
Clustering
Methods
for Big Data
Analytics

Olfa Nasraoui
Chiheb-Eddine Ben N’Cir Editors

Techniques,
Toolboxes and Applications

Unsupervised and Semi-Supervised Learning
Series Editor: M. Emre Celebi

Unsupervised and Semi-Supervised Learning

Series Editor

M. Emre Celebi, Computer Science Department, Conway, Arkansas, USA

Springer’s Unsupervised and Semi-Supervised Learning book series covers the
latest theoretical and practical developments in unsupervised and semi-supervised
learning. Titles – including monographs, contributed works, professional books, and
textbooks – tackle various issues surrounding the proliferation of massive amounts
of unlabeled data in many application domains and how unsupervised learning
algorithms can automatically discover interesting and useful patterns in such
data. The books discuss how these algorithms have found numerous applications
including pattern recognition, market basket analysis, web mining, social network
analysis, information retrieval, recommender systems, market research, intrusion
detection, and fraud detection. Books also discuss semi-supervised algorithms,
which can make use of both labeled and unlabeled data and can be useful in
application domains where unlabeled data is abundant, yet it is possible to obtain a
small amount of labeled data.

Topics of interest in include:

– Unsupervised/Semi-Supervised Discretization
– Unsupervised/Semi-Supervised Feature Extraction
– Unsupervised/Semi-Supervised Feature Selection
– Association Rule Learning
– Semi-Supervised Classification
– Semi-Supervised Regression
– Unsupervised/Semi-Supervised Clustering
– Unsupervised/Semi-Supervised Anomaly/Novelty/Outlier Detection
– Evaluation of Unsupervised/Semi-Supervised Learning Algorithms
– Applications of Unsupervised/Semi-Supervised Learning

While the series focuses on unsupervised and semi-supervised learning,
outstanding contributions in the field of supervised learning will also be considered.
The intended audience includes students, researchers, and practitioners.

More information about this series at http://www.springer.com/series/15892

http://www.springer.com/series/15892

Olfa Nasraoui • Chiheb-Eddine Ben N’Cir
Editors

Clustering Methods for Big
Data Analytics
Techniques, Toolboxes and Applications

123

Editors
Olfa Nasraoui
Department of Computer Engineering
and Computer Science
University of Louisville
Louisville, KY, USA

Chiheb-Eddine Ben N’Cir
University of Jeddah
Jeddah, KSA

ISSN 2522-848X ISSN 2522-8498 (electronic)
Unsupervised and Semi-Supervised Learning
ISBN 978-3-319-97863-5 ISBN 978-3-319-97864-2 (eBook)
https://doi.org/10.1007/978-3-319-97864-2

Library of Congress Control Number: 2018957659

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-319-97864-2

Preface

Data has become the lifeblood of today’s knowledge-driven economy and society.
Big data clustering aims to summarize, segment, and group large volumes and
varieties of data that are generated at an accelerated velocity into groups of similar
contents. This has become one of the most important techniques in exploratory data
analysis. Unfortunately, conventional clustering techniques are becoming more and
more unable to process such data due to its high complexity, heterogeneity, large
volume, and rapid generation. This raises exciting challenges for researchers to
design new scalable and efficient clustering methods and tools which are able to
extract valuable information from these tremendous amount of data. The progress
in this topic is fast and exciting.

This volume aims to help the reader capture new advances in big data clustering.
It provides a systematic understanding of the scope in depth, and rapidly builds an
overview of new big data clustering challenges, methods, tools, and applications.

The volume opens with a chapter entitled “Overview of Scalable Partitional
Methods for Big Data Clustering.” In this chapter, BenHaj Kacem et al. propose
an overview of the existing clustering methods with a special emphasis on scalable
partitional methods. The authors design a new categorizing model based on the
main properties pointed out in the big data partitional clustering methods to ensure
scalability when analyzing a large amount of data. Furthermore, a comparative
experimental study of most of the existing methods is given over simulated and real
large datasets. The authors finally elaborate a guide for researchers and end users
who want to decide the best method or framework to use when a task of clustering
large scale of data is required.

In the second chapter, “Overview of Efficient Clustering Methods for High-
dimensional Big Data Streams,” Hassani focuses on analyzing continuous, possibly
infinite streams of data, arriving at high velocity such as web traffic data, surveil-
lance data, sensor measurements, and stock trading. The author reviews recent
subspace clustering methods of high-dimensional big data streams while discussing
approaches that efficiently combine the anytime clustering concept with the stream

v

vi Preface

subspace clustering paradigm. Additionally, novel open-source assessment frame-
work and evaluation measures are presented for subspace stream clustering.

In the chapter entitled “Clustering Blockchain Data,” Chawathe gives recent
challenges and advances related to clustering blockchain data such as those
generated by popular cryptocurrencies like Bitcoin, Ethereum, etc. Analysis of
these datasets have diverse applications, such as detecting fraud, illegal transactions,
characterizing major services, identifying financial hotspots, characterizing usage
and performance characteristics of large peer-to-peer consensus-based systems.
The author motivates the study of clustering methods for blockchain data and
introduces the key blockchain concepts from a data-centric perspective. He presents
different models and methods used for clustering blockchain data and describes the
challenges and solutions to the problem of evaluating such methods.

Deep Learning is another interesting challenge, which is discussed in the chapter
titled “An Introduction to Deep Clustering” by Gopi et al. The chapter presents
a simplified taxonomy of deep clustering methods based mainly on the overall
procedural structure or design which helps beginning readers quickly grasp how
almost all approaches are designed. This also allows more advanced readers to
learn how to design increasingly sophisticated deep clustering pipelines that fit
their own machine learning problem-solving aims. Like Deep Learning, deep
clustering promises to leave an impact on diverse application domains ranging
from computer vision and speech recognition to recommender systems and natural
language processing.

A new efficient Spark-based implementation of PSO (particle swarm opti-
mization) clustering is described in a chapter entitled “Spark-Based Design of
Clustering Using Particle Swarm Optimization.” Moslah et al. take advantage
of in-memory operations of Spark to build grouping from large-scale data and
accelerate the convergence of the method when approaching the global optimum
region. Experiments conducted on real and simulated large data-sets show that their
proposed method is scalable and improves the efficiency of existing PSO methods.

The last two chapters describe new applications of big data clustering techniques.
In “Data Stream Clustering for Real-Time Anomaly Detection: An Application to
Insider Threats,” Haider and Gaber investigate a new streaming anomaly detection
approach, namely, Ensemble of Random subspace Anomaly detectors In Data
Streams (E-RAIDS), for insider threat detection. The investigated approach solves
the issues of high velocity of coming data from different sources and high
number of false alarms/positives (Fps). Furthermore, in “Effective Tensor-Based
Data Clustering Through Sub-tensor Impact Graphs” which completes the volume,
Candan et al. investigate tensor-based methods for clustering multimodal data such
as web graphs, sensor streams, and social networks. The authors deal with the
computational complexity problem of tensor decomposition by partitioning the
tensor and then obtain the tensor decomposition leveraging the resulted smaller
partitions. They introduce the notion of sub-tensor impact graphs (SIGs), which
quantify how the decompositions of these sub-partitions impact each other and

Preface vii

the overall tensor decomposition accuracy and present several complementary
algorithms that leverage this novel concept to address various key challenges in
tensor decomposition.

We hope that the volume will give an overview of the significant progress and
the new challenges arising from big data clustering in theses recent years. We also
hope that contents will obviously help researchers, practioners, and students in their
study and research.

Louisville, KY, USA Olfa Nasraoui
Manouba, Tunisia Chiheb-Eddine Ben N’Cir

Contents

1 Overview of Scalable Partitional Methods for Big Data Clustering 1
Mohamed Aymen Ben HajKacem, Chiheb-Eddine Ben N’Cir,
and Nadia Essoussi

2 Overview of Efficient Clustering Methods for High-Dimensional
Big Data Streams . 25
Marwan Hassani

3 Clustering Blockchain Data . 43
Sudarshan S. Chawathe

4 An Introduction to Deep Clustering . 73
Gopi Chand Nutakki, Behnoush Abdollahi, Wenlong Sun,
and Olfa Nasraoui

5 Spark-Based Design of Clustering Using Particle Swarm
Optimization . 91
Mariem Moslah, Mohamed Aymen Ben HajKacem,
and Nadia Essoussi

6 Data Stream Clustering for Real-Time Anomaly Detection:
An Application to Insider Threats . 115
Diana Haidar and Mohamed Medhat Gaber

7 Effective Tensor-Based Data Clustering Through Sub-Tensor
Impact Graphs . 145
K. Selçuk Candan, Shengyu Huang, Xinsheng Li,
and Maria Luisa Sapino

Index . 181

ix

Chapter 1
Overview of Scalable Partitional Methods
for Big Data Clustering

Mohamed Aymen Ben HajKacem, Chiheb-Eddine Ben N’Cir,
and Nadia Essoussi

1.1 Introduction

Clustering, also known as cluster analysis, has become an important technique in
machine learning used to discover the natural grouping of the observed data. Often, a
clear distinction is made between learning problems that are supervised, also known
as classification, and those that are unsupervised, known as clustering [24]. The
first deals with only labeled data while the latter deals with only unlabeled data
[16]. In many real applications, there is a large supply of unlabeled data but limited
labeled data. This fact makes clustering more difficult and more challenging than
classification. Consequently, there is a growing interest in a hybrid setting, called
semi-supervised learning [11] where the labels of only small portion of the observed
data are available.

During the last four decades, many clustering methods were designed based
on different approaches such as hierarchical, partitional, probabilistic, and density-
based [24]. Among them, Partitional clustering methods have been widely used
in several real-life applications given their simplicity and their competitive com-
putational complexity. This category of methods aims to divide the dataset into a
number of groups based on the optimization of one, or several objective criteria.
The optimized criteria may emphasize a local or a global structure of the data and
its optimization is based on an exact or an approximate optimization technique.
Despite the competitiveness of the computational complexity of partitional methods
compared to other methods, it fails to perform clustering on huge amounts of data

M. A. B. HajKacem (�) · N. Essoussi
LARODEC, Institut Supérieur de Gestion de Tunis, Université de Tunis, Tunis, Tunisia
e-mail: nadia.essoussi@isg.rnu.tn

C.-E. Ben N’Cir (�)
University of Jeddah, Jeddah, KSA

© Springer Nature Switzerland AG 2019
O. Nasraoui, C.-E. Ben N’Cir (eds.), Clustering Methods for Big Data Analytics,
Unsupervised and Semi-Supervised Learning,
https://doi.org/10.1007/978-3-319-97864-2_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97864-2_1&domain=pdf
mailto:nadia.essoussi@isg.rnu.tn
https://doi.org/10.1007/978-3-319-97864-2_1

2 M. A. B. HajKacem et al.

[22]. In fact, given the exponential growth and availability of data collected from
different sources, analyzing and organizing these data has become an important
challenge referred to as Big data Analytics. This challenge has been the focus of
several types of researches which proposed scalable partitional clustering methods
based on different acceleration techniques. The aim of this work is to give a
theoretical and empirical overview of scalable big data clustering methods. We
propose a new categorization of these methods based on the used methodology
to improve scalability. For each defined category, we review the existing methods
and we describe the used acceleration technique or framework. Also, an empirical
evaluation is given using most representative methods from each of the defined
categories using large simulated and real datasets.

The remainder of the chapter is organized as follows. Section 1.2 presents
partitional clustering methods. Then, Sect. 1.3 reviews the existing scalable Big data
partitional clustering methods. After that, Sect. 1.4 gives an experimental evaluation
of Big data partitional clustering methods on different simulated and real large
datasets. Finally, Sect. 1.5 presents conclusions and some perspective points.

1.2 Partitional Clustering Methods

More than thousands of clustering methods were proposed in the literature. Com-
monly used methods are usually classified according to the fundamental concept
on which clustering methods are based. This classification leads to defining the
following categories [24]: hierarchical, partitional, probabilistic, and density-based.
Among them, partitional clustering methods remain the most commonly used
because of their simplicity and their competitive computational complexity.

Partitional clustering methods try to organize data into k clusters (where k is an
input parameter), by optimizing a certain objective function that captures a local and
global structure of grouping. Most of the partitioning methods start with an initial
assignment and then use an iterative relocation procedure which moves data points
from one cluster to another to optimize the objective function. Examples of these
methods are k-means [36], k-modes [26], k-prototypes [25], and fuzzy c-means [7].
The k-means [36] is the most fundamental partitional clustering method which is
based on the idea that a center can represent a cluster. After selecting k initial
cluster centers, each data point is assigned to a cluster based on a Euclidean distance
measure, then k cluster centers are recomputed. This step is repeated until an optimal
set of k clusters are obtained based on an objective function. The k-modes [26] uses
the simple matching coefficient measure to deal with categorical attributes. The k-
prototypes [25] integrates k-means with k-modes methods to partition mixed data.
On the other hand, partitional clustering methods often generate partitions where
each data point belongs to one and only one cluster. The fuzzy c-means [7] extends
this notion to associate each data point a membership function to each cluster.

Despite the efficiency of partitional clustering methods, they do not scale with
a huge volume of data [47]. This is explained by the high computational cost to
build grouping when dealing with a large amount data. To overcome this weakness,

1 Overview of Scalable Partitional Methods for Big Data Clustering 3

several works were proposed to improve the efficiency of conventional partitional
clustering methods. This survey emphasizes on scalable Big data partitional cluster-
ing methods, specifically those extending k-means, k-prototypes, and fuzzy c-means
methods. We present in the next section an overview of these methods.

1.3 Big Data Partitional Clustering Methods

To deal with large-scale data, several methods were designed in the literature which
are based on coupling conventional partitional clustering methods and acceleration
techniques. These methods aim to enhance the speed of clustering process by
reducing the computational complexity. We propose in this work to classify these
methods based on the acceleration technique used to improve the scalability. Four
categories are defined, parallel methods, data reduction-based methods, centers
reduction-based methods, and hybrid methods. Figure 1.1 shows a classification tree
of these methods where the depth of the tree represents the progression in time and
the width of the tree represents the different categories and subcategories. We detail
the following the main characteristics of each category.

1.3.1 Parallel Methods

Parallelization is one of the most used acceleration techniques, which aims to reduce
the computational cost of conventional partitional clustering methods. Paralleliza-
tion is defined as a process where the computation is divided into parallel tasks.
Several parallel partitional methods were proposed in the literature. These methods
are motivated by the assumption that distance computations between one data point
with cluster centers are independent of those between any other data point and
cluster centers. Thus, distance computation between different data points and cluster
centers can be executed in parallel. The parallelization can be done using different
frameworks such as Message Passing Interface (MPI) [46], Graphics Processing
Unit (GPU) [38], MapReduce [15], or Spark [50]. In the following, we present an
overview of parallel clustering methods which are based on these frameworks.

1.3.1.1 MPI-Based Methods

MPI is a parallel framework designed to process a large amount of data through
cluster of machines. It is deployed in master/slave architecture where the master
sends tasks to slaves and receives computed results. While slaves receive tasks,
process them, and send results to the master. MPI provides set of functions which
are used by developers to create parallel applications. These functions aim to
communicate and exchange data and messages between machines. For example,

4 M. A. B. HajKacem et al.

Pa
rt

iti
on

al

M
et

ho
ds

 fo
r

Bi
g

D
at

a
Cl

us
te

rin
g

Pa
ra

lle
l

M
et

ho
ds

H
yb

rid
s

M
et

ho
ds

M
PI

 b
as

ed

M
et

ho
ds

M
ap

Re
du

ce
ba

se
d

M
et

ho
ds

G
PU

 b
as

ed

M
et

ho
ds

Sp
ar

k
ba

se
d

M
et

ho
ds

M
PI
FC
M

(K
w

ok
 e

t a
l.

20
02

)
M
PI
KM

(Z
ha

ng
 e

t a
l.

20
11

)

G
PU

KM
(C

he
et

 a
l.

20
08

)
G
PU

FC
M

(A
l-A

yy
ou

b
et

 a
l.

20
15

)

M
RK

M
(Z

ah
o

et
 a

l.
20

09
)

M
RF

CM
(L

ud
w

in
g

20
15

)
M
RK

P
(B

en
 H

aj
Ka

ce
m

e t
 a

l.
20

15
)

SO
KM

(Z
ay

an
ie

t a
l.

20
16

)
SK

P
(B

en
 H

aj
Ka

ce
m

et
 a

l.
20

17
)

O
M
KM

(C
ui

 e
t a

l.
20

14
)

LS
H
Ti
M
RK

M
(L

i e
t a

l.
20

14
)

AM
RK

P
(B

en
 H

aj
Ka

ce
m

et
 a

l.
20

17
)

D
at

a
re

du
ct

io
n

ba
se

d
M

et
ho

ds

Ce
nt

er
s

re
du

ct
io

n
ba

se
d

M
et

ho
ds

D
RF

CM
(E

sc
hr

ic
h

et
 a

l.
20

03
)

M
BK

M
(S

cu
lle

y
20

10
)

PR
KM

(C
hi

an
g

et
 a

l.
20

11
)

RP
KM

(C
ap

ó
et

 a
l.

20
16

)

Kd
tK
M

(K
an

un
go

et
 a

l.
20

02
)

(P
el

le
g

an
d

M
oo

re
 2

00
3)

Ti
KM

(P
hi

lli
ps

 2
00

2)
(E

lk
an

et
 a

l.
20

03
)

CD
KM

(L
ai

 e
t a

l.
20

09
)

F
ig

.1
.1

C
la

ss
ifi

ca
ti

on
of

sc
al

ab
le

pa
rt

it
io

na
lc

lu
st

er
in

g
m

et
ho

ds
ba

se
d

on
th

e
us

ed
ap

pr
oa

ch
to

im
pr

ov
e

sc
al

ab
il

it
y

1 Overview of Scalable Partitional Methods for Big Data Clustering 5

the function Broadcast is used to send the same data or messages to all machines
while the function Barrier is used to put a barrier and allows the synchronization
between machines when running parallel programs. The main advantage of MPI
is its master/slave architecture, where the slave machine can become the master
of other processes. This can be extremely useful for dynamic resource allocation
where the slaves have to process a large amount of data. Another advantage of
MPI includes the data preserving, i.e., there is no need to read the same data
many times, which can be preserved locally. Hence, MPI is well suited for iterative
algorithms [44].

Several methods were proposed to implement clustering process using MPI
framework. For example, Zhang et al. [52] proposed an MPI-based k-means
(MPIKM). The main steps of this method are as follows: first, the input data is
initially distributed among slaves. Then, the master selects k data points as initial
centers, and broadcasts them to slaves. Then, each slave assigns corresponding
data points to the nearest cluster by computing distances. After that, the master
collects all information needed from slaves to update new cluster centers, and
broadcasts them to slaves. Finally, this method iterates calling above steps several
times until convergence. The MPIKM can reduce the time complexity of k-means
from O(n.k.l) to O(s.k.l) where n the number of data points, k the number of
clusters, l the number of iterations, and s � n the maximal number of data points
assigned to each slave node.

On the other hand, Kwok et al. [30] designed a parallelization of fuzzy c-means
using MPI framework (MPIFCM). The master first divides the input data into
splits and transfers them to slaves. Then, each slave receives the associated split,
computes distances, and updates the membership matrix. After that, the master gets
all information needed from the slaves to compute the new cluster centers, and
sends them to slaves for the next iteration. Finally, the above steps are repeated
until convergence. The MPIFCM decreases the time complexity of fuzzy c-means
from O(n.k2.l) to O(s.k2.l).

Despite the efficiency of MPI framework to process large-scale data, it suffers
from limit of the fault intolerance. MPI has no mechanism to handle faults. The
failure of one machine in the network can cause the shutdown of the whole network.
Hence, practitioners of MPI-based methods have to implement a fault tolerance
mechanism within the master/slave architecture to manage faults or failures of
machines in the network. The implementation of this mechanism is not a trivial
task which explains the restricted use of this framework in real-world applications.

1.3.1.2 GPU-Based Methods

Graphics Processing Unit (GPU) is a specialized hardware designed to accelerate
graphical operations such as video and image editing. Compute Unified Device
Architecture (CUDA) is a parallel programming framework used to simplify the
creation of parallel applications within GPU without delving into the hardware
details. GPU has a large number of processing cores as compared to a Central

6 M. A. B. HajKacem et al.

MultiProcessor 1

Shared memory

Pr
oc

es
so

r 1

Pr
oc

es
so

r 2

Pr
oc

es
so

r 3

MultiProcessor 2

Shared memory

Pr
oc

es
so

r 1

Pr
oc

es
so

r 2

Pr
oc

es
so

r 3

MultiProcessor 3

Shared memory

Pr
oc

es
so

r 1

Pr
oc

es
so

r 2

Pr
oc

es
so

r 3

Fig. 1.2 GPU architecture with three multiprocessors and three streaming processors

Processing Unit (CPU). In addition, it provides two levels of parallelization. At
the first level, GPU has several multiprocessors (MPs), and at the second level, each
multiprocessor has several streaming processors (SPs). Following this configuration,
GPU program is broken down into threads which execute on SPs, and these threads
are aggregated together to form thread blocks which run on a multiprocessor.
Figure 1.2 shows a GPU architecture with three multiprocessors and three streaming
processors per block. Each thread within a block can communicate with each other
and synchronize with other threads in the same block. Each of these threads has
access to fast shared memory.

Several works were proposed to accelerate data clustering using GPU. For
example, Che et al. [12] proposed a GPU-based k-means method (GPUKM). The
main steps of this method are as follows, first, it uploads initial cluster centers to the
shared memory of the GPU and the input dataset is partitioned and uploaded into
each multiprocessor. Then, each multiprocessor calculates the distance from each
corresponding data point and assigns it to the nearest cluster. After that, it calculates
a local cluster center based on a subset of data points. Once all data points are
assigned to cluster centers, CPU updates new cluster centers and again will upload
them to multiprocessors. Finally, this method iterates calling the above steps several
times until convergence. The GPUKM decreases the time complexity of k-means
[19] from O(n.k.l) to O(g.k.l) where g � n the maximal number of data points
assigned to each multiprocessor.

Al-Ayyoub et al. [1] proposed the GPU fuzzy c-means method (GPUFCM). This
method first stores initial positions of clusters to the shared memory. Then, it creates
initial membership matrix and initial cluster centers from the input data. Then,
each multiprocessor computes partial memberships by computing distances. Next,
it computes the membership values via summation of partial memberships. After
that, this method transfers summed membership values from GPU to CPU in order
to compute new cluster centers. Finally, it moves to the next iteration. Similarly
to GPUKM, the GPUFCM can reduce the time complexity of fuzzy c-means from
O(n.k2.l) to O(g.k2.l).

Despite the attested performance of GPU for handling large-scale data, it
suffers from the drawback of memory limits. For example, with a maximum of
12GB memory per GPU, it is not able to deal with terabyte data. When the

1 Overview of Scalable Partitional Methods for Big Data Clustering 7

data size exceeds the size of GPU memory, the performance of the GPU-based
method decreases significantly. Hence, users have to configure the memory before
implementing applications through GPU. Another drawback is the restricted number
of software and algorithms that are available for GPUs.

1.3.1.3 MapReduce-Based Methods

MapReduce is a parallel programming framework used to process large-scale
data across cluster of machines. It is characterized by its high transparency for
programmers to parallelize algorithms in an easy and comfortable way. MapReduce
is based on two phases namely map and reduce. Each phase has < key/value >

pairs as input and output. The map phase executes map functions to process in
parallel each < key/value > to generate a set of intermediate < key ′/value′ >

pairs. Then, this framework groups all intermediate values associated with the
same intermediate key as a list (known as shuffle phase). The reduce phase
executes reduce function to merge all intermediate values associated with the same
intermediate key. Figure 1.3 illustrates the data flow of MapReduce framework. The
inputs and outputs of MapReduce are stored in an associated distributed file system
that is accessible from any machine of the used cluster. The implementation of the
MapReduce framework is available in Hadoop [48]. Hadoop provides a distributed
file system namely Hadoop Distributed File System (HDFS) which stores data
on the machines. MapReduce has three major features: simple programming
framework, linear scalability, and fault tolerance. These features make MapReduce
a useful framework for large-scale data processing.

Several methods were proposed in the literature to fit clustering process through
MapReduce. For instance, Zaho et al. [53] proposed a MapReduce-based k-means
method (MRKM). Given an input dataset stored in HDFS, this method first divides
the input dataset into splits where each split is associated with map function. Then,
the map function assigns each data point of the associated split to the nearest cluster
by computing distances. The reduce function then updates new cluster centers by
calculating the average of data points present in each cluster. These new cluster
centers are then written to the HDFS, to be used by the map function for the
next iteration. Finally, the entire process is repeated until convergence. The time
complexity of MRKM is evaluated by O(m.k.l) where m � n the maximal number
of data points associated with the map function.

On the other side, Ludwing [35] proposed the parallelization of fuzzy c-means
clustering using MapReduce framework (MRFCM). This method is based on two
MapReduce jobs. The first MapReduce job calculates cluster center’s matrix and
the second MapReduce job calculates the distances, to be used to update the
membership matrix. The map function of the first MapReduce job receives a chunk
of data and a portion of the membership matrix and produces cluster center’s sub-
matrices. Then, the reduce function of the first MapReduce job merges sub-matrices
into cluster center’s matrix. The second MapReduce job compared to the first one
involves more computations to be executed. During the map function, a chunk of

8 M. A. B. HajKacem et al.

Map

Shuffle

Map Map

<Key3 Value3> <Key3 Value3> <Key3 Value3>

<Key3
‘ Value3

’>

Reduce

<Key2
’ list (Value2

’)>

<Key3
‘ Value3

’> <Key3
‘ Value3

’>

<Key3
’ list (Value3

’)><Key1
’ list (Value1

’)>

<Key1
’ Value1

’’> <Key2
’ Value2

’’> <Key3
’ Value3

’’>

<Key2 Value2> <Key2 Value2> <Key2 Value2>

<Key1 Value1> <Key1 Value1> <Key1 Value1>

<Key2
‘ Value2

’> <Key2
‘ Value2

’> <Key2
‘ Value2

’>

<Key1
‘ Value1

’> <Key1
‘ Value1

’> <Key1
‘ Value1

’>

Fig. 1.3 Data flow of MapReduce framework

data is received and distance sub-matrices and membership matrices are computed.
Then, the reduce function merges partition sub-matrices. The MRFCM decreases
the time complexity of fuzzy c-means from O(n.k2.l) to O(m.k2.l).

Ben HajKacem et al. [4] proposed a MapReduce-based k-prototypes (MRKP)
for clustering mixed large-scale data. First, MRKP creates a global variable that
contains initial centers of the cluster. Then, the map function assigns each data point
of the associated split to nearest cluster. Following each assignment, it computes
an intermediate center for each cluster in order to optimize the calculation of new
centers in reduce phase. This information consists of the sum of the numeric values
and the frequencies of categorical values related to each cluster, which are then
emitted to the reduce function. After that, the intermediate centers produced from
map functions are merged by the reduce function, in order to update new cluster
centers. Finally, new centers’ values are stored in HDFS and the MRKP moves to
the next iteration until convergence. Similarly to MRKM, the time complexity of
MRKP is evaluated by O(m.k.l).

Although MapReduce appears to be perfect for clustering large-scale data, it
suffers from the inefficiency to run iterative algorithms [18]. The whole dataset must
be read and written to HDFS for each iteration of the method. Therefore, many of

1 Overview of Scalable Partitional Methods for Big Data Clustering 9

Table 1.1 Some operators in Spark

Operators Meaning

map(func) Iterates over each line in the RDD by calling func and returns only one
element

flatmap(func) Similar to map but returns a list of elements

mapparition(func) Similar to map but runs separately on each partition (block) of the RDD

filtre(func) Returns elements of the source RDD when func returns true

reducebykey(func) Aggregates values with the same key using func
distinct() Returns a new RDD that contains distinct elements of the source RDD

input/output (I/O) disk operations occur during each iteration and this significantly
degrades the performance of MapReduce-based method.

1.3.1.4 Spark-Based Methods

Spark is a parallel framework for large-scale data processing designed to solve
the MapReduces limitations. It was introduced as part of the Hadoop and it is
designed to run with Hadoop, specially by reading data from HDFS. Spark is based
on Resilient Distributed Datasets (RDDs), a special type of data structure used
to parallelize computations in a transparent way. These parallel structures persist,
reuse, and cache the results in memory. Moreover, Spark provides set of in-memory
operators, beyond the standard MapReduce, with the aim of processing data more
rapidly in distributed environments. Spark is faster up to 100× than MapReduce.
Table 1.1 shows some operators of Spark which are used to implement parallel
methods.

Several methods were proposed for Big data clustering within Spark framework.
For instance, Ben HajKacem et al. [5] proposed a Spark-based k-prototypes
clustering method for mixed large-scale data (SKP). The authors exploit in this
method the in-memory operations of Spark to alleviate the consumption time of
MRKP method. First, they create an RDD object with the input dataset formed by
c chunks. The map function (mappartition) picks a chunk of dataset, executes the
k-prototypes algorithm on that chunk, and emits the intermediate cluster centers as
output. Then, the reduce function (reducebykey) takes set of intermediate centers,
executes the k-prototypes algorithm again on them, and returns the final centers as
output. For each map phase, there are m data points that must be processed using
k-prototypes. Hence, map phase takes O(m.k.l) time. In the reduce phase, the k-
prototypes must be executed on set of intermediate centers which has k.c items.
Hence, the reduce phase needs O(c.k2.l) time. Given c � m, the overall time
complexity of SKP is evaluated by O(m.k.l).

Zayani et al. [51] proposed a parallelization of overlapping k-means method
using Spark framework (SOKM). This method can perform parallel clustering
processes leading to non-disjoint partitioning of data. The main steps of this method
are as follows: first, they create an RDD object with input data formed by chunks.

10 M. A. B. HajKacem et al.

Then, the map function (map) performs a local data assignment for each chunk
in parallel in order to build the local membership matrix for set of data points
within this chunk. Once local membership matrix is computed for each chunk,
the second map function (map) takes these intermediate results and updates the
local cluster centers. After that, the reduce function (reducebykey) computes global
cluster centers based on intermediate cluster centers computed on each chunk.
Finally, based on the evaluation of the global objective criterion, the proposed
method reiterates all above-described steps while convergence is not reached. The
time complexity of SOKM is evaluated by O(m.k2.l).

1.3.2 Data Reduction-Based Methods

This category of methods tries to reduce the number of data points when building
clusters in order to accelerate the clustering process. Sculley [43] introduced a
MinBatch k-means method (MBKM). Its main idea is to use small random batches
of data points of a fixed size which can be stored in memory. The motivation
behind this method is that random batches tend to have lower stochastic noise than
individual data points. In each iteration, a new random sample from data is generated
and used to build cluster centers. The cluster centers are then updated using a convex
combination of values of cluster centers and data points by applying a dynamic rate.
This dynamic rate is defined for each cluster and is evaluated by the inverse of the
number of assigned data points. The MBKM decreases the time complexity of k-
means from O(n.k.l) to O(b.k.l) where b � n the batch size.

On the other hand, Capo et al. [9] proposed an alternative to the k-means
for processing large-scale data called Recursive Partition k-means (RPKM). This
method considers a sequence of partitions of the dataset, where the partition at
iteration i is thinner than the partition at iteration i − 1. The idea behind this
method is to approximate the k-means for the entire dataset by recursively applying
a weighted version of k-means over a small number of subsets of data. The main
steps of RPKM can be described as follows: first, the data is partitioned into a
number of subsets where each subset is characterized by a representative and its
corresponding weight. Second, a weighted version of k-means is applied over the set
of representatives. From one iteration to the next, a more refined partition is built and
the process is repeated using the obtained optimal cluster centers as initialization.
The above steps are repeated until a stopping criterion is detected. The RPKM can
reduce the time complexity of k-means from O(n.k.l) to O(p.k.l) where p � n the
partition size.

PRKM method proposed a Pattern Reduction algorithm for reducing the compu-
tation time of k-means [13]. Initially, the PRKM works exactly as k-means. Then,
it continues to check whether it is time to start the pattern reduction algorithm. If
the time to start is reached, the pattern reduction algorithm is applied. The pattern
reduction algorithm is based on compressing and removing at each iteration the
data points that are unlikely to change their membership thereafter. It can be divided

1 Overview of Scalable Partitional Methods for Big Data Clustering 11

into two procedures: the first is Pattern Compression and Removal (PCR), and the
second is Pattern Assignment and Mean Update (PAMU). PCR requires a removal
bound parameter which denotes the percentage of data points that are allowed to
be compressed and removed. If the removal bound has not been reached, PCR first
checks which data points in each cluster are near the mean and thus can be removed.
We note that means is defined as the average of distances between data points and
cluster centers. Then, PCR compresses and removes these data points by selecting
one of data points to be removed as the representative data point and setting its
value to the average of all data points removed. After that, PAMU reassigns each
data point to the cluster to which it belongs first and then computes the new cluster
centers. The PRKM can reduce the time complexity of k-means from O(n.k.l) to
O(n.k).

Another method introduced a modified version of fuzzy c-means algorithm that
uses Data Reduction algorithm to cluster large-scale data (DRFCM) [20]. The
main idea of DRFCM is to reduce the data size before performing clustering.
This method has two main phases, data reduction and data clustering. The data
reduction phase consists of two steps which are precision reduction (an optional
step) and aggregation. The aggregation step consists of combining identical data
points together in the same weighted data points where the weights correspond to the
number of aggregated data points. The clustering phase is devoted to apply the fuzzy
c-means algorithm on the new weighted data points. To improve the running time
of the aggregation step, the authors introduced a hashing for the aggregation step.
Moreover, they optimize the calculation of cluster centers and membership matrix.
The DRFCM decreases the time complexity of fuzzy c-means from O(n.k2.l) to
O(w.k2.l) where w � n the number of weighted data points generated by data
reduction algorithm.

1.3.3 Centers Reduction-Based Methods

This category of methods aims to reduce the number of comparisons when looking
for the nearest cluster centers which is the most time-consuming phase. Pelleg and
Moore [39] and Kanungo et al. [28] proposed to accelerate k-means using kd-tree
structure (KdtKM). A kd-tree is defined as a binary tree that partitions the space
of the data and it is built by separating hyperplanes (typically axis-aligned) [42].
We note that k in kd-trees and in k-means are different. In k-means, it denotes the
number of clusters while in kd-trees, denotes the dimension of the input data.

Pelleg and Moore [39] proposed to represent data as a kd-tree and used a pruning
strategy to reduce the redundant comparisons between cluster centers and data
points. This method initially creates the kd-tree from the input dataset. Then, it
performs at each iteration a search through the tree for searching regions of the tree
which are owned by a single center. The search begins with all k cluster centers at
the root of the kd-tree. Then, it recursively goes through the depth of the tree while
checking at each node that only one center dominates all the other centers. If so, it

12 M. A. B. HajKacem et al.

eliminates the dominated centers. In the case that only exists one dominated center,
then the search stops and all data points below that node in the kd-tree are assigned
to that center. However, when multiple centers remain, it recursively continues its
search on child nodes. If it reaches a leaf, it performs distance computations between
the remaining cluster centers and the data points at the leaf node. This method
finds nearest cluster to each data point in O(log k) time. However, it requires O(k.
log k) time in each iteration for building the kd-tree. Hence, it decreases the time
complexity of k-means from O(n.k.l) to O(n.log k.l+k. log k). Although KdtKM
method performs very well when dealing with large-scale data, it is not suitable for
high-dimension data because of its exponential complexity regarding the number of
dimensions of data. In addition, it requires an extra memory on the order of the input
dataset for storing the kd-tree structure.

Other techniques are used to accelerate partitioning methods such as Triangle
inequality-based k-means (TiKM) methods [17, 19, 23, 41]. For example, Phillips
[41] used the triangle inequality to reduce the number of comparisons between
cluster centers and data points. This method is motivated by the fact that k-means
requires computing all distances between each of the cluster centers and data points.
Many of these distance computations are redundant, because data points usually stay
in the same cluster after first few iterations. This method uses the following triangle
inequality to prove that if cluster center c1 is close to data point x, and some other
cluster center c2 is far away from another cluster center c1, then c1 must be closer
than c2 to x.

Theorem 1.1 Let x a data point and let c1 and c2 cluster centers (described in
Fig. 1.4). If we know that d(c1,c2) ≥ 2∗ d(x,c1), then d(x,c1) ≤ d(x,c2) without
having to calculate d(x,c2).

In each iteration, the TiKM method uses the triangle inequality when looking for
nearest cluster centers. Also, it requires computing distances between cluster centers.
Hence, this method decreases the time complexity of k-means from O(n.k.l) to
O((n.γ +k2).l) where γ the average number of comparisons between data points
and clusters selected at each iteration.

Fig. 1.4 The application of
triangle inequality technique
between data point x and the
cluster centers c1 and c2

x

c1 c2
d(c1,c2)

d(x,c1)
d(x,c2)

Cluster 1 Cluster 2

On the other hand, a Center Displacement k-means method (CDKM) is proposed
to improve the efficiency of k-means [31]. This method first classifies cluster centers

1 Overview of Scalable Partitional Methods for Big Data Clustering 13

into static and active groups. Then, it uses the information of center displacements to
reject impossible candidates when locking to the nearest cluster center. The CDKM
decreases the time complexity of k-means from O(n.k.l) to O(n.k). We note that
the time complexity of CDKM grows linearly with the data dimension in contrast to
KdtKM methods which have the exponential dependence on the value of dimension.
Moreover, CDKM obtains the same set of cluster centers as that produced by the
conventional k-means.

1.3.4 Hybrids Methods

To deal with large-scale data, hybrids methods combine several acceleration tech-
niques. The acceleration techniques are combined to win maximal efficiency when
designing a clustering process for analyzing a large amount of data. Example of
hybrids methods is the OMRKM proposed by Cui et al. [14]. This method proposed
an optimized implementation of MapReduce-based k-means method using sam-
pling. OMRKM consists of three MapReduce jobs namely: Data sampling, Data
clustering, and Data assignment. The first MapReduce job is devoted generating
a subset from input data using probability sampling. The second MapReduce job
is concerned with clustering of the subset in order to obtain cluster centers. Once
the cluster centers are computed, the third MapReduce job is executed to generate
the partition matrix of input data by assigning each data point to the nearest cluster
center. The OMRKM decreases the time complexity of k-means from O(n.k.l) to
O(m+r .k.l) where r � n the sample size.

On the other hand, Li et al. [33] proposed LSHTiMRKM method which is
based on MapReduce framework, locality sensitive hashing [27] (LSH), and triangle
inequality to improve the efficiency of k-means. This method consists of two
MapReduce jobs namely: Data skeleton and Data clustering. The first job, data
skeleton uses the LSH to map similar data points into buckets. Each bucket
is represented by a weighted data point. Hence, the LSH technique is used to
reduce the number of data points when building cluster centers. The second job,
data clustering proposes an efficient implementation of scalable k-means [2]. This
implementation is based on a pruning strategy to accelerate the iteration process
by reducing unnecessary comparisons between cluster centers and data points. The
pruning strategy begins by looking for the nearest cluster centers using triangle
inequality. Then, it uses the local property of LSH to reduce distance computations
between data points and cluster centers. Only centers in the bucket are evaluated.
The LSHTiMRKM decreases the time complexity of k-means from O(n.k.l) to
O(m+t .γ .l) where t � n the number of buckets and γ � k the average number of
comparisons between data points and clusters selected at each iteration.

Ben HajKacem et al. [6] proposed an accelerated MapReduce-based k-prototypes
for clustering mixed large-scale data (AMRKP). This method is based on a pruning
strategy (PS) to reduce redundant distance computations between cluster centers
and data points using triangle inequality technique. AMRKP introduces a KPPS

14 M. A. B. HajKacem et al.

algorithm which is based on applying a pruning strategy to k-prototypes. Initially,
the KPPS works exactly as k-prototypes. Then, it continues to check whether it is
time to start the pruning strategy. If the time to start is reached, the pruning strategy
is applied. The pruning strategy requires at each iteration computing distances
between centers and sorting them. Then, it evaluates the triangle inequality between
data point and the centers in increasing order of distance to the assigned center of the
previous iteration. If the pruning strategy reaches a center that does not satisfy the
triangle inequality property, it can skip all the remaining centers and continue on to
the next data point. The pruning strategy requires setting a pruning bound parameter
(α) to denote the α% subset of cluster centers that are considered when evaluating
triangle inequality property. After that, this method distributes the KPPS algorithm
within MapReduce framework. For this purpose, it first splits the input dataset into p

chunks. Then, the map function picks a chunk of data, executes the KPPS algorithm
on that chunk, and emits the intermediate cluster centers as the output. Then, the
reduce function takes the set of intermediate centers, executes again the KPPS
algorithm on them, and returns the final centers as output. The time complexity
of KPPS algorithm is bounded between O((n.α.k+k3).l) and O((n.k+k3).l) where
α the pruning bound. The KPPS algorithm is applied twice: in the map phase
and the reduce phases. In the map phase, each chunk involves running the KPPS
algorithm on that chunk. This phase is evaluated by O(m.α.k+k3).l) time. In the
reduce phase, the KPPS algorithm must be executed on the set of intermediate
centers which has k.p data points. Hence, the reduce phase needs O((m.α.k+k3).l)
time. Given that k.n

p
� m, the overall time complexity of the AMRKP is evaluated

by O((m.α.k+k3).l+
(

k.n
p

.α.k + k3
)

.l) ∼= O((m.α.k+k3).l).

1.3.5 Summary of Scalable Partitional Clustering Methods for
Big Data Clustering

This section gives an overview of the main characteristics of scalable partitional
clustering methods presented in a comparative way. Table 1.2 summarizes these
main characteristics. Our study is based on the following features of the methods:
(1) type of data supported by each method, (2) the final results after acceleration
regarding the conventional method, exact or approximate (3) time complexity, (4)
space complexity, and (5) type of the used acceleration technique.

Parallel partitional clustering methods are divided into four categories MPI-
based, GPU-based, MapReduce-based, and Spark-based methods. Before fitting
clustering through parallel framework, it is important to consider some points. GPU
suffers from the memory limitation. When the data size exceeds the size of the
GPU memory, the performance decreases significantly the GPU-based method. For
example, with a maximum of 12GB memory per GPU, it is not suitable to deal
with terabyte data. Then, MPI has no mechanism to handle faults. The failure of
one machine in the network can cause the shutdown of the whole network. Hence,

1 Overview of Scalable Partitional Methods for Big Data Clustering 15

T
ab

le
1.

2
T

he
m

ai
n

ch
ar

ac
te

ri
st

ic
s

of
sc

al
ab

le
pa

rt
iti

on
al

cl
us

te
ri

ng
m

et
ho

ds
fo

r
B

ig
da

ta
cl

us
te

ri
ng

C
at

eg
or

y
M

et
ho

d
R

ef
er

en
ce

s
Ty

pe
of

da
ta

R
es

ul
ts

af
te

r
ac

ce
le

ra
ti

on
T

im
e

co
m

pl
ex

it
y

Sp
ac

e
co

m
pl

ex
it

y
A

cc
el

er
at

io
n

te
ch

ni
qu

e

Pa
ra

ll
el

M
PI

K
M

Z
ha

ng
et

al
.[

52
]

N
um

er
ic

E
xa

ct
O

(s
.k

.l
)

O
(s

)
M

PI
fr

am
ew

or
k

M
PI

FC
M

K
w

ok
et

al
.[

30
]

N
um

er
ic

E
xa

ct
O

(s
.k

2
.l

).
O

(s
)

M
PI

fr
am

ew
or

k

G
PU

K
M

C
he

et
al

.[
12

]
N

um
er

ic
E

xa
ct

O
(g

.k
.l

)
O

(g
)

G
PU

fr
am

ew
or

k

G
PU

FC
M

A
l-

A
yo

ub
et

al
.[

1]
N

um
er

ic
E

xa
ct

O
(g

.k
.l

)
O

(g
)

G
PU

fr
am

ew
or

k

M
R

K
M

Z
ah

o
et

al
.[

53
]

N
um

er
ic

E
xa

ct
O

(m
.k

.l
)

O
(m

)
M

ap
R

ed
uc

e
fr

am
ew

or
k

M
R

FC
M

L
ud

w
in

g
[3

5]
N

um
er

ic
E

xa
ct

O
(m

.k
2
.l

)
O

(m
)

M
ap

R
ed

uc
e

fr
am

ew
or

k

M
R

K
P

B
en

H
aj

K
ac

em
et

al
.[

4]
M

ix
ed

E
xa

ct
O

(m
.k

.l
)

O
(m

)
M

ap
R

ed
uc

e
fr

am
ew

or
k

SK
P

B
en

H
aj

K
ac

em
et

al
.[

5]
M

ix
ed

A
pp

ro
xi

m
at

e
O

(m
.k

.l
)

O
(m

)
Sp

ar
k

fr
am

ew
or

k

SO
K

M
Z

ay
an

ie
ta

l.
[5

1]
N

um
er

ic
E

xa
ct

O
(m

.k
.l

)
O

(m
)

Sp
ar

k
fr

am
ew

or
k

D
at

a
re

du
ct

io
n

ba
se

d

M
B

K
M

Sc
ul

ly
[4

3]
N

um
er

ic
A

pp
ro

xi
m

at
e

O
(b

.k
.l

)
O

(n
+
b

)
M

in
ba

tc
h

R
PK

M
C

ap
o

et
al

.[
9]

N
um

er
ic

A
pp

ro
xi

m
at

e
O

(p
.k

.l
)

O
(n

+
p

)
R

ec
ur

si
ve

pa
rt

it
io

n

PR
K

M
C

hi
an

g
et

al
.[

13
]

N
um

er
ic

A
pp

ro
xi

m
at

e
O

(n
.k

)
O

(n
)

Pa
tt

er
n

re
du

ct
io

n

D
R

FC
M

E
sc

hi
rh

et
al

.[
20

]
N

um
er

ic
E

xa
ct

O
(w

.k
.l

)
O

(w
)

D
at

a
re

du
ct

io
n

C
en

te
rs

re
du

ct
io

n
ba

se
d

K
dt

K
M

Pe
ll

eg
an

d
M

or
e

[4
0]

H
ar

d
N

um
er

ic
O

(n
.lo

g
k

.l
+
k

.lo
g

k
)

O
(n

+
k

.lo
g

k
)

K
d-

tr
ee

K
dt

K
M

K
an

un
go

et
al

.[
28

]
N

um
er

ic
E

xa
ct

O
((
n

.γ
+
k

2
).
l)

O
(n

+
k

2
)

K
d-

tr
ee

T
iK

M
Ph

il
ip

s
[4

1]
N

um
er

ic
E

xa
ct

O
((
n

.γ
+
k

2
).
l)

O
(n

+
k

2
)

T
ri

an
gl

e
in

eq
ua

li
ty

T
iK

M
E

lk
an

[1
9]

N
um

er
ic

E
xa

ct
O

((
n

.γ
+
k

2
).
l)

O
(n

+
k

2
)

T
ri

an
gl

e
in

eq
ua

li
ty

C
D

K
M

L
ai

et
al

.[
31

]
N

um
er

ic
E

xa
ct

O
(n

.k
)

O
(n

+
k

2
)

D
is

pl
ac

em
en

tc
en

te
r

H
yb

ri
ds

O
M

R
K

M
C

ui
et

al
.[

14
]

N
um

er
ic

A
pp

ro
xi

m
at

e
O

(m
.k

+
r
.k

.l
)

O
(n

+
r
)

M
ap

R
ed

uc
e

+
Sa

m
pl

in
g

L
SH

T
iM

R
K

M
L

ie
ta

l.
[3

3]
N

um
er

ic
A

pp
ro

xi
m

at
e

O
(m

+
t.
γ

.l
)

O
(n

+
t+

k
2
)

M
ap

R
ed

uc
e

+
L

SH

A
M

R
K

P
B

en
H

aj
K

ac
em

et
al

.[
6]

M
ix

ed
A

pp
ro

xi
m

at
e

O
(m

.α
%

.k
+
k

3
).
l)

O
(m

+
k

2
)

M
ap

R
ed

uc
e

+
T

ri
an

gl
e

in
eq

ua
li

ty

N
ot

es
:n

:n
um

be
r

of
da

ta
po

in
ts

,k
:n

um
be

r
of

cl
us

te
rs

,l
:n

um
be

r
of

it
er

at
io

ns
,s

:n
um

be
r

of
da

ta
po

in
ts

as
si

gn
ed

to
sa

lv
e,

g
:n

um
be

r
of

da
ta

po
in

ts
as

si
gn

ed
to

m
ul

ti
pr

oc
es

so
r,

m
:n

um
be

ro
fd

at
a

po
in

ts
as

si
gn

ed
to

m
ap

,b
:b

at
ch

si
ze

,p
:p

ar
ti

ti
on

si
ze

,w
:n

um
be

r
of

w
ei

gh
te

d
ex

am
pl

es
,γ

:a
ve

ra
ge

nu
m

be
r

of
co

m
pa

ri
so

ns
,

r
:s

am
pl

e
si

ze
,t

:b
uc

ke
ts

iz
e,

α
%

:p
ru

ni
ng

bo
un

d

16 M. A. B. HajKacem et al.

practitioners have to implement some kind of fault tolerance mechanism within
the program to overcome faults. The MapReduce framework looks better than MPI
since it is characterized by simple programming framework, linear scalability, and
fault tolerance. However, it is unsuitable to run iterative algorithms since at each
iteration, the whole dataset must be read and written to disks and this results in high
(I/O) operations. This significantly degrades the performance of MapReduce-based
method. Finally, Spark framework is an alternative to MapReduce which is designed
to overcome the disk I/O limitations and improve the performance of MapReduce
framework. A recent survey has presented the different frameworks for Big data
analytics and provides the advantages and drawbacks of each of these frameworks
based on various metrics such as scalability, data I/O rate, fault tolerance, and
iterative task support [37, 45].

Although all the described Big data partitional clustering methods offer for users
an efficient analysis for large-scale data, some parameters need to be estimated
before performing the learning. All the described methods require to configure the
number of clusters in prior which is not a trivial task in real-life applications where
the number of expected clusters is usually unknown. As a solution, one could use
different model heuristics for determining the optimal number [34, 40]. For example,
the user can test different clustering with an increased number of clusters and then,
take the clustering having the best balance between the minimization of the objective
function and the number of clusters. Furthermore, all the described Big data
partitional methods need to initialize the clusters’ centers. However, high-quality
initialized centers are important for both accuracy and efficiency of conventional
clustering methods. To overcome this problem, users can adopt random sampling
method to obtain cluster centers or using initialization techniques which exploit
the fact that a good clustering is relatively spread out [8, 10, 32]. Using center
initialization techniques, the result of the presented methods always converges to
a local optimum of the objective criterion, rather than the global optimum. To deal
with this issue, users can combine conventional methods with heuristic techniques
to prevent clustering results from falling into local optimum [3, 21, 29].

1.4 Empirical Evaluation of Partitional Clustering Methods
for Large-Scale Data

We evaluate in this section the performance of the scalable partitional clustering
methods. We select from each category of scalable Big data partitional clustering
methods at least one representative method, such as MRKM [53] (parallel), SKP
[5] (parallel), MBKM [43] (data reduction based), TiKM [41] (centers reduction
based), and AMRKP [6] (hybrids). We have implemented all these methods with
the Java version 8 programming language. For MBKM and TiKM, we used a single
machine with 1-core 3.4 GHz i5 CPU and 4GB of memory while for MRKM, SKP,
and AMRKP, we used a cluster of four machines where each machine has 1-core

1 Overview of Scalable Partitional Methods for Big Data Clustering 17

2.3 GHz CPU and 1GB of memory. Concerning the implementation of MapReduce
framework, we used Apache Hadoop version 1.6.0 for MRKM and AMRKP and
we used Apache Spark version 1.6.2 for SKP.

The experiments are performed on simulated and real datasets. For simulated
datasets, we generate two series of datasets with Gaussian distribution. The mean of
generated data points of the Gaussian distribution is 350 and the sigma is 100. The
datasets range from 5 to 10 million data points. Each data point is described using
ten attributes. In order to simplify the names of simulated datasets, we will use the
notations Sim5M and Sim10M to denote a generated dataset containing 5 and 10
million data points, respectively.

Concerning real datasets, we use the KDD Cup dataset (KDD), which consists
of normal and attack connections simulated in a military network environment. The
KDD dataset contains about 5 million connections. Each connection is described
using 33 numeric attributes. The clustering process for these dataset detects the type
of attacks among all connections. This dataset was obtained from UCI machine
learning repository.1 The second real dataset is the Household dataset (House),
which contains the results of measurements of electric power consumption in
household. The House dataset contains 1 million data points. Each data point is
described using seven numeric attributes. The clustering process for these data
identifies the types of electric consumption in household. This dataset was obtained
from UCI machine learning repository.2 Statistics of simulated and real datasets are
summarized in Table 1.3.

To simplify the discussion of the empirical results in Table 1.4, we will use
the following conventions, let ψ denotes one of the scalable partitional clustering
methods, let T denote the running time, and let S denote the quality of the clustering
results. The enhancement of the running time of scalable partitional clustering
method (Tψ) with respect to the running time of k-means (TKM) in percentage is
defined by:

ΔT = Tψ − TKM

TKM
∗ 100% (1.1)

For example, the enhancement of the running time of MRKM (TMRKM) with respect
to the running time of k-means is defined by:

Table 1.3 Summary of
datasets

Dataset Data points Attributes Domain

Sim5M 5,000,000 10 Simulated

Sim10M 10,000,000 10 Simulated

KDD 4,898,431 33 Intrusion detection

House 1,000,000 7 Electricity

1https://archive.ics.uci.edu/ml/datasets/KDD+Cup+1998+Data.
2https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption.

https://archive.ics.uci.edu/ml/datasets/KDD+Cup+1998+Data
https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption

18 M. A. B. HajKacem et al.

ΔT = TMRKM − TKM

TKM
∗ 100% (1.2)

It is important to note that as defined in Eq. 1.2, a more negative value of ΔT implies
a greater enhancement. The enhancement of the quality of scalable partitional
clustering (Sψ) with respect to the quality of k-means (SKM) in percentage is
defined by:

ΔS = Sψ − SKM

SKM
∗ 100% (1.3)

To evaluate the clustering quality, we use the Sum Squared Error (SSE) [49],
which aims to measure the squared errors between each data point and the cluster
center to which the data point belongs. SSE can be defined by:

SSE =
n∑

i=1

k∑
j=1

d(cj , xi), (1.4)

where xi is the data point and cj the cluster center.
Table 1.4 reports the obtained results of scalable partitional clustering methods

compared to k-means on simulated and real datasets. We note that we test for each
dataset three different number of clusters 10, 50, and 100 and we fix the number of
iterations to 20. For other parameters, we consider the following: the batch size b to
10,000 for MBKM and the pruning bound α to 10 for AMRKP.

The analysis of the empirical results firstly shows that hybrids methods are
significantly faster than all other methods since they use simultaneously several
acceleration techniques to improve the efficiency of conventional k-means method.
For instance, we can observe that TiKM reduces the running time by 35.33%
while AMRKP reduces the running time by 85.60%. Hence, we can conclude that
the combination of acceleration techniques is a good solution when dealing with
large-scale data. The second conclusion concerns the parallel partitional clustering
methods. The results show that SKP method is faster than MRKM method. For
example, MRKM can reduce the running time of k-means by 75.15%. However,
SKP can reduce the running time of k-means by 96.14%. This fact shows the
benefits of Spark to execute clustering process in memory and reduce the I/O
operations from disks. Hence, we can conclude that Spark framework is more
suitable to cluster large-scale data than MapReduce framework. Third, empirical
results show that the number of clusters has an impact on the performance of
clustering especially the case of triangle inequality-based methods like TiKM and
AMRKP. For example, TiKM reduces the running time of k-means by 53.66% when
k = 10 while by 59.92% when k = 100. From this observation, we can mention
that TiKM method performs well when dealing with large number of clusters.
The fourth conclusion concerns the quality of the obtained results. The results
show that MRKM and TiKM methods produce the same SSE values compared

1 Overview of Scalable Partitional Methods for Big Data Clustering 19

T
ab

le
1.

4
E

m
pi

ri
ca

lr
es

ul
ts

on
si

m
ul

at
ed

an
d

re
al

da
ta

se
ts

M
R

K
M

-K
M

SK
P-

K
M

M
B

K
M

-K
M

T
iK

M
-K

M
A

M
R

K
P-

K
M

D
at

as
et

k
Δ

T
Δ

S
Δ

T
Δ

S
Δ

T
Δ

S
Δ

T
Δ

S
Δ

T
Δ

S

Si
m

5M
10

−7
5.

15
0.

00
−9

6.
49

21
.0

3
−9

8.
38

−0
.0

3
−3

5.
33

0.
00

−8
2.

60
58

.1
9

50
−7

7.
14

0.
00

−9
6.

25
28

.3
6

−9
8.

45
0.

17
−2

9.
33

0.
00

−8
4.

83
63

.5
5

10
0

−7
6.

18
0.

00
−9

6.
77

15
4.

84
−9

8.
63

4.
28

−2
8.

64
0.

00
−8

4.
69

−6
5.

70

Si
m

10
M

10
−7

1.
25

0.
00

−9
6.

52
20

.7
1

−9
2.

12
−0

.0
3

−3
9.

24
0.

00
−8

4.
45

58
.4

0

50
−7

1.
25

0.
00

−9
6.

82
28

.0
6

−9
8.

11
1.

27
−2

9.
08

0.
00

−8
3.

76
63

.5
6

10
0

−7
1.

25
0.

00
−9

7.
04

27
.3

2
−9

8.
87

−2
.2

5
−3

6.
17

0.
00

−8
3.

21
65

.6
8

K
D

D
10

−7
5.

12
0.

00
−9

6.
62

18
0.

70
−9

6.
83

45
.2

7
−5

3.
66

0.
00

−8
5.

82
98

.5
0

50
−7

5.
12

0.
00

−9
6.

19
13

4.
30

−9
8.

12
73

.0
4

−5
6.

66
0.

00
−8

7.
12

98
.1

4

10
0

−7
5.

12
0.

00
−9

6.
40

14
2.

61
−9

8.
20

73
.8

8
−5

9.
92

0.
00

−8
8.

55
98

.5
0

H
ou

se
10

−7
5.

56
0.

00
−9

2.
99

25
.8

7
−9

3.
70

4.
33

−5
9.

32
0.

00
−8

5.
50

6.
20

50
−7

5.
56

0.
00

−9
3.

48
25

.7
4

−9
4.

05
−2

.4
7

−6
1.

35
0.

00
−8

3.
96

7.
58

10
0

−7
5.

56
0.

00
−9

4.
74

12
.3

6
−9

4.
80

0.
88

−6
2.

55
0.

00
−8

3.
14

6.
74

20 M. A. B. HajKacem et al.

to k-means method. Therefore, we can deduce that MapReduce framework and
triangle inequality reduce the running time of conventional k-means method without
affecting clustering results. However, MBKM method does not always converge
to the same local solution because of the relatively small batch size, leading to
significant variations in the SSE values.

As a summary, the empirical study allows us to draw the following conclu-
sions:

• The hybrids methods are faster than all other methods since they use simultane-
ously several acceleration techniques to improve the efficiency of conventional
methods. Therefore, the combination of acceleration techniques is a good
solution when dealing with large-scale data.

• Spark framework is designed to overcome disk I/O limitations and supports
iterative algorithms. Hence, it is more suitable than MapReduce framework for
processing large-scale data.

• The triangle inequality-based methods perform well when the number of clusters
is large. However, they require additional memory to store the distances between
cluster centers.

• MapReduce and triangle inequality techniques can improve the efficiency of
conventional clustering without affecting the final clustering results. While
sampling-based methods like MBKM do not always converge to the same local
solution since they use a subsample instead of the entire dataset.

1.5 Conclusion

We focused in this chapter the area of Big data clustering, for which we give a
classification of the existing methods based on the used acceleration techniques. Our
study is essentially based on partitional clustering methods. For that, we review the
existing scalable Big data partitional methods in the literature, classified into four
main categories: parallel methods, data reduction-based methods, centers reduction-
based methods, and hybrids methods. We also provide theoretical and experimental
comparisons of the existing Big data partitional methods.

At the end of this overview, we claim that Big data clustering has a growing
interest in machine learning research since many real-world applications require a
scalable partitioning from a large amount of data. Many current challenges in Big
data clustering area motivate researchers to propose more effective and efficient
learning process. For example, recent works are interested in the identification of
groups from streaming large-scale data, or building clusters from uncertain large-
scale data. Other works are interested in the identification of clustering from data
having multiple representations. All these challenges within Big data clustering
open exciting directions for future researchers.

1 Overview of Scalable Partitional Methods for Big Data Clustering 21

References

1. M. Al-Ayyoub, A.M. Abu-Dalo, Y. Jararweh, M. Jarrah, M. Al Sa’d, A GPU-based implemen-
tations of the fuzzy C-means algorithms for medical image segmentation. J. Supercond. 71(8),
3149–3162 (2015)

2. B. Bahmani, B. Moseley, A. Vattani, R. Kumar, S. Vassilvitskii, Scalable k-means++. Proc.
VLDB Endow. 5(7), 622–633 (2012)

3. S. Bandyopadhyay, U. Maulik, An evolutionary technique based on K-means algorithm for
optimal clustering in RN. Inform. Sci. 146(1), 221–237 (2002)

4. M.A. Ben HajKacem, C.E. Ben N’cir, N. Essoussi, MapReduce-based k-prototypes clustering
method for big data, in Proceedings of Data Science and Advanced Analytics, pp. 1–7
(2015)

5. M.A. Ben HajKacem, C.E. Ben N’cir, N. Essoussi, KP-S: a spark-based design of the K-
prototypes clustering for big data, in Proceedings of ACS/IEEE International Conference on
Computer Systems and Applications, pp. 1–7 (2017)

6. M.A. Ben HajKacem, C.E. Ben N’cir, N. Essoussi, One-pass MapReduce-based clustering
method for mixed large scale data. J. Intell. Inf. Syst. 1–18 (2017)

7. J.C. Bezdek, R. Ehrlich, W. Full, FCM: the fuzzy c-means clustering algorithm. Comput.
Geosci. 10(2–3), 191–203 (1984)

8. P.S. Bradley, U.M. Fayyad. Refining initial points for K-means clustering, in Proceeding ICML
’98 Proceedings of the Fifteenth International Conference on Machine Learning, vol. 98, pp.
91–99 (1998)

9. M. Capó, A. Pérez, J.A. Lozano, An efficient approximation to the k-means clustering for
massive data. Knowl.-Based Syst. 117, 56–69 (2017)

10. M.E. Celebi, H.A. Kingravi, P.A. Vela, A comparative study of efficient initialization methods
for the k-means clustering algorithm. Expert Syst. Appl. 40(1), 200–210 (2013)

11. O. Chapelle, B. Scholkopf, A. Zien, Semi-supervised learning (Chapelle, O. et al., Eds.;
2006)[Book reviews]. IEEE Trans. Neural Netw. 20(3), 542–542 (2009)

12. S. Che, M. Boyer, J. Meng, D. Tarjan, J.W. Sheaffer, K. Skadron, A performance study of
general-purpose applications on graphics processors using CUDA. J. Parallel Distrib. Comput.
68(10), 1370–1380 (2008)

13. M.C. Chiang, C.W. Tsai, C.S. Yang, A time-efficient pattern reduction algorithm for k-means
clustering. Inform. Sci. 181(4), 716–731 (2011)

14. X. Cui, P. Zhu, X. Yang, K. Li, C. Ji, Optimized big data K-means clustering using MapReduce.
J. Supercomput. 70(3), 1249–1259 (2014)

15. J. Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters. Commun.
ACM 51(1), 107–113 (2008)

16. R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification. Wiley, Hoboken (2012)
17. J. Drake, G. Hamerly, Accelerated k-means with adaptive distance bounds, in 5th NIPS

Workshop on Optimization for Machine Learning, pp. 42–53 (2012)
18. J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.H. Bae, J. Qiu, G. Fox, Twister: a runtime

for iterative MapReduce, in Proceedings of the 19th ACM International Symposium on High
Performance Distributed Computing, pp. 810–818 (ACM, 2010)

19. C. Elkan, Using the triangle inequality to accelerate k-means, in Proceeding ICML’03 Pro-
ceedings of the Twentieth International Conference on International Conference on Machine
Learning, vol. 1(3) (2003), pp. 147–153

20. S. Eschrich, J. Ke, L.O. Hall, D.B. Goldgof, Fast accurate fuzzy clustering through data
reduction. IEEE Trans. Fuzzy Syst. 11(2), 262–270 (2003)

21. A.A. Esmin, R.A. Coelho, S. Matwin, A review on particle swarm optimization algorithm and
its variants to clustering high-dimensional data. Artif. Intell. Rev. 44(1), 23–45 (2015)

22. A. Fahad, N. Alshatri, Z. Tari, A. Alamri, I. Khalil, A.Y. Zomaya, . . ., A. Bouras, A survey of
clustering algorithms for big data: taxonomy and empirical analysis. IEEE Trans. Emerg. Top.
Comput. 2(3), 267–279 (2014)

22 M. A. B. HajKacem et al.

23. G. Hamerly, C. Elkan, Alternatives to the k-means algorithm that find better clusterings,
in Proceedings of the Eleventh International Conference on Information and Knowledge
Management, pp. 600–607 (ACM, New York, 2002)

24. J. Han, J. Pei, M. Kamber, Data Mining: Concepts and Techniques (Elsevier, New York, 2011)
25. Z. Huang, Clustering large data sets with mixed numeric and categorical values, in Proceedings

of the 1st Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 21–34 (1997)
26. Z. Huang, Extensions to the k-means algorithm for clustering large data sets with categorical

values. Data Min. Knowl. Disc. 2(3), 283–304 (1998)
27. P. Indyk, R. Motwani, Approximate nearest neighbors: towards removing the curse of dimen-

sionality, in Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, pp.
604–613 (1998)

28. T. Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Piatko, R. Silverman, A.Y. Wu, An efficient
k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach.
Intell. 24(7), 881–892 (2002)

29. K. Krishna, M.N. Murty, Genetic K-means algorithm. IEEE Trans. Syst. Man Cybern. B
Cybern. 29(3), 433–439 (1999)

30. T. Kwok, K. Smith, S. Lozano, D. Taniar, Parallel fuzzy c-means clustering for large data sets,
in Euro-Par 2002 Parallel Processing, pp. 27–58 (2002)

31. J.Z. Lai, T.J. Huang, Y.C. Liaw, A fast k-means clustering algorithm using cluster center
displacement. Pattern Recogn. 42(11), 2551–2556 (2009)

32. M. Laszlo, S. Mukherjee, A genetic algorithm using hyper-quadtrees for low-dimensional k-
means clustering. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 533–543 (2006)

33. Q. Li, P. Wang, W. Wang, H. Hu, Z. Li, J. Li, An efficient k-means clustering algorithm on
MapReduce, in Proceedings of Database Systems for Advanced Applications, pp. 357–371
(2014)

34. A. Likas, N. Vlassis, J.J. Verbeek, The global k-means clustering algorithm. Pattern Recogn.
36(2), 451–461 (2003)

35. S.A. Ludwig, MapReduce-based fuzzy c-means clustering algorithm: implementation and
scalability. Int. J. Mach. Learn. Cybern. 6, 1–12 (2015)

36. J. MacQueen, Some methods for classification and analysis of multivariate observations, in
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability 14(1),
281–297 (1967)

37. A. Mohebi, S. Aghabozorgi, T. Ying Wah, T. Herawan, R. Yahyapour, Iterative big data
clustering algorithms: a review. Softw. Pract. Exp. 46(1), 107–129 (2016)

38. J.D. Owens, M. Houston, D. Luebke, S. Green, J.E. Stone, J.C. Phillips, GPU computing. Proc.
IEEE 96(5), 879–899 (2008)

39. D. Pelleg, A. Moore, Accelerating exact k-means algorithms with geometric reasoning, in
Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 277–281. (ACM, New York, 1999)

40. D. Pelleg, A.W. Moore, X-means: extending k-means with efficient estimation of the number
of clusters, in Proceedings of the 17th International Conference on Machine Learning, vol. 1,
pp. 727–734 (2000)

41. S.J. Phillips, Acceleration of k-means and related clustering algorithms, in Algorithm Engineer-
ing and Experiments, pp. 166–177 (Springer, Berlin, 2002)

42. S.J. Redmond, C. Heneghan, A method for initialising the K-means clustering algorithm using
kd-trees. Pattern Recogn. Lett. 28(8), 965–973 (2007)

43. D. Sculley, Web-scale k-means clustering, in Proceedings of the 19th International Conference
on World Wide Web, pp. 1177–1178 (ACM, New York, 2010)

44. O. Sievert, H. Casanova, A simple MPI process swapping architecture for iterative applications.
Int. J. High Perform. Comput. Appl. 18(3), 341–352 (2004)

45. D. Singh, C.K. Reddy, A survey on platforms for big data analytics. J. Big Data 2(1), 8 (2015)
46. M. Snir, MPI—The Complete Reference: The MPI Core, vol. 1 (MIT Press, Cambridge, 1998),

pp. 22–56

1 Overview of Scalable Partitional Methods for Big Data Clustering 23

47. A. Vattani, K-means requires exponentially many iterations even in the plane. Discret. Comput.
Geom. 45(4), 596–616 (2011)

48. T. White, Hadoop: The Definitive Guide (O’Reilly Media, Sebastopol, 2012)
49. R. Xu, D.C. Wunsch, Clustering algorithms in biomedical research: a review. IEEE Rev.

Biomed. Eng. 3, 120–154 (2010)
50. M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, I. Stoica, Spark: cluster computing with

working sets. HotCloud 10(10–10), 95 (2010)
51. A. Zayani, C.E. Ben N’Cir, N. Essoussi, Parallel clustering method for non-disjoint partitioning

of large-scale data based on spark framework, in Proceedings of IEEE International Confer-
ence on Big Data, pp. 1064–1069 (IEEE, Piscataway, 2016)

52. J. Zhang, G. Wu, X. Hu, S. Li, S. Hao, A parallel k-means clustering algorithm with MPI,
in Proceedings of Fourth International Symposium on Parallel Architectures, Algorithms and
Programming, pp. 60–64 (2011)

53. W. Zhao, H. Ma, Q. He, Parallel k-means clustering based on MapReduce, in Proceedings of
Cloud Computing, pp. 674–679 (2009)

Chapter 2
Overview of Efficient Clustering Methods
for High-Dimensional Big Data Streams

Marwan Hassani

2.1 Introduction

Clustering is a well-established data mining concept that aims at automatically
grouping similar data objects while separating dissimilar ones. This process is
strongly dependent on the notion of similarity, which is often based on some
distance measure. Thus, similar objects are usually close to each other while
dissimilar ones are far from each other. The clustering task is performed without
a previous knowledge of the data, or in an unsupervised manner.

During the early stages of data mining research, the whole data objects were
considered to be statically and permanently stored in the memory. This allowed
the designed data mining technique to perform as much passages over the objects
as needed to deliver the desired patterns. In the era of big data, the recent growth
of the data size and the easiness of collecting data made the previous settings no
more convenient. The size of the continuously generated data and the limited storage
capacity allow in many scenarios for a single passage over the data, and users are
interested in gaining a real-time knowledge about the data as they are produced.

A data stream is an ordered sequence of objects that can be read once or very
small number of times using limited processing and computing storage possibilities.
This sequence of objects can be endless and flows usually at high speeds with
a varying underlying distribution of the data. This fast and infinite flow of data
objects does not allow the traditional permanent storage of the data and thus multiple
passages are not any more possible. Many domains are dealing essentially with data
streams. The most prominent examples include network traffic data, telecommuni-

M. Hassani (�)
Analytics for Information Systems Group, Eindhoven University of Technology,
Eindhoven, The Netherlands
e-mail: m.hassani@tue.nl

© Springer Nature Switzerland AG 2019
O. Nasraoui, C.-E. Ben N’Cir (eds.), Clustering Methods for Big Data Analytics,
Unsupervised and Semi-Supervised Learning,
https://doi.org/10.1007/978-3-319-97864-2_2

25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97864-2_2&domain=pdf
mailto:m.hassani@tue.nl
https://doi.org/10.1007/978-3-319-97864-2_2

26 M. Hassani

cation records, click streams, weather monitoring, stock trading, surveillance data,
health data, customer profile data, and sensor data. There is many more to come. A
very wide spectrum of real-world streaming applications is expanding. Particularly
in sensor data, such applications spread from home scenarios like the smart homes
to environmental applications, monitoring tasks in the health sector [13], in the
digital humanities using eye-tracking [21] or gesture monitoring but do not end with
military applications. Actually, any source of information can easily be elaborated to
produce a continuous flow of the data. Another emerging streaming data sources are
social data. In a single minute, 456,000 tweets are happening, 2,460,000 pieces of
content are shared on Facebook, Google conducts 3,607,080 searches, the weather
channel receives 18,055,555.56 forecast requests, Uber riders take 45,787.54 trips,
and 72 h of new videos are uploaded to YouTube while 4,146,600 videos are
watched.1

Users are interested in gaining the knowledge out of these information during
their same minute of generation. A delay, say till the next minute, might result in
an outdated knowledge. Furthermore, with the introduction of the new regulations
for data privacy protection like GDPR2 starting into effect at the end of May 2018,
businesses dealing with sensitive user profile data are not allowed anymore to store
them. Thus, they would need to switch to a flexible and streaming structure to
manage and analyze real-time customer behavior data.

The abovementioned emerging applications motivated dozens of research topics
and development frameworks during the previous one and a half decades. Extracting
a real-time knowledge out of large numbers of objects with an evolving nature
required a different look at data than the traditional static one. Particularly, an
unsupervised mining of evolving objects in the real-time was needed in multiple
applications. In this chapter, we give an overview of the challenges as well as the
contributions in this emerging field by highlighting some of the main algorithms
there.

The remainder of this chapter is organized as follows: Sect. 2.2 introduces data
streams with some applications. In Sect. 2.3, we list the challenges one has to face
while designing stream clustering algorithms for mining big data. In Sect. 2.4, we
present, at a high level of abstraction, recent approaches in the field of big data
stream mining that overcame the challenges mentioned in Sect. 2.3. Finally, Sect. 2.5
concludes this chapter.

2.2 Streaming Data

Objects from the perspective of static mining approaches are all available in the
memory while running the algorithm. As a result, the algorithm can scan objects as
much as needed to generate the final output without assuming any order for reading

1Sources: domo.com and statisticbrain.com.
2https://www.eugdpr.org/.

https://www.eugdpr.org/

2 Overview of Efficient Clustering Methods for High-Dimensional Big Data Streams 27

these objects. In the streaming setting, an endless flow of objects o1, o2, . . ., oi ,
. . . of the dataset D is seen at timestamps t1, t2, . . ., ti , . . ., respectively, where
ti+t > ti for all i values. Each object oi seen at ti is a d-dimensional tuple: oi =
(oi1, oi2,. . . , oid) ∈ D.

Due to the endless flow of streaming objects, it is not realistic to assume a
possibility of memory storage of all oi ∈ D. This is mainly due to limitations
of storage, processing power, expected response time, and even available energy.
Efficient mining approaches aim at minimizing the number of scans they perform
over the objects before generating the final output. Thus, both the needed storage
and the required processing power are limited such that the final output that includes
objects oi, oi+1, . . . oj is generated before the arrival of object oj+1 at timestamp
tj+1.

Figure 2.1 gives some examples about real world application that produce data
streams. Most of these scenarios are covered within the scope of the algorithms
presented in this chapter. Figure 2.1a shows an example about wired streaming data
that monitor some flowing phenomenon like network traffic data, click streams, or
airport camera monitoring. Figure 2.1b presents a visualization of streaming tweets
with a certain tag and within a certain time using the Streamgraph framework
[6]. Figure 2.1c depicts an application of a wireless sensor network deployment

Fig. 2.1 Reference [12]. Examples of big data streams

28 M. Hassani

Fig. 2.2 Reference [12]. Two applications of mining body-generated streaming data. (a) In a
health care scenario [13] and (b) in a translation scenario in collaboration with psycholinguists
in the humanities area [21]

in a bridge for surveillance or load observation. Sensors are producing continuous
streams of readings, and experts need to collect a real-time knowledge about
the stability of the bridge in the case of emergency, or gather regular reports
in the normal case. Similarly, Fig. 2.1d shows an example of sensors collecting
temperature, humidity, and light information from multiple offices in Intel Berkeley
Research Lab [10]. Such sensors are usually of limited storage, processing power,
and battery life. In Fig. 2.2a, a body sensor network is producing multiple streams
about the health status of the runner. Other sensors are collecting streams of other
contextual information like the weather and location information. These can be
processed on a local mobile device or a remote server to gain, for instance, some
knowledge about the near-future status. Figure 2.2b presents another type of sensor
streaming data where an eye-tracking system is used to record the duration and the

2 Overview of Efficient Clustering Methods for High-Dimensional Big Data Streams 29

position of each eye fixation over the monitor during a human reading or writing
process. One task could be here finding interesting patterns that represent important
correlations between eye gazes and key strokes [21].

Stream clustering aims at detecting clusters that are formed out of the evolving
streaming objects. These clusters must be continuously updated as the stream
emerges to follow the current distribution of the data. These clusters represent
mainly the gained knowledge out of the clustering task. In this chapter, advanced
stream clustering models are introduced. These models are mainly motivated by the
basic challenges that we have observed for clustering of streaming data in real world
scenarios, particularly sensor streaming data (cf. Fig. 2.1).

2.3 Challenges of Stream Clustering of Big Data

Designing stream clustering approaches has some unique special challenges. We list
in the following the different paradigms that make it challenging to design a stream
clustering approach.

2.3.1 Adaptation to the Stream Changes and Outlier Awareness

The algorithm must incrementally cluster the stream data points to detect evolving
clusters over the time, while forgetting outdated data. New trends of the data must
be detected at the same time of their appearance. Nevertheless, the algorithm must
be able to distinguish new trends of the stream from outliers. Fulfilling the up-to-
date requirement contradicts the outlier awareness one. Thus, meeting this tradeoff
is one of the basic challenges of any stream clustering algorithm.

2.3.2 Storage Awareness and High Clustering Quality

Due to the huge sizes and high speeds of streaming data, any clustering algorithm
must perform as few passages over the objects as possible. In most cases, the
application and the storage limitations allow only for a single passage. However,
high-quality clustering results are requested to make the desired knowledge out of
the data stream. Most static clustering models tend to deliver an initial, sometimes
random, clustering solution and then optimize it by revisiting the objects to
maximize some similarity function. Although such multiple-passages possibility
does not exist for streaming algorithms, the requirement of an optimized, high-
quality clustering does still exist.

30 M. Hassani

2.3.3 Efficient Handling of High-Dimensional,
Different-Density Streaming Objects

The current huge increase of the sizes of data was accompanied with a similar boost
in their number of dimensions. This applies of course to streaming data too. For
such kinds of data with higher dimensions, distances between the objects grow
more and more alike due to an effect termed curse of dimensionality [4]. According
to this effect, applying traditional clustering algorithms in the full-space merely
will result in considering almost all objects as outliers, as the distances between
them grow exponentially with their dimensionality d . The latter fact motivated the
research in the area of subspace clustering over static data in the last decade, which
searches for clusters in all of the 2d − 1 subspaces of the data by excluding a
subgroup of the dimensions at each step. Apparently, this implies higher complexity
of the algorithm even for static data, which makes it even more challenging when
considering streaming data.

Additionally, as the stream evolves, the number, the density, and the shapes of
clusters may dramatically change. Thus, assuming a certain number of clusters
like in k-means-based clustering models or setting a static density threshold as in
the DBSCAN-based clustering models is not convenient for a stream clustering
approach. A self-adjustment to the different densities of the data is strongly needed
while designing a stream clustering algorithm. Again, this requirement is in conflict
with the storage awareness necessity.

2.3.4 Flexibility to Varying Time Allowances Between
Streaming Objects

An additional, natural characteristic of data streams (e.g., sensor data) is the fluctuat-
ing speed rate. Streaming data objects arrive usually with different time allowances
between them, although the application settings would assume a constant stream
speed. Available stream clustering approaches, called budget algorithms in this
context, strongly restrict their model size to handle minimal time allowance to be
on the safe side (cf. Fig. 2.6). In the case of reduced stream speed, the algorithm
remains idle during the rest of the time, till the next streaming object arrives.
Anytime mining algorithms, designed recently for static data, try to make use of
any given amount time to deliver some result. Longer given times imply higher
clustering quality. This idea was adopted for clustering streaming data. Although
this setting can be seen as an opportunity for improving the clustering quality rather
than a challenge, it is not trivial to have a flexible algorithmic model that is able to
deliver some result even with very fast streams.

2 Overview of Efficient Clustering Methods for High-Dimensional Big Data Streams 31

2.3.5 Energy Awareness and Lightweight Clustering of Sensor
Data Streams

Wireless sensor nodes are equipped with a small processing device, a tiny memory,
and a small battery in addition to the sensing unit [27]. This encouraged the research
in the area of in-sensor-network mining, where the nodes do some preprocessing of
the sensed data instead of simply forwarding it. In many of these applications, sensor
nodes are distributed in unreachable areas without a cheap possibility of changing
the battery. Thus, the usability time of the node is bounded by the battery lifetime.
In this manner, besides the previously mentioned challenges, clustering sensor
streaming data has to carefully consume the processing and energy resources. In fact,
clustering and aggregation approaches are used within wireless sensor networks to
save energy by preprocessing the data in the node, and forwarding the relevant ones
merely.

2.4 Recent Contributions in the Field of Efficient Clustering
of Big Data Streams

In this section, we present, at a high level of abstraction, novel, efficient stream
clustering algorithms that consider all of the above challenges mentioned in
Sect. 2.3. These contributions [12] are structured in the following four subsections.
In Sect. 2.4.1, we present novel high-dimensional density-based stream cluster-
ing techniques. In Sect. 2.4.2, we introduce advanced anytime stream clustering
approaches. In Sect. 2.4.3, we present efficient methods for clustering sensor data
and aggregating sensor nodes. Finally, in Sect. 2.4.4, we present unique subspace
stream clustering framework as well as the subspace cluster mapping evaluation
measure. In all of the following subsections, the first and the second challenges
mentioned in Sects. 2.3.1 and 2.3.2 are carefully considered. Each of the rest of the
challenges (Sects. 2.3.3–2.3.5) is the main focus in one of the following subsections,
as we will explain.

2.4.1 High-Dimensional, Density-Based Stream Clustering
Algorithms

In this line of research to address big data stream clustering, we refer to three
density-based stream clustering algorithms. Here, the third challenge mentioned in
Sect. 2.3.3 is mainly considered.

In [18], an efficient projected stream clustering algorithm called PreDeCon-
Stream is introduced for handling high-dimensional, noisy, evolving data streams.
This technique is based on a two-phase model (cf. Fig. 2.3). The first phase repre-

32 M. Hassani

Input stream

Online
component

Offline
component

Continuous summaries
(microclusters)

Final clustering over
microclusters

User clustering
request

Fig. 2.3 Reference [12]. The online–offline model of stream clustering algorithms. Decayed input
objects have lighter colors than recent ones

Fig. 2.4 Reference [12]. The steps of HASTREAM algorithm [19]. The incremental part is
explained in red arrows to maintain the clustering at timestamp tj after the red insertions and
deletions of microclusters introduced to the old ones from timestamp ti

sents the process of the online maintenance of data summaries, called microclusters,
that are then passed to an offline phase for generating the final clustering. The
technique works on incrementally updating the output of the online phase stored
in a microcluster structure. Taking those microclusters that are fading out over time
into consideration speeds up the process of assigning new data points to the existing
clusters. The algorithm localizes the change to the previous clustering result, and
smartly uses a clustering validity interval to make an efficient offline phase.

In HASTREAM [19], a hierarchical, self-adaptive, density-based stream clus-
tering model is contributed (cf. Fig. 2.4). The algorithm focuses on smoothly
detecting the varying number, densities, and shapes of the streaming clusters. A
cluster stability measure is applied over the summaries of the streaming data (the
microclusters in Fig. 2.3), to extract the most stable offline clustering. Algorithm 1
gives a pseudo-code of HASTREAM (cf. Fig. 2.4 and [19] for further details).
In order to improve the efficiency of the suggested model in the offline phase,

2 Overview of Efficient Clustering Methods for High-Dimensional Big Data Streams 33

Algorithm 1 HASTREAM(DataStream ds, minClusterWeight , bool
incUpdate)
1: initialization phase
2: repeat
3: get next point oi ∈ ds with current timestamp ti ;
4: insert oi in the microclusters using online parameter settings;
5: if (ti mod updateF requency == 0) then
6: if incUpdate then
7: incrementally update the minimal spanning tree MST by maintaining it;
8: else
9: compute the mutual reachability graph MRG and corresponding MST from scratch

10: end if
11: HC ← extractHierarchicalClusters(MST , minClusterWeight);
12: C ← extractFlatClustering(HC);
13: return C;
14: end if
15: until data stream terminates

50

60

70

80

90

100

[0,100[[100,200[[200,300[[300,400[[400,500[[500,600[[600,700[[700,719]

Pu
rit

y
[%

]

Time interval

Ite-LS Inc-LS-MT=0.5 Inc-LS-MT=1 Inc-LS-IM
Denstream Ite-IS Inc-IS-IM

Fig. 2.5 Purity of detected clustered in five variants of HASTREAM [19] compared to DenStream
[7] for the physiological dataset [26]. Timestamps are ×1000

some methods from the graph theory are adopted and others were contributed, to
incrementally update a minimal spanning tree of microclusters (cf. the red arrows in
Fig. 2.4). This tree is used to continuously extract the final clustering, by localizing
the changes that appeared in the stream, and maintaining the affected parts merely.
The averaged purity for this dataset is shown in Fig. 2.5. All four variants of
HASTREAM [19] have a higher averaged purity than that of DenStream [7] over
the physiological dataset [26].

34 M. Hassani

qu
al

ity

constant stream

varying stream

Fig. 2.6 The concept of anytime stream mining algorithms [12]

2.4.2 Advanced Anytime Stream Clustering Algorithms

By considering all other challenges, the main focus of the two algorithms presented
in this section are the third and the fourth challenges mentioned in Sects. 2.3.3
and 2.3.4. Anytime algorithms build upon the realistic assumption of the varying
time allowances between streaming objects (cf. Fig. 2.6). They aim at increasing the
quality of their output if they were given more time (i.e., the time allowance Δt is
bigger) instead of being idle as in traditional algorithms.

The LiarTree algorithm [17] is contributed on the online phase (cf. Fig. 2.3)
to provide precise stream summaries and to effectively handle noise, drift, and
novelty at any given time. It is proven that the runtime of the anytime algorithm is
logarithmic in the size of the maintained model opposed to a linear time complexity
often observed in previous approaches. The main contributions of this technique are
enabling the anytime concept to fast adapt to the new trends of the data, filtering
noise and keeping a logarithmic complexity.

In the SubClusTree algorithm [20], even another complexity dimension to the
problem addressed in LiarTree [17] is added. The high-dimensionality paradigm
of big streaming data (cf. Sect. 2.3.3) is considered together with the varying
arrival times and the streaming aspects of the data (cf. Sect. 2.3.4). SubClusTree
is a subspace anytime stream clustering algorithm, that can flexibly adapt to the
different stream speeds and makes the best use of available time to provide a high-
quality subspace clustering. It uses compact index structures to maintain stream
summaries in the subspaces in an online fashion. It uses flexible grids to efficiently
distinguish the relevant subspaces (i.e., subspaces with clusters) from irrelevant ones.
Algorithm 2 contains a pseudo-code of SubClusTree. An object is inserted in all one-
dimensional trees and if there is more time, the object is inserted into following most
potential higher-dimensional tree.

In Fig. 2.7, one can obviously observe the anytime effect of SubClusTree using
a 25-dimensional dataset with five clusters hidden in only 13 relevant dimensions
out of the 25. For a very fast stream, a lower clustering quality is achieved. It can
be seen that an average interval of 50 steps between objects is very close to the best
possible value.

2 Overview of Efficient Clustering Methods for High-Dimensional Big Data Streams 35

Algorithm 2 SubClusTree
1: Initialization: store subspace trees in the bitmap with bit-vector as key
2: repeat
3: insert oi and update the global cluster feature to time ti ;
4: for j = 1 to d (number of dimensions) do
5: insert oij into the one-dimensional tree of subspace j ;
6: end for
7: if (ti mod updateF requency == 0) then
8: create candidateT rees and rank them according to their expected potential;
9: remove trees with insufficient potential; // but keep 1-dimensional trees

10: end if
11: while next object oi+1 did not arrive yet and moreT reesAvailable do
12: insert oi into next subspace tree
13: end while
14: until data stream terminates

0.4

0.5

0.6

0.7

0.8

0.9

5 10 15 20 25 50 100 150

Pu
rit

y

Average steps between objects

Stream speed comparison

Fig. 2.7 Reference [12]. Average purity achieved by varying the inter-arrival times of the objects
Δt

2.4.3 Energy-Efficient Algorithms for Aggregating
and Clustering Sensor Streaming Data

In the three algorithms contributed in this line of research, the main focus is the
fifth challenge mentioned in Sect. 2.3.5, while keeping the main challenges from
Sects. 2.3.1 and 2.3.2 in mind.

The EDISKCO algorithm [15] is an Energy-Efficient Distributed In-Sensor-
Network K-Center Clustering algorithm with Outliers. Sensor networks have
limited resources in terms of available memory and residual energy. As a dominating
energy consuming task, the communication between the node and the sink has to
be reduced for a better energy efficiency. Considering memory, one has to reduce
the amount of stored information on each sensor node. EDISKCO performs an
outlier-aware k-center clustering [11] over the sensed streaming data in each node
and forwards the clustering result to the neighboring coordinator node. For that,

36 M. Hassani

Algorithm 3 EDISKCO on Node side
1: Initialization: Select the first InitPts objects from the stream;
2: perform an offline k-center clustering over the InitPts objects;
3: send the k centers and the cluster radius R to the coordinator
4: repeat
5: insert oi in available clusters and update cluster centers c1, c2, . . . ck ;
6: if changed, send the new centers to the coordinator;
7: if oi does not fit in any available cluster and number of clusters == k then
8: recluster after getting the coordinator acknowledgment;
9: end if

10: until data stream terminates

Algorithm 4 EDISKCO on Coordinator side
1: repeat
2: receive k-center solutions from all nodes and perform another k-center clustering on them;
3: Acknowledge reclustering by broadcasting the biggest current radius from all nodes;
4: Change coordinator w.r.t. residual energy;
5: until data stream terminates

each node consumes considerably less energy than the cost of forwarding all of its
readings to the sink. The update from the node to the coordinator happens only upon
a certain deviation of the cluster radii, controlled by an ε threshold, or upon the birth
or the deletion of a cluster. One node is selected as a coordinator from each spatially
correlated subgroup of the nodes, depending on the amount of the residual energy.
The coordinator performs another k-center clustering over the multiple clustering
solutions arriving from its neighboring nodes and forwards the solution to the far
sink. These are major contributions as one can perform a single passage over the data
by using a O(k) storage over the nodes and getting finally a high clustering quality
of a (4 + ε)-approximation to the optimal clustering. But, the main contribution
is performing up to 95% less communication tasks on the nodes compared to a
state-of-the-art technique. Thus, huge savings of energy are achieved. Algorithm 3
summarizes the node side procedure of EDISKCO while Algorithm 4 abstracts the
approach on the coordinator side.

A weighted version of EDISKCO, called SenClu, is contributed in [14]. It
guarantees a faster adaptation to the new trends of the drifting data streams. The
technique gives more importance to new data points, while slowly forgetting older
ones by giving them less weight. To achieve this, a novel, light-weighted decaying
function is contributed, that can be implemented on the tiny processing unit and
works on the limited storage capacity of sensor nodes. SenClu achieves even better
clustering quality than EDISKCO while draining almost the same amount of energy.

One can see from Table 2.1 that on the real dataset (i9-Sensor Dataset), SenClu
[14] consumes less than two Joules more than EDISKCO [15], and absorbs
considerably less energy than the state-of-the-art competitor PG [8]. When using
the Physiological Sensor Dataset [26], SenClu consumes less energy than both
competitors. Figure 2.8a shows that SenClu [14] and EDISKCO [15] always have a
better clustering quality than PG [8] on the node side. Because PG is more sensitive

2 Overview of Efficient Clustering Methods for High-Dimensional Big Data Streams 37

Table 2.1 Average energy consumption in Joule of a single node in the network by the end of
each dataset when using SenClu, EDISKCO, and PG

Dataset Size Nodes SenClu [14] EDISKCO [15] PG [8]

i9-Sensor 40,589 19 28,770.2 28,768.38 28,792.5

Physio [26] 24,000 12 17,074.3 17,074.4 17,078.9

Lowest energy consumption is in bold

0

0.1

0.2

0.3

0.4

0.5

0.6

13351 15019 17498 20000 24000

Si
lh

ou
e�

e
Co

effi
ci

en
t

Sensor Data Measurements

SenClu EDISKCO PG

(a)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

62 13114 13164 13180 24000

G
lo

ba
l R

ad
iu

s

Sensor Data Measurements

SenClu EDISKCO PG

(b)

Fig. 2.8 Reference [12]. The clustering quality using the Real Physiological Sensor Dataset [26]
over different parts of the input stream data. (a) Silhouette coefficient (higher is better), (b) Rglobal
(lower is better)

to noise than SenClu and EDISKCO, it is performing considerably worse than the
others on this relatively noisy dataset. Figure 2.8b is showing that on the node side,
SenClu is having most of the time the same global radius as EDISKCO. Only for a
short time, SenClu is having a bigger radius than EDISKCO.

38 M. Hassani

A further challenge for aggregating streaming data within the sensor network
is tackled. The physical clustering of sensor nodes depending on their similarity
is considered in the presented ECLUN algorithm [16]. The readings of a carefully
selected representative node are used to simulate the measurements of similar nodes.
While the recent approaches concentrated on the full-dimensionality correlation
between the readings, ECLUN selects the representatives depending on the subspace
correlation between some attributes of the measurements as well as the spatial
similarity. Additionally, the usage of energy between the nodes is uniformly
distributed, and, thus, the cases of single-node clusters are handled by changing
representatives according to the residual energy. This results in a longer lifetime of
the whole sensor network as nodes die close to each other.

2.4.4 A Framework and an Evaluation Measure for Subspace
Stream Clustering

This section presents some contributions mainly in the Evaluation and Visualization
step of the KDD (Knowledge Discovery in Databases) process.

The first subspace clustering evaluation framework over data streams, called
Subspace MOA, is presented in [22]. This open-source framework is based on the
MOA stream mining framework [5], and has three phases (cf. Fig. 2.9). In the online
phase, users have the possibility to select one of three most famous summarization
techniques to form the microclusters. Upon a user request for a final clustering, the
regeneration phase constructs the data objects out of the current microclusters. Then,
in the offline phase, one of five subspace clustering algorithms can be selected. In
addition to the previous combinations, the framework contains available projected
stream clustering algorithms like PreDeConStream [18] and HDDStream [25]. The
framework is supported with a subspace stream generator, a visualization interface,
and various subspace clustering evaluation measures. With the increase of the size
of high-dimensional data, applying traditional subspace clustering algorithms is
impossible due to their exponential complexities. Figure 2.10 shows, for instance,

user request
CFA

CFB

CFF
CFE

CFG

CFC CFD

Fig. 2.9 Reference [12]. Subspace MOA model for stream subspace clustering for big data. The
blue arrows represent the online phase, the green arrow represents the regeneration phase, and the
red arrow represents the offline phase

2 Overview of Efficient Clustering Methods for High-Dimensional Big Data Streams 39

(a)

1

10

100

1000

10000

2000 3334 5000 10000

Window Size

Clique Subclu Proclus P3C

(b)

0

50

100

150

200

250

300

5K 10K 20K 50K 100K 150K 180K 200K

Ti
m

e
in

 S
ec

on
ds

Dataset Size

Static PROCLUS

Fig. 2.10 Reference [12]. (a): The runtime of the static subspace clustering algorithm: PROCLUS
[1]. Beginning from a sub-dataset size of 200 K objects only, the algorithm fails to successfully
finish the running. (b): A successful run of PROCLUS (and other subspace clustering algorithms
Clique [3], SubClu [23], and P3C [24]) over the whole KDD dataset [9] when applying the
streaming PROCLUS using Subspace MOA with CluStream [2] in the online phase on the same
machine

that when using the same machine, it was only possible by using Subspace MOA,
to get a relatively large dataset clustered with a subspace clustering algorithm
(PROCLUS [1]).

In [22], a novel external evaluation measure for stream subspace clustering
algorithms called SubCMM: Subspace Cluster Mapping Measure is contributed.
SubCMM is able to handle errors caused by emerging, moving, or splitting subspace
clusters. This first evaluation measure that is designed to reflect the quality of stream
subspace algorithms is directly integrated in the Subspace MOA framework. This
new measure was extensively compared against state-of-the-art full-space stream
clustering evaluation measures. The experimental evaluation, performed using the
Subspace MOA framework, depicts the ability of SubCMM to reflect the different
changes happening in the subspaces of the evolving stream.

2.5 Conclusion

In this chapter, we have mainly addressed the following three v’s of big data: veloc-
ity, volume, and variety. Various streaming data applications, with huge volumes
and varying velocities, were considered in different scenarios and applications.

A list of the recent challenges that face the designer of a stream clustering
algorithm was shown and deeply discussed. Finally, some recent contributions on
four main research lines in the area of big data stream mining were presented and
their fulfillment to the design requirements was highlighted. Table 2.2 summarizes
the main properties of some stream clustering algorithms mentioned in this chapter.

40 M. Hassani

T
ab

le
2.

2
Pr

op
er

ti
es

of
th

e
di

ff
er

en
t

st
re

am
cl

us
te

ri
ng

al
go

ri
th

m
s

di
sc

us
se

d
in

th
is

ch
ap

te
r

(n
a

=
no

ta
pp

li
ca

bl
e,
∼

=
in

di
re

ct
ly

av
ai

la
bl

e)

A
lg

or
it

hm
O

nl
in

e–
of

fli
ne

m
od

el

D
en

si
ty

-
ba

se
d

(i
n

on
li

ne
ph

as
e)

D
en

si
ty

-
ba

se
d

(i
n

of
fli

ne
ph

as
e)

H
ie

ra
rc

hi
ca

l
O

ut
li

er
-

aw
ar

e
(c

f.
Se

ct
.2

.3
.1

)

D
en

si
ty

-
ad

ap
tiv

e
(c

f.
Se

ct
.2

.3
.3

)

A
ny

ti
m

e
(c

f.
Se

ct
.2

.3
.4

)

L
ig

ht
w

ei
gh

t
cl

us
te

ri
ng

(c
f.

Se
ct

.2
.3

.5
)

In
cr

em
en

ta
l

(i
n

of
fli

ne
ph

as
e)

O
ve

rl
ap

pi
ng

cl
us

te
rs

an
d

su
bs

pa
ce

s

D
at

a
st

ru
ct

ur
e

of
m

ic
ro

-
cl

us
te

rs

F
ul

l-
sp

ac
e

st
re

am
cl

us
te

ri
ng

al
go

ri
th

m
s

C
lu

St
re

am
[2

]
�

n
a

P
yr

am
id

al
ti

m
e

fr
am

e

D
en

St
re

am
[7

]
�

�
�

�
n
a

L
is

t

L
ia

rT
re

e
[1

7]
�

�
n
a

�
�

n
a

I
n
d
e
x

H
A

ST
R

E
A

M
[1

9]
�

�
�

�
�

�
n
a

I
n
d
e
x

or
L

is
t

E
D

IS
K

C
O

[1
5]

∼
∼

�
�

n
a

L
is

t

Se
nC

lu
[1

4]
∼

∼
�

�
�

n
a

L
is

t

Su
bs

pa
ce

st
re

am
cl

us
te

ri
ng

al
go

ri
th

m
s

Pr
eD

eC
on

St
re

am
[1

8]
�

�
�

�
L

is
t

H
D

D
St

re
am

[2
5]

�
�

�
�

L
is

t

Su
bC

lu
sT

re
e

[2
0]

�
�

n
a

�
�

�
I
n
d
e
x

E
C

L
U

N
[1

6]
∼

∼
�

�
�

n
a

L
is

t

2 Overview of Efficient Clustering Methods for High-Dimensional Big Data Streams 41

References

1. C.C. Aggarwal, J.L. Wolf, P.S. Yu, C. Procopiuc, J.S. Park, Fast algorithms for projected clus-
tering, in Proceedings of the 1999 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’99, pp. 61–72 (ACM, New York, 1999)

2. C.C. Aggarwal, J. Han, J. Wang, P.S. Yu, A framework for clustering evolving data streams, in
Proceedings of the 29th International Conference on Very Large Data Bases, VLDB ’03, pp.
81–92 (VLDB Endowment, Los Angeles, 2003)

3. R. Agrawal, J. Gehrke, D. Gunopulos, P. Raghavan, Automatic subspace clustering of high
dimensional data for data mining applications, in Proceedings of the 1998 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’98, pp. 94–105 (ACM, New
York , 1998)

4. K.S. Beyer, J. Goldstein, R. Ramakrishnan, U. Shaft, When is “nearest neighbor” meaningful?
in Proceedings of the 7th International Conference on Database Theory, ICDT ’99, pp. 217–
235 (Springer, Berlin, 1999)

5. A. Bifet, G. Holmes, R. Kirkby, B. Pfahringer, MOA: Massive online analysis. J. Mach. Learn.
Res. 11, 1601–1604 (2010)

6. L. Byron, M. Wattenberg, Stacked graphs - geometry & aesthetics. IEEE Trans. Vis. Comput.
Graph. 14(6), 1245–1252 (2008)

7. F. Cao, M. Ester, W. Qian, A. Zhou, Density-based clustering over an evolving data stream
with noise, in Proceedings of the 6th SIAM International Conference on Data Mining, SDM
’06, pp. 328–339 (2006)

8. G. Cormode, S. Muthukrishnan, W. Zhuang, Conquering the divide: continuous clustering of
distributed data streams, in IEEE 23rd International Conference on Data Engineering, ICDE
’07, pp. 1036–1045 (IEEE Computer Society, Washington, 2007)

9. N.I. Dataset, KDD cup data (1999). http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
10. I. Dataset, Dataset of Intel Berkeley Research Lab (2004) URL: http://db.csail.mit.edu/labdata/

labdata.html
11. S. Guha, Tight results for clustering and summarizing data streams, in Proceedings of the

12th International Conference on Database Theory, ICDT ’09, pp. 268–275 (ACM, New York,
2009)

12. M. Hassani, Efficient clustering of big data streams, Ph.D. thesis, RWTH Aachen University,
2015

13. M. Hassani, T. Seidl, Towards a mobile health context prediction: sequential pattern mining in
multiple streams, in Proceedings of the IEEE 12th International Conference on Mobile Data
Management, vol. 2 of MDM ’11, pp. 55–57 (IEEE Computer Society, Washington, 2011)

14. M. Hassani, T. Seidl, Distributed weighted clustering of evolving sensor data streams with
noise. J. Digit. Inf. Manag. 10(6), 410–420 (2012)

15. M. Hassani, E. Müller, T. Seidl, EDISKCO: energy efficient distributed in-sensor-network k-
center clustering with outliers, in Proceedings of the 3rd International Workshop on Knowledge
Discovery from Sensor Data, SensorKDD ’09 @KDD ’09, pp. 39–48 (ACM, New York, 2009)

16. M. Hassani, E. Müller, P. Spaus, A. Faqolli, T. Palpanas, T. Seidl, Self-organizing energy aware
clustering of nodes in sensor networks using relevant attributes, in Proceedings of the 4th
International Workshop on Knowledge Discovery from Sensor Data, SensorKDD ’10 @KDD
’10, pp. 39–48 (ACM, New York, 2010)

17. M. Hassani, P. Kranen, T. Seidl, Precise anytime clustering of noisy sensor data with
logarithmic complexity, in Proceedings of the 5th International Workshop on Knowledge
Discovery from Sensor Data, SensorKDD ’11 @KDD ’11, pp. 52–60 (ACM, New York, 2011)

18. M. Hassani, P. Spaus, M.M. Gaber, T. Seidl, Density-based projected clustering of data streams,
in Proceedings of the 6th International Conference on Scalable Uncertainty Management,
SUM ’12, pp. 311–324 (2012)

19. M. Hassani, P. Spaus, T. Seidl, Adaptive multiple-resolution stream clustering, in Proceedings
of the 10th International Conference on Machine Learning and Data Mining, MLDM ’14, pp.
134–148 (2014)

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://db.csail.mit.edu/labdata/labdata.html
http://db.csail.mit.edu/labdata/labdata.html

42 M. Hassani

20. M. Hassani, P. Kranen, R. Saini, T. Seidl, Subspace anytime stream clustering, in Proceedings
of the 26th Conference on Scientific and Statistical Database Management, SSDBM’ 14, p. 37
(2014)

21. M. Hassani, C. Beecks, D. Töws, T. Serbina, M. Haberstroh, P. Niemietz, S. Jeschke,
S. Neumann, T. Seidl, Sequential pattern mining of multimodal streams in the humanities,
in Datenbanksysteme für Business, Technologie und Web (BTW), 16. Fachtagung des GI-
Fachbereichs “Datenbanken und Informationssysteme” (DBIS), 4.-6.3.2015 in Hamburg,
Germany. Proceedings, pp. 683–686 (2015)

22. M. Hassani, Y. Kim, S. Choi, T. Seidl, Subspace clustering of data streams: new algorithms
and effective evaluation measures. J. Intell. Inf. Syst. 45(3), 319–335 (2015)

23. K. Kailing, H.-P. Kriegel, P. Kröger, Density-connected subspace clustering for high-
dimensional data, in Proceedings of the SIAM International Conference on Data Mining, SDM
’04, pp. 246–257 (2004)

24. G. Moise, J. Sander, M. Ester, P3C: a robust projected clustering algorithm, in Proceedings
of the 6th IEEE International Conference on Data Mining, ICDM ’07, pp. 414–425 (IEEE,
Piscataway, 2006)

25. I. Ntoutsi, A. Zimek, T. Palpanas, P. Kröger, H.-P. Kriegel, Density-based projected clustering
over high dimensional data streams, in Proceedings of the 12th SIAM International Conference
on Data Mining, SDM ’12, pp. 987–998 (2012)

26. Physiological dataset. http://www.cs.purdue.edu/commugrate/data/2004icml/
27. J. Polastre, R. Szewczyk, D. Culler, Telos: enabling ultra-low power wireless research,

in Proceedings of the 4th International Symposium on Information Processing in Sensor
Networks, IPSN ’05 (IEEE Press, , Piscataway, 2005)

http://www.cs.purdue.edu/commugrate/data/2004icml/

Chapter 3
Clustering Blockchain Data

Sudarshan S. Chawathe

3.1 Introduction

Blockchains, cryptocurrencies, and Bitcoin in particular, have grown increasingly
popular by most social and financial metrics [12]. They receive wide coverage in
mainstream news outlets and publications. Perhaps the metric that garners most
attention is the appreciation of several cryptocurrencies relative to conventional
fiat currencies such as the US dollar. Figure 3.1 summarizes this appreciation
(note logarithmic scale). While the valuations and their longevity are subject to
debate and speculation [23], there is much less uncertainty about the underlying
blockchain technology and distributed socio-technical model, which seem here to
stay [52, 61]. For instance, several major financial institutions are deploying private
or restricted blockchains for internal or co-institutional use, and there is a growing
collection of financial and non-financial applications [42]. Another example of non-
cryptocurrency use of blockchains is a system for publicizing scientific datasets [48].
In their overview of Bitcoin in the context of computer science research, Bonneau
et al. conclude [10]:

Our extensive analysis of Bitcoin based on both the academic and (vast, fragmented)
online literature shows a renaissance of new ideas in designing a practical cryptocurrency,
a longstanding challenge for the computer security community. Innovation has not been
limited to new cryptocurrency protocol designs but has touched many areas of computer
security, distributed systems, hardware design, and economics. This is a rich and deep space
and it should not be overlooked simply because many ideas did not originate from traditional
computer science research institutes.

S. S. Chawathe (�)
University of Maine, Orono, ME, USA
e-mail: chaw@eip10.org

© Springer Nature Switzerland AG 2019
O. Nasraoui, C.-E. Ben N’Cir (eds.), Clustering Methods for Big Data Analytics,
Unsupervised and Semi-Supervised Learning,
https://doi.org/10.1007/978-3-319-97864-2_3

43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97864-2_3&domain=pdf
mailto:chaw@eip10.org
https://doi.org/10.1007/978-3-319-97864-2_3

44 S. S. Chawathe

1

10

100

1000

10000

2012 2014 2016 2018
date

D
ol

la
rs

 U
S

D
 p

er
 B

itc
oi

n
X

B
T

Bitcoin exchange rate history

Fig. 3.1 Bitcoin (XBT) prices in US dollars (USD), log scale, by date. Plot generated by
combining historical exchange rate data from a freely available spreadsheet [5] (2010–2013, from
the defunct Mt. Gox exchange) with similar data from CoinMarketCap [13] (2013–2018, from a
weighted average of several markets)

All the above makes a strong case for studying blockchains in general from various
perspectives, including social, economic, networks and distributed systems, data
mining, and more. The topic of this chapter is much more narrow: the analysis of
blockchain data, in particular clustering and related methods.

3.1.1 Motivation

We may classify the motivations for clustering and other related analysis of
blockchains into the following three categories.

3.1.1.1 Fraud Detection and Law Enforcement

Bitcoin has witnessed some high profile fraud and thefts, such as the theft of
currency from exchanges or wallet sites. By design, all transfer of currency is
publicly and persistently recorded, so it would seem that thieves should be exposed
when they try to cash out by exchanging the cryptocurrency for conventional fiat
currency [34]. A related objective is tracing the flow of finances among people
and organizations engaged in criminal activities and using Bitcoin for payments
(e.g., the WannaCry ransomware attack [14]). However such detection is difficult
in practice because there is no requirement for Bitcoin addresses to be registered
in any manner, at least until a transaction with a conventional currency exchange is

3 Clustering Blockchain Data 45

l

llll

l
l
l

lll

l
l
ll

l

ll

l

ll
l

l

l

l

l

l
l

l

l
l
l
l
lll

lll
l

l

ll
l
lll

l
l
llll

l
l

lll

llll
lllll

ll
ll

lll
lll

l
l
l
ll

l
llll

l

1e+04

1e+05

1e+06

2009 2010 2011 2012 2013 2014 2015 2016
date

tra
ns

ac
tio

ns
 (l

og
)

Monthly transaction volume

l

llll

l
l
l

l

l

lll

l
l

ll

l

l

ll

l

l
l

l
l

l

l
l

l

l

ll

l

ll

l

l
l

l

l
l

l

l

l

l

ll
l
l
ll

l
l

ll
l
l
l

l

ll

l

l
l
l
l

l

l

ll
l
l

l
lll

ll
ll

l

l

l

l

l
l

l

1e+06

1e+07

1e+08

2009 2010 2011 2012 2013 2014 2015 2016
date

va
lu

e
(X

B
T,

 lo
g

sc
al

e)

Monthly total transaction value

Fig. 3.2 Historical plots of the number of transactions per month (upper) and total transacted
currency (Bitcoin) per month (lower). Note the logarithmic scale on both vertical axes. Further,
the lower plot should be interpreted in the context of rapidly increasing XBT/USD exchange rate
(Fig. 3.1). Plots generated using blockchain data from the Bitcoin Core client

required. Further, there is no practical limit on the number of addresses that a person
or organization may generate, so it is easy to create complex chains of transfers that
obfuscate the origin of funds. Nevertheless, a careful study of Bitcoin addresses and
transactions, along with some external information, such as accidentally or casually
revealed connections between Bitcoin addresses and entities, can be used to uncover
many such schemes [27] (Figs. 3.2 and 3.3).

46 S. S. Chawathe

lllllll
ll

l

l

l
l

l

ll

l

l
l

ll

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

ll

ll

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

lll

l

l
l
l
l
l

l

l

l

l

l
l

l

l

l

l

l
ll

l
l

l
l

l

l

10

100

2009 2010 2011 2012 2013 2014 2015 2016 2017
date

va
lu

e
(X

B
T,

 lo
g

sc
al

e)

Monthly average value per transaction

l

ll

l

l

ll

ll

l

l

l

l

l

l

l

l
l

ll
l

l
l
ll

l

l

l

lll
l

l

l

l
l

lll

l

ll

l

l
l

l
l
l

l
l

l
lll

l

l
l
ll

l
l
l

l

l

l

l

l

l
l

l
l
ll

ll
ll

l

l

10

100

1000

10000

2011 2012 2013 2014 2015 2016 2017
date

va
lu

e
(U

S
D,

 lo
g

sc
al

e)

Monthly average fiat currency value per transaction

Fig. 3.3 Historical plots of the value traded per transaction, averaged monthly, in Bitcoin (XBT,
upper) and US dollar (USD, lower) units. Note the logarithmic scale on both vertical axes. Plots
generated with blockchain data from the Bitcoin Core client

3.1.1.2 Systems Insights

The global, distributed, peer-to-peer system that maintains a blockchain is an
intriguing and impressive artifact in its own right, worthy of study for computer
science and, in particular, systems insights [2, 50]. More specifically, by studying
the frequency, value, and other characteristics of transactions, and other properties
of the underlying system, and designers of not only blockchain systems, but
other large distributed systems as well, are likely to derive valuable insights. The
permanently recorded, globally consistent history of transactions and timestamps

3 Clustering Blockchain Data 47

spanning several years provides a rare opportunity for longitudinal studies in this
context [16]. For example, by examining transaction and block timestamps, and the
volume of concurrent transactions, one may be able to make inferences about the
response of the system to certain load conditions. In a complementary manner, the
voluminous data generated by blockchains, and the particular needs of their analysis,
provide good environments for testing systems, especially their scalability [28].

3.1.1.3 Anonymity and Traceability

Bitcoin provides a form of anonymity that has been called pseudoanonymity:
On one hand, every Bitcoin transaction is fully public, and permanent, and thus
practically impossible to conceal. On the other, the only form of identity required
to transact in Bitcoin is a randomly generated address, which on its own lacks any
identifying information. While this anonymity can and has been used for nefarious
purposes, it is also useful for legitimate privacy reasons. However, as noted in
the original Bitcoin paper [43] itself, the anonymity of a Bitcoin address’s owner
may be compromised by patterns in transactions. Studying clustering and related
methods for analyzing the blockchain allows the community to better understand the
limitations of the anonymity provided by Bitcoin and other blockchains [3, 40, 45].

3.1.2 Contribution

The main contributions of this chapter may be summarized as follows.

• Blockchain fundamentals: While blockchain technology and its major deploy-
ments in cryptocurrency and other applications have been in place for several
years, it is still very difficult to find concise and accurate descriptions of the
key data, protocols, and related mechanisms. Research publications on problems
and applications motivated by blockchains (e.g., clustering) typically use an
abstract model (e.g., transaction graphs) without describing the surrounding tech-
nology in much detail. Conversely, publications targeting blockchain developers
describe the implementations in great detail but typically do not devote much
attention to abstracting out the key concepts and problems that may be of interest
to researchers. Combined with the rapidly changing nature of many details, these
factors make it very difficult for researchers interested in blockchains (but not
familiar with them) to enter the field. An important contribution of this chapter
is a description of blockchain data at a level of detail appropriate for such
research purposes. In particular, it bridges the gap between low-level developer-
style documentation and fully abstract descriptions of subproblems arising from
blockchain data (Fig. 3.4).

• Models for blockchain data: In addition to the overview of blockchain data
covered as part of the above description, this chapter describes alternatives for

48 S. S. Chawathe

100

1000

10000

2009−01 2009−07 2010−01 2010−07 2011−01
date

B
itc

oi
n

X
B

T
Block Group 0, value/block by date

100

1000

10000

Mar 25 Mar 27 Mar 29 Mar 31
date

B
itc

oi
n

X
B

T

Block Group 50, value/block by date, 2013

100

1000

10000

Dec 11 Dec 12 Dec 13 Dec 14 Dec 15

date

B
itc

oi
n

X
B

T

Block Group 100, value/block by date

100

1000

10000

Sep 06
Sep 07

Sep 08
Sep 09

Sep 10
Sep 11

Sep 12

date

B
itc

oi
n

X
B

T

Block Group 333, value/block by date

Fig. 3.4 Bitcoin (XBT) value per block (of the blockchain), by date, for different block groups (as
implemented by the Bitcoin Core client). Data for block group 0 has been subsampled

modeling such data at a conceptual level. Some of these models, such as those
based on the transaction and node graphs, are common in prior work but they are
presented here along with the details of how they connect with the lower-level
concepts in the block chain. In addition, ways of using other, less commonly
used, data from the blockchain are also discussed.

• Methods to cluster blockchain data: Clustering methods are described in
the context of the above conceptual models. Two categories of methods are
described. The first consists of applying well-known clustering algorithms to
features extracted from the blockchain models. The focus for such methods is on
feature extraction methods. The second category of methods are more specialized
to blockchains and, in particular, to the important task of address merging based
on patterns in the blockchain.

3 Clustering Blockchain Data 49

• Evaluation metrics: Evaluating the quality of the output of clustering algorithms
on blockchain data is a difficult task due to the lack of test datasets. This chapter
outlines several promising criteria that may be used for this purpose, including
criteria based on intrinsic metrics and the Mahalanobis distance.

3.1.3 Organization

Section 3.1 outlined the context and motivations for studying blockchain data.
Blockchains, and in particular the key aspects of the data they generate, are
described in Sect. 3.2. These data may be modeled in diverse and complementary
ways for the purposes of clustering and related analysis; these models are described
in Sect. 3.3. Clustering methods using these models are presented in Sect. 3.4, and
techniques for their evaluation are described in Sect. 3.5, before concluding in
Sect. 3.6.

3.2 Blockchain Data

Documentation of data from blockchains tends to be fluid and difficult to grasp, in
contrast to the stable, documented datasets found in many other application domains
of clustering. One reason for this difference is the recency of widespread use of
blockchains and the resulting growth of associated data. Another is the consensus-
based development and operations model that drives the processes generating
this data. In particular, one unconventional aspect of Bitcoin is that there is no
official specification, formal or informal. While there is certainly some detailed
documentation of the protocol and implementation that documentation is explicit
in stating:

The Bitcoin.org Developer Documentation describes how Bitcoin works to help educate
new Bitcoin developers, but it is not a specification—and it never will be. [. . .]
The only correct specification of consensus behavior is the actual behavior of programs
on the network which maintain consensus. As that behavior is subject to arbitrary inputs
in a large variety of unique environments, it cannot ever be fully documented here or
anywhere else.

It is therefore especially important to develop a shared understanding and
effective abstraction of blockchain data. For concreteness, the description that
follows focuses on the Bitcoin blockchain and the Bitcoin Core (Satoshi client)
reference implementation [10]. However, many of the key ideas, such as transac-
tions, addresses, and the flow of currency, are also applicable to other blockchains,
such as Ethereum [11]. Our focus in this section is on providing a description of the
Bitcoin blockchain, and in particular its key data structures, that is faithful to the
operational blockchain. While simplification and elision of details are necessary in
order to keep the presentation manageable, those simplifications and omissions do
not substantially affect the data-centric view that is needed for clustering and related
analyses.

50 S. S. Chawathe

2+kkcolb1+kkcolbkkcolb

header header header

prev_blk_header_hash prev_blk_header_hash prev_blk_header_hash

htoor_elkremhtoor_elkremhtoor_elkrem

...

snoitcasnartsnoitcasnartsnoitcasnart

transaction_1
transaction_2

...
transaction_n_tx

transaction_1
transaction_2

...
transaction_n_tx

transaction_1
transaction_2

...
transaction_n_tx

Fig. 3.5 A simplified view of the blockchain. The transactions in each block are combined
pairwise recursively in tree form to yield the Merkle-root hash in the block header. Each block’s
header is hashed and included in the following block

3.2.1 Blocks

The core idea of the blockchain is extremely simple and is illustrated in Fig. 3.5.
Intuitively, information is divided into blocks (approximately 1 MB each) and the
blocks are chained together by cryptographically secure hashes: Each block includes
the hash of its predecessor, and its own hash in turn is included by its successor.
The primary effect of such chaining is that it is practically impossible to modify
information (“rewrite history”) once a block has been part of the chain for some
time and has a few successors. The reason is that making a change in a block
would change its hash (barring a major cryptographic breakthrough), which in turn
modifies its successor blocks, recursively, up to the most recent block. Thus, making
a single, small, change entails changing a very large number of blocks, which is
not possible for an isolated actor or small group in the large peer-to-peer network.
(Attacks in which a colluding group manages to gain control of a majority of the
network peers are still possible.)

More concretely, the primary contents of each block, i.e., the transactions, are
not hashed en masse with the rest of the block. Rather, they are arranged in a
Merkle tree [4, 39] structure to yield an aggregate hash of the transactions, and
this hash is included in the header of the block along with some other bookkeeping
information. Further, only the header of each block (not the rest, which holds the
transactions) is directly hashed for the purposes of chaining hashes as described
above. Figure 3.6 illustrates the manner in which transactions are hierarchically
hashed to yield the hash that is included in the block header. The major benefit of
computing the hash of the set of transactions in this manner, instead of a more direct
hash of the concatenated transactions, is that verifying that a transaction is part of a
block (and thus the blockchain) requires only Θ(log t) computational work, where
t is the number of transactions in the block, in contrast to Θ(t) for the more direct
method.

3 Clustering Blockchain Data 51

Row 1: Transaction hashes (TXIDs)
(A is coinbase; C can spend output from B)

Row 2: Hashes of paired TXIDs

Merkle root

A

H(A|B)

B

H(C|C)

C

H(H(A|B)|H(C|C))

Fig. 3.6 Computation of Merkle-tree hashes for a sequence of transactions. (Figure adapted
from the bitcoin.org source files, under the MIT License.) The hash function is H(x) =
sha256(sha256(x))

3.2.2 Mining

The task of assembling transactions and other information into a block that meets
the above, and other, requirements imposed (using consensus) by the Bitcoin
blockchain is performed by persons or groups called miners. (Terms such as builder
or architect are more accurate, but miner is firmly entrenched.) In order to make
it computationally very difficult to modify confirmed blocks in the blockchain, an
important requirement in assembling a block is that the hash of the block have a
numerical value lower than a network-specified (consensus) threshold. Achieving
this goal entails determining a suitable value of a specially designated field, called
the nonce.

In order to incentivize miners to perform this computationally (and financially)
expensive operation, the blockchain awards (again, by consensus) the miner of each
block with a predetermined amount of Bitcoin, called the block subsidy. Further,
in order to incentivize miners to include transactions (which is not, strictly, a
requirement for receiving the block subsidy), transaction originators also include
a transaction fee. The combination of these two incentives (block subsidy and
transaction fee) is called the block reward, and it is what keeps the peer-to-peer
blockchain network going. By design, the Bitcoin network increases the ratio of
transaction fees to block subsidy over time so that, in the early phases, the block
reward was composed entirely of the subsidy while in the future, it will be composed
entirely of transaction fees.

3.2.3 Transactions

Each transaction transfers all the currency from one or more inputs to an ordered list
of one or more outputs. (The special coinbase transaction, used to award currency
to the block miner, is the only kind, and only one per block, that has no inputs.)
The ordering of the outputs is important because a specific output in a transaction
is identified (by an input in a subsequent transaction) by providing the index of the
desired output in this ordering, along with the transaction identifier, which is a hash
(SHA256, twice) of the raw transaction data.

52 S. S. Chawathe

Each output of a transaction may be thought of as a record with two fields: The
first is value, which is the number of satoshi (10−8 Bitcoin) that are to be transferred
to that output. The second is a pubkey script that determines the requirements
imposed on anyone who wishes to spend these satoshis, by conceptually using
this output as an input for a subsequent transaction. (We skip the cryptographic
details involved in meeting the pubkey script requirements, typically using a suitable
private key.)

In a complementary manner, each input of a transaction may be thought of as
a record with three fields. The first, called an outpoint, is the most important for
our purposes: It is composed of a transaction identifier along with the index of
the desired output of the referenced transaction, in the ordered list of outputs. The
second field is a signature script that is used to satisfy the requirements for using
the referenced transaction output, as specified in the latter’s pubkey script. (We skip
these cryptographic details.) The third field is a sequence number that is currently
unused except as part of a locktime feature that we ignore for simplicity.

3.2.4 Flow of Currency

Thus, Bitcoin (or satoshi) value, which is as the reward for mining blocks and
awarded to an output specified by (and typically controlled by) the miner, subse-
quently flows through a network of transactions, with each transaction distributing
all of its input value over its outputs (and transaction fee), consuming the outputs
of one or more previous transactions, and generating new (unspent) outputs for
potential use in subsequent transactions. These unspent transaction outputs or
UTXOs are where satoshis are held in the system. Figure 3.7 illustrates a small
portion of this transaction graph, i.e., the directed acyclic graph (DAG) generated
by this flow of satoshis from transaction to transaction along the blockchain [46].

It is important to note that every transaction completely drains all the currency
from all of its inputs. There is no direct way to use only part of the value in any
input. However, in order to effectively spend only a portion of the value of an input,
one may create a transaction in which part of the value is transferred to an output
that is controlled (owned) by the controller of that input, so that the portion of the
input that is, intuitively, not to be spent in this transaction is returned to the input’s
owner by way of a new output. These kinds of change-making transactions (or parts
of transactions) provide information that is useful for clustering because one may
reasonably assume a connection between the input and change-making output in
such cases.

Since a transaction is meant to distribute the aggregate input value among the
outputs (as specified by the value associated with each output), a constraint is that
the sum of the input values must be no less than the sum of the output values. Any
excess of the input values over the output values is deemed a transaction fee and is
awarded to the miner of the block in which this transaction occurs. These transaction
fees are meant to provide block miners incentives to include the paying transaction

3 Clustering Blockchain Data 53

Transaction 0
(TX 0)

TX 1

TX 2

TX 3

TX 4

TX 5

TX 6

input0

output0

input0
40k

output1 input0
50k

output0 input030k

output0 input020k

output1

input0

20k

output0

20k Unspent TX
Output (UTXO)

output0
input0

10k

output0

input1
10k

output0

10k
UTXO

100,000
(100k)
satoshis

Fig. 3.7 The directed acyclic graph (DAG) formed by the flow of satoshis (10−8 Bitcoins) in
the blockchain. (Figure adapted from the bitcoin.org source files, under the MIT License). The
resulting transaction graph has transactions as vertices and a directed edge from transaction t1 to
transaction t2 iff t2 has an input that spends (refers to) an output of t1. The arrows in the figure
denote flow of satoshis and so point from an output in one transaction to the (at most one) input in
a subsequent transaction that uses (spends) that output’s value. Arrows denoting reference would
point in the opposite direction, since inputs refer to prior outputs. An output is called an unspent
transaction output (UTXO) in the duration between its appearance in a transaction and its spending
in another (whose input points to it). Each transaction in this example includes a transaction fee of
10 k satoshi (the difference between the aggregate values of the transaction’s inputs and outputs)

in the blocks they mine, sooner than other transactions that may pay less. These fees,
which were historically very low (even 0), have witnessed sharp increases recently
and are the subject of controversy related to the viability of certain use cases for
Bitcoin. (A recent high point for average transaction fees was over 50 USD, in
December 2017.) For our purposes, these transaction fees are important because
they constitute a likely important attribute of transactions and, indirectly, their inputs
and, through them, the controlling entities. For instance, it is likely that a person or
entity has specific preferences and constraints for transaction fees. One person may
prioritize speed of confirmation in the blockchain and routinely pay higher fees,
while another may prefer to save on fees even if that delays a transaction. Thus the
transaction fee may reveal potentially common entities across transactions even if
the transactions have no other apparent connection.

The above description omits several details, notably cryptographic ones, that
are not important for our purposes. For instance, verifying that the requirements
specified by a pk-script are met by the signature-script of a referencing transaction
is most commonly done using the P2PKH (pay to public key hash) scheme, which

54 S. S. Chawathe

in turn uses public/private-key pairs and the sec256k1 ECDSA (elliptic curve digital
signature algorithm). There are also many other interesting aspects of the Bitcoin
blockchain, such as the process of mining blocks for Bitcoin rewards, and the
distributed protocol used for maintaining consensus. However, those details are
unlikely to be useful for clustering and related analyses and so are skipped here.

3.3 Models of Blockchain Data

The same base blockchain dataset may be modeled and abstracted in different
ways for the purposes of clustering. For example, Bitcoin transaction data may
be modeled as a graph with transactions as vertices and input-to-output references
as directed (reverse) edges, but also as a graph with Bitcoin addresses as vertices
and payments as edges. As well, models may include the other components of the
blockchain infrastructure, such as the blocks themselves and the hosts in the peer-
to-peer network.

3.3.1 Transactions

A graph of blockchain transactions, similar to the DAG suggested by Fig. 3.7 is
a natural model. This graph has a vertex for each transaction and a directed edge
from one vertex to another if there is a transfer of satoshi (based on output–
input references) between the corresponding transactions. A transaction may have
multiple inputs that refer to the outputs of a common prior transaction. As a result,
there may be multiple edges between the same pair of vertices (i.e., parallel edges)
and the graph is in fact a multigraph. An alternative is to disallow parallel edges and
to model multiple output–input transfers between a pair of transactions by labeling
the edge connecting them with the number of transfers.

In addition to this primary structure, it is also important to model the secondary
structure illustrated in Fig. 3.7, viz. the information on which output of a transaction
is the source of satoshi for each input of another. Since the inputs of a transaction do
not have any identifiers and serve only to identify outputs of prior transactions, this
information may be modeled indirectly by labeling the vertices of the graph with a
set of output-identifying attributes.

In more detail, each vertex is labeled with the following attributes corresponding
to fields of the underlying blockchain data structures.

• One or more inputs, each with:

previous-output: a conceptual pointer to the output of some earlier transaction
that is being spent by this transaction. This pointer is encoded in an outpoint
data type and is composed of a 32-byte transaction identifier (TXID) and

3 Clustering Blockchain Data 55

a 4-byte unsigned integer that is the index of the output in the referenced
transaction (see output-index below).

script-bytes: the length signature-script field that follows, with a maximum
value of 10,000. This length is encoded as in a variable-length format (1
through 5 bytes) called compactSize that favors smaller values. For example,
all values less than 253 are encoded as a single byte.

signature-script: a variable-length character array that encodes a program
(script) in the Bitcoin script language. This script is used to verify that the
transaction has the authority to spend the satoshis in outpoint.

sequence-number: a 4-byte integer that is currently unused (in Bitcoin Core,
with a few exceptions).

• One or more outputs, each with:

output-index: the sequential number (0-based) of this output among the outputs
of the transaction. This index is not stored explicitly but is implicitly deter-
mined by the order in which a transaction lists its outputs. It is used by later
transactions to identify a particular output (as previous-output above).

value: the number of satoshis to send via this output, encoded as an 8-byte
integer. The sum of these values for all outputs of any transaction is at most
the sum of values of the outputs of previous transactions identified by the
previous-output fields of the inputs of that transaction. (Recall that we ignore
coinbase transactions.) Typically the former sum is strictly less than the latter,
with the difference being the transaction fee awarded to the block miner.

pk-script-bytes: the length, in bytes, of the public-key script that follows. The
length is encoded in the same compactSize format as used by script-bytes for
inputs.

pk-script: a script in the Bitcoin script language that specifies the requirements
that must be met by a future transaction in order to successfully spend
this output. That transaction must meet these requirements by including the
necessary details in the signature-script of an input that refers to this output.

A simple model may ignore some of the lower-level implementation details
noted above. However, some of those details may provide important identification
of classifying information and so it is worthwhile to include them. For example,
Bitcoin implementations have some freedom in the design of the signature-script
that is used to verify spending authority. An implementation or its user may
intentionally or inadvertently provide additional information in such a design. A
similar observation also applies to the pk-scripts used in outputs. Further, there
may also be patterns in implementation details such as the order in which a Bitcoin
client inserts inputs (more precisely, UTXO references) in its submitted transactions
(Figs. 3.8 and 3.9).

56 S. S. Chawathe

0

10

20

30

40

50

1.23e+09 1.25e+09 1.27e+09 1.29e+09
date−time

tra
ns

ac
tio

ns
 p

er
 b

lo
ck

Bitcoin Core block group 0

0

500

1000

1364200000 1364400000 1364600000
date−time

tra
ns

ac
tio

ns
 p

er
 b

lo
ck

Bitcoin Core block group 50

0

500

1000

1386800000 1386900000 1387000000 1387100000
date−time

tra
ns

ac
tio

ns
 p

er
 b

lo
ck

Bitcoin Core block group 100

0

2000

4000

1441600000 1441800000 1442000000
date−time

tra
ns

ac
tio

ns
 p

er
 b

lo
ck

Bitcoin Core block group 333

Fig. 3.8 Transactions per blockchain-block for four representative block groups. In the scatterplot
for each block group, the horizontal axis measures the date and time (as POSIX epoch time) at
which the block was committed and the vertical axis is a count of the number of transactions per
block

3.3.2 Blocks

While the transaction-based model reflects an application-oriented view of
blockchain data, that data may also be modeled more directly, based on the chain
of blocks themselves. Compared to the transaction-based model, the model of
blocks is farther removed from persons and other entities using the Bitcoin network.
However, it is useful for two reasons: First, some of the information revealed at this
lower level of abstraction can guide clustering and other analysis of the higher-level
model. A simple example is the block timestamp and its relation to transaction
timestamps. Second, some of the lower-level features may be of primary interest

3 Clustering Blockchain Data 57

1

10

100

10 1000
inputs (log)

ou
tp

ut
s

(lo
g) 1.00000

20.08554

403.42879

8103.08393

162754.79142
count

Bitcoin Core block group 0

10

1000

10 1000
inputs (log)

ou
tp

ut
s

(lo
g)1 00000

20.08554

403.42879

8103.08393

162754.79142

1000

) 1.00000

20.08554

403.42879

8103.08393

count

Bitcoin Core block group 50

10

1000

1 10 100
inputs (log)

ou
tp

ut
s

(lo
g) 1.00000

20.08554

403.42879

8103.08393

count

Bitcoin Core block group 100

10

1000

1 10 100
inputs (log)

ou
tp

ut
s

(lo
g)1 00000

20.08554

403.42879

8103.08393 1000

) 1.00000

20.08554

403.42879

8103.08393

count

Bitcoin Core block group 333

Fig. 3.9 Distribution of transactions by their input- and output-counts for four representative block
groups. In the heat-map for each block group, the horizontal and vertical axes measure, using
logarithmic scales, the number of inputs and (respectively) outputs of a transaction in that block
group. The color of each cell is a measure of the number of transactions with the corresponding
input- and output-counts, also using a logarithmic scale. Note that the scales differ significantly
across the heat-maps

when the objective of clustering is gaining insights into the use and performance of
the distributed system (Fig. 3.10).

Recall the simplified version of the blockchain illustrated by Fig. 3.5. In more
detail, each block includes the following fields:

version: a 4-byte integer that determines the validation rules applicable to the
block.

58 S. S. Chawathe

1

10

100

10 1000
inputs (log)

ou
tp

ut
s

(lo
g)

1.00000

20.08554

403.42879

8103.08393

value

Bitcoin Core block group 0

10

1000

10 1000
inputs (log)

ou
tp

ut
s

(lo
g)

1.00000

20.08554

403.42879

8103.08393
1000

)

1.831564e−02

1.000000e+00

5.459815e+01

2.980958e+03
value

Bitcoin Core block group 50

10

1000

inputs (log)

ou
tp

ut
s

(lo
g)

1 10 100

2.718282

20.085537

148.413159

1096.633158
value

Bitcoin Core block group 100

10

1000

1 10 100
inputs (log)

ou
tp

ut
s

(lo
g)

2.718282

20.085537

148.413159

1096.633158

1000

)

0.3678794

20.0855369

1096.6331584

value

Bitcoin Core block group 333

Fig. 3.10 Distribution of transacted Bitcoin value (XBT) over transaction input- and output-counts
for four representative block groups. In the heat-map for each block group, the horizontal and
vertical axes measure, using logarithmic scales, the number of inputs and (respectively) outputs
of a transaction in that block group (as in Fig. 3.9). The color of each cell is a measure of the
total Bitcoin value transferred in transactions with the corresponding input- and output-counts,
also using a logarithmic scale. Note that the scales differ significantly across the heat-maps. Recall,
from Fig. 3.1, that the exchange rate for XBT relative to fiat currencies such as USD varies greatly
with time

previous-block-header-hash: a 32-byte double-SHA256 hash that serves as a
pointer to the previous block in the chain (in addition to its cryptographic role).

merkle-root-hash: a 32-byte double-SHA256 hash of the root of the transactions’
Merkle tree.

time: a 4-byte unsigned integer encoding the time when this block’s miner
started hashing the header (self-reported by miner). The value is interpreted as

3 Clustering Blockchain Data 59

POSIX epoch time, roughly (modulo leap seconds) the number of seconds since
midnight (UTC) on 1970-01-01.

target/n-bits: the maximum numerical value permitted for the hash of this block’s
header. This target determines difficulty of mining a block. It is a 256-bit
unsigned integer that is encoded less precisely, using only 32 bits, in the n-bits
field.

nonce: a 4-byte number that is inserted by the block’s miner in order to meet the
hash-target requirement above without changing other block data.

block-height: distance of the block (along the chain) from the genesis block (very
first block mined).

coinbase transaction: the very first transaction encoded in each block is a special
one that collects and spends the block reward (block subsidy plus transaction
fees) at the discretion of the block miner (typically paid to an address owned by
the miner).

other transactions: a list of transactions, each with several attributes, described in
Sect. 3.3.1.

Some of the above attributes concern details of the blockchain protocol and may,
at first glance, appear irrelevant to clustering or other similar analyses. However,
some details, such as the version, will be relevant for long-term analysis that
spans versions. As well, the coinbase transaction, in addition to the output address,
includes an input field that is unconstrained (unlike those for other transactions,
described below). The contents of this field may be used by the block’s miner to
encode useful data, either purposefully or as a consequence of the specific software
used. In the Bitcoin genesis block [6], this field contains the string “The Times
03/Jan/2009 Chancellor on brink of second bailout for banks” (a front-page headline
from the Financial Times on that date, presumably included as a proof of recency of
the genesis block) [8].

3.3.3 Addresses

While the transaction graph above provides a faithful representation of the informa-
tion encoded in the blockchain, it is often useful to raise the level of abstraction from
transactions, and their inputs and outputs, to transfers among Bitcoin addresses. In
such an address graph each vertex represents a Bitcoin address. A directed edge
(u, v) labeled w denotes the transfer of w satoshis from the address corresponding
to u to that for v. Unlike transaction outputs, addresses may, and often are, reused,
so there are in general multiple out-edges from and in-edges to a vertex in this
graph. Further, since there may be multiple transfers between the same ordered pair
of addresses, as well as transfers from an address to itself (e.g., in a change-making
transaction), the resulting structure is a multigraph with, typically, parallel edges
and self-loops.

60 S. S. Chawathe

3.3.4 Owners

It is convenient to assume that each Bitcoin address is owned and controlled by
at most one entity (person, organization, etc.), called its owner. (At most one
instead of exactly one because addresses may become ownerless if credentials are
somehow lost.) Strictly speaking, this assumption is not valid because it is possible
for multiple people to share an address (akin to sharing of email accounts). However,
the use cases for such sharing are much fewer than those for individually owned
addresses and this assumption is commonly made by prior work.

More concretely, we may describe the model as a directed multigraph with
vertices representing owners and a directed edges representing transfer of satoshi.
This graph is very similar to the address graph and, like that graph, is more precisely
a multigraph with (likely) parallel edges (representing multiple transfers between
the same pair of owners) and self-loops (representing transfers made by change-
making and similar transactions).

Since there is no systemic association of Bitcoin addresses with owners, model-
ing the blockchain in this manner requires indirect approaches. Indeed, such a model
is often the desired result of clustering or other analyses.

3.3.5 Nodes

In addition to modeling the above conceptual components of the blockchain, we
may also model the blockchain at a lower level of abstraction by focusing on the
nodes, i.e., the peer-to-peer computer hosts that maintain the distributed blockchain.
Doing so provides opportunities for clustering and inference not otherwise available
[29, 32, 53]. It may be of particular interest in private or limited-access blockchains.

Each node may be modeled by:

IP-address. A node’s IP network address may be used as its identifier, ignoring
complications such as multi-homed nodes.

Initiated-transactions. Each transaction may be conceptually assigned to an initi-
ating node based on the times at which the transaction is publicized by the nodes
in the network.

Volume. Related to the above, the volume of a node is the total value of Bitcoins
initiated at that node.

Time-series. Instead of using only snapshot or aggregate attributes of a node, the
variation for that attribute (e.g., total daily value of initiated transactions) can be
modeled as a time series.

In addition to their other attributes, nodes may be clustered by the transactions
they initiate. In turn, clustered nodes may be used to cluster transactions based on
their originating nodes.

3 Clustering Blockchain Data 61

3.4 Clustering

At a high level, there are two approaches for clustering blockchain data. The
first approach is based on applying mostly conventional, well- studied clustering
algorithms (e.g., k-means) and robust implementations to feature-vectors extracted
from blockchain datasets [25, 30, 33, 62]. The key tasks in this case are determining
the set of features to use, extracting them effectively from the underlying data, and
transforming them (e.g., scaling, normalization) to improve clustering. Section 3.4.1
describes feature extraction for this purpose. The associated challenge of scaling
clustering methods to the size and throughput of blockchain datasets is an important
one as well, but one that may be addressed using well-developed prior work on
clustering large datasets in general.

The second approach is based on a more direct utilization of the particular
characteristics of blockchain data (e.g., co-occurrence of transaction inputs, or TXIs,
or other temporal patterns [19]) and their associated semantics (e.g., identical or
closely related owners). The key tasks in this case are determining which semantics,
assumptions, and heuristics to use for the purpose of forming clusters, and designing
algorithms tailored to those that are capable of efficiently operating on the large
datasets involved. Section 3.4.2 describes such options in the context of the address
graph (Sect. 3.3.3), where the focus is on determining which vertices (addresses) are
likely to represent the same off-network user or other entity, i.e., on correlating the
address graph with the owner graph (Sect. 3.3.4).

3.4.1 Feature Extraction

Prior work has identified and used several features from the underlying data for
clustering and other purposes. For instance, the features extracted from transaction
data (Sect. 3.3.1) and used by recent work on fraud detection based on trimmed
k-means clustering [41] are categorized as:

currency values: the sum, mean, and standard-deviations of the amounts received
and sent.

network properties: in- and out-degrees, clustering coefficient (described below),
and number of triangles.

neighborhood: based on the sets of transactions from which a given transaction
receives (and sends) satoshi, i.e., its in-neighborhood (and, respectively, out-
neighborhood).

Intuitively, the local clustering coefficient [56] for a vertex measures the degree
of interconnectedness among its neighbors. In more detail, it measures how similar
the subgraph induced by these neighbors is to a fully connected (complete) graph
on those vertices. Formally, the local clustering coefficient cc(v) of a vertex v in a
directed graph D is defined as:

62 S. S. Chawathe

cc(v) = |(N+
D(v) × N+

D(v)) ∩ E(D)|
d+
D(v)(d+

D(v) − 1)

where, following standard notation [9], we use V (D) and E(D) to denote the
vertices and edges of a directed graph D, and where

N+
D(v) = {u ∈ V (D) | (v, u) ∈ E(D)}

is the out-neighborhood of v and d+
D(v) = |N+

D(v)| is the out-degree of v.
These extracted features were used as inputs to the classic and trimmed versions

of the k-means clustering algorithm [15, 17, 47]. A curve of within-group distances
versus number of clusters suggested k = 8 as a suitable parameter for the data in
that study.

In similar work on anomaly detection [49], three features were used for the
transactions graph (similar to the one of Sect. 3.3.1): in-degree, out-degree, and
total value. The same study used six other features for the address graph (similar
to the one of Sect. 3.3.3) were in- and out-degrees, means of incoming and outgoing
transaction values, mean time interval, and clustering coefficient. In order to account
for the widely varying scales and large ranges of the feature metrics, the normalized
logarithm of their values is used for further processing.

3.4.2 Address Merging

In principle, it is possible (and often recommended) that a Bitcoin address be
used exactly once to receive funds and exactly once to send funds, with unused
funds sent to a new address controlled by the owner of the first one. However,
it is quite common for an address to be reused. A common case is the use of
Bitcoin addresses embedded into software user interfaces or in Web pages to
solicit donations. These kinds of addresses are long lived and participate in several
transactions. Many such reused addresses also explicitly identify their owners, such
as a software development team or a person. (As well, much like vanity license
plates for vehicles, there are vanity addresses that include the owner’s name, or
desired tag, as a substring when expressed in the base-58 encoding used by Bitcoin
[57].) Such identified addresses are important resources not only because of the
direct identification they provide but also because they may be used to bootstrap
methods that can identify or classify addresses that are otherwise anonymous.

In this context, an important task that has been the focus of prior work is
address merging, i.e., finding sets of Bitcoin addresses that are likely to be owned
and controlled by a common person or entity. Some methods for merging Bitcoin
addresses are below [16, 38, 53]:

Co-occurring transaction inputs. All the addresses that are referenced by inputs
of a common transaction are assumed to have a common controlling owner. We

3 Clustering Blockchain Data 63

may recall that transaction inputs (TXIs) do not include any addresses. However,
these addresses are available in the outputs (TXOs) of prior transactions to which
these inputs refer by providing transaction identifiers and output indices [60].

Transaction input–output patterns. Although the intent of transactions is not
explicitly available, in some cases it may be reasonably inferred based on
patterns. These patterns may use the number and variety of transaction inputs
and outputs and, importantly, the incoming and outgoing distributions of value
(satoshi). For example, it is very easy to determine, with high confidence, which
transactions are payments to members of a Bitcoin mining pool, based on the
total value (equal or close to the current block reward), and the input–output
distribution: a single or very few inputs, representing the mining pool, and a
large number of outputs, representing the pool members.
Another important class of transactions in this context is the class of change-
making transactions. Recall that there is no direct way to use only a part of the
value available in an unspent transaction output (UTXO). Rather, that effect must
be achieved by spending the entire UTXO value in a transaction, but paying
part of it to an output that is controlled by the owner of the source UTXO.
Since change-making is an essential operation for many real-world transactions,
the corresponding blockchain transactions are also frequent. Again, there is no
explicit marker for such transactions. However, they may be detected by using a
variety of techniques.
One effective technique is based on the observed practice (though not require-
ment) of Bitcoin wallet programs generating completely new addresses on behalf
of their users whenever change-making is required [38]. The resulting observable
pattern in a transaction is an address A with the following properties:

• The transaction is not a coinbase (mining reward claiming) transaction.
• There is no prior transaction that includes A in its output. (It follows that A

cannot be referenced by any transaction’s input as well.)
• Among all the outputs of this transaction, A is the only one satisfying the

above conditions.

Peer host address. While the above methods rely on information from the trans-
action model of blockchain data, some information from other models, such
as the node model, may also be used to aid transaction-based clustering. An
obvious candidate is the IP address of the peer host that from that originates a
transaction. There is no explicit field in transactions that records its originating
peer. At first glance, there is no way to determine whether a transaction arriving
form a peer is one originated at that peer or forwarded by the peer on behalf of
another, recursively. However, by using a client that simultaneously connects to a
large number of peers, it is possible to use timing information to make inferences
about the likely origins of a transaction. That is, if a client is connected to a
large number of peers, then it is reasonable to assume that the peer from which a
transaction was first received is very likely the peer at which it originated.

Temporal patterns. When transactions matching various patterns (as above) are
clustered and tagged, the clusters may be refined by observing the temporal

64 S. S. Chawathe

patterns of the transactions. For example, if a cluster contains 200 transactions,
with 100 of them occurring at roughly daily intervals, 70 at weekly, and 30 at
monthly, that cluster may be subdivided accordingly.

Well-known services. Certain well-known services have transaction patterns that
allow association of input and output addresses. For example, the Satoshi Dice
service has been studied in this context and used to connect addresses [38].
Well-known services may also be used to detect when addresses merged by other
rules are likely separately controlled and should therefore be separated. For this
purpose, recent work [20] divides Bitcoin services into six categories and defined
a pairwise compatibility matrix for those categories. For example, gambling
services are deemed incompatible with pool services, while they are compatible
with exchanges. Addresses that appear in incompatible pairs of categories are
deemed erroneously merged and so separated.

3.4.3 Scalability

Our focus has been on understanding blockchain data and on framing the space of
clustering as applied to that data. Compared to other clustering’s typical application
domains, work on clustering applied to blockchains is still at a very early stage.
So it is appropriate to focus on problem definitions and output-quality evaluation
metrics over performance and scalability issues such as running time and space
requirements. Nevertheless, it is appropriate to briefly consider such scalability
issues here.

General-purpose density-based clustering algorithms, such as the many variants
of the DBSCAN algorithm, are good candidates because they are not only well
studied but also implemented widely in several popular libraries and systems
[1, 26, 36]. Specialized algorithms for outlier detection and network clustering are
also applicable [54, 59, 63]. The performance of DBSCAN and related algorithms
strongly depends on the nature of the data, the critical ε and MinPts parameters,
and on the availability of suitable indexes [24, 55]. Given the volume of blockchain
data, parallel execution of clustering algorithms is a useful strategy. For example,
recent work has demonstrated a DBSCAN-like algorithm that is designed for the
MapReduce framework [28].

3.5 Evaluation

The most direct methods for evaluating the results of a clustering algorithm, and
related indices such as purity and entropy [37], are based on determining how well
the algorithm detects clusters that have been determined by some other method,
typically with human input [18]. For blockchain data, such an external evaluation
method is of very limited effectiveness due to the scarcity of such tagged and well-

3 Clustering Blockchain Data 65

studied datasets. The volume of data, as well as other characteristics, mean that it is
impracticable to rely on the availability of such test data in the near future as well. It
is therefore necessary to use methods that do not rely on human-studied datasets but,
instead, use some other intrinsic characteristics of the input data and output clusters,
i.e., an internal method [58].

3.5.1 Distance-Based Criteria

Such intrinsic criteria for evaluating clusters have been studied in the domain of
document clustering in the vector-space model [51]. That work builds on earlier
work [18] and on the intuitive desirability of compactness and isolation of clusters.

3.5.1.1 Cluster Quality Criteria

In particular, four quality criteria and associated indices are presented. (The
following presentation uses different, more descriptive, names for the criteria and
modified, but equivalent, formal definitions of the indices.)

Total intra- and inter-cluster distance. This criterion seeks to minimize both the
separation of objects that are in the same cluster and the separation of clusters.
More precisely, let C denote a collection of clusters, d a distance metric for the
elements (vectors) being clustered, and (C) the centroid of cluster C:

(C) = 1

|C|
∑
x∈C

x (3.1)

The dst index that this criterion seeks to minimize may then be expressed as
follows:

dst(C) =
∑
C∈C

∑
x∈C

d(x, (C)) +
∑
C∈C

d((C), (∪C)) (3.2)

The first term on the right-hand side quantifies intra-cluster distances, as it
sums the distances of elements from the centroids of their assigned clusters.
The second quantifies inter-cluster distances, as it sums the distances of cluster
centroids from the global centroid. Minimizing the intra-cluster distances is a
natural expression of the general preference for denser clusters. In contrast, min-
imizing the inter-cluster distances may appear counterintuitive at first because
it contradicts the general preference for well-separated clusters. However, the
intuitive effect of this criterion is to strike a balance between the desire for
compact clusters (which, on its own, could be satisfied by putting each object
in its own cluster) and the desire for fewer clusters (which, on its own, could
be satisfied by putting all objects in a single cluster. This distance has the same
value in both these extreme cases, and is lower in intermediate cases.

66 S. S. Chawathe

Cluster separation. Intuitively, this criterion favors compact, well-separated clus-
ters by comparing element-wise within-cluster distances with distances between
cluster centroids. More precisely, for a given cluster C, we may compute the ratio
of the maximum of the distances between pairs of elements in that cluster and the
minimum of the distances from the centroid of C to other clusters. The eld index
is defined as the reciprocal of the sum of this ratio over all clusters that contain
at least two elements. This index is undefined for the two extreme cases of one
cluster per object and one cluster for all objects.

sep(C) =

⎛
⎜⎜⎝

∑
C∈C|C|>1

max{d(xi, xj) | xi, xj ∈ C}
min{d((C), (C′)) | C �= C′ ∈ C}

⎞
⎟⎟⎠

−1

(3.3)

Element-wise distances. The intuition behind this criterion is that, in good clus-
terings, the largest distance between any pair of elements in a cluster should be
small, and the smallest distance between a pair of elements in different clusters
should be large. More precisely, the eld index (which is to be minimized) sums,
for each element, the difference between its distances to the farthest object in its
cluster and the nearest object in some other cluster. This index has its maximum
value when there is a single cluster with all elements. Its value is also large when
elements are in singleton clusters. It favors intermediate clusterings that have
large clusters.

eld(C) =
∑
C∈C

∑
x∈C

(
max
y∈C

d(x, y) − min
z �∈C

d(x, z)

)
(3.4)

Intra- and inter-cluster similarity. Unlike the earlier criteria, this criterion depends
on a method for evaluating the similarity S of two elements, and quantifies
the intuition that intra-cluster similarities should be large while inter-cluster
similarities should be small. More precisely, the sim index (which is to be
maximized) sums, over all clusters, the difference between the total pairwise
similarity for elements in the cluster and the total pairwise similarities with one
object in and one object out of the cluster. This index favors large clusters over
smaller clusters. Indeed, in the extreme case of one cluster per object, its value is
negative, while in the other extreme of all objects in a single cluster, its value is
maximized.

sim(C) =
∑
C∈C

⎛
⎜⎜⎝

∑
x,y∈C

S(x, y) −
∑
x∈C
z �∈C

S(x, z)

⎞
⎟⎟⎠ (3.5)

3 Clustering Blockchain Data 67

3.5.1.2 Mahalanobis Distance

As a variation on the general theme of the above criteria, it may be useful to measure
the distance between an element and its assigned cluster using a metric such as
the Mahalanobis distance in order to better account for skewed cluster shapes and
diverse variances along different dimensions [35].

If V is a set of elements (vectors) with mean μ covariance matrix S = (σij), then
the Mahalanobis distance of an element v from E is

dm(v, V) =
√

(v − μ)T S−1(v − μ) (3.6)

For instance, the two terms inside the parentheses in Eq. (3.5) may be replaced
by the Mahalanobis distance of x from the set of points in (respectively, not in) the
x’s cluster.

Work using the Mahalanobis distance for outlier detection in the address- and
transaction-graphs found a strong correlation between the detected outliers and the
boundaries of scatterplots of in- and out-degrees of vertices [49]. This result appears
unsurprising in this case because normalized values of the same features are used
for determining outliers. However, it does indicate that these features likely have the
dominant influence for that method.

3.5.2 Sensitivity to Cluster Count

With other parameters held constant, as we increase the number of clusters
(especially in a method such as k-means), we expect the distance of each element
from the centroid of its assigned cluster to decrease. However, the rate at which the
latter distance decreases will, in general, vary across clustering methods. It is natural
to prefer methods that provide a more rapid reduction in this distance as the number
of clusters increases. This intuition can be made more concrete by plotting a curve
with number-of-clusters on the horizontal axis and average distance of elements
from the cluster centroids on the vertical axis. The desired criterion then maps to
seeking curves with a small area between the curve and the horizontal axis. If we
invert the vertical axis, then we seek to maximize the area under the curve. In this
respect, this criterion is similar to that used in the receiver-operator characteristic
(ROC) [21] for studying the trade-off between true positives and false positives.
While there is graphical similarity, the underlying concepts may be different in some
cases. However, when clustering is being used for a classification task such as fraud
detection, the concepts are similar. For instance, such a curve is used in some work
that evaluates clustering for Bitcoin fraud detection [41].

68 S. S. Chawathe

3.5.3 Tagged Data

There is a small amount of tagged blockchain data that can be used for evaluating
clustering, outlier detection, and related methods. This data is typically derived from
well-known cases of theft or other fraudulent activity on the Bitcoin network. The
scarcity of such tagged data makes it unsuitable for use in a primary evaluation
method; however, it is valuable as a secondary check on the effectiveness of methods
in detecting confirmed thefts or other tagged activity.

While such data has been mainly gathered passively, in response to reports of
Bitcoin thefts or similar events, there is also some work [38] on actively tagging
a subset of blockchain data using store purchases and other activities that trigger
Bitcoin transactions, and correlating the results.

There are also some services that associate user-defined tags with Bitcoin
addresses [7, 31]. Since these services are easily updated by anyone without any
restrictions, there are no guarantees about the accuracy of the tags and associations.
Nevertheless, the information could be used in a secondary manner for clustering,
for example, to assign descriptive tags to clusters identified using more reliable data.

Another related method uses synthetically tagged data, such as outliers detected
by another method, to evaluate results by measuring the distance of the outliers from
the nearest cluster centroids [49]. In that work, the focus is on detecting outliers
using clustering (k-means) as a baseline, but the same strategy could be used in the
opposite direction. A related strategy, also used in that work, is to use the results on
one model of the underlying data to evaluate results on another model, using known
or assumed mappings between concepts in the two models. In particular, results
on the transactions-as-vertices graph model can be used to evaluate results on the
owners-as-vertices model, and vice versa.

3.5.4 Human-Assisted Criteria

Although, as noted earlier, it is often not convenient or possible to analyze
blockchain datasets with human feedback, some human-assisted methods can
augment the automated methods. For this purpose, it is important that the clusters
and their important features be available for multiple commonly used visualizations,
such as scatterplots, histograms, and parallel-coordinates plots.

In some prior work, such human-assisted criteria have been profitably used to
improve the clustering process and to validate some of the results. For example, a
study on de-anonymizing Bitcoin addresses used a graphical visualization of the
user network [38]. That work also illustrates the use of several other visualizations
of the blockchain data for making inferences about the dominant modes in which
currency moves through the network of user addresses. Similarly, a visual repre-
sentation of the Bitcoin transactions graph has been used to detect communities by
using a few labeled nodes as starting points [22].

3 Clustering Blockchain Data 69

3.6 Conclusion

Blockchains are a rich and growing source of big data. The major blockchains
underlying cryptocurrencies, such as Bitcoin, provide a complete and public record
of all transactions, large and small, that is unprecedented in its size and scope.
In addition to Bitcoin and other cryptocurrencies such as Ethereum, Ripple, and
more, there are also other, non-cryptocurrency applications of blockchains. All these
developments suggest an increasing prevalence and importance of blockchain big
data.

The availability of this data presents opportunities for discovering clusters and
other patterns for purposes such as detecting common usage patterns and trends,
financial fraud, and other activities, such as gaming, that leave a financial trail. Since
cryptocurrencies are sometimes used to process payments for illegal schemes (such
as cyber-ransom), de-anonymizing some transactions and addresses has received
special attention.

In addition to its volume, velocity, and variety, big data from blockchains presents
some additional challenges to clustering and related analyses. Many of these stem
from the details of how a blockchain system encodes and processes transactions,
typically pseudo-anonymously, i.e., without any explicit identification other than
randomly generated addresses. Another significant challenge is the sparsity of
information on datasets for study and, especially, for evaluating clustering methods.
While these challenges are formidable, recent work has demonstrated several
promising techniques to address them, such as using a modest amount of off-
blockchain data to seed or otherwise improve the clustering of addresses and
other blockchain data. Developing such methods to cluster blockchain data and, in
particular, to evaluate the results of clustering is a promising avenue for further work.
Another promising direction is applying clustering and other unsupervised learning
techniques to the formal contracts provided by Ethereum [44].

Acknowledgements This work was supported in part by the US National Science Foundation
grants EAR-1027960 and PLR-1142007. Several improvements resulted from detailed feedback
from the reviewers.

References

1. M. Ankerst, M.M. Breunig, H.P. Kriegel, J. Sander, Optics: ordering points to identify the
clustering structure, in: Proceedings of the 1999 ACM SIGMOD International Conference on
Management of Data, SIGMOD’99. ACM, New York (1999), pp. 49–60. https://doi.org/10.
1145/304182.304187

2. M.K. Awan, A. Cortesi, Blockchain transaction analysis using dominant sets, in Computer
Information Systems and Industrial Management, ed. by K. Saeed, W. Homenda, R. Chaki.
Springer, Cham (2017), pp. 229–239

3. L. Backstrom, C. Dwork, J. Kleinberg, Wherefore art thou R3579X? Anonymized social net-
works, hidden patterns, and structural steganography, in Proceedings of the 16th International
World Wide Web Conference (2007)

https://doi.org/10.1145/304182.304187
https://doi.org/10.1145/304182.304187

70 S. S. Chawathe

4. G. Becker, Merkle signature schemes, Merkle trees and their cryptanalysis. Seminararbeit,
Ruhr-Universität Bochum (2008). https://www.emsec.rub.de/media/crypto/attachments/files/
2011/04/becker_1.pdf

5. Bitcoin price—time series—daily (2018). https://docs.google.com/spreadsheets/d/1cdP-
AArCNUB9jS8hEYFFC1qxp4DMEpBCvvC5yuopD68/

6. Bitcoin Genesis Block, Blockchain.info Blockchain Explorer (2009). https://blockchain.info/
tx/4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b

7. Blockchain Luxembourg S.A., Address tags. Bitcoin address tags database (2018). https://
blockchain.info/tags

8. Blockchain Luxembourg S.A., Blockchain explorer (2018). https://blockchain.info/
9. J. Bondy, U. Murty, Graph Theory (Springer, London, 2008)

10. J. Bonneau, A. Miller, J. Clark, A. Narayanan, J.A. Kroll, E.W. Felten, SoK: research
perspectives and challenges for Bitcoin and cryptocurrencies, in Proceedings of the 36th IEEE
Symposium on Security and Privacy, San Jose, California (2015), pp. 104–121

11. V. Buterin, et al., Ethereum whitepaper (2013). https://github.com/ethereum/wiki/wiki/White-
Paper

12. Chainanalysis, Inc., Chainanalysis reactor (2018). https://www.chainalysis.com/
13. CoinMarketCap, Historical data for Bitcoin (2018). https://coinmarketcap.com/currencies/

bitcoin/historical-data/
14. K. Collins, Inside the digital heist that terrorized the world—and only made $100k.

Quartz (2017). https://qz.com/985093/inside-the-digital-heist-that-terrorized-the-world-and-
made-less-than-100k/

15. J.A. Cuesta-Albertos, A. Gordaliza, C. Matran, Trimmed k-means: an attempt to robustify
quantizers. Ann. Stat. 25(2), 553–576 (1997)

16. D. Di Francesco Maesa, A. Marino, L. Ricci, Uncovering the Bitcoin blockchain: an analysis
of the full users graph, in 2016 IEEE International Conference on Data Science and Advanced
Analytics (DSAA) (2016), pp. 537–546. https://doi.org/10.1109/DSAA.2016.52

17. C. Ding, X. He, K-means clustering via principal component analysis, in Proceedings of the
Twenty-first International Conference on Machine Learning, ICML’04 (ACM, Banff, 2004),
p. 29. https://doi.org/10.1145/1015330.1015408

18. R. Dubes, A.K. Jain, Validity studies in clustering methodologies. Pattern Recogn. 11, 235–254
(1979)

19. A. Epishkina, S. Zapechnikov, Discovering and clustering hidden time patterns in blockchain
ledger, in First International Early Research Career Enhancement School on Biologically
Inspired Cognitive Architectures (2017)

20. D. Ermilov, M. Panov, Y. Yanovich, Automatic Bitcoin address clustering, in Proceedings
of the 16th IEEE International Conference on Machine Learning and Applications (ICMLA),
Cancun, Mexico (2017)

21. T. Fawcett, ROC graphs: notes and practical considerations for researchers. Pattern Recogn.
Lett. 27(8), 882–891 (2004)

22. M. Fleder, M.S. Kester, S. Pillai, Bitcoin transaction graph analysis. CoRR (2015).
abs/1502.01657

23. B. Fung, Bitcoin got a big boost in 2017. Here are 5 other cryptocurrencies to watch in 2018.
Washington Post—Blogs (2018)

24. J. Gan, Y. Tao, Dbscan revisited: mis-claim, un-fixability, and approximation, in Proceedings
of the 2015 ACM SIGMOD International Conference on Management of Data, SIGMOD’15
(ACM, New York, 2015), pp. 519–530. https://doi.org/10.1145/2723372.2737792

25. Z. Ghahramani, Unsupervised learning, in Advanced Lectures on Machine Learning, ed. by
O. Bousquet, U. von Luxburg, G. Rätsch. Lecture Notes in Computer Science, vol. 3176,
chap. 5 (Springer, Berlin, 2004), pp. 72–112

26. A. Gunawan, A faster algorithm for DBSCAN. Master’s Thesis, Technical University of
Eindhoven (2013)

27. M. Harrigan, C. Fretter, The unreasonable effectiveness of address clustering, in International
IEEE Conferences on Ubiquitous Intelligence and Computing, Advanced and Trusted Com-

https://www.emsec.rub.de/media/crypto/attachments/files/2011/04/becker_1.pdf
https://www.emsec.rub.de/media/crypto/attachments/files/2011/04/becker_1.pdf
https://docs.google.com/spreadsheets/d/1cdP-AArCNUB9jS8hEYFFC1qxp4DMEpBCvvC5yuopD68/
https://docs.google.com/spreadsheets/d/1cdP-AArCNUB9jS8hEYFFC1qxp4DMEpBCvvC5yuopD68/
https://blockchain.info/tx/4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b
https://blockchain.info/tx/4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b
https://blockchain.info/tags
https://blockchain.info/tags
https://blockchain.info/
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://www.chainalysis.com/
https://coinmarketcap.com/currencies/bitcoin/historical-data/
https://coinmarketcap.com/currencies/bitcoin/historical-data/
https://qz.com/985093/inside-the-digital-heist-that-terrorized-the-world-and-made-less-than-100k/
https://qz.com/985093/inside-the-digital-heist-that-terrorized-the-world-and-made-less-than-100k/
https://doi.org/10.1109/DSAA.2016.52
https://doi.org/10.1145/1015330.1015408
https://doi.org/10.1145/2723372.2737792

3 Clustering Blockchain Data 71

puting, Scalable Computing and Communications, Cloud and Big Data Computing, Internet
of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld) (2016),
pp. 368–373. https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.
0071

28. Y. He, H. Tan, W. Luo, S. Feng, J. Fan, MR-DBSCAN: a scalable MapReduce-based DBSCAN
algorithm for heavily skewed data. Front. Comp. Sci. 8(1), 83–99 (2014)

29. B. Huang, Z. Liu, J. Chen, A. Liu, Q. Liu, Q. He, Behavior pattern clustering in blockchain net-
works. Multimed. Tools Appl. 76(19), 20099–20110 (2017). https://doi.org/10.1007/s11042-
017-4396-4

30. A.K. Jain, M.N. Murty, P.J. Flynn, Data clustering: a review. ACM Comput. Surv. 31(3), 264–
323 (1999). https://doi.org/10.1145/331499.331504.

31. A. Janda, WalletExplorer.com: smart Bitcoin block explorer (2018). Bitcoin block explorer
with address grouping and wallet labeling

32. D. Kaminsky, Black ops of TCP/IPi. Presentation slides (2011). http://dankaminsky.com/2011/
08/05/bo2k11/

33. T. Kohonen, Essentials of the self-organizing map. Neural Netw. 37, 52–65 (2013). https://doi.
org/10.1016/j.neunet.2012.09.018. Twenty-fifth Anniversary Commemorative Issue

34. H. Kuzuno, C. Karam, Blockchain explorer: an analytical process and investigation environ-
ment for Bitcoin, in Proceedings of the APWG Symposium on Electronic Crime Research
(eCrime) (2017), pp. 9–16. https://doi.org/10.1109/ECRIME.2017.7945049

35. P.C. Mahalanobis, On the generalised distance in statistics. Proc. Natl. Inst. Sci. India 2(1),
49–55 (1936)

36. S.T. Mai, I. Assent, M. Storgaard, AnyDBC: an efficient anytime density-based clustering
algorithm for very large complex datasets, in Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD’16 (ACM, New
York, 2016), pp. 1025–1034. https://doi.org/10.1145/2939672.2939750

37. J. McCaffrey, Data clustering using entropy minimization. Visual Studio Magazine (2013)
38. S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G.M. Voelker, S. Savage, A

fistful of Bitcoins: characterizing payments among men with no names, in Proceedings of the
Conference on Internet Measurement, IMC’13, (ACM, Barcelona, 2013), pp. 127–140. https://
doi.org/10.1145/2504730.2504747

39. R.C. Merkle, A digital signature based on a conventional encryption function, in Advances in
Cryptology—CRYPTO’87, ed. by C. Pomerance (Springer, Berlin, 1988), pp. 369–378

40. I. Miers, C. Garman, M. Green, A.D. Rubin, Zerocoin: anonymous distributed e-cash from
Bitcoin, in Proceedings of the IEEE Symposium on Security and Privacy (2013)

41. P. Monamo, V. Marivate, B. Twala, Unsupervised learning for robust Bitcoin fraud detection,
in Proceedings of the 2016 Information Security for South Africa (ISSA 2016) Conference,
Johannesburg, South Africa (2016), pp. 129–134

42. C.M. Nachiappan, P. Pattanayak, S. Verma, V. Kalyanaraman, Blockchain technology: beyond
Bitcoin. Technical Report, Sutardja Center for Entrepreneurship & Technology, University of
California, Berkeley (2015)

43. S. Nakamoto, Bitcoin: a peer-to-peer electronic cash system. Pseudonymous posting (2008).
Archived at https://bitcoin.org/en/bitcoin-paper

44. R. Norvill, B.B.F. Pontiveros, R. State, I. Awan, A. Cullen, Automated labeling of unknown
contracts in ethereum, in Proceedings of the 26th International Conference on Computer
Communication and Networks (ICCCN), (2017), pp. 1–6. https://doi.org/10.1109/ICCCN.2017.
8038513

45. M. Ober, S. Katzenbeisser, K. Hamacher, Structure and anonymity of the Bitcoin transaction
graph. Future Internet 5(2), 237–250 (2013). https://doi.org/10.3390/fi5020237, http://www.
mdpi.com/1999-5903/5/2/237

46. M.S. Ortega, The Bitcoin transaction graph—anonymity. Master’s Thesis, Universitat Oberta
de Catalunya, Barcelona (2013)

47. V.C. Osamor, E.F. Adebiyi, J.O. Oyelade, S. Doumbia, Reducing the time requirement of k-
means algorithm. PLoS One 7(12), 1–10 (2012). https://doi.org/10.1371/journal.pone.0049946

https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0071
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0071
https://doi.org/10.1007/s11042-017-4396-4
https://doi.org/10.1007/s11042-017-4396-4
https://doi.org/10.1145/331499.331504
http://dankaminsky.com/2011/08/05/bo2k11/
http://dankaminsky.com/2011/08/05/bo2k11/
https://doi.org/10.1016/j.neunet.2012.09.018
https://doi.org/10.1016/j.neunet.2012.09.018
https://doi.org/10.1109/ECRIME.2017.7945049
https://doi.org/10.1145/2939672.2939750
https://doi.org/10.1145/2504730.2504747
https://doi.org/10.1145/2504730.2504747
https://bitcoin.org/en/bitcoin-paper
https://doi.org/10.1109/ICCCN.2017.8038513
https://doi.org/10.1109/ICCCN.2017.8038513
https://doi.org/10.3390/fi5020237
http://www.mdpi.com/1999-5903/5/2/237
http://www.mdpi.com/1999-5903/5/2/237
https://doi.org/10.1371/journal.pone.0049946

72 S. S. Chawathe

48. S. Patel, Blockchains for publicizing available scientific datasets. Master’s Thesis, The
University of Mississippi (2017)

49. T. Pham, S. Lee, Anomaly detection in Bitcoin network using unsupervised learning methods
(2017). arXiv:1611.03941v1 [cs.LG] https://arxiv.org/abs/1611.03941v1

50. S. Pongnumkul, C. Siripanpornchana, S. Thajchayapong, Performance analysis of private
blockchain platforms in varying workloads, in Proceedings of the 26th International Confer-
ence on Computer Communication and Networks (ICCCN) (2017), pp. 1–6. https://doi.org/10.
1109/ICCCN.2017.8038517

51. B. Raskutti, C. Leckie, An evaluation of criteria for measuring the quality of clusters. in
Proceedings of the 16th International Joint Conference on Artificial Intelligence—Volume
2, IJCAI’99. Stockholm, Sweden (1999), pp. 905–910. http://dl.acm.org/citation.cfm?id=
1624312.1624348

52. S. Raval, Decentralized applications: harnessing Bitcoin’s blockchain technology. O’Reilly
Media (2016). ISBN-13: 978-1-4919-2454-9

53. F. Reid, M. Harrigan, An analysis of anonymity in the Bitcoin system (2012).
arXiv:1107.4524v2 [physics.soc-ph]. https://arxiv.org/abs/1107.4524

54. E. Schubert, A. Koos, T. Emrich, A. Züfle, K.A. Schmid, A. Zimek, A framework for clustering
uncertain data. Proc. VLDB Endow. 8(12), 1976–1979 (2015). https://doi.org/10.14778/
2824032.2824115

55. E. Schubert, J. Sander, M. Ester, H.P. Kriegel, X. Xu, DBSCAN revisited, revisited: why and
how you should (still) use DBSCAN. ACM Trans. Database Syst. 42(3), 19:1–19:21 (2017).
https://doi.org/10.1145/3068335

56. D.J. Watts, S.H. Strogatz, Collective dynamics of ‘small-world’ networks. Nature 393, 440–
442 (1998)

57. What is Bitcoin vanity address? (2017). http://bitcoinvanitygen.com/
58. H. Xiong, J. Wu, J. Chen, K-means clustering versus validation measures: A data distribution

perspective, in Proceedings of the 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD’06, Philadelphia, PA, USA (2006), pp. 779–784. https://doi.
org/10.1145/1150402.1150503

59. X. Xu, N. Yuruk, Z. Feng, T.A.J. Schweiger, Scan: a structural clustering algorithm for
networks, in Proceedings of the 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD’07 (ACM, New York, 2007), pp. 824–833. https://doi.org/
10.1145/1281192.1281280

60. Y. Yanovich, P. Mischenko, A. Ostrovskiy, Shared send untangling in Bitcoin. The Bitfury
Group white paper (2016) (Version 1.0)

61. J. Yli-Huumo, D. Ko, S. Choi, S. Park, K. Smolander, Where is current research on blockchain
technology?—a systematic review. PLoS One 11(10), e0163477 (2016). https://doi.org/10.
1371/journal.pone.0163477

62. D. Zhang, S. Chen, Z.H. Zhou, Entropy-inspired competitive clustering algorithms. Int. J.
Softw. Inform. 1(1), 67–84 (2007)

63. A. Zimek, E. Schubert, H.P. Kriegel, A survey on unsupervised outlier detection in high-
dimensional numerical data. Stat. Anal. Data Min. ASA Data Sci. J. 5(5), 363–387 (2012).
https://doi.org/10.1002/sam.11161

https://arxiv.org/abs/1611.03941v1
https://doi.org/10.1109/ICCCN.2017.8038517
https://doi.org/10.1109/ICCCN.2017.8038517
http://dl.acm.org/citation.cfm?id=1624312.1624348
http://dl.acm.org/citation.cfm?id=1624312.1624348
https://arxiv.org/abs/1107.4524
https://doi.org/10.14778/2824032.2824115
https://doi.org/10.14778/2824032.2824115
https://doi.org/10.1145/3068335
http://bitcoinvanitygen.com/
https://doi.org/10.1145/1150402.1150503
https://doi.org/10.1145/1150402.1150503
https://doi.org/10.1145/1281192.1281280
https://doi.org/10.1145/1281192.1281280
https://doi.org/10.1371/journal.pone.0163477
https://doi.org/10.1371/journal.pone.0163477
https://doi.org/10.1002/sam.11161

Chapter 4
An Introduction to Deep Clustering

Gopi Chand Nutakki, Behnoush Abdollahi, Wenlong Sun, and Olfa Nasraoui

4.1 Introduction

Driven by the explosive growth in available data and decreasing costs of compu-
tation, Deep Learning (DL) has been paving a transformational path in machine
learning and artificial intelligence [8, 17], with a dramatic impact on a variety of
application domains, ranging from computer vision [15] and speech recognition [13]
to natural language processing [5] and recommender systems [25, 27, 30]. DL found
much of its fame in problems involving predictive modeling tasks such as classifica-
tion and recommendation which are considered supervised learning. Deep learning
has also been widely used to learn richer and better data representations from big
data, without relying too much on human engineered features. Many of these deep
representation networks rely on a preliminary unsupervised learning stage, referred
to as unsupervised pretraining (e.g., autoencoders, matrix factorization, restricted
Boltzmann machines, etc.), which learn better (deep) representations of the data
that are known to drastically improve the results of supervised learning networks.
Even though it started mostly within the realm of supervised learning, deep
learning’s success has recently inspired several deep learning-based developments
in clustering algorithms which sit squarely within unsupervised learning. Most
DL-based clustering approaches have exploited the representational power of DL
networks for preprocessing clustering inputs in a way to improve the quality of
clustering results and to make clusters easier to extract. However, clustering has not

G. C. Nutakki · B. Abdollahi · W. Sun
Knowledge Discovery & Web Mining Lab, University of Louisville, Louisville, KY, USA
e-mail: g0nuta01@louisville.edu; b0abdo03@louisville.edu; w0sun005@louisville.edu

O. Nasraoui (�)
Department of Computer Engineering and Computer Science, University of Louisville, Louisville,
KY, USA
e-mail: olfa.nasraoui@louisville.edu

© Springer Nature Switzerland AG 2019
O. Nasraoui, C.-E. Ben N’Cir (eds.), Clustering Methods for Big Data Analytics,
Unsupervised and Semi-Supervised Learning,
https://doi.org/10.1007/978-3-319-97864-2_4

73

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97864-2_4&domain=pdf
mailto:g0nuta01@louisville.edu
mailto:b0abdo03@louisville.edu
mailto:w0sun005@louisville.edu
mailto:olfa.nasraoui@louisville.edu
https://doi.org/10.1007/978-3-319-97864-2_4

74 G. C. Nutakki et al.

Input
Data

Deep
Represen

tation

Deep
Represen

tationDeep
Representation
And Cluster
Partitions

Train with
Joint Loss
Function

Step 1 Step 2 Step 1 Step 2

Input
Data

Input
Data

Pre-
training

Pre-
training

Re-
trainingClustering Cluster

ing
Cluster
Partitions

Unsupervised Learning with
Deep Learning

Multi-step
Sequential Deep
Clustering

Closed-loop
Multi-step Deep
Clustering

Joint Deep
Clustering

Fig. 4.1 Taxonomy of Deep Clustering presented in this chapter

always been the ultimate goal of these techniques, since some of them aim primarily
to obtain richer deep representations, but employ clustering as an essential and
enabling step to improve this representation. Yet, both approaches result in deep
representations and clustering outputs, hence we will refer to all the approaches
presented in this chapter as Deep Clustering.

Figure 4.1 helps further understand the taxonomy of Deep Clustering approaches
that we present, which itself motivates the structure of this chapter. Deep Clustering
approaches differ based on their overall algorithmic structure, network architectures,
loss functions, and optimization methods for training (or learning the parameters).
In this chapter, we focus on Deep learning for clustering approaches where those
approaches either use deep learning for the purpose of grouping (or partitioning)
the data and/or creating low rank deep representations or embeddings of the data,
which among other possible goals, could play a significant supporting role as a
building block of supervised learning. There may be several ways to come up with
a taxonomy of deep clustering methods; our approach in this chapter is based on
viewing the methods as a process. We thus present a simplified taxonomy based on
the overall procedural structure or design of deep clustering methods. The simplified
taxonomy helps both beginner and advanced readers. Beginners are expected to
quickly grasp how almost all approaches are designed based on a small set of
common patterns, while more advanced readers are expected to use and extend
these patterns in order to design increasingly complex deep clustering pipelines
that fit their own machine learning problem-solving aims. In our taxonomy, Deep
Clustering approaches can be considered to fall into the following three broad
families (see Fig. 4.1):

1. Sequential multistep Deep Clustering approaches: These approaches consist
of two main steps. The first step learns a richer deep (also known as latent)
representation of the input data, while the second step performs clustering on
this deep or latent representation.

2. Joint Deep Clustering approaches: This family of methods include a step
where the representation learning is tightly coupled with the clustering, instead
of two separate steps for the representation learning and clustering, respectively.

4 An Introduction to Deep Clustering 75

The tight coupling is generally performed by optimizing a combined or joint loss
function that favors good reconstruction while taking into account some form of
grouping, clustering, or codebook representation of the data.

3. Closed-loop multistep Deep Clustering approaches: This family of methods
contains two salient steps, similar to the first family (sequential multistep Deep
Clustering); however, the steps alternate in an iterative loop instead of being
performed in one feedforward linear fashion.

A common thread between all the above families is that clustering is performed
on a different (so-called deep or latent) representation (DR) instead of the original
data. The deep representation is typically of lower dimensionality and captures more
easily the different hidden groups within the data. It is not surprising therefore
that such deep representations are more conducive to better clustering, even using
simple algorithms such as K-means although the latter tends to struggle when faced
with high-dimensional data. It is well known that using a Deep Representation
(DR) or preprocessing of the data using dimensionality reduction methods gives
better clustering results. Deep Representation methods that are known to improve
the results of K-means include: (1) linear mapping methods such as Principal
Component Analysis (PCA) or Nonnegative Matrix Factorization (NMF) [4, 35]
and (2) nonlinear approaches such as those used in Spectral Clustering [22, 33] and
Deep Neural Network-based DR [3, 10, 12, 28, 32].

Underlying all three families are building blocks which are essential to designing
most deep learning methods. These building blocks are:

• Deep representation models.
• Loss functions.

The following sections of the chapter will start by presenting the essential build-
ing blocks to Deep Clustering. Then, each family of Deep Clustering approaches
will be discussed in order (sequential multistep, joint, and finally closed-loop
multistep Deep Clustering).

4.2 Essential Building Blocks for Deep Clustering

Before we introduce deep clustering techniques, we first discuss the essential
ingredients for any good clustering. The first important ingredient is that the
algorithm must have good representation or features (and/or similarity or affinity
measures). The second ingredient is a good cost or loss function that captures what
a good representation or clustering is. For this reason, we consider that underlying
all three families of Deep Clustering are the following set of building blocks which
are essential to designing most deep learning methods:

• Deep representation models: These are unsupervised pretraining models which
typically compute new deep or latent features or embeddings that are considered
faithful but richer representations (DR) of the data.

76 G. C. Nutakki et al.

• Loss functions: These are the objective or cost functions that are used to train the
above deep representation models or to compute clusters from data.

These building blocks are described in the next subsections.

4.2.1 Learning Deep Representations

A high-level representation of features can be learned using deep neural networks
(DNNs) that learn mappings from the input data to better (deep) representations
(DR) that can in turn aid clustering algorithms to discover better partitions or cluster
parameters. The features of these deep representations are generally extracted from
one layer of the network, typically the latent hidden layer of an Autoencoder [31] or
a Restricted Boltzmann Machine network [11]. The features can also be extracted
from the concatenation of several layers [26].

Deep neural networks that can discover better feature mappings are typically
trained in a similar way as unsupervised pretraining which is a common preliminary
stage even in building supervised deep learning networks. Unsupervised pretraining
strategies include denoising autoencoders [31] and Restricted Boltzmann Machines
[11] which are known to reduce variance and learn hidden units that compute
features of the input data that correspond to major factors of variation in the true
input distribution. Hence, unsupervised pretraining can guide optimization towards
basins of attraction of minima that allow better generalization from training data and
add robustness to a deep architecture [6]. Autoencoders are in fact fundamentally
connected to clustering as shown by Baldi [2] who presented a framework to study
linear and nonlinear autoencoders, showing that learning in the Boolean autoencoder
(which is the most nonlinear autoencoder) is equivalent to a clustering problem that
can be solved in polynomial time for a small number of clusters, but becomes NP
complete for a large number of clusters.

In addition to autoencoders, there are alternative representation extraction build-
ing blocks such as Matrix Factorization [4, 34]. Although linear, Matrix Factoriza-
tion has proven to be a powerful strategy to learn latent representations that are
useful in many applications. MF methods are no longer confined to be linear. In fact,
a nonlinear extension of MF, called Generalized Matrix Factorization, was recently
proposed and used in deep recommender systems [9]. Just like autoencoders and
Restricted Boltzman Machines, they can easily be stacked to form hierarchical
representation layers whose output is later used as DR for clustering or other tasks.

4.2.2 Deep Clustering Loss Functions

There are several types of loss functions that can be used in a Deep Clustering
framework, of which we describe the four most important types ([1] discussed more
loss function building blocks). The first type comes purely from learning a deep
representation using deep learning techniques, and independent of any clustering

4 An Introduction to Deep Clustering 77

Fig. 4.2 The overall
structure of an auto-encoder

Input
Data

Step 1 Step 2

Pre-
training

Clustering

Deep
Representation

Cluster
Partitions

Fig. 4.3 Sequential Multistep Deep Clustering

(e.g., the reconstruction error of an autoencoder or matrix factorization). The second
type is the clustering loss, which comes from a clustering process (e.g., the K-
means’ sum of squared errors objective function). The third type is a joint loss
function that combines the first two types. The fourth type is a loss function meant
to obtain crisper or harder cluster partitions in case of soft clustering. Soft or fuzzy
clustering allows a data point to belong to multiple clusters with varying degrees of
membership.

Autoencoder Reconstruction Loss An autoencoder consists of two parts: an
encoder and a decoder [31] (see Fig. 4.3). The encoder maps (or encodes) its input
data layer x to a hidden layer representation or a code z in a latent space Z. During
training, the decoder tries to learn to make a faithful reconstruction x from the code
z, making sure that useful information has not been lost by the encoding process.
Once the training is done, the decoder part is no longer used, and only the encoder
part (consisting of the input layer and hidden layer) is left for mapping its input to the
latent space Z. This procedure allows autoencoders to learn useful representations in
case the output’s dimensionality is different from that of the inputs or when random
noise is injected into the input [32]. They can also be used for dimensionality
reduction [12]. The Autoencoder’s reconstruction loss captures the distance or error
between the input xi to the autoencoder and the corresponding reconstruction or
code f (xi), for instance, the mean squared error:

L =
∑

i

‖xi − fautoencoder(x)‖2. (4.1)

78 G. C. Nutakki et al.

Clustering Loss This type of loss is the objective function that guides a clustering
process, such as K-means [20]. Given a set of data samples {xi}i=1,...,N where
xi ∈ R

M , K-means strives to group the N data samples into K categories or cluster
partitions of the data. This is done by minimizing the following loss or cost function:

min
M∈RM×K,{si∈RK}

N∑
i=1

‖xi − Msi‖2
2 (4.2)

s.t. sj,i ∈ {0, 1}, 1T si = 1 ∀i, j,

where si is the cluster membership assignment vector of data point i which has only
one nonzero element for the cluster nearest to the data point; sj,i is the j th element
of si and represents the membership assignment in the j th cluster (1 if this cluster
is the nearest cluster to the data point and 0 otherwise); and the kth column of M ,
mk , is the centroid of the kth cluster.

Joint Deep Clustering Loss Function A joint loss function is intended to jointly
learn both DNN parameters and cluster parameters that aim to produce both better
DR and better clusters. Hence, joint loss functions combine both DR and clustering
objectives [23, 40]. Joint loss functions typically assume a generative model that
generates an M-dimensional data sample by xi = Whi , where hi ∈ R

R are latent
factors and W ∈ R

M×R are encoding weights or loading coefficients from the data
on those factors, and the latent factors’ dimensionality R � M . They further assume
that the data clusters are well-separated in latent domain (i.e., where hi lives) but
distorted by the transformation introduced by W . A joint loss function can then be
defined as follows [40]:

min
M,{si },W ,H

‖X − WH‖2
F + λ

N∑
i=1

‖hi − Msi‖2
2

+ r1(H) + r2(W) (4.3)

s.t. sj,i ∈ {0, 1}, 1T si = 1 ∀i, j,

where X = [x1, . . . , xN], H = [h1, . . . ,hN], and λ ≥ 0 is a parameter for
balancing data fidelity or reconstruction (first term) and the latent cluster structure
(second term). In (4.3), the first term performs DR and the second term performs
latent clustering. The terms r1(·) and r2(·) are regularization terms that try to favor
nonnegativity or sparsity and are used to prevent trivial solutions, such as zero latent
factor values [37].

Cluster Assignment Hardening Loss Assuming soft assignments of data points
to clusters, obtained using fuzzy clustering techniques, probabilistic clustering
methods, or normalized similarities between points and centroids. The cluster
assignment hardening loss tries to enforce making soft assignment probabilities
stricter or harder by encouraging cluster assignment probability distribution Q to
approach an auxiliary (target) distribution P which guarantees this constraint. The

4 An Introduction to Deep Clustering 79

following auxiliary distribution [34] improves cluster purity and stresses data points
that are assigned with high confidence:

pij = q2
ij /Σiqij

Σj ′(q2
ij ′/Σiqij ′)

. (4.4)

because it forces assignments to have stricter probabilities (closer to 0 and 1). This
happens due to squaring the original distribution and then normalizing. Cluster
hardening can finally be accomplished by minimizing the distance between the
original cluster assignment probability distribution and the auxiliary or target crisp
distribution, which can be done by minimizing (via neural network training) their
Kullback–Leibler divergence [16], given by:

L = KL(P‖Q) =
∑

i

∑
j

pij log
pij

qij

. (4.5)

4.3 Sequential Multistep Deep Clustering

Sequential multistep Deep Clustering approaches consist of two major steps, as
shown in Fig. 4.3. The first step learns a richer deep (also known as latent)
representation (DR) of the input data, while the second step performs clustering on
this deep or latent representation. In the following, we describe a few representative
algorithms that fall into this family of Deep Clustering methods.

4.3.1 Fast Spectral Clustering

Fast Spectral Clustering [38] is a classical multistep approach where an autoencoder
is trained to produce a latent or deep representation (DR), which is later used as input
to clustering with the K-means algorithm. In contrast to multistep methods that train
the autoencoder directly on the input data, Fast Spectral Clustering first extracts an
embedding S from the Laplacian of a precomputed similarity or kernel matrix W

and then trains the autoencoder to encode this embedding (see Algorithm 1). The
similarities are computed using a Gaussian kernel between every input data point
and p landmark points. The p landmarks can be obtained in different ways. They

Algorithm 1 Fast Spectral Clustering (FSC)
Input: Input data {x1, x2, ..., xn};
Output: k clusters of the data set 1: Select p landmarks 2: Compute similarity matrix W between
data points and landmarks 3: Compute the degree matrix: D = diag(W�ws) 4: Compute S,
the input to the autoencoder: si = d

−1/2
ii wi 5: Train an autoencoder using S as its input 6: Run

k-means on the latent space DR of the trained autoencoder

80 G. C. Nutakki et al.

Input
Data

Step 1 Step 2

Deep
Representation Cluster

Partitions

Selected
Landmarks

K-meansTrain an
autoencoder

Compute
similarities

between data
and landmarks

Fig. 4.4 Fast Spectral Clustering

Input
Data

Learn sparse
representation

Deep
Representation Compute

similarity
matrix

Spectral
clustering

Cluster
Partition

Step 1 Step 2 Step 3

Fig. 4.5 Deep Sparse Subspace Clustering

can be randomly sampled from the original data set or selected from the centroids
of p clusters by running k-means or using column subset selection methods [7]. The
Laplacian matrix is computed using:

Łnorm = D−1/2MD−1/2 = D−1/2W�WD−1/2 = S · ST (4.6)

which yields the embedding S = WD−1/2 that will be used as the input to the
autoencoder (Fig. 4.4).

4.3.2 Deep Sparse Subspace Clustering (SSC)

Given a data set X = [x1, x2, . . . , xn] ∈ Rd×n, SSC [24] seeks to linearly
reconstruct the i-th sample xi using a small number of other samples, hence
producing representation coefficients that are sparse. The optimization consists of
minimizing the reconstruction loss function as follows:

min
ci

1

2
‖xi − Xci‖2

F + γ ‖ci‖1 s.t. cii = 0 (4.7)

where ‖ · ‖1 denotes the �1-norm and cii denotes the i-th element in ci which
encourages ci to be sparse, and the constraint cii = 0 avoids trivial solutions. After
solving for the sparse representation C, an affinity matrix A is calculated using
A = |C| + |C|T . This matrix is finally used as input to spectral clustering to obtain
clustering results (see Fig. 4.5).

4 An Introduction to Deep Clustering 81

4.3.3 Deep Subspace Clustering (DSC)

In most existing subspace clustering methods including SSC, each data input is
encoded as a linear combination of the whole data set. However, linear combinations
may not be sufficient for representing high-dimensional data which usually lie on
nonlinear manifolds. Deep Subspace Clustering (DSC) [24] represents each input
sample as a combination of others, similar to SCC. However, instead of a linear
combination, DSC learns a mapping using explicit hierarchical transformations in
a neural network and simultaneously learns the reconstruction coefficients C. The
neural network consists of M + 1 stacked layers with M nonlinear transformations,
which takes a given data input x as the input to the first layer. The input to the first
layer of the neural network is denoted as h(0) = x ∈ Rd , while h(m) denotes the
output of the subsequent (m-th) layers (where m = 1, 2, . . . ,M indexes the layers),
W(m) ∈ Rd(m)×d(m−1)

and b(m) ∈ Rd(m)
denote the weights and bias associated

with the m-th layer, respectively, and d(m) is the dimension of the output of the m-
th layer. If H(M) denotes the collection of the corresponding outputs given by the
neural network,

H(M) = [h(M)
1 , h(M)

2 , . . . , h(M)
n], (4.8)

the optimization problem of DSSC can then be expressed as:

min
W(m),b(m),C

1

2
‖H(M) − H(M)C‖2

F + γ ‖C‖1

+ λ

4

n∑
i=1

‖(h(M)
i)T h(M)

i − 1‖2
2

s.t.diag(C) = 0, (4.9)

where λ is a positive trade-off parameter, the first term is designed to minimize
the discrepancy between H(M) and its reconstructed representation, the second term
regularizes C for some desired properties, and the third term is designed to remove
an arbitrary scaling factor in the latent space, without which the neural network may
collapse in the trivial solutions H(M) = 0.

DSSC simultaneously learns M nonlinear mapping functions {W(m), b(m)}Mm=1
and n sparse codes {ci}ni=1 by alternatively updating one variable while fixing all
others, until convergence. Stochastic sub-gradient descent (SGD) is used to update
the parameters {W(m), b(m)}Mm=1. An �2-norm regularizer can also be added to avoid
overfitting [15, 21]. After obtaining C, a similarity graph is constructed using A =
|C| + |C|T and this graph is used as input to clustering.

82 G. C. Nutakki et al.

Input
Data

Step 1 Step 2

Non-negative
matrix

factorization
K-means

Deep
Representation Cluster

Partitions

Fig. 4.6 Nonnegative matrix factorization (NMF) + K-means

Fig. 4.7 Joint deep
clustering

Input
Data

Train with joint
loss functions

Deep representation
and cluster partitions

4.3.4 Nonnegative Matrix Factorization (NMF) + K-Means

This approach first applies NMF [18] to learn a latent or deep representation, and
then applies K-means to this reduced-dimension representation [39] (see Fig. 4.6).
It is a common baseline for evaluating more complex architectures.

4.4 Joint Deep Clustering

Joint Deep Clustering is a family of methods that include a step, where the
representation learning is tightly coupled with the clustering, instead of two separate
steps for the representation learning and clustering, respectively. The tight coupling
is generally performed by optimizing a combined or joint loss function that favors
good reconstruction while taking into account some form of grouping, clustering,
or codebook representation of the data. In the following, we describe a few
representative algorithms that fall into this family of Deep Clustering methods
(Fig. 4.7).

4.4.1 Task-Specific and Graph-Regularized Network (TAGnet)

The goal of TAGnet [41] is to learn a discriminative embedding that is optimal
for clustering. Different from generic deep architectures, TAGnet is designed in a
way to take advantage of the successful sparse code-based clustering pipelines. The
TAGnet approach includes a feed-forward architecture, termed Task-specific And
Graph-regularized Network (TAGnet), to learn discriminative features, and a joint
clustering-oriented loss function (see Fig. 4.8). Its aim is to learn features that are
optimized under clustering criteria, while encoding graph constraints to regularize
the target solution. The solution to training the network parameters in TAGnet is

4 An Introduction to Deep Clustering 83

Fig. 4.8 The TAGnet
approach

Input
Data

Embedding/Deep
representation and
cluster partitions

Train a TAG
feed-forward
architecture +

clustering-oriented
loss function

Fig. 4.9 The FaceNet
approach

Input
Data

Deep
representation

and cluster
partitions

Train a
CNN + triplet loss

(Face-verification;
Recognition;Clustering)

derived from a theorem that shows that the optimal sparse code can be obtained
as the fixed point of an iterative application of a shrinkage operation on the degree
matrix and the Laplacian derived from the graph’s affinity matrix.

4.4.2 FaceNet

Designed for face recognition tasks, FaceNet [28] is a unified system for face
verification, recognition, and clustering (see Fig. 4.9). The approach aims to learn a
Euclidean embedding for images using a deep convolutional network. The network
is trained to produce good embeddings such that the squared L2 distances in the
embedding space directly correspond to the notion of face similarity; thus, faces of
the same person should have small distances while faces of different people should
be separated by large distances. Training is achieved by minimizing a triplet loss
function that is used to simultaneously achieve face verification, recognition, and
clustering. An embedding f (x) is extracted from an image x into a feature space
R

d , where the squared distance between all faces of the same identity is small across
all imaging conditions, whereas the squared distance between a pair of face images
from different identities is large.

4.4.3 Deep Clustering Network (DCN)

Deep Clustering Network (DCN) [39] is a multistep approach (see Fig. 4.14) that
starts by pretraining an autoencoder based on reconstruction loss minimization, then
feeds the deep representation output to K-means for clustering. After clustering,
the autoencoder is retrained by minimizing a joint loss function combining recon-
struction loss and the K-means clustering loss. DCN then alternates between the
autoencoder network training and cluster updates. DCN’s results on the MNIST
data set outperformed the results of the similar DEC approach, presented earlier
(Fig. 4.10).

84 G. C. Nutakki et al.

Input
Data

Initialize using sequential process

Pre-train an
autoencoder

Deep
Representation

K-means Cluster
Partitions

Retrain
using joint

loss
function

Step 1 Step 2 Step 3

Fig. 4.10 Overview of a Deep Clustering Network (DCN) model

Input
Data

Initialize using sequential process

Pre-train with
NMF

Deep
Representation

K-means Cluster
Partitions

Retrain
using joint

loss
function

Step 1 Step 2 Step 3

Fig. 4.11 Joint NMF + K-means (JNKM) model

4.4.4 Joint NMF and K-Means (JNKM)

Similar to DCN, JNKM [39] performs joint deep representation and K-means
clustering in several steps, except that it uses NMF instead of an autoencoder to
obtain the DR. This method has the same structure as DCN (see Fig. 4.11), replacing
the autoencoder training with NMF, and was used as a baseline by [39]. Recall that
the main difference between NMF and autoencoder networks is the nonlinearity of
the latter’s mapping.

4.5 Closed-Loop Multistep Deep Clustering

Closed-loop multistep Deep Clustering approaches are a family of methods that
consist of two salient steps, similar to the first family (sequential multistep Deep
Clustering); however, these steps alternate in a loop instead of being performed in
one feedforward linear fashion. In the following, we describe a few representative
algorithms that fall into this family of Deep Clustering methods (Fig. 4.12).

Deep Embedded Clustering (DEC) uses autoencoders as network architecture
and initialization method, and uses K-means for clustering [34] (see Fig. 4.13).
DEC first pretrains an autoencoder using a standard input reconstruction loss
function. Then, the DR resulting from this autoencoder is fed to K-means to obtain
clusters. Next, the autoencoder network is fine-tuned using the cluster assignment
hardening loss (see the Building Blocks section above) and the clustering centers

4 An Introduction to Deep Clustering 85

Input
Data Pre-training Clustering Retraining

Deep
Representation

Step 1 Step 2

Fig. 4.12 Closed-loop multistep deep clustering

Input
Data

Deep
Representation

Deep
Representation

Fine-tune
network using

cluster
assignment
hardening

Pre-train an
autoencoder

K-means

Step 1 Step 2

Cluster
Partitions

Fig. 4.13 Deep Embedded Clustering (DEC)

Input
Data

Deep
Representation

Deep
Representation

Fine-tune
network using

cluster
assignment
hardening

Pre-train a
convolutional
autoencoder

K-means

Step 1 Step 2

Cluster
Partitions

Fig. 4.14 Discriminatively Boosted Clustering (DBC)

are updated again. This process is then repeated. The clusters are iteratively refined
by learning from their high confidence assignments with the help of the auxiliary
target distribution.

Discriminatively Boosted Clustering (DBC) [19] shares many similarities with
DEC except for using convolutional autoencoders. It also uses K-means for clus-
tering and the same training method: pretraining with autoencoder reconstruction
loss, clustering the autoencoder’s output DR, then fine-tuning the autoencoder using
a cluster assignment hardening loss (see Fig. 4.14). The main advantage of DBC
over DEC is its superior performance on image data, as expected, due to using
convolutional layers.

Clustering CNN (CCNN) uses a Convolutional Neural Network [29] to achieve
joint clustering and deep representation learning. The features are extracted from
one of the internal layers of the CCNN, while the cluster labels are considered
to be the output predictions coming from the CCNN’s softmax layer. The initial
cluster centers that are used to compute the joint loss function in the pretraining
phase are based on selecting k random images from the data set. After clustering
the features coming from the DR using K-means, the assigned cluster labels are
compared with the labels predicted by the CCN’s softmax layer to compute a

86 G. C. Nutakki et al.

Input
Data

Train CNN

Extracted
features Softmax

layer

Predicted
labels

Cluster
labels

Cluster-Classification
loss

K-means
clustering

Update CNN weights

Step 1 Step 2

Fig. 4.15 Clustering Convolutional Neural Network (CCNN)

Fig. 4.16 Aljalbout’s closed loop approach using a joint loss function

clustering-classification loss. This loss function is then used to retrain the CCNN
parameters. The process is repeated with the extracted DR features again used to
update the cluster centroids, essentially entering a repetitive loop of CCN training
and clustering (see Fig. 4.15).

Aljalbout et al. [1] proposed a closed loop strategy that also iterates autoencoder
training and K-Means clustering in a loop. Like CCNN, they used a convolutional
architecture for extracting the DR in the first step to handle image data. However,
the main difference is that they retrain the network weights using a joint loss
function combining both reconstruction and cluster hardening loss (see Fig. 4.16).
Their method was shown to outperform other strategies on the MNIST and
COIL20 benchmark image data sets based on the external cluster evaluation metrics,
Normalized Mutual Information and cluster accuracy [1].

4 An Introduction to Deep Clustering 87

4.6 Conclusions

In this chapter, we presented a simplified taxonomy with several representative
examples of Deep Clustering methods which are built on algorithms that result
in both deep or latent representations (DR) and (either as an explicit aim or as
a byproduct) clustering outputs, such as a partition of the input data and cluster
centroids. Our simplified taxonomy is based on the overall procedural structure or
design of most Deep Clustering methods, thus dividing Deep Clustering approaches
into three families: sequential multistep, joint, and closed-loop multistep Deep
Clustering methods. In addition to describing several algorithms that fall under the
three main families above, we discussed the most important building blocks that are
essential to Deep Clustering methods.

Together with the Deep Clustering building blocks, our simplified taxonomy
should help beginning readers get a quick grasp of how most approaches are
designed, while guiding more advanced readers, and following the tradition of the
DL community, to stack and combine the modular patterns that we have presented in
order to design even more sophisticated deep clustering pipelines for their specific
problem-solving needs.

While we have not detailed the implementation details or computational costs
of Deep Clustering, scaling Deep Clustering follows along the steps of scaling DL
in general. This means that strategies such as SGD play an essential role in fast
optimization in the presence of big data sets, while GPU clusters play a critical
role in accelerating computation due to the highly distributed nature of most DL
architectures and weight updates. As with conventional clustering, graph-based,
agglomerative, and spectral methods are notoriously costly in both computation
time and memory requirements because of handling pairwise similarity matrices
and Laplacians. However, this can be addressed by using a small number of selected
landmarks instead of the entire data set when computing pairwise metrics, such as
was done in Fast Spectral Clustering [38].

Deep Clustering has been applied to several big data domains, ranging from
image to text and time series (earthquake) data, and we expect that in the future,
it will have an impact on even more diverse domains and applications, in the
same tradition of older clustering algorithms. Deep Clustering is hence expected to
continue the tradition of clustering algorithms and to expand their ability to elucidate
the hidden structure in big data and thus contribute to better understanding, retrieval,
visualization, and organization of big data, in addition to being an important
component of complex decision-making systems [14, 36].

References

1. E. Aljalbout, V. Golkov, Y. Siddiqui, D. Cremers, Clustering with deep learning: taxonomy and
new methods (2018). Arxiv preprint arXiv:1801.07648

2. P. Baldi, Autoencoders, unsupervised learning, and deep architectures, in Proceedings of ICML
Workshop on Unsupervised and Transfer Learning (2012)

88 G. C. Nutakki et al.

3. J. Bruna, S. Mallat, Invariant scattering convolution networks. IEEE Trans. Pattern Anal. Mach.
Intell. 35(8), 1872–1886 (2013)

4. D. Cai, X. He, J. Han, Locally consistent concept factorization for document clustering. IEEE
Trans. Knowl. Data Eng. 23(6), 902–913 (2011)

5. R. Collobert, J. Weston, A unified architecture for natural language processing: deep neural
networks with multitask learning, in Proceedings of the 25th International Conference on
Machine Learning (ACM, New York, 2008), pp. 160–167

6. D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, S. Bengio, Why does
unsupervised pre-training help deep learning? J. Mach. Learn. Res. 11, 625–660 (2010)

7. A.K. Farahat, A. Elgohary, A. Ghodsi, M.S. Kamel, Greedy column subset selection for large-
scale data sets. Knowl. Inf. Syst. 45(1), 1–34 (2015)

8. I. Goodfellow, Y. Bengio, A. Courville, Y. Bengio, Deep Learning, vol. 1 (MIT Press,
Cambridge, 2016)

9. X. He, L. Liao, H. Zhang, L. Nie, X. Hu, T.-S. Chua, Neural collaborative filtering, in
Proceedings of the 26th International Conference on World Wide Web. International World
Wide Web Conferences Steering Committee (2017), pp. 173–182

10. J.R. Hershey, Z. Chen, J. Le Roux, S. Watanabe, Deep clustering: discriminative embeddings
for segmentation and separation, in 2016 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP) (IEEE, Piscataway, 2016), pp. 31–35

11. G.E. Hinton, A practical guide to training restricted Boltzmann machines, in Neural Networks:
Tricks of the Trade (Springer, Berlin, 2012), pp. 599–619

12. G.E. Hinton, R.R. Salakhutdinov, Reducing the dimensionality of data with neural networks.
Science 313(5786), 504–507 (2006)

13. G. Hinton, L. Deng, D. Yu, G.E. Dahl, A.-R. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P.
Nguyen, T.N. Sainath et al., Deep neural networks for acoustic modeling in speech recognition:
the shared views of four research groups. IEEE Signal Process. Mag. 29(6), 82–97 (2012)

14. A.K. Jain, Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31(8), 651–666
(2010)

15. A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional
neural networks, in Advances in Neural Information Processing Systems (2012), pp. 1097–
1105

16. S. Kullback, R.A. Leibler, On information and sufficiency. Ann. Math. Stat. 22(1), 79–86
(1951)

17. Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521(7553), 436 (2015)
18. D.D. Lee, H.S. Seung, Learning the parts of objects by non-negative matrix factorization.

Nature 401(6755), 788 (1999)
19. F. Li, H. Qiao, B. Zhang, X. Xi, Discriminatively boosted image clustering with fully

convolutional auto-encoders (2017). Arxiv preprint arXiv:1703.07980
20. S. Lloyd, Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)
21. G. Montavon, K.-R. Müller, Better representations: invariant, disentangled and reusable, in

Neural Networks: Tricks of the Trade (Springer, Berlin, 2012), pp. 559–560
22. A.Y. Ng, M.I. Jordan, Y. Weiss, On spectral clustering: analysis and an algorithm, in Advances

in Neural Information Processing Systems (2002), pp. 849–856
23. V.M. Patel, H. Van Nguyen, R. Vidal, Latent space sparse subspace clustering, in 2013 IEEE

International Conference on Computer Vision (ICCV) (IEEE, Piscataway, 2013), pp. 225–232
24. X. Peng, J. Feng, S. Xiao, J. Lu, Z. Yi, S. Yan, Deep sparse subspace clustering (2017). ArXiv

preprint arXiv:1709.08374
25. M. Quadrana, A. Karatzoglou, B. Hidasi, P. Cremonesi, Personalizing session-based recom-

mendations with hierarchical recurrent neural networks, in Proceedings of the Eleventh ACM
Conference on Recommender Systems (ACM, New York, 2017), pp. 130–137

26. S. Saito, L. Wei, L. Hu, K. Nagano, H. Li, Photorealistic facial texture inference using deep
neural networks, in IEEE Conference on Computer Vision and Pattern Recognition, CVPR,
vol. 3 (2017)

4 An Introduction to Deep Clustering 89

27. R. Salakhutdinov, A. Mnih, G. Hinton, Restricted Boltzmann machines for collaborative
filtering, in Proceedings of the 24th International Conference on Machine Learning (ACM,
New York, 2007), pp. 791–798

28. F. Schroff, D. Kalenichenko, J. Philbin, FaceNet: a unified embedding for face recognition
and clustering, in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (2015)

29. C.-J. Tsai, Y.-W. Tsai, S.-L. Hsu, Y.-C. Wu, Synthetic training of deep CNN for 3d hand gesture
identification, in 2017 International Conference on Control, Artificial Intelligence, Robotics &
Optimization (ICCAIRO) (IEEE, Piscataway, 2017), pp. 165–170

30. A. Van den Oord, S. Dieleman, B. Schrauwen, Deep content-based music recommendation, in
Advances in Neural Information Processing Systems (2013), pp. 2643–2651

31. P. Vincent, H. Larochelle, Y. Bengio, P.-A. Manzagol, Extracting and composing robust
features with denoising autoencoders, in Proceedings of the 25th International Conference
on Machine Learning (ACM, New York, 2008), pp. 1096–1103

32. P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.-A. Manzagol, Stacked denoising autoen-
coders: learning useful representations in a deep network with a local denoising criterion. J.
Mach. Learn. Res. 11, 3371–3408 (2010)

33. U. Von Luxburg, A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)
34. J. Xie, R. Girshick, A. Farhadi, Unsupervised deep embedding for clustering analysis, in

International Conference on Machine Learning (2016), pp. 478–487
35. R. Xu, Measuring explained variation in linear mixed effects models. Stat. Med. 22(22), 3527–

3541 (2003)
36. D. Xu, Y. Tian, A comprehensive survey of clustering algorithms. Ann. Data Sci. 2(2), 165–193

(2015)
37. Y. Yang, M.C. Gupta, K.L. Dudley, Towards cost-efficient EMI shielding materials using

carbon nanostructure-based nanocomposites. Nanotechnology 18(34), 345701 (2007)
38. A.Y. Yang, S.S. Sastry, A. Ganesh, Y. Ma, Fast � 1-minimization algorithms and an application

in robust face recognition: a review, in 2010 17th IEEE International Conference on Image
Processing (ICIP) (IEEE, Piscataway, 2010), pp. 1849–1852

39. B. Yang, X. Fu, N.D. Sidiropoulos, M. Hong, Towards k-means-friendly spaces: simultaneous
deep learning and clustering (2016). Arxiv preprint arXiv:1610.04794

40. J. Yang, D. Parikh, D. Batra, Joint unsupervised learning of deep representations and image
clusters, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(2016), pp. 5147–5156

41. M. Zheng, J. Bu, C. Chen, C. Wang, L. Zhang, G. Qiu, D. Cai, Graph regularized sparse coding
for image representation. IEEE Trans. Image Process. 20(5), 1327–1336 (2011)

Chapter 5
Spark-Based Design of Clustering Using
Particle Swarm Optimization

Mariem Moslah, Mohamed Aymen Ben HajKacem, and Nadia Essoussi

5.1 Introduction

Large volume of data are being collected from different sources and there is a high
demand for methods that can efficiently analyze such data referred to as Big data
analysis. Big data usually refers to three main dimensions, also called the three Vs
[11], which are, respectively, Volume, Variety, and Velocity. Volume refers to the
large amount of data, Variety refers to the number of types of data, and Velocity
refers to the speed of data processing. Hence, exploring and organizing large-scale
data using machine learning techniques becomes an important challenge in Big data
analysis.

Clustering is an important technique in machine learning which has been used to
look for hidden models, relations, or to summarize data. Technically, clustering aims
to organize data into a predetermined number of groups where objects within the
same group share some common characteristics. Examples of clustering methods
categories are hierarchical methods, density-based methods, grid-based methods,
model-based methods, and partitional methods [18]. K-means [14] as one of the
partitional clustering methods, it remains the most efficient because of its simplicity
and its low computational complexity. However, it is sensitive to the selection of
initial cluster centers, as it may converge to suboptimal solutions if the initial cluster
centers are not properly chosen [5].

To overcome this weakness, several optimization algorithms were introduced
to perform data clustering. Genetic algorithm (GA) which is based on a mutation
operator for clustering analysis was proposed [12]. Another approach based on
simulated annealing (SA) for data clustering was proposed [3] and more recently

M. Moslah · M. A. B. HajKacem (�) · N. Essoussi
LARODEC, Institut Supérieur de Gestion de Tunis, Université de Tunis, Le Bardo, Tunisia
e-mail: nadia.essoussi@isg.rnu.tn

© Springer Nature Switzerland AG 2019
O. Nasraoui, C.-E. Ben N’Cir (eds.), Clustering Methods for Big Data Analytics,
Unsupervised and Semi-Supervised Learning,
https://doi.org/10.1007/978-3-319-97864-2_5

91

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97864-2_5&domain=pdf
mailto:nadia.essoussi@isg.rnu.tn
https://doi.org/10.1007/978-3-319-97864-2_5

92 M. Moslah et al.

the particle swarm optimization (PSO) was proposed for data clustering [17].
Among these algorithms, particle swarm optimization (PSO), as one of the swarm
intelligence algorithms, has gain a great popularity in the last two decades and
seemed to be potentially full and fertile research area [15]. In addition, PSO
algorithm does not require high computational capacities or a lot of parameters
to adjust, compared to genetic algorithms [8]. Although the efficiency of PSO
algorithm for data clustering, it does not scale with the increasing volume of data.
This is explained by the high computation time to build grouping from large amount
of data.

To deal with large-scale data, Aljarah and Ludwig [2] proposed fitting PSO
clustering into MapReduce model. However, this method has some considerable
shortcomings. The first shortcoming is the result of inherent conflict between
MapReduce and PSO clustering. PSO is an iterative algorithm and it requires to
perform many iterations for producing optimal results. In contrast, MapReduce has
a significant problem with iterative algorithms. At each iteration, the whole data set
must be read and written to disks and this results a high input/output (I/O) operations.
This significantly degrades the performance of MapReduce-based method. The sec-
ond shortcoming is inherited from the PSO clustering algorithm. PSO suffers from
a low convergence speed when it approaches the global optimum region. According
to [1], particles tend to move slowly when they reach the convergence region.

To deal with these issues, we propose in this chapter a new Spark-based PSO
clustering method, referred to as S-PSO. First, we propose to exploit the benefits
provided by Spark, by using in-memory operations to reduce the efficiency of
existing MapReduce solutions. Second, we propose a modified version of PSO
which executes k-means algorithm when it approaches the global optimum region to
accelerate the convergence. The rest of this chapter is organized as follows: Sect. 5.2
presents a background about the basic concepts related to the particle swarm
optimization algorithm, MapReduce model, and Spark framework. In Sect. 5.3,
existing works related to data clustering using PSO and Big data clustering methods
are presented. Section 5.4 presents our proposed method S-PSO. Section 5.5 offers
a theoretical analysis of the proposed method. Section 5.6 presents experiments that
we have performed to evaluate the efficiency of the proposed method. Section 5.7
presents conclusion and future works.

5.2 Background

This section first presents the particle swarm optimization, followed by the Big data
technologies used in this work.

5.2.1 Particle Swarm Optimization

Particle swarm optimization (PSO) was first introduced in 1995 by Kennedy the
social psychologist and Eberhart the electrical engineer. At first the algorithm was
intended to simulate the social behavior of birds when searching for food. When a

5 Spark-Based Design of Clustering Using Particle Swarm Optimization 93

bird recognizes a food area, it broadcasts the information to all the swarm. Hence,
all the birds follow him and this way they raise the probability of finding the food
since it is a collaborative work. Then the behavior of birds within swarms was turned
into an intelligent algorithm capable of solving several optimization problems [15].

PSO is a population-based optimization algorithm. It is composed of a swarm of
particles where each particle is considered as a potential solution to the optimization
problem. Each particle i is characterized at the time t, by the current position xi(t)

in the search space, the velocity vi(t), the personal best position pbestPi(t), and
fitness value pbestFi(t). The personal best position represents the best position that
the particle has ever achieved throughout its movement, which is defined as follows:

pbestPi(t + 1) =
{

pbestPi(t) if f (pbestPi(t)) <= f (xi(t + 1))

xi(t + 1) if f (pbestPi(t)) > f (xi(t + 1))
(5.1)

The swarm’s best position gbestP (t) corresponds to the best position that the whole
swarm has ever seen, which is calculated as follows:

gbestP (t + 1) = min (f (y), f (gbestP (t))) (5.2)

where y ∈ {pbestP0(t), ..., pbestPS(t)}. Particle’s positions and velocities are
calculated using the following equations:

xi(t + 1) ← xi(t) + vi(t) (5.3)

vi(t +1) ← wvi(t)+c1r1(pbestPi(t)−xi(t))+c2r2(gbestP (t)−xi(t)) (5.4)

where w is referred to the inertia weight, xi(t) is the position of the particle i at
the time t , vi(t) is the velocity of the particle i at the time t , c1 and c2 are two
acceleration coefficients, and r1 and r2 are two random values in the range [0,1].
The main algorithm of PSO is described in Algorithm 1 [10].

Algorithm 1 The main algorithm of PSO
1: Input: Z: input data set
2: Output: Particles information
3: Initialize the swarm of particles from Z.
4: while Convergences not reached do
5: Compute the fitness of particles according to the fitness function to be optimized.
6: Update each particle’s personal best position and fitness value using Equation 5.1.
7: Update the global best position using Equation 5.2.
8: Update particle’s positions and velocities using Equation 5.3 and 5.4 respectively.
9: end while

It is important to note that the convergence is reached when gbest does not have
significant changes anymore [15].

94 M. Moslah et al.

5.2.2 MapReduce Model

MapReduce is a very well-known programming framework built to ensure the
parallel computation and processing of large volume of data. It adopts the method
of divide and conquer in which a problem is divided into smaller and less complex
sub-problems. Then simultaneously, all sub-problems are separately executed. Once
finished, results are merged to provide a final solution to the very big and
complex problem [6]. The principal components of the MapReduce model are
the map and reduce functions. The map function takes as input key/value pairs
(k, v), performs the assigned work, and generates intermediate key/value pairs
[(k′, v′)]. An intermediate step known as shuffling step is required to organize each
intermediate key with its corresponding values [7].

The reduce function aims to merge all the values corresponding to each interme-
diate key (k′,[v′]) to form the final result and output final key/value pairs as [(k′
,v′′)][7].

Figure 5.1 outlines the flowchart of MapReduce paradigm. The enormous data
set is divided into several chunks, small enough to be fitted into a single machine,
each chunk is then assigned to a map function to be processed in parallel. Inputs and
outputs are stored in the distributed file system and are accessible by each node in the
cluster. Apache Hadoop is the most popular implementation of MapReduce for Big
data processing and storage on commodity hardware. The use of this framework has

Input Data

Split Split Split
...

<key,value><key,value><key,value>

<key' ,value’><key' ,value’><key' ,value’>

<key' ,value'’><key' ,value'’><key' ,value'’>

<key' ,[list value']><key' ,[list value']><key' ,[list value']>

MAP MAP MAP

Shuffle

Reduce

Fig. 5.1 MapReduce flowchart

5 Spark-Based Design of Clustering Using Particle Swarm Optimization 95

become widespread in many fields because of its performance, open source nature,
installation facilities, and its distributed file system named Hadoop distributed file
system (HDFS). In spite of its great popularity, Hadoop MapReduce has significant
problems with iterative algorithms.

5.2.3 Apache Spark

Apache Spark, a new framework for Big data processing, designed to be able
to solve the Hadoop’s shortcomings. It was developed in 2009 in AMPLab in
UC Berkeley University, then it became open source in 2010. It is known for its
scalability, flexibility, and rapidity [16]. Spark gains its prosperity from its capacity
of performing in-memory computations which means that data does not have to
be moving from and to the disk instead it is maintained in the memory. In fact,
Spark loads the necessary data needed for a specific application, processes and
keeps resulted data in memory for further iterations or processes. Therefore, data
are read and written only once, rather than multiple times, when iterative processes
are required. It also supports streaming processing and this is considered as a
strength point regarding Hadoop framework. Spark is based on resilient distributed
dataset (RDD), which is considered as a database table that is distributed among the
different nodes of the cluster. The RDDs could be created by reading an external
data source or by parallelizing a collection of data. Two major operations could be
performed on RDDs, namely transformations and actions. Transformations apply
changes on an RDD and generate a new one. Examples of transformations are Map,
Sample, GroupbyKey, and ReducebyKey. Actions are operations that require the
generation of an output. Examples of actions are Count, Take, and Foreach.

5.3 Related Works

PSO is widely used in cluster analysis since it uses a whole population of
possible solutions that collaborate in the purpose of finding better quality clusters
[1, 9, 17]. Merwe and Engelbrecht [17] are the first to propose clustering using
particle swarm optimization algorithm. In fact, they proposed two methods for data
clustering which are the PSO clustering algorithm and the hybrid method which
combines both PSO and k-means and then they compared it with k-means algorithm.
PSO clustering method is based on the particle swarm optimization algorithm
which constitutes a population of particles considered as potential solutions to
the clustering problem, these particles contain each k randomly selected initial
centroids. This approach is different from that of k-means because it considers a
whole swarm of solutions and not only one as in k-means. The particles move
in the search space until a global optimal solution is reached. The hybrid method
uses the result of k-means algorithm as one of the initial solutions, then randomly

96 M. Moslah et al.

generates the rest of the swarm to finally execute the PSO clustering algorithm. The
two approaches were compared with the stand-alone k-means algorithm and they
showed significantly better performances in convergence and quantization error.
Esmin et al. [9] proposed a clustering method based upon the method of Merwe
and Engelbrecht [17] with modifications on the regular fitness function. Since the
fitness computation doesn’t take into account the number of data vectors in each
cluster, result’s quality was significantly influenced. The number of data objects
within each cluster was introduced in the fitness computation which results in good
improvements. Ahmadyfard and Modares [1] proposed a new hybrid PSO and K-
means clustering algorithm. It starts by executing PSO and switches to k-means
when the algorithm reaches the global optimum region. The switch is obtained when
the fitness function remains significantly unchanged after several iterations. This
combination takes advantage of the strength points of both k-means and PSO and
in the same time overcomes their weaknesses. Since PSO shows poor convergence
speed near optimum, it is then combined with k-means to speed up the convergence.
This combination brings significant improvement compared with the stand-alone
PSO and k-means algorithms. Despite the efficiency of the latter discussed methods
to deal with the initialization problem using PSO, they are not able to scale with
huge volume of data.

To deal with large-scale data, several methods which are based on parallel
frameworks have been designed in the literature [2, 4, 13, 20]. Most of these
methods use the MapReduce model for data processing. For instance, Zaho el al.
[20] have implemented k-means method through MapReduce model. This method
first assigns each data point to the nearest cluster prototypes in the map function.
The reduce function then updates the new cluster prototypes. Then, this method
iterates calling the two functions several times until convergence. Ben HajKacem
et al. have proposed fitting k-prototypes using MapReduce model [4] in order to
perform the clustering of mixed large-scale data. This method iterates two main
steps until convergence: the step of assigning each data point to the nearest cluster
center and the step of updating cluster centers. These two steps are implemented
in map and reduce phase, respectively. Ludwing has proposed the parallelization
of fuzzy c-means clustering using MapReduce model [13]. This method is based
on two MapReduce jobs. The first MapReduce job calculates the cluster centers
by scanning the input data set. The second MapReduce job also iterates over the
data set and calculates the distances to be used to update the membership matrix as
well as to calculate the fitness. Although the performance of the latter discussed
methods to deal with large-scale data using MapReduce, they do not provide a
solution regarding the sensitivity to the selection of the initial cluster centers.

Aljarah and Ludwig [2] proposed MR-CPSO which is, to the best of our knowl-
edge, the only method that processes large-scale data clustering using MapReduce
model as well as PSO to ensure better scalability and better clustering quality. In
order to perform clustering using PSO, few steps have to be performed which start
by the particles initialization, fitness update, centroids update, and finally personal
best and global best update. The proposed implementation based on MapReduce
suggests three major modules. The first module is a map reduce module responsible

5 Spark-Based Design of Clustering Using Particle Swarm Optimization 97

for centroids update. The map function receives the particles information as a
key value pair where the key is the particle ID and the value represents all the
information related to the particle. The map function extracts from each particle the
necessary information that enables the update of the centroids and that is done using
the position and velocity update formulas (1.3) and (1.4). Then the reduce function
combines all updated information into one file and load it into the distributed file
system. Once the centroids are updated, the algorithm launches the second module.
The second module is a MapReduce module where the map function performs
the data assignment step and the reduce function updates the fitness values for
each particle. In fact, the map function retrieves the updated particles information
and then receives the data chunk to use, then for each particle, data objects are
assigned to the closest center. Once done, a key/value pair is generated where the key
represents the particle ID and centroid ID where the data is assigned and the value
represents the computed distance. Then, the reduce function uses the generated
key/value pairs from the previous map function to compute the new fitness values
that have to be stored in the distributed file system. The last module is a simple
module that merges the outputs resulted from the different previous modules. In
addition to that, personal best are updated for each particle as well as a global best.
The updated particle’s information are stored in the distributed file system to be used
for next iterations. Figure 5.2 presents the modules of MR-CPSO.

Table 5.1 summarizes the existing methods.
Although the attested performance of MR-CPSO to perform large-scale data, it

has some considerable shortcomings.

• PSO suffers from a low convergence speed close to the global optimum region.
In fact, according to [1], particles tend to move slowly when they reach the
convergence region. This could be explained by the fact that in PSO, particles
tend to follow the global best one and when the algorithm is about to converge,
all the particles are almost in the same convergence region. Therefore every

First Module Second Module

Initial Swarm Data Records

Split 1 Split 2 Split 3 Split n Split 1 Split 2 Split 3 Split n

1st Map

1st Reduce 1st Reduce

Updated Swarm

New Swarm

Fitness Values
Output

1st Reduce 1st Reduce 2nd Reduce 2nd Reduce 2nd Reduce 2nd Reduce

1st Map 1st Map 1st Map 2nd Map 2nd Map 2nd Map 2nd Map

Third Module
(Merging)

Fig. 5.2 MR-CPSO modules

98 M. Moslah et al.

Table 5.1 Summary of
existing methods

Initialization Scalability

Merwe and Engelbrecht [17] + −
Esmin et al. [9] + −
Ahmadyfard and Modares [1] + −
Zhao et al. [20] − +

Ben HajKacem et al. [4] − +

Ludwing [4] − +

Aljarah and Ludwig [2] + +

particle’s pbestPi and xi(t) are almost equal to the gbestP . Therefore, the
particles velocities and positions are not exhibiting significant changes.

• PSO is an iterative algorithm and it requires to perform some iterations for
producing optimal results. In contrast, MapReduce has a significant problem
with iterative algorithms. As a consequence, the whole data set must be loaded
from the file system into the main memory at each iteration. Then, after it is
processed, the output must be written to the file system again. Therefore, many
of I/O operations like I/O disk occur during each iteration and this decelerates
the running time.

5.4 Proposed Approach: S-PSO for Clustering Large-Scale
Data

We propose a new efficient PSO clustering method using Spark. The proposed
method S-PSO is based on a new strategy that runs k-means algorithm in the
latest stages. In fact, k-means is a very fast algorithm so it will accelerate the
convergence and it will not affect the final result quality since PSO is very close
to the convergence. Furthermore, the proposed method reads the data set only once
in contrast to existing MapReduce implementation of PSO clustering. Hence, we
aim to exploit in our implementation the flexibility provided by Spark framework,
by using in-memory operations that alleviate the consumption time of existing
MapReduce solution [2].

S-PSO method is composed of four major steps, namely Data assignment and
fitness computation step, Personal and global best update step, Position and velocity
update step, and finally K-means iteration step. The main process of the proposed
method denoted by S-PSO is described in Fig. 5.3.

5.4.1 Data Assignment and Fitness Computation Step

S-PSO starts by setting an initial swarm where it initializes every particle’s position,
velocity, personal best position, and personal best fitness. The positions are the
initial cluster’s centroids and they are randomly retrieved from the data. Therefore,
each particle once initialized represents a possible solution of the data clustering.

5 Spark-Based Design of Clustering Using Particle Swarm Optimization 99

Particle Information Data

Slice 1 Slice 2 Slice c...

Data

Slice 1 Slice 2

Centroid Update

Slice c

Stop END

Yes

Yes

No

Switch

No

...

...

Data
Assignment

P1 P2 Ps

Pbest Update

Position/Velocity
Update

Position/Velocity
Update

Merge updated particles

Position/Velocity
Update

gbest Update

Data
Assignment

Data
Assignment

Data
Assignment

Data
Assignment

Data
Assignment

Fitness Computation

Data Assignment and Fitness Computation Step

pbest/gbest Update Step

Position/Velocity Update Step

K-means iteration Step

Fig. 5.3 Flowchart S-PSO

This initial swarm encompasses particle’s information that will be used for the
remaining steps. The data assignment step is a highly expensive operation because
it requires to assign the huge amount of data to their closest clusters and this has to
be done for every single particle. Since assigning an object is independent from the
other objects therefore this step could be performed in parallel. First, the data set is
divided into chunks and every chunk is assigned to a map function along with the
particle’s information. The map function, called Data assignment, assigns the data
point from its corresponding chunk to the closest cluster in each particle. Then, the

100 M. Moslah et al.

map function returns as output a key value pair where the key is composed of the
couple particleID and centroidID and the value designates the minimum distance
between a data object and the centroidID in a specific particleID.

Once all the data are already assigned to the closest cluster, a reduce function,
called fitness computation step uses the reduceByKey() operation provided by Spark
framework to combine the different outputs from the different map functions. The
reduce function computes the new fitness value using for that the quantization error
given by the following formula:

Fi =
∑k

j=1[
∑

∀zp∈Cij
d(zp, Cj)/|Cij |]
k

(5.5)

where d(zp, Cj) represents the distance between the data object zp and the cluster’s
centroid Cj , |Cij | represents the number of objects assigned to the centroid Cij

relative to the particle i, and finally k represents the number of clusters.
Then, the reduce function provides as output a key value pair composed of the

particleID as a key and the new fitness value as the value. Let Z = {z1...zn} the
input data set. Let P(t) = {Pi(t)...PS(t)} the set of the particle’s information
where Pi(t) = {xi(t), vi (t), pbestPi (t), pbestFi(t)} represents the information
of particle i in the iteration t where xi(t) is the position, vi(t) is the velocity,
pbestPi(t) is the best position, and pbestFi(t) is the best fitness.

Let F = {F1...FS} the set of fitness values where Fi is the fitness value of the
particle i.

Algorithm 2 outlines the data assignment and fitness computation step.

Algorithm 2 Data assignment and fitness computation step
1: Input: Z: input data set, P(t): particle information
2: Output: F: fitness values
3: Split the data set Z into c chunks Z = {Z1...Zc}
4: % Map Phase

Let Zj be assigned to map j
5: for each zp ∈ Zj do
6: for each Pi(t) ∈ P (t) do
7: xi(t) ← Extract position from Pi(t)

8: Assign data objects to their closest centroid by computing the euclidean distance
9: Let distance the minimum computed distance

10: Let CentroidID the index of the centroid where the object zp is assigned
11: Let ParticleID be the index of the particle i
12: end for
13: Emit (key: ParticleID, CentroidID /value: distance)
14: end for
15: % Reduce Phase
16: for each Pi(t) ∈ P do
17: Compute fitness value Fi using Equation 5.5
18: Emit (key: ParticleID /value: Fi)
19: end for

5 Spark-Based Design of Clustering Using Particle Swarm Optimization 101

5.4.2 Pbest and Gbest Update Step

When the new particle’s fitness is computed, it is automatically stored in an RDD
distributed among the cluster’s nodes. However, since Pbest and gbest update is not
an expensive step and it does not require to be performed in parallel that’s why the
RDD containing the particle’s fitness is collected which means it is returned to the
driver program to be used in a serial way. Now, each particle updates its personal
best position. For the gbest update, the particle having the best fitness value (the
smallest quantization error) is identified as gbest particle.

Let pbestF (t) = {pbestF1(t)...pbestFS(t)} the set of personal best fitness
values where pbestFi(t) is the pbestF of the particle i at iteration t.
Let pbestP (t) = {pbestP1(t)...pbestPS(t)} the set of personal best position where
pbestP1(t) is the pbestP of the particle i at iteration t. Let gbestP be the position
of the best particle.
Algorithm 3 outlines the pbest and gbest update step.

Algorithm 3 Pbest and gbest update step
1: Input: F, pbestF (t), pbestP (t)

2: Output: pbestF (t + 1), pbestP (t + 1), gbestP

3: gbestP ← ∅
4: for each particle Pi(t) ∈ P (t) do
5: pbestFi (t + 1) ← ∅
6: pbestPi (t + 1) ← ∅
7: if (pbestFi (t) ≤ Fi) then
8: pbestFi (t + 1) ← pbestFi (t)

9: pbestPi (t + 1) ← pbestPi (t)

10: else
11: pbestFi (t + 1) ← Fi

12: pbestPi (t + 1) ← xi (t + 1)

13: end if
14: end for
15: Let i∗ is the index of particle having the best fitness value
16: gbestP ← xi∗ (t)

5.4.3 Position and Velocity Update Step

To take advantage of the parallel environment, S-PSO starts by splitting the particles
information among different map functions to perform the velocity and position
update using Eqs. (5.3) and (5.4).

Then, the reduce function merges the results provided from the different map
functions into one single RDD using for that a reduceByKey() operation.

Once finished, the data set and the particle’s information stored both in RDDs
are persisted in memory for the next iteration and are not returned to the disk. The
persistence is performed using the operation cache() or persist().

102 M. Moslah et al.

Let x(t) = {x1(t)...xS(t)} the set of position values where xi(t) is the position
of the particle i at iteration t . Let v(t) = {v1(t)...vS(t)} the set of velocity values
where vi(t) is the velocity of the particle i at iteration t .

Algorithm 4 outlines the position and velocity update step.

Algorithm 4 Position and velocity update step
1: Input: gbestP , P (t)

2: Output: P(t+1)
3: % Map Phase

Let Pi(t) be assigned to a map function i
4: xi(t + 1) ← ∅
5: vi(t + 1) ← ∅
6: Compute the new position value xi (t + 1) using 5.4
7: Compute the new velocity value vi(t + 1) using 5.3
8: Emit(key: 1/ value: Pi(t + 1))
9: % Reduce Phase

10: Merge outputs of the different map functions
11: Emit (P (t + 1))

S-PSO continues iterating until it almost reaches the global optimum region
where it becomes very slow. In order to overcome this problem, when the S-PSO
reaches the switch condition, it automatically switches to k-means algorithm to take
advantage of its speed.

The switch is realized when the variable Time-To-Start is reached: it determines
the iteration number where the switch has to occur.

5.4.4 K-Means Iteration Step

When the algorithm switches to k-means, it takes as input the final global best
position retrieved from PSO to serve as an initial cluster centroid. K-means is
composed of two major steps: data assignment and centroids update. The data
assignment step is a map function that takes as input the data chunk and the initial
clusters centroids, then it assigns the data objects to the closest cluster. For that, it
generates as output a list of key/value pair where key represents the index of the
cluster where the data object is assigned and the value represents the data vector.

The centroid update step is a reduce function responsible for merging the
different outputs of the map function and for updating the clusters centroids using
the mean operation in each cluster. K-means iteration step iterates until it reaches
the maximal number of iterations.

Let C(t) = {c1(t)...ck(t)} the set of cluster centroids at iteration t . Algorithm 5
outlines the k-means iteration step.

5 Spark-Based Design of Clustering Using Particle Swarm Optimization 103

Algorithm 5 K-means iteration step
1: Input: Z, gbestP

2: Output: C(t+1)
3: Split the data set Z into c chunks Z = {Z1...Zc}
4: C(t) ← gbestP

5: % Map Phase
Let Zj assigned to map j

6: for each zp ∈ Zj do
7: for each Ci(t) ∈ C(t) do
8: Assign data objects to their closest centroid by computing the euclidean distance
9: Let CentroidID the index of the centroid where the object zp is assigned

10: end for
11: Emit (key:CentroidID /value: zp)
12: end for
13: % Reduce Phase
14: for each Ci(t) ∈ C(t) do
15: Update centroid Ci(t + 1)

16: Emit (key: CentroidID /value: Ci(t + 1))
17: end for

Algorithm 6 outlines the overall steps of S-PSO.

Algorithm 6 S-PSO algorithm
1: Input: Z: input data set, Iter: maximal iteration number, S: swarm size, k: number of clusters,

Time-To-Start: iteration number for switching to K-means, P(t): initial swarm’s information
2: Output: Cf : Final centroids
3: i ← 1
4: switch ← false
5: while ((i< Iter) and (!switch)) do
6: % Data assignment and fitness computation step
7: % Pbest and gbest Update step
8: % Position and velocity update step
9: i++

10: if (i =Time-To-Start) then
11: switch ← true
12: C = gbestP

13: end if
14: end while
15: if (switch =true) then
16: j ← 1
17: repeat
18: % K-means iteration step
19: j ← j + 1
20: until (j = I ter)

21: end if

104 M. Moslah et al.

5.5 Theoretical Analysis

5.5.1 Complexity Analysis

Complexity analysis aims to provide the time, space, and I/O complexities of our
proposed method S-PSO and compares it to MR-CPSO proposed by [2] since it is
the only work dealing with Big data clustering using PSO.

The following notations are used: n the data set size, k the number of clusters, c

the number of data chunks, I the number of iterations, s the swarm size, and P the
size of the list containing the particle’s information.

5.5.1.1 Time Complexity

The most expensive operation in PSO is the data assignment step where each data
object has to compute its distance to all the clusters of each particle in the swarm,
then this has to be repeated several times. Therefore, the time complexity of PSO
could be estimated to O(n.k.s.I).

The S-PSO splits the input data into several chunks that could be processed
simultaneously. So instead of processing n data object in every iteration which
is the case for PSO, S-PSO will use n/c data item per iteration. Hence, at each
iteration S-PSO takes O(n/c.k.s) time. Similar to S-PSO, MR-CPSO works on
chunks, thus it takes O(n/c.k.s) time for each iteration. However, regarding the
number of iterations, MR-CPSO executes PSO for I times while for S-PSO the
number of iteration is divided into I1 for running PSO and I2 for running k-means
where I1+I2=I (I1, I2 < I). Since K-means is a very fast algorithm which means
that executing it for I2 times will definitely reduce the overall consumed time.

Therefore, the overall time complexity for S-PSO is estimated to O(n/c.k.s.I1 +
n/c.k.I2). While the overall time complexity for MR-CPSO is estimated to
O(n/c.k.s.I). Hence, S-PSO decreases the time complexity of MR-CPSO from
O(n/c.k.s.I) to O(n/c.k.s.I1 + n/c.k.I2) where I1, I2 < I .

5.5.1.2 Space Complexity

The S-PSO and MR-CPSO store in the memory a data set of size n where it is used
in the data assignment and fitness computation step. In addition to that they initialize
and store a list containing the particles information. Therefore, the space complexity
of S-PSO and MR-CPSO is estimated to O(n + P).

5.5.1.3 Input/Output Complexity

S-PSO reads the data chunk from disk only once and persists it in the memory.
Therefore, the I/O complexity of S-PSO is evaluated by O(n/c). While the MR-

5 Spark-Based Design of Clustering Using Particle Swarm Optimization 105

CPSO has to access the disk I times corresponding to the number of iterations.
Hence, the I/O cost of MR-CPSO is evaluated by O(n/c.I). As a result, S-PSO
can reduce the I/O complexity of MR-CPSO from O(n/c.I) to O(n/c).

5.5.2 Time-To-Start Variable Analysis

In PSO, when particles approach the global optimum region, they tend to become
very slow. In order to speed up the convergence, k-means known for its speed was
integrated in the latest stages of PSO. This way, S-PSO starts by processing PSO
first, then it switches to k-means once it approaches the convergence area. We aim by
this combination to take advantage of PSO’s capacity of finding good quality results
on one hand and on the other hand take advantage of k-mean’s speed. The switching
between the two algorithms is conditioned by a variable that we introduce called
Time-To-Start. Time-To-Start designates the iteration number where the switch has
to occur. The choice of this variable can influence both time and quality. If this
variable is picked up to be in the beginning of PSO, we obtain a low quality result but
a very reduced execution time and the opposite is correct. Therefore, this variable
has to be chosen in a way that ensures balance between quality and time.

5.6 Experiments and Results

5.6.1 Methodology

In order to evaluate the efficiency of S-PSO method, we performed experiments
that aim to figure out three major points. (i) How efficient S-PSO method is when
applied to large-scale data compared to existing methods? (ii) How the Time-To-
Start variable can improve the performance of the proposed method? (iii) How the
Spark framework can enhance the scalability of the proposed method when dealing
with large-scale data?

5.6.2 Environment and Data Sets Description

Experiments were realized using a machine of 16 GB of RAM and 1T of disk having
8 cores, it uses Apache Spark version 2.1.1 and scala version 2.1.1 running on a
Ubuntu version 16.04. We conducted the experiments on the following data sets:

• Simulated data set: four series of large-scale data sets are generated using the
gaussian distribution where the mean is 350 and the sigma is 100. The data sets
range from 1 million to 8 millions data points. Each data point is described using

106 M. Moslah et al.

10 attributes. The numeric values are generated with gaussian distribution. In
order to simplify the names of the simulated data sets, we use the notations D1M,
D2M, D4M, and D8M to denote a simulated data set containing 1, 2, 4, and 8
millions data points, respectively.

• Magic: is a real data set which represents the results of registration simulation of
high energy gamma particles in a ground-based atmospheric Cherenkov gamma
telescope using the imaging technique. The magic data set contains 19,020
instances having each 10 attributes. The clustering process for this data set
identifies whether the energy registered is gamma or not. This data set was
obtained from UCI machine learning repository.1

• KDD Cup data set (KDD): is a real data set which consists of normal and attack
connections simulated in a military network environment. The KDD data set
contains about 5 millions connections. Each connection is described using 33
attributes. The clustering process for this data set detects the type of the attacks
among all connections. This data set was obtained from UCI machine learning
repository. 2

• Household data set (House) : is a real data set which represents the results of
measurements of electric power consumption in household. The House data set
contains 2,075,259 data points. Each data point is described using 10 attributes.
The clustering process for this data set identifies the types of electric consumption
in household. This data set was obtained from UCI machine learning repository.3

• CoverType: is a real data set that represents cover type for 30 × 30 meter cells
from US Forest. CoverType data set contains 581,012 instances having each 54
attributes. This data set helps to predict the type of the tree from 7 different
types. The real data set is obtained from the UCI4. Statistics of these data sets are
summarized in Table 5.2.4

Table 5.2 Summary of the data sets

Data set Number of data points Number of attributes Domain

D1M 1,000,000 10 Simulated

D2M 2,000,000 10 Simulated

D4M 4,000,000 10 Simulated

D8M 8,000,000 10 Simulated

Magic 19,020 10 Gamma particle’s energy

KDD 4,898,431 33 Intrusion detection

House 2,075,259 10 Electricity

CoverType 581,012 54 Agriculture

1https://archive.ics.uci.edu/ml/machine-learning-databases/magic/.
2https://archive.ics.uci.edu/ml/machine-learning-databases/kddcup99-mld/.
3https://archive.ics.uci.edu/ml/machine-learning-databases/00235/.
4https://archive.ics.uci.edu/ml/machine-learning-databases/covtype/.

https://archive.ics.uci.edu/ml/machine-learning-databases/magic/
https://archive.ics.uci.edu/ml/machine-learning-databases/kddcup99-mld/
https://archive.ics.uci.edu/ml/machine-learning-databases/00235/
https://archive.ics.uci.edu/ml/machine-learning-databases/covtype/

5 Spark-Based Design of Clustering Using Particle Swarm Optimization 107

5.6.3 Performance Measures

Evaluating the performance of our proposed method is an important step that takes
into account evaluation measures in order to assess the algorithm’s quality. The
evaluation is addressed towards the approach’s scalability and robustness in addition
to the quality of clustering results.

• In order to evaluate the scalability, we use the speedup, scaleup, and sizeup
measures, which are defined as follows.

– The speedup measure consists of fixing the data set size and varying the
number of computer nodes. Therefore, clustering is performed with one
computer node then with m computer nodes, having respectively T1 and Tm

as running time [19]. The speed up is measured as follows:

Speedup = T1/Tm (5.6)

The more the speedup is close to linear, the best the algorithm is.
– While the speedup measure keeps the data set size constant and increases the

computer nodes, the scaleup measure increases both the data set size and the
number of computer nodes. Therefore, the clustering is performed with one
computer node and s as data set size, then it is performed with m nodes with
m ∗ s as a data set size [19]. The scaleup measure is given by the following
formula:

Scaleup = T1s/Tms (5.7)

The algorithm is considered scalable when T1s is almost equal to Tm∗s .
– The sizeup measure holds constant the number of computer nodes and

increases m times the size of the data set. It helps to measure the capacity
of the algorithm to support m times larger data set [19]. The sizeup measure
is given by the following formula:

Sizeup = Ts/Tms (5.8)

An algorithm that has a good sizeup takes m times longer from executing s

and m ∗ s.

• In order to evaluate the quality of the proposed method, the Running Time and
the Quantization Error (QE) given by Eq. (5.5) are used. The QE measures the
distance differences between a center and the data objects within that center.

108 M. Moslah et al.

Table 5.3 Comparison of the running time and quantization error of S-PSO versus existing
methods

Data set K-means PSO S-PSO

Magic 8 37 25

KDD 4350 10844 2741

House 500 2188 460

CoverType 134 1325 398

Magic 14693 10762 10861

KDD 1.3E12 7.1E11 6.8E11

House 114 53 49

CoverType 1002728 1053373 1061763

5.6.4 Comparison of the Performance of S-PSO Versus
Existing Methods

In order to perform the experiments the following parameters are fixed, swarm
size as 10 particles, the number of iterations as 50, inertia weight (w) as 0.72,
acceleration coefficients (c1, c2) as 1.49, and the number of clusters (k) as 5
for all the data sets except for magic and CoverType is respectively 2 and 7.
Table 5.3 reports the performance results of the S-PSO compared to existing
methods. Concerning the running time, S-PSO outperforms PSO for all the data
sets and also outperforms k-means with house and kdd data sets but for magic and
CoverType k-means seems to be faster. This could be explained by the fact that
magic and CoverType are considered small data sets and they do not require to be
clustered in a parallel manner. Instead, if they are processed in a parallel way it will
cost additional time. Concerning the quantization error, PSO and S-PSO provide a
better quality regarding k-means while S-PSO keeps almost the same quality as for
PSO. This is due to the capacity of PSO and S-PSO using a population of candidate
solutions in order to explore the search space.

5.6.5 Evaluation of the Impact of Time-To-Start Variable on
the Performance of S-PSO

The purpose is to investigate the impact of the Time-To-Start variable on the
performance of S-PSO. Table 5.4 outlines the results. When Time-To-Start variable
increases and approaches the final stages of S-PSO, the running time gets more
important but the quality gets better as the quantization error decreases. In fact, when
the algorithm switches to k-means in its early stages which means when Time-To-
Start is small, it takes advantage of the speed of K-means but it is deprived from the
capacity of PSO of converging to high quality solutions. In fact the more the Time-
To-Start value is small, the fastest the algorithm becomes, the less the quality is.

5 Spark-Based Design of Clustering Using Particle Swarm Optimization 109

Table 5.4 Impact of
Time-To-Start variable

Time to start

Data set 10 20 30 40 50

(a) The impact of Time-to-Start variable on the running time

Magic 11 17 21 24 28

KDD 421 1416 2077 2789 3206

House 213 383 403 460 661

CoverType 114 229 260 398 493

(b) The impact of Time-to-Start variable on the QE values

Magic 11301 10944 10630 10294 10365

KDD 9.1E11 9E11 8.9E11 8.9E11 8.9E11

House 65 58 58 50 53

CoverType 1294955 1150217 1139999 1101694 1192713

Therefore, it is important to figure out a compromise between time and quality. In
our case, since PSO gets very slow near to convergence the Time-To-Start variable is
chosen to be in the last ten iterations. This way switching to k-means will not affect
the final result since S-PSO is almost converging and it will reduce the execution
time.

5.6.6 Scalability Analysis

Figure 5.4a–d outlines the running time of the proposed method on D1M, D2M,
D4M, and D8M, respectively. We can notice that for all data sets the running time
decreases as the number of cores increases. For instance, for D4M, the running time
decreases from 3987 with 1 core to 730 on 8 cores which means that it decreases
over 5 times faster.

To evaluate the speedup for the proposed method, we maintain the constant data
set size and we increase the number of cores from 1 to 8. Figure 5.5a–d illustrates
the speedup results of respectively D1M, D2M, D4M, and D8M. The overall results
show a good speedup for the proposed method. Actually, for all the data sets, when
the number of cores goes from 1 to 4, the speedup results are very close to the linear
and therefore a very good speedup. When the number of cores exceeds 4, S-PSO’s
performances start to decrease where the speedup is moving far from the linear.
This is due to the additional communication time required to manage the increase
of core’s number.

Scaleup aims to measure the capacity of an algorithm to maintain the same
running time while increasing the data set size with direct proportion to the number
of cores. For evaluating the scaleup of our proposed method, we increase both the
size of the data set and the number of cores. For investigating the scaleup, we used
the D1M, D2M, D4M, and D8M data sets with respectively cores equal to 1, 2, 4,
and 8. The results are plotted in Fig. 5.6. The ideal algorithm is the one having its

110 M. Moslah et al.

Fig. 5.4 Running time of S-PSO on the different simulated data sets. (a) D1M data set. (b) D2M
data set. (c) D4M data set. (d) D8M data set

Fig. 5.5 Speedup results of S-PSO on simulated data sets. (a) D1M speedup. (b) D2M speedup.
(c) D4M speedup. (d) D8M speedup

5 Spark-Based Design of Clustering Using Particle Swarm Optimization 111

1,2

0,8

0,6

0,4

0,2

0
1 2 3 4 5

Number of cores

S
ca

le
 u

p

6 7 8

1 1
0,87

0,97

0,73

Fig. 5.6 Scaleup results of S-PSO

1
0

1

2

3

4

5

6

7

8

9

2 3 4 5 6 7 8

Data set Size (Millions)

S
iz

e
u

p

Linear

1 Core

1 Cores

4 Cores

8 Cores

Fig. 5.7 Sizeup results of S-PSO

scaleup values very close or equal to 1. In our case, our proposed method shows a
good scaleup. The overall results are approximately similar to D1M, D2M, D4M,
and D8M using respectively 1, 2, 4, and 8 cores. Therefore S-PSO scales well with
scaleup values ranging between 1 and 0.73.

To evaluate the sizeup of the proposed method S-PSO, the number of cores is
kept constant while we increase the data set size in order to evaluate the behavior of
S-PSO with the increasing volume of data. Figure 5.7 outlines the obtained sizeup
results for respectively 1, 2, 4, and 8 cores. The obtained results show a good sizeup
of our proposed method. For instance, for 1 core, the sizeup results are almost equal
to the linear reaching 7.7 for D8M.

112 M. Moslah et al.

5.7 Conclusion

Big data clustering is an important field that requires special methods for dealing
with high volume of data. Existing methods tried to fit the clustering algorithm based
on PSO into MapReduce model. However, due to nonsuitability of MapReduce
on iterative algorithms and the low convergence speed of PSO, we proposed a
new large-scale data clustering method based on Spark framework and an adapted
version of PSO combined with k-means. The proposed method, evaluated on
both real and simulated data sets, has shown good results according to quality
and scalability measures. As future works, we suggest combining S-PSO with
other techniques to automatically looking for the number of clusters k since this
parameter must be per-configured in advance. Moreover, we might think of applying
feature selection algorithms to select most relevant features to use in S-PSO. This
fact can reduce the heavy computation required in each iteration due to the high
dimensionality.

References

1. A. Ahmadyfard, H. Modares, Combining PSO and k-means to enhance data clustering, in
International Symposium on Telecommunications, 2008 (2008), pp. 688–691

2. I. Aljarah, S.A. Ludwig, Parallel particle swarm optimization clustering algorithm based on
MapReduce methodology, in 2012 Fourth World Congress on Nature and Biologically Inspired
Computing (nabic) (2012), pp. 104–111

3. G.P. Babu, M.N. Murty, Simulated annealing for selecting optimal initial seeds in the k-means
algorithm. Indian J. Pure Appl. Math. 25(1–2), 85–94 (1994)

4. M.A. Ben HajKacem, C.E. Ben N’cir, N. Essoussi, MapReduce-based k-prototypes clustering
method for big data, in Proceedings of Data Science and Advanced Analytics (2015), pp. 1–7

5. M.E. Celebi, H.A. Kingravi, P.A. Vela, A comparative study of efficient initialization methods
for the k-means clustering algorithm. Expert syst. Appl. 40(1), 200–210 (2013)

6. C.P. Chen, C.-Y. Zhang, Data-intensive applications, challenges, techniques and technologies:
a survey on big data. Inf. Sci. 275, 314–347 (2014)

7. J. Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters. Commun.
ACM 51(1), 107–113 (2008)

8. K.-L. Du, M. Swamy, Search and Optimization by Metaheuristics: Techniques and Algorithms
Inspired by Nature (Birkhäuser, Basel, 2016)

9. A.A.A. Esmin, D.L. Pereira, F. De Araujo, Study of different approach to clustering data
by using the particle swarm optimization algorithm, in IEEE Congress on Evolutionary
Computation, 2008. CEC 2008 (IEEE World Congress on Computational Intelligence) (2008),
pp. 1817–1822

10. A.A. Esmin, R.A. Coelho, S. Matwin, A review on particle swarm optimization algorithm and
its variants to clustering high-dimensional data. Artif. Intell. Rev. 44(1), 23–45 (2015)

11. V. Gorodetsky, Big data: opportunities, challenges and solutions, in Information and Commu-
nication Technologies in Education, Research, and Industrial Applications (2014), pp. 3–22

12. K. Krishna, M.N. Murty, Genetic k-means algorithm. IEEE Trans. Syst. Man Cybern. B
Cybern. 29(3), 433–439 (1999)

13. S.A. Ludwig, MapReduce-based fuzzy c-means clustering algorithm: implementation and
scalability. Int. J. Mach. Learn. Cybern. 6(6), 923–934 (2015)

5 Spark-Based Design of Clustering Using Particle Swarm Optimization 113

14. J. MacQueen et al., Some methods for classification and analysis of multivariate observations,
in Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability,
vol. 1 (1967), pp. 281–297

15. R. Poli, J. Kennedy, T. Blackwell, Particle swarm optimization. Swarm Intell. 1(1), 33–57
(2007)

16. R. Shyam, B.G. HB, S. Kumar, P. Poornachandran, K. Soman, Apache spark a big data
analytics platform for smart grid. Proc. Technol. 21, 171–178 (2015)

17. D. Van der Merwe, A.P. Engelbrecht, Data clustering using particle swarm optimization, in The
2003 Congress on Evolutionary Computation, 2003. CEC’03, vol. 1 (2003), pp. 215–220

18. D. Xu, Y. Tian, A comprehensive survey of clustering algorithms. Ann. Data Sci. 2(2), 165–193
(2015)

19. X. Xu, J. Jager, H.-P. Kriegel, A fast parallel clustering algorithm for large spatial databases,
in High Performance Data Mining (Springer, Berlin, 1999), pp. 263–290

20. W. Zhao, H. Ma, Q. He, Parallel k-means clustering based on MapReduce, in IEEE Interna-
tional Conference on Cloud Computing (2009), pp. 674–679

Chapter 6
Data Stream Clustering for Real-Time
Anomaly Detection: An Application to
Insider Threats

Diana Haidar and Mohamed Medhat Gaber

6.1 Introduction

A data stream is a continuous acquisition of data generated from various source(s) in
a dynamic environment, typically in a high velocity, leading to accumulation of large
volumes of data. This characterisation leads to a typical Big Data computational
problem. The dynamic nature of a data stream imposes a change in the data over
time. In real-time data streaming, a change refers to an anomalous data that deviates
from the normal baseline (e.g. credit card fraud, network intrusion, cancer, etc.).
The ultimate aim of such stream mining problems is to detect anomalous data in
real-time.

The absence of prior knowledge (no historical database) is often entangled to
a real-time stream mining problem. The anomaly detection system is required to
employ unsupervised learning to construct an adaptive model that continuously
(1) updates with new acquired data, and (2) detects anomalous data in real-time.
The system usually acquires data as segments and identifies the outliers in the
segment as anomalous. An outlier is an observation that deviates so much from other
observations as to arouse suspicion that it was generated by a different mechanism
[23]. To detect outliers in a stream mining problem, several approaches have been
proposed, nevertheless, unsupervised clustering has been successfully applied to
identify the patterns in the data and spot outliers [3]. In this work, we select the
insider threat problem as a real-world application to detect malicious insider threats
(outliers) in real-time. With the absence of labelled data (no previously logged
activities executed by users in an organisation), the insider threat problem poses
a challenging stream mining problem.

D. Haidar (�) · M. M. Gaber
Birmingham City University, Birmingham, UK
e-mail: diana.haidar@bcu.ac.uk; mohamed.gaber@bcu.ac.uk

© Springer Nature Switzerland AG 2019
O. Nasraoui, C.-E. Ben N’Cir (eds.), Clustering Methods for Big Data Analytics,
Unsupervised and Semi-Supervised Learning,
https://doi.org/10.1007/978-3-319-97864-2_6

115

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97864-2_6&domain=pdf
mailto:diana.haidar@bcu.ac.uk
mailto:mohamed.gaber@bcu.ac.uk
https://doi.org/10.1007/978-3-319-97864-2_6

116 D. Haidar and M. M. Gaber

Insider threat detection is an emergent concern for academia, industries, and
governments due to the growing number of insider incidents in recent years.
An insider is a current or former employee, contractor, or business partner of
an organisation who has authorised access to the network, system, or data (e.g.
trade secrets, organisation plans, and intellectual property) [35]. Malicious insider
threats are attributed to insiders who exploit their privileges with the intention
to compromise the confidentiality, integrity, or availability of the system or data.
According to the 2011 Cybersecurity Watch Survey [10], 21% of attacks are
attributed to insiders in 2011, while 58% are attributed to outsiders. However, 33%
of the respondents inspect the insider attacks to be more costly, compared to 51% in
2010. For instance, Harold Martin, a former top-security contractor at the National
Security Agency (NSA), was recently convicted for stealing around 500 million
pages of national defence information over the course of 20 years [38]. Earlier
in 2013, Snowden’s attack was reported as the biggest intelligence leakage in the
USA [42]. Edward Snowden, a former contractor to the NSA, disclosed 1.7 million
classified documents to the mass media.

The challenge of the insider threat detection problem lies in the variety of
malicious insider threats in the data sets. Each malicious insider threat is devised of
a complex pattern of anomalous behaviours carried out by a malicious insider, thus
making it difficult to detect all anomalous behaviours per threat. Analytically, some
anomalous instances (behaviours) which exist in a dense area of normal instances
have a high similarity to normal instances. These anomalous instances are difficult
to detect and may be missed by the detection system.

Based on the challenge of the problem, we formulate this work with the aim to
detect any-behaviour-all-threat; it is sufficient to detect any anomalous behaviour
in all malicious insider threats. In other words, we can hunt a malicious insider threat
by at least detecting one anomalous behaviour among the anomalous behaviours
associated with this threat. We call this approach threat hunting. The design of
the proposed approach with such a relaxing condition contributes in reducing the
frequent false alarms.

Figure 6.1 illustrates a continuous data stream of behaviours (instances) includ-
ing normal behaviours and anomalous behaviours. Each arrow denotes a behaviour
(instance) Xt executed by a user at a specific period of time. Let the blue arrows
represent the normal behaviours. Let the green arrows and the red arrows represent

Xt Xt+1

normal

T1

T2

Fig. 6.1 Continuous data stream of behaviours

6 Data Stream Clustering for Anomaly Detection 117

the anomalous behaviours which belong to the malicious insider threats T1 and T2,
respectively. To detect a malicious insider threat T1, it is required to detect any
green behaviour Xt . Hence, it is essential to detect any of the anomalous behaviours
per malicious insider threat; the aim to detect any-behaviour-all-threat. Note that
the proposed approach may detect more than one behaviour which belong to a
malicious insider threat, nevertheless, the ultimate aim is to detect one anomalous
behaviour per threat.

Based on the above argument, the feature space is defined as a set of features
which describe the user’s behaviour. Each feature is extracted from the data set
logs to represent a user’s behaviour related to a particular activity. A feature vector
(i.e. instance, behaviour) represents a set of feature values (i.e. actions, commands)
evaluated at a period of time. A more detailed description about the feature space is
provided in Sect. 6.3.

Several machine learning approaches have been suggested to address the insider
threat problem. However, these approaches still suffer from a high number of false
alarms. A recent real-time anomaly detection system, named RADISH, based on k

nearest neighbours (k-NN) is proposed by Bose et al. [5]. The experimental results
showed that 92% of the alarms flagged for malicious behaviour are actually benign
[false positives (FPs)].

To address the shortcoming of the high number of false alarms, we propose
a streaming anomaly detection approach, namely Ensemble of Random subspace
Anomaly detectors In Data Streams (E-RAIDS). We presented a preliminary
version of E-RAIDS (coined RandSubOut) in [22]. E-RAIDS is built on top
of the established outlier detection techniques [Micro-cluster-based Continuous
Outlier Detection (MCOD) or Anytime Outlier Detection (AnyOut)] which employ
clustering over continuous data streams. The merit of E-RAIDS is its capability to
detect malicious insider threats in real-time (based on the definition of real-time in
terms of window iterations as discussed in Sect. 6.4).

E-RAIDS learns an ensemble of p outlier detection techniques (either MCOD
or AnyOut), such that each model of the p models learns on a random feature
subspace. The acquired data is accumulated in a temporary buffer of pre-defined
capacity (equals to a fixed window size). So that, at each window iteration, each of
the p models in the ensemble is updated with the acquired data, and local outliers
are identified in the corresponding feature subspace.

Let p = n + 1 denote the number of feature subspaces selected randomly, such
that n is set to the number of features (dimension) of the feature space F in the
community data set. n represents the number of feature pairs (i.e. two features per
subspace), and 1 represents the whole feature space (i.e. all features). In this way,
E-RAIDS is capable to detect local outliers in the n feature pairs, as well as global
outliers in the whole feature space. Hence, E-RAIDS employs the idea of random
feature subspaces to detect local outlier(s) (anomalous behaviour(s)) which might
not be detected over the whole feature space. These anomalous behaviour(s) might
refer to malicious insider threat(s).

E-RAIDS introduces two factors: (1) a survival factor vfs , which confirms
whether a subspace votes for an alarm, if outlier(s) survive for a vfs number of

118 D. Haidar and M. M. Gaber

window iterations; and (2) a vote factor vfe , which confirms whether an alarm
should be flagged, if a vfe number of subspaces in the ensemble vote for an alarm.
E-RAIDS employs an aggregate component that aggregates the results from the p

feature subspaces, in order to decide whether to generate an alarm. The rationale
behind this is to reduce the number of false alarms.

The main contributions of this chapter are summarised as follows:

• an ensemble approach on random feature subspaces to detect local outliers
(malicious insider threats), which would not be detected over the whole feature
space;

• a survival factor that confirms whether outlier(s) on a feature subspace survive
for a number of window iterations, to control the vote of a feature subspace;

• an aggregate component with a vote factor to confirm whether to generate an
alarm, to address the shortcoming of high number of FPs;

• a thorough performance evaluation of E-RAIDS-MCOD and E-RAIDS-AnyOut,
validating the effectiveness of voting feature subspaces, and the capability to
detect (more than one)-behaviour-all-threat detection (Hypothesis 2) in real-time
(Hypothesis 1).

E-RAIDS extends the preliminary version RandSubOut [22], where it upgrades
the selection of the set of outliers (anomalous behaviours) identified at a window
iteration over a feature subspace to improve the detection performance of malicious
insider threats over the whole ensemble. This is later described in Sect. 6.3.3.1.
Unlike RandSubOut, we evaluate E-RAIDS on community data sets such that
each community is richer with malicious insider threats which map to a variety
of scenarios. Moreover, E-RAIDS is evaluated, not only in terms of the number of
detected threats and FP Alarms, however, in terms of (1) F1 measure, (2) voting
feature subspaces, (3) real-time anomaly detection, and (4) the detection of (more
than One)-behaviour-all-threat.

The rest of this chapter is organised as follows. Section 6.2 reviews the techniques
which utilised clustering to detect outliers, and the stream mining approaches
proposed for insider threat detection. Section 6.3 presents the proposed streaming
anomaly detection approach, namely E-RAIDS, for insider threat detection. Experi-
ments and results are discussed in Sect. 6.4. Finally, Sect. 6.5 summarises the chapter
and suggests future work.

6.2 Related Work

The absence of labelled data (i.e. low data maturity) reveals that an organisation
has no previously logged activities executed by users (no historical database). We
address the absence of prior knowledge using unsupervised streaming anomaly
detection built on top of established outlier detection techniques.

Clustering has been successfully applied to identify the patterns of the data for
outlier detection [3]. The continuous acquisition of data generated from various

6 Data Stream Clustering for Anomaly Detection 119

sources defines the streaming environment of the insider threat problem. Several
clustering methods have been proposed to handle the streaming environment. The
state of the art presents two primitive clustering methods: Balanced Iterative
Reducing and Clustering using Hierarchies (BIRCH) [46], and CluStream [1].

BIRCH is an incremental hierarchical clustering method which was first pro-
posed for very large data sets. BIRCH incrementally and dynamically clusters
acquired data instances. It maintains a tree of cluster features (information about
clusters) which is updated in an iterative fashion [21]. Thereafter, BIRCH was
applied to data stream clustering.

BIRCH was the first to introduce the concepts of micro- and macro-clusters [26].
CluStream is a data stream clustering method that employed those two concepts
for the clustering process: online micro-clustering and offline macro-clustering. In
the online phase, CluStream scans the acquired data instances and creates micro-
clusters in a single pass to handle the big (unbounded) data stream. In the offline
phase, CluStream only utilises the micro-clusters and re-clusters into macro-clusters
[21].

From BIRCH to CluStream, the concept of data stream clustering is applied,
despite the fact that BIRCH includes incremental processing of data instances.
Incremental clustering processes one data instance at a time and maintains a pre-
defined data structure (i.e. model) that is incrementally updated without the need
for model reconstruction [40]. In fact, many incremental methods predate the data
stream mining methods. The intrinsic nature of data streams requires methods which
implement incremental processing of data instances, in order to handle the resource
limitations (i.e. time and memory) [40]. But unlike earlier incremental clustering
methods, data stream clustering methods require a more efficient time complexity
to cope with high data rates [28]. Indeed, the literature stresses the importance of
considering the inherent time element in data streams [40]. For instance, a typical
data stream clustering method exhibits the temporal aspect of cluster tracking [40].
The dynamic behaviour of cluster over a data stream manifests in the evolving
of existing clusters over time; the emergence of new clusters; and the removal of
clusters based on a time stamp and/or size. Those cluster updates must be performed
on the data structure (i.e. model) very efficiently [28]. Hence, the data stream
clustering methods are not only incremental, but are also fast in terms of the inherent
temporal aspects.

In this work, data stream clustering is used to underpin the outlier detection
techniques for real-time anomaly detection. In the insider threat problem, the
temporal aspect is substantial to consider, in order to detect malicious insider threats
in real-time (based on the definition of real-time in terms of window iterations as
discussed in Sect. 6.4). Hence, data stream clustering methods are more adequate to
be utilised in this work than typical incremental clustering methods.

In the following we review the techniques which utilised clustering to detect
outliers. Thereafter, we shed light on two outlier detection techniques (MCOD
and AnyOut) which employ data stream clustering. Those two techniques are later
utilised in the proposed framework.

120 D. Haidar and M. M. Gaber

We also review the streaming anomaly detection approaches proposed for insider
threat detection.

6.2.1 Clustering for Outlier Detection

It is important to distinguish our objective—to optimise outlier detection—from
that of a benchmark of clustering methods developed to optimise clustering (such as
DBSCAN [11] and BIRCH [46]). The outliers in these methods [11, 46] are referred
to as noise, where they are usually tolerated or ignored. However, in our work,
we refer to outliers as anomalous (suspicious) behaviour(s) which may correlate to
malicious insider threats. Therefore, clustering is utilised to optimise the detection
of outliers.

On the other hand, a benchmark of clustering methods to optimise outlier
detection (such as LOF [6] and CBLOF [24]) are developed. Breunig et al. [6]
introduced the concept of Local Outlier Factor (LOF) to determine the degree of
outlierness of an instance using density-based clustering. The locality of instance
(local density) is estimated by the distance to its k nearest neighbours. Thus, the LOF
of an instance located in a dense cluster is close to 1, while lower LOF is assigned for
other instances. He et al. [24] present a measure, called Cluster-based Local Outlier
Factor (CBLOF), to identify the physical significance of an outlier using similarity
function. The CBLOF of an instance is determined by (1) the distance to its nearest
cluster (if it belongs to a small cluster), or (2) the distance to its cluster (if it belongs
to a large cluster).

However, the aforementioned methods do not tackle outlier detection in continu-
ous data streams. MCOD [28] and AnyOut [3] are two established outlier detection
techniques, which employ data stream clustering in continuous data streams. MCOD
and AnyOut are utilised as building block clustering techniques for the proposed E-
RAIDS approach. A detailed description and formalisation for these techniques is
found in Sect. 6.3.2.

6.2.2 Streaming Anomaly Detection for Insider Threat
Detection

Few approaches have utilised streaming anomaly detection to detect insider threats
[36, 37, 41, 45] with no prior knowledge. We give a brief description for these
approaches in the following.

Among the emerging interest in deep learning, Tuor et al. [41] present a prelim-
inary effort to utilise deep learning in an online unsupervised approach to detect
anomalous network activity in real-time. The authors presented two models: a deep
neural network (DNN) model which is trained on each acquired instance only once,
and a recurrent neural network (RNN) which learns an RNN per user such that the
weights are shared among all users, however, the hidden states are trained per user.

6 Data Stream Clustering for Anomaly Detection 121

Zargar et al. [45] introduce a Zero-Knowledge Anomaly-Based Behavioural
Analysis Method, namely XABA, that learns each user’s behaviour from raw logs
and network traffic in real-time. XABA is implemented on a big-stream platform
without pre-defined or pre-processed activity logs, to handle high rates of network
sessions. The authors indicated that XABA reports a low number of FPs, when
evaluated on a real traitor scenario.

One of the remarkable approaches is an ensemble of one class SVM (ocSVM),
namely Ensemble-based Insider Threat (EIT), proposed by Parveen et al. [36].
The authors proposed an ensemble approach, based on static ocSVM learners, to
model a continuous data stream of data chunks (i.e. daily logs). The EIT maintains
an ensemble of a k pre-defined number of models M , where the ensemble is
continuously updated at each day session upon the learning of a new model Ms .
The EIT selects the best k − 1 models from the k models, having the minimum
prediction error over the data chunk Cs , and appends the new model Ms . The results
show that ensemble-ocSVM outperforms ocSVM, where it reports a higher accuracy
and almost half the number of FP. The authors extended their work in a future
paper [37], where the ensemble approach is applied to unsupervised graph-based
anomaly detection (GBAD). The results show that ensemble-ocSVM outperforms
the ensemble-GBAD in terms of FP.

The above approaches have shown merit in addressing the insider threat detection
problem, however, as aforementioned, they do suffer from high false alarms. In this
book chapter, we utilise data stream clustering to detect outliers (malicious insider
threats), while reducing the number of false alarms.

6.3 Anomaly Detection in Data Streams for Insider Threat
Detection

This section identifies the feature space in the insider threat problem and the
categories of the feature set extracted. It then describes and formalises established
continuous distance-based outlier detection techniques (MCOD and AnyOut). It
presents the proposed E-RAIDS for insider threat detection with a detailed descrip-
tion of the feature subspace anomaly detection and the aggregate component
(ensemble voting).

6.3.1 Insider Threat Feature Space

In this book chapter, we utilise the synthetic data sets, including a variety of
malicious insider threat scenarios, generated by Carnegie Mellon University (CMU-
CERT) [16]. The CMU-CERT data sets comprise system and network logs for
the activities carried out by users in an organisation over 18 months (e.g. logons,

122 D. Haidar and M. M. Gaber

connecting removable devices, copying files, browsing websites, sending emails,
etc.). We extract a feature set from these logs in the CMU-CERT data sets according
to the literature [5, 30, 31]. This feature set allows us to assess the behaviour of
users, and compare it to the previous behaviour of the users or their community
of users. We extract each feature considering the evidence it would reveal about
an undergoing anomalous behaviour. For example, consider the feature logon after
hours; this feature if its values is greater than 1, it reveals an evidence of an unusual
activity undergoing after the official working hours. Thus, it contributes in the
overall decision of the system whether a malicious alarm should be flagged or not.

In the following, we give a more detailed description of the feature set used in this
work. We categorise the features into five groups with some examples of each.

• Frequency-based features: assess the frequency of an activity carried out by a
community of users over each session slot (integer , e.g. frequency of logon,
frequency of connecting devices);

• Time-based features: assess an activity carried out within the non-working hours
period of time (integer , e.g. logon after work hours, device usage after work
hours);

• Boolean features: assess the presence/absence of an activity-related information
(f lag = {0, 1}, e.g. non-empty email-bcc, a non-employee email recipient,
sensitive file extension);

• Attribute-based features: are more specialised features, which assess an activity
with respect to a particular attribute (feature) value (integer , e.g. browsing a
particular URL (job websites, WikiLeaks)); and

• Other features: assess the count of other activity-related information. (integer ,
e.g. number of email recipients, number of attachments to emails).

This feature set defines the feature space of the insider threat problem, and is
used to construct community behaviour profiles for users having the same role
(e.g. Salesman, IT admin). A community behaviour profile represents instances
(i.e. vectors of feature values) evaluated over session slots, where a session slot
represents a period of time from start time to end time. Each vector of feature values
is extracted from the behaviour logs of the community users during a session slot.

In this work, we define the session slot per 4 h to find local anomalous behaviour
within a day which would not be detected per day. The rationale behind choosing the
session slot per 4 h is that this period of time is long enough to extract an instance
(i.e. vector of feature values) which provides an adequate evidence of anomalous
behaviour. Thus, it supports the system to capture the anomalous behaviours in
feature space. If the session slot is chosen per minutes, for example, the extracted
instances would lack the adequate evidence of the occurrence of anomalous
behaviour. On the other hand, if the session slot is chosen per days/weeks, for
example, the period of time will be too long to capture the anomalous behaviour
blurred among the normal behaviour in the extracted vector of feature values.

After constructing the community behaviour profiles, we normalise each vector
of feature values (over a session slot) to the range [0, 1], and associate it with a class
label {Normal,Anomalous}.

6 Data Stream Clustering for Anomaly Detection 123

6.3.2 Background on Distance-Based Outlier Detection
Techniques

The state of the art presents one of the most widely employed techniques for
anomaly detection, which are distance-based outlier detection techniques. Accord-
ing to the definition [27], an instance Xt is an outlier, if there exists less than k

number of neighbours located at a distance at most r from Xt .
In this work, we are interested in continuous outlier detection over a data

stream, where recent instances arrive and previous instances expire. The demo
paper [15] gives a comparison of four continuous distance-based outlier detection
techniques: STream OutlieRMiner (STORM) [2]; Abstract-C [44]; Continuous
Outlier Detection (COD) [28]; and Micro-cluster-based Continuous Outlier
Detection (MCOD) [28]. COD and MCOD have O(n) space requirements, and
they have a faster running time than the exact algorithms of both [2] and [44]. Note
that since all algorithms are exact, they output the same outliers [15]. According
to [15], COD and MCOD demonstrate a more efficient performance compared to
STORM and Abstract-C in terms of lower space and time requirements. Hence,
the latter are excluded, but not COD and MCOD. Furthermore, based on the
experimental evaluation in [28], MCOD outperforms COD over benchmark tested
data sets. Hence, MCOD is selected to be utilised as a base learner in the proposed
E-RAIDS approach.

The state of the art presents a further continuous distance-based outlier detection
technique, called Anytime Outlier Detection (AnyOut) [3]. However, AnyOut has
not been compared to the four techniques in the demo paper. We select MCOD
and AnyOut as base learners in E-RAIDS to compare their performance. It is
worth to note that the aforementioned distance-based outlier detection techniques
are implemented by the authors of [15] in the open-source tool for Massive Online
Analysis (MOA) [33].

In the following, a brief description of MCOD and AnyOut techniques is
provided.

6.3.2.1 Micro-Cluster-Based Continuous Outlier Detection

Micro-cluster-based Continuous Outlier Detection (MCOD), an extension to Contin-
uous Outlier Detection (COD), stems from the adoption of an event-based technique.
The distinctive characteristic of MCOD is that it introduces the concept of evolving
micro-clusters to mitigate the need to evaluate the range query for each acquired
instance Xt with respect to all the preceding active instances. Instead, it evaluates
the range queries with respect to the (fewer) centres of the micro-clusters. The
micro-clusters are defined as the regions that contain inliers exclusively (with no
overlapping). The micro-clustering is fully performed online [28].

124 D. Haidar and M. M. Gaber

Given that, the centre mci of a micro-cluster MCi may or may not be an actual
instance Xt ; the radius of MCi is set to r

2 , such that r is the distance parameter for
outlier detection; and the minimum capacity (size) of MCi is k + 1. Below we give
a brief formalisation of MCOD.

Let k represent the number of neighbours parameter. Let PD represent the set of
instances that doesn’t belong to any micro-cluster.

The micro-clusters (i.e. centres of micro-clusters) in MCOD are determined as
described in [1]. In the initialisation step, seeds (with a random initial value) are
sampled with a probability proportional to the number of instances in a given micro-
cluster. The corresponding seed represents the centroid of that micro-cluster. In later
iterations, the centre mci is the weighted centroid of the micro-cluster MCi .

• Step 1: For each acquired instance Xt , MCOD finds (1) the nearest micro-cluster
MCi , whose centre mci is the nearest to it, and (2) the set of micro-cluster(s) R,
whose centres are within a distance 3×r

2 from their centres.
• Step 2: If dist (Xt ,mci) ≤ r

2 ; such that mci is the centre of the nearest cluster
MCi , Xt is assigned to the corresponding micro-cluster.

• Step 3: Otherwise, a range query q for Xt is evaluated with respect to the
instances in (1) the set PD and (2) the micro-clusters of the set R.

• Step 4: Consider n: the number of neighbours Nt ′ ∈ P to Xt , such that
dist (Xt ,Nt ′) ≥ r

2 . If n > θk; θ ≥ 1, then a new micro-cluster with centre
Xt is created and the n neighbours are assigned to this micro-cluster.

• Step 5: A micro-cluster whose size decreases below k + 1 is deleted and a
range query similar to that described for Xt is performed for each of its former
instances.

• Step 6: An instance Xt is flagged as an outlier, if there exists less than k instances
in either PD or R.

6.3.2.2 Anytime Outlier Detection

Anytime Outlier Detection (AnyOut) is a cluster-based technique that utilises the
structure of ClusTree [29], an extension to R-tree [20, 39], to compute an outlier
score. The tree structure of AnyOut suggests a hierarchy of clusters, such that
the clusters at the upper level subsume the fine grained information at the lower
level. ClusTree is traversed in top-down manner to compute the outlier score of an
acquired instance Xt until it is interrupted by the subsequent (next) instance Xt .
Thus, the descent down the tree improves the certainty of the outlier score, neverthe-
less, the later the arrival of the subsequent instance the higher the certainty [3].

Given that, a cluster is represented by a Cluster Feature tuple CF = (n, LS, SS),
such that n is the number of instances in the cluster, LS and SS are respectively the
linear sum and the squared sum of these instances. The compact structure of the tree
using CF tuples reduces space requirements. From BIRCH [46] to CluStream [1],
cluster features and variations have been successfully used for online summarisation
of data, with a possible subsequent offline process for global clustering.

6 Data Stream Clustering for Anomaly Detection 125

Let es represent a cluster node entry in ClusTree. Given defined two scores to
compute the degree of outlierness of an instance Xt : (1) a mean outlier score is
sm(Xt) = dist (Xt , μ(es)), such that μ(es) is the mean of the cluster node entry
es ∈ ClusTree where Xt is interrupted; and (2) a density outlier score is sd (Xt) =
1 −g(Xt , es), such that g(xi, es) is the Gaussian probability density of Xt for μ(es)

as defined in [3]. Below we give a brief formalisation of AnyOut.
In the case of a constant data stream:

• Step 1: Initialisation: Each Xt in the data stream is assigned with an actual
confidence value conf (Xt) = es(Xt).

• Step 2: Distribute the computation time for each Xt based on the scattered
confidences.

• Step 3: For each acquired instance Xt , AnyOut traverses the tree in a top-down
manner until the arrival of the instance Xt+1 in the data stream.

• Step 4: At the moment of interruption, Xt is inserted to the cluster node entry e ∈
ClusTree, where Xt arrives (pauses).

• Step 5: The outlier score of Xt , according to the specified parameter sm(Xt) or
sd (Xt), is computed with respect cluster node entry es .

• Step 6: The expected confidence value for the outlier score of Xt is updated
based on the computation time. The confidence value (certainty) increases as the
computation time increases.

6.3.3 E-RAIDS Approach

The established continuous distance-based outlier detection techniques (MCOD and
AnyOut), described and formalised in Sect. 6.3.2, are utilised as building block data
stream clustering techniques for the proposed E-RAIDS approach.

In this work, we propose a streaming anomaly detection approach, namely
Ensemble of Random subspace Anomaly detectors In Data Streams (E-RAIDS), for
insider threat detection. In other words, E-RAIDS is an ensemble of an established
distance-based outlier detection technique (MCOD or AnyOut), such that each
model of the ensemble learns on a random feature subspace. The idea of E-RAIDS
is to employ an outlier detection technique on a feature subspace, to detect local
outliers which might not be detected over the whole feature space. These local
outliers may refer to anomalous behaviours (instances) attributed to a malicious
insider threat. Hence, the ultimate aim of the E-RAIDS approach is to detect any-
behaviour-all-threat (threat hunting as defined in Sect. 6.1); a process that leads to a
reduction of the number of false alarms.

Figure 6.2 presents the E-RAIDS framework. The set of blue arrows represent a
data stream, where each arrow represents an instance (feature vector) Xt acquired
at a session slot t . Consider the formalisations below:

• window: a segment of a fixed size w that slides along the instances in a data
stream with respect to time (i.e. session slots);

126 D. Haidar and M. M. Gaber

b
ase

learn
er

buffer

X1 X2 X3 X4 X5 X6 X7 X8 Xt

w=4

M1 M2 Mp

E-RAIDS Aggregate

Fig. 6.2 E-RAIDS framework

• buffer: a temporary short memory of allocated capacity (equals to w). It
temporarily accumulates the instances in a data stream. The buffer starts to
accumulate the instances in a data stream at the start of the window and stops
once the buffer is full after w number of instances. The full buffer is then input
to the base learner component to be processed; and

• window iteration wIter: an iteration of the window slide. It starts at the already
processed instances (in the previous buffer) procInst and ends at procInst +w.
For instance, wIter = 0 starts at procInst = 0 and ends at w. wIter = 1 starts
at procInst = w and ends at 2 × w. The window iteration wIter allows the
synchronisation between the window slide and the buffer accumulation.

Based on the aforementioned formalisations, at each window iteration wIter ,
the buffer accumulates w number of instances. Once the buffer is full, the instances
in the buffer are input to the base learner component. A base learner component
refers to the distance-based outlier detection technique to be utilised (MCOD or
AnyOut). It employs a p number of base models to learn on randomly selected p

feature subspaces. A feature subspace FSi ⊆ F is defined as a subset of features
selected from the whole feature space f , where F = {f1, f2, . . . , fn}. The rationale
behind the idea of random feature subspaces is to detect local outlier(s) (anomalous
behaviour(s)) which might not be detected over the whole feature space.

Let p = n + 1 represent the number of feature subspaces selected randomly,
such that n is set to the number of features (dimension) of the feature space F in
the community data set. n represents the number of feature pairs (i.e. 2 features per
subspace), and 1 represents the whole feature space (i.e. all features). The p feature

6 Data Stream Clustering for Anomaly Detection 127

subspaces are utilised to build the ensemble of p models {M1,M2, . . . ,Mn,Mp},
such that {M1,M2, . . . ,Mn} learn on feature pairs, and Mp learns on the whole
feature space. In this way, E-RAIDS is capable to detect local outliers in the n

feature pairs, as well as global outliers in the whole feature space.

6.3.3.1 Feature Subspace Anomaly Detection

For each model Mi on a feature subspace FSi , we define the following data
repositories and a survival factor:

• outSet: a temporary set of the outliers detected by a base learner (MCOD or
AnyOut) at wIter;

• outT empList: a list that stores the triples (1) an outlier out ∈ outSet , (2)
the wIter where it was first detected, and (3) a temporal count tempC which
counts the number of subsequent windows out was detected at. It has the form
〈out,wI ter, tempC〉; and

• subV oteList: a list that stores the triples (1) a wIter , (2) a subV ote

parameter set to 1 if the feature FSi votes for an alarm to be generated at
wIter and 0 otherwise, and (3) an outlier set subOutSet . It has the form
〈wIter, subV ote, subOutSet〉.

• vfs : a survival factor that confirms whether a feature subspace FSi votes for an
alarm to be generated at wIter . In other words, if an outlier out survived (has
been detected) for a vfs number of subsequent windows, then out is defined
as a persistent outlier. A persistent outlier boosts the chance of an alarm to be
generated at wIter .

Over each feature subspace FSi , the base learner (MCOD or AnyOut) processes
the buffer at the current wIter to update the model Mi . Mi identifies the outlier set
outSet , which includes (1) the outliers from the buffer at the current wIter; and (2)
the outliers from the previously learned instances before the model being updated.
The type (2) outlier refers to an instance that was identified as an inlier, however,
turned into an outlier in the current wIter .

For each outlier out ∈ outSet , if out does not exist in outT empList , a new
triple 〈out,wI ter, 1〉 is appended to outT empList . In this case, tempC is assigned
to 1 to declare that it is the first time an outlier out detected. If out exists in the
outT empList , tempC is incremented by 1 in the triple for out .

For each outlier out ∈ outT empList , E-RAIDS checks (1) if tempC = vfs ,
then out survived for a vfs number of subsequent windows. We call it persistent
outlier. Thus, a persistent outlier confirms that the FSi votes for an alarm at wIter .
Thus, subV ote is set to 1 in the triple for wIter in subV oteList . (2) If wIter −
tempC = vfs , then out has turned into an inlier. We call it expired outlier. Thus, the
triple for the expired outlier out is removed from the outT empList . (3) If wIter −
tempC < vfs , then out is neither a persistent outlier nor an expired outlier. We call
it potential outlier.

128 D. Haidar and M. M. Gaber

Algorithm 1 Feature subspace
wIter ← 0
foreach Xt ∈ stream do

accumulate Xt to buffer
if buffer is full then

outSet ← get outliers detected by base
foreach out ∈ outSet do

if outinoutT empList then
a new triple 〈out,wIter, 1〉 is appended to outT empList

else
increment tempC by 1 for out in outT empList

end
end
foreach out ∈ outT empList do

if tempC = vfs then
set subVote to 1 in subVoteList for the current wIter

remove out from outTempList
subOutSet ← persistent out∪ potential outliers
append subOutSet to subV oteList at wIter

end
if wIter − tempC = vfs then

remove out from outT empList

end
end
increment wIter

end
empty buffer

end
return subVoteList

Eventually, outT empList consists of persistent outliers and potential outliers
(expired outliers have been removed). E-RAIDS appends persistent outliers and
potential outliers in outT empList to the subOutSet in the triple for wIter in
subV oteList .

In the preliminary version RandSubOut [22], only the persistent outliers
in outT empList are appended to the subOutSet in the triple for wIter in
subV oteList . The subOutSet at wIter represents the set of anomalous behaviours
detected over a feature subspace FSi . As later described in Sect. 6.3.3.2, if the
ensemble votes to generate an alarm, then the subOutSet for each feature subspace
is utilised to evaluate whether all malicious insider threats are detected (i.e. the
aim of any-behaviour-all-threat). The experiments carried out on both versions
(E-RAIDS and RandSubOut) showed that E-RAIDS outperforms the latter in terms
of detecting more malicious insider threats. Analytically, unlike RandSubOut, E-
RAIDS considers further the potential outliers in the subOutSet to check for
detected malicious insider threats. Thus, the use of potential outliers significantly
boosts the detection performance of the proposed approach.

Finally, the buffer is emptied to be prepared for the subsequent (next) window of
upcoming instances (wIter + 1). A step-by-step pseudocode for the E-RAIDS base
learner procedure is provided in Algorithm 1.

6 Data Stream Clustering for Anomaly Detection 129

Algorithm 2 Ensemble of random feature subspaces
foreach wIter do

foreach FSi ∈ FS do
subV ote ← get subV ote for wIter from subV oteList for FSi

eV ote ← eV ote + subV ote for wIter in eV oteList

subOutSet ← get subOutSet for wIter from subV oteList for FSi

append subOutSet to eOutSet for wIter in eV oteList

end
if eV ote = vfe then

flag an alarm
end

end

6.3.3.2 Ensemble of Random Feature Subspaces Voting

For the ensemble of p models {M1,M2, . . . ,Mn,Mp} on feature subspaces
{FS1, FS2, . . . , FSn, FSp} respectively, we define the following data repository
and a vote factor:

• eV oteList: a list that stores the triples (1) a wIter , (2) an eV ote parameter that
counts the number of feature subspaces that vote for an alarm, and (3) an outlier
set eOutSet that appends the subOutSet from each FSi votes for an alarm. It
has the form 〈wIter, subV ote, subOutSet〉.

• vfe : a vote factor that confirms whether an alarm to be generated at wIter by the
whole ensemble. In other words, if a vfe number of feature subspaces vote for an
alarm, then an alarm is generated at wIter .

As illustrated in Fig. 6.2, the E-RAIDS aggregate component aggregates the
results from the p feature subspaces, in order to confirm whether to generate an
alarm or not at each window iteration wIter . For each feature subspace FSi ,
if subV ote = 1 for wIter , E-RAIDS adds subV ote to eV ote for wIter in
eV oteList . Furthermore, E-RAIDS gets subOutSet for wIter from subV oteList ,
and appends to eOutSet for wIter in eV oteList .

After getting the votes from all the feature subspaces in the ensemble, E-RAIDS
checks if eV ote = vfe. If the condition is satisfied, then an alarm of a malicious
insider threat is generated at wIter . The voting mechanism is technically controlled
by the vote factor vfe, such that if a vfe number of feature subspaces vote for
anomalous behaviour(s) at a window iteration wIter , then an alarm is generated.
This accordingly handles the case of a conflict, where p

2 (50%) of the feature
subspaces in the ensemble vote for anomalous behaviour(s) and the other p

2 vote for
normal behaviour(s). The ensemble technically checks if p

2 = vfe , then an alarm is
generated.

A step-by-step pseudocode for the E-RAIDS aggregate procedure is provided in
Algorithm 2.

130 D. Haidar and M. M. Gaber

6.4 Experiments

We evaluated the effectiveness of the proposed approach on the CMU-CERT data
sets using Windows Server 2016 on Microsoft Azure (RAM 140GB, OS 64-bits,
CPU Intel Xeon E5 − 2673v3) for data pre-processing and Microsoft Windows 7
Enterprise (RAM 12GB, OS 64-bits, CPU Intel Core i5-4210U) for experiments.
First, MATLAB R2016b was used to pre-process the data set and generate
community behaviour profiles per session slots of 4 h. Second, we implemented
E-RAIDS-MCOD and E-RAIDS-AnyOut and carried out the experiments in Java
environment (Eclipse Java Mars) using the open-source MOA package [33].

6.4.1 Description of the Data set

A significant impediment to researchers who work on the insider threat problem is
the lack of real world data. The real data logs the activities executed by the users
in an organisation. These data log files contain: private user profile information (e.g.
name, email address, mobile number, home address, etc.); intellectual property (e.g.
strategic or business plans, engineering or scientific information, source code, etc.);
and confidential content (e.g. email content, file content, etc.) [7]. Organisations
commonly refuse to give researchers access to real data to protect its users and
assets.

In the current decade, there exists a great recent trend towards the utilisation of
the CMU-CERT data set(s) for the insider threat detection systems [5, 12, 13, 30, 41,
43]. The CMU-CERT data sets are synthetic insider threat data sets generated by the
CERT Division at Carnegie Mellon University [9, 16]. CMU-CERT data repository
is the only one available for insider threat scenarios (5 scenarios) and has recently
become the evaluation data repository for researchers addressing the insider threat
problem [5, 17, 41].

In the preliminary version [22], we used r5.1 CMU-CERT data set, where each
community consists of one malicious insider threat which map to one scenario.

For this chapter, we used r5.2 CMU-CERT data set which logs the behaviour
of 2000 employees over 18 months. Unlike the previously released data sets, the
communities in the r5.2 data set consist of multiple malicious insider threats which
map to different scenarios. Among those employees, we extracted the data logs for
employees belonging to the following three communities: Production line worker
com-P, Salesman com-S, and IT admin com-I. The community com-P consists
of 300 employees, 17 malicious insider threats (associated with 366 anomalous
behaviours), where each threat maps to one of the scenarios {s1, s2, s4}. The
community com-S consists of 298 employees and 22 malicious insider threats
(associated with 515 anomalous behaviours), where each threat maps to one of
the scenarios {s1, s2, s4}. The community com-I consists of 80 employees and 12
malicious insider threats (associated with 132 anomalous behaviours), where each
threat maps to one of the scenarios {s2, s3}.

6 Data Stream Clustering for Anomaly Detection 131

6.4.2 Experimental Tuning

In this work, we define two experiments based on the proposed E-RAIDS approach.
The E-RAIDS-MCOD learns an ensemble of p MCOD base learners, such that
each MCOD base learner is trained on a feature subspace of the p feature subspaces.
Likewise, the E-RAIDS-AnyOut learns an ensemble of p AnyOut base learners.

The experiments are tuned for different values of parameters. Table 6.1 presents
the values for the parameters tuned in each of MCOD and AnyOut, with a short
description. Note that an extensive number of experiments were done to select
the presented tuning values for the parameters. The values were selected based
on E-RAIDS achieving the best performance in terms of the evaluation measures
described below.

For MCOD, the parameter k has a default value k = 50 in the MOA package.
In this chapter, we present k = {50, 60, 70} to evaluate the E-RAIDS-MCOD for
different number of neighbours. The parameter r , with a default value r = 0.1, is
presented for a range for r = {0.3, 0.4, 0.5, 0.6, 0.7} to check the influence of r .

For AnyOut, the parameter |Dtrain| is presented for 500 instances, knowing that
no threats are present at the beginning of the stream in these 500 instances. The
parameters confAgr and conf did not show a significant influence on the utilised
data sets, so both are assigned to their default values, in the MOA package, 2 and 4,
respectively. τ has a minimum value 0 and a maximum value 1, so it is presented for
τ = {0.1, 0.4, 0.7} to evaluate the influence of varying the outlier score threshold
on the outliers detected. oscAgr has a minimum value 1 and a maximum value 10,
so it is presented for the oscAgr = {2, 4, 6, 8}.

In general, for E-RAIDS approach with either MCOD or AnyOut base learner,
we present the vouch factor vfs = 2, so it confirms an outlier as positive (anomalous)
after it survives for 2 subsequent windows. We present the vote factor vfe = 1, so
if at least 1 feature subspace in the ensemble flags an alert, an alarm of a malicious
insider threat is confirmed to be generated.

Likewise, for both E-RAIDS-MCOD and E-RAIDS-AnyOut, the window size
is presented for w = {50, 100, 150, 200}. As previously described, an instance

Table 6.1 Tuned parameters

Description

MCOD parameter

k = {50, 60, 70} Number of neighbours parameter

r = {0.3, 0.4, 0.5, 0.6, 0.7} Distance parameter for outlier detection

AnyOut parameter

|Dtrain| = 500 Training set size

confAgr = 2 Size of confidence aggregate

conf = 4 Initial confidence value

τ = {0.1, 0.4, 0.7} Outlier score threshold

oscAgr = {2, 4, 6, 8} Size of outlier score aggregate

132 D. Haidar and M. M. Gaber

(feature vector) is a set of events executed during a pre-defined session slot. In this
work, we define a session slot per 4 h. Let w represent the window size, which
accumulates the acquired instances in a data stream. If w = 50 and vfs = 2, then
the instances in each window are processed after 4 × 50 = 200 h � 8 days. Based
on the description of E-RAIDS, a threat (outlier) may be confirmed as an outlier at
least over the window it belongs to (after 8 days) or over the next window (after
� 8×2 = 16 days). If w = 200 and vfs = 2, then the instances in each window are
processed after 4 × 200 = 800 h � 33 days. A threat (outlier) may be confirmed as
an outlier at least (after 33 days) or over the next window (after � 33×2 = 66 days).
Note that the malicious insider threats simulated in the CMU-CERT data sets span
over at least one month and up to 4 months. Hence, we hypothesise the following in
Hypothesis 1.

Hypothesis 1 The E-RAIDS approach is capable to detect the malicious insider
threats in real-time (during the time span of the undergoing threat).

6.4.3 Evaluation Measures

Many research work has been done to detect or mitigate malicious insider threats,
but nevertheless has established standard measures to evaluate the proposed models
[18]. The research practices show that the insider threat problem demands to
measure the effectiveness of the models before being deployed, preferably in terms
of true positives (TP) and false positives (FP) [19].

In the state of the art, a remarkable number of approaches were validated in
terms of FP measure [4, 5, 14, 32, 37]. This sheds light on the importance of the
FP measure to address the shortcoming of the high number of false alarms (FPs).
Furthermore, some approaches were validated in terms of: TP measure [32]; F1
measure [4, 34]; AUC measure [8, 12, 17]; precision and recall [25, 30]; accuracy
[25, 37]; and others.

The variety of the utilised evaluation measures in the state of the art reveals the
critical need to formulate the insider threat problem and to define the measures
that would best validate the effectiveness of the propose E-RAIDS approach. In
the following, we give a formulation for the E-RAIDS approach and we define the
evaluation measures utilised in this work.

As aforementioned, the ultimate aim of the E-RAIDS approach is to detect all
the malicious insider threats over a data stream in real-time, while minimising the
number of false alarms.

The challenge of the insider threat problem lies in the variety and complexity
of the malicious insider threats in the data sets. Each malicious insider threat is
devised of a set of anomalous behaviours. An anomalous behaviour is represented

6 Data Stream Clustering for Anomaly Detection 133

by an instance (feature vector) which describes a set of events (features) carried
out by a malicious insider. Based on the challenge of the problem, we formulate
the E-RAIDS approach with the aim to detect any-behaviour-all-threat (as defined
in Sect. 6.1). This means that it is sufficient to detect any anomalous behaviour
(instance) in all malicious insider threats. Hence, E-RAIDS approach is formulated
as a threat hunting approach, where a threat is detected if (1) a vfe number of feature
subspaces confirm an undergoing threat (flag alarm) over a window and (2) the
outliers, associated with the alarm flagged over the window, include at least a true
positive (anomalous behaviour detected as outlier). Note that although the detection
of one behaviour confirms the detection of the threat, we hypothesise the following
in Hypothesis 2.

Hypothesis 2 The E-RAIDS approach is capable of detecting more than one
behaviour from the set of behaviours which belong to a malicious insider threat.
We refer to as (more than one)-behaviour-all-threat detection in E-RAIDS.

Furthermore, the property of the E-RAIDS approach of using windows over data
streams introduces a refined version of the evaluation of false positives (FP). In
this work, we use the FPAlarm to evaluate the false positives. So that if all the
outliers associated with the alarm generated over a window are actually normal,
then the alarm is considered a false alarm (i.e. FPAlarm is incremented 1). A formal
definition for FPAlarm is given in the following.

We define the measures used to evaluate the performance of E-RAIDS, which
include a refined version of the default (known) evaluation measures, taking our
ultimate aim into account.

• PT : Threats number of malicious insider threats associated with anomalous
instances. In other words, PT is the number of malicious insiders attributed to
the anomalous behaviours;

• TPT : True Positives a refined version of default TP to evaluate the number of
threats detected by the framework among all the PT malicious insider threats.
TPT is incremented if at least one anomalous instance (behaviour attributed to
the threat) is associated as an outlier to a flagged alarm;

• FPAlarm: False Positive Alarm a refined version of default FP to evaluate the
number of false alarms generated. An alarm is declared false if all the outliers
associated with the alarm are actually normal instances. This means that none of
the instances contributed to generating the alarm, therefore, false alarm;

• FNT : False Negatives a refined version of default FN to evaluate the number of
insider threats not detected; and

• F1 measure: defined based on the values of the above defined measures.

The evaluation for E-RAIDS does not employ only the defined evaluation
measures, however, it is required to prove the previously stated hypothesises to be
true.

134 D. Haidar and M. M. Gaber

6.4.4 Results and Discussion

In the preliminary version [22], RandSubOut was evaluated in terms of TPT detected
threats and FPAlarm.

In this work, the results are presented and discussed for E-RAIDS-MCOD and
E-RAIDS-AnyOut as follows: in terms of (1) the pre-defined evaluation measures;
(2) voting feature subspaces; (3) real-time anomaly detection; and (4) the detection
of (more than One)-behaviour-all-threat.

6.4.4.1 MCOD vs AnyOut Base Learner for E-RAIDS in Terms of
Evaluation Measures

In the following, we analyse the performance of E-RAIDS with MCOD base learner
vs AnyOut base learner in terms of the pre-defined evaluation measures: T PT out
of PT ; FPAlarm; and F1 measure.

Tables 6.2 and 6.3 present the maximum T PT and the minimum FPAlarm
attained E-RAIDS-MCOD and E-RAIDS-AnyOut over the communities. The
results are reported in terms of the parameter values in the given sequence k, r,w

for E-RAIDS-MCOD and τ, oscAgr,w for E-RAIDS-AnyOut, respectively.

E-RAIDS-MCOD
Figure 6.3 presents the variation of F1 measure as a function of window size

w for E-RAIDS with MCOD base learner over the communities. The results are
reported with respect to k and r parameter values.

A preliminary analysis of the F1 measure shows no evident pattern in terms of
any of the parameters k, r , or w. Over the community com-P, E-RAIDS-MCOD

Table 6.2 Maximum T PT of detected insider threats over communities

Community E-RAIDS-MCOD Parameters k, r, w

com-P 16 50,0.3,100 60,0.4,50

60,0.6,100 60,0.7,150

70,0.4,50

com-S 21 70,0.4,150

com-I 10 50,0.4,50 70,0.3,100

E-RAIDS-AnyOut Parameters τ, oscAgr,w

com-P 16 0.1,2,100–200 {0.3, 0.7},2,50–200

com-S 20 0.1,2,50–100 0.3,2,50–100

0.7,2,150

com-I 12 0.1,2,50–200 0.3,2,50–100

0.7,2,{50, 200}
The bold values represent the maximum TPT achieved by either E-RAIDS-MCOD or E-RAIDS-
AnyOut over each community

6 Data Stream Clustering for Anomaly Detection 135

Table 6.3 Minimum FPAlarm over communities

Community E-RAIDS-MCOD Parameters k, r, w

com-P 0 50,0.4,200 60,{0.3, 0.5, 0.6},200

com-S 0 50,0.4,200 50,0.7,100

60,0.3,200 60,0.5–0.7,100

70,0.6–0.7,150

com-I 0 50,0.3,200 60,0.5,200

70,0.5–0.7,200

E-RAIDS-AnyOut Parameters τ, oscAgr,w

com-P 2 ∀τ ,∀oscAgr ,200

com-S 2 ∀τ ,∀oscAgr ,150–200

com-I 1 0.1,{2, 4},200 0.3,2–6,200

0.7,2–4,200

The bold values represent the minimum FPAlarm by either E-RAIDS-MCOD or E-RAIDS-AnyOut
over each community

achieves the maximum F1 = 0.9411; 60, 0.7, 150. It detects the maximum TPT = 16
out of PT = 17, thus missing one malicious insider threat. However, it flags only a
false positive alarm (FPAlarm = 1). Furthermore, Table 6.3 shows that E-RAIDS-
MCOD reports the minimum FPAlarm = 0 at w = 200 for different values of k and r .

Over the community com-S, E-RAIDS-MCOD achieves the maximum F1=
0.9523; 70, {0.6, 0.7}, 150. It detects a TPT = 20 out of PT = 22, while flagging
no false positive alarms (FPAlarm= 0). The maximum TPT = 21 is attained at
70, 0.4, 150, however, flagging FPAlarm= 2.

Over the community com-I, E-RAIDS-MCOD achieves the maximum F1=
0.6451; 70, 0.3, 100. It detects a TPT = 10 out of PT = 12, thus missing two
malicious insider threats, while flagging FPAlarm= 9. Nevertheless, Table 6.3
shows that E-RAIDS-MCOD reports the minimum FPAlarm= 0 at w = 200 for
different values of k and r .

We can deduce that the window size w = 150, 200 gives the best performance
for E-RAIDS-MCOD in terms of the evaluation measures.

E-RAIDS-AnyOut
Figure 6.4 presents the variation of F1 measure as a function of window size

w for E-RAIDS with AnyOut base learner over the communities. The results are
reported with respect to τ and oscAgr parameter values.

It is evident that there exists a positive correlation between F1 measure and
the parameter oscAgr for E-RAIDS-AnyOut. The variation of F1 measure at
oscAgr = 2 is the highest with respect to all the window sizes w = 50–200 over
both communities. Moreover, Fig. 6.5a reveals a positive correlation between F1
measure and the parameter w. The value of F1 measure increases as the window
size w increases.

Over the community com-P, E-RAIDS-AnyOut achieves the maximum F1=
0.9142; ∀τ, 2, 200. It detects the maximum TPT = 16 out of PT = 17, while

136 D. Haidar and M. M. Gaber

1
0.8
0.6
0.4
0.2

0
50 100 150

w

k=50

a

b

c

F
1

m
ea

su
re

200

1
0.8
0.6
0.4
0.2

0
50 100 150

w

k=60

F
1

m
ea

su
re

200

1
0.8
0.6
0.4
0.2

0
50 100 150

w

k=70

F
1

m
ea

su
re

200

0.3 0.4 0.5 0.6 0.7

1
0.8
0.6
0.4
0.2

0
50 100 150

w

k=50

F
1

m
ea

su
re

200

1
0.8
0.6
0.4
0.2

0
50 100 150

w

k=60

F
1

m
ea

su
re

200

1
0.8
0.6
0.4
0.2

0
50 100 150

w

k=70

F
1

m
ea

su
re

200

0.3 0.4 0.5 0.6 0.7

1
0.8
0.6
0.4
0.2

0
50 100 150

w

k=50

F
1

m
ea

su
re

200

1
0.8
0.6
0.4
0.2

0
50 100 150

w

k=60

F
1

m
ea

su
re

200

1
0.8
0.6
0.4
0.2

0
50 100 150

w

k=70

F
1

m
ea

su
re

200

0.3 0.4 0.5 0.6 0.7

Fig. 6.3 The variation of F1 measure as a function of window size w for E-RAIDS with MCOD
base learner over the communities. The legend represents the r parameter values. (a) com-P. (b)
com-S. (c) com-I

reducing the false positive alarms to FPAlarm= 2. Table 6.3 shows that E-RAIDS-
AnyOut reports the minimum FPAlarm= 2 ∀τ,∀oscAgr at w = 200. Thus, the
higher the window size, the lower the FPAlarm. Table 6.2 shows that E-RAIDS-
AnyOut reports the maximum TPT = 16 at oscAgr = 2 in general terms ∀τ,∀w.
Thus, the lower the oscAgr , the higher the TPT detected.

Over the community com-S, E-RAIDS-AnyOut achieves the maximum F1=
0.9090; 0.7, 2, 150. It detects a TPT = 20 out of PT = 22, while flagging two
false positive alarms (FPAlarm= 2).

6 Data Stream Clustering for Anomaly Detection 137

1
0.8
0.6
0.4
0.2

0
50 100 150

w

F
1

m
ea

su
re

200

1
0.8
0.6
0.4
0.2

0
50 100 150

w

F
1

m
ea

su
re

200

1
0.8
0.6
0.4
0.2

0
50 100 150

w

τ=0.7τ=0.4τ=0.1

τ=0.7τ=0.4τ=0.1

τ=0.7τ=0.4τ=0.1

F
1

m
ea

su
re

200

2 4 6 8

2 4 6 8

2 4 6 8

1
0.8
0.6
0.4
0.2

0
50 100 150

w

F
1

m
ea

su
re

200

1
0.8
0.6
0.4
0.2

0
50 100 150

w

F
1

m
ea

su
re

200

1
0.8
0.6
0.4
0.2

0
50 100 150

w

F
1

m
ea

su
re

200

1
0.8
0.6
0.4
0.2

0
50 100 150

w

F
1

m
ea

su
re

200

1
0.8
0.6
0.4
0.2

0
50 100 150

w

F
1

m
ea

su
re

200

1
0.8
0.6
0.4
0.2

0
50 100 150

w

F
1

m
ea

su
re

200

a

b

c

Fig. 6.4 The variation of F1 measure as a function of window size w for E-RAIDS with AnyOut
base learner over the communities. The legend represents the oscAgr parameter values. (a) com-P.
(b) com-S. (c) com-I

Over the community com-I, E-RAIDS-AnyOut achieves the maximum F1=
0.9600; ∀τ, 2, 200. It detects a TPT = 12 out of PT = 12, while flagging one
false positive alarm (FPAlarm= 1).

In terms of the evaluation measures, E-RAIDS-MCOD outperforms E-RAIDS-
AnyOut over the communities, where E-RAIDS-MCOD achieves a higher F1
measure over com-P and com-S, a higher TPT over com-S, and a lower FPAlarm= 0
over all communities.

138 D. Haidar and M. M. Gaber

6.4.4.2 MCOD vs AnyOut for E-RAIDS in Terms of Voting Feature
Subspaces

In the following, we address the merit of using feature subspaces in the E-RAIDS
approach. We compare the number of feature subspaces in the ensemble that voted
for a malicious insider threat in each of E-RAIDS-MCOD and E-RAIDS-AnyOut.
The rationale behind using a random feature subspace to train each model of the p

models in the ensemble is to train the base learner (MCOD or AnyOut) on a subset
of the features and to detect local outliers which might not be detected over the
whole feature space.

Figure 6.5 illustrates the number of votes which contributed in flagging an
alarm of a malicious threat with respect to the number of instances processed
(given the window size w) over the communities. The number of votes actually
corresponds to the number of feature subspaces in the ensemble which generated an
alert. We selected E-RAIDS-MCOD and E-RAIDS-AnyOut with their parameters
which showed the best performance in terms of the evaluation measures. For move

0

0
15

0
30

0
45

0
60

0
75

0
90

0
10

50
12

00
13

50
15

00
16

50
18

00
19

50
21

00
22

50
24

00
25

50
27

00
28

50 0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

22
00

24
00

26
00

28
00

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

22
00

24
00

26
00

28
00 0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

22
00

24
00

26
00

28
00

0 0 0

1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0

16 17 15 15 15 1516 16 16 1417 172 2

0

0
15

0
30

0
45

0
60

0
75

0
90

0
10

50
12

00
13

50
15

00
16

50
18

00
19

50
21

00
22

50
24

00
25

50
27

00
28

50

0 0

0 0 0 0 0
1 1 1 1 1 1 1 1 1

0 0 0 0

2 2

5

2 2 2 2
3

22
3 3

0 0

11 1 1 1 1 1

0 0 0 0 0 0

2 2

0

0
15

0
30

0
45

0
60

0
75

0
90

0
10

50
12

00
13

50
15

00
16

50
18

00
19

50
21

00
22

50
24

00
25

50
27

00
28

50

0 0

0 0 0

15 16 16 16 16 16 15 1515 16 16 16

0

17 17 17 17 17 17 17 1717 16 1515
11 11

1413

E-RAIDS-MCOD 60,0.7,150

E-RAIDS-MCOD 70,0.6,150

E-RAIDS-MCOD 70,0.3,100

E-RAIDS-AnyOut 0.1,2,200

E-RAIDS-AnyOut 0.7,2,150

E-RAIDS-AnyOut 0.1,2,200

a

b

c

Fig. 6.5 The number of votes which contributed in flagging an alarm of a malicious threat with
respect to the number of instances processed over the communities. (a) com-P. (b) com-S. (c) com-I

6 Data Stream Clustering for Anomaly Detection 139

com-P down to be clear Fig. 6.5a shows the E-RAIDS-MCOD at 60, 0.7, 150 and
E-RAIDS-AnyOut at 0.1, 2, 200. For com-S, Fig. 6.5b shows the E-RAIDS-MCOD
at 70, 0.6, 150 and E-RAIDS-AnyOut at 0.7, 2, 150. For com-I, Fig. 6.5c shows the
E-RAIDS-MCOD at 70, 0.3, 100 and E-RAIDS-AnyOut at 0.1, 2, 200. Given that
the |Dtrain| = 500, this justifies why the votes for E-RAIDS-AnyOut start after 500
train instances has been processed over both communities.

Given the window size w, a window iteration wIter starts at the number of
already processed instances procInst and ends at procInst+w. For example,
given w = 100, the first window iteration wIter = 0 starts at procInst = 0
and ends at procInst + w = 100; wIter = 1 starts at 100 and ends at 200; etc.

A preliminary analysis of the results shows that E-RAIDS-AnyOut flags alarms
continuously ∀wIter after procInst = 500. However, E-RAIDS-MCOD shows
distinct alarms flagged, with no alarms at certain windows iterations. We recall that
E-RAIDS-MCOD outperforms E-RAIDS-AnyOut in terms of FPAlarm measure.
The continuous alarms flagged ∀wIter in E-RAIDS-AnyOut explains the higher
FPAlarm, as well as it reveals the uncertainty of E-RAIDS-AnyOut compared to
E-RAIDS-MCOD.

Knowing that the number of feature subspaces utilised in the ensemble is p =
17, the number of votes ∀wIter in E-RAIDS-AnyOut has a minimum votes =
11 and a maximum votes = 17, which reveals a level of uncertainty. The case
where 17 feature subspaces vote for an alarm indicates that all (17) models of the
ensemble detect at least one outlier (positive) associated with a malicious insider
threat. On the other hand, the number of votes in E-RAIDS-MCOD has a maximum
votes = 2. This means that only 1 or 2 feature subspaces vote for an alarm. We
recall the complexity of the malicious insider threat scenarios in the CMU-CERT
data sets. The anomalous instances usually exist in (sparse or dense) regions of
normal instances, and rarely as global outliers with respect to the whole feature
space. To address this, the E-RAIDS approach aims to detect local outliers which
may be found over ANY (not ALL) of feature subspaces. Having all the feature
subspaces in E-RAIDS-AnyOut voting for a threat, compared to a couple (1 or 2)
of feature subspaces in E-RAIDS-MCOD, reinforces the uncertainty of E-RAIDS-
AnyOut. The reason behind the uncertain performance of AnyOut in the E-RAIDS
approach may be due to that the outlier score of an instance Xt is computed upon the
arrival of a new instance Xt+1. Thus, the processing of the instance Xt is interrupted
at a certain level of the ClusTree, and the outlier score is computed with a lower level
of confidence (i.e. uncertain).

6.4.4.3 Real-Time Anomaly Detection in E-RAIDS

To prove the aforementioned Hypothesis 1 to be true, it is required to check if the
E-RAIDS detects the malicious insider threats in real-time (where real-time means
that the alarm is flagged during the time span of the undergoing threat). Based on
the previous conclusion regarding the uncertainty of E-RAIDS-AnyOut, and the

140 D. Haidar and M. M. Gaber

0
15

0
30

0
45

0
60

0
75

0
90

0
10

50
12

00
13

50
15

00
16

50
18

00
19

50
21

00
22

50
24

00
25

50
27

00
28

50 0
15

0
30

0
45

0
60

0
75

0
90

0
10

50
12

00
13

50
15

00
16

50
18

00
19

50
21

00
22

50
24

00
25

50
27

00
28

50

0
0

20
0

60
0

80
0

10
00

12
00

12
00

16
00

18
00

20
00

22
00

24
00

26
00

28
0040
0 0

20
0

60
0

80
0

10
00

12
00

12
00

16
00

18
00

20
00

22
00

24
00

26
00

28
0040
0

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

19
50

21
00

22
50

24
00

25
50

27
00

28
50 0

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

19
50

21
00

22
50

24
00

25
50

27
00

28
50

Actual Threats

Actual Threats

s1_ALT1465

s2_CKP0630

s4_DKG0161

s1_KBC1390

s2_TMT0851

s2_DCC1119

s3_GKW0043

s2_SIS0042

s3_KCM0466

s3_ACA1126

s3_LAH0463

s3_CRD0272

s3_MPF0690

s3_CWW1120

s3_VRP0267

s3_ELM1123

s3_ZEH0685

s4_HBP1076

s1_AYG1697

s2_ICB1354

s4_JIG1593

s1_ELT1370

s2_ITA0159

s4_JMM0613

s1_GFM1815

s2_MCP0611

s4_JNR1592

s1_JUP1472

s2_NAH1366

s1_WHB1247

s2_CGF1056

s4_MTP1582

Actual Threats

MCOD 60,0.7,150

MCOD 70,0.3,150

MCOD 70,0.6,150

s1_VAH1292

s1_KEW0198

s2_TNB1616

s4_NKN1405

s2_BYO1846

s1_SAF1942

s4_CBW1826

s2_LVF1626

s1_SLL0193

s4_GCD0194

s2_SNK1280

s1_REF1924

s2_VCF1602

s4_WOS1834

s2_HIS1394

s1_NIVI1608

s2_TRC1838

s4_NZL1395

s2_CHP1711

a

b

c

Fig. 6.6 The actual malicious insider threats vs the threats detected in E-RAIDS-MCOD with
respect to the number of instances processed over the communities. (a) com-P. (b) com-S. (c)
com-I

superiority of E-RAIDS-MCOD in terms of (1) the evaluation measures and (2) the
voting feature subspaces, we select E-RAIDS-MCOD to verify Hypothesis 1.

Figure 6.6 illustrates the actual malicious insider threats vs the threats detected
in E-RAIDS-MCOD with respect to the number of instances processed over the
communities. The malicious insider threats are displayed in the legend over each
community using the following label scenRef_insiderID (e.g. s1_ALT1465) such
that scenRef (e.g. s1, s2, or s4) represents the reference number for the scenario

6 Data Stream Clustering for Anomaly Detection 141

followed in the malicious insider threat; and insiderID (e.g. ALT1465, AYG1697)
represents the user ID of the insider attributed to the threat. Hence, each colour in
the legend refers to a malicious insider threat.

We observe in Fig. 6.6 that a malicious insider threat is detected either (obs1) at
the current window iteration wIter where it is actually simulated, or (obs2) at the
subsequent (next) wIter . Hence, Hypothesis 1 is verified.

Based on the description of the E-RAIDS approach, a feature subspace votes
for a threat at wIter if at least an outlier survived for a vfs number of subsequent
windows, and consequently a specific threat is detected at wIter if (cond1) a vfe

number of subspaces vote (an alarm is flagged), and (cond2) at least outlier (positive)
associated with the alarm belongs to the threat. However, the outliers associated with
the alarm (as mentioned in (cond2)) consist of persistent outliers (which survived
from wIter−1) and potential outliers (at the current wIter). A potential outlier, if
satisfies (cond2), allows real-time detection at the current wIter (obs1). A persistent
outlier, if satisfies condition (cond2), allows real-time detection as observed at the
subsequent wIter (obs2).

6.4.4.4 (More Than One)-Behaviour-All-Threat Detection in E-RAIDS

The final analysis addresses Hypothesis 2. As defined in Sect. 6.1, the idea of
threat hunting aims to detect any-behaviour-all-threat, however, Fig. 6.6 shows the
capability of E-RAIDS-MCOD to detect more than one behaviour (not only one)
from the set of behaviours which belong to a malicious insider threat. It manifests
as multiple alarms (colour spikes) generated for a specific threat over a number of
windows. Hence, Hypothesis 2 is verified.

Analytically, this underlies in having multiple outliers, associated with the
alarm(s) flagged over window(s), which are actually true positives belonging to a
specific malicious insider threat.

6.5 Conclusion and Future Work

This chapter addresses the shortcoming of high number of false alarms in the
existing insider threat detection mechanisms. The continuous flagging of false
alarms deceives the administrator(s) about suspicious behaviour of many users. This
consumes a valuable time from their schedule, while investigating the suspected
users.

We present a streaming anomaly detection approach, namely Ensemble of
Random subspace Anomaly detectors In Data Streams (E-RAIDS), for insider threat
detection. The ultimate aim of E-RAIDS is to detect any-behaviour-all-threat (threat
hunting as defined in Sect. 6.1), while reducing the number of false alarms.

E-RAIDS is built on top of established continuous outlier detection techniques
(MCOD or AnyOut). These techniques use data stream clustering to optimise the

142 D. Haidar and M. M. Gaber

detection of outliers (which may refer to malicious insider threats). E-RAIDS is an
ensemble of p outlier detectors (p MCOD base learners or p AnyOut base learners),
where each model of the p models learns on a random feature subspace. The merit
of using feature subspaces is to detect local outliers which might not be detected
over the whole feature space. These outliers may refer to anomalous behaviour(s)
which belong to a malicious insider threat. E-RAIDS presents also an aggregate
component to combine the votes from the feature subspaces, and take a decision
whether to flag an alarm or not.

We define two experiments: E-RAIDS-MCOD with MCOD base learner, and
E-RAIDS-AnyOut with AnyOut base learner. The experiments are carried out on
CMU-CERT data sets which include simulated malicious insider threat scenarios.
We compare the performance of E-RAIDS using each of MCOD and AnyOut in
terms of: (1) the evaluation measures: F1 measure, TPt of threats detected, and
FPAlarm flagged; (2) the effectiveness of the concept of voting feature subspaces;
(3) the capability of E-RAIDS to detect insider threats in real-time (Hypothesis 1);
and (4) the capability of E-RAIDS to detect more than one behaviour belonging
to an insider threat (Hypothesis 2) despite our formulation to the insider threat
approach (threat hunting).

The results show that E-RAIDS-MCOD outperforms E-RAIDS-AnyOut, where
the latter shows a low level of certainty in the detection of outliers. E-RAIDS-
MCOD reports a higher F1 measure = 0.9411 and 0.9523 over com-P and com-S,
a lower FPAlarm = 0 over all communities, and misses only one threat TPT = 16
and 21 over com-P and com-S. It is worth to also mention that the window size
w = 150, 200 gives the best performance for E-RAIDS-MCOD compared to
the tuned values. E-RAIDS verifies the hypothesised capabilities in terms of the
detection of more than one behaviour per threat in real-time.

References

1. C.C. Aggarwal, S.Y. Philip, J. Han, J. Wang, A framework for clustering evolving data streams,
in Proceedings 2003 VLDB Conference (Elsevier, Burlington, 2003), pp. 81–92

2. F. Angiulli, F. Fassetti, Distance-based outlier queries in data streams: the novel task and
algorithms. Data Min. Knowl. Disc. 20(2), 290–324 (2010)

3. I. Assent, P. Kranen, C. Baldauf, T. Seidl, Anyout: anytime outlier detection on streaming data,
in International Conference on Database Systems for Advanced Applications (Springer, Berlin,
2012), pp. 228–242

4. A. Azaria, A. Richardson, S. Kraus, V. Subrahmanian, Behavioral analysis of insider threat: a
survey and bootstrapped prediction in imbalanced data. IEEE Trans. Comput. Soc. Syst. 1(2),
135–155 (2014)

5. B. Böse, B. Avasarala, S. Tirthapura, Y.Y. Chung, D. Steiner, Detecting insider threats using
radish: a system for real-time anomaly detection in heterogeneous data streams. IEEE Syst. J.
11(2), 471–482 (2017)

6. M.M. Breunig, H.P. Kriegel, R.T. Ng, J. Sander, LOF: identifying density-based local outliers,
in ACM Sigmod Record, vol. 29 (ACM, New York, 2000), pp. 93–104

6 Data Stream Clustering for Anomaly Detection 143

7. D.M. Cappelli, A.P. Moore, R.F. Trzeciak, The CERT Guide to Insider Threats: How to Prevent,
Detect, and Respond to Information Technology Crimes (Theft, Sabotage, Fraud) (Addison-
Wesley, Upper Saddle River, 2012)

8. Y. Chen, S. Nyemba, B. Malin, Detecting anomalous insiders in collaborative information
systems. IEEE Trans. Dependable Secure Comput. 9(3), 332–344 (2012)

9. CMU CERT Team, CMU cert synthetic insider threat data set. https://resources.sei.cmu.edu/
library/asset-view.cfm?assetid=508099. Accessed 12 Apr 2018

10. CMU Software Engineering Institute, 2011 cybersecurity watch survey. https://www.sei.cmu.
edu/news/article.cfm?assetid=52441. Accessed 14 Feb 2018

11. M. Ester, H.P. Kriegel, J. Sander, X. Xu et al., A density-based algorithm for discovering
clusters in large spatial databases with noise, in Kdd, vol. 96 (1996), pp. 226–231

12. A. Gamachchi, S. Boztas, Insider threat detection through attributed graph clustering, in 2017
IEEE Trustcom/BigDataSE/ICESS (IEEE, Piscataway, 2017), pp. 112–119

13. A. Gamachchi, L. Sun, S. Boztas, Graph based framework for malicious insider threat
detection, in Proceedings of the 50th Hawaii International Conference on System Sciences,
Hawaii, 4–7 January 2017, pp. 2638–2647

14. C. Gates, N. Li, Z. Xu, S.N. Chari, I. Molloy, Y. Park, Detecting insider information theft
using features from file access logs, in European Symposium on Research in Computer Security
(Springer, Switzerland, 2014), pp. 383–400

15. D. Georgiadis, M. Kontaki, A. Gounaris, A.N. Papadopoulos, K. Tsichlas, Y. Manolopoulos,
Continuous outlier detection in data streams: an extensible framework and state-of-the-
art algorithms, in Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data (ACM, New York, 2013), pp. 1061–1064

16. J. Glasser, B. Lindauer, Bridging the gap: a pragmatic approach to generating insider threat
data, in 2013 IEEE Security and Privacy Workshops (SPW) (IEEE, Piscataway, 2013), pp. 98–
104

17. H. Goldberg, W. Young, M. Reardon, B. Phillips et al., Insider threat detection in prodigal, in
Proceedings of the 50th Hawaii International Conference on System Sciences (2017)

18. F.L. Greitzer, T.A. Ferryman, Methods and metrics for evaluating analytic insider threat tools,
in 2013 IEEE Security and Privacy Workshops (SPW) (IEEE, Piscataway, 2013), pp. 90–97

19. M.D. Guido, M.W. Brooks, Insider threat program best practices, in 2013 46th Hawaii
International Conference on System Sciences (HICSS) (IEEE, Piscataway, 2013), pp. 1831–
1839

20. A. Guttman, R-Trees: A Dynamic Index Structure for Spatial Searching, vol. 14 (ACM, New
York, 1984)

21. M. Hahsler, M. Bolanos, J. Forrest et al., Introduction to stream: an extensible framework for
data stream clustering research with R. J. Stat. Softw. 76(14), 1–50 (2017)

22. D. Haidar, M.M. Gaber, Outlier detection in random subspaces over data streams: an approach
for insider threat detection. Expert Update 17(1), 1–16 (2017)

23. D.M. Hawkins, Identification of Outliers, vol. 11 (Springer, Dordrecht, 1980)
24. Z. He, X. Xu, S. Deng, Discovering cluster-based local outliers. Pattern Recogn. Lett. 24(9–10),

1641–1650 (2003)
25. M. Kandias, V. Stavrou, N. Bozovic, D. Gritzalis, Proactive insider threat detection through

social media: the youtube case, in Proceedings of the 12th ACM Workshop on Privacy in the
Electronic Society (ACM, New York, 2013), pp. 261–266

26. M. Khalilian, N. Mustapha, Data stream clustering: challenges and issues (2010, Preprint).
arXiv: 1006.5261

27. E.M. Knox, R.T. Ng, Algorithms for mining distance based outliers in large datasets, in
Proceedings of the International Conference on Very Large Data Bases. Citeseer (1998),
pp. 392–403

28. M. Kontaki, A. Gounaris, A.N. Papadopoulos, K. Tsichlas, Y. Manolopoulos, Continuous
monitoring of distance-based outliers over data streams, in 2011 IEEE 27th International
Conference on Data Engineering (IEEE, Piscataway, 2011), pp. 135–146

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=508099
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=508099
https://www.sei.cmu.edu/news/article.cfm?assetid=52441
https://www.sei.cmu.edu/news/article.cfm?assetid=52441

144 D. Haidar and M. M. Gaber

29. P. Kranen, I. Assent, C. Baldauf, T. Seidl, Self-adaptive anytime stream clustering, in Ninth
IEEE International Conference on Data Mining, ICDM’09 (IEEE, Piscataway, 2009), pp. 249–
258

30. P.A. Legg, O. Buckley, M. Goldsmith, S. Creese, Automated insider threat detection system
using user and role-based profile assessment. IEEE Syst. J. 11, 503–512 (2015)

31. P.A. Legg, O. Buckley, M. Goldsmith, S. Creese, Caught in the act of an insider attack:
detection and assessment of insider threat, in 2015 IEEE International Symposium on
Technologies for Homeland Security (HST) (IEEE, Piscataway, 2015), pp. 1–6

32. M. Mayhew, M. Atighetchi, A. Adler, R. Greenstadt, Use of machine learning in big data
analytics for insider threat detection, in MILCOM 2015–2015 IEEE Military Communications
Conference (IEEE, Piscataway, 2015), pp. 915–922

33. MOA Team, T.U.o.W., Massive online analysis open source framework. https://moa.cms.
waikato.ac.nz/. Accessed 14 Feb 2018

34. P. Moriano, J. Pendleton, S. Rich, L.J. Camp, Insider threat event detection in user-system
interactions, in Proceedings of the 2017 International Workshop on Managing Insider Security
Threats (2017)

35. J.R. Nurse, P.A. Legg, O. Buckley, I. Agrafiotis, G. Wright, M. Whitty, D. Upton, M.
Goldsmith, S. Creese, A critical reflection on the threat from human insiders—its nature,
industry perceptions, and detection approaches, in International Conference on Human Aspects
of Information Security, Privacy, and Trust (Springer, Cham, 2014), pp. 270–281

36. P. Parveen, Z.R. Weger, B. Thuraisingham, K. Hamlen, L. Khan, Supervised learning for
insider threat detection using stream mining, in 2011 IEEE 23rd International Conference on
Tools with Artificial Intelligence (IEEE, Piscataway, 2011), pp. 1032–1039

37. P. Parveen, N. Mcdaniel, Z. Weger, J. Evans, B. Thuraisingham, K. Hamlen, L. Khan, Evolving
insider threat detection stream mining perspective. Int. J. Artif. Intell. Tools 22(05) (2013).
https://doi.org/10.1142/S0218213013600130

38. Reuters, Harold marin theft of ip. http://www.reuters.com/article/us-usa-cybersecurity-nsa-
contractor-idUSKBN15N2N4. Accessed 14 Feb 2018

39. T. Seidl, I. Assent, P. Kranen, R. Krieger, J. Herrmann, Indexing density models for incremental
learning and anytime classification on data streams, in Proceedings of the 12th International
Conference on Extending Database Technology: Advances in Database Technology (ACM,
New York, 2009), pp. 311–322

40. J.A. Silva, E.R. Faria, R.C. Barros, E.R. Hruschka, A.C. De Carvalho, J. Gama, Data stream
clustering: a survey. ACM Comput. Surv. (CSUR) 46(1), 13 (2013)

41. A. Tuor, S. Kaplan, B. Hutchinson, N. Nichols, S. Robinson, Deep learning for unsuper-
vised insider threat detection in structured cybersecurity data streams (2017) arXiv preprint
arXiv:1710.00811

42. J. Verble, The NSA and Edward Snowden: surveillance in the 21st century. ACM SIGCAS
Comput. Soc. 44(3), 14–20 (2014)

43. S. Walton, E. Maguire, M. Chen, Multiple queries with conditional attributes (qcats) for
anomaly detection and visualization, in Proceedings of the Eleventh Workshop on Visualization
for Cyber Security (ACM, New York, 2014), pp. 17–24

44. D. Yang, E.A. Rundensteiner, M.O. Ward, Neighbor-based pattern detection for windows over
streaming data, in Proceedings of the 12th International Conference on Extending Database
Technology: Advances in Database Technology (ACM, New York, 2009), pp. 529–540

45. A. Zargar, A. Nowroozi, R. Jalili, Xaba: a zero-knowledge anomaly-based behavioral analysis
method to detect insider threats, in 2016 13th International Iranian Society of Cryptology
Conference on Information Security and Cryptology (ISCISC) (IEEE, Piscataway, 2016),
pp. 26–31

46. T. Zhang, R. Ramakrishnan, M. Livny, Birch: an efficient data clustering method for very large
databases, in ACM Sigmod Record, vol. 25 (ACM, New York, 1996), pp. 103–114

https://moa.cms.waikato.ac.nz/
https://moa.cms.waikato.ac.nz/
https://doi.org/10.1142/S0218213013600130
http://www.reuters.com/article/us-usa-cybersecurity-nsa-contractor-idUSKBN15N2N4
http://www.reuters.com/article/us-usa-cybersecurity-nsa-contractor-idUSKBN15N2N4

Chapter 7
Effective Tensor-Based Data Clustering
Through Sub-Tensor Impact Graphs

K. Selçuk Candan, Shengyu Huang, Xinsheng Li, and Maria Luisa Sapino

7.1 Introduction

Tensors are multi-dimensional arrays and are commonly used for representing multi-
dimensional data, such as sensor streams and social networks [9, 17]. Thanks to the
widespread availability of multi-dimensional data, tensor decomposition operations
(such as CP [10] and Tucker [31]) are increasingly being used to implement various
data analysis tasks, from anomaly detection [17], correlation analysis [26] to pattern
discovery [13] and clustering [22, 28, 32].

A critical challenge for tensor-based analysis is its computational complexity
and decomposition can be a bottleneck in some applications [14, 21, 30]. Phan
and Cichocki [23] proposed a methodology to partition the tensor into smaller
sub-tensors to deal with this issue: (a) partition the given tensor into blocks (or sub-
tensors), (b) decompose each block independently, and then (c) iteratively combine
these sub-tensor decompositions into a final decomposition for the input tensor. This
process leads to two key observations:

• Observation #1: Our key observation in this chapter is that Step (c), which
iteratively updates and stitches the sub-tensor decompositions obtained in Steps
(a) and (b), is where the various decompositions interact with each other and

K. S. Candan (�) · S. Huang · X. Li
Arizona State University, Tempe, AZ, USA
e-mail: candan@asu.edu; shengyu.huang@asu.edu; lxinshen@asu.edu

M. L. Sapino
University of Torino, Torino, Italy
e-mail: marialuisa.sapino@unito.it

© Springer Nature Switzerland AG 2019
O. Nasraoui, C.-E. Ben N’Cir (eds.), Clustering Methods for Big Data Analytics,
Unsupervised and Semi-Supervised Learning,
https://doi.org/10.1007/978-3-319-97864-2_7

145

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97864-2_7&domain=pdf
mailto:candan@asu.edu
mailto:shengyu.huang@asu.edu
mailto:lxinshen@asu.edu
mailto:marialuisa.sapino@unito.it
https://doi.org/10.1007/978-3-319-97864-2_7

146 K. S. Candan et al.

where any inaccuracies in individual sub-tensor decompositions can propagate
(through the update rules introduced in Sect. 7.2.4) to the decomposition of the
complete tensor.

• Observation #2: We further observe that if we can quantify and capture how these
sub-tensors interact and inaccuracies propagate, we can use this information to
better allocate resources to tackle the accuracy–efficiency trade-off inherent in
the decomposition process.

Based on these two observations, in this chapter, we introduce the notion of sub-
tensor impact graphs (SIGs) (Sect. 7.3), which capture and represent how the
decompositions of these sub-partitions impact each other and the overall tensor
decomposition accuracy and present several complementary algorithms that lever-
age this novel concept to address various key challenges in tensor decomposition.

7.1.1 Contributions of This Chapter: Sub-Tensor Impact
Graphs

While block-based tensor decomposition techniques [15, 23] provide potential
opportunities to boost the accuracy/efficiency trade-off, this solution leaves several
open questions, including (a) how to partition the tensor and (b) how to most
effectively combine results from these partitions. In this chapter, we introduce the
notion of sub-tensor impact graphs (SIGs), which quantify how the decompositions
of these sub-partitions impact each other and the overall tensor decomposition
accuracy and present four complementary algorithms that leverage this novel
concept to address various key challenges in tensor decomposition, including
personalization, noise, and dynamic data.

7.1.1.1 Challenge #1: Decomposition in the Presence of Dynamic Data

Firstly, we rely on sub-tensor impact graphs (SIGs) to tackle performance challenges
that dynamic data pose in tensor analytics: incremental tensor decomposition. Re-
computation of the whole tensor decomposition with each update will cause high
computational costs and incur large memory overheads. Especially for applications
where data evolves over time and the tensor-based analysis results need to be
continuously maintained. In Sect. 7.4, we present a two-phase block-incremental
CP-based tensor decomposition technique (BICP), which relies on sub-tensor
impact graphs to prune unnecessary computation in the presence of incremental
updates on the data [11].

7 Effective Tensor-Based Data Clustering Through Sub-Tensor Impact Graphs 147

7.1.1.2 Challenge #2: Dealing with Noisy Data

Next, in Sect. 7.5, we present a Noise Adaptive Tensor Decomposition (nTD)
method that leverages sub-tensor impact graphs to tackle deal with noisy data. nTD
partitions the tensor into multiple sub-tensors and then decomposes each sub-tensor
probabilistically through Bayesian factorization—the resulting decompositions are
then recombined through an iterative refinement process to obtain the decom-
position for the whole tensor. nTD leverages a resource allocation strategy that
accounts for the impact of the noise density of one sub-tensor on the decomposition
accuracies of the other sub-tensors, based on the underlying sub-tensor impact
graph [19].

7.1.1.3 Challenge #3: Personalization of the Decomposition Process

Finally, we introduce a novel personalized tensor decomposition (PTD) mechanism
for accounting for the user’s focus and interests during tensor decomposition
(Sect. 7.6). We present alternative ways to account for the impact of the accuracy
of one region of the tensor to the accuracies of the other regions of the tensor, each
based on a different assumption about how the impact of inaccuracies propagates
along the tensor. Given a model of impact, PTD (a) first partitions the input tensor in
a way that reflects user’s interest, (b) constructs a sub-tensor impact graph reflecting
the tensor content and its partitions, and then (c) analyzes this sub-tensor impact
graph (in the light of the user’s interest) to identify initial decomposition ranks
for the sub-tensors in a way that will boost the final decomposition accuracies for
partitions of interest [18].

7.2 Background

7.2.1 Tensors

A tensor is a multi-dimensional array. More formally, an N-way or Nth-order tensor
is an element of the tensor product of N vector spaces, each of which has its own
coordinate system. A third-order tensor has three indices. A first-order tensor is a
vector, a second-order tensor is a matrix, and tensors of order three or higher are
called higher-order tensors. As in the case of matrices, the dimensions of the tensor
array are referred to as its modes. For example, the tensor, X ∈ R

I×J×K, shown in
Fig. 7.1, is of third-order and has three modes: I columns (mode 1), J rows (mode 2),
and K tubes (mode 3). Fibers are the higher-order analogue of matrix rows and
columns. A fiber is defined by fixing every index but one. A matrix column is a
mode-1 fiber and a matrix row is a mode-2 fiber. Slices are two-dimensional sections
of a tensor, defined by fixing all but two indices [16].

148 K. S. Candan et al.

Fig. 7.1 A third-order
(3-mode) tensor of
dimensions, I × J × K

Fig. 7.2 CP decomposition of a 3-mode tensor results in a diagonal core and three factors

7.2.2 Tensor Decomposition

Tensor-based algorithms, most notably tensor decomposition, are increasingly
important tools for analysis, including clustering, of high-dimensional data sets.
Intuitively, tensor decomposition process generalizes matrix decomposition-based
data analysis and clustering (such as PCA [7] and SVD [5, 8]) to high-dimensional
arrays (known as tensors) and rewrites the given tensor in the form of a set of
factor matrices (one for each mode of the input tensor) and a core tensor (which,
intuitively, describes the spectral structure of the given tensor). These factor matrices
and core tensors then can be used for obtaining multi-modal clusters of the input
data. The two most popular tensor decomposition algorithms are the Tucker [31]
and the CANDECOMP/PARAFAC(CP) [10] decompositions. We next provide a
brief description of these algorithms.

7.2.2.1 CP and Tucker Decompositions

The PARAFAC decomposition can be seen as a generalization of matrix factor-
izations to tensors [10]. PARAFAC decomposition is also known as CANDE-
COMP/PARAFAC (CP) decomposition. As shown in Fig. 7.2, given a tensor X,
CP factorizes the tensor into F component matrices (where F is a user supplied
non-zero integer value also referred to as the rank of the decomposition). For the
simplicity of the discussion, let us consider a 3-mode tensor X ∈ R

I×J×K. CP
would decompose X into X̊ consisting of three matrices A, B, and C, such that

7 Effective Tensor-Based Data Clustering Through Sub-Tensor Impact Graphs 149

Fig. 7.3 Tucker decomposition of a three-mode tensor

X ≈ X̃ = recombine[X̊] ≡ recombine[A, B, C] ≡
F∑

f=1

af ◦ bf ◦ cf ,

where af ∈ R

I, bf ∈ R

J, and cf ∈ R

K. The factor matrices A, B, C
are the combinations of the rank-one component vectors into matrices, e.g., A =
[a1 a2 · · · aF]. This is visualized in Fig. 7.2.

Tucker decomposition generalizes singular value matrix decomposition (SVD)
to higher-dimensional data (Fig. 7.3). Given a tensor X ∈ R

I×J×K, Tucker decom-
position factorizes the tensor into factor matrices with different number of rows,
which are referred to as the rank of the decomposition. Tucker decomposition would
decompose X into three matrices A, B, C and one core dense tensor G, such that

X ≈ X̃ = G ×1 A ×2 B ×3 C ≡
P∑

p=1

Q∑
q=1

R∑
r=1

gpqrap ◦ bq ◦ cr ,

where A ∈ R

I×P, B ∈ R

J×Q, C ∈ R

K×R are the factor matrices and can be treated
as the principal components in each mode. The (dense) core tensor, G ∈ R

P×Q×R,
indicates the strength of interactions among different components of the factor
matrices.

7.2.2.2 Accuracy of Tensor Decomposition

Note that, in general, unlike matrix decomposition (where each matrix has an exact
decomposition), tensors may not have exact decompositions [16]. Therefore, many
of the algorithms for decomposing tensors are based on an iterative process that
tries to improve the approximation until a convergence condition is reached, such as
an alternating least squares (ALS) method: at its most basic form, ALS estimates, at
each iteration, one factor matrix while maintaining other matrices fixed; this process
is repeated for each factor matrix associated with the modes of the input tensor.

150 K. S. Candan et al.

Note that due to the approximate nature of tensor decomposition operation, given a
decomposition [A, B, C] of X, the tensor X̃ that one would obtain by re-composing
the tensor by combining the factor matrices A, B, and C is often different from the
input tensor,X. The accuracy of the decomposition is often measured by considering
the Frobenius norm of the difference tensor:

accuracy(X, X̃) = 1 − error(X, X̃) = 1 −
(

‖X̃ − X‖
‖X‖

)
.

7.2.3 Tensor Decomposition and Clustering

As we mentioned earlier, intuitively, tensor decomposition process generalizes
matrix decomposition to high-dimensional arrays and the resulting factor matrices
and core tensors then can be used for obtaining multi-modal clusters of the
input data. Indeed, tensor-based representations of data and tensor decompositions
(especially the two widely used decompositions CP [10] and Tucker [31]) are
proven to be effective in multi-aspect data analysis and clustering. For instance,
[22] used tensor decomposition to cluster patients in a health-care setting based
on their individual and health profile data, including age, medical history, and
diagnostics: in particular, the authors have created a patient information tensor and
decomposed this tensor (by nonnegative low-rank approximation methods) to obtain
semantic clusters that can be used to characterize patients’ records. Davidson et
al. [6] applied tensor decomposition to fMRI data to help differentiating healthy and
Alzheimer affected individuals. Cao et al. [3] used a similar tensor decomposition-
based approach to cluster face images: authors modeled a collection of faces as a
tensor and they applied a tensor-based principal component analysis for seeking
face clusters. Wu et al. [32] leveraged CP decomposition (solved through stochastic
gradient descent) to cluster heterogeneous information networks: each type of
object in the network is represented as a different mode of the tensor. Sun et
al. [28], on the other hand, has shown that Tucker decomposition can be used for
subspace clustering which simultaneously conducts dimensionality reduction and
membership representation.

7.2.4 Block-Based Tensor Decomposition

One key challenge with tensor decomposition is its computational complexity:
decomposition algorithms have high computational costs and, in particular, incur
large memory overheads (also known as the intermediary data blow-up problem)
and, thus, basic algorithms and naive implementations are not suitable for large
problems. HaTen2 [12] focuses on sparse tensors and presents a scalable tensor

7 Effective Tensor-Based Data Clustering Through Sub-Tensor Impact Graphs 151

Algorithm 1 The outline of the block-based iterative improvement process
Input: original tensor X, partitioning pattern K , and decomposition rank, F

Output: CP tensor decomposition X̊
1. Phase 1: for all k ∈ K

• decompose Xk into U
(1)

k , U
(2)

k , . . ., U
(N)

k

2. Phase 2: repeat

a. for each mode i = 1 to N

i. for each modal partition, ki = 1 to Ki ,

A. update A
(i)
(ki)

using U
(i)
[∗,...,∗,ki ,∗,...,∗], for each block X[∗,...,∗,ki ,∗,...,∗]; more specif-

ically,

• compute T
(i)
(ki)

, which involves the use of U
(i)
[∗,...,∗,ki ,∗,...,∗] (i.e., the mode-i

factors of X[∗,...,∗,ki ,∗,...,∗])
• revise P[∗,...,∗,ki ,∗,...,∗] using U

(i)
[∗,...,∗,ki ,∗,...,∗] and A

(i)
(ki)

• compute S
(i)
(ki)

using the above

• update A
(i)

(ki)
using the above

• for each k = [∗, ∗, . . . , ki, . . . , ∗, ∗]
– update Pk and Qk using
– U

(i)
k and A

(i)
(ki)

until stopping condition
3. Return X̊

decomposition suite of methods for Tucker and PARAFAC decompositions on the
MapReduce framework. TensorDB [15] leverages a chunk-based framework to store
and retrieve data, extends array operations to tensor operations, and introduces
optimization schemes for in-database tensor decomposition.

One way to deal with this challenge is to partition the tensor and obtain the tensor
decomposition leveraging these smaller partitions. Block-based decomposition
techniques partition the given tensor into blocks or sub-tensors, initially decompose
each block independently, and then iteratively combine these decompositions into
a final decomposition. GridPARAFAC [23], for example, partitions the tensor into
pieces, obtains decomposition for each piece (potentially in parallel), and stitches
the partial decomposition results into a combined decomposition for the initial
tensor through an iterative improvement process. Here, we provide an overview of
the block-based tensor decomposition process.

Let us consider an N-mode tensor X ∈ R

I1×I2×...×IN , partitioned into a set (or
grid) of sub-tensors X = {Xk | k ∈ K} where K is the set of sub-tensor indexes.
Without loss of generality, let us assume that K partitions the mode i into Ki equal
partitions, i.e., |K | = ∏N

i=1 Ki . Let us also assume that we are given a target
decomposition rank, F , for the tensor X. Let us further assume that each sub-tensor
in X has already been decomposed with target rank F and let U(i) = {U(i)

k | k ∈ K}

152 K. S. Candan et al.

denote the set of F -rank sub-factors1 corresponding to the sub-tensors in X along
mode i. In other words, for each Xk, we have

Xk ≈ I ×1 U
(1)
k ×2 U

(2)
k · · · ×N U

(N)
k , (7.1)

where I is the N-mode F × F × . . . × F identity tensor, where the diagonal entries
are all 1s and the rest are all 0s. Given these, Phan and Cichocki [23] presents an
iterative improvement algorithm for composing these initial sub-factors into the full
F -rank factors, A(i) (each one along one mode), for the input tensor, X. The outline
of this block- based process is as follows: Let us partition each factor A(i) into Ki

parts corresponding to the block boundaries along mode i:

A(i) = [A(i)T
(1) A

(i)T
(2) ...A

(i)T
(Ki)

]T .

Given this partitioning, each sub-tensor Xk, k = [k1, . . . , ki , . . . , kN] ∈ K can be
described in terms of these sub-factors:

Xk ≈ I ×1 A
(1)
(k1)

×2 A
(2)
(k2)

· · · ×N A
(N)
(kN)

(7.2)

Moreover [23] shows that the current estimate of the sub-factor A
(i)
(ki)

can be
revised using the update rule (for more details on the update rules please see [23]):

A
(i)
(ki)

←− T
(i)
(ki)

(
S

(i)
(ki)

)−1
(7.3)

where

T
(i)
(ki)

=
∑

l∈{[∗,...,∗,ki ,∗,...,∗]}
U

(i)
l

(
Pl � (U

(i)T
l A

(i)
(ki)

)
)

S
(i)
(ki)

=
∑

l∈{[∗,...,∗,ki ,∗,...,∗]}
Ql �

(
A

(i)T
(ki)

A
(i)
(ki)

)

such that, given l = [l1, l2, . . . , lN], we have

• Pl = �N
h=1(U

(h)T
l A

(h)
(lh)) and Ql = �N

h=1(A
(h)T
(lh)

A
(h)
(lh)

).

Above, � denotes the Hadamard product and � denotes element-wise division.
The block-based tensor decomposition process is outlined in pseudocode in

Algorithm 1. Figure 7.4 provides a visual example of this process: The given input
tensor X is partitioned into two sub-tensors, X1 and X2. In the first stage, each
sub-tensor is decomposed by CP, thus obtaining partial factors. The second stage

1If the sub-tensor is empty, then the factors are 0 matrices of the appropriate size.

7 Effective Tensor-Based Data Clustering Through Sub-Tensor Impact Graphs 153

Phase 1: Sub-tensor
Decomposition

Χ1
≅ I

1
1

1
3

1
2

Χ3

Χ4

Χ5

Χ6

Χ7

Χ8

Χ2

Χ1

Phase 2: Block-based Iterative
Tensor Decomposition

1
1

2
1

Update of with revised factors
, ∈ {1,2,3}, ∈ {1,2,3,4,5,6,7}

1
1 Aligned with X1, X2, X5, X6

1
2 Aligned with: X1, X3, X5, X7

3
1 Aligned with: X1, X2, X3, X4

…

Χ8
≅ I

8
1

8
3

8
2

2
2

1
2 2

3

1
3

Fig. 7.4 Illustration of block-based tensor decomposition process

combines these partial decomposed factors using iterative updates to derive the final
factors (and the corresponding core) for tensor X.

7.3 Sub-Tensor Impact Graphs (SIGs) and Sub-Tensor
Impact Scores

In this section, we formally introduce the concept of sub-tensor impact graph
(SIG) that captures and represents the underlying structure of sub-tensors and helps
efficiently calculate the impact of each sub-tensor on the decomposition accuracy of
the overall tensor.

Let an N-mode tensor, X ∈ R

I1×I2×...×IN , be partitioned into a grid, X =
{Xk | k ∈ K}, of sub-tensors, such that

• Ki indicates the number of partitions along mode-i,
• the size of the j th partition along mode i is Ij,i (i.e.,

∑Ki

j=1 Ij,i = Ii), and
• K = {[kj1, . . . , kji , . . . , kjN] | 1 ≤ i ≤ N, 1 ≤ ji ≤ Ki} is a set of sub-tensor

indexes.

The number, ‖X‖, of partitions (and thus also the number, ‖K‖, of partition indexes)
is

∏N
i=1 Ki .

154 K. S. Candan et al.

Fig. 7.5 A sample 3-mode
tensor, partitioned into 27
heterogeneous sub-tensors

 27

 25

 3

 1

 7
y

z

x

Example 7.1 Figure 7.5 shows a 3-mode tensor, partitioned into 27 sub-tensors: 12
tensor-blocks (sub-tensors 1, 3, 7, 9, 10, 12, 16, 18, 19, 21, 15, 27), 12 slices (sub-
tensors 2, 8, 11, 17, 20, 26, 4, 6, 13, 15, 22, 24), and three fibers (sub-tensors 5, 14,
23). The specific shapes of partitions may correspond to user’s requirement such as
the degree of importance or user focus.

7.3.1 Accuracy Dependency Among Sub-Tensors

In Sect. 7.2.4, we presented update rules block-based tensor decomposition algo-
rithms use for stitching the individual sub-tensor decompositions into a complete
decomposition for the whole tensor. While the precise derivation of these update
rules is not critical for our discussion (and is beyond the scope of this chapter),
it is important to note that, as visualized in Fig. 7.6, each A

(i)
(ki)

is maintained

incrementally by using, for all 1 ≤ j ≤ N , the current estimates for A
(j)

(kj) and the

decompositions in U(j), i.e., the F -rank sub-factors of the sub-tensors in X along
the different modes of the tensor. Moreover, and most importantly for the present
discussion, this update rule for A

(i)
(ki)

supports the following observation: Given

Xk ≈ I ×1 A
(1)
(k1)

×2 A
(2)
(k2)

· · · ×N A
(N)
(kN),

7 Effective Tensor-Based Data Clustering Through Sub-Tensor Impact Graphs 155

Fig. 7.6 The block-based update rule maintains A
(i)
(ki)

incrementally by using the current estimates

for A
(j)

(kj) and the decompositions in U(j)

the final accuracy for the sub-tensor Xk, k = [k1, . . . , ki, . . . , kN], depends on the
accuracies of sub-factors A

(i)
(ki)

. Moreover, the accuracy of each of these, in turn,
depends on the accuracies of the sub-factors of the contributing sub-tensors. More
specifically, when updating A

(i)
(ki)

, we need to compute

• T
(i)
(ki)

, which involves the use of U
(i)
[∗,...,∗,ki ,∗,...,∗] (i.e., the mode-i factors of

X[∗,...,∗,ki ,∗,...,∗]), and

• P[∗,...,∗,ki ,∗,...,∗], which in turn uses U
(h)
[∗,...,∗,ki ,∗,...,∗] for 1 ≤ h ≤ N (i.e., all

factors of X[∗,...,∗,ki ,∗,...,∗]).

Therefore, the final accuracy of Xk depends directly on the initial decomposition
accuracies of the factor matrices U

(h)
[∗,...,∗,ki ,∗,...,∗], for 1 ≤ i, h ≤ N .

In other words, for each sub-tensor Xk, there is a set, direct_impact (Xk) ⊆
X, of sub-tensors that consists of those sub-tensors whose initial decomposition
accuracies directly impact the final decomposition accuracy of Xk. Moreover, as
visualized in Fig. 7.7, direct_impact (Xk) consists of those sub-tensors that are
aligned (i.e., share the same slices) with Xk, along the different modes of the tensor.

7.3.2 Sub-Tensor Impact Graphs (SIGs)

Given the accuracy dependencies among the sub-tensors formalized above, we can
define a sub-tensor impact graph (SIG):

156 K. S. Candan et al.

Fig. 7.7 The sub-tensors whose initial decomposition accuracies directly impact given sub-tensors
are aligned (i.e., share the same slices) with that sub-tensor along the different modes of the tensor

Definition 7.1 Let an N-mode tensor, X ∈ R

I1×I2×...×IN , be partitioned into a grid,
X = {Xk | k ∈ K}, of sub-tensors. The corresponding sub-tensor impact graph
(SIG) is a directed, weighted graph, G(V,E,w()), where

• for each Xk ∈ X, there exists a corresponding vk ∈ V ,
• for each Xl ∈ direct_impact (Xk), there exists a directed edge vl → vk in E,

and
• w() is an edge weight function, such that w(vl → vk) quantifies the direct

accuracy impact of decomposition accuracy of Xl on Xk. ♦
Intuitively, the sub-tensor impact graph represents how the decomposition accura-
cies of the given set of sub-tensors of an input tensor impact the overall combined
decomposition accuracy. A key requirement, of course, is to define the edge weight
function, w(), that quantifies the accuracy impacts of the sub-tensors that are related
through update rules. In this section, we introduce three alternative strategies to
account for the propagation of impacts within the tensor during the decomposition
process.

7.3.2.1 Alt. #1: Uniform Edge Weights

The most straightforward way to set the weights of the edges in E is to assume that
the propagation of the inaccuracies over the sub-tensor impact graph is uniform. In
other words, in this case, for all e ∈ E, we set wuni(e) = 1.

7 Effective Tensor-Based Data Clustering Through Sub-Tensor Impact Graphs 157

7.3.2.2 Alt. #2: Surface of Interaction-Based Weights

While being simple, the uniform edge weight alternative may not properly account
for the impact of the varying dimensions of the sub-tensors on the error propagation.

As we see in Fig. 7.5, in general, the neighbors of a given sub-tensor can be of
varying shape and dimensions and we may need to account for this diversity in order
to properly assess how inaccuracies propagate in the tensor. In particular, in this
subsection, we argue that the surface of interaction between two sub-tensors Xj and
Xl, defined as below, may need to be considered to account for impact propagation:

Definition 7.2 (Surface of Interaction) Let X be a tensor partitioned into a set (or
grid) of sub-tensors X = {Xk | k ∈ K}. Let also Xj and Xl be two sub-tensors in X,
such that

• j = [kj1, kj2 , . . . , kjN] and
• l = [kl1, kl2, . . . , klN].
We define the surface of interaction, surf (Xj,Xl), between Xj and Xl as follows:

surf (Xj,Xl) =
∏

h s.t. jh=lh

Ijh,h.

♦
Here Ijh,h is the size of the jhth partition along mode h.

Principle 1 Let G(V,E,w()) be a sub-tensor impact graph and let (vj → vl) ∈ E

be an edge in the graph. The weight of this edge from vj to vl should reflect the area
of the surface of interaction between the sub-tensors Xj and Xl.

Intuitively, this principle verbalizes the observation that impacts are likely to
propagate more easily if two sub-tensors share large dimensions along the modes
on which their partitions coincide. Under this principle, we can set the weight of the
edge (vj → vl) ∈ E as follows:

wsur(vj → vl) = surf (Xj,Xl)∑
(vj→vm)∈E surf (Xj,Xm)

.

7.3.2.3 Alt. #3: Value Alignment-Based Edge Weights

Although surface of interaction-based edge weights can potentially account for the
varying shapes and sizes of the sub-tensors of X, they fail to take into account for
how similar these sub-tensors are—more specifically, they ignore how the values
within the sub-tensors are distributed and whether these distributions are aligned
across them.

158 K. S. Candan et al.

Intuitively, if the value distributions are aligned (or similar) along the modes that
two sub-tensors share, then they are likely to have high impacts on each other’s
decomposition during the decomposition process. If they are dissimilar, on the other
hand, their impacts on each other will be minimal. Therefore, considering only the
area of the surface of interaction may not be sufficient to properly account for the
inaccuracy propagation within the tensor. More specifically, we need to measure the
value alignment between sub-tensors as well:

Definition 7.3 (Value Alignment) Let X be a tensor partitioned into a set (or grid)
of sub-tensors X = {Xk | k ∈ K}. Let also Xj and Xl be two sub-tensors in X, such
that

• j = [kj1, kj2 , . . . , kjN] and
• l = [kl1, kl2, . . . , klN].
Let, A = {h | kjh = klh} be the set of modes along which the two sub-tensors
are aligned and let R be the remaining modes. We define the value alignment,
align(Xj,Xl, A), between Xj and Xl as

align(Xj,Xl, A) = cos(cj(A), cl(A)),

where the vector cj(A) is constructed from the sub-tensor Xj as follows2:

cj(A) = vectorize(Mj(A))

and the tensor Mj(A) is constructed from Xj by fixing the values along the modes
in A: ∀1 ≤ ih ≤ Ijh,h,

Mj(A)[i1, i2, . . . , i|A|] = norm(Xj|A,i1,i2,...,i|A|).

Here, norm() is the standard Frobenius norm and Xj|A,i1,i2,...,i|A| denotes the part of
Xj where the modes in A take values i1,i2, through i|A|. ♦
Intuitively, cj(A) captures the value distribution of the tensor Xj along the modes
in A.

Principle 2 Let G(V,E,w()) be a sub-tensor impact graph and let (vj → vl) ∈ E

be an edge in the graph. The weight of this edge from vj to vl should reflect the
structural alignment between the sub-tensors Xj and Xl.

This principle verbalizes the observation that impacts are likely to propagate more
easily if two given sub-tensors are structurally aligned along the modes on which
their partitions coincide. As before, under this principle, we can set the edge weights
of the edge (vj → vl) ∈ E in the sub-tensor impact graph as follows:

walign(vj → vl) = align(Xj,Xl)∑
(vj→vm)∈E align(Xj,Xm)

.

2cl(A) is similarly constructed from sub-tensor Xl.

7 Effective Tensor-Based Data Clustering Through Sub-Tensor Impact Graphs 159

7.3.2.4 Alt. #4: Combined Edge Weights

The surface of interaction-based edge weights account for the shapes of the sub-
tensors, but do not account for their value alignments. In contrast, value alignment-
based edge weights consider the structural similarities of the sub-tensors, but ignore
how big the surfaces they share are.

Therefore, a potentially more effective alternative would be to combine these
surface of interaction and value alignment-based edge weights into a single weight
that takes into account both aspects of sub-tensor interaction:

wcomb(vj → vl) = comb(Xj,Xl)∑
(vj→vm)∈E comb(Xj,Xm)

,

where comb(Y,Z) = align(Y,Z) × surf (Y,Z).

7.3.3 Sub-Tensor Impact Scores

While the edges on the sub-tensor impact graph, G, account for how (in)accuracies
propagate during each individual application of the update rules, it is important to
note that after several iterations of updates, indirect propagation of impacts also
occur over the graph G:

• during the first application of the update rule, impacts propagate among the sub-
tensors that are immediate neighbors;

• during the second application of the update rule, impacts reach from one sub-
tensor to those sub-tensors that are 2-hop away;

. . .
• during the mth application of the rule, impacts propagate to the m-hop neighbors

of each sub-tensor.

In order to use the sub-tensor impact graph to assign resources, we therefore need
to measure how impacts propagate within G over a large number of iterations of the
alternating least squares (ALS) process.

For this purpose, we rely on a random-walk-based measure of node relatedness
on the given graph. More specifically, we rely on personalized PageRank (PPR [2,
4]) to measure sub-tensor relatedness. Like all random-walk-based techniques, PPR
encodes the structure of the graph in the form of a transition matrix of a stochastic
process and complements this with a seed node set, S ⊆ V , which serves as the
context in which scores are assigned: each node, vi in the graph is associated with
a score based on its positions in the graph relative to this seed set (i.e., how many
paths there are between vi and the seed set and how short these paths are). Intuitively,
these seeds represent sub-tensors that are critical in the given application (e.g. high-
update, high-noise, or high-user-relevance; see Sects. 7.3 through 7.3.2 for various
applications).

160 K. S. Candan et al.

Given the graph and the seeds, the PPR score p[i] of vi is obtained by solving
the following equation:

p = (1 − β)TG p + βs,

where TG denotes the transition matrix corresponding to the graph G (and the
underlying edge weights) and s is a re-seeding vector such that if vi ∈ S, then
s[i] = 1

‖S‖ and s[i] = 0, otherwise. Intuitively, p is the stationary distribution
of a random walk on G which follows graph edges (according to the transition
probabilities TG) with probability (1 − β) and jumps to one of the seeds with
probability β. Correspondingly, those nodes that are close to the seed nodes over
a large number of paths obtain large scores, whereas those that are poorly connected
to the nodes in S receive small PPR scores. We note that the iterative nature of the
random-walk process underlying PPR fits well with how inaccuracies propagate
during the iterative ALS process. Based on this observation, given a directed,
weighted sub-tensor impact graph (SIG), G(V,E,w()), we construct a transition
matrix, TG, and obtain the PPR score vector p by solving the above equation.3 The
resulting sub-tensor impact scores are then used for assigning appropriate resources
to the various sub-tensors as described in the next three sections.

7.4 Application #1: Block-Incremental CP Decomposition
(BICP) and Update Scheduling Based on Sub-Tensor
Impact Scores

There are many applications in which data is evolving dynamically. Obviously,
in such scenarios, re-computation of the whole tensor decomposition with each
update will cause high computational costs. In this section, we present a block-
incremental CP decomposition (BICP) scheme which leverages SIGs to efficiently
conduct the iterative refinement process during the second phase of the block-based
tensor decomposition process. Let us assume that we are given a tensor, X, with
decomposition, X̊, and an update, Δ, on the tensor. BICP significantly reduces
computational cost of obtaining the decomposition of the updated tensor, while
maintaining high accuracy by relying on two complementary techniques:

• Update-Sensitive Block Maintenance in First Phase: In its first phase of
the process, instead of repeatedly conducting ALS on each sub-tensor, BICP
only revises the decompositions of the sub-tensors that contain updated data.
Moreover, when the update is small with respect to the block size, BICP relies
on incremental factor tracking [20, 27] to avoid re-decomposition of the updated
sub-tensor.

3Note that, since in general, the number of partitions is small and is independent of the size of the
input tensor, the cost of the PPR computation to obtain the ranks is negligible next to the cost of
tensor decomposition.

7 Effective Tensor-Based Data Clustering Through Sub-Tensor Impact Graphs 161

• Update-Sensitive Refinement in the Second Phase: In its second phase, BICP
leverages (automatically extracted) metadata about how decompositions of the
sub-tensors impact each other’s decompositions and a block-centric iterative
refinement to help achieve high efficiency and accuracy:

– BICP limits the refinement process to only those blocks that are aligned with
the updated block.

– We employ sub-tensor impact graph (SIG) to account for the refinement
relationships among the sub-tensors; we further apply impact score to reduce
redundant work: we

· identify sub-tensors that do not need to be refined and (probabilistically)
prune them from further consideration, and/or

· assign different ranks to different sub-tensors according to their impact
score: naturally, the larger the impact likelihood of a sub-tensor is, the
larger target rank BICP assigns to that tensor.

Intuitively, the above process enables BICP to assign appropriate levels of
accuracy to sub-tensors in a way that reflects the distribution of the updates
on the whole tensor. This ensures that the process is fast and accurate.

In this chapter, we focus on the SIG-based update sensitive refinement during the
second phase of the block-based decomposition process.

7.4.1 Reducing Redundant Refinements

During the refinement process of Phase 2, those sub-tensors that have direct
refinement relationships with the updated sub-tensors are critical to the refinement
process. Our key observation is that if we could quantify how much an update on
a sub-tensor impacts sub-factors on other sub-tensors, then we could use this to
optimize Phase 2. More specifically, given an update, Δ on tensor X, BICP assigns
an update sensitive impact score, IΔ(Xk) to each sub-tensor, Xk, and leverages this
impact score to regulate the refinement process to eliminate redundant work

Intuitively, if the two sub-tensors are similarly distributed along the modes that
they share, then they are likely to have high impacts on each other’s decomposition;
Therefore we use alternative #3: value alignment-based edge weights to assign the
weight of edge (introduced in Sect. 7.3.2). To calculate an update sensitive impact
score, we can rely on personalized PageRank (introduced in Sect. 7.3.3) to measure
sub-tensor relatedness. PPR encodes the structure of the graph in the form of a
transition matrix of a stochastic process from which the significances of the nodes
in the graph can be inferred. Here, we choose updated sub-tensors as seed nodes and
calculate PPR scores for all the other nodes as their impact scores.

162 K. S. Candan et al.

• Optimization Phase 2-I: Intuitively, if a sub-tensor has a low impact score, its
decomposition is minimally affected given the update, Δ. Therefore, those sub-
tensors with very low-impact factors can be completely ignored in the refinement
process and their sub-factors can be left as they are without any refinement.

• Optimization Phase 2-P: While optimization phase 2-I can potentially save a
lot of redundant work, completely ignoring low-impact tensors may have a
significant impact on accuracy. An alternative approach, with a less drastic
impact than ignoring sub-tensors, is to associate a refinement probability to sub-
tensors based on their impact scores. In particular, instead of completely ignoring
those sub-tensors with low-impact factors, we assign them an update probability,
0 < prob_update < 1. Consequently, while the factors of sub-tensors with high
impact scores are refined at every iteration of the refinement process, factors of
sub-tensors with low-impact scores have lesser probabilities of refinement and,
thus, do not get refined at every iteration of Phase 2.

• Optimization Phase 2-R: A second alternative to completely ignoring the
refinement process for low-impact sub-tensors is to assign different ranks to
different sub-tensors according to their impact scores: naturally, the higher the
target rank is, the more accurate the decomposition of the sub-tensor is. We
achieve this by adjusting the decomposition rank, Fk of Xk, as a function of
the corresponding tensor’s update sensitive impact score:

Fk =
⌈
F × Iδ(Xk)

maxh{Iδ(Xh)}
⌉

.

Intuitively, this formula sets the decomposition rank of the sub-tensor with the
highest impact score relative to the given update, Δ, to F ; other sub-tensors are
assigned progressively smaller ranks (potentially all the way down to 1)4 based
on their impacts scores. Once the new ranks are computed, we obtain new U(k)

factors with partial ranks Fk for Xk and refine these incrementally in Phase 2.
Here, we consider two rank-based optimization strategies, phase 2-Ra and

phase 2-Ri. In phase 2-Ra, we potentially adjust the decomposition rank for all
relevant sub-tensors. In phase 2-Ri, however, we adjust ranks only for sub-tensors
with high impact on the overall decomposition.

By extending the complexity formulation from [23], we can obtain the complexity5

of Phase 2 as O((F × ∑N
i=1

Ii

Ki
+ F 2) × T × H × |D|) where T is the number

of refinement iterations, H = (100 − L)% is the ratio of high impact sub-tensors
maintained, |D| is the number of sub-tensors that have direct impact on updated sub-
tensors, Ii is the dimensionality of the tensor along mode i, and Ki is the number of
partitions along that mode.

4It is trivial to modify this equation such that the smallest rank will correspond to a user provided
lower bound, Fmin, when such a lower bound is provided by the user.
5Here we report the complexity of phase2 − I and other refinement method complexity can be
derived similarly.

7 Effective Tensor-Based Data Clustering Through Sub-Tensor Impact Graphs 163

7.4.2 Evaluation

In this section, we report sample results that aim to assess the effectiveness of the
proposed BICP approach in helping eliminate redundant refinements

7.4.2.1 Setup

Data Sets In these experiments, we used three data sets: Epinions [29], Ciao [29],
and Enron [24]. The first two of these are comparable in terms of their
sizes and semantics: they are both 5000 × 5000 × 27 tensors, with schema
〈user, item, category〉, and densities 1.089 × 10−6 and 1.06 × 10−6, respectively.
The Enron email data set, on the other hand, has dimensions 5632 × 184 × 184,
density 1.8 × 10−4, and schema 〈time, f rom, to〉.
Data Updates We divided the tensor into 64 blocks (using 4 × 4 × 4 partitioning)
and applied all the updates to four of these blocks; Once the blocks are selected, we
randomly pick a slice on the block and update 10% of the fibers on this slice.

Alternative Strategies We consider the following strategies to maintain the tensor
decomposition: Firstly, we apply the basic two-phase block-centric decomposition
strategy, i.e., we decompose all sub-tensors with CPALS in Phase 1 and we apply
iterative refinement using all sub-tensors in Phase 2 (in the charts, we refer to this
non-incremental decomposition approach as ORI). For Phase 1, we use a version of
STA where we update fibers that are update-critical, i.e., with highest energy among
all the affected fibers. For Phase 2, again, we have several alternatives: (a) applying
Phase 2 without any impact score-based optimization (P2N), (b) ignoring L% of sub-
tensors with the lowest impact scores (P2I), (c) reducing the decomposition rank of
sub-tensors (P2Ra and P2Ri), or (d) using probabilistic refinements for sub-tensors
with low impact scores (P2P). In these experiments, we choose L = 50% and, for
P2P, we set the update probability to p = 0.1. In addition to the block-based BCIP
and its optimizations, we also considered, as an efficient alternative, application of
the incremental factor tracking process to the whole tensor as in STA [27]—in the
charts, we refer to this alternative approach as Whole.

Evaluation Criteria We use the measure reported in Sect. 7.2.2.1 to assess decom-
position accuracy. We also report decomposition time for different settings. In these
experiments, the target decomposition rank is set to F = 10. Unless otherwise
specified, the maximum number of iterations in Phase 2 is set to 1000. Each
experiment was run 100 times and averages are reported.

Hardware and Software We used a quad-core Intel(R) Core(TM)i5-2400 CPU @
3.10GHz machine with 8.00GB RAM. All codes were implemented in Matlab and
run using Matlab 7.11.0 (2010b) and Tensor Toolbox Version 2.5 [1].

164 K. S. Candan et al.

7.4.2.2 Discussion of the Results

Impact scores measure how different regions of the tensor impacts other parts of
the tensor during the alternating least squares (ALS) process. Therefore, we expect
that, when we leverage the impact scores (computed in a way to account for the
distribution of the data updates) to assign the decomposition ranks, we should be
able to focus the decomposition work to better fit the dynamically evolving data.
Figure 7.8 compares execution times and accuracies of several approaches. Here,

Fig. 7.8 Comparison of (a) Execution times and (b) Decomposition accuracies under the default
configuration: the proposed optimizations provide several orders of gain in execution time relative
to ORI, while (unlike Whole) they match ORI’s accuracy

7 Effective Tensor-Based Data Clustering Through Sub-Tensor Impact Graphs 165

ORI indicates non-incremental two-phase block centric decomposition, whereas
Whole indicates application of factor tracking to the whole tensor. The other
five techniques in the figure (P2N, P2I, P2Ri, P2Ra, P2P) all correspond to
optimizations of the proposed BICP approach for Phase 2.

Firstly, this figure shows that the two social media data sets, Epinions and Ciao,
with similar sizes and densities show very similar execution time and accuracy
patterns. The figure also shows that the Enron data set also exhibits a pattern roughly
similar to the other data sets, despite having a different size and density.

The key observation in Fig. 7.8 is that the SIG-based optimizations provide sev-
eral orders of gain in execution time while matching the accuracy of non-optimized
version almost perfectly (i.e., the optimizations come without accuracy penalties).
In contrast, the alternative strategy, Whole, which incrementally maintains the
factors of the whole tensor (as opposed to maintaining the factors of its blocks)
also provides execution time gains, but sees a significant drop in its accuracy.

We note that P2P, which probabilistically updates low-impact sub-tensors rather
than completely ignoring them, does not significantly improve accuracy. This is
because the P2I approach already has an accuracy almost identical to P2N, i.e.,
ignoring low-impact tensors is a very safe and effective method to save redundant
work. Therefore, also considering that, unless a large number of blocks are ignored,
P2I is able to match the accuracy of P2N, we do not see a major need to use P2P
to reduce the impact of ignored sub-tensors.

7.5 Application #2: Noise-Profile Adaptive Decomposition
(nTD) and Sample Assignment Based on Sub-Tensor
Impact Scores

Many of the tensor decomposition schemes are sensitive to noisy data, an inevitable
problem in the real world that can lead to false conclusions. Recent research
has shown that it is possible to avoid over-fitting by relying on probabilistic
techniques that leverage Gibbs sampling-based Bayesian model learning [33];
however, these assume that all the data and intermediary results can fit in the
main memory, and (b) they treat the entire tensor uniformly, ignoring potential non-
uniformities in the noise distribution. In this chapter, we present a Noise Adaptive
Tensor Decomposition (nTD) method, which leverages a probabilistic two-phase
decomposition strategy, complemented with sub-tensor impact graphs, to develop a
sample assignment strategy that best suits the noise distribution of the given tensor
to leverage available rough knowledge regarding where in the tensor noise might
be more prevalent.

166 K. S. Candan et al.

Algorithm 2 Phase 1: Monte Carlo-based Bayesian decomposition of each sub-
tensor
Input: Sub-tensor Xk, sampling number L

Output: Decomposed factors U
(1)
k , U

(2)
k , . . ., U

(N)
k

1. Initialize model parameters U
(1)1
k , U

(2)1
k , . . ., U

(N)1
k .

2. For l = 1, . . . , L

a. Sample the hyper-parameter, α:

• αl ∼ p(αl |U(1)l
k , U

(2)l
k , . . . , U

(N)l
k ,Xk)

b. For each mode j = 1, . . . , N ,

i. Sample the corresponding hyper-parameter, Θ :

• Θ
U

(j)l
k

∼ p(Θ
U

(j)l
k

|U(j)l

k)

ii. For ij = 1, ..., Ij , sample the mode (in parallel):

U
(j)(l+1)

k(ij)
∼ p

(
U

(j)

k(ij)

∣∣∣∣U(1)l
k , . . . , U

(j−1)l

k , U
(j+1)l

k , . . . , U
(N)l
k ,Θl

U
(j)
k

, αl ,Xk

)

3. For each mode j = 1, . . . , N ,

• U
(j)

k =
∑L

i=1 U
(j)i
k

L

More specifically, nTD partitions the tensor into multiple sub-tensors and then
decomposes each sub-tensor probabilistically through Bayesian factorization—the
resulting decompositions are then recombined through an iterative refinement
process to obtain the decomposition for the whole tensor. We refer to this as Grid-
Based Probabilistic Tensor Decomposition (GPTD). nTD complements GPTD with
a SIG-based resource allocation strategy that accounts for the impact of the noise
density of one sub-tensor on the decomposition accuracies of the other sub-tensors.
This provides several benefits: Firstly, the partitioning helps ensure that the memory
footprint of the decomposition is kept low. Secondly, the probabilistic framework
used in the first phase ensures that the decomposition is robust to the presence of
noise in the sub-tensors. Thirdly, a priori knowledge about noise distribution among
the sub-tensors is used to obtain a resource assignment strategy that best suits the
noise profile of the given tensor.

7.5.1 Grid-Based Probabilistic Tensor Decomposition (GPTD)

As a block-based algorithm, Grid-Based Probabilistic Tensor Decomposition
(GPTD) partitions the given tensor into blocks, decomposes each block indepen-
dently, and then iteratively combines these decompositions into a final composi-
tion. Differently from Algorithm 1, however, GPTD leverages Monte Carlo-based

7 Effective Tensor-Based Data Clustering Through Sub-Tensor Impact Graphs 167

Bayesian decomposition of sub-tensors in its Phase 1 (see Algorithm 2) to better
deal with the problem of over-fitting, which is a challenge especially when the data
is noisy.

Intuitively, entries in the factor matrices are modeled as probabilistic variables
and decomposition is posed as a maximization problem where these (latent) random
variables fit the observed data. In the presence of noise in the data, the observed
variables may also be modeled probabilistically: since the observations cannot
be precisely described, they may be considered as samples from a probability
distribution. In this section, following [25], in the presence of data uncertainty (due
to noise), we describe the fit between the observed data and the predicted latent
factor matrices, probabilistically, as follows:

Xk(i1,i2,...,iN)

∣∣∣U(1)
k , U

(2)
k . . . , U

(N)
k ∼ N([U(1)

k(i1)
, U

(2)
k(i2)

. . . , U
(N)
k(iN)

], α−1),

(7.4)
where the conditional distribution of Xk(i1,i2,...,iN)

given U
(j)

k (1 ≤ j ≤ N) is

a Gaussian distribution with mean [U(1)
k(i1)

,U(2)
k(i2)

, . . .,U(N)
k(iN)] and the observation

precision α. We also impose independent Gaussian priors on the modes:

U
(j)

k(ij)
∼ N(μ

U
(j)

k
,Λ−1

U
(j)

k

) ij = 1...Ij (7.5)

where Ij is the dimensionality of the j th mode. Given this, one can estimate

the latent features U
(j)

k by maximizing the logarithm of the posterior distribution,

log p(U
(1)
k , U

(2)
k . . . , U

(N)
k |Xk).

One difficulty with the approach, however, is the tuning of the hyper-parameters
of the model: α and Θ

U
(j)

k
≡ {μ

U
(j)

k
,Λ

U
(j)

k
} for 1 ≤ j ≤ N . [33] notes that one can

avoid the difficulty underlying the estimation of these parameters through a fully
Bayesian approach, complemented with a sampling-based Markov Chain Monte
Carlo (MCMC) method to address the lack of the analytical solution.

7.5.2 Noise-Sensitive Sample Assignment

One crucial piece of information that the basic grid-based decomposition process
fails to account for is potentially available knowledge about the distribution of the
noise across the input tensor. As discussed earlier, a sub-tensor which is poorly
decomposed due to noise may negatively impact decomposition accuracies also
for other parts of the tensor. Consequently, it is important to allocate resources to
prevent a few noisy sub-tensors from negatively impacting the overall accuracy.

We note that there is a direct relationship between the amount of noise a sub-
tensor has and the number of Gibbs samples it requires for accurate decomposition.
In fact, the numbers of Gibbs samples allocated to different sub-tensors Xk in

168 K. S. Candan et al.

Algorithm 2 do not need to be the same. As we have seen in Sect. 7.5.1, Phase
1 decomposition of each sub-tensor is independent from the others and, thus, the
number of Gibbs samples of different sub-tensors can be different. In fact, more
samples can provide better accuracy for noisy sub-tensors and this can be used to
improve the overall decomposition accuracy for a given number of Gibbs samples.
Consequently, given a set of sub-tensors, with different amounts of noise, uniform

assignment of the number of samples, L =
(

L(total)
|K |

)
, where L(total) is the total

number of samples for the whole tensor and |K | is the number of sub-tensors, may
not be the best choice. In this chapter, we rely on this key observation to help assign
Gibbs samples to the various sub-tensors. On the other hand, the number of samples
also directly impacts the cost of the probabilistic decomposition process. Therefore,
the sample assignment process must be regulated carefully.

7.5.2.1 Naive Option: Noise Density-Based Sample Assignment

Intuitively, the number of samples a noisy sub-tensor, Xk, is allocated should be
proportional to the density, ndk, of noise it contains:

L(Xk) = �γ × ndk� + Lmin, (7.6)

where Lmin is the minimum number of samples a (non-noisy) tensor of the given
size would need for accurate decomposition and γ is a control parameter. Note that
the value of γ is selected such that the total number of samples needed is equal to
the number, L(total), of samples allocated for the whole tensor:

L(total) =
∑
k∈K

L(Xk). (7.7)

7.5.2.2 SIG-Based Sample Assignment: S-Strategy

Equations (7.6) and (7.7), above, help allocate samples across sub-tensors based on
their noise densities. However, as discussed earlier, inaccuracies in decomposition of
one sub-tensor can propagate across the rest of the sub-tensors in Phase 2. Therefore,
a better approach would be to consider how errors can propagate across sub-tensors
when allocating samples. More specifically, if we could assign a significance score
to each sub-tensor, Xk, that takes into account not only its noise density, but also the
position of the sub-tensor relative to other sub-tensors, we could use this information
to better allocate the Gibbs samples to sub-tensors.

As discussed earlier in Sect. 7.3.3, the sub-tensor impact graph (SIG) of a given
tensor can be used for assigning impact scores to each sub-tensor. This process,
however, requires (in addition to the given SIG) a seed node set, S ⊆ V , which
serves as the context in which scores are assigned: Given the SIG graph, G(V,E),

7 Effective Tensor-Based Data Clustering Through Sub-Tensor Impact Graphs 169

and a set, S ⊆ G(V,E), of seed nodes, the score p[i] of a node vi ∈ G(V,E) is
obtained by solving p = (1 − β)A p + βs, where A denotes the transition matrix,
β is a parameter controlling the overall importance of the seeds, and s is a seeding
vector.

Our intuition is that we can use the sub-tensors with noise as the seeds in the
above process. The naive way to create this seeding vector is to set s[i] = 1

‖S‖ if
vi ∈ S, and to s[i] = 0, otherwise. However, we note that we can do better: given
noise densities (nd) of the sub-tensors we can create a seeding vector

s[k] = ndk∑
j∈K ndj

,

and then, once the sub-tensor impact scores (p) are computed, we can associate a
noise-sensitive significance score,

ηk = p[k] − minj∈K (p[j])
maxj∈K (p[j]) − minj∈K (p[j]) ,

to each sub-tensor Xk. Given this score, we can then rewrite Eq. (7.6) as

L(Xk) = �γ × ηk� + Lmin. (7.8)

7.5.3 Evaluation

In this section, we report experiments that aim to assess the proposed noise-sensitive
sample assignment strategy (s-strategy) by comparing the performance of nTD,
which leverages this strategy, against GPTD with uniform sample assignment and
other naive strategies

7.5.3.1 Setup

Data Sets In these experiments, we used one user centered data set:Ciao [29]. The
data is represented in the form of 5000 × 5000 × 996 (density 1.7 × 10−6) tensor.
Its schema is 〈user, item, time〉. In this data, the tensor cells contain rating values
between 1 and 5 or (if the rating does not exist) a special “null” symbol.

Noise In these experiments, uniform value-independent type of noise was intro-
duced by modifying the existing ratings in the data set. More specifically, given a
uniform noise profile and density, we have selected a subset of the existing ratings
(ignoring “null” values) and altered the existing values—by selecting a completely
new rating (which we refer to as value-independent noise).

170 K. S. Candan et al.

Evaluation Criteria We use the root mean squares error (RMSE) inaccuracy
measure to assess the decomposition effectiveness. We also report the decompo-
sition times. Unless otherwise reported, the execution time of the overall process
is reported as if sub-tensor decompositions in Phase 1 and Phase 2 are all executed
serially, without leveraging any sub-tensor parallelism. Each experiment was run ten
times with different random noise distributions and averages are reported.

Hardware and Software We used a quad-core CPU Nehalem Node with 12.00GB
RAM. All codes were run using Matlab R2015b. For conventional CP decomposi-
tion, we used MATLAB Tensor Toolbox Version 2.6 [1].

7.5.3.2 Discussion of the Results

We start the discussion of the results by studying the impact of the s-strategy
for leveraging noise profiles.

Impact of Leveraging Noise Profiles In Fig. 7.9, we compare the performance of
nTD with noise-sensitive sample assignment (i.e., s-strategy) against GPTD
with uniform sample assignment and the two naive noise adaptations, presented
in Sects. 7.5.2.1 and 7.5.2.2, respectively. Note that in the scenario considered in
this figure, we have 640 total Gibbs samples for 64 sub-tensors, providing on the
average 10 samples per sub-tensor. In these experiments, we set Lmin to 9 (i.e., very
close to this average), thus requiring that 576(= 64 × 9) samples are uniformly
distributed across the sub-tensors—this leaves only 64 samples to be distributed
adaptively across the sub-tensors based on the noise profiles of the sub-tensors
and their relationships to other sub-tensors. As we see in this figure, the proposed
nTD is able to leverage these 64 uncommitted samples to significantly reduce
RMSE relative to GPTD with uniform sample assignment. Moreover, we also see
that naive noise adaptations can actually hurt the overall accuracy. nTD-naive uses
biased sampling on the noise blocks and focuses on the centrality of sub-tensors.
Thus, nTD-naive performs worse than uniform way. These together show that the
proposed s-strategy is highly effective in leveraging rough knowledge about
noise distributions to better allocate the Gibbs samples across the tensor.

In summary, the proposed sub-tensor impact graphs help allocate Gibbs samples
in a way that takes into account how errors due to noise propagate across the whole
tensor during the decomposition process.

7 Effective Tensor-Based Data Clustering Through Sub-Tensor Impact Graphs 171

1.930
1.935
1.940
1.945
1.950
1.955
1.960
1.965
1.970
1.975
1.980
1.985

4 8 16

RM
SE

of sub-tensors with noise

(a)

(b)

RMSE with Noise Adaptation - CIAO

0

150

300

450

4 8 16

Ti
m

e
(s

ec
)

of sub-tensors with noise

Exec. Time with Noise Adaptation - CIAO

Uniform

nTD-naïve1

nTD-naïve2

nTD

Uniform

nTD-naïve1

nTD-naïve2

nTD

Fig. 7.9 RMSE and execution time (without sub-tensor parallelism) for nTD with different num.
of noisy sub-tensors (4 × 4 × 4 grid; uniform noise; value independent noise; noise density 10%;
total num. of samples = 640; Lmin = 9, F = 10; max. num. of P2 iteration = 1000). (a) RMSE for
Ciao. (b) Time for Ciao

7.6 Application #3: Personalized Tensor Decomposition
(PTD) and Rank Assignment Based on Sub-Tensor
Impact Scores

In many clustering applications, the user may have a focus of interest, i.e., part of the
data for which the user needs high accuracy, and beyond this area focus, accuracy
may not be as critical. Relying on this observation, in this section, we present a

172 K. S. Candan et al.

personalized tensor decomposition (PTD) mechanism for accounting for the user’s
focus. Intuitively, the personalized tensor decomposition (PTD) algorithm partitions
the tensor into multiple regions and then assigns different ranks to different sub-
tensors: naturally, the higher the target rank is, the more accurate the decomposition
of the sub-tensor. However, we note that preserving accuracy for foci of interest,
while relaxing accuracy requirements for the rest of the input tensor is not a trivial
task, especially because loss of accuracy at one region of the tensor may impact
accuracies at other tensor regions. Therefore, PTD leverages sub-tensor impact
graphs to account for the impact of the accuracy of one region of the tensor to the
accuracies of the other regions of the tensor, each based on a different assumption
about how the impact of inaccuracies propagates along the tensor. In particular, PTD
analyzes the sub-tensor impact graph (in the light of the user’s interest) to identify
initial decomposition ranks for the sub-tensors in a way that will boost the final
decomposition accuracies for partitions of interest.

7.6.1 Problem Formulation

Let an N-mode tensor X ∈ R

I1×I2×...×IN be partitioned into a set (or grid) of sub-
tensors X = {Xk | k ∈ K}, where Ki indicates the number of partitions along
mode-i, the size of the j th partition along mode i is Ij,i (i.e.,

∑Ki

j=1 Ij,i = Ii),
and K = {[kj1, . . . , kji , . . . , kjN] | 1 ≤ i ≤ N, 1 ≤ ji ≤ Ki} is a set of sub-
tensor indexes. The number, ‖X‖, of partitions (and thus also the number, ‖K‖, of
partition indexes) is

∏N
i=1 Ki . In addition, let KP ⊆ K be the set of sub-tensor

indexes that indicate those sub-tensors for which the user requires higher accuracy.
Note that, without loss of generality, we assume that the tensor X is re-ordered
before it is partitioned in such a way that the number, Ki , of resulting partitions
along each mode-i is minimal—i.e., along each mode, the entries of interest are
clustered together to minimize the number of partitions.6

Given the above, let us use XP as a shorthand to denote the cells of X
collectively covered by the sub-tensors indexed by KP . The goal of the personalized
tensor decomposition (PTD) is to obtain a personalized (or preference sensitive)
decomposition X̂ of X in such a way that

accuracy(XP , X̂P) > accuracy(XP , X̃P),

where X̂P is the reconstruction of the user selected region from the personalized
decomposition X̂ and X̃P is the reconstruction of the same region from a decom-
position of X insensitive to the user preference KP (or equivalently KP = K).
Naturally, we also aim that the time to obtain the personalized decomposition X̂
will be lesser than the time needed to obtain preference insensitive decomposition

6While this minimality criterion is not strictly required, the fewer partitions there are, the faster
and potentially more effective will be the personalization process.

7 Effective Tensor-Based Data Clustering Through Sub-Tensor Impact Graphs 173

Algorithm 3 Overview of the PTD-CP process
Input: original tensor X, partitioning pattern K , user’s focus KP , and decomposition rank, F

Output: personalized CP tensor decomposition X̂

1- compute the sub-tensor impact graph, G(v,E,w()), using the original tensor X and partitioning
pattern K ;

2- for each partition k ∈ K , assign an initial decomposition rank Fk based on the sub-tensor impact
graph, G(v,E,w()), and user’s personalization focus KP ;

3- obtain a block-based CP decomposition, X̂, of X using the partitioning pattern K and the initial
decomposition ranks {Fk | k ∈ K};

return X̂

X̃ and also that the personalized decomposition minimally impacts the rest of the
tensor, i.e.,

accuracy(X, X̂) ∼ accuracy(X, X̃).

7.6.2 Sub-Tensor Rank Flexibility

Remember from Sect. 7.2.4, where we presented the update rules block-based tensor
decomposition algorithms use for stitching the individual sub-tensor decomposi-
tions into a complete decomposition for the whole tensor, that (as visualized in
Fig. 7.6) each A

(i)
(ki)

is maintained incrementally by using, for all 1 ≤ j ≤ N , the

current estimates for A
(j)

(kj)
and the decompositions in U(j), i.e., the F -rank sub-

factors of the sub-tensors in X along the different modes of the tensor. A closer look
at the update rule for A

(i)
(ki)

further reveals the following observation:

• Sub-tensor Rank Flexibility: One critical observation is that the above formula-
tion does not require that all sub-tensors in X are decomposed with the same
target rank F .

In fact, as long as one sub-tensor is decomposed to rank F , all other sub-
tensors can be decomposed to ranks lesser than F and we can still obtain full
F -rank factors, A(i), for X.

7.6.3 Rank Assignment for Personalized Tensor Decomposition

The PTD algorithm relies on this sub-tensor rank flexibility property to personalize
the block-based (CP) decomposition process described earlier: unlike the basic
block-based scheme discussed in the introduction, PTD improves the accuracy

174 K. S. Candan et al.

of the high-priority sub-tensors (indicated by KP) by assigning them higher
initial decomposition ranks than the rest of the partitions (Algorithm 3). The key
difficulty, however, is that one cannot arbitrarily reduce the decomposition ranks
of low priority partitions, because the accuracy in one partition may impact final
decomposition accuracies of other tensor partitions. As visualized in Algorithm 3,
the proposed PTD algorithm first constructs a sub-tensor impact graph, G, that
accounts for the propagation of inaccuracies along the tensor during a block-based
decomposition process. The PTD algorithm then leverages this graph to account for
the impact of the initial decomposition inaccuracy of one sub-tensor on the final
decomposition accuracy of XP , i.e., the cells of X collectively covered by the user’s
declaration of interest (i.e., KP).

Intuitively, the initial decomposition rank, Fk, of sub-tensor Xk will need to
reflect the impact of the initial decomposition of the sub-tensor Xk on the final
decomposition of the high-priority sub-tensors, Xκ , κ ∈ KP . This implies that,
when picking the decomposition ranks, Fk, we need to measure how inaccuracies
propagate within G over a large number of iterations of the alternating least squares
(ALS) process. For this purpose we rely on the sub-tensor impact scores introduced
in Sect. 7.3; more specifically, we compute the initial decomposition rank Fk of Xk
as

Fk =
⌈
F × s[k]

maxh{s[h]}
⌉

,

where s[k] denotes the sub-tensor impact score of the sub-tensorXk in G. Intuitively,
this formula sets the initial decomposition rank of the sub-tensor with the highest
sub-tensor impact score (i.e., highest accuracy impact on the set of sub-tensors
chosen by the user) to F , whereas other sub-tensors are assigned progressively
smaller ranks (potentially all the way down to 1)7 based on how far they are from
the seed set in the sub-tensor impact graph, G.

7.6.4 Evaluation

In this section, we report sample results that aim to assess the effectiveness of the
proposed personalized tensor decomposition (PTD) approach in helping preserve
the tensor decomposition accuracy at parts of the tensor that are high-priority for
the users.

7It is trivial to modify this equation such that the smallest rank will correspond to a user provided
lower bound, Fmin, when such a lower bound is provided by the user.

7 Effective Tensor-Based Data Clustering Through Sub-Tensor Impact Graphs 175

Table 7.1 Various tensor
partitioning scenarios
considered in the
experiments: the percentages
are the sizes of the partitions
(relative to the overall size of
the mode) along each mode

2 × 2 × 2 partitions

Configuration Part. #1 Part. #2

1 - Most balanced 50% 50%

2 - 40% 60%

3 - 30% 70%

4 - 25% 75%

5 - 10% 90%

6 - Least balanced 1% 99%

7.6.4.1 Setup

Data Set In the experiments reported in this chapter, we used the Ciao [29] data
set, represented in the form of a 167 × 967 × 18 (density 2.2 × 10−4) tensor, with
the schema 〈user, item, category〉. In these experiments, we assume that the input
tensor is partitioned into 8 (= 2×2×2) according to the scenarios shown in Table 7.1
and two randomly selected sub-tensors are marked as more important than the rest.

Decomposition Strategies We considered five decomposition strategies: not per-
sonalized (NP), uniform edge weights (UNI), surface of interaction-based edge
weights (SURF), value alignment-based edge weights (VAL), and combined edge
weights (COMB). The target CP decomposition rank, F , is set to 10.

Evaluation Criteria We use the measure reported in Sect. 7.2.2.2 to assess decom-
position accuracy and execution time. In particular, we report accuracies for both
user’s area of focus and the whole tensor.

Hardware and Software We ran the experiments reported in this section on a
quad-core Intel(R) Core(TM)i5-2400 CPU @ 3.10GHz machine with 8.00GB RAM.
All codes were implemented in Matlab and run using Matlab R2015b. For CP
decomposition, we used MATLAB Tensor Toolbox Version 2.6 [1].

7.6.4.2 Discussion of the Results

Sub-tensor impacts help take into account how inaccuracies in the decomposition
propagate into high- and-low-priority regions. We therefore expect that allocating
resources using sub-tensor impact graphs should provide better accuracies for high-
priority regions. As we see in Fig. 7.10, as expected, PTD algorithms boost accuracy
for the high-priority partitions in the user focus, especially where the partitions
are of heterogeneous sizes (as is likely to be the case in real situations). While, as
would be expected, the PTD algorithms have impact on the overall decomposition
accuracy for the whole tensor, this is more than compensated by gains in accuracies
in high-priority areas. Moreover, the figure also shows that the gains in accuracy in
high-priority partitions within the user’s focus come also with significant gains in
execution times for the decomposition process.

176 K. S. Candan et al.

0.0

0.1

0.2

0.3

0.4

0.5
Ac

cu
ra

cy

0.0

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

0.0

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

Accuracy for Focus Area (Ciao,2X2X2, 2 part. in focus)

Accuracy for Whole Tensor (Ciao,2X2X2, 2 part. in focus)

Decomposition Time(sec.) (Ciao,2X2X2, 2 part. in focus)

NP

UNI

VAL

SURF

COMB

NP

UNI

VAL

SURF

COMB

NP

UNI

VAL

SURF

COMB

1 2 3 4 5 6
Partition Balance

1 2 3 4 5 6
Partition Balance

1 2 3 4 5 6
Partition Balance

(a)

(b)

(c)

Fig. 7.10 Experiment results with two partitions in focus. (a) Accuracy of the region of focus.
(b) Whole tensor accuracy. (c) Decomposition time

7 Effective Tensor-Based Data Clustering Through Sub-Tensor Impact Graphs 177

The figure also establishes that, both in terms of accuracy and execution time
gains, we can order the various edge weighting strategies as follows: UNI (least
effective), VAL, SURF, and COMB (most effective). In other words, as we argued in
Sect. 7.3.2.4, the most effective way to account for the propagation of inaccuracies
is to combine the surface of interaction and value alignment-based edge weights into
a single weight which accounts for both shapes of the sub-tensors and their value
alignments.

7.7 Conclusions

Computational complexity of tensor decomposition is a major bottleneck in many
applications. Block-based tensor decomposition is employed to efficiently conduct
tensor decomposition for large-scale data analysis. However, we need a smart
strategy to account for the relationship among these sub-tensors(blocks). Therefore,
we proposed sub-tensor impact graph (SIG) to account for the propagation of
impacts within the sub-tensors during the decomposition process. Then, we pre-
sented three applications of SIG to efficiently solve the challenges in personalized
tensor analysis, incremental tensor analysis, and noise tensor analysis. Experiments
results on real data sets show that SIGs can improve the performance of tensor
analysis in these three applications in both of execution time and decomposition
accuracy.

Finally, we would like to note that, here we presented three distinct uses of
sub-tensor impact graphs for three distinct challenges (dynamic data, noisy data,
and personalization). In practice, there is no reason these approaches cannot be
combined to tackle more complex scenarios, such as personalized clustering and
analysis over dynamically evolving data sets. We leave the study of these more
complex scenarios as future work.

Acknowledgements Research is supported by NSF#1318788 “Data Management for Real-Time
Data Driven Epidemic Spread Simulations,” NSF#1339835 “E-SDMS: Energy Simulation Data
Management System Software,” NSF#1610282 “DataStorm: A Data Enabled System for End-to-
End Disaster Planning and Response,” NSF#1633381 “BIGDATA: Discovering Context-Sensitive
Impact in Complex Systems,” and “FourCmodeling”: EUH2020 Marie Sklodowska-Curie grant
agreement No 690817.

References

1. B.W. Bader, T.G. Kolda et al., MATLAB Tensor Toolbox Version 2.5. Available online (January
2012)

2. A. Balmin, V. Hristidis, Y. Papakonstantinou. ObjectRank: authority-based keyword search
in databases, in Proceedings of the 30th International Conference on Very Large Data Bases
(VLDB) (2004)

178 K. S. Candan et al.

3. X. Cao, X. Wei, Y. Han, D. Lin, Robust face clustering via tensor decomposition. IEEE Trans.
Cybern. 45(11), 2546–2557 (2015)

4. S. Chakrabarti, Dynamic personalized pagerank in entity-relation graphs, in Proceeding WWW
’07 Proceedings of the 16th International Conference on World Wide Web (2007)

5. X. Chen, K.S. Candan, LWI-SVD: low-rank, windowed, incremental singular value decom-
positions on time-evolving data sets, in KDD ’14 Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (2014)

6. I. Davidson, S. Gilpin, O. Carmichael, P. Walker, Network discovery via constrained tensor
analysis of FMRI data, in 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 194–202 (2013)

7. C. Ding, X. He, K-means clustering via principal component analysis, in ICML ’04 Proceed-
ings of the Twenty-First International Conference on Machine Learning (2004)

8. P. Drineas, A. Frieze, R. Kannan, S. Vempala, V. Vinay, Clustering large graphs via the singular
value decomposition. Mach. Learn. 56, 9–33 (2004)

9. F.M. Harper, J.A. Konstan, The MovieLens datasets: history and context. Trans. Interact. Intell.
Syst. 5, 19:1–19:19 (2015)

10. R.A. Harshman, Foundations of the PARAFAC procedure: model and conditions for an
explanatory multi-mode factor analysis. UCLA Working Papers in Phonetics, vol. 16 (1970),
pp. 1–84

11. S. Huang, K.S. Candan, M.L. Sapino, BICP: block-incremental CP decomposition with update
sensitive refinement, in Proceeding CIKM ’16 Proceedings of the 25th ACM International on
Conference on Information and Knowledge Management (2016)

12. I. Jeon, E. Papalexakis, U. Kang, C. Faloutsos, HaTen2: billionscale tensor decompositions, in
Proceedings - International Conference on Data Engineering (ICDE) (2015)

13. B. Jeon, I. Jeon, L. Sael, U. Kang, SCouT: scalable coupled matrix-tensor factorization -
algorithm and discoveries, in IEEE 32nd International Conference on Data Engineering
(ICDE) (2016)

14. U. Kang, E.E. Papalexakis, A. Harpale, C. Faloutsos, Gigatensor: scaling tensor analysis up
by 100 times algorithms and discoveries, in Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), pp. 316–324 (2012)

15. M. Kim, K.S. Candan, Decomposition by normalization (DBN): leveraging approximate
functional dependencies for efficient CP and tucker decompositions. Data Min. Knowl. Disc.
30(1), 1–46 (2016)

16. T.G. Kolda, B.W. Bader, Tensor decompositions and applications. SIAM Rev. 51(3), 455–500
(2009)

17. T.G. Kolda, J. Sun, Scalable tensor decompositions for multi-aspect data mining, in Eighth
IEEE International Conference on Data Mining (ICDM) (2008)

18. X. Li, S.Y. Huang, K.S. Candan, M.L. Sapino, Focusing decomposition accuracy by person-
alizing tensor decomposition (PTD), in Proceeding CIKM ’14 Proceedings of the 23rd ACM
International Conference on Conference on Information and Knowledge Management (2014)

19. X. Li, K.S. Candan, M.L. Sapino, nTD: noise-profile adaptive tensor decomposition, in
Proceeding WWW ’17 Proceedings of the 26th International Conference on World Wide Web
(2017)

20. S. Papadimitriou, J. Sun, C. Faloutsos, Streaming pattern discovery in multiple time-series, in
Proceeding VLDB ’05 Proceedings of the 31st International Conference on Very Large Data
Bases (2015)

21. E. Papalexakis, C. Faloutsos, N. Sidiropoulos, Parcube: sparse parallelizable tensor decom-
positions, in Joint European Conference on Machine Learning and Knowledge Discovery in
Databases (ECML PKDD), pp. 521–536 (2012)

22. I. Perros, E.E. Papalexakis, F. Wang, R. Vuduc, E. Searles, M. Thompson, J. Sun, Spartan:
scalable parafac2 for large & sparse data (2017). arXiv preprint arXiv:1703.04219

23. A.H. Phan, A. Cichocki, PARAFAC algorithms for large-scale problems. Neurocomputing
74(11), 1970–1984 (2011)

24. C.E. Priebe et al., Enron data set (2006). http://cis.jhu.edu/parky/Enron/enron.html

http://cis.jhu.edu/parky/Enron/enron.html

7 Effective Tensor-Based Data Clustering Through Sub-Tensor Impact Graphs 179

25. R. Salakhutdinov, A. Mnih, Probabilistic matrix factorization, in Proceeding NIPS’07 Proceed-
ings of the 20th International Conference on Neural Information Processing Systems (2007)

26. J. Sun, S. Papadimitriou, P.S. Yu, Window based tensor analysis on high dimensional and multi
aspect streams, in Sixth International Conference on Data Mining (ICDM’06), pp. 1076–1080
(2006)

27. J. Sun, D. Tao, S. Papadimitriou, P.S. Yu, C. Faloutsos, Incremental tensor analysis: theory and
applications. ACM Trans. Knowl. Discov. Data 2(3), Article No. 11 (2008)

28. Y. Sun, J. Gao, X. Hong, B. Mishra, B. Yin, Heterogeneous tensor decomposition for clustering
via manifold optimization. IEEE Trans. Pattern Anal. Mach. Intell. 38(3), 476–489 (2016)

29. J. Tang et al., Trust & distrust computing dataset (2011). https://www.cse.msu.edu/~tangjili/
trust.html

30. C.E. Tsourakakis, Mach: fast randomized tensor decompositions (2009). Arxiv preprint
arXiv:0909.4969

31. L. Tucker, Some mathematical notes on three-mode factor analysis. Psychometrika 31, 279–
311 (1966)

32. J. Wu, Z. Wang, Y. Wu, L. Liu, S. Deng, H. Huang, Tensor CP decomposition method for
clustering heterogeneous information networks via stochastic gradient descent algorithms. Sci.
Program. 2017, 13 (2017), Article ID 2803091

33. L. Xiong et al., Temporal collaborative filtering with Bayesian probabilistic tensor factorization,
in Proceedings of the 2010 SIAM International Conference on Data Mining (2010)

https://www.cse.msu.edu/~tangjili/trust.html
https://www.cse.msu.edu/~tangjili/trust.html

Index

A
Abstract-C, 123
Accelerated MapReduce-based k-prototypes

(AMRKP) method, 13–14
Alternating least squares (ALS) process, 159,

160, 164
Any-behaviour-all-threat, 116–117, 125, 133
Anytime Outlier Detection (AnyOut), 117, 123

Cluster Feature tuple, 124
ClusTree, 124–125
experimental tuned parameters,

131–132
vs. MCOD

in evaluation measures, 134–138
voting feature subspaces, 138–139

Apache Spark, 95
Autoencoder reconstruction loss, 77

B
Balanced iterative reducing and clustering

using hierarchies (BIRCH), 119
BICP, see Block-incremental CP

decomposition
Big data

analysis, 91
blockchains (see Blockchain(s))
computational problem, 115
streams, 27–28
volume, variety, and velocity, 91

Big data Analytics, 2
Big data partitional clustering methods

centers reduction-based methods, 11–13
characteristics, 14, 15

classification, 3, 4
data reduction-based methods, 10–11
hybrids methods, 13–14
parallelization

definition, 3
GPU-based methods, 5–7, 14
MapReduce-based methods, 7–9, 16
MPI-based methods, 3, 5, 16
Spark-based methods, 9–10, 16

Bitcoin (XBT)
anonymity, 47
fraud detection, 67
prices, 43, 44
transacted value, 58
value per block, 47, 48
See also Blockchain

Block-based tensor decomposition, 146
computational complexity, 150
GridPARAFAC, 151
intermediary data blow-up problem, 150
iterative improvement process, 151
MapReduce framework, 151
process, 151–153
TensorDB, 151

Blockchain(s)
data (see Blockchain data)
evaluation metrics, 49
fundamentals, 47, 48
motivation classification

anonymity and traceability, 47
fraud detection and law enforcement,

44–46
systems insights, 46–47

organization, 49

© Springer Nature Switzerland AG 2019
O. Nasraoui, C.-E. Ben N’Cir (eds.), Clustering Methods for Big Data Analytics,
Unsupervised and Semi-Supervised Learning,
https://doi.org/10.1007/978-3-319-97864-2

181

https://doi.org/10.1007/978-3-319-97864-2

182 Index

Blockchain(s) (cont.)
private/restricted, 43

Blockchain data
addresses, 59
Bitcoin blockchain and Bitcoin Core, 49
blocks, 50, 51

Bitcoin network, 56
Bitcoin value distribution, 57, 58
block-height, 59
coinbase transaction, 59
merkle-root-hash, 58
nonce, 59
previous-block-header-hash, 57
target/n-bits, 59
time, 58
version, 57

clustering (see Clustering blockchain data)
consensus-based development, 49
documentation, 49
flow of currency

change-making transactions, 52
DAG, 52, 53
P2PKH scheme, 53–54
transaction fees, 52–53
UTXOs, 52

mining, 51
models, 47–48
nodes, 60
operations model, 49
owners, 60
transactions

coinbase transaction, 51
four representative block groups, 55–57
graph, 52–54
identifier, 51
locktime feature, 52
outpoint, 52
pubkey script, 52, 55
secondary structure, 53, 54
sequence number, 52
signature script, 52, 55
value, 52
vertices labeling, 54–55

Block-incremental CP decomposition (BICP)
evaluation

ALS process, 164
alternative strategies, 163
criteria, 163
data sets, 163
data updates, 163
execution times and decomposition

accuracies, 164–165
hardware and software, 163

redundant refinement reduction, 161–162

update sensitive block maintenance, first
phase, 160

update sensitive refinement, first phase, 161
Block reward, 51
Block subsidy, 51

C
CANDECOMP/PARAFAC (CP)

decompositions, 148–149
Center displacement k-means method

(CDKM), 12
Centers reduction-based methods, 11–13
Closed-loop multistep deep clustering, 75, 85

CCNN, 85–86
DBC, 85
DEC, 84–85

Cluster assignment hardening loss, 78–79
Clustering blockchain data, 48

address merging
bootstrap methods, 62
co-occurring transaction inputs, 62–63
peer host address, 63
temporal patterns, 63–64
transaction input–output patterns, 63
well-known services, 64

evaluation
distance-based criteria, 65–67
external, 64–65
human-assisted criteria, 68
internal, 65
purity and entropy, 64
sensitivity to cluster count, 67
tagged data, 68

feature extraction, 61–62
scalability, 64

Clustering CNN (CCNN), 85–86
Clustering loss, 78
Cluster separation, 66
CluStream, 119
CMU-CERT data sets, 130
compactSize, 55
Compute Unified Device Architecture

(CUDA), 5–6
Continuous Outlier Detection (COD), 123
Cryptocurrencies, 43

D
Data assignment, 13
Data clustering, 13
Data mining, 25
Data reduction algorithm to cluster large-scale

data (DRFCM), 11

Index 183

Data reduction-based methods, 10–11
Data sampling, 13
Data skeleton, 13
Data stream

behaviours, 116
data acquisition, 115
feature space, 117
malicious insider threat detection

any-behaviour-all-threat, 116–117
clustering methods (see Data stream

clustering)
in data sets, 116
stream mining problem, 115

threat hunting, 116
Data stream clustering

cluster tracking, 119
outlier detection, 120
streaming anomaly detection, insider threat

detection
data set, 130
deep learning, 120
distance-based outlier detection

techniques, 123–125
DNN model, 120
E-RAIDS approach (see Ensemble of

random subspace anomaly detectors
in data streams)

feature space, 121–122
ocSVM, 121
RNN, 120
XABA, 121

DBSCAN algorithm, 64
DBSCAN-based clustering models, 30
Deep clustering

closed-loop multistep deep clustering, 75,
85

CCNN, 85–86
DBC, 85
DEC, 84–85

deep representation models, 75, 76
joint deep clustering, 74–75, 82

DCN, 83, 84
FaceNet, 83
JNKM, 84
TAGnet, 82–83

loss functions, 75
autoencoder reconstruction loss, 77
cluster assignment hardening loss,

78–79
clustering loss, 78
joint deep clustering loss function, 78
types, 76–77

sequential multistep deep clustering, 74
deep SSC, 80

DSC, 81
fast spectral clustering, 79–80
NMF + k-means, 82

taxonomy, 74
Deep clustering network (DCN), 83, 84
Deep embedded clustering (DEC), 84–85
Deep learning (DL)

clustering approaches (see Deep Clustering)
predictive modeling tasks, 73
unsupervised pretraining, 73

Deep neural network (DNN), 76, 120
Deep representation (DR) models, 75, 76, 79
Deep subspace clustering (DSC), 81
Directed acyclic graph (DAG), 52, 53
Discriminatively boosted clustering (DBC),

85
Distance-based criteria

cluster quality criteria, 65–66
compactness and isolation, 65
Mahalanobis distance, 67

Distance-based outlier detection techniques,
123–125

DL, see Deep learning

E
ECLUN algorithm, 38
Element-wise distances, 66
Energy-efficient distributed in-sensor-network

k-center clustering algorithm with
outliers (EDISKCO) algorithm

average energy consumption, 36, 37
clustering quality, 36, 37
on coordinator side, 36
memory and residual energy, 35
on node side, 36
SenClu, 36–37

Ensemble-based insider threat (EIT), 121
Ensemble of random subspace anomaly

detectors in data streams (E-RAIDS)
advantage, 117
any-behaviour-all-threat, 125
AnyOut, 117
evaluation measures, 132–133
experimental results

MCOD vs. AnyOut base learner,
evaluation measures, 134–138

MCOD vs. AnyOut, voting feature
subspaces, 138–139

more than one-behaviour-all-threat
detection, 141

real-time anomaly detection, 139–141
experimental tuning, 131–132
feature subspaces, 117

184 Index

Ensemble of random subspace anomaly
detectors in data streams (E-RAIDS)
(cont.)

data repositories and survival factor,
127–128

definition, 126
ensemble of random feature subspaces

voting, 129
local outlier detection, 125

framework, 125–126
MCOD, 117
RandSubOut, 118
survival factor, 117–118
vote factor, 118

F
Fast spectral clustering (FSC), 79–80
Feature space, 117
FPAlarm, 133, 134
Fuzzy c-means clustering using MapReduce

framework (MRFCM), 7–8
Fuzzy c-means using MPI framework

(MPIFCM), 5

G
Genetic algorithm (GA), 91
Gibbs samples, 167–168
GPU, see Graphics processing unit
GPU-based k-means method (GPUKM), 6
GPU fuzzy c-means method (GPUFCM), 6
Graph-based anomaly detection (GBAD),

121
Graphics processing unit (GPU), 14

architecture, 6
CUDA, 5–6
disadvantage, memory limits, 7
GPUFCM, 6
GPUKM, 6
multiprocessors, 6
streaming processors, 6
video and image editing, 5

Grid-based probabilistic tensor decomposition
(GPTD), 166–167

H
Hadoop distributed file system (HDFS),

7, 95
HASTREAM, 32–33
Hybrids methods, 13–14

I
Input/output complexity, 104–105
Insider threat detection, 115–116
Intermediary data blow-up problem, 150
Intra- and inter-cluster similarity, 66

J
Joint deep clustering, 74–75, 82

DCN, 83, 84
FaceNet, 83
JNKM, 84
loss function, 78
TAGnet, 82–83

Joint NMF and k-means (JNKM), 84

K
kd-tree, 11
k-means-based clustering models, 30
k-means using kd-tree structure (KdtKM),

11
Knowledge Discovery in Databases (KDD)

dataset, 17
evaluation and visualization, 38

KPPS algorithm, 14
Kullback–Leibler divergence, 79

L
Labeled data, 1
LiarTree algorithm, 34
LSHTiMRKM method, 13

M
Mahalanobis distance, 67
MapReduce-based k-means method (MRKM),

7
MapReduce-based k-prototypes (MRKP), 8
MapReduce model, 16

data flow, 7, 8
disadvantage, 9
flowchart, 94
fuzzy c-means clustering, 96
HDFS, 95
iterative algorithms, 92
k-means method, 96
k-prototypes, 96
map and reduce phases, 7
MRFCM, 7–8
MRKM, 7

Index 185

MRKP, 8
principal components, 94
shuffle phase, 7
shuffling step, 94

MCOD, see Micro-cluster-based continuous
outlier detection

Merkle tree structure, 50
Message passing interface (MPI), 3, 5, 16
Micro-cluster-based continuous outlier

detection (MCOD), 117, 123
vs. AnyOut

in evaluation measures, 134–138
voting feature subspaces, 138–139

centres of, 124
experimental tuned parameters, 131–132
micro-clusters, definition, 123

MinBatch k-means method (MBKM), 10
Miners, 51
Monte Carlo-based Bayesian decomposition,

166
MPI-based k-means (MPIKM), 5
MR-CPSO

existing methods, 97, 98
modules, 96–97
shortcomings, 97–98
vs. S-PSO, 104–105

Multiprocessors (MPs), 6

N
Noise-profile adaptive decomposition (nTD)

method
benefits, 166
evaluation

criteria, 170
data sets, 169
hardware and software, 170
leveraging noise profiles impact, 170,

171
noise, 169

GPTD, 166–167
Monte Carlo-based Bayesian

decomposition, 166
noise-sensitive sample assignment

Gibbs samples, 167–168
naive option, 168
SIG-based sample assignment, 168–169

probabilistic two-phase decomposition
strategy, 165

tensor noise, 165
Nonce, 51, 59
Nonnegative matrix factorization (NMF), 82
nTD, see Noise-profile adaptive decomposition

method

O
OMRKM, 13
One class SVM (ocSVM), 121
Overlapping k-means method using Spark

framework (SOKM), 10

P
Particle swarm optimization (PSO)

algorithm, 93
clustering method

MapReduce model, 92, 96
MR-CPSO (see MR-CPSO)
using Spark (see Spark-based PSO

clustering method)
in fitness computation, 96
hybrid method, 95–96
personal best position, 93
population-based optimization algorithm,

93
social behavior of birds, 92–93
swarm intelligence algorithms, 92
theoretical analysis

complexity analysis, 104–105
time-to-start variable analysis, 105

Partitional clustering methods
Big data analytics, 2
efficiency, 3
fuzzy c-means, 2
iterative relocation procedure, 2
k clusters, 2
k-means, 2, 91
k-modes, 2
k-prototypes, 2
for large-scale data

empirical results, 17–20
quality of k-means, 18
real datasets, 17
representative method, 16
running time of k-means, 17–18
simulated datasets, 17
SSE, 18

optimization, 1
scalable partitional clustering methods

(see Big data partitional clustering
methods)

Pattern Assignment and Mean Update (PAMU),
11

Pattern Compression and Removal (PCR), 11
Pay to public key hash (P2PKH) scheme,

53–54
Personalized PageRank (PPR) scores,

159, 160

186 Index

Personalized tensor decomposition (PTD), 147
evaluation

criteria, 175
data set, 175
decomposition strategies, 175
hardware and software, 175
results, 175–177

foci of interest, 172
problem formulation, 172–173
rank assignment, 173–174
sub-tensor rank flexibility, 173

PreDeConStream, 31–32
PRKM method, 10, 11
Pseudoanonymity, 47
PSO, see Particle swarm optimization
PTD, see Personalized tensor decomposition

R
Real-time anomaly detection system

E-RAIDS (see Ensemble of random
subspace anomaly detectors in data
streams)

RADISH, 117
Real-time stream mining problem, 115
Receiver-operator characteristic (ROC), 67
Recurrent neural network (RNN), 120
Recursive partition k-means (RPKM), 10
Resilient distributed dataset (RDD), 9, 10, 95

S
Scalable partitional clustering methods, see

Big data partitional clustering
methods

Semi-supervised learning, 1
Sequential multistep deep clustering, 74

deep SSC, 80
DSC, 81
fast spectral clustering, 79–80
NMF + k-means, 82

SIGs, see Sub-tensor impact graphs
Simulated annealing (SA), 91
Space complexity, 104
Spark-based k-prototypes (SKP) clustering

method, 9
Spark-based methods, 9–10, 16
Spark-based PSO clustering method (S-PSO),

92
data assignment and fitness computation

step, 98–100
environment and data sets description,

105–106
vs. existing methods, 108

k-means algorithm, 98
k-means iteration step, 102–103
methodology, 105
vs. MR-CPSO, 104–105
pbest and gbest update step, 101
performance measures, 107
position and velocity update step, 101–102
process flowchart, 98, 99
scalability analysis

running time, 109, 110
scaleup results, 109, 111
sizeup results, 109, 112
speedup results, 109, 111

Time-To-Start variable impact, 108–109
Sparse subspace clustering (SSC), 80
S-PSO, see Spark-based PSO clustering

method
Stochastic sub-gradient descent (SGD), 81
Stream clustering, Big data

advanced anytime stream clustering
algorithms, 34, 35

anytime mining algorithms, 30
budget algorithms, 30
energy awareness and lightweight

clustering, sensor data streams, 30
energy-efficient algorithms and clustering

sensor streaming data
ECLUN algorithm, 38
EDISKCO algorithm, 35–37

high-dimensional density-based stream
clustering algorithms

curse of dimensionality, 30
DBSCAN-based clustering models, 30
HASTREAM, 32–33
k-means-based clustering models, 30
PreDeConStream, 31–32
self-adjustment, 30
subspace clustering, 30

properties, 39, 40
storage awareness and high clustering

quality, 29
stream changes and outlier awareness, 29
subspace stream clustering, 38–39

Streaming data
eye-tracking system, 28–29
mining body-generated streaming data, 28
multiple data collection sensors, 27, 28
social data, 26
static mining, 26
streaming tweets with tags and time, 27
wired streaming data, 27
wireless sensor network deployment,

27–28
Streaming processors (SPs), 6

Index 187

STream OutlieRMiner (STORM), 123
SubClusTree algorithm, 34, 35
Subspace clustering, 30
Subspace Cluster Mapping Measure

(SubCMM), 39
Subspace MOA model, 38
Subspace stream clustering, 38–39
Sub-tensor impact graphs (SIGs)

accuracy dependency, 153–155
combined edge weights, 159
definition, 156
N-mode tensor partitions, 153–154
sub-tensor impact scores

ALS process, 159, 160
BICP (see Block-incremental CP

decomposition)
indirect propagation of impacts, 159
nTD (see Noise-profile adaptive

decomposition method)
PPR scores, 159, 160
PTD (see Personalized tensor

decomposition)
random-walk-based techniques, 159

surface of interaction-based weights, 157
tensor decomposition

in dynamic data, 146
with noisy data, 147
personalization, 147

uniform edge weights, 156
value alignment-based edge weights,

157–158
Sum Squared Error (SSE), 18
Supervised learning, 1, 73

See also Clustering

T
Task-specific and graph-regularized network

(TAGnet), 82–83
Tensors

computational complex, 145

decomposition, 145
accuracy, 149–150
block-based tensor decomposition, 146,

150–153
and clustering, 150
CP and Tucker decompositions,

148–149
matrix decomposition-based data

analysis and clustering, 148
higher-order tensors, 147
matrix, second-order tensor, 147
modes, 147, 148
multi-dimensional data, 145
observations, 145–146
slices, 147
sub-tensor

accuracy dependency, 154–156
partitions, 145, 153–154
SIGs (see Sub-tensor impact graphs)

vector, first-order tensor, 147
Threat hunting, 116, 125, 141
Time complexity, 104
Total intra- and inter-cluster distance, 65
Transaction graph, 52
Triangle inequality-based k-means (TiKM)

methods, 12
Tucker decompositions, 148–149

U
Unlabeled data, 1
Unspent transaction outputs (UTXOs), 52
Unsupervised learning, 1

anomaly detection system, 115
deep learning, 73

Unsupervised mining, 26

Z
Zero-Knowledge Anomaly-Based Behavioural

Analysis Method (XABA), 121

	Preface
	Contents
	1 Overview of Scalable Partitional Methods for Big Data Clustering
	1.1 Introduction
	1.2 Partitional Clustering Methods
	1.3 Big Data Partitional Clustering Methods
	1.3.1 Parallel Methods
	1.3.1.1 MPI-Based Methods
	1.3.1.2 GPU-Based Methods
	1.3.1.3 MapReduce-Based Methods
	1.3.1.4 Spark-Based Methods

	1.3.2 Data Reduction-Based Methods
	1.3.3 Centers Reduction-Based Methods
	1.3.4 Hybrids Methods
	1.3.5 Summary of Scalable Partitional Clustering Methods for Big Data Clustering

	1.4 Empirical Evaluation of Partitional Clustering Methods for Large-Scale Data
	1.5 Conclusion
	References

	2 Overview of Efficient Clustering Methods for High-Dimensional Big Data Streams
	2.1 Introduction
	2.2 Streaming Data
	2.3 Challenges of Stream Clustering of Big Data
	2.3.1 Adaptation to the Stream Changes and Outlier Awareness
	2.3.2 Storage Awareness and High Clustering Quality
	2.3.3 Efficient Handling of High-Dimensional, Different-Density Streaming Objects
	2.3.4 Flexibility to Varying Time Allowances Between Streaming Objects
	2.3.5 Energy Awareness and Lightweight Clustering of Sensor Data Streams

	2.4 Recent Contributions in the Field of Efficient Clustering of Big Data Streams
	2.4.1 High-Dimensional, Density-Based Stream Clustering Algorithms
	2.4.2 Advanced Anytime Stream Clustering Algorithms
	2.4.3 Energy-Efficient Algorithms for Aggregating and Clustering Sensor Streaming Data
	2.4.4 A Framework and an Evaluation Measure for Subspace Stream Clustering

	2.5 Conclusion
	References

	3 Clustering Blockchain Data
	3.1 Introduction
	3.1.1 Motivation
	3.1.1.1 Fraud Detection and Law Enforcement
	3.1.1.2 Systems Insights
	3.1.1.3 Anonymity and Traceability

	3.1.2 Contribution
	3.1.3 Organization

	3.2 Blockchain Data
	3.2.1 Blocks
	3.2.2 Mining
	3.2.3 Transactions
	3.2.4 Flow of Currency

	3.3 Models of Blockchain Data
	3.3.1 Transactions
	3.3.2 Blocks
	3.3.3 Addresses
	3.3.4 Owners
	3.3.5 Nodes

	3.4 Clustering
	3.4.1 Feature Extraction
	3.4.2 Address Merging
	3.4.3 Scalability

	3.5 Evaluation
	3.5.1 Distance-Based Criteria
	3.5.1.1 Cluster Quality Criteria
	3.5.1.2 Mahalanobis Distance

	3.5.2 Sensitivity to Cluster Count
	3.5.3 Tagged Data
	3.5.4 Human-Assisted Criteria

	3.6 Conclusion
	References

	4 An Introduction to Deep Clustering
	4.1 Introduction
	4.2 Essential Building Blocks for Deep Clustering
	4.2.1 Learning Deep Representations
	4.2.2 Deep Clustering Loss Functions

	4.3 Sequential Multistep Deep Clustering
	4.3.1 Fast Spectral Clustering
	4.3.2 Deep Sparse Subspace Clustering (SSC)
	4.3.3 Deep Subspace Clustering (DSC)
	4.3.4 Nonnegative Matrix Factorization (NMF) + K-Means

	4.4 Joint Deep Clustering
	4.4.1 Task-Specific and Graph-Regularized Network (TAGnet)
	4.4.2 FaceNet
	4.4.3 Deep Clustering Network (DCN)
	4.4.4 Joint NMF and K-Means (JNKM)

	4.5 Closed-Loop Multistep Deep Clustering
	4.6 Conclusions
	References

	5 Spark-Based Design of Clustering Using Particle Swarm Optimization
	5.1 Introduction
	5.2 Background
	5.2.1 Particle Swarm Optimization
	5.2.2 MapReduce Model
	5.2.3 Apache Spark

	5.3 Related Works
	5.4 Proposed Approach: S-PSO for Clustering Large-Scale Data
	5.4.1 Data Assignment and Fitness Computation Step
	5.4.2 Pbest and Gbest Update Step
	5.4.3 Position and Velocity Update Step
	5.4.4 K-Means Iteration Step

	5.5 Theoretical Analysis
	5.5.1 Complexity Analysis
	5.5.1.1 Time Complexity
	5.5.1.2 Space Complexity
	5.5.1.3 Input/Output Complexity

	5.5.2 Time-To-Start Variable Analysis

	5.6 Experiments and Results
	5.6.1 Methodology
	5.6.2 Environment and Data Sets Description
	5.6.3 Performance Measures
	5.6.4 Comparison of the Performance of S-PSO Versus Existing Methods
	5.6.5 Evaluation of the Impact of Time-To-Start Variable on the Performance of S-PSO
	5.6.6 Scalability Analysis

	5.7 Conclusion
	References

	6 Data Stream Clustering for Real-Time Anomaly Detection: An Application to Insider Threats
	6.1 Introduction
	6.2 Related Work
	6.2.1 Clustering for Outlier Detection
	6.2.2 Streaming Anomaly Detection for Insider Threat Detection

	6.3 Anomaly Detection in Data Streams for Insider Threat Detection
	6.3.1 Insider Threat Feature Space
	6.3.2 Background on Distance-Based Outlier Detection Techniques
	6.3.2.1 Micro-Cluster-Based Continuous Outlier Detection
	6.3.2.2 Anytime Outlier Detection

	6.3.3 E-RAIDS Approach
	6.3.3.1 Feature Subspace Anomaly Detection
	6.3.3.2 Ensemble of Random Feature Subspaces Voting

	6.4 Experiments
	6.4.1 Description of the Data set
	6.4.2 Experimental Tuning
	6.4.3 Evaluation Measures
	6.4.4 Results and Discussion
	6.4.4.1 MCOD vs AnyOut Base Learner for E-RAIDS in Terms of Evaluation Measures
	6.4.4.2 MCOD vs AnyOut for E-RAIDS in Terms of Voting Feature Subspaces
	6.4.4.3 Real-Time Anomaly Detection in E-RAIDS
	6.4.4.4 (More Than One)-Behaviour-All-Threat Detection in E-RAIDS

	6.5 Conclusion and Future Work
	References

	7 Effective Tensor-Based Data Clustering Through Sub-Tensor Impact Graphs
	7.1 Introduction
	7.1.1 Contributions of This Chapter: Sub-Tensor Impact Graphs
	7.1.1.1 Challenge #1: Decomposition in the Presence of Dynamic Data
	7.1.1.2 Challenge #2: Dealing with Noisy Data
	7.1.1.3 Challenge #3: Personalization of the Decomposition Process

	7.2 Background
	7.2.1 Tensors
	7.2.2 Tensor Decomposition
	7.2.2.1 CP and Tucker Decompositions
	7.2.2.2 Accuracy of Tensor Decomposition

	7.2.3 Tensor Decomposition and Clustering
	7.2.4 Block-Based Tensor Decomposition

	7.3 Sub-Tensor Impact Graphs (SIGs) and Sub-Tensor Impact Scores
	7.3.1 Accuracy Dependency Among Sub-Tensors
	7.3.2 Sub-Tensor Impact Graphs (SIGs)
	7.3.2.1 Alt. #1: Uniform Edge Weights
	7.3.2.2 Alt. #2: Surface of Interaction-Based Weights
	7.3.2.3 Alt. #3: Value Alignment-Based Edge Weights
	7.3.2.4 Alt. #4: Combined Edge Weights

	7.3.3 Sub-Tensor Impact Scores

	7.4 Application #1: Block-Incremental CP Decomposition (BICP) and Update Scheduling Based on Sub-Tensor Impact Scores
	7.4.1 Reducing Redundant Refinements
	7.4.2 Evaluation
	7.4.2.1 Setup
	7.4.2.2 Discussion of the Results

	7.5 Application #2: Noise-Profile Adaptive Decomposition (nTD) and Sample Assignment Based on Sub-Tensor Impact Scores
	7.5.1 Grid-Based Probabilistic Tensor Decomposition (GPTD)
	7.5.2 Noise-Sensitive Sample Assignment
	7.5.2.1 Naive Option: Noise Density-Based Sample Assignment
	7.5.2.2 SIG-Based Sample Assignment: S-Strategy

	7.5.3 Evaluation
	7.5.3.1 Setup
	7.5.3.2 Discussion of the Results

	7.6 Application #3: Personalized Tensor Decomposition (PTD) and Rank Assignment Based on Sub-Tensor Impact Scores
	7.6.1 Problem Formulation
	7.6.2 Sub-Tensor Rank Flexibility
	7.6.3 Rank Assignment for Personalized Tensor Decomposition
	7.6.4 Evaluation
	7.6.4.1 Setup
	7.6.4.2 Discussion of the Results

	7.7 Conclusions
	References

	Index

