methods.

5.6 Related Works

In this section, we provide a brief literature review on using blockchain for
smart connected vehicles.

The authors in [16] proposed a BC-based framework to ensure trust and
security for communications between vehicles. To ensure trust, the vehicle
manufacturer generates and stores an Intelligent Vehicle-Trust Point (IV-TP)
in each vehicle it produces. The IV-TP is used between the communications of
the vehicles to ensure trust. However, this method does not consider the pri-
vacy of the vehicle owner as transactions generated by a single IV-TP can be
tracked, which reveals privacy-sensitive information about the vehicle owner.

The authors in [17] proposed a BC-based layered interconnection model
for Intelligence Transportation Systems (ITS). The proposed model consists
of seven layers, namely physical, data, network, consensus, incentive, con-
tract, and the application layer. Utilizing these layers, ITS participants can
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communicate using multiple BC instantiations. However, the framework is yet
to be applied in real scenarios.

A BC-based framework to ensure security and privacy in smart cities is pro-
posed by the authors in [18]. The proposed method utilizes a permissoned
blockchain where a revocation authority controls the identity of the vehi-
cles joining the BC network and specifies which vehicles can serve as miners.
Although the proposed method can ensure security in communications due to
the usage of BC, the associated (processing and packet) overheads are signifi-
cant, which would limit the applicability of the proposed method.

The authors in [19] studied the usability of consortium BC (which is essen-
tially a permissioned blockchain) to secure communications between smart
vehicles. Using the proposed framework enables the vehicles to exchange
data with other participants. The exchanged data can be vehicle maintenance
records or the data produced by the sensors and devices of the vehicle. The
identity of each vehicle is verified using a central identity database. However, the
proposed framework does not consider user privacy and the associated packet
overhead to exchange data through BC.

The authors in [20] proposed a BC-based framework, known as
block4forensic, to address the liability challenge in smart vehicles. In
block4forensic, multiple participants in the vehicle life cycle manage the BC.
All interactions between these participants are stored in the BC to be used
later as evidence for liability. The data of the sensors embedded in the vehicle
are shared with the insurance company by a forensic daemon and the hash of
all exchanged data is stored in the BC to protect data integrity. In a similar
attempt, the authors in [14] have proposed a liability framework for smart
vehicles. The proposed framework is based on a permissioned blockchain
where only authorized participants can join the BC. Different transactions are
introduced to facilitate the collection of evidence for liability decision.

The authors in [21] proposed a reliable privacy-preserving framework that
selects the charging infrastructure for the vehicle without revealing privacy
sensitive data, e.g. the vehicle location or payment information. The proposed
framework selects the best charging infrastructure based on the price and
location.

5.7 Conclusion

In this chapter, we proposed a BC-based solution to automotive security and
privacy. The proposed framework incorporates all entities in the vehicle life
cycle, including, but no limited to, insurance companies, software or hard-
ware suppliers, and roadside infrastructure. The interactions, i.e. transactions,
between these parties are recorded in BC, which provides high auditability.
Each participant is known by a changeable PK, which introduces a level of
anonymity.
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We studied the applicability of several automotive use cases in our frame-
work. We described possible attack scenarios and discussed how the pro-
posed architecture is able to mitigate and inhibit these attacks. Implementa-
tion results demonstrated that the BC-based solution reduces delay and packet
overhead in remote software update compared to conventional centralized
methods.
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6.1 Introduction

A recent report from the US Department of Transport (DoT) indicates that
nearly 82% of traffic accidents can be prevented by introducing intelligent
transportation system (ITS) into the existing traffic systems [1]. ITS is proposed
as the only candidate to solve the current problems within transportation sys-
tems, such as road safety, navigation, and congestion control. As a submod-
ule of the ITS, Vehicular Communication System (VCS) supports the exchange
of messages between vehicles and also with infrastructural facilities [2]. One
of the most well-known VCS structures is called Vehicular Ad Hoc Network
(VANET). As an extension of Mobile Ad Hoc Network (MANET), VANET
offers a platform among ITS for vehicles to exchange messages with differ-
ent functions, such as safety notification messages. In addition to the message
exchange among multiple vehicles, VCS supports message communications
between vehicles and infrastructure as well. Moreover, VCS is one of the most
important use cases of the Internet of Things (IoT). As shown in Figure 6.1,
VCS plays the overlap part between ITS and IoT.

VCS security highly relies on the trustworthiness of the information inside
exchanged messages. These messages are known as safety messages. The cor-
rectness of the vehicle status information in these safety messages (e.g. speed,
direction, position, and vehicle size) determines whether ITS runs in a regular
and sustainable manner as it enables vehicles and infrastructures to be aware of
the status of the surrounding environment; vehicles can obtain a better under-
standing of current road situation and accident report based on the informa-
tion contained in safety messages from nearby ITS communication nodes. To
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Figure 6.1 The relationship between ITS, VCS, and IoT.

guarantee the trustfulness and legality of safety messages, the messages are sup-
posed to be encrypted with a pre-agreed secret key. Thus, the problem of pro-
viding VCS application layer security can be mapped into the problem of how
to reliably distribute or update secret keys among all the communicating par-
ticipants, especially how to timely deliver the secret key to another security
domain to finish the node handover progress. Moreover, high mobility, a mas-
sive number of devices, and a wide range of vehicle activities pose extra chal-
lenges to VCS-centralized management and Access Point (AP) deployment. For
this reason, distributed VCS management structures are considered as a pos-
sible method to achieve higher network management efficiency, mild network
manager burden, and lower infrastructure building cost.

The current solution to achieve trusted safety message exchange among the
VCS area is to encrypt and authenticate the message [3] before broadcasting
the message to VCS. The encrypted safety message exchange is achieved on
the premise that secret keys be distributed in a safe manner using key manage-
ment schemes. Even though significant developments have taken place over
the past few years in the area of VCS, security issues, especially in the area of
key management schemes, are still an important topic of research. With this
in mind, Blockchain is considered as a feasible solution to achieve the goal.
Consensus algorithms and state replication in distributed databases are histor-
ically confined to closed, distributed systems. In open systems, trust, security,
and acceptability require different solutions. In 2008, Nakamoto launched the
digital currency Bitcoin [4] and its key technology, Blockchain, in which dis-
tributed ledgers of verified transactions are created with no central control,
where trust is a self-emerging property based on a subtle interplay between
incentives, cryptographic puzzle solving, and peer-to-peer consensus creation.

However, with most of the Blockchain researchers focusing on the financial
area, other characteristics of Blockchain are neglected, which are distributed
authentication and information propagation. Blockchain is a synchronized and
distributed ledger that stores a list of blocks. Blocks record user information
and a receipt to link to the previous block. Some approaches have already
examined the feasibility of Blockchain-based IoT solutions. In a paper [5], it
was proposed to use blockchain in line with a decentralized system to manage
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personal data over IoT devices. The access control of personal data is moni-
tored by blockchain. The authors in [6] focus on a cutting-edge secure transac-
tion exchange system using blockchain for decentralized energy trading in two
different IoT scenarios—smart grids and smart medical systems. Despite the
fact that there are several solutions for using blockchain in IoT, blockchain-
proposed security schemes, especially in the VCS scenario, still need to be
designed and examined.

6.2 Use Case

The use case should be addressed based on the technical challenges within the
IoT networks. The security research work aims to establish a novel key man-
agement scheme based on the use case, which contains a large volume of VCS
service participants. Two barriers that exist in the IoT use cases are the high
expense of the network overheads and computation inefficiency. In fact, these
two aspects are the major difficulties of the key management research, espe-
cially in VCS. Thus, the first aim of key management research is to reduce
the overall broadcast messages, also known as the communication overhead,
whereas the second aim is to speed up the key management processing time.
For these reasons, the node handover is considered as the major use case.

The wireless network allows nodes to move freely without the restriction
of cable connections. The wireless network achieves coverage by deploying
multiple cellular subnetworks. The aim of handover in the wireless mobile net-
work is to enable mobile nodes to seamlessly roam from previous subnetworks
to another one. Handover authentication appears to become a new barrier
because of the unavoidable authentication processing time upon network shift.
The identity and validity of the joining user are verified by the new cellular sub-
network in order to assure security, also known as key handover. Figure 6.2(a)
illustrates a typical key handover scenario in a mobile network. Apart from
mobile nodes (mobile phones or vehicles), the handover procedures involve
collaboration between four entities—Mobile Nodes (MN), Home Agent (HA),
Foreign Agent (FA) and Authentication Server. The authentication server is

Figure 6.2 The conventional mobile node handover process.
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located at the top level of the system architecture and is responsible for the
management, issuance, and initialization of cryptographic materials, such
as secret keys and certificates. The middle layer contains subnetwork cells,
namely HA and FA. The MN current registers with HA, while a key handover
happens when the MN roams into the coverage area of FA. MNs occupy the
end branches of the architecture. They are the end users who require access
to network services. The MN demands network access within the entire
network and it has network connection via HA. No mutual trust relationship
is established between MN and any non-HA subnetwork; this means that
the MN can not trust the information from any non-HA server without
verifying, and vice versa. The current connection is achieved after successfully
authenticating with HA. Compulsory authentication steps are required if MN
wants to enable network access outside the coverage area of HA. At the same
time, FA uses cryptography-based messages to prove its identity and legality.
Thus, the handover starts with the MN joining and ends with the completion
of authentication. Identity and legality are checked during the authentication
steps. The identity is checked by verifying the signature, which can be linked to
the current pseudonym related key pairs of MN. Legality is shown in a specific
field inside the certificate. The field is dedicated to indicate the legality-valid
period of the MN.

The existing key handover schemes are based on mobile phone networks
or general Wireless Sensor Networks (WSNs), such as schemes in [7, 8]. MN
in these scenarios have unpredictable trajectories; therefore, the message han-
dover authentication is triggered by MN and multiple handshakes are required
between FA and HA. While in the VCS scenario, the trajectories are easily pre-
dicted due to the fact that the vehicle sends safety messages and SM knows the
driving status of all the vehicles under its coverage area. Figure 6.2(b) shows that
HA and FA are replaced by Security Managers (SM). Here, we assume Security
Manager A (SM-A) plays the role of HA and SM-B acts as FA. In VCS, SM-A
knows the vehicle is about to join the coverage area of SM-B according to the
driving direction, speed, position, and all the cryptographic materials. Thus,
SM-A informs SM-B about the message handover action in order to let SM-
B update keys to the vehicle. To sum up, the handover schemes in the mobile
network need a round trip between three entities (MN, FA, and HA) to finish,
while only a one-way communication is needed in VCS. A more detailed intro-
duction about message handover in VCS is illustrated below, starting with a
brief description of the proposed VCS network structure.

6.2.1 Message Handover in VCS

Nodes in VCS are hierarchically classified into four layers, based on responsi-
bilities. Three layers are on the side of service providers, while the service user
occupies a single layer. As shown in Figure 6.3, the service provider comprises
RSUs, SMs, and Public Key Infrastructures (PKIs). SMs and Road Side Units
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Figure 6.3 VCS network structure; (a) traditional structure; (b) blockchain-based structure.

(RSUs) have wireless communication devices using VCS standards. Meanwhile,
vehicles are required to equip communication devices to support the corre-
sponding VCS standards. Safety messages are periodically sent by vehicles,
which are collected by RSUs that are built along the road at regular intervals
in order to provide maximum network coverage. A PKI contains Certificate
Authority (CA), anonymity server, and other central management infrastruc-
tures to support applications. All the cryptographic materials are managed by
the PKI, which plays the central manager of the network. Permanent identi-
ties, certificates, and pseudonyms of vehicles are calculated and authenticated
at PKI in order to issue legal user identities in VCS. Each SM has its own log-
ical coverage area, which is called security domain. SMs help PKI to manage
cryptography materials of security domains, which are logically placed below
the PKI layer. It is proposed to install SMs in a geographically sparse manner,
one for each security domain. RSUs act as APs that offer interfaces to bridge
messages between the service provider and users.

Traditional structure—The traditional structure strictly follows the afore-
mentioned hierarchy. We assume SMs take the job of HA, FA, and RSUs only
for improving the network coverage area. The current registered SM acts as
HA, while the SM in the about-to-join domain is the FA. Additionally, malicious
behaviours in VCS can easily endanger human life; it requires top-level security
to deliver trusted service. The requirement is fulfilled by equipping the server
that supervises user data. Thus, the handshakes between SMs are checked by
the infrastructure inside PKI in a mandatory manner. As shown in Figure 6.3(a),
security domains are areas managed by different SMs and PKIs supervise the
network at the top level. Each PKI manages multiple numbers of SMs; the num-
ber depends on the geographical topology of the area. This, however, makes the
network an inefficient key exchange, and will require unnecessary handshakes
if a car passes from one security domain to another.
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Figure 6.4 Cross-domain key handover handshake procedures in traditional structure.

The cross-domain handshake procedures in the traditional network are
shown in Figure 6.4. Before the key management scheme runs, the network sets
a collection period based on the traffic level. When a vehicle attempts to join
Security Domain B from Security Domain A, it keeps sending safety messages
that contain speed and position information. SM-A picks up the safety mes-
sages and recognizes the border crossing request from the information inside
the safety messages. SM-A (the previous SM) picks up all the border crossing
requests from safety messages within a transaction period. These requests and
information related to the vehicle are encapsulated into transactions. SM-A
sends these transactions one by one to PKI-A. To assure security, the digital sig-
nature and certificate within the requests are checked for proof of authenticity
and integrity. The message format is shown in step 1 below. The ciphertext is
decrypted using PKI-A’s private key and re-encrypted using PKI-B’s public key.
That’s because the original ciphertext is secured using PKI-A’s public key and
PKI-B doesn’t have the corresponding key to decrypt. During proofreading,
the proved transactions are translated into a new version, which is readable
by PKI-B. The above message format is shown in step 2. In step 3, PKI-B
repeats the checking steps after receiving the transaction packet and converts
them into an SM-B readable version. Finally, all the cross-border requests
arrive at SM-B, packed in the transaction packet. A handshake message flow
is shown below for details, where En{∗} stands for the encryption activities
using the Elliptic Curve Integrated Encryption Scheme (ECIES) [9], and Sig{∗}
is the signing conducted using the Elliptic Curve Digital Signature Algorithm
(ECDSA) [10]. PK∗ and SK∗ are elliptic curve based public and private key pairs,
respectively.

1. SM-A sends transactions to PKI-A :
En{info}PKPKI−A

+ destSM + Sig{Cipher + destSM}SKSM−A

2. PKI-A forwards the transaction packet to PKI-B :
En{info}PKPKI−B

+ destSM + Sig{Cipher + destSM}SKPKI−A

3. PKI-B forwards the transaction packet to SM-B :
En{info}PKSM−B

+ destSM + Sig{Cipher + destSM}SKPKI−B
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Figure 6.5 Same-domain key handover handshake procedures in traditional structure.

The handshake steps are simplified if SMs at both sides are in the same secu-
rity domain. The formats of the handshake messages are presented below. In
step 1, SM-A-1 forwards transactions to PKI-A to prove the authenticity and
integrity. In this same domain scenario, both SMs are undermanaged by the
same PKI. Therefore, there is no need to translate transactions into another
version that is dedicated to other PKIs. Similar to the cross-domain version
above, SM-A-2 receives transactions from the transaction packet in the end.
The aforementioned steps are presented in Figure 6.5.

1. SM-A-1 sends transactions to PKI-A :
En{info}PKPKI−A

+ destSM + Sig{Cipher + destSM}SKSM−A

2. PKI-A forwards the transaction packet to SM-A-2 :
En{info}PKSM−A−2

+ destSM + Sig{Cipher + destSM}SKPKI−A

Blockchain-based structure—It is tedious to force the key handover mes-
sages passing PKI as key transferring between security domains is delayed due
to multiple handshakes within PKIs. The key handover handshake could thus be
simplified by introducing a Blockchain decentralized structure. The Blockchain
structure helps to minimise the network structure, which helps the messages
to be verified by the SM network but not the PKI. A part of the functions of
the PKI is diverted to the SM network, such as processing the key transferring.
Similar to the Bitcoin network, the function of Blockchain enables nodes to
share information without the need for centralized supervision of this ledger
by a central manager. SMs are linked to the SM network, which connects other
SMs within different security domains. The SM network uses the peer-to-peer
(P2P) structure and operates in the manner of a cloud network. As presented
in Figure 6.3(b), the central manager (PKI) is placed in an isolated environ-
ment to dedicatedly generate cryptographic materials for all the nodes. Cryp-
tographic materials, such as vehicle identities, pseudonyms, and pseudonym
certificates, are supposed to be kept in a secured facility for privacy and secu-
rity purposes [11]. Thus, the central managers are accessed under the follow-
ing two situations: (i) Initial registration—New vehicles need to apply for the
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Figure 6.6 Handshake procedures of cross-domain handover in distributed ledger
technology based structure.

initial registration when they leave the manufacturer and first participate in a
new security domain. (ii) Adversary revocation—In the blockchain based struc-
ture, malicious behaviours are recognized by using blockchain look-up. Iden-
tity (including pseudonyms) of the adversary is publicized once the malicious
behaviours have been confirmed.

A simplified handshake graph is shown in Figure 6.6 and the message hand-
shakes with message formats are shown below. The collection period allows
several transactions to be broadcasted into the SM network and picked up by
SMs in the network. Digital signatures and certificates in the transactions are
processed to verify whether the information in the transactions is trustworthy.
Ciphertext in transactions is kept from decryption until they reach the destina-
tion SM since the ciphertext is encrypted using the public key of the destination
SM. According to the nature of blockchain mining, transactions are inserted
into the block in random order, which is decided by SMs. Last but not the least,
the above block will be mined using mining algorithm and the mined block will
be broadcasted back to the network. The above procedures are presented as
follows:

1. SM-A sends transactions to SM-Cloud :
En{info}PKSM−dest

+ destSM + Sig{Cipher + destSM}SKSM−A

2. SM-Cloud returns the mined block to SM-A :

6.3 Blockchain-based Dynamic Key Management Scheme

In this approach, Blockchain is used to simplify the network structure so that
the key handover proccesses experience fewer message handshakes and delay.
Based on the description of the simplified structure in the previous section,
information propagation between security domains can be accelerated since
the information is directly sent to the destination rather than passing the
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messages through PKIs. Moreover, the distributed structure of the Blockchain
network shows better robustness under the single point of failure. Here,
we propose our Blockchain-based key management scheme based on the
following assumptions:

Assumption 1: (role of miners)—Generally speaking, nodes are classified into
two roles according to different responsibilities among the Blockchain network,
namely service user and miners. The miners are nodes with powerful compu-
tation power that use their computation power to maintain the Blockchain. In
the Bitcoin network, a portion of nodes chooses to play the role of a miner by
their own accord. The miners are paid Bitcoins as reward if they successfully
mine a block. In our Blockchain-based scheme, we assume all the block mining
tasks are carried out by all the SMs in a mandatory manner. As a reward, the
SMs are granted permission of access to the key management services. All the
SMs take the roles of service user and miner at the same time.

Assumption 2: (mining synchrony)—It is necessary to assume that all the SMs
start mining tasks at the same time or approximately the same time. As the nav-
igation service is contained in the ITS applications, each vehicle should have a
synchronized clock. This helps to limit the deadline for each transaction col-
lection interval.

Assumption 3: (consensus)—The most famous consensus method is Proof of
Work (PoW), which is calculated by trying multiple hashes. The PoW is a piece
of digital receipt that is hard to generate and easy to verify. The nature of con-
sensus in Blockchain is a distributed way to establish an agreement between a
group of nodes, instead of relying on the central manager’s decision. The PoW
with low difficulty is proposed in this approach as all the SMs have identical pro-
cessing modules inside and they are assumed to link with highly secured wire
connections. The low difficulty allows a short PoW computation time, resulting
in efficient consensus.

6.4 Dynamic Transaction Collection Algorithm

6.4.1 Transaction Format

Transactions are designed to encapsulate key transfer materials from the source
SM to the destination SM. Seven fields are proposed to contain useful infor-
mation inside the transaction header of our previous papers, which follow the
basic transaction template of blockchain applications (Table 6.1) [12, 13]. The
first field shows the results of the remaining five fields, which are calculated
through the hash function. A type field is inserted into the transaction in order
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Table 6.1 The format of transaction.

Transaction Header

1. Hashed result of the transaction
2. Transaction type
3. Number of this transaction in the block
4. Current security domain number SM-this
5. Destination security domain number SM-dest
6. Vehicle identity materials including the encrypted vehicle

pseudonym and certificate
7. Signature of this transaction to ensure integrity and

authentication; the Signature is generated using private key of
SM: SKSM-this

Payload field: (encrypted transaction information)
Cipher = En{info}PKSM−dest

to further extend the transaction function to privacy applications. The trans-
action number shows the position of this transaction in the block. The value
of this field varies depending on how SM organises the transaction sequence.
The current and the destination SM numbers are equivalent to the currency
input and output of Bitcoin applications, respectively [4]. The identity mate-
rials, including the pseudonym and the certificate of the handover vehicle, are
encrypted using the public key of the destination SM. The signature occupies
the last position of the transaction to maintain the authentication, integrity, and
nonrepudiation of the key transfer information.

Table 6.1 shows the payload field, which attaches behind the transaction
header. Here, info is the identity and vehicle status materials in the transac-
tion, including the certificate, pseudonym, speed, heading, and other status
data. To keep the confidentiality of the information in transactions, identity
materials and vehicle status data are encrypted using the destination SM’s
public key. As a result, the information stays unreadable to the SM network
except for the destination SM. Privacy-related information is encrypted into
ciphertext En{info}PK−dest using the destination SM’s public key PKdest . The
signature is computed using both ciphertext and the number of the destina-
tion SM, and signed using the source SM’s private key SKthis. Encrypting the
privacy-related information combined with digitally signed transaction con-
tents ensures that an adversary cannot act as a normal node, or amend and
eavesdrop cross-domain requests, as that would require the adversary to forge a
signature. Simultaneously, other SMs are able to examine whether this transac-
tion is legitimate or not. Similarly, a malicious user cannot read anything from
the encrypted message, as only the destination SM has the key to decrypt the
message.
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Table 6.2 The format of block.

Block Header

No. Field Description

1. Version Block version number
2. Previous block hash Hash of the previous block in the chain
3. Merkle tree root Hash of the Merkle tree root RootM

4. Timestamp Creation time of this block
5. Targeted difficulty The proof of work difficulty target
6. Nonce A counter for the proof of work

Block Payload (transactions)
Transaction no. 1 ⋅ ⋅ ⋅ Transaction no. n

6.4.2 Block Format

The block header is constructed by six fields, as illustrated in Table 6.2, similar
to the Bitcoin block structure [12]. In this security purpose application, all the
blocks have the same block version value in the first field since all the blocks are
used to transfer handover requests. However, the field can further be developed
to indicate other Distributed Ledger Technology (DLT) applications, such as
pseudonym shuffling for privacy purposes. The second field links the block to
the previous blocks. This field helps blocks to link to each other and creates a
chain structure to generate the ledger. All the transactions and their sequence
in the block are represented in the block header in the form of Merkle tree
root [14]. Merkle tree root assures the integrity of transactions since even a
single alteration in transactions can cause a totally different value of Merkle root
value. Time tampering is prevented by checking the timestamp field. The PoW
algorithm defines a 256-bit target mining solution with a number of zeros at the
start of the hash result of the block header [6]. The number of zeros is denoted
as nzeros and it also the targeted difficulty in the PoW mining algorithm. SM
collects all the transactions within a pre-agreed period (transaction collection
period) of time and sorts these transactions in an arbitrary order into a block.
In this way, blocks are able to aggregate multiple cross-border requests.

The payload field of a block is comprised of verified transactions that SMs
collect within the transaction collection period, denoted by tCP. These transac-
tions are marked in sequence and packed into the same block. The theoretical
number of transactions is decided by tCP and the number of passing vehicles in
each hour (nH ). The number of transactions nT can be calculated by using the
equation nT =

nH
3600s∕hour

× tCP.
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Table 6.3 The time elements of processing procedures.

Parent Field Description of Parent Field
tprep The time cost to prepare block,

which will be mined later
ttransfer Transmission time cost in SM network

including CSMA back-off time
tprocessing Processing time for message encryption,

decryption, signing, and verification
Child Field Description of Child Field
trand Calculation time to generate random transaction sequence
tfill Time cost to insert transactions into the block message
tmerkle Calculation time to get Merkle tree root
theader Processing time to prepare block header
tBO Average CSMA back-off time
tP Propagation time in network cable
tE Processing time to encrypt plain text (ECIES)
tD Processing time to decrypt cipher text (ECIES)
tS Processing time to sign messages (ECDSA)
tV Processing time to verify signature (ECDSA)

6.5 Time Composition

Table 6.3 shows all the time elements that compose the key transfer time. For a
traditional structure, all the time variables in tprocessing are taken into account,
while tV is the only one to be considered in a blockchain structure. Message
transfer time ttransfer includes the information propagation time in cable, as well
as the random back-off time in the Carrier Sense Multiple Access with Collision
Avoidance (CSMA/CA) protocol that is specified in SAE J2735 [15]. The vari-
able tprep is dedicated to blockchain applications, containing time cost variables
to create a new block.

As described above, processing times for three situations are summarized
in Eq. 6.1–6.3, where nT is the average number of transactions in a single col-
lection period. Variables tTC , tTS, and tB are processing times of key transfer
procedures in the cross-domain traditional structure, same-domain traditional
structure, and blockchain structure, respectively.

tTC = nT × (tV + tD + tE + tS) × 2 + (tBO + tP) × 3. (6.1)

tTS = nT × (tV + tD + tE + tS) + (tBO + tP) × 2. (6.2)
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Eq. 6.1 and 6.2 describe the time components in the traditional structure.
PKIs in the traditional structure must verify and translate transactions to the
neighbour PKIs or SMs. Both situations take all the elements in tprocessing into
calculation. For the cross-domain scenario, the above processes are designed
to be implemented twice.

tB = nT × tV + (tBO + tP) × 2 + tprep + tM. (6.3)

Eq. 6.3 expresses that only signature verification is required in transaction
checking. However, mining time tM and block preparation steps are attached
to overall processing time in order to extend the blockchain.

6.5.1 Dynamic Transaction Collection Algorithm

As mentioned in the above subsection, the number of transactions nT is
decided by the length of the transaction collection period tCP. The key han-
dover time varies depending on the overall number of transactions to be pro-
ceeded. Therefore, it is necessary to consider a dynamic transaction collection
algorithm to control the number of transactions, and further adapt the key han-
dover time according to the dynamic traffic situations.

In order to have a reasonable metric to measure the results, a time period
of 1 second is selected as the standard metric to measure the performances
of various collection periods. Here, assume that nT−All is a sum-up number of
transactions that contains all the key handover activities on all the roads. tB−1
is the average processing time measured in 1 second under various collection
periods. nR is the number of roads that are taken into calculation. Based on the
transaction number nT and Eq. 6.3, the number of transactions coming from
the overall number of nR roads and average processing time tB−1 can be derived
as follows:

nT-All =
traffic amount

3600s∕hour
× tCP × nR. (6.4)

tB−1 = [nT-All × tV + (tBO + tP) × 2 + tprep + tM]∕tCP. (6.5)

To find the most suitable transaction collection time, several candidates are
prepared within a range with regular intervals, such as five candidates from 0.5
seconds to 1.0 second with spacing of 0.1 seconds. The estimated key transfer
time is calculated using various collection periods as inputs. The optimized
transaction collection time is selected according to the minimum key transfer
time:

argmin
tCP

tB−1 subject to : tCP ∈ [t1
CP, tn

CP]
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To sum up, a transaction collection period optimization algorithm is demon-
strated using the pseudo-algorithm in Algorithm 1.

Algorithm 1: Optimize the transaction collection period
Input: : Traffic amount on each road nH , n optional transaction collection periods (t1

CP ⋅ ⋅ ⋅ tn
CP)

Output: : Optimized transaction collection period tm
CP

1: Initialise a data sink tB−1 = [t1
CP ⋅ ⋅ ⋅ tn

CP]
2: for (i = 1; i ⩽ n; i++) do
3: Call Equation(6), calculate ti

B−1 when tCP = ti
CP and traffic amount

on each road is equal to nH ;
4: tB−1[i] ← ti

B−1, record ti
B−1 into the result sink;

5: end for
6: tm

CP = min(tB−1), Find the minimum key transfer timeı̈ijŻ
7: return tm

CP ;
8: End Algorithm

6.6 Performance Evaluation

The performance evaluation of the Blockchain-based key management scheme
is carried out using network simulations. Performance evaluation is broken into
two parts. The first part studies the processing time of cryptographic schemes
and mining algorithms, namely encryption, decryption, signing, verification,
block mining, and block preparation. The second part further studies the pro-
cessing time in the blockchain network against different transaction collection
periods.

6.6.1 Experimental Assumptions and Setup

The assumed parametersare shown in Table 6.4. The simulations aim to test
key transmission time under different traffic levels and transaction collection
periods. Here, assume that the system calculates the overall number of cross-
border activities at the end of the collection periods. The vehicle cross-border
activities follow the exponential distribution. The cross-border events, occur-
rence rate follows the quantile function of exponential distribution [17]. The
simulation uses OMNeT++ 4.5 [18] with the dedicated traffic simulator (Veins)
packet [19]. The network structure setup follows the Blockchain-based struc-
ture, which isolates the central manager away from major key management
tasks. The central managers like PKIs are only responsible to generate crypto-
graphic materials and pseudonyms. This aims to improve the key management
efficiency in a large scale geographical area. The middle layer infrastructures,
SMs, are introduced into the network to support most of the key management
job. SMs in this scenario act as the key manager and a relay between the local
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Table 6.4 Assumption of scenario parameters.

Parameter Name Parameter Value

Distance between SMs 5000 meters
Mining difficulty (number of zeros) 3
Traffic amount per hour 15,000, 12,000, 9000, 6000, 3000
Length of transaction collection time 0.5s, 0.6s, 0.7s, 0.8s, 0.9s, 1.0s
Vehicle joining event’s distribution Exponential distribution [16]
Mining speed 250 K-hashes (thousands of Hashes) per second
Maximum transaction range
For large scale simulation: 1000 transactions
Block preparation
Maximum transaction range
For large scale simulation: 2000 transactions
Key handover processing time

security domain and foreign domains. Dynamic transaction collection periods
are proposed to provide better key management flexibility. For each SM, cross
border is collected and picked into a transaction packet from every half second
to 1 second in order to test the performance regarding different transaction col-
lection lengths. The results depend only on the overall number of transactions
as it focuses on the processing time in terms of transaction numbers. Thus, the
simulation setup is comprized of the following steps:

(i) At the end of each tCP, a certain number of transactions flood into the SM
network. The movement of vehicles is not considered in these two parts.

(ii) Each SM records the processing time results of cryptography schemes and
block preparation. The results are recorded by averaging the results from
SMs.

(iii) Transactions ranging from 0 to 200 are set for test cryptographic schemes
to get a zoom-in view of results.

An average distance of 5000 meters is assumed between SMs. The low level
is considered as a relatively mild traffic level. Higher traffic level is the stress
testing under heavy traffic conditions to examine scalability properties. The
heavy traffic condition test aims to study performance within a big city. One
purpose is to test scalability. Another purpose is to examine the future develop-
ment space of the scheme as the large scale deployment of VCS leads to a large
number of transactions with the network. The upper and the lower amounts
of vehicle traffic are considered under a saturated traffic condition and off-
peak traffic of big cities. The off-peak time has 3,000 vehicles per hour, while
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the saturated traffic is set to have 15,000 vehicles passing a road in an hour,
aiming to examine our scheme under the worst case as well as the heaviest
burden of VCS. The topology of the scenario here is assumed in the biggest
cities in the world, such as Beijing. The city topology is assumed as a 3-by-3
topology and this is based on Beijing, which has eight urban districts. Here,
we assume that districts are connected to each other by five two-way highways
(overall 120 highways). For each SM, tCP is ranged from 0.5 seconds to 1 second
in order to test the performance regarding different transaction collection
lengths. For the large-scale simulation, up to 1000 transactions are introduced
in block preparation simulations so that the exponential growth of results can
be demonstrated. A maximum of 2000 transactions are simulated to test time
value differences between blockchain and tradition structures. The benchmark
is selected as the key handover schemes in the traditional VCS structure. They
are both used for conventional handover handshake procedures. This helps to
clarify the improvement of the Blockchain-based scheme over the traditional
scheme. The specifications of hardware and cryptographic schemes are speci-
fied as follows: Blocks are mined by our laptop with Intel Core i5 and 8GB RAM
and display card GeForce 920M. This device can finish 250K hash calculations
per second. ECIES with elliptic curve secp160r1 in Crypto++ [20] is selected
not only for the cryptographic scheme ECIES, but also for the digital signature
scheme ECDSA as well. The cipher block has a length of 75 bytes, which is
because ECIES provides a much better security level.

6.6.2 Processing Time of Cryptographic Schemes

The performance evaluation first studies the processing time cost for crypto-
graphic schemes. It aims to obtain the accurate data of elements in Table 6.3 and
further complete the result of Eq. 6.1–6.3. The key handover time is built up
with the computation time data of cryptographic schemes. Figure 6.7 shows the
performance of different cryptographic schemes that are used in key transfer
procedures. Except for the mining time cost, the processing time increases lin-
early with the growth of transaction numbers. The mining algorithm is always
single mining progress and the mining processing time is an average value of
multiple simulations. The practice value is highly likely to have a value below
this average value as only the fastest mined block is accepted by the network.
The encryption and decryption schemes cost similar processing times. Signa-
ture verification costs the longest computation time among schemes. Accord-
ing to Eq. 6.1–6.3, signature verification is a key component in key transfer time.
Table 6.5 records the average processing time for each cryptographic scheme.

Figure 6.8 plots the block preparation time in terms of various transaction
numbers. The preparation time increases nonlinearly with respect to the
growth of transaction numbers. The processing time slowly increases quasi-
linearly before 300 transactions. Processing time is over 0.1 seconds when
there are more than 400 transactions. Finally, preparation time reaches 0.95
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Figure 6.7 Computation time of cryptographic schemes with respect to the transaction
number.

seconds when there are 1000 transactions. The nonlinear curve is caused
by exponential increasing of trand, while the rest of the preparation time
components increase linearly in proportion to the transaction number.

6.6.3 Handover Time

Figure 6.9 depicts the key handover performances of the blockchain scheme
and the traditional scheme with respect to varying the number of transactions.
The handover procedures in traditional structures are used as the benchmark
of the simulation, which aims to show the performance improvement by using

Table 6.5 Average cryptography processing time.

Cryptography Scheme Processing Time (milliseconds)

ECIES encryption 0.51027
ECIES decryption 0.73996
ECDSA signing 0.51011
ECDSA verifying 1.10171
Block mining 4.11046
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our scheme, referring to the traditional structure results on the figure. Com-
parison of the different performances of key handover within the same secu-
rity domain is shown in Figure 6.9(a). All the results have zero processing time
when border-acrossing action does not appear in the network. It takes approx-
imately 0.8 seconds to finish the transfer of 500 transactions, while nearly dou-
ble the time is taken to handle the same amount of transactions in the tra-
ditional structure. However, two curves have an intersection at around 1300
transactions due to the nonlinear increase of blockchain key transfer time.
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hand over across different security domains.
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Although our scheme costs more processing time due to the growing num-
ber of transactions, our schemes provide better scalability against the tradi-
tional structure when transaction number less than 1300. Additionally, our
blockchain-based scheme saves nearly half of the processing time at transac-
tion number equalling 1300 and the time results are always below those of the
traditional scheme when transaction number is no less than 2000. According to
the saturated traffic level in Beijing, the rush hour has 15,000 vehicles passing a
road. This means approximately four vehicles pass a road per second. Thus,
1000 transactions can support the key handover on up to 250 roads, which
is enough for most city scenarios. Similar contradistinction is demonstrated
in the Figure 6.9(b) to show the results of key handover between two security
domains that are managed by different PKIs. The PKIs translate messages from
one security domain to another in the traditional structure. Two PKIs need to
communicate with each other in order to finish the key handover. Thus, extra
handshakes between PKIs result in tedious handover time in the traditional
structure. Handover time cost of the traditional structure exceeds 10 seconds
when the transaction number is more than 1750. The Blockchain scheme costs
much less time. To summarise, the Blockchain structure has better scalability
performance against the traditional structure upon message handover due to
less processing time cost.

6.6.4 Performance of the Dynamic Transaction Collection Algorithm

The various transaction collection period provides an interface to allow SMs to
control the number of picked transactions. A longer collection period collects
more transactions, and vice versa. Therefore, different period lengths decide
the number of transactions flooding into the SM network. According to the
assumptions in Section 6.6.1, two-way highways support two traffic flows on
the road. Here, take a single traffic flow as a standard metric unit and simulate
the average transactions in a single traffic flow. Figure 6.10 plots the average
transactions as a function of traffic levels and transaction collection periods.
The appeared transactions are generated from a single-direction road. From the
results in the figure, the appeared transaction number is directly proportional
to the traffic level. Moreover, the longer the tCP, the more are the transactions
that are caught by SMs. The average number of transactions per tCP from each
traffic flow is calculated as follows: 𝜆 = nT∕CP = nH

3600 × tCP, where nT∕CP is the
average number of key handover requests (also known as transactions) within
each tCP and nH is the average number of vehicles (the traffic level) passing on
a road in each hour. The parameter nR is multiplied by nT∕CP to get the average
transaction number on all the roads; here, nR is the number of roads that are
taken into calculation on the assumed topology.

Figure 6.11 lllustrates the key handover performances under various collec-
tion periods. Here, the results consider all the transactions within the highways



136 Blockchain for Distributed Systems Security

3000
0

1

2

T
ra

n
sa

ct
io

n
 N

u
m

b
er

3

4

4.5

6000 9000

Traffic Level (vehicles/hour/road)

12,000 15,000

Transaction Collection Period = 0.5s

Transaction Collection Period = 0.6s

Transaction Collection Period = 0.7s

Transaction Collection Period = 0.8s

Transaction Collection Period = 0.9s

Transaction Collection Period = 1.0s

Figure 6.10 Average transaction number under various traffic levels.

based on the Beijing topology. The result of 0.5–0.7 seconds increases steadily
when other results increase nonlinearly. It can be seen that mild exponential
growth appears on the transaction collection period from 0.5 to 0.8 seconds.
A marked nonlinear rise trend appears when the collection period is longer
than 0.8 seconds. The above results indicate that a longer collection period
lets SMs collect more transactions, leading to heavier processing burden and
tedious computation time. According to the peak-time traffic results in Fig-
ure 6.10, an average of 4.2 transactions are captured within a 1 second collec-
tion period when the traffic level is equal to 15,000 vehicles/hour/road, while an
average of 3.3 transactions are captured within 1 second’s time under the lower
traffic level of 12,000 vehicles/hour/road. This causes a transaction difference of
120 × (4.2 − 3.3) = 108 transactions, resulting in a huge difference of key han-
dover time. Based on the result in Figure 6.7 and Figure 6.8, the key handover
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processing time increases exponentially with respect to the growth of the trans-
action number. Therefore, the nonlinear growth in the above figure is caused
by the increasing number of collected transactions.

As mentioned in the description of dynamic transaction collection algo-
rithm, in order to measure performance more accurately, it is necessary to have
a unified measurement standard. To confirm the effectiveness of the dynamic
transaction collection period, the scheme has carried out a simulation exper-
iment to investigate the average processing time of key transfer in 1 second.
The running time of the dynamic transaction collection period simulation is
set to be 1 hour, and multiple key transfer procedures under various collection
periods are recorded. The results are divided by 3600 seconds to measure the
performance in 1 second.

The results of the dynamic collection period scheme are shown in Fig-
ure 6.12(a). The figure not only shows the time data of key handover
procedures under different collection periods, but also demonstrates results
using the dynamic transaction collection period scheme. From the figure,
it can be seen that the dynamic scheme always occupies the minimum key
transfer time among results. This is because the optimal choice of collection
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periods are computed using Algorithm 1. The algorithm forces SMs to select a
tCP that forces the system to transfer keys with the minimum time cost. A more
intuitive demonstration of the simulated results is expressed in a numerical
version, as shown in Figure 6.12(b). Along with the growth of traffic levels, the
minimum time results occur in different tCP values; a longer collection period
gives less key handover process time under mild traffic conditions. However,
rapid collection frequency and shorter collection intervals perform better
under heavy traffic burden. That means the length of the collection period can
be adjusted in terms of the traffic so that the key handover processing time
can be minimized. Figure 6.13 plots the average decreased time as a function
of various traffic levels and transaction collection periods ranging from 0.5 to
1 second. Under the heavier traffic level, more frequently transaction collec-
tion causes lower proportion of decreased time. While infrequent transaction
collection guides to a larger proportion of decreased time at off-peak traffic
level. Albeit fewer handshakes, longer collection period takes more than 10%
of time cost to finish key transfer at peak traffic level. Thus, for higher traffic
levels, using a shorter transaction collection period becomes an economic
selection to release the computation burden and improve system efficiency.
Shorter collection period, on the other hand, consumes more time to transfer
transactions at low traffic situations.

6.7 Conclusion and Future Work

A decentralized VCS network structure has been proposed and implemented
in this chapter. Blockchain technology is utilized to simplify the structure. The
simplified structure avoids the handover procedures from passing the third
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party central authorities. This helps to reduce the key handover time. Dynamic
transaction collection algorithm is introduced in order to further shorten the
key handover time. The optimized scheme is capable of dynamically adjusting
various traffic levels.

The trustworthiness of an algorithm is proved by comparison with bench-
mark schemes. Here, the benchmark is selected as the Blockchain-based static
key management scheme. The result comparison between traditional and
Blockchain schemes proves that the Blockchain-based structure can provide
better key handover performance over the traditional structure. The simula-
tion results show that the Blockchain structure gives a steady key handover
time cost, which means better scalability. The Blockchain-based scheme costs
lesser same-domain handover time than that of the traditional scheme when the
transaction number is less than 1300. Moreover, the Blockchain-based scheme
produces better cross-domain handover results compared to the results of the
traditional structure if the transaction number is no more than 2000.

The effectiveness and trustworthiness of the dynamic collection periods can
be further confirmed by showing better performance over the static collection
period scheme. For this reason, the time-saving performances of the dynamic
scheme are studied. The transaction collection period tCP ranges from half to
1 second at 0.1 seconds intervals. The higher transaction collection frequency
results in a lower proportion of decreased time under the heavier traffic level.
In contrast, infrequent transaction collection times lead to a larger proportion
of decreased time at mild traffic levels. A longer collection period takes more
than 10% of the time cost to finish key transfer at peak traffic level, albeit with
fewer handshakes. Thus, for higher traffic levels, using a shorter tCP becomes an
economic selection to release the computation burden and improve system effi-
ciency. A shorter collection period, on the other hand, consumes more time to
transfer transactions in low traffic situations. To sum up, 10% and 5% of the key
handover time are saved by employing dynamic transaction collections periods
under heavy and mild traffic levels, respectively.

In addition to security, another issue that matters in the VCS is privacy
problems. The future blueprint of the IoT assumes that everything will be
connected, including the details of human life. For this reason, people’s private
information is threatened by malicious users in the IoT environment. More-
over, privacy protection helps an IoT device to avoid concentrated attacks, as
the adversaries are unable to focus their attack on a specific device. In order
to address the privacy problem, future work will focus to further take privacy
issues into consideration, including the investigation of a system that provides
both security and privacy. The future work will be developed as an extension
of the current contributions. The extension of the work aims at pseudonym
management using a Blockchain structure, based on the current scheme.
Specifically speaking, the planned future work aims at pseudonym manage-
ment using a blockchain based on the current system. Moreover, users are able
to decide the trade-off between security and privacy. Additionally, blockchain
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can support message propagation, as well as store the message history in the
public ledger. These attributes have potential benefits to the accountability
function, as the accountability purpose can be realized by looking back at
the public ledger. To sum up, the future direction of a Blockchain-based
structure in the VCS scenario will focus on how to merge security, privacy,
and accountability purposes and use a single Blockchain to support them.
Furthermore, the blockchain-based structure can be extended to other IoT
scenarios to achieve better and stronger integrity of IoT system security.
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7.1 Introduction

Despite the attraction of interest in cyber defense, the proactive prevention
and especially response to cyberattacks is a continuous challenge in a bid to
protect critical infrastructures and private information [1–4]. Network sys-
tems exhibit heterogeneity, as do cyberattacks, which makes cybersecurity a
more difficult job. Hence, the following questions are raised: Can organizations
share information to help prevent cyberattacks? Can the threat information be
shared in such a way that their privacy will be maintained? Today’s frameworks
have, however, failed to answer these questions in a low-cost and privacy-aware
implementation [5].

Taking a cue from the popular national “if you see something, say/report
something” campaign by the US Department of Homeland Security (and used
by many nations in antigraft wars), the goal is to have participating organi-
zations report cybersecurity-related incidents without revealing their private
information to enable others to make informed decisions about security mea-
sures and solutions. As promising as this sounds, it has been found that sev-
eral organizations are conservative about sharing information about their cyber
threats with other (competitive or not) organizations. Investigations show that
this hesitation is due to the following reasons:
� Having access to a company’s threat information might provide their com-

petition with a comparative advantage.
� There is no standardized format for information exchange about

cybersecurity-related incidents [5].
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� The public perception that often accompanies the exposure of information
about an organization’s cyberattack can be devastating; previous breaches
have resulted in the loss of millions of dollars in market value by sharehold-
ers [6].

� Benefits from threat information sharing are often not immediately visible.

Despite these constraints, several efforts have been made to make threat
information sharing and intelligence gathering a reality. Notably, a group of
cybersecurity experts and policy makers from the government and indus-
try, known as ITU-T Study Group 17, developed a cybersecurity informa-
tion exchange framework [5]. This system enables researchers to explore the
information-sharing mechanisms.

One domain that could benefit immensely from information sharing is the
health sector. A Fast Healthcare Interoperability Resources (FHIR) frame-
work provides an application programming interface (API) for health record
exchange [7, 8]. Other similar research has focused on the Internet of Things
(IoT) [9], security in decentralized infrastructure models, and privacy-risk con-
trol in healthcare systems [10].

Blockchain as a concept has been successfully used in privacy-aware sys-
tems such as Bitcoin [11, 12]. Bitcoin has proven the correctness of having a
trusted and auditable peer-to-peer communication system by using a public
ledger that offers transaction transparency. However, the requirements for
a threat information-sharing framework are unique. Any information iden-
tifiable should be anonymous. This is important in protecting the identity
of the source organization of cyberattack intelligence. Also, the information
shared through the framework should be restricted, with only the summary
about the attack incident and the cyber-defense solutions shared with other
participants.

Notable concerns with traditional information-sharing frameworks include
the need to transfer huge data to other organizations or use a central unit to
collect data, creating a pool from participating organizations. Multiple trans-
fers of huge data could suffer from limited bandwidth. Also, the use of a central
unit requires ownership of control by the central trusted authority. This poses a
problem of ownership and privacy for organization data. The lack of a universal
authoritative standard for such centralization plays a large role in the adoption
(or lack of it) of threat-sharing frameworks.

The rest of the chapter is organized as follows: Section 7.2 provides an
overview of the Blockchain-based Information Sharing (BIS) framework. In
Section 7.3, the Blockchain and transaction process in the BIS framework is
discussed. Section 7.4 discusses cyberattack detection and information sharing
within BIS and deployment of cyber-defense solutions. A one-way cross-group
attack game in the BIS framework is presented in Section 7.5 with the two-way
attack presented in Section 7.6. In Section 7.7, a Stackelberg game for cyberat-
tack and defense analysis is discussed. The chapter is concluded in Section 7.8.
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7.2 The BIS Framework

Transfer of funds from one party to another traditionally requires trusted third
parties such as banks or payment merchants. As a disruptive technology, Bit-
coin is based on a cryptographic technique that uses peer-to-peer communi-
cation and does not require such third parties. Bitcoin uses a distributed ledger
system where all transactions are published on a public ledger using the con-
cept of Blockchain. A block in the chain is then executed using a consensus
algorithm such as proof of work. Bitcoin requires that transactions are verified
by other users in a decentralized network, making it practically impossible to
generate illegitimate transactions.

Following the approach used in Bitcoin, BIS uses a Blockchain protocol over
the public internet. The BIS framework is shown in Figure 7.1 and has three
entities:

� Organization—this refers to the parties participating in the cyberattack
information sharing with a collective goal to prevent future cyberattacks.

� Services—refers to the providers of the cyberattack-related information and
applications that process data.

Cloud storage for software/antivirus/drivers

Organization’s block manager, BM, or GBM

Organization’s public key

Attack signature and defense database

Org.

Org. 1

Blockchain

(Over the Internet)

ServicesT acc
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Encrypted
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Org. 5: Device

Manufacturer

Org. 4: OS/SW Dev.

 Company

Figure 7.1 A typical Blockchain-based information-sharing framework among multiple
organizations/agents [13].
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� Manager nodes—trusted devices that are dedicated to maintaining the
Blockchain as well as the distributed cryptographic keys. Even though orga-
nizations use dynamically changed public keys to conceal their identity, man-
ager nodes maintain service profiles on the Blockchain and verify the identity
of every participating organization.

7.3 Transactions on BIS

After a description of the BIS framework components, a detailed look into how
transactions are handled in BIS is depicted in Figure 7.1. BIS typically accepts
two types of transactions provided to organizations via the API:

1. transactions for access control management (Tacc)
2. transactions for information storage and retrieval (Tinfo)

While maintaining their privacy, each participating organization shares its
cyberattack information using BIS over an interface, usually graphical. Upon
signing up, each organization is assigned an identity with associated permis-
sions, which are sent to the Blockchain using the Tacc transaction. As an inte-
gral part of BIS, shared information is sent to the Blockchain using the Tinfo
transaction after being encrypted using a shared encryption key. Subsequently,
when participating organizations retrieve such information either by querying
with the Tinfo transaction or by a service, only a pointer to the data on the
public ledger is used. Services and organizations are verified using the digital
signature. As a means to address the conservation of organizations in adopt-
ing a cyberattack information sharing system, BIS only collects information
about a cyberattack and not the details about its success or damage recorded by
the attack.

The Blockchain in BIS consists of transaction blocks, as depicted in Fig-
ure 7.2. The blocks are chained together using a hash or numeric digest of the
block content through which the integrity of transactions is verified, making it
practically impossible to manipulate. By chaining, it means the hash of a block
n depends on its predecessor block n – 1. As shown in Figure 7.2, that makes
the Blockchain immune to malicious actions, as a change in one block would
require change in subsequent predecessor blocks.

The Blockchain grows with every verified transaction by participating orga-
nizations in the BIS framework. The legitimacy of a transaction is verified
using the digital signature of the organization (verification) and the existence of
the previous transaction on the same ledger. In Section 7.4, a proof-of-attack-
detection (PoAD) consensus algorithm is discussed for generating new blocks.
The group block manager (GBM) or Block Manager (BM) then creates a new
block and forwards it to other BMs for verification. This allows all BMs to con-
tribute to verifying the correctness of the block by digitally signing it. A GBM
can be nominated from a group of BMs based on their business memorandum
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Figure 7.2 A typical structure of Blockchain for information sharing [13].

of understanding (MoU). The signed block is subsequently returned to the orig-
inating BM, which adds it to the Blockchain.

BIS allows a heterogeneous network of organizations including manufactur-
ers, system/software providers, security service providers, as well as devices
such as cell phones, cyber-physical systems, and IoT devices. In an occurrence
of multiple similar devices belonging to the same organization, a BM is chosen
to store BIS transactions. Also, each organization maintains a local copy of
the transactions related to the organization (known as a private ledger), which
is then linked to the BM by using a hash that contains the hash of the public
Blockchain. Control is established in each organization with a trusted device
known as local manager, which is responsible for maintaining the private
ledger as well as connecting the organization to the BIS framework through an
internet gateway. Similar to the analogy employed in Port Address Translation
(PAT) and/or Network Address Translation (NAT) in IPv4 networks, all
communications to and from the organization are routed through the local
manager.

7.4 Cyberattack Detection and Information Sharing

In the previous section, we saw how each organization generates transactions
and how the blocks are merged on the BIS framework. In this section, PoAD is
described as a consensus algorithm. Based on the Evaluation Assurance Level
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(EAL) used by the organization for its infrastructure (which includes security
patches, operating systems, and firewalls), it is assumed that the organization is
responsible for compliance with such a standard. Also, the sharing of cyberat-
tack information or attack signatures (with possible countermeasures) through
the BIS framework is the sole responsibility of each organization [3, 14, 15].

A malicious organization in BIS is, however, identified by its unwillingness
to participate in a timely and positive manner. An example of a malicious
organizations is an antivirus company that fails to develop security patches
for known vulnerabilities or engages in the creation of new malware prod-
ucts themselves. Another example are operating system developers that pro-
vide backdoors to their systems without providing timely patches to fix them.
Attack information sharing is done with the help of participating organiza-
tions on BIS in the verification of the shared information using Blockchain. For
instance, attack information from an organization with Microsoft Windows 10
running on HP devices with a firewall and Avast antivirus should be verified
through the Blockchain on BIS by HP, Avast, and Microsoft to reach a consen-
sus. The source of the cyberattack information is declared as the initiator of
this process.

In order to avoid unnecessary multiple entries of incident reports, which
can occur with multiple organizations reporting the same attack at the same
time, the cloud storage chooses the report with a countermeasure (if any) and
discards the rest. Once the cyber-defense solution for a reported/shared
cyberattack is available, it is published like software updates to all participating
organizations for download and deployment.

Recall that the goal of BIS is to provide a robust framework to prevent cyber-
attacks in any networked system. Thus, providing cyber-defense solutions to
participating organizations in BIS is a key functionality. Once a solution is
available, it is stored in the cloud, where it is accessible to all participating
organizations and shared using Blockchain. The source of this solution creates
a multisignature transaction where its own key 1 and signature, which is
generated using signed hash, are stored. Hence, the hash can be verified by
other participating devices to ensure data integrity. In a case where the source
is a software provider, the software binary file is assumed to be stored in the
cloud for users to download. The part 2 field of the transaction is written by
the manufacturer and must match the part 1 key and signature for updates to
be forwarded to all devices/networks within the organization. Otherwise, it is
forwarded to the gateways of other organizations who verify it by matching the
key in the transaction with its manufacturer’s key. The received multisignature
transaction metadata contain authentication parameters from legitimate
software updates. The integrity of the update is checked by comparing the
signed hash of both the equipment manufacturer and the software provider.
Note that verified attack information is also shared along with the cyber-
defense solutions in BIS and then stored in the cloud-based information base
of BIS.
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7.5 Cross-group Attack Game in Blockchain-based BIS
Framework: One-way Attack

Organizations with similar features or that belong to similar domains have sim-
ilar requirements and interests. They can form a group and function together
to achieve maximum profit for the group. Social networking companies like
Twitter, Facebook, and Snapchat can combine to form groups.

Consider two groups, Group 1 and Group 2, with N1 and N2 number of
organizations, respectively, sharing cyberattack information through BIS. The
benefit achieved by the group is shared among the group members. Mem-
ber organizations with bits of input are rewarded equally after the completion
of work. BIS also allows for cross participation among group members. For
instance, Group 2 members could form a subgroup and act as an organization
to participate in Group 1. They can also choose not to participate in the legiti-
mate block formation of their own group by not releasing detected cyberattack
information or not developing cyber-defense solutions for reported security
attacks.

A one-way attack aims to reduce the utility of Group 1 by using a subgroup of
X2 →1 (≤ N2) members from Group 2, where X2 →1 members of Group 2 could
try to hinder the Blockchain-building process. The direct utilities of group k in
BIS can be expressed as [13]:

Uk = log(𝜎k + 𝛾k), k = 1, 2

where log(𝜎k + 𝛾k) is a generic convex function of 𝛾k for each group k and
typical value 1, X2 →1 members of Group 2 are considered malicious in Group
1, as they do not participate in the Blockchain building of their own group.
The quality factor of the Blockchain generation process for Group 1 can be
expressed as:

𝛾1 =
N1

N − X2→1
.

Since X2 →1 members do not participate in Group 2, leaving N − X2 →1
active members, the quality factor of the Blockchain-generation process for
Group 2 is expressed as:

𝛾2 =
N2 − X2→1
N − X2→1

.

Since there is no mechanism for selective rewarding of legitimate members
in a group, all members are rewarded equally with the cross-participating
members; i.e. Group 1 members share their utility with the Group 2 members
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Figure 7.3 Variation of expected utility vs. the number of cross-group participants, where
N= 40 organizations/users are equally divided into two groups.

that intruded it. The utility density functions for Groups 1 and 2 are then
expressed as:

u1 =
log

(
1 + N1

N−X2→1

)
N1 + X2→1

u2 =
log

(
N2 −X2→1
N−X2→1

)
+ X2→1

log
(

1+ N1
N−X2→1

)
N1 +X2→1

N2
.

Evaluating the performance of the game with multiple simulations of differ-
ent number of cross-group participants shows a decrease in Group 1 utility
until 50% of the organizations cross participate. N = 40 organizations is equally
halved to form groups. In this phase, X2→1 increases despite a corresponding
utility increase in Group 2 over the same period. This is attributed to the fact
that Group 2 participants get rewards from cross participation in addition to
the rewards from the group, as shown in Figure 7.3.

At X2→1 = N2, indicating a full cross participation by members of Group 2,
they get the contribution of the subgroup, which is only a fraction of what is
obtainable from legitimate participation. It is then concluded that a dominant
strategy of the game will have full cross participation of all members of the
group. If not, then not participating in cross-group activities will be the best
response.
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7.6 Cross-group Attack Game in Blockchain-based BIS
Framework: Two-way Attack

In this form of attack, a subgroup of Group 1 of size X1→2 < N1 participates
in Group 2, and a subgroup of Group 2 of size X2→1 < N2 subsequently acts
maliciously in Group 1. The direct utility of a group, k, is expressed as [13]:

U′
k = log

(
1 + 𝛾

′
k
)
, k = 1, 2,

where 𝛾
′
k is calculated as

𝛾
′
k =

Nk −
∑

∀j Xk→j

N −
∑

∀j Xk→j −
∑

∀j Xj→k
.

Xk→j and Xj→k represent the total number of cross-participating organiza-
tions from Groups k to j and j to k, respectively.

The utility density for Group k can then be expressed as:

𝜐
′
k =

U′
k +

∑
∀j Xk→j × u′

j

Nk −
∑

∀j Xj→k
.

The derivations of utility densities u′
1 and u′

2 for a two-group consideration
can be found in [13].

When the number of players N1 and N2 are finite, players are allowed to play
a mixed strategy, with the game always having an equilibrium X1→2 and X2→1
values where:

𝜕u′
1

𝜕X1→2
= 0 and

𝜕u′
2

𝜕X2→1
= 0.

One group’s utility is proportional to the gain (or loss) of the other group’s
utility; hence, it looks like a zero-sum game. The strategy space of the players
in a two-way game can be defined as S = {Attack, No attack}. The outcome
of the game and dominant strategies for both group/players can be found in
Table 7.1, with examples shown in Figure 7.4.

Table 7.1 Expected utility of each group.

Group 2—Attack Group 2—No Attack

Group 1—Attack u′′
1 < u1, u′′

2 < u′
2 u′′

1 > u1, u′′
2 < u′

2

Group 2—No Attack u′′
1 < u′

1, u′′
2 > u′

2 u′
1, u′

2
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Figure 7.4 Example of expected group utilities.

7.7 Stackelberg Game for Cyberattack
and Defense Analysis

Often attackers (known as outsiders) launch cyberattacks on BIS without par-
ticipating in the information-sharing process. The security level of an orga-
nization, k, can then be considered as 0 ≤ 𝓁k ≤ 1 ∀k where the security level
is directly proportional to a system hardening investment of the organization
based on past attacks and successful recovery rate from the attacks. The aver-
age security level of an organization can be expressed as 𝓁k = 1

N
∑N

K=1 𝓁k. The
probability of cyberattacks for a given organization, k, can also be expressed as:

pk = (1 − 𝓁k)(1 − 𝓁k), ∀k.

The cyberattacks and defense actions can be modeled as a typical multi-agent
game for security. The organizations’ strategies are attacked by the malicious
actions of attackers. Defense actions based on the attackers’ strategies are also
taken by defensive organizations and shared through BIS. This game can be
formulated as a Stackelberg game with leader and follower subgames. It should
be noted that government and industrial standard practices about hardening
the network system on occurrence of cyberattacks and detection of vulnerabil-
ities must be upheld by organizations. Thus, in the Stackelberg game, attackers
are treated as leaders since they initiate attacks on the organizations’ network
system, while legitimate organizations are treated as followers since they only
react to the cyberattacks or known vulnerability.
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Defenders/follower subgame—This game is represented as an optimization
problem with the goal for a given organization, k, being to minimize the impact
of the attack. Based on the security state of an organization and motivation of
attack, an attacker chooses a strategy ak, ∀k with a security impact level to the
victim organization, k, as im,k. The optimization problem is presented as:

minimize
Ψk,pk,∀k

OUk
= pkSk𝛽klog(1 + Ψk)

subject to
∑
∀m

im,kΨk ≤ Bk;

im,k ≥ 0; ∀m, ∀k;

Ψk ≥ Ψk; ∀k

Sk ∈ {1, 0}, sk > 0, and ck > 0; ∀k,

where Bk is the maximum tolerable socioeconomic level of organization k due
to cyberattacks, im,k is the targeted impact level of cyberattack m to a given
organization, k, using an attack strategy ak, andΨk ≥ Ψk is the investment level
constraint of each organization for cyber-defense. Sk is the binary strategy set
with a value of 1 indicating “share”. The information-sharing and participation
cost is represented by sk > 0 and ck > 0, respectively. The utility scaling factor
𝛽k is considered to be 1 for simplicity. The problem is then expressed as:

minimize
Ψk,pk,∀k

OUk
= pklog(1 + Ψk)

subject to
∑
∀m

im,kΨk ≤ Bk;

im,k ≥ 0; ∀m, ∀k;

Ψk ≥ Ψk; ∀k.

The problem is then solved using the Lagrangian method to arrive at the best
response for the follower subgame for the given attack strategies, expressed as:

Ψk =
∑

∀m
im,k + Bk

Kim,k
− 1, ∀k.

Attacker/leader subgame—A possibility is for attackers to attack the organi-
zation through noncooperation with an aim to gain continued unauthorized
access to information or other economic benefits. In this case, the noncooper-
ative attacker game (AG) is then represented as AG = ⟨, {Ak}k∈K, k(.)⟩. This
game is composed of three components:
� The set of active attackers = {1, 2,… , K}whose victim can be one or more

organizations.
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� The set of attacking strategies used by the attackers {a1, ak,… , aK}.
� The strategy space mapping to a positive real number representing the payoff,

expressed as k(.) : {1 ×… ×K}.

For an attacker with an attacking strategy ak, the utility optimization problem
is then expressed as:

maximize
ak,∀k

AUm
(ak, a k) =

N∑
k=1

pk(1 − im,k(ak))(1 − Ψk)

subject to {ak} ≠ ∅, ∀k,

īm,k ≥ im,k ≥ 0, ∀m, ∀k

pk > 0, ∀k.

To maximize the attacker’s utility, at least one attack strategy, indicated by
{ak} ≠ ∅, is required. Solving this maximization problem by the Lagrangian
method and taking the first derivative equated to zero yields the impact level
value. The expected impact level of a cyberattack, m, on a given organization,
k, is then expressed as:

im,k(ak) = max{𝜂m,krb(m, k) + 𝜃m,krd(m, k) + 𝜇m,krr(m, k) − 𝜄k, īm,k},

where rb = [0, 1] represents a denial-of-service attack, rd = [0, 1] indicates a
delayed response to users’ requests, and rr = [0, 1] represents the reduction
in reputation of a given organization. The weighting factors for halting busi-
ness operations, causing delay in users request response, and reduction in rep-
utation levels are represented by 0 ≤ 𝜂m,k ≤ 1, 0 ≤ 𝜃m,k ≤ 1 and 0 ≤ 𝜇m,k ≤ 1,
respectively, as an effect of a cyberattack, m, by taking an attack action ak to a
victim organization, k.

Performance evaluation—To evaluate the performance of the approach dis-
cussed so far in this section, a scenario of four organizations with varying
security and investment levels is set up with four varying expected impact
level attackers. An attacker with B̄k = 0.1∀k attacks all four organizations iter-
atively. Although the maximum effective attack-impact level could be 0 or
100%, simulations considered intermediate values such that īm,k = {0.27, 0.26,
0.25, 0.24}.

Plotting the utilities of the four different organizations against the number
of attack iterations, as shown in Figure 7.5, a decrease in the expected utili-
ties of the organizations is visible with increasing iterations due to the increas-
ing attack-impact levels from the attacker. Figure 7.6 shows a decrease in the
security/investment levels of organizations for given investment levels as the
attacker’s attack-impact level increases. A plot of the expected impact levels
against the attack iterations (Figure 7.7) shows that the organization with the
lowest expected attack impact from the attacker (in this case, organization 3)
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Figure 7.5 Expected utility of different organizations with different security/investment
levels vs. iterations.

experiences the highest security level for a chosen organization investment (as
shown in Figure 7.5). In a bid to show the relationship between the attacker’s
utilities for different expected attack-impact levels and attack iterations, Fig-
ure 7.8 highlights that the organization with the lowest (or highest) investment
level (as shown in Figure 7.5) is subjected to the highest (or lowest) attacker
utility. Furthermore, the simulation results shows the convergence of the game
at a unique equilibrium point.

Figure 7.6 Expected security/investment levels caused by cyberattack impact
vs. iterations.



156 Blockchain for Distributed Systems Security

Figure 7.7 Variation of attack impact vs. iterations.

Figure 7.8 Variation of expected attacker utility vs. iterations.

7.8 Conclusion

The need for intelligence gathering as a tool for combating cyberattacks in the
future cannot be overemphasized. Even though reservations are being experi-
enced by organizations despite knowing the potential benefit of such collab-
orations, the approach employed by BIS as discussed in this chapter further
increases the chance of adoption. BIS leverages on the concept of Blockchain,
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used in the popular Bitcoin system to enhance the integrity of shared informa-
tion while maintaining privacy. Participating organizations in the Blockchain-
based BIS framework maintain ownership and control of shared data without
the need of a trusted third party usually responsible for control and security.
A formal description of games with malicious participating organizations in a
bid to jeopardize the cyber-defense mechanism or engage in cross participation
was discussed. Furthermore, a description of a Stackelberg-game-based cyber-
attack and a defense analysis involving attacks on participating organizations
from outsiders was given.
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8.1 Introduction

Blockchain technology has attracted tremendous interest from a wide range
of stakeholders, including finance, healthcare, utilities, real estate, and gov-
ernment agencies. Blockchain networks utilize a shared, distributed, and fault
tolerant ledger platform that every participant in the network can share but
no entity can control. Blockchains assume the presence of adversaries in the
network and nullify adversarial strategies by harnessing the computational
capabilities of the honest nodes; the information exchanged is resilient to
manipulation and destruction. Blockchain technology will be beneficial to
cloud services that have a strong desire for assured data provenance and
support cloud auditing. To enable data integrity over the public ledger in a
blockchain cloud, cryptographically enforced blocks join in the blockchain
after a consensus is reached in the decentralized network, where transactions
in the blocks are authenticated by peers of the network. This shared ledger
could potentially contain the history of every transaction related to any sort
of asset irrespective of its type—financial, physical, or digital—that can be
verified, monitored, and cleared without the involvement of the cloud admin-
istrator. The combination of cryptographic mechanism and a decentralized
public ledger allows to build any kind of application on top of the blockchain
without worrying about trust components of users and maliciousness in the
blockchain-enabled cloud system.

Since blockchain update occurs in a peer-to-peer (P2P) network, the state
of the blockchain must be kept intact among every peer. This necessitates the

Blockchain for Distributed Systems Security, First Edition. Edited by Sachin S. Shetty,
Charles A. Kamhoua, and Laurent L. Njilla.
© 2019 the IEEE Computer Society, Inc. Published 2019 by John Wiley & Sons, Inc.
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Figure 8.1 Overview of block mining process.

use of distributed consensus mechanisms so that block inclusion would not
disturb the state of the blockchain. We discuss various consensus mechanisms
suitable for blockchain in the next section, among which proof of work (PoW)
consensus is a famous one, which is being used for Bitcoin’s blockchain. In this
scheme, for successfully adding a block in the blockchain, the miners need to
solve a crypto puzzle that is computationally hard. The process is depicted
in Figure 8.1. The solution is hard to find but easy to verify, and the diffi-
culty is dynamically set by the network. Therefore, solving such crypto puz-
zles comes at a price in terms of hashing power, electricity, hardware, etc., but
succeeding in the competition rewards well too. Since mining alone is costly
and receiving reward is so infrequent, honest miners prefer to work in pools.
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However, irrational malicious parties can come up with their own mining
power to disrupt the other honest miners’ operations. Block withholding attack
[1] is one of the well-known schemes, which adversaries may adopt to make the
pool lose the block-finding competition. In block withholding attacks, mali-
cious pool members, who have joined for truthfully mining blocks, never actu-
ally publish the successfully mined blocks; they only submit their regular shares
that are not solutions. Hence, the attacker decreases the expected revenue of
the pool by withholding the valid blocks but increases its own reward by sub-
mitting as many shares as possible to the pool manager.

In order to realize a blockchain cloud, it is important to understand the
vulnerabilities of the technology. In this chapter, we focus on investigating the
need or blockchain in developing a secure cloud system and perform in-depth
analysis on various possible vulnerabilities in the blockchain cloud. The vul-
nerabilities in a blockchain cloud will primarily arise due to the requirement
of computational power to achieve PoW-based consensus. There exist other
consensus mechanisms, such as Proof of Stake (PoS), Perfect Byzantine Fault
Tolerance (PBFT), Proof of Activity (PoA), and Proof of Elapsed Time (PoEA),
which do not necessarily require high computational abilities to mine blocks.
However, current public blockchain implementations rely on PoW to achieve
consensus. So, the miners need to be computationally efficient to produce
valid blocks as quickly as possible to get rewarded. At the same time, rogue
miners may stand against them to disrupt the block mining process by empow-
ering their hash powers. Most importantly, we model a critical issue named
block-withholding attack, which may occur in a blockchain cloud during pool
mining, to identify the constraints on an attacker’s hashing power in order to
defeat the purpose of pool mining. The scenario is analyzed individually when
the pool operator employs different rewarding schemes, such as proportional
reward and Pay-per-Last-N-Shares (PPLNS) reward.

The chapter is organized as follows. Section 8.1 briefs various consensus
mechanisms available for blockchain. In Section 8.2, we extensively discuss
blockchain preliminaries and its importance in provisioning cloud security.
We also discuss several critical vulnerabilities related to blockchain in this
section. Section 8.3 presents the system model that we consider to analyze
block withholding attack in pool mining. Section 8.4 expresses various mech-
anisms by which an attacker could increase its hashing limits. In Section 8.5,
we model the block withholding attack by considering two different pools with
distinct reward mechanisms. Simulation results are discussed in Section 8.6.
Section 8.7 concludes the chapter.

8.2 Blockchain Consensus Mechanisms

Consensus mechanisms are important to maintain consistency of the
blockchain or distributed ledger systems without any help from a centralized
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authority. In general, consensus models can be described as a common accep-
tance of laws, rules, and norms by a group of individuals that are homogeneous
with respect to the consensus procedure. In the sense of distributed ledger tech-
nology, when the blocks from various peers are broadcast to others in the P2P
network, the consensus mechanism enables every node to agree on a particular
block so as to include it in the mainstream blockchain. In addition, consensus
mechanisms allow the P2P network members to work as a group and consis-
tently converge on a common value, even when some members fail or behave
erroneously in the system. To provide a better understanding, we discuss and
analyze some of the currently adopted consensus protocols in the following
sections.

8.2.1 Proof-of-Work (PoW) Consensus

As described before, this mechanism leverages the computational power of the
miners to solve an extremely difficult crypto puzzle. The one who solves the
puzzle first becomes the leader of the consensus process and its proposed block
gets included in the blockchain. As the participating miners’ computational
abilities are heterogeneous in general, the block generation happens to be asyn-
chronous in most of the slots. However, the probability of finding more than one
block is not completely nullified. In this situation, forking of the blockchain
occurs and miners start working on the longest chain they have seen so far.
Before the consensus, each miner creates its block by including all transactions
that satisfy the following criteria: (1) the transaction originator must have assets
in its account that are higher than those that are transferred; (2) the originator’s
acquired assets are recognized as valid; (3) the recipient of the transaction will
be the new owner of the asset; and (4) the sender is not reclaiming the already
transferred assets.

After verifying the transactions, only the valid ones are included in a block
and their Merkle root is included in the block’s header, as shown in Figure 8.2.
The header also contains several other attributes, such as the hash of the previ-
ous block, timestamp information, difficulty of the puzzle in bits, and the solu-
tion of the puzzle or nonce, which are required to compose the cryptopuzzle of
the PoW consensus. The puzzle is to find a value (nonce) such that the hash of
the block header, calculated by the SHA-256 function, is less than a 256-bit tar-
get value that has “difficulty” number of zeros in the beginning. Mathematically,
it tries to find the nonce (x) by trying different x, such that:

Hash(block header(x)) ≤ M
D
. (8.1)

where M is the maximum possible value of the difficulty (2256 − 1), and D is
the current difficulty. It can be observed that as the value of D increases, more
trials are needed to find a valid solution. The expected value of required trials
needed to find a solution is exactly D.
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Figure 8.2 Layout of a block in Blockchain.

Although this mechanism provides a robust way to achieve consensus by uti-
lizing the computational power of every participant, it has the following down-
sides too:

1. Reward out of this procedure clearly depends on the cost of electricity for
solving such a hard puzzle. Therefore, the miner’s location also comes into
play because this cost varies geographically.

2. The puzzle’s difficulty is not feasible for a user with limited computational
resources to mine because it will take years to find a solution, whereas, pool
mining allows to tract the problem in a limited time. Thus, it leads to some
sort of centralization in the system, which is far away from the design goal
of blockchain.

3. As the mining rewards fade away in the future, it will be less motivating for
the miners to devote their computational power for such consensus. The
incentive model of this mechanism also needs to be revisited to keep moti-
vating the miners.

8.2.2 Proof-of-Stake (PoS) Consensus

The PoS consensus protocol provides block-inclusion decision making power
to those entities who have stakes in the system irrespective of the blockchain’s
length or history of the public ledger. The principal motivation behind this
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scheme is to place the power of leader election in the blockchain update pro-
cess in the hands of the stakeholders. This is done to ensure that the security of
the system will be maintained while the member’s stakes are at risk. Roughly
speaking, this approach is similar to the PoW consensus, except the computa-
tional part. Hence, a stakeholder’s chances to extend the blockchain by includ-
ing its own block depends proportionately on the amount of stake it has in
the system.

Since the PoW consensus turned out to be energy inefficient [2], researchers
came up with alternative techniques to achieve consensus for the blockchain
system. The first conceptual design of PoS consensus was described by King
and Nadal in [3], which included the age of currencies and the total amount to
define the stake of each miner in the system. To gain the privilege of generating
a PoS-based block, the miner has to make a special coinstake transaction to
himself so as to reset the coin age and prove that its stake is valid. According to
their approach, a miner has a chance to extend the blockchain with his block
having total unspent output  , given the following condition is satisfied. Here,
the unspent output refers to the output of a transaction that is not yet an input
of another transaction, which means that the output has not been spent.

hash(hash(𝔹prev), , t) ≤ D × balance( ) × age( ). (8.2)

where 𝔹prev is the previous block on which the blockchain is to be extended,
balance( ) is the miner’s stake amount, age( ) is the aggregated age of the
stake, and D is the mining difficulty, which is of higher value unlike the tra-
ditional PoW-based consensus. As seen in Eq. 8.2, the computed hash value
on the left side of inequality depends on the miner’s stake amount, so a large
stakeholder can easily find a hash and hence has higher probability of adding
its block in the blockchain.

This consensus mechanism also has several issues, which we describe below.

1. The first issue is that the rich miner gets even richer in this case. Since
high-stake owners have better probability of including their blocks in the
blockchain, the consensus is driven towards centralizing the block-inclusion
process in proportion to the stake distribution.

2. The other issue is the “nothing at stake” problem. When forking happens
in block mining, the rational PoS miners can mine on all branches simulta-
neously, which was not possible in PoW. Therefore, it is easier to perform
double-spending attacks in this scenario.

3. Coin age can be exploited by accumulating coins for a longer period of time
to reduce the difficulty of the puzzle that PoS miners solve.

A variant of PoS, namely Delegated Proof of Stake (DPoS), is also available,
which allows a predefined set of users in the system to perform mining opera-
tions. These delegates control the blockchain update process and are rewarded
for their truthful service, while they may be punished upon performing any
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malicious activity. The delegates are involved in building blocks of transactions
and validating the generated blocks by digitally signing it. The validation usually
requires signatures of a selected set of delegates or validators, which changes
periodically depending on certain rules. The stakes of the users can be used for
selecting the set of delegates and defining the voting power of the delegates in
the system. In some cases, advance deposit is needed in order to participate
in the consensus process, which may be forfeited upon any malicious activ-
ity. In addition, consensus in the blockchain-enabled cloud environment is an
important issue to address since the original stake concept does not apply in the
cloud domain. Considering the computing, networking, and storage resources
at stake, a PoS model is proposed in [4] to achieve consensus in a federated
cloud platform.

8.2.3 Proof-of-Activity (PoA) Consensus

This is a hybrid consensus protocol built on top of the proof-of-work model
by including PoS as an extension. It has been developed to offer better security
against possible future attacks on Bitcoin when the block mining reward will
diminish and each miner will rely on the transaction fees only. This gives rise
to a “tragedy of commons” situation where participants act in a selfish and
dishonest manner at the cost of harming other peers. In this proof-of-activity
(PoA) [5] protocol, initially the mining process starts with the PoW mech-
anism, where every miner uses their hashing power to generate an empty
header w.r.t. the genesis block. This header does not refer to any transaction
but contains the hash of the previous block, the public key of the miner, the
height/length of the current block, and nonce. Similar to PoW, block generation
only succeeds when the hash of the block header is smaller than the difficulty.
From this point, the PoA consensus switches to PoS and the empty block is
broadcast, which derives N pseudo random miners as validators for the PoS
mechanism. Selection of these N users depends on their stakes in the system,
i.e. the more the amount of coins a miner holds, the higher is the chance of
getting selected as a validator. After all N stakeholders sign on the blank block,
the Nth validator gets the permission to wrap transactions in that block and the
reward received by the Nth validator is shared by all N miners. In case some of
the validators out of N are not available during the process of signing the block,
the current block is discarded and the next winning block is chosen with a new
set of N validators. This process is continued until all correct signatures are
gathered. The flow of the PoA consensus mechanism is depicted in Figure 8.3.

The natural constraints of this mechanism are derived from the PoW and PoS
models, which are briefly discussed in the following points:

1. The PoA mechanism relies on the assumption that the majority of stakehold-
ers must be honest in nature. However, in reality, there is no predefined way
to control this assumption in a completely distributed network. The security
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Figure 8.3 Proof of Activity (PoA) in flow.

of PoA can be compromised when a malicious entity can influence a set of
validators to withhold their signatures. Especially when N is large, the pos-
sibility of a bribe attack becomes feasible.

2. Although this mechanism has higher security compared to the PoW-based
consensus model, it consists of extra rounds of interaction among the N
stakeholders for completion of the signing process, which may take longer
depending on how many of the validators are online. Therefore, it is believed
to have higher intervals between two consecutive blocks compared to PoW.

8.2.4 Practical Byzantine Fault Tolerance (PBFT) Consensus

Since blockchain operates in a distributed P2P network and malicious attacks
along with uncertain software errors are common events, nodes in a P2P net-
work can be faulty and show Byzantine behavior. Several BFT models [6][7] are
studied in the distributed computing domain to enhance robustness and per-
formance of distributed systems. Blockchain’s append-only log is very much
applicable to implement smart contracts, which is nothing but a state machine
by itself. Furthermore, the underlying state machine of blockchain allows to
keep track of all transactions and verify its content at the same time. BFT state
machine replication protocols are particularly of interest because they help to
achieve blockchain consensus in minimal network latency, while attaining high
transaction throughput.

The PBFT mechanism can be roughly explained as follows: A set of N desig-
nated validator nodes are assigned to validate transactions from every partic-
ipant, where N = 3f + 1 and there can be at max f faulty/malicious validators
in the system. The blockchain participants propose their blocks of transactions
to the validators who are involved in endorsing the blocks. Then, the valida-
tors check the transaction validity in the proposed block and vote their opinion
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to other members. When the system of validators receives at least f + 1 con-
firmations on a particular block, every node in the P2P network updates their
blockchain with this new block. Then, the above process reiterates with the
beginning of a new slot. The mechanism is proved to satisfy the safety and live-
ness property, which means that two nonfaulty nodes will always agree on the
same proposed block and the consensus process will end within a finite period
of time.

Although this consensus offers a better transaction rate with minimal
network delay, it suffers from a scalability issue. Being invented from the
perspective of distributed systems to offer high availability and redundancy,
the performance of BFT protocols gets hampered as the number of nodes (N)
grows. This is due to intensive communication among the validator nodes,
which is roughly in order of O(N2) messages/block.

8.2.5 Proof-of-Elapsed-Time (PoET) Consensus

This mechanism applies a similar procedure as PBFT; however, the leader selec-
tion in this process is a bit different and unique. This model was proposed by
Intel [8] and exploits the trusted execution environment (TEE) embedded in
their processors using secure CPU instructions. With this, a guaranteed safety
and random leader selection process is proposed that does not require any pow-
erful or specialized hardware as compared to other consensus procedures. As
the important part in consensus algorithms is to find a leader with no bias,
Intel’s Software Guard eXtension (SGX) platform leverages a close door exe-
cution environment using enclaves to perfectly randomize the leader selection
process.

In PoET, leader election occurs in a very simplistic way. The validators in
the system request for a wait time from the trusted environment and the one
whose waiting timer ends first becomes the leader of that slot. Various appli-
cation programming interface (API) calls can be made to the enclave for cre-
ating and checking timers. For e.g. the “CheckTimer” method is used to verify
whether the timer has been expired; if so, an attestation is generated to ver-
ify that the validator waited until the allocated time before it became a leader.
After the leader is selected, the rest of the process is similar to PBFT. Due to the
above characteristics, PoEA satisfies the properties of a good lottery algorithm,
which are (i) fairness–distribution of the leadership role fairly among the large
population of nodes; (ii) investment—proportionate leader selection cost with
respect to the value of the leader; and (iii) verification—easier to verify whether
the selected leader is legitimate.

Although the mechanism provides an elegant and lightweight model to build
consensus, it completely relies on Intel’s TEE, which is a specialized piece of
hardware embedded inside the processor. Therefore, the following dilemma
needs to be resolved—whether it is worth opting for a consensus that requires
an expensive CPU, but at a reduced electricity cost, or not.
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8.2.6 Proof-of-Luck (PoL) Consensus

As in PoW consensus, blocks are generated in an interval of 10 minutes on
an average and six succeeding blocks are needed to confirm a transaction;
point of sales type applications are seemingly impractical. To address such
issues, authors in [9] propose this new consensus model using modern TEEs.
TEEs help in preventing the creation of Sybils and correct processing of
critical applications. This consensus primitive is designed having the following
objectives in mind: (i) low-latency transaction validation, (ii) deterministic
confirmation time, (iii) minimal energy consumption, and (iv) uniformly
distributed mining. The protocol involves two functions, namely POLROUND
and POLMINE, which run inside the TEE. The purpose of the former function
is to prepare the TEE for chain mining by parsing the latest block (roundBlock),
while the POLMINE(header, prevBlock) function is invoked after waiting
for a fixed time (ROUND TIME). The argument prevBlock and roundBlock
may not be the same block; however, they may have a common parent. This
enables the participants to change their mining to the latest and luckier block
during the mandatory waiting period as well, after which a new round starts.
Furthermore, to define the winning block and compute the luck of a chain, a
uniform random value l ∈ [0, 1) is used. The communications in the protocol
are optimized by introducing a monotonically decreasing function f (l), which
is used to delay the release of proof. That is, a luckier chain (with high l) would
have smaller delay, while the unlucky chain waits longer.

At beginning of the PoL consensus, participants initialize their current chain
and transaction set to empty, after which they listen for a new network mes-
sage from peers. If the message is “transaction”, they then include the trans-
action in their transactions list, if they were not added before, and broadcast
them to their peers too. In case of a new “chain” message, participants verify
whether the chain has valid blocks and compute its luck to decide whether to
switch to this new chain or not. If the luck of this chain is higher than that of
the current chain, then a new round with this chain is started and this informa-
tion is broadcast to the peers. At the beginning of a new round, the function
POLROUND is invoked and new callbacks are scheduled by clearing all prior
ones. In the callbacks, pending transactions are appended in a new chain, and
processed further to check the luck factor of this chain. Although this PoL con-
sensus model uses a TEE similar to that of the PoET consensus, the novelty lies
in defining the luck component of the chains, which is not well defined. It will
also be interesting to compare this protocol with PoET for understanding their
performance, because both mechanisms use a costly TEE, such as Intel SGX
platform, for the consensus.

8.2.7 Proof-of-Space (PoSpace) Consensus

Proof of Space consensus mechanism [10] exploits the disk space of users in the
decentralized network to achieve consensus. The assumption of the technique
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is that the users must posses a significant amount of unused disk space. The
PoSpace mechanism does not require much energy or computational power
compared to the PoW technique, which is the costliest consensus model so
far. In the PoSpace consensus, two entities are involved, namely prover () and
verifier (), where the prover has to prove to the verifier that it has dedicated a
required amount of disk space, while the verifier validates whether the prover
is lying. The protocol runs in two phases: (i) initialization, and (ii) execution.
In the initialization phase,  and  operate on a set of common parameters
(prm), such as identifier (id) and storage bound N ∈ ℕ. The operation is
denoted as (𝜙, S) ← ⟨ ,⟩(prm), where 𝜙 and S (of size N) are the output
for the verifier and the prover, respectively, that are stored at each end for
future verification. 𝜙 can be null when a malicious prover is detected. In the
execution phase, the above stored values (𝜙 at  and S at ) are used to find
out whether the prover has stored S or not by executing the protocol. The
prover does not have any output while the verifier either accepts or rejects.
This is denoted as ({accept, reject}, null) ← ⟨(𝜙),(S)⟩(prm). Using graph
pebbling and random hashing function ( : {0, 1}∗ → {0, 1}L, L ∈ ℕ) that
is commonly available to everyone,  generates a hashtree (S) that requires
o(N)L bits of storage, and the root (𝜙) of S is sent to the verifier.

Although it is proven that this mechanism enables an efficient and unique
way of using the disk storage for bringing consensus in a distributed network,
the provers have to store the entire hashtree in order to succeed in the execution
phase. Therefore, a good amount of storage must be in hand to participate in
this type of consensus, which may not be feasible for handheld system such as
cellphones and tablets. This limits the usability of this protocol to only users
with high storage and thus opens an attack surface for the organizations that
offer cloud storage services to a large mass.

8.3 Blockchain Cloud and Associated Vulnerabilities

Among all the security issues that exist in the cloud environment, blockchain
will be very effective in addressing the challenges involved in the implementa-
tion of assured data provenance [11]. We present the challenges associated with
assured data provenance in the cloud and blockchain’s capabilities to address
them.

8.3.1 Blockchain and Cloud Security

Cloud computing allows users to remotely store their data in the cloud and pro-
vides on-demand applications and services from a shared pool of configurable
computing resources. The security of the outsourced data in the cloud is depen-
dent on the security of the cloud computing system and network. However, the
cloud’s key characteristics, on-demand services, uninterrupted network access,
resource pooling, and rapid elasticity are susceptible to vulnerabilities. In
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addition, cloud computing’s core technologies for virtualization, cryptography,
and web services have vulnerabilities, which are results of insecure implemen-
tation. At the same time, security controls, such as key management, in the
cloud computing environment have several challenges. For instance, imple-
mentation of an effective key management system in the cloud computing
infrastructure requires management and storage of various kinds of keys. The
difficulty in assigning standard key management stems from the fact that vir-
tual machines usually have heterogeneous hardware/software, and cloud-based
computing and storage are geographically distributed.

The protection of data exchanged within the cloud infrastructure currently
relies on PKI-based signatures. Specifically, there is a need for stronger attri-
bution to detect unauthorized changes to the data and identify the responsible
entity. Data provenance provides information on all the changes performed on
data exchanged between multiple entities. Researchers have proposed security
solutions, such as PKI signatures, to ensure provenance. However, implemen-
tation of PKI signatures typically depends on a centralized authority, which is
not effective in the cloud infrastructure.

Blockchain and keyless signatures have been proposed as an alternative to
PKI signatures, where the blockchain technology facilitates secure transfer of
information through a sequence of cryptographically-secure keys across a dis-
tributed system. There is no need for a central authority because it is exe-
cuted by a system of distributed ledgers, which records all actions performed
on the data and is shared among all the participating entities. The transactions
in the public ledger are verified by a consensus of the majority of participat-
ing entities. The blockchain contains a verifiable record of every transaction
that cannot be changed. Keyless signature addresses the issue of “PKI key com-
promise” by decoupling the processes for identifying signer and integrity pro-
tection from the processes that are responsible for maintaining the secrecy of
the keys [12]. The processes for identifying signer and integrity protection are
handled by cryptographic tools that are chosen from options such as asym-
metric cryptography and keyless cryptography [12]. Examples of keyless cryp-
tography include one-way collision-free hash functions. Keyless signature pro-
cesses include hashing, aggregation, and publication. The realization of key-
less signatures requires a Keyless Signature Infrastructure (KSI), which con-
sists of a hierarchy of co-operative aggregation servers that generate global
hash trees. Verification in KSI hinges on the security of hash functions and
the availability of a public ledger (blockchain). The ledger is publicly available,
and rules for updating, distributed consensus, and mode of operation are well
defined [13].

Guardtime has proposed changes to traditional blockchain technology by
integrating with KSI [13]. The KSI blockchain technology was developed to
mitigate challenges associated with mainstream blockchain technologies. The
challenges are lack of scalability, consensus time, and lack of formal security
proof. The KSI blockchain technique scales at O(t) complexity as compared to
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O(n) for traditional blockchain, where n refers to the number of transactions. In
a blockchain cloud, it is likely that with the increasing granularity of measure-
ments, blockchain complexity will be concerning. The linear growth with time
would lead to better scalability as there will be no dependence on the number of
sensor measurements. There is a need to achieve quick consensus and ensure
synchronous availability of all updates to the distributed ledger. Finally, formal
security proof will provide better assurance to the security of the blockchain.
Recently, Ericsson and Guardtime integrated the KSI blockchain technology on
a cloud computing platform to enable organizations to assure provenance of
data with forensically provable and complete attribution capabilities [14]. The
capability will make real-time governance of cloud operations and scalable data
feasible.

Data provenance in the cloud—Assurance of data transfer within intra-
cloud and intercloud environments is very crucial. Typical assurance of data
focuses on ensuring the confidentiality, integrity, and availability of the data
contents. However, assurance of the ancestry of the data (where the data came
from) is a challenge in cloud environments. Data provenance addresses such
issues based on the detailed derivation of data objects. If true data provenance
existed in the cloud for all data stored on cloud storage, distributed data compu-
tations, data exchanges and transactions, detecting insider attacks, reproducing
research results, and identifying the exact source of system/network intrusions
would be achievable. Unfortunately, the state of the art in data provenance in
cloud does not provide such assurances.

Data provenance will be very critical for cloud computing system adminis-
trators to debug break-ins to the system or network. Cloud computing envi-
ronments are typically characterized by data transfers between diverse sys-
tem and network components. These data exchanges could take place within
a data center or across federated data centers. The data does not usually fol-
low the same path due to multiples copies of the data and the diversity of
paths taken to ensure resilience. This design adds a degree of difficulty for
administrators to accurately identify the origin of the attack, what software
and/or hardware components caused the attack, and the impact of the attack.
Security violations need to be identified at a fine granularity and provenance
can assist. Current provenance systems in the cloud support the above tasks
through logging and auditing technologies. These technologies are not effec-
tive in cloud computing systems, which are complex in nature, due to several
layers of inter operating software and hardware components spanning across
geographical and organizational boundaries. To identify and resolve the mali-
cious activities in cloud environment, it is required to analyze the forensics
and logs from a diverse and disparate set of sources, which is an insurmount-
able task. Although cyber-threat information sharing [15][16] can be a viable
option to achieve situational awareness about the cloud attack surface at a
reduced investment [17], it faces the issue of information tampering. Main-
taining provenance could track all the operations performed on every data
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object in the cloud, and blockchain technology will come in handy to ensure
the content is unalterable.

Blockchain-based data provenance in cloud—Cloud computing systems
are typically comprised of multiple nodes (physical machines), which host one
or more virtual machines (VMs). Each VM has an owner and includes com-
ponents such as software (application resources) and data. The execution of
software in the VM and exchange of information with VM results in multiple
artifacts, such as variables, intermediate data output, and final output artifacts.
All of them are of interest and concern for the provenance. Blockchain tech-
nology provides such capability and resolves many needed functionalities as
well as properties for effective provenance in cloud. In essence, blockchain is
a P2P ledger system, where information that constitutes provenance for phys-
ical, virtual, and application resources can be stored publicly for transparent
verifiability and audit. As such, both transparency and cost effectiveness are
provided, while access control and privacy for individual users of the ledger are
ensured through encryption techniques, where individuals can see only parts
of the ledger that are related to them. Furthermore, blockchain technology pro-
vides much needed functionalities that happen to be part of the cloud, including
asset transfer and provenance [18].

8.3.2 Blockchain Cloud Vulnerabilities

Blockchain cloud is realizable provided the majority of nodes in the network
are honest and authentic. However, in the cloud environment, it is possi-
ble for rogue nodes to negatively impact the mining and/or consensus pro-
cesses. In this section, we present the vulnerabilities associated with blockchain
technology.

Double-spending attack—This vulnerability is particularly attributed in Bit-
coin Technology, where adversaries look forward to using the same digital cryp-
tocurrency for more than one transaction. Since reproduction of digital infor-
mation is easy to achieve, the occurrence of double spending is possible in
reality. To conduct such an event, the attackers must have strong hash power
and must be able to generate a longer private chain compared to the public
blockchain. The attack is carried out in the following steps:

1. Starting from block N , privately mine to extend the blockchain as much as
possible but do not publicize.

2. Broadcast the transaction to the organization of interest.
3. Wait patiently until enough confirmations are received and the transaction

successfully gets recorded in the blockchain, so that the merchant dispatches
the product.

4. Secretly mine for extending the private branch until it is longer than the pub-
lic branch. If succssful, publicize the secret branch that will be eventually be
accepted as valid and the block containing the payment to merchant will be
discarded.
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From the hash-rate based analysis in [19], it is found that the probability of suc-
ceeding in a double spending attack (az) is governed by the following expres-
sion:

az = min
(

q
p

, 1
)max(z+1,0)

=
{

1 if z < 0, q > p
(q∕p)z+1 if z ≥ 0, q ≤ p.

where p, q are the hash rate proportion of the honest nodes pool and the
attacker pool, respectively, and z is the number of blocks by which the hon-
est network has an advantage over the attacker. If z becomes negative (< 0), the
attacker pool can publicize their blocks and overtake the honest users, mined
chain. Hence, the following remarks can be made on the success of such an
attack:
� The success of double spending depends on the hash power of the attacker

and the number of blocks (leading or lagging).
� If the attacker’s hash power (q) is more than 50%, it always succeeds.
� If q < p, then success probability decreases exponentially.

The above analysis was conducted when the number of confirmations on a
transaction did not affect the merchant’s decision. However, when the require-
ment of n confirmations for validating a transaction is enforced, the expression
of success probability is given in Eq. 8.3.

az =
{1 if q ≥ p

1 −
∑n

m=0
(m+n−1

m

)
pnqm − pmqn if q < p. (8.3)

Thus, it is observed that a double-spending attack is successful for an attacker
with any hash rate and the probability decreases exponentially as the number
of confirmations increase. Hence, there is no relevance of the “6 confirmations
requirement” (often cited) as this value was chosen based on the assumption
that an attacker may not have more than 10% hash rate compared to the rest of
the network.

Selfish mining attack [20, 21]—Since mining cryptocurrencies like Bitcoin
is hard for a single miner due to the requirement of high computing power
for solving the cryptopuzzle, a set of miners generally collude to form a pool
with each other and share the received reward among themselves after suc-
cessfully solving the puzzle. This also helps individual miners to generate a con-
stant income instead of infrequent (random interval) payment, when they mine
alone. It is argued that incentives to the pool of honest miners can be dominated
if there exists a pool of selfish miners that intentionally aims to invalidate the
work of honest miners by following a selfish mining strategy [20], and generate
better revenue for themselves. Similar to double-spending attacks, in a selfish
mining attack, the pool mines on their private chain and publishes it strategi-
cally depending on the state of the pool. The states are defined based on the
parameter lead (the difference in lengths of the private chain and the public
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chain) and branching (honest and selfish pools are working on different parent
blocks). In brief, the selfish mining strategy can be stated in the following way
(assuming the honest pool always accepts the longest chain):
� If lead = 2 and the honest pool mines the next block, then publish the entire

private chain.
� If lead = 0, part of the honest pool works on the selfish pool’s mined block,

and the selfish pool mines the next block, then publishes the entire private
chain.

� If lead ≥ 0 and the selfish pool mines the next block, then keep the mined
block secret.

With the possibility of different states, Eyal and Sirer calculated the following
expected revenue (Rpool) of the selfish pool:

Rpool =
𝛼(1 − 𝛼)2(4𝛼 + 𝛾(1 − 2𝛼)) − 𝛼

3

1 − 𝛼(1 + (2 − 𝛼)𝛼)
. (8.4)

where 𝛼 is the hash power of the selfish pool and 𝛾 is the proportion of honest
miners that choose to mine on the pool’s block. Thus, the selfish pool’s rev-
enue is governed by their hashing power and propagation factor (𝛾). In general,
0 ≥ 𝛼 ≥ 0.5 must be satisfied in order to avoid the 51% attack; however, [20]
proposed that the pool of selfish miners can gain higher revenue if the follow-
ing constraint on their hashing power (𝛼) is satisfied:

1 − 𝛾

3 − 2𝛾
< 𝛼 < 0.5. (8.5)

It can also be observed that the revenue of each selfish miner will increase if
the pool size increases beyond the threshold. As a consequence, most of the
honest miners would prefer to join the pool for generating higher incentives,
and eventually the pool becomes the major player that controls the blockchain.
Thus, decentralization would not hold any more.

To resolve this issue, the authors suggest that it is necessary to raise the
threshold so that no pool can benefit by executing selfish mining. Rather, min-
ers must propagate all the blocks when they learn about competing branches
of the same length in the blockchain and randomly choose one to mine. In that
case, 𝛾 = 0.5, thus the threshold gets raised to 0.25. But raising the threshold
to 0.25 still keeps the range open to a selfish mining attack, which may be suc-
cessful if a pool can be formed with a hash power of at least 25% of the total
network.

An extension to selfish mining strategy has been proposed in [22] that states
that the revenue of a selfish miner can be even higher if it adopts their proposed
stubborn strategies.

Eclipse attack [23]—This type of attack is performed to take advantage of
the P2P network that is used to broadcast information among Bitcoin nodes.
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In the Bitcoin network, the nodes randomly select eight other peers to main-
tain a long-lived outgoing connectivity for propagating and storing informa-
tion about other peers. Additionally, nodes with public IP can accept up to 117
unsolicited incoming connections from any other IP. Thus, the openness and
decentralization of the P2P network attracts adversaries to join and perform an
eclipse attack, where “the attacker strategically takes control of all the incom-
ing and outgoing communications of a victim node”, thereby stopping all con-
nections from other legitimate nodes. The attack is performed by rapidly and
repeatedly making unsolicited connection requests to the victim node from the
attacker-controlled nodes by sending irrelevant information until the victim
restarts. With such effort, there is a high chance that the victim will have the
eight outgoing connections to the attacker-controlled nodes.

In the core of Bitcoin’s P2P network, network information is propagated
through DNS seeders (servers that resolve DNS queries with respective IP
addresses) and ADDR messages (that are used to obtain network information
from the peers and contain up to 1000 IP addresses). Each node also locally
maintains two tables (tried and new) to keep the public IPs. The tried table
contains the addresses of the peers with whom the node has successfully estab-
lished a connection along with timestamp information, whereas the new table
contains addresses of peers with whom connection is not yet initiated. When a
node restarts or a connection is dropped, the next peer selection follows a prob-
abilistic approach, where an address for (𝜔 + 1)th connection is chosen from the
tried table with the following probability:

P[Select from tried] =
√
𝜌(9 − 𝜔)

(𝜔 + 1) +
√
𝜌(9 − 𝜔)

. (8.6)

where 𝜌 = ratio of # of addresses in the tried and new tables.
The eclipse attack takes advantage of the above selection process for monop-

olizing all connections of a victim node.

1. Populate the tried table with attacker-controlled nodes’ IP address by send-
ing unsolicited messages.

2. Overwrite addresses of the new table with garbage addresses (not related to
peers’ IPs).

3. Once the node restarts, with high probability all the connections are monop-
olized

Block discarding attack and difficulty raising attack [24]—Block discard-
ing attack is carried out by an attacker that has a good hold of network con-
nections compared to a normal node. Since propagation of mined blocks is an
important characteristic to add it into the mainstream blockchain, the attacker
would preferably place multiple slave nodes to improve its network superiority.
With this placement, the attacker could easily get informed of freshly mined
blocks and instantly propagate the it’s block faster than the rest of the network.
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Thus, when any node publicizes a block, the attacker can immediately dispatch
its own mined blocks, so as to discard others’ blocks.

However, the difficulty raising attack takes advantage of the attacker’s hashing
power to manipulate the difficulty level of the cryptopuzzle. In this attack, it is
claimed in [24] that the probability of discarding a block at depth n (i.e. [n − 1]
blocks have been mined after this) is pn, where p is the ratio of the hash power
of the attacker and the rest of the network. To succeed in doing so, the attacker
must wait for enough time.

Block withholding attack [25]—In this type of attack, some pool members,
who have joined to help mining blocks, would actually never publish any block,
thus decreasing the expected revenue of the pool. These attacks are also known
as “Sabotage” attacks, where the rogue miner never gains anything, and rather
makes everyone lose. However, an analysis with practical instantiation in [1]
claims that a rogue miner could also gain profit from such an attack.

Anonymity issues in blockchain cloud—It has been acknowledged that the
underlying blockchain technology of the Bitcoin ecosystem is not completely
anonymous in nature. The transactions are permanently recorded in the public
ledger; hence, everybody can see the balance, and transactions related to any
Bitcoin address. The real identity and privacy of a user will not get exposed
until the user reveals any information during purchase or any special circum-
stances. Therefore, Bitcoin is pseudo-anonymous, i.e. Bitcoin addresses can be
created by anyone but tracing back to the real person is not possible unless any
information is found from another source. To maintain higher privacy and bet-
ter anonymize transactions in the Bitcoin environment, users are encouraged to
have multiple Bitcoin addresses. Since the convenience of the e-cash system and
pseudo-anonymity attract darknet markets to make illegal transactions anony-
mously, it has been a topic of interest for government and security industries
to track down such illicit activities from the publicly available blockchain.

The work presented in [26] focuses on deanonymizing the owner of Bitcoin
transactions through mapping of the Bitcoin address with the IP address of the
actual owner. By collecting all the network-level traffic data including IP infor-
mation and performing offline processing, they found evidence of tracing back
the IP address from the Bitcoin address. Besides pruning irrelevant transaction
data, there are five crucial steps they follow to achieve the mapping: (i) hypoth-
esize an owner IP for each TX, (ii) create granular pairings of Bitcoin address
and IP, (iii) define statistical metrics for the pairings, (iv) identify potential pair-
ings that signify actual ownership, and (v) remove unwanted pairing based on a
threshold. Targeting the Bitcoin peers behind NAT or firewall, [27] proposed a
generic method to build a correlation between pseudonyms of Bitcoin users and
their public IPs. The method utilizes the connected user set or entry nodes for
identifying the origin of transactions. The outcome is a list, I = {(IP, Id, PK )},
where Id is used to distinguish the clients using the same IP, and PK is the
pseudonames used in a transaction. Finding the entry nodes (at least three) and
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mapping the transactions to these nodes are two important steps, as mentioned
in the chapter, to effectively deanonymize the clients.

After understanding important security vulnerabilities related to blockchain
implementation, we undertake one important case called the block withholding
attack and analyze the situation rigorously to understand the strategies of a
powerful attacker that lead to bring anomaly in the mining pool. The attacker
joins the pool with intentions to withhold the successful blocks and look for
opportunities to specifically demotivate honest members from mining in the
pool. We theoretically analyze the attacker’s strategy by considering different
types of pools whose rewarding schemes are different.

8.4 System Model

In this work, we consider a pool  , where n miners work continuously trying to
solve the cryptographic puzzle using their hashing power. The pool is assigned
with a pool operator, who is responsible for collecting transactions from the
network, creating a block, keeping track of puzzle difficulty, recording the num-
ber of shares submitted by pool members, dispatching the successfully mined
block to the P2P network, and collecting and redistributing the reward among
miners. The pool members are considered to be honest in nature, which means
they report their solutions or shares to the pool operator immediately as they
find them. Assuming the miner i has hashing power 𝛼i of the total mining power
(), where 0 ≤ 𝛼i ≤ 1, the overall mining power of the pool is 𝛽 =

∑n
i=1 𝛼i. For

simplicity, we assume that 𝛽 < 1; thus, the pool is not the only computing entity
but there exist other solo miners or pools whose computational power is fixed
with respect to the pool  . Additionally, the miners of pool  receive rewards
based on their contributions in a round, where a round is defined as the interval
between two valid blocks found. The contribution of the miners is calculated
based on the number of shares reported, and each share could be a full solu-
tion with probability 1∕D, where D is the overall difficulty of the cryptopuzzle
that is assumed to be fixed. Finding a share is inevitably easier than finding
the valid solution because the share is only meant to prove that a miner has
worked enough to find it. Thus, the difficulty of finding a share is determined
by the pool operator, which is less than D. As a standard, a particular hash is a
valid share with probability 1

2𝜅 , where 𝜅 is specified by the private blockchain
creator so that 0 ≪ 2𝜅 < D. The description of all the symbols used in the rest
of the chapter is given in Table 8.1.

On the other hand, the attacker is considered to be a powerful miner who
willingly participates in the pool  and aims to maximally damage the mining
activity of the pool by withholding successfully mined blocks. The attacker joins
the pool with an initial hashing rate of 𝛼 but we assume that the attacker has
the ability to augment its mining power by incorporating additional physical



180 Blockchain for Distributed Systems Security

Table 8.1 Symbol table.

Symbol Meaning

𝛼i Hash power of miner i
𝛼 Hash power of attacker
D Difficulty of PoW puzzle
R Block reward
 Total mining power of the pool
𝛿 Percentage of reward for pool operator
𝜅 Difficulty required for a block to be a share
h(.) Function determining number of shares produced by a miner
B Average number of blocks found in last N shares
T Mean amount of time required to find a block

Application-Specific Integrated Circuit (ASIC) resources or leasing computing
power from cloud vendors. Although such efforts for increasing hashing power
may be costly by themself, the attacker’s irrationality makes it feasible by our
assumption. In this chapter, we aim to understand how much of extra mining
power a block-withholding attacker may need to completely sabotage a pool,
thus leading to a situation where no single miner would prefer to honestly mine
in the pool. This analysis would then help to perform a cost benefit analysis of
leasing cloud/noncloud computational resources for a successful attack. By say-
ing sabotaging a pool we mean that the attacker comes up with such strategies
that dominate the reward distribution in the pool, therefore leading to a situ-
ation where other members’ reward variance out of pool mining is more than
the variance out of solo mining.

8.5 Augmenting with Extra Hash Power

For increasing the hashing ability of a miner, there are different possible options
available to undertake. The first option is mining hardware. Mining has pro-
gressed from the era of CPU to GPU and finally to the ASIC era. Currently,
miners opt for ASIC chips to mine blocks since these give a great amount of
hashing power at minimal cost. ASIC chips are designed purposely for block
mining, and hence cannot be used for any other task. The ASIC mining hard-
ware offers 50× to 100× increase in hashing power while reducing power usage
by 7× compared to previous technologies. The company, Avalon [28], manu-
factures ASIC mining chips for the Bitcoin miners’ market where each server
can process 3.65 TH/s at a power efficiency of 0.29 W/GH.
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The second option is renting mining services from cloud providers, which is
called cloud mining or cloud hashing. There are three kinds of possibilities to
perform remote mining: (i) hosted mining, (ii) virtual hosted mining, and (iii)
leased hashing power. In case of hosted mining, the user leases a machine that
is capable of mining and is hosted by the provider on cloud. In virtual hosted
mining, the user creates a mining environment from scratch on the virtual pri-
vate server. In case of the leased hashing power technique, which is mostly
used in the current scenario, the user leases the required amount of hashing
power from the provider without any hassle of managing the infrastructure.
This allows users to purchase hashing capacity from the cloud provider’s min-
ing hardware that is already installed in their data centers. This enables another
viable way to get rid of the issues related to installing mining hardware, manag-
ing electricity consumption, or network connectivity and bandwidth require-
ments. Such services exist in practice and providers, such as Hashflare [29],
Genesis Mining [30], Hashnest [31], and Eobot [32], for offer competitive prices
in exchange for hashing capabilities.

8.6 Disruptive Attack Strategy Analysis

Considering the attacker is going to withhold the valid blocks only; it may pub-
lish the shares that are not exactly solutions of the cryptopuzzle. Thus, the only
way an attacker can do damage to the pool is to take away as much reward as it
can by submitting a sufficient number of shares. Since mining pools are char-
acterized by the schemes they adopt to reward the participating miners, the
attacker’s disruption strategy may vary accordingly, which we discuss in the
following sections.

8.6.1 Proportional Reward

This is a very naive scheme [25], where the total reward is divided proportion-
ately according to the number of shares each miner contributed in that round of
competition. The round in this context means the interval between finding two
successfully mined valid blocks. As a pool operator receives a challenge from
the blockchain network, the competition round starts, where it assigns the task
to participating miners in the pool. The members utilize their hashing ability to
solve the cryptopuzzle. Upon finding a valid block, the honest members usu-
ally forward it to the pool operator, which then broadcasts in the blockchain
network. The pool operator receives a fixed reward R if the network of min-
ers reaches consensus on its mined block, and from this point the next round
starts. The pool operator may keep a fixed percentage of the reward, and the
remaining is then distributed among the members in proportion to the number
of shares each miner has contributed with respect to the total number of shares
received in that round.
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Assuming that 𝛿 portion of reward is reserved for the pool operator, the pool
members share the total reward of (1 − 𝛿)R. Now, to estimate the expected
number of shares in a particular round of competition, we assume that the
time taken to find a share by miner i is exponentially distributed with param-
eter 𝛼i. Thus, the expected time of finding a share is 1

𝛼i
, which can be a full

solution with probability 1


. Considering the round lasts for T units of time,
the miner i could produce 𝛼iT number of hashes on average in that round.
However, the total number of shares the miner produces is modeled as the func-
tion, h(𝛼iT), where h(.) is monotonically increasing function with respect to
i’s mining power, i.e. 𝜕h

𝜕𝛼i
> 0. Thus, the total number of shares submitted to the

pool operator can be represented as:

H =
∑
i∈

h(𝛼iT). (8.7)

So, the expected reward received by miner i out of the pool that adopts the
proportional reward scheme is:

Ui =
(1 − 𝛿)Rh(𝛼iT)

H
. (8.8)

Block withholding attack in the proportional reward pool—When a mali-
cious miner with hashing power 𝛼 joins the pool, the inherent power of the
pool increases to

∑n
i=1 𝛼i + 𝛼. Thus, the number of shares submitted in a

round increases from H to H′, where H′ =
∑

i∈ h(𝛼iT) + h(𝛼T). As the
hashing power of the attacker increases, its share contribution in the pool also
increases proportionately. Since the attacker never submits valid blocks (solu-
tions) and rather withholds them, the length of the round does not depend
on its mining power. The goal of the attacker is to impose maximum dis-
ruption on the pool members so that pool mining is no longer profitable for
them, and eventually forces them to leave the pool. There are two different
ways an attacker can affect the block mining of pool members: (i) eclipsing the
blockchain network, where the attacker can control the network connections
and hence manipulate the victim’s mining activity directly, and (ii) increasing
hashing power, which could produce more number of shares; hence, the over-
all reward received may dominate over rewards to all other members. We have
chosen to analyze the second scenario, where the attacker could get extra min-
ing power to dominate in the pool and increase the reward variance of pool
members.

To start absorbing rewards, the attacker needs to know the amount of extra
hashing power it requires on top of 𝛼 to generate x more shares because
the only way to decrease the payout of pool members is to submit more shares
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to the pool operator. Now, if the attacker generates extra x shares, the rewards
to the pool member i can be represented as:

Ui =
(1 − 𝛿)Rh(𝛼iT)

H′ + h(x)
. (8.9)

This means that the payoff of miner i is inversely proportional to the mining
power of the attacker and therefore its net reward goes down if the attacker
generates more shares. However, it is not possible to make the utility of honest
miners very close to zero because it will need an enormous amount of shares to
be generated. Pursuing that would equivalently require large computing ability,
which may not be possible for an attacker. Instead, we plan to find the lower
bound on x that will still paralyze the miners to be better off with solo mining.
Thus, the attacker’s optimization function can be characterized as:

x∗ = minimize
x

[ n∑
i=1

(1 − 𝛿)Rh(𝛼iT)
H′ + h(x)

]
(8.10)

Subject to,
prop var(Ui) ≥ var

(
Ui

solo
)
+ 𝜖,∀i ∈ [1,⋯ , n].

where 0 < 𝜖 ≪ 1 is a very small amount that signifies the point at which
the payout variance out of pool mining crosses the variance of solo mining.
prop var(Ui) is the payout variance of miner i per each share while mining in the
pool and var(Ui

solo) is the payout variance per share while mining solo. The con-
straint signifies that if prop var(Ui) is higher than that of solo mining, then the
attacker successfully demotivates them to not participate in the pool. If the vari-
ance is high, then the reward will not be consistent, which is what the attacker
wants to achieve.

Now, we find the variance of payout for miner i when mining solo with
a constant hash rate of 𝛼i. In case of solo mining, the reward is given if
it finds an actual block. Thus, the expected reward out of solo mining is
Pr(finding a block)R = 𝛼iR

2𝜅D . Block finding as a solo miner can be characterized
as a Poisson process with rate parameter 𝜆 = 𝛼i

2𝜅D . Hence, the total expected
reward that solo miner i can receive by mining for T amount of time is the
following:

Ui
solo =

𝛼iTR
2𝜅D

. (8.11)

From the property of Poisson distribution, we know that variance (𝜎2) is the
same as the rate parameter (𝜆). Hence, the variance of payout from solo mining
can be:

var
(
Ui

solo
)
=

𝛼iTR2

2𝜅D
. (8.12)
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To model the payout variance per share in pool mining, we first need to con-
sider an appropriate distribution for the total number of shares produced in the
pool. Now, considering N = H′ + h(x) as the random variable representing the
total number of shares reported in the pool during a round, Pr(N) represents
the corresponding probability distribution function (PDF). The average value
of reward per share to miner i in the round can be:

𝔼[Ui] =
∞∑

N=1

(1 − 𝛿)R
N

Pr(H′ + h(x) = N). (8.13)

where (1−𝛿)R
N is the per share reward as we found earlier. Now, the expected

squared payout can be defined as:

𝔼
[
U2

i
]
=

∞∑
N=1

(1 − 𝛿)2R2

N2 Pr(H′ + h(x) = N). (8.14)

Hence, the payout variance can be expressed as:

prop var(Ui) = (1 − 𝛿)2R2
∞∑

N=1

[
Pr(N) − (Pr(N))2]

N2 .

Now, to find the concrete value of the payout variance, we can model the total
number of shares using different standard probability distribution functions
such as geometric and negative binomial. These PDFs provide a near natural
model to estimate the total number of shares in a round [25].

8.6.2 Pay-per-last N-shares (PPLNS) Reward

Since the proportional reward scheme is very naive in nature, it suffers from
pool-hopping attack, where malicious miners can strategically choose differ-
ent pools to mine in a round to obtain maximum reward. Therefore, several
advanced schemes are proposed to avoid such a scenario and is PPLNS reward
scheme is one of them that supposedly resists the pool-hopping nature of
greedy miners. Unlike the proportional reward scheme, which is round based,
PPLNS considers temporal share submission activities to reward pool mem-
bers irrespective of rounds in the mining process. In this scheme, the reward
is distributed among the miners who recently submitted their shares no matter
how many actual blocks are found in the considered interval.

A simple variant of PPLNS is to set a threshold for total recent shares to N
and the total reward is distributed among the miners based on the last N shares
submitted. Now, taking the same notations into account and considering total
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B blocks are found during the last N shares, the payout per share (Upplns) can
be represented as:

Upplns =
(1 − 𝛿)RB

N
. (8.15)

where B follows the Poisson distribution with mean N
2𝜅D . In this variant, it is

assumed that the difficulty D and reward R are kept constant. Altogether, RB
defines the total expected reward received by the pool operator during the last
N shares.

The pool employing the PPLNS reward function typically works in the fol-
lowing manner: The operator keeps track of the history of at least the last N
submitted shares irrespective of the round in which they have been reported.
Therefore, the rounds in this case are interdependent on each other. The
ordering of shares is maintained using a sliding window of length N , which is
later used to divide the total reward proportionately among the contributors.
Considering the sliding window at kth share as sk = {sk−N , ss−N+1,⋯ , sk}, the
reward for miner i can be expressed as:

Ui
pplns = (1 − 𝛿) ×

#{sj : sj ∈ s and sj = i}
N

× RB. (8.16)

In the above expression, the total reward received in the window the of last N
shares is divided proportionately among each pool member i ∈  , who submit-
ted their shares in the considered window.

Block withholding attack on the PPLNS reward pool—Similar to the pre-
vious reward scheme, one malicious miner is introduced in the PPLNS pool
who aims to disrupt the normal operation of pool mining via accumulating as
much reward for itself. Unlike the strategy adopted in the proportional reward
pool, the attacker would have to opt for a different strategy in the PPLNS pool
because submitting as many shares may not be the optimal case anymore due
to the fact that only the last N shares will be considered for reward distribution
irrespective of the rounds in which they are submitted. If we consider that there
are N slots to place N shares, the attacker can opt for the following strategies to
disturb the fairness of the pool reward system: First, the attacker with mining
power 𝛼 must mine at a faster rate compared to other pool members, where
successfully mined blocks are withheld. Next, the shares are published in such
a way that they reside in the window of the last N shares, so that the majority
of the reward is returned to the attacker instead of the pool members.

The attacker’s reward can equivalently be defined as per Eq. 8.16, where the
number of shares it contributes in the last N slots is dependent on its hashing
power.

U

pplns = (1 − 𝛿)RB
[Φ(N , 𝛼)

N

]
. (8.17)
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where Φ(.) is a function that models the average number of shares the attacker
can contribute in the window of N slots. The function Φ depends on the
hashing power of the attacker and follows a Poisson distribution with a mean
parameter of 𝜆 = 𝛼N

2𝜅 . At the same time, the random variable B also follows a
Poisson distribution with mean N

2𝜅D . However, due to the fact that the attacker
withholds the successfully mined blocks, the mean value of B will exclude the
hashing capability of the attacker. So, the mean of Poisson-distributed random
variable B will be (1−𝛼)N

2𝜅D . Hence, the expected reward for the attacker can
be represented as:

𝔼
[
U

pplns

]
= (1 − 𝛿)R

𝛼(1 − 𝛼)2N
22𝜅D

. (8.18)

Understanding the overall utility of the attacker, its goal would be to max-
imize this quantity with the help of additional hashing power from external
sources. Compared to the optimization goal defined in the proportional reward
pool, where the goal was to minimize the other pool members’ reward by find-
ing an optimal amount of computational power, the objective here is to max-
imize its own reward in the window of N slots by submitting as many shares
so that other members’ net reward will automatically decline. Now, consid-
ering the attacker comes up with additional y amount of computational
power into the pool, the net objective function of the attacker can be defined as
follows:

y∗ = maximize
y

[
(1 − 𝛿)R

(𝛼 + y)(1 − 𝛼)2N
22𝜅D

]
. (8.19)

Subject to,
pplns var(Ui) ≥ var(Ui

solo) + 𝜖, for an i ∈ {1,⋯ , n}.
The constraint posed in the above optimization problem is similar to the pro-

portional pool, but here we are looking for one such miner whose reward vari-
ance from pool mining is more than that from solo mining. In that case, miner
i would prefer to leave the pool and mine alone. Therefore, this process can
be iterated to eliminate miners one by one, thereby harming the pool mining
process. Now, to define the variance of a miner i from the PPLNS pool when
the attacker has incorporated extra y amount of hashing power, the expected
reward for miner i needs to be formulated, which is (1−𝛿)R𝛼i

′N
2𝜅DN = (1−𝛿)R𝛼i

′

2𝜅D .
Due to the presence of the block-withholding attacker, the total mining power
of the pool is modified to ′, which is defined as (1 − 𝛼 − y). Hence, the
corresponding reward variance can be presented as:

pplns var(Ui) =
(1 − 𝛿)2R2

𝛼i(1 − 𝛼 − y)
2𝜅DN

. (8.20)

The reward variance out of solo mining will be the same as that defined in
the previous subsection, where the period T will be replaced with N .
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8.7 Simulation Results and Discussion

In this section, we evaluate the block-withholding attack instance by consid-
ering a private proof-of-work based blockchain that may be operable in small-
scale enterprises. It is assumed that all nodes mine on a single pool, and one
of them is malicious in nature and looks forward to disrupt the honest min-
ing performed by the rest of the nodes. We consider the initial total mining
power of the pool () to be 100 GH/s and the difficulty of the cryptopuzzle
(D) to be 2096, which is kept fixed throughout. Considering a homogeneous
environment, where all the miners have equal computational power, we have
experimented by provisioning extra hashing to the attacker and observing the
average reward variation. All the miners, including the attacker, are assumed
to have 20% of the hashing power in the beginning. For computing the number
of shares in a round, we assume the value of 𝜅 to be 10, which is typically half
the number of bits than the actual difficulty (D). The total shares submitted by
a miner with power 𝛼i, denoted by h(𝛼i), is sampled from a Poisson distribution
of mean 𝛼i

2𝜅 .
Since the attacker has possible means of increasing its hashing capability, we

first analyze the impact of such an action on the overall reward of the attacker
as well as the honest miners. Considering a maximum reward (R) of 10 for suc-
cessfully mining a block, we can observe from Figure 8.4 that increasing the
hash power of an attacker in pool mining has an adverse effect on the hon-
est miner group. Therefore, the honest miners’ reward decreases gradually, as
depicted by the red dotted line. Although the attacker could potentially increase
its hashing ability to a higher amount, such a costly attempt is not necessary for
demotivating honest miners to leave the pool. Rather, the attacker would prefer
to have a threshold amount of computational power so that the total reward of
honest miners goes just below the attacker’s reward, which happens to occur
at x = 0.6 in our considered case. When the submitted shares are considered
with respect to increasing the hashing power of the attacker, we can observe
from Figure 8.5 that the total number of share submissions from the attacker
increases exponentially, whereas the honest pool’s submissions are fixed on an
average. This situation is created due to the fact that the attacker has growing
computational power, while the honest miners’ hashing limits are fixed.

In Figure 8.6, the reward variation with respect to the attacker’s increasing
hashing ability is depicted, when the pool employs the PPLNS reward mecha-
nism. Here, we observe that the overall reward a pool can obtain, is higher than
the proportional pool. This is because of the fact that more than one success-
ful block could be found during the submission of the last N shares. However,
when the attacker gathers extra computational power, it can take away the hon-
est miners’ incentives for mining in a pool. We could observe that with addi-
tional power of y = 0.6 + 𝜖, 𝜖 > 0, the attacker dominates over the honest pool
members. Another interesting observation can be made from Figure 8.7 that
by increasing the window size in multiples of difficulty (D), the total reward to
the attacker does not increase at a growing rate, whereas the honest miners are
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Figure 8.4 Effect on average reward in proportional pool.

rewarded higher than the attacker. This happens due to the fact that more num-
ber of shares come from the honest pool while the attacker, with a constant hash
rate, can not make profit unless extra computational power is added. This gives
an idea about how the window size (N) can be chosen to build a barrier for a
block-withholding attacker that aims to take away the honest miners’ rewards.

8.8 Conclusions and Future Directions

Since blockchain technology is one of the next generation technologies
that employs cryptographically enforced distributed ledger system, its secu-
rity evaluation is necessary to assure its usefulness in the cloud computing
domain. Therefore, we investigate the applicability and security implications of
blockchain in realizing blockchain cloud. A number of security vulnerabilities
are discussed that may have a harmful impact while integrating blockchain with
the cloud system. We then particularly model the issue of block-withholding
attack that is prevalent in PoW-based mining pools to understand the attacker’s
strategy toward taking over the pool members’ rewards. Simulation results
demonstrate that the attacker’s access to extra computational power could dis-
rupt the honest mining operation in blockchain cloud. The attacker’s strategy
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is analyzed based on two different pools, where reward schemes are different.
We found that the pay-per-last N-shares (PPLNS) scheme could be useful in
keeping the attacker’s impact lesser than the proportional reward scheme. In
the future, we aim to extend our analysis on proof-of-stake based blockchain
cloud and test instances on real-time private blockchain platform.
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Permissioned and Permissionless Blockchains
Andrew Miller

University of Illinois Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana-Champaign,
Illinois, USA

9.1 Introduction

Most analyses of blockchain protocols that we have seen so far, ranging from
traditional consensus protocols like Paxos and Practical Byzantine Fault Toler-
ance (PBFT) to Nakamoto consensus, all rely on the “majority honest” assump-
tion, where we assume a majority of the parties follow the protocol correctly.

But why should we be willing to assume that any of the peers will be honest
and run exactly the protocol P? “Honest” here is really jargon, and means in a
strict sense for a peer to follow exactly the specified protocol P, regardless of
their moral nature. The peers may be honest but self-interested, and a varia-
tion of the protocol P′ might give them an individual benefit (see for instance
selfish mining). It may also be more computationally expensive to run P than
P′, for example if P′ is some approximation. The peers may even be affected by
external influences; what if someone offers a reward for running P′ instead?

To justify the honest majority assumption, blockchains typically provide
some mechanism for selecting the participants in a way that hopefully attracts
“good” participants. Blockchains can be roughly divided into two categories,
“permissioned” and “permissionless,” which differ in how participants are
selected. In permissionless blockchains, participants self-select, but must
expend resources (either money, in the case of proof of stake, or computational
resources in the case of proof of work) to participate. This arrangement jus-
tifies the honest majority assumption through incentive alignment as long as
participants cannot benefit much by running P′ instead of P. Permissioned
blockchains, in contrast, rely on inputs of some external selection process.
The identities of selected participants may be hardcoded into the software, or
dynamically updated. In either case, the authority to choose typically resides
with an institutional or organizational process, such as an industry consortium.

Blockchain for Distributed Systems Security, First Edition. Edited by Sachin S. Shetty,
Charles A. Kamhoua, and Laurent L. Njilla.
© 2019 the IEEE Computer Society, Inc. Published 2019 by John Wiley & Sons, Inc.
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In this chapter, we discuss two security design approaches and apply them
to both permissioned and permissionless models. The first design approach is
committee election, by which a large population of participants are winnowed
down into a small, fairly sampled subset, where the attacker does not have much
presence in the committee. This approach applies equally well in both permis-
sionless and permissioned blockchains, since it can improve performance ver-
sus having the entire population active.

The second design approach we discuss is privacy enhancement. Blockchain
applications often need to provide privacy guarantees for users, for example
if they involve sensitive information about financial transactions or about the
realtime location of Internet of Things devices. Here, cryptography can be
employed. If we have a high degree of trust in the peers, as in a permissioned
setting, secret sharing is a natural approach, since we assume a majority of
peers will not be breached. On the other hand, in a context with less trust,
zero-knowledge proofs allow clients to prevent any of the peers from seeing
protected data.

9.2 On Choosing Your Peers Wisely

In a permissionless blockchain, peers are self-selected according to some auto-
mated mechanism, which does not rely explicitly on administrators. Ideally,
the self-selection process should promote aligned incentives. That is, the self-
selected participants should have “skin in the game,” meaning they have a finan-
cial interest in seeing the blockchain succeed.

The most successful public cryptocurrencies to date have used proof of
work as the basis for their underlying consensus system. Mining requires
continuous expenditure of computational effort. This requires electric power,
as well as cooling and maintenance of mining equipment (racks of Graphics
Processing Unit (GPUs), Field Programmable Gate Array (FPGAs), or special-
ized Application-Specific Integrated Circuit (ASIC) equipment). The incentive
argument goes as follows: miners that participate must believe in the future
value of the currency, at least for the short term, since they will at some point
need to sell off some of the coins they mine to pay their ongoing utility bills. In
addition to the ongoing costs, proof-of-work mining further requires an initial
capital investment in the mining equipment itself. Some resources like GPUs
can be reconfigured easily to mine on different proof-of-work puzzles. Many
ASIC-resistant proofs of work, such as Equihash and Ethash, are designed to be
mined using GPUs, with diminishing returns for specialized equipment. This
is thought to encourage decentralization, since GPUs are widely available on
mass markets. For equipment that is specialized to a particular cryptocurrency,
miners may have to sell their equipment at a loss. This adds further support to
the argument that miners have an interest in the success of the blockchain.
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Proof-of-work schemes can vary widely according to what computational
resources they require. We describe just a few examples:
� Proof of work—based on the rate of computing hash functions; specialized

ASICs exist.
Examples: Bitcoin, Litecoin

� Memory-hard proof of work—based on access to random access memory,
which is (hopefully) more difficult for designing custom ASICs with signifi-
cant performance improvement versus commodity components.

Examples: Ethash, Equihash
� Proof of storage—required to contribute storage capacity. Storage is also resis-

tant to specialized equipment and requires less ongoing energy expenditure.
Examples: Filecoin, Spacemint

Proof of stake—as an alternative to consuming computational resources,
some cryptocurrencies require participants to spend money to participate. Nat-
urally, if the blockchain is used to support a virtual currency application, then
the virtual currency itself could be collected from participants. Blockchains are
called “proof of stake” if they use their own tokens or currency as rewards for
participating in their underlying permissionless consensus protocol.

Proof-of-stake blockchains differ widely according to how their virtual cur-
rency is used to select participants. In some cases, like Peercoin, just holding the
currency qualifies you to participate in mining. In other protocols, like Decred,
Casper, and Tezos, participants must explicitly deposit their coins ahead of time
in order to participate. In these schemes, coins that are “staked” by their owners
are locked up for some time period, during which they cannot be withdrawn.
In either case, the incentive alignment argument goes similarly to that of proof-
of-work mining. Stakers forego their ability to spend their coins today, for the
promise of a larger number of coins later. This is only rational if they expect the
future value of the currency will be maintained.

Permissioned blockchains—since permissionless blockchains are designed
to run without an administrator, they are especially appropriate for settings
where it is desired to avoid reliance on trust in external institutions. However,
many blockchain applications enjoy a less adversarial environment, where it
may be helpful and acceptable to rely on trusted external institutions.

A permissioned blockchain is one in which some institution or organizational
process chooses which servers participate in the protocol. In the simplest case,
a fixed group can be determined from the start, with a hardcoded list of public
keys or addresses included in the initial software release. More complicated sys-
tems with dynamic group updates are possible too. For example, Hyperledger
Fabric is a permissioned blockchain software that uses “control transactions”
to modify the list of active participants.

In a permissioned blockchain, the process of choosing the parties is out-
side the scope of the underlying consensus protocol design and implemen-
tation. However, the degree to which the blockchain is decentralized and/or
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trustworthy likely does depend on the quality and transparency of the selec-
tion process. For example, Hyperledger is a blockchain-oriented industry con-
sortium with publicly documented policies for group decision making among
its members. It currently has a 21-seat governing board composed of represen-
tatives of its full members.1 As such, this institutional process is decentralized
(across multiple independent stakeholders), and can be dynamic since a two-
thirds majority vote among the board can install new members. There are many
other related examples of blockchain industry consortia, such as Ethereum
Enterprise Alliance and R3. Permissioned blockchains can be decentralized if
they have an effective institutional process for choosing participants.

Summary—permissioned and permissionless blockchains differ in how their
participants are selected. Incentives may play a role in both, although incen-
tive mechanisms tend to be more explicit in permissionless cryptocurrencies. It
remains to be seen whether proof-of-work or proof-of-stake cryptocurrencies
will continue to exhibit long-term incentive alignment, or whether their under-
lying assumptions will turn out to be unjustified. Proof-of-stake cryptocurren-
cies are somewhat newer and less battle tested than the largest proof-of-work
cryptocurrencies. For example, the earliest proof-of-stake cryptocurrency,
Peercoin, has until recently featured a centralized checkpointing mechanism.
Other proof-of-stake cryptocurrencies are newer, and many of the most antic-
ipated projects (such as Tezos and Casper) are still undergoing development.
Given the important role played by incentives in permissionless blockchains,
it is unclear how a permissionless blockchain can be launched without also
launching a cryptocurrency. The high energy cost of proof-of-work cryptocur-
rencies means that they too are difficult to successfully launch. Permissioned
blockchains on the other hand can make use of external trusted institutions,
which inherit the decentralized qualities of their governance structure.

9.3 Committee Election Mechanisms

The previous section looked at how peer populations are chosen in permis-
sioned and permissionless blockchain networks. In both cases, the blockchain
approach is to avoid single points of failure by distributing control among mul-
tiple disparate participants. However, many consensus protocols, such as PBFT,
run slower and slower depending on how many parties participate, since addi-
tional bandwidth is required to replicate transactions to all of the peers. Latency
is especially critical for real-time applications such as micropayments among
Internet of Things devices. Even if 10,000 parties (approximately the number of
reachable peers on the Bitcoin network) are mostly honest, we wouldn’t actually

1 Captured April 1, 2018. https://web.archive.org/web/20180401182711/https://www
.hyperledger.org/about/charter

https://web.archive.org/web/20180401182711/https://www.hyperledger.org/about/charter
https://web.archive.org/web/20180401182711/https://www.hyperledger.org/about/charter
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want to run an instance of a PBFT consensus protocol directly among them.
Nakamoto consensus scales gracefully to a large number of users, although
recall that it is high latency to commit a transaction (since it takes many
blocks worth of confirmations to gain confidence that the transaction is actually
committed).

A useful, broadly-applicable approach for running an expensive protocol
like PBFT among a large scale of participants is “committee election,” where
a small subset of parties are randomly selected from among a large member-
ship. In terms of security guarantees, committee elections essentially translate
an assumption of the form:

At least 80% of a population of at least 10,000 members can be counted
on to correctly follow the protocol.

into a guarantee of the form

Among a 100-person committee sampled from the population, at least 2
3

of the committee follow the protocol.

In other words, committee elections can be used to amplify the starting
assumptions while sampling fairly.

Committee election can be applied to either proof-of-work or proof-of-stake
permissionless blockchains. For example, the SCP protocol [1] involves using
proof of work to assign identities to a potentially large set of participants, from
which a small subset is selected to improve performance. In proof-of-stake
cryptocurrencies, the population can be defined a large set of eligible account
holders, where the committee sample can be weighted by the account balance.

Leaving aside the choice of how the population is formed, committee elec-
tion protocols differ widely in the mechanism they use to select a committee.
Algorand [2] uses a cryptography “sortition” mechanism, which ensures pri-
vacy around the committee election. Essentially, the committee election is kept
secret, and each member of the population learns privately whether or not they
are a member of the next committee.

Analyzing committee size with Chernoff bounds—when selecting a com-
mittee, the main security goal is to ensure that an attacker does not have too
much representation in the committee. We assume, as a starting point, that the
attacker does not have too much representation in the population overall. The
challenge is to choose a large enough committee so that we get a representative
sample from the population.

To work through an example, consider a population of 1000 peers. Suppose
we assume that 85% are uncorrupted while the remaining 15% may be com-
promised by an attacker. Suppose we take a random sample of 100 out of the
peers (choosing with replacement, such that peers may end up holding mul-
tiple seats). What is the probability that at least 67 of the committee seats are
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assigned to uncompromised peers? This can be computed using binomial dis-
tribution. Letting X be a random variable corresponding to the number of cor-
rupt committee members, we can look the probability up in a table, or compute
it with standard packages:

Pr[X ≤ 33] ≥ 0.999998. (9.1)

More generally, consider a committee of k peers that are randomly sampled
from a large population such that some constant 𝛼 <

1
3 of the population is cor-

rupted (e.g. 𝛼 = 0.15 in the running example). We want the maximum number
of corrupted parties in the committee to be 𝛾 , where 𝛼 < 𝛾 (typically 𝛼 < 𝛾 <

1
3 ,

since this is the typical maximum fault tolerance for a consensus protocol exe-
cuted by this committee. As a function of the committee size k (ignoring 𝛼 and
𝛾 as constants), the probability that 1

3 or more of the committee is corrupted is
O(exp[−k]). This is a negligible function of k, meaning that we can can increase
the sample size to effectively reduce the probability of attack success.

To give a more explicit bound, we can use the Chernoff bounds technique [3]
to approximate this probability as a function of 𝛾 , 𝛼, and k. We first describe
the expected number of corrupted peers in the sample, 𝜇 = 𝛼k. Notice that we
assume that 𝛼 < 𝛾 so that the expected number of corrupt peers is smaller than
the desired bound, 𝜇 < 𝛾k. We want to bound the probability that more than
(1 + 𝛿)𝜇 corrupt parties are chosen, where we define 𝛿 > 1 in terms of 𝛼, 𝛾 as
follows:

𝛿 = min
((

𝛾

𝛼
− 1

)
,
(
𝛾

𝛼
− 1

)2
)
.

Applying the standard Chernoff bound technique then gives us the following
(probabilistic) upper bound for the number of compromised peers in the com-
mittee, X:

Pr[X ≥ 𝛾k] ≤ exp
(
−𝛿𝛼k

3

)
. (9.2)

When we plug in the example values from earlier, i.e. 𝛼 = 0.15, 𝛾 = 1
3 , and

k = 100, we get 𝛿 = 𝛾

𝛼
− 1 = 11

9 , and Pr[X > 33] < 0.00222. Note that the
Chernoff bound agrees with the directly-computed lower bound (9.2), but is
looser by some factor. The Chernoff bound is useful mainly for establishing
asymptotic guarantees.

Committees for sharding and scalability—committee election enables a
blockchain protocol to “scale” in the sense that additional peers can join the
network without harming performance. However, true scalability means that
adding more peers to the network should increase the attainable throughput. A
promising approach to achieve this goal is “sharding,” which involves partition-
ing the application into distinct shards, such that one committee is responsible
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for each shard. Omniledger, Scalable Consensus Protocol, RSCoin, Aspen,
and Chainspace are all examples of blockchain protocols that make use of
this approach. The key challenge is ensuring consistency for transactions that
involve multiple shards. Transactions that only involve application data within
a shard can be processed locally to a committee. However, a transaction
from one shard to another requires communication between the committees
and therefore appropriate coordination and locking mechanisms. Race con-
ditions and coordination hazards abound, underscoring the need for rigorous
analysis.

9.4 Privacy in Permissioned and Permissionless
Blockchains

There is a fundamental tension between privacy and fault tolerance when
designing a blockchain-based system. On one hand, blockchains get their fault
tolerance benefits by widely replicating data across many peers. However, this
poses privacy hazards, especially since data can be sensitive. For example, in
Bitcoin, the Bitcoin transaction graph is known to leak plenty of information,
linking financial activities across different pseudonyms or addresses.

The protocol may specify that peers have a duty to delete secrets once no
longer needed (i.e. securely erasing log entries). Under the assumption that
all the peers follow the protocol, this may be effective. However, unlike in the
case with equivocation, it does not appear possible in general to directly detect
whether an individual peer has suffered a data breach or leaked data. The usual
argument based on reputations does not work as well if the perpetrator of the
leak is concealed.

Tradeoff between privacy and availability—in a permissioned blockchain,
we may be be more inclined to expect the peers to be trusted with keep-
ing client records confidential, and only revealing information on a need-to-
know basis (e.g. clients can only query their own account balance but not that
of others). Regardless, this introduces a tradeoff between availability (prefer-
ring more replicas) and privacy (preferring fewer replicas). Some permissioned
blockchain implementations, such as Hyperledger Fabric and Quorum, pro-
vide support for applications to tune their operating points along this tradeoff.
Hyperledger Fabric’s “private channels” abstraction allows for some application
functionality to be restricted to processing by only a designated subset of the
participating peers. This reduces the attack surface for a privacy loss or data
breach. However, the availability of the system now depends on the liveness of
this designated subset.

Zero-knowledge proofs—cryptography can come to the aid here, sidestep-
ping the tradeoff by allowing users to conceal their private information while
still storing it encrypted in the blockchain, hidden in plain sight. Zero-
knowledge proofs are especially useful in this context, since they enable a user
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to prove that a piece of encrypted data satisfies some property, even without
revealing the data itself.

Consider the following design for a blockchain-based virtual currency with
private account balances: The public blockchain stores the balance of each user
Pi as a cryptographic commitment C = Com(r, $bal), where the user knows his
real balance $bal, as well as the randomness r used by the commitment. Now
suppose the virtual currency needs to support a feature whereby a user with-
draws some amount $X of “publicly visible” money from their account, without
revealing any information about the remaining balance. In other words, the user
must accomplish the following without revealing anything about $bal:

1. Prove that $X is smaller than the secret balance committed to by C.
2. Post an updated account balance C′ and show that it is $X smaller than that

of C.

A zero-knowledge proof for this application is described precisely below,
using a versatile notation called the Camenisch-Stadler notation. This is used
to specify the public information (the statement) known to the prover and ver-
ifier, the private information (the witness) known only to the prover, and the
required relationship between them (the predicate, or language).

ZK{(r, r′, $bal) : C = Comr($bal) ∧ C′ = Comr1
($bal − $X)}.

To summarize, this notation says that the prover must convince a verifier that
he/she knows how to open the two commitments C and C′ to the values $bal
and (bal − $X), respectively, and that $bal ≥ $X so no overflow occurs.

Applications expressed in this notation can be systematically compiled to
zero-knowledge proof schemes [4], with varying performance tradeoffs. The
example above most closely resembles the confidential transactions [5] cryp-
tocurrency design. Many other variations are possible. Ring signatures can be
combined with confidential transactions to obscure the identity of the sender
[6]. The Zcash security layer, based on Zcash [7], hides the amounts, sender,
and receiver.

Applications based on zero-knowledge proofs are especially appealing for
permissionless blockchains, since they avoid revealing information to any of
the peers. However, a downside is that if the client loses their keys, the private
data is lost with them.

Secret sharing and secure multiparty computation—suppose we can trust
a majority of the blockchain peers to keep a secret. For example, suppose among
N available servers, we believe no more than t of them will suffer a data breach
in the next year. Secret sharing is a technique for this setting that lets a client
store sensitive data s as a shared secret ⟦s⟧, distributed among the N servers,
such that learning any information about s requires the interaction of t + 1 or
more servers.
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Shamir’s secret sharing scheme works as follows: Consider a secret field ele-
ment s ∈ Fp where p is a large prime number. We can represent the secret ele-
ment s by a random degree-t polynomial f (⋅) over Fp where the secret is the
evaluation at 0, s = f (0). The idea is that then each peer in the network is
responsible for storing one point on the polynomial, i.e. party Pi stores ⟦s⟧(i) =
f (i). Since the polynomial is of degree-bound t, then any t + 1 parties can inter-
act with each other to recover f (⋅) (and hence s) through polynomial interpola-
tion. However, if up to t peers suffer a data breach, the attacker learns nothing
about the secrets.

Instead of simply reconstructing the secret value, we can use Secure Multi-
party Computation (SMC) to perform computations over the secret-shared val-
ues. In theory, this approach is completely general, and we can support arbitrary
computations over secret-shared data by representing the program as an arith-
metic circuit [8, 9]. In practice, this compilation can be expensive. For example,
while linear operations on secret-shared values can be computed locally, multi-
plications require a round of interaction (using the BGW protocol [9], or Beaver
triples [10]). Providing efficient and general instantiations of the computing-
on-shared-data approach remains an active area of ongoing research.

Secret sharing introduces a tradeoff between privacy and availability. Many
SMC protocols tolerate a maximum threshold parameter of t < N

3 . Notice that
for a given setting of N , the parameter t determines the privacy guarantee, since
up to t peers may be compromised without endangering the secret. However,
since at least t + 1 peers must interact to perform any computations on the
secret, if N − t crash then the secret could be lost. Some recent SMC protocols,
such as SPDZ [11], provide privacy in the “dishonest majority” setting, where up
to t ≤ N − 1 parties can be compromised without revealing information about
the secret. However, in this setting, if even one server crashes, then the secret
is lost.

9.5 Conclusion

Blockchains can distribute trust but not eliminate it entirely. All of the desired
security and properties rely on a majority of the participating parties to
behave appropriately. Whether these parties are appointed, chosen randomly,
or offered incentives, the overall goal is the same—get many different folks to
participate and to take their role seriously.

A wide range of approaches to achieve this have been proposed, and many
practical deployments are underway. Permissioned and permissionless designs
represent two ends of a spectrum based on the degree of influence that a
trusted authority has in the process. Blockchains featuring a digital currency
typically reward participants with units of this currency. There seems to be an
inherent tension between having “more” participants and “better” participants.
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Requiring participants to expend energy or make a financial deposit are
attempts at raising the barrier to entry so only dedicated individuals partici-
pate. It is difficult to keep a secret among a large group, although cryptographic
mechanisms can be used to provide privacy to users. Although, in general, more
participants means more cost, sampling a small committee can be an effective
mitigation strategy.

Future blockchain designs will surely experiment with more approaches as
well. We do not yet have a comprehensive model to comparatively evaluate
such designs. How participants respond to incentives can depend on factors
outside the scope of system design, such as fluctuations in the market price of
the virtual currency denominating their rewards. We would prefer to evalu-
ate system designs in isolation, for simplicity. However, the blockchain ecosys-
tem is already quite complex, and miners and other blockchain participants
must choose among many competing networks where to direct their efforts
and attention. We envision that a successful model may combine ideas from
distributed systems and behavioral economics, perhaps inspired by empirical
insights obtained from ongoing blockchain deployments.
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10.1 Introduction

Blockchain technology has redefined the way people view trust mechanisms
in distributed systems. Blockchain serves as a tamper-proof and transparent
public ledger that is easily verifiable but difficult to corrupt. Blockchains use
an append-only model backed by proof of work, for example, that offers the
capability of augmenting trust in decentralized peer-to-peer settings. Due to
such features, Blockchain is being used in applications such as smart contracts,
insurance, decentralized-data storage, cloud, Internet of Things (IoT), and anti-
counterfeit solutions [1–4].

Although Blockchains are publicly verifiable and tamper proof, they appear
to be vulnerable to a number of attacks [5], with a high incentive for attack-
ers to attack them. The application space of Blockchain systems has experi-
enced a massive growth in the last two years [6], while the number of attacks
on those applications has also increased [7]. Some of the well-known attacks
on Blockchains include the 51% attack, selfish mining, double spending, block
withholding, block forks, and distributed denial-of-service (DDoS) attacks
[8–11]. Vasek et al. [12] state that denial of service is the most prevalent form
of attack that afflicts Bitcoin users.

In the general Blockchain systems, DDoS attack is launched against miners,
users, and third parties (e.g. exchanges) [13]. In peer-to-peer settings, a DDoS
attack may take various forms. Upon bootstrapping, users or miners can
be rerouted towards a counterfeit network, denying them access to the real
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network. Maria Apostolaki et al. [14] estimated that an attacker can isolate
more than 50% of the network’s hashing power in widely deployed Blockchain
systems today, by hijacking a few (< 100) BGP prefixes. Another form of
DDoS attack exploits the block-size limit and network throughput to prevent
legitimate users from getting their transactions verified in the network. For
example, in typical Blockchain systems, the block size is limited to a certain
size, e.g. 1 MB, and the average time of block mining is 10 minutes in PoW
systems. The size of individual transaction varies from 200 bytes to 1k bytes.
Under these constraints, such Blockchains can only verify 3–7 transactions
per second [15, 16]. The low transaction throughput creates a competitive
environment where only selected transactions get accepted into a block. It
also makes such Blockchain systems vulnerable to flood attacks [17], where
malicious users exploit the block size limit (e.g. 1 MB) to overwhelm the
Blockchain with spam transactions. This further causes delay in verification of
legitimate transactions. To prevent such attacks that exploit block size limit,
miners apply priority checks on incoming transactions. Priority is given to the
transactions that offer a higher mining fee.

In Blockchain, the memory pool (mempool) acts as a repository where all
the transactions waiting to be confirmed are logged. Once a user generates a
transaction, it is broadcast to the entire network. The transaction is then stored
into the mempool where it waits for confirmation. If the rate of the incoming
transactions at the mempool is less than the throughput of the network (3–7
transactions/sec), there is no queue of unconfirmed transactions. Once the rate
increases beyond the throughput, a transaction backlog starts at the mempool.
Transactions that remain unconfirmed for a long time eventually get rejected.
Such an attack is not theoretical and can be applied to existing Blockchain appli-
cations in general, including those that are widely deployed. For example, on
November 11, 2017, the mempool size exceeded 115k unconfirmed transac-
tions, resulting in 700 million USD worth of stall transaction [18]. As the mem-
pool size grows, users pay more mining fee per transaction to prioritize their
transactions.

In this chapter, we identify mempool flooding as an attack that causes DoS
for legitimate users in Blockchain systems. We establish a relationship between
the mempool size and transaction fees and demonstrate how attackers can
use it to make legitimate users pay a higher than normal fee. Mempool flood-
ing creates a state of uncertainty among users and they pay a higher fee
to prevent their transactions from getting stuck or rejected in the network
[19]. To the best of our knowledge, there is no effective mechanism to pre-
vent spam transactions from flooding the mempool and creating panic among
legitimate users.

Contributions—In summary, we make the following contributions:

1. First, we identify the effect of mempool flooding on legitimate users in
Blockchain systems and the way it shapes into a denial-of-service attack.
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2. We present the threat model, the attack procedure of this attack, and the
way the attacker can exploit the current protocols of the system to achieve
his/her goals.

3. We propose effective countermeasures including fee-based and age-based
designs for transaction filtering that optimize mempool size, limit the
attacker’s capabilities, prevent mempool flooding, and favor legitimate
users.

4. We test the performance of our proposed countermeasures through
discrete-event simulations and evaluate their performance under varying
attack conditions.

Organization—In Section 10.2, we review the related work. In Section 10.3,
we outline the preliminaries of this work, including the operations of cryptocur-
rencies, DDoS attack on mempools, and data collection for this study. In Sec-
tions 10.4 and 10.5, we describe the threat model attack procedure that leads
to mempool flooding and rise in the mining fee. We propose countermeasures
in Section 10.6. Experimental results are reported in Section 10.7. Concluding
remarks are made in Section 10.8.

10.2 Related Work

As described earlier, well-known attacks on Blockchains include selfish min-
ing, the 51% attack, the block-withholding attack, double-spending attack,
Blockchain forks, and denial-of-service attacks. In this section, we review
notable work covering those attacks, and security aspects of Blockchains. Self-
ish mining is a form of attack where miners choose not to publish their block
after computation, hoping to mine subsequent blocks and get more reward. The
problem of selfish mining has been addressed by Eyal and Sirer [20], Sapirshtein
et al. [11], Solat and Potop-Butucaru [21], and Heilman [22]. Eyal and Sirer
[20] proposed defense strategies to deter selfish mining attacks on Blockchains.
Block Withholding Attack (BWH), introduced in [23], is an attack in which
miners in a pool choose to submit partial proof of work, instead of the full proof.
As a result, they get rewarded for participating in the pool although the pool
suffers a loss due to partial solutions. Kwon et al. [24] studied a new form of
attack on Blockchains called Fork After Withholding (FAW) attack, an attack
in which the rewards are always greater than the rewards of block withholding
attacks.

The 51% attack can be launched if a mining pool in the network gains more
than 50% of the network’s hashing power. With more than half the hashing
power of the network, the attacker can prevent transactions from getting veri-
fied and other miners from computing a block. To address the attack, the Two-
Phase Proof of Work (2P-PoW) was proposed by Eyal and Sirer [25] and was
analyzed by Bastiaan [26]. Double spending or equivocation happens when a
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user generates two transactions from the same inputs and sends them to two
recipients [10, 27]. The problem of double spending has been addressed using
one-time signatures in Blockchains [28].

Distributed denial-of-service (DDoS) attacks have been quite prevalent
[12, 29]. DDoS attacks are repeatedly launched against mining pools and legit-
imate users. Johnson et al. [30] performed a game-theoretic analysis of DDoS
attacks against Blockchain mining pools. Vasek et al. [12] illustrated empiri-
cally denial-of-service attacks on a Blockchain system. Prior to their release,
certain Blockchains suffered a massive DDoS attack [18,31]. Exchanges, a cen-
tral entity in public Blockchains, have also been frequently targeted by attacks,
as reported in various studies [32–34], and no clear or specific mitigation pro-
cedures for those attacks have been proposed. Another form of DDoS attack on
Blockchain includes spamming the network with low valued dust transactions.
This attack is also called the penny-flooding attack. Baqer et al. [17] performed
Blockchain stress testing to analyze the limitations of the Blockchain network
and how attackers exploit them. Similar to their work, in this chapter we analyze
the effect of flooding attacks on users when a spam attack is carried out on the
mempool of the Blockchain and complement this analysis with countermea-
sures through memory pool optimization. To the best of our knowledge, this is
the first study conducted to analyze the effect of spam attacks on mempool and
explore their countermeasures.

10.3 An Overview of Blockchain and Lifecycle

Transaction lifecycle—In public Blockchain systems that use fee structures as
an incentive (see the next paragraph), a user generates a transaction by using
the current value of the transaction (spendable balance; e.g. credit and quota in
information sharing system, etc.) [35]. The spendable balance is comprised of
“Unspent Transaction Outputs” (UTXOs) [36] that a user previously received
from other transactions. UTXOs are confirmed transactions that are part of
the Blockchain. To generate a new transaction, UTXOs are used as inputs and
the transaction is broadcast to the entire network. When users receive a broad-
cast transaction, they store it into their mempool and forward it to other users.
Finally, miners pick the transaction from the mempool, validate the authen-
ticity of the UTXOs, and mine them into a block. In Figure 10.1, we show a
transaction lifecycle.

Relay fee and mining fee—Relay fee in Blockchains is an incentive mech-
anism for participation in public Blockchains and is defined as the minimum
fee paid for a transaction to be included in a mempool. If a transaction does
not include the relay fee, peers in the Blockchain system do not forward the
transaction to other peers [37]. Mining fee, or transaction fee, is the fee paid to
a miner as an incentive to include the transaction into a block [38].
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Figure 10.1 Transaction life cycle in a Blockchain-based cryptocurrency.

Confirmation—Confirmation of a transaction means that a transaction has
been successfully mined into a block [39]. A confirmation score of a transac-
tion, also known as the age of a transaction, is the difference between the block
number in which it was mined and the most current block computed by the net-
work. A confirmation score of 0 means that the transaction has been broadcast
to the network but not mined in any block. Such a transaction is also called an
“unconfirmed transaction.” Blockchain developers discourage users from trust-
ing unconfirmed transactions for the risk associated with them [40, 41].

Memory pool—In Blockchains, a memory pool (mempool) can be viewed as
a cache that stores all unconfirmed transactions. A transaction that pays a min-
imum relay fee gets relayed between nodes in the network. Furthermore, every
full client in the Blockchain network has a mempool that caches the incoming
transactions [42]. Once a transaction is mined, it is removed from the mempool
and included in the Blockchain. If a transaction does not get mined into a block
for a long time, mempools discard it.

Dust transactions—In the initial Blockchain design and deployment [43], it
is anticipated that the minimum transaction input is set to a smaller value to
encourage adoption. Later, when the number of users and transactions increase,
the threshold for the minimum number of transactions is raised, to control
growth [44]. Transactions with small input values are known as “dust transac-
tions” [45]. Dust transactions contribute very little to the volume of Blockchain
transactions but consume as much space in the block as a high valued trans-
action [17]. In generic Blockchain systems used for provenance, for example,
the value herein can be associated with a class (type) of digital asset, to ensure
provenance in the Blockchain system.

Throughput—The block size in Blockchains is restricted to cope with decen-
tralization and the need to disseminate those blocks on a large network (e.g.
1 MB). Furthermore, the average block computation time is often multiple min-
utes in typical PoW systems to control the behavior of peers and force a one-
node one-vote structure indirectly (e.g. it takes about 10 minutes to compute
a block in typical PoW Blockchains). Furthermore, many Blockchain systems
adjust their difficulty parameter, a parameter used to control how quickly a
block is computed, every certain number of blocks (2016 in Bitcoin, an example
of such a PoW-based Blockchain system, which corresponds to 2 weeks). The
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difficulty adjustment is based on the aggregate hashing power of the network;
on average, in 10 minutes, a total transaction volume of 1 MB can be verified
by the system. This amounts to a network throughput of 3–7 transactions per
second [16].

Mining priority—Blockchain systems deal with the problem of spam trans-
actions by giving miners full control over the transaction policy [46]. As such,
miners prefer to mine transactions offering more fee per size (incentive).

10.3.1 DDoS Attack on Mempools

There are two types of DDoS attacks on Blockchain-based systems. In the clas-
sical attack, the attacker exploits the size limitation of the block (e.g. 1 MB) and
the throughput of the network (3–7 transactions per second) and generates
dust transactions to occupy the space in the block and prevent other transac-
tions from mining. This type of DDoS attack has been addressed by the research
community [17] and there are countermeasures adopted by miners to prevent
it. The miners prioritize the transactions based on fee and select the ones that
pay a higher mining fee as an incentive. As such, this prevents dust transac-
tions from occupying space in the block and preventing legitimate transaction
from mining. The other form of DDoS attack is the attack on the mempools of
the Blockchain system. In this attack, the attacker floods the mempool by gen-
erating a series of unconfirmed dust transactions. Although these transactions
may be rejected by the miners eventually, their presence in the mempool creates
another major problem. In Blockchain systems in general, the size of the mining
pool determines the fee paid to the miners. If the mempool size is big, miners
have a limited choice for mining the transactions and as a result, the users try to
prioritize their transactions by paying a higher mining fee. One such attack on
mempool was carried out recently on a popular public Blockchain system, when
the mempool was flooded with over 115k unconfirmed transactions, resulting
in a substantial rise in the mining fee and transaction confirmation time [18].

10.3.2 Data Collection for Evaluation

To observe the relationship between the size of the mempool and the fee paid by
the users, we used a public dataset provided by a company called “Blockchain”
[47, 48], which is a leading software platform that keeps a record of digital
assets and Blockchain systems measurements. For our study, we gathered the
dataset of mempool size and fee over approximately a year of one such popu-
lar and widely deployed Blockchain systems. In Figure 10.2, we plot the results
obtained from the dataset and we use the min.–max. normalization to scale our
dataset in the range (0, 1). The min.–max. scaling is conducted as:

z =
xi − min(x)

max(x) − min(x)
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Figure 10.2 Temporal study of mempool size and mining fee paid by the users in a popular
Blockchain system.

10.4 Threat Model

In this work, we assume that the attacker is a client with a complete Blockchain
and a memory pool at his/her machine. The attacker has spendable transactions
denoted by “UTXOs”; those transactions have previously been mined into the
Blockchain. In many Blockchain systems, transactions can be split into vari-
ous small transactions [43]. We assume that a balance in the attacker’s pos-
session is large enough that it can be split into fractions of dust transactions;
each of those transactions is at least capable of providing the mining fee as
an incentive to miners. We also assume that the attacker controls a group of
Sybil accounts, each with multiple public addresses. These public addresses
could be used to exchange transactions during an attack. The attacker and the
Sybil accounts have a priori knowledge of each other’s public addresses. Fur-
thermore, the attacker and Sybil have client-side software and scripts [49, 50],
which enables them to initiate a flood of “raw transactions” [51] in a short time
span. We assume that Sybils (collectively) have a capacity of exchanging trans-
actions at a much higher rate than the network’s throughput [16]. Although
being a full client in the network, we also assume that the attacker does not
have the capability of mining transactions. This means that the attacker does
not possess enough computational power to mine a block in a PoW-based set-
ting, discard a transaction, reverse a transaction, or delay other transactions
from being mined. Moreover, the attacker does not have control over other
legitimate users in the network and, as such, cannot prevent them from broad-
casting their transactions and accessing the mempool or other resources in the
network. The attacker is also constrained by a “budget”; since every transaction
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requires a minimum fee to be relayed to the network, the fee limits the number
of transactions that an attacker can generate.

Attacker’s goal—The end goal of the attacker is to flood mempools in the
network with unconfirmed transactions. The attacker will broadcast dust trans-
actions at a higher rate than the throughput of the network. At mempools, the
arrival rate corresponds to the flow of incoming transactions and the departure
rate corresponds to the rate of transaction mining (posting on the Blockchain
system). The departure rate is fixed, because the average block computation
time and the size of the block are currently fixed. When the arrival rate increases
due to a flood of dust transactions, it results in transactions backlog. As the
queue size grows, the mempool size increases accordingly. Overwhelming the
mempool size alarms the legitimate users, who naturally start paying higher
mining fee to prioritize their transactions.

After flooding the mempools, the secondary objective of the attacker will be
to reduce the cost of attack by getting his/her transactions rejected. For the
attacker, mining transactions will result in losing the mining fee to the min-
ers. However, if the transactions get rejected, the attacker will have yet another
chance to carry out the same attack. In prior related work, the target of attack is
either a mining pool [30] or the Blockchain itself [17, 52]. In our threat model,
the targets of attack are the mempools in the system, as outlined in Figure 10.1.
The victims in every attack are the benign users in the network who are denied
normal service. Another distinguishing feature of this threat model is that the
attacker does not want his/her transactions to be mined. In the analysis per-
formed by Baqer et al. [17], the intent of the spam attack was to flood blocks
in the Blockchain by exploiting the block size limit; such an attack requires
transaction mining in the Blockchain. While there is a limit on the block size
in Blockchain systems, there is no limit on the size of mempools and flooding
them does not require transaction mining. Furthermore, the attack exploiting
block size can be effectively countered by miners while the attack on mempools
cannot be countered in the same way. As transaction mining involves a mining
fee while the attack objective is only mempool flooding, for this attack, trans-
action acceptance in a block remains undesirable for the attacker. According to
the taxonomy of DDoS attack [53], mempool flooding attack can be character-
ized as a “semantic attack of variable rate.”

10.5 Attack Procedure

As mentioned earlier, when the rate of incoming transactions exceeds the
network’s throughput, a backlog of unconfirmed transactions builds up at
the mempool. As backlog grows, competition for transaction mining also
increases. Users try to prioritize their transactions by offering more fee to the
miners. As a result, the fee per transaction paid to the miners increases. To facil-
itate usage, public Blockchain systems are anticipated to provide online services
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to estimate the mempool size and the average fee paid [54]. Based on that, a fee
is recommended for users who want to get their transactions confirmed within
a desired time.

The mempool size affects the way users pay the mining fee, which creates an
attack possibility for an adversary to exploit the mempool size and create panic
among legitimate users. When a legitimate user sees the mempool size grow-
ing, the user, as a rational agent, will try to prioritize his/her transactions by
adding more mining fees to them. Dust transactions of an attacker will even-
tually be rejected by the miners, to protect Blockchain from spam. Although
it protects the system from spam, the policy in itself also works in favor of the
attacker, since the attacker loses no fees as an outcome. On the other hand,
legitimate users end up paying more than the required fee to get their transac-
tions confirmed. Upon rejection of transactions, the attacker can re-launch the
attack multiple times to flood the mempools.

As shown in Figure 10.2, there is a high correlation between the mempool size
and the transaction fee paid to the miners. During 2017, it was reported that
a spam attack of unconfirmed transactions that led to higher mining fee was
launched on a popular Blockchain [18,55]. From Figure 10.2, it can be observed
that during this timeframe of the attack, the mempool size was much larger
than the average size. As a result, the mining fee pattern also followed a growing
trend that was similar to that of the mempool size. In December 2017, the prob-
lem of mempool flooding was highlighted by crypto analysts [56,57] suggesting
that it was an attempt to increase the mining fee and drive the users away from
adoption and participation in the Blockchain system. To further establish a rela-
tionship between the mining fee and the mempool size, we computed Pearson
correlation [58] on our dataset. The Pearson correlation coefficient is defined
as:

𝜌(X, Y ) = Cov(X, Y )√
Var(X)Var(Y )

.

We observed a high correlation of 0.69 between the mempool size and the
mining fee. As a result, we conclude that overwhelming the mempool size can
also lead to other problems in the Blockchain. Delay in transaction verification
can create multiple problems, including possibilities of equivocation and double
spending [28].

To sum up, and as described in the threat model, the objective of the attacker
is to maximize the size of the mempool and minimize the cost of the attack. The
cost of the attack is the fee paid to the miner if a transaction gets mined in a
block. The fee consists of the relay fee and the mining fee. Higher fee increases
the priority of the transaction and the chances of a transaction mining [59].
To avoid that, the attacker will design his/her transactions in a way that they
are less likely to be prioritized by miners. At the same time, the attacker wants
his/her transactions to stay in the mempools for as long as possible. To this end,
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we envision that this attack can be carried out in two phases—the distribution
phase and the attack phase.

10.5.1 The Distribution Phase

In the distribution phase, the attacker estimates the minimum relay fee of the
network, divides his/her spendable transactions (“UTXOs”) into various trans-
actions and sends them to the Sybil accounts. This can be done in two ways—(i)
The attacker may generate a dust transaction from a previous UTXO, send it to
a Sybil account, and get in return a new transaction (unspent). The attacker uses
the new transaction as new input and repeats the procedure multiple times for
all Sybil addresses. (ii) An alternative way is to use the spendable transactions
and generate a series of outputs to all the addresses of the Sybil nodes. Unlike
the previous method, this will result in only one transaction to all the Sybil
outputs. Transactions of this nature are known as “send many” transactions
[60] because the user is sending transactions to various addresses within one
transaction. Since the aim of the attacker is to generate as many transactions as
possible, he/she will not opt for the “send many” option. All transactions to the
Sybil addresses will be generated independently. The transactions made in the
distribution phase will have input “UTXOs”, which will have been previously
mined in the Blockchain. Hence, these transactions will have greater-than-zero
age and will be capable of paying the minimum mining fee.

10.5.2 The Attack Phase

Once the distribution phase is completed, all Sybil accounts will have sizable
balance. In the attack phase, all Sybils will carry out “raw transactions” [51] from
the balance received in the distribution phase. Sybils will generate dust trans-
actions and exchange them with each other. To maximize the severity of the
attack, they will prefer to have one recipient per transaction. The rate of trans-
actions will be much higher than the throughput of the network. As a result, the
arrival rate of the transactions at the mempools will be higher than the depar-
ture rate of mined transactions. This will increase the transaction backlog and
the size of the mempools over the duration of the attack. The attack will be
carried out until all the spam transactions get into the mempools. The trans-
actions made in the attack phase will have the transactions of the distribution
phase as input “UTXOs”. These inputs will still be awaiting confirmation in the
Blockchain. Due to that, their confirmation factor or age score will be zero.

10.5.3 Attack Cost

As mentioned earlier, one of the objectives of the attacker is to minimize the
attack cost. To be able to achieve that, the attacker requires transactions to
be part of the mempool but not part of the Blockchain system. This can be
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achieved by adding the minimum relay fee Rf to each transaction but not the
minimum mining fee. The relay fee is necessary for a transaction to be broad-
cast to all peers in the network and be accepted by the mempool. If the attacker
adds the mining fee, his/her transactions will attain priority from a miner and
might get mined. To avoid that, the Sybil only pays the relay fee. If a transaction
has i inputs, where each input contributes a size of k bytes, and o outputs, where
each output contributes a size of l bytes, then the total size of the transaction
and its associated cost are determined by Eq. 10.1 and 10.2, respectively:

S(bytes) = (i × k) + (o × l) + i. (10.1)

C(cost unit) = Rf ×
S

1024
= Rf ×

[(i × k) + (o × l) + i]
1024

. (10.2)

Assuming that the attacker is limited by a budget B and a minimum value set
by the network as Tmin, then, using Eq. 10.2, the total number of transactions
Ta that the attacker can generate can be computed in Eq. 10.3.

Ta = B × 1024
Rf × Tmin × [(i × k) + (o × l) + i]

. (10.3)

Now we look at the system from the standpoint of a legitimate user. A legit-
imate user who intends to get his/her transaction mined into the Blockchain
pays a relay fee for transaction broadcast and a mining fee as an incentive to
the miner [44]. For such a user, contributing T transactions, the cost incurred
per transaction and the total cost of all transactions can be derived using
Eq. 10.4 and 10.5.

C(cost unit) = [Rf + Mf ] × [(i × k) + (o × l) + i]
1024

. (10.4)

Tl(cost unit) = T × [Rf + Mf ] × [(i × k) + (o × l) + i]
1024

. (10.5)

As mentioned in the threat model (Section 10.4), the aim of the attacker is to
increase the cost per transaction paid by the legitimate user (equation 10.4). A
legitimate user will aim to have his/her transactions mined; therefore, he/she
will pay the relay fee and a high mining fee. The attacker will only aim to get
his/her transactions into the mempool and eventually not get mined, so he/she
will only pay the relay fee. In these settings, the attacker will incur maximum
loss if all of his/her transactions get mined. The cost in such a case will be equal
to the product of the total number of transactions and the relay fee. The attacker
can relaunch the same attack with a new balance of B − (Ta × Rf ).

10.6 Countering the Mempool Attack

To counter DDoS on Blockchain’s mempool, we propose two countermeasures
that leverage the nature of incoming transactions and prevent spam on the
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system. One of the effective countermeasures against spam attack in Blockchain
is to prevent the transmission of dust transactions in the network. We envision
that if mempools can discard spam transactions and stop relaying them to
other mempools (nodes in the Blockchain), the pool size can be effectively
controlled, and spam can be countered. The existing countermeasures require
increasing the block size or reducing the confirmation time to increase the
throughput. We argue this is not a useful strategy; if the block size is increased
to accommodate more transactions, attackers can increase the number of
dust transactions to occupy even more space in the block. A better solution
would be to filter spam transactions, which we explore in the rest of this
chapter.

10.6.1 Fee-based Mempool Design

Any design that aims to optimize the size of the mempool would require fil-
tering of spam transactions upon arrival to nodes. As the threat model states,
an attacker only intends to relay spam transactions between the mempools and
does not want them to be mined. To achieve this goal, the attacker only pays the
minimum relay fee in transactions so that mempools accept and relay them. To
prevent the transactions from being mined, the attacker does not pay the min-
ing fee. We use this insight to construct a “fee-based mempool design”, as shown
in Algorithm 1.

For this design, we assume that the mempool is initially empty when transac-
tions begin to arrive at the node. We also assume that each incoming transac-
tion has its associated relay fee and mining fee. We also fix a threshold beyond
which the mempool starts spam filtering. Initially, when transactions arrive in
the pool, and for each transaction, the mempool checks whether the transac-
tion pays a minimum relay fee. If the transaction pays the minimum relay fee, it
is accepted and the mempool size is updated. As the transactions get added into
the mempool, the size of the mempool grows. When the size reaches a thresh-
old, the mempool starts applying the fee-based policy. Now, if the incoming
transaction pays both the minimum relay fee and the minimum mining fee,
only then it is accepted in the mempool. The key idea behind this scheme is
that only those transactions should be accepted that eventually get mined into
the Blockchain. As a result, this technique puts a cap on the incoming transac-
tions and filters spam transactions, thereby reducing effectively the mempool
size. If the new size is less than the baseline size threshold, then the mempool
can proceed with its operation of relay fee check. Otherwise, it will continue
with the fee-based design.

Analysis of fee-based mempool design—In the following, we will analyze
the workings of the fee-based design and its utility in light of our threat model.
We will limit the number of transactions an attacker can generate within his/her
budget by increasing the mining fee threshold. We also observe how this design
affects other legitimate users within the same network.
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Algorithm 1: Fee-based Mempool Design

Inputs : incoming transactions;
  minimum relay fee;
  minimum mining fee;
  Threshold Size;
Output: Mempool Size
State: Mempool Empty

1  foreach transaction ∈incoming transactions do
2

3

4

5

while  (Mempool Size < Threshold Size) do

State:  Mempool Size Exceeds Threshold Size
while  (Mempool Size > Threshold Size) do

while  (transaction relay fee > minimum relay fee) do
if  (transaction mining fee > minimum mining fee)
  then

(transaction mining fee < minimum mining fee)
transaction rejected ; /* transaction pays

relay fee but does not pay mining fee */

UPDATE(mempool);

if  (transaction relay fee > minimum relay fee) then

else

else

6

7

8

9

10

11

12

13

14

15

Mempool ← transaction

Mempool ← transaction;

UPDATE(mempool);  /*  update mempool size

  after accepting transaction  */

(transaction relay fee < minimum relay fee)
  transaction rejected;

return Mempool Size
Result: Spam Transactions Rejected

In the current settings of Blockchains, where an attacker only pays a relay
fee to broadcast his/her transactions, if the mempools employ the fee-based
design, all spam transactions will be rejected. As such, the mempool will only
accept transactions that pay both the relay fee and the mining fee. Legitimate
users, on the other hand, will benefit by this design, since they will always pay
the relay and the mining fee, so their transactions will be accepted. Once the
attacker becomes aware of the fee-based design, the only way it can carry out
the attack is by adapting to the new settings and masquerading as a legitimate
user. The attacker can do that by adding the mining fee to each transaction.
Given a budget B, adding the mining fee to each transaction will reduce the
total number of transactions Ta the attacker could generate in Eq. 10.3, which
will now become

Ta = 1024 × B
[(i × k) + (o × l) + i] × [Rf + Mf ] × Tmin

. (10.6)

From Eq. 10.6, we now observe that the number of transactions the attacker
can generate has an inverse relationship with the total fee paid per transaction,
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Table 10.1 Confusion matrix.

Actual Transaction

Legitimate Malicious

Mempool Legitimate TP FP
Transaction Malicious FN TN

as naturally expected. Using that relationship, we can adjust the fee parameter
and investigate how it limits the attacker’s capabilities. To do that, we simulate
the effect of increasing the mining fee on the volume of transactions that the
mempool accepts. We allocate a fixed budget to the attacker and select thresh-
olds of minimum mining fee and maximum mining fee. Using Eq. 10.3, we select
a suitable budget for the attacker that results in 1000 transactions with a min-
imum mining fee. Then, we generate 1000 legitimate transactions, each with a
mining fee normally distributed over the range of the minimum and maximum
mining fees. Using a custom-built discrete-event time simulation, we increase
the mining fee and monitor its effects on the attacker and the legitimate users.

Evaluation parameters—We use the confusion matrix as our evaluation
metric, defined as follows (and highlighted in Table 10.1). We use the following
parameters to test the effectiveness of the results obtained from our simula-
tions.

1. Precision—Precision is the measure of relevant information obtained from
an experiment with respect to total information. Mathematically, it is
defined as the ratio of true positive and the sum of true positive and false
positive TP

TP+FP .
2. Recall—Recall is the measure of relevant information obtained from an

experiment with respect to total relevant information. Mathematically, it is
defined as the ratio of true positive and the sum of true positive and false
negative, TP

TP+FN .
3. F1 score—F1 score uses both precision and recall and provides their har-

monic average. F1 score can be computed as 2×precision×recall
precision+recall .

4. Accuracy—In machine learning, accuracy measures the strength of a clas-
sifier in determining the nature of experimental outcomes. Accuracy can be
computed as TP+TN

TP+TN+FP+FN .
5. Negative rate—Negative rate or specificity is the measure of truly identi-

fied negatives in the complete set of negative values. Negative rate can be
computed as TN

TN+FN .

We will use this evaluation criteria for all the experiments described in the
rest of the paper.
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Figure 10.3 Analysis of fee-based design. Notice that as the mining fee increases, the
mempool size reduces. However, increasing the mining fee also affects legitimate
transactions, which is why the accuracy of detection decreases with increasing mining fee.

Evaluation results—We plot the results in Figure 10.3 using the confusion
matrix in Table 10.1 to evaluate the effect of the fee-based design on the
mempool. We classify the true positives and false positives as legitimate and
malicious transactions accepted by the mempool, respectively. We classify
the false negatives and true negatives as legitimate and malicious transactions
rejected by the mempool. We plot the results of the confusion matrix in
Figure 10.3(a). The results show that with the increase in the mining fee
threshold, the mempool size (TP + FP), malicious transactions (FP), and
legitimate transactions (TP) decrease. With a fixed budget, increasing the
mining fee decreases the total number of transactions. Accordingly, the size
of the mempool also decreases due to fewer spam transactions (FP). However,
increasing the mining fee also limits the fee-paying legitimate users. This, in
turn, explains the trend of decreasing (TP).

Using the results from Figure 10.3(a) and the evaluation criteria defined
above, we measure the precision and accuracy of our design. From the plots
in Figure 10.3(b), we observed that accuracy increased with the mining fee to
a maximum value, and then decreased. Using that, we found a minimum fee
cut-off corresponding to the maximum accuracy.
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In Figure 10.3(c), we plot accuracy and size ratio; the size ratio is the frac-
tion of mempool transactions out of the total number of incoming transactions,
where a lower size ratio indicates higher size optimization. The results in Fig-
ure 10.3(c) show that at a fee threshold of 13, we achieve 60% accuracy, 70% size
optimization, and 78% precision. Increasing the fee parameter further increases
size optimization but decreases the accuracy. Therefore, the fee-based design
presents a trade-off between size efficiency and the accurate detection of mali-
cious transactions used for launching a DDoS attack on the mempool.

Limitations of fee-based mempool design—In the following paragraphs,
we highlight the limitations of the fee-based design and motivation for our sec-
ond design.

To understand the limitations of the “fee-based mempool design,” we high-
light the nature of some transactions in Blockchain. Suppose Alice sends a
transaction to Bob (herein, such a transaction could be virtual, meaning that
a digital resource, such as a threat indicator in Blockchain-based information
sharing is transferred between stakeholders). That transaction is yet to be ver-
ified and mined, but Bob spends them by sending 5 BTC to Charlie. For Bob’s
transaction to be successfully mined, its parent transaction by Alice needs to be
mined first. This sequence of transactions is known as a parent–child transac-
tion [61,62]. For a child transaction to become legitimate, its parent transaction
needs to be mined first. Oftentimes, however, when the priority factor of a par-
ent transaction is low, the child transaction increases the mining fee to increase
the overall priority factor. This process is called “Child Pays for Parent” (CPFP)
[61].

For legitimate users, this situation might be undesirable, since more child
transactions can lead to transactions getting stuck in the mempool. However,
the same situation can be viewed as an opportunity by the attacker to circum-
vent the fee-based design and carry out the same attack at an even lower cost.
For transactions made in the attack phase, their parent transactions in the dis-
tribution phase need to be verified and mined. The attacker can minimize the
probability of transaction acceptance in the first phase by reducing their pri-
ority factor, e.g. by paying a minimum relay fee and no mining fee. Once the
parent transactions have lower probability of acceptance in the first phase, the
child transactions can increase their priority factor by adding higher relay fee
and mining fee. In such a situation, and when the mempools apply fee-based
countermeasures, spam transactions of the attack phase will get into the mem-
pool. After the size of the mempool reaches the size threshold, the mempool
will check for incoming transactions that pay the minimum relay and mining
fees. Since the transactions of all Sybil accounts will pay both the relay and the
mining fees, they will be accepted by the mempool and the attacker will be suc-
cessful, demonstrating a limitation of the fee-based design.

Countermeasure—One way to address this problem is to prioritize incom-
ing transactions on the basis of the mining fee. The mempool can sort the
incoming transactions for the fee value and accept the ones that have higher
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fees. As we increase the mining fee, the capability of the attacker to produce
transactions decreases (equation 10.6). The attacker is constrained by the bud-
get and increasing the mining fee reduces the number of transactions he/she
can produce. We can observe this trend in Figure 10.3(a). Although this reduces
the number of spam transactions in the mempool and optimizes its size, it
also reduces the accuracy and the number of legitimate transactions that get
accepted. As the fee parameter is increased, the capability of all of the legitimate
users to pay higher fees also decreases. To this end, the fee-based countermea-
sures do limit the attacker from flooding the mempool, but they also limit the
number of legitimate transactions that successfully pass the fee threshold. To
address these limitations, we propose age-based countermeasures.

10.6.2 Age-based Countermeasures

Age-based mempool design—To limit the attacker’s chances of success, we
propose the “Age-based Mempool Design”, which addresses the limitations of
our previous model. For this design, we leverage the confirmation factor or
“age” of a transaction to distinguish between legitimate and malicious trans-
actions. In Blockchain systems, the age of a transaction is generally used to
determine how many block confirmations it has achieved over time.

For this design in Algorithm 2, we assume that the baseline size threshold
of the mempool has been reached, and the mempool is only accepting trans-
actions that are paying the relay fee as well as the mining fee. Now, for each
incoming transaction, as highlighted above, we count the number of inputs or
parent transactions. We initialize a variable “average age” and set its value to 0.
Next, we calculate the average age of the transaction by adding the age of each
parent transaction and dividing by the total number of parent transactions. This
gives an estimate of the confirmation score of the incoming transaction. Then,
we apply a “minimum age limit” filter on the mempool. The minimum age limit
can take any arbitrary value greater than 0 [63]. If the transaction’s mean age
value fulfills the criteria of age limit, then the mempool accepts the transaction.
Otherwise, the mempool discards this transaction.

A transaction in Blockchain systems can have an input pointer pointing to
the spendable transaction that it has previously received. For spam transac-
tions, these inputs are not spendable and therefore less likely to be mined.
This serves the objectives of the attacker who intends to broadcast spam
transactions, which eventually get rejected. Although the age factor is taken
into account for transactions, it is not considered while broadcasting those
transactions. As such, attackers may exploit this feature of the system by
broadcasting spam transactions and flooding the mempools without losing
fees. In this design, we apply the check on the age of the incoming transactions.
In the attack phase, the spam transactions will have input pointers of a parent
transaction that will not be confirmed in any block. The age of all those parent
transactions, made in the distribution phase, will be 0.
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Using this knowledge about the nature of spam transactions, we compute
the average age of all the input pointers (parent transactions); a minimum age
value of 1 means that all transactions coming into the pool are confirmed in
at least the most recent block of the Blockchain. In particular, once the trans-
action is mined into a Blockchain, its parent transaction is removed from the
“UTXO” set and cannot be spent again (double-spending avoidance measure).
The transaction itself becomes the new spendable “UTXO.” With these advan-
tages, the age-based design can safeguard the Blockchain system from spam
transactions and double spending.

Once this design is implemented, if a user tries to spend his/her transac-
tions, he/she needs to have at least one valid confirmation backing up his/her
transaction. This gives an advantage to legitimate users who can make a nor-
mal transaction with a confirmed parent transaction of significant age. On the
other hand, most of the spam transactions of the attacker will be rejected due
to a low confirmation factor despite paying high mining fee.

Algorithm 2: Age-based mempool design

Inputs : incoming transactions;
  minimum relay fee;
  minimum mining fee;
  minimum age limit;
  age of each input of transaction;
  Threshold Size;
Output: Mempool Size
State: Mempool Size Exceeds Threshold Size

1  for each transaction ∈incoming transactions do
2

3

4

5

6

initialize;

while  (transaction relay fee > minimum relay fee) do
while  (transaction mining fee > minimum mining fee)

if  (average age > minimum age limit) then

(average age < minimum age limit)
transaction rejected ; /*  Reject

transaction if its age factor is

below the threshold   */

UPDATE(mempool);        /* update mempool
size after accepting transaction */

average age = 0;

do

7

8

9

10

11

12

13

N ← number of parent transactions of current transaction;

Mempool ← transaction;

average age =   ; /*   apply age

filter */

(ΣN
i=1

 parenti)

return Mempool Size;
Result: Spam Transactions Rejected

N

else
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Analysis of age-based mempool design—We analyze the working of “Age-
based Mempool Design” and how it counters a DDoS attack. For this design,
we have established that the attacker has the capability of circumventing the
“fee-based design” and is willing to pay the relay and the mining fees in all trans-
actions. Also, the attacker knows that his/her transactions will not be verified,
so it pays comparatively higher relay and mining fee than the fee paid by the
legitimate users.

We carried out our second experiment to analyze the working of the age-
based countermeasures. We set a minimum age limit and a maximum age
limit as thresholds for the incoming transactions. For the attacker, the only
set of transactions with age value greater than 1 are generated in the distri-
bution phase. Child transactions made in the attack phase were assigned 0 age
value due to unconfirmed parent transactions. To capture that, we normally
distribute the average age value of all malicious transactions from 0 to the min-
imum age limit. The average age value of all legitimate transactions was set
from 0 to the maximum age limit. A total of 2000 transactions were generated
with half of them being malicious and half being legitimate. Then, we applied
the age-based design on all the incoming transactions at the mempool. We
increased the age requirement for the incoming transactions and evaluated the
accuracy of detection and the state of mempool for each transaction.

Evaluation results—Using the same confusion matrix parameters as those
in Table 10.1, the results in Figure 10.4 show that upon increasing the aver-
age age the malicious transactions (FP) decrease sharply. The mempool size
decreases to a point where there are only legitimate transactions left in the
mempool. Due to low FP and higher TP, the precision reaches close to 1 in
Figure 10.4(b). In Figure 10.4(c), it can be observed that at an average age value
of 100 we achieve accuracy, size optimization, and precision. As we increase
the age parameter to 200, the accuracy does not decrease as in the fee-based
design, while the size ratio increases up to 90% and precision increases up to
98%. This shows that this policy prevents a majority of malicious transactions
from entering the mempool and helps the legitimate users in getting their trans-
actions accepted.

In these settings, if the attacker intends to spam the network, he/she needs to
have a majority of his/her transactions confirmed in the Blockchain. However,
in our attack model, we have described that confirmation is undesirable for
the attacker since it results in losing mining and relay fee, creating asymmetry
in the attack cost. In PoW-based Blockchains, as highlighted earlier, we recall
that the average block mining time is 10 minutes. As a result, for a single
confirmation of all of the transactions, the attacker has to wait, on average,
for 10 minutes. Using the results from Figure 10.4(c), the attacker will have to
wait a minimum of 100 blocks to relaunch the attack. With the average block
computation time of 10 minutes, 100 blocks lead to 16 hours of delay, which
can be further controlled by adjusting the Blockchain operation parameters.

Even if the attacker still plans to carry out the attack after waiting and paying
all the fees, he/she will not be able to flood the mempool. The best the attacker
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Figure 10.4 Analysis of age-based design. Notice that with age-based design, the accuracy,
precision, and size ratio are comparatively higher than the fee-based design.

might achieve will be occasional network stressing with a series of transactions;
higher attack cost and low incentive will discourage the attacker. Therefore,
the age-based design offers more security against DDoS attacks while ensuring
regular service provision for the legitimate users.

Limitations of age-based countermeasures—Although the age-based
countermeasures provide an effective defense against DDoS attacks on
Blockchains, there are some limitations in this design. Primarily, it requires all
the incoming transactions to have a confirmed parent transaction. Depending
on the bottleneck and size of the mempool, transaction verification can take
even longer time. In low-latency, high-throughput Blockchains, fast transac-
tions are unavoidable, where users cannot wait for verification [27, 28], and
their transactions will be rejected by the mempool [64]. However, we do not
see Blockchains evolving into such applications any time soon, so we do not
consider it a significant problem.

10.7 Experiment and Results

In this section, we describe the experiments we performed to compare our
designs when the mempool is under attack. We present a scenario similar to
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[18], where a group of attackers flooded Blockchain mempools with dust trans-
actions.

For our simulations, we generate a series of legitimate and spam transactions.
Each transaction has an age, relay fee, and mining fee features. For both types of
transactions, we normally distribute the relay fee and mining fee over a selected
range of fee values. As per our attack procedure, we generate the spam trans-
actions with low age factor, though we observed in the distribution phase that
an attacker may possess some transactions that can have some age value. To
capture that, we normally distribute the age of spam transactions from 0 to a
lower age limit threshold. For legitimate transactions, we normally distribute
the age factor from 0 to an upper age limit.

For our experiment, we fixed the size of legitimate transactions and sequen-
tially increased the number of malicious transactions from 0 to 90% of the total
transactions. We found TN and FP from the confusion matrix as suitable mea-
sures to determine the efficiency of fee- and age-based models in detecting
spam. In Figure 10.5(a) and Figure 10.5(b), we plot TN and FP for mempools
under no policy, fee-based design and age-based design. It can be observed that
both designs are efficient in detecting and discarding malicious transactions
when the attack grows. Although both designs effectively reduce FP, the age-
based design achieves better efficiency. As malicious transactions increase, the
age-based design discards all the unconfirmed transactions and the fee-based
design caps the fee-paying capacity of the attacker.

In Figure 10.5(c) and Figure 10.5(d), we plot the negative rate and accuracy.
The figure shows that the accuracy of the age-based design increases as mali-
cious transactions increase. The accuracy of the fee-based design is low at the
beginning, but it grows as the percentage of malicious transactions grows. The
reason for the low accuracy at the start is the low detection rate TP. Although
the age-based design appears to be the best choice for detecting malicious
transactions, we see in Figure 10.5(e) that the fee-based model achieves bet-
ter size efficiency.

The mempool size is determined by the true positive and false positive values
TP + FP. For both designs, we plot the mempool size in Figure 10.5(e). The fig-
ures show that just below the number of malicious transactions, the fee-based
design has lower mempool size. After that, the age-based design becomes more
size-efficient due to the low FP. To understand the mempool size optimization
ratio, we use the model in Eq. 10.7.

size ratio = 1 −
mempoolsizeunderdesign

mempoolsizenodesign

. (10.7)

This equation gives a ratio of size difference of the mempool when coun-
termeasures are applied. The results in Figure 10.5(f ) show that the fee-based
design achieves consistent size optimization irrespective of malicious trans-
actions percentage. The size ratio for the age-based design increases with the
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Figure 10.5 Performance of fee-based and age-based designs under mempool DDoS attack.
Notice that when the percentage of malicious transactions is low, indicating less severe
attack, the fee-based policy is effective in terms of accuracy and size optimization. However,
as the attack rate increases, the age-based policy also becomes effective with better
negative rate.

percentage increase in malicious transactions. With 88% of transactions being
malicious, the age-based design achieves a size ratio of 60%. From Figure 10.5,
it can be inferred that there is a trade-off between detection accuracy and size
optimization.

We can use the size and accuracy trade-off to select appropriate counter-
measures during a DDoS attack. If the attack is less severe but the pending
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transaction backlog is high, the fee-based design will limit the incoming
malicious transactions and optimize the mempool size until the backlog is
cleared. If the attack is severe [18] and majority of incoming transactions are
unconfirmed then age-based design will be more useful in detecting malicious
transactions, reducing the FP and optimizing mempool size.

10.8 Conclusion

In this chapter, we identify a DDoS attack on Blockchain mempools that trap
users into paying a higher mining fee. Attacks on Blockchain mempools have
not been addressed previously, and we propose two countermeasures to the
problem—fee-based and age-based designs. From our analysis and simulation
results, we conclude that when the attack is not severe, the fee-based design
is more effective in mempool size optimization. However, it does so by affect-
ing both the attacker and the legitimate users. In contrast, when the attack is
severe, the age-based design is more useful in helping legitimate users while dis-
carding maximum spam transactions. Although the size optimization achieved
by the age-based design is less compared to that achieved by the age-based
design, its accuracy of spam detection is higher. Extending our analysis and
design towards a hybrid model that leverages the benefits of both designs
and achieves maximum spam detection and size optimization is an area for
further study.
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11.1 Introduction

Security games are mainly designed and used to model interaction between
attackers and defenders [1, 2]. In these models, two-player games—extendable
to any number of players—are proposed in which both attackers and defenders
try to maximize the utility that each can gain. For instance, the defenders will
be able to provide value to the system and, as a result, gain utility by enabling
features, shifting the attack surface, and reducing the attack surface measure-
ment. Likewise, the attackers will be able to gain utility if features are disabled
or the attack surface measurement is increased.

In the majority of existing security games, attackers and defenders play the
game by choosing various actions from the action profiles based on their strate-
gies in each round of the game. For instance, the defenders can modify the set-
ting of the targeted system to shift the attack surface, whereas the attackers can
manipulate the system to disable some features. After each round of the game,
the game moves to a new state and the players receive their rewards based on
some utility functions.

One of the fascinating research areas where the security games can be used is
the verification of transactions in the context of digital currencies, e.g. Bitcoin
[3], or similar paradigms. The mining operation is very resource intensive. As
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a result, players form different coalitions to verify each block of transactions in
return for a reward. This leads to intense competition among competitors since
only the first coalition that accomplishes the mining process will be rewarded.

To address what issues this competition may cause, different strategies
are analyzed in the literature. Rosenfeld [4] introduced the block-withholding
attack, where a dishonest player only reveals a partial solution of the verifi-
cation problem whenever he/she has the complete solution to act in favor of
another competing coalition. As a result, the dishonest miner shares the rev-
enue obtained by the entire coalition without any contribution. Eyal and Sirer
[5] introduced selfish mining, where the players of a coalition keep their dis-
covered blocks private and continue to verify more blocks privately until they
get a subchain whose length is threatened. As a result, selfish players receive
the reward. Johnson et al. [6] look at the malicious activity of the players from
another perspective. The authors compare an honest approach with a dishon-
est strategy, i.e. players of a coalition can invest to acquire additional comput-
ing resources, or launch distributed denial-of-service attacks against compet-
ing coalitions. The authors provide game-theoretical analyses by exploring the
trade-off between these two strategies when two groups of varying sizes are
involved. More attacks were introduced recently—for example, eclipse attack
[7], which makes a node invisible in the network, or stubborn mining as a gen-
eralization of selfish mining [8].

We therefore propose a new reputation-based framework in which min-
ers are not only incentivized to conduct honest mining, but also disincen-
tivized to commit any malicious activities against other mining pools, such as
a block-withholding attack, selfish mining, eclipse attack, and stubborn min-
ing, to name a few. We first illustrate the architecture of our reputation-based
paradigm, explain how miners are rewarded or penalized in our model, and,
subsequently, provide game-theoretical analyses to show how this new frame-
work encourages the miners to avoid dishonest mining strategies.

The rest of this chapter is organized as follows: Section 11.2 provides pre-
liminary materials on digital currencies and game theory. Section 11.3 reviews
the existing digital currency literature where game theory is used. Sec-
tion 11.4 illustrates our model. Section 11.5 explains how our reputation-based
scheme works. Section 11.6 explains the main results and proofs. Finally, Sec-
tion 11.7 concludes with final remarks.

11.2 Preliminaries

11.2.1 Digital Currencies: Terminologies and Mechanics

In digital currency frameworks, specifically Bitcoin, transactions are grouped
in blocks to be verified by a subset of nodes in the network, known as miners.
The mining process, named proof of work, is computationally intensive with a
specific difficulty factor that is increased over time as the computational power
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of hardware systems grows. Therefore, nodes form mining pools under the
supervision of pool managers to accomplish the mining task. In some technical
articles, the mining process of Bitcoin (or even other digital currencies) is
referred to as the miners’ mathematical puzzle.

The first mining pool that accomplishes the proof of work is rewarded a cer-
tain amount of freshly mined Bitcoins as an incentive for miners’ works. That
is why this process is also known as mining. As soon as a block is verified, it is
attached to the list of existing verified blocks, known as Blockchain. Immedi-
ately after that, all miners stop the mining process of the already verified block
and start working on the next block.

Each block consists of a block number, a nonce value, a list of transactions,
the hash value of the previous block (address of the previous block), and the
hash value of the next block (address of the next block). During the mining
process, the miners try to generate a valid hash value of a block that is less than
a threshold, i.e. it starts with a certain number of zeros. They will conduct this
process by trying different nonce values. It is clear that generating a hash value
that starts with, say five zeros, is harder than a generating a hash value that
begins with four zeros; this is what we call the difficulty factor of mining.

The hashing rate, hr , also known as mining power, is the total number of
hashes that a miner can calculate during a specific time interval. Therefore, the
average time to find a valid hash value, also known as full proof of work, cor-
relates to a miner’s hashing rate. In fact, the pool manager sends different tem-
plates of the current block to his/her miners so that they can find a valid hash
value by changing the nonce value. If a miner accomplishes the full proof of
work, he/she will then send it to his/her pool manager. Consequently, the pool
manager publishes the legitimate block on behalf of the entire pool. He/she will
then distribute the revenue among miners based on their mining powers. Note
that new coins are put explicitly in the block by the miner(s) who created it.

To estimate each miner’s power, the pool manager determines a partial target
for each miner, which is much easier than the actual target of the system. For
instance, instead of calculating a hash value that starts with, say five zeros, a
hash value with a single zero is sufficient. Note that this is just a simple example
for the sake of clarification. Therefore, each miner is instructed to send a valid
hash value according to the partial target. This partial target is defined in such
a way that a partial solution can be calculated frequently enough so that the
manager can fairly estimate the miners’ powers because, as we stated earlier,
the revenue is distributed based on the miners’ powers.

11.2.2 Game Theory: Basic Notions and Definitions

A game consists of a set of players, a set of actions and strategies (strategy is the
way that each player selects actions), and finally, a utility function that is used by
each player to compute how much benefit he/she obtains by choosing a certain
action. In cooperative games, the players collaborate and split the aggregated
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utility among themselves, that is, cooperation is incentivized by agreement.
However, in noncooperative games, the players cannot form any agreement to
coordinate their behaviors. In other words, any cooperation among the play-
ers must be self-enforcing. We briefly review some well-known game-theoretic
concepts [9] for our further analyses and discussions.

Definition 1: Let A
def
= A1 × A2 ×… × An be an action profile for n players,

where Ai denotes the set of possible actions of player Pi. A game Γ= (Ai, ui) for
1 ≤ i ≤ n, consists of Ai and a utility function ui : A → R for each player Pi. We
refer to a vector of actions a⃗ = (a1,… , an) ∈ A as an outcome of the game.

Definition 2: Utility function ui illustrates the preferences of player Pi over dif-
ferent outcomes. We say Pi prefers outcome a⃗ to a⃗′ if ui(a⃗) > ui(a⃗′), and he/she
weakly prefers outcome a⃗ to a⃗′ if ui(a⃗) ≥ ui(a⃗′).

To allow the players to follow randomized strategies, we define 𝜎i as a proba-
bility distribution over Ai for a player Pi. This means he/she samples ai ∈Ai
according to 𝜎i. A strategy is said to be a pure strategy if each 𝜎i assigns
probability 1 to a certain action; otherwise, it is said to be a mixed strat-
egy. Let 𝜎⃗ = (𝜎1,… , 𝜎n) be the vector of players’ strategies, and let (𝜎′i, 𝜎−i) =
(𝜎i,… , 𝜎i−1, 𝜎′i, 𝜎i+1,… , 𝜎n), where Pi replaces 𝜎i by 𝜎

′
i and all the other play-

ers’ strategies remain unchanged. Therefore, ui(𝜎⃗) denotes the expected utility
of Pi under the strategy vector 𝜎⃗. A player’s goal is to maximize ui(𝜎⃗). In the
following definitions, one can substitute action ai ∈ Ai with its probability dis-
tribution 𝜎i ∈ Si, or vice versa.

Definition 3: A vector of strategies 𝜎⃗ is in Nash equilibrium if, for all i and any
𝜎
′
i ≠ 𝜎i, it holds that ui(𝜎′i , 𝜎⃗−i ≤ ui(𝜎⃗). This means no one gains any advantage

by deviating from the protocol as long as the others follow the protocol.

Definition 4: Let S−i
def
= S1 ×… × Si−1 × Si+1 ×… × Sn. A strategy 𝜎i ∈ Si

(or an action) is weakly dominated by 𝜎
′
i ∈Si (or another action) with respect

to S-i if for all 𝜎⃗−i𝜖S-i, it holds that ui(𝜎i, 𝜎⃗−i) ≤ ui(𝜎′i, 𝜎⃗−i). There is a 𝜎⃗−i𝜖S-i
such that ui(𝜎i, 𝜎⃗−i) < ui(𝜎′i , 𝜎⃗−i). This means player Pi can never improve its
utility by playing 𝜎i, and he/she can sometimes improve it by not playing 𝜎i. A
strategy 𝜎i ∈ Si is strictly dominated if player Pi can always improve its utility
by not playing 𝜎i.

11.3 Literature Review

Even though the concept of Blockchain is relatively new, introduced by an
unknown author or authors in 2008, it has gained considerable attention
from the computer science and economics communities because of its unique
approach in decentralizing verification of transactions related to a digital
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currency, and its inherent security because of this decentralized nature. How-
ever, the body of work that is focused on the study of Blockchain through the use
of game-theoretic methods is limited. In this section, research works related to
game theory and Blockchain are reviewed.

The authors Johnson et al. [6] study the incentives for a mining pool to carry
out a distributed denial-of-service (DDoS) attack against another mining pool.
The authors scrutinize this problem from an economic point of view where the
incentive for an attack is to increase one’s own probability of successfully ver-
ifying the next block of transactions, and hence, earning the Bitcoin rewards
from this mining operation. They conclude that there is a greater incentive to
attack a large mining pool rather than a small pool. The authors point out that
this finding is consistent with statistics reported in [10] that shows 17.1% of
small mining pools have suffered from DDoS attacks, whereas 62.5% of large
pools have been affected by such attacks. The authors make two other interest-
ing observations as well. First of all, the ability to mitigate the DDoS attacks will
increase the market threshold for the size at which a pool becomes vulnerable
to the DDoS attack. This makes intuitive sense since the ability to mitigate such
attacks will decrease the attacker’s utility. Second, the cost of these attacks will
keep small pools out of the DDoS market since the incentive for attacking such
pools is relatively low.

Babaioff et al. [11] look at a different problem that is present in the Bitcoin
protocol. In fact, this problem will intensify once the mining reward is ended
in the Bitcoin network. In the current design, the nodes that authorize a trans-
action are rewarded through two separate methods. The first is through the
generation of new Bitcoins for every new block that is added to the Blockchain,
and the second method is through a transaction fee. The maximum number
of Bitcoins is limited to about 21 million [12] and the creation of new Bitcoins
becomes exponentially smaller until the maximum limit is reached. The
transaction fee will be the only resource to incentivize the miners when the
maximum threshold is reached. At that point, miners are incentivized to keep
the information of a possible transaction secret as there will be no new Bitcoins
to be mined from the efforts of mining, that is, there is only the transaction fee
that is given to the verifier of transactions. This incentive to keep information
secret can potentially cripple the Bitcoin system as the time for confirming a
transaction will be long when there is only one node attempting to verify the
transaction.

Kroll et al. [13] study Bitcoin as a consensus game and consider the eco-
nomics of Bitcoin from the mining perspective to determine whether any incen-
tive exists for rational players to deviate from the mining protocol. The authors
show that there is a Nash equilibrium outcome for which all players cooperate
with the Bitcoin reference implementation. However, there are infinitely many
equilibria where the players can behave otherwise. The authors show that a
motivated adversary may be capable of crashing the currency; as a result, gov-
ernance structures will be necessary.
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Even though Barber et al. [14] don’t refer to any game-theoretic models, they
detail several possible vulnerabilities within the Blockchain protocol that are
great candidates for game-theoretic study, such as deflationary spiral, the his-
tory revision attack, and delayed transaction confirmation. Carlsten et al. [15]
study the issues of Bitcoin and Blockchain when the last block reward is col-
lected. The authors show that once the mining reward is removed from the
protocol, leaving only the transaction fees, the incentive for defection increases.

Luu et al. [16] scrutinize the block-withholding attack on mining pools, intro-
duced by Rosenfeld [4]. They show that the attack always has incentive when
looking at a long-term operation, but it may not be profitable for a short-term
operation. Eyal [17] studies the same subject and concludes that when two
pools attack each other, it results in a version of the prisoner’s dilemma, named
the Miner’s Dilemma. Lewenberg et al. [18] introduce a modification to the
Blockchain protocol to allow for inclusion of forked blocks with the aim of
increasing the rate of operation. They then provide a game-theoretic model
of the competition for fees between the nodes under the new protocol.

11.4 Reputation-based Mining Model and Setting

As illustrated in Figure 11.1, our model consists of a set of pool managers M(i,pi)
who form coalitions for the proof-of-work computations, for 1 ≤ i ≤ I, where

m(11, +0.5)

m(21, +0.5)

m(31, +0.5)

First Mining Pool

Pool Manager M(1, 250B)

m(53, –0.2)

m(63, –0.2)

Miners: m( jk, rk)

1 ≤ j ≤ J : identity

1 ≤ k ≤ K : reputation id

m(J–2 K–1, 0)

Last Mining Pool

Pool Manager M(I, 75B)

m(JK, –1)…

Managers: M(i, pi)

1 ≤ i ≤  : identity 

0 ≤ pi : profit

i 1 2 3 ... 

pi 250B 125B 0B ... 200B 75B 

k 1 2 3 ... 

j 1, 2, 3 4 5, 6 ... J–2, J–1 J 

rk +0.5 +1 –0.2 ... 0 –1

m(J–1 K–1, 0)

Ally Miners

m(42, +1) 

–1 ≤ rk ≤ +1 : reputation

I – 1 I

I

K – 1 K

Figure 11.1 Reputation-based mining model.
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0 ≤ pi denotes profits that pool managers have so far accumulated; a set of min-
ers/ally miners m(jk,rk ) who perform proof of works, for 1 ≤ j ≤ J and 1 ≤ k ≤ K ,
where −1 ≤ rk ≤ +1 denote the reputation value of a miner/ally miners. In
our model, miners/ally minors may commit malicious activities through direct
attacks (e.g. a DDoS attack) or collusion attacks (e.g. block withholding) to dis-
rupt the proof-of-work computations of certain mining pools. As such, two
actions are considered in the miners’ action profile, that is, commit malicious
activity to disrupt computations of mining pools, denoted by D: dishonest min-
ing, or conduct the proof of work honestly, denoted by H: honest mining.

Note that in the current setting of digital currencies, each miner is defined
by a unique identity, j. However, in our proposed framework, each miner is also
assigned a public reputation value, rk , where k is the index of this value. In fact,
the reputation value reflects how well the miner has so far performed in the
system in terms of mining performance as well as honest or malicious activities
(i.e. a history of behavior). This public reputation value rk is updated after a
specific period of time, based on different criteria, e.g. the ratio of full proof
of work over partial proof of work, detection of any malicious activity such as
collusion with other miners, selfish mining, or contribution to a DDoS attack.
Moreover, each pool manager i is also assigned a parameter pi that defines the
profit that he/she has so far accumulated through his/her pool. As pi reflects
how well a manager is performing, it can be interpreted as his/her reputation.

In our setting, a subset of miners who highly trust each other (due to partner-
ships, personal relationships, common nationality, or even geographical prox-
imity) can form an alliance, named ally miners, and request a single reputation
value rk even though they each have a separate identity j. This means that while
members of a coalition can build a reputation all together through rk by collab-
orations over time, they are all responsible for malicious activities triggered by
even a single member of their coalition. This leads to the notion of neighbor-
hood watch, meaning that each member of an alliance is incentivized to mon-
itor his/her allies. For instance, members can agree to execute a randomized
algorithm to monitor each other through various methods, that is, cybersecu-
rity detection techniques or transparency policies, to make sure no one has ever
received any bribe from other mining pools due to any sort of collusion attacks.
As a result, the pool manager does not need to have any concern for every single
member of his/her mining pool. Furthermore, if a member decides to launch
an attack, he/she may need to convince all his/her coalition members or act
solo, which might be caught by his/her allies through randomized monitoring
before it can even affect the mining procedure.

Occasionally, the pool managers rearrange their groups to form new coali-
tions for the proof of work. They send invitations (i.e. an invitation-based
approach) to miners/ally miners based on a nonuniform probability distribu-
tion that is defined by the reputation values, rk . In other words, the miners/ally
miners who are more reputable have a higher chance to be invited to the min-
ing pools and those who are not trustworthy have a lower chance to receive



240 Blockchain for Distributed Systems Security

invitations. The miners/ally miners can also choose whom they would like to
join if they receive multiple invitations, that is, a mutual merit-based setting for
both miners and managers.

Since this public reputation system is sustained over time, it will be in the
best interests of the miners/ally miners to become reputable (or sustain their
high reputation) to maximize their long-term utility. This will incentivize the
miners/ally miners to avoid any dishonest behavior even if it has a short-term
utility. Note that the underlying reputation system must be immune against re-
entry attack (that is, cheat and come back to the scheme with a new identity
j). We use the proposed idea of rational trust modeling [19] to make sure our
proposed mining paradigm is not vulnerable to these sorts of attacks against
reputation systems.

Furthermore, in our proposed model, while ally miners are incentivized to
form larger coalitions to sustain a high reputation value and consequently gain
more revenue, they are not incentivized to admit any new miner to their alliance
unless they fully trust the newcomer. This is due to the fact that a single miner
can harm the entire coalition. Moreover, it is worth mentioning that though
ally miners only have a single reputation identity rk , a miner cannot commit
malicious activities in a set and then simply join another alliance because each
miner still has a unique identifier j.

Our proposed model can be seen as a global community where each mining
pool represents a federal authority and each alliance represent a state author-
ity. Therefore, each alliance is responsible to detect malicious activities inside
the coalition on a smaller scale. In addition, each alliance can be changed in
size and moved to a new mining pool when the rearrangement occurs. This
approach not only leads to less managerial overheads for the pool managers,
but it also creates a framework where practical implementations of preventive
and detective protocols become possible.

11.5 Mining in a Reputation-based Model

Since our approach is designed using a reputation-based paradigm, it is neces-
sary to use a reputation/trust model that is resistant to the well-known re-entry
attack, that is, corrupted players return to the scheme using new identities.
Otherwise our approach cannot be utilized properly. We will discuss this in the
next section.

11.5.1 Prevention of the Re-entry Attack

To deal with the re-entry attack in our reputation-based scheme, we use the
proposed approach of rational trust modeling [19]. We provide a high-level
description of how this modeling technique works. Suppose there exist two
trust functions as follows: The first function f1( p−1

i , 𝛼i) has two inputs, that is,
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trust value  p−1
i of player Pi in period p − 1 and action 𝛼i (cooperation or defec-

tion) selected by player Pi in period p − 1. This function computes the updated
trust value  p

i of player Pi for the next round p based on these two inputs. How-
ever, the second function f2( p−1

i , 𝛼i,𝓁i) has an extra input value that defines the
player’s lifetime, denoted by 𝓁i. This extra input determines how long a player
with a reasonable number of interactions exists in a reputation-based scheme,
for instance, in our proposed reputation-based mining framework.

Using the second function, the reputation-based scheme should then be
designed in a way that a player with a longer lifetime can be rewarded (or penal-
ized) more (or less) than a player with a shorter lifetime, assuming that the other
two inputs (i.e. the current trust value and the action) are the same. In this set-
ting, “reward” means gaining a higher trust value/becoming more trustworthy,
and consequently, receiving a higher utility, and “penalty” means otherwise.
In other words, if two players Pi and Pj both cooperate 𝛼i = 𝛼j = C and their
current trust values are equal  p−1

i = 
p−1

j but their lifetime parameters are
different, say 𝓁i > 𝓁j, the player with a higher lifetime parameter gains a higher
trust value for the next round, i.e.  p

i > 
p

j . This helps player Pi to accumulate
more utility/revenue in the targeted reputation-based framework.

To exemplify, consider a situation in which sellers, in a reputation-based e-
commerce setting, have options to sell the “defective” versions of an item with
more revenue or the “nondefective” versions of the same item with less revenue.
If the first sample function f1 is used in the scheme, it might be tempting for a
seller to sell the defective items with more revenue and then return to the e-
commerce framework with a new identity (i.e. re-entry attack). However, if the
second sample trust function f2 is used, it is no longer in a seller’s best interest to
sell the defective items because if he/she returns to the community with a new
identity, his/her lifetime indicator becomes zero and he/she loses all the credits
that he/she accumulated over time. Consequently, he/she loses huge potential
revenue that he/she could gain because of his/her lifetime parameter, i.e. buyers
always prefer a seller with a longer lifetime (longer existence with a reasonable
number of transactions) over a seller who is a newcomer.

We emphasize that this is just an example of rational trust modeling. In fact,
the second sample function uses the lifetime parameter 𝓁i to enforce trustwor-
thiness and prevent the re-entry attack. It is worth mentioning that different
parameters can be incorporated into trust functions/reputation systems based
on the context (e-commerce, mining in Blockchains, etc.), and consequently,
different attacks can be prevented.

11.5.2 Technical Discussion on Detection Mechanisms

Detection mechanisms are required to reward or penalize miners in our
reputation-based setting. In this section, we provide technical discussions and
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mechanisms by which noncooperative actions by miners (e.g. block withhold-
ing, selfish mining, DDoS attack, eclipse attack, stubborn mining, or upcoming
attacks that are unknown) can be detected.

A mining pool can detect whether it is under a block-withholding attack with
a relatively high accuracy. In fact, calculation of the partial proof of work is
much easier than calculation of the full proof of work. Therefore, a mining pool
can simply estimate its expected mining power in addition to its actual min-
ing power. As a result, any difference between the expected and actual mining
powers, which is above a certain threshold, can be an indication of a block-
withholding attack.

To determine which registered miner is the perpetrator, there are two possi-
bilities. First, if the mining power of a miner/ally miner is high enough, the ratio
of the full proof of work over the partial proof of work can indicate whether
the miner/alliance is committing to the block-withholding attack. Second, if
the mining power is not high, the frequency of success to find the full proof of
work is very low, and statistically, we may not be able to define whether a miner
is really committing to the block-withholding attack. However, the latter case
has a negligible (close to zero) impact on the mining process and can simply be
ignored, i.e. block-withholding attack by a single miner or miners with a low
mining power cannot negatively affect the fair mining process.

As suggested by Eyal and Sirer [5], an increase in the number of orphaned
blocks can be an indication of selfish mining in the Blockchain. Furthermore,
the amount of time taken to release consecutive blocks in the Blockchain can
potentially provide evidence of selfish mining. Several researchers have inves-
tigated this issue through experimental analysis. In other words, two blocks in
close succession should be a very rare incident when miners are honest, and
this is more common when a miner/a group of miners quickly releases selfishly
mined blocks to overcome the honest miners. As a result, it is not hard to detect
which miners are committing to the selfish mining.

As stated by Heilman et al. [7], the eclipse attack has several signatures and
properties that make it detectable, e.g. a flurry of short-lived incoming TCP
(Transmission Control Protocol) connections from diverse IP addresses. More-
over, an attacker that suddenly connects a large number of nodes to the Bitcoin
network could also be detected. Therefore, anomaly detection software systems
that look for similar behaviors can be helpful to detect the attacker. Likewise,
there are many other techniques in the security literature that can be used to
detect the DDoS attack, stubborn mining, and so on.

Other methods might be used to detect bribes and illegal money exchanges
among registered miners in the transparent network of Bitcoin (unless they
exchange bribes outside of the Bitcoin network). This is how government agen-
cies usually detect money laundering/illegal money exchanges in the traditional
banking system. In other words, detection of these bribes might be an indica-
tion of collusion—why miners from two competing pools should frequently
exchange money with a certain amount.



11 Preventing Digital Currency Miners from Launching Attacks Against Mining Pools 243

11.5.3 Colluding Miner’s Dilemma

In this section, we consider a scenario in which two miners (independent
or from two different alliances) have to decide whether to collude with an
attacker to disrupt another mining pool’s effort or not. Two collusion scenar-
ios can be considered, i.e. a single miner colludes with the attacker, or multi-
ple miners form a coalition with the attacker. We consider the latter case as
it is the general case of the first scenario. It is worth mentioning that game-
theoretical paradigms are usually used to analyze interaction between honest
parties and attackers. However, we intend to model collusion between miners
and an attacker in the context of Blockchain’s proof of work. In our setting, we
initially consider a two-miner game, named colluding miner’s dilemma, which
may or may not collude with the attacker to disrupt the mining efforts of a tar-
geted mining pool. We further extend this scenario to an n-miner game that
is played repeatedly among all the miners of the Blockchain network for an
unknown number of rounds.

In the two-miner setting, shown in Table 11.1, if both miners collude with
the attacker, they each gain a half unit of utility. In other words, the attacker’s
budget will be equally shared between both miners. However, if one miner col-
ludes with the attacker but the other one acts honestly, the colluding miner will
receive one unit of utility from the attacker. As a result of this dilemma, collu-
sion is in Nash equilibrium, meaning that miners always collude because it is in
their best interest to gain a higher utility. This is a realistic assumption where an
attacker with a limited budget tries to disrupt the proof-of-work computation
of a mining pool in favor of another alliance. Note that the budget is limited
because mining reward is fixed in the Blockchain network.

We approach the colluding miner’s dilemma by setting a sociorational model
[20, 21], i.e. a repeated game among rational foresighted players with public
reputation values where these values directly affect players’ utilities over time,
in which:

1. Each pool manager sends invitations to miners to form his/her mining
pool for the proof-of-work computation. He/she not only tries to maximize
his/her pool’s revenue, but also intends to protect his/her pool against any
malicious activity. These invitations are defined based on miners’ trust val-
ues using a nonuniform probability distribution.

Table 11.1 Payoff in colluding miner’s dilemma.

m(j′ k′, r′k)
H: Honest

Mining
D: Dishonest

Miningm(j k, rk)

H: Honest mining (0, 0) (0, Ω)
D: Dishonest mining (Ω, 0) ( Ω

2
, Ω

2
)
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2. On the other hand, the attacker uses his/her limited budget to collude with
the miners and consequently compromises the proof-of-work computation
of a targeted pool.

In this setting, if a miner colludes with the attacker, he/she may gain some
utility in the current round of the game; however, the pool managers will select
that miner with a lower probability in the future if his/her malicious activity is
detected. This is due to the reduction of his/her reputation value. See [22,23] for
a trust/reputation management system. Therefore, it will be in the best interest
of the miners not to collude with the attacker because a malicious miner will
lose his/her public reputation and thus lose many future mining opportunities
with much larger gains.

11.5.4 Repeated Mining Game

We use a trust model that is resistant to the re-entry attack in a repeated game
setting. The miners try to maximize their utilities through the proof-of work
computation as well as collusion with the attacker or any dishonest mining
strategies. We show that by using our proposed model, cooperation (not col-
luding with the attacker or committing any malicious activity) is always in Nash
equilibrium because of a long-term utility function that we consider in our
model in addition to a short-term utility function. Our model not only rewards
honest miners but also penalizes colluding/dishonest miners. For the sake of
simplicity and without loss of generality, two classes of actions are defined in
our setting, i.e. dishonest/collude as a noncooperative action and honest/not
collude as a cooperative action, similar to [24].

The mining game is repeatedly played for an unknown number of rounds.
Each miner m(jk,rk ) has a public reputation value rk , where the initial value
is zero, and it is bounded as follows: −1 ≤ rk ≤ +1. In addition, each miner’s
action 𝛼j ∈ {H, D, ⊥}, where H and D denote honest mining and dishonest
mining, respectively, and ⊥ indicates miner m(jk,rk )has not been selected by any
pool manager M(i,pi) in the current round. Finally, each miner calculates two
utility functions to select his/her action, that is, a long-term utility function uj
and an actual utility function u′

j . Note that each round of the game consists of a
sequence of block verification, for instance, after verifying a constant number
of blocks or after a certain amount of time.

1. Suppose we have a nonuniform probability distribution over types of miners,
i.e. honest, dishonest, and new miners. Each pool manager M(i,pi) sends invi-
tations to a subset of miners based on this probability distribution in each
round of the game.

2. Each miner m(jk,rk ) computes his/her long-term utility uj, and then selects a
new action from the action profile, i.e. employ honest or dishonest mining
strategies.
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3. Each m(jk,rk )receives his/her short-term utility u′
j , i.e. the actual reward that

each miner gains, at the end of each round of the game based on the proof
of works’ outcomes.

4. The reputation values rk of the selected miners/ally miners are pub-
licly updated based on each miner’s/alliance’s behavior, using a reputation
system.

11.5.5 Colluding Miners’ Preferences

Let uj(a⃗) denote m(jk,rk )’s long-term utility in outcome a⃗ by taking into account
the current and future games, and let u′

j (a⃗) denote m(jk,rk )’s short-term utility
in outcome a⃗ of the current game. Also, let dj(a⃗) ∈ {0, 1} denote whether the
miner m(jk,rk ) has employed dishonest mining strategies in the current game,
and define Δ(a⃗) =

∑
i dj(a⃗), that is, the total number of miners who have used

dishonest mining strategies. Let ra⃗
k (p) denote the reputation of m(jk,rk ) after

outcome a⃗ in period p; note that a⃗ and a⃗′ are two different outcomes of our
repeated game.

The miners’ preferences are as follows: di(a⃗) = di(a⃗′) & ra⃗
k (p) > ra⃗′

k (p) ⇒
uj(a⃗) > uj(a⃗′), that is, each miner m(jk,rk ) prefers to sustain a high reputa-
tion value over time despite employing honest or dishonest mining strate-
gies as he/she can potentially gain a higher long-term utility; di(a⃗) > di(a⃗′) ⇒
u′

j (a⃗) > u′
j (a⃗

′), that is, if a miner m(jk,rk ) uses a dishonest mining strategy,
he/she gains a short-term utility from the attacker; and finally, di(a⃗) > di(a⃗′) &
Δ(a⃗) < Δ(a⃗′) ⇒ u′

j(a⃗) > u′
j (a⃗

′), that is, if m(jk,rk ) employs dishonest mining
strategies and the total number of dishonest miners in a⃗ is less than the
total number of dishonest miners in a⃗′, the miner gains a higher short-term
utility in a⃗.

11.5.6 Colluding Miners’ Utilities

In our setting, the long-term utility function ui is computed based on the utility
that each miner m(jk,rk ) potentially gains or loses by considering both current
and future games, i.e. taking into account all stated utility preferences. How-
ever, the short-term utility function u′

i is only calculated based on the current
gain or loss in a given time interval, i.e. taking into account the last two utility
preferences, as mentioned previously.

Let 𝜑j be the reward factor that is determined by each pool manager M(i,pi)
based on the rk of each miner m(jk,rk ), and let 𝛿j(a⃗) = ra⃗

k (p) − ra⃗
k (p − 1) be the

difference of two consecutive reputation values. Note that 𝜏j = |𝛿j(a⃗)|∕𝛿j(a⃗) is
positive if the selected action in period p is H: honest mining, and it is negative if
it is D: dishonest mining. Also, let Ω > 0 be a unit of utility, for instance, $50. To
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satisfy the miners’ preferences, we compute the long-term utility uj(a⃗) through
the following linear combination:

uj(a⃗) = Ω

(
𝜏j𝜑j + dj(a⃗) +

dj(a⃗)
Δ(a⃗) + 1

)
. (11.1)

Note that the actual utility u′
j (a⃗) only consists of the second and third terms,

that is, u′
j (a⃗) = Ω(dja⃗) + dj(a⃗)∕(Δ(a⃗) + 1)). The first term of the utility func-

tion denotes miner m(jk,rk ) gains or loses 𝜑i units of utility in future games due
to his/her behavior as reflected in rk . This is due to 𝜏j, which depends on the
miner’s reputation value rk . The second term illustrates miner m(jk,rk ) gains one
unit of utility if he/she employs dishonest mining strategies or colludes with
the attacker in the current game, and he/she loses this opportunity otherwise.
Finally, the last term results in almost one unit of utility being shared among all
dishonest miners.

11.6 Evaluation of Our Model Using Game-theoretical
Analyses

In this section, we evaluate our proposed reputation-based mining paradigm
using game-theoretical analyses. We first consider a (2, 2)-game that is played
between two miners to show honest mining always dominates dishonest mining
in our setting. We further extend this analysis to an (n, n)-game that is played
among n miners.

Theorem 1: In a (2, 2)-game between two miners, honest mining H strictly
dominates dishonest mining D when we use utility function uj(a⃗), as defined in
Eq. 11.1.

Proof: We compute uj of each outcome for m(jk,rk ). Let m(j′k′,rk ′) be the other
miner.

1. If both miners employ honest mining strategies, 𝛿j is positive, dj = 0, and
Δ = 0:

(𝛿j > 0, dj = 0,Δ = 0) ⇒ u(H, H)
j = Ω𝜑j.

2. If only m(jk,rk ) uses honest mining strategies, 𝛿j is positive, dj = 0 since m(jk,rk )
has not colluded, andΔ = 1 since m(j′k′,rk ′) has used dishonest mining strate-
gies:

(𝛿j > 0, dj = 0,Δ = 1) ⇒ u(H, D)
j = Ω𝜑j.
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3. If only m(j′k′,rk ′) uses honest mining strategies, 𝛿j is negative, dj = 1 since
miner m(jk,rk ) has employed dishonest mining strategies, and Δ = 1:

(𝛿j < 0, dj = 1, Δ = 1) ⇒ u(D, H)
j = Ω(−𝜑j + 1.50).

4. If both miners employ dishonest mining strategies, 𝛿j is negative, dj = 1, and
Δ = 2 because both miners have colluded:

(𝛿j < 0, dj = 1,Δ = 2) ⇒ u(D, D)
j = Ω(−𝜑j + 1.33).

If reward factor 𝜑i ≥ 1.5, which is defined by each pool manager M(i,pi), we
will have the following payoff inequalities that prove our theorem:

m(jk,rk ): honest mining
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

u(H, H)
j (a⃗) = u(H, D)

j (a⃗) >

m(jk,rk ): dishonest mining
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

u(D, H)
j (a⃗) > u(D, D )

j (a⃗) .

Likewise, if we assume 𝜑i is at least 1.5 (note that the minimum value is
defined based on the model’s parameters), the payoff matrix is as follows in
Table 11.2:

Table 11.2 (2, 2)-Game between two miners.

m(j′ k′, r′k)
H: Honest

Mining
D: Dishonest

Miningm(j k, rk)

H: Honest mining (1.5, 1.5) (1.5, 0)
D: Dishonest mining (0, 1.5) (− 0.17,− 0.17)

As shown, honest mining is always in Nash equilibrium in our reputation-
based mining paradigm. To expand our proof to a case with n miners, let Hj
(or Dj) denote miner m(jk,rk ) employs honest mining strategies (or dishonest
mining strategies), and let H−j (or D−j) denote, excluding miner m(jk,rk ), all
other miners use honest mining strategies (or dishonest mining strategies), and
finally, let −j denote, excluding m(jk,rk ), some miners employ honest mining
strategies and some of them use dishonest mining strategies.

Theorem 2: In an (n,n)-game among n miners, honest mining H strictly dom-
inates dishonest mining D when we use the utility function uj(a⃗), as defined in
Eq. 11.1.

Proof: We compute the utility of each outcome in different scenarios. Let n >

k ≥ 2.
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1. If all miners employ honest mining strategies, or m(jk,rk ) and k − 1 miners
employ honest mining strategies, or only m(jk,rk ) conduct honest mining, and
as a result, 𝛿j is positive, dj = 0, and Δ ∈ s = {0, n − k, n − 1}:

(𝛿j > 0, dj = 0,Δ ∈ s) ⇒ u
(Hj ,H−j)
j = u

(Hj ,−j)
j = u

(Hj , D−j)
j = Ω𝜑j.

2. If only m(jk,rk ) uses dishonest mining strategies, 𝛿j is negative, dj = 1, and
Δ = 1:

(𝛿j < 0, dj = 1,Δ = 1) ⇒ u
(Dj ,H−j)
j = Ω(−𝜑j + 1.5).

3. If m(jk,rk )as well as k − 1 miners employ dishonest mining strategies, and the
rest of them use honest mining strategies:

(𝛿j < 0, dj = 1,Δ = k) ⇒ u
(Dj ,−j)
j = Ω

(
−𝜑j +

k + 2
k + 1

)
.

4. If all miners use dishonest mining strategies, 𝛿j is negative, dj = 1, and 𝛿 = n
because no one has conducted honest mining:

(𝛿j < 0, dj = 1, Δ = n) ⇒ u
(Dj , D−j)
j = Ω

(
−𝜑j +

n + 2
n + 1

)
.

Our analysis will be as follows: Let ∗−j be H−j, −j, or D−j. It is easy to show
that:

1.5 >
k + 2
k + 1

>
n + 2
n + 1

when n > k ≥ 2.

Likewise, if we assume 𝜑i is at least 1.5, honest mining or not colluding with
the attacker is always in Nash equilibrium. As a result, it is always in m(jk,rk )’s
best interests to use honest mining strategies no matter what other miners do:

u
(H j,∗−j)
j (a⃗) > u

(Dj,∗−j)
j (a⃗).

11.7 Concluding Remarks

In this chapter, we proposed a new reputation-based mining paradigm for the
proof-of-work computation in Blockchain. We first illustrated the problem of
dishonest mining, demonstrated our proposed model, and, subsequently, pro-
vided a candidate solution concept to the aforementioned problem. Note that
by dishonest mining we refer to any malicious activity against other mining
pools or competitors, such as block-withholding attack, selfish mining, eclipse
attack, and stubborn mining, to name a few.
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Our proposed mining game is repeatedly played among a set of pool man-
agers and miners where the reputation value of each miner or mining ally is
continuously measured by a trust management scheme that is resistant to the
re-entry attack. For each round of the game, pool managers send invitations
only to a subset of miners based on a nonuniform probability distribution
defined by the miners’ reputations. It is worth mentioning that each round
of the game consists of a sequence of block verification, for instance, after
verifying a constant number of blocks or after a certain amount of time.

We showed that by using our proposed solution concept, honest mining
attains Nash equilibrium in our setting. In other words, it will not be in the
best interests of the miners to disrupt the proof-of-work computation or com-
mit to dishonest mining even by gaining a short-term utility. This is due to the
consideration of a long-term utility function in our model and its impact on
the miners’ utilities over time. For our future work, we are interested in imple-
menting our proposed game through a simulation-based approach using real
data from the Bitcoin network.
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12.1 Introduction

As the Internet of Things (IoT) continues to expand, bad security practices,
flawed protocols, and slow patch updates have made the cyber security of IoT
devices and networks an increasing concern. Consequently, IoT deployments
stand to benefit from the tamper proof, decentralized, distributed, and secure
chain of transactions provided by blockchain technology [1]. This secure chain
of transactions can be leveraged to provide IoT device networks with, for exam-
ple, micropayments [2], trustworthy identity management [3], and verifiable
digital artifacts [4].

In addition to this secure chain of transactions, recent blockchain frame-
works provide support for smart contracts [5]. A smart contract is a piece of
code stored within the blockchain, that executes transactions that are verified
by some or all of the members of the blockchain network. Once verified, these
transactions are also stored on the blockchain. In our vision, blockchain tech-
nology combining the secure chain with smart contracts has the ability to rad-
ically reshape the way IoT device deployments are developed, managed, and
trusted.

However, a major challenge when deploying blockchain as an IoT protocol
is finding the right way to configure the blockchain for your IoT device net-
work. The first major point of contention is whether to go with a public or pri-
vate blockchain. A public blockchain is accessible to every user on the internet,
creating strong network effects for those public blockchain networks that gain
widespread adoption. These network effects boost the fundamental security
property of a blockchain—its immutable chain of transactions—by increasing
the number of replications of this chain of transactions, increasing the length
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of the chain and thus increasing the amount of hash power needed to alter it,
as well as increasing the amount of computational power available to secure
the blockchain’s consensus model. In practice, however, most popular public
blockchains have had to trade this boosted security for poor performance, par-
ticularly when it comes to scaling the overall throughput of the blockchain.

Ethereum [6], the most popular public blockchain that features advanced
smart contract capabilities manages to, for example, scale to around 15 trans-
actions per second. While this rate of 15 transactions/sec is impressive for a
public blockchain of Ethereum’s size, in particular when compared to Bitcoin’s
7 transactions/sec [7], large scale deployments of IoT devices require much
higher throughputs. Uber provided an average of 126 rides per second in 2017
[8], and the Visa payment system, whose network of millions of connected
payment terminals forms arguably one of the largest IoT deployments in the
world, is capable of handling up to 56000 transactions/sec [9]. While certain
newer blockchain technologies such as IOTA [10] and Nano [11] are attempt-
ing to create blockchains capable of handling comparable levels of transaction
throughput, none of these high-throughput blockchains have so far managed
to combine top-level performance with a robust smart contract platform.

As such, this chapter explores the intricacies of configuring private
blockchains for IoT deployments. Much is made of the different kinds of con-
sensus algorithms that blockchain frameworks employ to determine which
transactions will be the next to be added to the blockchain. Traditional
blockchain frameworks such as Bitcoin employ a proof-of-work (PoW) con-
sensus protocol where an energy-consuming cryptographic puzzle must be
solved to mine new blocks [12], while newer blockchain frameworks are explor-
ing alternative consensus protocols such as Proof of Authority (PoA) [13],
Delegated Proof of Stake (DPoS), and Practical Byzantine Fault Tolerance
(PBFT) [14].

In this chapter, we present one blockchain IoT deployment that employs the
PoW consensus method and one that employs the PBFT consensus method.
The performance differences between these two consensus protocols are, how-
ever, of less interest to us than the roles that the IoT devices play within the
blockchain deployment and the security guarantees that the blockchain can
provide the IoT device in that role. Blockchain frameworks tend to differen-
tiate between two device roles—full nodes and light clients. Full nodes are the
backbone of a blockchain network; they download incoming blocks of trans-
actions and check them against the blockchain consensus rules and store full
or compressed copies of the blockchain in question. In blockchain frameworks
that enforce network-wide smart contracts, full nodes are also responsible for
executing and verifying calls to the smart contracts stored on the blockchain.
Light clients, in contrast, do not help to support a blockchain network. Instead,
they participate in blockchain networks by submitting new transactions to
the blockchain as well as by observing those transactions that are of interest
to them.
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In this chapter, we consider the differences in system functionality and
cyber security guarantees between systems where IoT devices are configured
as either private blockchain light clients or blockchain unaware devices and
systems where IoT devices serve as full nodes on a private blockchain. We
denote these two different IoT blockchain deployment strategies as Blockchain-
enabled Gateway and Blockchain-enabled Smart End Devices.

In what follows, we discuss these two different deployment strategies (Sec-
tions 12.2 and 12.3), illustrating the advantages and limitations of each by
means of example implementations. Next, this chapter lists related work (Sec-
tion 12.4) and then concludes (Section 12.5).

12.2 Blockchain-enabled Gateway

The Blockchain-enabled Gateway IoT deployment strategy is centered around
a gateway device that centrally processes the transactions between the IoT
network and a cloud/gateway-based private blockchain (Figure 12.1). The IoT
devices contributing these transactions are not full blockchain nodes; they are
instead configured as either blockchain light clients or as devices completely
unaware of the blockchain. In this setup, the IoT devices thus do not work to
power the private blockchain; instead, they rely on the gateway to serve as a
full node on the blockchain to which they can send their transactions and from
which they can receive updates.

12.2.1 Advantages

The advantages of configuring an IoT deployment by means of the Blockchain-
enabled Gateway strategy in comparison to a more traditional database and
centralized command server approach are, in our opinion, fourfold.

� Fault-tolerance—by employing a distributed database such as blockchain,
which in the Blockchain-enabled Gateway strategy is distributed between

Figure 12.1 The blockchain-enabled gateway strategy implemented for a smart home.
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the gateways and servers that power the private blockchain network, the
resilience of the system is improved as there is no longer a single point of
failure.

� Secure, trustworthy log—a blockchain is an immutable chain of transac-
tions. The transactions collected onto this immutable chain can thus be con-
sidered a trustworthy log of network-wide events that have taken place within
the IoT network.

� Secure device registration—combining the immutability provided by
blockchain with the built-in authentication mechanism (generally imple-
mented by means of public key cryptography) enables the creation of a secure
registry of authenticated IoT devices with minimal effort.

� Trustworthy business logic—by implementing business logic rules as smart
contracts that are stored on the blockchain, this logic becomes fixed and
transparent. In addition, the execution of this logic can be verified by
some/all of the computing power of the blockchain network. Modifying or
derailing the execution of this logic can only be achieved by a resource-
intensive majority attack against the blockchain network [15].

12.2.2 Limitations

All of the four previously cited advantages are, to a certain extent, limited due
to our focus on a private blockchain, whose network size is constrained by the
resources of the private company or consortium that funds it. In contrast, a
public blockchain with cryptocurrency-driven rewards may grow as exponen-
tially fast as the increase in the value of its cryptocurrency. The Ethereum pub-
lic blockchain network, for example, grew to 25,000 nodes (light clients and full
nodes) in less than 2 years [16]. Such a large public blockchain will, of course,
provide better fault tolerance. The chain of blockchain transactions is also more
immutable on such a large public blockchain, as the network contains more
replications of the chain and the chain is longer, requiring more hashing power
to alter the chain. This increased immutability means that a public blockchain
implementation can provide a more trustworthy log and more secure device
registration. Lastly, a large public blockchain will also assign more comput-
ing power to verifying smart contract computations, thus increasing the trust-
worthiness of the results of the implemented business logic. All these public
blockchain security and reliability benefits do, as discussed in the introduction,
come at a substantial performance cost, particularly in the area of transaction
processing speed. As such, until public blockchains overcome their transaction
processing limitations, the optimal solution will remain to deploy a large-scale
private or consortium-based blockchain.

An additional limitation is that while applying the Blockchain-enabled Gate-
way strategy may provide an IoT system with a trustworthy log of all the trans-
actions that happened within the IoT network, where the built-in authentica-
tion ensures that those transactions are only coming from the devices that have
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been securely registered, this blockchain configuration strategy cannot guaran-
tee that the message content of those transactions is accurate. In an IoT sys-
tem where, for example, the Blockchain-enabled Gateway strategy is applied
to record sensor values, there are no guarantees about the correctness of those
sensor values. The strategy only guarantees that those sensor values come from
trusted devices, were not modified in transit, and were not modified while
stored within the chain.

In what follows, we present a deployment of the Blockchain-enabled Gateway
strategy for a private blockchain implementing an access control system. Partic-
ular attention will be paid to the advantages and limitations of the Blockchain-
enabled Gateway strategy for such a use case.

12.2.3 Private Ethereum Gateways for Access Control

To illustrate the pros and cons of the Blockchain-enabled Gateway strategy,
we discuss its application in a blockchain prototype of a building access con-
trol system—a security system where users use a smartphone to unlock door
locks. These locks, implemented using Raspberry Pi 3B IoT devices, commu-
nicate with the smartphones over an application layer Bluetooth Low Energy
(BLE) protocol using application level 128-bit AES-CCM encryption to achieve
authenticated encryption between the lock and the phone. The locks function
as BLE peripherals, advertising their presence to the smartphones, which oper-
ate as BLE centrals. Once authenticated, the smartphones transmit a 16 byte
user identifier to the lock, and the lock uses this user identifier as its input to
the access control system running on the blockchain. Once the lock receives its
response from the blockchain access control system, it sends a notify packet to
the smartphone to inform it whether the door shall remain open/closed.

The locks, as per the Blockchain-enabled Gateway strategy, are setup as
Ethereum light clients that communicate with a company’s private Ethereum
blockchain network by means of Ethereum gateways (Figure 12.2). These gate-
ways are computers that run one or more Ethereum PoW miners that bun-
dle the transactions submitted from the locks into blocks onto the private
blockchain. These gateways should ideally be sourced from the different stake
holders in the building, such as, for example, the building owner, the ten-
ants, and the security service provider; as such, a multistakeholder private
blockchain is the most trustworthy kind of private blockchain. In this proto-
type implementation, the private network, however, consists of four gateways
sourced by the authors.

To enable high transaction throughput, the Ethereum PoW mechanism was
modified to start from a trivial difficulty (blocks can be mined in less 200 mil-
liseconds by the network of four gateways) and to never increase in difficulty.
This is in contrast to the PoW of the public Ethereum blockchain, which con-
tinuously updates the PoW difficulty to create a new block every 14.7 seconds.
Note that our fast block mining times do not, in any way, present a solution
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Figure 12.2 Our Ethereum gateway prototype implements a local access control solution. In
this system, the locks and gateways are identified by Ethereum addresses (0xab...). The
access control rules are implemented through smart contracts mined onto the blockchain at
the initiation stage of the system (smart contract blocks are darker).

to blockchain scaling. Because this prototype is a private blockchain network,
we are able to make our own trade-offs between PoW difficulty and the related
risk of a network takeover by one of the gateways we trusted to join the network
and the transaction throughput of the system. In this prototype, we configured
the system for 200 milliseconds to ensure that the BLE protocol between the
lock and the smartphone was not too delayed by the blockchain transaction
processing.

The private Ethereum blockchain implements the building access control
system by means of a smart contract deployed on the blockchain. This smart
contract is mined onto the blockchain in the setup phase of the prototype,
before the locks join the network. When the locks join the network, they are
informed of the blockchain address of this smart contract so that they may
transact with it by means of Ethereum’s Web3 interface. The gateway miners
receive these transactions, process them by executing the smart contract code,
and compete to mine the results of the code onto the blockchain. A snippet of
the smart contract used in this prototype is listed in Figure 12.3.

Our smart contract, written in Solidity, inherits Ownable, a standard owner-
ship contract by OpenZeppelin1 that assigns ownership of the smart contract
and hence ownership of the building access control system to the Ethereum

1 github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/ownership/Ownable
.sol

http://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/ownership/Ownable.sol
http://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/ownership/Ownable.sol
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Figure 12.3 An edited snippet of the Solidity smart contract used to manage the building
access control. The mappings are defined to create blockchain registries of devices,
permissions, and events. The public functions enforce the access control rules.

account that deploys the contract on the blockchain. The contract defines four
mappings, whose contents are stored onto the blockchain. The first mapping,
lockRegistry, creates a blockchain registry of all the locks permitted to sub-
mit events to the access control smart contract. The registry identifies the locks
by their Ethereum address which is the last 20 bytes of a Keccak-256 hash of the
public key of the asymmetric encryption key pair used by the lock to identify
itself to the Ethereum blockchain. A lock can thus not participate within the
building access control system until an owner of the smart contract has explic-
itly, by means of the lock’s Ethereum address, added it to this registry. Through
this lockRegistry mapping we thus leverage the secure authentication pro-
vided by Ethereum to build a trustworthy register of permitted devices. The
second mapping lockPermissions creates a blockchain registry of all locks
and the users, identified by 128-bit numbers, that are allowed to unlock them.
The third and fourth mappings Successes and Failures create a blockchain
registry of the most recent time that a user either successfully or unsuccessfully
interacted with a lock. Note that the registry only stores the most recent time
as the historical times can be obtained by browsing the blockchain.

The listed contract snippet denotes one example public function—
logEvent. The blockchain connected locks submit transactions that call this
function every time they receive a user identifier from a smartphone over BLE.



262 Blockchain for Distributed Systems Security

The logEvent function checks that the device submitting the transaction is a
registered device and that the submitted user is a user with permission to access
the lock and updates the blockchain with the result of that check. In addition,
the boolean result of the function is received by the lock to inform it whether
or not to open the lock.

12.2.4 Evaluation

In this prototype implementation of a building access control system, we
leverage the four key advantages of the Blockchain-enabled Gateway strategy
as follows:

� Fault-tolerance—unlike existing building access control systems where
locks are controlled by centralized command servers, the presented system
will maintain a queryable record of the access control even after numerous
gateway failures. Note that the full availability of the system under gateway
failure depends on whether or not the locks have network access to more
than one gateway.

� Secure, trustworthy log—every time a user either succeeds or fails to open
a door this event is logged onto the immutable blockchain. Such a log of unal-
terable of access control events may be of particular interest to various kinds
of high-security facilities.

� Secure device registration—all IoT devices are registered on the blockchain
by means of their Ethereum addresses, which derive from the device’s public
key, enabling simple and secure authentication.

� Trustworthy business logic—by implementing the access control rules as
smart contracts, those rules are fixed, transparent, and continuously verified
by the computing power of the private blockchain network.

Note that the trustworthiness of the log and the access control rules as well
as the overall fault-tolerance is limited in this prototype deployment, as our
deployment features only four gateways running an easy PoW consensus mech-
anism. The more that stakeholders provide gateways to help power this private
blockchain network, the more the overall trustworthiness and fault tolerance
will improve, though it will never, as mentioned earlier, achieve the same kind
of trust and dependability provided by a public blockchain.

In addition, this prototype only guarantees that the locks that submitted the
access control request are locks that we explicitly authorized and that the log
of these requests is immutable. The accuracy of the data within those requests
is not guaranteed as the Blockchain-enabled Gateway strategy only provides
the advantages of blockchain to those transactions that IoT submits to the
blockchain network. In this use case, attackers capable of hijacking a lock may
falsify the records stored within the blockchain by preventing or delaying the
lock from sending a transaction or by modifying the user identifiers contained
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within a transaction. In this way, attackers may frame an unknowing individual
for access control violations that the individual did not perpetrate.

12.3 Blockchain-enabled Smart End Devices

The Blockchain-enabled Smart End Devices strategy is implemented by config-
uring the contributing IoT devices as full blockchain nodes that download and
validate all incoming blocks of transactions and execute calls to the smart con-
tracts stored on the blockchain (Figure 12.4). This kind of blockchain deploy-
ment can thus consist solely of IoT devices without any added gateways or back-
end cloud services. However, gateways and cloud back-ends can be added to
extend the network and increase security.

12.3.1 Advantages

Like the Blockchain-enabled Gateway strategy of Section 12.2, the Blockchain-
enabled Smart End Devices strategy can leverage blockchain technology to
obtain a secure, trustworthy log of events, enforce proper authentication by
means of secure device registration and enjoy transparent trustworthy busi-
ness logic. The Blockchain-enabled Smart End Devices strategy also provides
two concrete improvements over the Blockchain-enabled Gateway strategy:
� Fault-tolerance—by deploying a blockchain framework over more of the

devices that submit blockchain transactions, the blockchain is replicated
more often and is thus more fault tolerant. In addition, as more of the data
and behavior of the IoT device is stored and implemented on the blockchain
itself, dealing with IoT device failures becomes easier as getting an IoT device
configured and running becomes as simple as starting the blockchain client
on the device.

Figure 12.4 The Blockchain-enabled End Devices strategy implemented for a smart home.
This deployment strategy allows for IoT/user devices to be full blockchain nodes. Gateways
and back-end cloud services are optional.
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� Trusted IoT device behavior—the biggest improvement that the
Blockchain-enabled Smart End Devices strategy provides to an IoT system,
is the ability to leverage the smart contract mechanism of the blockchain
framework as a way to run a trusted code on IoT devices. Note that this
is not the same as the previously discussed trustworthy business logic.
While that blockchain-enabled security and trust improvement leverages
the entire blockchain network to verify high-level business logic, this trusted
IoT device behavior need not be high-level code nor verified by the entire
network. This trusted IoT device behavior may be the reading of a sensor
device, establishing network connections, installing software updates, and
so on. To achieve trust in such operations, the blockchain framework is
utilized as a way of verifying that the code that is executing a behavior of the
IoT device has not been modified (by checking against an exact copy of the
code stored on the blockchain). In addition, the blockchain framework can
be utilized as a way of verifying that the outcome of the behavioral code is
replicable, by forcing a small number of equivalent IoT devices to replicate
the behavior.

12.3.2 Limitations

As for the previously discussed Blockchain-enabled Gateway strategy, all secu-
rity and fault-tolerance advantages are limited within a private blockchain as
the network size is constrained. In addition, the Blockchain-enabled Smart
End Devices strategy is only suitable for IoT devices with a sizeable amount of
memory and processing power as most fully featured blockchain node clients
in existence at the time of writing are highly resource intensive. The techni-
cal execution of trusted device behavior is also hard to achieve in most current
blockchain frameworks as it requires a smart contract programming model that
is flexible enough support the low-level operations of IoT devices such as sensor
reading or patch application.

Lastly, while utilising the blockchain framework to control the behavior of
IoT devices improves our confidence in the submitted data, as it increases our
control over the creation of the data that is submitted onto the blockchain, this
approach is still not entirely trustworthy. Behavior-defining smart contracts
still rely on the correct execution of the underlying blockchain execution envi-
ronment, device operating system, and hardware. All these components of the
underlying stack may still be exploited by a resourceful attacker to successfully
tamper with the data being submitted to the blockchain.

12.3.3 Private Hyperledger Blockchain-enabled Smart Sensor Devices

To illustrate the pros and cons of the Blockchain-enabled Smart End Device
strategy, we discuss its application in a blockchain prototype of a supply chain
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temperature monitoring solution. The supply chain is a key area for blockchain-
based innovation, as blockchain, by means of its immutable, multistakeholder
database, provides an ideal platform for building systems that track products
from manufacturers to warehouses to end users. Food and pharmaceutical sup-
ply chains, in particular, are undergoing various blockchain experiments. In
these experiments, IoT devices play a critical role as they provide the data to
be added to the blockchain. However, there are various points along the supply
chain, such as for example during transport, where a blockchain-powered gate-
way such as the one detailed previously in Section 12.2.1 may not be desired due
to, for example, connectivity constraints or concerns about the validity of the
data submitted to the gateway. As such, we investigated a prototype network of
temperature-sensing IoT devices, again implemented as Raspberry Pi devices,
within a truck shipping fresh foods. This prototype applies the Blockchain-
enabled Smart End Device strategy by directly hosting the blockchain
between the sensor devices, with each device a fully-enabled Hyperledger
Fabric node.

Hyperledger Fabric [17] is an open-source blockchain framework that is
primarily used for the deployment of trusted databases between multiple
organizations. Unlike Ethereum, the Hyperledger Fabric blockchain does not
employ PoW as a consensus protocol, but instead provides support for con-
sensus protocols such as Practical Byzantine Fault Tolerance [14] that do not
require resource-intensive mining computations. While it is by design a cloud
framework, implementing the blockchain as a series of micro services hosted
in various docker containers, we chose to port it down to our light-weight
IoT devices (the resulting custom containers for Raspberry Pi are available
online2) due to it being the only widely tested and well-documented blockchain
framework that provides a flexible and capable programming model for smart
contracts.

Traditional smart contracts such as the one we used in our Ethereum-based
prototype of Section 12.2.1, are limited to a certain set of computations and
features to (i) make it possible for all full nodes of the blockchain to execute and
verify a smart contract regardless of their underlying hardware and (ii) simplify
the determination of how much the computation of the smart contract on a
public blockchain should cost, by assigning a price to each operation. The latter
also ensures that smart contracts cannot sabotage the blockchain network by
running indefinitely as those that wish to have the smart contract executed can
only commit a limited amount of financial resources to it.

Hyperledger Fabric smart contracts (known as chaincode), in contrast, are
isolated docker containers that support full-featured programming languages
such as Java and Golang. This allows developers to utilize the same libraries and
frameworks that they use in nonblockchain code as long as they can get it to run

2 Containers named hyperledger-* @https://hub.docker.com/r/sylvarantinc/
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Figure 12.5 Our Hyperledger-fabric enabled temperature sensors host a blockchain
between them, where sensor data is added to the blockchain by means of a smart contract
that specifies how the devices of Org2 should interact with the temperature sensor.

within the environment of the container. In addition, Hyperledger Fabric smart
contracts are limited only in the maximum amount of time that an invocation
of the smart contract may take. This is a blockchain-wide set constraint that in
our prototype was set to 2 minutes, which is more than enough time for our IoT
devices to read from their temperature sensors. A final advantage of the Hyper-
ledger Fabric smart contract model is that it allows blockchain administrators
to constrain the execution of certain smart contracts to only a select subset of
the nodes (referred to as organizations) within the blockchain network.

Our prototype, as illustrated in Figure 12.5, utilizes Hyperledger Fabric’s
membership service to create two organizations, Org1 and Org2, where each
organization is defined by a set of self-signed certificates that constitute the root
of trust for authenticating the IoT devices that make up the respective organiza-
tions. The organization Org1 models an authoritative organization within the
supply chain, such as, for example, a super market under taking delivery of food,
whereas Org2 models a low-ranked organization aiding with the monitoring of
the temperature within the supply chain.

The devices in each organization run an organization-specific smart con-
tract. We enforced this segregation by utilizing a Hyperledger feature called
endorsement policies that restricts the validity of smart contract transactions
to those transactions that are approved by the respective organization. This
approval is verified by the nodes running the Hyperledger Fabric framework
by inspecting the digital signatures that are used to sign smart contract
transactions.

The devices in Org2, which are Raspberry Pi devices connected to
a temperature sensor, run a smart contract (written in Golang) called
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Figure 12.6 A Hyperledger smart contract storing sensor values.

DemoContract that provides a callable function, putSensor. A snippet of
that function is listed in Figure 12.6. This putSensor smart contract function
serves as a blockchain-integrated device driver for the attached temperature
sensor. It starts by opening the Raspberry Pi GPIO pins to which our temper-
ature sensors are connected, reads from them and then writes the resulting
temperature value to the blockchain using the Hyperledger Fabric blockchain
storage function stub.putState. The Hyperledger Fabric blockchain model
is that of a key value database; in the listed example, we thus store an associa-
tion between the sender of the transaction calling the smart contract with the
value read from the sensor onto the blockchain. If that write to the blockchain
is successful, the putSensor function terminates by returning the blockchain-
written sensor value as a message to the device that initiated the smart contract
transaction.

Note that the Hyperledger Fabric blockchain framework does not, by design,
provide support for this kind of hardware-integrated smart contract functional-
ity. Hyperledger Fabric smart contracts are designed to be containers that are as
device-agnostic as possible, enabling developers to easily replicate them across
all kinds of cloud machines. To enable this new kind of hardware integrated
smart contract, we extended Hyperledger Fabric with custom smart contract
containers that have read and write access to the Raspberry Pi GPIO pins (Fig-
ure 12.7). This was achieved by mounting as volumes to the container the Linux
sysfs [18] virtual file interface to the GPIO pins. In addition, extra Golang pack-
ages are incorporated into the container to enable easy high-level interaction
with the GPIO pins. As of right now, these hardware interfacing containers
work only on Hyperledger Fabric nodes that run Hyperledger Fabric’s more
permissible development mode.

In contrast to the IoT devices of Org2, the devices of Org1 run a smart con-
tract called TopLevel that calls the putSensor function of the contract run
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Figure 12.7 Our hardware-integrated smart contract architecture allows for device drivers
inside smart contracts by pushing hardware interfaces up to the contract containers.

on by the devices of Org2 and then compares the resulting temperature sensor
value to the value it expected, as listed in Figure 12.8. A third party, such as,
for example, an auditor of the supermarket modeled by Org1 may thus audit
the food safety of the shipment by invoking the TopLevel smart contract on
the Org1 devices by means of a blockchain transaction; this transaction then
spawns a transaction from the TopLevel contract to the temperature sensor
reading smart contract running on the devices of Org2. The devices of Org1
thus do not contribute directly to the collecting of sensor data but instead
use the Hyperledger blockchain framework to enforce their authority over the
devices in Org2.

Figure 12.8 The contract of Org1 invokes the sensor reading function putSensor of the
smart contract running on the devices of Org2, and inspects the result.
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12.3.4 Evaluation

Like the access control solution of Section 12.2.1, this multi-organization
temperature-sensing prototype leverages the blockchain framework to obtain
a secure, trustworthy log of all events (in this case temperature reads), secure
device registration of the IoT devices (by utilising from Hyperledger Fabric’s
membership service), and trustworthy business logic for some of the logic of
the supply chain. In addition, this prototype leverages the unique advantages
of Blockchain-enabled Smart End Devices as follows:
� Fault-tolerance—In this supply chain prototype, the sensor data is repli-

cated across all devices of Org1 and Org2. The prototype can easily handle
the loss of multiple IoT devices as data is never lost and device behavior is
set at the blockchain level, allowing one to configure a device by simply con-
necting it to the private blockchain network.

� Trusted IoT device behavior—the biggest improvement that the
Blockchain-enabled Smart End Devices strategy provides to an IoT system
is the ability to leverage the smart contract mechanism of the blockchain
framework as a way to run trusted behavior-enforcing code on the IoT
devices. In this prototype, we ensure that we have a trusted way of reading
values from the temperature sensors by means of the DemoContract smart
contract that specifies the exact code for how the sensor value should be
read from the sensor before it is stored on the blockchain. Because an exact
copy of that code is stored on the blockchain, any attempts at modifying or
faking the container running the sensor-reading code will fail to produce
transactions that the blockchain system accepts.
Note that even in this prototype, the temperature values stored on the

blockchain are not entirely trustworthy. Obtaining the correct temperature
sensor values within the DemoContract smart contract running on the devices
of Org2 relies on an untampered Linux operating system and its sysfs interface
as well as an untampered mapping between the virtual files of sysfs and the con-
tainers running the smart contract. The temperature sensors and IoT devices
are also still susceptible to various forms of hardware-based tampering. In our
setup, we can limit the security challenges that arise from either hardware or
operating system level tampering by leveraging the core blockchain feature of
verifying computations through replication. In particular, we may want to con-
figure that all calls to the putSensor function of the DemoContract be val-
idated by all devices in Org2 (as they reside in the same truck container). In
such a setup, a new sensor value is only written to the blockchain if all devices
read the same temperature value for the sensor. While Hyperledger does pro-
vide features that enable this kind of behavior, our experiments found that in
the version of Hyperledger that we utilized to build this prototype (1.0), this
functionality was still unreliable and unfinished3.

3 goo.gl/xTUWTB
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Finally, an important limitation of the Blockchain-enabled End Devices strat-
egy is that configuring an IoT device as a fully featured blockchain node requires
lots of memory and computational resources from that IoT device. As noted
previously, this prototype ran a port of Hyperledger Fabric’s container-based
architecture on our Raspberry Pi devices. While running this container archi-
tecture on an IoT device is indeed memory and computation intensive, the lim-
itations we encountered were quite reasonable. With maximum memory per
smart contract configured to be capped at 100MB, we maxed out the CPU per-
formance of our Raspberry device at six containers, where one container is the
Hyperledger Fabric full blockchain node microservice and the other five con-
tainers are smart contracts. In our experiments, this five simultaneous smart
contracts constraint has not been limiting.

12.4 Related Work

The majority of research on blockchain has so far focused on revealing and
improving the privacy and security limitations of blockchain [19]. Related to
our efforts in this chapter to investigate blockchain as a framework for IoT
deployments is the ADEPT project by IBM that leverages blockchain as a
network of IoT devices [20]. ADEPT, however, only considers the Ethereum
blockchain framework and does not explore the application of IoT end devices
as fully capable blockchain peers, opting instead to segregate blockchain peers
based on IoT device capabilities. Publications on the project are also lacking
in concrete details on the security benefits of such a scheme. Likewise, Zhang
et al. design blockchain IoT architectures for scenarios such as authenticat-
ing carbon emission rights, securing physical systems, trading power resources
and coordinating between multi-energy systems [21]. They do not, however,
implement any of these scenarios. Blockchain is also increasingly considered
as a means of implementing IoT back-end services. Daza et al., for example,
propose blockchain as a better way to discover devices within IoT networks
[22]. In a closely related work, Samaniego and Deters explore network latency
related issues regarding the delivery of blockchain services from the IBM
Bluemix cloud platform compared to a blockchain hosted locally on Arduino
Iot devices [23].

In a work similar to our Ethereum gateway prototype of Section 12.2.1, Huh
et al. have explored employing Ethereum on a network of Raspberry Pi devices
as a means of managing the cryptography keys used by those devices [24]; they
provide examples of smart contracts but do not explore the limitations of their
scheme. In another effort similar to our exploration of blockchain-based gate-
ways in Section 12.2.1, Dorri et al. explore blockchain as a network for smart
home devices with a central miner that enables the processing of incoming and
outgoing transactions [25]. Their experimental evaluation, however, is based
on results obtained through simulation in contrast to the functional prototypes
presented in this work.
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Several start-ups are exploring multi-organizational blockchain supply chain
solutions like our supply chain temperature monitoring prototype of Sec-
tion 12.3.1. The most prominent are VeChain and Waltonchain. VeChain is
a public blockchain that aims to integrate its identifiers (VIDs) into numer-
ous IoT tags such as QR codes, NFC, and RFID [26]. This enables a sim-
pler blockchain-based tracking of supply chain products. To resolve the pub-
lic blockchain throughput challenges detailed in the introduction, VeChain
is experimenting with the use of Proof of Authority as a consensus mecha-
nism. Similarly, Waltonchain is a public blockchain aimed at tracking prod-
ucts throughout the supply chain; their key differentation is a custom RFID-
integrated circuit that is directly integrated with the blockchain [27].

12.5 Conclusion

In this chapter, we described, implemented, and compared two different con-
figuration strategies for deploying a private blockchain on a network of IoT
devices. The Blockchain-enabled Gateway strategy provides blockchain fea-
tures to IoT devices without the IoT devices themself being fully featured
blockchain clients; instead a gateway is introduced to enable the IoT devices
to interface with a blockchain. This connection between IoT devices and
a blockchain enables developers to securely register IoT devices, to store
data in a trustworthy log, and to execute high-level business logic in a way
that is transparent and network verified. The Blockchain-enabled Smart End
Devices strategy, in contrast, configures IoT devices as fully capable blockchain
nodes, providing the blockchain network improved fault tolerance and enabling
important security features such as the trustworthy collection of sensor data
directly within a smart contract. Both strategies were illustrated by means
of prototype implementations of a blockchain based access control system
and a blockchain-improved supply-chain temperature monitoring system,
respectively.

References

1 S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system.” [Online]. 2008.
Available: http://bitcoin.org/bitcoin.pdf [Accessed: September 18, 2017].

2 T. Lundqvist, A. de Blanche, and H. R. H. Andersson, “Thing-to-thing
electricity micro payments using blockchain technology,” in 2017 Global
Internet of Things Summit (GIoTS), June 2017, pp. 1–6.

3 S. Raju, S. Boddepalli, S. Gampa, Q. Yan, and J. S. Deogun, “Identity
management using blockchain for cognitive cellular networks,” in 2017 IEEE
International Conference on Communications (ICC), May 2017, pp. 1–6.

4 B. Gipp, C. Breitinger, N. Meuschke, and J. Beel, “Cryptsubmit: Introducing
securely timestamped manuscript submission and peer review feedback using

let &hbox {char '046}http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf


272 Blockchain for Distributed Systems Security

the blockchain,” in 2017 ACM/IEEE Joint Conference on Digital Libraries,
JCDL 2017, Toronto, ON, Canada, June 19–23, 2017, pp. 273–276.

5 N. Szabo, “The idea of smart contracts.” [Online]. 1997. Available: http://bit.ly/
2HVLXXW.

6 V. Buterin, “Ethereum: A next-generation smart contract and decentralized
application platform.” [Online]. 2014. Available: https://github.com/ethereum/
wiki/wiki/White-Paper [Accessed: September 18, 2017].

7 K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. E. Kosba, A. Miller,
P. Saxena, E. Shi, E. G. Sirer, D. Song, and R. Wattenhofer, “On scaling
decentralized blockchains (a position paper),” in Financial Cryptography and
Data Security—FC 2016 International Workshops, BITCOIN, VOTING, and
WAHC, Revised Selected Papers, Christ Church, Barbados, February 26, 2016,
pp. 106–125.

8 J. Bhuiyan, “Uber powered four billion rides.” [Online]. January 2018.
Available: http://bit.ly/2IlFlou.

9 Visa Incorporated, “Visa Inc. at a glance.” [Online]. 2015. Available:
https://vi.sa/2wmbO95.

10 S. Popov, “The Tangle.” [Online]. 2017. Available: https://assets.ctfassets.net/
r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/45eae33637ca92f85dd9f4a3a218e1ec/
iota1_4_3.pdf.

11 C. LeMahieu, “Nano: A feeless distributed cryptocurrency network.” [Online].
2017. Available: https://nano.org/en/whitepaper.

12 M. Jakobsson and A. Juels, “Proofs of work and bread pudding protocols,” in
Secure Information Networks. Springer, 1999, pp. 258–272.

13 P. Szilagyi, “Clique poa protocol.” [Online]. 2017. Available: https://github.com/
ethereum/EIPs/issues/225 [Accessed: March 18, 2018].

14 M. Castro and B. Liskov, “Practical Byzantine fault tolerance,” in Proceedings of
the Third Symposium on Operating Systems Design and Implementation, 1999,
pp. 173–186.

15 M. Conti, S. K. E, C. Lal, and S. Ruj, “A survey on security and privacy issues of
Bitcoin,” IEEE Communications Surveys & Tutorials, 2017. https://doi.org/
10.1109/COMST.2018.2842460.

16 Trustnodes, “Ethereum now has three times more nodes than Bitcoin.”
[Online]. May, 2017. Available: http://bit.ly/2Kf6WVJ.

17 C. Cachin, “Architecture of the Hyperledger blockchain fabric.” [Online]. 2016.
Available: https://ibm.co/2FaSlaI [Accessed: August 10, 2016].

18 P. Mochel, “The sysfs filesystem,” in Linux Symposium, 2005, pp. 313–326.
19 J. Yli-Huumo, D. Ko, S. Choi, S. Park, and K. Smolander, “Where is current

research on blockchain technology? A systematic review,” PLOS ONE, vol. 11,
no. 10, pp. 1–27, October 2016.

20 IBM, “ADEPT: An IoT Practitioner Perspective,” 2015. Available: http://static1.
squarespace.com/static/55f73743e4b051cfcc0b02cf/55f73e5ee4b09b2bff5b2eca/
55f73e72e4b09b2bff5b3267/1442266738638/IBM-ADEPT-Practictioner-
Perspective-Pre-Publication-Draft-7-Jan-2015.pdf

http://bit.ly/2HVLXXW
http://bit.ly/2HVLXXW
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
let &hbox {char '046}http://bit.ly/2IlFlou
http://bit.ly/2IlFlou
let &hbox {char '046}https://vi.sa/2wmbO95
https://vi.sa/2wmbO95
https://assets.ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/45eae33637ca92f85dd9f4a3a218e1ec/iota1_4_3.pdf
https://assets.ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/45eae33637ca92f85dd9f4a3a218e1ec/iota1_4_3.pdf
https://assets.ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/45eae33637ca92f85dd9f4a3a218e1ec/iota1_4_3.pdf
let &hbox {char '046}https://nano.org/en/whitepaper
https://nano.org/en/whitepaper
https://github.com/ethereum/EIPs/issues/225
https://github.com/ethereum/EIPs/issues/225
https://doi.org/10.1109/COMST.2018.2842460
https://doi.org/10.1109/COMST.2018.2842460
let &hbox {char '046}http://bit.ly/2Kf6WVJ
http://bit.ly/2Kf6WVJ
let &hbox {char '046}https://ibm.co/2FaSlaI
https://ibm.co/2FaSlaI
http://static1.squarespace.com/static/55f73743e4b051cfcc0b02cf/55f73e5ee4b09b2bff5b2eca/55f73e72e4b09b2bff5b3267/1442266738638/IBM-ADEPT-Practictioner-Perspective-Pre-Publication-Draft-7-Jan-2015.pdf
http://static1.squarespace.com/static/55f73743e4b051cfcc0b02cf/55f73e5ee4b09b2bff5b2eca/55f73e72e4b09b2bff5b3267/1442266738638/IBM-ADEPT-Practictioner-Perspective-Pre-Publication-Draft-7-Jan-2015.pdf
http://static1.squarespace.com/static/55f73743e4b051cfcc0b02cf/55f73e5ee4b09b2bff5b2eca/55f73e72e4b09b2bff5b3267/1442266738638/IBM-ADEPT-Practictioner-Perspective-Pre-Publication-Draft-7-Jan-2015.pdf
http://static1.squarespace.com/static/55f73743e4b051cfcc0b02cf/55f73e5ee4b09b2bff5b2eca/55f73e72e4b09b2bff5b3267/1442266738638/IBM-ADEPT-Practictioner-Perspective-Pre-Publication-Draft-7-Jan-2015.pdf


12 Private Blockchain Configurations for Improved IoT Security 273

21 N. Zhang, Y. Wang, C. Kang, J. Cheng, and D. He, “Blockchain technique in
the Energy Internet: Preliminary research framework and typical applications,”
in Proceedings of the Chinese Society for Electrical Engineering, vol. 36,
pp. 4011–4022, August 2016.

22 V. Daza, R. D. Pietro, I. Klimek, and M. Signorini, “CONNECT: CONtextual
NamE disCovery for blockchain-based services in the IoT,” in 2017 IEEE
International Conference on Communications (ICC), May 2017, pp. 1–6.

23 M. Samaniego and R. Deters, “Blockchain as a service for IoT,” in Proceedings
of IEEE iThings 2016, Dec 2016, pp. 433–436.

24 S. Huh, S. Cho, and S. Kim, “Managing IoT devices using blockchain platform,”
in 2017 19th International Conference on Advanced Communication
Technology (ICACT), Feb 2017, pp. 464–467.

25 A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram, “Blockchain for IoT
security and privacy: The case study of a smart home,” in 2017 IEEE
International Conference on Pervasive Computing and Communications
Workshops (PerCom Workshops), March 2017, pp. 618–623.

26 VeChain, “Development plan and whitepaper.” [Online]. May 2018. Available:
https://cdn.vechain.com/vechainthor_development_plan_and_whitepaper_
en_v1.0.pdf.

27 Waltonchain Team, “Waltonchain White Paper.” [Online]. February, 2018.
Available: http://bit.ly/2KJOG76.

let &hbox {char '046}https://cdn.vechain.com/vechainthor_development_plan_and_whitepaper_en_v1.0.pdf
let &hbox {char '046}https://cdn.vechain.com/vechainthor_development_plan_and_whitepaper_en_v1.0.pdf
https://cdn.vechain.com/vechainthor_development_plan_and_whitepaper_en_v1.0.pdf
https://cdn.vechain.com/vechainthor_development_plan_and_whitepaper_en_v1.0.pdf
http://bit.ly/2KJOG76




275

13

Blockchain Evaluation Platform
Peter Foytik and Sachin S. Shetty

Old Dominion University, Virginia, USA

13.1 Introduction

In this chapter, we will focus on the development of the testing platform to eval-
uate the approaches presented in prior chapters. This chapter will assume the
reader has some knowledge of programming or scripting and object-oriented
design, and will be most beneficial to readers who are familiar with open source
software. Software code will be available to the reader via an online repository
and can be downloaded and run on any system that is capable to meet the
open sourced software requirements. One example available to the reader is
a custom-built, simplistic blockchain simulation application built in C#. This
application will require a freely available Microsoft .NET framework. Another
example that will be used is a Hyperledger Fabric example. Hyperledger Fabric
[1, 2] is an open sourced blockchain application and toolset managed by the
Linux Foundation. It will require the user to run the open sourced framework
docker, which will allow prebuilt applications containers to be hosted, and a
few open sourced software/scripting languages such as GoLang and JavaScript.

The two examples offer opportunity to evaluate algorithms and protocols
proposed in previous chapters in a couple of different environments. The sim-
ple implementation in C# is a way to simulate some of the theories in an itera-
tive way. Simulating some of the protocols with blockchain is very beneficial in
that it allows researchers to evaluate algorithms or protocols without the need
to know the operational aspects of the entire system. The Hyperledger Fabric
example is a fully capable blockchain platform that can be modified to work in
a practical environment. Both examples can be scaled to evaluate the perfor-
mance of algorithms and protocols.

The source code, materials, and additional documentation needed to run
the examples can be found on GitHub at https://github.com/odu-vmasc/
Blockchain_BookChapter.
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13.1.1 Architecture

Ledgers have been used to record state changes in software and physical
systems throughout the existence of humans and documentation. Simply, put
the ledger is a key value pair where the key and the value can be any number
of representations. Every change in the state of this key value pair is associated
or represented with a hash value that is computed with a combination of the
prior hash value and the data representing the key value pair including the
change in state. The key piece of implementation that needs to be planned and
discussed is how the representation of key aspects will be implemented. These
key aspects are:

1. Distributed ledger
2. Participating nodes
3. Consensus nodes or integration to the peer nodes
4. Messaging methods between participating nodes

13.1.2 Distributed Ledger

From the perspective of software implementation, which this chapter focuses
on, ledgers exist natively in many programming languages but are referred to
by more common forms such as linked list, array, dictionary, or map. Any of
these forms of data structures can be used as a ledger though limited to the
functionality of the specific nature of those data types.

The most commonly used data structure to represent the blockchain ledger
is the linked list. Linked lists provide a dynamic structure that can grow with-
out having to specify an initial size. The linked list can be described as a chain
of nodes where each node can be a data structure. The structure of the node
(block) can be customized based on the type of data that needs to be stored in
the list. At a minimum, for it to function as a blockchain, it will need to contain
a link or a pointer that links the node to the prior node. The current node’s
hash value needs to be based on the prior node’s state and hash value. Each
node needs to be able to link to the next node in the same manner that it linked
to the prior node.

In addition to the aforementioned aspects, a developer has a great deal of
leeway in determining the information represented in the node. This should
mostly focus on the representation of states for the system the blockchain is
supporting. A great deal of research is being done to determine limits on the
amount of data that is beneficial to store in blockchains. The consensus is that
for large data systems, the blockchain will only manage the states of the system
and the data to be stored in more traditional database systems. The traditional
data and state for blockchains is typically a key and value pair. The key would
be an ID that represents the object in which a state is being observed, and the
value would be a representation of the state for that object. For more flexible
implementations, the key and the value would be represented using a string,
which would provide a more robust representation. However, there is no reason
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that other data types could be used for the key and the value such as integers or
Boolean values. Strategically choosing the data type could potentially reduce
the size of the data allowing for better performing blockchains.

The hash function that is used should be determined based on the latest stan-
dards as well as the size of the data that is to be included in the hash. The devel-
oper should be mindful of the vulnerabilities of the hash function chosen as
well as the performance of the hash function regarding the size of the data that
will be hashed. The data that should be hashed is the value of the hash from
the prior block and some aspect of the key value pair data associated with the
current block. Producing a value from the hash function will then represent a
uniquely identified value for the current state block within the blockchain. This
hash value will then not only represent a clear value that provides integrity of
the data, but also a clear value that provides integrity of the location in the
blockchain of that data. Many of the hash functions that exist openly (SHA-2,
SHA-3, BLAKE2) are very good and have been tested by the community, and
the performance of these functions is greatly documented. Implementations of
these hash functions exist as libraries in C# and within the Hyperledger Fabric
tool kit that can be utilized by the developer for ease of use.

13.1.3 Participating Nodes

Since the blockchain is decentralized in nature, the components that are to
be decentralized need to be handled as participating nodes within the system.
These nodes ideally would be decentralized on many machines. Depending on
the implementation of the blockchain a number of nodes can be defined to
do the decentralized tasks. The types of nodes required for the decentralized
blockchain system will vary based on the implementation strategies used. At
a minimum, peer nodes need to be defined that can communicate with each
other in a peer to peer network. These peer nodes would need to be able to
read and write to a local ledger to maintain and keep the state of the blockchain.
In most cases, the peers need to be able to communicate with each other, but
in some instances a manager node can be used. Clearly, adding manager nodes
makes the system more centralized and strays away from the decentralized pur-
pose and goal of blockchain systems.

Decentralized in nature, the nodes need to be modular and developed as
objects that can be scaled in numbers. This can be done using independent
computers that run the node application, from virtual machines running the
node application, containerized instances of the node application, or using pro-
grammed objects within the software code of a simulation. The last example is
a way to test blockchain protocols from a centralized environment.

13.1.4 Communication

Protocols of communication from the participating nodes can vary based
on the nature and strategy of the implementation. At a minimum, the nodes
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need to be able to communicate with each other in a one-to-one manner. All
participating nodes might have the ability to communicate with each other in
a peer-to-peer manner or at least be able to communicate with a managing
node that can relay or communicate with all of the other nodes. In many cases,
a method of broadcast is desired to ensure the most efficient message transfer
to all participating nodes. The broadcast method sends a message to all nodes
or a portion of nodes on the participating network simultaneously.

Another strategy is gossip network protocol where information propagates
throughout the entire network through neighboring peers. This strategy
utilizes properties of the spreading behavior of diseases and epidemics to
propagate information through a network of connected nodes. Knowledge
of neighboring nodes is needed for this method to work, as well as a highly
connected network. If there are large portions of the network that are only
connected through one link, this can greatly degrade the performance of the
information spread.

Implementation of the communication can be done using standard protocols
based on the design of the blockchain system. Individual machines can be the
participating nodes connected to the internet using HTTP to communicate, in
a private setting through a local area network, or even from a virtual network
on a single machine. Each one of these setups can be designed with the same
communication protocols to allow for future scaling and duplication of work
from various settings.

In a simulated environment, the communication method becomes very sim-
ple as a message can be as simple as a function call to the peer object. The
challenge in this case becomes the accurate representation of the asynchronous
nature of the real system in the simulated environment. This can be achieved
in a couple of ways. By using threading and parallel processing of the individual
participating nodes at times when there are simultaneous processes, a slight
delay that can occur in the process for each thread or forked process will offer
more variation in the system. Additionally, delays can be applied to those mes-
sage function calls that are simulating the communication of peer objects. The
delay value can be a static pause, or a looped process based on a static iterator
value. To make things even more asynchronous, it could be more beneficial to
utilize a randomly selected value for the pause or looped iterator.

13.1.5 Consensus

A core issue in any asynchronous decentralized systems is consensus of the
order of messages to the system. Good consensus methods on the decentral-
ized system ensure that there is trust in the order of messages that happen
on the system. If two messages enter the system at two different ends of the
network at nearly the same time, how does the decentralized system determine
which message occurred first? Naturally, the local participating node to each
message will perceive the nearest message as entering before the farther
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message. Ensuring that the message that reached the network first is processed
in that order is the main challenge in blockchain systems consensus algorithms.

This chapter will briefly describe three consensus algorithms that can be
implemented by the reader. The focus in this chapter regarding the consen-
sus algorithms is on how these algorithms affect the blockchain system’s abil-
ity to perform. In many cases, the biggest bottleneck of blockchain systems is
the consensus algorithm. This is because finding consensus among a large net-
work of nodes is very difficult and time consuming. Consider the speed of a
network hop, then consider it having to go through nodes to get to others until
all of the nodes or at least a majority of the nodes have received the message.
Very quickly, one can start to see that depending on the method used to find
consensus, the more decentralized the system becomes the worse the perfor-
mance might get. When it comes to performance, there tends to be a trade-off
in blockchain systems, where more performance comes with more centraliza-
tion. The challenge is to strive for good performance and good decentralization
that is appropriate for the use case the blockchain is being designed or imple-
mented for.

13.2 Hyperledger Fabric

Hyperledger Fabric is an open sourced toolkit that is managed and maintained
by the Hyperledger product of the Linux Foundation [1]. It allows developers to
build a permissioned blockchain system. Permissioned blockchain, as it is with
Hyperledger Fabric, distributes a ledger amongst participating nodes that are
granted permission using cryptographic certifications assigned either before-
hand or through a certificate authority. By doing this, the ledger is not publicly
distributed in large numbers but privately distributed to a much smaller num-
ber of nodes; it is designed that only those nodes have access to the information
in and of the ledger.

Since nodes require access, Hyperledger Fabric is considered a permissioned
blockchain. This type of system has pros and cons. The benefit of permissioned
systems is that the content and system remains inaccessible to the public. Per-
mission and access control requires a protocol for distributing and enforcing
access such as certificate authority nodes. The cost of having the data pri-
vate is that the immutable properties are limited to a subnetwork of limited
machines. The public networks, though open to all connected devices, offer a
bigger opportunity to distribute the blockchain ensuring a larger network and
a much smaller probability that a large portion of the network would be con-
trolled in order gain majority.

13.2.1 Node Types

◦ Client—a node that is given permission or allowed to communicate with the
chaincode installed on peer nodes.
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◦ Peer—a node that participates on the network as a validating node, host to a
local copy of the ledger, and host of the chaincode.

◦ Orderer—a node that provides organization of the participating peer nodes;
since Hyperledger Fabric v1 the orderer node determines the consensus
method used and can handle much of the message broadcasts to all partici-
pating nodes.

◦ Certificate Authority—a node that provides cryptographic files with permis-
sions to communicate and operate with other Hyperledger Fabric nodes.

◦ Kafka and Zookeeper—special nodes that allow for the operation of Kafka
consensus with Hyperledger Fabric.

13.2.2 Docker

Docker is a framework to build containerized images of aspects of a computer
system to provide a means to rapidly start, scale, and run varying types of sys-
tems and applications on any environment. The idea is built on the premise that
no matter what your system setup is (OS, parameters, software), one could host
the docker platform that allows the user to launch docker containers. Once the
docker container is launched, the container can interact with other contain-
ers as well as the physical machine the developer is on through the network
interfaces that the docker platform sets up. The developer can also port for-
ward internet traffic to that machine to specific docker containers to interface
a container with the network.

A docker container can run on any machine that is hosting the docker plat-
form, regardless of the operating system. The docker containers represent and
function as a complete system that is running an application or service. The
container is not a virtualized machine and only utilizes enough resources to
perform the tasks required for the application or service. By doing this, a more
efficient deployment of the applications and services is provided. This type of
system also allows for an easy way to scale up systems where instead of having
to create new machines and adding them to the network, one could just start
up more docker containers of a type.

Starting docker containers firstly requires the development machine to have
the docker platform installed. The developer then can install toolsets that help
manage the docker containers, such as docker compose. The docker platform
and the docker-compose toolset can both be installed on Windows, Linux, and
Apple environments. For the most part, starting, stopping, and general man-
agement of the docker containers is done from the command line interface or
terminal of the developer machine. Containers are represented as image files
that are stored locally on the machine that is hosting the docker platform. These
image files can be generated by the developers by building or modifying exist-
ing base images, or by creating completely new images from their own devel-
opment environment. Docker provides a hub service where they host publicly
many types of docker containers that developers can use or build from.
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13.2.3 Hyperledger Fabric Example Exercise

In this section, we will demonstrate the operations required to conduct devel-
opment on Hyperledger Fabric. For more details on the operations, the reader
can refer to the Hyperledger Fabric documentation site [2]. Using docker com-
pose, the Hyperledger Fabric network can be started from a single command
using a docker-compose *.yaml file. The yaml file contains the information
needed to define which images to start, what information to copy to the images
on startup, what ports to communicate with the images on, what scripts or
applications to start up on image boot, and what environment variables should
be established and set. Assuming the docker and docker-compose environment
has been set up and tested on the development machine, the user should be
able to follow the instructions in this section. The graphics and examples will
be shown using an Ubuntu Linux terminal for reference.

Using a terminal/command line interface, navigate to the directory with the
scenario example files. This will be referred to as the directory bookchapter.
Inside bookchapter you will notice a few other directories and several files. All
filetypes of *.yaml are configure files that are used by docker compose to either
start up or assist in starting up several docker containers. The directory con-
tains yaml files for various Hyperledger Fabric setups. The directory e2e_cli
contains files and directories needed for the fabric client, the participating node
that will allow us to interact with the Hyperledger Fabric system. The directory
Kafka contains the files and directories needed to start up a Hyperledger Fab-
ric system that uses the Kafka consensus algorithm. The directory titled fabric-
samples contains several samples provided by the Hyperledger Fabric commu-
nity. One of the directories inside the directory fabric-samples is the directory
titled basic-network, which contains the necessary files to start up Hyperledger
Fabric’s basic test network. The directory titled scripts contains bash script files
that will be loaded into the fabric client docker container. The developer can
modify these script files before starting up the fabric client using the text editor
of their choice to provide an easier development platform.

13.2.4 Running the First Network

The basic network is built to run on a computer that is capable of executing
bash script files. This chapter describes the execution of the first network in a
Linux environment. Once the developer has installed the docker environment
and the docker compose tool, and has run a test (for example, the docker whale
hello world test), the developer will be ready to build a basic Hyperledger Fab-
ric system. The most basic example is the Hyperledger Fabric’s first network.
Located in the directory basic-network there, there are a few script files (file type
*.sh), a few config files (file types *.yaml or *.yml), and two directories—config
and crypto-config—containing the needed cryptographic security files and ini-
tial states for the blockchain setup.
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Figure 13.1 Screenshot of artifact generation script output.

To start up the first network, the developer needs to navigate to the directory
basic-network. Once inside the directory, the developer will need to run the
script file generate.sh. This file will generate the blockchain initial state files
such as the genesis block. After the script has run successfully, the user will see
an output similar to Figure 13.1.

The generate.sh script uses precompiled applications such as configtxgen and
cryptogen. The application configtxgen generates initial blocks for the Hyper-
ledger Fabric and cryptogen generates the cryptographic cert files for the dif-
ferent peers and participating nodes of the Hyperledger Fabric system.

Once these files have been generated, the developer can now start the basic
network by running the script file start.sh. Using a Linux environment from the
terminal, simply run:

./start.sh

This script file starts up the Hyperledger Fabric basic network, as defined in
the config file docker-compose.yml. It then establishes a blockchain channel on
a single peer. If the script file has run correctly, the developer should see results
like Figure 13.2.

The start.sh script uses docker compose and the config file docker-
compose.yml to start up the basic network. The docker-compose toolset reads
the config file to determine what container images need to start, what data will
be added to the image, how the image will communicate with the network,
and what commands the container should run on startup. The docker-compose
toolset, when used, will then check the local container repository stored on the
machine and check to see whether the container image exists locally; if not, it
will download it from either a specified location or by default will reach out
to the public docker hub. If necessary, the toolset will download the container
image, then proceed to start it up based on the information specified in the .yml
config file. The main command used to start up the network that start.sh uses is:

docker-compose –f docker-compose.yml up

The docker-compose command uses the –f flag, indicating that a file
name will be specified for the config file. In this case, the config file used is
docker-compose.yml. Finally, the command “up” is used, indicating that the
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Figure 13.2 Screenshot of console outputs from the start script for the basic-network
example.

network should be started up. This command uses the docker compose tool to
read in a config file and start up the services or containers that are described
in the yml file using the settings and attributes defined in the config file.

Looking at the docker-compose.yml file in a text editor, the developer will see
the details shown in Figure 13.3. The config yml and yaml files split up sections
based on the service or container. The snapshot of Figure 13.3 shows the service

Figure 13.3 Example view of a docker-compose yml configuration file.
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of the Hyperledger Fabric certificate authority (CA). In this config file, the label
associated with this container is ca.example.com. After the label, the image is
defined for the container to use; in this file, the image is hyperledger/fabric-
ca:x86_64-1.0.0. The characters after the colon indicate the tag or version to
use. If there is not a colon and version, the docker compose uses the latest tag
or version. This can be problematic as some containers do not have the lat-
est version specified and this can result in an error. For simplistic purposes,
the config files included with this book all have the x86_64-1.0.0 tag or version
applied. More information on the other sections of detail can be found in the
online docker documentation.

Looking at the docker-compose.yml file, the developer will notice that there
are several services. Each of these services should start up as its own docker
container. To see the containers that have started and are running, use the
docker "ps" command to view the list of running containers. This can be done
from a new terminal window if the prior terminal is displaying logs from the
start script. To view the running containers, use the command:

docker ps

Running this command will produce a result like Figure 13.4
This report provides useful information of the ID of the containers, the image

used for that container, the name, and the status, to list a few. At this point, the
system is running and the developer can build applications that either interact
with that system, or execute commands on the containers that are currently
running. At any point, a developer can view any console output or logging done
by the different containers by using the docker command:

docker logs <id or name>

For example:

docker logs orderer.example.com

The above example will provide an output of all logged outputs that the peer
has produced from the start to the current time, and is shown in Figure 13.5.

In this example, the orderer logs are displayed where timestamps are pro-
vided with debug outputs associated with the actions of the orderer at that time.

Figure 13.4 Example terminal results for the docker ps command of the basic network.
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Figure 13.5 Terminal view of the output logs produced by the orderer node.

For situations where the developer wants to display a real-time feed of the logs,
the developer can include the —follow command; for example:

docker logs –follow orderer.example.com

This command will occupy your terminal indefinitely until the docker con-
tainer is stopped. If the developer intends to do this, make sure that it is done
in a spare opened terminal dedicated to the real-time log feed of that docker
container.

Congratulations, at this point a basic Hyperledger Fabric network has been
started up and observed. To take the network down, the developer can use the
stop script file. The stop file can be executed in a Linux terminal using the fol-
lowing command:

./stop.sh
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The main command that is used is the following:

docker-compose –f docker-compose.yml stop

This command will stop the containers but save their current settings in the
docker environment for later use. To stop and kill the containers in order to use
the name or other unique settings with other containers the developer could use
the teardown.sh by executing the following command in a Linux terminal:

./teardown.sh

The main command that is used is the following:

docker-compose –f docker-compose.yml down

This command essentially does the opposite of the up command; the up com-
mand initializes and starts up the containers, the down stops the containers
and then removes their content from the docker environment. In general, the
docker environment will keep a cache of previously used container images in
its local library to speed up the startup process in case the developer decides to
use those images later.

13.2.5 Running the Kafka Network

In the prior section, the basic network was started. The basic network used a
simple solo consensus mechanism where all transactions in the system are ver-
ified with one of the peers only. This type of system is great for starting up very
simplistic prototype networks. It is beneficial because the basic communica-
tion structure between a single peer, orderer, and client can be tested. Once
this is confirmed, the user can run a more complex system where a more dis-
tributed decentralized consensus is required. In these types of systems, more
peer nodes are required to run certain consensus algorithms. In the case of
the next example, the Kafka consensus will require a minimum of one orderer
node, a peer node per channel or organization, four Kafka nodes, and three
zookeeper nodes. In addition, a client node will be started to interact with the
Kafka network.

To start this network, navigate to the directory titled “Kafka”. In this direc-
tory, there are a few config yaml files, a directory with generated system files
such as the genesis block and channel information, and a directory with the
cryptographic credentials for each node to use. In the basic-network example, a
script was used to start up the network; in this example, we will use the docker-
compose command to start up the orderer-Kafka.yaml network. The command
to do this is:

docker-compose –f orderer-Kafka.yaml up
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Figure 13.6 Terminal output for the Kafka example.

After running this, the developer should see outputs from each of the peer
nodes, the Kafka nodes, the zookeeper nodes, and the orderer. These log out-
puts let you, the developer, know each container is up and running. If all of
the containers start up but an error is presented, this is not catastrophic and
the system can still perform as expected. Figure 13.6 shows an image of the
orderer-Kafka start up and a minor http error:

To ensure that everything is running correctly, a docker ps command is given.
The developer should see something like Figure 13.7, where there is a client
node, four peer nodes (two for each organization), an orderer, four Kafka nodes,
and three zookeeper nodes.

docker ps

In this example, the client node will communicate with a peer node that will
communicate with the orderer node, and the orderer node will trust the Kafka
nodes to verify the order of the message based on a consensus amongst the
nodes utilizing the zookeepers. To execute commands with the client node, the

Figure 13.7 Terminal results for the docker ps command while running the Kafka system.
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developer could ssh into that container using the exec command with the –it
flag and the containers name. For example, to ssh into the client we would use
the command:

docker exec –it fabric-cli bash

This will bring up a terminal of the fabric-cli container with the user as root.
The developer can now execute commands on the client node. Displaying the
contents of the default directory of the container (opt/gopath/src/github.com/
hyperledger/fabric/peer), the developer will see three directories, with the one
of most importance to the developer being the scripts directory. The scripts
directory is a copy from the development machine. Located in the bookchapter
directory, as described at the beginning of this section under project files, the
directory scripts is the folder that is copied to the client node. If the developer
wishes to make changes to the script files in this directory, it is best to do so
before starting up the docker network as the files are copied at the startup of
the containers. The scripts folder contains script files (.sh) that can be used to
handle large and tedious commands to interact with the blockchain network.
The script to run is the initialize_all.sh file by running the command from the
default folder:

bash./scripts/initialize_all.sh

Executing this command will do several things that will take a minute or so; it
is important to wait until the script prints all good and shows a large END sign
like in Figure 13.8.

Once the script has finished running, the developer can scroll up to see every-
thing that has run. The script has initialized a channel to operate the business-
channel, established peer roles for the multiple organizations, then installed
the example chaincode on two of the peers, one for each organization. Once
the chaincode is started, a new docker container is started up on the machine
that is hosting the docker containers. A chaincode container will start for each
peer node to use. After the chaincode is installed, it is instantiated with an ini-
tial transaction. To ensure that the chaincode was installed for each peer, check
the docker ps command one more time. The developer should see something
similar to Figure 13.9.

The images with the name that starts dev- are the chaincode. Just as was done
with other containers, the developer can always check the logs of the chaincode
containers to receive any logs established in the chaincode source code.

To take down the Hyperledger Fabric Kafka network, first exit the fabric
client by simply using the exit command:

exit
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Figure 13.8 Terminal output from the initialize_all script that runs and tests the Kafka
blockchain.

Figure 13.9 Terminal output from the docker ps command; notice the chaincode containers
that have been started.
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Once back in the development machine, use the docker-compose tool to
bring down the network with the command:

docker-compose –f orderer-Kafka.yaml down

This will stop all the containers and clear out the necessary content to allow
the system to be restarted with a different network setup. This process will take
a few seconds to a minute and will produce an output like Figure 13.10 when it
is finished.

The developer can confirm that the containers have been taken down by run-
ning a docker ps command to ensure there aren’t any containers running from
the given examples.

Figure 13.10 Terminal output after stopping the network.
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13.3 Measures of Performance

When it comes to blockchain performance, there are several quantitative mea-
sures that are important. The performance measures can be improved but often
come at a cost to security from increasing the centralization of the blockchain
system. It is recognized that centralized systems have a better ability to function
at a higher performance. This is mostly because consensus is not needed, leav-
ing the performance metrics to how quickly the single machine can receive the
message and process the request. The decentralized blockchain systems require
a latency-dependent message and a process of consensus among the verifying
nodes. When it comes to the performance of blockchain systems, it is very com-
mon to refer to the best performance metric as the measure of transactions per
second (TPS).

Transactions per second can be defined in a couple of ways. As a basic
measure, transactions per second is the rate at which the system can process
a transaction. This can be measured in several ways—the time it takes one
of the verifying nodes to completely write a transaction to the local ledger,
the time it takes a majority of nodes to completely write the transaction to
their individual ledgers, or the total number of transactions per time segment
(often utilizing some method to batch), or the time it takes to process multiple
transactions concurrently. The first described transaction can be referred to
as the single transaction per second measure, and the second type of measure
is total system transactions. In this case, the system might not have the fastest
single transaction per second measure but can process many transactions a
little slower, resulting in a larger number of transactions per time segment.
In most real-world scenarios, the developers are mostly concerned with the
maximum number of transactions the system can process within a second and
tend to not be as concerned with the metric of a single transaction. However,
the single transaction metric can be an important metric when comparing
system performance from the developer’s perspective, especially when there
are opportunities to improve systems by adding methods of batching or parallel
processing. The single transaction can offer a common ground measurement
that allows for an apple to apples comparison.

Figure 13.11 shows the process of measuring a single TPS for a blockchain
system. The simplest way to measure TPS is to record the start time a
transaction was sent, then immediately start querying the blockchain system
when the transaction that was sent finally shows up in the query record at
the finish time. Take the difference of the finish time and the start time. This
is the time to process a single transaction. In decentralized systems, there is
often noise that can cause delays in the transaction such as networking issues
or processing load on the verifying nodes, so it is a better idea to repeat this
for a number of transactions. The number of transactions should depend
on the variance that is observed from initial tests; the more variance the
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Figure 13.11 Illustration of the process to measure a single transaction per second.

developer sees in the measures of transactions per second, the more measures
or samples that should be recorded in order to produce a good representation
of the system. The transactions per second can then be described with simple
descriptive statistics such as maximum, minimum, mean, mode, and standard
deviation.

Figure 13.12 shows the process of measuring the total system TPS for a
blockchain system. This becomes a little more challenging because transactions
would likely be coming from many sources all at the same time. To measure
total system TPS, the developer will often need to create a recording mech-
anism on one or many of the validating nodes. The measuring tool can now
internally measure the time at which a transaction is reported on the system,
and the time at which the peer node is authorized or recognizes that consen-
sus is found to write the transaction to the ledger. There is a lot of detail that
is not recorded in this method as the network time of when the transaction is
initiated is not recorded. This method also provides the total system time as
perceived from one of the verifying nodes. If this method is used, it is proba-
bly best to use the same method on multiple verifying nodes, then compare the
results of many transactions. This will provide a sample that best represents the
total system TPS and descriptive statistics can then be used to show the per-
formance such as maximum, minimum, mean, median, mode, and standard
deviation.
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Figure 13.12 Illustration of measuring total system transactions per second.

13.3.1 Performance Metrics With the Proof-of-Stake Simulation

In this section, we provide the performance metrics for a proof-of-stake proto-
col [3]. Performance metrics are set up in the described simulation and include:

– Average stake claimed per validator.
– Average and total times each validator was the leader.
– Total number of times a leader was selected as validator but did not have the

highest stake amount.
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– Average, max./min. iterations to find a leader.
– Average, max./min. time in milliseconds to make progress and extend the

blockchain with a new block.

These performance metrics were recorded for various number of validator
nodes and various number of transactions for 30 different tests to allow for a
good representation of the results since the simulation uses stochastic variables
for selection of stake and delay. Initially, best-case scenarios are tested without
delay to get a ground truth understanding of how the proof of stake application
is working. The number of validators has a very large effect on the performance
of this algorithm mostly because of the round robin nature of all the valida-
tors when selecting a leader. Figure 13.13 illustrates the performance of a PoS-
enabled blockchain given an ideal scenario of negligible network delay and stake
allocation delay. In this case, the latency of the consensus process is majorly
dependent on the leader selection procedure. This latency variation over 30
experiments gives us an estimated ideal time of extending the blockchain with
a new block. In other words, the duration of an ideal epoch is going be in the
range of 0.4–0.8 milliseconds when there are 10 validators, and 0.1 millisec-
onds when five validators are present. As the number of validators increase, it
is obvious that the leader election process takes more time to definitively find
a leader, which is why average latency is increased.
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Figure 13.13 Example output of performance in simulated proof-of-stake blockchain system.
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Figure 13.14 Example output of performance in simulated proof-of-stake blockchain system
with communication delay added.

In Figure 13.14, a similar experiment is conducted but with the introduction
of random communication delay. The delay component is sampled from a nor-
mal distribution in the range of 1–5 milliseconds. The 30 experimental rounds
show that even with the presence of network delay, our PoS consensus eventu-
ally extends the blockchain and hence satisfies safety and liveness properties.

Experiments were and can be run to see whether the majority of stakeholders
are always taking the opportunity to become a leader, or the minority group of
validators have a chance to include their block in the blockchain. For this, tests
were simulated with the prototype for 100 blocks and it was checked how many
times a leader is selected in an epoch that does not have the highest stake in the
system. The variation depicted in Figure 13.15 shows that a validator from the
minority group of stakeholders is selected more than 50% of the time on aver-
age, which means that the highest stake holding validator does not get elected
as leader all the time. It is interesting to notice that as the number of valida-
tors increase, the selected leader is most likely to fall in the minority category
because the stake values will be closely distributed and hence the election time-
outs will also be similarly distributed. Thus, it is preferred to have more valida-
tors in the system to make it fairer in terms of the leader selection process.

Optimization goals—Current implementation considers that stake allocation
and verification occur at the beginning of every epoch, which can be a major
bottleneck in the protocol. Since stake allocation requires adjustment of the
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Figure 13.15 Example output reporting the average number of times the highest staked
holder did not get elected as validation leader in the proof-of-stake process.

actual resource utilization dynamically, it could result in extra delay before any
validator can verify the staked resource. In order to bypass this issue, we can
enforce the staking of resources by validators for a fixed amount of time that is
more than a typical epoch duration. A smart contract can be used for this pur-
pose to prohibit the release of stakes before the agreed staking time, which can
be a regulatory condition for becoming a validator in the distributed computing
system.

13.3.2 Performance Measures With the Hyperledger Fabric Example

The Hyperledger Fabric blockchain system has the ability to plug in various
consensus methods. Throughout the development of Hyperledger Fabric there
have been several versions and consensus methods that have been tried and
provided. Each consensus algorithm can provide a means for the decentralized
peer-to-peer system to agree on the order and validity of asynchronous transac-
tions. Each algorithm does it with a different strategy. The provided consensus
methods within Hyperledger Fabric that have been provided are solo consen-
sus, practical Byzantine fault tolerant consensus, and Kafka consensus.

The basic consensus method, which is more centralized, is referred to as
solo consensus shown in Figure 13.16 and is a good method to test systems.
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Figure 13.16 Illustration of a basic configuration of Hyperledger Fabric.

It is the method where a single node controls consensus for the transactions
in the system. This is not recommended for a final production system as it is
essentially a centralized blockchain system. In this case, a transaction is sent
to an assigned peer, and the peer verifies the order of the transaction and
writes the transaction to its ledger; if there are other nodes on the network,
it broadcasts the transaction to the other nodes requesting that their ledgers
also be updated. This system is not the best as there is a single point of failure
to compromise the order of the transactions.

Practical Byzantine Fault Tolerant (PBFT) algorithm is based on the algo-
rithm specified in [4]. This algorithm focuses on a strategy of many broadcasted
messages. This consensus relies heavily on networked communication between
all participating peer nodes. Figure 13.17 shows the process of the consensus,
where a client starts with the message requesting an update to the blockchain.
It is important to remember the scale of the situation; in an actual scenario,
there are likely many clients sending requests to multiple peer nodes. The peer
nodes need to utilize the PBFT algorithm to agree on the order of the messages
received.

As a peer receives the message, it promptly broadcasts the message to all
participating nodes. Each node receives the messages for a short period of time,
and then responds to all nodes with a broadcast declaring what it believes is
the order of the messages received to all participating nodes. Each node then
observes the perspective of every other node’s order of transactions. Each node
then checks all the responses and if a consensus among all participating nodes
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Figure 13.17 Illustration of a practical Byzantine fault tolerant consensus process.

is found, the peer nodes will write the request to the blockchain, and finally a
response is sent to the client.

Comparisons for TPS were done for PBFT with Hyperledger Fabric 0.6, and
Kafka with Hyperledger Fabric 1.0. The measure of TPS performed is the single
transaction TPS. A client was run using a Python script that sends a transac-
tion to the peer network, starts a timer, then repeatedly queries the blockchain
until the expected result is produced; finally, the transaction timer is stopped
and recorded. This occurs 1000 times to observe any fluctuations in the data.
Example plots of the data produced by these tests are shown in Figure 13.18 for
the PBFT results and in Figure 13.19 for the Kafka results.

The figures show how the TPS results can fluctuate and offer a quick glance
at what amount of time it takes to process the single transaction. These results
were generated with a simple network consisting of four peer nodes and one
client, all on a local machine with virtual network using docker containers. The
data can further be processed to populate a comparison table with descriptive
statistics. Table 13.1 provides the results of descriptive statistics for both con-
sensus algorithms.
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Figure 13.18 Performance in transactions per second to process a single transaction with
PBFT consensus (Hyperledger Fabric 0.6).

The results can vary based on different scenarios, but in this simple test,
PBFT was able to perform slightly better than Kafka. On average, the Kafka
test took almost 1 second more to do a single transaction. The single transac-
tion is a good benchmark to get an understanding but systems should also be
observed in the total system TPS. Similar tests should be done with system TPS
to give a representation of the system rather than just a single.
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Figure 13.19 Performance in transactions per second to process a single transaction with
Kafka consensus (Hyperledger Fabric 1.1).
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Table 13.1 Sample results of performance metrics of single transaction per second for the
PBFT and KAFKA consensus.

Consensus PBFT (Hyperledger Fabric 0.6) Kafka (Hyperledger Fabric 1.0)

Average (TPS) 1.59 2.37
Max. (TPS) 3.02 3.48
Min. (TPS) 1.34 2.09
Mode (TPS) 1.52 2.2

13.4 Simple Blockchain Simulation

A way to test different blockchain protocols is within a modeling and simulation
environment. The benefit of using modeling and simulation is that the entire
environment can be controlled. This can be important when specific compo-
nents need to be tested. In actual implementations within a physical system,
a lot of unknown variance can occur in the results from the additional com-
ponents involved in the decentralized system. These additional variances are
important to note and be aware of but can distort the analysis of components
such as the consensus method. A simulation environment was developed to be
able to test consensus methods and is described in this chapter. Information on
how the simulation was developed, how other simulations can be developed for
blockchain systems, and how to use the simulation described in this chapter is
provided.

The implementation of the blockchain system is built within a custom C#
application and simulation. The implementation uses a simple list data struc-
ture that represents the distributed ledger as shown in Figure 13.20. By imple-
menting the application within a simulated environment first, a full spectrum
of tests can be performed on the various algorithms. This allows for testing
extreme scenarios or provides a better control of the environment. With this
capability, a good understanding of the best case and worst case can be gained,
and lessons can be learned from these exercises. This also offers a unique
opportunity to verify that the algorithm is working as expected and provides
a good way to document its effectiveness before a live or production version is
implemented.

The simulation is developed as a test application where several validator
nodes, a simulation controller, and associated blockchain infrastructure are
spun up when started as shown in Figure 13.21. The blockchain architecture
is a simple data structure based on a linked list where each block on the list
is an object consisting of a hash value, key value, and message. The hash and
message are represented by a byte array and the key value is represented as an
integer. Adding a new block utilizes the hash value of the prior block and the
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message of the new block to compute the new hash value. The hash algorithm
used is SHA 256 from the C# system cryptography library. Different hash algo-
rithms can be used instead if it is desired to test other hashing algorithms.

The original consensus algorithm that is tested with the simulated environ-
ment is a proof-of-stake algorithm. Each validator object in the simulation has
a copy of the ledger that it hosts and uses to compare to the latest state of other
validators and to append future data to when consensus has been derived. The
validator object can choose a desired stake based on a random distribution or a
set value for testing. The desired stake value is used as the mean value in a nor-
mal distribution that is used to select its current stake. Each validator’s stake
value is designed as a value between 0 and 100, which would be the amount
of resources the validator is putting on hold for the proof-of-stake system. A
delay is introduced in the simulation to the process where the validator selects
its stake, representing the time it would take to occupy the resources. A delay
can also be introduced in the process where validator nodes communicate with
each other to represent some network delay.

The simulation controller runs the simulation, directing the flow of commu-
nication, and keeps track of statistical measures for analysis. The algorithm
described above is implemented in the simulation controller and the valida-
tor object. The user tells the simulation controller how many validators are to
be used and the number of transactions to be processed. With this information,
the controller initializes everything and creates the gen block on the ledger that
all validators receive.

Once the validators have their ledger, they are the sole controller of what can
be written to their ledger. The controller then directs all validator objects to
select their stake for the upcoming transaction. The controller compiles all val-
idator nodes’ claimed stake along with a weighted list based on each validator’s
stake and shares that information with the all nodes on the network. Next, the
leader selection process is started. At this point, a timer is started based on a
set loop iteration and each validator will have the ability to request a leader
a set number of times before the leader selection process is started over. That
selected number of times is based on their chosen stake. Of course, if consensus
is met in this process with all validator nodes as to who the leader should be, the
simulation controller exits the loop, proceeds to allowing the chosen leader to
validate, and broadcast to all validators to submit the transaction to their local
ledgers. When the validators receive this broadcast message, they commence
to writing the transaction to their blockchain.

The leader selection process is initiated by each validator in the system in a
round robin fashion where each validator broadcasts its recommended leader
based on a random selection from the weighted list of validator IDs by cur-
rent stake allocation. Each validator receives the request, then checks to ensure
that the sender’s ID exists in the system, and the claimed leader stake is what
the sender reported. If any of these are incorrect, the validator will return false
indicating it does not agree with the recommended leader. If the preliminary



13 Blockchain Evaluation Platform 303

data is good, the validator processing the recommendation will select its rec-
ommended leader from the same weighted list of validator IDs. If its selected
leader ID equals the recommended leader ID from the broadcast message, it
will respond with a true value. If a validator can obtain a true value from more
than half of the network, it will be granted the leadership role. Once a validator
is selected as the leader, it is granted permission to broadcast the validated mes-
sage to all validators indicating they can submit the current transaction block
to their ledger.

Performance metrics are set up in the described simulation but the quan-
tification and measurement of performance is discussed in more detail in the
blockchain performance section.

◦ Average stake claimed per validator.
◦ Average and total times each validator was the leader.
◦ Total number of times a leader was selected as validator but did not have the

highest stake amount.
◦ Average, max./min. iterations to find a leader.
◦ Average, max./min. time in milliseconds to make progress and extend the

blockchain with a new block.

Simulation of a decentralized system has its challenges. The decentralized
nature can be difficult because of the asynchronous properties, the potential
resources or scalability, and the parallel processing of the distributed system.
This can be accomplished in one of two ways. The simulation can be distributed
in a parallel processing type of simulated environment. This is quite possi-
ble, where each object representing a peer runs as an individual thread or as
a node on a multicore and multiprocessor hardware system. This creates a sys-
tem closest to the real system where each peer can process simultaneously. If
the resources are not available, then the modeler can always use round robin
types of techniques. The round robin techniques.

13.5 Blockchain Simulation Introduction

Described in the prior section was an example of how a blockchain system can
be implemented using the open source toolset Hyperledger Fabric, and through
a simulated environment. The section focuses more on the idea of integrating
a blockchain system that is real and not simulated (often this is referred to as
live), with a simulation of an environment or system. The reason for doing this
would be to see the effects that a blockchain would have on an existing sys-
tem. Tests like this can be built to show how the performance of the blockchain
would make a difference to the simulation. It also provides a means to demon-
strate the effectiveness of a blockchain system. Before a blockchain system is
implemented, it might be best to test the proposed system in a simulation of
the environment or process that it will be working with. This is also a benefit



304 Blockchain for Distributed Systems Security

to very large or costly systems as it allows for exploration of the benefits before
a costly implementation.

13.5.1 Methodology

Of the different paradigms of modeling and simulation, the paradigms that have
entity representation tend to be better suited for use with blockchain technolo-
gies. In addition to entity-based models and simulations, the more dynamic
types of simulation also make more sense where there is a heavy influence of
time on the system. These types of simulation systems tend to be agent-based
models and simulations and discrete event models and simulation. Agent-based
models and simulations (ABMS) are representations or an abstraction of real-
ity in which there are entities that make decisions for themselves based on the
environment variables around them. Discrete event simulations (DES) are rep-
resentations or an abstraction of realty in which the action or timing of the
simulation is based on significant events. The difference between these two
paradigms comes down to the representation or the advancement of time and
the amount of intelligence required for an entity. It would be possible to apply
the effects of a blockchain system as a measure of rate to other M&S paradigms
such as system dynamics or other types of models without simulation. This
could be achieved by producing quantitative values for performance and secu-
rity metrics that can be used as parameters, weights, or rates in static models
or flow-based dynamic models.

13.5.2 Simulation Integration With Live Blockchain

The prior sections described blockchain examples that were simulated
and real/functioning. The simulation integration can be set up to utilize
either one. Simulation can integrate with an actual real time blockchain,
Figure 13.22 shows where a simulation might integrate with a Hyperledger Fab-
ric system. The major challenges or restrictions preventing the simulation and
the blockchain to be integrated are the challenge of timing between the two and
the ability to integrate communication between the two. Many simulations are
not built by default with communication protocols outside of the simulation
but do offer advanced programming interfaces (API) and ways to program this
capability.

The timing issue might be the hardest challenge, especially if the simulation is
to interact with a real-time, actual blockchain system and not a simulated one.
In this case, the simulation might be performing faster than real time. In the
DES paradigm, this can be throttled to advance in time based on events from
the blockchain system when interacting with the blockchain. In the case of a
time stepped simulation that runs faster than real time, it can also be throttled
back to only advance until after its interaction with the blockchain. The result
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Figure 13.22 Illustration of a Hyperledger Fabric system connected and interacting with a
simulated environment.

will be an overall slower simulation but should provide a successful integration
of the real blockchain system with the simulation.

The actual integration might be an easier problem to solve, but this heavily
depends on the ability of the simulator to communicate with systems outside of

Figure 13.23 Image of the type of entities that are in the simulated world.
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the simulation. If the simulator provides the ability program in these points of
communication, the developers can simply program the messaging functions
that are needed to interact with the blockchain using that API and any net-
working libraries that might be available to the language the API supports. The
simulation can then be run, utilize inputs based on queries to the blockchain,
and provide values and calls to the blockchain when state changes need to be
recorded to the blockchain.

13.5.3 Simulation Integration With Simulated Blockchain

Simulation integration with simulated blockchain systems is a more natural
combination as the timing and the communication can be tailored to be the
same between both. If the modeler has access to the source code of the simula-
tion, it is best to implement a blockchain representation within the simulation
source code itself. Otherwise, the modeler will have to build a communication
link between the simulation and the blockchain simulation. If a communication
link is needed, the developer will need to make decisions on the implementa-
tion of the timing and communication in the same manner described earlier.

The biggest challenge will again come down to synchronization of the tim-
ing of the simulation and the blockchain simulation. For efficiency of the total
system, it will be best to attempt to match the blockchain simulation time step
scope with the simulation time step. Modeling a blockchain system in real time
is clear as the representation of the communication flow and events are near
real time. In the case of discrete event simulation, the blockchain does not
necessarily need to model every aspect of the blockchain system. It should be
modeled more as a queueing logistics problem. In order to achieve this, knowl-
edge of transaction time metrics, bandwidth, and latency is needed. With this
data, the interactions happening within the blockchain simulation will become
actions based on values from distributions formed from the observed data. The
queueing of messages and delay caused by the blockchain can still be simu-
lated, but the details will be abstracted out to values of distributions. To extend
the blockchain simulation to an even higher scope for flow-based models (for
example system dynamics), the level of abstraction from the blockchain system
will need to be further observed in higher level measures. This could simply be
utilizing the measure of rates obtained from observations of the real blockchain
system. The rates could reflect the average transaction time in various condi-
tions, like bad network connectivity, bandwidth, and even the structure of the
blockchain like number of peers, required computation of the smart contract,
or consensus algorithm used.

13.5.4 Verification and Validation

It would be irresponsible to discuss the use of a simulation involving blockchain
systems without mentioning the necessity of verification and validation of the
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models and simulations. Modelers must be aware of the inherent assumptions
that exist when building abstractions of the real system. These assumptions can
exist in how the data was generated, how the data was collected, and how the
data was used in the actual modeling of the system. Once the blockchain simu-
lation system is developed, it is strongly recommended that some time be ded-
icated to verification of the system or observation of the system’s behavior to
ensure that results of actions are behaving in the way that they were intended to.

It is also strongly recommended that the modeler dedicate data and time to
validate the results of the blockchain simulation. An independent set of data
should be recorded and stored for the intention of validation at the end of devel-
opment. This independent set of data should not be used in the development of
the model and simulation as this would be considered calibration; keep one set
of data to be used to calibrate the model and a separate set of data to be used as
a single check at the end to give a validation score. After the calibration process,
score the model and simulation system with one of the many measures of error
using the saved data set. This measure will let the modeler and any other party
that uses the simulation have an idea of how well the blockchain simulation
represents the real system from the perspective of the validation data set.

If the model and simulation is exploratory and is simulating a fictitious system
in which a real system does not exist yet, the modeler might not have a data
set that can be generated to perform validation. In this case, all checks must
be made to the best of the modeler’s ability to verify the actions, so that the
simulation is what the developers, the users, and the modelers would intend
it to be. This can be done using sensitivity analysis, where the modeler tests
the extremes or ideal scenarios to see whether the results are realistic to the
intentions of the subject matter experts.

13.5.5 Example

As an example, a simulation was built in Unity 3D of a simple battlefield. A
blockchain network using the Hyperledger Fabric platform is started up on a
network server. The blockchain can utilize any supported consensus algorithm
that is implemented with Hyperledger Fabric; the example that was tested uses
the Kafka consensus with three peer nodes, an orderer node, a client node, three
Kafka nodes, and associated zookeeper nodes. This blockchain system can be
simplified to use a solo consensus algorithm and fewer nodes. The simulation
that was developed operates in near real time as a first-person shoot style simu-
lation, where the user can move around the world freely and look around. Unity
3D is a game engine that is free to use in an academic sense but requires a license
if it is used for commercial purposes. Unity provides many free models and has
a fully capable physics engine that allows developers to quickly prototype sim-
ulations or games.

The simulation is simple in nature—there are tank entities, plane entities, and
cube entities. A top down view of the world is provided in Figure 13.24. The
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Figure 13.24 Top down view of the simulated environment.

cube entities represent locations hosting parts of the blockchain network, i.e.
validating nodes, in this case peer nodes. The tank and air entities are associated
with IDs that are maintained on the live blockchain.

When the simulation starts, the user is presented with a world that it can
move around in a first person perspective as shown in Figure 13.25. In the top

Figure 13.25 Game view of the simulated world with entities connected to the real
blockchain system.
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right corner there is a minimap; the minimap is a static camera above the bat-
tlefield that includes vision on the three cubes representing peer nodes. The
minimap acts as a censor that utilizes the blockchain to determine whether the
entity that is in view is friendly or unknown. The user will also notice that on
the minimap is an air entity that is circling above; if the camera is moved to look
up, the 3D jet will be in view and circling. Also on the minimap is a tank near
the user’s starting position; this tank acts as a static starting node for the user
(think that the player stepped out of the tank and can move around). If the user
maneuvers the character north, two other tanks will come into view, but are not
within the range of the minimap sensor. Pressing spacebar will move the tanks
within the range of the minimap as they advance south. The minimap reveals
which entities are known friendlies that have been verified on the blockchain
network by indicating a blue or green cube on the entities. If any entities are
unknown and not verified on the blockchain, the minimap will show those enti-
ties with a red cube over them. Figure 13.22 shows the user’s view, including the
minimap with the colored cubes based on the entity IDs and their status on the
blockchain.

In this example, the blockchain runs a chaincode that writes a simple data
structure to the blockchain. The data structure contains the following values:

1. EntityID: string
2. EntityVal: string
3. Message: string

The chaincode queries the blockchain for the EntityID. If the EntityID does
not exist or if the Message value is empty or null, then the entity is consid-
ered unknown. This chaincode allows privileged accounts to add entities to the
blockchain or invoke new Messages and EntityVal strings. The blockchain is
started and run using the JavaScript software development kit (SDK) for Hyper-
ledger Fabric, to provide a cleaner interface between the clients and the peers
hosting the chaincode. Once the blockchain network is started, the web service
also starts listening to requests on a specific port from the server’s IP address.

13.6 Conclusion and Future Work

Blockchain systems are very early in development and work continues to
prove the theories that exist. Testing the theories in simulation or in an actual
blockchain system is critical in understanding the true effects of the deci-
sions made in the system. Discussing and thinking about how decentralized
blockchain systems will work best is important but until proper tests show that
these ideas work and provide a means for comparison, the technology will not
be able to advance from paper to production.

Simulation of blockchain systems can be a very valuable tool when used
appropriately. If decisions are to be made with simulations for real systems,
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developers should ensure proper verification and validation of the system that
is being modeled and simulated. Even with this point, simulation offers a unique
ability to test extreme variations of the system that can be expensive or impos-
sible to implement.

The future is bright for open sourced blockchain systems as they will be better
vetted by a large community and will offer opportunity for fast deployment.
Additionally, they provide a means for developers to tailor the tools to work best
for specific scenarios. Hyperledger Fabric provides a platform that is heavily
supported and will be a great way for new developers to implement systems
to build upon. Years beyond this book, the success of the platform will greatly
be based on the community and where the developers choose to support and
build on. When choosing a platform, look to see the quantity and the quality
of developers that are supporting the tool to get an idea of the future of that
platform.

Moving forward, the researchers of this book see a great deal of work in
improving the scalability and performance of decentralized blockchain sys-
tems. Further work will be done on better understanding the best use cases for
these types of systems. Early developers and researchers might quickly jump
to try blockchain systems to solve many problems; this does not mean that
blockchain will be great at solving all of these problems, but over time the suc-
cess stories will rise to the top. Hopefully, stories of applications of blockchain
systems to solve problems will be written for good use cases as well as bad
use cases. There needs to be a better understanding of when blockchain works
and when it does not work. Finally, there needs to be more documented evi-
dence of the performance metrics and capabilities of these systems that are
peer reviewed and vetted by the academic community, in addition to the open
source community.

References

1 Hyperledger, “Hyperledger—open source blockchain technologies.” [Online].
2018. Available: https://www.hyperledger.org/.

2 Hyperledger Fabric, “A blockchain platform for the enterprise.” [Online]. 2018.
Available: https://hyperledger-fabric.readthedocs.io/.

3 D. Tosh, S. Shetty, P. Foytik, C. Kamhoua, and L. Njilla, “CloudPoS: A
proof-of-stake consensus design for blockchain integrated cloud”, in IEEE
International Conference on Cloud Computing (Cloud 2018), San Francisco,
CA, July 2–7, 2018.

4 M. Castro and B. Liskov, “Practical Byzantine fault tolerance and proactive
recovery,” ACM Transactions on Computer Systems (TOCS), vol. 20, no. 4, pp.
398–461, 2002.

let &hbox {char '046}https://www.hyperledger.org/
https://www.hyperledger.org/
let &hbox {char '046}https://hyperledger-fabric.readthedocs.io/
https://hyperledger-fabric.readthedocs.io/


311

14

Summary and Future Work
Sachin S. Shetty,1 Laurent Njilla,2 and Charles A. Kamhoua3

1Old Dominion University, Virginia Modeling, Analysis and Simulation Center, Norfolk, VA, USA
2US Air Force Research Lab, Cyber Assurance Branch, Rome, NY, USA
3US Army Research Laboratory, Network Security Branch, Adelphi, MD, USA

14.1 Introduction

Blockchain has attracted interest from a wide range of stakeholders, including
those from finance, healthcare, utilities, real estate, and government agencies,
as a potential way to address security challenges in distributed systems. As com-
mercial, government, and military sectors become more comfortable with the
technology, blockchain platforms will play a key role in cloud and Internet of
Things (IoT) security. At the same time, it will be necessary to address secu-
rity and privacy issues in blockchain platforms prior to integrating them with
existing backend cloud and IoT systems.

The maturation of blockchain platforms will raise new concerns, such as
trust, security, and privacy issues with the Internet of Battlefield Things (IoBT);
performance assurance and security metrics; resilience to faulty and dishonest
validation nodes in permissioned blockchains; incentive mechanisms to bal-
ance risk and reward; and security risk assessment. Academia and industry are
collaboratively working to develop blockchain platforms that will address these
pressing cloud and IoT security issues.

The preceding chapters of this book have suggested that blockchain plat-
forms address security issues in cloud and IoT systems, as well as in the areas of
cloud data provenance, information sharing, cloud storage, smart vehicles, IoT
transportation security, attack surface analysis, double spending prevention,
permissioned and permissionless platform security, fault-tolerant consensus
protocols, simulation environments, and performance metrics. This final chap-
ter summarizes our blockchain platform development insights and the remain-
ing issues and obstacles in any mission-critical system deployment.
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14.2 Blockchain and Cloud Security

Cloud computing has been adopted by commercial entities and the military
for supporting data storage, on-demand computing, and dynamic provision-
ing. Cloud computing environments are dynamic and heterogeneous. Because
they involve several disparate software and hardware components that are
manufactured by different vendors, they require interoperation capability. In
Chapter 4, we propose blockchain-based solutions to secure cloud storage
services.

Assurance of intracloud and intercloud data is crucial. Typical data assurance
involves safeguarding the confidentiality, integrity, and availability of the data
contents. Assurance of data ancestry (i.e. where it originated) is equally impor-
tant, yet remains challenging in cloud environments. Blockchain-based solu-
tions address these issues by gathering assured data provenance for services in
cloud (data provenance provides data ancestry based on a detailed derivation
of the data object). Blockchain-based provenance will be required to provide
tracking of healthcare records and supply chain items.

We present a blockchain-based data provenance system to audit operations
in the cloud storage service in Chapter 4; however, several concerns need to
be addressed prior to deploying such a system. These include encoding oper-
ations in transactions at the appropriate granularity to balance transparency
and overhead, real-time response, automatic incorporation of access control
rules in smart contracts, choice of permissioned versus public blockchain, and
consensus protocols.

14.3 Blockchain and IoT Security

The IoT has emerged as the primary platform seeking to maximize inter-
connectivity of the cyber and physical worlds, including but not limited to
vehicles, infrastructures, home sensors, smart medical systems, and wearable
electronics. Security is still the primary concern in IoT environments. Even
though significant security assurance improvements have been made over the
past few years in the area of communication engineering, application layer
security (especially cross-domain and cross-scenario [heterogeneity] security
schemes) remains an open topic for research.

A key IoT component is the Vehicular Communication System (VCS), a sub-
system of the Intelligent Transportation System (ITS) that integrates advanced
communications technologies into transportation infrastructure and vehicles.
Two blockchain-based solutions that address VCS security issues are presented
in Chapters 5 and 6.

Smart vehicles are increasingly connecting with other vehicles in close prox-
imity, roadside infrastructures (e.g. traffic lights and overhead displays at
motorways), and more generally to the Internet, qualifying them as IoT objects.
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This high degree of connectivity introduces new sophisticated, personalized
services for smart vehicle owners, as well as manufacturers, suppliers, and ser-
vice providers (SPs) such as insurance companies. However, it also means that
smart vehicles are very difficult to secure. Conventional security and privacy
solutions used in smart vehicles tend to be ineffective due to centralization,
lack of privacy, and safety threats.

A decentralized privacy-preserving and secure blockchain-based architec-
ture for a smart vehicle ecosystem is presented in Chapter 5. Smart vehicles,
original equipment manufacturers, and other SPs jointly form an overlay net-
work, wherein they can communicate. Nodes in the overlay are clustered, and
the cluster heads (CHs) are solely responsible for managing the blockchain and
performing its core functions. These CHs are known as overlay block man-
agers (OBMs). Transactions are broadcast to and verified by the OBMs, thus
eliminating the need for a central broker. To protect user privacy, each vehi-
cle is equipped with internal storage for sensitive privacy data such as location
traces. The vehicle owner defines which data (and granularity) is provided to
third parties in exchange for beneficial services and which to keep in the in-
vehicle storage. Consequently, the owner has increased control over the dis-
seminated data.

The security of a VCS depends heavily on the content of the exchanged
messages, which are usually referred to as safety messages. The accuracy of
the information in these messages (e.g. speed, direction, position, and vehi-
cle size) determines whether or not ITSs operate in a regular and sustain-
able manner as they assist vehicles and infrastructures in interpreting the
status of the surrounding environment. The integrity of safety messages can
be ensured by encrypting them with predetermined secret keys. However,
this extends the problem of VCS security into the reliable distribution or
updating of these secret keys among all communicating participants, partic-
ularly in the timely delivery of the key to another security domain during
the node handover process. Moreover, high mobility, a massive number of
devices, and a wide range of vehicle activities present additional challenges
to VCS centralized management and access point deployment. A distributed
management structure will help the VCS achieve higher network manage-
ment efficiency, reduce network manager burden, and lower infrastructure
building cost.

A secure key management scheme in a VCS scenario using blockchain is pro-
posed in Chapter 6. In this approach, blockchain is used to simplify the network
structure so that the node handover processes experience fewer message hand-
shakes and reduced delay.

The public ledger is maintained by all network participants instead of
dedicated miners, which removes central key managers from the main body
of the blockchain structure. Messages are broadcast to the network for nodes
to authenticate. A new block is attached to the ledger if the authentication
process determines that the messages are valid. This simplified structure can
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accelerate data propagation between security domains since the information is
sent directly to the destination, bypassing central managers entirely. Moreover,
the distributed structure of the blockchain network performs with better
robustness under the single point of failure.

According to predictions, the IoT will eventually connect everything, includ-
ing the details of human life. For this reason, personal information is threat-
ened by malicious users in the IoT environment. Reliable privacy protection
makes an adversary unable to focus their attack on any specific device. In order
to address the privacy problem, future work will further consider these issues,
including researching systems that provide both security and privacy.

14.4 Blockchain Security and Privacy

Blockchain platforms are susceptible to security and privacy attacks. This
issue is addressed in several chapters by characterizing attack surfaces, pin-
pointing vulnerabilities in consensus protocols, discussing security and privacy
threats to permissionless and permissioned blockchains, identifying methods
of countering double spending, isolating effective defense measures taken by
the blockchain technology or proposed by researchers to mitigate the effects of
these attacks, and investigating ways to patch blockchain vulnerabilities.

The blockchain attack surface and the possible ways in which this tech-
nology can be compromised are explored in Chapter 3. We attribute
attack viability in the attack surface to (i) blockchain cryptographic con-
structs, (ii) the distributed architecture of the systems using blockchain,
and (iii) the blockchain application context. We outline several attacks for
each of these contributing factors, including selfish mining and associated
peer behaviors, 51% attack, Domain Name System (DNS) attacks, dis-
tributed denial-of-service (DoS) attacks, equivocation, consensus delay
(due to selfish behavior or distributed DoS attacks), blockchain forking,
orphaned and stale blocks, block ingestion, wallet thefts, and privacy
attacks. We then explore the causal relationship between these attacks
and show how one fraudulent activity can lead to the possibility of
other attacks.

In Chapter 8, we discuss two security design considerations and apply them
to both permissioned and permissionless models. The first consideration is
committee selection, where a large population of participants are narrowed
down into a small, fairly sampled subset, thus limiting an attacker’s pres-
ence. Committee selection applies equally well to both permissionless and
permissioned blockchains, since it can improve performance by controlling
participants’ access. The second consideration is privacy. Blockchain appli-
cations often need to provide privacy guarantees for users if they involve, for
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example, sensitive information about financial transactions or the real-time
location of IoT devices (cryptography can be employed for this purpose). If a
high degree of trust exists among peers, as in a permissioned setting, secret
sharing is natural, since it is assumed that the majority of peers will not violate
confidentiality. On the other hand, in a context with less trust, zero-knowledge
proofs allow clients to prevent peers from seeing protected data.

In Chapter 9, we analyze the impact of DoS attacks on blockchain, specif-
ically focusing on a DoS attack variant that can be effectuated on the mem-
ory pools (mempools) of blockchain systems in general. To that end, we study
such an attack and explore its effects on transaction fee structures of legitimate
users. We also propose countermeasures (including fee- and age-based designs)
that optimize the mempool size and thus help mitigate the effects from such an
attack. We use simulations to evaluate our designs and analyze their usefulness
in varying attack conditions. Our analyses can be extended to a wide variety of
blockchain systems using proof concepts, where fees are provided as a partici-
pation incentive.

Dishonest mining strategies such as block withholding attack, selfish
mining, eclipse attack, and stubborn mining have been proven to reduce the
effectiveness of Proof-of-Work (PoW) protocols. As a result, it is necessary to
regulate the mining process and hold miners accountable for any dishonest
conduct. In Chapter 10, we model the block withholding attack prevalent
in PoW-based mining pools to understand the strategy for appropriating
pool members’ rewards. Our results demonstrate that an attacker’s access to
additional computational power could disrupt the honest mining operation in
the blockchain cloud. The attacker’s strategy is analyzed based on two different
pools with differing reward schemes. We demonstrate that a pay per last N
shares (PPLNS) scheme is more useful than the proportional reward scheme
in minimizing the impact of an attack. Future studies will apply our PoS-based
blockchain cloud analysis to the real-time private blockchain platform.

In Chapter 11, we propose a new reputation-based framework for blockchain
PoW computation that will help incentivize miners to conduct honest mining,
while discouraging malicious activities against other mining pools. We illus-
trate the architecture of our reputation-based paradigm, explain the rewards
or penalties given to miners, and provide game-theoretical analyses to show
how this new framework discourages dishonest mining strategies. In our set-
ting, a group of mining pool managers and miners repeatedly plays a game,
during which the reputation of each miner or mining ally is continuously mea-
sured. At the beginning of each round, the pool managers send invitations to a
subset of miners based on a nonuniform probability distribution defined by the
miners’ reputation values. Using our proposed solution concept, honest mining
becomes the Nash equilibrium; in other words, it will not serve the miners’ best
interests to employ dishonest strategies, even if they gain a short-term utility
in doing so. This is due to the consideration of a long-term utility in our model
and its impact on the miners’ utilities over time.
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14.5 Experimental Testbed and Performance Evaluation

The emergence of several blockchain platforms in the market has created a
need to evaluate the performance and security of the platform for cloud and
IoT deployments. We address this in Chapter 12 by evaluating blockchain
platforms that are best suited for IoT deployments. We also discuss the config-
uration and parameters to instrument the blockchain platform. We describe
the implementation of two private blockchain configurations—blockchain-
enabled gateways and blockchain-enabled end devices. We design experiments
for the two configurations, implement them on a testbed composed of Rasp-
berry Pi devices, and evaluate them on Ethereum and Hyperledger Fabric
frameworks, respectively. In Chapter 13, we provide a simulated and expe-
riential platform for the permissioned blockchain environment that would
facilitate the evaluation of the algorithms and protocols presented in this book.
The simulation environment provides the ability to quantify the performance
of the protocols, as well as insight into the optimal blockchain platform to
use in the experiential environment. For the experiential environment, we
evaluate the scalability and resilience of the Hyperledger Fabric framework
when subjected to realistic conditions.

14.6 The Future

Although there are multiple blockchain platforms on the market and consider-
able research and development on some blockchain features is ongoing, further
research is required in the following areas:

� Public, private, or hybrid blockchain architecture
� Incentives
� Anonymity and data privacy

Public, Private, or Hybrid Blockchain Architecture—Public blockchain
architecture provides a truly decentralized mechanism for performing trans-
actions. However, commercial enterprises are skeptical of integrating public
blockchain into their enterprise solutions due to data privacy, performance,
and response concerns. Further research and development within the public
blockchain platform is necessary to address these concerns.

In the meantime, commercial stakeholders are increasingly gravitating
towards a private/permissioned/consortium blockchain architecture. This
architecture varies according to the governance style, which ranges from a
single member to a consortium overseeing the blockchain platform. These
blockchain platforms have centralized components in the architecture, proto-
col, or the process in which the transactions are validated.
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Incentives—In Bitcoin, the incentive to participate in the blockchain plat-
form is monetary; in use cases such as provenance and identity management,
the incentives are nonmonetary. The incentive structure needs to be incor-
porated within the protocol to ensure maximum participation. The incen-
tive design mechanisms may be derived from use cases to ensure that the
blockchain protocols are working toward maximizing the benefits for the use
case. Although the blockchain platform’s trust property may eliminate tam-
pering or cheating, it is important for the design to include incentive mecha-
nisms with properties that discourage cheating or unfairness. There is a need
for theoretic models to capture the dynamics associated with incentivizing
participants.

Anonymity and Data Privacy—The public availability of blockchain trans-
actions makes it possible to use data analytics techniques to evaluate the vast
quantities of data within them. This analysis could reveal valuable informa-
tion, including the identity of participants and specific transactions they have
performed. Several schemes address privacy issues in public blockchain plat-
forms, including stealth addresses, homomorphic encryption, and zero knowl-
edge proof. A combination of techniques is necessary to achieve the desired
level of privacy.
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