

�

M00 TAN9224 02 GE C00 page 1

� �

�

INTRODUCTION TO DATA MINING

�

M00 TAN9224 02 GE C00 page 2

� �

�

INTRODUCTION TO DATA MINING

SECOND EDITION

GLOBAL EDITION

PANG-NING TAN
Michigan State University

MICHAEL STEINBACH
University of Minnesota

ANUJ KARPATNE
University of Minnesota

VIPIN KUMAR
University of Minnesota

330 Hudson Street, NY NY 10013

�

M00 TAN9224 02 GE C00 page 3

� �

�

Director, Portfolio Management: Engineering,
Computer Science & Global Editions:
Julian Partridge

Specialist, Higher Ed Portfolio
Management: Matt Goldstein

Portfolio Management Assistant:
Meghan Jacoby

Acquisitions Editor, Global Edition:
Sourabh Maheshwari

Managing Content Producer: Scott
Disanno

Content Producer: Carole Snyder
Senior Project Editor, Global Edition:

K.K. Neelakantan
Web Developer: Steve Wright

Manager, Media Production, Global Edition:
Vikram Kumar

Rights and Permissions Manager: Ben Ferrini
Manufacturing Buyer, Higher Ed, Lake

Side Communications Inc (LSC): Maura
Zaldivar-Garcia

Senior Manufacturing Controller, Global
Edition: Caterina Pellegrino

Inventory Manager: Ann Lam
Product Marketing Manager: Yvonne Vannatta
Field Marketing Manager: Demetrius Hall
Marketing Assistant: Jon Bryant
Cover Designer: Lumina Datamatics
Full-Service Project Management: Ramya

Radhakrishnan, Integra Software Services

Pearson Education Limited
KAO Two
KAO Park
Harlow
CM17 9NA
United Kingdom

and Associated Companies throughout the world

Visit us on the World Wide Web at: www.pearsonglobaleditions.com

c© Pearson Education Limited, 2019

The rights of Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, and Vipin Kumar to be identified
as the authors of this work have been asserted by them in accordance with the Copyright, Designs
and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Introduction to Data Mining, 2nd

Edition, ISBN 978-0-13-312890-1 by Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, and Vipin
Kumar, published by Pearson Education c© 2019.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without either the prior written permission of the publisher or a license permitting
restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron
House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark
in this text does not vest in the author or publisher any trademark ownership rights in such
trademarks, nor does the use of such trademarks imply any affiliation with or endorsement of this
book by such owners. For information regarding permissions, request forms, and the appropriate
contacts within the Pearson Education Global Rights and Permissions department, please visit
www.pearsoned.com/permissions.

This eBook is a standalone product and may or may not include all assets that were part of the print
version. It also does not provide access to other Pearson digital products like MyLab and Mastering.
The publisher reserves the right to remove any material in this eBook at any time.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

ISBN 10: 0-273-76922-7
ISBN 13: 978-0-273-76922-4
eBook ISBN 13: 978-0-273-77532-4

eBook formatted by Integra Software Services.

www.pearsonglobaleditions.com

�

M00 TAN9224 02 GE C00 page 4

� �

�

To our families ...

�

M00 TAN9224 02 GE C00 page 5

� �

�

Preface to the Second
Edition

Since the first edition, roughly 12 years ago, much has changed in the field
of data analysis. The volume and variety of data being collected continues
to increase, as has the rate (velocity) at which it is being collected and used
to make decisions. Indeed, the term Big Data has been used to refer to the
massive and diverse data sets now available. In addition, the term data science
has been coined to describe an emerging area that applies tools and techniques
from various fields, such as data mining, machine learning, statistics, and many
others, to extract actionable insights from data, often big data.

The growth in data has created numerous opportunities for all areas of data
analysis. The most dramatic developments have been in the area of predictive
modeling, across a wide range of application domains. For instance, recent
advances in neural networks, known as deep learning, have shown impressive
results in a number of challenging areas, such as image classification, speech
recognition, as well as text categorization and understanding. While not as
dramatic, other areas, e.g., clustering, association analysis, and anomaly de-
tection have also continued to advance. This new edition is in response to
those advances.

Overview As with the first edition, the second edition of the book provides
a comprehensive introduction to data mining and is designed to be accessi-
ble and useful to students, instructors, researchers, and professionals. Areas
covered include data preprocessing, predictive modeling, association analysis,
cluster analysis, anomaly detection, and avoiding false discoveries. The goal is
to present fundamental concepts and algorithms for each topic, thus providing
the reader with the necessary background for the application of data mining
to real problems. As before, classification, association analysis and cluster
analysis, are each covered in a pair of chapters. The introductory chapter
covers basic concepts, representative algorithms, and evaluation techniques,
while the more following chapter discusses advanced concepts and algorithms.
As before, our objective is to provide the reader with a sound understanding of
the foundations of data mining, while still covering many important advanced

�

M00 TAN9224 02 GE C00 page 6

� �

�

6 Preface to the Second Edition

topics. Because of this approach, the book is useful both as a learning tool
and as a reference.

To help readers better understand the concepts that have been presented,
we provide an extensive set of examples, figures, and exercises. The solutions
to the original exercises, which are already circulating on the web, will be
made public. The exercises are mostly unchanged from the last edition, with
the exception of new exercises in the chapter on avoiding false discoveries. New
exercises for the other chapters and their solutions will be available to instruc-
tors via the web. Bibliographic notes are included at the end of each chapter
for readers who are interested in more advanced topics, historically important
papers, and recent trends. These have also been significantly updated. The
book also contains a comprehensive subject and author index.

What is New in the Second Edition? Some of the most significant im-
provements in the text have been in the two chapters on classification. The in-
troductory chapter uses the decision tree classifier for illustration, but the dis-
cussion on many topics—those that apply across all classification approaches—
has been greatly expanded and clarified, including topics such as overfitting,
underfitting, the impact of training size, model complexity, model selection,
and common pitfalls in model evaluation. Almost every section of the advanced
classification chapter has been significantly updated. The material on Bayesian
networks, support vector machines, and artificial neural networks has been
significantly expanded. We have added a separate section on deep networks to
address the current developments in this area. The discussion of evaluation,
which occurs in the section on imbalanced classes, has also been updated and
improved.

The changes in association analysis are more localized. We have completely
reworked the section on the evaluation of association patterns (introductory
chapter), as well as the sections on sequence and graph mining (advanced chap-
ter). Changes to cluster analysis are also localized. The introductory chapter
added the K-means initialization technique and an updated the discussion of
cluster evaluation. The advanced clustering chapter adds a new section on
spectral graph clustering. Anomaly detection has been greatly revised and ex-
panded. Existing approaches—statistical, nearest neighbor/density-based, and
clustering based—have been retained and updated, while new approaches have
been added: reconstruction-based, one-class classification, and information-
theoretic. The reconstruction-based approach is illustrated using autoencoder
networks that are part of the deep learning paradigm. The data chapter has

�

M00 TAN9224 02 GE C00 page 7

� �

�

Preface to the Second Edition 7

been updated to include discussions of mutual information and kernel-based
techniques.

The last chapter, which discusses how to avoid false discoveries and pro-
duce valid results, is completely new, and is novel among other contemporary
textbooks on data mining. It supplements the discussions in the other chapters
with a discussion of the statistical concepts (statistical significance, p-values,
false discovery rate, permutation testing, etc.) relevant to avoiding spurious
results, and then illustrates these concepts in the context of data mining
techniques. This chapter addresses the increasing concern over the validity and
reproducibility of results obtained from data analysis. The addition of this last
chapter is a recognition of the importance of this topic and an acknowledgment
that a deeper understanding of this area is needed for those analyzing data.

The data exploration chapter has been deleted, as have the appendices,
from the print edition of the book, but will remain available on the web. A
new appendix provides a brief discussion of scalability in the context of big
data.

To the Instructor As a textbook, this book is suitable for a wide range
of students at the advanced undergraduate or graduate level. Since students
come to this subject with diverse backgrounds that may not include extensive
knowledge of statistics or databases, our book requires minimal prerequisites.
No database knowledge is needed, and we assume only a modest background
in statistics or mathematics, although such a background will make for easier
going in some sections. As before, the book, and more specifically, the chapters
covering major data mining topics, are designed to be as self-contained as
possible. Thus, the order in which topics can be covered is quite flexible. The
core material is covered in chapters 2 (data), 3 (classification), 4 (association
analysis), 5 (clustering), and 9 (anomaly detection). We recommend at least
a cursory coverage of Chapter 10 (Avoiding False Discoveries) to instill in
students some caution when interpreting the results of their data analysis.
Although the introductory data chapter (2) should be covered first, the basic
classification (3), association analysis (4), and clustering chapters (5), can be
covered in any order. Because of the relationship of anomaly detection (9) to
classification (3) and clustering (5), these chapters should precede Chapter 9.
Various topics can be selected from the advanced classification, association
analysis, and clustering chapters (6, 7, and 8, respectively) to fit the schedule
and interests of the instructor and students. We also advise that the lectures
be augmented by projects or practical exercises in data mining. Although they

�

M00 TAN9224 02 GE C00 page 8

� �

�

8 Preface to the Second Edition

are time consuming, such hands-on assignments greatly enhance the value of
the course.

Support Materials Support materials available to all readers of this book
are available on the book’s website.

• PowerPoint lecture slides
• Suggestions for student projects
• Data mining resources, such as algorithms and data sets
• Online tutorials that give step-by-step examples for selected data mining

techniques described in the book using actual data sets and data analysis
software

Additional support materials, including solutions to exercises, are available
only to instructors adopting this textbook for classroom use.

Acknowledgments Many people contributed to the first and second edi-
tions of the book. We begin by acknowledging our families to whom this book
is dedicated. Without their patience and support, this project would have been
impossible.

We would like to thank the current and former students of our data
mining groups at the University of Minnesota and Michigan State for their
contributions. Eui-Hong (Sam) Han and Mahesh Joshi helped with the initial
data mining classes. Some of the exercises and presentation slides that they
created can be found in the book and its accompanying slides. Students in
our data mining groups who provided comments on drafts of the book or
who contributed in other ways include Shyam Boriah, Haibin Cheng, Varun
Chandola, Eric Eilertson, Levent Ertöz, Jing Gao, Rohit Gupta, Sridhar Iyer,
Jung-Eun Lee, Benjamin Mayer, Aysel Ozgur, Uygar Oztekin, Gaurav Pandey,
Kashif Riaz, Jerry Scripps, Gyorgy Simon, Hui Xiong, Jieping Ye, and Pusheng
Zhang. We would also like to thank the students of our data mining classes at
the University of Minnesota and Michigan State University who worked with
early drafts of the book and provided invaluable feedback. We specifically
note the helpful suggestions of Bernardo Craemer, Arifin Ruslim, Jamshid
Vayghan, and Yu Wei.

Joydeep Ghosh (University of Texas) and Sanjay Ranka (University of
Florida) class tested early versions of the book. We also received many useful
suggestions directly from the following UT students: Pankaj Adhikari, Rajiv
Bhatia, Frederic Bosche, Arindam Chakraborty, Meghana Deodhar, Chris
Everson, David Gardner, Saad Godil, Todd Hay, Clint Jones, Ajay Joshi,

�

M00 TAN9224 02 GE C00 page 9

� �

�

Preface to the Second Edition 9

Joonsoo Lee, Yue Luo, Anuj Nanavati, Tyler Olsen, Sunyoung Park, Aashish
Phansalkar, Geoff Prewett, Michael Ryoo, Daryl Shannon, and Mei Yang.

Ronald Kostoff (ONR) read an early version of the clustering chapter
and offered numerous suggestions. George Karypis provided invaluable LATEX
assistance in creating an author index. Irene Moulitsas also provided assistance
with LATEX and reviewed some of the appendices. Musetta Steinbach was very
helpful in finding errors in the figures.

We would like to acknowledge our colleagues at the University of Minnesota
and Michigan State who have helped create a positive environment for data
mining research. They include Arindam Banerjee, Dan Boley, Joyce Chai, Anil
Jain, Ravi Janardan, Rong Jin, George Karypis, Claudia Neuhauser, Haesun
Park, William F. Punch, György Simon, Shashi Shekhar, and Jaideep Srivas-
tava. The collaborators on our many data mining projects, who also have our
gratitude, include Ramesh Agrawal, Maneesh Bhargava, Steve Cannon, Alok
Choudhary, Imme Ebert-Uphoff, Auroop Ganguly, Piet C. de Groen, Fran
Hill, Yongdae Kim, Steve Klooster, Kerry Long, Nihar Mahapatra, Rama Ne-
mani, Nikunj Oza, Chris Potter, Lisiane Pruinelli, Nagiza Samatova, Jonathan
Shapiro, Kevin Silverstein, Brian Van Ness, Bonnie Westra, Nevin Young, and
Zhi-Li Zhang.

The departments of Computer Science and Engineering at the University of
Minnesota and Michigan State University provided computing resources and
a supportive environment for this project. ARDA, ARL, ARO, DOE, NASA,
NOAA, and NSF provided research support for Pang-Ning Tan, Michael Stein-
bach, Anuj Karpatne, and Vipin Kumar. In particular, Kamal Abdali, Mitra
Basu, Dick Brackney, Jagdish Chandra, Joe Coughlan, Michael Coyle, Stephen
Davis, Frederica Darema, Richard Hirsch, Chandrika Kamath, Tsengdar Lee,
Raju Namburu, N. Radhakrishnan, James Sidoran, Sylvia Spengler, Bha-
vani Thuraisingham, Walt Tiernin, Maria Zemankova, Aidong Zhang, and
Xiaodong Zhang have been supportive of our research in data mining and
high-performance computing.

It was a pleasure working with the helpful staff at Pearson Education.
In particular, we would like to thank Matt Goldstein, Kathy Smith, Carole
Snyder, and Joyce Wells. We would also like to thank George Nichols, who
helped with the art work and Paul Anagnostopoulos, who provided LATEX
support.

We are grateful to the following Pearson reviewers: Leman Akoglu (Carnegie
Mellon University), Chien-Chung Chan (University of Akron), Zhengxin Chen
(University of Nebraska at Omaha), Chris Clifton (Purdue University), Joy-
deep Ghosh (University of Texas, Austin), Nazli Goharian (Illinois Institute of
Technology), J. Michael Hardin (University of Alabama), Jingrui He (Arizona

�

M00 TAN9224 02 GE C00 page 10

� �

�

10 Preface to the Second Edition

State University), James Hearne (Western Washington University), Hillol Kar-
gupta (University of Maryland, Baltimore County and Agnik, LLC), Eamonn
Keogh (University of California-Riverside), Bing Liu (University of Illinois at
Chicago), Mariofanna Milanova (University of Arkansas at Little Rock), Srini-
vasan Parthasarathy (Ohio State University), Zbigniew W. Ras (University of
North Carolina at Charlotte), Xintao Wu (University of North Carolina at
Charlotte), and Mohammed J. Zaki (Rensselaer Polytechnic Institute).

Over the years since the first edition, we have also received numerous
comments from readers and students who have pointed out typos and various
other issues. We are unable to mention these individuals by name, but their
input is much appreciated and has been taken into account for the second
edition.

Acknowledgments for the Global Edition Pearson would like to thank
and acknowledge Pramod Kumar Singh (Atal Bihari Vajpayee Indian Institute
of Information Technology and Management) for contributing to the Global
Edition, and Annappa (National Institute of Technology Surathkal), Komal
Arora, and Soumen Mukherjee (RCC Institute of Technology) for reviewing
the Global Edition.

�

M00 TAN9224 02 GE C00 page 11

� �

�

Contents

Preface to the Second Edition 5

1 Introduction 21
1.1 What Is Data Mining? . 24
1.2 Motivating Challenges . 25
1.3 The Origins of Data Mining . 27
1.4 Data Mining Tasks . 29
1.5 Scope and Organization of the Book 33
1.6 Bibliographic Notes . 35
1.7 Exercises . 41

2 Data 43
2.1 Types of Data . 46

2.1.1 Attributes and Measurement 47
2.1.2 Types of Data Sets . 54

2.2 Data Quality . 62
2.2.1 Measurement and Data Collection Issues 62
2.2.2 Issues Related to Applications 69

2.3 Data Preprocessing . 70
2.3.1 Aggregation . 71
2.3.2 Sampling . 72
2.3.3 Dimensionality Reduction 76
2.3.4 Feature Subset Selection 78
2.3.5 Feature Creation . 81
2.3.6 Discretization and Binarization 83
2.3.7 Variable Transformation 89

2.4 Measures of Similarity and Dissimilarity 91
2.4.1 Basics . 92
2.4.2 Similarity and Dissimilarity between Simple Attributes . 94
2.4.3 Dissimilarities between Data Objects 96
2.4.4 Similarities between Data Objects 98

�

M00 TAN9224 02 GE C00 page 12

� �

�

12 Contents

2.4.5 Examples of Proximity Measures 99
2.4.6 Mutual Information . 108
2.4.7 Kernel Functions* . 110
2.4.8 Bregman Divergence* 114
2.4.9 Issues in Proximity Calculation 116
2.4.10 Selecting the Right Proximity Measure 118

2.5 Bibliographic Notes . 120
2.6 Exercises . 125

3 Classification: Basic Concepts and Techniques 133
3.1 Basic Concepts . 134
3.2 General Framework for Classification 137
3.3 Decision Tree Classifier . 139

3.3.1 A Basic Algorithm to Build a Decision Tree 141
3.3.2 Methods for Expressing Attribute Test Conditions . . . 144
3.3.3 Measures for Selecting an Attribute Test Condition . . . 147
3.3.4 Algorithm for Decision Tree Induction 156
3.3.5 Example Application: Web Robot Detection 158
3.3.6 Characteristics of Decision Tree Classifiers 160

3.4 Model Overfitting . 167
3.4.1 Reasons for Model Overfitting 169

3.5 Model Selection . 176
3.5.1 Using a Validation Set 176
3.5.2 Incorporating Model Complexity 177
3.5.3 Estimating Statistical Bounds 182
3.5.4 Model Selection for Decision Trees 182

3.6 Model Evaluation . 184
3.6.1 Holdout Method . 185
3.6.2 Cross-Validation . 185

3.7 Presence of Hyper-parameters 188
3.7.1 Hyper-parameter Selection 188
3.7.2 Nested Cross-Validation 190

3.8 Pitfalls of Model Selection and Evaluation 192
3.8.1 Overlap between Training and Test Sets 192
3.8.2 Use of Validation Error as Generalization Error 192

3.9 Model Comparison∗ . 193
3.9.1 Estimating the Confidence Interval for Accuracy 194
3.9.2 Comparing the Performance of Two Models 195

3.10 Bibliographic Notes . 196
3.11 Exercises . 205

�

M00 TAN9224 02 GE C00 page 13

� �

�

Contents 13

4 Association Analysis: Basic Concepts and Algorithms 213
4.1 Preliminaries . 214
4.2 Frequent Itemset Generation 218

4.2.1 The Apriori Principle 219
4.2.2 Frequent Itemset Generation in the Apriori Algorithm . 220
4.2.3 Candidate Generation and Pruning 224
4.2.4 Support Counting . 229
4.2.5 Computational Complexity 233

4.3 Rule Generation . 236
4.3.1 Confidence-Based Pruning 236
4.3.2 Rule Generation in Apriori Algorithm 237
4.3.3 An Example: Congressional Voting Records 238

4.4 Compact Representation of Frequent Itemsets 240
4.4.1 Maximal Frequent Itemsets 240
4.4.2 Closed Itemsets . 242

4.5 Alternative Methods for Generating Frequent Itemsets* 245
4.6 FP-Growth Algorithm* . 249

4.6.1 FP-Tree Representation 250
4.6.2 Frequent Itemset Generation in FP-Growth Algorithm . 253

4.7 Evaluation of Association Patterns 257
4.7.1 Objective Measures of Interestingness 258
4.7.2 Measures beyond Pairs of Binary Variables 270
4.7.3 Simpson’s Paradox . 272

4.8 Effect of Skewed Support Distribution 274
4.9 Bibliographic Notes . 280
4.10 Exercises . 294

5 Cluster Analysis: Basic Concepts and Algorithms 307
5.1 Overview . 310

5.1.1 What Is Cluster Analysis? 310
5.1.2 Different Types of Clusterings 311
5.1.3 Different Types of Clusters 313

5.2 K-means . 316
5.2.1 The Basic K-means Algorithm 317
5.2.2 K-means: Additional Issues 326
5.2.3 Bisecting K-means . 329
5.2.4 K-means and Different Types of Clusters 330
5.2.5 Strengths and Weaknesses 331
5.2.6 K-means as an Optimization Problem 331

�

M00 TAN9224 02 GE C00 page 14

� �

�

14 Contents

5.3 Agglomerative Hierarchical Clustering 336
5.3.1 Basic Agglomerative Hierarchical Clustering Algorithm 337
5.3.2 Specific Techniques . 339
5.3.3 The Lance-Williams Formula for Cluster Proximity . . . 344
5.3.4 Key Issues in Hierarchical Clustering 345
5.3.5 Outliers . 346
5.3.6 Strengths and Weaknesses 347

5.4 DBSCAN . 347
5.4.1 Traditional Density: Center-Based Approach 347
5.4.2 The DBSCAN Algorithm 349
5.4.3 Strengths and Weaknesses 351

5.5 Cluster Evaluation . 353
5.5.1 Overview . 353
5.5.2 Unsupervised Cluster Evaluation Using Cohesion and

Separation . 356
5.5.3 Unsupervised Cluster Evaluation Using the Proximity

Matrix . 364
5.5.4 Unsupervised Evaluation of Hierarchical Clustering . . . 367
5.5.5 Determining the Correct Number of Clusters 369
5.5.6 Clustering Tendency . 370
5.5.7 Supervised Measures of Cluster Validity 371
5.5.8 Assessing the Significance of Cluster Validity Measures . 376
5.5.9 Choosing a Cluster Validity Measure 378

5.6 Bibliographic Notes . 379
5.7 Exercises . 385

6 Classification: Alternative Techniques 395
6.1 Types of Classifiers . 395
6.2 Rule-Based Classifier . 397

6.2.1 How a Rule-Based Classifier Works 399
6.2.2 Properties of a Rule Set 400
6.2.3 Direct Methods for Rule Extraction 401
6.2.4 Indirect Methods for Rule Extraction 406
6.2.5 Characteristics of Rule-Based Classifiers 408

6.3 Nearest Neighbor Classifiers . 410
6.3.1 Algorithm . 411
6.3.2 Characteristics of Nearest Neighbor Classifiers 412

6.4 Näıve Bayes Classifier . 414
6.4.1 Basics of Probability Theory 415
6.4.2 Näıve Bayes Assumption 420

�

M00 TAN9224 02 GE C00 page 15

� �

�

Contents 15

6.5 Bayesian Networks . 429
6.5.1 Graphical Representation 429
6.5.2 Inference and Learning 435
6.5.3 Characteristics of Bayesian Networks 444

6.6 Logistic Regression . 445
6.6.1 Logistic Regression as a Generalized Linear Model . . . 446
6.6.2 Learning Model Parameters 447
6.6.3 Characteristics of Logistic Regression 450

6.7 Artificial Neural Network (ANN) 451
6.7.1 Perceptron . 452
6.7.2 Multi-layer Neural Network 456
6.7.3 Characteristics of ANN 463

6.8 Deep Learning . 464
6.8.1 Using Synergistic Loss Functions 465
6.8.2 Using Responsive Activation Functions 468
6.8.3 Regularization . 470
6.8.4 Initialization of Model Parameters 473
6.8.5 Characteristics of Deep Learning 477

6.9 Support Vector Machine (SVM) 478
6.9.1 Margin of a Separating Hyperplane 478
6.9.2 Linear SVM . 480
6.9.3 Soft-margin SVM . 486
6.9.4 Nonlinear SVM . 492
6.9.5 Characteristics of SVM 496

6.10 Ensemble Methods . 498
6.10.1 Rationale for Ensemble Method 499
6.10.2 Methods for Constructing an Ensemble Classifier 499
6.10.3 Bias-Variance Decomposition 502
6.10.4 Bagging . 504
6.10.5 Boosting . 507
6.10.6 Random Forests . 512
6.10.7 Empirical Comparison among Ensemble Methods 514

6.11 Class Imbalance Problem . 515
6.11.1 Building Classifiers with Class Imbalance 516
6.11.2 Evaluating Performance with Class Imbalance 520
6.11.3 Finding an Optimal Score Threshold 524
6.11.4 Aggregate Evaluation of Performance 525

6.12 Multiclass Problem . 532
6.13 Bibliographic Notes . 535
6.14 Exercises . 547

�

M00 TAN9224 02 GE C00 page 16

� �

�

16 Contents

7 Association Analysis: Advanced Concepts 559
7.1 Handling Categorical Attributes 559
7.2 Handling Continuous Attributes 562

7.2.1 Discretization-Based Methods 562
7.2.2 Statistics-Based Methods 566
7.2.3 Non-discretization Methods 568

7.3 Handling a Concept Hierarchy 570
7.4 Sequential Patterns . 572

7.4.1 Preliminaries . 573
7.4.2 Sequential Pattern Discovery 576
7.4.3 Timing Constraints∗ . 581
7.4.4 Alternative Counting Schemes∗ 585

7.5 Subgraph Patterns . 587
7.5.1 Preliminaries . 588
7.5.2 Frequent Subgraph Mining 591
7.5.3 Candidate Generation 595
7.5.4 Candidate Pruning . 601
7.5.5 Support Counting . 601

7.6 Infrequent Patterns∗ . 601
7.6.1 Negative Patterns . 602
7.6.2 Negatively Correlated Patterns 603
7.6.3 Comparisons among Infrequent Patterns, Negative

Patterns, and Negatively Correlated Patterns 604
7.6.4 Techniques for Mining Interesting Infrequent Patterns . 606
7.6.5 Techniques Based on Mining Negative Patterns 607
7.6.6 Techniques Based on Support Expectation 609

7.7 Bibliographic Notes . 613
7.8 Exercises . 618

8 Cluster Analysis: Additional Issues and Algorithms 633
8.1 Characteristics of Data, Clusters, and Clustering Algorithms . 634

8.1.1 Example: Comparing K-means and DBSCAN 634
8.1.2 Data Characteristics . 635
8.1.3 Cluster Characteristics 637
8.1.4 General Characteristics of Clustering Algorithms 639

8.2 Prototype-Based Clustering . 641
8.2.1 Fuzzy Clustering . 641
8.2.2 Clustering Using Mixture Models 647
8.2.3 Self-Organizing Maps (SOM) 657

8.3 Density-Based Clustering . 664

�

M00 TAN9224 02 GE C00 page 17

� �

�

Contents 17

8.3.1 Grid-Based Clustering 664
8.3.2 Subspace Clustering . 668
8.3.3 DENCLUE: A Kernel-Based Scheme for Density-Based

Clustering . 672
8.4 Graph-Based Clustering . 676

8.4.1 Sparsification . 677
8.4.2 Minimum Spanning Tree (MST) Clustering 678
8.4.3 OPOSSUM: Optimal Partitioning of Sparse Similarities

Using METIS . 679
8.4.4 Chameleon: Hierarchical Clustering with Dynamic

Modeling . 680
8.4.5 Spectral Clustering . 686
8.4.6 Shared Nearest Neighbor Similarity 693
8.4.7 The Jarvis-Patrick Clustering Algorithm 696
8.4.8 SNN Density . 698
8.4.9 SNN Density-Based Clustering 699

8.5 Scalable Clustering Algorithms 701
8.5.1 Scalability: General Issues and Approaches 701
8.5.2 BIRCH . 704
8.5.3 CURE . 706

8.6 Which Clustering Algorithm? 710
8.7 Bibliographic Notes . 713
8.8 Exercises . 719

9 Anomaly Detection 723
9.1 Characteristics of Anomaly Detection Problems 725

9.1.1 A Definition of an Anomaly 725
9.1.2 Nature of Data . 726
9.1.3 How Anomaly Detection is Used 727

9.2 Characteristics of Anomaly Detection Methods 728
9.3 Statistical Approaches . 730

9.3.1 Using Parametric Models 730
9.3.2 Using Non-parametric Models 734
9.3.3 Modeling Normal and Anomalous Classes 735
9.3.4 Assessing Statistical Significance 737
9.3.5 Strengths and Weaknesses 738

9.4 Proximity-based Approaches . 739
9.4.1 Distance-based Anomaly Score 739
9.4.2 Density-based Anomaly Score 740
9.4.3 Relative Density-based Anomaly Score 742
9.4.4 Strengths and Weaknesses 743

�

M00 TAN9224 02 GE C00 page 18

� �

�

18 Contents

9.5 Clustering-based Approaches 744
9.5.1 Finding Anomalous Clusters 744
9.5.2 Finding Anomalous Instances 745
9.5.3 Strengths and Weaknesses 748

9.6 Reconstruction-based Approaches 748
9.6.1 Strengths and Weaknesses 751

9.7 One-class Classification . 752
9.7.1 Use of Kernels . 753
9.7.2 The Origin Trick . 754
9.7.3 Strengths and Weaknesses 758

9.8 Information Theoretic Approaches 758
9.8.1 Strengths and Weaknesses 760

9.9 Evaluation of Anomaly Detection 760
9.10 Bibliographic Notes . 762
9.11 Exercises . 769

10 Avoiding False Discoveries 775
10.1 Preliminaries: Statistical Testing 776

10.1.1 Significance Testing . 776
10.1.2 Hypothesis Testing . 781
10.1.3 Multiple Hypothesis Testing 787
10.1.4 Pitfalls in Statistical Testing 796

10.2 Modeling Null and Alternative Distributions 798
10.2.1 Generating Synthetic Data Sets 801
10.2.2 Randomizing Class Labels 802
10.2.3 Resampling Instances 802
10.2.4 Modeling the Distribution of the Test Statistic 803

10.3 Statistical Testing for Classification 803
10.3.1 Evaluating Classification Performance 803
10.3.2 Binary Classification as Multiple Hypothesis Testing . . 805
10.3.3 Multiple Hypothesis Testing in Model Selection 806

10.4 Statistical Testing for Association Analysis 807
10.4.1 Using Statistical Models 808
10.4.2 Using Randomization Methods 814

10.5 Statistical Testing for Cluster Analysis 815
10.5.1 Generating a Null Distribution for Internal Indices . . . 816
10.5.2 Generating a Null Distribution for External Indices . . . 818
10.5.3 Enrichment . 818

10.6 Statistical Testing for Anomaly Detection 820
10.7 Bibliographic Notes . 823
10.8 Exercises . 828

�

M00 TAN9224 02 GE C00 page 19

� �

�

Contents 19

Author Index 836

Subject Index 849

Copyright Permissions 859

�

M00 TAN9224 02 GE C00 page 19

� �

�

This page is intentionally left blank

�

M01 TAN9224 02 GE C01 page 21

� �

�

1

Introduction

Rapid advances in data collection and storage technology, coupled with the
ease with which data can be generated and disseminated, have triggered the
explosive growth of data, leading to the current age of big data. Deriving
actionable insights from these large data sets is increasingly important in
decision making across almost all areas of society, including business and
industry; science and engineering; medicine and biotechnology; and govern-
ment and individuals. However, the amount of data (volume), its complexity
(variety), and the rate at which it is being collected and processed (velocity)
have simply become too great for humans to analyze unaided. Thus, there is
a great need for automated tools for extracting useful information from the
big data despite the challenges posed by its enormity and diversity.

Data mining blends traditional data analysis methods with sophisticated
algorithms for processing this abundance of data. In this introductory chapter,
we present an overview of data mining and outline the key topics to be covered
in this book. We start with a description of some applications that require
more advanced techniques for data analysis.

Business and Industry Point-of-sale data collection (bar code scanners,
radio frequency identification (RFID), and smart card technology) have al-
lowed retailers to collect up-to-the-minute data about customer purchases
at the checkout counters of their stores. Retailers can utilize this informa-
tion, along with other business-critical data, such as web server logs from
e-commerce websites and customer service records from call centers, to help
them better understand the needs of their customers and make more informed
business decisions.

Data mining techniques can be used to support a wide range of busi-
ness intelligence applications, such as customer profiling, targeted marketing,

�

M01 TAN9224 02 GE C01 page 22

� �

�

22 Chapter 1 Introduction

workflow management, store layout, fraud detection, and automated buying
and selling. An example of the last application is high-speed stock trading,
where decisions on buying and selling have to be made in less than a second
using data about financial transactions. Data mining can also help retailers
answer important business questions, such as “Who are the most profitable
customers?”; “What products can be cross-sold or up-sold?”; and “What is
the revenue outlook of the company for next year?” These questions have in-
spired the development of such data mining techniques as association analysis
(Chapters 4 and 7).

As the Internet continues to revolutionize the way we interact and make
decisions in our everyday lives, we are generating massive amounts of data
about our online experiences, e.g., web browsing, messaging, and posting on
social networking websites. This has opened several opportunities for business
applications that use web data. For example, in the e-commerce sector, data
about our online viewing or shopping preferences can be used to provide per-
sonalized recommendations of products. Data mining also plays a prominent
role in supporting several other Internet-based services, such as filtering spam
messages, answering search queries, and suggesting social updates and connec-
tions. The large corpus of text, images, and videos available on the Internet
has enabled a number of advancements in data mining methods, including
deep learning, which is discussed in Chapter 6. These developments have led
to great advances in a number of applications, such as object recognition,
natural language translation, and autonomous driving.

Another domain that has undergone a rapid big data transformation is
the use of mobile sensors and devices, such as smart phones and wearable
computing devices. With better sensor technologies, it has become possible to
collect a variety of information about our physical world using low-cost sensors
embedded on everyday objects that are connected to each other, termed the
Internet of Things (IOT). This deep integration of physical sensors in digital
systems is beginning to generate large amounts of diverse and distributed data
about our environment, which can be used for designing convenient, safe, and
energy-efficient home systems, as well as for urban planning of smart cities.

Medicine, Science, and Engineering Researchers in medicine, science,
and engineering are rapidly accumulating data that is key to significant new
discoveries. For example, as an important step toward improving our under-
standing of the Earth’s climate system, NASA has deployed a series of Earth-
orbiting satellites that continuously generate global observations of the land

�

M01 TAN9224 02 GE C01 page 23

� �

�

23

surface, oceans, and atmosphere. However, because of the size and spatio-
temporal nature of the data, traditional methods are often not suitable for
analyzing these data sets. Techniques developed in data mining can aid Earth
scientists in answering questions such as the following: “What is the relation-
ship between the frequency and intensity of ecosystem disturbances such as
droughts and hurricanes to global warming?”; “How is land surface precipita-
tion and temperature affected by ocean surface temperature?”; and “How well
can we predict the beginning and end of the growing season for a region?”

As another example, researchers in molecular biology hope to use the large
amounts of genomic data to better understand the structure and function of
genes. In the past, traditional methods in molecular biology allowed scientists
to study only a few genes at a time in a given experiment. Recent break-
throughs in microarray technology have enabled scientists to compare the
behavior of thousands of genes under various situations. Such comparisons
can help determine the function of each gene, and perhaps isolate the genes
responsible for certain diseases. However, the noisy, high-dimensional nature
of data requires new data analysis methods. In addition to analyzing gene
expression data, data mining can also be used to address other important
biological challenges such as protein structure prediction, multiple sequence
alignment, the modeling of biochemical pathways, and phylogenetics.

Another example is the use of data mining techniques to analyze electronic
health record (EHR) data, which has become increasingly available. Not very
long ago, studies of patients required manually examining the physical records
of individual patients and extracting very specific pieces of information per-
tinent to the particular question being investigated. EHRs allow for a faster
and broader exploration of such data. However, there are significant challenges
since the observations on any one patient typically occur during their visits
to a doctor or hospital and only a small number of details about the health
of the patient are measured during any particular visit.

Currently, EHR analysis focuses on simple types of data, e.g., a patient’s
blood pressure or the diagnosis code of a disease. However, large amounts of
more complex types of medical data are also being collected, such as electrocar-
diograms (ECGs) and neuroimages from magnetic resonance imaging (MRI)
or functional Magnetic Resonance Imaging (fMRI). Although challenging to
analyze, this data also provides vital information about patients. Integrating
and analyzing such data, with traditional EHR and genomic data is one of the
capabilities needed to enable precision medicine, which aims to provide more
personalized patient care.

�

M01 TAN9224 02 GE C01 page 24

� �

�

24 Chapter 1 Introduction

1.1 What Is Data Mining?

Data mining is the process of automatically discovering useful information in
large data repositories. Data mining techniques are deployed to scour large
data sets in order to find novel and useful patterns that might otherwise
remain unknown. They also provide the capability to predict the outcome of
a future observation, such as the amount a customer will spend at an online
or a brick-and-mortar store.

Not all information discovery tasks are considered to be data mining.
Examples include queries, e.g., looking up individual records in a database or
finding web pages that contain a particular set of keywords. This is because
such tasks can be accomplished through simple interactions with a database
management system or an information retrieval system. These systems rely
on traditional computer science techniques, which include sophisticated index-
ing structures and query processing algorithms, for efficiently organizing and
retrieving information from large data repositories. Nonetheless, data mining
techniques have been used to enhance the performance of such systems by
improving the quality of the search results based on their relevance to the
input queries.

Data Mining and Knowledge Discovery in Databases

Data mining is an integral part of knowledge discovery in databases
(KDD), which is the overall process of converting raw data into useful infor-
mation, as shown in Figure 1.1. This process consists of a series of steps, from
data preprocessing to postprocessing of data mining results.

Input
Data

Information
Data

Preprocessing
Data

Mining Postprocessing

Filtering Patterns
Visualization
Pattern Interpretation

Feature Selection
Dimensionality Reduction
Normalization
Data Subsetting

Figure 1.1. The process of knowledge discovery in databases (KDD).

�

M01 TAN9224 02 GE C01 page 25

� �

�

1.2 Motivating Challenges 25

The input data can be stored in a variety of formats (flat files, spreadsheets,
or relational tables) and may reside in a centralized data repository or be dis-
tributed across multiple sites. The purpose of preprocessing is to transform
the raw input data into an appropriate format for subsequent analysis. The
steps involved in data preprocessing include fusing data from multiple sources,
cleaning data to remove noise and duplicate observations, and selecting records
and features that are relevant to the data mining task at hand. Because of the
many ways data can be collected and stored, data preprocessing is perhaps the
most laborious and time-consuming step in the overall knowledge discovery
process.

“Closing the loop” is a phrase often used to refer to the process of integrat-
ing data mining results into decision support systems. For example, in business
applications, the insights offered by data mining results can be integrated with
campaign management tools so that effective marketing promotions can be
conducted and tested. Such integration requires a postprocessing step to
ensure that only valid and useful results are incorporated into the decision
support system. An example of postprocessing is visualization, which allows
analysts to explore the data and the data mining results from a variety of view-
points. Hypothesis testing methods can also be applied during postprocessing
to eliminate spurious data mining results. (See Chapter 10.)

1.2 Motivating Challenges

As mentioned earlier, traditional data analysis techniques have often encoun-
tered practical difficulties in meeting the challenges posed by big data appli-
cations. The following are some of the specific challenges that motivated the
development of data mining.

Scalability Because of advances in data generation and collection, data sets
with sizes of terabytes, petabytes, or even exabytes are becoming common.
If data mining algorithms are to handle these massive data sets, they must
be scalable. Many data mining algorithms employ special search strategies
to handle exponential search problems. Scalability may also require the im-
plementation of novel data structures to access individual records in an ef-
ficient manner. For instance, out-of-core algorithms may be necessary when
processing data sets that cannot fit into main memory. Scalability can also be
improved by using sampling or developing parallel and distributed algorithms.
A general overview of techniques for scaling up data mining algorithms is given
in Appendix F.

�

M01 TAN9224 02 GE C01 page 26

� �

�

26 Chapter 1 Introduction

High Dimensionality It is now common to encounter data sets with hun-
dreds or thousands of attributes instead of the handful common a few decades
ago. In bioinformatics, progress in microarray technology has produced gene
expression data involving thousands of features. Data sets with temporal
or spatial components also tend to have high dimensionality. For example,
consider a data set that contains measurements of temperature at various
locations. If the temperature measurements are taken repeatedly for an ex-
tended period, the number of dimensions (features) increases in proportion
to the number of measurements taken. Traditional data analysis techniques
that were developed for low-dimensional data often do not work well for such
high-dimensional data due to issues such as the curse of dimensionality (to
be discussed in Chapter 2). Also, for some data analysis algorithms, the
computational complexity increases rapidly as the dimensionality (the number
of features) increases.

Heterogeneous and Complex Data Traditional data analysis methods
often deal with data sets containing attributes of the same type, either contin-
uous or categorical. As the role of data mining in business, science, medicine,
and other fields has grown, so has the need for techniques that can han-
dle heterogeneous attributes. Recent years have also seen the emergence of
more complex data objects. Examples of such non-traditional types of data
include web and social media data containing text, hyperlinks, images, audio,
and videos; DNA data with sequential and three-dimensional structure; and
climate data that consists of measurements (temperature, pressure, etc.) at
various times and locations on the Earth’s surface. Techniques developed for
mining such complex objects should take into consideration relationships in
the data, such as temporal and spatial autocorrelation, graph connectivity,
and parent-child relationships between the elements in semi-structured text
and XML documents.

Data Ownership and Distribution Sometimes, the data needed for an
analysis is not stored in one location or owned by one organization. Instead,
the data is geographically distributed among resources belonging to multiple
entities. This requires the development of distributed data mining techniques.
The key challenges faced by distributed data mining algorithms include the
following: (1) how to reduce the amount of communication needed to perform
the distributed computation, (2) how to effectively consolidate the data mining
results obtained from multiple sources, and (3) how to address data security
and privacy issues.

�

M01 TAN9224 02 GE C01 page 27

� �

�

1.3 The Origins of Data Mining 27

Non-traditional Analysis The traditional statistical approach is based on
a hypothesize-and-test paradigm. In other words, a hypothesis is proposed, an
experiment is designed to gather the data, and then the data is analyzed
with respect to the hypothesis. Unfortunately, this process is extremely labor-
intensive. Current data analysis tasks often require the generation and evalu-
ation of thousands of hypotheses, and consequently, the development of some
data mining techniques has been motivated by the desire to automate the
process of hypothesis generation and evaluation. Furthermore, the data sets
analyzed in data mining are typically not the result of a carefully designed
experiment and often represent opportunistic samples of the data, rather than
random samples.

1.3 The Origins of Data Mining

While data mining has traditionally been viewed as an intermediate process
within the KDD framework, as shown in Figure 1.1, it has emerged over the
years as an academic field within computer science, focusing on all aspects
of KDD, including data preprocessing, mining, and postprocessing. Its ori-
gin can be traced back to the late 1980s, following a series of workshops
organized on the topic of knowledge discovery in databases. The workshops
brought together researchers from different disciplines to discuss the challenges
and opportunities in applying computational techniques to extract actionable
knowledge from large databases. The workshops quickly grew into hugely
popular conferences that were attended by researchers and practitioners from
both the academia and industry. The success of these conferences, along with
the interest shown by businesses and industry in recruiting new hires with a
data mining background, have fueled the tremendous growth of this field.

The field was initially built upon the methodology and algorithms that
researchers had previously used. In particular, data mining researchers draw
upon ideas, such as (1) sampling, estimation, and hypothesis testing from
statistics and (2) search algorithms, modeling techniques, and learning the-
ories from artificial intelligence, pattern recognition, and machine learning.
Data mining has also been quick to adopt ideas from other areas, including
optimization, evolutionary computing, information theory, signal processing,
visualization, and information retrieval, and extending them to solve the chal-
lenges of mining big data.

A number of other areas also play key supporting roles. In particular,
database systems are needed to provide support for efficient storage, indexing,

�

M01 TAN9224 02 GE C01 page 28

� �

�

28 Chapter 1 Introduction

AI,
Machine
Learning,

and
Statistics

Data Mining

Database Technology, Parallel Computing, Distributed Computing

Pattern
Recognition

Figure 1.2. Data mining as a confluence of many disciplines.

and query processing. Techniques from high performance (parallel) comput-
ing are often important in addressing the massive size of some data sets.
Distributed techniques can also help address the issue of size and are essential
when the data cannot be gathered in one location. Figure 1.2 shows the
relationship of data mining to other areas.

Data Science and Data-Driven Discovery

Data science is an interdisciplinary field that studies and applies tools and
techniques for deriving useful insights from data. Although data science is
regarded as an emerging field with a distinct identity of its own, the tools
and techniques often come from many different areas of data analysis, such
as data mining, statistics, AI, machine learning, pattern recognition, database
technology, and distributed and parallel computing. (See Figure 1.2.)

The emergence of data science as a new field is a recognition that, often,
none of the existing areas of data analysis provides a complete set of tools for
the data analysis tasks that are often encountered in emerging applications.
Instead, a broad range of computational, mathematical, and statistical skills is
often required. To illustrate the challenges that arise in analyzing such data,
consider the following example. Social media and the Web present new op-
portunities for social scientists to observe and quantitatively measure human
behavior on a large scale. To conduct such a study, social scientists work with
analysts who possess skills in areas such as web mining, natural language
processing (NLP), network analysis, data mining, and statistics. Compared to
more traditional research in social science, which is often based on surveys,
this analysis requires a broader range of skills and tools, and involves far larger

�

M01 TAN9224 02 GE C01 page 29

� �

�

1.4 Data Mining Tasks 29

amounts of data. Thus, data science is, by necessity, a highly interdisciplinary
field that builds on the continuing work of many fields.

The data-driven approach of data science emphasizes the direct discovery
of patterns and relationships from data, especially in large quantities of data,
often without the need for extensive domain knowledge. A notable example
of the success of this approach is represented by advances in neural networks,
i.e., deep learning, which have been particularly successful in areas which
have long proved challenging, e.g., recognizing objects in photos or videos and
words in speech, as well as in other application areas. However, note that this
is just one example of the success of data-driven approaches, and dramatic
improvements have also occurred in many other areas of data analysis. Many
of these developments are topics described later in this book.

Some cautions on potential limitations of a purely data-driven approach
are given in the Bibliographic Notes.

1.4 Data Mining Tasks

Data mining tasks are generally divided into two major categories:

Predictive tasks The objective of these tasks is to predict the value of a par-
ticular attribute based on the values of other attributes. The attribute to
be predicted is commonly known as the target or dependent variable,
while the attributes used for making the prediction are known as the
explanatory or independent variables.

Descriptive tasks Here, the objective is to derive patterns (correlations,
trends, clusters, trajectories, and anomalies) that summarize the un-
derlying relationships in data. Descriptive data mining tasks are often
exploratory in nature and frequently require postprocessing techniques
to validate and explain the results.

Figure 1.3 illustrates four of the core data mining tasks that are described
in the remainder of this book.

Predictive modeling refers to the task of building a model for the target
variable as a function of the explanatory variables. There are two types of
predictive modeling tasks: classification, which is used for discrete target
variables, and regression, which is used for continuous target variables. For
example, predicting whether a web user will make a purchase at an online
bookstore is a classification task because the target variable is binary-valued.

�

M01 TAN9224 02 GE C01 page 30

� �

�

30 Chapter 1 Introduction

DIAPER

Anomaly
Detection

Data

ID
Home
Owner

Marital
Status

Annual
Income

Defaulted
Borrower

1

2

3

4

5

6

7

8

9

10

Yes

No

No

Yes

No

No

Yes

No

No

No

125K

100K

70K

120K

95K

80K

220K

85K

75K

90K

Single

Married

Single

Married

Divorced

Married

Divorced

Single

Married

Single

No

No

No

No

Yes

No

No

Yes

No

Yes

Predict
ive

Modelin
g

Cluster
Analysis

Ass
ocia

tio
n

Analys
is

DIAPER

Figure 1.3. Four of the core data mining tasks.

On the other hand, forecasting the future price of a stock is a regression task
because price is a continuous-valued attribute. The goal of both tasks is to
learn a model that minimizes the error between the predicted and true values
of the target variable. Predictive modeling can be used to identify customers
who will respond to a marketing campaign, predict disturbances in the Earth’s
ecosystem, or judge whether a patient has a particular disease based on the
results of medical tests.

Example 1.1 (Predicting the Type of a Flower). Consider the task of
predicting a species of flower based on the characteristics of the flower. In
particular, consider classifying an Iris flower as one of the following three Iris
species: Setosa, Versicolour, or Virginica. To perform this task, we need a data
set containing the characteristics of various flowers of these three species. A
data set with this type of information is the well-known Iris data set from the
UCI Machine Learning Repository at http://www.ics.uci.edu/∼mlearn. In
addition to the species of a flower, this data set contains four other attributes:
sepal width, sepal length, petal length, and petal width. Figure 1.4 shows a
plot of petal width versus petal length for the 150 flowers in the Iris data
set. Petal width is broken into the categories low, medium, and high, which
correspond to the intervals [0, 0.75), [0.75, 1.75), [1.75,∞), respectively. Also,

http://www.ics.uci.edu/~mlearn

�

M01 TAN9224 02 GE C01 page 31

� �

�

1.4 Data Mining Tasks 31

petal length is broken into categories low, medium, and high, which correspond
to the intervals [0, 2.5), [2.5, 5), [5,∞), respectively. Based on these categories
of petal width and length, the following rules can be derived:

Petal width low and petal length low implies Setosa.
Petal width medium and petal length medium implies Versicolour.
Petal width high and petal length high implies Virginica.

While these rules do not classify all the flowers, they do a good (but not
perfect) job of classifying most of the flowers. Note that flowers from the
Setosa species are well separated from the Versicolour and Virginica species
with respect to petal width and length, but the latter two species overlap
somewhat with respect to these attributes.

0 1 2 2.5 3 4 5 6 7
0

0.5

0.75

1

1.5

1.75

2

2.5

Petal Length (cm)

P
et

al
 W

id
th

 (
cm

)

Setosa
Versicolour
Virginica

Figure 1.4. Petal width versus petal length for 150 Iris flowers.

Association analysis is used to discover patterns that describe strongly as-
sociated features in the data. The discovered patterns are typically represented
in the form of implication rules or feature subsets. Because of the exponential
size of its search space, the goal of association analysis is to extract the most
interesting patterns in an efficient manner. Useful applications of association

�

M01 TAN9224 02 GE C01 page 32

� �

�

32 Chapter 1 Introduction

analysis include finding groups of genes that have related functionality, identi-
fying web pages that are accessed together, or understanding the relationships
between different elements of Earth’s climate system.

Example 1.2 (Market Basket Analysis). The transactions shown in Ta-
ble 1.1 illustrate point-of-sale data collected at the checkout counters of a
grocery store. Association analysis can be applied to find items that are
frequently bought together by customers. For example, we may discover the
rule {Diapers} −→ {Milk}, which suggests that customers who buy diapers
also tend to buy milk. This type of rule can be used to identify potential
cross-selling opportunities among related items.

Table 1.1. Market basket data.

Transaction ID Items
1 {Bread, Butter, Diapers, Milk}
2 {Coffee, Sugar, Cookies, Salmon}
3 {Bread, Butter, Coffee, Diapers, Milk, Eggs}
4 {Bread, Butter, Salmon, Chicken}
5 {Eggs, Bread, Butter}
6 {Salmon, Diapers, Milk}
7 {Bread, Tea, Sugar, Eggs}
8 {Coffee, Sugar, Chicken, Eggs}
9 {Bread, Diapers, Milk, Salt}
10 {Tea, Eggs, Cookies, Diapers, Milk}

Cluster analysis seeks to find groups of closely related observations so that
observations that belong to the same cluster are more similar to each other
than observations that belong to other clusters. Clustering has been used to
group sets of related customers, find areas of the ocean that have a significant
impact on the Earth’s climate, and compress data.

Example 1.3 (Document Clustering). The collection of news articles
shown in Table 1.2 can be grouped based on their respective topics. Each
article is represented as a set of word-frequency pairs (w : c), where w is a
word and c is the number of times the word appears in the article. There
are two natural clusters in the data set. The first cluster consists of the first
four articles, which correspond to news about the economy, while the second
cluster contains the last four articles, which correspond to news about health
care. A good clustering algorithm should be able to identify these two clusters
based on the similarity between words that appear in the articles.

�

M01 TAN9224 02 GE C01 page 33

� �

�

1.5 Scope and Organization of the Book 33

Table 1.2. Collection of news articles.

Article Word-frequency pairs
1 dollar: 1, industry: 4, country: 2, loan: 3, deal: 2, government: 2
2 machinery: 2, labor: 3, market: 4, industry: 2, work: 3, country: 1
3 job: 5, inflation: 3, rise: 2, jobless: 2, market: 3, country: 2, index: 3
4 domestic: 3, forecast: 2, gain: 1, market: 2, sale: 3, price: 2
5 patient: 4, symptom: 2, drug: 3, health: 2, clinic: 2, doctor: 2
6 pharmaceutical: 2, company: 3, drug: 2, vaccine: 1, flu: 3
7 death: 2, cancer: 4, drug: 3, public: 4, health: 3, director: 2
8 medical: 2, cost: 3, increase: 2, patient: 2, health: 3, care: 1

Anomaly detection is the task of identifying observations whose character-
istics are significantly different from the rest of the data. Such observations are
known as anomalies or outliers. The goal of an anomaly detection algorithm
is to discover the real anomalies and avoid falsely labeling normal objects
as anomalous. In other words, a good anomaly detector must have a high
detection rate and a low false alarm rate. Applications of anomaly detection
include the detection of fraud, network intrusions, unusual patterns of disease,
and ecosystem disturbances, such as droughts, floods, fires, hurricanes, etc.

Example 1.4 (Credit Card Fraud Detection). A credit card company
records the transactions made by every credit card holder, along with personal
information such as credit limit, age, annual income, and address. Since the
number of fraudulent cases is relatively small compared to the number of
legitimate transactions, anomaly detection techniques can be applied to build
a profile of legitimate transactions for the users. When a new transaction
arrives, it is compared against the profile of the user. If the characteristics of
the transaction are very different from the previously created profile, then the
transaction is flagged as potentially fraudulent.

1.5 Scope and Organization of the Book

This book introduces the major principles and techniques used in data mining
from an algorithmic perspective. A study of these principles and techniques is
essential for developing a better understanding of how data mining technology
can be applied to various kinds of data. This book also serves as a starting
point for readers who are interested in doing research in this field.

�

M01 TAN9224 02 GE C01 page 34

� �

�

34 Chapter 1 Introduction

We begin the technical discussion of this book with a chapter on data
(Chapter 2), which discusses the basic types of data, data quality, prepro-
cessing techniques, and measures of similarity and dissimilarity. Although this
material can be covered quickly, it provides an essential foundation for data
analysis. Chapters 3 and 6 cover classification. Chapter 3 provides a foundation
by discussing decision tree classifiers and several issues that are important to
all classification: overfitting, underfitting, model selection, and performance
evaluation. Using this foundation, Chapter 6 describes a number of other
important classification techniques: rule-based systems, nearest neighbor clas-
sifiers, Bayesian classifiers, artificial neural networks, including deep learning,
support vector machines, and ensemble classifiers, which are collections of
classifiers. The multiclass and imbalanced class problems are also discussed.
These topics can be covered independently.

Association analysis is explored in Chapters 4 and 7. Chapter 4 describes
the basics of association analysis: frequent itemsets, association rules, and
some of the algorithms used to generate them. Specific types of frequent
itemsets—maximal, closed, and hyperclique—that are important for data min-
ing are also discussed, and the chapter concludes with a discussion of eval-
uation measures for association analysis. Chapter 7 considers a variety of
more advanced topics, including how association analysis can be applied to
categorical and continuous data or to data that has a concept hierarchy. (A
concept hierarchy is a hierarchical categorization of objects, e.g., store items
→ clothing→ shoes→ sneakers.) This chapter also describes how association
analysis can be extended to find sequential patterns (patterns involving order),
patterns in graphs, and negative relationships (if one item is present, then the
other is not).

Cluster analysis is discussed in Chapters 5 and 8. Chapter 5 first describes
the different types of clusters, and then presents three specific clustering
techniques: K-means, agglomerative hierarchical clustering, and DBSCAN.
This is followed by a discussion of techniques for validating the results of a clus-
tering algorithm. Additional clustering concepts and techniques are explored
in Chapter 8, including fuzzy and probabilistic clustering, Self-Organizing
Maps (SOM), graph-based clustering, spectral clustering, and density-based
clustering. There is also a discussion of scalability issues and factors to consider
when selecting a clustering algorithm.

Chapter 9, is on anomaly detection. After some basic definitions, several
different types of anomaly detection are considered: statistical, distance-based,
density-based, clustering-based, reconstruction-based, one-class classification,
and information theoretic. The last chapter, Chapter 10, supplements the
discussions in the other chapters with a discussion of the statistical concepts

�

M01 TAN9224 02 GE C01 page 35

� �

�

1.6 Bibliographic Notes 35

important for avoiding spurious results, and then discusses those concepts in
the context of data mining techniques studied in the previous chapters. These
techniques include statistical hypothesis testing, p-values, the false discovery
rate, and permutation testing. Appendices A through F give a brief review
of important topics that are used in portions of the book: linear algebra,
dimensionality reduction, statistics, regression, optimization, and scaling up
data mining techniques for big data.

The subject of data mining, while relatively young compared to statistics
or machine learning, is already too large to cover in a single book. Selected
references to topics that are only briefly covered, such as data quality, are
provided in the Bibliographic Notes section of the appropriate chapter. Ref-
erences to topics not covered in this book, such as mining streaming data and
privacy-preserving data mining are provided in the Bibliographic Notes of this
chapter.

1.6 Bibliographic Notes

The topic of data mining has inspired many textbooks. Introductory textbooks
include those by Dunham [16], Han et al. [29], Hand et al. [31], Roiger and
Geatz [50], Zaki and Meira [61], and Aggarwal [2]. Data mining books with
a stronger emphasis on business applications include the works by Berry
and Linoff [5], Pyle [47], and Parr Rud [45]. Books with an emphasis on
statistical learning include those by Cherkassky and Mulier [11], and Hastie
et al. [32]. Similar books with an emphasis on machine learning or pattern
recognition are those by Duda et al. [15], Kantardzic [34], Mitchell [43], Webb
[57], and Witten and Frank [58]. There are also some more specialized books:
Chakrabarti [9] (web mining), Fayyad et al. [20] (collection of early articles on
data mining), Fayyad et al. [18] (visualization), Grossman et al. [25] (science
and engineering), Kargupta and Chan [35] (distributed data mining), Wang
et al. [56] (bioinformatics), and Zaki and Ho [60] (parallel data mining).

There are several conferences related to data mining. Some of the main
conferences dedicated to this field include the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), the IEEE
International Conference on Data Mining (ICDM), the SIAM International
Conference on Data Mining (SDM), the European Conference on Princi-
ples and Practice of Knowledge Discovery in Databases (PKDD), and the
Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD).
Data mining papers can also be found in other major conferences such as
the Conference and Workshop on Neural Information Processing Systems

�

M01 TAN9224 02 GE C01 page 36

� �

�

36 Chapter 1 Introduction

(NIPS),the International Conference on Machine Learning (ICML), the ACM
SIGMOD/PODS conference, the International Conference on Very Large Data
Bases (VLDB), the Conference on Information and Knowledge Management
(CIKM), the International Conference on Data Engineering (ICDE), the Na-
tional Conference on Artificial Intelligence (AAAI), the IEEE International
Conference on Big Data, and the IEEE International Conference on Data
Science and Advanced Analytics (DSAA).

Journal publications on data mining include IEEE Transactions on Knowl-
edge and Data Engineering, Data Mining and Knowledge Discovery, Knowl-
edge and Information Systems, ACM Transactions on Knowledge Discov-
ery from Data, Statistical Analysis and Data Mining, and Information Sys-
tems. There are various open-source data mining software available, including
Weka [27] and Scikit-learn [46]. More recently, data mining software such
as Apache Mahout and Apache Spark have been developed for large-scale
problems on the distributed computing platform.

There have been a number of general articles on data mining that define the
field or its relationship to other fields, particularly statistics. Fayyad et al. [19]
describe data mining and how it fits into the total knowledge discovery process.
Chen et al. [10] give a database perspective on data mining. Ramakrishnan and
Grama [48] provide a general discussion of data mining and present several
viewpoints. Hand [30] describes how data mining differs from statistics, as
does Friedman [21]. Lambert [40] explores the use of statistics for large data
sets and provides some comments on the respective roles of data mining and
statistics. Glymour et al. [23] consider the lessons that statistics may have for
data mining. Smyth et al. [53] describe how the evolution of data mining is
being driven by new types of data and applications, such as those involving
streams, graphs, and text. Han et al. [28] consider emerging applications in
data mining and Smyth [52] describes some research challenges in data mining.
Wu et al. [59] discuss how developments in data mining research can be turned
into practical tools. Data mining standards are the subject of a paper by
Grossman et al. [24]. Bradley [7] discusses how data mining algorithms can be
scaled to large data sets.

The emergence of new data mining applications has produced new chal-
lenges that need to be addressed. For instance, concerns about privacy breaches
as a result of data mining have escalated in recent years, particularly in
application domains such as web commerce and health care. As a result, there
is growing interest in developing data mining algorithms that maintain user
privacy. Developing techniques for mining encrypted or randomized data is
known as privacy-preserving data mining. Some general references in
this area include papers by Agrawal and Srikant [3], Clifton et al. [12] and

�

M01 TAN9224 02 GE C01 page 37

� �

�

1.6 Bibliographic Notes 37

Kargupta et al. [36]. Vassilios et al. [55] provide a survey. Another area of
concern is the bias in predictive models that may be used for some applications,
e.g., screening job applicants or deciding prison parole [39]. Assessing whether
such applications are producing biased results is made more difficult by the
fact that the predictive models used for such applications are often black box
models, i.e., models that are not interpretable in any straightforward way.

Data science, its constituent fields, and more generally, the new paradigm
of knowledge discovery they represent [33], have great potential, some of which
has been realized. However, it is important to emphasize that data science
works mostly with observational data, i.e., data that was collected by various
organizations as part of their normal operation. The consequence of this is
that sampling biases are common and the determination of causal factors
becomes more problematic. For this and a number of other reasons, it is often
hard to interpret the predictive models built from this data [42, 49]. Thus,
theory, experimentation and computational simulations will continue to be
the methods of choice in many areas, especially those related to science.

More importantly, a purely data-driven approach often ignores the existing
knowledge in a particular field. Such models may perform poorly, for example,
predicting impossible outcomes or failing to generalize to new situations.
However, if the model does work well, e.g., has high predictive accuracy, then
this approach may be sufficient for practical purposes in some fields. But in
many areas, such as medicine and science, gaining insight into the underlying
domain is often the goal. Some recent work attempts to address these issues
in order to create theory-guided data science, which takes pre-existing domain
knowledge into account [17, 37].

Recent years have witnessed a growing number of applications that rapidly
generate continuous streams of data. Examples of stream data include network
traffic, multimedia streams, and stock prices. Several issues must be considered
when mining data streams, such as the limited amount of memory available,
the need for online analysis, and the change of the data over time. Data
mining for stream data has become an important area in data mining. Some
selected publications are Domingos and Hulten [14] (classification), Giannella
et al. [22] (association analysis), Guha et al. [26] (clustering), Kifer et al. [38]
(change detection), Papadimitriou et al. [44] (time series), and Law et al. [41]
(dimensionality reduction).

Another area of interest is recommender and collaborative filtering systems
[1, 6, 8, 13, 54], which suggest movies, television shows, books, products, etc.
that a person might like. In many cases, this problem, or at least a component
of it, is treated as a prediction problem and thus, data mining techniques can
be applied [4, 51].

�

M01 TAN9224 02 GE C01 page 38

� �

�

38 Chapter 1 Introduction

Bibliography
[1] G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems:

A survey of the state-of-the-art and possible extensions. IEEE transactions on
knowledge and data engineering, 17(6):734–749, 2005.

[2] C. Aggarwal. Data mining: The Textbook. Springer, 2009.

[3] R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proc. of 2000 ACM-
SIGMOD Intl. Conf. on Management of Data, pages 439–450, Dallas, Texas, 2000.
ACM Press.

[4] X. Amatriain and J. M. Pujol. Data mining methods for recommender systems. In
Recommender Systems Handbook, pages 227–262. Springer, 2015.

[5] M. J. A. Berry and G. Linoff. Data Mining Techniques: For Marketing, Sales, and
Customer Relationship Management. Wiley Computer Publishing, 2nd edition, 2004.

[6] J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez. Recommender systems survey.
Knowledge-based systems, 46:109–132, 2013.

[7] P. S. Bradley, J. Gehrke, R. Ramakrishnan, and R. Srikant. Scaling mining algorithms
to large databases. Communications of the ACM, 45(8):38–43, 2002.

[8] R. Burke. Hybrid recommender systems: Survey and experiments. User modeling and
user-adapted interaction, 12(4):331–370, 2002.

[9] S. Chakrabarti. Mining the Web: Discovering Knowledge from Hypertext Data. Morgan
Kaufmann, San Francisco, CA, 2003.

[10] M.-S. Chen, J. Han, and P. S. Yu. Data Mining: An Overview from a Database
Perspective. IEEE Transactions on Knowledge and Data Engineering, 8(6):866–883,
1996.

[11] V. Cherkassky and F. Mulier. Learning from Data: Concepts, Theory, and Methods.
Wiley-IEEE Press, 2nd edition, 1998.

[12] C. Clifton, M. Kantarcioglu, and J. Vaidya. Defining privacy for data mining. In
National Science Foundation Workshop on Next Generation Data Mining, pages 126–
133, Baltimore, MD, November 2002.

[13] C. Desrosiers and G. Karypis. A comprehensive survey of neighborhood-based
recommendation methods. Recommender systems handbook, pages 107–144, 2011.

[14] P. Domingos and G. Hulten. Mining high-speed data streams. In Proc. of the 6th Intl.
Conf. on Knowledge Discovery and Data Mining, pages 71–80, Boston, Massachusetts,
2000. ACM Press.

[15] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. John Wiley & Sons,
Inc., New York, 2nd edition, 2001.

[16] M. H. Dunham. Data Mining: Introductory and Advanced Topics. Prentice Hall, 2006.

[17] J. H. Faghmous, A. Banerjee, S. Shekhar, M. Steinbach, V. Kumar, A. R. Ganguly, and
N. Samatova. Theory-guided data science for climate change. Computer, 47(11):74–78,
2014.

[18] U. M. Fayyad, G. G. Grinstein, and A. Wierse, editors. Information Visualization in
Data Mining and Knowledge Discovery. Morgan Kaufmann Publishers, San Francisco,
CA, September 2001.

[19] U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From Data Mining to Knowledge
Discovery: An Overview. In Advances in Knowledge Discovery and Data Mining, pages
1–34. AAAI Press, 1996.

[20] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors. Advances
in Knowledge Discovery and Data Mining. AAAI/MIT Press, 1996.

�

M01 TAN9224 02 GE C01 page 39

� �

�

Bibliography 39

[21] J. H. Friedman. Data Mining and Statistics: What’s the Connection? Unpublished.
www-stat.stanford.edu/∼jhf/ftp/dm-stat.ps, 1997.

[22] C. Giannella, J. Han, J. Pei, X. Yan, and P. S. Yu. Mining Frequent Patterns in Data
Streams at Multiple Time Granularities. In H. Kargupta, A. Joshi, K. Sivakumar, and
Y. Yesha, editors, Next Generation Data Mining, pages 191–212. AAAI/MIT, 2003.

[23] C. Glymour, D. Madigan, D. Pregibon, and P. Smyth. Statistical Themes and Lessons
for Data Mining. Data Mining and Knowledge Discovery, 1(1):11–28, 1997.

[24] R. L. Grossman, M. F. Hornick, and G. Meyer. Data mining standards initiatives.
Communications of the ACM, 45(8):59–61, 2002.

[25] R. L. Grossman, C. Kamath, P. Kegelmeyer, V. Kumar, and R. Namburu, editors. Data
Mining for Scientific and Engineering Applications. Kluwer Academic Publishers, 2001.

[26] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering Data
Streams: Theory and Practice. IEEE Transactions on Knowledge and Data Engineering,
15(3):515–528, May/June 2003.

[27] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The
WEKA Data Mining Software: An Update. SIGKDD Explorations, 11(1), 2009.

[28] J. Han, R. B. Altman, V. Kumar, H. Mannila, and D. Pregibon. Emerging scientific
applications in data mining. Communications of the ACM, 45(8):54–58, 2002.

[29] J. Han, M. Kamber, and J. Pei. Data Mining: Concepts and Techniques. Morgan
Kaufmann Publishers, San Francisco, 3rd edition, 2011.

[30] D. J. Hand. Data Mining: Statistics and More? The American Statistician, 52(2):
112–118, 1998.

[31] D. J. Hand, H. Mannila, and P. Smyth. Principles of Data Mining. MIT Press, 2001.

[32] T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of Statistical Learning:
Data Mining, Inference, Prediction. Springer, 2nd edition, 2009.

[33] T. Hey, S. Tansley, K. M. Tolle, et al. The fourth paradigm: data-intensive scientific
discovery, volume 1. Microsoft research Redmond, WA, 2009.

[34] M. Kantardzic. Data Mining: Concepts, Models, Methods, and Algorithms. Wiley-IEEE
Press, Piscataway, NJ, 2003.

[35] H. Kargupta and P. K. Chan, editors. Advances in Distributed and Parallel Knowledge
Discovery. AAAI Press, September 2002.

[36] H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar. On the Privacy Preserving
Properties of Random Data Perturbation Techniques. In Proc. of the 2003 IEEE
Intl. Conf. on Data Mining, pages 99–106, Melbourne, Florida, December 2003. IEEE
Computer Society.

[37] A. Karpatne, G. Atluri, J. Faghmous, M. Steinbach, A. Banerjee, A. Ganguly,
S. Shekhar, N. Samatova, and V. Kumar. Theory-guided Data Science: A New
Paradigm for Scientific Discovery from Data. IEEE Transactions on Knowledge and
Data Engineering, 2017.

[38] D. Kifer, S. Ben-David, and J. Gehrke. Detecting Change in Data Streams. In Proc.
of the 30th VLDB Conf., pages 180–191, Toronto, Canada, 2004. Morgan Kaufmann.

[39] J. Kleinberg, J. Ludwig, and S. Mullainathan. A Guide to Solving Social Problems
with Machine Learning. Harvard Business Review, December 2016.

[40] D. Lambert. What Use is Statistics for Massive Data? In ACM SIGMOD Workshop
on Research Issues in Data Mining and Knowledge Discovery, pages 54–62, 2000.

[41] M. H. C. Law, N. Zhang, and A. K. Jain. Nonlinear Manifold Learning for Data
Streams. In Proc. of the SIAM Intl. Conf. on Data Mining, Lake Buena Vista, Florida,
April 2004. SIAM.

www-stat.stanford.edu/%E2%88%BCjhf/ftp/dm-stat.ps,%201997.

�

M01 TAN9224 02 GE C01 page 40

� �

�

40 Chapter 1 Introduction

[42] Z. C. Lipton. The mythos of model interpretability. arXiv preprint arXiv:1606.03490,
2016.

[43] T. Mitchell. Machine Learning. McGraw-Hill, Boston, MA, 1997.

[44] S. Papadimitriou, A. Brockwell, and C. Faloutsos. Adaptive, unsupervised stream
mining. VLDB Journal, 13(3):222–239, 2004.

[45] O. Parr Rud. Data Mining Cookbook: Modeling Data for Marketing, Risk and Customer
Relationship Management. John Wiley & Sons, New York, NY, 2001.

[46] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine Learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[47] D. Pyle. Business Modeling and Data Mining. Morgan Kaufmann, San Francisco, CA,
2003.

[48] N. Ramakrishnan and A. Grama. Data Mining: From Serendipity to Science—Guest
Editors’ Introduction. IEEE Computer, 32(8):34–37, 1999.

[49] M. T. Ribeiro, S. Singh, and C. Guestrin. Why should i trust you?: Explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 1135–1144. ACM, 2016.

[50] R. Roiger and M. Geatz. Data Mining: A Tutorial Based Primer. Addison-Wesley,
2002.

[51] J. Schafer. The Application of Data-Mining to Recommender Systems. Encyclopedia
of data warehousing and mining, 1:44–48, 2009.

[52] P. Smyth. Breaking out of the Black-Box: Research Challenges in Data Mining. In
Proc. of the 2001 ACM SIGMOD Workshop on Research Issues in Data Mining and
Knowledge Discovery, 2001.

[53] P. Smyth, D. Pregibon, and C. Faloutsos. Data-driven evolution of data mining
algorithms. Communications of the ACM, 45(8):33–37, 2002.

[54] X. Su and T. M. Khoshgoftaar. A survey of collaborative filtering techniques. Advances
in artificial intelligence, 2009:4, 2009.

[55] V. S. Verykios, E. Bertino, I. N. Fovino, L. P. Provenza, Y. Saygin, and Y. Theodoridis.
State-of-the-art in privacy preserving data mining. SIGMOD Record, 33(1):50–57, 2004.

[56] J. T. L. Wang, M. J. Zaki, H. Toivonen, and D. E. Shasha, editors. Data Mining in
Bioinformatics. Springer, September 2004.

[57] A. R. Webb. Statistical Pattern Recognition. John Wiley & Sons, 2nd edition, 2002.

[58] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and
Techniques. Morgan Kaufmann, 3rd edition, 2011.

[59] X. Wu, P. S. Yu, and G. Piatetsky-Shapiro. Data Mining: How Research Meets Practical
Development? Knowledge and Information Systems, 5(2):248–261, 2003.

[60] M. J. Zaki and C.-T. Ho, editors. Large-Scale Parallel Data Mining. Springer,
September 2002.

[61] M. J. Zaki and W. Meira Jr. Data Mining and Analysis: Fundamental Concepts and
Algorithms. Cambridge University Press, New York, 2014.

�

M01 TAN9224 02 GE C01 page 41

� �

�

1.7 Exercises 41

1.7 Exercises

1. Discuss whether or not each of the following activities is a data mining task.

(a) Dividing the customers of a company according to their gender.

(b) Dividing the customers of a company according to their profitability.

(c) Computing the total sales of a company.

(d) Sorting a student database based on student identification numbers.

(e) Predicting the outcomes of tossing a (fair) pair of dice.

(f) Predicting the future stock price of a company using historical records.

(g) Monitoring the heart rate of a patient for abnormalities.

(h) Monitoring seismic waves for earthquake activities.

(i) Extracting the frequencies of a sound wave.

2. Suppose that you are employed as a data mining consultant for an Internet
search engine company. Describe how data mining can help the company by
giving specific examples of how techniques, such as clustering, classification,
association rule mining, and anomaly detection can be applied.

3. For each of the following data sets, explain whether or not data privacy is an
important issue.

(a) Census data collected from 1900–1950.

(b) IP addresses and visit times of web users who visit your website.

(c) Images from Earth-orbiting satellites.

(d) Names and addresses of people from the telephone book.

(e) Names and email addresses collected from the Web.

�

M01 TAN9224 02 GE C01 page 42

� �

�

This page is intentionally left blank

�

M02 TAN9224 02 GE C02 page 43

� �

�

2

Data

This chapter discusses several data-related issues that are important for suc-
cessful data mining:

The Type of Data Data sets differ in a number of ways. For example, the
attributes used to describe data objects can be of different types—quantitative
or qualitative—and data sets often have special characteristics; e.g., some data
sets contain time series or objects with explicit relationships to one another.
Not surprisingly, the type of data determines which tools and techniques can
be used to analyze the data. Indeed, new research in data mining is often
driven by the need to accommodate new application areas and their new types
of data.

The Quality of the Data Data is often far from perfect. While most data
mining techniques can tolerate some level of imperfection in the data, a focus
on understanding and improving data quality typically improves the quality
of the resulting analysis. Data quality issues that often need to be addressed
include the presence of noise and outliers; missing, inconsistent, or duplicate
data; and data that is biased or, in some other way, unrepresentative of the
phenomenon or population that the data is supposed to describe.

Preprocessing Steps to Make the Data More Suitable for Data Min-
ing Often, the raw data must be processed in order to make it suitable for
analysis. While one objective may be to improve data quality, other goals focus
on modifying the data so that it better fits a specified data mining technique
or tool. For example, a continuous attribute, e.g., length, sometimes needs to
be transformed into an attribute with discrete categories, e.g., short, medium,
or long, in order to apply a particular technique. As another example, the

�

M02 TAN9224 02 GE C02 page 44

� �

�

44 Chapter 2 Data

number of attributes in a data set is often reduced because many techniques
are more effective when the data has a relatively small number of attributes.

Analyzing Data in Terms of Its Relationships One approach to data
analysis is to find relationships among the data objects and then perform
the remaining analysis using these relationships rather than the data objects
themselves. For instance, we can compute the similarity or distance between
pairs of objects and then perform the analysis—clustering, classification, or
anomaly detection—based on these similarities or distances. There are many
such similarity or distance measures, and the proper choice depends on the
type of data and the particular application.

Example 2.1 (An Illustration of Data-Related Issues). To further illustrate
the importance of these issues, consider the following hypothetical situation.
You receive an email from a medical researcher concerning a project that you
are eager to work on.

Hi,

I’ve attached the data file that I mentioned in my previous email.
Each line contains the information for a single patient and consists
of five fields. We want to predict the last field using the other fields.
I don’t have time to provide any more information about the data
since I’m going out of town for a couple of days, but hopefully that
won’t slow you down too much. And if you don’t mind, could we
meet when I get back to discuss your preliminary results? I might
invite a few other members of my team.

Thanks and see you in a couple of days.

Despite some misgivings, you proceed to analyze the data. The first few
rows of the file are as follows:

012 232 33.5 0 10.7
020 121 16.9 2 210.1
027 165 24.0 0 427.6
...

A brief look at the data reveals nothing strange. You put your doubts aside
and start the analysis. There are only 1000 lines, a smaller data file than you
had hoped for, but two days later, you feel that you have made some progress.
You arrive for the meeting, and while waiting for others to arrive, you strike

�

M02 TAN9224 02 GE C02 page 45

� �

�

45

up a conversation with a statistician who is working on the project. When she
learns that you have also been analyzing the data from the project, she asks
if you would mind giving her a brief overview of your results.

Statistician: So, you got the data for all the patients?
Data Miner: Yes. I haven’t had much time for analysis, but I do

have a few interesting results.
Statistician: Amazing. There were so many data issues with

this set of patients that I couldn’t do much.
Data Miner: Oh? I didn’t hear about any possible problems.
Statistician: Well, first there is field 5, the variable we want to

predict. It’s common knowledge among people who analyze
this type of data that results are better if you work with the
log of the values, but I didn’t discover this until later. Was it
mentioned to you?

Data Miner: No.
Statistician: But surely you heard about what happened to field

4? It’s supposed to be measured on a scale from 1 to 10, with
0 indicating a missing value, but because of a data entry
error, all 10’s were changed into 0’s. Unfortunately, since
some of the patients have missing values for this field, it’s
impossible to say whether a 0 in this field is a real 0 or a 10.
Quite a few of the records have that problem.

Data Miner: Interesting. Were there any other problems?
Statistician: Yes, fields 2 and 3 are basically the same, but I

assume that you probably noticed that.
Data Miner: Yes, but these fields were only weak predictors of

field 5.
Statistician: Anyway, given all those problems, I’m surprised

you were able to accomplish anything.
Data Miner: True, but my results are really quite good. Field 1

is a very strong predictor of field 5. I’m surprised that this
wasn’t noticed before.

Statistician: What? Field 1 is just an identification number.
Data Miner: Nonetheless, my results speak for themselves.
Statistician: Oh, no! I just remembered. We assigned ID

numbers after we sorted the records based on field 5. There is
a strong connection, but it’s meaningless. Sorry.

�

M02 TAN9224 02 GE C02 page 46

� �

�

46 Chapter 2 Data

Although this scenario represents an extreme situation, it emphasizes the
importance of “knowing your data.” To that end, this chapter will address each
of the four issues mentioned above, outlining some of the basic challenges and
standard approaches.

2.1 Types of Data

A data set can often be viewed as a collection of data objects. Other names
for a data object are record, point, vector, pattern, event, case, sample, instance,
observation, or entity. In turn, data objects are described by a number of
attributes that capture the characteristics of an object, such as the mass of
a physical object or the time at which an event occurred. Other names for an
attribute are variable, characteristic, field, feature, or dimension.

Example 2.2 (Student Information). Often, a data set is a file, in which the
objects are records (or rows) in the file and each field (or column) corresponds
to an attribute. For example, Table 2.1 shows a data set that consists of
student information. Each row corresponds to a student and each column is
an attribute that describes some aspect of a student, such as grade point
average (GPA) or identification number (ID).

Table 2.1. A sample data set containing student information.

Student ID Year Grade Point Average (GPA) . . .
...

1034262 Senior 3.24 . . .
1052663 Sophomore 3.51 . . .
1082246 Freshman 3.62 . . .

...

Although record-based data sets are common, either in flat files or rela-
tional database systems, there are other important types of data sets and
systems for storing data. In Section 2.1.2, we will discuss some of the types of
data sets that are commonly encountered in data mining. However, we first
consider attributes.

�

M02 TAN9224 02 GE C02 page 47

� �

�

2.1 Types of Data 47

2.1.1 Attributes and Measurement

In this section, we consider the types of attributes used to describe data
objects. We first define an attribute, then consider what we mean by the type
of an attribute, and finally describe the types of attributes that are commonly
encountered.

What Is an Attribute?

We start with a more detailed definition of an attribute.

Definition 2.1. An attribute is a property or characteristic of an object
that can vary, either from one object to another or from one time to another.

For example, eye color varies from person to person, while the temperature
of an object varies over time. Note that eye color is a symbolic attribute with a
small number of possible values {brown, black, blue, green, hazel, etc.}, while
temperature is a numerical attribute with a potentially unlimited number of
values.

At the most basic level, attributes are not about numbers or symbols.
However, to discuss and more precisely analyze the characteristics of objects,
we assign numbers or symbols to them. To do this in a well-defined way, we
need a measurement scale.

Definition 2.2. A measurement scale is a rule (function) that associates
a numerical or symbolic value with an attribute of an object.

Formally, the process of measurement is the application of a measure-
ment scale to associate a value with a particular attribute of a specific object.
While this may seem a bit abstract, we engage in the process of measurement
all the time. For instance, we step on a bathroom scale to determine our
weight, we classify someone as male or female, or we count the number of
chairs in a room to see if there will be enough to seat all the people coming to
a meeting. In all these cases, the “physical value” of an attribute of an object
is mapped to a numerical or symbolic value.

With this background, we can discuss the type of an attribute, a concept
that is important in determining if a particular data analysis technique is
consistent with a specific type of attribute.

The Type of an Attribute

It is common to refer to the type of an attribute as the type of a mea-
surement scale. It should be apparent from the previous discussion that an

�

M02 TAN9224 02 GE C02 page 48

� �

�

48 Chapter 2 Data

attribute can be described using different measurement scales and that the
properties of an attribute need not be the same as the properties of the values
used to measure it. In other words, the values used to represent an attribute
can have properties that are not properties of the attribute itself, and vice
versa. This is illustrated with two examples.

Example 2.3 (Employee Age and ID Number). Two attributes that might
be associated with an employee are ID and age (in years). Both of these
attributes can be represented as integers. However, while it is reasonable to
talk about the average age of an employee, it makes no sense to talk about
the average employee ID. Indeed, the only aspect of employees that we want
to capture with the ID attribute is that they are distinct. Consequently, the
only valid operation for employee IDs is to test whether they are equal. There
is no hint of this limitation, however, when integers are used to represent the
employee ID attribute. For the age attribute, the properties of the integers used
to represent age are very much the properties of the attribute. Even so, the
correspondence is not complete because, for example, ages have a maximum,
while integers do not.

Example 2.4 (Length of Line Segments). Consider Figure 2.1, which shows
some objects—line segments—and how the length attribute of these objects
can be mapped to numbers in two different ways. Each successive line segment,
going from the top to the bottom, is formed by appending the topmost line
segment to itself. Thus, the second line segment from the top is formed by
appending the topmost line segment to itself twice, the third line segment
from the top is formed by appending the topmost line segment to itself three
times, and so forth. In a very real (physical) sense, all the line segments are
multiples of the first. This fact is captured by the measurements on the right
side of the figure, but not by those on the left side. More specifically, the
measurement scale on the left side captures only the ordering of the length
attribute, while the scale on the right side captures both the ordering and
additivity properties. Thus, an attribute can be measured in a way that does
not capture all the properties of the attribute.

Knowing the type of an attribute is important because it tells us which
properties of the measured values are consistent with the underlying properties
of the attribute, and therefore, it allows us to avoid foolish actions, such as
computing the average employee ID.

�

M02 TAN9224 02 GE C02 page 49

� �

�

2.1 Types of Data 49

1 1

2

3

4

5

3

7

8

10

A mapping of lengths to numbers
that captures only the order
properties of length.

A mapping of lengths to numbers
that captures both the order and
additivity properties of length.

Figure 2.1. The measurement of the length of line segments on two different scales of measurement.

The Different Types of Attributes

A useful (and simple) way to specify the type of an attribute is to identify
the properties of numbers that correspond to underlying properties of the
attribute. For example, an attribute such as length has many of the properties
of numbers. It makes sense to compare and order objects by length, as well
as to talk about the differences and ratios of length. The following properties
(operations) of numbers are typically used to describe attributes.

1. Distinctness = and �=
2. Order <, ≤, >, and ≥
3. Addition + and −
4. Multiplication × and /

Given these properties, we can define four types of attributes: nominal,
ordinal, interval, and ratio. Table 2.2 gives the definitions of these types,
along with information about the statistical operations that are valid for each
type. Each attribute type possesses all of the properties and operations of the
attribute types above it. Consequently, any property or operation that is valid
for nominal, ordinal, and interval attributes is also valid for ratio attributes.
In other words, the definition of the attribute types is cumulative. However,

�

M02 TAN9224 02 GE C02 page 50

� �

�

50 Chapter 2 Data

Table 2.2. Different attribute types.

Attribute
Type Description Examples Operations

Nominal The values of a
nominal attribute are
just different names;
i.e., nominal values
provide only enough
information to
distinguish one object
from another.
(=, �=)

zip codes,
employee ID
numbers, eye
color, gender

mode, entropy,
contingency
correlation,
χ2 test

C
at

eg
or

ic
al

(Q
ua

lit
at

iv
e)

Ordinal The values of an
ordinal attribute
provide enough
information to order
objects.
(<, >)

hardness of
minerals,
{good, better, best},
grades,
street numbers

median,
percentiles,
rank correlation,
run tests,
sign tests

Interval For interval attributes,
the differences between
values are meaningful,
i.e., a unit of measure-
ment exists.
(+, −)

calendar dates,
temperature in
Celsius or
Fahrenheit

mean,
standard
deviation,
Pearson’s
correlation,
t and F tests

N
um

er
ic

(Q
ua

nt
it

at
iv

e)

Ratio For ratio variables,
both differences and
ratios are meaningful.
(×, /)

temperature in
Kelvin, monetary
quantities, counts,
age, mass, length,
electrical current

geometric mean,
harmonic mean,
percent
variation

this does not mean that the statistical operations appropriate for one attribute
type are appropriate for the attribute types above it.

Nominal and ordinal attributes are collectively referred to as categorical
or qualitative attributes. As the name suggests, qualitative attributes, such
as employee ID, lack most of the properties of numbers. Even if they are
represented by numbers, i.e., integers, they should be treated more like sym-
bols. The remaining two types of attributes, interval and ratio, are collectively
referred to as quantitative or numeric attributes. Quantitative attributes
are represented by numbers and have most of the properties of numbers. Note
that quantitative attributes can be integer-valued or continuous.

The types of attributes can also be described in terms of transformations
that do not change the meaning of an attribute. Indeed, S. Smith Stevens, the

�

M02 TAN9224 02 GE C02 page 51

� �

�

2.1 Types of Data 51

Table 2.3. Transformations that define attribute levels.

Attribute
Type Transformation Comment

Nominal Any one-to-one mapping, e.g., a
permutation of values

If all employee ID numbers
are reassigned, it will not
make any difference.

C
at

eg
or

ic
al

(Q
ua

lit
at

iv
e)

Ordinal An order-preserving change of
values, i.e.,
new value = f(old value),
where f is a monotonic function.

An attribute
encompassing the notion
of good, better, best can
be represented equally
well by the values {1, 2, 3}
or by {0.5, 1, 10}.

Interval new value = a× old value+ b,
a and b constants.

The Fahrenheit and
Celsius temperature scales
differ in the location of
their zero value and the
size of a degree (unit).

N
um

er
ic

(Q
ua

nt
it

at
iv

e)

Ratio new value = a× old value Length can be measured
in meters or feet.

psychologist who originally defined the types of attributes shown in Table 2.2,
defined them in terms of these permissible transformations. For example,
the meaning of a length attribute is unchanged if it is measured in meters
instead of feet.

The statistical operations that make sense for a particular type of attribute
are those that will yield the same results when the attribute is transformed by
using a transformation that preserves the attribute’s meaning. To illustrate,
the average length of a set of objects is different when measured in meters
rather than in feet, but both averages represent the same length. Table 2.3
shows the meaning-preserving transformations for the four attribute types of
Table 2.2.

Example 2.5 (Temperature Scales). Temperature provides a good illustra-
tion of some of the concepts that have been described. First, temperature can
be either an interval or a ratio attribute, depending on its measurement scale.
When measured on the Kelvin scale, a temperature of 2◦ is, in a physically
meaningful way, twice that of a temperature of 1◦. This is not true when
temperature is measured on either the Celsius or Fahrenheit scales, because,
physically, a temperature of 1◦ Fahrenheit (Celsius) is not much different than
a temperature of 2◦ Fahrenheit (Celsius). The problem is that the zero points
of the Fahrenheit and Celsius scales are, in a physical sense, arbitrary, and

�

M02 TAN9224 02 GE C02 page 52

� �

�

52 Chapter 2 Data

therefore, the ratio of two Celsius or Fahrenheit temperatures is not physically
meaningful.

Describing Attributes by the Number of Values

An independent way of distinguishing between attributes is by the number of
values they can take.

Discrete A discrete attribute has a finite or countably infinite set of values.
Such attributes can be categorical, such as zip codes or ID numbers,
or numeric, such as counts. Discrete attributes are often represented
using integer variables. Binary attributes are a special case of dis-
crete attributes and assume only two values, e.g., true/false, yes/no,
male/female, or 0/1. Binary attributes are often represented as Boolean
variables, or as integer variables that only take the values 0 or 1.

Continuous A continuous attribute is one whose values are real numbers.
Examples include attributes such as temperature, height, or weight.
Continuous attributes are typically represented as floating-point vari-
ables. Practically, real values can be measured and represented only
with limited precision.

In theory, any of the measurement scale types—nominal, ordinal, interval, and
ratio—could be combined with any of the types based on the number of at-
tribute values—binary, discrete, and continuous. However, some combinations
occur only infrequently or do not make much sense. For instance, it is difficult
to think of a realistic data set that contains a continuous binary attribute.
Typically, nominal and ordinal attributes are binary or discrete, while interval
and ratio attributes are continuous. However, count attributes, which are
discrete, are also ratio attributes.

Asymmetric Attributes

For asymmetric attributes, only presence—a non-zero attribute value—is re-
garded as important. Consider a data set in which each object is a student
and each attribute records whether a student took a particular course at a
university. For a specific student, an attribute has a value of 1 if the student
took the course associated with that attribute and a value of 0 otherwise.
Because students take only a small fraction of all available courses, most of the
values in such a data set would be 0. Therefore, it is more meaningful and more
efficient to focus on the non-zero values. To illustrate, if students are compared

�

M02 TAN9224 02 GE C02 page 53

� �

�

2.1 Types of Data 53

on the basis of the courses they don’t take, then most students would seem very
similar, at least if the number of courses is large. Binary attributes where only
non-zero values are important are called asymmetric binary attributes.
This type of attribute is particularly important for association analysis, which
is discussed in Chapter 4. It is also possible to have discrete or continuous
asymmetric features. For instance, if the number of credits associated with
each course is recorded, then the resulting data set will consist of asymmetric
discrete or continuous attributes.

General Comments on Levels of Measurement

As described in the rest of this chapter, there are many diverse types of data.
The previous discussion of measurement scales, while useful, is not complete
and has some limitations. We provide the following comments and guidance.

• Distinctness, order, and meaningful intervals and ratios are
only four properties of data—many others are possible. For
instance, some data is inherently cyclical, e.g., position on the surface of
the Earth or time. As another example, consider set valued attributes,
where each attribute value is a set of elements, e.g., the set of movies seen
in the last year. Define one set of elements (movies) to be greater (larger)
than a second set if the second set is a subset of the first. However, such
a relationship defines only a partial order that does not match any of
the attribute types just defined.

• The numbers or symbols used to capture attribute values may
not capture all the properties of the attributes or may suggest
properties that are not there. An illustration of this for integers was
presented in Example 2.3, i.e., averages of IDs and out of range ages.

• Data is often transformed for the purpose of analysis—see Sec-
tion 2.3.7. This often changes the distribution of the observed variable
to a distribution that is easier to analyze, e.g., a Gaussian (normal)
distribution. Often, such transformations only preserve the order of the
original values, and other properties are lost. Nonetheless, if the desired
outcome is a statistical test of differences or a predictive model, such a
transformation is justified.

• The final evaluation of any data analysis, including operations
on attributes, is whether the results make sense from a domain
point of view.

�

M02 TAN9224 02 GE C02 page 54

� �

�

54 Chapter 2 Data

In summary, it can be challenging to determine which operations can
be performed on a particular attribute or a collection of attributes without
compromising the integrity of the analysis. Fortunately, established practice
often serves as a reliable guide. Occasionally, however, standard practices are
erroneous or have limitations.

2.1.2 Types of Data Sets

There are many types of data sets, and as the field of data mining develops
and matures, a greater variety of data sets become available for analysis. In
this section, we describe some of the most common types. For convenience,
we have grouped the types of data sets into three groups: record data, graph-
based data, and ordered data. These categories do not cover all possibilities
and other groupings are certainly possible.

General Characteristics of Data Sets

Before providing details of specific kinds of data sets, we discuss three char-
acteristics that apply to many data sets and have a significant impact on
the data mining techniques that are used: dimensionality, distribution, and
resolution.

Dimensionality The dimensionality of a data set is the number of at-
tributes that the objects in the data set possess. Analyzing data with a
small number of dimensions tends to be qualitatively different from analyzing
moderate or high-dimensional data. Indeed, the difficulties associated with the
analysis of high-dimensional data are sometimes referred to as the curse of
dimensionality. Because of this, an important motivation in preprocessing
the data is dimensionality reduction. These issues are discussed in more
depth later in this chapter and in Appendix B.

Distribution The distribution of a data set is the frequency of occurrence
of various values or sets of values for the attributes comprising data objects.
Equivalently, the distribution of a data set can be considered as a description of
the concentration of objects in various regions of the data space. Statisticians
have enumerated many types of distributions, e.g., Gaussian (normal), and
described their properties. (See Appendix C.) Although statistical approaches
for describing distributions can yield powerful analysis techniques, many data
sets have distributions that are not well captured by standard statistical
distributions.

�

M02 TAN9224 02 GE C02 page 55

� �

�

2.1 Types of Data 55

As a result, many data mining algorithms do not assume a particular sta-
tistical distribution for the data they analyze. However, some general aspects
of distributions often have a strong impact. For example, suppose a categorical
attribute is used as a class variable, where one of the categories occurs 95% of
the time, while the other categories together occur only 5% of the time. This
skewness in the distribution can make classification difficult as discussed
in Section 6.11. (Skewness has other impacts on data analysis that are not
discussed here.)

A special case of skewed data is sparsity. For sparse binary, count or
continuous data, most attributes of an object have values of 0. In many cases,
fewer than 1% of the values are non-zero. In practical terms, sparsity is an
advantage because usually only the non-zero values need to be stored and
manipulated. This results in significant savings with respect to computation
time and storage. Indeed, some data mining algorithms, such as the association
rule mining algorithms described in Chapter 4, work well only for sparse data.
Finally, note that often the attributes in sparse data sets are asymmetric
attributes.

Resolution It is frequently possible to obtain data at different levels of
resolution, and often the properties of the data are different at different
resolutions. For instance, the surface of the Earth seems very uneven at a
resolution of a few meters, but is relatively smooth at a resolution of tens of
kilometers. The patterns in the data also depend on the level of resolution. If
the resolution is too fine, a pattern may not be visible or may be buried in
noise; if the resolution is too coarse, the pattern can disappear. For example,
variations in atmospheric pressure on a scale of hours reflect the movement
of storms and other weather systems. On a scale of months, such phenomena
are not detectable.

Record Data

Much data mining work assumes that the data set is a collection of records
(data objects), each of which consists of a fixed set of data fields (attributes).
See Figure 2.2(a). For the most basic form of record data, there is no explicit
relationship among records or data fields, and every record (object) has the
same set of attributes. Record data is usually stored either in flat files or
in relational databases. Relational databases are certainly more than a col-
lection of records, but data mining often does not use any of the additional
information available in a relational database. Rather, the database serves as

�

M02 TAN9224 02 GE C02 page 56

� �

�

56 Chapter 2 Data

a convenient place to find records. Different types of record data are described
below and are illustrated in Figure 2.2.

Refund Defaulted
Borrower

Marital
Status

Taxable
Income

Tid

125K

100K

70K

120K

95K

60K

220K

85K

75K

90K

No

No

No

No

Yes

No

No

Yes

No

Yes

Yes

No

No

Yes

No

No

Yes

No

No

No

1

2

3

4

5

6

7

8

9

10

Single

Married

Single

Married

Divorced

Married

Divorced

Single

Married

Single

(a) Record data.

TID ITEMS

1

2

3

4

5

Bread, Soda, Milk

Beer, Bread

Beer, Soda, Diapers, Milk

Beer, Bread, Diapers, Milk

Soda, Diapers, Milk

(b) Transaction data.

Projection of
x Load

Projection of
y Load

Distance Load Thickness

10.23

12.65

13.54

14.27

15.22

16.22

17.34

18.45

5.27

6.25

7.23

8.43

27

22

23

25

1.2

1.1

1.2

0.9

(c) Data matrix.

team

coach

play

score

gam
e

w
in

lost

tim
eout

season

ball

Document 1 3 0 5 0 2 6 0 2 0 2

0 7 0 2 1 0 0 3 0 0

0 1 0 0 1 2 2 0 3 0

Document 2

Document 3

(d) Document-term matrix.

Figure 2.2. Different variations of record data.

Transaction or Market Basket Data Transaction data is a special type of
record data, where each record (transaction) involves a set of items. Consider
a grocery store. The set of products purchased by a customer during one
shopping trip constitutes a transaction, while the individual products that
were purchased are the items. This type of data is called market basket
data because the items in each record are the products in a person’s “market
basket.” Transaction data is a collection of sets of items, but it can be viewed
as a set of records whose fields are asymmetric attributes. Most often, the
attributes are binary, indicating whether an item was purchased, but more

�

M02 TAN9224 02 GE C02 page 57

� �

�

2.1 Types of Data 57

generally, the attributes can be discrete or continuous, such as the number of
items purchased or the amount spent on those items. Figure 2.2(b) shows a
sample transaction data set. Each row represents the purchases of a particular
customer at a particular time.

The Data Matrix If all the data objects in a collection of data have the
same fixed set of numeric attributes, then the data objects can be thought of as
points (vectors) in a multidimensional space, where each dimension represents
a distinct attribute describing the object. A set of such data objects can be
interpreted as an m by n matrix, where there are m rows, one for each object,
and n columns, one for each attribute. (A representation that has data objects
as columns and attributes as rows is also fine.) This matrix is called a data
matrix or a pattern matrix. A data matrix is a variation of record data,
but because it consists of numeric attributes, standard matrix operation can
be applied to transform and manipulate the data. Therefore, the data matrix
is the standard data format for most statistical data. Figure 2.2(c) shows a
sample data matrix.

The Sparse Data Matrix A sparse data matrix is a special case of a data
matrix where the attributes are of the same type and are asymmetric; i.e., only
non-zero values are important. Transaction data is an example of a sparse data
matrix that has only 0–1 entries. Another common example is document data.
In particular, if the order of the terms (words) in a document is ignored—
the “bag of words” approach—then a document can be represented as a term
vector, where each term is a component (attribute) of the vector and the value
of each component is the number of times the corresponding term occurs in
the document. This representation of a collection of documents is often called
a document-term matrix. Figure 2.2(d) shows a sample document-term
matrix. The documents are the rows of this matrix, while the terms are the
columns. In practice, only the non-zero entries of sparse data matrices are
stored.

Graph-Based Data

A graph can sometimes be a convenient and powerful representation for data.
We consider two specific cases: (1) the graph captures relationships among
data objects and (2) the data objects themselves are represented as graphs.

Data with Relationships among Objects The relationships among ob-
jects frequently convey important information. In such cases, the data is often

�

M02 TAN9224 02 GE C02 page 58

� �

�

58 Chapter 2 Data

represented as a graph. In particular, the data objects are mapped to nodes
of the graph, while the relationships among objects are captured by the links
between objects and link properties, such as direction and weight. Consider
web pages on the World Wide Web, which contain both text and links to
other pages. In order to process search queries, web search engines collect
and process web pages to extract their contents. It is well-known, however,
that the links to and from each page provide a great deal of information
about the relevance of a web page to a query, and thus, must also be taken
into consideration. Figure 2.3(a) shows a set of linked web pages. Another
important example of such graph data are the social networks, where data
objects are people and the relationships among them are their interactions
via social media.

Data with Objects That Are Graphs If objects have structure, that
is, the objects contain subobjects that have relationships, then such objects
are frequently represented as graphs. For example, the structure of chemical
compounds can be represented by a graph, where the nodes are atoms and
the links between nodes are chemical bonds. Figure 2.3(b) shows a ball-and-
stick diagram of the chemical compound benzene, which contains atoms of
carbon (black) and hydrogen (gray). A graph representation makes it possible
to determine which substructures occur frequently in a set of compounds and
to ascertain whether the presence of any of these substructures is associated
with the presence or absence of certain chemical properties, such as melting
point or heat of formation. Frequent graph mining, which is a branch of data
mining that analyzes such data, is considered in Section 7.5.

Ordered Data

For some types of data, the attributes have relationships that involve order
in time or space. Different types of ordered data are described next and are
shown in Figure 2.4.

Sequential Transaction Data Sequential transaction data can be thought
of as an extension of transaction data, where each transaction has a time
associated with it. Consider a retail transaction data set that also stores the
time at which the transaction took place. This time information makes it
possible to find patterns such as “candy sales peak before Halloween.” A time
can also be associated with each attribute. For example, each record could
be the purchase history of a customer, with a listing of items purchased at
different times. Using this information, it is possible to find patterns such as

�

M02 TAN9224 02 GE C02 page 59

� �

�

2.1 Types of Data 59

(Gets updated frequently, so visit often!)

Book References in Data Mining and
Knowledge Discovery

Useful Links:

• Books

• General Data Mining

•

• Other Useful Web sites

The Data Mine

Usama Fayyad, Gregory Piatetsky-Shapiro,
Padhraic Smyth, and Ramasamy uthurasamy,
"Advances in Knowledge Discovery and Data
Mining", AAAI Press/the MIT Press, 1996.

J. Ross Quinlan, "C4.5: Programs for Machine
Learning", Morgan Kaufmann Publishers, 1993.
Michael Berry and Gordon Linoff, "Data Mining
Techniques (For Marketing, Sales, and Customer
Support), John Wiley & Sons, 1997.

Usama Fayyad, "Mining Databases: Towards
Algorithms for Knowledge Discovery", Bulletin of
the IEEE Computer Society Technical Committee
on data Engineering, vol. 21, no. 1, March 1998.

Christopher Matheus, Philip Chan, and Gregory
Piatetsky-Shapiro, "Systems for knowledge
Discovery in databases", IEEE Transactions on
Knowledge and Data Engineering, 5(6):903-913,
December 1993.

Bibliography

ACM SIGKDD

KDnuggets

General Data Mining

Knowledge Discovery and
Data Mining Bibliography

(a) Linked web pages. (b) Benzene molecule.

Figure 2.3. Different variations of graph data.

“people who buy DVD players tend to buy DVDs in the period immediately
following the purchase.”

Figure 2.4(a) shows an example of sequential transaction data. There are
five different times—t1, t2, t3, t4, and t5 ; three different customers—C1, C2,
and C3; and five different items—A, B, C, D, and E. In the top table, each
row corresponds to the items purchased at a particular time by each customer.
For instance, at time t3, customer C2 purchased items A and D. In the
bottom table, the same information is displayed, but each row corresponds to
a particular customer. Each row contains information about each transaction
involving the customer, where a transaction is considered to be a set of items
and the time at which those items were purchased. For example, customer C3
bought items A and C at time t2.

Time Series Data Time series data is a special type of ordered data where
each record is a time series, i.e., a series of measurements taken over time.
For example, a financial data set might contain objects that are time series of
the daily prices of various stocks. As another example, consider Figure 2.4(c),
which shows a time series of the average monthly temperature for Minneapolis
during the years 1982 to 1994. When working with temporal data, such as
time series, it is important to consider temporal autocorrelation; i.e., if

�

M02 TAN9224 02 GE C02 page 60

� �

�

60 Chapter 2 Data

Time Customer Items Purchased
t1 C1 A, B
t2 C3 A, C
t2 C1 C, D
t3 C2 A, D
t4 C2 E
t5 C1 A, E

Customer Time and Items Purchased
C1 (t1: A,B) (t2:C,D) (t5:A,E)
C2 (t3: A, D) (t4: E)
C3 (t2: A, C)

(a) Sequential transaction data.

GGTTCCGCCTTCAGCCCCGCGCC
CGCAGGGCCCGCCCCGCGCCGTC
GAGAAGGGCCCGCCTGGCGGGCG
GGGGGAGGCGGGGCCGCCCGAGC
CCAACCGAGTCCGACCAGGTGCC
CCCTCTGCTCGGCCTAGACCTGA
GCTCATTAGGCGGCAGCGGACAG
GCCAAGTAGAACACGCGAAGCGC
TGGGCTGCCTGCTGCGACCAGGG

(b) Genomic sequence data.

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
–20

–15

–10

–5

0

5

10

15

20

25

30

Year

Minneapolis Average Monthly Temperature (1982–1993)

T
em

pe
ra

tu
re

 (
ce

lc
iu

s)

(c) Temperature time series.

Longitude
Temp–150–180 –120 –90 –60 –30 0 30 60 90 120 150 180

0

5

10

15

20

25

30

90

60

–60

–90

30

–30

0

La
tit

ud
e

(d) Spatial temperature data.

Figure 2.4. Different variations of ordered data.

two measurements are close in time, then the values of those measurements
are often very similar.

Sequence Data Sequence data consists of a data set that is a sequence of
individual entities, such as a sequence of words or letters. It is quite similar
to sequential data, except that there are no time stamps; instead, there are
positions in an ordered sequence. For example, the genetic information of
plants and animals can be represented in the form of sequences of nucleotides

�

M02 TAN9224 02 GE C02 page 61

� �

�

2.1 Types of Data 61

that are known as genes. Many of the problems associated with genetic se-
quence data involve predicting similarities in the structure and function of
genes from similarities in nucleotide sequences. Figure 2.4(b) shows a section
of the human genetic code expressed using the four nucleotides from which all
DNA is constructed: A, T, G, and C.

Spatial and Spatio-Temporal Data Some objects have spatial attributes,
such as positions or areas, in addition to other types of attributes. An example
of spatial data is weather data (precipitation, temperature, pressure) that is
collected for a variety of geographical locations. Often such measurements
are collected over time, and thus, the data consists of time series at various
locations. In that case, we refer to the data as spatio-temporal data. Although
analysis can be conducted separately for each specific time or location, a more
complete analysis of spatio-temporal data requires consideration of both the
spatial and temporal aspects of the data.

An important aspect of spatial data is spatial autocorrelation; i.e.,
objects that are physically close tend to be similar in other ways as well. Thus,
two points on the Earth that are close to each other usually have similar values
for temperature and rainfall. Note that spatial autocorrelation is analogous to
temporal autocorrelation.

Important examples of spatial and spatio-temporal data are the science
and engineering data sets that are the result of measurements or model out-
put taken at regularly or irregularly distributed points on a two- or three-
dimensional grid or mesh. For instance, Earth science data sets record the
temperature or pressure measured at points (grid cells) on latitude–longitude
spherical grids of various resolutions, e.g., 1◦ by 1◦. See Figure 2.4(d). As
another example, in the simulation of the flow of a gas, the speed and direction
of flow at various instants in time can be recorded for each grid point in the
simulation. A different type of spatio-temporal data arises from tracking the
trajectories of objects, e.g., vehicles, in time and space.

Handling Non-Record Data

Most data mining algorithms are designed for record data or its variations,
such as transaction data and data matrices. Record-oriented techniques can
be applied to non-record data by extracting features from data objects and
using these features to create a record corresponding to each object. Consider
the chemical structure data that was described earlier. Given a set of common
substructures, each compound can be represented as a record with binary
attributes that indicate whether a compound contains a specific substructure.

�

M02 TAN9224 02 GE C02 page 62

� �

�

62 Chapter 2 Data

Such a representation is actually a transaction data set, where the transactions
are the compounds and the items are the substructures.

In some cases, it is easy to represent the data in a record format, but
this type of representation does not capture all the information in the data.
Consider spatio-temporal data consisting of a time series from each point on
a spatial grid. This data is often stored in a data matrix, where each row
represents a location and each column represents a particular point in time.
However, such a representation does not explicitly capture the time relation-
ships that are present among attributes and the spatial relationships that exist
among objects. This does not mean that such a representation is inappropriate,
but rather that these relationships must be taken into consideration during
the analysis. For example, it would not be a good idea to use a data mining
technique that ignores the temporal autocorrelation of the attributes or the
spatial autocorrelation of the data objects, i.e., the locations on the spatial
grid.

2.2 Data Quality

Data mining algorithms are often applied to data that was collected for an-
other purpose, or for future, but unspecified applications. For that reason,
data mining cannot usually take advantage of the significant benefits of “ad-
dressing quality issues at the source.” In contrast, much of statistics deals
with the design of experiments or surveys that achieve a prespecified level
of data quality. Because preventing data quality problems is typically not an
option, data mining focuses on (1) the detection and correction of data quality
problems and (2) the use of algorithms that can tolerate poor data quality.
The first step, detection and correction, is often called data cleaning.

The following sections discuss specific aspects of data quality. The focus is
on measurement and data collection issues, although some application-related
issues are also discussed.

2.2.1 Measurement and Data Collection Issues

It is unrealistic to expect that data will be perfect. There may be problems
due to human error, limitations of measuring devices, or flaws in the data
collection process. Values or even entire data objects can be missing. In other
cases, there can be spurious or duplicate objects; i.e., multiple data objects
that all correspond to a single “real” object. For example, there might be two
different records for a person who has recently lived at two different addresses.

�

M02 TAN9224 02 GE C02 page 63

� �

�

2.2 Data Quality 63

Even if all the data is present and “looks fine,” there may be inconsistencies—a
person has a height of 2 meters, but weighs only 2 kilograms.

In the next few sections, we focus on aspects of data quality that are related
to data measurement and collection. We begin with a definition of measure-
ment and data collection errors and then consider a variety of problems that
involve measurement error: noise, artifacts, bias, precision, and accuracy. We
conclude by discussing data quality issues that involve both measurement
and data collection problems: outliers, missing and inconsistent values, and
duplicate data.

Measurement and Data Collection Errors

The term measurement error refers to any problem resulting from the
measurement process. A common problem is that the value recorded differs
from the true value to some extent. For continuous attributes, the numerical
difference of the measured and true value is called the error. The term data
collection error refers to errors such as omitting data objects or attribute
values, or inappropriately including a data object. For example, a study of
animals of a certain species might include animals of a related species that
are similar in appearance to the species of interest. Both measurement errors
and data collection errors can be either systematic or random.

We will only consider general types of errors. Within particular domains,
certain types of data errors are commonplace, and well-developed techniques
often exist for detecting and/or correcting these errors. For example, keyboard
errors are common when data is entered manually, and as a result, many data
entry programs have techniques for detecting and, with human intervention,
correcting such errors.

Noise and Artifacts

Noise is the random component of a measurement error. It typically involves
the distortion of a value or the addition of spurious objects. Figure 2.5 shows
a time series before and after it has been disrupted by random noise. If a bit
more noise were added to the time series, its shape would be lost. Figure 2.6
shows a set of data points before and after some noise points (indicated by
‘+’s) have been added. Notice that some of the noise points are intermixed
with the non-noise points.

The term noise is often used in connection with data that has a spatial or
temporal component. In such cases, techniques from signal or image processing

�

M02 TAN9224 02 GE C02 page 64

� �

�

64 Chapter 2 Data

(a) Time series. (b) Time series with noise.

Figure 2.5. Noise in a time series context.

(a) Three groups of points. (b) With noise points (+) added.

Figure 2.6. Noise in a spatial context.

can frequently be used to reduce noise and thus, help to discover patterns (sig-
nals) that might be “lost in the noise.” Nonetheless, the elimination of noise is
frequently difficult, and much work in data mining focuses on devising robust
algorithms that produce acceptable results even when noise is present.

Data errors can be the result of a more deterministic phenomenon, such
as a streak in the same place on a set of photographs. Such deterministic
distortions of the data are often referred to as artifacts.

Precision, Bias, and Accuracy

In statistics and experimental science, the quality of the measurement process
and the resulting data are measured by precision and bias. We provide the

�

M02 TAN9224 02 GE C02 page 65

� �

�

2.2 Data Quality 65

standard definitions, followed by a brief discussion. For the following defini-
tions, we assume that we make repeated measurements of the same underlying
quantity.

Definition 2.3 (Precision). The closeness of repeated measurements (of the
same quantity) to one another.

Definition 2.4 (Bias). A systematic variation of measurements from the
quantity being measured.

Precision is often measured by the standard deviation of a set of values,
while bias is measured by taking the difference between the mean of the set
of values and the known value of the quantity being measured. Bias can be
determined only for objects whose measured quantity is known by means
external to the current situation. Suppose that we have a standard laboratory
weight with a mass of 1g and want to assess the precision and bias of our new
laboratory scale. We weigh the mass five times, and obtain the following five
values: {1.015, 0.990, 1.013, 1.001, 0.986}. The mean of these values is 1.001,
and hence, the bias is 0.001. The precision, as measured by the standard
deviation, is 0.013.

It is common to use the more general term, accuracy, to refer to the
degree of measurement error in data.

Definition 2.5 (Accuracy). The closeness of measurements to the true value
of the quantity being measured.

Accuracy depends on precision and bias, but there is no specific formula
for accuracy in terms of these two quantities.

One important aspect of accuracy is the use of significant digits. The
goal is to use only as many digits to represent the result of a measurement
or calculation as are justified by the precision of the data. For example, if the
length of an object is measured with a meter stick whose smallest markings
are millimeters, then we should record the length of data only to the nearest
millimeter. The precision of such a measurement would be ± 0.5mm. We
do not review the details of working with significant digits because most
readers will have encountered them in previous courses and they are covered
in considerable depth in science, engineering, and statistics textbooks.

Issues such as significant digits, precision, bias, and accuracy are sometimes
overlooked, but they are important for data mining as well as statistics and sci-
ence. Many times, data sets do not come with information about the precision
of the data, and furthermore, the programs used for analysis return results
without any such information. Nonetheless, without some understanding of the

�

M02 TAN9224 02 GE C02 page 66

� �

�

66 Chapter 2 Data

accuracy of the data and the results, an analyst runs the risk of committing
serious data analysis blunders.

Outliers

Outliers are either (1) data objects that, in some sense, have characteristics
that are different from most of the other data objects in the data set, or (2)
values of an attribute that are unusual with respect to the typical values for
that attribute. Alternatively, they can be referred to as anomalous objects or
values. There is considerable leeway in the definition of an outlier, and many
different definitions have been proposed by the statistics and data mining
communities. Furthermore, it is important to distinguish between the notions
of noise and outliers. Unlike noise, outliers can be legitimate data objects or
values that we are interested in detecting. For instance, in fraud and network
intrusion detection, the goal is to find unusual objects or events from among a
large number of normal ones. Chapter 9 discusses anomaly detection in more
detail.

Missing Values

It is not unusual for an object to be missing one or more attribute values.
In some cases, the information was not collected; e.g., some people decline to
give their age or weight. In other cases, some attributes are not applicable to
all objects; e.g., often, forms have conditional parts that are filled out only
when a person answers a previous question in a certain way, but for simplicity,
all fields are stored. Regardless, missing values should be taken into account
during the data analysis.

There are several strategies (and variations on these strategies) for dealing
with missing data, each of which is appropriate in certain circumstances. These
strategies are listed next, along with an indication of their advantages and
disadvantages.

Eliminate Data Objects or Attributes A simple and effective strategy
is to eliminate objects with missing values. However, even a partially specified
data object contains some information, and if many objects have missing
values, then a reliable analysis can be difficult or impossible. Nonetheless,
if a data set has only a few objects that have missing values, then it may
be expedient to omit them. A related strategy is to eliminate attributes that
have missing values. This should be done with caution, however, because the
eliminated attributes may be the ones that are critical to the analysis.

�

M02 TAN9224 02 GE C02 page 67

� �

�

2.2 Data Quality 67

Estimate Missing Values Sometimes missing data can be reliably es-
timated. For example, consider a time series that changes in a reasonably
smooth fashion, but has a few, widely scattered missing values. In such cases,
the missing values can be estimated (interpolated) by using the remaining
values. As another example, consider a data set that has many similar data
points. In this situation, the attribute values of the points closest to the
point with the missing value are often used to estimate the missing value.
If the attribute is continuous, then the average attribute value of the nearest
neighbors is used; if the attribute is categorical, then the most commonly
occurring attribute value can be taken. For a concrete illustration, consider
precipitation measurements that are recorded by ground stations. For areas
not containing a ground station, the precipitation can be estimated using
values observed at nearby ground stations.

Ignore the Missing Value during Analysis Many data mining approaches
can be modified to ignore missing values. For example, suppose that objects
are being clustered and the similarity between pairs of data objects needs to
be calculated. If one or both objects of a pair have missing values for some
attributes, then the similarity can be calculated by using only the attributes
that do not have missing values. It is true that the similarity will only be
approximate, but unless the total number of attributes is small or the number
of missing values is high, this degree of inaccuracy may not matter much.
Likewise, many classification schemes can be modified to work with missing
values.

Inconsistent Values

Data can contain inconsistent values. Consider an address field, where both a
zip code and city are listed, but the specified zip code area is not contained in
that city. It is possible that the individual entering this information transposed
two digits, or perhaps a digit was misread when the information was scanned
from a handwritten form. Regardless of the cause of the inconsistent values,
it is important to detect and, if possible, correct such problems.

Some types of inconsistences are easy to detect. For instance, a person’s
height should not be negative. In other cases, it can be necessary to consult
an external source of information. For example, when an insurance company
processes claims for reimbursement, it checks the names and addresses on the
reimbursement forms against a database of its customers.

Once an inconsistency has been detected, it is sometimes possible to correct
the data. A product code may have “check” digits, or it may be possible to

�

M02 TAN9224 02 GE C02 page 68

� �

�

68 Chapter 2 Data

double-check a product code against a list of known product codes, and then
correct the code if it is incorrect, but close to a known code. The correction
of an inconsistency requires additional or redundant information.

Example 2.6 (Inconsistent Sea Surface Temperature). This example illus-
trates an inconsistency in actual time series data that measures the sea surface
temperature (SST) at various points on the ocean. SST data was originally
collected using ocean-based measurements from ships or buoys, but more
recently, satellites have been used to gather the data. To create a long-term
data set, both sources of data must be used. However, because the data comes
from different sources, the two parts of the data are subtly different. This
discrepancy is visually displayed in Figure 2.7, which shows the correlation of
SST values between pairs of years. If a pair of years has a positive correlation,
then the location corresponding to the pair of years is colored white; otherwise
it is colored black. (Seasonal variations were removed from the data since,
otherwise, all the years would be highly correlated.) There is a distinct change
in behavior where the data has been put together in 1983. Years within each of
the two groups, 1958–1982 and 1983–1999, tend to have a positive correlation
with one another, but a negative correlation with years in the other group.
This does not mean that this data should not be used, only that the analyst
should consider the potential impact of such discrepancies on the data mining
analysis.

Duplicate Data

A data set can include data objects that are duplicates, or almost duplicates,
of one another. Many people receive duplicate mailings because they appear
in a database multiple times under slightly different names. To detect and
eliminate such duplicates, two main issues must be addressed. First, if there
are two objects that actually represent a single object, then one or more
values of corresponding attributes are usually different, and these inconsistent
values must be resolved. Second, care needs to be taken to avoid accidentally
combining data objects that are similar, but not duplicates, such as two
distinct people with identical names. The term deduplication is often used
to refer to the process of dealing with these issues.

In some cases, two or more objects are identical with respect to the at-
tributes measured by the database, but they still represent different objects.
Here, the duplicates are legitimate, but can still cause problems for some
algorithms if the possibility of identical objects is not specifically accounted
for in their design. An example of this is given in Exercise 17 on page 128.

�

M02 TAN9224 02 GE C02 page 69

� �

�

2.2 Data Quality 69

60 65 70 75 80 85 90 95

Year

Ye
ar

60

65

70

75

80

85

90

95

Figure 2.7. Correlation of SST data between pairs of years. White areas indicate positive correlation.
Black areas indicate negative correlation.

2.2.2 Issues Related to Applications

Data quality issues can also be considered from an application viewpoint
as expressed by the statement “data is of high quality if it is suitable for
its intended use.” This approach to data quality has proven quite useful,
particularly in business and industry. A similar viewpoint is also present in
statistics and the experimental sciences, with their emphasis on the careful
design of experiments to collect the data relevant to a specific hypothesis. As
with quality issues at the measurement and data collection level, many issues
are specific to particular applications and fields. Again, we consider only a few
of the general issues.

Timeliness Some data starts to age as soon as it has been collected. In
particular, if the data provides a snapshot of some ongoing phenomenon
or process, such as the purchasing behavior of customers or web browsing
patterns, then this snapshot represents reality for only a limited time. If the
data is out of date, then so are the models and patterns that are based on it.

�

M02 TAN9224 02 GE C02 page 70

� �

�

70 Chapter 2 Data

Relevance The available data must contain the information necessary for
the application. Consider the task of building a model that predicts the
accident rate for drivers. If information about the age and gender of the driver
is omitted, then it is likely that the model will have limited accuracy unless
this information is indirectly available through other attributes.

Making sure that the objects in a data set are relevant is also challenging.
A common problem is sampling bias, which occurs when a sample does not
contain different types of objects in proportion to their actual occurrence in
the population. For example, survey data describes only those who respond to
the survey. (Other aspects of sampling are discussed further in Section 2.3.2.)
Because the results of a data analysis can reflect only the data that is present,
sampling bias will typically lead to erroneous results when applied to the
broader population.

Knowledge about the Data Ideally, data sets are accompanied by doc-
umentation that describes different aspects of the data; the quality of this
documentation can either aid or hinder the subsequent analysis. For example,
if the documentation identifies several attributes as being strongly related,
these attributes are likely to provide highly redundant information, and we
usually decide to keep just one. (Consider sales tax and purchase price.) If
the documentation is poor, however, and fails to tell us, for example, that
the missing values for a particular field are indicated with a -9999, then our
analysis of the data may be faulty. Other important characteristics are the
precision of the data, the type of features (nominal, ordinal, interval, ratio),
the scale of measurement (e.g., meters or feet for length), and the origin of
the data.

2.3 Data Preprocessing

In this section, we consider which preprocessing steps should be applied to
make the data more suitable for data mining. Data preprocessing is a broad
area and consists of a number of different strategies and techniques that are
interrelated in complex ways. We will present some of the most important
ideas and approaches, and try to point out the interrelationships among them.
Specifically, we will discuss the following topics:

• Aggregation
• Sampling
• Dimensionality reduction

�

M02 TAN9224 02 GE C02 page 71

� �

�

2.3 Data Preprocessing 71

• Feature subset selection
• Feature creation
• Discretization and binarization
• Variable transformation

Roughly speaking, these topics fall into two categories: selecting data
objects and attributes for the analysis or for creating/changing the attributes.
In both cases, the goal is to improve the data mining analysis with respect to
time, cost, and quality. Details are provided in the following sections.

A quick note about terminology: In the following, we sometimes use syn-
onyms for attribute, such as feature or variable, in order to follow common
usage.

2.3.1 Aggregation

Sometimes “less is more,” and this is the case with aggregation, the combin-
ing of two or more objects into a single object. Consider a data set consisting
of transactions (data objects) recording the daily sales of products in various
store locations (Minneapolis, Chicago, Paris, . . .) for different days over the
course of a year. See Table 2.4. One way to aggregate transactions for this data
set is to replace all the transactions of a single store with a single storewide
transaction. This reduces the hundreds or thousands of transactions that occur
daily at a specific store to a single daily transaction, and the number of data
objects per day is reduced to the number of stores.

An obvious issue is how an aggregate transaction is created; i.e., how the
values of each attribute are combined across all the records corresponding
to a particular location to create the aggregate transaction that represents
the sales of a single store or date. Quantitative attributes, such as price, are
typically aggregated by taking a sum or an average. A qualitative attribute,
such as item, can either be omitted or summarized in terms of a higher level
category, e.g., televisions versus electronics.

The data in Table 2.4 can also be viewed as a multidimensional array,
where each attribute is a dimension. From this viewpoint, aggregation is the
process of eliminating attributes, such as the type of item, or reducing the
number of values for a particular attribute; e.g., reducing the possible values
for date from 365 days to 12 months. This type of aggregation is commonly
used in Online Analytical Processing (OLAP). References to OLAP are given
in the Bibliographic Notes.

There are several motivations for aggregation. First, the smaller data
sets resulting from data reduction require less memory and processing time,

�

M02 TAN9224 02 GE C02 page 72

� �

�

72 Chapter 2 Data

Table 2.4. Data set containing information about customer purchases.

Transaction ID Item Store Location Date Price . . .
...

...
...

...
...

101123 Watch Chicago 09/06/04 $25.99 . . .
101123 Battery Chicago 09/06/04 $5.99 . . .
101124 Shoes Minneapolis 09/06/04 $75.00 . . .

...
...

...
...

...

and hence, aggregation often enables the use of more expensive data mining
algorithms. Second, aggregation can act as a change of scope or scale by
providing a high-level view of the data instead of a low-level view. In the
previous example, aggregating over store locations and months gives us a
monthly, per store view of the data instead of a daily, per item view. Finally,
the behavior of groups of objects or attributes is often more stable than that of
individual objects or attributes. This statement reflects the statistical fact that
aggregate quantities, such as averages or totals, have less variability than the
individual values being aggregated. For totals, the actual amount of variation
is larger than that of individual objects (on average), but the percentage of
the variation is smaller, while for means, the actual amount of variation is less
than that of individual objects (on average). A disadvantage of aggregation is
the potential loss of interesting details. In the store example, aggregating over
months loses information about which day of the week has the highest sales.

Example 2.7 (Australian Precipitation). This example is based on precipita-
tion in Australia from the period 1982–1993. Figure 2.8(a) shows a histogram
for the standard deviation of average monthly precipitation for 3,030 0.5◦ by
0.5◦ grid cells in Australia, while Figure 2.8(b) shows a histogram for the
standard deviation of the average yearly precipitation for the same locations.
The average yearly precipitation has less variability than the average monthly
precipitation. All precipitation measurements (and their standard deviations)
are in centimeters.

2.3.2 Sampling

Sampling is a commonly used approach for selecting a subset of the data
objects to be analyzed. In statistics, it has long been used for both the
preliminary investigation of the data and the final data analysis. Sampling
can also be very useful in data mining. However, the motivations for sampling

�

M02 TAN9224 02 GE C02 page 73

� �

�

2.3 Data Preprocessing 73

0 2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

120

140

160

180
N

um
be

r
of

 L
an

d
Lo

ca
tio

ns

Standard Deviation

(a) Histogram of standard deviation of
average monthly precipitation

0 1 2 3 4 5 6
0

50

100

150

N
um

be
r

of
 L

an
d

Lo
ca

tio
ns

Standard Deviation

(b) Histogram of standard deviation of
average yearly precipitation

Figure 2.8. Histograms of standard deviation for monthly and yearly precipitation in Australia for the
period 1982–1993.

in statistics and data mining are often different. Statisticians use sampling
because obtaining the entire set of data of interest is too expensive or time
consuming, while data miners usually sample because it is too computationally
expensive in terms of the memory or time required to process all the data. In
some cases, using a sampling algorithm can reduce the data size to the point
where a better, but more computationally expensive algorithm can be used.

The key principle for effective sampling is the following: Using a sample will
work almost as well as using the entire data set if the sample is representative.
In turn, a sample is representative if it has approximately the same
property (of interest) as the original set of data. If the mean (average) of
the data objects is the property of interest, then a sample is representative if
it has a mean that is close to that of the original data. Because sampling is a
statistical process, the representativeness of any particular sample will vary,
and the best that we can do is choose a sampling scheme that guarantees a
high probability of getting a representative sample. As discussed next, this
involves choosing the appropriate sample size and sampling technique.

Sampling Approaches

There are many sampling techniques, but only a few of the most basic ones
and their variations will be covered here. The simplest type of sampling is
simple random sampling. For this type of sampling, there is an equal

�

M02 TAN9224 02 GE C02 page 74

� �

�

74 Chapter 2 Data

probability of selecting any particular object. There are two variations on
random sampling (and other sampling techniques as well): (1) sampling
without replacement—as each object is selected, it is removed from the
set of all objects that together constitute the population, and (2) sampling
with replacement—objects are not removed from the population as they are
selected for the sample. In sampling with replacement, the same object can
be picked more than once. The samples produced by the two methods are not
much different when samples are relatively small compared to the data set size,
but sampling with replacement is simpler to analyze because the probability
of selecting any object remains constant during the sampling process.

When the population consists of different types of objects, with widely
different numbers of objects, simple random sampling can fail to adequately
represent those types of objects that are less frequent. This can cause prob-
lems when the analysis requires proper representation of all object types. For
example, when building classification models for rare classes, it is critical that
the rare classes be adequately represented in the sample. Hence, a sampling
scheme that can accommodate differing frequencies for the object types of
interest is needed. Stratified sampling, which starts with prespecified groups
of objects, is such an approach. In the simplest version, equal numbers of
objects are drawn from each group even though the groups are of different
sizes. In another variation, the number of objects drawn from each group is
proportional to the size of that group.

Example 2.8 (Sampling and Loss of Information). Once a sampling tech-
nique has been selected, it is still necessary to choose the sample size. Larger
sample sizes increase the probability that a sample will be representative,
but they also eliminate much of the advantage of sampling. Conversely, with
smaller sample sizes, patterns can be missed or erroneous patterns can be
detected. Figure 2.9(a) shows a data set that contains 8000 two-dimensional
points, while Figures 2.9(b) and 2.9(c) show samples from this data set of size
2000 and 500, respectively. Although most of the structure of this data set is
present in the sample of 2000 points, much of the structure is missing in the
sample of 500 points.

Example 2.9 (Determining the Proper Sample Size). To illustrate that de-
termining the proper sample size requires a methodical approach, consider the
following task.

Given a set of data consisting of a small number of almost equal-
sized groups, find at least one representative point for each of the
groups. Assume that the objects in each group are highly similar

�

M02 TAN9224 02 GE C02 page 75

� �

�

2.3 Data Preprocessing 75

(a) 8000 points (b) 2000 points (c) 500 points

Figure 2.9. Example of the loss of structure with sampling.

to each other, but not very similar to objects in different groups.
Figure 2.10(a) shows an idealized set of clusters (groups) from
which these points might be drawn.

This problem can be efficiently solved using sampling. One approach is to
take a small sample of data points, compute the pairwise similarities between
points, and then form groups of points that are highly similar. The desired
set of representative points is then obtained by taking one point from each of
these groups. To follow this approach, however, we need to determine a sample
size that would guarantee, with a high probability, the desired outcome; that
is, that at least one point will be obtained from each cluster. Figure 2.10(b)
shows the probability of getting one object from each of the 10 groups as the
sample size runs from 10 to 60. Interestingly, with a sample size of 20, there is
little chance (20%) of getting a sample that includes all 10 clusters. Even with
a sample size of 30, there is still a moderate chance (almost 40%) of getting a
sample that doesn’t contain objects from all 10 clusters. This issue is further
explored in the context of clustering by Exercise 4 on page 126.

Progressive Sampling

The proper sample size can be difficult to determine, so adaptive or progres-
sive sampling schemes are sometimes used. These approaches start with a
small sample, and then increase the sample size until a sample of sufficient
size has been obtained. While this technique eliminates the need to determine

�

M02 TAN9224 02 GE C02 page 76

� �

�

76 Chapter 2 Data

(a) Ten groups of points.

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

Sample Size

P
ro

ba
bi

lit
y

(b) Probability a sample contains points
from each of 10 groups.

Figure 2.10. Finding representative points from 10 groups.

the correct sample size initially, it requires that there be a way to evaluate the
sample to judge if it is large enough.

Suppose, for instance, that progressive sampling is used to learn a pre-
dictive model. Although the accuracy of predictive models increases as the
sample size increases, at some point the increase in accuracy levels off. We
want to stop increasing the sample size at this leveling-off point. By keeping
track of the change in accuracy of the model as we take progressively larger
samples, and by taking other samples close to the size of the current one, we
can get an estimate of how close we are to this leveling-off point, and thus,
stop sampling.

2.3.3 Dimensionality Reduction

Data sets can have a large number of features. Consider a set of documents,
where each document is represented by a vector whose components are the
frequencies with which each word occurs in the document. In such cases, there
are typically thousands or tens of thousands of attributes (components), one
for each word in the vocabulary. As another example, consider a set of time
series consisting of the daily closing price of various stocks over a period of 30
years. In this case, the attributes, which are the prices on specific days, again
number in the thousands.

�

M02 TAN9224 02 GE C02 page 77

� �

�

2.3 Data Preprocessing 77

There are a variety of benefits to dimensionality reduction. A key benefit
is that many data mining algorithms work better if the dimensionality—the
number of attributes in the data—is lower. This is partly because dimension-
ality reduction can eliminate irrelevant features and reduce noise and partly
because of the curse of dimensionality, which is explained below. Another
benefit is that a reduction of dimensionality can lead to a more understandable
model because the model usually involves fewer attributes. Also, dimension-
ality reduction may allow the data to be more easily visualized. Even if
dimensionality reduction doesn’t reduce the data to two or three dimensions,
data is often visualized by looking at pairs or triplets of attributes, and the
number of such combinations is greatly reduced. Finally, the amount of time
and memory required by the data mining algorithm is reduced with a reduction
in dimensionality.

The term dimensionality reduction is often reserved for those techniques
that reduce the dimensionality of a data set by creating new attributes that
are a combination of the old attributes. The reduction of dimensionality by
selecting attributes that are a subset of the old is known as feature subset
selection or feature selection. It will be discussed in Section 2.3.4.

In the remainder of this section, we briefly introduce two important topics:
the curse of dimensionality and dimensionality reduction techniques based on
linear algebra approaches such as principal components analysis (PCA). More
details on dimensionality reduction can be found in Appendix B.

The Curse of Dimensionality

The curse of dimensionality refers to the phenomenon that many types of
data analysis become significantly harder as the dimensionality of the data in-
creases. Specifically, as dimensionality increases, the data becomes increasingly
sparse in the space that it occupies. Thus, the data objects we observe are quite
possibly not a representative sample of all possible objects. For classification,
this can mean that there are not enough data objects to allow the creation of
a model that reliably assigns a class to all possible objects. For clustering, the
differences in density and in the distances between points, which are critical for
clustering, become less meaningful. (This is discussed further in Sections 8.1.2,
8.4.6, and 8.4.8.) As a result, many clustering and classification algorithms
(and other data analysis algorithms) have trouble with high-dimensional data
leading to reduced classification accuracy and poor quality clusters.

�

M02 TAN9224 02 GE C02 page 78

� �

�

78 Chapter 2 Data

Linear Algebra Techniques for Dimensionality Reduction

Some of the most common approaches for dimensionality reduction, partic-
ularly for continuous data, use techniques from linear algebra to project the
data from a high-dimensional space into a lower-dimensional space. Principal
Components Analysis (PCA) is a linear algebra technique for continuous
attributes that finds new attributes (principal components) that (1) are linear
combinations of the original attributes, (2) are orthogonal (perpendicular) to
each other, and (3) capture the maximum amount of variation in the data. For
example, the first two principal components capture as much of the variation
in the data as is possible with two orthogonal attributes that are linear combi-
nations of the original attributes. Singular Value Decomposition (SVD)
is a linear algebra technique that is related to PCA and is also commonly used
for dimensionality reduction. For additional details, see Appendices A and B.

2.3.4 Feature Subset Selection

Another way to reduce the dimensionality is to use only a subset of the
features. While it might seem that such an approach would lose informa-
tion, this is not the case if redundant and irrelevant features are present.
Redundant features duplicate much or all of the information contained in
one or more other attributes. For example, the purchase price of a product
and the amount of sales tax paid contain much of the same information.
Irrelevant features contain almost no useful information for the data mining
task at hand. For instance, students’ ID numbers are irrelevant to the task of
predicting students’ grade point averages. Redundant and irrelevant features
can reduce classification accuracy and the quality of the clusters that are
found.

While some irrelevant and redundant attributes can be eliminated imme-
diately by using common sense or domain knowledge, selecting the best subset
of features frequently requires a systematic approach. The ideal approach to
feature selection is to try all possible subsets of features as input to the data
mining algorithm of interest, and then take the subset that produces the best
results. This method has the advantage of reflecting the objective and bias
of the data mining algorithm that will eventually be used. Unfortunately,
since the number of subsets involving n attributes is 2n, such an approach is
impractical in most situations and alternative strategies are needed. There are
three standard approaches to feature selection: embedded, filter, and wrapper.

�

M02 TAN9224 02 GE C02 page 79

� �

�

2.3 Data Preprocessing 79

Embedded approaches Feature selection occurs naturally as part of the
data mining algorithm. Specifically, during the operation of the data mining
algorithm, the algorithm itself decides which attributes to use and which to
ignore. Algorithms for building decision tree classifiers, which are discussed in
Chapter 3, often operate in this manner.

Filter approaches Features are selected before the data mining algorithm
is run, using some approach that is independent of the data mining task. For
example, we might select sets of attributes whose pairwise correlation is as
low as possible so that the attributes are non-redundant.

Wrapper approaches These methods use the target data mining algorithm
as a black box to find the best subset of attributes, in a way similar to that
of the ideal algorithm described above, but typically without enumerating all
possible subsets.

Because the embedded approaches are algorithm-specific, only the filter
and wrapper approaches will be discussed further here.

An Architecture for Feature Subset Selection

It is possible to encompass both the filter and wrapper approaches within
a common architecture. The feature selection process is viewed as consist-
ing of four parts: a measure for evaluating a subset, a search strategy that
controls the generation of a new subset of features, a stopping criterion, and
a validation procedure. Filter methods and wrapper methods differ only in
the way in which they evaluate a subset of features. For a wrapper method,
subset evaluation uses the target data mining algorithm, while for a filter
approach, the evaluation technique is distinct from the target data mining
algorithm. The following discussion provides some details of this approach,
which is summarized in Figure 2.11.

Conceptually, feature subset selection is a search over all possible subsets
of features. Many different types of search strategies can be used, but the
search strategy should be computationally inexpensive and should find optimal
or near optimal sets of features. It is usually not possible to satisfy both
requirements, and thus, trade-offs are necessary.

An integral part of the search is an evaluation step to judge how the
current subset of features compares to others that have been considered. This
requires an evaluation measure that attempts to determine the goodness of
a subset of attributes with respect to a particular data mining task, such as

�

M02 TAN9224 02 GE C02 page 80

� �

�

80 Chapter 2 Data

Search
Strategy

Stopping
Criterion

Selected
Attributes

Attributes

Validation
Procedure

Subset of
Attributes

Evaluation
Done

Not
Done

Figure 2.11. Flowchart of a feature subset selection process.

classification or clustering. For the filter approach, such measures attempt to
predict how well the actual data mining algorithm will perform on a given set
of attributes. For the wrapper approach, where evaluation consists of actually
running the target data mining algorithm, the subset evaluation function is
simply the criterion normally used to measure the result of the data mining.

Because the number of subsets can be enormous and it is impractical to
examine them all, some sort of stopping criterion is necessary. This strategy is
usually based on one or more conditions involving the following: the number
of iterations, whether the value of the subset evaluation measure is optimal
or exceeds a certain threshold, whether a subset of a certain size has been ob-
tained, and whether any improvement can be achieved by the options available
to the search strategy.

Finally, once a subset of features has been selected, the results of the
target data mining algorithm on the selected subset should be validated. A
straightforward validation approach is to run the algorithm with the full set
of features and compare the full results to results obtained using the subset of
features. Hopefully, the subset of features will produce results that are better
than or almost as good as those produced when using all features. Another
validation approach is to use a number of different feature selection algorithms
to obtain subsets of features and then compare the results of running the data
mining algorithm on each subset.

�

M02 TAN9224 02 GE C02 page 81

� �

�

2.3 Data Preprocessing 81

Feature Weighting

Feature weighting is an alternative to keeping or eliminating features. More
important features are assigned a higher weight, while less important features
are given a lower weight. These weights are sometimes assigned based on do-
main knowledge about the relative importance of features. Alternatively, they
can sometimes be determined automatically. For example, some classification
schemes, such as support vector machines (Chapter 6), produce classification
models in which each feature is given a weight. Features with larger weights
play a more important role in the model. The normalization of objects that
takes place when computing the cosine similarity (Section 2.4.5) can also be
regarded as a type of feature weighting.

2.3.5 Feature Creation

It is frequently possible to create, from the original attributes, a new set of
attributes that captures the important information in a data set much more
effectively. Furthermore, the number of new attributes can be smaller than the
number of original attributes, allowing us to reap all the previously described
benefits of dimensionality reduction. Two related methodologies for creating
new attributes are described next: feature extraction and mapping the data
to a new space.

Feature Extraction

The creation of a new set of features from the original raw data is known as
feature extraction. Consider a set of photographs, where each photograph
is to be classified according to whether it contains a human face. The raw data
is a set of pixels, and as such, is not suitable for many types of classification
algorithms. However, if the data is processed to provide higher-level features,
such as the presence or absence of certain types of edges and areas that are
highly correlated with the presence of human faces, then a much broader set
of classification techniques can be applied to this problem.

Unfortunately, in the sense in which it is most commonly used, feature
extraction is highly domain-specific. For a particular field, such as image
processing, various features and the techniques to extract them have been
developed over a period of time, and often these techniques have limited
applicability to other fields. Consequently, whenever data mining is applied
to a relatively new area, a key task is the development of new features and
feature extraction methods.

�

M02 TAN9224 02 GE C02 page 82

� �

�

82 Chapter 2 Data

Although feature extraction is often complicated, Example 2.10 illustrates
that it can be relatively straightforward.

Example 2.10 (Density). Consider a data set consisting of information about
historical artifacts, which, along with other information, contains the volume
and mass of each artifact. For simplicity, assume that these artifacts are made
of a small number of materials (wood, clay, bronze, gold) and that we want to
classify the artifacts with respect to the material of which they are made. In
this case, a density feature constructed from the mass and volume features, i.e.,
density = mass/volume, would most directly yield an accurate classification.
Although there have been some attempts to automatically perform such simple
feature extraction by exploring basic mathematical combinations of existing
attributes, the most common approach is to construct features using domain
expertise.

Mapping the Data to a New Space

A totally different view of the data can reveal important and interesting
features. Consider, for example, time series data, which often contains periodic
patterns. If there is only a single periodic pattern and not much noise, then
the pattern is easily detected. If, on the other hand, there are a number of
periodic patterns and a significant amount of noise, then these patterns are
hard to detect. Such patterns can, nonetheless, often be detected by applying a
Fourier transform to the time series in order to change to a representation
in which frequency information is explicit. In Example 2.11, it will not be
necessary to know the details of the Fourier transform. It is enough to know
that, for each time series, the Fourier transform produces a new data object
whose attributes are related to frequencies.

Example 2.11 (Fourier Analysis). The time series presented in Figure 2.12(b)
is the sum of three other time series, two of which are shown in Figure 2.12(a)
and have frequencies of 7 and 17 cycles per second, respectively. The third
time series is random noise. Figure 2.12(c) shows the power spectrum that
can be computed after applying a Fourier transform to the original time series.
(Informally, the power spectrum is proportional to the square of each frequency
attribute.) In spite of the noise, there are two peaks that correspond to the
periods of the two original, non-noisy time series. Again, the main point is
that better features can reveal important aspects of the data.

�

M02 TAN9224 02 GE C02 page 83

� �

�

2.3 Data Preprocessing 83

0 0.2 0.4 0.6 0.8 1
1

0.5

0

0.5

1

Time (seconds)

(a) Two time series.

0 0.2 0.4 0.6 0.8 1
15

10

5

0

5

10

15

Time (seconds)

(b) Noisy time series.

0 10 20 30 40 50 60 70 80 90
0

50

100

150

200

250

300

Frequency

(c) Power spectrum.

Figure 2.12. Application of the Fourier transform to identify the underlying frequencies in time series
data.

Many other sorts of transformations are also possible. Besides the Fourier
transform, the wavelet transform has also proven very useful for time series
and other types of data.

2.3.6 Discretization and Binarization

Some data mining algorithms, especially certain classification algorithms, re-
quire that the data be in the form of categorical attributes. Algorithms that
find association patterns require that the data be in the form of binary at-
tributes. Thus, it is often necessary to transform a continuous attribute into
a categorical attribute (discretization), and both continuous and discrete
attributes may need to be transformed into one or more binary attributes
(binarization). Additionally, if a categorical attribute has a large number of
values (categories), or some values occur infrequently, then it can be beneficial
for certain data mining tasks to reduce the number of categories by combining
some of the values.

As with feature selection, the best discretization or binarization approach
is the one that “produces the best result for the data mining algorithm that
will be used to analyze the data.” It is typically not practical to apply such
a criterion directly. Consequently, discretization or binarization is performed
in a way that satisfies a criterion that is thought to have a relationship to
good performance for the data mining task being considered. In general, the
best discretization depends on the algorithm being used, as well as the other

�

M02 TAN9224 02 GE C02 page 84

� �

�

84 Chapter 2 Data

Table 2.5. Conversion of a categorical attribute to three binary attributes.

Categorical Value Integer Value x1 x2 x3

awful 0 0 0 0
poor 1 0 0 1
OK 2 0 1 0
good 3 0 1 1
great 4 1 0 0

Table 2.6. Conversion of a categorical attribute to five asymmetric binary attributes.

Categorical Value Integer Value x1 x2 x3 x4 x5

awful 0 1 0 0 0 0
poor 1 0 1 0 0 0
OK 2 0 0 1 0 0
good 3 0 0 0 1 0
great 4 0 0 0 0 1

attributes being considered. Typically, however, the discretization of each
attribute is considered in isolation.

Binarization

A simple technique to binarize a categorical attribute is the following: If
there are m categorical values, then uniquely assign each original value to
an integer in the interval [0,m − 1]. If the attribute is ordinal, then order
must be maintained by the assignment. (Note that even if the attribute is
originally represented using integers, this process is necessary if the integers
are not in the interval [0,m − 1].) Next, convert each of these m integers to
a binary number. Since n = �log2(m)� binary digits are required to represent
these integers, represent these binary numbers using n binary attributes. To
illustrate, a categorical variable with 5 values {awful, poor, OK, good, great}
would require three binary variables x1, x2, and x3. The conversion is shown
in Table 2.5.

Such a transformation can cause complications, such as creating unin-
tended relationships among the transformed attributes. For example, in Table
2.5, attributes x2 and x3 are correlated because information about the good
value is encoded using both attributes. Furthermore, association analysis re-
quires asymmetric binary attributes, where only the presence of the attribute
(value = 1) is important. For association problems, it is therefore necessary
to introduce one asymmetric binary attribute for each categorical value, as

�

M02 TAN9224 02 GE C02 page 85

� �

�

2.3 Data Preprocessing 85

shown in Table 2.6. If the number of resulting attributes is too large, then
the techniques described in the following sections can be used to reduce the
number of categorical values before binarization.

Likewise, for association problems, it can be necessary to replace a single
binary attribute with two asymmetric binary attributes. Consider a binary
attribute that records a person’s gender, male or female. For traditional as-
sociation rule algorithms, this information needs to be transformed into two
asymmetric binary attributes, one that is a 1 only when the person is male
and one that is a 1 only when the person is female. (For asymmetric binary
attributes, the information representation is somewhat inefficient in that two
bits of storage are required to represent each bit of information.)

Discretization of Continuous Attributes

Discretization is typically applied to attributes that are used in classification or
association analysis. Transformation of a continuous attribute to a categorical
attribute involves two subtasks: deciding how many categories, n, to have
and determining how to map the values of the continuous attribute to these
categories. In the first step, after the values of the continuous attribute are
sorted, they are then divided into n intervals by specifying n−1 split points.
In the second, rather trivial step, all the values in one interval are mapped to
the same categorical value. Therefore, the problem of discretization is one of
deciding how many split points to choose and where to place them. The result
can be represented either as a set of intervals {(x0, x1], (x1, x2], . . . , (xn−1, xn)},
where x0 and xn can be +∞ or −∞, respectively, or equivalently, as a series
of inequalities x0 < x ≤ x1, . . . , xn−1 < x < xn.

Unsupervised Discretization A basic distinction between discretization
methods for classification is whether class information is used (supervised)
or not (unsupervised). If class information is not used, then relatively simple
approaches are common. For instance, the equal width approach divides the
range of the attribute into a user-specified number of intervals each having the
same width. Such an approach can be badly affected by outliers, and for that
reason, an equal frequency (equal depth) approach, which tries to put
the same number of objects into each interval, is often preferred. As another
example of unsupervised discretization, a clustering method, such as K-means
(see Chapter 5), can also be used. Finally, visually inspecting the data can
sometimes be an effective approach.

�

M02 TAN9224 02 GE C02 page 86

� �

�

86 Chapter 2 Data

Example 2.12 (Discretization Techniques). This example demonstrates how
these approaches work on an actual data set. Figure 2.13(a) shows data points
belonging to four different groups, along with two outliers—the large dots on
either end. The techniques of the previous paragraph were applied to discretize
the x values of these data points into four categorical values. (Points in the
data set have a random y component to make it easy to see how many points
are in each group.) Visually inspecting the data works quite well, but is not
automatic, and thus, we focus on the other three approaches. The split points
produced by the techniques equal width, equal frequency, and K-means are
shown in Figures 2.13(b), 2.13(c), and 2.13(d), respectively. The split points
are represented as dashed lines.

In this particular example, if we measure the performance of a discretiza-
tion technique by the extent to which different objects that clump together
have the same categorical value, then K-means performs best, followed by
equal frequency, and finally, equal width. More generally, the best discretiza-
tion will depend on the application and often involves domain-specific dis-
cretization. For example, the discretization of people into low income, middle
income, and high income is based on economic factors.

Supervised Discretization If classification is our application and class
labels are known for some data objects, then discretization approaches that use
class labels often produce better classification. This should not be surprising,
since an interval constructed with no knowledge of class labels often contains
a mixture of class labels. A conceptually simple approach is to place the splits
in a way that maximizes the purity of the intervals, i.e., the extent to which an
interval contains a single class label. In practice, however, such an approach
requires potentially arbitrary decisions about the purity of an interval and the
minimum size of an interval.

To overcome such concerns, some statistically based approaches start with
each attribute value in a separate interval and create larger intervals by
merging adjacent intervals that are similar according to a statistical test. An
alternative to this bottom-up approach is a top-down approach that starts by
bisecting the initial values so that the resulting two intervals give minimum
entropy. This technique only needs to consider each value as a possible split
point, because it is assumed that intervals contain ordered sets of values. The
splitting process is then repeated with another interval, typically choosing
the interval with the worst (highest) entropy, until a user-specified number of
intervals is reached, or a stopping criterion is satisfied.

�

M02 TAN9224 02 GE C02 page 87

� �

�

2.3 Data Preprocessing 87

0 5 10 15 20

(a) Original data.

0 5 10 15 20

(b) Equal width discretization.

0 5 10 15 20

(c) Equal frequency discretization.

0 5 10 15 20

(d) K-means discretization.

Figure 2.13. Different discretization techniques.

Entropy-based approaches are one of the most promising approaches to
discretization, whether bottom-up or top-down. First, it is necessary to define
entropy. Let k be the number of different class labels, mi be the number of
values in the ith interval of a partition, and mij be the number of values of
class j in interval i. Then the entropy ei of the ith interval is given by the
equation

�

M02 TAN9224 02 GE C02 page 88

� �

�

88 Chapter 2 Data

ei = −
k∑

j=1

pij log2 pij ,

where pij = mij/mi is the probability (fraction of values) of class j in the ith

interval. The total entropy, e, of the partition is the weighted average of the
individual interval entropies, i.e.,

e =
n∑

i=1

wiei,

where m is the number of values, wi = mi/m is the fraction of values in the ith

interval, and n is the number of intervals. Intuitively, the entropy of an interval
is a measure of the purity of an interval. If an interval contains only values of
one class (is perfectly pure), then the entropy is 0 and it contributes nothing
to the overall entropy. If the classes of values in an interval occur equally often
(the interval is as impure as possible), then the entropy is a maximum.

Example 2.13 (Discretization of Two Attributes). The top-down method
based on entropy was used to independently discretize both the x and y
attributes of the two-dimensional data shown in Figure 2.14. In the first
discretization, shown in Figure 2.14(a), the x and y attributes were both split
into three intervals. (The dashed lines indicate the split points.) In the second
discretization, shown in Figure 2.14(b), the x and y attributes were both split
into five intervals.

This simple example illustrates two aspects of discretization. First, in two
dimensions, the classes of points are well separated, but in one dimension, this
is not so. In general, discretizing each attribute separately often guarantees
suboptimal results. Second, five intervals work better than three, but six
intervals do not improve the discretization much, at least in terms of entropy.
(Entropy values and results for six intervals are not shown.) Consequently,
it is desirable to have a stopping criterion that automatically finds the right
number of partitions.

Categorical Attributes with Too Many Values

Categorical attributes can sometimes have too many values. If the categorical
attribute is an ordinal attribute, then techniques similar to those for con-
tinuous attributes can be used to reduce the number of categories. If the
categorical attribute is nominal, however, then other approaches are needed.
Consider a university that has a large number of departments. Consequently,

�

M02 TAN9224 02 GE C02 page 89

� �

�

2.3 Data Preprocessing 89

0 1 2 3 4 5
0

1

2

3

4

5

x

y

(a) Three intervals

0 1 2 3 4 5
0

1

2

3

4

5

x

y

(b) Five intervals

Figure 2.14. Discretizing x and y attributes for four groups (classes) of points.

a department name attribute might have dozens of different values. In this
situation, we could use our knowledge of the relationships among different
departments to combine departments into larger groups, such as engineering,
social sciences, or biological sciences. If domain knowledge does not serve as
a useful guide or such an approach results in poor classification performance,
then it is necessary to use a more empirical approach, such as grouping values
together only if such a grouping results in improved classification accuracy or
achieves some other data mining objective.

2.3.7 Variable Transformation

A variable transformation refers to a transformation that is applied to
all the values of a variable. (We use the term variable instead of attribute
to adhere to common usage, although we will also refer to attribute trans-
formation on occasion.) In other words, for each object, the transformation
is applied to the value of the variable for that object. For example, if only
the magnitude of a variable is important, then the values of the variable
can be transformed by taking the absolute value. In the following section,
we discuss two important types of variable transformations: simple functional
transformations and normalization.

�

M02 TAN9224 02 GE C02 page 90

� �

�

90 Chapter 2 Data

Simple Functions

For this type of variable transformation, a simple mathematical function is
applied to each value individually. If x is a variable, then examples of such
transformations include xk, log x, ex,

√
x, 1/x, sinx, or |x|. In statistics, vari-

able transformations, especially sqrt, log, and 1/x, are often used to transform
data that does not have a Gaussian (normal) distribution into data that
does. While this can be important, other reasons often take precedence in
data mining. Suppose the variable of interest is the number of data bytes
in a session, and the number of bytes ranges from 1 to 1 billion. This is
a huge range, and it can be advantageous to compress it by using a log10

transformation. In this case, sessions that transferred 108 and 109 bytes would
be more similar to each other than sessions that transferred 10 and 1000 bytes
(9− 8 = 1 versus 3− 1 = 2). For some applications, such as network intrusion
detection, this may be what is desired, since the first two sessions most likely
represent transfers of large files, while the latter two sessions could be two
quite distinct types of sessions.

Variable transformations should be applied with caution because they
change the nature of the data. While this is what is desired, there can be
problems if the nature of the transformation is not fully appreciated. For
instance, the transformation 1/x reduces the magnitude of values that are 1
or larger, but increases the magnitude of values between 0 and 1. To illustrate,
the values {1, 2, 3} go to {1, 1

2 ,
1
3}, but the values {1, 1

2 ,
1
3} go to {1, 2, 3}. Thus,

for all sets of values, the transformation 1/x reverses the order. To help clarify
the effect of a transformation, it is important to ask questions such as the
following: What is the desired property of the transformed attribute? Does
the order need to be maintained? Does the transformation apply to all values,
especially negative values and 0? What is the effect of the transformation on
the values between 0 and 1? Exercise 21 on page 129 explores other aspects
of variable transformation.

Normalization or Standardization

The goal of standardization or normalization is to make an entire set of values
have a particular property. A traditional example is that of “standardizing
a variable” in statistics. If x is the mean (average) of the attribute values
and sx is their standard deviation, then the transformation x′ = (x − x)/sx

creates a new variable that has a mean of 0 and a standard deviation of 1.
If different variables are to be used together, e.g., for clustering, then such a
transformation is often necessary to avoid having a variable with large values

�

M02 TAN9224 02 GE C02 page 91

� �

�

2.4 Measures of Similarity and Dissimilarity 91

dominate the results of the analysis. To illustrate, consider comparing people
based on two variables: age and income. For any two people, the difference in
income will likely be much higher in absolute terms (hundreds or thousands of
dollars) than the difference in age (less than 150). If the differences in the range
of values of age and income are not taken into account, then the comparison
between people will be dominated by differences in income. In particular, if
the similarity or dissimilarity of two people is calculated using the similarity or
dissimilarity measures defined later in this chapter, then in many cases, such
as that of Euclidean distance, the income values will dominate the calculation.

The mean and standard deviation are strongly affected by outliers, so the
above transformation is often modified. First, the mean is replaced by the
median, i.e., the middle value. Second, the standard deviation is replaced by
the absolute standard deviation. Specifically, if x is a variable, then the
absolute standard deviation of x is given by σA =

∑m
i=1 |xi − μ|, where xi is

the ith value of the variable, m is the number of objects, and μ is either the
mean or median. Other approaches for computing estimates of the location
(center) and spread of a set of values in the presence of outliers are described
in statistics books. These more robust measures can also be used to define a
standardization transformation.

2.4 Measures of Similarity and Dissimilarity

Similarity and dissimilarity are important because they are used by a number
of data mining techniques, such as clustering, nearest neighbor classification,
and anomaly detection. In many cases, the initial data set is not needed
once these similarities or dissimilarities have been computed. Such approaches
can be viewed as transforming the data to a similarity (dissimilarity) space
and then performing the analysis. Indeed, kernel methods are a powerful
realization of this idea. These methods are introduced in Section 2.4.7 and are
discussed more fully in the context of classification in Section 6.9.4.

We begin with a discussion of the basics: high-level definitions of similarity
and dissimilarity, and a discussion of how they are related. For convenience,
the term proximity is used to refer to either similarity or dissimilarity. Since
the proximity between two objects is a function of the proximity between the
corresponding attributes of the two objects, we first describe how to measure
the proximity between objects having only one attribute.

We then consider proximity measures for objects with multiple attributes.
This includes measures such as the Jaccard and cosine similarity measures,
which are useful for sparse data, such as documents, as well as correlation

�

M02 TAN9224 02 GE C02 page 92

� �

�

92 Chapter 2 Data

and Euclidean distance, which are useful for non-sparse (dense) data, such as
time series or multi-dimensional points. We also consider mutual information,
which can be applied to many types of data and is good for detecting nonlinear
relationships. In this discussion, we restrict ourselves to objects with relatively
homogeneous attribute types, typically binary or continuous.

Next, we consider several important issues concerning proximity measures.
This includes how to compute proximity between objects when they have
heterogeneous types of attributes, and approaches to account for differences
of scale and correlation among variables when computing distance between
numerical objects. The section concludes with a brief discussion of how to
select the right proximity measure.

Although this section focuses on the computation of proximity between
data objects, proximity can also be computed between attributes. For example,
for the document-term matrix of Figure 2.2(d), the cosine measure can be
used to compute similarity between a pair of documents or a pair of terms
(words). Knowing that two variables are strongly related can, for example, be
helpful for eliminating redundancy. In particular, the correlation and mutual
information measures discussed later are often used for that purpose.

2.4.1 Basics

Definitions

Informally, the similarity between two objects is a numerical measure of the
degree to which the two objects are alike. Consequently, similarities are higher
for pairs of objects that are more alike. Similarities are usually non-negative
and are often between 0 (no similarity) and 1 (complete similarity).

The dissimilarity between two objects is a numerical measure of the
degree to which the two objects are different. Dissimilarities are lower for
more similar pairs of objects. Frequently, the term distance is used as a
synonym for dissimilarity, although, as we shall see, distance often refers to
a special class of dissimilarities. Dissimilarities sometimes fall in the interval
[0, 1], but it is also common for them to range from 0 to ∞.

Transformations

Transformations are often applied to convert a similarity to a dissimilarity,
or vice versa, or to transform a proximity measure to fall within a particular
range, such as [0,1]. For instance, we may have similarities that range from 1
to 10, but the particular algorithm or software package that we want to use
may be designed to work only with dissimilarities, or it may work only with

�

M02 TAN9224 02 GE C02 page 93

� �

�

2.4 Measures of Similarity and Dissimilarity 93

similarities in the interval [0,1]. We discuss these issues here because we will
employ such transformations later in our discussion of proximity. In addition,
these issues are relatively independent of the details of specific proximity
measures.

Frequently, proximity measures, especially similarities, are defined or trans-
formed to have values in the interval [0,1]. Informally, the motivation for this is
to use a scale in which a proximity value indicates the fraction of similarity (or
dissimilarity) between two objects. Such a transformation is often relatively
straightforward. For example, if the similarities between objects range from 1
(not at all similar) to 10 (completely similar), we can make them fall within
the range [0, 1] by using the transformation s′ = (s − 1)/9, where s and s′

are the original and new similarity values, respectively. In the more general
case, the transformation of similarities to the interval [0, 1] is given by the
expression s′ = (s−min s)/(max s−min s), where max s and min s are the
maximum and minimum similarity values, respectively. Likewise, dissimilarity
measures with a finite range can be mapped to the interval [0,1] by using the
formula d′ = (d − min d)/(max d − min d). This is an example of a linear
transformation, which preserves the relative distances between points. In other
words, if points, x1 and x2, are twice as far apart as points, x3 and x4, the
same will be true after a linear transformation.

However, there can be complications in mapping proximity measures to
the interval [0, 1] using a linear transformation. If, for example, the proximity
measure originally takes values in the interval [0,∞], then max d is not defined
and a nonlinear transformation is needed. Values will not have the same
relationship to one another on the new scale. Consider the transformation
d′ = d/(1 + d) for a dissimilarity measure that ranges from 0 to ∞. The
dissimilarities 0, 0.5, 2, 10, 100, and 1000 will be transformed into the new
dissimilarities 0, 0.33, 0.67, 0.90, 0.99, and 0.999, respectively. Larger values
on the original dissimilarity scale are compressed into the range of values near
1, but whether this is desirable depends on the application.

Note that mapping proximity measures to the interval [0, 1] can also change
the meaning of the proximity measure. For example, correlation, which is
discussed later, is a measure of similarity that takes values in the interval
[−1, 1]. Mapping these values to the interval [0,1] by taking the absolute value
loses information about the sign, which can be important in some applications.
See Exercise 27 on page 131.

Transforming similarities to dissimilarities and vice versa is also relatively
straightforward, although we again face the issues of preserving meaning and
changing a linear scale into a nonlinear scale. If the similarity (or dissimilarity)
falls in the interval [0,1], then the dissimilarity can be defined as d = 1 − s

�

M02 TAN9224 02 GE C02 page 94

� �

�

94 Chapter 2 Data

(s = 1− d). Another simple approach is to define similarity as the negative of
the dissimilarity (or vice versa). To illustrate, the dissimilarities 0, 1, 10, and
100 can be transformed into the similarities 0,−1,−10, and−100, respectively.

The similarities resulting from the negation transformation are not re-
stricted to the range [0, 1], but if that is desired, then transformations such as
s = 1

d+1 , s = e−d, or s = 1− d−min d
max d−min d can be used. For the transformation

s = 1
d+1 , the dissimilarities 0, 1, 10, 100 are transformed into 1, 0.5, 0.09,

0.01, respectively. For s = e−d, they become 1.00, 0.37, 0.00, 0.00, respectively,
while for s = 1− d−min d

max d−min d they become 1.00, 0.99, 0.90, 0.00, respectively.
In this discussion, we have focused on converting dissimilarities to similarities.
Conversion in the opposite direction is considered in Exercise 28 on page 131.

In general, any monotonic decreasing function can be used to convert
dissimilarities to similarities, or vice versa. Of course, other factors also must
be considered when transforming similarities to dissimilarities, or vice versa,
or when transforming the values of a proximity measure to a new scale. We
have mentioned issues related to preserving meaning, distortion of scale, and
requirements of data analysis tools, but this list is certainly not exhaustive.

2.4.2 Similarity and Dissimilarity between Simple Attributes

The proximity of objects with a number of attributes is typically defined
by combining the proximities of individual attributes, and thus, we first dis-
cuss proximity between objects having a single attribute. Consider objects
described by one nominal attribute. What would it mean for two such objects
to be similar? Because nominal attributes convey only information about the
distinctness of objects, all we can say is that two objects either have the same
value or they do not. Hence, in this case similarity is traditionally defined as 1
if attribute values match, and as 0 otherwise. A dissimilarity would be defined
in the opposite way: 0 if the attribute values match, and 1 if they do not.

For objects with a single ordinal attribute, the situation is more compli-
cated because information about order should be taken into account. Con-
sider an attribute that measures the quality of a product, e.g., a candy bar,
on the scale {poor, fair, OK, good, wonderful}. It would seem reasonable
that a product, P1, which is rated wonderful, would be closer to a prod-
uct P2, which is rated good, than it would be to a product P3, which is
rated OK. To make this observation quantitative, the values of the ordinal
attribute are often mapped to successive integers, beginning at 0 or 1, e.g.,
{poor=0, fair=1, OK=2, good = 3, wonderful = 4}. Then, d(P1,P2) =
3− 2 = 1 or, if we want the dissimilarity to fall between 0 and 1, d(P1,P2) =
3−2
4 = 0.25. A similarity for ordinal attributes can then be defined as s = 1−d.

�

M02 TAN9224 02 GE C02 page 95

� �

�

2.4 Measures of Similarity and Dissimilarity 95

Table 2.7. Similarity and dissimilarity for simple attributes

Attribute
Type

Dissimilarity Similarity

Nominal d =
{

0 if x = y
1 if x �= y

s =
{

1 if x = y
0 if x �= y

Ordinal

d = |x− y|/(n− 1)
(values mapped to integers 0 to
n − 1, where n is the number of
values)

s = 1− d

Interval or
Ratio d = |x− y| s = −d, s = 1

1+d , s = e−d,
s = 1− d−min d

max d−min d

This definition of similarity (dissimilarity) for an ordinal attribute should
make the reader a bit uneasy since this assumes equal intervals between
successive values of the attribute, and this is not necessarily so. Otherwise, we
would have an interval or ratio attribute. Is the difference between the values
fair and good really the same as that between the values OK and wonderful?
Probably not, but in practice, our options are limited, and in the absence of
more information, this is the standard approach for defining proximity between
ordinal attributes.

For interval or ratio attributes, the natural measure of dissimilarity be-
tween two objects is the absolute difference of their values. For example, we
might compare our current weight and our weight a year ago by saying “I
am ten pounds heavier.” In cases such as these, the dissimilarities typically
range from 0 to ∞, rather than from 0 to 1. The similarity of interval or
ratio attributes is typically expressed by transforming a dissimilarity into a
similarity, as previously described.

Table 2.7 summarizes this discussion. In this table, x and y are two objects
that have one attribute of the indicated type. Also, d(x, y) and s(x, y) are the
dissimilarity and similarity between x and y, respectively. Other approaches
are possible; these are the most common ones.

The following two sections consider more complicated measures of prox-
imity between objects that involve multiple attributes: (1) dissimilarities be-
tween data objects and (2) similarities between data objects. This division
allows us to more naturally display the underlying motivations for employing
various proximity measures. We emphasize, however, that similarities can be
transformed into dissimilarities and vice versa using the approaches described
earlier.

�

M02 TAN9224 02 GE C02 page 96

� �

�

96 Chapter 2 Data

2.4.3 Dissimilarities between Data Objects

In this section, we discuss various kinds of dissimilarities. We begin with a
discussion of distances, which are dissimilarities with certain properties, and
then provide examples of more general kinds of dissimilarities.

Distances

We first present some examples, and then offer a more formal description of
distances in terms of the properties common to all distances. The Euclidean
distance, d, between two points, x and y, in one-, two-, three-, or higher-
dimensional space, is given by the following familiar formula:

d(x,y) =

√√√√
n∑

k=1

(xk − yk)2, (2.1)

where n is the number of dimensions and xk and yk are, respectively, the kth

attributes (components) of x and y. We illustrate this formula with Figure
2.15 and Tables 2.8 and 2.9, which show a set of points, the x and y coordinates
of these points, and the distance matrix containing the pairwise distances
of these points.

The Euclidean distance measure given in Equation 2.1 is generalized by
the Minkowski distance metric shown in Equation 2.2,

d(x,y) =

(
n∑

k=1

|xk − yk|r
)1/r

, (2.2)

where r is a parameter. The following are the three most common examples
of Minkowski distances.

• r = 1. City block (Manhattan, taxicab, L1 norm) distance. A common
example is the Hamming distance, which is the number of bits that
is different between two objects that have only binary attributes, i.e.,
between two binary vectors.

• r = 2. Euclidean distance (L2 norm).

• r =∞. Supremum (Lmax or L∞ norm) distance. This is the maximum
difference between any attribute of the objects. More formally, the L∞

�

M02 TAN9224 02 GE C02 page 97

� �

�

2.4 Measures of Similarity and Dissimilarity 97

distance is defined by Equation 2.3

d(x,y) = lim
r→∞

(
n∑

k=1

|xk − yk|r
)1/r

. (2.3)

The r parameter should not be confused with the number of dimensions (at-
tributes) n. The Euclidean, Manhattan, and supremum distances are defined
for all values of n: 1, 2, 3, . . ., and specify different ways of combining the
differences in each dimension (attribute) into an overall distance.

Tables 2.10 and 2.11, respectively, give the proximity matrices for the L1

and L∞ distances using data from Table 2.8. Notice that all these distance
matrices are symmetric; i.e., the ijth entry is the same as the jith entry. In
Table 2.9, for instance, the fourth row of the first column and the fourth
column of the first row both contain the value 5.1.

Distances, such as the Euclidean distance, have some well-known proper-
ties. If d(x,y) is the distance between two points, x and y, then the following
properties hold.

1. Positivity

(a) d(x,y) ≥ 0 for all x and y,

(b) d(x,y) = 0 only if x = y.

2. Symmetry
d(x,y) = d(y,x) for all x and y.

3. Triangle Inequality
d(x, z) ≤ d(x,y) + d(y, z) for all points x, y, and z.

Measures that satisfy all three properties are known as metrics. Some
people use the term distance only for dissimilarity measures that satisfy these
properties, but that practice is often violated. The three properties described
here are useful, as well as mathematically pleasing. Also, if the triangle inequal-
ity holds, then this property can be used to increase the efficiency of techniques
(including clustering) that depend on distances possessing this property. (See
Exercise 30.) Nonetheless, many dissimilarities do not satisfy one or more of
the metric properties. Example 2.14 illustrates such a measure.

Example 2.14 (Non-metric Dissimilarities: Set Differences). This example
is based on the notion of the difference of two sets, as defined in set theory.
Given two sets A and B, A − B is the set of elements of A that are not in

�

M02 TAN9224 02 GE C02 page 98

� �

�

98 Chapter 2 Data

p1

p2

p3 p4

2

1

0

3

y

1 2 3 4 5 6
x

Figure 2.15. Four two-dimensional points.

Table 2.8. x and y coordinates of four points.

point x coordinate y coordinate
p1 0 2
p2 2 0
p3 3 1
p4 5 1

Table 2.9. Euclidean distance matrix for Table 2.8.

p1 p2 p3 p4
p1 0.0 2.8 3.2 5.1
p2 2.8 0.0 1.4 3.2
p3 3.2 1.4 0.0 2.0
p4 5.1 3.2 2.0 0.0

Table 2.10. L1 distance matrix for Table 2.8.

L1 p1 p2 p3 p4
p1 0.0 4.0 4.0 6.0
p2 4.0 0.0 2.0 4.0
p3 4.0 2.0 0.0 2.0
p4 6.0 4.0 2.0 0.0

Table 2.11. L∞ distance matrix for Table 2.8.

L∞ p1 p2 p3 p4
p1 0.0 2.0 3.0 5.0
p2 2.0 0.0 1.0 3.0
p3 3.0 1.0 0.0 2.0
p4 5.0 3.0 2.0 0.0

B. For example, if A = {1, 2, 3, 4} and B = {2, 3, 4}, then A − B = {1} and
B − A = ∅, the empty set. We can define the distance d between two sets
A and B as d(A,B) = size(A − B), where size is a function returning the
number of elements in a set. This distance measure, which is an integer value
greater than or equal to 0, does not satisfy the second part of the positivity
property, the symmetry property, or the triangle inequality. However, these
properties can be made to hold if the dissimilarity measure is modified as
follows: d(A,B) = size(A−B)+size(B−A). See Exercise 26 on page 131.

2.4.4 Similarities between Data Objects

For similarities, the triangle inequality (or the analogous property) typically
does not hold, but symmetry and positivity typically do. To be explicit, if

�

M02 TAN9224 02 GE C02 page 99

� �

�

2.4 Measures of Similarity and Dissimilarity 99

s(x,y) is the similarity between points x and y, then the typical properties
of similarities are the following:

1. s(x,y) = 1 only if x = y. (0 ≤ s ≤ 1)

2. s(x,y) = s(y,x) for all x and y. (Symmetry)

There is no general analog of the triangle inequality for similarity measures.
It is sometimes possible, however, to show that a similarity measure can easily
be converted to a metric distance. The cosine and Jaccard similarity measures,
which are discussed shortly, are two examples. Also, for specific similarity mea-
sures, it is possible to derive mathematical bounds on the similarity between
two objects that are similar in spirit to the triangle inequality.

Example 2.15 (A Non-symmetric Similarity Measure). Consider an exper-
iment in which people are asked to classify a small set of characters as they
flash on a screen. The confusion matrix for this experiment records how
often each character is classified as itself, and how often each is classified
as another character. Using the confusion matrix, we can define a similarity
measure between a character x and a character y as the number of times
that x is misclassified as y, but note that this measure is not symmetric. For
example, suppose that “0” appeared 200 times and was classified as a “0”
160 times, but as an “o” 40 times. Likewise, suppose that “o” appeared 200
times and was classified as an “o” 170 times, but as “0” only 30 times. Then,
s(0,o) = 40, but s(o, 0) = 30. In such situations, the similarity measure can
be made symmetric by setting s′(x, y) = s′(y, x) = (s(x, y)+s(y, x))/2, where
s′ indicates the new similarity measure.

2.4.5 Examples of Proximity Measures

This section provides specific examples of some similarity and dissimilarity
measures.

Similarity Measures for Binary Data

Similarity measures between objects that contain only binary attributes are
called similarity coefficients, and typically have values between 0 and 1. A
value of 1 indicates that the two objects are completely similar, while a value
of 0 indicates that the objects are not at all similar. There are many rationales
for why one coefficient is better than another in specific instances.

Let x and y be two objects that consist of n binary attributes. The
comparison of two such objects, i.e., two binary vectors, leads to the following

�

M02 TAN9224 02 GE C02 page 100

� �

�

100 Chapter 2 Data

four quantities (frequencies):

f00 = the number of attributes where x is 0 and y is 0
f01 = the number of attributes where x is 0 and y is 1
f10 = the number of attributes where x is 1 and y is 0
f11 = the number of attributes where x is 1 and y is 1

Simple Matching Coefficient One commonly used similarity coefficient
is the simple matching coefficient (SMC), which is defined as

SMC =
number of matching attribute values

number of attributes
=

f11 + f00
f01 + f10 + f11 + f00

. (2.4)

This measure counts both presences and absences equally. Consequently, the
SMC could be used to find students who had answered questions similarly on
a test that consisted only of true/false questions.

Jaccard Coefficient Suppose that x and y are data objects that represent
two rows (two transactions) of a transaction matrix (see Section 2.1.2). If
each asymmetric binary attribute corresponds to an item in a store, then a 1
indicates that the item was purchased, while a 0 indicates that the product
was not purchased. Because the number of products not purchased by any
customer far outnumbers the number of products that were purchased, a
similarity measure such as SMC would say that all transactions are very
similar. As a result, the Jaccard coefficient is frequently used to handle objects
consisting of asymmetric binary attributes. The Jaccard coefficient, which
is often symbolized by J , is given by the following equation:

J =
number of matching presences

number of attributes not involved in 00 matches
=

f11
f01 + f10 + f11

. (2.5)

Example 2.16 (The SMC and Jaccard Similarity Coefficients). To illustrate
the difference between these two similarity measures, we calculate SMC and
J for the following two binary vectors.

x = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
y = (0, 0, 0, 0, 0, 0, 1, 0, 0, 1)

f01 = 2 the number of attributes where x was 0 and y was 1

�

M02 TAN9224 02 GE C02 page 101

� �

�

2.4 Measures of Similarity and Dissimilarity 101

f10 = 1 the number of attributes where x was 1 and y was 0
f00 = 7 the number of attributes where x was 0 and y was 0
f11 = 0 the number of attributes where x was 1 and y was 1

SMC =
f11 + f00

f01 + f10 + f11 + f00
=

0 + 7
2 + 1 + 0 + 7

= 0.7

J =
f11

f01 + f10 + f11
=

0
2 + 1 + 0

= 0

Cosine Similarity

Documents are often represented as vectors, where each component (attribute)
represents the frequency with which a particular term (word) occurs in the
document. Even though documents have thousands or tens of thousands of
attributes (terms), each document is sparse since it has relatively few non-
zero attributes. Thus, as with transaction data, similarity should not depend
on the number of shared 0 values because any two documents are likely to
“not contain” many of the same words, and therefore, if 0–0 matches are
counted, most documents will be highly similar to most other documents.
Therefore, a similarity measure for documents needs to ignores 0–0 matches
like the Jaccard measure, but also must be able to handle non-binary vectors.
The cosine similarity, defined next, is one of the most common measures of
document similarity. If x and y are two document vectors, then

cos(x,y) =
〈x,y〉
‖x‖ ‖y‖ =

x′y
‖x‖ ‖y‖ , (2.6)

where ′ indicates vector or matrix transpose and 〈x,y〉 indicates the inner
product of the two vectors,

〈x,y〉 =
n∑

k=1

xkyk = x′y, (2.7)

and ‖x‖ is the length of vector x, ‖x‖ =
√∑n

k=1 x
2
k =

√〈x,x〉 =
√

x′x.

The inner product of two vectors works well for asymmetric attributes since
it depends only on components that are non-zero in both vectors. Hence, the
similarity between two documents depends only upon the words that appear
in both of them.

�

M02 TAN9224 02 GE C02 page 102

� �

�

102 Chapter 2 Data

x

y

θ

Figure 2.16. Geometric illustration of the cosine measure.

Example 2.17 (Cosine Similarity between Two Document Vectors). This
example calculates the cosine similarity for the following two data objects,
which might represent document vectors:

x = (3, 2, 0, 5, 0, 0, 0, 2, 0, 0)

y = (1, 0, 0, 0, 0, 0, 0, 1, 0, 2)

〈x,y〉 = 3 × 1 + 2 × 0 + 0 × 0 + 5 × 0 + 0 × 0 + 0 × 0 + 0 × 0 + 2 × 1 + 0 × 0 + 0 × 2 = 5

‖x‖ =
√

3 × 3 + 2 × 2 + 0 × 0 + 5 × 5 + 0 × 0 + 0 × 0 + 0 × 0 + 2 × 2 + 0 × 0 + 0 × 0 = 6.48

‖y‖ =
√

1 × 1 + 0 × 0 + 0 × 0 + 0 × 0 + 0 × 0 + 0 × 0 + 0 × 0 + 1 × 1 + 0 × 0 + 2 × 2 = 2.45

cos(x,y) = 0.31

As indicated by Figure 2.16, cosine similarity really is a measure of the
(cosine of the) angle between x and y. Thus, if the cosine similarity is 1, the
angle between x and y is 0◦, and x and y are the same except for length. If
the cosine similarity is 0, then the angle between x and y is 90◦, and they do
not share any terms (words).

Equation 2.6 also can be written as Equation 2.8.

cos(x,y) =
〈

x
‖x‖ ,

y
‖y‖

〉
= 〈x′,y′〉, (2.8)

where x′ = x/‖x‖ and y′ = y/‖y‖. Dividing x and y by their lengths normal-
izes them to have a length of 1. This means that cosine similarity does not
take the length of the two data objects into account when computing similarity.
(Euclidean distance might be a better choice when length is important.) For
vectors with a length of 1, the cosine measure can be calculated by taking a
simple inner product. Consequently, when many cosine similarities between
objects are being computed, normalizing the objects to have unit length can
reduce the time required.

�

M02 TAN9224 02 GE C02 page 103

� �

�

2.4 Measures of Similarity and Dissimilarity 103

Extended Jaccard Coefficient (Tanimoto Coefficient)

The extended Jaccard coefficient can be used for document data and that
reduces to the Jaccard coefficient in the case of binary attributes. This coeffi-
cient, which we shall represent as EJ , is defined by the following equation:

EJ(x,y) =
〈x,y〉

‖x‖2 + ‖y‖2 − 〈x,y〉 =
x′y

‖x‖2 + ‖y‖2 − x′y
. (2.9)

Correlation

Correlation is frequently used to measure the linear relationship between two
sets of values that are observed together. Thus, correlation can measure the
relationship between two variables (height and weight) or between two objects
(a pair of temperature time series). Correlation is used much more frequently
to measure the similarity between attributes since the values in two data
objects come from different attributes, which can have very different attribute
types and scales. There are many types of correlation, and indeed correlation
is sometimes used in a general sense to mean the relationship between two
sets of values that are observed together. In this discussion, we will focus on
a measure appropriate for numerical values.

Specifically, Pearson’s correlation between two sets of numerical values,
i.e., two vectors, x and y, is defined by the following equation:

corr(x,y) =
covariance(x,y)

standard deviation(x)× standard deviation(y)
=

sxy

sx sy
,

(2.10)
where we use the following standard statistical notation and definitions:

covariance(x,y) = sxy =
1

n− 1

n∑

k=1

(xk − x)(yk − y) (2.11)

standard deviation(x) = sx =

√√√√ 1
n− 1

n∑

k=1

(xk − x)2

standard deviation(y) = sy =

√√√√ 1
n− 1

n∑

k=1

(yk − y)2

�

M02 TAN9224 02 GE C02 page 104

� �

�

104 Chapter 2 Data

x =
1
n

n∑

k=1

xk is the mean of x

y =
1
n

n∑

k=1

yk is the mean of y

Example 2.18 (Perfect Correlation). Correlation is always in the range−1 to
1. A correlation of 1 (−1) means that x and y have a perfect positive (negative)
linear relationship; that is, xk = ayk + b, where a and b are constants. The
following two vectors x and y illustrate cases where the correlation is −1 and
+1, respectively. In the first case, the means of x and y were chosen to be 0,
for simplicity.

x = (−3, 6, 0, 3,−6)
y = (1,−2, 0,−1, 2)
corr(x,y) = −1 xk = −3yk

x = (3, 6, 0, 3, 6)
y = (1, 2, 0, 1, 2)
corr(x,y) = 1 xk = 3yk

Example 2.19 (Nonlinear Relationships). If the correlation is 0, then there
is no linear relationship between the two sets of values. However, nonlinear
relationships can still exist. In the following example, yk = x2

k, but their
correlation is 0.

x = (−3,−2,−1, 0, 1, 2, 3)
y = (9, 4, 1, 0, 1, 4, 9)

Example 2.20 (Visualizing Correlation). It is also easy to judge the corre-
lation between two vectors x and y by plotting pairs of corresponding values
of x and y in a scatter plot. Figure 2.17 shows a number of these scatter plots
when x and y consist of a set of 30 pairs of values that are randomly generated
(with a normal distribution) so that the correlation of x and y ranges from
−1 to 1. Each circle in a plot represents one of the 30 pairs of x and y values;
its x coordinate is the value of that pair for x, while its y coordinate is the
value of the same pair for y.

If we transform x and y by subtracting off their means and then normal-
izing them so that their lengths are 1, then their correlation can be calculated
by taking the dot product. Let us refer to these transformed vectors of x and
y as x′ and y′, respectively. (Notice that this transformation is not the same

�

M02 TAN9224 02 GE C02 page 105

� �

�

2.4 Measures of Similarity and Dissimilarity 105

–1.00 –0.90 –0.80 –0.70 –0.60 0.50 –0.40

–0.30 –0.20 –0.10 0.00 0.10 0.20 0.30

 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Figure 2.17. Scatter plots illustrating correlations from−1 to 1.

as the standardization used in other contexts, where we subtract the means
and divide by the standard deviations, as discussed in Section 2.3.7.) This
transformation highlights an interesting relationship between the correlation
measure and the cosine measure. Specifically, the correlation between x and
y is identical to the cosine between x′ and y′. However, the cosine between
x and y is not the same as the cosine between x′ and y′, even though they
both have the same correlation measure. In general, the correlation between
two vectors is equal to the cosine measure only in the special case when the
means of the two vectors are 0.

Differences Among Measures For Continuous Attributes

In this section, we illustrate the difference among the three proximity measures
for continuous attributes that we have just defined: cosine, correlation, and
Minkowski distance. Specifically, we consider two types of data transforma-
tions that are commonly used, namely, scaling (multiplication) by a constant
factor and translation (addition) by a constant value. A proximity measure
is considered to be invariant to a data transformation if its value remains
unchanged even after performing the transformation. Table 2.12 compares the

�

M02 TAN9224 02 GE C02 page 106

� �

�

106 Chapter 2 Data

Table 2.12. Properties of cosine, correlation, and Minkowski distance measures.

Property Cosine Correlation Minkowski Distance
Invariant to scaling (multiplication) Yes Yes No
Invariant to translation (addition) No Yes No

behavior of cosine, correlation, and Minkowski distance measures regarding
their invariance to scaling and translation operations. It can be seen that
while correlation is invariant to both scaling and translation, cosine is only
invariant to scaling but not to translation. Minkowski distance measures, on
the other hand, are sensitive to both scaling and translation and are thus
invariant to neither.

Let us consider an example to demonstrate the significance of these differ-
ences among different proximity measures.

Example 2.21 (Comparing proximity measures). Consider the following two
vectors x and y with seven numeric attributes.

x = (1, 2, 4, 3, 0, 0, 0)
y = (1, 2, 3, 4, 0, 0, 0)

It can be seen that both x and y have 4 non-zero values, and the values
in the two vectors are mostly the same, except for the third and the fourth
components. The cosine, correlation, and Euclidean distance between the two
vectors can be computed as follows.

cos(x,y) = 29√
30×√

30
= 0.9667

correlation(x,y) = 2.3571
1.5811×1.5811 = 0.9429

Euclidean distance(x,y) = ||x− y|| = 1.4142

Not surprisingly, x and y have a cosine and correlation measure close to 1,
while the Euclidean distance between them is small, indicating that they are
quite similar. Now let us consider the vector ys, which is a scaled version of y
(multiplied by a constant factor of 2), and the vector yt, which is constructed
by translating y by 5 units as follows.

ys = 2× y = (2, 4, 6, 8, 0, 0, 0)

�

M02 TAN9224 02 GE C02 page 107

� �

�

2.4 Measures of Similarity and Dissimilarity 107

Table 2.13. Similarity between (x,y), (x,ys), and (x,yt).

Measure (x,y) (x,ys) (x,yt)
Cosine 0.9667 0.9667 0.7940

Correlation 0.9429 0.9429 0.9429
Euclidean Distance 1.4142 5.8310 14.2127

yt = y + 5 = (6, 7, 8, 9, 5, 5, 5)

We are interested in finding whether ys and yt show the same proximity
with x as shown by the original vector y. Table 2.13 shows the different
measures of proximity computed for the pairs (x,y), (x,ys), and (x,yt). It
can be seen that the value of correlation between x and y remains unchanged
even after replacing y with ys or yt. However, the value of cosine remains
equal to 0.9667 when computed for (x,y) and (x,ys), but significantly reduces
to 0.7940 when computed for (x,yt). This highlights the fact that cosine is
invariant to the scaling operation but not to the translation operation, in
contrast with the correlation measure. The Euclidean distance, on the other
hand, shows different values for all three pairs of vectors, as it is sensitive to
both scaling and translation.

We can observe from this example that different proximity measures be-
have differently when scaling or translation operations are applied on the data.
The choice of the right proximity measure thus depends on the desired notion
of similarity between data objects that is meaningful for a given application.
For example, if x and y represented the frequencies of different words in a
document-term matrix, it would be meaningful to use a proximity measure
that remains unchanged when y is replaced by ys, because ys is just a scaled
version of y with the same distribution of words occurring in the document.
However, yt is different from y, since it contains a large number of words with
non-zero frequencies that do not occur in y. Because cosine is invariant to
scaling but not to translation, it will be an ideal choice of proximity measure
for this application.

Consider a different scenario in which x represents a location’s temperature
measured on the Celsius scale for seven days. Let y, ys, and yt be the
temperatures measured on those days at a different location, but using three
different measurement scales. Note that different units of temperature have
different offsets (e.g., Celsius and Kelvin) and different scaling factors (e.g.,
Celsius and Fahrenheit). It is thus desirable to use a proximity measure that
captures the proximity between temperature values without being affected by

�

M02 TAN9224 02 GE C02 page 108

� �

�

108 Chapter 2 Data

the measurement scale. Correlation would then be the ideal choice of proximity
measure for this application, as it is invariant to both scaling and translation.

As another example, consider a scenario where x represents the amount
of precipitation (in cm) measured at seven locations. Let y, ys, and yt be
estimates of the precipitation at these locations, which are predicted using
three different models. Ideally, we would like to choose a model that accurately
reconstructs the measurements in x without making any error. It is evident
that y provides a good approximation of the values in x, whereas ys and
yt provide poor estimates of precipitation, even though they do capture the
trend in precipitation across locations. Hence, we need to choose a proximity
measure that penalizes any difference in the model estimates from the actual
observations, and is sensitive to both the scaling and translation operations.
The Euclidean distance satisfies this property and thus would be the right
choice of proximity measure for this application. Indeed, the Euclidean dis-
tance is commonly used in computing the accuracy of models, which will be
discussed later in Chapter 3.

2.4.6 Mutual Information

Like correlation, mutual information is used as a measure of similarity between
two sets of paired values that is sometimes used as an alternative to correlation,
particularly when a nonlinear relationship is suspected between the pairs of
values. This measure comes from information theory, which is the study of how
to formally define and quantify information. Indeed, mutual information is a
measure of how much information one set of values provides about another,
given that the values come in pairs, e.g., height and weight. If the two sets of
values are independent, i.e., the value of one tells us nothing about the other,
then their mutual information is 0. On the other hand, if the two sets of values
are completely dependent, i.e., knowing the value of one tells us the value of the
other and vice-versa, then they have maximum mutual information. Mutual
information does not have a maximum value, but we will define a normalized
version of it that ranges between 0 and 1.

To define mutual information, we consider two sets of values, X and Y ,
which occur in pairs (X,Y). We need to measure the average information in
a single set of values, i.e., either in X or in Y , and in the pairs of their values.
This is commonly measured by entropy. More specifically, assume X and Y
are discrete, that is, X can take m distinct values, u1, u2, . . . , um and Y can
take n distinct values, v1, v2, . . . , vn. Then their individual and joint entropy

�

M02 TAN9224 02 GE C02 page 109

� �

�

2.4 Measures of Similarity and Dissimilarity 109

can be defined in terms of the probabilities of each value and pair of values as
follows:

H(X) = −
m∑

j=1

P (X = uj) log2 P (X = uj) (2.12)

H(Y) = −
n∑

k=1

P (Y = vk) log2 P (Y = vk) (2.13)

H(X,Y) = −
m∑

j=1

n∑

k=1

P (X = uj , Y = vk) log2 P (X = uj , Y = vk) (2.14)

where if the probability of a value or combination of values is 0, then 0 log2(0)
is conventionally taken to be 0.

The mutual information of X and Y can now be defined straightforwardly:

I(X,Y) = H(X) +H(Y)−H(X,Y) (2.15)

Note that H(X,Y) is symmetric, i.e., H(X,Y) = H(Y,X), and thus mutual
information is also symmetric, i.e., I(X,Y) = I(Y).

Practically, X and Y are either the values in two attributes or two rows
of the same data set. In Example 2.22, we will represent those values as two
vectors x and y and calculate the probability of each value or pair of values
from the frequency with which values or pairs of values occur in x, y and
(xi, yi), where xi is the ith component of x and yi is the ith component of y.
Let us illustrate using a previous example.

Example 2.22 (Evaluating Nonlinear Relationships with Mutual Informa-
tion). Recall Example 2.19 where yk = x2

k, but their correlation was 0.

x = (−3,−2,−1, 0, 1, 2, 3)
y = (9, 4, 1, 0, 1, 4, 9)

From Figure 2.22, I(x,y) = H(x) +H(y) −H(x,y) = 1.9502. Although
a variety of approaches to normalize mutual information are possible—see
Bibliographic Notes—for this example, we will apply one that divides the
mutual information by log2(min(m,n)) and produces a result between 0 and
1. This yields a value of 1.9502/ log2(4)) = 0.9751. Thus, we can see that x
and y are strongly related. They are not perfectly related because given a
value of y there is, except for y = 0, some ambiguity about the value of x.
Notice that for y = −x, the normalized mutual information would be 1.

�

M02 TAN9224 02 GE C02 page 110

� �

�

110 Chapter 2 Data

Figure 2.18. Computation of mutual information.

Table 2.14. Entropy for x

xj P (x = xj) −P (x = xj) log2 P (x = xj)
-3 1/7 0.4011
-2 1/7 0.4011
-1 1/7 0.4011
0 1/7 0.4011
1 1/7 0.4011
2 1/7 0.4011
3 1/7 0.4011

H(x) 2.8074

Table 2.15. Entropy for y

yk P (y = yk) −P (y = yk) log2(P (y = yk)
9 2/7 0.5164
4 2/7 0.5164
1 2/7 0.5164
0 1/7 0.4011

H(y) 1.9502

Table 2.16. Joint entropy for x and y

xj yk P (x = xj ,y = xk) −P (x = xj ,y = xk) log2 P (x = xj ,y = xk)
-3 9 1/7 0.4011
-2 4 1/7 0.4011
-1 1 1/7 0.4011
0 0 1/7 0.4011
1 1 1/7 0.4011
2 4 1/7 0.4011
3 9 1/7 0.4011

H(x,y) 2.8074

2.4.7 Kernel Functions*

It is easy to understand how similarity and distance might be useful in an
application such as clustering, which tries to group similar objects together.
What is much less obvious is that many other data analysis tasks, including
predictive modeling and dimensionality reduction, can be expressed in terms
of pairwise “proximities” of data objects. More specifically, many data analysis
problems can be mathematically formulated to take as input, a kernel ma-
trix, K, which can be considered a type of proximity matrix. Thus, an initial
preprocessing step is used to convert the input data into a kernel matrix, which
is the input to the data analysis algorithm.

More formally, if a data set has m data objects, then K is an m by m
matrix. If xi and xj are the ith and jth data objects, respectively, then kij ,
the ijth entry of K, is computed by a kernel function:

kij = κ(xi,xj) (2.16)

As we will see in the material that follows, the use of a kernel matrix
allows both wider applicability of an algorithm to various kinds of data and
an ability to model nonlinear relationships with algorithms that are designed
only for detecting linear relationships.

�

M02 TAN9224 02 GE C02 page 111

� �

�

2.4 Measures of Similarity and Dissimilarity 111

Kernels make an algorithm data independent If an algorithm uses a
kernel matrix, then it can be used with any type of data for which a kernel
function can be designed. This is illustrated by Algorithm 2.1. Although only
some data analysis algorithms can be modified to use a kernel matrix as input,
this approach is extremely powerful because it allows such an algorithm to be
used with almost any type of data for which an appropriate kernel function
can be defined. Thus, a classification algorithm can be used, for example, with
record data, string data, or graph data. If an algorithm can be reformulated to
use a kernel matrix, then its applicability to different types of data increases
dramatically. As we will see in later chapters, many clustering, classification,
and anomaly detection algorithms work only with similarities or distances,
and thus, can be easily modified to work with kernels.

Algorithm 2.1 Basic kernel algorithm.
1: Read in the m data objects in the data set.
2: Compute the kernel matrix, K by applying the kernel function, κ, to each pair of

data objects.
3: Run the data analysis algorithm with K as input.
4: Return the analysis result, e.g., predicted class or cluster labels.

Mapping data into a higher dimensional data space can allow mod-
eling of nonlinear relationships There is yet another, equally important,
aspect of kernel based data algorithms—their ability to model nonlinear rela-
tionships with algorithms that model only linear relationships. Typically, this
works by first transforming (mapping) the data from a lower dimensional data
space to a higher dimensional space.

Example 2.23 (Mapping Data to a Higher Dimensional Space). Consider the
relationship between two variables x and y given by the following equation,
which defines an ellipse in two dimensions (Figure 2.19(a)):

4x2 + 9xy + 7y2 = 10 (2.17)

We can map our two dimensional data to three dimensions by creating
three new variables, u, v, and w, which are defined as follows:

�

M02 TAN9224 02 GE C02 page 112

� �

�

112 Chapter 2 Data

w = x2

u = xy

v = y2

As a result, we can now express Equation 2.17 as a linear one. This equation
describes a plane in three dimensions. Points on the ellipse will lie on that
plane, while points inside and outside the ellipse will lie on opposite sides
of the plane. See Figure 2.19(b). The viewpoint of this 3D plot is along the
surface of the separating plane so that the plane appears as a line.

4u+ 9v + 7w = 10 (2.18)

x

y

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4
4 x2 + 9 x y + 7 y2 = 10

(a) Ellipse and two points in 2
dimensions.

0 2 4 6 8 0 2 4 6 8

−15

−10

−5

0

5

vu

w
4u + 9 v + 7 w = 10

(b) Data mapped to 3 dimen-
sions.

Figure 2.19. Mapping data to a higher dimensional space: two to three dimensions.

The Kernel Trick The approach illustrated above shows the value in map-
ping data to higher dimensional space, an operation that is integral to kernel-
based methods. Conceptually, we first define a function ϕ that maps data
points x and y to data points ϕ(x) and ϕ(y) in a higher dimensional space

�

M02 TAN9224 02 GE C02 page 113

� �

�

2.4 Measures of Similarity and Dissimilarity 113

such that the inner product 〈x,y〉 gives the desired measure of proximity of x
and y. It may seem that we have potentially sacrificed a great deal by using
such an approach, because we can greatly expand the size of our data, increase
the computational complexity of our analysis, and encounter problems with
the curse of dimensionality by computing similarity in a high-dimensional
space. However, this is not the case since these problems can be avoided by
defining a kernel function κ that can compute the same similarity value, but
with the data points in the original space, i.e., κ(x,y) = 〈ϕ(x), ϕ(y)〉. This
is known as the kernel trick. Despite the name, the kernel trick has a very
solid mathematical foundation and is a remarkably powerful approach for
data analysis.

Not every function of a pair of data objects satisfies the properties needed
for a kernel function, but it has been possible to design many useful kernels for
a wide variety of data types. For example, three common kernel functions are
the polynomial, Gaussian (radial basis function (RBF)), and sigmoid kernels.
If x and y are two data objects, specifically, two data vectors, then these two
kernel functions can be expressed as follows, respectively:

κ(x,y) = (x′y + c)d (2.19)

κ(x,y) = exp(−||x− y||/2σ2) (2.20)

κ(x,y) = tanh(αx′y + c) (2.21)

where α and c ≥ 0 are constants, d is an integer parameter that gives the
polynomial degree, ||x − y|| is the length of the vector x − y and σ > 0 is a
parameter that governs the “spread” of a Gaussian.

Example 2.24 (The Polynomial Kernel). Note that the kernel functions pre-
sented in the previous section are computing the same similarity value as would
be computed if we actually mapped the data to a higher dimensional space
and then computed an inner product there. For example, for the polynomial
kernel of degree 2, let ϕ be the function that maps a two-dimensional data
vector x = (x1, x2) to the higher dimensional space. Specifically, let

ϕ(x) = (x2
1, x

2
2,
√

2x1x2,
√

2cx1,
√

2cx2, c). (2.22)

For the higher dimensional space, let the proximity be defined as the inner
product of ϕ(x) and ϕ(y), i.e., 〈ϕ(x), ϕ(y)〉. Then, as previously mentioned,
it can be shown that

κ(x,y) = 〈ϕ(x), ϕ(y)〉 (2.23)

�

M02 TAN9224 02 GE C02 page 114

� �

�

114 Chapter 2 Data

where κ is defined by Equation 2.19 above. Specifically, if x = (x1, x2) and
y = (y1, y2), then

κ(x,y) = 〈x,y〉 = x′y = (x2
1y

2
1, x

2
2y

2
2, 2x1x2y1y2, 2cx1y1, 2cx2y2, c

2). (2.24)

More generally, the kernel trick depends on defining κ and ϕ so that Equation
2.23 holds. This has been done for a wide variety of kernels.

This discussion of kernel-based approaches was intended only to provide
a brief introduction to this topic and has omitted many details. A fuller
discussion of the kernel-based approach is provided in Section 6.9.4, which
discusses these issues in the context of nonlinear support vector machines for
classification. More general references for the kernel based analysis can be
found in the Bibliographic Notes of this chapter.

2.4.8 Bregman Divergence*

This section provides a brief description of Bregman divergences, which are a
family of proximity functions that share some common properties. As a result,
it is possible to construct general data mining algorithms, such as clustering
algorithms, that work with any Bregman divergence. A concrete example is
the K-means clustering algorithm (Section 5.2). Note that this section requires
knowledge of vector calculus.

Bregman divergences are loss or distortion functions. To understand the
idea of a loss function, consider the following. Let x and y be two points, where
y is regarded as the original point and x is some distortion or approximation
of it. For example, x may be a point that was generated by adding random
noise to y. The goal is to measure the resulting distortion or loss that results
if y is approximated by x. Of course, the more similar x and y are, the smaller
the loss or distortion. Thus, Bregman divergences can be used as dissimilarity
functions.

More formally, we have the following definition.

Definition 2.6 (Bregman divergence). Given a strictly convex function φ
(with a few modest restrictions that are generally satisfied), the Bregman
divergence (loss function) D(x,y) generated by that function is given by the
following equation:

D(x,y) = φ(x)− φ(y)− 〈∇φ(y), (x− y)〉 (2.25)

where ∇φ(y) is the gradient of φ evaluated at y, x−y, is the vector difference
between x and y, and 〈∇φ(y), (x − y)〉 is the inner product between ∇φ(y)

�

M02 TAN9224 02 GE C02 page 115

� �

�

2.4 Measures of Similarity and Dissimilarity 115

and (x− y). For points in Euclidean space, the inner product is just the dot
product.

D(x,y) can be written as D(x,y) = φ(x) − L(x), where L(x) = φ(y) +
〈∇φ(y), (x − y)〉 and represents the equation of a plane that is tangent to
the function φ at y. Using calculus terminology, L(x) is the linearization of φ
around the point y, and the Bregman divergence is just the difference between
a function and a linear approximation to that function. Different Bregman
divergences are obtained by using different choices for φ.

Example 2.25. We provide a concrete example using squared Euclidean
distance, but restrict ourselves to one dimension to simplify the mathematics.
Let x and y be real numbers and φ(t) be the real-valued function, φ(t) = t2. In
that case, the gradient reduces to the derivative, and the dot product reduces
to multiplication. Specifically, Equation 2.25 becomes Equation 2.26.

D(x, y) = x2 − y2 − 2y(x− y) = (x− y)2 (2.26)

The graph for this example, with y = 1, is shown in Figure 2.20. The
Bregman divergence is shown for two values of x: x = 2 and x = 3.

10

9

8

7

6

5

4

3

2

1

–4 –3 –2 –1 0 1 2 3 4
0

y

x

φ(x) = x2

D(2, 1)

D(3, 1)

y = 2x –1

Figure 2.20. Illustration of Bregman divergence.

�

M02 TAN9224 02 GE C02 page 116

� �

�

116 Chapter 2 Data

2.4.9 Issues in Proximity Calculation

This section discusses several important issues related to proximity measures:
(1) how to handle the case in which attributes have different scales and/or are
correlated, (2) how to calculate proximity between objects that are composed
of different types of attributes, e.g., quantitative and qualitative, (3) and how
to handle proximity calculations when attributes have different weights; i.e.,
when not all attributes contribute equally to the proximity of objects.

Standardization and Correlation for Distance Measures

An important issue with distance measures is how to handle the situation
when attributes do not have the same range of values. (This situation is often
described by saying that “the variables have different scales.”) In a previous
example, Euclidean distance was used to measure the distance between people
based on two attributes: age and income. Unless these two attributes are
standardized, the distance between two people will be dominated by income.

A related issue is how to compute distance when there is correlation
between some of the attributes, perhaps in addition to differences in the
ranges of values. A generalization of Euclidean distance, the Mahalanobis
distance, is useful when attributes are correlated, have different ranges of
values (different variances), and the distribution of the data is approximately
Gaussian (normal). Correlated variables have a large impact on standard dis-
tance measures since a change in any of the correlated variables is reflected in
a change in all the correlated variables. Specifically, the Mahalanobis distance
between two objects (vectors) x and y is defined as

Mahalanobis(x,y) =
√

(x− y)′Σ−1(x− y), (2.27)

where Σ−1 is the inverse of the covariance matrix of the data. Note that the
covariance matrix Σ is the matrix whose ijth entry is the covariance of the ith

and jth attributes as defined by Equation 2.11.

Example 2.26. In Figure 2.21, there are 1000 points, whose x and y at-
tributes have a correlation of 0.6. The distance between the two large points
at the opposite ends of the long axis of the ellipse is 14.7 in terms of Euclidean
distance, but only 6 with respect to Mahalanobis distance. This is because the
Mahalanobis distance gives less emphasis to the direction of largest variance.
In practice, computing the Mahalanobis distance is expensive, but can be
worthwhile for data whose attributes are correlated. If the attributes are rela-
tively uncorrelated, but have different ranges, then standardizing the variables
is sufficient.

�

M02 TAN9224 02 GE C02 page 117

� �

�

2.4 Measures of Similarity and Dissimilarity 117

–8 –6 –4 –2 0 2 4 6 8
–5

–4

–3

–2

–1

0

1

2

3

4

5

x

y

Figure 2.21. Set of two-dimensional points. The Mahalanobis distance between the two points
represented by large dots is 6; their Euclidean distance is 14.7.

Combining Similarities for Heterogeneous Attributes

The previous definitions of similarity were based on approaches that assumed
all the attributes were of the same type. A general approach is needed when the
attributes are of different types. One straightforward approach is to compute
the similarity between each attribute separately using Table 2.7, and then
combine these similarities using a method that results in a similarity between
0 and 1. One possible approach is to define the overall similarity as the average
of all the individual attribute similarities. Unfortunately, this approach does
not work well if some of the attributes are asymmetric attributes. For example,
if all the attributes are asymmetric binary attributes, then the similarity
measure suggested previously reduces to the simple matching coefficient, a
measure that is not appropriate for asymmetric binary attributes. The easiest
way to fix this problem is to omit asymmetric attributes from the similarity
calculation when their values are 0 for both of the objects whose similarity

�

M02 TAN9224 02 GE C02 page 118

� �

�

118 Chapter 2 Data

is being computed. A similar approach also works well for handling missing
values.

In summary, Algorithm 2.2 is effective for computing an overall similarity
between two objects, x and y, with different types of attributes. This proce-
dure can be easily modified to work with dissimilarities.

Algorithm 2.2 Similarities of heterogeneous objects.
1: For the kth attribute, compute a similarity, sk(x,y), in the range [0, 1].
2: Define an indicator variable, δk, for the kth attribute as follows:

δk =

⎧
⎪⎪⎨

⎪⎪⎩

0 if the kth attribute is an asymmetric attribute and
both objects have a value of 0, or if one of the objects
has a missing value for the kth attribute

1 otherwise
3: Compute the overall similarity between the two objects using the following

formula:

similarity(x,y) =
∑n

k=1 δksk(x,y)∑n
k=1 δk

(2.28)

Using Weights

In much of the previous discussion, all attributes were treated equally when
computing proximity. This is not desirable when some attributes are more im-
portant to the definition of proximity than others. To address these situations,
the formulas for proximity can be modified by weighting the contribution of
each attribute.

With attribute weights, wk, (2.28) becomes

similarity(x,y) =
∑n

k=1wkδksk(x,y)∑n
k=1wkδk

. (2.29)

The definition of the Minkowski distance can also be modified as follows:

d(x,y) =

(
n∑

k=1

wk|xk − yk|r
)1/r

. (2.30)

2.4.10 Selecting the Right Proximity Measure

A few general observations may be helpful. First, the type of proximity mea-
sure should fit the type of data. For many types of dense, continuous data,

�

M02 TAN9224 02 GE C02 page 119

� �

�

2.4 Measures of Similarity and Dissimilarity 119

metric distance measures such as Euclidean distance are often used. Proximity
between continuous attributes is most often expressed in terms of differences,
and distance measures provide a well-defined way of combining these differ-
ences into an overall proximity measure. Although attributes can have different
scales and be of differing importance, these issues can often be dealt with as
described earlier, such as normalization and weighting of attributes.

For sparse data, which often consists of asymmetric attributes, we typically
employ similarity measures that ignore 0–0 matches. Conceptually, this reflects
the fact that, for a pair of complex objects, similarity depends on the number
of characteristics they both share, rather than the number of characteristics
they both lack. The cosine, Jaccard, and extended Jaccard measures are
appropriate for such data.

There are other characteristics of data vectors that often need to be con-
sidered. Invariance to scaling (multiplication) and to translation (addition)
were previously discussed with respect to Euclidean distance and the cosine
and correlation measures. The practical implications of such considerations
are that, for example, cosine is more suitable for sparse document data where
only scaling is important, while correlation works better for time series, where
both scaling and translation are important. Euclidean distance or other types
of Minkowski distance are most appropriate when two data vectors are to
match as closely as possible across all components (features).

In some cases, transformation or normalization of the data is needed
to obtain a proper similarity measure. For instance, time series can have
trends or periodic patterns that significantly impact similarity. Also, a proper
computation of similarity often requires that time lags be taken into account.
Finally, two time series may be similar only over specific periods of time. For
example, there is a strong relationship between temperature and the use of
natural gas, but only during the heating season.

Practical consideration can also be important. Sometimes, one or more
proximity measures are already in use in a particular field, and thus, others
will have answered the question of which proximity measures should be used.
Other times, the software package or clustering algorithm being used can
drastically limit the choices. If efficiency is a concern, then we may want to
choose a proximity measure that has a property, such as the triangle inequality,
that can be used to reduce the number of proximity calculations. (See Exercise
30.)

However, if common practice or practical restrictions do not dictate a
choice, then the proper choice of a proximity measure can be a time-consuming
task that requires careful consideration of both domain knowledge and the
purpose for which the measure is being used. A number of different similarity

�

M02 TAN9224 02 GE C02 page 120

� �

�

120 Chapter 2 Data

measures may need to be evaluated to see which ones produce results that
make the most sense.

2.5 Bibliographic Notes

It is essential to understand the nature of the data that is being analyzed,
and at a fundamental level, this is the subject of measurement theory. In
particular, one of the initial motivations for defining types of attributes was
to be precise about which statistical operations were valid for what sorts of
data. We have presented the view of measurement theory that was initially
described in a classic paper by S. S. Stevens [112]. (Tables 2.2 and 2.3 are
derived from those presented by Stevens [113].) While this is the most common
view and is reasonably easy to understand and apply, there is, of course, much
more to measurement theory. An authoritative discussion can be found in a
three-volume series on the foundations of measurement theory [88, 94, 114].
Also of interest is a wide-ranging article by Hand [77], which discusses mea-
surement theory and statistics, and is accompanied by comments from other
researchers in the field. Numerous critiques and extensions of the approach
of Stevens have been made [66, 97, 117]. Finally, many books and articles
describe measurement issues for particular areas of science and engineering.

Data quality is a broad subject that spans every discipline that uses data.
Discussions of precision, bias, accuracy, and significant figures can be found
in many introductory science, engineering, and statistics textbooks. The view
of data quality as “fitness for use” is explained in more detail in the book by
Redman [103]. Those interested in data quality may also be interested in MIT’s
Information Quality (MITIQ) Program [95, 118]. However, the knowledge
needed to deal with specific data quality issues in a particular domain is often
best obtained by investigating the data quality practices of researchers in that
field.

Aggregation is a less well-defined subject than many other preprocessing
tasks. However, aggregation is one of the main techniques used by the database
area of Online Analytical Processing (OLAP) [68, 76, 102]. There has also been
relevant work in the area of symbolic data analysis (Bock and Diday [64]). One
of the goals in this area is to summarize traditional record data in terms of
symbolic data objects whose attributes are more complex than traditional
attributes. Specifically, these attributes can have values that are sets of values
(categories), intervals, or sets of values with weights (histograms). Another
goal of symbolic data analysis is to be able to perform clustering, classification,
and other kinds of data analysis on data that consists of symbolic data objects.

�

M02 TAN9224 02 GE C02 page 121

� �

�

2.5 Bibliographic Notes 121

Sampling is a subject that has been well studied in statistics and related
fields. Many introductory statistics books, such as the one by Lindgren [90],
have some discussion about sampling, and entire books are devoted to the
subject, such as the classic text by Cochran [67]. A survey of sampling for
data mining is provided by Gu and Liu [74], while a survey of sampling for
databases is provided by Olken and Rotem [98]. There are a number of other
data mining and database-related sampling references that may be of interest,
including papers by Palmer and Faloutsos [100], Provost et al. [101], Toivonen
[115], and Zaki et al. [119].

In statistics, the traditional techniques that have been used for dimension-
ality reduction are multidimensional scaling (MDS) (Borg and Groenen [65],
Kruskal and Uslaner [89]) and principal component analysis (PCA) (Jolliffe
[80]), which is similar to singular value decomposition (SVD) (Demmel [70]).
Dimensionality reduction is discussed in more detail in Appendix B.

Discretization is a topic that has been extensively investigated in data
mining. Some classification algorithms work only with categorical data, and
association analysis requires binary data, and thus, there is a significant moti-
vation to investigate how to best binarize or discretize continuous attributes.
For association analysis, we refer the reader to work by Srikant and Agrawal
[111], while some useful references for discretization in the area of classification
include work by Dougherty et al. [71], Elomaa and Rousu [72], Fayyad and
Irani [73], and Hussain et al. [78].

Feature selection is another topic well investigated in data mining. A broad
coverage of this topic is provided in a survey by Molina et al. [96] and two
books by Liu and Motada [91, 92]. Other useful papers include those by Blum
and Langley [63], Kohavi and John [87], and Liu et al. [93].

It is difficult to provide references for the subject of feature transformations
because practices vary from one discipline to another. Many statistics books
have a discussion of transformations, but typically the discussion is restricted
to a particular purpose, such as ensuring the normality of a variable or making
sure that variables have equal variance. We offer two references: Osborne [99]
and Tukey [116].

While we have covered some of the most commonly used distance and
similarity measures, there are hundreds of such measures and more are being
created all the time. As with so many other topics in this chapter, many of
these measures are specific to particular fields, e.g., in the area of time series
see papers by Kalpakis et al. [81] and Keogh and Pazzani [83]. Clustering books
provide the best general discussions. In particular, see the books by Anderberg
[62], Jain and Dubes [79], Kaufman and Rousseeuw [82], and Sneath and Sokal
[109].

�

M02 TAN9224 02 GE C02 page 122

� �

�

122 Chapter 2 Data

Information-based measures of similarity have become more popular lately
despite the computational difficulties and expense of calculating them. A good
introduction to information theory is provided by Cover and Thomas [69].
Computing the mutual information for continuous variables can be straight-
forward if they follow a well-know distribution, such as Gaussian. However,
this is often not the case, and many techniques have been developed. As
one example, the article by Khan, et al. [85] compares various methods in
the context of comparing short time series. See also the information and
mutual information packages for R and Matlab. Mutual information has been
the subject of considerable recent attention due to paper by Reshef, et al.
[104, 105] that introduced an alternative measure, albeit one based on mutual
information, which was claimed to have superior properties. Although this
approach had some early support, e.g., [110], others have pointed out various
limitations [75, 86, 108].

Two popular books on the topic of kernel methods are [106] and [107].
The latter also has a website with links to kernel-related materials [84]. In
addition, many current data mining, machine learning, and statistical learn-
ing textbooks have some material about kernel methods. Further references
for kernel methods in the context of support vector machine classifiers are
provided in the Bibliographic Notes of Section 6.9.4.

Bibliography
[62] M. R. Anderberg. Cluster Analysis for Applications. Academic Press, New York,

December 1973.
[63] A. Blum and P. Langley. Selection of Relevant Features and Examples in Machine

Learning. Artificial Intelligence, 97(1–2):245–271, 1997.
[64] H. H. Bock and E. Diday. Analysis of Symbolic Data: Exploratory Methods for

Extracting Statistical Information from Complex Data (Studies in Classification, Data
Analysis, and Knowledge Organization). Springer-Verlag Telos, January 2000.

[65] I. Borg and P. Groenen. Modern Multidimensional Scaling—Theory and Applications.
Springer-Verlag, February 1997.

[66] N. R. Chrisman. Rethinking levels of measurement for cartography. Cartography and
Geographic Information Systems, 25(4):231–242, 1998.

[67] W. G. Cochran. Sampling Techniques. John Wiley & Sons, 3rd edition, July 1977.
[68] E. F. Codd, S. B. Codd, and C. T. Smalley. Providing OLAP (On-line Analytical

Processing) to User- Analysts: An IT Mandate. White Paper, E.F. Codd and Associates,
1993.

[69] T. M. Cover and J. A. Thomas. Elements of information theory. John Wiley & Sons,
2012.

[70] J. W. Demmel. Applied Numerical Linear Algebra. Society for Industrial & Applied
Mathematics, September 1997.

[71] J. Dougherty, R. Kohavi, and M. Sahami. Supervised and Unsupervised Discretization
of Continuous Features. In Proc. of the 12th Intl. Conf. on Machine Learning, pages
194–202, 1995.

�

M02 TAN9224 02 GE C02 page 123

� �

�

Bibliography 123

[72] T. Elomaa and J. Rousu. General and Efficient Multisplitting of Numerical Attributes.
Machine Learning, 36(3):201–244, 1999.

[73] U. M. Fayyad and K. B. Irani. Multi-interval discretization of continuousvalued
attributes for classification learning. In Proc. 13th Int. Joint Conf. on Artificial
Intelligence, pages 1022–1027. Morgan Kaufman, 1993.

[74] F. H. Gaohua Gu and H. Liu. Sampling and Its Application in Data Mining: A Survey.
Technical Report TRA6/00, National University of Singapore, Singapore, 2000.

[75] M. Gorfine, R. Heller, and Y. Heller. Comment on Detecting novel associa-
tions in large data sets. Unpublished (available at http://emotion. technion. ac.
il/ gorfinm/files/science6. pdf on 11 Nov. 2012), 2012.

[76] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow,
and H. Pirahesh. Data Cube: A Relational Aggregation Operator Generalizing Group-
By, Cross-Tab, and Sub-Totals. Journal Data Mining and Knowledge Discovery, 1(1):
29–53, 1997.

[77] D. J. Hand. Statistics and the Theory of Measurement. Journal of the Royal Statistical
Society: Series A (Statistics in Society), 159(3):445–492, 1996.

[78] F. Hussain, H. Liu, C. L. Tan, and M. Dash. TRC6/99: Discretization: an enabling
technique. Technical report, National University of Singapore, Singapore, 1999.

[79] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice Hall Advanced
Reference Series. Prentice Hall, March 1988.

[80] I. T. Jolliffe. Principal Component Analysis. Springer Verlag, 2nd edition, October
2002.

[81] K. Kalpakis, D. Gada, and V. Puttagunta. Distance Measures for Effective Clustering
of ARIMA Time-Series. In Proc. of the 2001 IEEE Intl. Conf. on Data Mining, pages
273–280. IEEE Computer Society, 2001.

[82] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster
Analysis. Wiley Series in Probability and Statistics. John Wiley and Sons, New York,
November 1990.

[83] E. J. Keogh and M. J. Pazzani. Scaling up dynamic time warping for datamining
applications. In KDD, pages 285–289, 2000.

[84] Kernel Methods for Pattern Analysis Website. http://www.kernel-methods.net/, 2014.

[85] S. Khan, S. Bandyopadhyay, A. R. Ganguly, S. Saigal, D. J. Erickson III, V. Pro-
topopescu, and G. Ostrouchov. Relative performance of mutual information estimation
methods for quantifying the dependence among short and noisy data. Physical Review
E, 76(2):026209, 2007.

[86] J. B. Kinney and G. S. Atwal. Equitability, mutual information, and the maximal
information coefficient. Proceedings of the National Academy of Sciences, 2014.

[87] R. Kohavi and G. H. John. Wrappers for Feature Subset Selection. Artificial
Intelligence, 97(1–2):273–324, 1997.

[88] D. Krantz, R. D. Luce, P. Suppes, and A. Tversky. Foundations of Measurements:
Volume 1: Additive and polynomial representations. Academic Press, New York, 1971.

[89] J. B. Kruskal and E. M. Uslaner. Multidimensional Scaling. Sage Publications, August
1978.

[90] B. W. Lindgren. Statistical Theory. CRC Press, January 1993.

[91] H. Liu and H. Motoda, editors. Feature Extraction, Construction and Selection: A Data
Mining Perspective. Kluwer International Series in Engineering and Computer Science,
453. Kluwer Academic Publishers, July 1998.

http://emotion
http://www.kernel-methods.net/

�

M02 TAN9224 02 GE C02 page 124

� �

�

124 Chapter 2 Data

[92] H. Liu and H. Motoda. Feature Selection for Knowledge Discovery and Data
Mining. Kluwer International Series in Engineering and Computer Science, 454. Kluwer
Academic Publishers, July 1998.

[93] H. Liu, H. Motoda, and L. Yu. Feature Extraction, Selection, and Construction.
In N. Ye, editor, The Handbook of Data Mining, pages 22–41. Lawrence Erlbaum
Associates, Inc., Mahwah, NJ, 2003.

[94] R. D. Luce, D. Krantz, P. Suppes, and A. Tversky. Foundations of Measurements:
Volume 3: Representation, Axiomatization, and Invariance. Academic Press, New York,
1990.

[95] MIT Information Quality (MITIQ) Program. http://mitiq.mit.edu/, 2014.

[96] L. C. Molina, L. Belanche, and A. Nebot. Feature Selection Algorithms: A Survey and
Experimental Evaluation. In Proc. of the 2002 IEEE Intl. Conf. on Data Mining, 2002.

[97] F. Mosteller and J. W. Tukey. Data analysis and regression: a second course in statistics.
Addison-Wesley, 1977.

[98] F. Olken and D. Rotem. Random Sampling from Databases—A Survey. Statistics &
Computing, 5(1):25–42, March 1995.

[99] J. Osborne. Notes on the Use of Data Transformations. Practical Assessment, Research
& Evaluation, 28(6), 2002.

[100] C. R. Palmer and C. Faloutsos. Density biased sampling: An improved method for
data mining and clustering. ACM SIGMOD Record, 29(2):82–92, 2000.

[101] F. J. Provost, D. Jensen, and T. Oates. Efficient Progressive Sampling. In Proc. of
the 5th Intl. Conf. on Knowledge Discovery and Data Mining, pages 23–32, 1999.

[102] R. Ramakrishnan and J. Gehrke. Database Management Systems. McGraw-Hill, 3rd
edition, August 2002.

[103] T. C. Redman. Data Quality: The Field Guide. Digital Press, January 2001.

[104] D. Reshef, Y. Reshef, M. Mitzenmacher, and P. Sabeti. Equitability analysis of the
maximal information coefficient, with comparisons. arXiv preprint arXiv:1301.6314,
2013.

[105] D. N. Reshef, Y. A. Reshef, H. K. Finucane, S. R. Grossman, G. McVean, P. J.
Turnbaugh, E. S. Lander, M. Mitzenmacher, and P. C. Sabeti. Detecting novel
associations in large data sets. science, 334(6062):1518–1524, 2011.

[106] B. Schölkopf and A. J. Smola. Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT press, 2002.

[107] J. Shawe-Taylor and N. Cristianini. Kernel methods for pattern analysis. Cambridge
university press, 2004.

[108] N. Simon and R. Tibshirani. Comment on” Detecting Novel Associations In Large
Data Sets” by Reshef Et Al, Science Dec 16, 2011. arXiv preprint arXiv:1401.7645,
2014.

[109] P. H. A. Sneath and R. R. Sokal. Numerical Taxonomy. Freeman, San Francisco, 1971.

[110] T. Speed. A correlation for the 21st century. Science, 334(6062):1502–1503, 2011.

[111] R. Srikant and R. Agrawal. Mining Quantitative Association Rules in Large Relational
Tables. In Proc. of 1996 ACM-SIGMOD Intl. Conf. on Management of Data, pages
1–12, Montreal, Quebec, Canada, August 1996.

[112] S. S. Stevens. On the Theory of Scales of Measurement. Science, 103(2684):677–680,
June 1946.

[113] S. S. Stevens. Measurement. In G. M. Maranell, editor, Scaling: A Sourcebook for
Behavioral Scientists, pages 22–41. Aldine Publishing Co., Chicago, 1974.

http://mitiq.mit.edu/

�

M02 TAN9224 02 GE C02 page 125

� �

�

2.6 Exercises 125

[114] P. Suppes, D. Krantz, R. D. Luce, and A. Tversky. Foundations of Measurements:
Volume 2: Geometrical, Threshold, and Probabilistic Representations. Academic Press,
New York, 1989.

[115] H. Toivonen. Sampling Large Databases for Association Rules. In VLDB96, pages
134–145. Morgan Kaufman, September 1996.

[116] J. W. Tukey. On the Comparative Anatomy of Transformations. Annals of
Mathematical Statistics, 28(3):602–632, September 1957.

[117] P. F. Velleman and L. Wilkinson. Nominal, ordinal, interval, and ratio typologies are
misleading. The American Statistician, 47(1):65–72, 1993.

[118] R. Y. Wang, M. Ziad, Y. W. Lee, and Y. R. Wang. Data Quality. The Kluwer
International Series on Advances in Database Systems, Volume 23. Kluwer Academic
Publishers, January 2001.

[119] M. J. Zaki, S. Parthasarathy, W. Li, and M. Ogihara. Evaluation of Sampling for
Data Mining of Association Rules. Technical Report TR617, Rensselaer Polytechnic
Institute, 1996.

2.6 Exercises

1. In the initial example of Chapter 2, the statistician says, “Yes, fields 2 and 3
are basically the same.” Can you tell from the three lines of sample data that
are shown why she says that?

2. Classify the following attributes as binary, discrete, or continuous. Also classify
them as qualitative (nominal or ordinal) or quantitative (interval or ratio).
Some cases may have more than one interpretation, so briefly indicate your
reasoning if you think there may be some ambiguity.

Example: Age in years. Answer: Discrete, quantitative, ratio

(a) Time in terms of AM or PM.

(b) Brightness as measured by a light meter.

(c) Brightness as measured by people’s judgments.

(d) Angles as measured in degrees between 0 and 360.

(e) Bronze, Silver, and Gold medals as awarded at the Olympics.

(f) Height above sea level.

(g) Number of patients in a hospital.

(h) ISBN numbers for books. (Look up the format on the Web.)

(i) Ability to pass light in terms of the following values: opaque, translucent,
transparent.

(j) Military rank.

(k) Distance from the center of campus.

�

M02 TAN9224 02 GE C02 page 126

� �

�

126 Chapter 2 Data

(l) Density of a substance in grams per cubic centimeter.

(m) Coat check number. (When you attend an event, you can often give your
coat to someone who, in turn, gives you a number that you can use to
claim your coat when you leave.)

3. What is aggregation? What are the motivations for aggregation? How are the
values of attributes handled when aggregating data?

4. What is sampling? In what situations should a simple random sample be
used? When should stratified sampling be used? Why is the size of the sample
important? How does it affect results?

5. What is the difference between feature extraction and feature creation?

6. You are approached by the marketing director of a local company, who believes
that he has devised a foolproof way to measure customer satisfaction. He
explains his scheme as follows: “It’s so simple that I can’t believe that no one
has thought of it before. I just keep track of the number of customer complaints
for each product. I read in a data mining book that counts are ratio attributes,
and so, my measure of product satisfaction must be a ratio attribute. But
when I rated the products based on my new customer satisfaction measure and
showed them to my boss, he told me that I had overlooked the obvious, and
that my measure was worthless. I think that he was just mad because our best-
selling product had the worst satisfaction since it had the most complaints.
Could you help me set him straight?”

(a) Who is right, the marketing director or his boss? If you answered, his
boss, what would you do to fix the measure of satisfaction?

(b) What can you say about the attribute type of the original product satis-
faction attribute?

7. A few months later, you are again approached by the same marketing director
as in Exercise 6. This time, he has devised a better approach to measure the
extent to which a customer prefers one product over other similar products. He
explains, “When we develop new products, we typically create several variations
and evaluate which one customers prefer. Our standard procedure is to give our
test subjects all of the product variations at one time and then ask them to
rank the product variations in order of preference. However, our test subjects
are very indecisive, especially when there are more than two products. As a
result, testing takes forever. I suggested that we perform the comparisons in
pairs and then use these comparisons to get the rankings. Thus, if we have
three product variations, we have the customers compare variations 1 and 2,
then 2 and 3, and finally 3 and 1. Our testing time with my new procedure
is a third of what it was for the old procedure, but the employees conducting
the tests complain that they cannot come up with a consistent ranking from

�

M02 TAN9224 02 GE C02 page 127

� �

�

2.6 Exercises 127

the results. And my boss wants the latest product evaluations, yesterday. I
should also mention that he was the person who came up with the old product
evaluation approach. Can you help me?”

(a) Is the marketing director in trouble? Will his approach work for gener-
ating an ordinal ranking of the product variations in terms of customer
preference? Explain.

(b) Is there a way to fix the marketing director’s approach? More generally,
what can you say about trying to create an ordinal measurement scale
based on pairwise comparisons?

(c) For the original product evaluation scheme, the overall rankings of each
product variation are found by computing its average over all test sub-
jects. Comment on whether you think that this is a reasonable approach.
What other approaches might you take?

8. Can you think of a situation in which identification numbers would be useful
for prediction?

9. When discretizing continuous attributes, when would you choose unsupervised
discretization and when would you choose supervised discretization? Why?

10. An educational psychologist wants to use association analysis to analyze test
results. The test consists of 100 questions with four possible answers each.

(a) How would you convert this data into a form suitable for association
analysis?

(b) In particular, what type of attributes would you have and how many of
them are there?

11. Which of the following quantities is likely to show more temporal autocorrela-
tion: daily rainfall or daily temperature? Why?

12. Discuss why a document-term matrix is an example of a data set that has
asymmetric discrete or asymmetric continuous features.

13. Many sciences rely on observation instead of (or in addition to) designed
experiments. Compare the data quality issues involved in observational science
with those of experimental science and data mining.

14. Discuss the difference between the precision of a measurement and the terms
single and double precision, as they are used in computer science, typically to
represent floating-point numbers that require 32 and 64 bits, respectively.

15. Give at least two advantages to working with data stored in text files instead
of in a binary format.

�

M02 TAN9224 02 GE C02 page 128

� �

�

128 Chapter 2 Data

16. Distinguish between noise and outliers. Be sure to consider the following ques-
tions.

(a) Is noise ever interesting or desirable? Outliers?

(b) Can noise objects be outliers?

(c) Are noise objects always outliers?

(d) Are outliers always noise objects?

(e) Can noise make a typical value into an unusual one, or vice versa?

Algorithm 2.3 Algorithm for finding k-nearest neighbors.
1: for i = 1 to number of data objects do
2: Find the distances of the ith object to all other objects.
3: Sort these distances in decreasing order.

(Keep track of which object is associated with each distance.)
4: return the objects associated with the first K distances of the sorted list
5: end for

17. Consider the problem of finding the K-nearest neighbors of a data object. A
programmer designs Algorithm 2.3 for this task.

(a) Describe the potential problems with this algorithm if there are duplicate
objects in the data set. Assume the distance function will return a distance
of 0 only for objects that are the same.

(b) How would you fix this problem?

18. The following attributes are measured for members of a herd of Asian ele-
phants: weight, height, tusk length, trunk length, and ear area. Based on these
measurements, what sort of proximity measure from Section 2.4 would you
use to compare or group these elephants? Justify your answer and explain any
special circumstances.

19. You are given a set of m objects that is divided into K groups, where the ith

group is of size mi. If the goal is to obtain a sample of size n < m, what is
the difference between the following two sampling schemes? (Assume sampling
with replacement.)

(a) We randomly select n×mi/m elements from each group.

(b) We randomly select n elements from the data set, without regard for the
group to which an object belongs.

�

M02 TAN9224 02 GE C02 page 129

� �

�

2.6 Exercises 129

20. Consider a document-term matrix, where tfij is the frequency of the ith word
(term) in the jth document and m is the number of documents. Consider the
variable transformation that is defined by

tf ′ij = tfij × log
m

dfi
, (2.31)

where dfi is the number of documents in which the ith term appears, which
is known as the document frequency of the term. This transformation is
known as the inverse document frequency transformation.

(a) What is the effect of this transformation if a term occurs in one document?
In every document?

(b) What might be the purpose of this transformation?

21. Assume that we apply a square root transformation to a ratio attribute x to
obtain the new attribute x∗. As part of your analysis, you identify an interval
(a, b) in which x∗ has a linear relationship to another attribute y.

(a) What is the corresponding interval (a, b) in terms of x?

(b) Give an equation that relates y to x.

22. For two points P1 = (2, 0) and P2 = (3, 1), compute the following.

(a) Hamming distance

(b) Euclidean distance

(c) Supremum distance

23. This exercise compares and contrasts some similarity and distance measures.

(a) For binary data, the L1 distance corresponds to the Hamming distance;
that is, the number of bits that are different between two binary vectors.
The Jaccard similarity is a measure of the similarity between two binary
vectors. Compute the Hamming distance and the Jaccard similarity be-
tween the following two binary vectors.

x = 0101010001
y = 0100011000

(b) Which approach, Jaccard or Hamming distance, is more similar to the
Simple Matching Coefficient, and which approach is more similar to the
cosine measure? Explain. (Note: The Hamming measure is a distance,
while the other three measures are similarities, but don’t let this confuse
you.)

�

M02 TAN9224 02 GE C02 page 130

� �

�

130 Chapter 2 Data

(c) Suppose that you are comparing how similar two organisms of different
species are in terms of the number of genes they share. Describe which
measure, Hamming or Jaccard, you think would be more appropriate for
comparing the genetic makeup of two organisms. Explain. (Assume that
each animal is represented as a binary vector, where each attribute is 1 if
a particular gene is present in the organism and 0 otherwise.)

(d) If you wanted to compare the genetic makeup of two organisms of the same
species, e.g., two human beings, would you use the Hamming distance,
the Jaccard coefficient, or a different measure of similarity or distance?
Explain. (Note that two human beings share > 99.9% of the same genes.)

24. For the following vectors, x and y, calculate the indicated similarity or distance
measures.

(a) x = (1, 1, 1, 1), y = (2, 2, 2, 2) cosine, correlation, Euclidean

(b) x = (0, 1, 0, 1), y = (1, 0, 1, 0) cosine, correlation, Euclidean, Jaccard

(c) x = (0,−1, 0, 1), y = (1, 0,−1, 0) cosine, correlation, Euclidean

(d) x = (1, 1, 0, 1, 0, 1), y = (1, 1, 1, 0, 0, 1) cosine, correlation, Jaccard

(e) x = (2,−1, 0, 2, 0,−3), y = (−1, 1,−1, 0, 0,−1) cosine, correlation

25. Here, we further explore the cosine and correlation measures.

(a) What is the range of values possible for the cosine measure?

(b) If two objects have a cosine measure of 1, are they identical? Explain.

(c) What is the relationship of the cosine measure to correlation, if any?
(Hint: Look at statistical measures such as mean and standard deviation
in cases where cosine and correlation are the same and different.)

(d) Figure 2.22(a) shows the relationship of the cosine measure to Euclidean
distance for 100,000 randomly generated points that have been normalized
to have an L2 length of 1. What general observation can you make about
the relationship between Euclidean distance and cosine similarity when
vectors have an L2 norm of 1?

(e) Figure 2.22(b) shows the relationship of correlation to Euclidean distance
for 100,000 randomly generated points that have been standardized to
have a mean of 0 and a standard deviation of 1. What general observation
can you make about the relationship between Euclidean distance and
correlation when the vectors have been standardized to have a mean of 0
and a standard deviation of 1?

(f) Derive the mathematical relationship between cosine similarity and Eu-
clidean distance when each data object has an L2 length of 1.

(g) Derive the mathematical relationship between correlation and Euclidean
distance when each data point has been standardized by subtracting its
mean and dividing by its standard deviation.

�

M02 TAN9224 02 GE C02 page 131

� �

�

2.6 Exercises 131

0 0.2 0.4 0.6 0.8 1
Cosine Similarity

1.4

1.2

1

0.8

0.6

0.4

0.2

0

E
uc

lid
ea

n
D

is
ta

nc
e

(a) Relationship between Euclidean
distance and the cosine measure.

0 0.2 0.4 0.6 0.8 1
Correlation

1.4

1.2

1

0.8

0.6

0.4

0.2

0

E
uc

lid
ea

n
D

is
ta

nc
e

(b) Relationship between Euclidean
distance and correlation.

Figure 2.22. Graphs for Exercise 25.

26. Show that the set difference metric given by

d(A,B) = size(A−B) + size(B −A) (2.32)

satisfies the metric axioms given on page 97. A and B are sets and A − B is
the set difference.

27. Discuss how you might map correlation values from the interval [−1,1] to the
interval [0,1]. Note that the type of transformation that you use might depend
on the application that you have in mind. Thus, consider two applications:
clustering time series and predicting the behavior of one time series given
another.

28. Given a similarity measure with values in the interval [0,1], describe two ways
to transform this similarity value into a dissimilarity value in the interval [0,∞].

29. Proximity is typically defined between a pair of objects.

(a) Define two ways in which you might define the proximity among a group
of objects.

(b) How might you define the distance between two sets of points in Euclidean
space?

(c) How might you define the proximity between two sets of data objects?
(Make no assumption about the data objects, except that a proximity
measure is defined between any pair of objects.)

30. You are given a set of points S in Euclidean space, as well as the distance of
each point in S to a point x. (It does not matter if x ∈ S.)

�

M02 TAN9224 02 GE C02 page 132

� �

�

132 Chapter 2 Data

(a) If the goal is to find all points within a specified distance ε of point
y, y �= x, explain how you could use the triangle inequality and the
already calculated distances to x to potentially reduce the number of
distance calculations necessary? Hint: The triangle inequality, d(x, z) ≤
d(x,y) + d(y,x), can be rewritten as d(x,y) ≥ d(x, z)− d(y, z).

(b) In general, how would the distance between x and y affect the number of
distance calculations?

(c) Suppose that you can find a small subset of points S′, from the original
data set, such that every point in the data set is within a specified distance
ε of at least one of the points in S′, and that you also have the pairwise
distance matrix for S′. Describe a technique that uses this information to
compute, with a minimum of distance calculations, the set of all points
within a distance of β of a specified point from the data set.

31. Show that 1 minus the Jaccard similarity is a distance measure between two
data objects, x and y, that satisfies the metric axioms given on page 97.
Specifically, d(x,y) = 1− J(x,y).

32. Show that the distance measure defined as the angle between two data vectors,
x and y, satisfies the metric axioms given on page 97. Specifically, d(x,y) =
arccos(cos(x,y)).

33. Explain why computing the proximity between two attributes is often simpler
than computing the similarity between two objects.

�

M03 TAN9224 02 GE C03 page 133

� �

�

3

Classification: Basic
Concepts and
Techniques

Humans have an innate ability to classify things into categories, e.g., mundane
tasks such as filtering spam email messages or more specialized tasks such
as recognizing celestial objects in telescope images (see Figure 3.1). While
manual classification often suffices for small and simple data sets with only
a few attributes, larger and more complex data sets require an automated
solution.

(a) A spiral galaxy. (b) An elliptical galaxy.

Figure 3.1. Classification of galaxies from telescope images taken from the NASA website.

�

M03 TAN9224 02 GE C03 page 134

� �

�

134 Chapter 3 Classification

Classification
model

Input

Attribute set
(x)

Output

Class label
(y)

Figure 3.2. A schematic illustration of a classification task.

This chapter introduces the basic concepts of classification and describes
some of its key issues such as model overfitting, model selection, and model
evaluation. While these topics are illustrated using a classification technique
known as decision tree induction, most of the discussion in this chapter is
also applicable to other classification techniques, many of which are covered
in Chapter 6.

3.1 Basic Concepts

Figure 3.2 illustrates the general idea behind classification. The data for a
classification task consists of a collection of instances (records). Each such
instance is characterized by the tuple (x, y), where x is the set of attribute
values that describe the instance and y is the class label of the instance. The
attribute set x can contain attributes of any type, while the class label y must
be categorical.

A classification model is an abstract representation of the relationship
between the attribute set and the class label. As will be seen in the next
two chapters, the model can be represented in many ways, e.g., as a tree, a
probability table, or simply, a vector of real-valued parameters. More formally,
we can express it mathematically as a target function f that takes as input the
attribute set x and produces an output corresponding to the predicted class
label. The model is said to classify an instance (x, y) correctly if f(x) = y.

Table 3.1. Examples of classification tasks.

Task Attribute set Class label

Spam filtering Features extracted from email message
header and content

spam or non-spam

Tumor identification Features extracted from magnetic reso-
nance imaging (MRI) scans

malignant or benign

Galaxy classification Features extracted from telescope images elliptical, spiral, or
irregular-shaped

�

M03 TAN9224 02 GE C03 page 135

� �

�

3.1 Basic Concepts 135

Table 3.2. A sample data for the vertebrate classification problem.

Vertebrate Body Skin Gives Aquatic Aerial Has Hiber- Class
Name Temperature Cover Birth Creature Creature Legs nates Label
human warm-blooded hair yes no no yes no mammal
python cold-blooded scales no no no no yes reptile
salmon cold-blooded scales no yes no no no fish
whale warm-blooded hair yes yes no no no mammal
frog cold-blooded none no semi no yes yes amphibian
komodo
dragon

cold-blooded scales no no no yes no reptile

bat warm-blooded hair yes no yes yes yes mammal
pigeon warm-blooded feathers no no yes yes no bird
cat warm-blooded fur yes no no yes no mammal
leopard
shark

cold-blooded scales yes yes no no no fish

turtle cold-blooded scales no semi no yes no reptile
penguin warm-blooded feathers no semi no yes no bird
porcupine warm-blooded quills yes no no yes yes mammal
eel cold-blooded scales no yes no no no fish
salamander cold-blooded none no semi no yes yes amphibian

Table 3.1 shows examples of attribute sets and class labels for various
classification tasks. Spam filtering and tumor identification are examples of
binary classification problems, in which each data instance can be categorized
into one of two classes. If the number of classes is larger than 2, as in the galaxy
classification example, then it is called a multiclass classification problem.

We illustrate the basic concepts of classification in this chapter with the
following two examples.

Example 3.1. [Vertebrate Classification] Table 3.2 shows a sample data
set for classifying vertebrates into mammals, reptiles, birds, fishes, and am-
phibians. The attribute set includes characteristics of the vertebrate such as
its body temperature, skin cover, and ability to fly. The data set can also be
used for a binary classification task such as mammal classification, by grouping
the reptiles, birds, fishes, and amphibians into a single category called non-
mammals.

Example 3.2. [Loan Borrower Classification] Consider the problem of
predicting whether a loan borrower will repay the loan or default on the loan
payments. The data set used to build the classification model is shown in Table
3.3. The attribute set includes personal information of the borrower such as
marital status and annual income, while the class label indicates whether the
borrower had defaulted on the loan payments.

�

M03 TAN9224 02 GE C03 page 136

� �

�

136 Chapter 3 Classification

Table 3.3. A sample data for the loan borrower classification problem.

ID Home Owner Marital Status Annual Income Defaulted?

1 Yes Single 125000 No

2 No Married 100000 No

3 No Single 70000 No

4 Yes Married 120000 No

5 No Divorced 95000 Yes

6 No Single 60000 No

7 Yes Divorced 220000 No

8 No Single 85000 Yes

9 No Married 75000 No

10 No Single 90000 Yes

A classification model serves two important roles in data mining. First, it is
used as a predictive model to classify previously unlabeled instances. A good
classification model must provide accurate predictions with a fast response
time. Second, it serves as a descriptive model to identify the characteristics
that distinguish instances from different classes. This is particularly useful
for critical applications, such as medical diagnosis, where it is insufficient to
have a model that makes a prediction without justifying how it reaches such
a decision.

For example, a classification model induced from the vertebrate data set
shown in Table 3.2 can be used to predict the class label of the following
vertebrate:

Vertebrate Body Skin Gives Aquatic Aerial Has Hiber- Class
Name Temperature Cover Birth Creature Creature Legs nates Label
gila monster cold-blooded scales no no no yes yes ?

In addition, it can be used as a descriptive model to help determine charac-
teristics that define a vertebrate as a mammal, a reptile, a bird, a fish, or an
amphibian. For example, the model may identify mammals as warm-blooded
vertebrates that give birth to their young.

There are several points worth noting regarding the previous example.
First, although all the attributes shown in Table 3.2 are qualitative, there are
no restrictions on the type of attributes that can be used as predictor variables.
The class label, on the other hand, must be of nominal type. This distinguishes
classification from other predictive modeling tasks such as regression, where
the predicted value is often quantitative. More information about regression
can be found in Appendix D.

Another point worth noting is that not all attributes may be relevant
to the classification task. For example, the average length or weight of a

�

M03 TAN9224 02 GE C03 page 137

� �

�

3.2 General Framework for Classification 137

vertebrate may not be useful for classifying mammals, as these attributes
can show same value for both mammals and non-mammals. Such an attribute
is typically discarded during preprocessing. The remaining attributes might
not be able to distinguish the classes by themselves, and thus, must be used in
concert with other attributes. For instance, the Body Temperature attribute
is insufficient to distinguish mammals from other vertebrates. When it is used
together with Gives Birth, the classification of mammals improves signifi-
cantly. However, when additional attributes, such as Skin Cover are included,
the model becomes overly specific and no longer covers all mammals. Finding
the optimal combination of attributes that best discriminates instances from
different classes is the key challenge in building classification models.

3.2 General Framework for Classification

Classification is the task of assigning labels to unlabeled data instances and a
classifier is used to perform such a task. A classifier is typically described in
terms of a model as illustrated in the previous section. The model is created
using a given a set of instances, known as the training set, which contains at-
tribute values as well as class labels for each instance. The systematic approach
for learning a classification model given a training set is known as a learning
algorithm. The process of using a learning algorithm to build a classification
model from the training data is known as induction. This process is also
often described as “learning a model” or “building a model.” This process of
applying a classification model on unseen test instances to predict their class
labels is known as deduction. Thus, the process of classification involves two
steps: applying a learning algorithm to training data to learn a model, and
then applying the model to assign labels to unlabeled instances. Figure 3.3
illustrates the general framework for classification.

A classification technique refers to a general approach to classification,
e.g., the decision tree technique that we will study in this chapter. This
classification technique like most others, consists of a family of related models
and a number of algorithms for learning these models. In Chapter 6, we
will study additional classification techniques, including neural networks and
support vector machines.

A couple notes on terminology. First, the terms “classifier” and “model”
are often taken to be synonymous. If a classification technique builds a single,
global model, then this is fine. However, while every model defines a classifier,
not every classifier is defined by a single model. Some classifiers, such as k-
nearest neighbor classifiers, do not build an explicit model (Section 6.3), while

�

M03 TAN9224 02 GE C03 page 138

� �

�

138 Chapter 3 Classification

Figure 3.3. General framework for building a classification model.

other classifiers, such as ensemble classifiers, combine the output of a collection
of models (Section 6.10). Second, the term “classifier” is often used in a more
general sense to refer to a classification technique. Thus, for example, “decision
tree classifier” can refer to the decision tree classification technique or a specific
classifier built using that technique. Fortunately, the meaning of “classifier”
is usually clear from the context.

In the general framework shown in Figure 3.3, the induction and deduction
steps should be performed separately. In fact, as will be discussed later in
Section 3.6, the training and test sets should be independent of each other
to ensure that the induced model can accurately predict the class labels of
instances it has never encountered before. Models that deliver such predictive
insights are said to have good generalization performance. The perfor-
mance of a model (classifier) can be evaluated by comparing the predicted
labels against the true labels of instances. This information can be summarized
in a table called a confusion matrix. Table 3.4 depicts the confusion matrix
for a binary classification problem. Each entry fij denotes the number of
instances from class i predicted to be of class j. For example, f01 is the

�

M03 TAN9224 02 GE C03 page 139

� �

�

3.3 Decision Tree Classifier 139

Table 3.4. Confusion matrix for a binary classification problem.

Predicted Class
Class = 1 Class = 0

Actual Class = 1 f11 f10
Class Class = 0 f01 f00

number of instances from class 0 incorrectly predicted as class 1. The number
of correct predictions made by the model is (f11 + f00) and the number of
incorrect predictions is (f10 + f01).

Although a confusion matrix provides the information needed to determine
how well a classification model performs, summarizing this information into a
single number makes it more convenient to compare the relative performance
of different models. This can be done using an evaluation metric such as
accuracy, which is computed in the following way:

Accuracy =
Number of correct predictions
Total number of predictions

. (3.1)

For binary classification problems, the accuracy of a model is given by

Accuracy =
f11 + f00

f11 + f10 + f01 + f00
. (3.2)

Error rate is another related metric, which is defined as follows for binary
classification problems:

Error rate =
Number of wrong predictions
Total number of predictions

=
f10 + f01

f11 + f10 + f01 + f00
. (3.3)

The learning algorithms of most classification techniques are designed to learn
models that attain the highest accuracy, or equivalently, the lowest error rate
when applied to the test set. We will revisit the topic of model evaluation in
Section 3.6.

3.3 Decision Tree Classifier

This section introduces a simple classification technique known as the de-
cision tree classifier. To illustrate how a decision tree works, consider the
classification problem of distinguishing mammals from non-mammals using

�

M03 TAN9224 02 GE C03 page 140

� �

�

140 Chapter 3 Classification

the vertebrate data set shown in Table 3.2. Suppose a new species is discovered
by scientists. How can we tell whether it is a mammal or a non-mammal? One
approach is to pose a series of questions about the characteristics of the species.
The first question we may ask is whether the species is cold- or warm-blooded.
If it is cold-blooded, then it is definitely not a mammal. Otherwise, it is either
a bird or a mammal. In the latter case, we need to ask a follow-up question:
Do the females of the species give birth to their young? Those that do give
birth are definitely mammals, while those that do not are likely to be non-
mammals (with the exception of egg-laying mammals such as the platypus
and spiny anteater).

The previous example illustrates how we can solve a classification problem
by asking a series of carefully crafted questions about the attributes of the test
instance. Each time we receive an answer, we could ask a follow-up question
until we can conclusively decide on its class label. The series of questions and
their possible answers can be organized into a hierarchical structure called a
decision tree. Figure 3.4 shows an example of the decision tree for the mammal
classification problem. The tree has three types of nodes:

• A root node, with no incoming links and zero or more outgoing links.

• Internal nodes, each of which has exactly one incoming link and two
or more outgoing links.

• Leaf or terminal nodes, each of which has exactly one incoming link
and no outgoing links.

Every leaf node in the decision tree is associated with a class label. The
non-terminal nodes, which include the root and internal nodes, contain
attribute test conditions that are typically defined using a single attribute.
Each possible outcome of the attribute test condition is associated with exactly
one child of this node. For example, the root node of the tree shown in
Figure 3.4 uses the attribute Body Temperature to define an attribute test
condition that has two outcomes, warm and cold, resulting in two child nodes.

Given a decision tree, classifying a test instance is straightforward. Starting
from the root node, we apply its attribute test condition and follow the
appropriate branch based on the outcome of the test. This will lead us either
to another internal node, for which a new attribute test condition is applied, or
to a leaf node. Once a leaf node is reached, we assign the class label associated
with the node to the test instance. As an illustration, Figure 3.5 traces the
path used to predict the class label of a flamingo. The path terminates at a
leaf node labeled as Non-mammals.

�

M03 TAN9224 02 GE C03 page 141

� �

�

3.3 Decision Tree Classifier 141

Body
Temperature Root

node

Leaf
nodes

ColdWarmInternal
node

Gives Birth

Yes No

Non-
mammals

Non-
mammals

Mammals

Figure 3.4. A decision tree for the mammal classification problem.

Body
Temperature

Non-
 mammals

ColdWarm

Flamingo Warm No ... ?
Unlabeled

data

Gives Birth

Yes No

Non-
mammals

Non-
mammals

Mammals

Name Gives Birth ... ClassBody temperature

Figure 3.5. Classifying an unlabeled vertebrate. The dashed lines represent the outcomes of applying
various attribute test conditions on the unlabeled vertebrate. The vertebrate is eventually assigned to
the Non-mammals class.

3.3.1 A Basic Algorithm to Build a Decision Tree

Many possible decision trees that can be constructed from a particular data
set. While some trees are better than others, finding an optimal one is com-
putationally expensive due to the exponential size of the search space. Effi-
cient algorithms have been developed to induce a reasonably accurate, albeit

�

M03 TAN9224 02 GE C03 page 142

� �

�

142 Chapter 3 Classification

suboptimal, decision tree in a reasonable amount of time. These algorithms
usually employ a greedy strategy to grow the decision tree in a top-down
fashion by making a series of locally optimal decisions about which attribute
to use when partitioning the training data. One of the earliest method is
Hunt’s algorithm, which is the basis for many current implementations
of decision tree classifiers, including ID3, C4.5, and CART. This subsection
presents Hunt’s algorithm and describes some of the design issues that must
be considered when building a decision tree.

Hunt’s Algorithm

In Hunt’s algorithm, a decision tree is grown in a recursive fashion. The tree
initially contains a single root node that is associated with all the training
instances. If a node is associated with instances from more than one class,
it is expanded using an attribute test condition that is determined using a
splitting criterion. A child leaf node is created for each outcome of the
attribute test condition and the instances associated with the parent node are
distributed to the children based on the test outcomes. This node expansion
step can then be recursively applied to each child node, as long as it has
labels of more than one class. If all the instances associated with a leaf node
have identical class labels, then the node is not expanded any further. Each
leaf node is assigned a class label that occurs most frequently in the training
instances associated with the node.

To illustrate how the algorithm works, consider the training set shown
in Table 3.3 for the loan borrower classification problem. Suppose we apply
Hunt’s algorithm to fit the training data. The tree initially contains only a
single leaf node as shown in Figure 3.6(a). This node is labeled as Defaulted =
No, since the majority of the borrowers did not default on their loan payments.
The training error of this tree is 30% as three out of the ten training instances
have the class label Defaulted = Yes. The leaf node can therefore be further
expanded because it contains training instances from more than one class.

Let Home Owner be the attribute chosen to split the training instances. The
justification for choosing this attribute as the attribute test condition will
be discussed later. The resulting binary split on the Home Owner attribute
is shown in Figure 3.6(b). All the training instances for which Home Owner
= Yes are propagated to the left child of the root node and the rest are
propagated to the right child. Hunt’s algorithm is then recursively applied to
each child. The left child becomes a leaf node labeled Defaulted = No, since
all instances associated with this node have identical class label Defaulted
= No. The right child has instances from each class label. Hence, we split it

�

M03 TAN9224 02 GE C03 page 143

� �

�

3.3 Decision Tree Classifier 143

(a)

(c) (d)

Defaulted = No

(b)

Defaulted = No Defaulted = No

Home
Owner

Yes No

Defaulted = No

Home
Owner

Yes No

Defaulted = NoDefaulted = Yes

Marital
Status

Defaulted = No

Home
Owner

Yes No

Defaulted = No

Defaulted = No

Marital
Status

Annual Income
< 78000

Single,
Divorced

Married

Defaulted = Yes

Single,
Divorced

Married

Yes No

Figure 3.6. Hunt’s algorithm for building decision trees.

further. The resulting subtrees after recursively expanding the right child are
shown in Figures 3.6(c) and (d).

Hunt’s algorithm, as described above, makes some simplifying assump-
tions that are often not true in practice. In the following, we describe these
assumptions and briefly discuss some of the possible ways for handling them.

1. Some of the child nodes created in Hunt’s algorithm can be empty if
none of the training instances have the particular attribute values. One
way to handle this is by declaring each of them as a leaf node with
a class label that occurs most frequently among the training instances
associated with their parent nodes.

2. If all training instances associated with a node have identical attribute
values but different class labels, it is not possible to expand this node
any further. One way to handle this case is to declare it a leaf node
and assign it the class label that occurs most frequently in the training
instances associated with this node.

�

M03 TAN9224 02 GE C03 page 144

� �

�

144 Chapter 3 Classification

Design Issues of Decision Tree Induction

Hunt’s algorithm is a generic procedure for growing decision trees in a greedy
fashion. To implement the algorithm, there are two key design issues that must
be addressed.

1. What is the splitting criterion? At each recursive step, an attribute
must be selected to partition the training instances associated with a
node into smaller subsets associated with its child nodes. The splitting
criterion determines which attribute is chosen as the test condition and
how the training instances should be distributed to the child nodes. This
will be discussed in Sections 3.3.2 and 3.3.3.

2. What is the stopping criterion? The basic algorithm stops expand-
ing a node only when all the training instances associated with the node
have the same class labels or have identical attribute values. Although
these conditions are sufficient, there are reasons to stop expanding a node
much earlier even if the leaf node contains training instances from more
than one class. This process is called early termination and the condition
used to determine when a node should be stopped from expanding is
called a stopping criterion. The advantages of early termination are
discussed in Section 3.4.

3.3.2 Methods for Expressing Attribute Test Conditions

Decision tree induction algorithms must provide a method for expressing an
attribute test condition and its corresponding outcomes for different attribute
types.

Binary Attributes The test condition for a binary attribute generates two
potential outcomes, as shown in Figure 3.7.

Nominal Attributes Since a nominal attribute can have many values, its
attribute test condition can be expressed in two ways, as a multiway split or
a binary split as shown in Figure 3.8. For a multiway split (Figure 3.8(a)),
the number of outcomes depends on the number of distinct values for the
corresponding attribute. For example, if an attribute such as marital status
has three distinct values—single, married, or divorced—its test condition will
produce a three-way split. It is also possible to create a binary split by
partitioning all values taken by the nominal attribute into two groups. For
example, some decision tree algorithms, such as CART, produce only binary

�

M03 TAN9224 02 GE C03 page 145

� �

�

3.3 Decision Tree Classifier 145

Body
Temperature

Warm-
blooded

Cold-
blooded

Figure 3.7. Attribute test condition for a binary attribute.

{Married} {Single,
Divorced}

(a) Multiway split

Single Divorced Married

{Single} {Married,
Divorced}

(b) Binary split {by grouping attribute values}

{Single,
Married}

{Divorced}

OR OR

Marital
Status

Marital
Status

Marital
Status

Marital
Status

Figure 3.8. Attribute test conditions for nominal attributes.

splits by considering all 2k−1 − 1 ways of creating a binary partition of k
attribute values. Figure 3.8(b) illustrates three different ways of grouping the
attribute values for marital status into two subsets.

Ordinal Attributes Ordinal attributes can also produce binary or multi-
way splits. Ordinal attribute values can be grouped as long as the grouping

�

M03 TAN9224 02 GE C03 page 146

� �

�

146 Chapter 3 Classification

Shirt
Size

{Small,
Medium}

{Large,
Extra Large}

(a)

Shirt
Size

{Small} {Medium, Large,
Extra Large}

(b)

Shirt
Size

{Small,
Large}

{Medium,
Extra Large}

(c)

Figure 3.9. Different ways of grouping ordinal attribute values.

does not violate the order property of the attribute values. Figure 3.9 illus-
trates various ways of splitting training records based on the Shirt Size
attribute. The groupings shown in Figures 3.9(a) and (b) preserve the order
among the attribute values, whereas the grouping shown in Figure 3.9(c)
violates this property because it combines the attribute values Small and
Large into the same partition while Medium and Extra Large are combined
into another partition.

Continuous Attributes For continuous attributes, the attribute test con-
dition can be expressed as a comparison test (e.g., A < v) producing a binary
split, or as a range query of the form vi ≤ A < vi+1, for i = 1, . . . , k,
producing a multiway split. The difference between these approaches is shown
in Figure 3.10. For the binary split, any possible value v between the minimum
and maximum attribute values in the training data can be used for construct-
ing the comparison test A < v. However, it is sufficient to only consider
distinct attribute values in the training set as candidate split positions. For the
multiway split, any possible collection of attribute value ranges can be used,
as long as they are mutually exclusive and cover the entire range of attribute
values between the minimum and maximum values observed in the training set.
One approach for constructing multiway splits is to apply the discretization
strategies described in Section 2.3.6 on page 83. After discretization, a new
ordinal value is assigned to each discretized interval, and the attribute test
condition is then defined using this newly constructed ordinal attribute.

�

M03 TAN9224 02 GE C03 page 147

� �

�

3.3 Decision Tree Classifier 147

(b)(a)

Yes No

Annual
Income
> 80K

{10K, 25K} {25K, 50K} {50K, 80K}

Annual
Income

> 80K< 10K

Figure 3.10. Test condition for continuous attributes.

3.3.3 Measures for Selecting an Attribute Test Condition

There are many measures that can be used to determine the goodness of an
attribute test condition. These measures try to give preference to attribute
test conditions that partition the training instances into purer subsets in the
child nodes, which mostly have the same class labels. Having purer nodes is
useful since a node that has all of its training instances from the same class
does not need to be expanded further. In contrast, an impure node containing
training instances from multiple classes is likely to require several levels of node
expansions, thereby increasing the depth of the tree considerably. Larger trees
are less desirable as they are more susceptible to model overfitting, a condition
that may degrade the classification performance on unseen instances, as will
be discussed in Section 3.4. They are also difficult to interpret and incur more
training and test time as compared to smaller trees.

In the following, we present different ways of measuring the impurity of a
node and the collective impurity of its child nodes, both of which will be used
to identify the best attribute test condition for a node.

Impurity Measure for a Single Node

The impurity of a node measures how dissimilar the class labels are for the data
instances belonging to a common node. Following are examples of measures

�

M03 TAN9224 02 GE C03 page 148

� �

�

148 Chapter 3 Classification

that can be used to evaluate the impurity of a node t:

Entropy = −
c−1∑

i=0

pi(t) log2 pi(t), (3.4)

Gini index = 1−
c−1∑

i=0

pi(t)2, (3.5)

Classification error = 1−max
i

[pi(t)], (3.6)

where pi(t) is the relative frequency of training instances that belong to class
i at node t, c is the total number of classes, and 0 log2 0 = 0 in entropy
calculations. All three measures give a zero impurity value if a node contains
instances from a single class and maximum impurity if the node has equal
proportion of instances from multiple classes.

Figure 3.11 compares the relative magnitude of the impurity measures
when applied to binary classification problems. Since there are only two classes,
p0(t) + p1(t) = 1. The horizontal axis p refers to the fraction of instances that
belong to one of the two classes. Observe that all three measures attain their
maximum value when the class distribution is uniform (i.e., p0(t) = p1(t) =
0.5) and minimum value when all the instances belong to a single class (i.e.,
either p0(t) or p1(t) equals to 1). The following examples illustrate how the
values of the impurity measures vary as we alter the class distribution.

Node N1 Count
Class=0 0
Class=1 6

Gini = 1− (0/6)2 − (6/6)2 = 0
Entropy = −(0/6) log2(0/6)− (6/6) log2(6/6) = 0
Error = 1−max[0/6, 6/6] = 0

Node N2 Count
Class=0 1
Class=1 5

Gini = 1− (1/6)2 − (5/6)2 = 0.278
Entropy = −(1/6) log2(1/6)− (5/6) log2(5/6) = 0.650
Error = 1−max[1/6, 5/6] = 0.167

Node N3 Count
Class=0 3
Class=1 3

Gini = 1− (3/6)2 − (3/6)2 = 0.5
Entropy = −(3/6) log2(3/6)− (3/6) log2(3/6) = 1
Error = 1−max[3/6, 3/6] = 0.5

Based on these calculations, node N1 has the lowest impurity value, fol-
lowed by N2 and N3. This example, along with Figure 3.11, shows the consis-
tency among the impurity measures, i.e., if a node N1 has lower entropy than
node N2, then the Gini index and error rate of N1 will also be lower than that

�

M03 TAN9224 02 GE C03 page 149

� �

�

3.3 Decision Tree Classifier 149

Figure 3.11. Comparison among the impurity measures for binary classification problems.

of N2. Despite their agreement, the attribute chosen as splitting criterion by
the impurity measures can still be different (see Exercise 7 on pages 206–207).

Collective Impurity of Child Nodes

Consider an attribute test condition that splits a node containing N training
instances into k children, {v1, v2, · · · , vk}, where every child node represents
a partition of the data resulting from one of the k outcomes of the attribute
test condition. Let N(vj) be the number of training instances associated with
a child node vj , whose impurity value is I(vj). Since a training instance in the
parent node reaches node vj for a fraction of N(vj)/N times, the collective
impurity of the child nodes can be computed by taking a weighted sum of the
impurities of the child nodes, as follows:

I(children) =
k∑

j=1

N(vj)
N

I(vj), (3.7)

Example 3.3. [Weighted Entropy] Consider the candidate attribute test
condition shown in Figures 3.12(a) and (b) for the loan borrower classification
problem. Splitting on the Home Owner attribute will generate two child nodes

�

M03 TAN9224 02 GE C03 page 150

� �

�

150 Chapter 3 Classification

Figure 3.12. Examples of candidate attribute test conditions.

whose weighted entropy can be calculated as follows:

I(Home Owner = yes) = −0
3

log2

0
3
− 3

3
log2

3
3

= 0

I(Home Owner = no) = −3
7

log2

3
7
− 4

7
log2

4
7

= 0.985

I(Home Owner) =
3
10
× 0 +

7
10
× 0.985 = 0.690

Splitting on Marital Status, on the other hand, leads to three child nodes
with a weighted entropy given by

I(Marital Status = Single) = −2
5

log2

2
5
− 3

5
log2

3
5

= 0.971

I(Marital Status = Married) = −0
3

log2

0
3
− 3

3
log2

3
3

= 0

I(Marital Status = Divorced) = −1
2

log2

1
2
− 1

2
log2

1
2

= 1.000

I(Marital Status) =
5
10
× 0.971 +

3
10
× 0 +

2
10
× 1 = 0.686

Thus, Marital Status has a lower weighted entropy than Home Owner.

Identifying the best attribute test condition

To determine the goodness of an attribute test condition, we need to compare
the degree of impurity of the parent node (before splitting) with the weighted
degree of impurity of the child nodes (after splitting). The larger their differ-
ence, the better the test condition. This difference, Δ, also termed as the gain
in purity of an attribute test condition, can be defined as follows:

Δ = I(parent)− I(children), (3.8)

�

M03 TAN9224 02 GE C03 page 151

� �

�

3.3 Decision Tree Classifier 151

Figure 3.13. Splitting criteria for the loan borrower classification problem using Gini index.

where I(parent) is the impurity of a node before splitting and I(children) is
the weighted impurity measure after splitting. It can be shown that the gain
is non-negative since I(parent) ≥ I(children) for any reasonable measure such
as those presented above. The higher the gain, the purer are the classes in the
child nodes relative to the parent node. The splitting criterion in the decision
tree learning algorithm selects the attribute test condition that shows the
maximum gain. Note that maximizing the gain at a given node is equivalent
to minimizing the weighted impurity measure of its children since I(parent)
is the same for all candidate attribute test conditions. Finally, when entropy
is used as the impurity measure, the difference in entropy is commonly known
as information gain, Δinfo.

In the following, we present illustrative approaches for identifying the best
attribute test condition given qualitative or quantitative attributes.

Splitting of Qualitative Attributes

Consider the first two candidate splits shown in Figure 3.12 involving qualita-
tive attributes Home Owner and Marital Status. The initial class distribution
at the parent node is (0.3, 0.7), since there are 3 instances of class Yes and 7
instances of class No in the training data. Thus,

I(parent) = − 3
10

log2

3
10
− 7

10
log2

7
10

= 0.881

�

M03 TAN9224 02 GE C03 page 152

� �

�

152 Chapter 3 Classification

The information gains for Home Owner and Marital Status are each given
by

Δinfo(Home Owner) = 0.881− 0.690 = 0.191
Δinfo(Marital Status) = 0.881− 0.686 = 0.195

The information gain for Marital Status is thus higher due to its lower
weighted entropy, which will thus be considered for splitting.

Binary Splitting of Qualitative Attributes

Consider building a decision tree using only binary splits and the Gini index as
the impurity measure. Figure 3.13 shows examples of four candidate splitting
criteria for the Home Owner and Marital Status attributes. Since there are 3
borrowers in the training set who defaulted and 7 others who repaid their loan
(see Table in Figure 3.13), the Gini index of the parent node before splitting
is

1−
(

3
10

)2

−
(

7
10

)2

= 0.420.

If Home Owner is chosen as the splitting attribute, the Gini index for the child
nodes N1 and N2 are 0 and 0.490, respectively. The weighted average Gini index
for the children is

(3/10)× 0 + (7/10)× 0.490 = 0.343,

where the weights represent the proportion of training instances assigned to
each child. The gain using Home Owner as splitting attribute is 0.420 - 0.343 =
0.077. Similarly, we can apply a binary split on the Marital Status attribute.
However, since Marital Status is a nominal attribute with three outcomes,
there are three possible ways to group the attribute values into a binary split.
The weighted average Gini index of the children for each candidate binary
split is shown in Figure 3.13. Based on these results, Home Owner and the last
binary split using Marital Status are clearly the best candidates, since they
both produce the lowest weighted average Gini index. Binary splits can also
be used for ordinal attributes, if the binary partitioning of the attribute values
does not violate the ordering property of the values.

Binary Splitting of Quantitative Attributes

Consider the problem of identifying the best binary split Annual Income ≤ τ
for the preceding loan approval classification problem. As discussed previously,

�

M03 TAN9224 02 GE C03 page 153

� �

�

3.3 Decision Tree Classifier 153

Class No No No Yes Yes Yes No No No No

 Annual Income (in ‘ 000s)

60 70 75 85 90 95 100 120 125 220

 55 65 72.5 80 87.5 92.5 97.5 110 122.5 172.5 230

<= > <= > <= > <= > <= > <= > <= > <= > <= > <= > <= >

Yes 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0

No 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0

Gini 0.420 0.400 0.375 0.343 0.417 0.400 0.300 0.343 0.375 0.400 0.420

Split Positions

Sorted Values

Figure 3.14. Splitting continuous attributes.

even though τ can take any value between the minimum and maximum values
of annual income in the training set, it is sufficient to only consider the annual
income values observed in the training set as candidate split positions. For
each candidate τ , the training set is scanned once to count the number of
borrowers with annual income less than or greater than τ along with their
class proportions. We can then compute the Gini index at each candidate
split position and choose the τ that produces the lowest value. Computing the
Gini index at each candidate split position requires O(N) operations, where
N is the number of training instances. Since there are at most N possible
candidates, the overall complexity of this brute-force method is O(N2). It is
possible to reduce the complexity of this problem to O(N logN) by using a
method described as follows (see illustration in Figure 3.14). In this method,
we first sort the training instances based on their annual income, a one-time
cost that requires O(N logN) operations. The candidate split positions are
given by the midpoints between every two adjacent sorted values: $55,000,
$65,000, $72,500, and so on. For the first candidate, since none of the instances
has an annual income less than or equal to $55,000, the Gini index for the child
node with Annual Income < $55,000 is equal to zero. In contrast, there are 3
training instances of class Yes and 7 instances of class No with annual income
greater than $55,000. The Gini index for this node is 0.420. The weighted
average Gini index for the first candidate split position, τ = $55, 000, is equal
to 0× 0 + 1× 0.420 = 0.420.

For the next candidate, τ = $65, 000, the class distribution of its child
nodes can be obtained with a simple update of the distribution for the previous
candidate. This is because, as τ increases from $55,000 to $65,000, there is
only one training instance affected by the change. By examining the class label
of the affected training instance, the new class distribution is obtained. For
example, as τ increases to $65,000, there is only one borrower in the training

�

M03 TAN9224 02 GE C03 page 154

� �

�

154 Chapter 3 Classification

set, with an annual income of $60,000, affected by this change. Since the class
label for the borrower is No, the count for class No increases from 0 to 1 (for
Annual Income ≤ $65,000) and decreases from 7 to 6 (for Annual Income >
$65,000), as shown in Figure 3.14. The distribution for the Yes class remains
unaffected. The updated Gini index for this candidate split position is 0.400.

This procedure is repeated until the Gini index for all candidates are found.
The best split position corresponds to the one that produces the lowest Gini
index, which occurs at τ = $97, 500. Since the Gini index at each candidate
split position can be computed in O(1) time, the complexity of finding the
best split position is O(N) once all the values are kept sorted, a one-time
operation that takes O(N logN) time. The overall complexity of this method
is thus O(N logN), which is much smaller than the O(N2) time taken by the
brute-force method. The amount of computation can be further reduced by
considering only candidate split positions located between two adjacent sorted
instances with different class labels. For example, we do not need to consider
candidate split positions located between $60,000 and $75,000 because all three
instances with annual income in this range ($60,000, $70,000, and $75,000)
have the same class labels. Choosing a split position within this range only
increases the degree of impurity, compared to a split position located outside
this range. Therefore, the candidate split positions at τ = $65, 000 and τ =
$72, 500 can be ignored. Similarly, we do not need to consider the candidate
split positions at $87,500, $92,500, $110,000, $122,500, and $172,500 because
they are located between two adjacent instances with the same labels. This
strategy reduces the number of candidate split positions to consider from 9 to
2 (excluding the two boundary cases τ = $55, 000 and τ = $230, 000).

Gain Ratio

One potential limitation of impurity measures such as entropy and Gini index
is that they tend to favor qualitative attributes with large number of distinct
values. Figure 3.12 shows three candidate attributes for partitioning the data
set given in Table 3.3. As previously mentioned, the attribute Marital Status
is a better choice than the attribute Home Owner, because it provides a larger
information gain. However, if we compare them against Customer ID, the
latter produces the purest partitions with the maximum information gain,
since the weighted entropy and Gini index is equal to zero for its children.
Yet, Customer ID is not a good attribute for splitting because it has a unique
value for each instance. Even though a test condition involving Customer ID
will accurately classify every instance in the training data, we cannot use such
a test condition on new test instances with Customer ID values that haven’t

�

M03 TAN9224 02 GE C03 page 155

� �

�

3.3 Decision Tree Classifier 155

been seen before during training. This example suggests having a low impurity
value alone is insufficient to find a good attribute test condition for a node. As
we will see later in Section 3.4, having more number of child nodes can make a
decision tree more complex and consequently more susceptible to overfitting.
Hence, the number of children produced by the splitting attribute should also
be taken into consideration while deciding the best attribute test condition.

There are two ways to overcome this problem. One way is to generate
only binary decision trees, thus avoiding the difficulty of handling attributes
with varying number of partitions. This strategy is employed by decision tree
classifiers such as CART. Another way is to modify the splitting criterion to
take into account the number of partitions produced by the attribute. For
example, in the C4.5 decision tree algorithm, a measure known as gain ratio
is used to compensate for attributes that produce a large number of child
nodes. This measure is computed as follows:

Gain ratio =
Δinfo

Split Info
=

Entropy(Parent)−∑k
i=1

N(vi)
N Entropy(vi)

−∑k
i=1

N(vi)
N log2

N(vi)
N

(3.9)

where N(vi) is the number of instances assigned to node vi and k is the total
number of splits. The split information measures the entropy of splitting a
node into its child nodes and evaluates if the split results in a larger number
of equally-sized child nodes or not. For example, if every partition has the
same number of instances, then ∀i : N(vi)/N = 1/k and the split information
would be equal to log2 k. Thus, if an attribute produces a large number of
splits, its split information is also large, which in turn, reduces the gain ratio.

Example 3.4. [Gain Ratio] Consider the data set given in Exercise 3 on
page 205. We want to select the best attribute test condition among the
following three attributes: Gender, Car Type, and Customer ID. The entropy
before splitting is

Entropy(parent) = −10
20

log2

10
20
− 10

20
log2

10
20

= 1.

If Gender is used as attribute test condition:

Entropy(children) =
10
20

[
− 6

10
log2

6
10
− 4

10
log2

4
10

]
× 2 = 0.971

Gain Ratio =
1− 0.971

−10
20 log2

10
20 − 10

20 log2
10
20

=
0.029

1
= 0.029

�

M03 TAN9224 02 GE C03 page 156

� �

�

156 Chapter 3 Classification

If Car Type is used as attribute test condition:

Entropy(children) =
4
20

[
− 1

4
log2

1
4
− 3

4
log2

3
4

]
+

8
20
× 0

+
8
20

[
− 1

8
log2

1
8
− 7

8
log2

7
8

]
= 0.380

Gain Ratio =
1− 0.380

− 4
20 log2

4
20 − 8

20 log2
8
20 − 8

20 log2
8
20

=
0.620
1.52

= 0.41

Finally, if Customer ID is used as attribute test condition:

Entropy(children) =
1
20

[
− 1

1
log2

1
1
− 0

1
log2

0
1

]
× 20 = 0

Gain Ratio =
1− 0

− 1
20 log2

1
20 × 20

=
1

4.32
= 0.23

Thus, even though Customer ID has the highest information gain, its gain
ratio is lower than Car Type since it produces a larger number of splits.

3.3.4 Algorithm for Decision Tree Induction

Algorithm 3.1 presents a pseudocode for decision tree induction algorithm. The
input to this algorithm is a set of training instances E along with the attribute
set F . The algorithm works by recursively selecting the best attribute to split
the data (Step 7) and expanding the nodes of the tree (Steps 11 and 12)
until the stopping criterion is met (Step 1). The details of this algorithm are
explained below.

1. The createNode() function extends the decision tree by creating a new
node. A node in the decision tree either has a test condition, denoted as
node.test cond, or a class label, denoted as node.label.

2. The find best split() function determines the attribute test condi-
tion for partitioning the training instances associated with a node. The
splitting attribute chosen depends on the impurity measure used. The
popular measures include entropy and the Gini index.

3. The Classify() function determines the class label to be assigned to a
leaf node. For each leaf node t, let p(i|t) denote the fraction of training
instances from class i associated with the node t. The label assigned

�

M03 TAN9224 02 GE C03 page 157

� �

�

3.3 Decision Tree Classifier 157

Algorithm 3.1 A skeleton decision tree induction algorithm.
TreeGrowth (E, F)
1: if stopping cond(E,F) = true then
2: leaf = createNode().
3: leaf.label = Classify(E).
4: return leaf .
5: else
6: root = createNode().
7: root.test cond = find best split(E, F).
8: let V = {v|v is a possible outcome of root.test cond }.
9: for each v ∈ V do

10: Ev = {e | root.test cond(e) = v and e ∈ E}.
11: child = TreeGrowth(Ev, F).
12: add child as descendent of root and label the edge (root→ child) as v.
13: end for
14: end if
15: return root.

to the leaf node is typically the one that occurs most frequently in the
training instances that are associated with this node.

leaf.label = argmax
i

p(i|t), (3.10)

where the argmax operator returns the class i that maximizes p(i|t).
Besides providing the information needed to determine the class label of
a leaf node, p(i|t) can also be used as a rough estimate of the probability
that an instance assigned to the leaf node t belongs to class i. Sections
6.11.2 and 6.11.4 in the next chapter describe how such probability
estimates can be used to determine the performance of a decision tree
under different cost functions.

4. The stopping cond() function is used to terminate the tree-growing
process by checking whether all the instances have identical class label
or attribute values. Since decision tree classifiers employ a top-down,
recursive partitioning approach for building a model, the number of
training instances associated with a node decreases as the depth of the
tree increases. As a result, a leaf node may contain too few training
instances to make a statistically significant decision about its class label.
This is known as the data fragmentation problem. One way to avoid
this problem is to disallow splitting of a node when the number of
instances associated with the node fall below a certain threshold. A

�

M03 TAN9224 02 GE C03 page 158

� �

�

158 Chapter 3 Classification

Session IP Address Timestamp Protocol Status Referrer User AgentNumber
of Bytes

Requested Web PageRequest
Method

08/Aug/2004
10:15:21

160.11.11.111 GET http://www.cs.umn.edu/
~kumar

HTTP/1.1 200 6424 Mozilla/4.0
(compatible; MSIE 6.0;
Windows NT 5.0)

08/Aug/2004
10:15:34

160.11.11.111 GET http://www.cs.umn.edu/
~kumar/MINDS

http://www.cs.umn.edu/
~kumar

http://www.cs.umn.edu/
~kumar

HTTP/1.1 200 41378 Mozilla/4.0
(compatible; MSIE 6.0;
Windows NT 5.0)

08/Aug/2004
10:15:41

160.11.11.111 GET

08/Aug/2004
10:16:11

160.11.11.111 GET

08/Aug/2004
10:16:15

35.9.2.22 GET

http://www.cs.umn.edu/
~kumar/MINDS/MINDS
_papers.htm
http://www.cs.umn.edu/
~kumar/papers/papers.
html
http://www.cs.umn.edu/
~steinbac

http://www.cs.umn.edu/
~kumar/MINDS

HTTP/1.1 200

HTTP/1.1 200

HTTP/1.0

Attribute Name Description

200

1018516

7463

3149

Mozilla/4.0
(compatible; MSIE 6.0;
Windows NT 5.0)
Mozilla/4.0
(compatible; MSIE 6.0;
Windows NT 5.0)
Mozilla/5.0 (Windows; U;
Windows NT 5.1; en-US;
rv:1.7) Gecko/20040616

(a) Example of a Web server log.

http://www.cs.umn.edu/~kumar

MINDS
papers/papers.html

MINDS/MINDS_papers.htm

(b) Graph of a Web session. (c) Derived attributes for Web robot detection.

totalPages Total number of pages retrieved in a Web session
Total number of image pages retrieved in a Web session
Total amount of time spent by Web site visitor
The same page requested more than once in a Web session
Errors in requesting for Web pages

Breadth of Web traversal
Depth of Web traversal
Session with multiple IP addresses
Session with multiple user agents

Percentage of requests made using GET method
Percentage of requests made using POST method
Percentage of requests made using HEAD method

TotalTime
RepeatedAccess
ErrorRequest

Breadth
Depth
MultilP
MultiAgent

GET
POST
HEAD

ImagePages

Figure 3.15. Input data for web robot detection.

more systematic way to control the size of a decision tree (number of
leaf nodes) will be discussed in Section 3.5.4.

3.3.5 Example Application: Web Robot Detection

Consider the task of distinguishing the access patterns of web robots from
those generated by human users. A web robot (also known as a web crawler) is
a software program that automatically retrieves files from one or more websites
by following the hyperlinks extracted from an initial set of seed URLs. These
programs have been deployed for various purposes, from gathering web pages
on behalf of search engines to more malicious activities such as spamming and
committing click frauds in online advertisements.

The web robot detection problem can be cast as a binary classification
task. The input data for the classification task is a web server log, a sample
of which is shown in Figure 3.15(a). Each line in the log file corresponds to a

http://www.cs.umn.edu/~kumar
http://www.cs.umn.edu/~kumar/MINDS
http://www.cs.umn.edu/~kumar
http://www.cs.umn.edu/~kumar
http://www.cs.umn.edu/~kumar/MINDS/MINDS_papers.htm
http://www.cs.umn.edu/~kumar/papers/papers.html
http://www.cs.umn.edu/~steinbac
http://www.cs.umn.edu/~kumar/MINDS
http://www.cs.umn.edu/~kumar
http://www.cs.umn.edu/~kumar

�

M03 TAN9224 02 GE C03 page 159

� �

�

3.3 Decision Tree Classifier 159

request made by a client (i.e., a human user or a web robot) to the web server.
The fields recorded in the web log include the client’s IP address, timestamp of
the request, URL of the requested file, size of the file, and user agent, which
is a field that contains identifying information about the client. For human
users, the user agent field specifies the type of web browser or mobile device
used to fetch the files, whereas for web robots, it should technically contain
the name of the crawler program. However, web robots may conceal their true
identities by declaring their user agent fields to be identical to known browsers.
Therefore, user agent is not a reliable field to detect web robots.

The first step toward building a classification model is to precisely define a
data instance and associated attributes. A simple approach is to consider each
log entry as a data instance and use the appropriate fields in the log file as its
attribute set. This approach, however, is inadequate for several reasons. First,
many of the attributes are nominal-valued and have a wide range of domain
values. For example, the number of unique client IP addresses, URLs, and
referrers in a log file can be very large. These attributes are undesirable for
building a decision tree because their split information is extremely high (see
Equation (3.9)). In addition, it might not be possible to classify test instances
containing IP addresses, URLs, or referrers that are not present in the training
data. Finally, by considering each log entry as a separate data instance, we
disregard the sequence of web pages retrieved by the client—a critical piece
of information that can help distinguish web robot accesses from those of a
human user.

A better alternative is to consider each web session as a data instance.
A web session is a sequence of requests made by a client during a given
visit to the website. Each web session can be modeled as a directed graph,
in which the nodes correspond to web pages and the edges correspond to
hyperlinks connecting one web page to another. Figure 3.15(b) shows a graph-
ical representation of the first web session given in the log file. Every web
session can be characterized using some meaningful attributes about the graph
that contain discriminatory information. Figure 3.15(c) shows some of the
attributes extracted from the graph, including the depth and breadth of its
corresponding tree rooted at the entry point to the website. For example, the
depth and breadth of the tree shown in Figure 3.15(b) are both equal to two.

The derived attributes shown in Figure 3.15(c) are more informative than
the original attributes given in the log file because they characterize the
behavior of the client at the website. Using this approach, a data set containing
2916 instances was created, with equal numbers of sessions due to web robots
(class 1) and human users (class 0). 10% of the data were reserved for training
while the remaining 90% were used for testing. The induced decision tree is

�

M03 TAN9224 02 GE C03 page 160

� �

�

160 Chapter 3 Classification

shown in Figure 3.16, which has an error rate equal to 3.8% on the training
set and 5.3% on the test set. In addition to its low error rate, the tree also
reveals some interesting properties that can help discriminate web robots from
human users:

1. Accesses by web robots tend to be broad but shallow, whereas accesses
by human users tend to be more focused (narrow but deep).

2. Web robots seldom retrieve the image pages associated with a web page.

3. Sessions due to web robots tend to be long and contain a large number
of requested pages.

4. Web robots are more likely to make repeated requests for the same web
page than human users since the web pages retrieved by human users
are often cached by the browser.

3.3.6 Characteristics of Decision Tree Classifiers

The following is a summary of the important characteristics of decision tree
induction algorithms.

1. Applicability: Decision trees are a nonparametric approach for building
classification models. This approach does not require any prior assump-
tion about the probability distribution governing the class and attributes
of the data, and thus, is applicable to a wide variety of data sets. It is also
applicable to both categorical and continuous data without requiring the
attributes to be transformed into a common representation via binariza-
tion, normalization, or standardization. Unlike some binary classifiers
described in Chapter 6, it can also deal with multiclass problems without
the need to decompose them into multiple binary classification tasks.
Another appealing feature of decision tree classifiers is that the induced
trees, especially the shorter ones, are relatively easy to interpret. The
accuracies of the trees are also quite comparable to other classification
techniques for many simple data sets.

2. Expressiveness: A decision tree provides a universal representation
for discrete-valued functions. In other words, it can encode any func-
tion of discrete-valued attributes. This is because every discrete-valued
function can be represented as an assignment table, where every unique
combination of discrete attributes is assigned a class label. Since every

�

M03 TAN9224 02 GE C03 page 161

� �

�

3.3 Decision Tree Classifier 161

Decision Tree:
depth = 1:
| breadth> 7 : class 1
| breadth<= 7:
| | breadth <= 3:
| | | ImagePages> 0.375: class 0
| | | ImagePages<= 0.375:
| | | | totalPages<= 6: class 1
| | | | totalPages> 6:
| | | | | breadth <= 1: class 1
| | | | | breadth > 1: class 0
| | width > 3:
| | | MultilP = 0:
| | | | ImagePages<= 0.1333: class 1
| | | | ImagePages> 0.1333:
| | | | breadth <= 6: class 0
| | | | breadth > 6: class 1
| | | MultilP = 1:
| | | | TotalTime <= 361: class 0
| | | | TotalTime > 361: class 1
depth> 1:
| MultiAgent = 0:
| | depth > 2: class 0
| | depth < 2:
| | | MultilP = 1: class 0
| | | MultilP = 0:
| | | | breadth <= 6: class 0
| | | | breadth > 6:
| | | | | RepeatedAccess <= 0.322: class 0
| | | | | RepeatedAccess > 0.322: class 1
| MultiAgent = 1:
| | totalPages <= 81: class 0
| | totalPages > 81: class 1

Figure 3.16. Decision tree model for web robot detection.

combination of attributes can be represented as a leaf in the decision
tree, we can always find a decision tree whose label assignments at the
leaf nodes matches with the assignment table of the original function.
Decision trees can also help in providing compact representations of
functions when some of the unique combinations of attributes can be
represented by the same leaf node. For example, Figure 3.17 shows the
assignment table of the Boolean function (A∧B)∨(C∧D) involving four
binary attributes, resulting in a total of 24 = 16 possible assignments.
The tree shown in Figure 3.17 shows a compressed encoding of this
assignment table. Instead of requiring a fully-grown tree with 16 leaf
nodes, it is possible to encode the function using a simpler tree with
only 7 leaf nodes. Nevertheless, not all decision trees for discrete-valued
attributes can be simplified. One notable example is the parity function,

�

M03 TAN9224 02 GE C03 page 162

� �

�

162 Chapter 3 Classification

A

B

0

0

0

1

1

1C

0

0 1

0

D

1

10

C

0 1

D

0

0 1

1

A B C D class
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

Figure 3.17. Decision tree for the Boolean function (A ∧B) ∨ (C ∧D).

whose value is 1 when there is an even number of true values among
its Boolean attributes, and 0 otherwise. Accurate modeling of such a
function requires a full decision tree with 2d nodes, where d is the number
of Boolean attributes (see Exercise 2 on page 205).

3. Computational Efficiency: Since the number of possible decision trees
can be very large, many decision tree algorithms employ a heuristic-
based approach to guide their search in the vast hypothesis space. For
example, the algorithm presented in Section 3.3.4 uses a greedy, top-
down, recursive partitioning strategy for growing a decision tree. For
many data sets, such techniques quickly construct a reasonably good
decision tree even when the training set size is very large. Furthermore,
once a decision tree has been built, classifying a test record is extremely
fast, with a worst-case complexity of O(w), where w is the maximum
depth of the tree.

4. Handling Missing Values: A decision tree classifier can handle miss-
ing attribute values in a number of ways, both in the training and the
test sets. When there are missing values in the test set, the classifier
must decide which branch to follow if the value of a splitting node
attribute is missing for a given test instance. One approach, known
as the probabilistic split method, which is employed by the C4.5
decision tree classifier, distributes the data instance to every child of the
splitting node according to the probability that the missing attribute has
a particular value. In contrast, the CART algorithm uses the surrogate
split method, where the instance whose splitting attribute value is

�

M03 TAN9224 02 GE C03 page 163

� �

�

3.3 Decision Tree Classifier 163

Home
Owner

Marital
Status

Annual
Income

? Single 79K
10

Home
Owner

Marital
Status

Annual
Income

? Single 79K
10

Home
Owner

Marital
Status

Annual
Income

? Single 79K
10

Home
Owner

Marital
Status

Annual
Income

? Single 79K
10

Home
Owner

Marital
Status

Annual
Income

? Single 79K
10

Home
Owner

Marital
Status

Annual
Income

? Single 79K
10

Home
Owner

Marital
Status

Annual
Income

? Single 79K
10

Figure 3.18. Methods for handling missing attribute values in decision tree classifier.

missing is assigned to one of the child nodes based on the value of
another non-missing surrogate attribute whose splits most resemble the
partitions made by the missing attribute. Another approach, known as
the separate class method is used by the CHAID algorithm, where
the missing value is treated as a separate categorical value distinct from
other values of the splitting attribute. Figure 3.18 shows an example of
the three different ways for handling missing values in a decision tree
classifier. Other strategies for dealing with missing values are based on
data preprocessing, where the instance with missing value is either im-
puted with the mode (for categorical attribute) or mean (for continuous
attribute) value or discarded before the classifier is trained.

During training, if an attribute v has missing values in some of the
training instances associated with a node, we need a way to measure
the gain in purity if v is used for splitting. One simple way is to exclude
instances with missing values of v in the counting of instances associated
with every child node, generated for every possible outcome of v. Further,
if v is chosen as the attribute test condition at a node, training instances
with missing values of v can be propagated to the child nodes using
any of the methods described above for handling missing values in test
instances.

5. Handling Interactions among Attributes: Attributes are consid-
ered interacting if they are able to distinguish between classes when
used together, but individually they provide little or no information.
Due to the greedy nature of the splitting criteria in decision trees, such
attributes could be passed over in favor of other attributes that are not as
useful. This could result in more complex decision trees than necessary.

�

M03 TAN9224 02 GE C03 page 164

� �

�

164 Chapter 3 Classification

Hence, decision trees can perform poorly when there are interactions
among attributes.

To illustrate this point, consider the three-dimensional data shown in
Figure 3.19(a), which contains 2000 data points from one of two classes,
denoted as + and ◦ in the diagram. Figure 3.19(b) shows the distribution
of the two classes in the two-dimensional space involving attributes X
and Y , which is a noisy version of the XOR Boolean function. We
can see that even though the two classes are well-separated in this
two-dimensional space, neither of the two attributes contain sufficient
information to distinguish between the two classes when used alone.
For example, the entropies of the following attribute test conditions:
X ≤ 10 and Y ≤ 10, are close to 1, indicating that neither X nor Y
provide any reduction in the impurity measure when used individually.
X and Y thus represent a case of interaction among attributes. The
data set also contains a third attribute, Z, in which both classes are
distributed uniformly, as shown in Figures 3.19(c) and 3.19(d), and
hence, the entropy of any split involving Z is close to 1. As a result,
Z is as likely to be chosen for splitting as the interacting but useful
attributes, X and Y . For further illustration of this issue, readers are
referred to Example 3.7 in Section 3.4.1 and Exercise 8 at the end of
this chapter.

6. Handling Irrelevant Attributes: An attribute is irrelevant if it is not
useful for the classification task. Since irrelevant attributes are poorly
associated with the target class labels, they will provide little or no gain
in purity and thus will be passed over by other more relevant features.
Hence, the presence of a small number of irrelevant attributes will not
impact the decision tree construction process. However, not all attributes
that provide little to no gain are irrelevant (see Figure 3.19). Hence, if
the classification problem is complex (e.g., involving interactions among
attributes) and there are a large number of irrelevant attributes, then
some of these attributes may be accidentally chosen during the tree-
growing process, since they may provide a better gain than a relevant
attribute just by random chance. Feature selection techniques can help
to improve the accuracy of decision trees by eliminating the irrelevant
attributes during preprocessing. We will investigate the issue of too many
irrelevant attributes in Section 3.4.1.

7. Handling Redundant Attributes: An attribute is redundant if it is
strongly correlated with another attribute in the data. Since redundant

�

M03 TAN9224 02 GE C03 page 165

� �

�

3.3 Decision Tree Classifier 165

0
5

10
15

20

0

5

10

15

20
0

5

10

15

20

X
Y

Z

(a) Three-dimensional data with at-
tributes X, Y , and Z.

4 6 8 10 12 14 16 18

4

6

8

10

12

14

16

18

(b) X and Y .

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

X

Z

(c) X and Z.

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

Y

Z

(d) Y and Z.

Figure 3.19. Example of a XOR data involving X and Y , along with an irrelevant attribute Z .

attributes show similar gains in purity if they are selected for splitting,
only one of them will be selected as an attribute test condition in the
decision tree algorithm. Decision trees can thus handle the presence of
redundant attributes.

8. Using Rectilinear Splits: The test conditions described so far in this
chapter involve using only a single attribute at a time. As a consequence,

�

M03 TAN9224 02 GE C03 page 166

� �

�

166 Chapter 3 Classification

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

y

Yes No

Yes No Yes No

y < 0.33

:4
:0

:0
:4

:0
:3

:4
:0

x < 0.43

y < 0.47

Figure 3.20. Example of a decision tree and its decision boundaries for a two-dimensional data set.

the tree-growing procedure can be viewed as the process of partitioning
the attribute space into disjoint regions until each region contains records
of the same class. The border between two neighboring regions of dif-
ferent classes is known as a decision boundary. Figure 3.20 shows the
decision tree as well as the decision boundary for a binary classifica-
tion problem. Since the test condition involves only a single attribute,
the decision boundaries are rectilinear; i.e., parallel to the coordinate
axes. This limits the expressiveness of decision trees in representing
decision boundaries of data sets with continuous attributes. Figure 3.21
shows a two-dimensional data set involving binary classes that cannot
be perfectly classified by a decision tree whose attribute test conditions
are defined based on single attributes. The binary classes in the data
set are generated from two skewed Gaussian distributions, centered at
(8,8) and (12,12), respectively. The true decision boundary is represented
by the diagonal dashed line, whereas the rectilinear decision boundary
produced by the decision tree classifier is shown by the thick solid line.
In contrast, an oblique decision tree may overcome this limitation by
allowing the test condition to be specified using more than one attribute.
For example, the binary classification data shown in Figure 3.21 can be
easily represented by an oblique decision tree with a single root node
with test condition

x+ y < 20.

�

M03 TAN9224 02 GE C03 page 167

� �

�

3.4 Model Overfitting 167

20

18

16

14

12

10

8

6

4

2

0
0 2 4 6 8 10 12 14 16 18 20

Figure 3.21. Example of data set that cannot be partitioned optimally using a decision tree with single
attribute test conditions. The true decision boundary is shown by the dashed line.

Although an oblique decision tree is more expressive and can produce
more compact trees, finding the optimal test condition is computation-
ally more expensive.

9. Choice of Impurity Measure: It should be noted that the choice of
impurity measure often has little effect on the performance of decision
tree classifiers since many of the impurity measures are quite consistent
with each other, as shown in Figure 3.11 on page 149. Instead, the
strategy used to prune the tree has a greater impact on the final tree
than the choice of impurity measure.

3.4 Model Overfitting

Methods presented so far try to learn classification models that show the
lowest error on the training set. However, as we will show in the following
example, even if a model fits well over the training data, it can still show poor
generalization performance, a phenomenon known as model overfitting.

�

M03 TAN9224 02 GE C03 page 168

� �

�

168 Chapter 3 Classification

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

(a) Example of a 2-D data.

0 4 8 12 16 20
0

4

8

12

16

20

(b) Training set using 10% data.

Figure 3.22. Examples of training and test sets of a two-dimensional classification problem.

0 1 2 3 4 5 6 7 8 9
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Size of tree (number of leaf nodes)

E
rr

or
 r

at
e

Training Error
Test Error

(a) Varying tree size from 1 to 8.

150100500

Size of tree (number of leaf nodes)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
E

rr
or

 r
at

e

Training Error
Test Error

(b) Varying tree size from 1 to 150.

Figure 3.23. Effect of varying tree size (number of leaf nodes) on training and test errors.

Example 3.5. [Overfitting and Underfitting of Decision Trees] Con-
sider the two-dimensional data set shown in Figure 3.22(a). The data set
contains instances that belong to two separate classes, represented as + and o,
respectively, where each class has 5400 instances. All instances belonging to
the o class were generated from a uniform distribution. For the + class, 5000
instances were generated from a Gaussian distribution centered at (10,10)
with unit variance, while the remaining 400 instances were sampled from the
same uniform distribution as the o class. We can see from Figure 3.22(a) that

�

M03 TAN9224 02 GE C03 page 169

� �

�

3.4 Model Overfitting 169

the + class can be largely distinguished from the o class by drawing a circle
of appropriate size centered at (10,10). To learn a classifier using this two-
dimensional data set, we randomly sampled 10% of the data for training and
used the remaining 90% for testing. The training set, shown in Figure 3.22(b),
looks quite representative of the overall data. We used Gini index as the
impurity measure to construct decision trees of increasing sizes (number of
leaf nodes), by recursively expanding a node into child nodes till every leaf
node was pure, as described in Section 3.3.4.

Figure 3.23(a) shows changes in the training and test error rates as the
size of the tree varies from 1 to 8. Both error rates are initially large when
the tree has only one or two leaf nodes. This situation is known as model
underfitting. Underfitting occurs when the learned decision tree is too sim-
plistic, and thus, incapable of fully representing the true relationship between
the attributes and the class labels. As we increase the tree size from 1 to 8, we
can observe two effects. First, both the error rates decrease since larger trees
are able to represent more complex decision boundaries. Second, the training
and test error rates are quite close to each other, which indicates that the
performance on the training set is fairly representative of the generalization
performance. As we further increase the size of the tree from 8 to 150, the
training error continues to steadily decrease till it eventually reaches zero, as
shown in Figure 3.23(b). However, in a striking contrast, the test error rate
ceases to decrease any further beyond a certain tree size, and then it begins
to increase. The training error rate thus grossly under-estimates the test error
rate once the tree becomes too large. Further, the gap between the training and
test error rates keeps on widening as we increase the tree size. This behavior,
which may seem counter-intuitive at first, can be attributed to the phenomena
of model overfitting.

3.4.1 Reasons for Model Overfitting

Model overfitting is the phenomena where, in the pursuit of minimizing the
training error rate, an overly complex model is selected that captures specific
patterns in the training data but fails to learn the true nature of relationships
between attributes and class labels in the overall data. To illustrate this, Figure
3.24 shows decision trees and their corresponding decision boundaries (shaded
rectangles represent regions assigned to the + class) for two trees of sizes
5 and 50. We can see that the decision tree of size 5 appears quite simple
and its decision boundaries provide a reasonable approximation to the ideal
decision boundary, which in this case corresponds to a circle centered around

�

M03 TAN9224 02 GE C03 page 170

� �

�

170 Chapter 3 Classification

o

o

o

+

x1 < 6.45956

x1 < 13.1086

x2 < 7.03548

x2 < 14.3129

o

(a) Decision tree with 5
leaf nodes.

o

o

+ o

+

+

o + o

oo

+ o + o +

+ + + + +

o o o + +

o + + o o

o + o + + o +

+ o o

+ o + o + o

x1 < 6.45956

x1 < 13.1086

x2 < 7.03548

x1 < 12.4659 x2 < 14.3129

x2 < 0.285616 x1 < 7.64958

x2 < 2.86603 x2 < 8.45905 x1 < 12.3452

x2 < 2.96728
x2 < 10.9661

x1 < 9.43874
x2 < 12.7577

x1 < 10.7076 x1 < 7.38542

x2 < 12.9969

x1 < 12.3855

x1 < 10.4964 x1 < 7.26296
x2 < 10.7574

 x2 < 13.1288

x1 < 12.5313

x2 < 3.69176 x2 < 9.86064
x2 < 7.57747 x1 < 11.2719

x1 < 12.762

x1 < 8.63557 x2 < 9.80473
x2 < 7.52895 x2 < 13.4189 x1 < 13.0418

x2 < 4.85814 x2 < 9.5916
x1 < 10.9163 x1 < 10.1716

x1 < 12.8101

x1 < 9.33549

x2 < 8.62807
x1 < 11.5624 x1 < 10.8417 x1 < 12.8821

x1 < 8.84039
x1 < 6.69865 x1 < 12.9622

x1 < 8.77637 x1 < 6.86874 x1 < 13.004

o+ o

(b) Decision tree with 50 leaf nodes.

0 4 8 12 16 20
0

4

8

12

16

20

(c) Decision boundary for tree with
5 leaf nodes.

0 4 8 12 16 20
0

4

8

12

16

20

(d) Decision boundary for tree with
50 leaf nodes.

Figure 3.24. Decision trees with different model complexities.

the Gaussian distribution at (10, 10). Although its training and test error
rates are non-zero, they are very close to each other, which indicates that the
patterns learned in the training set should generalize well over the test set. On
the other hand, the decision tree of size 50 appears much more complex than
the tree of size 5, with complicated decision boundaries. For example, some of
its shaded rectangles (assigned the + class) attempt to cover narrow regions in
the input space that contain only one or two + training instances. Note that

�

M03 TAN9224 02 GE C03 page 171

� �

�

3.4 Model Overfitting 171

0 4 8 12 16 20
0

4

8

12

16

20

(a) Decision boundary for tree with
50 leaf nodes using 20% data for
training.

150100500

Size of tree (number of leaf nodes)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
rr

or
 r

at
e

Training Error
Test Error

(b) Training and test error rates
using 20% data for training.

Figure 3.25. Performance of decision trees using 20% data for training (twice the original training size).

the prevalence of + instances in such regions is highly specific to the training
set, as these regions are mostly dominated by - instances in the overall data.
Hence, in an attempt to perfectly fit the training data, the decision tree of size
50 starts fine tuning itself to specific patterns in the training data, leading to
poor performance on an independently chosen test set.

There are a number of factors that influence model overfitting. In the
following, we provide brief descriptions of two of the major factors: limited
training size and high model complexity. Though they are not exhaustive, the
interplay between them can help explain most of the common model overfitting
phenomena in real-world applications.

Limited Training Size

Note that a training set consisting of a finite number of instances can only
provide a limited representation of the overall data. Hence, it is possible that
the patterns learned from a training set do not fully represent the true patterns
in the overall data, leading to model overfitting. In general, as we increase the
size of a training set (number of training instances), the patterns learned from
the training set start resembling the true patterns in the overall data. Hence,
the effect of overfitting can be reduced by increasing the training size, as
illustrated in the following example.

�

M03 TAN9224 02 GE C03 page 172

� �

�

172 Chapter 3 Classification

Example 3.6. [Effect of Training Size] Suppose that we use twice the
number of training instances than what we had used in the experiments
conducted in Example 3.5. Specifically, we use 20% data for training and use
the remainder for testing. Figure 3.25(b) shows the training and test error rates
as the size of the tree is varied from 1 to 150. There are two major differences
in the trends shown in this figure and those shown in Figure 3.23(b) (using
only 10% of the data for training). First, even though the training error rate
decreases with increasing tree size in both figures, its rate of decrease is much
smaller when we use twice the training size. Second, for a given tree size, the
gap between the training and test error rates is much smaller when we use
twice the training size. These differences suggest that the patterns learned
using 20% of data for training are more generalizable than those learned using
10% of data for training.

Figure 3.25(a) shows the decision boundaries for the tree of size 50, learned
using 20% of data for training. In contrast to the tree of the same size learned
using 10% data for training (see Figure 3.24(d)), we can see that the decision
tree is not capturing specific patterns of noisy + instances in the training set.
Instead, the high model complexity of 50 leaf nodes is being effectively used
to learn the boundaries of the + instances centered at (10, 10).

High Model Complexity

Generally, a more complex model has a better ability to represent complex
patterns in the data. For example, decision trees with larger number of leaf
nodes can represent more complex decision boundaries than decision trees
with fewer leaf nodes. However, an overly complex model also has a tendency
to learn specific patterns in the training set that do not generalize well over
unseen instances. Models with high complexity should thus be judiciously used
to avoid overfitting.

One measure of model complexity is the number of “parameters” that
need to be inferred from the training set. For example, in the case of decision
tree induction, the attribute test conditions at internal nodes correspond to
the parameters of the model that need to be inferred from the training set. A
decision tree with larger number of attribute test conditions (and consequently
more leaf nodes) thus involves more “parameters” and hence is more complex.

Given a class of models with a certain number of parameters, a learning
algorithm attempts to select the best combination of parameter values that
maximizes an evaluation metric (e.g., accuracy) over the training set. If the
number of parameter value combinations (and hence the complexity) is large,

�

M03 TAN9224 02 GE C03 page 173

� �

�

3.4 Model Overfitting 173

the learning algorithm has to select the best combination from a large number
of possibilities, using a limited training set. In such cases, there is a high chance
for the learning algorithm to pick a spurious combination of parameters that
maximizes the evaluation metric just by random chance. This is similar to the
multiple comparisons problem (also referred as multiple testing problem)
in statistics.

As an illustration of the multiple comparisons problem, consider the task
of predicting whether the stock market will rise or fall in the next ten trading
days. If a stock analyst simply makes random guesses, the probability that
her prediction is correct on any trading day is 0.5. However, the probability
that she will predict correctly at least nine out of ten times is

(
10
9

)
+

(
10
10

)

210
= 0.0107,

which is extremely low.
Suppose we are interested in choosing an investment advisor from a pool of

200 stock analysts. Our strategy is to select the analyst who makes the most
number of correct predictions in the next ten trading days. The flaw in this
strategy is that even if all the analysts make their predictions in a random
fashion, the probability that at least one of them makes at least nine correct
predictions is

1− (1− 0.0107)200 = 0.8847,

which is very high. Although each analyst has a low probability of predicting
at least nine times correctly, considered together, we have a high probability
of finding at least one analyst who can do so. However, there is no guarantee
in the future that such an analyst will continue to make accurate predictions
by random guessing.

How does the multiple comparisons problem relate to model overfitting? In
the context of learning a classification model, each combination of parameter
values corresponds to an analyst, while the number of training instances
corresponds to the number of days. Analogous to the task of selecting the best
analyst who makes the most accurate predictions on consecutive days, the task
of a learning algorithm is to select the best combination of parameters that
results in the highest accuracy on the training set. If the number of parameter
combinations is large but the training size is small, it is highly likely for the
learning algorithm to choose a spurious parameter combination that provides
high training accuracy just by random chance. In the following example, we
illustrate the phenomena of overfitting due to multiple comparisons in the
context of decision tree induction.

�

M03 TAN9224 02 GE C03 page 174

� �

�

174 Chapter 3 Classification

0
0 5 10 15 20

2

4

6

8

10

12

14

16

18

20

Figure 3.26. Example of a two-dimensional (X-Y) data set.

0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

Number of nodes

E
rr

or
 r

at
e

Training error
Test error

(a) Using X and Y attributes only.

0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of nodes

E
rr

or
 r

at
e

Training error
Test error

(b) After adding 100 irrelevant at-
tributes.

Figure 3.27. Training and test error rates illustrating the effect of multiple comparisons problem on
model overfitting.

Example 3.7. [Multiple Comparisons and Overfitting] Consider the
two-dimensional data set shown in Figure 3.26 containing 500 + and 500 o
instances, which is similar to the data shown in Figure 3.19. In this data set,
the distributions of both classes are well-separated in the two-dimensional (X-
Y) attribute space, but none of the two attributes (X or Y) are sufficiently
informative to be used alone for separating the two classes. Hence, splitting

�

M03 TAN9224 02 GE C03 page 175

� �

�

3.4 Model Overfitting 175

3

5 4

1

2

(a) Decision boundary for tree with
6 leaf nodes.

+

5 4

3

1

2

0 +

+

0

0

(b) Decision tree with 6 leaf nodes.

Figure 3.28. Decision tree with 6 leaf nodes using X and Y as attributes. Splits have been numbered
from 1 to 5 in order of other occurrence in the tree.

the data set based on any value of an X or Y attribute will provide close to
zero reduction in an impurity measure. However, if X and Y attributes are
used together in the splitting criterion (e.g., splitting X at 10 and Y at 10),
the two classes can be effectively separated.

Figure 3.27(a) shows the training and test error rates for learning decision
trees of varying sizes, when 30% of the data is used for training and the remain-
der of the data for testing. We can see that the two classes can be separated
using a small number of leaf nodes. Figure 3.28 shows the decision boundaries
for the tree with six leaf nodes, where the splits have been numbered according
to their order of appearance in the tree. Note that the even though splits 1
and 3 provide trivial gains, their consequent splits (2, 4, and 5) provide large
gains, resulting in effective discrimination of the two classes.

Assume we add 100 irrelevant attributes to the two-dimensional X-Y data.
Learning a decision tree from this resultant data will be challenging because
the number of candidate attributes to choose for splitting at every internal
node will increase from two to 102. With such a large number of candidate
attribute test conditions to choose from, it is quite likely that spurious at-
tribute test conditions will be selected at internal nodes because of the multiple
comparisons problem. Figure 3.27(b) shows the training and test error rates
after adding 100 irrelevant attributes to the training set. We can see that the

�

M03 TAN9224 02 GE C03 page 176

� �

�

176 Chapter 3 Classification

test error rate remains close to 0.5 even after using 50 leaf nodes, while the
training error rate keeps on declining and eventually becomes 0.

3.5 Model Selection

There are many possible classification models with varying levels of model
complexity that can be used to capture patterns in the training data. Among
these possibilities, we want to select the model that shows lowest generalization
error rate. The process of selecting a model with the right level of complexity,
which is expected to generalize well over unseen test instances, is known as
model selection. As described in the previous section, the training error
rate cannot be reliably used as the sole criterion for model selection. In the
following, we present three generic approaches to estimate the generalization
performance of a model that can be used for model selection. We conclude
this section by presenting specific strategies for using these approaches in the
context of decision tree induction.

3.5.1 Using a Validation Set

Note that we can always estimate the generalization error rate of a model by
using “out-of-sample” estimates, i.e. by evaluating the model on a separate
validation set that is not used for training the model. The error rate on
the validation set, termed as the validation error rate, is a better indicator of
generalization performance than the training error rate, since the validation
set has not been used for training the model. The validation error rate can be
used for model selection as follows.

Given a training set D.train, we can partition D.train into two smaller
subsets, D.tr and D.val, such that D.tr is used for training while D.val is used
as the validation set. For example, two-thirds of D.train can be reserved as
D.tr for training, while the remaining one-third is used asD.val for computing
validation error rate. For any choice of classification model m that is trained
on D.tr, we can estimate its validation error rate on D.val, errval(m). The
model that shows the lowest value of errval(m) can then be selected as the
preferred choice of model.

The use of validation set provides a generic approach for model selection.
However, one limitation of this approach is that it is sensitive to the sizes of
D.tr and D.val, obtained by partitioning D.train. If the size of D.tr is too
small, it may result in the learning of a poor classification model with sub-
standard performance, since a smaller training set will be less representative

�

M03 TAN9224 02 GE C03 page 177

� �

�

3.5 Model Selection 177

Figure 3.29. Class distribution of validation data for the two decision trees shown in Figure 3.30.

of the overall data. On the other hand, if the size of D.val is too small, the
validation error rate might not be reliable for selecting models, as it would be
computed over a small number of instances.

Example 3.8. [Validation Error] In the following example, we illustrate
one possible approach for using a validation set in decision tree induction.
Figure 3.29 shows the predicted labels at the leaf nodes of the decision trees
generated in Figure 3.30. The counts given beneath the leaf nodes represent
the proportion of data instances in the validation set that reach each of the
nodes. Based on the predicted labels of the nodes, the validation error rate
for the left tree is errval(TL) = 6/16 = 0.375, while the validation error rate
for the right tree is errval(TR) = 4/16 = 0.25. Based on their validation error
rates, the right tree is preferred over the left one.

3.5.2 Incorporating Model Complexity

Since the chance for model overfitting increases as the model becomes more
complex, a model selection approach should not only consider the training
error rate but also the model complexity. This strategy is inspired by a well-
known principle known as Occam’s razor or the principle of parsimony,
which suggests that given two models with the same errors, the simpler model
is preferred over the more complex model. A generic approach to account

�

M03 TAN9224 02 GE C03 page 178

� �

�

178 Chapter 3 Classification

for model complexity while estimating generalization performance is formally
described as follows.

Given a training set D.train, let us consider learning a classification model
m that belongs to a certain class of models,M. For example, ifM represents
the set of all possible decision trees, then m can correspond to a specific deci-
sion tree learned from the training set. We are interested in estimating the gen-
eralization error rate of m, gen.error(m). As discussed previously, the training
error rate of m, train.error(m,D.train), can under-estimate gen.error(m)
when the model complexity is high. Hence, we represent gen.error(m) as a
function of not just the training error rate but also the model complexity of
M, complexity(M), as follows:

gen.error(m) = train.error(m,D.train) + α× complexity(M), (3.11)

where α is a hyper-parameter that strikes a balance between minimizing
training error and reducing model complexity. A higher value of α gives
more emphasis to the model complexity in the estimation of generalization
performance. To choose the right value of α, we can make use of the validation
set in a similar way as described in 3.5.1. For example, we can iterate through
a range of values of α and for every possible value, we can learn a model on
a subset of the training set, D.tr, and compute its validation error rate on a
separate subset, D.val. We can then select the value of α that provides the
lowest validation error rate.

Equation 3.11 provides one possible approach for incorporating model com-
plexity into the estimate of generalization performance. This approach is at
the heart of a number of techniques for estimating generalization performance,
such as the structural risk minimization principle, the Akaike’s Information
Criterion (AIC), and the Bayesian Information Criterion (BIC). The structural
risk minimization principle serves as the building block for learning support
vector machines, which will be discussed later in Chapter 6. For more details
on AIC and BIC, see the Bibliographic Notes.

In the following, we present two different approaches for estimating the
complexity of a model, complexity(M). While the former is specific to decision
trees, the latter is more generic and can be used with any class of models.

Estimating the Complexity of Decision Trees

In the context of decision trees, the complexity of a decision tree can be
estimated as the ratio of the number of leaf nodes to the number of training
instances. Let k be the number of leaf nodes and Ntrain be the number of

�

M03 TAN9224 02 GE C03 page 179

� �

�

3.5 Model Selection 179

training instances. The complexity of a decision tree can then be described
as k/Ntrain. This reflects the intuition that for a larger training size, we can
learn a decision tree with larger number of leaf nodes without it becoming
overly complex. The generalization error rate of a decision tree T can then be
computed using Equation 3.11 as follows:

errgen(T) = err(T) + Ω× k

Ntrain
,

where err(T) is the training error of the decision tree and Ω is a hyper-
parameter that makes a trade-off between reducing training error and min-
imizing model complexity, similar to the use of α in Equation 3.11. Ω can
be viewed as the relative cost of adding a leaf node relative to incurring a
training error. In the literature on decision tree induction, the above approach
for estimating generalization error rate is also termed as the pessimistic
error estimate. It is called pessimistic as it assumes the generalization error
rate to be worse than the training error rate (by adding a penalty term for
model complexity). On the other hand, simply using the training error rate
as an estimate of the generalization error rate is called the optimistic error
estimate or the resubstitution estimate.

Example 3.9. [Generalization Error Estimates] Consider the two binary
decision trees, TL and TR, shown in Figure 3.30. Both trees are generated from
the same training data and TL is generated by expanding three leaf nodes
of TR. The counts shown in the leaf nodes of the trees represent the class

+: 3
–: 1

+: 2
–: 1

+: 0
–: 2

+: 1
–: 2

+: 3
–: 1

+: 0
–: 5

+: 5
–: 2

+: 1
–: 4

+: 3
–: 0

+: 3
–: 6

+: 3
–: 0

Decision Tree, TL Decision Tree, TR

Figure 3.30. Example of two decision trees generated from the same training data.

�

M03 TAN9224 02 GE C03 page 180

� �

�

180 Chapter 3 Classification

distribution of the training instances. If each leaf node is labeled according
to the majority class of training instances that reach the node, the training
error rate for the left tree will be err(TL) = 4/24 = 0.167, while the training
error rate for the right tree will be err(TR) = 6/24 = 0.25. Based on their
training error rates alone, TL would preferred over TR, even though TL is more
complex (contains larger number of leaf nodes) than TR.

Now, assume that the cost associated with each leaf node is Ω = 0.5. Then,
the generalization error estimate for TL will be

errgen(TL) =
4
24

+ 0.5× 7
24

=
7.5
24

= 0.3125

and the generalization error estimate for TR will be

errgen(TR) =
6
24

+ 0.5× 4
24

=
8
24

= 0.3333.

Since TL has a lower generalization error rate, it will still be preferred over TR.
Note that Ω = 0.5 implies that a node should always be expanded into its two
child nodes if it improves the prediction of at least one training instance, since
expanding a node is less costly than misclassifying a training instance. On the
other hand, if Ω = 1, then the generalization error rate for TL is errgen(TL) =
11/24 = 0.458 and for TR is errgen(TR) = 10/24 = 0.417. In this case, TR

will be preferred over TL because it has a lower generalization error rate.
This example illustrates that different choices of Ω can change our preference
of decision trees based on their generalization error estimates. However, for
a given choice of Ω, the pessimistic error estimate provides an approach for
modeling the generalization performance on unseen test instances. The value
of Ω can be selected with the help of a validation set.

Minimum Description Length Principle

Another way to incorporate model complexity is based on an information-
theoretic approach known as the minimum description length or MDL prin-
ciple. To illustrate this approach, consider the example shown in Figure 3.31.
In this example, both person A and person B are given a set of instances
with known attribute values x. Assume person A knows the class label y for
every instance, while person B has no such information. A would like to share
the class information with B by sending a message containing the labels. The
message would contain Θ(N) bits of information, where N is the number of
instances.

�

M03 TAN9224 02 GE C03 page 181

� �

�

3.5 Model Selection 181

Figure 3.31. An illustration of the minimum description length principle.

Alternatively, instead of sending the class labels explicitly, A can build
a classification model from the instances and transmit it to B. B can then
apply the model to determine the class labels of the instances. If the model is
100% accurate, then the cost for transmission is equal to the number of bits
required to encode the model. Otherwise, A must also transmit information
about which instances are misclassified by the model so that B can reproduce
the same class labels. Thus, the overall transmission cost, which is equal to
the total description length of the message, is

Cost(model, data) = Cost(data|model) + α× Cost(model), (3.12)

where the first term on the right-hand side is the number of bits needed
to encode the misclassified instances, while the second term is the number
of bits required to encode the model. There is also a hyper-parameter α
that trades-off the relative costs of the misclassified instances and the model.
Notice the familiarity between this equation and the generic equation for
generalization error rate presented in Equation 3.11. A good model must have
a total description length less than the number of bits required to encode the
entire sequence of class labels. Furthermore, given two competing models, the
model with lower total description length is preferred. An example showing
how to compute the total description length of a decision tree is given in
Exercise 11 on page 209.

�

M03 TAN9224 02 GE C03 page 182

� �

�

182 Chapter 3 Classification

3.5.3 Estimating Statistical Bounds

Instead of using Equation 3.11 to estimate the generalization error rate of a
model, an alternative way is to apply a statistical correction to the training
error rate of the model that is indicative of its model complexity. This can
be done if the probability distribution of training error is available or can be
assumed. For example, the number of errors committed by a leaf node in a
decision tree can be assumed to follow a binomial distribution. We can thus
compute an upper bound limit to the observed training error rate that can be
used for model selection, as illustrated in the following example.

Example 3.10. [Statistical Bounds on Training Error] Consider the
left-most branch of the binary decision trees shown in Figure 3.30. Observe
that the left-most leaf node of TR has been expanded into two child nodes
in TL. Before splitting, the training error rate of the node is 2/7 = 0.286.
By approximating a binomial distribution with a normal distribution, the
following upper bound of the training error rate e can be derived:

eupper(N, e, α) =
e+

z2
α/2

2N + zα/2

√
e(1−e)

N +
z2
α/2

4N2

1 +
z2
α/2

N

, (3.13)

where α is the confidence level, zα/2 is the standardized value from a standard
normal distribution, and N is the total number of training instances used to
compute e. By replacing α = 25%, N = 7, and e = 2/7, the upper bound for
the error rate is eupper(7, 2/7, 0.25) = 0.503, which corresponds to 7× 0.503 =
3.521 errors. If we expand the node into its child nodes as shown in TL, the
training error rates for the child nodes are 1/4 = 0.250 and 1/3 = 0.333,
respectively. Using Equation (3.13), the upper bounds of these error rates are
eupper(4, 1/4, 0.25) = 0.537 and eupper(3, 1/3, 0.25) = 0.650, respectively. The
overall training error of the child nodes is 4×0.537+3×0.650 = 4.098, which
is larger than the estimated error for the corresponding node in TR, suggesting
that it should not be split.

3.5.4 Model Selection for Decision Trees

Building on the generic approaches presented above, we present two commonly
used model selection strategies for decision tree induction.

Prepruning (Early Stopping Rule) In this approach, the tree-growing
algorithm is halted before generating a fully grown tree that perfectly fits

�

M03 TAN9224 02 GE C03 page 183

� �

�

3.5 Model Selection 183

the entire training data. To do this, a more restrictive stopping condition
must be used; e.g., stop expanding a leaf node when the observed gain in the
generalization error estimate falls below a certain threshold. This estimate of
the generalization error rate can be computed using any of the approaches
presented in the preceding three subsections, e.g., by using pessimistic error
estimates, by using validation error estimates, or by using statistical bounds.
The advantage of prepruning is that it avoids the computations associated with
generating overly complex subtrees that overfit the training data. However, one
major drawback of this method is that, even if no significant gain is obtained
using one of the existing splitting criterion, subsequent splitting may result
in better subtrees. Such subtrees would not be reached if prepruning is used
because of the greedy nature of decision tree induction.

Post-pruning In this approach, the decision tree is initially grown to its
maximum size. This is followed by a tree-pruning step, which proceeds to trim
the fully grown tree in a bottom-up fashion. Trimming can be done by replac-
ing a subtree with (1) a new leaf node whose class label is determined from
the majority class of instances affiliated with the subtree (approach known as
subtree replacement), or (2) the most frequently used branch of the subtree
(approach known as subtree raising). The tree-pruning step terminates
when no further improvement in the generalization error estimate is observed
beyond a certain threshold. Again, the estimates of generalization error rate
can be computed using any of the approaches presented in the previous three
subsections. Post-pruning tends to give better results than prepruning because
it makes pruning decisions based on a fully grown tree, unlike prepruning,
which can suffer from premature termination of the tree-growing process.
However, for post-pruning, the additional computations needed to grow the
full tree may be wasted when the subtree is pruned.

Figure 3.32 illustrates the simplified decision tree model for the web robot
detection example given in Section 3.3.5. Notice that the subtree rooted at
depth = 1 has been replaced by one of its branches corresponding to breadth
<= 7, width > 3, and MultiP = 1, using subtree raising. On the other hand,
the subtree corresponding to depth> 1 and MultiAgent = 0 has been replaced
by a leaf node assigned to class 0, using subtree replacement. The subtree for
depth > 1 and MultiAgent = 1 remains intact.

�

M03 TAN9224 02 GE C03 page 184

� �

�

184 Chapter 3 Classification

Decision Tree:

Simplified Decision Tree:

Subtree
Replacement

Subtree
Raising

depth = 1:
| breadth> 7 : class 1
| breadth<= 7:
| | breadth <= 3:
| | | ImagePages> 0.375: class 0
| | | ImagePages<= 0.375:
| | | | totalPages<= 6: class 1
| | | | totalPages> 6:
| | | | | breadth <= 1: class 1
| | | | | breadth > 1: class 0
| | width > 3:
| | | MultilP = 0:
| | | | ImagePages<= 0.1333: class 1
| | | | ImagePages> 0.1333:
| | | | breadth <= 6: class 0
| | | | breadth > 6: class 1
| | | MultilP = 1:
| | | | TotalTime <= 361: class 0
| | | | TotalTime > 361: class 1
depth> 1:
| MultiAgent = 0:
| | depth > 2: class 0
| | depth <= 2:
| | | MultilP = 1: class 0
| | | MultilP = 0:
| | | | breadth <= 6: class 0
| | | | breadth > 6:
| | | | | RepeatedAccess <= 0.322: class 0
| | | | | RepeatedAccess > 0.322: class 1
| MultiAgent = 1:
| | totalPages <= 81: class 0
| | totalPages > 81: class 1

depth = 1:
| ImagePages <= 0.1333: class 1
| ImagePages > 0.1333:
| | breadth <= 6: class 0
| | breadth > 6: class 1
depth > 1:
| MultiAgent = 0: class 0
| MultiAgent = 1:
| | totalPages <= 81: class 0
| | totalPages > 81: class 1

Figure 3.32. Post-pruning of the decision tree for web robot detection.

3.6 Model Evaluation

The previous section discussed several approaches for model selection that
can be used to learn a classification model from a training set D.train. Here
we discuss methods for estimating its generalization performance, i.e. its per-
formance on unseen instances outside of D.train. This process is known as
model evaluation.

Note that model selection approaches discussed in Section 3.5 also compute
an estimate of the generalization performance using the training set D.train.
However, these estimates are biased indicators of the performance on unseen
instances, since they were used to guide the selection of classification model.
For example, if we use the validation error rate for model selection (as de-
scribed in Section 3.5.1), the resulting model would be deliberately chosen to
minimize the errors on the validation set. The validation error rate may thus
under-estimate the true generalization error rate, and hence cannot be reliably
used for model evaluation.

�

M03 TAN9224 02 GE C03 page 185

� �

�

3.6 Model Evaluation 185

A correct approach for model evaluation would be to assess the perfor-
mance of a learned model on a labeled test set has not been used at any
stage of model selection. This can be achieved by partitioning the entire set
of labeled instances D, into two disjoint subsets, D.train, which is used for
model selection and D.test, which is used for computing the test error rate,
errtest. In the following, we present two different approaches for partitioning
D into D.train and D.test, and computing the test error rate, errtest.

3.6.1 Holdout Method

The most basic technique for partitioning a labeled data set is the holdout
method, where the labeled set D is randomly partitioned into two disjoint
sets, called the training set D.train and the test set D.test. A classification
model is then induced from D.train using the model selection approaches
presented in Section 3.5, and its error rate on D.test, errtest, is used as an
estimate of the generalization error rate. The proportion of data reserved for
training and for testing is typically at the discretion of the analysts, e.g.,
two-thirds for training and one-third for testing.

Similar to the trade-off faced while partitioning D.train into D.tr and
D.val in Section 3.5.1, choosing the right fraction of labeled data to be used
for training and testing is non-trivial. If the size of D.train is small, the
learned classification model may be improperly learned using an insufficient
number of training instances, resulting in a biased estimation of generalization
performance. On the other hand, if the size of D.test is small, errtest may be
less reliable as it would be computed over a small number of test instances.
Moreover, errtest can have a high variance as we change the random parti-
tioning of D into D.train and D.test.

The holdout method can be repeated several times to obtain a distribution
of the test error rates, an approach known as random subsampling or
repeated holdout method. This method produces a distribution of the error
rates that can be used to understand the variance of errtest.

3.6.2 Cross-Validation

Cross-validation is a widely-used model evaluation method that aims to make
effective use of all labeled instances in D for both training and testing. To
illustrate this method, suppose that we are given a labeled set that we have
randomly partitioned into three equal-sized subsets, S1, S2, and S3, as shown
in Figure 3.33. For the first run, we train a model using subsets S2 and S3

(shown as empty blocks) and test the model on subset S1. The test error rate

�

M03 TAN9224 02 GE C03 page 186

� �

�

186 Chapter 3 Classification

Figure 3.33. Example demonstrating the technique of 3-fold cross-validation.

on S1, denoted as err(S1), is thus computed in the first run. Similarly, for
the second run, we use S1 and S3 as the training set and S2 as the test set,
to compute the test error rate, err(S2), on S2. Finally, we use S1 and S3 for
training in the third run, while S3 is used for testing, thus resulting in the test
error rate err(S3) for S3. The overall test error rate is obtained by summing
up the number of errors committed in each test subset across all runs and
dividing it by the total number of instances. This approach is called three-fold
cross-validation.

The k-fold cross-validation method generalizes this approach by segment-
ing the labeled data D (of size N) into k equal-sized partitions (or folds).
During the ith run, one of the partitions of D is chosen as D.test(i) for testing,
while the rest of the partitions are used as D.train(i) for training. A model
m(i) is learned using D.train(i) and applied on D.test(i) to obtain the sum
of test errors, errsum(i). This procedure is repeated k times. The total test
error rate, errtest, is then computed as

errtest =
∑k

i=1 errsum(i)
N

. (3.14)

Every instance in the data is thus used for testing exactly once and for training
exactly (k − 1) times. Also, every run uses (k − 1)/k fraction of the data for
training and 1/k fraction for testing.

The right choice of k in k-fold cross-validation depends on a number of
characteristics of the problem. A small value of k will result in a smaller
training set at every run, which will result in a larger estimate of generalization
error rate than what is expected of a model trained over the entire labeled
set. On the other hand, a high value of k results in a larger training set at

�

M03 TAN9224 02 GE C03 page 187

� �

�

3.6 Model Evaluation 187

every run, which reduces the bias in the estimate of generalization error rate.
In the extreme case, when k = N , every run uses exactly one data instance for
testing and the remainder of the data for testing. This special case of k-fold
cross-validation is called the leave-one-out approach. This approach has the
advantage of utilizing as much data as possible for training. However, leave-
one-out can produce quite misleading results in some special scenarios, as
illustrated in Exercise 12. Furthermore, leave-one-out can be computationally
expensive for large data sets as the cross-validation procedure needs to be
repeated N times. For most practical applications, the choice of k between 5
and 10 provides a reasonable approach for estimating the generalization error
rate, because each fold is able to make use of 80% to 90% of the labeled data
for training.

The k-fold cross-validation method, as described above, produces a single
estimate of the generalization error rate, without providing any information
about the variance of the estimate. To obtain this information, we can run
k-fold cross-validation for every possible partitioning of the data into k par-
titions, and obtain a distribution of test error rates computed for every such
partitioning. The average test error rate across all possible partitionings serves
as a more robust estimate of generalization error rate. This approach of
estimating the generalization error rate and its variance is known as the
complete cross-validation approach. Even though such an estimate is quite
robust, it is usually too expensive to consider all possible partitionings of a
large data set into k partitions. A more practical solution is to repeat the cross-
validation approach multiple times, using a different random partitioning of
the data into k partitions at every time, and use the average test error rate
as the estimate of generalization error rate. Note that since there is only
one possible partitioning for the leave-one-out approach, it is not possible to
estimate the variance of generalization error rate, which is another limitation
of this method.

The k-fold cross-validation does not guarantee that the fraction of positive
and negative instances in every partition of the data is equal to the fraction
observed in the overall data. A simple solution to this problem is to perform
a stratified sampling of the positive and negative instances into k partitions,
an approach called stratified cross-validation.

In k-fold cross-validation, a different model is learned at every run and
the performance of every one of the k models on their respective test folds
is then aggregated to compute the overall test error rate, errtest. Hence,
errtest does not reflect the generalization error rate of any of the k models.
Instead, it reflects the expected generalization error rate of the model selection
approach, when applied on a training set of the same size as one of the training

�

M03 TAN9224 02 GE C03 page 188

� �

�

188 Chapter 3 Classification

folds (N(k− 1)/k). This is different than the errtest computed in the holdout
method, which exactly corresponds to the specific model learned over D.train.
Hence, although effectively utilizing every data instance in D for training and
testing, the errtest computed in the cross-validation method does not represent
the performance of a single model learned over a specific D.train.

Nonetheless, in practice, errtest is typically used as an estimate of the
generalization error of a model built on D. One motivation for this is that
when the size of the training folds is closer to the size of the overall data
(when k is large), then errtest resembles the expected performance of a model
learned over a data set of the same size as D. For example, when k is 10, every
training fold is 90% of the overall data. The errtest then should approach the
expected performance of a model learned over 90% of the overall data, which
will be close to the expected performance of a model learned over D.

3.7 Presence of Hyper-parameters

Hyper-parameters are parameters of learning algorithms that need to be de-
termined before learning the classification model. For instance, consider the
hyper-parameter α that appeared in Equation 3.11, which is repeated here for
convenience. This equation was used for estimating the generalization error
for a model selection approach that used an explicit representations of model
complexity. (See Section 3.5.2.)

gen.error(m) = train.error(m,D.train) + α× complexity(M)

For other examples of hyper-parameters, see Chapter 6.
Unlike regular model parameters, such as the test conditions in the internal

nodes of a decision tree, hyper-parameters such as α do not appear in the final
classification model that is used to classify unlabeled instances. However, the
values of hyper-parameters need to be determined during model selection—
a process known as hyper-parameter selection—and must be taken into
account during model evaluation. Fortunately, both tasks can be effectively ac-
complished via slight modifications of the cross-validation approach described
in the previous section.

3.7.1 Hyper-parameter Selection

In Section 3.5.2, a validation set was used to select α and this approach is
generally applicable for hyper-parameter section. Let p be the hyper-parameter
that needs to be selected from a finite range of values, P = {p1, p2, . . . pn}.

�

M03 TAN9224 02 GE C03 page 189

� �

�

3.7 Presence of Hyper-parameters 189

Partition D.train into D.tr and D.val. For every choice of hyper-parameter
value pi, we can learn a model mi on D.tr, and apply this model on D.val
to obtain the validation error rate errval(pi). Let p∗ be the hyper-parameter
value that provides the lowest validation error rate. We can then use the model
m∗ corresponding to p∗ as the final choice of classification model.

The above approach, although useful, uses only a subset of the data,
D.train, for training and a subset, D.val, for validation. The framework of
cross-validation, presented in Section 3.6.2, addresses both of those issues,
albeit in the context of model evaluation. Here we indicate how to use a cross-
validation approach for hyper-parameter selection. To illustrate this approach,
let us partition D.train into three folds as shown in Figure 3.34. At every run,
one of the folds is used as D.val for validation, and the remaining two folds are
used as D.tr for learning a model, for every choice of hyper-parameter value
pi. The overall validation error rate corresponding to each pi is computed
by summing the errors across all the three folds. We then select the hyper-
parameter value p∗ that provides the lowest validation error rate, and use it
to learn a model m∗ on the entire training set D.train.

Figure 3.34. Example demonstrating the 3-fold cross-validation framework for hyper-parameter
selection using D.train.

Algorithm 3.2 generalizes the above approach using a k-fold cross-validation
framework for hyper-parameter selection. At the ith run of cross-validation,
the data in the ith fold is used as D.val(i) for validation (Step 4), while the
remainder of the data in D.train is used as D.tr(i) for training (Step 5). Then
for every choice of hyper-parameter value pi, a model is learned on D.tr(i)
(Step 7), which is applied on D.val(i) to compute its validation error (Step
8). This is used to compute the validation error rate corresponding to models
learning using pi over all the folds (Step 11). The hyper-parameter value p∗

that provides the lowest validation error rate (Step 12) is now used to learn
the final model m∗ on the entire training set D.train (Step 13). Hence, at the

�

M03 TAN9224 02 GE C03 page 190

� �

�

190 Chapter 3 Classification

Algorithm 3.2 Procedure model-select(k, P, D.train)
1: Ntrain = |D.train| {Size of D.train.}
2: Divide D.train into k partitions, D.train1 to D.traink.
3: for each run i = 1 to k do
4: D.val(i) = D.traini. {Partition used for validation.}
5: D.tr(i) = D.train \D.traini. {Partitions used for training.}
6: for each parameter p ∈ P do
7: m = model-train(p, D.tr(i)). {Train model}
8: errsum(p, i) = model-test(m, D.val(i)). {Sum of validation errors.}
9: end for

10: end for
11: errval(p) =

∑k
i errsum(p, i)/Ntrain. {Compute validation error rate.}

12: p∗ = argminp errval(p). {Select best hyper-parameter value.}
13: m∗ = model-train(p∗, D.train). {Learn final model on D.train}
14: return (p∗, m∗).

end of this algorithm, we obtain the best choice of the hyper-parameter value
as well as the final classification model (Step 14), both of which are obtained
by making an effective use of every data instance in D.train.

3.7.2 Nested Cross-Validation

The approach of the previous section provides a way to effectively use all the
instances in D.train to learn a classification model when hyper-parameter
selection is required. This approach can be applied over the entire data set D
to learn the final classification model. However, applying Algorithm 3.2 on D
would only return the final classification model m∗ but not an estimate of its
generalization performance, errtest. Recall that the validation error rates used
in Algorithm 3.2 cannot be used as estimates of generalization performance,
since they are used to guide the selection of the final model m∗. However, to
compute errtest, we can again use a cross-validation framework for evaluating
the performance on the entire data set D, as described originally in Section
3.6.2. In this approach, D is partitioned into D.train (for training) and D.test
(for testing) at every run of cross-validation. When hyper-parameters are
involved, we can use Algorithm 3.2 to train a model using D.train at every
run, thus “internally” using cross-validation for model selection. This approach
is called nested cross-validation or double cross-validation. Algorithm 3.3
describes the complete approach for estimating errtest using nested cross-
validation in the presence of hyper-parameters.

As an illustration of this approach, see Figure 3.35 where the labeled set D
is partitioned into D.train and D.test, using a 3-fold cross-validation method.

�

M03 TAN9224 02 GE C03 page 191

� �

�

3.7 Presence of Hyper-parameters 191

D.test(i)

D.val(i,1)

D.val(i,2)

Figure 3.35. Example demonstrating 3-fold nested cross-validation for computing errtest.

At the ith run of this method, one of the folds is used as the test set, D.test(i),
while the remaining two folds are used as the training set, D.train(i). This is
represented in Figure 3.35 as the ith “outer” run. In order to select a model
using D.train(i), we again use an “inner” 3-fold cross-validation framework
that partitions D.train(i) into D.tr and D.val at every one of the three
inner runs (iterations). As described in Section 3.7, we can use the inner
cross-validation framework to select the best hyper-parameter value p∗(i) as
well as its resulting classification model m∗(i) learned over D.train(i). We
can then apply m∗(i) on D.test(i) to obtain the test error at the ith outer
run. By repeating this process for every outer run, we can compute the
average test error rate, errtest, over the entire labeled set D. Note that in
the above approach, the inner cross-validation framework is being used for
model selection while the outer cross-validation framework is being used for
model evaluation.

Algorithm 3.3 The nested cross-validation approach for computing errtest.
1: Divide D into k partitions, D1 to Dk.
2: for each outer run i = 1 to k do
3: D.test(i) = Di. {Partition used for testing.}
4: D.train(i) = D \Di. {Partitions used for model selection.}
5: (p∗(i), m∗(i)) = model-select(k, P, D.train(i)). {Inner cross-validation.}
6: errsum(i) = model-test(m∗(i), D.test(i)). {Sum of test errors.}
7: end for
8: errtest =

∑k
i errsum(i)/N . {Compute test error rate.}

�

M03 TAN9224 02 GE C03 page 192

� �

�

192 Chapter 3 Classification

3.8 Pitfalls of Model Selection and Evaluation

Model selection and evaluation, when used effectively, serve as excellent tools
for learning classification models and assessing their generalization perfor-
mance. However, when using them effectively in practical settings, there are
several pitfalls that can result in improper and often misleading conclusions.
Some of these pitfalls are simple to understand and easy to avoid, while others
are quite subtle in nature and difficult to catch. In the following, we present
two of these pitfalls and discuss best practices to avoid them.

3.8.1 Overlap between Training and Test Sets

One of the basic requirements of a clean model selection and evaluation setup
is that the data used for model selection (D.train) must be kept separate from
the data used for model evaluation (D.test). If there is any overlap between
the two, the test error rate errtest computed over D.test cannot be considered
representative of the performance on unseen instances. Comparing the effec-
tiveness of classification models using errtest can then be quite misleading, as
an overly complex model can show an inaccurately low value of errtest due to
model overfitting (see Exercise 13 at the end of this chapter).

To illustrate the importance of ensuring no overlap between D.train and
D.test, consider a labeled data set where all the attributes are irrelevant,
i.e. they have no relationship with the class labels. Using such attributes, we
should expect no classification model to perform better than random guessing.
However, if the test set involves even a small number of data instances that
were used for training, there is a possibility for an overly complex model
to show better performance than random, even though the attributes are
completely irrelevant. As we will see later in Chapter 10, this scenario can
actually be used as a criterion to detect overfitting due to improper setup of
experiment. If a model shows better performance than a random classifier even
when the attributes are irrelevant, it is an indication of a potential feedback
between the training and test sets.

3.8.2 Use of Validation Error as Generalization Error

The validation error rate errval serves an important role during model se-
lection, as it provides “out-of-sample” error estimates of models on D.val,
which is not used for training the models. Hence, errval serves as a better
metric than the training error rate for selecting models and hyper-parameter
values, as described in Sections 3.5.1 and 3.7, respectively. However, once the

�

M03 TAN9224 02 GE C03 page 193

� �

�

3.9 Model Comparison∗ 193

validation set has been used for selecting a classification model m∗, errval no
longer reflects the performance of m∗ on unseen instances.

To realize the pitfall in using validation error rate as an estimate of gen-
eralization performance, consider the problem of selecting a hyper-parameter
value p from a range of values P, using a validation set D.val. If the number of
possible values in P is quite large and the size of D.val is small, it is possible to
select a hyper-parameter value p∗ that shows favorable performance on D.val
just by random chance. Notice the similarity of this problem with the multiple
comparisons problem discussed in Section 3.4.1. Even though the classification
model m∗ learned using p∗ would show a low validation error rate, it would
lack generalizability on unseen test instances.

The correct approach for estimating the generalization error rate of a model
m∗ is to use an independently chosen test set D.test that hasn’t been used
in any way to influence the selection of m∗. As a rule of thumb, the test set
should never be examined during model selection, to ensure the absence of
any form of overfitting. If the insights gained from any portion of a labeled
data set help in improving the classification model even in an indirect way,
then that portion of data must be discarded during testing.

3.9 Model Comparison∗

One difficulty when comparing the performance of different classification mod-
els is whether the observed difference in their performance is statistically
significant. For example, consider a pair of classification models, MA and MB.
Suppose MA achieves 85% accuracy when evaluated on a test set containing 30
instances, while MB achieves 75% accuracy on a different test set containing
5000 instances. Based on this information, is MA a better model than MB?
This example raises two key questions regarding the statistical significance of
a performance metric:

1. Although MA has a higher accuracy than MB, it was tested on a smaller
test set. How much confidence do we have that the accuracy for MA is
actually 85%?

2. Is it possible to explain the difference in accuracies between MA and MB

as a result of variations in the composition of their test sets?

The first question relates to the issue of estimating the confidence interval
of model accuracy. The second question relates to the issue of testing the
statistical significance of the observed deviation. These issues are investigated
in the remainder of this section.

�

M03 TAN9224 02 GE C03 page 194

� �

�

194 Chapter 3 Classification

3.9.1 Estimating the Confidence Interval for Accuracy

To determine its confidence interval, we need to establish the probability distri-
bution for sample accuracy. This section describes an approach for deriving the
confidence interval by modeling the classification task as a binomial random
experiment. The following describes characteristics of such an experiment:

1. The random experiment consists of N independent trials, where each
trial has two possible outcomes: success or failure.

2. The probability of success, p, in each trial is constant.

An example of a binomial experiment is counting the number of heads that
turn up when a coin is flipped N times. If X is the number of successes
observed in N trials, then the probability that X takes a particular value is
given by a binomial distribution with mean Np and variance Np(1− p):

P (X = v) =
(
N

v

)
pv(1− p)N−v.

For example, if the coin is fair (p = 0.5) and is flipped fifty times, then the
probability that the head shows up 20 times is

P (X = 20) =
(

50
20

)
0.520(1− 0.5)30 = 0.0419.

If the experiment is repeated many times, then the average number of heads
expected to show up is 50×0.5 = 25, while its variance is 50×0.5×0.5 = 12.5.

The task of predicting the class labels of test instances can also be con-
sidered as a binomial experiment. Given a test set that contains N instances,
let X be the number of instances correctly predicted by a model and p be the
true accuracy of the model. If the prediction task is modeled as a binomial
experiment, then X has a binomial distribution with mean Np and variance
Np(1− p). It can be shown that the empirical accuracy, acc = X/N , also has
a binomial distribution with mean p and variance p(1 − p)/N (see Exercise
15). The binomial distribution can be approximated by a normal distribution
when N is sufficiently large. Based on the normal distribution, the confidence
interval for acc can be derived as follows:

P

(
− Zα/2 ≤

acc− p√
p(1− p)/N ≤ Z1−α/2

)
= 1− α, (3.15)

�

M03 TAN9224 02 GE C03 page 195

� �

�

3.9 Model Comparison∗ 195

where Zα/2 and Z1−α/2 are the upper and lower bounds obtained from a
standard normal distribution at confidence level (1 − α). Since a standard
normal distribution is symmetric around Z = 0, it follows that Zα/2 = Z1−α/2.
Rearranging this inequality leads to the following confidence interval for p:

2×N × acc+ Z2
α/2 ± Zα/2

√
Z2

α/2 + 4Nacc− 4Nacc2

2(N + Z2
α/2)

. (3.16)

The following table shows the values of Zα/2 at different confidence levels:

1− α 0.99 0.98 0.95 0.9 0.8 0.7 0.5
Zα/2 2.58 2.33 1.96 1.65 1.28 1.04 0.67

Example 3.11. [Confidence Interval for Accuracy] Consider a model
that has an accuracy of 80% when evaluated on 100 test instances. What is
the confidence interval for its true accuracy at a 95% confidence level? The
confidence level of 95% corresponds to Zα/2 = 1.96 according to the table
given above. Inserting this term into Equation 3.16 yields a confidence interval
between 71.1% and 86.7%. The following table shows the confidence interval
when the number of instances, N , increases:

N 20 50 100 500 1000 5000
Confidence 0.584 0.670 0.711 0.763 0.774 0.789

Interval − 0.919 − 0.888 − 0.867 − 0.833 − 0.824 − 0.811

Note that the confidence interval becomes tighter when N increases.

3.9.2 Comparing the Performance of Two Models

Consider a pair of models, M1 and M2, which are evaluated on two indepen-
dent test sets, D1 and D2. Let n1 denote the number of instances in D1 and
n2 denote the number of instances in D2. In addition, suppose the error rate
for M1 on D1 is e1 and the error rate for M2 on D2 is e2. Our goal is to test
whether the observed difference between e1 and e2 is statistically significant.

Assuming that n1 and n2 are sufficiently large, the error rates e1 and e2
can be approximated using normal distributions. If the observed difference in
the error rate is denoted as d = e1 − e2, then d is also normally distributed
with mean dt, its true difference, and variance, σ2

d. The variance of d can be

�

M03 TAN9224 02 GE C03 page 196

� �

�

196 Chapter 3 Classification

computed as follows:

σ2
d � σ̂2

d =
e1(1− e1)

n1
+
e2(1− e2)

n2
, (3.17)

where e1(1 − e1)/n1 and e2(1 − e2)/n2 are the variances of the error rates.
Finally, at the (1− α)% confidence level, it can be shown that the confidence
interval for the true difference dt is given by the following equation:

dt = d± zα/2σ̂d. (3.18)

Example 3.12. [Significance Testing] Consider the problem described at
the beginning of this section. Model MA has an error rate of e1 = 0.15 when
applied to N1 = 30 test instances, while model MB has an error rate of
e2 = 0.25 when applied to N2 = 5000 test instances. The observed difference
in their error rates is d = |0.15−0.25| = 0.1. In this example, we are performing
a two-sided test to check whether dt = 0 or dt �= 0. The estimated variance of
the observed difference in error rates can be computed as follows:

σ̂2
d =

0.15(1− 0.15)
30

+
0.25(1− 0.25)

5000
= 0.0043

or σ̂d = 0.0655. Inserting this value into Equation 3.18, we obtain the following
confidence interval for dt at 95% confidence level:

dt = 0.1± 1.96× 0.0655 = 0.1± 0.128.

As the interval spans the value zero, we can conclude that the observed
difference is not statistically significant at a 95% confidence level.

At what confidence level can we reject the hypothesis that dt = 0? To do
this, we need to determine the value of Zα/2 such that the confidence interval
for dt does not span the value zero. We can reverse the preceding computation
and look for the value Zα/2 such that d > Zα/2σ̂d. Replacing the values of d
and σ̂d gives Zα/2 < 1.527. This value first occurs when (1 − α) � 0.936 (for
a two-sided test). The result suggests that the null hypothesis can be rejected
at confidence level of 93.6% or lower.

3.10 Bibliographic Notes

Early classification systems were developed to organize various collections of
objects, from living organisms to inanimate ones. Examples abound, from Aris-
totle’s cataloguing of species to the Dewey Decimal and Library of Congress

�

M03 TAN9224 02 GE C03 page 197

� �

�

3.10 Bibliographic Notes 197

classification systems for books. Such a task typically requires considerable
human efforts, both to identify properties of the objects to be classified and
to organize them into well distinguished categories.

With the development of statistics and computing, automated classifi-
cation has been a subject of intensive research. The study of classification
in classical statistics is sometimes known as discriminant analysis, where
the objective is to predict the group membership of an object based on its
corresponding features. A well-known classical method is Fisher’s linear dis-
criminant analysis [142], which seeks to find a linear projection of the data
that produces the best separation between objects from different classes.

Many pattern recognition problems also require the discrimination of ob-
jects from different classes. Examples include speech recognition, handwritten
character identification, and image classification. Readers who are interested
in the application of classification techniques for pattern recognition may refer
to the survey articles by Jain et al. [150] and Kulkarni et al. [157] or classic
pattern recognition books by Bishop [125], Duda et al. [137], and Fukunaga
[143]. The subject of classification is also a major research topic in neural
networks, statistical learning, and machine learning. An in-depth treatment
on the topic of classification from the statistical and machine learning per-
spectives can be found in the books by Bishop [126], Cherkassky and Mulier
[132], Hastie et al. [148], Michie et al. [162], Murphy [167], and Mitchell [165].
Recent years have also seen the release of many publicly available software
packages for classification, which can be embedded in programming languages
such as Java (Weka [147]) and Python (scikit-learn [174]).

An overview of decision tree induction algorithms can be found in the
survey articles by Buntine [129], Moret [166], Murthy [168], and Safavian et
al. [179]. Examples of some well-known decision tree algorithms include CART
[127], ID3 [175], C4.5 [177], and CHAID [153]. Both ID3 and C4.5 employ the
entropy measure as their splitting function. An in-depth discussion of the C4.5
decision tree algorithm is given by Quinlan [177]. The CART algorithm was
developed by Breiman et al. [127] and uses the Gini index as its splitting
function. CHAID [153] uses the statistical χ2 test to determine the best split
during the tree-growing process.

The decision tree algorithm presented in this chapter assumes that the
splitting condition at each internal node contains only one attribute. An
oblique decision tree can use multiple attributes to form the attribute test
condition in a single node [149, 187]. Breiman et al. [127] provide an option
for using linear combinations of attributes in their CART implementation.
Other approaches for inducing oblique decision trees were proposed by Heath
et al. [149], Murthy et al. [169], Cantú-Paz and Kamath [130], and Utgoff

�

M03 TAN9224 02 GE C03 page 198

� �

�

198 Chapter 3 Classification

and Brodley [187]. Although an oblique decision tree helps to improve the
expressiveness of the model representation, the tree induction process becomes
computationally challenging. Another way to improve the expressiveness of a
decision tree without using oblique decision trees is to apply a method known
as constructive induction [161]. This method simplifies the task of learning
complex splitting functions by creating compound features from the original
data.

Besides the top-down approach, other strategies for growing a decision
tree include the bottom-up approach by Landeweerd et al. [159] and Pattipati
and Alexandridis [173], as well as the bidirectional approach by Kim and
Landgrebe [154]. Schuermann and Doster [181] and Wang and Suen [193]
proposed using a soft splitting criterion to address the data fragmentation
problem. In this approach, each instance is assigned to different branches of
the decision tree with different probabilities.

Model overfitting is an important issue that must be addressed to ensure
that a decision tree classifier performs equally well on previously unlabeled
data instances. The model overfitting problem has been investigated by many
authors including Breiman et al. [127], Schaffer [180], Mingers [164], and
Jensen and Cohen [151]. While the presence of noise is often regarded as one of
the primary reasons for overfitting [164, 170], Jensen and Cohen [151] viewed
overfitting as an artifact of failure to compensate for the multiple comparisons
problem.

Bishop [126] and Hastie et al. [148] provide an excellent discussion of
model overfitting, relating it to a well-known framework of theoretical analysis,
known as bias-variance decomposition [146]. In this framework, the prediction
of a learning algorithm is considered to be a function of the training set, which
varies as the training set is changed. The generalization error of a model is
then described in terms of its bias (the error of the average prediction obtained
using different training sets), its variance (how different are the predictions
obtained using different training sets), and noise (the irreducible error inherent
to the problem). An underfit model is considered to have high bias but low
variance, while an overfit model is considered to have low bias but high
variance. Although the bias-variance decomposition was originally proposed
for regression problems (where the target attribute is a continuous variable),
a unified analysis that is applicable for classification has been proposed by
Domingos [136]. The bias variance decomposition will be discussed in more
detail while introducing ensemble learning methods in Chapter 6.

Various learning principles, such as the Probably Approximately Correct
(PAC) learning framework [188], have been developed to provide a theo-
retical framework for explaining the generalization performance of learning

�

M03 TAN9224 02 GE C03 page 199

� �

�

3.10 Bibliographic Notes 199

algorithms. In the field of statistics, a number of performance estimation
methods have been proposed that make a trade-off between the goodness
of fit of a model and the model complexity. Most noteworthy among them
are the Akaike’s Information Criterion [120] and the Bayesian Information
Criterion [182]. They both apply corrective terms to the training error rate
of a model, so as to penalize more complex models. Another widely-used
approach for measuring the complexity of any general model is the Vapnik-
Chervonenkis (VC) Dimension [190]. The VC dimension of a class of functions
C is defined as the maximum number of points that can be shattered (every
point can be distinguished from the rest) by functions belonging to C, for any
possible configuration of points. The VC dimension lays the foundation of the
structural risk minimization principle [189], which is extensively used in many
learning algorithms, e.g., support vector machines, which will be discussed in
detail in Chapter 6.

The Occam’s razor principle is often attributed to the philosopher William
of Occam. Domingos [135] cautioned against the pitfall of misinterpreting
Occam’s razor as comparing models with similar training errors, instead of
generalization errors. A survey on decision tree-pruning methods to avoid
overfitting is given by Breslow and Aha [128] and Esposito et al. [141]. Some
of the typical pruning methods include reduced error pruning [176], pessimistic
error pruning [176], minimum error pruning [171], critical value pruning [163],
cost-complexity pruning [127], and error-based pruning [177]. Quinlan and
Rivest proposed using the minimum description length principle for decision
tree pruning in [178].

The discussions in this chapter on the significance of cross-validation error
estimates is inspired from Chapter 7 in Hastie et al. [148]. It is also an
excellent resource for understanding “the right and wrong ways to do cross-
validation”, which is similar to the discussion on pitfalls in Section 3.8 of
this chapter. A comprehensive discussion of some of the common pitfalls
in using cross-validation for model selection and evaluation is provided in
Krstajic et al. [156].

The original cross-validation method was proposed independently by Allen
[121], Stone [184], and Geisser [145] for model assessment (evaluation). Even
though cross-validation can be used for model selection [194], its usage for
model selection is quite different than when it is used for model evaluation,
as emphasized by Stone [184]. Over the years, the distinction between the
two usages has often been ignored, resulting in incorrect findings. One of the
common mistakes while using cross-validation is to perform pre-processing
operations (e.g., hyper-parameter tuning or feature selection) using the entire
data set and not “within” the training fold of every cross-validation run.

�

M03 TAN9224 02 GE C03 page 200

� �

�

200 Chapter 3 Classification

Ambroise et al., using a number of gene expression studies as examples, [124]
provide an extensive discussion of the selection bias that arises when feature
selection is performed outside cross-validation. Useful guidelines for evaluating
models on microarray data have also been provided by Allison et al. [122].

The use of the cross-validation protocol for hyper-parameter tuning has
been described in detail by Dudoit and van der Laan [138]. This approach
has been called “grid-search cross-validation.” The correct approach in using
cross-validation for both hyper-parameter selection and model evaluation, as
discussed in Section 3.7 of this chapter, is extensively covered by Varma and
Simon [191]. This combined approach has been referred to as “nested cross-
validation” or “double cross-validation” in the existing literature. Recently,
Tibshirani and Tibshirani [185] have proposed a new approach for hyper-
parameter selection and model evaluation. Tsamardinos et al. [186] compared
this approach to nested cross-validation. The experiments they performed
found that, on average, both approaches provide conservative estimates of
model performance with the Tibshirani and Tibshirani approach being more
computationally efficient.

Kohavi [155] has performed an extensive empirical study to compare the
performance metrics obtained using different estimation methods such as ran-
dom subsampling and k-fold cross-validation. Their results suggest that the
best estimation method is ten-fold, stratified cross-validation.

An alternative approach for model evaluation is the bootstrap method,
which was presented by Efron in 1979 [139]. In this method, training instances
are sampled with replacement from the labeled set, i.e., an instance previously
selected to be part of the training set is equally likely to be drawn again. If the
original data has N instances, it can be shown that, on average, a bootstrap
sample of size N contains about 63.2% of the instances in the original data.
Instances that are not included in the bootstrap sample become part of the test
set. The bootstrap procedure for obtaining training and test sets is repeated
b times, resulting in a different error rate on the test set, err(i), at the ith

run. To obtain the overall error rate, errboot, the .632 bootstrap approach
combines err(i) with the error rate obtained from a training set containing all
the labeled examples, errs, as follows:

errboot =
1
b

b∑

i=1

(0.632× err(i) + 0.368× errs). (3.19)

Efron and Tibshirani [140] provided a theoretical and empirical comparison
between cross-validation and a bootstrap method known as the 632+ rule.

�

M03 TAN9224 02 GE C03 page 201

� �

�

Bibliography 201

While the .632 bootstrap method presented above provides a robust estimate
of the generalization performance with low variance in its estimate, it may
produce misleading results for highly complex models in certain conditions,
as demonstrated by Kohavi [155]. This is because the overall error rate is not
truly an out-of-sample error estimate as it depends on the training error rate,
errs, which can be quite small if there is overfitting.

Current techniques such as C4.5 require that the entire training data set fit
into main memory. There has been considerable effort to develop parallel and
scalable versions of decision tree induction algorithms. Some of the proposed
algorithms include SLIQ by Mehta et al. [160], SPRINT by Shafer et al. [183],
CMP by Wang and Zaniolo [192], CLOUDS by Alsabti et al. [123], RainForest
by Gehrke et al. [144], and ScalParC by Joshi et al. [152]. A survey of parallel
algorithms for classification and other data mining tasks is given in [158].
More recently, there has been extensive research to implement large-scale
classifiers on the compute unified device architecture (CUDA) [131, 134] and
MapReduce [133, 172] platforms.

Bibliography
[120] H. Akaike. Information theory and an extension of the maximum likelihood principle.

In Selected Papers of Hirotugu Akaike, pages 199–213. Springer, 1998.

[121] D. M. Allen. The relationship between variable selection and data agumentation and
a method for prediction. Technometrics, 16(1):125–127, 1974.

[122] D. B. Allison, X. Cui, G. P. Page, and M. Sabripour. Microarray data analysis: from
disarray to consolidation and consensus. Nature reviews genetics, 7(1):55–65, 2006.

[123] K. Alsabti, S. Ranka, and V. Singh. CLOUDS: A Decision Tree Classifier for Large
Datasets. In Proc. of the 4th Intl. Conf. on Knowledge Discovery and Data Mining,
pages 2–8, New York, NY, August 1998.

[124] C. Ambroise and G. J. McLachlan. Selection bias in gene extraction on the basis of
microarray gene-expression data. Proceedings of the national academy of sciences, 99
(10):6562–6566, 2002.

[125] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,
Oxford, U.K., 1995.

[126] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[127] L. Breiman, J. H. Friedman, R. Olshen, and C. J. Stone. Classification and Regression
Trees. Chapman & Hall, New York, 1984.

[128] L. A. Breslow and D. W. Aha. Simplifying Decision Trees: A Survey. Knowledge
Engineering Review, 12(1):1–40, 1997.

[129] W. Buntine. Learning classification trees. In Artificial Intelligence Frontiers in
Statistics, pages 182–201. Chapman & Hall, London, 1993.

[130] E. Cantú-Paz and C. Kamath. Using evolutionary algorithms to induce oblique
decision trees. In Proc. of the Genetic and Evolutionary Computation Conf., pages
1053–1060, San Francisco, CA, 2000.

�

M03 TAN9224 02 GE C03 page 202

� �

�

202 Chapter 3 Classification

[131] B. Catanzaro, N. Sundaram, and K. Keutzer. Fast support vector machine training and
classification on graphics processors. In Proceedings of the 25th International Conference
on Machine Learning, pages 104–111, 2008.

[132] V. Cherkassky and F. M. Mulier. Learning from Data: Concepts, Theory, and Methods.
Wiley, 2nd edition, 2007.

[133] C. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Y. Ng, and K. Olukotun. Map-
reduce for machine learning on multicore. Advances in neural information processing
systems, 19:281, 2007.

[134] A. Cotter, N. Srebro, and J. Keshet. A GPU-tailored Approach for Training
Kernelized SVMs. In Proceedings of the 17th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 805–813, San Diego, California, USA,
2011.

[135] P. Domingos. The Role of Occam’s Razor in Knowledge Discovery. Data Mining and
Knowledge Discovery, 3(4):409–425, 1999.

[136] P. Domingos. A unified bias-variance decomposition. In Proceedings of 17th
International Conference on Machine Learning, pages 231–238, 2000.

[137] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. John Wiley & Sons,
Inc., New York, 2nd edition, 2001.

[138] S. Dudoit and M. J. van der Laan. Asymptotics of cross-validated risk estimation in
estimator selection and performance assessment. Statistical Methodology, 2(2):131–154,
2005.

[139] B. Efron. Bootstrap methods: another look at the jackknife. In Breakthroughs in
Statistics, pages 569–593. Springer, 1992.

[140] B. Efron and R. Tibshirani. Cross-validation and the Bootstrap: Estimating the Error
Rate of a Prediction Rule. Technical report, Stanford University, 1995.

[141] F. Esposito, D. Malerba, and G. Semeraro. A Comparative Analysis of Methods for
Pruning Decision Trees. IEEE Trans. Pattern Analysis and Machine Intelligence, 19
(5):476–491, May 1997.

[142] R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals of
Eugenics, 7:179–188, 1936.

[143] K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press, New
York, 1990.

[144] J. Gehrke, R. Ramakrishnan, and V. Ganti. RainForest—A Framework for Fast
Decision Tree Construction of Large Datasets. Data Mining and Knowledge Discovery,
4(2/3):127–162, 2000.

[145] S. Geisser. The predictive sample reuse method with applications. Journal of the
American Statistical Association, 70(350):320–328, 1975.

[146] S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias/variance
dilemma. Neural computation, 4(1):1–58, 1992.

[147] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The
WEKA Data Mining Software: An Update. SIGKDD Explorations, 11(1), 2009.

[148] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer, 2nd edition, 2009.

[149] D. Heath, S. Kasif, and S. Salzberg. Induction of Oblique Decision Trees. In Proc.
of the 13th Intl. Joint Conf. on Artificial Intelligence, pages 1002–1007, Chambery,
France, August 1993.

[150] A. K. Jain, R. P. W. Duin, and J. Mao. Statistical Pattern Recognition: A Review.
IEEE Tran. Patt. Anal. and Mach. Intellig., 22(1):4–37, 2000.

�

M03 TAN9224 02 GE C03 page 203

� �

�

Bibliography 203

[151] D. Jensen and P. R. Cohen. Multiple Comparisons in Induction Algorithms. Machine
Learning, 38(3):309–338, March 2000.

[152] M. V. Joshi, G. Karypis, and V. Kumar. ScalParC: A New Scalable and Efficient
Parallel Classification Algorithm for Mining Large Datasets. In Proc. of 12th Intl.
Parallel Processing Symp. (IPPS/SPDP), pages 573–579, Orlando, FL, April 1998.

[153] G. V. Kass. An Exploratory Technique for Investigating Large Quantities of
Categorical Data. Applied Statistics, 29:119–127, 1980.

[154] B. Kim and D. Landgrebe. Hierarchical decision classifiers in high-dimensional and
large class data. IEEE Trans. on Geoscience and Remote Sensing, 29(4):518–528, 1991.

[155] R. Kohavi. A Study on Cross-Validation and Bootstrap for Accuracy Estimation and
Model Selection. In Proc. of the 15th Intl. Joint Conf. on Artificial Intelligence, pages
1137–1145, Montreal, Canada, August 1995.

[156] D. Krstajic, L. J. Buturovic, D. E. Leahy, and S. Thomas. Cross-validation
pitfalls when selecting and assessing regression and classification models. Journal of
cheminformatics, 6(1):1, 2014.

[157] S. R. Kulkarni, G. Lugosi, and S. S. Venkatesh. Learning Pattern Classification—A
Survey. IEEE Tran. Inf. Theory, 44(6):2178–2206, 1998.

[158] V. Kumar, M. V. Joshi, E.-H. Han, P. N. Tan, and M. Steinbach. High Performance
Data Mining. In High Performance Computing for Computational Science (VECPAR
2002), pages 111–125. Springer, 2002.

[159] G. Landeweerd, T. Timmers, E. Gersema, M. Bins, and M. Halic. Binary tree versus
single level tree classification of white blood cells. Pattern Recognition, 16:571–577,
1983.

[160] M. Mehta, R. Agrawal, and J. Rissanen. SLIQ: A Fast Scalable Classifier for Data
Mining. In Proc. of the 5th Intl. Conf. on Extending Database Technology, pages 18–32,
Avignon, France, March 1996.

[161] R. S. Michalski. A theory and methodology of inductive learning. Artificial
Intelligence, 20:111–116, 1983.

[162] D. Michie, D. J. Spiegelhalter, and C. C. Taylor. Machine Learning, Neural and
Statistical Classification. Ellis Horwood, Upper Saddle River, NJ, 1994.

[163] J. Mingers. Expert Systems—Rule Induction with Statistical Data. J Operational
Research Society, 38:39–47, 1987.

[164] J. Mingers. An empirical comparison of pruning methods for decision tree induction.
Machine Learning, 4:227–243, 1989.

[165] T. Mitchell. Machine Learning. McGraw-Hill, Boston, MA, 1997.

[166] B. M. E. Moret. Decision Trees and Diagrams. Computing Surveys, 14(4):593–623,
1982.

[167] K. P. Murphy. Machine Learning: A Probabilistic Perspective. MIT Press, 2012.

[168] S. K. Murthy. Automatic Construction of Decision Trees from Data: A Multi-
Disciplinary Survey. Data Mining and Knowledge Discovery, 2(4):345–389, 1998.

[169] S. K. Murthy, S. Kasif, and S. Salzberg. A system for induction of oblique decision
trees. J of Artificial Intelligence Research, 2:1–33, 1994.

[170] T. Niblett. Constructing decision trees in noisy domains. In Proc. of the 2nd European
Working Session on Learning, pages 67–78, Bled, Yugoslavia, May 1987.

[171] T. Niblett and I. Bratko. Learning Decision Rules in Noisy Domains. In Research and
Development in Expert Systems III, Cambridge, 1986. Cambridge University Press.

[172] I. Palit and C. K. Reddy. Scalable and parallel boosting with mapreduce. IEEE
Transactions on Knowledge and Data Engineering, 24(10):1904–1916, 2012.

�

M03 TAN9224 02 GE C03 page 204

� �

�

204 Chapter 3 Classification

[173] K. R. Pattipati and M. G. Alexandridis. Application of heuristic search and
information theory to sequential fault diagnosis. IEEE Trans. on Systems, Man, and
Cybernetics, 20(4):872–887, 1990.

[174] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine Learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[175] J. R. Quinlan. Discovering rules by induction from large collection of examples. In
D. Michie, editor, Expert Systems in the Micro Electronic Age. Edinburgh University
Press, Edinburgh, UK, 1979.

[176] J. R. Quinlan. Simplifying Decision Trees. Intl. J. Man-Machine Studies, 27:221–234,
1987.

[177] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan-Kaufmann Publishers,
San Mateo, CA, 1993.

[178] J. R. Quinlan and R. L. Rivest. Inferring Decision Trees Using the Minimum
Description Length Principle. Information and Computation, 80(3):227–248, 1989.

[179] S. R. Safavian and D. Landgrebe. A Survey of Decision Tree Classifier Methodology.
IEEE Trans. Systems, Man and Cybernetics, 22:660–674, May/June 1998.

[180] C. Schaffer. Overfitting avoidence as bias. Machine Learning, 10:153–178, 1993.

[181] J. Schuermann and W. Doster. A decision-theoretic approach in hierarchical classifier
design. Pattern Recognition, 17:359–369, 1984.

[182] G. Schwarz et al. Estimating the dimension of a model. The annals of statistics, 6(2):
461–464, 1978.

[183] J. C. Shafer, R. Agrawal, and M. Mehta. SPRINT: A Scalable Parallel Classifier
for Data Mining. In Proc. of the 22nd VLDB Conf., pages 544–555, Bombay, India,
September 1996.

[184] M. Stone. Cross-validatory choice and assessment of statistical predictions. Journal
of the Royal Statistical Society. Series B (Methodological), pages 111–147, 1974.

[185] R. J. Tibshirani and R. Tibshirani. A bias correction for the minimum error rate in
cross-validation. The Annals of Applied Statistics, pages 822–829, 2009.

[186] I. Tsamardinos, A. Rakhshani, and V. Lagani. Performance-estimation properties of
cross-validation-based protocols with simultaneous hyper-parameter optimization. In
Hellenic Conference on Artificial Intelligence, pages 1–14. Springer, 2014.

[187] P. E. Utgoff and C. E. Brodley. An incremental method for finding multivariate splits
for decision trees. In Proc. of the 7th Intl. Conf. on Machine Learning, pages 58–65,
Austin, TX, June 1990.

[188] L. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142,
1984.

[189] V. N. Vapnik. Statistical Learning Theory. Wiley-Interscience, 1998.

[190] V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative
frequencies of events to their probabilities. In Measures of Complexity, pages 11–30.
Springer, 2015.

[191] S. Varma and R. Simon. Bias in error estimation when using cross-validation for model
selection. BMC bioinformatics, 7(1):1, 2006.

[192] H. Wang and C. Zaniolo. CMP: A Fast Decision Tree Classifier Using Multivariate
Predictions. In Proc. of the 16th Intl. Conf. on Data Engineering, pages 449–460, San
Diego, CA, March 2000.

�

M03 TAN9224 02 GE C03 page 205

� �

�

3.11 Exercises 205

Table 3.5. Data set for Exercise 3.

Customer ID Gender Car Type Shirt Size Class
1 M Family Small C0
2 M Sports Medium C0
3 M Sports Medium C0
4 M Sports Large C0
5 M Sports Extra Large C0
6 M Sports Extra Large C0
7 F Sports Small C0
8 F Sports Small C0
9 F Sports Medium C0
10 F Luxury Large C0
11 M Family Large C1
12 M Family Extra Large C1
13 M Family Medium C1
14 M Luxury Extra Large C1
15 F Luxury Small C1
16 F Luxury Small C1
17 F Luxury Medium C1
18 F Luxury Medium C1
19 F Luxury Medium C1
20 F Luxury Large C1

[193] Q. R. Wang and C. Y. Suen. Large tree classifier with heuristic search and global
training. IEEE Trans. on Pattern Analysis and Machine Intelligence, 9(1):91–102,
1987.

[194] Y. Zhang and Y. Yang. Cross-validation for selecting a model selection procedure.
Journal of Econometrics, 187(1):95–112, 2015.

3.11 Exercises

1. What is the stopping criterion for Hunt’s decision tree?

2. Draw a full decision tree for the odd parity function, where only when the count
of True is odd is the class label True, of four Boolean attributes A, B, C, and
D. Is it possible to simplify the tree?

3. Consider the training examples shown in Table 3.5 for a binary classification
problem.

(a) Compute the Gini index for the overall collection of training examples.

(b) Compute the Gini index for the Customer ID attribute.

(c) Compute the Gini index for the Gender attribute.

�

M03 TAN9224 02 GE C03 page 206

� �

�

206 Chapter 3 Classification

Table 3.6. Data set for Exercise 4.

Instance a1 a2 a3 Target Class
1 T T 1.0 +
2 T T 6.0 +
3 T F 5.0 −
4 F F 4.0 +
5 F T 7.0 −
6 F T 3.0 −
7 F F 8.0 −
8 T F 7.0 +
9 F T 5.0 −

(d) Compute the Gini index for the Car Type attribute using multiway split.

(e) Compute the Gini index for the Shirt Size attribute using multiway
split.

(f) Which attribute is better, Gender, Car Type, or Shirt Size?

(g) Explain why Customer ID should not be used as the attribute test con-
dition even though it has the lowest Gini.

4. Consider the training examples shown in Table 3.6 for a binary classification
problem.

(a) What is the entropy of this collection of training examples with respect
to the class attribute?

(b) What are the information gains of a1 and a2 relative to these training
examples?

(c) For a3, which is a continuous attribute, compute the information gain for
every possible split.

(d) What is the best split (among a1, a2, and a3) according to the information
gain?

(e) What is the best split (between a1 and a2) according to the misclassifi-
cation error rate?

(f) What is the best split (between a1 and a2) according to the Gini index?

5. Show that the entropy of a node never increases after splitting it into smaller
successor nodes.

6. Consider the following data set for a binary class problem.

�

M03 TAN9224 02 GE C03 page 207

� �

�

3.11 Exercises 207

A B Class Label
T F +
T T +
T T +
T F −
T T +
F F −
F F −
F F −
T T −
T F −

(a) Calculate the information gain when splitting on A and B. Which at-
tribute would the decision tree induction algorithm choose?

(b) Calculate the gain in the Gini index when splitting on A and B. Which
attribute would the decision tree induction algorithm choose?

(c) Figure 3.11 shows that entropy and the Gini index are both monoton-
ically increasing on the range [0, 0.5] and they are both monotonically
decreasing on the range [0.5, 1]. Is it possible that information gain and
the gain in the Gini index favor different attributes? Explain.

7. Consider splitting a parent node P into two child nodes, C1 and C2, using some
attribute test condition. The composition of labeled training instances at every
node is summarized in the Table below.

P C1 C2

Class 0 7 3 4
Class 1 3 0 3

(a) Calculate the Gini index and misclassification error rate of the parent
node P .

(b) Calculate the weighted Gini index of the child nodes. Would you consider
this attribute test condition if Gini is used as the impurity measure?

(c) Calculate the weighted misclassification rate of the child nodes. Would
you consider this attribute test condition if misclassification rate is used
as the impurity measure?

8. Consider the following set of training examples.

�

M03 TAN9224 02 GE C03 page 208

� �

�

208 Chapter 3 Classification

X Y Z No. of Class C1 Examples No. of Class C2 Examples
0 0 0 5 40
0 0 1 0 15
0 1 0 10 5
0 1 1 45 0
1 0 0 10 5
1 0 1 25 0
1 1 0 5 20
1 1 1 0 15

(a) Compute a two-level decision tree using the greedy approach described in
this chapter. Use the classification error rate as the criterion for splitting.
What is the overall error rate of the induced tree?

(b) Repeat part (a) using X as the first splitting attribute and then choose
the best remaining attribute for splitting at each of the two successor
nodes. What is the error rate of the induced tree?

(c) Compare the results of parts (a) and (b). Comment on the suitability of
the greedy heuristic used for splitting attribute selection.

9. The following table summarizes a data set with three attributes A, B, C and
two class labels +, −. Build a two-level decision tree.

A B C
Number of
Instances
+ −

T T T 5 0
F T T 0 20
T F T 20 0
F F T 0 5
T T F 0 0
F T F 25 0
T F F 0 0
F F F 0 25

(a) According to the classification error rate, which attribute would be chosen
as the first splitting attribute? For each attribute, show the contingency
table and the gains in classification error rate.

(b) Repeat for the two children of the root node.

(c) How many instances are misclassified by the resulting decision tree?

(d) Repeat parts (a), (b), and (c) using C as the splitting attribute.

(e) Use the results in parts (c) and (d) to conclude about the greedy nature
of the decision tree induction algorithm.

�

M03 TAN9224 02 GE C03 page 209

� �

�

3.11 Exercises 209

+ _ + _

B C

A

Instance
1
2
3
4
5
6
7
8
9
10

0
0
0
0
1
1
1
1
1
1

0
0
1
1
0
0
1
0
1
1

0
1
0
1
0
0
0
1
0
0

A B C
+
+
+
–
+
+
–
+
–
–

Class
Training:

Instance
11
12
13
14
15

0
0
1
1
1

0
1
1
0
0

0
1
0
1
0

A B C
+
+
+
–
+

Class
Validation:

0

0 1 0 1

1

Figure 3.36. Decision tree and data sets for Exercise 10.

10. Consider the decision tree shown in Figure 3.36.

(a) Compute the generalization error rate of the tree using the optimistic
approach.

(b) Compute the generalization error rate of the tree using the pessimistic
approach. (For simplicity, use the strategy of adding a factor of 0.5 to
each leaf node.)

(c) Compute the generalization error rate of the tree using the validation set
shown above. This approach is known as reduced error pruning.

11. Consider the decision tree shown in Figure 3.37. Assume they are generated
from a data set that contains 32 binary attributes and 4 classes, C1, C2, C3

and C4.

Compute the total description length of each decision tree according to the
following formulation of the minimum description length principle.

• The total description length of a tree is given by

Cost(tree, data) = Cost(tree) + Cost(data|tree).

• Each internal node of the tree is encoded by the ID of the splitting
attribute. If there are m attributes, the cost of encoding each attribute is
log2m bits.

�

M03 TAN9224 02 GE C03 page 210

� �

�

210 Chapter 3 Classification

(a) Decision tree with 5 errors (b) Decision tree with 4 errors

C2 C3

C1 C3 C4

C3 C4C1 C2

Figure 3.37. Decision trees for Exercise 11.

• Each leaf is encoded using the ID of the class it is associated with. If there
are k classes, the cost of encoding a class is log2 k bits.

• Cost(tree) is the cost of encoding all the nodes in the tree. To simplify the
computation, you can assume that the total cost of the tree is obtained
by adding up the costs of encoding each internal node and each leaf node.

• Cost(data|tree) is encoded using the classification errors the tree commits
on the training set. Each error is encoded by log2 n bits, where n is the
total number of training instances.

Which decision tree is better, according to the MDL principle?

12. This exercise, inspired by the discussions in [155], highlights one of the known
limitations of the leave-one-out model evaluation procedure. Let us consider a
data set containing 50 positive and 50 negative instances, where the attributes
are purely random and contain no information about the class labels. Hence,
the generalization error rate of any classification model learned over this data
is expected to be 0.5. Let us consider a classifier that assigns the majority
class label of training instances (ties resolved by using the positive label as the
default class) to any test instance, irrespective of its attribute values. We can
call this approach as the majority inducer classifier. Determine the error rate
of this classifier using the following methods.

(a) Leave-one-out.

(b) 2-fold stratified cross-validation, where the proportion of class labels at
every fold is kept same as that of the overall data.

(c) From the results above, which method provides a more reliable evaluation
of the classifier’s generalization error rate?

�

M03 TAN9224 02 GE C03 page 211

� �

�

3.11 Exercises 211

Table 3.7. Comparing the test accuracy of decision trees T10 and T100.

Accuracy

Data Set T10 T100

A 0.86 0.97

B 0.84 0.77

13. Consider a labeled data set containing 100 data instances, which is randomly
partitioned into two sets A and B, each containing 50 instances. We use A as
the training set to learn two decision trees, T10 with 10 leaf nodes and T100

with 100 leaf nodes. The accuracies of the two decision trees on data sets A
and B are shown in Table 3.7.

(a) Based on the accuracies shown in Table 3.7, which classification model
would you expect to have better performance on unseen instances?

(b) Now, you tested T10 and T100 on the entire data set (A + B) and found
that the classification accuracy of T10 on data set (A+B) is 0.85, whereas
the classification accuracy of T100 on the data set (A+B) is 0.87. Based
on this new information and your observations from Table 3.7, which
classification model would you finally choose for classification?

14. Consider the following approach for testing whether a classifier A beats another
classifier B. Let N be the size of a given data set, pA be the accuracy of classifier
A, pB be the accuracy of classifier B, and p = (pA + pB)/2 be the average
accuracy for both classifiers. To test whether classifier A is significantly better
than B, the following Z-statistic is used:

Z =
pA − pB√

2p(1−p)
N

.

Classifier A is assumed to be better than classifier B if Z > 1.96.

Table 3.8 compares the accuracies of three different classifiers, decision tree
classifiers, näıve Bayes classifiers, and support vector machines, on various data
sets. (The latter two classifiers are described in Chapter 6.)

Summarize the performance of the classifiers given in Table 3.8 using the
following 3 × 3 table:

win-loss-draw Decision tree Näıve Bayes Support vector
machine

Decision tree 0 - 0 - 23
Näıve Bayes 0 - 0 - 23
Support vector machine 0 - 0 - 23

�

M03 TAN9224 02 GE C03 page 212

� �

�

212 Chapter 3 Classification

Table 3.8. Comparing the accuracy of various classification methods.

Data Set Size Decision näıve Support vector
(N) Tree (%) Bayes (%) machine (%)

Anneal 898 92.09 79.62 87.19
Australia 690 85.51 76.81 84.78
Auto 205 81.95 58.05 70.73
Breast 699 95.14 95.99 96.42
Cleve 303 76.24 83.50 84.49
Credit 690 85.80 77.54 85.07
Diabetes 768 72.40 75.91 76.82
German 1000 70.90 74.70 74.40
Glass 214 67.29 48.59 59.81
Heart 270 80.00 84.07 83.70
Hepatitis 155 81.94 83.23 87.10
Horse 368 85.33 78.80 82.61
Ionosphere 351 89.17 82.34 88.89
Iris 150 94.67 95.33 96.00
Labor 57 78.95 94.74 92.98
Led7 3200 73.34 73.16 73.56
Lymphography 148 77.03 83.11 86.49
Pima 768 74.35 76.04 76.95
Sonar 208 78.85 69.71 76.92
Tic-tac-toe 958 83.72 70.04 98.33
Vehicle 846 71.04 45.04 74.94
Wine 178 94.38 96.63 98.88
Zoo 101 93.07 93.07 96.04

Each cell in the table contains the number of wins, losses, and draws when
comparing the classifier in a given row to the classifier in a given column.

15. Let X be a binomial random variable with mean Np and variance Np(1− p).
Show that the ratio X/N also has a binomial distribution with mean p and
variance p(1− p)/N .

16. What is underfitting in the decision tree?

17. How can continuous attributes be handled? How can splitting points be chosen
for binary splits and for multiway splits?

�

M04 TAN9224 02 GE C04 page 213

� �

�

4

Association Analysis:
Basic Concepts and
Algorithms

Many business enterprises accumulate large quantities of data from their day-
to-day operations. For example, huge amounts of customer purchase data are
collected daily at the checkout counters of grocery stores. Table 4.1 gives an
example of such data, commonly known as market basket transactions.
Each row in this table corresponds to a transaction, which contains a unique
identifier labeled TID and a set of items bought by a given customer. Retailers
are interested in analyzing the data to learn about the purchasing behavior
of their customers. Such valuable information can be used to support a vari-
ety of business-related applications such as marketing promotions, inventory
management, and customer relationship management.

This chapter presents a methodology known as association analysis,
which is useful for discovering interesting relationships hidden in large data
sets. The uncovered relationships can be represented in the form of sets of
items present in many transactions, which are known as frequent itemsets,

Table 4.1. An example of market basket transactions.

TID Items
1 {Bread, Milk}
2 {Bread, Diapers, Beer, Eggs}
3 {Milk, Diapers, Beer, Cola}
4 {Bread, Milk, Diapers, Beer}
5 {Bread, Milk, Diapers, Cola}

�

M04 TAN9224 02 GE C04 page 214

� �

�

214 Chapter 4 Association Analysis

or association rules, that represent relationships between two itemsets. For
example, the following rule can be extracted from the data set shown in
Table 4.1:

{Diapers} −→ {Beer}.
The rule suggests a relationship between the sale of diapers and beer because
many customers who buy diapers also buy beer. Retailers can use these types
of rules to help them identify new opportunities for cross-selling their products
to the customers.

Besides market basket data, association analysis is also applicable to data
from other application domains such as bioinformatics, medical diagnosis, web
mining, and scientific data analysis. In the analysis of Earth science data, for
example, association patterns may reveal interesting connections among the
ocean, land, and atmospheric processes. Such information may help Earth
scientists develop a better understanding of how the different elements of the
Earth system interact with each other. Even though the techniques presented
here are generally applicable to a wider variety of data sets, for illustrative
purposes, our discussion will focus mainly on market basket data.

There are two key issues that need to be addressed when applying associ-
ation analysis to market basket data. First, discovering patterns from a large
transaction data set can be computationally expensive. Second, some of the
discovered patterns may be spurious (happen simply by chance) and even for
non-spurious patterns, some are more interesting than others. The remainder
of this chapter is organized around these two issues. The first part of the
chapter is devoted to explaining the basic concepts of association analysis and
the algorithms used to efficiently mine such patterns. The second part of the
chapter deals with the issue of evaluating the discovered patterns in order to
help prevent the generation of spurious results and to rank the patterns in
terms of some interestingness measure.

4.1 Preliminaries

This section reviews the basic terminology used in association analysis and
presents a formal description of the task.

Binary Representation Market basket data can be represented in a binary
format as shown in Table 4.2, where each row corresponds to a transaction
and each column corresponds to an item. An item can be treated as a binary
variable whose value is one if the item is present in a transaction and zero
otherwise. Because the presence of an item in a transaction is often considered

�

M04 TAN9224 02 GE C04 page 215

� �

�

4.1 Preliminaries 215

Table 4.2. A binary 0/1 representation of market basket data.

TID Bread Milk Diapers Beer Eggs Cola
1 1 1 0 0 0 0
2 1 0 1 1 1 0
3 0 1 1 1 0 1
4 1 1 1 1 0 0
5 1 1 1 0 0 1

more important than its absence, an item is an asymmetric binary variable.
This representation is a simplistic view of real market basket data because it
ignores important aspects of the data such as the quantity of items sold or
the price paid to purchase them. Methods for handling such non-binary data
will be explained in Chapter 7.

Itemset and Support Count Let I = {i1, i2, . . . , id} be the set of all items
in a market basket data and T = {t1, t2, . . . , tN} be the set of all transactions.
Each transaction ti contains a subset of items chosen from I. In association
analysis, a collection of zero or more items is termed an itemset. If an itemset
contains k items, it is called a k-itemset. For instance, {Beer, Diapers, Milk}
is an example of a 3-itemset. The null (or empty) set is an itemset that does
not contain any items.

A transaction tj is said to contain an itemset X if X is a subset of
tj . For example, the second transaction shown in Table 4.2 contains the
itemset {Bread, Diapers} but not {Bread, Milk}. An important property
of an itemset is its support count, which refers to the number of transactions
that contain a particular itemset. Mathematically, the support count, σ(X),
for an itemset X can be stated as follows:

σ(X) =
∣∣{ti|X ⊆ ti, ti ∈ T}

∣∣,

where the symbol | · | denotes the number of elements in a set. In the data set
shown in Table 4.2, the support count for {Beer, Diapers, Milk} is equal to
two because there are only two transactions that contain all three items.

Often, the property of interest is the support, which is fraction of trans-
actions in which an itemset occurs:

s(X) = σ(X)/N.

An itemset X is called frequent if s(X) is greater than some user-defined
threshold, minsup.

�

M04 TAN9224 02 GE C04 page 216

� �

�

216 Chapter 4 Association Analysis

Association Rule An association rule is an implication expression of the
form X −→ Y , where X and Y are disjoint itemsets, i.e., X ∩ Y = ∅. The
strength of an association rule can be measured in terms of its support and
confidence. Support determines how often a rule is applicable to a given
data set, while confidence determines how frequently items in Y appear in
transactions that contain X. The formal definitions of these metrics are

Support, s(X −→ Y) =
σ(X ∪ Y)

N
; (4.1)

Confidence, c(X −→ Y) =
σ(X ∪ Y)
σ(X)

. (4.2)

Example 4.1. Consider the rule {Milk, Diapers} −→ {Beer}. Because the
support count for {Milk, Diapers, Beer} is 2 and the total number of transac-
tions is 5, the rule’s support is 2/5 = 0.4. The rule’s confidence is obtained by
dividing the support count for {Milk, Diapers, Beer} by the support count
for {Milk, Diapers}. Since there are 3 transactions that contain milk and
diapers, the confidence for this rule is 2/3 = 0.67.

Why Use Support and Confidence? Support is an important measure
because a rule that has very low support might occur simply by chance. Also,
from a business perspective a low support rule is unlikely to be interesting
because it might not be profitable to promote items that customers seldom
buy together (with the exception of the situation described in Section 4.8).
For these reasons, we are interested in finding rules whose support is greater
than some user-defined threshold. As will be shown in Section 4.2.1, support
also has a desirable property that can be exploited for the efficient discovery
of association rules.

Confidence, on the other hand, measures the reliability of the inference
made by a rule. For a given rule X −→ Y , the higher the confidence, the more
likely it is for Y to be present in transactions that contain X. Confidence also
provides an estimate of the conditional probability of Y given X.

Association analysis results should be interpreted with caution. The infer-
ence made by an association rule does not necessarily imply causality. Instead,
it can sometimes suggest a strong co-occurrence relationship between items
in the antecedent and consequent of the rule. Causality, on the other hand,
requires knowledge about which attributes in the data capture cause and effect,
and typically involves relationships occurring over time (e.g., greenhouse gas
emissions lead to global warming). See Section 4.7.1 for additional discussion.

�

M04 TAN9224 02 GE C04 page 217

� �

�

4.1 Preliminaries 217

Formulation of the Association Rule Mining Problem The associa-
tion rule mining problem can be formally stated as follows:

Definition 4.1 (Association Rule Discovery). Given a set of transactions
T , find all the rules having support ≥ minsup and confidence ≥ minconf ,
where minsup and minconf are the corresponding support and confidence
thresholds.

A brute-force approach for mining association rules is to compute the
support and confidence for every possible rule. This approach is prohibitively
expensive because there are exponentially many rules that can be extracted
from a data set. More specifically, assuming that neither the left nor the right-
hand side of the rule is an empty set, the total number of possible rules, R,
extracted from a data set that contains d items is

R = 3d − 2d+1 + 1. (4.3)

The proof for this equation is left as an exercise to the readers (see Exercise
5 on page 296). Even for the small data set shown in Table 4.1, this approach
requires us to compute the support and confidence for 36−27 +1 = 602 rules.
More than 80% of the rules are discarded after applying minsup = 20% and
minconf = 50%, thus wasting most of the computations. To avoid performing
needless computations, it would be useful to prune the rules early without
having to compute their support and confidence values.

An initial step toward improving the performance of association rule min-
ing algorithms is to decouple the support and confidence requirements. From
Equation 4.1, notice that the support of a rule X −→ Y is the same as the
support of its corresponding itemset, X ∪ Y . For example, the following rules
have identical support because they involve items from the same itemset,
{Beer, Diapers, Milk}:

{Beer, Diapers} −→ {Milk}, {Beer, Milk} −→ {Diapers},
{Diapers, Milk} −→ {Beer}, {Beer} −→ {Diapers, Milk},
{Milk} −→ {Beer,Diapers}, {Diapers} −→ {Beer,Milk}.

If the itemset is infrequent, then all six candidate rules can be pruned imme-
diately without our having to compute their confidence values.

Therefore, a common strategy adopted by many association rule mining
algorithms is to decompose the problem into two major subtasks:

1. Frequent Itemset Generation, whose objective is to find all the
itemsets that satisfy the minsup threshold.

�

M04 TAN9224 02 GE C04 page 218

� �

�

218 Chapter 4 Association Analysis

2. Rule Generation, whose objective is to extract all the high confidence
rules from the frequent itemsets found in the previous step. These rules
are called strong rules.

The computational requirements for frequent itemset generation are gen-
erally more expensive than those of rule generation. Efficient techniques for
generating frequent itemsets and association rules are discussed in Sections
4.2 and 4.3, respectively.

4.2 Frequent Itemset Generation

A lattice structure can be used to enumerate the list of all possible itemsets.
Figure 4.1 shows an itemset lattice for I = {a, b, c, d, e}. In general, a data set
that contains k items can potentially generate up to 2k − 1 frequent itemsets,
excluding the null set. Because k can be very large in many practical applica-
tions, the search space of itemsets that need to be explored is exponentially
large.

A brute-force approach for finding frequent itemsets is to determine the
support count for every candidate itemset in the lattice structure. To do
this, we need to compare each candidate against every transaction, an opera-
tion that is shown in Figure 4.2. If the candidate is contained in a transaction,
its support count will be incremented. For example, the support for {Bread,
Milk} is incremented three times because the itemset is contained in transac-
tions 1, 4, and 5. Such an approach can be very expensive because it requires
O(NMw) comparisons, where N is the number of transactions, M = 2k−1 is
the number of candidate itemsets, and w is the maximum transaction width.
Transaction width is the number of items present in a transaction.

There are three main approaches for reducing the computational complex-
ity of frequent itemset generation.

1. Reduce the number of candidate itemsets (M). The Apriori prin-
ciple, described in the next section, is an effective way to eliminate some
of the candidate itemsets without counting their support values.

2. Reduce the number of comparisons. Instead of matching each can-
didate itemset against every transaction, we can reduce the number of
comparisons by using more advanced data structures, either to store the
candidate itemsets or to compress the data set. We will discuss these
strategies in Sections 4.2.4 and 4.6, respectively.

3. Reduce the number of transactions (N). As the size of candidate
itemsets increases, fewer transactions will be supported by the itemsets.

�

M04 TAN9224 02 GE C04 page 219

� �

�

4.2 Frequent Itemset Generation 219

null

ba c d e

decebeaeadacab

abc abd abe

abcd

acd

abcde

abce abde acde bcde

ace ade bcd bce bde cde

bdbc cd

Figure 4.1. An itemset lattice.

For instance, since the width of the first transaction in Table 4.1 is 2, it
would be advantageous to remove this transaction before searching for
frequent itemsets of size 3 and larger. Algorithms that employ such a
strategy are discussed in the Bibliographic Notes.

4.2.1 The Apriori Principle

This section describes how the support measure can be used to reduce the
number of candidate itemsets explored during frequent itemset generation.
The use of support for pruning candidate itemsets is guided by the following
principle.
Theorem 4.1 (Apriori Principle). If an itemset is frequent, then all of its
subsets must also be frequent.

To illustrate the idea behind the Apriori principle, consider the itemset
lattice shown in Figure 4.3. Suppose {c, d, e} is a frequent itemset. Clearly, any
transaction that contains {c, d, e} must also contain its subsets, {c, d}, {c, e},

�

M04 TAN9224 02 GE C04 page 220

� �

�

220 Chapter 4 Association Analysis

M

Milk, Diapers, Beer, Coke
Bread, Diapers, Beer, Eggs

Bread, Milk, Diapers, Beer
Bread, Milk, Diapers, Coke

Bread, Milk

Transactions

Candidates

TID Items

N

1
2
3
4
5

Figure 4.2. Counting the support of candidate itemsets.

{d, e}, {c}, {d}, and {e}. As a result, if {c, d, e} is frequent, then all subsets
of {c, d, e} (i.e., the shaded itemsets in this figure) must also be frequent.

Conversely, if an itemset such as {a, b} is infrequent, then all of its supersets
must be infrequent too. As illustrated in Figure 4.4, the entire subgraph
containing the supersets of {a, b} can be pruned immediately once {a, b} is
found to be infrequent. This strategy of trimming the exponential search space
based on the support measure is known as support-based pruning. Such a
pruning strategy is made possible by a key property of the support measure,
namely, that the support for an itemset never exceeds the support for its
subsets. This property is also known as the anti-monotone property of the
support measure.

Definition 4.2 (Anti-monotone Property). A measure f possesses the anti-
monotone property if for every itemset X that is a proper subset of itemset
Y , i.e. X ⊂ Y , we have f(Y) ≤ f(X).

More generally, a large number of measures–see Section 4.7.1–can be ap-
plied to itemsets to evaluate various properties of itemsets. As will be shown
in the next section, any measure that has the anti-monotone property can be
incorporated directly into an itemset mining algorithm to effectively prune
the exponential search space of candidate itemsets.

4.2.2 Frequent Itemset Generation in the Apriori Algorithm

Apriori is the first association rule mining algorithm that pioneered the use
of support-based pruning to systematically control the exponential growth of
candidate itemsets. Figure 4.5 provides a high-level illustration of the frequent
itemset generation part of the Apriori algorithm for the transactions shown in

�

M04 TAN9224 02 GE C04 page 221

� �

�

4.2 Frequent Itemset Generation 221

null

ba c d e

decebeaeadacab

abc abd abe

abcd

acd

abcde

abce abde acde bcde

ace ade bcd bce bde cde

bdbc cd

Frequent
Itemset

Figure 4.3. An illustration of the Apriori principle. If {c, d, e} is frequent, then all subsets of this itemset
are frequent.

Table 4.1. We assume that the support threshold is 60%, which is equivalent
to a minimum support count equal to 3.

Initially, every item is considered as a candidate 1-itemset. After count-
ing their supports, the candidate itemsets {Cola} and {Eggs} are discarded
because they appear in fewer than three transactions. In the next iteration,
candidate 2-itemsets are generated using only the frequent 1-itemsets because
the Apriori principle ensures that all supersets of the infrequent 1-itemsets
must be infrequent. Because there are only four frequent 1-itemsets, the num-
ber of candidate 2-itemsets generated by the algorithm is

(
4
2

)
= 6. Two

of these six candidates, {Beer, Bread} and {Beer, Milk}, are subsequently
found to be infrequent after computing their support values. The remaining
four candidates are frequent, and thus will be used to generate candidate
3-itemsets. Without support-based pruning, there are

(
6
3

)
= 20 candidate

3-itemsets that can be formed using the six items given in this example.
With the Apriori principle, we only need to keep candidate 3-itemsets whose
subsets are frequent. The only candidate that has this property is {Bread,

�

M04 TAN9224 02 GE C04 page 222

� �

�

222 Chapter 4 Association Analysis

null

ba c d e

decebeaeadacab

abc abd abe

abcd

acd

abcde

abce abde acde bcde

ace ade bcd bce bde cde

bdbc cd

Infrequent
Itemset

Pruned
Supersets

Figure 4.4. An illustration of support-based pruning. If {a, b} is infrequent, then all supersets of {a, b}
are infrequent.

Diapers, Milk}. However, even though the subsets of {Bread, Diapers, Milk}
are frequent, the itemset itself is not.

The effectiveness of the Apriori pruning strategy can be shown by count-
ing the number of candidate itemsets generated. A brute-force strategy of
enumerating all itemsets (up to size 3) as candidates will produce

(
6
1

)
+
(

6
2

)
+
(

6
3

)
= 6 + 15 + 20 = 41

candidates. With the Apriori principle, this number decreases to

(
6
1

)
+
(

4
2

)
+ 1 = 6 + 6 + 1 = 13

candidates, which represents a 68% reduction in the number of candidate
itemsets even in this simple example.

�

M04 TAN9224 02 GE C04 page 223

� �

�

4.2 Frequent Itemset Generation 223

Candidate
1-Itemsets

3
4
2
4
4
1

Beer
Bread

Diapers
Cola

Milk
Eggs

Item Count

Candidate
2-Itemsets

2
3
2
3
3
3

{Beer, Bread}
{Beer, Diapers}

{Bread, Diapers}
{Bread, Milk}
{Diapers, Milk}

{Beer, Milk}

Itemset Count

Candidate
3-Itemsets

2{Bread, Diapers, Milk}
Itemset Count

Itemsets removed
because of low
support

Minimum support count = 3

Figure 4.5. Illustration of frequent itemset generation using the Apriori algorithm.

The pseudocode for the frequent itemset generation part of the Apriori
algorithm is shown in Algorithm 4.1. Let Ck denote the set of candidate
k-itemsets and Fk denote the set of frequent k-itemsets:

• The algorithm initially makes a single pass over the data set to determine
the support of each item. Upon completion of this step, the set of all
frequent 1-itemsets, F1, will be known (steps 1 and 2).

• Next, the algorithm will iteratively generate new candidate k-itemsets
and prune unnecessary candidates that are guaranteed to be infrequent
given the frequent (k−1)-itemsets found in the previous iteration (steps
5 and 6). Candidate generation and pruning is implemented using the
functions candidate-gen and candidate-prune, which are described in
Section 4.2.3.

• To count the support of the candidates, the algorithm needs to make
an additional pass over the data set (steps 7–12). The subset function
is used to determine all the candidate itemsets in Ck that are contained
in each transaction t. The implementation of this function is described
in Section 4.2.4.

�

M04 TAN9224 02 GE C04 page 224

� �

�

224 Chapter 4 Association Analysis

• After counting their supports, the algorithm eliminates all candidate
itemsets whose support counts are less than N ×minsup (step 13).

• The algorithm terminates when there are no new frequent itemsets
generated, i.e., Fk = ∅ (step 14).

The frequent itemset generation part of the Apriori algorithm has two im-
portant characteristics. First, it is a level-wise algorithm; i.e., it traverses the
itemset lattice one level at a time, from frequent 1-itemsets to the maximum
size of frequent itemsets. Second, it employs a generate-and-test strategy
for finding frequent itemsets. At each iteration (level), new candidate itemsets
are generated from the frequent itemsets found in the previous iteration. The
support for each candidate is then counted and tested against the minsup
threshold. The total number of iterations needed by the algorithm is kmax +1,
where kmax is the maximum size of the frequent itemsets.

4.2.3 Candidate Generation and Pruning

The candidate-gen and candidate-prune functions shown in Steps 5 and 6 of
Algorithm 4.1 generate candidate itemsets and prunes unnecessary ones by
performing the following two operations, respectively:

1. Candidate Generation. This operation generates new candidate k-itemsets
based on the frequent (k − 1)-itemsets found in the previous iteration.

Algorithm 4.1 Frequent itemset generation of the Apriori algorithm.
1: k = 1.
2: Fk = { i | i ∈ I ∧ σ({i}) ≥ N ×minsup}. {Find all frequent 1-itemsets}
3: repeat
4: k = k + 1.
5: Ck = candidate-gen(Fk−1). {Generate candidate itemsets.}
6: Ck = candidate-prune(Ck, Fk−1). {Prune candidate itemsets.}
7: for each transaction t ∈ T do
8: Ct = subset(Ck, t). {Identify all candidates that belong to t.}
9: for each candidate itemset c ∈ Ct do

10: σ(c) = σ(c) + 1. {Increment support count.}
11: end for
12: end for
13: Fk = { c | c ∈ Ck ∧ σ(c) ≥ N ×minsup}. {Extract the frequent k-itemsets.}
14: until Fk = ∅
15: Result =

⋃
Fk.

�

M04 TAN9224 02 GE C04 page 225

� �

�

4.2 Frequent Itemset Generation 225

2. Candidate Pruning. This operation eliminates some of the candi-
date k-itemsets using support-based pruning, i.e. by removing k-itemsets
whose subsets are known to be infrequent in previous iterations. Note
that this pruning is done without computing the actual support of these
k-itemsets (which could have required comparing them against each
transaction).

Candidate Generation

In principle, there are many ways to generate candidate itemsets. An effec-
tive candidate generation procedure must be complete and non-redundant.
A candidate generation procedure is said to be complete if it does not omit
any frequent itemsets. To ensure completeness, the set of candidate itemsets
must subsume the set of all frequent itemsets, i.e., ∀k : Fk ⊆ Ck. A candidate
generation procedure is non-redundant if it does not generate the same can-
didate itemset more than once. For example, the candidate itemset {a, b, c, d}
can be generated in many ways—by merging {a, b, c} with {d}, {b, d} with
{a, c}, {c} with {a, b, d}, etc. Generation of duplicate candidates leads to
wasted computations and thus should be avoided for efficiency reasons. Also,
an effective candidate generation procedure should avoid generating too many
unnecessary candidates. A candidate itemset is unnecessary if at least one of
its subsets is infrequent, and thus, eliminated in the candidate pruning step.

Next, we will briefly describe several candidate generation procedures,
including the one used by the candidate-gen function.

Brute-Force Method The brute-force method considers every k-itemset as
a potential candidate and then applies the candidate pruning step to remove
any unnecessary candidates whose subsets are infrequent (see Figure 4.6). The
number of candidate itemsets generated at level k is equal to

(
d
k

)
, where d

is the total number of items. Although candidate generation is rather trivial,
candidate pruning becomes extremely expensive because a large number of
itemsets must be examined.

Fk−1 × F1 Method An alternative method for candidate generation is to
extend each frequent (k − 1)-itemset with frequent items that are not part
of the (k − 1)-itemset. Figure 4.7 illustrates how a frequent 2-itemset such as
{Beer, Diapers} can be augmented with a frequent item such as Bread to
produce a candidate 3-itemset {Beer, Diapers, Bread}.

The procedure is complete because every frequent k-itemset is composed
of a frequent (k− 1)-itemset and a frequent 1-itemset. Therefore, all frequent

�

M04 TAN9224 02 GE C04 page 226

� �

�

226 Chapter 4 Association Analysis

Figure 4.6. A brute-force method for generating candidate 3-itemsets.

Figure 4.7. Generating and pruning candidate k-itemsets by merging a frequent (k−1)-itemset with a
frequent item. Note that some of the candidates are unnecessary because their subsets are infrequent.

k-itemsets are part of the candidate k-itemsets generated by this procedure.
Figure 4.7 shows that the Fk−1 × F1 candidate generation method only pro-
duces four candidate 3-itemsets, instead of the

(
6
3

)
= 20 itemsets produced

by the brute-force method. The Fk−1 × F1 method generates lower number

�

M04 TAN9224 02 GE C04 page 227

� �

�

4.2 Frequent Itemset Generation 227

of candidates because every candidate is guaranteed to contain at least one
frequent (k − 1)-itemset. While this procedure is a substantial improvement
over the brute-force method, it can still produce a large number of unneces-
sary candidates, as the remaining subsets of a candidate itemset can still be
infrequent.

Note that the approach discussed above does not prevent the same can-
didate itemset from being generated more than once. For instance, {Bread,
Diapers, Milk} can be generated by merging {Bread, Diapers} with {Milk},
{Bread, Milk} with {Diapers}, or {Diapers, Milk} with {Bread}. One way
to avoid generating duplicate candidates is by ensuring that the items in each
frequent itemset are kept sorted in their lexicographic order. For example,
itemsets such as {Bread, Diapers}, {Bread, Diapers, Milk}, and {Diapers,
Milk} follow lexicographic order as the items within every itemset are arranged
alphabetically. Each frequent (k−1)-itemset X is then extended with frequent
items that are lexicographically larger than the items in X. For example, the
itemset {Bread, Diapers} can be augmented with {Milk} because Milk is
lexicographically larger than Bread and Diapers. However, we should not
augment {Diapers, Milk} with {Bread} nor {Bread, Milk} with {Diapers}
because they violate the lexicographic ordering condition. Every candidate
k-itemset is thus generated exactly once, by merging the lexicographically
largest item with the remaining k − 1 items in the itemset. If the Fk−1 × F1

method is used in conjunction with lexicographic ordering, then only two
candidate 3-itemsets will be produced in the example illustrated in Figure
4.7. {Beer, Bread, Diapers} and {Beer, Bread, Milk} will not be generated
because {Beer, Bread} is not a frequent 2-itemset.

Fk−1×Fk−1 Method This candidate generation procedure, which is used in
the candidate-gen function of the Apriori algorithm, merges a pair of frequent
(k− 1)-itemsets only if their first k− 2 items, arranged in lexicographic order,
are identical. Let A = {a1, a2, . . . , ak−1} and B = {b1, b2, . . . , bk−1} be a pair
of frequent (k − 1)-itemsets, arranged lexicographically. A and B are merged
if they satisfy the following conditions:

ai = bi (for i = 1, 2, . . . , k − 2).

Note that in this case, ak−1 = bk−1 because A and B are two distinct
itemsets. The candidate k-itemset generated by merging A and B consists
of the first k − 2 common items followed by ak−1 and bk−1 in lexicographic
order. This candidate generation procedure is complete, because for every
lexicographically ordered frequent k-itemset, there exists two lexicographically

�

M04 TAN9224 02 GE C04 page 228

� �

�

228 Chapter 4 Association Analysis

Candidate
Pruning

Itemset
{Beer, Diapers}
{Bread, Diapers}
{Bread, Milk}
{Diapers, Milk}

Frequent
2-itemset

Itemset
{Beer, Diapers}
{Bread, Diapers}
{Bread, Milk}
{Diapers, Milk}

Frequent
2-itemset

{Bread, Diapers, Milk}
Itemset

Candidate
Generation

{Bread, Diapers, Milk}
Itemset

Figure 4.8. Generating and pruning candidate k-itemsets by merging pairs of frequent (k−1)-itemsets.

ordered frequent (k − 1)-itemsets that have identical items in the first k − 2
positions.

In Figure 4.8, the frequent itemsets {Bread, Diapers} and {Bread, Milk}
are merged to form a candidate 3-itemset {Bread, Diapers, Milk}. The algo-
rithm does not have to merge {Beer, Diapers} with {Diapers, Milk} because
the first item in both itemsets is different. Indeed, if {Beer, Diapers, Milk} is
a viable candidate, it would have been obtained by merging {Beer, Diapers}
with {Beer, Milk} instead. This example illustrates both the completeness of
the candidate generation procedure and the advantages of using lexicographic
ordering to prevent duplicate candidates. Also, if we order the frequent (k−1)-
itemsets according to their lexicographic rank, itemsets with identical first
k − 2 items would take consecutive ranks. As a result, the Fk−1 × Fk−1

candidate generation method would consider merging a frequent itemset only
with ones that occupy the next few ranks in the sorted list, thus saving some
computations.

Figure 4.8 shows that the Fk−1 × Fk−1 candidate generation procedure
results in only one candidate 3-itemset. This is a considerable reduction from
the four candidate 3-itemsets generated by the Fk−1 × F1 method. This is
because the Fk−1 × Fk−1 method ensures that every candidate k-itemset
contains at least two frequent (k − 1)-itemsets, thus greatly reducing the
number of candidates that are generated in this step.

Note that there can be multiple ways of merging two frequent (k − 1)-
itemsets in the Fk−1 × Fk−1 procedure, one of which is merging if their first

�

M04 TAN9224 02 GE C04 page 229

� �

�

4.2 Frequent Itemset Generation 229

k−2 items are identical. An alternate approach could be to merge two frequent
(k − 1)-itemsets A and B if the last k − 2 items of A are identical to the first
k−2 itemsets of B. For example, {Bread, Diapers} and {Diapers, Milk} could
be merged using this approach to generate the candidate 3-itemset {Bread,
Diapers, Milk}. As we will see later, this alternate Fk−1×Fk−1 procedure is
useful in generating sequential patterns, which will be discussed in Chapter 7.

Candidate Pruning

To illustrate the candidate pruning operation for a candidate k-itemset, X =
{i1, i2, . . . , ik}, consider its k proper subsets, X−{ij} (∀j = 1, 2, . . . , k). If any
of them are infrequent, then X is immediately pruned by using the Apriori
principle. Note that we don’t need to explicitly ensure that all subsets of
X of size less than k − 1 are frequent (see Exercise 8). This approach greatly
reduces the number of candidate itemsets considered during support counting.
For the brute-force candidate generation method, candidate pruning requires
checking only k subsets of size k − 1 for each candidate k-itemset. However,
since the Fk−1×F1 candidate generation strategy ensures that at least one of
the (k− 1)-size subsets of every candidate k-itemset is frequent, we only need
to check for the remaining k − 1 subsets. Likewise, the Fk−1 × Fk−1 strategy
requires examining only k− 2 subsets of every candidate k-itemset, since two
of its (k − 1)-size subsets are already known to be frequent in the candidate
generation step.

4.2.4 Support Counting

Support counting is the process of determining the frequency of occurrence
for every candidate itemset that survives the candidate pruning step. Support
counting is implemented in steps 6 through 11 of Algorithm 4.1. A brute-force
approach for doing this is to compare each transaction against every candidate
itemset (see Figure 4.2) and to update the support counts of candidates con-
tained in a transaction. This approach is computationally expensive, especially
when the numbers of transactions and candidate itemsets are large.

An alternative approach is to enumerate the itemsets contained in each
transaction and use them to update the support counts of their respective
candidate itemsets. To illustrate, consider a transaction t that contains five
items, {1, 2, 3, 5, 6}. There are

(
5
3

)
= 10 itemsets of size 3 contained in this

transaction. Some of the itemsets may correspond to the candidate 3-itemsets
under investigation, in which case, their support counts are incremented. Other
subsets of t that do not correspond to any candidates can be ignored.

�

M04 TAN9224 02 GE C04 page 230

� �

�

230 Chapter 4 Association Analysis

Figure 4.9. Enumerating subsets of three items from a transaction t.

Figure 4.9 shows a systematic way for enumerating the 3-itemsets con-
tained in t. Assuming that each itemset keeps its items in increasing lexico-
graphic order, an itemset can be enumerated by specifying the smallest item
first, followed by the larger items. For instance, given t = {1, 2, 3, 5, 6}, all the
3-itemsets contained in t must begin with item 1, 2, or 3. It is not possible
to construct a 3-itemset that begins with items 5 or 6 because there are only
two items in t whose labels are greater than or equal to 5. The number of
ways to specify the first item of a 3-itemset contained in t is illustrated by the
Level 1 prefix tree structure depicted in Figure 4.9. For instance, 1 2 3 5 6
represents a 3-itemset that begins with item 1, followed by two more items
chosen from the set {2, 3, 5, 6}.

After fixing the first item, the prefix tree structure at Level 2 represents the
number of ways to select the second item. For example, 1 2 3 5 6 corresponds
to itemsets that begin with the prefix (1 2) and are followed by the items 3,
5, or 6. Finally, the prefix tree structure at Level 3 represents the complete
set of 3-itemsets contained in t. For example, the 3-itemsets that begin with
prefix {1 2} are {1, 2, 3}, {1, 2, 5}, and {1, 2, 6}, while those that begin with
prefix {2 3} are {2, 3, 5} and {2, 3, 6}.

The prefix tree structure shown in Figure 4.9 demonstrates how itemsets
contained in a transaction can be systematically enumerated, i.e., by specifying

�

M04 TAN9224 02 GE C04 page 231

� �

�

4.2 Frequent Itemset Generation 231

Bread, Diapers, Beer, Eggs
Milk, Diapers, Beer, Cola
Bread, Milk, Diapers, Beer
Bread, Milk, Diapers, Cola

Bread, Milk

Transactions

Hash Tree

TID Items
1
2
3
4
5

Leaf nodes
containing
candidate
2-itemsets

{Beer, Bread}
{Beer, Diapers}

{Beer, Milk}

{Bread, Diapers}
{Bread, Milk}

{Diapers, Milk}

Figure 4.10. Counting the support of itemsets using hash structure.

their items one by one, from the leftmost item to the rightmost item. We
still have to determine whether each enumerated 3-itemset corresponds to
an existing candidate itemset. If it matches one of the candidates, then the
support count of the corresponding candidate is incremented. In the next
section, we illustrate how this matching operation can be performed efficiently
using a hash tree structure.

Support Counting Using a Hash Tree*

In the Apriori algorithm, candidate itemsets are partitioned into different
buckets and stored in a hash tree. During support counting, itemsets contained
in each transaction are also hashed into their appropriate buckets. That way,
instead of comparing each itemset in the transaction with every candidate
itemset, it is matched only against candidate itemsets that belong to the same
bucket, as shown in Figure 4.10.

Figure 4.11 shows an example of a hash tree structure. Each internal node
of the tree uses the following hash function, h(p) = (p − 1) mod 3, where
mode refers to the modulo (remainder) operator, to determine which branch
of the current node should be followed next. For example, items 1, 4, and 7
are hashed to the same branch (i.e., the leftmost branch) because they have
the same remainder after dividing the number by 3. All candidate itemsets
are stored at the leaf nodes of the hash tree. The hash tree shown in Figure
4.11 contains 15 candidate 3-itemsets, distributed across 9 leaf nodes.

�

M04 TAN9224 02 GE C04 page 232

� �

�

232 Chapter 4 Association Analysis

Hash Function

3,6,91,4,7

2,5,8

Transaction

Candidate Hash Tree

1 2 3 5 6

1 4 5 1 3 6

1 5 9

3 4 5

5 6 7

2 3 4

5 6

3 5 6

2 3 5 61 +

2 +

3 +

3 6 8

3 6 7

3 5 7

6 8 9

3 5 6

4 5 8

1 2 5

4 5 7

1 2 4

Figure 4.11. Hashing a transaction at the root node of a hash tree.

Consider the transaction, t = {1, 2, 3, 5, 6}. To update the support counts
of the candidate itemsets, the hash tree must be traversed in such a way
that all the leaf nodes containing candidate 3-itemsets belonging to t must
be visited at least once. Recall that the 3-itemsets contained in t must begin
with items 1, 2, or 3, as indicated by the Level 1 prefix tree structure shown
in Figure 4.9. Therefore, at the root node of the hash tree, the items 1, 2,
and 3 of the transaction are hashed separately. Item 1 is hashed to the left
child of the root node, item 2 is hashed to the middle child, and item 3 is
hashed to the right child. At the next level of the tree, the transaction is
hashed on the second item listed in the Level 2 tree structure shown in Figure
4.9. For example, after hashing on item 1 at the root node, items 2, 3, and
5 of the transaction are hashed. Based on the hash function, items 2 and 5
are hashed to the middle child, while item 3 is hashed to the right child, as
shown in Figure 4.12. This process continues until the leaf nodes of the hash
tree are reached. The candidate itemsets stored at the visited leaf nodes are
compared against the transaction. If a candidate is a subset of the transaction,
its support count is incremented. Note that not all the leaf nodes are visited

�

M04 TAN9224 02 GE C04 page 233

� �

�

4.2 Frequent Itemset Generation 233

Transaction

Candidate Hash Tree

1 2 3 5 6

1 4 5 1 3 6

1 5 9

3 4 5

5 6 7

2 3 4

5 6

3 5 6

2 3 5 61 +

2 +

3 +

5 61 3 +

61 5 +

3 5 61 2 +

3 6 8

3 6 7

3 5 7

6 8 9

3 5 6

4 5 8

1 2 5

4 5 7

1 2 4

Figure 4.12. Subset operation on the leftmost subtree of the root of a candidate hash tree.

while traversing the hash tree, which helps in reducing the computational
cost. In this example, 5 out of the 9 leaf nodes are visited and 9 out of the 15
itemsets are compared against the transaction.

4.2.5 Computational Complexity

The computational complexity of the Apriori algorithm, which includes both
its runtime and storage, can be affected by the following factors.

Support Threshold Lowering the support threshold often results in more
itemsets being declared as frequent. This has an adverse effect on the compu-
tational complexity of the algorithm because more candidate itemsets must be
generated and counted at every level, as shown in Figure 4.13. The maximum
size of frequent itemsets also tends to increase with lower support thresholds.
This increases the total number of iterations to be performed by the Apriori
algorithm, further increasing the computational cost.

Number of Items (Dimensionality) As the number of items increases,
more space will be needed to store the support counts of items. If the number of
frequent items also grows with the dimensionality of the data, the runtime and

�

M04 TAN9224 02 GE C04 page 234

� �

�

234 Chapter 4 Association Analysis

0 5 1510 20
0

0.5

1

1.5

2

2.5

3

3.5

4

Size of Itemset

N
um

be
r

of
 C

an
di

da
te

 It
em

se
ts

Support = 0.1%
Support = 0.2%
Support = 0.5%

3105

(a) Number of candidate itemsets.

N
um

be
r

of
 F

re
qu

en
t I

te
m

se
ts

0 10 155 20
0

3.5

3

2.5

2

1.5

1

0.5

4

Size of Itemset

Support = 0.1%
Support = 0.2%
Support = 0.5%

3105

(b) Number of frequent itemsets.

Figure 4.13. Effect of support threshold on the number of candidate and frequent itemsets obtained
from a benchmark data set.

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

10

Size of Itemset

N
um

be
r

of
 C

an
di

da
te

 It
em

se
ts

Width = 5
Width = 10
Width = 15

3105

(a) Number of candidate itemsets.

0 5 10 15 20 25

10

9

8

7

6

5

4

3

2

1

0

Size of Itemset

N
um

be
r

of
 F

re
qu

en
t I

te
m

se
ts

Width = 5
Width = 10
Width = 15

3105

(b) Number of Frequent Itemsets.

Figure 4.14. Effect of average transaction width on the number of candidate and frequent itemsets
obtained from a synthetic data set.

storage requirements will increase because of the larger number of candidate
itemsets generated by the algorithm.

�

M04 TAN9224 02 GE C04 page 235

� �

�

4.2 Frequent Itemset Generation 235

Number of Transactions Because the Apriori algorithm makes repeated
passes over the transaction data set, its run time increases with a larger
number of transactions.

Average Transaction Width For dense data sets, the average transaction
width can be very large. This affects the complexity of the Apriori algorithm in
two ways. First, the maximum size of frequent itemsets tends to increase as the
average transaction width increases. As a result, more candidate itemsets must
be examined during candidate generation and support counting, as illustrated
in Figure 4.14. Second, as the transaction width increases, more itemsets
are contained in the transaction. This will increase the number of hash tree
traversals performed during support counting.

A detailed analysis of the time complexity for the Apriori algorithm is
presented next.

Generation of frequent 1-itemsets For each transaction, we need to
update the support count for every item present in the transaction. Assuming
that w is the average transaction width, this operation requires O(Nw) time,
where N is the total number of transactions.

Candidate generation To generate candidate k-itemsets, pairs of frequent
(k − 1)-itemsets are merged to determine whether they have at least k − 2
items in common. Each merging operation requires at most k − 2 equality
comparisons. Every merging step can produce at most one viable candidate
k-itemset, while in the worst-case, the algorithm must try to merge every pair
of frequent (k − 1)-itemsets found in the previous iteration. Therefore, the
overall cost of merging frequent itemsets is

w∑

k=2

(k − 2)|Ck| < Cost of merging <
w∑

k=2

(k − 2)|Fk−1|2,

where w is the maximum transaction width. A hash tree is also constructed
during candidate generation to store the candidate itemsets. Because the
maximum depth of the tree is k, the cost for populating the hash tree with
candidate itemsets is O

(∑w
k=2 k|Ck|

)
. During candidate pruning, we need to

verify that the k − 2 subsets of every candidate k-itemset are frequent. Since
the cost for looking up a candidate in a hash tree is O(k), the candidate
pruning step requires O

(∑w
k=2 k(k − 2)|Ck|

)
time.

�

M04 TAN9224 02 GE C04 page 236

� �

�

236 Chapter 4 Association Analysis

Support counting Each transaction of width |t| produces
(|t|

k

)
itemsets of

size k. This is also the effective number of hash tree traversals performed for
each transaction. The cost for support counting is O

(
N
∑

k

(
w
k

)
αk

)
, where w

is the maximum transaction width and αk is the cost for updating the support
count of a candidate k-itemset in the hash tree.

4.3 Rule Generation

This section describes how to extract association rules efficiently from a given
frequent itemset. Each frequent k-itemset, Y , can produce up to 2k−2 associa-
tion rules, ignoring rules that have empty antecedents or consequents (∅ −→ Y
or Y −→ ∅). An association rule can be extracted by partitioning the itemset
Y into two non-empty subsets, X and Y −X, such that X −→ Y −X satisfies
the confidence threshold. Note that all such rules must have already met the
support threshold because they are generated from a frequent itemset.

Example 4.2. Let X = {a, b, c} be a frequent itemset. There are six candi-
date association rules that can be generated from X: {a, b} −→ {c}, {a, c} −→
{b}, {b, c} −→ {a}, {a} −→ {b, c}, {b} −→ {a, c}, and {c} −→ {a, b}. As each
of their support is identical to the support for X, all the rules satisfy the
support threshold.

Computing the confidence of an association rule does not require additional
scans of the transaction data set. Consider the rule {1, 2} −→ {3}, which is
generated from the frequent itemset X = {1, 2, 3}. The confidence for this
rule is σ({1, 2, 3})/σ({1, 2}). Because {1, 2, 3} is frequent, the anti-monotone
property of support ensures that {1, 2} must be frequent, too. Since the
support counts for both itemsets were already found during frequent itemset
generation, there is no need to read the entire data set again.

4.3.1 Confidence-Based Pruning

Confidence does not show the anti-monotone property in the same way as the
support measure. For example, the confidence for X −→ Y can be larger,
smaller, or equal to the confidence for another rule X̃ −→ Ỹ , where X̃ ⊆ X
and Ỹ ⊆ Y (see Exercise 3 on page 295). Nevertheless, if we compare rules
generated from the same frequent itemset Y , the following theorem holds for
the confidence measure.

�

M04 TAN9224 02 GE C04 page 237

� �

�

4.3 Rule Generation 237

Theorem 4.2. Let Y be an itemset and X is a subset of Y . If a rule X −→
Y −X does not satisfy the confidence threshold, then any rule X̃ −→ Y − X̃,
where X̃ is a subset of X, must not satisfy the confidence threshold as well.

To prove this theorem, consider the following two rules: X̃ −→ Y − X̃ and
X −→ Y −X, where X̃ ⊂ X. The confidence of the rules are σ(Y)/σ(X̃) and
σ(Y)/σ(X), respectively. Since X̃ is a subset of X, σ(X̃) ≥ σ(X). Therefore,
the former rule cannot have a higher confidence than the latter rule.

4.3.2 Rule Generation in Apriori Algorithm

The Apriori algorithm uses a level-wise approach for generating association
rules, where each level corresponds to the number of items that belong to the
rule consequent. Initially, all the high confidence rules that have only one item
in the rule consequent are extracted. These rules are then used to generate
new candidate rules. For example, if {acd} −→ {b} and {abd} −→ {c} are
high confidence rules, then the candidate rule {ad} −→ {bc} is generated by
merging the consequents of both rules. Figure 4.15 shows a lattice structure
for the association rules generated from the frequent itemset {a, b, c, d}. If any
node in the lattice has low confidence, then according to Theorem 4.2, the
entire subgraph spanned by the node can be pruned immediately. Suppose
the confidence for {bcd} −→ {a} is low. All the rules containing item a in
its consequent, including {cd} −→ {ab}, {bd} −→ {ac}, {bc} −→ {ad}, and
{d} −→ {abc} can be discarded.

A pseudocode for the rule generation step is shown in Algorithms 4.2 and
4.3. Note the similarity between the ap-genrules procedure given in Algo-
rithm 4.3 and the frequent itemset generation procedure given in Algorithm
4.1. The only difference is that, in rule generation, we do not have to make
additional passes over the data set to compute the confidence of the candidate
rules. Instead, we determine the confidence of each rule by using the support
counts computed during frequent itemset generation.

Algorithm 4.2 Rule generation of the Apriori algorithm.
1: for each frequent k-itemset fk, k ≥ 2 do
2: H1 = {i | i ∈ fk} {1-item consequents of the rule.}
3: call ap-genrules(fk,H1.)
4: end for

�

M04 TAN9224 02 GE C04 page 238

� �

�

238 Chapter 4 Association Analysis

Figure 4.15. Pruning of association rules using the confidence measure.

Algorithm 4.3 Procedure ap-genrules(fk, Hm).
1: k = |fk| {size of frequent itemset.}
2: m = |Hm| {size of rule consequent.}
3: if k > m+ 1 then
4: Hm+1 = candidate-gen(Hm).
5: Hm+1 = candidate-prune(Hm+1,Hm).
6: for each hm+1 ∈ Hm+1 do
7: conf = σ(fk)/σ(fk − hm+1).
8: if conf ≥ minconf then
9: output the rule (fk − hm+1) −→ hm+1.

10: else
11: delete hm+1 from Hm+1.
12: end if
13: end for
14: call ap-genrules(fk,Hm+1.)
15: end if

4.3.3 An Example: Congressional Voting Records

This section demonstrates the results of applying association analysis to the
voting records of members of the United States House of Representatives. The
data is obtained from the 1984 Congressional Voting Records Database, which
is available at the UCI machine learning data repository. Each transaction

�

M04 TAN9224 02 GE C04 page 239

� �

�

4.3 Rule Generation 239

contains information about the party affiliation for a representative along with
his or her voting record on 16 key issues. There are 435 transactions and 34
items in the data set. The set of items are listed in Table 4.3.

Table 4.3. List of binary attributes from the 1984 United States Congressional Voting Records. Source:
The UCI machine learning repository.

1. Republican 18. aid to Nicaragua = no
2. Democrat 19. MX-missile = yes
3. handicapped-infants = yes 20. MX-missile = no
4. handicapped-infants = no 21. immigration = yes
5. water project cost sharing = yes 22. immigration = no
6. water project cost sharing = no 23. synfuel corporation cutback = yes
7. budget-resolution = yes 24. synfuel corporation cutback = no
8. budget-resolution = no 25. education spending = yes
9. physician fee freeze = yes 26. education spending = no
10. physician fee freeze = no 27. right-to-sue = yes
11. aid to El Salvador = yes 28. right-to-sue = no
12. aid to El Salvador = no 29. crime = yes
13. religious groups in schools = yes 30. crime = no
14. religious groups in schools = no 31. duty-free-exports = yes
15. anti-satellite test ban = yes 32. duty-free-exports = no
16. anti-satellite test ban = no 33. export administration act = yes
17. aid to Nicaragua = yes 34. export administration act = no

Table 4.4. Association rules extracted from the 1984 United States Congressional Voting Records.

Association Rule Confidence
{budget resolution = no, MX-missile=no, aid to El Salvador = yes } 91.0%

−→ {Republican}
{budget resolution = yes, MX-missile=yes, aid to El Salvador = no } 97.5%

−→ {Democrat}
{crime = yes, right-to-sue = yes, physician fee freeze = yes} 93.5%

−→ {Republican}
{crime = no, right-to-sue = no, physician fee freeze = no} 100%

−→ {Democrat}

The Apriori algorithm is then applied to the data set with minsup = 30%
and minconf = 90%. Some of the high confidence rules extracted by the

�

M04 TAN9224 02 GE C04 page 240

� �

�

240 Chapter 4 Association Analysis

algorithm are shown in Table 4.4. The first two rules suggest that most of the
members who voted yes for aid to El Salvador and no for budget resolution and
MX missile are Republicans; while those who voted no for aid to El Salvador
and yes for budget resolution and MX missile are Democrats. These high
confidence rules show the key issues that divide members from both political
parties.

4.4 Compact Representation of Frequent Itemsets

In practice, the number of frequent itemsets produced from a transaction
data set can be very large. It is useful to identify a small representative set of
frequent itemsets from which all other frequent itemsets can be derived. Two
such representations are presented in this section in the form of maximal and
closed frequent itemsets.

4.4.1 Maximal Frequent Itemsets

Definition 4.3 (Maximal Frequent Itemset). A frequent itemset is maximal
if none of its immediate supersets are frequent.

To illustrate this concept, consider the itemset lattice shown in Figure
4.16. The itemsets in the lattice are divided into two groups: those that are
frequent and those that are infrequent. A frequent itemset border, which is
represented by a dashed line, is also illustrated in the diagram. Every itemset
located above the border is frequent, while those located below the border (the
shaded nodes) are infrequent. Among the itemsets residing near the border,
{a, d}, {a, c, e}, and {b, c, d, e} are maximal frequent itemsets because all of
their immediate supersets are infrequent. For example, the itemset {a, d} is
maximal frequent because all of its immediate supersets, {a, b, d}, {a, c, d},
and {a, d, e}, are infrequent. In contrast, {a, c} is non-maximal because one of
its immediate supersets, {a, c, e}, is frequent.

Maximal frequent itemsets effectively provide a compact representation
of frequent itemsets. In other words, they form the smallest set of itemsets
from which all frequent itemsets can be derived. For example, every frequent
itemset in Figure 4.16 is a subset of one of the three maximal frequent itemsets,
{a, d}, {a, c, e}, and {b, c, d, e}. If an itemset is not a proper subset of any of
the maximal frequent itemsets, then it is either infrequent (e.g., {a, d, e})
or maximal frequent itself (e.g., {b, c, d, e}). Hence, the maximal frequent
itemsets {a, c, e}, {a, d}, and {b, c, d, e} provide a compact representation of

�

M04 TAN9224 02 GE C04 page 241

� �

�

4.4 Compact Representation of Frequent Itemsets 241

null

ba c d e

decebeaeadacab

abc abd abe

abcd

acd

abce abde bcde

ace ade bcd bce bde cde

bdbc cd

abcde

acde

Maximal Frequent
Itemset

 Frequent
 Itemset
Border

Frequent

Infrequent

Figure 4.16. Maximal frequent itemset.

the frequent itemsets shown in Figure 4.16. Enumerating all the subsets of
maximal frequent itemsets generates the complete list of all frequent itemsets.

Maximal frequent itemsets provide a valuable representation for data sets
that can produce very long, frequent itemsets, as there are exponentially many
frequent itemsets in such data. Nevertheless, this approach is practical only if
an efficient algorithm exists to explicitly find the maximal frequent itemsets.
We briefly describe one such approach in Section 4.5.

Despite providing a compact representation, maximal frequent itemsets
do not contain the support information of their subsets. For example, the
support of the maximal frequent itemsets {a, c, e}, {a, d}, and {b, c, d, e} do
not provide any information about the support of their subsets except that it
meets the support threshold. An additional pass over the data set is therefore
needed to determine the support counts of the non-maximal frequent itemsets.
In some cases, it is desirable to have a minimal representation of itemsets that
preserves the support information. We describe such a representation in the
next section.

�

M04 TAN9224 02 GE C04 page 242

� �

�

242 Chapter 4 Association Analysis

4.4.2 Closed Itemsets

Closed itemsets provide a minimal representation of all itemsets without losing
their support information. A formal definition of a closed itemset is presented
below.

Definition 4.4 (Closed Itemset). An itemset X is closed if none of its
immediate supersets has exactly the same support count as X.

Put another way, X is not closed if at least one of its immediate supersets
has the same support count as X. Examples of closed itemsets are shown in
Figure 4.17. To better illustrate the support count of each itemset, we have
associated each node (itemset) in the lattice with a list of its corresponding
transaction IDs. For example, since the node {b, c} is associated with transac-
tion IDs 1, 2, and 3, its support count is equal to three. From the transactions
given in this diagram, notice that the support for {b} is identical to {b, c}. This
is because every transaction that contains b also contains c. Hence, {b} is not
a closed itemset. Similarly, since c occurs in every transaction that contains
both a and d, the itemset {a, d} is not closed as it has the same support as
its superset {a, c, d}. On the other hand, {b, c} is a closed itemset because it
does not have the same support count as any of its supersets.

An interesting property of closed itemsets is that if we know their support
counts, we can derive the support count of every other itemset in the itemset
lattice without making additional passes over the data set. For example,
consider the 2-itemset {b, e} in Figure 4.17. Since {b, e} is not closed, its
support must be equal to the support of one of its immediate supersets,
{a, b, e}, {b, c, e}, and {b, d, e}. Further, none of the supersets of {b, e} can
have a support greater than the support of {b, e}, due to the anti-monotone
nature of the support measure. Hence, the support of {b, e} can be computed
by examining the support counts of all of its immediate supersets of size three
and taking their maximum value. If an immediate superset is closed (e.g.,
{b, c, e}), we would know its support count. Otherwise, we can recursively
compute its support by examining the supports of its immediate supersets of
size four. In general, the support count of any non-closed (k − 1)-itemset can
be determined as long as we know the support counts of all k-itemsets. Hence,
one can devise an iterative algorithm that computes the support counts of
itemsets at level k− 1 using the support counts of itemsets at level k, starting
from the level kmax, where kmax is the size of the largest closed itemset.

Even though closed itemsets provide a compact representation of the sup-
port counts of all itemsets, they can still be exponentially large in number.
Moreover, for most practical applications, we only need to determine the

�

M04 TAN9224 02 GE C04 page 243

� �

�

4.4 Compact Representation of Frequent Itemsets 243

null

ba c d e

decebeaeadacab

abc abd abe

abcd

acd

abcde

abce abde acde bcde

ace ade bcd bce bde cde

bdbc cd

TID Items

abc

abcd

acde

de

bce

1

2

4

5

3

minsup = 40%

1,2,4

1,2,4

1,2,3 1,2,3,4 2,4,5 3,4,5

1,2,31,2

1,2

2,4

2,4

2,4 3,4 4,5

4 4 4

42

2 3

4

2

2 3

Closed Frequent Itemset

Figure 4.17. An example of the closed frequent itemsets (with minimum support equal to 40%).

support count of all frequent itemsets. In this regard, closed frequent item-
sets provide a compact representation of the support counts of all frequent
itemsets, which can be defined as follows.

Definition 4.5 (Closed Frequent Itemset). An itemset is a closed frequent
itemset if it is closed and its support is greater than or equal to minsup.

In the previous example, assuming that the support threshold is 40%, {b,c}
is a closed frequent itemset because its support is 60%. In Figure 4.17, the
closed frequent itemsets are indicated by the shaded nodes.

Algorithms are available to explicitly extract closed frequent itemsets from
a given data set. Interested readers may refer to the Bibliographic Notes at
the end of this chapter for further discussions of these algorithms. We can use
closed frequent itemsets to determine the support counts for all non-closed
frequent itemsets. For example, consider the frequent itemset {a, d} shown
in Figure 4.17. Because this itemset is not closed, its support count must be
equal to the maximum support count of its immediate supersets, {a, b, d},
{a, c, d}, and {a, d, e}. Also, since {a, d} is frequent, we only need to consider
the support of its frequent supersets. In general, the support count of every

�

M04 TAN9224 02 GE C04 page 244

� �

�

244 Chapter 4 Association Analysis

Algorithm 4.4 Support counting using closed frequent itemsets.
1: Let C denote the set of closed frequent itemsets and F denote the set of all

frequent itemsets.
2: Let kmax denote the maximum size of closed frequent itemsets
3: Fkmax = {f |f ∈ C, |f | = kmax} {Find all frequent itemsets of size kmax.}
4: for k = kmax − 1 down to 1 do
5: Fk = {f |f ∈ F, |f | = k} {Find all frequent itemsets of size k.}
6: for each f ∈ Fk do
7: if f /∈ C then
8: f.support = max{f ′.support|f ′ ∈ Fk+1, f ⊂ f ′}
9: end if

10: end for
11: end for

non-closed frequent k-itemset can be obtained by considering the support of
all its frequent supersets of size k + 1. For example, since the only frequent
superset of {a, d} is {a, c, d}, its support is equal to the support of {a, c, d},
which is 2. Using this methodology, an algorithm can be developed to compute
the support for every frequent itemset. The pseudocode for this algorithm
is shown in Algorithm 4.4. The algorithm proceeds in a specific-to-general
fashion, i.e., from the largest to the smallest frequent itemsets. This is because,
in order to find the support for a non-closed frequent itemset, the support for
all of its supersets must be known. Note that the set of all frequent itemsets
can be easily computed by taking the union of all subsets of frequent closed
itemsets.

To illustrate the advantage of using closed frequent itemsets, consider the
data set shown in Table 4.5, which contains ten transactions and fifteen items.
The items can be divided into three groups: (1) Group A, which contains
items a1 through a5; (2) Group B, which contains items b1 through b5; and
(3) Group C, which contains items c1 through c5. Assuming that the support
threshold is 20%, itemsets involving items from the same group are frequent,
but itemsets involving items from different groups are infrequent. The total
number of frequent itemsets is thus 3 × (25 − 1) = 93. However, there are
only four closed frequent itemsets in the data: ({a3, a4}, {a1, a2, a3, a4, a5},
{b1, b2, b3, b4, b5}, and {c1, c2, c3, c4, c5}). It is often sufficient to present only
the closed frequent itemsets to the analysts instead of the entire set of frequent
itemsets.

�

M04 TAN9224 02 GE C04 page 245

� �

�

4.5 Alternative Methods for Generating Frequent Itemsets* 245

Table 4.5. A transaction data set for mining closed itemsets.

TID a1 a2 a3 a4 a5 b1 b2 b3 b4 b5 c1 c2 c3 c4 c5
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
2 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
3 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
4 0 0 1 1 0 1 1 1 1 1 0 0 0 0 0
5 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
6 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
8 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
9 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
10 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

Maximal
Frequent
Itemsets

Closed Frequent
Itemsets

Closed
Itemsets

Frequent
Itemsets

Figure 4.18. Relationships among frequent, closed, closed frequent, and maximal frequent itemsets.

Finally, note that all maximal frequent itemsets are closed because none of
the maximal frequent itemsets can have the same support count as their im-
mediate supersets. The relationships among frequent, closed, closed frequent,
and maximal frequent itemsets are shown in Figure 4.18.

4.5 Alternative Methods for Generating Frequent
Itemsets*

Apriori is one of the earliest algorithms to have successfully addressed the
combinatorial explosion of frequent itemset generation. It achieves this by
applying the Apriori principle to prune the exponential search space. Despite
its significant performance improvement, the algorithm still incurs consider-
able I/O overhead since it requires making several passes over the transaction

�

M04 TAN9224 02 GE C04 page 246

� �

�

246 Chapter 4 Association Analysis

data set. In addition, as noted in Section 4.2.5, the performance of the Apriori
algorithm may degrade significantly for dense data sets because of the increas-
ing width of transactions. Several alternative methods have been developed
to overcome these limitations and improve upon the efficiency of the Apriori
algorithm. The following is a high-level description of these methods.

Traversal of Itemset Lattice A search for frequent itemsets can be con-
ceptually viewed as a traversal on the itemset lattice shown in Figure 4.1.
The search strategy employed by an algorithm dictates how the lattice struc-
ture is traversed during the frequent itemset generation process. Some search
strategies are better than others, depending on the configuration of frequent
itemsets in the lattice. An overview of these strategies is presented next.

• General-to-Specific versus Specific-to-General: The Apriori al-
gorithm uses a general-to-specific search strategy, where pairs of frequent
(k−1)-itemsets are merged to obtain candidate k-itemsets. This general-
to-specific search strategy is effective, provided the maximum length of a
frequent itemset is not too long. The configuration of frequent itemsets
that works best with this strategy is shown in Figure 4.19(a), where
the darker nodes represent infrequent itemsets. Alternatively, a specific-
to-general search strategy looks for more specific frequent itemsets first,
before finding the more general frequent itemsets. This strategy is useful
to discover maximal frequent itemsets in dense transactions, where the
frequent itemset border is located near the bottom of the lattice, as
shown in Figure 4.19(b). The Apriori principle can be applied to prune
all subsets of maximal frequent itemsets. Specifically, if a candidate
k-itemset is maximal frequent, we do not have to examine any of its
subsets of size k − 1. However, if the candidate k-itemset is infrequent,
we need to check all of its k − 1 subsets in the next iteration. Another
approach is to combine both general-to-specific and specific-to-general
search strategies. This bidirectional approach requires more space to
store the candidate itemsets, but it can help to rapidly identify the
frequent itemset border, given the configuration shown in Figure 4.19(c).

• Equivalence Classes: Another way to envision the traversal is to
first partition the lattice into disjoint groups of nodes (or equivalence
classes). A frequent itemset generation algorithm searches for frequent
itemsets within a particular equivalence class first before moving to
another equivalence class. As an example, the level-wise strategy used

�

M04 TAN9224 02 GE C04 page 247

� �

�

4.5 Alternative Methods for Generating Frequent Itemsets* 247

Frequent
Itemset
Border null

Frequent
Itemset
Border

Frequent
Itemset
Border

nullnull

{a1,a2,...,an} {a1,a2,...,an} {a1,a2,...,an}

(a) General-to-specific (b) Specific-to-general (c) Bidirectional

Figure 4.19. General-to-specific, specific-to-general, and bidirectional search.

in the Apriori algorithm can be considered to be partitioning the lattice
on the basis of itemset sizes; i.e., the algorithm discovers all frequent
1-itemsets first before proceeding to larger-sized itemsets. Equivalence
classes can also be defined according to the prefix or suffix labels of
an itemset. In this case, two itemsets belong to the same equivalence
class if they share a common prefix or suffix of length k. In the prefix-
based approach, the algorithm can search for frequent itemsets starting
with the prefix a before looking for those starting with prefixes b, c,
and so on. Both prefix-based and suffix-based equivalence classes can be
demonstrated using the tree-like structure shown in Figure 4.20.

• Breadth-First versus Depth-First: The Apriori algorithm traverses
the lattice in a breadth-first manner, as shown in Figure 4.21(a). It first
discovers all the frequent 1-itemsets, followed by the frequent 2-itemsets,
and so on, until no new frequent itemsets are generated. The itemset
lattice can also be traversed in a depth-first manner, as shown in Figures
4.21(b) and 4.22. The algorithm can start from, say, node a in Figure
4.22, and count its support to determine whether it is frequent. If so, the
algorithm progressively expands the next level of nodes, i.e., ab, abc, and
so on, until an infrequent node is reached, say, abcd. It then backtracks
to another branch, say, abce, and continues the search from there.

The depth-first approach is often used by algorithms designed to find
maximal frequent itemsets. This approach allows the frequent itemset
border to be detected more quickly than using a breadth-first approach.

�

M04 TAN9224 02 GE C04 page 248

� �

�

248 Chapter 4 Association Analysis

null

a

abcd

cb

bc bd cd

d

adacab

abc

bc bd cdadacab

acd bcdabd abc acd bcdabd

(a) Prefix tree. (b) Suffix tree.

null

a cb d

abcd

Figure 4.20. Equivalence classes based on the prefix and suffix labels of itemsets.

(a) Breadth first (b) Depth first

Figure 4.21. Breadth-first and depth-first traversals.

Once a maximal frequent itemset is found, substantial pruning can be
performed on its subsets. For example, if the node bcde shown in Figure
4.22 is maximal frequent, then the algorithm does not have to visit the
subtrees rooted at bd, be, c, d, and e because they will not contain any
maximal frequent itemsets. However, if abc is maximal frequent, only the
nodes such as ac and bc are not maximal frequent (but the subtrees of
ac and bc may still contain maximal frequent itemsets). The depth-first
approach also allows a different kind of pruning based on the support
of itemsets. For example, suppose the support for {a, b, c} is identical
to the support for {a, b}. The subtrees rooted at abd and abe can be

�

M04 TAN9224 02 GE C04 page 249

� �

�

4.6 FP-Growth Algorithm* 249

null

b

abc

abcd

abcde

abd acd
aceabe ade

bcd

bcdeacdeabdeabce

bce bde cde

bd cd
decebe

c d
e

a

ab ac ad
ae

bc

Figure 4.22. Generating candidate itemsets using the depth-first approach.

skipped because they are guaranteed not to have any maximal frequent
itemsets. The proof of this is left as an exercise to the readers.

Representation of Transaction Data Set There are many ways to rep-
resent a transaction data set. The choice of representation can affect the I/O
costs incurred when computing the support of candidate itemsets. Figure
4.23 shows two different ways of representing market basket transactions.
The representation on the left is called a horizontal data layout, which
is adopted by many association rule mining algorithms, including Apriori.
Another possibility is to store the list of transaction identifiers (TID-list)
associated with each item. Such a representation is known as the vertical
data layout. The support for each candidate itemset is obtained by intersecting
the TID-lists of its subset items. The length of the TID-lists shrinks as we
progress to larger sized itemsets. However, one problem with this approach is
that the initial set of TID-lists might be too large to fit into main memory,
thus requiring more sophisticated techniques to compress the TID-lists. We
describe another effective approach to represent the data in the next section.

4.6 FP-Growth Algorithm*

This section presents an alternative algorithm called FP-growth that takes
a radically different approach to discovering frequent itemsets. The algorithm

�

M04 TAN9224 02 GE C04 page 250

� �

�

250 Chapter 4 Association Analysis

a,b,c,d

a,b,c

a,b,e

a,b

b,c,d

a,c,d

a,c,d

c,e

a,e

b

Horizontal
Data Layout Vertical Data Layout

1
2
3
4
5
6
7
8
9

1
4
5
6
7
8

1
2
5
7
8

2
3
4
8

2
4
5

1
3
6

9
9

10
9

10

TID Items a b c d e

Figure 4.23. Horizontal and vertical data format.

does not subscribe to the generate-and-test paradigm of Apriori. Instead, it
encodes the data set using a compact data structure called an FP-tree and
extracts frequent itemsets directly from this structure. The details of this
approach are presented next.

4.6.1 FP-Tree Representation

An FP-tree is a compressed representation of the input data. It is constructed
by reading the data set one transaction at a time and mapping each transaction
onto a path in the FP-tree. As different transactions can have several items
in common, their paths might overlap. The more the paths overlap with one
another, the more compression we can achieve using the FP-tree structure. If
the size of the FP-tree is small enough to fit into main memory, this will allow
us to extract frequent itemsets directly from the structure in memory instead
of making repeated passes over the data stored on disk.

Figure 4.24 shows a data set that contains ten transactions and five items.
The structures of the FP-tree after reading the first three transactions are also
depicted in the diagram. Each node in the tree contains the label of an item
along with a counter that shows the number of transactions mapped onto the
given path. Initially, the FP-tree contains only the root node represented by
the null symbol. The FP-tree is subsequently extended in the following way:

1. The data set is scanned once to determine the support count of each
item. Infrequent items are discarded, while the frequent items are sorted
in decreasing support counts inside every transaction of the data set. For

�

M04 TAN9224 02 GE C04 page 251

� �

�

4.6 FP-Growth Algorithm* 251

{a,b}

{a}

{a,b,c}

{a,b,d}
{b,c,e}

{a,b,c}

{a,b,c,d}

{b,c,d}

{a,d,e}
{a,c,d,e}

Transaction
Data Set

1
2
3
4
5
6
7
8
9
10

TID Items

null
null

a:1 b:1

c:1

d:1

b:1

null

a:2 b:1

c:1
c:1

d:1d:1

e:1

b:1

a:1

b:1

(i) After reading TID=1

(iii) After reading TID=3

(iv) After reading TID=10

(ii) After reading TID=2

null

a:8 b:2

c:2
c:1

c:3
d:1

d:1

d:1
d:1 d:1

e:1
e:1e:1

b:5

Figure 4.24. Construction of an FP-tree.

the data set shown in Figure 4.24, a is the most frequent item, followed
by b, c, d, and e.

2. The algorithm makes a second pass over the data to construct the FP-
tree. After reading the first transaction, {a, b}, the nodes labeled as a
and b are created. A path is then formed from null → a → b to encode
the transaction. Every node along the path has a frequency count of 1.

3. After reading the second transaction, {b,c,d}, a new set of nodes is
created for items b, c, and d. A path is then formed to represent the
transaction by connecting the nodes null → b → c → d. Every node
along this path also has a frequency count equal to one. Although the

�

M04 TAN9224 02 GE C04 page 252

� �

�

252 Chapter 4 Association Analysis

null

a:1a:1 a:1
a:1

a:1

a:1

a:2

b:2

b:2

b:1

b:1

b:1

c:2

c:2

c:1
c:1

d:3

d:2

e:3

Figure 4.25. An FP-tree representation for the data set shown in Figure 4.24 with a different item
ordering scheme.

first two transactions have an item in common, which is b, their paths
are disjoint because the transactions do not share a common prefix.

4. The third transaction, {a,c,d,e}, shares a common prefix item (which
is a) with the first transaction. As a result, the path for the third
transaction, null → a → c → d → e, overlaps with the path for the
first transaction, null → a → b. Because of their overlapping path, the
frequency count for node a is incremented to two, while the frequency
counts for the newly created nodes, c, d, and e, are equal to one.

5. This process continues until every transaction has been mapped onto one
of the paths given in the FP-tree. The resulting FP-tree after reading
all the transactions is shown at the bottom of Figure 4.24.

The size of an FP-tree is typically smaller than the size of the uncompressed
data because many transactions in market basket data often share a few items
in common. In the best-case scenario, where all the transactions have the same
set of items, the FP-tree contains only a single branch of nodes. The worst-
case scenario happens when every transaction has a unique set of items. As
none of the transactions have any items in common, the size of the FP-tree
is effectively the same as the size of the original data. However, the physical
storage requirement for the FP-tree is higher because it requires additional
space to store pointers between nodes and counters for each item.

The size of an FP-tree also depends on how the items are ordered. The
notion of ordering items in decreasing order of support counts relies on the
possibility that the high support items occur more frequently across all paths
and hence must be used as most commonly occurring prefixes. For example,

�

M04 TAN9224 02 GE C04 page 253

� �

�

4.6 FP-Growth Algorithm* 253

if the ordering scheme in the preceding example is reversed, i.e., from lowest
to highest support item, the resulting FP-tree is shown in Figure 4.25. The
tree appears to be denser because the branching factor at the root node has
increased from 2 to 5 and the number of nodes containing the high support
items such as a and b has increased from 3 to 12. Nevertheless, ordering by
decreasing support counts does not always lead to the smallest tree, especially
when the high support items do not occur frequently together with the other
items. For example, suppose we augment the data set given in Figure 4.24
with 100 transactions that contain {e}, 80 transactions that contain {d}, 60
transactions that contain {c}, and 40 transactions that contain {b}. Item
e is now most frequent, followed by d, c, b, and a. With the augmented
transactions, ordering by decreasing support counts will result in an FP-tree
similar to Figure 4.25, while a scheme based on increasing support counts
produces a smaller FP-tree similar to Figure 4.24(iv).

An FP-tree also contains a list of pointers connecting nodes that have the
same items. These pointers, represented as dashed lines in Figures 4.24 and
4.25, help to facilitate the rapid access of individual items in the tree. We
explain how to use the FP-tree and its corresponding pointers for frequent
itemset generation in the next section.

4.6.2 Frequent Itemset Generation in FP-Growth Algorithm

FP-growth is an algorithm that generates frequent itemsets from an FP-
tree by exploring the tree in a bottom-up fashion. Given the example tree
shown in Figure 4.24, the algorithm looks for frequent itemsets ending in e
first, followed by d, c, b, and finally, a. This bottom-up strategy for finding
frequent itemsets ending with a particular item is equivalent to the suffix-
based approach described in Section 4.5. Since every transaction is mapped
onto a path in the FP-tree, we can derive the frequent itemsets ending with a
particular item, say, e, by examining only the paths containing node e. These
paths can be accessed rapidly using the pointers associated with node e. The
extracted paths are shown in Figure 4.26 (a). Similar paths for itemsets ending
in d, c, b, and a are shown in Figures 4.26 (b), (c), (d), and (e), respectively.

FP-growth finds all the frequent itemsets ending with a particular suffix
by employing a divide-and-conquer strategy to split the problem into smaller
subproblems. For example, suppose we are interested in finding all frequent
itemsets ending in e. To do this, we must first check whether the itemset
{e} itself is frequent. If it is frequent, we consider the subproblem of finding
frequent itemsets ending in de, followed by ce, be, and ae. In turn, each of these
subproblems are further decomposed into smaller subproblems. By merging

�

M04 TAN9224 02 GE C04 page 254

� �

�

254 Chapter 4 Association Analysis

null

null

a:8 b:2

b:2
b:2

b:5
b:5

c:1

c:1
c:3

c:2

c:2

d:1 d:1
d:1 d:1 d:1

c:3 c:2

b:2b:5

c:1
d:1

d:1

e:1 e:1e:1

null null

null

a:8 a:8
a:8

a:8

(c) Paths containing node c (d) Paths containing node b (e) Paths containing node a

(a) Paths containing node e (b) Paths containing node d

Figure 4.26. Decomposing the frequent itemset generation problem into multiple subproblems, where
each subproblem involves finding frequent itemsets ending in e, d, c, b, and a.

the solutions obtained from the subproblems, all the frequent itemsets ending
in e can be found. Finally, the set of all frequent itemsets can be generated by
merging the solutions to the subproblems of finding frequent itemsets ending
in e, d, c, b, and a. This divide-and-conquer approach is the key strategy
employed by the FP-growth algorithm.

For a more concrete example on how to solve the subproblems, consider
the task of finding frequent itemsets ending with e.

1. The first step is to gather all the paths containing node e. These initial
paths are called prefix paths and are shown in Figure 4.27(a).

2. From the prefix paths shown in Figure 4.27(a), the support count for e is
obtained by adding the support counts associated with node e. Assuming
that the minimum support count is 2, {e} is declared a frequent itemset
because its support count is 3.

3. Because {e} is frequent, the algorithm has to solve the subproblems of
finding frequent itemsets ending in de, ce, be, and ae. Before solving these
subproblems, it must first convert the prefix paths into a conditional
FP-tree, which is structurally similar to an FP-tree, except it is used

�

M04 TAN9224 02 GE C04 page 255

� �

�

4.6 FP-Growth Algorithm* 255

null
a:8

a:2

a:2

a:2

b:2

c:1
c:1

c:1

c:1
c:2

d:1

d:1 d:1

d:1d:1

d:1

e:1 e:1e:1

null

null null

a:2

c:1 c:1

null

(a) Prefix paths ending in e (b) Conditional FP-tree for e

(c) Prefix paths ending in de (d) Conditional FP-tree for de

(e) Prefix paths ending in ce (f) Prefix paths ending in ae

a:2

null

Figure 4.27. Example of applying the FP-growth algorithm to find frequent itemsets ending in e.

to find frequent itemsets ending with a particular suffix. A conditional
FP-tree is obtained in the following way:

(a) First, the support counts along the prefix paths must be updated
because some of the counts include transactions that do not contain
item e. For example, the rightmost path shown in Figure 4.27(a),
null −→ b:2 −→ c:2 −→ e:1, includes a transaction {b, c} that
does not contain item e. The counts along the prefix path must
therefore be adjusted to 1 to reflect the actual number of transac-
tions containing {b, c, e}.

(b) The prefix paths are truncated by removing the nodes for e. These
nodes can be removed because the support counts along the prefix
paths have been updated to reflect only transactions that contain e
and the subproblems of finding frequent itemsets ending in de, ce,
be, and ae no longer need information about node e.

(c) After updating the support counts along the prefix paths, some
of the items may no longer be frequent. For example, the node b

�

M04 TAN9224 02 GE C04 page 256

� �

�

256 Chapter 4 Association Analysis

appears only once and has a support count equal to 1, which means
that there is only one transaction that contains both b and e. Item b
can be safely ignored from subsequent analysis because all itemsets
ending in be must be infrequent.

The conditional FP-tree for e is shown in Figure 4.27(b). The tree looks
different than the original prefix paths because the frequency counts
have been updated and the nodes b and e have been eliminated.

4. FP-growth uses the conditional FP-tree for e to solve the subproblems
of finding frequent itemsets ending in de, ce, and ae. To find the frequent
itemsets ending in de, the prefix paths for d are gathered from the
conditional FP-tree for e (Figure 4.27(c)). By adding the frequency
counts associated with node d, we obtain the support count for {d, e}.
Since the support count is equal to 2, {d, e} is declared a frequent
itemset. Next, the algorithm constructs the conditional FP-tree for de
using the approach described in step 3. After updating the support
counts and removing the infrequent item c, the conditional FP-tree for de
is shown in Figure 4.27(d). Since the conditional FP-tree contains only
one item, a, whose support is equal to minsup, the algorithm extracts
the frequent itemset {a, d, e} and moves on to the next subproblem,
which is to generate frequent itemsets ending in ce. After processing the
prefix paths for c, {c, e} is found to be frequent. However, the conditional
FP-tree for ce will have no frequent items and thus will be eliminated.
The algorithm proceeds to solve the next subproblem and finds {a, e}
to be the only frequent itemset remaining.

This example illustrates the divide-and-conquer approach used in the FP-
growth algorithm. At each recursive step, a conditional FP-tree is constructed
by updating the frequency counts along the prefix paths and removing all
infrequent items. Because the subproblems are disjoint, FP-growth will not
generate any duplicate itemsets. In addition, the counts associated with the
nodes allow the algorithm to perform support counting while generating the
common suffix itemsets.

FP-growth is an interesting algorithm because it illustrates how a compact
representation of the transaction data set helps to efficiently generate frequent
itemsets. In addition, for certain transaction data sets, FP-growth outperforms
the standard Apriori algorithm by several orders of magnitude. The run-time
performance of FP-growth depends on the compaction factor of the data
set. If the resulting conditional FP-trees are very bushy (in the worst case, a
full prefix tree), then the performance of the algorithm degrades significantly

�

M04 TAN9224 02 GE C04 page 257

� �

�

4.7 Evaluation of Association Patterns 257

because it has to generate a large number of subproblems and merge the results
returned by each subproblem.

4.7 Evaluation of Association Patterns

Although the Apriori principle significantly reduces the exponential search
space of candidate itemsets, association analysis algorithms still have the
potential to generate a large number of patterns. For example, although the
data set shown in Table 4.1 contains only six items, it can produce hundreds
of association rules at particular support and confidence thresholds. As the
size and dimensionality of real commercial databases can be very large, we
can easily end up with thousands or even millions of patterns, many of which
might not be interesting. Identifying the most interesting patterns from the
multitude of all possible ones is not a trivial task because “one person’s trash
might be another person’s treasure.” It is therefore important to establish a
set of well-accepted criteria for evaluating the quality of association patterns.

The first set of criteria can be established through a data-driven approach
to define objective interestingness measures. These measures can be
used to rank patterns—itemsets or rules—and thus provide a straightforward
way of dealing with the enormous number of patterns that are found in a
data set. Some of the measures can also provide statistical information, e.g.,
itemsets that involve a set of unrelated items or cover very few transactions
are considered uninteresting because they may capture spurious relationships
in the data and should be eliminated. Examples of objective interestingness
measures include support, confidence, and correlation.

The second set of criteria can be established through subjective arguments.
A pattern is considered subjectively uninteresting unless it reveals unexpected
information about the data or provides useful knowledge that can lead to
profitable actions. For example, the rule {Butter} −→ {Bread} may not be
interesting, despite having high support and confidence values, because the
relationship represented by the rule might seem rather obvious. On the other
hand, the rule {Diapers} −→ {Beer} is interesting because the relationship is
quite unexpected and may suggest a new cross-selling opportunity for retailers.
Incorporating subjective knowledge into pattern evaluation is a difficult task
because it requires a considerable amount of prior information from domain
experts. Readers interested in subjective interestingness measures may refer
to resources listed in the bibliography at the end of this chapter.

�

M04 TAN9224 02 GE C04 page 258

� �

�

258 Chapter 4 Association Analysis

Table 4.6. A 2-way contingency table for variables A and B.

B B

A f11 f10 f1+

A f01 f00 f0+

f+1 f+0 N

4.7.1 Objective Measures of Interestingness

An objective measure is a data-driven approach for evaluating the quality of
association patterns. It is domain-independent and requires only that the user
specifies a threshold for filtering low-quality patterns. An objective measure is
usually computed based on the frequency counts tabulated in a contingency
table. Table 4.6 shows an example of a contingency table for a pair of binary
variables, A and B. We use the notation A (B) to indicate that A (B) is absent
from a transaction. Each entry fij in this 2×2 table denotes a frequency count.
For example, f11 is the number of times A and B appear together in the same
transaction, while f01 is the number of transactions that contain B but not A.
The row sum f1+ represents the support count for A, while the column sum
f+1 represents the support count for B. Finally, even though our discussion
focuses mainly on asymmetric binary variables, note that contingency tables
are also applicable to other attribute types such as symmetric binary, nominal,
and ordinal variables.

Limitations of the Support-Confidence Framework The classical asso-
ciation rule mining formulation relies on the support and confidence measures
to eliminate uninteresting patterns. The drawback of support, which is de-
scribed more fully in Section 4.8, is that many potentially interesting patterns
involving low support items might be eliminated by the support threshold.
The drawback of confidence is more subtle and is best demonstrated with the
following example.

Example 4.3. Suppose we are interested in analyzing the relationship be-
tween people who drink tea and coffee. We may gather information about the
beverage preferences among a group of people and summarize their responses
into a contingency table such as the one shown in Table 4.7.

The information given in this table can be used to evaluate the association
rule {Tea} −→ {Coffee}. At first glance, it may appear that people who drink
tea also tend to drink coffee because the rule’s support (15%) and confidence

�

M04 TAN9224 02 GE C04 page 259

� �

�

4.7 Evaluation of Association Patterns 259

Table 4.7. Beverage preferences among a group of 1000 people.

Coffee Coffee

Tea 150 50 200

Tea 650 150 800

800 200 1000

(75%) values are reasonably high. This argument would have been acceptable
except that the fraction of people who drink coffee, regardless of whether
they drink tea, is 80%, while the fraction of tea drinkers who drink coffee is
only 75%. Thus knowing that a person is a tea drinker actually decreases her
probability of being a coffee drinker from 80% to 75%! The rule {Tea} −→
{Coffee} is therefore misleading despite its high confidence value.

Table 4.8. Information about people who drink tea and people who use honey in their beverage.

Honey Honey

Tea 100 100 200

Tea 20 780 800

120 880 1000

Now consider a similar problem where we are interested in analyzing the
relationship between people who drink tea and people who use honey in their
beverage. Table 4.8 summarizes the information gathered over the same group
of people about their preferences for drinking tea and using honey. If we
evaluate the association rule {Tea} −→ {Honey} using this information, we
will find that the confidence value of this rule is merely 50%, which might
be easily rejected using a reasonable threshold on the confidence value, say
70%. One thus might consider that the preference of a person for drinking
tea has no influence on her preference for using honey. However, the fraction
of people who use honey, regardless of whether they drink tea, is only 12%.
Hence, knowing that a person drinks tea significantly increases her probability
of using honey from 12% to 50%. Further, the fraction of people who do not
drink tea but use honey is only 2.5%! This suggests that there is definitely
some information in the preference of a person of using honey given that she

�

M04 TAN9224 02 GE C04 page 260

� �

�

260 Chapter 4 Association Analysis

drinks tea. The rule {Tea} −→ {Honey} may therefore be falsely rejected if
confidence is used as the evaluation measure.

Note that if we take the support of coffee drinkers into account, we would
not be surprised to find that many of the people who drink tea also drink coffee,
since the overall number of coffee drinkers is quite large by itself. What is more
surprising is that the fraction of tea drinkers who drink coffee is actually less
than the overall fraction of people who drink coffee, which points to an inverse
relationship between tea drinkers and coffee drinkers. Similarly, if we account
for the fact that the support of using honey is inherently small, it is easy to
understand that the fraction of tea drinkers who use honey will naturally be
small. Instead, what is important to measure is the change in the fraction of
honey users, given the information that they drink tea.

The limitations of the confidence measure are well-known and can be
understood from a statistical perspective as follows. The support of a variable
measures the probability of its occurrence, while the support s(A,B) of a pair
of a variables A and B measures the probability of the two variables occurring
together. Hence, the joint probability P (A,B) can be written as

P (A,B) = s(A,B) =
f11

N
.

If we assume A and B are statistically independent, i.e. there is no relation-
ship between the occurrences of A and B, then P (A,B) = P (A) × P (B).
Hence, under the assumption of statistical independence between A and B,
the support sindep(A,B) of A and B can be written as

sindep(A,B) = s(A)× s(B) or equivalently, sindep(A,B) =
f1+

N
× f+1

N
.

(4.4)
If the support between two variables, s(A,B) is equal to sindep(A,B), then A
and B can be considered to be unrelated to each other. However, if s(A,B) is
widely different from sindep(A,B), then A and B are most likely dependent.
Hence, any deviation of s(A,B) from s(A)×s(B) can be seen as an indication
of a statistical relationship between A and B. Since the confidence measure
only considers the deviance of s(A,B) from s(A) and not from s(A)× s(B), it
fails to account for the support of the consequent, namely s(B). This results
in the detection of spurious patterns (e.g., {Tea} −→ {Coffee}) and the
rejection of truly interesting patterns (e.g., {Tea} −→ {Honey}), as illustrated
in the previous example.

�

M04 TAN9224 02 GE C04 page 261

� �

�

4.7 Evaluation of Association Patterns 261

Various objective measures have been used to capture the deviance of
s(A,B) from sindep(A,B), that are not susceptible to the limitations of the
confidence measure. Below, we provide a brief description of some of these
measures and discuss some of their properties.

Interest Factor The interest factor, which is also called as the “lift,” can
be defined as follows:

I(A,B) =
s(A,B)

s(A)× s(B)
=

Nf11

f1+f+1
. (4.5)

Notice that s(A) × s(B) = sindep(A,B). Hence, the interest factor measures
the ratio of the support of a pattern s(A,B) against its baseline support
sindep(A,B) computed under the statistical independence assumption. Using
Equations 4.5 and 4.4, we can interpret the measure as follows:

I(A,B)

⎧
⎨

⎩

= 1, if A and B are independent;
> 1, if A and B are positively related;
< 1, if A and B are negatively related.

(4.6)

For the tea-coffee example shown in Table 4.7, I = 0.15
0.2×0.8 = 0.9375, thus sug-

gesting a slight negative relationship between tea drinkers and coffee drinkers.
Also, for the tea-honey example shown in Table 4.8, I = 0.1

0.12×0.2 = 4.1667,
suggesting a strong positive relationship between people who drink tea and
people who use honey in their beverage. We can thus see that the interest
factor is able to detect meaningful patterns in the tea-coffee and tea-honey
examples. Indeed, the interest factor has a number of statistical advantages
over the confidence measure that make it a suitable measure for analyzing
statistical independence between variables.

Piatesky-Shapiro (PS) Measure Instead of computing the ratio between
s(A,B) and sindep(A,B) = s(A)× s(B), the PS measure considers the differ-
ence between s(A,B) and s(A)× s(B) as follows.

PS = s(A,B)− s(A)× s(B) =
f11

N
− f1+f+1

N2
(4.7)

The PS value is 0 when A and B are mutually independent of each other.
Otherwise, PS > 0 when there is a positive relationship between the two
variables, and PS < 0 when there is a negative relationship.

�

M04 TAN9224 02 GE C04 page 262

� �

�

262 Chapter 4 Association Analysis

Correlation Analysis Correlation analysis is one of the most popular tech-
niques for analyzing relationships between a pair of variables. For continuous
variables, correlation is defined using Pearson’s correlation coefficient (see
Equation 2.10 on page 103). For binary variables, correlation can be measured
using the φ-coefficient, which is defined as

φ =
f11f00 − f01f10√
f1+f+1f0+f+0

. (4.8)

If we rearrange the terms in 4.8, we can show that the φ-coefficient can be
rewritten in terms of the support measures of A, B, and {A,B} as follows:

φ =
s(A,B)− s(A)× s(B)√

s(A)× (1− s(A))× s(B)× (1− s(B))
. (4.9)

Note that the numerator in the above equation is identical to the PS measure.
Hence, the φ-coefficient can be understood as a normalized version of the
PS measure, where that the value of the φ-coefficient ranges from −1 to
+1. From a statistical viewpoint, the correlation captures the normalized
difference between s(A,B) and sindep(A,B). A correlation value of 0 means no
relationship, while a value of +1 suggests a perfect positive relationship and a
value of −1 suggests a perfect negative relationship. The correlation measure
has a statistical meaning and hence is widely used to evaluate the strength
of statistical independence among variables. For instance, the correlation be-
tween tea and coffee drinkers in Table 4.7 is −0.0625 which is slightly less
than 0. On the other hand, the correlation between people who drink tea and
people who use honey in Table 4.8 is 0.5847, suggesting a positive relationship.

IS Measure IS is an alternative measure for capturing the relationship
between s(A,B) and s(A)× s(B). The IS measure is defined as follows:

IS(A,B) =
√
I(A,B)× s(A,B) =

s(A,B)√
s(A)s(B)

=
f11√
f1+f+1

. (4.10)

Although the definition of IS looks quite similar to the interest factor, they
share some interesting differences. Since IS is the geometric mean between the
interest factor and the support of a pattern, IS is large when both the interest
factor and support are large. Hence, if the interest factor of two patterns are
identical, the IS has a preference of selecting the pattern with higher support.
It is also possible to show that IS is mathematically equivalent to the cosine

�

M04 TAN9224 02 GE C04 page 263

� �

�

4.7 Evaluation of Association Patterns 263

measure for binary variables (see Equation 2.6 on page 101). The value of IS
thus varies from 0 to 1, where an IS value of 0 corresponds to no co-occurrence
of the two variables, while an IS value of 1 denotes perfect relationship, since
they occur in exactly the same transactions. For the tea-coffee example shown
in Table 4.7, the value of IS is equal to 0.375, while the value of IS for the
tea-honey example in Table 4.8 is 0.6455. The IS measure thus gives a higher
value for the {Tea} −→ {Honey} rule than the {Tea} −→ {Coffee} rule,
which is consistent with our understanding of the two rules.

Alternative Objective Interestingness Measures

Note that all of the measures defined in the previous section use different
techniques to capture the deviance between s(A,B) and sindep(A,B) = s(A)×
s(B). Some measures use the ratio between s(A,B) and sindep(A,B), e.g., the
interest factor and IS, while some other measures consider the difference be-
tween the two, e.g., the PS and the φ-coefficient. Some measures are bounded
in a particular range, e.g., the IS and the φ-coefficient, while others are
unbounded and do not have a defined maximum or minimum value, e.g., the
Interest Factor. Because of such differences, these measures behave differently
when applied to different types of patterns. Indeed, the measures defined above
are not exhaustive and there exist many alternative measures for capturing
different properties of relationships between pairs of binary variables. Table 4.9

Table 4.9. Examples of objective measures for the itemset {A,B}.

Measure (Symbol) Definition

Correlation (φ) Nf11−f1+f+1√
f1+f+1f0+f+0

Odds ratio (α)
(
f11f00

)/(
f10f01

)

Kappa (κ) Nf11+Nf00−f1+f+1−f0+f+0
N2−f1+f+1−f0+f+0

Interest (I)
(
Nf11

)/(
f1+f+1

)

Cosine (IS)
(
f11
)/(√

f1+f+1

)

Piatetsky-Shapiro (PS) f11
N − f1+f+1

N2

Collective strength (S) f11+f00
f1+f+1+f0+f+0

× N−f1+f+1−f0+f+0
N−f11−f00

Jaccard (ζ) f11
/(
f1+ + f+1 − f11

)

All-confidence (h) min
[

f11
f1+

, f11
f+1

]

�

M04 TAN9224 02 GE C04 page 264

� �

�

264 Chapter 4 Association Analysis

Table 4.10. Example of contingency tables.

Example f11 f10 f01 f00

E1 8123 83 424 1370

E2 8330 2 622 1046

E3 3954 3080 5 2961

E4 2886 1363 1320 4431

E5 1500 2000 500 6000

E6 4000 2000 1000 3000

E7 9481 298 127 94

E8 4000 2000 2000 2000

E9 7450 2483 4 63

E10 61 2483 4 7452

provides the definitions for some of these measures in terms of the frequency
counts of a 2× 2 contingency table.

Consistency among Objective Measures

Given the wide variety of measures available, it is reasonable to question
whether the measures can produce similar ordering results when applied to
a set of association patterns. If the measures are consistent, then we can
choose any one of them as our evaluation metric. Otherwise, it is important
to understand what their differences are in order to determine which measure
is more suitable for analyzing certain types of patterns.

Suppose the measures defined in Table 4.9 are applied to rank the ten
contingency tables shown in Table 4.10. These contingency tables are chosen to
illustrate the differences among the existing measures. The ordering produced
by these measures is shown in Table 4.11 (with 1 as the most interesting and
10 as the least interesting table). Although some of the measures appear to
be consistent with each other, others produce quite different ordering results.
For example, the rankings given by the φ-coefficient agrees mostly with those
provided by κ and collective strength, but are quite different than the rankings
produced by interest factor. Furthermore, a contingency table such as E10 is
ranked lowest according to the φ-coefficient, but highest according to interest
factor.

�

M04 TAN9224 02 GE C04 page 265

� �

�

4.7 Evaluation of Association Patterns 265

Table 4.11. Rankings of contingency tables using the measures given in Table 4.9.

φ α κ I IS PS S ζ h

E1 1 3 1 6 2 2 1 2 2

E2 2 1 2 7 3 5 2 3 3

E3 3 2 4 4 5 1 3 6 8

E4 4 8 3 3 7 3 4 7 5

E5 5 7 6 2 9 6 6 9 9

E6 6 9 5 5 6 4 5 5 7

E7 7 6 7 9 1 8 7 1 1

E8 8 10 8 8 8 7 8 8 7

E9 9 4 9 10 4 9 9 4 4

E10 10 5 10 1 10 10 10 10 10

Properties of Objective Measures

The results shown in Table 4.11 suggest that the measures greatly differ from
each other and can provide conflicting information about the quality of a
pattern. In fact, no measure is universally best for all applications. In the
following, we describe some properties of the measures that play an important
role in determining if they are suited for a certain application.

Inversion Property Consider the binary vectors shown in Figure 4.28. The
0/1 value in each column vector indicates whether a transaction (row) contains
a particular item (column). For example, the vector A indicates that the item
appears in the first and last transactions, whereas the vector B indicates that
the item is contained only in the fifth transaction. The vectors A and B are
the inverted versions of A and B, i.e., their 1 values have been changed to 0
values (absence to presence) and vice versa. Applying this transformation to a
binary vector is called inversion. If a measure is invariant under the inversion
operation, then its value for the vector pair {A,B} should be identical to its
value for {A,B}. The inversion property of a measure can be tested as follows.

Definition 4.6 (Inversion Property). An objective measure M is invariant
under the inversion operation if its value remains the same when exchanging
the frequency counts f11 with f00 and f10 with f01.

�

M04 TAN9224 02 GE C04 page 266

� �

�

266 Chapter 4 Association Analysis

Figure 4.28. Effect of the inversion operation. The vectors A and E are inversions of vectors A and
B, respectively.

Measures that are invariant to the inversion property include the corre-
lation (φ-coefficient), odds ratio, κ, and collective strength. These measures
are especially useful in scenarios where the presence (1’s) of a variable is
as important as its absence (0’s). For example, if we compare two sets of
answers to a series of true/false questions where 0’s (true) and 1’s (false)
are equally meaningful, we should use a measure that gives equal importance
to occurrences of 0–0’s and 1–1’s. For the vectors shown in Figure 4.28, the
φ-coefficient is equal to -0.1667 regardless of whether we consider the pair
{A,B} or pair {A,B}. Similarly, the odds ratio for both pairs of vectors is
equal to a constant value of 0. Note that even though the φ-coefficient and
the odds ratio are invariant to inversion, they can still show different results,
as will be shown later.

Measures that do not remain invariant under the inversion operation in-
clude the interest factor and the IS measure. For example, the IS value for
the pair {A,B} in Figure 4.28 is 0.825, which reflects the fact that the 1’s
in A and B occur frequently together. However, the IS value of its inverted
pair {A,B} is equal to 0, since A and B do not have any co-occurrence of 1’s.
For asymmetric binary variables, e.g., the occurrence of words in documents,
this is indeed the desired behavior. A desired similarity measure between
asymmetric variables should not be invariant to inversion, since for these
variables, it is more meaningful to capture relationships based on the presence
of a variable rather than its absence. On the other hand, if we are dealing with
symmetric binary variables where the relationships between 0’s and 1’s are
equally meaningful, care should be taken to ensure that the chosen measure
is invariant to inversion.

�

M04 TAN9224 02 GE C04 page 267

� �

�

4.7 Evaluation of Association Patterns 267

Table 4.12. Contingency tables for the pairs {p,q} and {r,s}.
p p r r

q 880 50 930 s 20 50 70

q 50 20 70 s 50 880 930

930 70 1000 70 930 1000

Although the values of the interest factor and IS change with the inversion
operation, they can still be inconsistent with each other. To illustrate this,
consider Table 4.12, which shows the contingency tables for two pairs of
variables, {p, q} and {r, s}. Note that r and s are inverted transformations
of p and q, respectively, where the roles of 0’s and 1’s have just been reversed.
The interest factor for {p, q} is 1.02 and for {r, s} is 4.08, which means that
the interest factor finds the inverted pair {r, s} more related than the original
pair {p, q}. On the contrary, the IS value decreases upon inversion from 0.9346
for {p, q} to 0.286 for {r, s}, suggesting quite an opposite trend to that of the
interest factor. Even though these measures conflict with each other for this
example, they may be the right choice of measure in different applications.

Scaling Property Table 4.13 shows two contingency tables for gender and
the grades achieved by students enrolled in a particular course. These tables
can be used to study the relationship between gender and performance in
the course. The second contingency table has data from the same population
but has twice as many males and three times as many females. The actual
number of males or females can depend upon the samples available for study,
but the relationship between gender and grade should not change just because
of differences in sample sizes. Similarly, if the number of students with high
and low grades are changed in a new study, a measure of association between
gender and grades should remain unchanged. Hence, we need a measure that
is invariant to scaling of rows or columns. The process of multiplying a row or
column of a contingency table by a constant value is called a row or column
scaling operation. A measure that is invariant to scaling does not change its
value after any row or column scaling operation.

Definition 4.7 (Scaling Invariance Property). Let T be a contingency table
with frequency counts [f11; f10; f01; f00]. Let T ′ be the transformed a contin-
gency table with scaled frequency counts [k1k3f11; k2k3f10; k1k4f01; k2k4f00],
where k1, k2, k3, k4 are positive constants used to scale the two rows and the

�

M04 TAN9224 02 GE C04 page 268

� �

�

268 Chapter 4 Association Analysis

Table 4.13. The grade-gender example.

Male Female Male Female

High 30 20 50 High 60 60 120

Low 40 10 50 Low 80 30 110

70 30 100 140 90 230

(a) Sample data of size 100. (b) Sample data of size 230.

two columns of T . An objective measure M is invariant under the row/column
scaling operation if M(T) = M(T ′).

Note that the use of the term ‘scaling’ here should not be confused with the
scaling operation for continuous variables introduced in Chapter 2 on page 43,
where all the values of a variable were being multiplied by a constant factor,
instead of scaling a row or column of a contingency table.

Scaling of rows and columns in contingency tables occurs in multiple ways
in different applications. For example, if we are measuring the effect of a
particular medical procedure on two sets of subjects, healthy and diseased, the
ratio of healthy and diseased subjects can widely vary across different studies
involving different groups of participants. Further, the fraction of healthy and
diseased subjects chosen for a controlled study can be quite different from the
true fraction observed in the complete population. These differences can result
in a row or column scaling in the contingency tables for different populations
of subjects. In general, the frequencies of items in a contingency table closely
depends on the sample of transactions used to generate the table. Any change
in the sampling procedure may affect a row or column scaling transformation.
A measure that is expected to be invariant to differences in the sampling
procedure must not change with row or column scaling.

Of all the measures introduced in Table 4.9, only the odds ratio (α) is
invariant to row and column scaling operations. For example, the value of odds
ratio for both the tables in Table 4.13 is equal to 0.375. All other measures
such as the φ-coefficient, κ, IS, interest factor, and collective strength (S)
change their values when the rows and columns of the contingency table are
rescaled. Indeed, the odds ratio is a preferred choice of measure in the medical
domain, where it is important to find relationships that do not change with
differences in the population sample chosen for a study.

�

M04 TAN9224 02 GE C04 page 269

� �

�

4.7 Evaluation of Association Patterns 269

Null Addition Property Suppose we are interested in analyzing the re-
lationship between a pair of words, such as data and mining, in a set of
documents. If a collection of articles about ice fishing is added to the data set,
should the association between data and mining be affected? This process of
adding unrelated data (in this case, documents) to a given data set is known
as the null addition operation.

Definition 4.8 (Null Addition Property). An objective measure M is invari-
ant under the null addition operation if it is not affected by increasing f00,
while all other frequencies in the contingency table stay the same.

For applications such as document analysis or market basket analysis, we
would like to use a measure that remains invariant under the null addition
operation. Otherwise, the relationship between words can be made to change
simply by adding enough documents that do not contain both words! Examples
of measures that satisfy this property include cosine (IS) and Jaccard (ξ)
measures, while those that violate this property include interest factor, PS,
odds ratio, and the φ-coefficient.

To demonstrate the effect of null addition, consider the two contingency
tables T1 and T2 shown in Table 4.14. Table T2 has been obtained from T1 by
adding 1000 extra transactions with both A and B absent. This operation only
affects the f00 entry of Table T2, which has increased from 100 to 1100, whereas
all the other frequencies in the table (f11, f10, and f01) remain the same. Since
IS is invariant to null addition, it gives a constant value of 0.875 to both the
tables. However, the addition of 1000 extra transactions with occurrences of
0–0’s changes the value of interest factor from 0.972 for T1 (denoting a slightly
negative correlation) to 1.944 for T2 (positive correlation). Similarly, the value
of odds ratio increases from 7 for T1 to 77 for T2. Hence, when the interest
factor or odds ratio are used as the association measure, the relationships
between variables changes by the addition of null transactions where both the
variables are absent. In contrast, the IS measure is invariant to null addition,
since it considers two variables to be related only if they frequently occur
together. Indeed, the IS measure (cosine measure) is widely used to measure
similarity among documents, which is expected to depend only on the joint
occurrences (1’s) of words in documents, but not their absences (0’s).

Table 4.15 provides a summary of properties for the measures defined in
Table 4.9. Even though this list of properties is not exhaustive, it can serve as a
useful guide for selecting the right choice of measure for an application. Ideally,
if we know the specific requirements of a certain application, we can ensure
that the selected measure shows properties that adhere to those requirements.
For example, if we are dealing with asymmetric variables, we would prefer to

�

M04 TAN9224 02 GE C04 page 270

� �

�

270 Chapter 4 Association Analysis

Table 4.14. An example demonstrating the effect of null addition.

B B B B

A 700 100 800 A 700 100 800

A 100 100 200 A 10 1100 1200

800 200 1000 800 1200 2000

(a) Table T1. (b) Table T2.

use a measure that is not invariant to null addition or inversion. On the other
hand, if we require the measure to remain invariant to changes in the sample
size, we would like to use a measure that does not change with scaling.

Asymmetric Interestingness Measures

Note that in the discussion so far, we have only considered measures that
do not change their value when the order of the variables are reversed. More
specifically, if M is a measure and A and B are two variables, then M(A,B) is
equal to M(B,A) if the order of the variables does not matter. Such measures
are called symmetric. On the other hand, measures that depend on the
order of variables (M(A,B) = M(B,A)) are called asymmetric measures.
For example, the interest factor is a symmetric measure because its value is
identical for the rules A −→ B and B −→ A. In contrast, confidence is an
asymmetric measure since the confidence for A −→ B and B −→ Amay not be
the same. Note that the use of the term ‘asymmetric’ to describe a particular
type of measure of relationship—one in which the order of the variables is
important—should not be confused with the use of ‘asymmetric’ to describe
a binary variable for which only 1’s are important. Asymmetric measures are
more suitable for analyzing association rules, since the items in a rule do
have a specific order. Even though we only considered symmetric measures to
discuss the different properties of association measures, the above discussion
is also relevant for the asymmetric measures. See Bibliographic Notes for more
information about different kinds of asymmetric measures and their properties.

4.7.2 Measures beyond Pairs of Binary Variables

The measures shown in Table 4.9 are defined for pairs of binary variables (e.g.,
2-itemsets or association rules). However, many of them, such as support and

�

M04 TAN9224 02 GE C04 page 271

� �

�

4.7 Evaluation of Association Patterns 271

Table 4.15. Properties of symmetric measures.

Symbol Measure Inversion Null Addition Scaling
φ φ-coefficient Yes No No
α odds ratio Yes No Yes
κ Cohen’s Yes No No
I Interest No No No
IS Cosine No Yes No
PS Piatetsky-Shapiro’s Yes No No
S Collective strength Yes No No
ζ Jaccard No Yes No
h All-confidence No Yes No
s Support No No No

Table 4.16. Example of a three-dimensional contingency table.

c b b c b b

a f111 f101 f1+1 a f110 f100 f1+0

a f011 f001 f0+1 a f010 f000 f0+0

f+11 f+01 f++1 f+10 f+00 f++0

all-confidence, are also applicable to larger-sized itemsets. Other measures,
such as interest factor, IS, PS, and Jaccard coefficient, can be extended to
more than two variables using the frequency tables tabulated in a multidimen-
sional contingency table. An example of a three-dimensional contingency table
for a, b, and c is shown in Table 4.16. Each entry fijk in this table represents
the number of transactions that contain a particular combination of items a,
b, and c. For example, f101 is the number of transactions that contain a and c,
but not b. On the other hand, a marginal frequency such as f1+1 is the number
of transactions that contain a and c, irrespective of whether b is present in the
transaction.

Given a k-itemset {i1, i2, . . . , ik}, the condition for statistical independence
can be stated as follows:

fi1i2...ik =
fi1+...+ × f+i2...+ × . . .× f++...ik

Nk−1
. (4.11)

With this definition, we can extend objective measures such as interest factor
and PS, which are based on deviations from statistical independence, to more

�

M04 TAN9224 02 GE C04 page 272

� �

�

272 Chapter 4 Association Analysis

than two variables:

I =
Nk−1 × fi1i2...ik

fi1+...+ × f+i2...+ × . . .× f++...ik

PS =
fi1i2...ik

N
− fi1+...+ × f+i2...+ × . . .× f++...ik

Nk

Another approach is to define the objective measure as the maximum, min-
imum, or average value for the associations between pairs of items in a pat-
tern. For example, given a k-itemset X = {i1, i2, . . . , ik}, we may define
the φ-coefficient for X as the average φ-coefficient between every pair of
items (ip, iq) in X. However, because the measure considers only pairwise
associations, it may not capture all the underlying relationships within a
pattern. Also, care should be taken in using such alternate measures for
more than two variables, since they may not always show the anti-monotone
property in the same way as the support measure, making them unsuitable
for mining patterns using the Apriori principle.

Analysis of multidimensional contingency tables is more complicated be-
cause of the presence of partial associations in the data. For example, some
associations may appear or disappear when conditioned upon the value of
certain variables. This problem is known as Simpson’s paradox and is de-
scribed in Section 4.7.3. More sophisticated statistical techniques are available
to analyze such relationships, e.g., loglinear models, but these techniques are
beyond the scope of this book.

4.7.3 Simpson’s Paradox

It is important to exercise caution when interpreting the association between
variables because the observed relationship may be influenced by the presence
of other confounding factors, i.e., hidden variables that are not included in
the analysis. In some cases, the hidden variables may cause the observed
relationship between a pair of variables to disappear or reverse its direction,
a phenomenon that is known as Simpson’s paradox. We illustrate the nature
of this paradox with the following example.

Consider the relationship between the sale of high-definition televisions
(HDTV) and exercise machines, as shown in Table 4.17. The rule {HDTV=Yes}
−→ {Exercise machine=Yes} has a confidence of 99/180 = 55% and the rule
{HDTV=No} −→ {Exercise machine=Yes} has a confidence of 54/120 =
45%. Together, these rules suggest that customers who buy high-definition
televisions are more likely to buy exercise machines than those who do not
buy high-definition televisions.

�

M04 TAN9224 02 GE C04 page 273

� �

�

4.7 Evaluation of Association Patterns 273

Table 4.17. A two-way contingency table between the sale of high-definition television and exercise
machine.

Buy Buy Exercise Machine
HDTV Yes No

Yes 99 81 180
No 54 66 120

153 147 300

Table 4.18. Example of a three-way contingency table.

Customer Buy Buy Exercise Machine Total
Group HDTV Yes No
College Students Yes 1 9 10

No 4 30 34
Working Adult Yes 98 72 170

No 50 36 86

However, a deeper analysis reveals that the sales of these items depend
on whether the customer is a college student or a working adult. Table 4.18
summarizes the relationship between the sale of HDTVs and exercise machines
among college students and working adults. Notice that the support counts
given in the table for college students and working adults sum up to the
frequencies shown in Table 4.17. Furthermore, there are more working adults
than college students who buy these items. For college students:

c
({HDTV=Yes} −→ {Exercise machine=Yes}) = 1/10 = 10%,
c
({HDTV=No} −→ {Exercise machine=Yes}) = 4/34 = 11.8%,

while for working adults:

c
({HDTV=Yes} −→ {Exercise machine=Yes}) = 98/170 = 57.7%,
c
({HDTV=No} −→ {Exercise machine=Yes}) = 50/86 = 58.1%.

The rules suggest that, for each group, customers who do not buy high-
definition televisions are more likely to buy exercise machines, which con-
tradicts the previous conclusion when data from the two customer groups
are pooled together. Even if alternative measures such as correlation, odds
ratio, or interest are applied, we still find that the sale of HDTV and exercise
machine is positively related in the combined data but is negatively related in

�

M04 TAN9224 02 GE C04 page 274

� �

�

274 Chapter 4 Association Analysis

the stratified data (see Exercise 24 on page 305). The reversal in the direction
of association is known as Simpson’s paradox.

The paradox can be explained in the following way. First, notice that
most customers who buy HDTVs are working adults. This is reflected in the
high confidence of the rule {HDTV=Yes} −→ {Working Adult} (170/180 =
94.4%). Second, the high confidence of the rule {Exercise machine=Yes} −→
{Working Adult} (148/153 = 96.7%) suggests that most customers who buy
exercise machines are also working adults. Since working adults form the
largest fraction of customers for both HDTVs and exercise machines, they both
look related and the rule {HDTV=Yes} −→ {Exercise machine=Yes} turns
out to be stronger in the combined data than what it would have been if the
data is stratified. Hence, customer group acts as a hidden variable that affects
both the fraction of customers who buy HDTVs and those who buy exercise
machines. If we factor out the effect of the hidden variable by stratifying the
data, we see that the relationship between buying HDTVs and buying exercise
machines is not direct, but shows up as an indirect consequence of the effect
of the hidden variable.

The Simpson’s paradox can also be illustrated mathematically as follows.
Suppose

a/b < c/d and p/q < r/s,

where a/b and p/q may represent the confidence of the rule A −→ B in two
different strata, while c/d and r/s may represent the confidence of the rule
A −→ B in the two strata. When the data is pooled together, the confidence
values of the rules in the combined data are (a+p)/(b+q) and (c+r)/(d+s),
respectively. Simpson’s paradox occurs when

a+ p

b+ q
>
c+ r

d+ s
,

thus leading to the wrong conclusion about the relationship between the vari-
ables. The lesson here is that proper stratification is needed to avoid generating
spurious patterns resulting from Simpson’s paradox. For example, market
basket data from a major supermarket chain should be stratified according to
store locations, while medical records from various patients should be stratified
according to confounding factors such as age and gender.

4.8 Effect of Skewed Support Distribution

The performances of many association analysis algorithms are influenced by
properties of their input data. For example, the computational complexity of

�

M04 TAN9224 02 GE C04 page 275

� �

�

4.8 Effect of Skewed Support Distribution 275

p q r
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1 1

1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0

Figure 4.29. A transaction data set containing three items, p, q, and r, where p is a high support item
and q and r are low support items.

the Apriori algorithm depends on properties such as the number of items in
the data, the average transaction width, and the support threshold used. This
section examines another important property that has significant influence
on the performance of association analysis algorithms as well as the quality
of extracted patterns. More specifically, we focus on data sets with skewed
support distributions, where most of the items have relatively low to moderate
frequencies, but a small number of them have very high frequencies.

Figure 4.29 shows an illustrative example of a data set that has a skewed
support distribution of its items. While p has a high support of 83.3% in the
data, q and r are low-support items with a support of 16.7%. Despite their low
support, q and r always occur together in the limited number of transactions
that they appear and hence are strongly related. A pattern mining algorithm
therefore should report {q, r} as interesting.

However, note that choosing the right support threshold for mining item-
sets such as {q, r} can be quite tricky. If we set the threshold too high (e.g.,
20%), then we may miss many interesting patterns involving low-support
items such as {q, r}. Conversely, setting the support threshold too low can be

�

M04 TAN9224 02 GE C04 page 276

� �

�

276 Chapter 4 Association Analysis

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Items sorted by support

S
up

po
rt

3104

Figure 4.30. Support distribution of items in the census data set.

detrimental to the pattern mining process for the following reasons. First, the
computational and memory requirements of existing association analysis algo-
rithms increase considerably with low support thresholds. Second, the number
of extracted patterns also increases substantially with low support thresholds,
which makes their analysis and interpretation difficult. In particular, we may
extract many spurious patterns that relate a high-frequency item such as p
to a low-frequency item such as q. Such patterns, which are called cross-
support patterns, are likely to be spurious because the association between
p and q is largely influenced by the frequent occurrence of p instead of the
joint occurrence of p and q together. Because the support of {p, q} is quite
close to the support of {q, r}, we may easily select {p, q} if we set the support
threshold low enough to include {q, r}.

An example of a real data set that exhibits a skewed support distribution is
shown in Figure 4.30. The data, taken from the PUMS (Public Use Microdata
Sample) census data, contains 49,046 records and 2113 asymmetric binary
variables. We shall treat the asymmetric binary variables as items and records
as transactions. While more than 80% of the items have support less than 1%,
a handful of them have support greater than 90%. To understand the effect of
skewed support distribution on frequent itemset mining, we divide the items
into three groups, G1, G2, and G3, according to their support levels, as shown
in Table 4.19. We can see that more than 82% of items belong to G1 and have

�

M04 TAN9224 02 GE C04 page 277

� �

�

4.8 Effect of Skewed Support Distribution 277

Table 4.19. Grouping the items in the census data set based on their support values.

Group G1 G2 G3

Support < 1% 1%− 90% > 90%
Number of Items 1735 358 20

a support less than 1%. In market basket analysis, such low support items may
correspond to expensive products (such as jewelry) that are seldom bought
by customers, but whose patterns are still interesting to retailers. Patterns
involving such low-support items, though meaningful, can easily be rejected
by a frequent pattern mining algorithm with a high support threshold. On the
other hand, setting a low support threshold may result in the extraction of
spurious patterns that relate a high-frequency item in G3 to a low-frequency
item in G1. For example, at a support threshold equal to 0.05%, there are
18,847 frequent pairs involving items from G1 and G3. Out of these, 93% of
them are cross-support patterns; i.e., the patterns contain items from both G1

and G3.
This example shows that a large number of weakly related cross-support

patterns can be generated when the support threshold is sufficiently low. Note
that finding interesting patterns in data sets with skewed support distributions
is not just a challenge for the support measure, but similar statements can be
made about many other objective measures discussed in the previous sections.
Before presenting a methodology for finding interesting patterns and pruning
spurious ones, we formally define the concept of cross-support patterns.

Definition 4.9 (Cross-support Pattern). Let us define the support ratio,
r(X), of an itemset X = {i1, i2, . . . , ik} as

r(X) =
min

[
s(i1), s(i2), . . . , s(ik)

]

max
[
s(i1), s(i2), . . . , s(ik)

] , (4.12)

Given a user-specified threshold hc, an itemset X is a cross-support pattern
if r(X) < hc.

Example 4.4. Suppose the support for milk is 70%, while the support for
sugar is 10% and caviar is 0.04%. Given hc = 0.01, the frequent itemset {milk,
sugar, caviar} is a cross-support pattern because its support ratio is

r =
min

[
0.7, 0.1, 0.0004

]

max
[
0.7, 0.1, 0.0004

] =
0.0004

0.7
= 0.00058 < 0.01.

�

M04 TAN9224 02 GE C04 page 278

� �

�

278 Chapter 4 Association Analysis

Existing measures such as support and confidence may not be sufficient to
eliminate cross-support patterns. For example, if we assume hc = 0.3 for the
data set presented in Figure 4.29, the itemsets {p, q}, {p, r}, and {p, q, r} are
cross-support patterns because their support ratios, which are equal to 0.2, are
less than the threshold hc. However, their supports are comparable to that of
{q, r}, making it difficult to eliminate cross-support patterns without loosing
interesting ones using a support-based pruning strategy. Confidence pruning
also does not help because the confidence of the rules extracted from cross-
support patterns can be very high. For example, the confidence for {q} −→ {p}
is 80% even though {p, q} is a cross-support pattern. The fact that the cross-
support pattern can produce a high confidence rule should not come as a
surprise because one of its items (p) appears very frequently in the data.
Therefore, p is expected to appear in many of the transactions that contain
q. Meanwhile, the rule {q} −→ {r} also has high confidence even though
{q, r} is not a cross-support pattern. This example demonstrates the difficulty
of using the confidence measure to distinguish between rules extracted from
cross-support patterns and interesting patterns involving strongly connected
but low-support items.

Even though the rule {q} −→ {p} has very high confidence, notice that
the rule {p} −→ {q} has very low confidence because most of the transactions
that contain p do not contain q. In contrast, the rule {r} −→ {q}, which is
derived from {q, r}, has very high confidence. This observation suggests that
cross-support patterns can be detected by examining the lowest confidence
rule that can be extracted from a given itemset. An approach for finding the
rule with the lowest confidence given an itemset can be described as follows.

1. Recall the following anti-monotone property of confidence:

conf({i1i2} −→ {i3, i4, . . . , ik}) ≤ conf({i1i2i3} −→ {i4, i5, . . . , ik}).

This property suggests that confidence never increases as we shift more
items from the left- to the right-hand side of an association rule. Because
of this property, the lowest confidence rule extracted from a frequent
itemset contains only one item on its left-hand side. We denote the set
of all rules with only one item on its left-hand side as R1.

2. Given a frequent itemset {i1, i2, . . . , ik}, the rule

{ij} −→ {i1, i2, . . . , ij−1, ij+1, . . . , ik}

�

M04 TAN9224 02 GE C04 page 279

� �

�

4.8 Effect of Skewed Support Distribution 279

has the lowest confidence in R1 if s(ij) = max
[
s(i1), s(i2), . . . , s(ik)

]
.

This follows directly from the definition of confidence as the ratio be-
tween the rule’s support and the support of the rule antecedent. Hence,
the confidence of a rule will be lowest when the support of the antecedent
is highest.

3. Summarizing the previous points, the lowest confidence attainable from
a frequent itemset {i1, i2, . . . , ik} is

s({i1, i2, . . . , ik})
max

[
s(i1), s(i2), . . . , s(ik)

] .

This expression is also known as the h-confidence or all-confidence
measure. Because of the anti-monotone property of support, the numer-
ator of the h-confidence measure is bounded by the minimum support
of any item that appears in the frequent itemset. In other words, the
h-confidence of an itemset X = {i1, i2, . . . , ik} must not exceed the
following expression:

h-confidence(X) ≤ min
[
s(i1), s(i2), . . . , s(ik)

]

max
[
s(i1), s(i2), . . . , s(ik)

] .

Note that the upper bound of h-confidence in the above equation is exactly
same as support ratio (r) given in Equation 4.12. Because the support ratio for
a cross-support pattern is always less than hc, the h-confidence of the pattern
is also guaranteed to be less than hc. Therefore, cross-support patterns can be
eliminated by ensuring that the h-confidence values for the patterns exceed hc.
As a final note, the advantages of using h-confidence go beyond eliminating
cross-support patterns. The measure is also anti-monotone, i.e.,

h-confidence({i1, i2, . . . , ik}) ≥ h-confidence({i1, i2, . . . , ik+1}),

and thus can be incorporated directly into the mining algorithm. Furthermore,
h-confidence ensures that the items contained in an itemset are strongly asso-
ciated with each other. For example, suppose the h-confidence of an itemset
X is 80%. If one of the items in X is present in a transaction, there is at
least an 80% chance that the rest of the items in X also belong to the same
transaction. Such strongly associated patterns involving low-support items are
called hyperclique patterns.

Definition 4.10 (Hyperclique Pattern). An itemset X is a hyperclique pat-
tern if h-confidence(X) > hc, where hc is a user-specified threshold.

�

M04 TAN9224 02 GE C04 page 280

� �

�

280 Chapter 4 Association Analysis

4.9 Bibliographic Notes

The association rule mining task was first introduced by Agrawal et al. [202,
203] to discover interesting relationships among items in market basket trans-
actions. Since its inception, extensive research has been conducted to address
the various issues in association rule mining, from its fundamental concepts
to its implementation and applications. Figure 4.31 shows a taxonomy of the
various research directions in this area, which is generally known as association
analysis. As much of the research focuses on finding patterns that appear
significantly often in the data, the area is also known as frequent pattern
mining. A detailed review on some of the research topics in this area can
be found in [240] and in [197].

Conceptual Issues

Research on the conceptual issues of association analysis has focused on de-
veloping a theoretical formulation of association analysis and extending the
formulation to new types of patterns and going beyond asymmetric binary
attributes.

Following the pioneering work by Agrawal et al. [202, 203], there has
been a vast amount of research on developing a theoretical formulation for
the association analysis problem. In [235], Gunopoulos et al. showed the
connection between finding maximal frequent itemsets and the hypergraph
transversal problem. An upper bound on the complexity of the association
analysis task was also derived. Zaki et al. [332, 334] and Pasquier et al. [285]
have applied formal concept analysis to study the frequent itemset generation
problem. More importantly, such research has led to the development of a
class of patterns known as closed frequent itemsets [334]. Friedman et al. [233]
have studied the association analysis problem in the context of bump hunt-
ing in multidimensional space. Specifically, they consider frequent itemset
generation as the task of finding high density regions in multidimensional
space. Formalizing association analysis in a statistical learning framework
is another active research direction [292, 313, 322] as it can help address
issues related to identifying statistically significant patterns and dealing with
uncertain data [198, 211, 221].

Over the years, the association rule mining formulation has been expanded
to encompass other rule-based patterns, such as, profile association rules [199],
cyclic association rules [281], fuzzy association rules [257], exception rules
[309], negative association rules [214, 296], weighted association rules [216,
291], dependence rules [300], peculiar rules[340], inter-transaction association

�

M04 TAN9224 02 GE C04 page 281

� �

�

4.9 Bibliographic Notes 281

rules [231, 318], and partial classification rules [205, 275]. Additionally, the
concept of frequent itemset has been extended to other types of patterns
including closed itemsets [285, 334], maximal itemsets [208], hyperclique pat-
terns [327], support envelopes [306], emerging patterns [225], contrast sets
[207], high-utility itemsets [218, 268], approximate or error-tolerant item-
sets [236, 267, 329], and discriminative patterns [230, 279, 308]. Association
analysis techniques have also been successfully applied to sequential [204, 304],
spatial [249], and graph-based [252, 258, 284, 328, 333] data.

Substantial research has been conducted to extend the original association
rule formulation to nominal [303], ordinal [270], interval [273], and ratio [234,
237, 303, 321, 339] attributes. One of the key issues is how to define the support
measure for these attributes. A methodology was proposed by Steinbach et
al. [307] to extend the traditional notion of support to more general patterns
and attribute types.

Implementation Issues

Research activities in this area revolve around (1) integrating the mining ca-
pability into existing database technology, (2) developing efficient and scalable
mining algorithms, (3) handling user-specified or domain-specific constraints,
and (4) post-processing the extracted patterns.

There are several advantages to integrating association analysis into ex-
isting database technology. First, it can make use of the indexing and query
processing capabilities of the database system. Second, it can also exploit
the DBMS support for scalability, check-pointing, and parallelization [293].
The SETM algorithm developed by Houtsma et al. [248] was one of the
earliest algorithms to support association rule discovery via SQL queries.
Since then, numerous methods have been developed to provide capabilities for
mining association rules in database systems. For example, the DMQL [241]
and M-SQL [251] query languages extend the basic SQL with new operators
for mining association rules. The Mine Rule operator [272] is an expressive
SQL operator that can handle both clustered attributes and item hierarchies.
Tsur et al. [317] developed a generate-and-test approach called query flocks
for mining association rules. A distributed OLAP-based infrastructure was
developed by Chen et al. [219] for mining multilevel association rules.

�

M04 TAN9224 02 GE C04 page 282

� �

�

282 Chapter 4 Association Analysis

R
es

ea
rc

h
 Is

su
es

 in
 M

in
in

g
A

ss
o

ci
at

io
n

 P
at

te
rn

s

Im
p

le
m

en
ta

ti
o

n
Is

su
es

C
o

n
ce

p
tu

al
Is

su
es

A
p

p
lic

at
io

n
Is

su
es

-la
tti

ce
 th

eo
ry

-b
ou

nd
s

on
 it

em
se

t
 e

nu
m

er
at

io
n

-b
in

ar
y

-n
um

er
ic

-n
om

in
al

-o
rd

in
al

-m
ix

ed

-o
pt

im
iz

at
io

n
-S

Q
L

su
pp

or
t

-O
LA

P
-m

ul
ti-

da
ta

ba
se

-it
em

 ta
xo

no
m

y
-t

em
pl

at
e-

 b
as

ed
-m

ul
tip

le
 s

up
po

rt

-W
eb

 a
na

ly
si

s
-t

ex
t a

na
ly

si
s

-b
io

in
fo

rm
at

ic
s

-E
ar

th
 S

ci
en

ce

-o
bj

ec
tiv

e
-s

ub
je

ct
iv

e

-s
ub

tr
ee

s
-s

ub
gr

ap
hs

-s
er

ia
l o

r
pa

ra
lle

l
-o

nl
in

e
 o

r
ba

tc
h

-A
pr

io
ri

-D
IC

-t
re

e-
pr

oj
ec

ito
n

-F
P

-t
re

e
-H

-m
in

e
-P

ar
tit

io
n

-S
am

pl
in

g-
ba

se
d

-C
H

A
R

M

-c
lo

se
d

-m
ax

im
al

-e
m

er
gi

ng
 p

at
te

rn
s

-h
yp

er
cl

iq
ue

 p
at

te
rn

s
-s

up
po

rt
 e

nv
el

op
e

-n
eg

at
iv

e
-d

ep
en

de
nc

e
-c

au
sa

l
-w

ei
gh

te
d

-s
pa

tia
l a

nd
 c

o-
lo

ca
tio

n
pa

tte
rn

s
-t

em
po

ra
l (

cy
cl

ic
,

se
qu

en
tia

l)
-f

uz
zy

-e
xc

ep
tio

n
ru

le
s

-c
la

ss
ifi

ca
tio

n
-r

eg
re

ss
io

n
-c

lu
st

er
in

g
-r

ec
om

m
en

de
r

 s
ys

te
m

s

P
o

st
-

p
ro

ce
ss

in
g

V
is

u
al

iz
at

io
n

In
te

re
st

in
g

n
es

s

D
o

m
ai

n
s

M
ea

su
re

O
th

er
S

tr
u

ct
u

re
s

It
em

se
ts

R
u

le
s

C
o

m
p

u
ta

ti
o

n
al

m
o

d
el

A
lg

o
ri

th
m

 a
n

d
D

at
a

S
tr

u
ct

u
re

-r
an

ki
ng

-f
ilt

er
in

g
-s

um
m

ar
iz

in
g

M
et

h
o

d

O
th

er
 d

at
a

m
in

in
g

p
ro

bl
em

s

C
o

n
st

ra
in

ts
P

at
te

rn
D

is
co

ve
ry

D
at

ab
as

e
is

su
es

D
at

a
Ty

p
e

Ty
p

e
o

f
P

at
te

rn
s

T
h

er
o

re
ti

ca
l

F
o

rm
u

la
ti

o
n

Fi
gu

re
4.

31
.A

n
ov

er
vi

ew
of

th
e

va
rio

us
re

se
ar

ch
di

re
ct

io
ns

in
as

so
ci

at
io

n
an

al
ys

is
.

�

M04 TAN9224 02 GE C04 page 283

� �

�

4.9 Bibliographic Notes 283

Despite its popularity, the Apriori algorithm is computationally expensive
because it requires making multiple passes over the transaction database. Its
runtime and storage complexities were investigated by Dunkel and Soparkar
[227]. The FP-growth algorithm was developed by Han et al. in [242]. Other
algorithms for mining frequent itemsets include the DHP (dynamic hashing
and pruning) algorithm proposed by Park et al. [283] and the Partition algo-
rithm developed by Savasere et al [295]. A sampling-based frequent itemset
generation algorithm was proposed by Toivonen [314]. The algorithm requires
only a single pass over the data, but it can produce more candidate item-
sets than necessary. The Dynamic Itemset Counting (DIC) algorithm [215]
makes only 1.5 passes over the data and generates less candidate itemsets
than the sampling-based algorithm. Other notable algorithms include the
tree-projection algorithm [195] and H-Mine [286]. Survey articles on frequent
itemset generation algorithms can be found in [200, 245]. A repository of
benchmark data sets and software implementation of association rule min-
ing algorithms is available at the Frequent Itemset Mining Implementations
(FIMI) repository (http://fimi.cs.helsinki.fi).

Parallel algorithms have been developed to scale up association rule mining
for handling big data [196, 238, 277, 298, 335]. A survey of such algorithms can
be found in [331]. Online and incremental association rule mining algorithms
have also been proposed by Hidber [243] and Cheung et al. [220]. More recently,
new algorithms have been developed to speed up frequent itemset mining by
exploiting the processing power of GPUs [337] and the MapReduce/Hadoop
distributed computing framework [260, 262, 274]. For example, an implemen-
tation of frequent itemset mining for the Hadoop framework is available in the
Apache Mahout software1.

Srikant et al. [305] have considered the problem of mining association rules
in the presence of Boolean constraints such as the following:

(Cookies ∧ Milk) ∨ (descendants(Cookies) ∧ ¬ancestors(Wheat Bread))
Given such a constraint, the algorithm looks for rules that contain both
cookies and milk, or rules that contain the descendent items of cookies but
not ancestor items of wheat bread. Singh et al. [302] and Ng et al. [278]
had also developed alternative techniques for constrained-based association
rule mining. Constraints can also be imposed on the support for different
itemsets. This problem was investigated by Wang et al. [320], Liu et al. in [265],
and Seno et al. [297]. In addition, constraints arising from privacy concerns
of mining sensitive data have led to the development of privacy-preserving
frequent pattern mining techniques [212, 228, 319, 336].

1http://mahout.apache.org

http://mahout.apache.org

�

M04 TAN9224 02 GE C04 page 284

� �

�

284 Chapter 4 Association Analysis

One potential problem with association analysis is the large number of
patterns that can be generated by current algorithms. To overcome this prob-
lem, methods to rank, summarize, and filter patterns have been developed.
Toivonen et al. [315] proposed the idea of eliminating redundant rules using
structural rule covers and grouping the remaining rules using clustering.
Liu et al. [266] applied the statistical chi-square test to prune spurious patterns
and summarized the remaining patterns using a subset of the patterns called
direction setting rules. The use of objective measures to filter patterns has
been investigated by many authors, including Brin et al. [214], Bayardo and
Agrawal [209], Aggarwal and Yu [201], and DuMouchel and Pregibon[226]. The
properties for many of these measures were analyzed by Piatetsky-Shapiro
[288], Kamber and Singhal [254], Hilderman and Hamilton [244], and Tan
et al. [311]. The grade-gender example used to highlight the importance of
the row and column scaling invariance property was heavily influenced by
the discussion given in [276] by Mosteller. Meanwhile, the tea-coffee exam-
ple illustrating the limitation of confidence was motivated by an example
given in [214] by Brin et al. Because of the limitation of confidence, Brin
et al. [214] had proposed the idea of using interest factor as a measure of
interestingness. The all-confidence measure was proposed by Omiecinski [280].
Xiong et al. [327] introduced the cross-support property and showed that the
all-confidence measure can be used to eliminate cross-support patterns. A
key difficulty in using alternative objective measures besides support is their
lack of a monotonicity property, which makes it difficult to incorporate the
measures directly into the mining algorithms. Xiong et al. [325] have proposed
an efficient method for mining correlations by introducing an upper bound
function to the φ-coefficient. Although the measure is non-monotone, it has
an upper bound expression that can be exploited for the efficient mining of
strongly correlated item pairs.

Fabris and Freitas [229] have proposed a method for discovering inter-
esting associations by detecting the occurrences of Simpson’s paradox [301].
Megiddo and Srikant [271] described an approach for validating the extracted
patterns using hypothesis testing methods. A resampling-based technique was
also developed to avoid generating spurious patterns because of the multiple
comparison problem. Bolton et al. [213] have applied the Benjamini-Hochberg
[210] and Bonferroni correction methods to adjust the p-values of discovered
patterns in market basket data. Alternative methods for handling the multiple
comparison problem were suggested by Webb [323], Zhang et al. [338], and
Llinares-Lopez et al. [269].

Application of subjective measures to association analysis has been in-
vestigated by many authors. Silberschatz and Tuzhilin [299] presented two

�

M04 TAN9224 02 GE C04 page 285

� �

�

Bibliography 285

principles in which a rule can be considered interesting from a subjective
point of view. The concept of unexpected condition rules was introduced by
Liu et al. in [263]. Cooley et al. [222] analyzed the idea of combining soft
belief sets using the Dempster-Shafer theory and applied this approach to
identify contradictory and novel association patterns in web data. Alternative
approaches include using Bayesian networks [253] and neighborhood-based
information [224] to identify subjectively interesting patterns.

Visualization also helps the user to quickly grasp the underlying structure
of the discovered patterns. Many commercial data mining tools display the
complete set of rules (which satisfy both support and confidence threshold
criteria) as a two-dimensional plot, with each axis corresponding to the an-
tecedent or consequent itemsets of the rule. Hofmann et al. [246] proposed
using Mosaic plots and Double Decker plots to visualize association rules.
This approach can visualize not only a particular rule, but also the overall
contingency table between itemsets in the antecedent and consequent parts of
the rule. Nevertheless, this technique assumes that the rule consequent consists
of only a single attribute.

Application Issues

Association analysis has been applied to a variety of application domains such
as web mining [287, 310], document analysis [247], telecommunication alarm
diagnosis [255], network intrusion detection [206, 223, 259], and bioinformatics
[294, 324]. Applications of association and correlation pattern analysis to
Earth Science studies have been investigated in [289, 290, 312]. Trajectory
pattern mining [217, 250, 316] is another application of spatio-temporal asso-
ciation analysis to identify frequently traversed paths of moving objects.

Association patterns have also been applied to other learning problems
such as classification [261, 264], regression [282], and clustering [239, 326, 330].
A comparison between classification and association rule mining was made
by Freitas in his position paper [232]. The use of association patterns for
clustering has been studied by many authors including Han et al.[239], Kosters
et al. [256], Yang et al. [330] and Xiong et al. [326].

Bibliography
[195] R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad. A Tree Projection Algorithm

for Generation of Frequent Itemsets. Journal of Parallel and Distributed Computing
(Special Issue on High Performance Data Mining), 61(3):350–371, 2001.

[196] R. C. Agarwal and J. C. Shafer. Parallel Mining of Association Rules. IEEE
Transactions on Knowledge and Data Engineering, 8(6):962–969, March 1998.

�

M04 TAN9224 02 GE C04 page 286

� �

�

286 Chapter 4 Association Analysis

[197] C. Aggarwal and J. Han. Frequent Pattern Mining. Springer, 2014.

[198] C. C. Aggarwal, Y. Li, J. Wang, and J. Wang. Frequent pattern mining with
uncertain data. In Proceedings of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 29–38, Paris, France, 2009.

[199] C. C. Aggarwal, Z. Sun, and P. S. Yu. Online Generation of Profile Association Rules.
In Proc. of the 4th Intl. Conf. on Knowledge Discovery and Data Mining, pages 129–
133, New York, NY, August 1996.

[200] C. C. Aggarwal and P. S. Yu. Mining Large Itemsets for Association Rules. Data
Engineering Bulletin, 21(1):23–31, March 1998.

[201] C. C. Aggarwal and P. S. Yu. Mining Associations with the Collective Strength
Approach. IEEE Trans. on Knowledge and Data Engineering, 13(6):863–873, Jan-
uary/February 2001.

[202] R. Agrawal, T. Imielinski, and A. Swami. Database mining: A performance
perspective. IEEE Transactions on Knowledge and Data Engineering, 5:914–925, 1993.

[203] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of
items in large databases. In Proc. ACM SIGMOD Intl. Conf. Management of Data,
pages 207–216, Washington, DC, 1993.

[204] R. Agrawal and R. Srikant. Mining Sequential Patterns. In Proc. of Intl. Conf. on
Data Engineering, pages 3–14, Taipei, Taiwan, 1995.

[205] K. Ali, S. Manganaris, and R. Srikant. Partial Classification using Association Rules.
In Proc. of the 3rd Intl. Conf. on Knowledge Discovery and Data Mining, pages 115–
118, Newport Beach, CA, August 1997.

[206] D. Barbará, J. Couto, S. Jajodia, and N. Wu. ADAM: A Testbed for Exploring the
Use of Data Mining in Intrusion Detection. SIGMOD Record, 30(4):15–24, 2001.

[207] S. D. Bay and M. Pazzani. Detecting Group Differences: Mining Contrast Sets. Data
Mining and Knowledge Discovery, 5(3):213–246, 2001.

[208] R. Bayardo. Efficiently Mining Long Patterns from Databases. In Proc. of 1998
ACM-SIGMOD Intl. Conf. on Management of Data, pages 85–93, Seattle, WA, June
1998.

[209] R. Bayardo and R. Agrawal. Mining the Most Interesting Rules. In Proc. of the 5th
Intl. Conf. on Knowledge Discovery and Data Mining, pages 145–153, San Diego, CA,
August 1999.

[210] Y. Benjamini and Y. Hochberg. Controlling the False Discovery Rate: A Practical
and Powerful Approach to Multiple Testing. Journal Royal Statistical Society B, 57
(1):289–300, 1995.

[211] T. Bernecker, H. Kriegel, M. Renz, F. Verhein, and A. Züfle. Probabilistic frequent
itemset mining in uncertain databases. In Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 119–128,
Paris, France, 2009.

[212] R. Bhaskar, S. Laxman, A. D. Smith, and A. Thakurta. Discovering frequent patterns
in sensitive data. In Proceedings of the 16th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 503–512, Washington, DC, 2010.

[213] R. J. Bolton, D. J. Hand, and N. M. Adams. Determining Hit Rate in Pattern Search.
In Proc. of the ESF Exploratory Workshop on Pattern Detection and Discovery in
Data Mining, pages 36–48, London, UK, September 2002.

[214] S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets: Generalizing
association rules to correlations. In Proc. ACM SIGMOD Intl. Conf. Management
of Data, pages 265–276, Tucson, AZ, 1997.

�

M04 TAN9224 02 GE C04 page 287

� �

�

Bibliography 287

[215] S. Brin, R. Motwani, J. Ullman, and S. Tsur. Dynamic Itemset Counting and
Implication Rules for market basket data. In Proc. of 1997 ACM-SIGMOD Intl.
Conf. on Management of Data, pages 255–264, Tucson, AZ, June 1997.

[216] C. H. Cai, A. Fu, C. H. Cheng, and W. W. Kwong. Mining Association Rules with
Weighted Items. In Proc. of IEEE Intl. Database Engineering and Applications Symp.,
pages 68–77, Cardiff, Wales, 1998.

[217] H. Cao, N. Mamoulis, and D. W. Cheung. Mining Frequent Spatio-Temporal
Sequential Patterns. In Proceedings of the 5th IEEE International Conference on
Data Mining, pages 82–89, Houston, TX, 2005.

[218] R. Chan, Q. Yang, and Y. Shen. Mining High Utility Itemsets. In Proceedings of
the 3rd IEEE International Conference on Data Mining, pages 19–26, Melbourne, FL,
2003.

[219] Q. Chen, U. Dayal, and M. Hsu. A Distributed OLAP infrastructure for E-Commerce.
In Proc. of the 4th IFCIS Intl. Conf. on Cooperative Information Systems, pages 209–
220, Edinburgh, Scotland, 1999.

[220] D. C. Cheung, S. D. Lee, and B. Kao. A General Incremental Technique for
Maintaining Discovered Association Rules. In Proc. of the 5th Intl. Conf. on Database
Systems for Advanced Applications, pages 185–194, Melbourne, Australia, 1997.

[221] C. K. Chui, B. Kao, and E. Hung. Mining Frequent Itemsets from Uncertain Data.
In Proceedings of the 11th Pacific-Asia Conference on Knowledge Discovery and Data
Mining, pages 47–58, Nanjing, China, 2007.

[222] R. Cooley, P. N. Tan, and J. Srivastava. Discovery of Interesting Usage Patterns
from Web Data. In M. Spiliopoulou and B. Masand, editors, Advances in Web Usage
Analysis and User Profiling, volume 1836, pages 163–182. Lecture Notes in Computer
Science, 2000.

[223] P. Dokas, L. Ertöz, V. Kumar, A. Lazarevic, J. Srivastava, and P. N. Tan. Data Mining
for Network Intrusion Detection. In Proc. NSF Workshop on Next Generation Data
Mining, Baltimore, MD, 2002.

[224] G. Dong and J. Li. Interestingness of discovered association rules in terms of
neighborhood-based unexpectedness. In Proc. of the 2nd Pacific-Asia Conf. on
Knowledge Discovery and Data Mining, pages 72–86, Melbourne, Australia, April 1998.

[225] G. Dong and J. Li. Efficient Mining of Emerging Patterns: Discovering Trends and
Differences. In Proc. of the 5th Intl. Conf. on Knowledge Discovery and Data Mining,
pages 43–52, San Diego, CA, August 1999.

[226] W. DuMouchel and D. Pregibon. Empirical Bayes Screening for Multi-Item Associa-
tions. In Proc. of the 7th Intl. Conf. on Knowledge Discovery and Data Mining, pages
67–76, San Francisco, CA, August 2001.

[227] B. Dunkel and N. Soparkar. Data Organization and Access for Efficient Data Mining.
In Proc. of the 15th Intl. Conf. on Data Engineering, pages 522–529, Sydney, Australia,
March 1999.

[228] A. V. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke. Privacy preserving
mining of association rules. In Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 217–228, Edmonton,
Canada, 2002.

[229] C. C. Fabris and A. A. Freitas. Discovering surprising patterns by detecting
occurrences of Simpson’s paradox. In Proc. of the 19th SGES Intl. Conf. on Knowledge-
Based Systems and Applied Artificial Intelligence), pages 148–160, Cambridge, UK,
December 1999.

�

M04 TAN9224 02 GE C04 page 288

� �

�

288 Chapter 4 Association Analysis

[230] G. Fang, G. Pandey, W. Wang, M. Gupta, M. Steinbach, and V. Kumar. Mining
Low-Support Discriminative Patterns from Dense and High-Dimensional Data. IEEE
Trans. Knowl. Data Eng., 24(2):279–294, 2012.

[231] L. Feng, H. J. Lu, J. X. Yu, and J. Han. Mining inter-transaction associations with
templates. In Proc. of the 8th Intl. Conf. on Information and Knowledge Management,
pages 225–233, Kansas City, Missouri, Nov 1999.

[232] A. A. Freitas. Understanding the crucial differences between classification and
discovery of association rules—a position paper. SIGKDD Explorations, 2(1):65–69,
2000.

[233] J. H. Friedman and N. I. Fisher. Bump hunting in high-dimensional data. Statistics
and Computing, 9(2):123–143, April 1999.

[234] T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Mining Optimized
Association Rules for Numeric Attributes. In Proc. of the 15th Symp. on Principles
of Database Systems, pages 182–191, Montreal, Canada, June 1996.

[235] D. Gunopulos, R. Khardon, H. Mannila, and H. Toivonen. Data Mining, Hypergraph
Transversals, and Machine Learning. In Proc. of the 16th Symp. on Principles of
Database Systems, pages 209–216, Tucson, AZ, May 1997.

[236] R. Gupta, G. Fang, B. Field, M. Steinbach, and V. Kumar. Quantitative evaluation
of approximate frequent pattern mining algorithms. In Proceedings of the 14th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
301–309, Las Vegas, NV, 2008.

[237] E. Han, G. Karypis, and V. Kumar. Min-apriori: An algorithm for finding association
rules in data with continuous attributes. Department of Computer Science and
Engineering, University of Minnesota, Tech. Rep, 1997.

[238] E.-H. Han, G. Karypis, and V. Kumar. Scalable Parallel Data Mining for Association
Rules. In Proc. of 1997 ACM-SIGMOD Intl. Conf. on Management of Data, pages
277–288, Tucson, AZ, May 1997.

[239] E.-H. Han, G. Karypis, V. Kumar, and B. Mobasher. Clustering Based on Association
Rule Hypergraphs. In Proc. of the 1997 ACM SIGMOD Workshop on Research Issues
in Data Mining and Knowledge Discovery, Tucson, AZ, 1997.

[240] J. Han, H. Cheng, D. Xin, and X. Yan. Frequent pattern mining: current status and
future directions. Data Mining and Knowledge Discovery, 15(1):55–86, 2007.

[241] J. Han, Y. Fu, K. Koperski, W. Wang, and O. R. Zäıane. DMQL: A data mining query
language for relational databases. In Proc. of the 1996 ACM SIGMOD Workshop on
Research Issues in Data Mining and Knowledge Discovery, Montreal, Canada, June
1996.

[242] J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns without Candidate Generation.
In Proc. ACM-SIGMOD Int. Conf. on Management of Data (SIGMOD’00), pages
1–12, Dallas, TX, May 2000.

[243] C. Hidber. Online Association Rule Mining. In Proc. of 1999 ACM-SIGMOD Intl.
Conf. on Management of Data, pages 145–156, Philadelphia, PA, 1999.

[244] R. J. Hilderman and H. J. Hamilton. Knowledge Discovery and Measures of Interest.
Kluwer Academic Publishers, 2001.

[245] J. Hipp, U. Guntzer, and G. Nakhaeizadeh. Algorithms for Association Rule Mining—
A General Survey. SigKDD Explorations, 2(1):58–64, June 2000.

[246] H. Hofmann, A. P. J. M. Siebes, and A. F. X. Wilhelm. Visualizing Association Rules
with Interactive Mosaic Plots. In Proc. of the 6th Intl. Conf. on Knowledge Discovery
and Data Mining, pages 227–235, Boston, MA, August 2000.

�

M04 TAN9224 02 GE C04 page 289

� �

�

Bibliography 289

[247] J. D. Holt and S. M. Chung. Efficient Mining of Association Rules in Text Databases.
In Proc. of the 8th Intl. Conf. on Information and Knowledge Management, pages
234–242, Kansas City, Missouri, 1999.

[248] M. Houtsma and A. Swami. Set-oriented Mining for Association Rules in Relational
Databases. In Proc. of the 11th Intl. Conf. on Data Engineering, pages 25–33, Taipei,
Taiwan, 1995.

[249] Y. Huang, S. Shekhar, and H. Xiong. Discovering Co-location Patterns from Spatial
Datasets: A General Approach. IEEE Trans. on Knowledge and Data Engineering, 16
(12):1472–1485, December 2004.

[250] S. Hwang, Y. Liu, J. Chiu, and E. Lim. Mining Mobile Group Patterns: A Trajectory-
Based Approach. In Proceedings of the 9th Pacific-Asia Conference on Knowledge
Discovery and Data Mining, pages 713–718, Hanoi, Vietnam, 2005.

[251] T. Imielinski, A. Virmani, and A. Abdulghani. DataMine: Application Programming
Interface and Query Language for Database Mining. In Proc. of the 2nd Intl. Conf.
on Knowledge Discovery and Data Mining, pages 256–262, Portland, Oregon, 1996.

[252] A. Inokuchi, T. Washio, and H. Motoda. An Apriori-based Algorithm for Mining
Frequent Substructures from Graph Data. In Proc. of the 4th European Conf. of
Principles and Practice of Knowledge Discovery in Databases, pages 13–23, Lyon,
France, 2000.

[253] S. Jaroszewicz and D. Simovici. Interestingness of Frequent Itemsets Using Bayesian
Networks as Background Knowledge. In Proc. of the 10th Intl. Conf. on Knowledge
Discovery and Data Mining, pages 178–186, Seattle, WA, August 2004.

[254] M. Kamber and R. Shinghal. Evaluating the Interestingness of Characteristic Rules. In
Proc. of the 2nd Intl. Conf. on Knowledge Discovery and Data Mining, pages 263–266,
Portland, Oregon, 1996.

[255] M. Klemettinen. A Knowledge Discovery Methodology for Telecommunication Network
Alarm Databases. PhD thesis, University of Helsinki, 1999.

[256] W. A. Kosters, E. Marchiori, and A. Oerlemans. Mining Clusters with Association
Rules. In The 3rd Symp. on Intelligent Data Analysis (IDA99), pages 39–50,
Amsterdam, August 1999.

[257] C. M. Kuok, A. Fu, and M. H. Wong. Mining Fuzzy Association Rules in Databases.
ACM SIGMOD Record, 27(1):41–46, March 1998.

[258] M. Kuramochi and G. Karypis. Frequent Subgraph Discovery. In Proc. of the 2001
IEEE Intl. Conf. on Data Mining, pages 313–320, San Jose, CA, November 2001.

[259] W. Lee, S. J. Stolfo, and K. W. Mok. Adaptive Intrusion Detection: A Data Mining
Approach. Artificial Intelligence Review, 14(6):533–567, 2000.

[260] N. Li, L. Zeng, Q. He, and Z. Shi. Parallel Implementation of Apriori Algorithm Based
on MapReduce. In Proceedings of the 13th ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing,
pages 236–241, Kyoto, Japan, 2012.

[261] W. Li, J. Han, and J. Pei. CMAR: Accurate and Efficient Classification Based on
Multiple Class-association Rules. In Proc. of the 2001 IEEE Intl. Conf. on Data
Mining, pages 369–376, San Jose, CA, 2001.

[262] M. Lin, P. Lee, and S. Hsueh. Apriori-based frequent itemset mining algorithms
on MapReduce. In Proceedings of the 6th International Conference on Ubiquitous
Information Management and Communication, pages 26–30, Kuala Lumpur, Malaysia,
2012.

�

M04 TAN9224 02 GE C04 page 290

� �

�

290 Chapter 4 Association Analysis

[263] B. Liu, W. Hsu, and S. Chen. Using General Impressions to Analyze Discovered
Classification Rules. In Proc. of the 3rd Intl. Conf. on Knowledge Discovery and Data
Mining, pages 31–36, Newport Beach, CA, August 1997.

[264] B. Liu, W. Hsu, and Y. Ma. Integrating Classification and Association Rule Mining.
In Proc. of the 4th Intl. Conf. on Knowledge Discovery and Data Mining, pages 80–86,
New York, NY, August 1998.

[265] B. Liu, W. Hsu, and Y. Ma. Mining association rules with multiple minimum supports.
In Proc. of the 5th Intl. Conf. on Knowledge Discovery and Data Mining, pages 125–
134, San Diego, CA, August 1999.

[266] B. Liu, W. Hsu, and Y. Ma. Pruning and Summarizing the Discovered Associations. In
Proc. of the 5th Intl. Conf. on Knowledge Discovery and Data Mining, pages 125–134,
San Diego, CA, August 1999.

[267] J. Liu, S. Paulsen, W. Wang, A. B. Nobel, and J. Prins. Mining Approximate Frequent
Itemsets from Noisy Data. In Proceedings of the 5th IEEE International Conference
on Data Mining, pages 721–724, Houston, TX, 2005.

[268] Y. Liu, W.-K. Liao, and A. Choudhary. A two-phase algorithm for fast discovery of
high utility itemsets. In Proceedings of the 9th Pacific-Asia Conference on Knowledge
Discovery and Data Mining, pages 689–695, Hanoi, Vietnam, 2005.

[269] F. Llinares-López, M. Sugiyama, L. Papaxanthos, and K. M. Borgwardt. Fast and
Memory-Efficient Significant Pattern Mining via Permutation Testing. In Proceedings
of the 21th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 725–734, Sydney, Australia, 2015.

[270] A. Marcus, J. I. Maletic, and K.-I. Lin. Ordinal association rules for error identification
in data sets. In Proc. of the 10th Intl. Conf. on Information and Knowledge
Management, pages 589–591, Atlanta, GA, October 2001.

[271] N. Megiddo and R. Srikant. Discovering Predictive Association Rules. In Proc. of the
4th Intl. Conf. on Knowledge Discovery and Data Mining, pages 274–278, New York,
August 1998.

[272] R. Meo, G. Psaila, and S. Ceri. A New SQL-like Operator for Mining Association
Rules. In Proc. of the 22nd VLDB Conf., pages 122–133, Bombay, India, 1996.

[273] R. J. Miller and Y. Yang. Association Rules over Interval Data. In Proc. of 1997
ACM-SIGMOD Intl. Conf. on Management of Data, pages 452–461, Tucson, AZ, May
1997.

[274] S. Moens, E. Aksehirli, and B. Goethals. Frequent Itemset Mining for Big Data. In
Proceedings of the 2013 IEEE International Conference on Big Data, pages 111–118,
Santa Clara, CA, 2013.

[275] Y. Morimoto, T. Fukuda, H. Matsuzawa, T. Tokuyama, and K. Yoda. Algorithms for
mining association rules for binary segmentations of huge categorical databases. In
Proc. of the 24th VLDB Conf., pages 380–391, New York, August 1998.

[276] F. Mosteller. Association and Estimation in Contingency Tables. JASA, 63:1–28,
1968.

[277] A. Mueller. Fast sequential and parallel algorithms for association rule mining: A
comparison. Technical Report CS-TR-3515, University of Maryland, August 1995.

[278] R. T. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. Exploratory Mining and Pruning
Optimizations of Constrained Association Rules. In Proc. of 1998 ACM-SIGMOD Intl.
Conf. on Management of Data, pages 13–24, Seattle, WA, June 1998.

[279] P. K. Novak, N. Lavrač, and G. I. Webb. Supervised descriptive rule discovery: A
unifying survey of contrast set, emerging pattern and subgroup mining. Journal of
Machine Learning Research, 10(Feb):377–403, 2009.

�

M04 TAN9224 02 GE C04 page 291

� �

�

Bibliography 291

[280] E. Omiecinski. Alternative Interest Measures for Mining Associations in Databases.
IEEE Trans. on Knowledge and Data Engineering, 15(1):57–69, January/February
2003.

[281] B. Ozden, S. Ramaswamy, and A. Silberschatz. Cyclic Association Rules. In Proc. of
the 14th Intl. Conf. on Data Eng., pages 412–421, Orlando, FL, February 1998.

[282] A. Ozgur, P. N. Tan, and V. Kumar. RBA: An Integrated Framework for Regression
based on Association Rules. In Proc. of the SIAM Intl. Conf. on Data Mining, pages
210–221, Orlando, FL, April 2004.

[283] J. S. Park, M.-S. Chen, and P. S. Yu. An effective hash-based algorithm for mining
association rules. SIGMOD Record, 25(2):175–186, 1995.

[284] S. Parthasarathy and M. Coatney. Efficient Discovery of Common Substructures in
Macromolecules. In Proc. of the 2002 IEEE Intl. Conf. on Data Mining, pages 362–
369, Maebashi City, Japan, December 2002.

[285] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets
for association rules. In Proc. of the 7th Intl. Conf. on Database Theory (ICDT’99),
pages 398–416, Jerusalem, Israel, January 1999.

[286] J. Pei, J. Han, H. J. Lu, S. Nishio, and S. Tang. H-Mine: Hyper-Structure Mining of
Frequent Patterns in Large Databases. In Proc. of the 2001 IEEE Intl. Conf. on Data
Mining, pages 441–448, San Jose, CA, November 2001.

[287] J. Pei, J. Han, B. Mortazavi-Asl, and H. Zhu. Mining Access Patterns Efficiently from
Web Logs. In Proc. of the 4th Pacific-Asia Conf. on Knowledge Discovery and Data
Mining, pages 396–407, Kyoto, Japan, April 2000.

[288] G. Piatetsky-Shapiro. Discovery, Analysis and Presentation of Strong Rules. In
G. Piatetsky-Shapiro and W. Frawley, editors, Knowledge Discovery in Databases,
pages 229–248. MIT Press, Cambridge, MA, 1991.

[289] C. Potter, S. Klooster, M. Steinbach, P. N. Tan, V. Kumar, S. Shekhar, and
C. Carvalho. Understanding Global Teleconnections of Climate to Regional Model
Estimates of Amazon Ecosystem Carbon Fluxes. Global Change Biology, 10(5):693–
703, 2004.

[290] C. Potter, S. Klooster, M. Steinbach, P. N. Tan, V. Kumar, S. Shekhar, R. Myneni,
and R. Nemani. Global Teleconnections of Ocean Climate to Terrestrial Carbon Flux.
Journal of Geophysical Research, 108(D17), 2003.

[291] G. D. Ramkumar, S. Ranka, and S. Tsur. Weighted association rules: Model and
algorithm. In Proc. ACM SIGKDD, 1998.

[292] M. Riondato and F. Vandin. Finding the True Frequent Itemsets. In Proceedings of the
2014 SIAM International Conference on Data Mining, pages 497–505, Philadelphia,
PA, 2014.

[293] S. Sarawagi, S. Thomas, and R. Agrawal. Integrating Mining with Relational Database
Systems: Alternatives and Implications. In Proc. of 1998 ACM-SIGMOD Intl. Conf.
on Management of Data, pages 343–354, Seattle, WA, 1998.

[294] K. Satou, G. Shibayama, T. Ono, Y. Yamamura, E. Furuichi, S. Kuhara, and T. Takagi.
Finding Association Rules on Heterogeneous Genome Data. In Proc. of the Pacific
Symp. on Biocomputing, pages 397–408, Hawaii, January 1997.

[295] A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining
association rules in large databases. In Proc. of the 21st Int. Conf. on Very Large
Databases (VLDB‘95), pages 432–444, Zurich, Switzerland, September 1995.

[296] A. Savasere, E. Omiecinski, and S. Navathe. Mining for Strong Negative Associations
in a Large Database of Customer Transactions. In Proc. of the 14th Intl. Conf. on
Data Engineering, pages 494–502, Orlando, Florida, February 1998.

�

M04 TAN9224 02 GE C04 page 292

� �

�

292 Chapter 4 Association Analysis

[297] M. Seno and G. Karypis. LPMiner: An Algorithm for Finding Frequent Itemsets Using
Length-Decreasing Support Constraint. In Proc. of the 2001 IEEE Intl. Conf. on Data
Mining, pages 505–512, San Jose, CA, November 2001.

[298] T. Shintani and M. Kitsuregawa. Hash based parallel algorithms for mining association
rules. In Proc of the 4th Intl. Conf. on Parallel and Distributed Info. Systems, pages
19–30, Miami Beach, FL, December 1996.

[299] A. Silberschatz and A. Tuzhilin. What makes patterns interesting in knowledge
discovery systems. IEEE Trans. on Knowledge and Data Engineering, 8(6):970–974,
1996.

[300] C. Silverstein, S. Brin, and R. Motwani. Beyond market baskets: Generalizing
association rules to dependence rules. Data Mining and Knowledge Discovery, 2(1):
39–68, 1998.

[301] E.-H. Simpson. The Interpretation of Interaction in Contingency Tables. Journal of
the Royal Statistical Society, B(13):238–241, 1951.

[302] L. Singh, B. Chen, R. Haight, and P. Scheuermann. An Algorithm for Constrained
Association Rule Mining in Semi-structured Data. In Proc. of the 3rd Pacific-Asia
Conf. on Knowledge Discovery and Data Mining, pages 148–158, Beijing, China, April
1999.

[303] R. Srikant and R. Agrawal. Mining Quantitative Association Rules in Large Relational
Tables. In Proc. of 1996 ACM-SIGMOD Intl. Conf. on Management of Data, pages
1–12, Montreal, Canada, 1996.

[304] R. Srikant and R. Agrawal. Mining Sequential Patterns: Generalizations and
Performance Improvements. In Proc. of the 5th Intl Conf. on Extending Database
Technology (EDBT’96), pages 18–32, Avignon, France, 1996.

[305] R. Srikant, Q. Vu, and R. Agrawal. Mining Association Rules with Item Constraints.
In Proc. of the 3rd Intl. Conf. on Knowledge Discovery and Data Mining, pages 67–73,
Newport Beach, CA, August 1997.

[306] M. Steinbach, P. N. Tan, and V. Kumar. Support Envelopes: A Technique for
Exploring the Structure of Association Patterns. In Proc. of the 10th Intl. Conf.
on Knowledge Discovery and Data Mining, pages 296–305, Seattle, WA, August 2004.

[307] M. Steinbach, P. N. Tan, H. Xiong, and V. Kumar. Extending the Notion of Support.
In Proc. of the 10th Intl. Conf. on Knowledge Discovery and Data Mining, pages
689–694, Seattle, WA, August 2004.

[308] M. Steinbach, H. Yu, G. Fang, and V. Kumar. Using constraints to generate and
explore higher order discriminative patterns. Advances in Knowledge Discovery and
Data Mining, pages 338–350, 2011.

[309] E. Suzuki. Autonomous Discovery of Reliable Exception Rules. In Proc. of the 3rd
Intl. Conf. on Knowledge Discovery and Data Mining, pages 259–262, Newport Beach,
CA, August 1997.

[310] P. N. Tan and V. Kumar. Mining Association Patterns in Web Usage Data. In Proc.
of the Intl. Conf. on Advances in Infrastructure for e-Business, e-Education, e-Science
and e-Medicine on the Internet, L’Aquila, Italy, January 2002.

[311] P. N. Tan, V. Kumar, and J. Srivastava. Selecting the Right Interestingness Measure
for Association Patterns. In Proc. of the 8th Intl. Conf. on Knowledge Discovery and
Data Mining, pages 32–41, Edmonton, Canada, July 2002.

[312] P. N. Tan, M. Steinbach, V. Kumar, S. Klooster, C. Potter, and A. Torregrosa. Finding
Spatio-Temporal Patterns in Earth Science Data. In KDD 2001 Workshop on Temporal
Data Mining, San Francisco, CA, 2001.

�

M04 TAN9224 02 GE C04 page 293

� �

�

Bibliography 293

[313] N. Tatti. Probably the best itemsets. In Proceedings of the 16th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 293–302,
Washington, DC, 2010.

[314] H. Toivonen. Sampling Large Databases for Association Rules. In Proc. of the 22nd
VLDB Conf., pages 134–145, Bombay, India, 1996.

[315] H. Toivonen, M. Klemettinen, P. Ronkainen, K. Hatonen, and H. Mannila. Pruning
and Grouping Discovered Association Rules. In ECML-95 Workshop on Statistics,
Machine Learning and Knowledge Discovery in Databases, pages 47–52, Heraklion,
Greece, April 1995.

[316] I. Tsoukatos and D. Gunopulos. Efficient mining of spatiotemporal patterns. In
Proceedings of the 7th International Symposium on Advances in Spatial and Temporal
Databases, pages 425–442, 2001.

[317] S. Tsur, J. Ullman, S. Abiteboul, C. Clifton, R. Motwani, S. Nestorov, and A. Rosen-
thal. Query Flocks: A Generalization of Association Rule Mining. In Proc. of 1998
ACM-SIGMOD Intl. Conf. on Management of Data, pages 1–12, Seattle, WA, June
1998.

[318] A. Tung, H. J. Lu, J. Han, and L. Feng. Breaking the Barrier of Transactions: Mining
Inter-Transaction Association Rules. In Proc. of the 5th Intl. Conf. on Knowledge
Discovery and Data Mining, pages 297–301, San Diego, CA, August 1999.

[319] J. Vaidya and C. Clifton. Privacy preserving association rule mining in vertically
partitioned data. In Proceedings of the Eighth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 639–644, Edmonton, Canada, 2002.

[320] K. Wang, Y. He, and J. Han. Mining Frequent Itemsets Using Support Constraints.
In Proc. of the 26th VLDB Conf., pages 43–52, Cairo, Egypt, September 2000.

[321] K. Wang, S. H. Tay, and B. Liu. Interestingness-Based Interval Merger for Numeric
Association Rules. In Proc. of the 4th Intl. Conf. on Knowledge Discovery and Data
Mining, pages 121–128, New York, NY, August 1998.

[322] L. Wang, R. Cheng, S. D. Lee, and D. W. Cheung. Accelerating probabilistic frequent
itemset mining: a model-based approach. In Proceedings of the 19th ACM Conference
on Information and Knowledge Management, pages 429–438, 2010.

[323] G. I. Webb. Preliminary investigations into statistically valid exploratory rule
discovery. In Proc. of the Australasian Data Mining Workshop (AusDM03), Canberra,
Australia, December 2003.

[324] H. Xiong, X. He, C. Ding, Y. Zhang, V. Kumar, and S. R. Holbrook. Identification
of Functional Modules in Protein Complexes via Hyperclique Pattern Discovery. In
Proc. of the Pacific Symposium on Biocomputing, (PSB 2005), Maui, January 2005.

[325] H. Xiong, S. Shekhar, P. N. Tan, and V. Kumar. Exploiting a Support-based
Upper Bound of Pearson’s Correlation Coefficient for Efficiently Identifying Strongly
Correlated Pairs. In Proc. of the 10th Intl. Conf. on Knowledge Discovery and Data
Mining, pages 334–343, Seattle, WA, August 2004.

[326] H. Xiong, M. Steinbach, P. N. Tan, and V. Kumar. HICAP: Hierarchial Clustering
with Pattern Preservation. In Proc. of the SIAM Intl. Conf. on Data Mining, pages
279–290, Orlando, FL, April 2004.

[327] H. Xiong, P. N. Tan, and V. Kumar. Mining Strong Affinity Association Patterns in
Data Sets with Skewed Support Distribution. In Proc. of the 2003 IEEE Intl. Conf.
on Data Mining, pages 387–394, Melbourne, FL, 2003.

[328] X. Yan and J. Han. gSpan: Graph-based Substructure Pattern Mining. In Proc. of
the 2002 IEEE Intl. Conf. on Data Mining, pages 721–724, Maebashi City, Japan,
December 2002.

�

M04 TAN9224 02 GE C04 page 294

� �

�

294 Chapter 4 Association Analysis

[329] C. Yang, U. M. Fayyad, and P. S. Bradley. Efficient discovery of error-tolerant frequent
itemsets in high dimensions. In Proceedings of the seventh ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 194–203, , San Francisco,
CA, 2001.

[330] C. Yang, U. M. Fayyad, and P. S. Bradley. Efficient discovery of error-tolerant frequent
itemsets in high dimensions. In Proc. of the 7th Intl. Conf. on Knowledge Discovery
and Data Mining, pages 194–203, San Francisco, CA, August 2001.

[331] M. J. Zaki. Parallel and Distributed Association Mining: A Survey. IEEE Concurrency,
special issue on Parallel Mechanisms for Data Mining, 7(4):14–25, December 1999.

[332] M. J. Zaki. Generating Non-Redundant Association Rules. In Proc. of the 6th Intl.
Conf. on Knowledge Discovery and Data Mining, pages 34–43, Boston, MA, August
2000.

[333] M. J. Zaki. Efficiently mining frequent trees in a forest. In Proc. of the 8th Intl.
Conf. on Knowledge Discovery and Data Mining, pages 71–80, Edmonton, Canada,
July 2002.

[334] M. J. Zaki and M. Orihara. Theoretical foundations of association rules. In Proc. of
the 1998 ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge
Discovery, Seattle, WA, June 1998.

[335] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New Algorithms for Fast
Discovery of Association Rules. In Proc. of the 3rd Intl. Conf. on Knowledge Discovery
and Data Mining, pages 283–286, Newport Beach, CA, August 1997.

[336] C. Zeng, J. F. Naughton, and J. Cai. On differentially private frequent itemset mining.
Proceedings of the VLDB Endowment, 6(1):25–36, 2012.

[337] F. Zhang, Y. Zhang, and J. Bakos. GPApriori: GPU-Accelerated Frequent Itemset
Mining. In Proceedings of the 2011 IEEE International Conference on Cluster
Computing, pages 590–594, Austin, TX, 2011.

[338] H. Zhang, B. Padmanabhan, and A. Tuzhilin. On the Discovery of Significant
Statistical Quantitative Rules. In Proc. of the 10th Intl. Conf. on Knowledge Discovery
and Data Mining, pages 374–383, Seattle, WA, August 2004.

[339] Z. Zhang, Y. Lu, and B. Zhang. An Effective Partioning-Combining Algorithm for
Discovering Quantitative Association Rules. In Proc. of the 1st Pacific-Asia Conf. on
Knowledge Discovery and Data Mining, Singapore, 1997.

[340] N. Zhong, Y. Y. Yao, and S. Ohsuga. Peculiarity Oriented Multi-database Mining. In
Proc. of the 3rd European Conf. of Principles and Practice of Knowledge Discovery in
Databases, pages 136–146, Prague, Czech Republic, 1999.

4.10 Exercises

1. For each of the following questions, provide an example of an association rule
from the market basket domain that satisfies the following conditions. Also,
describe whether such rules are subjectively interesting.

(a) A rule that has high support and high confidence.

(b) A rule that has reasonably high support but low confidence.

�

M04 TAN9224 02 GE C04 page 295

� �

�

4.10 Exercises 295

(c) A rule that has low support and low confidence.

(d) A rule that has low support and high confidence.

2. Consider the data set shown in Table 4.20.

Table 4.20. Example of market basket transactions.

Customer ID Transaction ID Items Bought
1 0001 {a, d, e}
1 0024 {a, b, c, e}
2 0012 {a, b, d, e}
2 0031 {a, c, d, e}
3 0015 {b, c, e}
3 0022 {b, d, e}
4 0029 {c, d}
4 0040 {a, b, c}
5 0033 {a, d, e}
5 0038 {a, b, e}

(a) Compute the support for itemsets {e}, {b, d}, and {b, d, e} by treating
each transaction ID as a market basket.

(b) Use the results in part (a) to compute the confidence for the associa-
tion rules {b, d} −→ {e} and {e} −→ {b, d}. Is confidence a symmetric
measure?

(c) Repeat part (a) by treating each customer ID as a market basket. Each
item should be treated as a binary variable (1 if an item appears in at
least one transaction bought by the customer, and 0 otherwise).

(d) Use the results in part (c) to compute the confidence for the association
rules {b, d} −→ {e} and {e} −→ {b, d}.

(e) Suppose s1 and c1 are the support and confidence values of an association
rule r when treating each transaction ID as a market basket. Also, let s2
and c2 be the support and confidence values of r when treating each cus-
tomer ID as a market basket. Discuss whether there are any relationships
between s1 and s2 or c1 and c2.

3. (a) What is the confidence for the rules ∅ −→ A and A −→ ∅?
(b) Let c1, c2, and c3 be the confidence values of the rules {p} −→ {q},
{p} −→ {q, r}, and {p, r} −→ {q}, respectively. If we assume that c1, c2,
and c3 have different values, what are the possible relationships that may
exist among c1, c2, and c3? Which rule has the lowest confidence?

(c) Repeat the analysis in part (b) assuming that the rules have identical
support. Which rule has the highest confidence?

�

M04 TAN9224 02 GE C04 page 296

� �

�

296 Chapter 4 Association Analysis

(d) Transitivity: Suppose the confidence of the rules A −→ B and B −→ C
are larger than some threshold, minconf . Is it possible that A −→ C has
a confidence less than minconf?

4. For each of the following measures, determine whether it is monotone, anti-
monotone, or non-monotone (i.e., neither monotone nor anti-monotone).

Example: Support, s = σ(X)
|T | is anti-monotone because s(X) ≥

s(Y) whenever X ⊂ Y .

(a) A characteristic rule is a rule of the form {p} −→ {q1, q2, . . . , qn}, where
the rule antecedent contains only a single item. An itemset of size k can
produce up to k characteristic rules. Let ζ be the minimum confidence of
all characteristic rules generated from a given itemset:

ζ({p1, p2, . . . , pk}) = min
[
c
({p1} −→ {p2, p3, . . . , pk}

)
, . . .

c
({pk} −→ {p1, p2 . . . , pk−1}

)]

Is ζ monotone, anti-monotone, or non-monotone?

(b) A discriminant rule is a rule of the form {p1, p2, . . . , pn} −→ {q}, where
the rule consequent contains only a single item. An itemset of size k can
produce up to k discriminant rules. Let η be the minimum confidence of
all discriminant rules generated from a given itemset:

η({p1, p2, . . . , pk}) = min
[
c
({p2, p3, . . . , pk} −→ {p1}

)
, . . .

c
({p1, p2, . . . pk−1} −→ {pk}

)]

Is η monotone, anti-monotone, or non-monotone?

(c) Repeat the analysis in parts (a) and (b) by replacing the min function
with a max function.

5. Prove Equation 4.3. (Hint: First, count the number of ways to create an itemset
that forms the left-hand side of the rule. Next, for each size k itemset selected
for the left-hand side, count the number of ways to choose the remaining d− k
items to form the right-hand side of the rule.) Assume that neither of the
itemsets of a rule are empty.

6. Consider the market basket transactions shown in Table 4.21.

(a) What is the maximum number of association rules that can be extracted
from this data (including rules that have zero support)?

(b) What is the maximum size of frequent itemsets that can be extracted
(assuming minsup > 0)?

�

M04 TAN9224 02 GE C04 page 297

� �

�

4.10 Exercises 297

Table 4.21. Market basket transactions.

Transaction ID Items Bought
1 {Milk, Beer, Diapers}
2 {Bread, Butter, Milk}
3 {Milk, Diapers, Cookies}
4 {Bread, Butter, Cookies}
5 {Beer, Cookies, Diapers}
6 {Milk, Diapers, Bread, Butter}
7 {Bread, Butter, Diapers}
8 {Beer, Diapers}
9 {Milk, Diapers, Bread, Butter}
10 {Beer, Cookies}

(c) Write an expression for the maximum number of size-3 itemsets that can
be derived from this data set.

(d) Find an itemset (of size 2 or larger) that has the largest support.

(e) Find a pair of items, a and b, such that the rules {a} −→ {b} and {b} −→
{a} have the same confidence.

7. Prove or disprove the following statements.

(a) If an itemset is frequent, then all its subsets must also be frequent.

(b) If an itemset is infrequent, then all its supersets must be infrequent too.

8. Show that if a candidate k-itemset X has a subset of size less than k − 1 that
is infrequent, then at least one of the (k − 1)-size subsets of X is necessarily
infrequent.

9. Consider the following set of frequent 3-itemsets:

{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {2, 3, 4}, {2, 3, 5}, {3, 4, 5}.

Assume that there are only five items in the data set.

(a) List all candidate 4-itemsets obtained by a candidate generation proce-
dure using the Fk−1 × F1 merging strategy.

(b) List all candidate 4-itemsets obtained by the candidate generation proce-
dure in Apriori.

(c) List all candidate 4-itemsets that survive the candidate pruning step of
the Apriori algorithm.

10. Is it true that items in a strong association rule are always positively correlated?

�

M04 TAN9224 02 GE C04 page 298

� �

�

298 Chapter 4 Association Analysis

11. The Apriori algorithm uses a generate-and-count strategy for deriving frequent
itemsets. Candidate itemsets of size k + 1 are created by joining a pair of
frequent itemsets of size k (this is known as the candidate generation step). A
candidate is discarded if any one of its subsets is found to be infrequent during
the candidate pruning step. Suppose the Apriori algorithm is applied to the
data set shown in Table 4.22 with minsup = 30%, i.e., any itemset occurring
in less than 3 transactions is considered to be infrequent.

Table 4.22. Example of market basket transactions.

Transaction ID Items Bought
1 {a, b, d, e}
2 {b, c, d}
3 {a, b, d, e}
4 {a, c, d, e}
5 {b, c, d, e}
6 {b, d, e}
7 {c, d}
8 {a, b, c}
9 {a, d, e}
10 {b, d}

(a) Draw an itemset lattice representing the data set given in Table 4.22.
Label each node in the lattice with the following letter(s):
• N: If the itemset is not considered to be a candidate itemset by

the Apriori algorithm. There are two reasons for an itemset not to
be considered as a candidate itemset: (1) it is not generated at all
during the candidate generation step, or (2) it is generated during
the candidate generation step but is subsequently removed during
the candidate pruning step because one of its subsets is found to be
infrequent.

• F: If the candidate itemset is found to be frequent by the Apriori
algorithm.

• I: If the candidate itemset is found to be infrequent after support
counting.

(b) What is the percentage of frequent itemsets (with respect to all itemsets
in the lattice)?

(c) What is the pruning ratio of the Apriori algorithm on this data set?
(Pruning ratio is defined as the percentage of itemsets not considered
to be a candidate because (1) they are not generated during candidate
generation or (2) they are pruned during the candidate pruning step.)

(d) What is the false alarm rate (i.e., percentage of candidate itemsets that
are found to be infrequent after performing support counting)?

�

M04 TAN9224 02 GE C04 page 299

� �

�

4.10 Exercises 299

{258}
{289}

{356}
{689}

{568}{168} {367}{346}
{379}
{678}

{459}
{456}
{789}

{125}
{158}
{458}

2,5,8

1,4,7

1,4,7

1,4,7

1,4,73,6,9

3,6,9

3,6,9
3,6,9

2,5,8

2,5,8

2,5,8 1,4,7

3,6,9
2,5,8

L1 L5 L6 L7 L8 L9 L11 L12

L2 L3 L4

{246}
{278}

{145}
{178}

{127}
{457}

Figure 4.32. An example of a hash tree structure.

12. The Apriori algorithm uses a hash tree data structure to efficiently count the
support of candidate itemsets. Consider the hash tree for candidate 3-itemsets
shown in Figure 4.32.

(a) Given a transaction that contains items {1, 3, 4, 5, 8}, which of the hash
tree leaf nodes will be visited when finding the candidates of the transac-
tion?

(b) Use the visited leaf nodes in part (a) to determine the candidate itemsets
that are contained in the transaction {1, 3, 4, 5, 8}.

13. Consider the following set of candidate 3-itemsets:

{1, 2, 3}, {1, 2, 6}, {1, 3, 4}, {2, 3, 4}, {2, 4, 5}, {3, 4, 6}, {4, 5, 6}

(a) Construct a hash tree for the above candidate 3-itemsets. Assume the
tree uses a hash function where all odd-numbered items are hashed to
the left child of a node, while the even-numbered items are hashed to the
right child. A candidate k-itemset is inserted into the tree by hashing on
each successive item in the candidate and then following the appropriate
branch of the tree according to the hash value. Once a leaf node is reached,
the candidate is inserted based on one of the following conditions:

Condition 1: If the depth of the leaf node is equal to k (the root is
assumed to be at depth 0), then the candidate is inserted regardless
of the number of itemsets already stored at the node.

Condition 2: If the depth of the leaf node is less than k, then the
candidate can be inserted as long as the number of itemsets stored
at the node is less than maxsize. Assume maxsize = 2 for this
question.

�

M04 TAN9224 02 GE C04 page 300

� �

�

300 Chapter 4 Association Analysis

Condition 3: If the depth of the leaf node is less than k and the number
of itemsets stored at the node is equal to maxsize, then the leaf node
is converted into an internal node. New leaf nodes are created as
children of the old leaf node. Candidate itemsets previously stored
in the old leaf node are distributed to the children based on their
hash values. The new candidate is also hashed to its appropriate leaf
node.

(b) How many leaf nodes are there in the candidate hash tree? How many
internal nodes are there?

(c) Consider a transaction that contains the following items: {1, 2, 3, 5, 6}. Us-
ing the hash tree constructed in part (a), which leaf nodes will be checked
against the transaction? What are the candidate 3-itemsets contained in
the transaction?

14. Consider the data set given in Table 4.23.

Find all frequent itemsets using Apriori and FP-growth. Which of the two is
more efficient?

Table 4.23.

Transaction id Items
1 a, b
2 b, c, d
3 a, b, c
4 a, b, c, d
5 a, b, c

15. Given the lattice structure shown in Figure 4.33 and the transactions given in
Table 4.22, label each node with the following letter(s):

• M if the node is a maximal frequent itemset,

• C if it is a closed frequent itemset,

• N if it is frequent but neither maximal nor closed, and

• I if it is infrequent.

Assume that the support threshold is equal to 30%.

16. The original association rule mining formulation uses the support and confi-
dence measures to prune uninteresting rules.

(a) Draw a contingency table for each of the following rules using the trans-
actions shown in Table 4.24.

Rules: {b} −→ {c}, {a} −→ {d}, {b} −→ {d}, {e} −→ {c}, {c} −→ {a}.

�

M04 TAN9224 02 GE C04 page 301

� �

�

4.10 Exercises 301

null

ba c d e

decebeaeadacab

abc abd abe

abcd

acd

abcde

abce abde acde bcde

ace ade bcd bce bde cde

bdbc cd

Figure 4.33. An itemset lattice

Table 4.24. Example of market basket transactions.

Transaction ID Items Bought
1 {a, b, d, e}
2 {b, c, d}
3 {a, b, d, e}
4 {a, c, d, e}
5 {b, c, d, e}
6 {b, d, e}
7 {c, d}
8 {a, b, c}
9 {a, d, e}
10 {b, d}

(b) Use the contingency tables in part (a) to compute and rank the rules in
decreasing order according to the following measures.

i. Support.
ii. Confidence.
iii. Interest(X −→ Y) = P (X,Y)

P (X) P (Y).

iv. IS(X −→ Y) = P (X,Y)√
P (X)P (Y)

.

�

M04 TAN9224 02 GE C04 page 302

� �

�

302 Chapter 4 Association Analysis

v. Klosgen(X −→ Y) =
√
P (X,Y)×max(P (Y |X)− P (Y), P (X|Y)−

P (X)), where P (Y |X) = P (X,Y)
P (X) .

vi. Odds ratio(X −→ Y) = P (X,Y)P (X,Y)

P (X,Y)P (X,Y)
.

17. Given the rankings you had obtained in Exercise 16, compute the correlation
between the rankings of confidence and the other five measures. Which measure
is most highly correlated with confidence? Which measure is least correlated
with confidence?

18. Answer the following questions using the data sets shown in Figure 4.34. Note
that each data set contains 1000 items and 10,000 transactions. Dark cells
indicate the presence of items and white cells indicate the absence of items. We
will apply the Apriori algorithm to extract frequent itemsets with minsup =
10% (i.e., itemsets must be contained in at least 1000 transactions).

(a) Which data set(s) will produce the most number of frequent itemsets?

(b) Which data set(s) will produce the fewest number of frequent itemsets?

(c) Which data set(s) will produce the longest frequent itemset?

(d) Which data set(s) will produce frequent itemsets with highest maximum
support?

(e) Which data set(s) will produce frequent itemsets containing items with
wide-varying support levels (i.e., items with mixed support, ranging from
less than 20% to more than 70%)?

19. (a) Prove that the φ coefficient is equal to 1 if and only if f11 = f1+ = f+1.

(b) Show that ifA andB are independent, then P (A,B)×P (A,B) = P (A,B)×
P (A,B).

(c) Show that Yule’s Q and Y coefficients

Q =
[
f11f00 − f10f01
f11f00 + f10f01

]

Y =
[√

f11f00 −
√
f10f01√

f11f00 +
√
f10f01

]

are normalized versions of the odds ratio.

(d) Write a simplified expression for the value of each measure shown in
Table 4.9 when the variables are statistically independent.

20. Consider the interestingness measure, M = P (B|A)−P (B)
1−P (B) , for an association

rule A −→ B.

(a) What is the range of this measure? When does the measure attain its
maximum and minimum values?

�

M04 TAN9224 02 GE C04 page 303

� �

�

4.10 Exercises 303

(b) How does M behave when P (A,B) is increased while P (A) and P (B)
remain unchanged?

(c) How does M behave when P (A) is increased while P (A,B) and P (B)
remain unchanged?

(d) How does M behave when P (B) is increased while P (A,B) and P (A)
remain unchanged?

(e) Is the measure symmetric under variable permutation?

(f) What is the value of the measure when A and B are statistically inde-
pendent?

(g) Is the measure null-invariant?

(h) Does the measure remain invariant under row or column scaling opera-
tions?

(i) How does the measure behave under the inversion operation?

21. Suppose we have market basket data consisting of 100 transactions and 20
items. Assume the support for item a is 25%, the support for item b is 90% and
the support for itemset {a, b} is 20%. Let the support and confidence thresholds
be 10% and 60%, respectively.

(a) Compute the confidence of the association rule {a} → {b}. Is the rule
interesting according to the confidence measure?

(b) Compute the interest measure for the association pattern {a, b}. Describe
the nature of the relationship between item a and item b in terms of the
interest measure.

(c) What conclusions can you draw from the results of parts (a) and (b)?

(d) Prove that if the confidence of the rule {a} −→ {b} is less than the support
of {b}, then:

i. c({a} −→ {b}) > c({a} −→ {b}),
ii. c({a} −→ {b}) > s({b}),

where c(·) denote the rule confidence and s(·) denote the support of an
itemset.

22. Table 4.25 shows a 2× 2× 2 contingency table for the binary variables A and
B at different values of the control variable C.

(a) Compute the φ coefficient for A and B when C = 0, C = 1, and C = 0
or 1. Note that φ({A,B}) = P (A,B)−P (A)P (B)√

P (A)P (B)(1−P (A))(1−P (B))
.

(b) What conclusions can you draw from the above result?

�

M04 TAN9224 02 GE C04 page 304

� �

�

304 Chapter 4 Association Analysis

Tr
an

sa
ct

io
ns

2000

4000

6000

600 800400200

8000

Items

2000

4000

6000

600 800400200

8000

Items

(a) (b)

Tr
an

sa
ct

io
ns

2000

4000

6000

600 800400200

8000

Items

(c)

2000

4000

6000

600 800400200

8000

Items

(d)

Tr
an

sa
ct

io
ns

Tr
an

sa
ct

io
ns

Tr
an

sa
ct

io
ns

Tr
an

sa
ct

io
ns

2000

4000

6000

600 800400200

8000

Items

(e)

2000

4000

6000

600 800400200

8000

Items

(f)

10% are 1s
90% are 0s

(uniformly distributed)

Figure 4.34. Figures for Exercise 18.

�

M04 TAN9224 02 GE C04 page 305

� �

�

4.10 Exercises 305

Table 4.25. A Contingency Table.

A

C = 0

C = 1

B

B

1

1

0

0

0

5

1

15

0

15

0

0

30

15

23. Consider the contingency tables shown in Table 4.26.

Table 4.26. Contingency tables for Exercise 23.

B B B B

A 9 1 A 89 1

A 1 89 A 1 9

(a) Table I. (b) Table II.

(a) For table I, compute support, the interest measure, and the φ correlation
coefficient for the association pattern {A, B}. Also, compute the confi-
dence of rules A→ B and B → A.

(b) For table II, compute support, the interest measure, and the φ corre-
lation coefficient for the association pattern {A, B}. Also, compute the
confidence of rules A→ B and B → A.

(c) What conclusions can you draw from the results of (a) and (b)?

24. Consider the relationship between customers who buy high-definition televi-
sions and exercise machines as shown in Tables 4.17 and 4.18.

(a) Compute the odds ratios for both tables.

(b) Compute the φ-coefficient for both tables.

(c) Compute the interest factor for both tables.

For each of the measures given above, describe how the direction of association
changes when data is pooled together instead of being stratified.

�

M04 TAN9224 02 GE C04 page 306

� �

�

306 Chapter 4 Association Analysis

25. Consider the data set given in Table 4.27.

Table 4.27.

Transaction id Items
1 Bread, Milk
2 Bread, Diapers, Beer, Eggs
3 Milk, Diapers, Beer, Cola
4 Bread, Milk, Diapers, Beer
5 Bread, Milk, Diapers, Cola

At a minimum support of 60%, using a vertical layout, find all frequent itemsets.

�

M05 TAN9224 02 GE C05 page 307

� �

�

5

Cluster Analysis:
Basic Concepts and
Algorithms

Cluster analysis divides data into groups (clusters) that are meaningful, useful,
or both. If meaningful groups are the goal, then the clusters should capture the
natural structure of the data. In some cases, however, cluster analysis is used
for data summarization in order to reduce the size of the data. Whether for
understanding or utility, cluster analysis has long played an important role in
a wide variety of fields: psychology and other social sciences, biology, statistics,
pattern recognition, information retrieval, machine learning, and data mining.

There have been many applications of cluster analysis to practical prob-
lems. We provide some specific examples, organized by whether the purpose
of the clustering is understanding or utility.

Clustering for Understanding Classes, or conceptually meaningful groups
of objects that share common characteristics, play an important role in how
people analyze and describe the world. Indeed, human beings are skilled at
dividing objects into groups (clustering) and assigning particular objects to
these groups (classification). For example, even relatively young children can
quickly label the objects in a photograph. In the context of understanding
data, clusters are potential classes and cluster analysis is the study of tech-
niques for automatically finding classes. The following are some examples:

• Biology. Biologists have spent many years creating a taxonomy (hi-
erarchical classification) of all living things: kingdom, phylum, class,
order, family, genus, and species. Thus, it is perhaps not surprising that

�

M05 TAN9224 02 GE C05 page 308

� �

�

308 Chapter 5 Cluster Analysis: Basic Concepts and Algorithms

much of the early work in cluster analysis sought to create a discipline of
mathematical taxonomy that could automatically find such classification
structures. More recently, biologists have applied clustering to analyze
the large amounts of genetic information that are now available. For
example, clustering has been used to find groups of genes that have
similar functions.

• Information Retrieval. The World Wide Web consists of billions of
web pages, and the results of a query to a search engine can return
thousands of pages. Clustering can be used to group these search results
into a small number of clusters, each of which captures a particular
aspect of the query. For instance, a query of “movie” might return
web pages grouped into categories such as reviews, trailers, stars, and
theaters. Each category (cluster) can be broken into subcategories (sub-
clusters), producing a hierarchical structure that further assists a user’s
exploration of the query results.

• Climate. Understanding the Earth’s climate requires finding patterns
in the atmosphere and ocean. To that end, cluster analysis has been
applied to find patterns in atmospheric pressure and ocean temperature
that have a significant impact on climate.

• Psychology and Medicine. An illness or condition frequently has a
number of variations, and cluster analysis can be used to identify these
different subcategories. For example, clustering has been used to identify
different types of depression. Cluster analysis can also be used to detect
patterns in the spatial or temporal distribution of a disease.

• Business. Businesses collect large amounts of information about current
and potential customers. Clustering can be used to segment customers
into a small number of groups for additional analysis and marketing
activities.

Clustering for Utility Cluster analysis provides an abstraction from in-
dividual data objects to the clusters in which those data objects reside. Ad-
ditionally, some clustering techniques characterize each cluster in terms of a
cluster prototype; i.e., a data object that is representative of the objects in
the cluster. These cluster prototypes can be used as the basis for a number
of additional data analysis or data processing techniques. Therefore, in the
context of utility, cluster analysis is the study of techniques for finding the
most representative cluster prototypes.

�

M05 TAN9224 02 GE C05 page 309

� �

�

309

• Summarization. Many data analysis techniques, such as regression or
principal component analysis, have a time or space complexity of O(m2)
or higher (where m is the number of objects), and thus, are not practical
for large data sets. However, instead of applying the algorithm to the
entire data set, it can be applied to a reduced data set consisting only
of cluster prototypes. Depending on the type of analysis, the number
of prototypes, and the accuracy with which the prototypes represent
the data, the results can be comparable to those that would have been
obtained if all the data could have been used.

• Compression. Cluster prototypes can also be used for data compres-
sion. In particular, a table is created that consists of the prototypes for
each cluster; i.e., each prototype is assigned an integer value that is its
position (index) in the table. Each object is represented by the index
of the prototype associated with its cluster. This type of compression is
known as vector quantization and is often applied to image, sound,
and video data, where (1) many of the data objects are highly similar
to one another, (2) some loss of information is acceptable, and (3) a
substantial reduction in the data size is desired.

• Efficiently Finding Nearest Neighbors. Finding nearest neighbors
can require computing the pairwise distance between all points. Often
clusters and their cluster prototypes can be found much more efficiently.
If objects are relatively close to the prototype of their cluster, then we
can use the prototypes to reduce the number of distance computations
that are necessary to find the nearest neighbors of an object. Intuitively,
if two cluster prototypes are far apart, then the objects in the corre-
sponding clusters cannot be nearest neighbors of each other. Conse-
quently, to find an object’s nearest neighbors, it is necessary to compute
only the distance to objects in nearby clusters, where the nearness of
two clusters is measured by the distance between their prototypes. This
idea is made more precise in Exercise 30 of Chapter 2, which is on pages
131–132.

This chapter provides an introduction to cluster analysis. We begin with
a high-level overview of clustering, including a discussion of the various ap-
proaches to dividing objects into sets of clusters and the different types of
clusters. We then describe three specific clustering techniques that represent
broad categories of algorithms and illustrate a variety of concepts: K-means,
agglomerative hierarchical clustering, and DBSCAN. The final section of this
chapter is devoted to cluster validity—methods for evaluating the goodness

�

M05 TAN9224 02 GE C05 page 310

� �

�

310 Chapter 5 Cluster Analysis: Basic Concepts and Algorithms

of the clusters produced by a clustering algorithm. More advanced clustering
concepts and algorithms will be discussed in Chapter 8. Whenever possible,
we discuss the strengths and weaknesses of different schemes. In addition,
the Bibliographic Notes provide references to relevant books and papers that
explore cluster analysis in greater depth.

5.1 Overview

Before discussing specific clustering techniques, we provide some necessary
background. First, we further define cluster analysis, illustrating why it is
difficult and explaining its relationship to other techniques that group data.
Then we explore two important topics: (1) different ways to group a set of
objects into a set of clusters, and (2) types of clusters.

5.1.1 What Is Cluster Analysis?

Cluster analysis groups data objects based on information found only in the
data that describes the objects and their relationships. The goal is that the
objects within a group be similar (or related) to one another and different from
(or unrelated to) the objects in other groups. The greater the similarity (or
homogeneity) within a group and the greater the difference between groups,
the better or more distinct the clustering.

In many applications, the notion of a cluster is not well defined. To bet-
ter understand the difficulty of deciding what constitutes a cluster, consider
Figure 5.1, which shows 20 points and three different ways of dividing them
into clusters. The shapes of the markers indicate cluster membership. Figures
5.1(b) and 5.1(d) divide the data into two and six parts, respectively. However,
the apparent division of each of the two larger clusters into three subclusters
may simply be an artifact of the human visual system. Also, it may not be
unreasonable to say that the points form four clusters, as shown in Figure
5.1(c). This figure illustrates that the definition of a cluster is imprecise and
that the best definition depends on the nature of data and the desired results.

Cluster analysis is related to other techniques that are used to divide data
objects into groups. For instance, clustering can be regarded as a form of
classification in that it creates a labeling of objects with class (cluster) labels.
However, it derives these labels only from the data. In contrast, classification
in the sense of Chapter 3 is supervised classification; i.e., new, unlabeled
objects are assigned a class label using a model developed from objects with
known class labels. For this reason, cluster analysis is sometimes referred
to as unsupervised classification. When the term classification is used

�

M05 TAN9224 02 GE C05 page 311

� �

�

5.1 Overview 311

(a) Original points. (b) Two clusters.

(c) Four clusters. (d) Six clusters.

Figure 5.1. Three different ways of clustering the same set of points.

without any qualification within data mining, it typically refers to supervised
classification.

Also, while the terms segmentation and partitioning are sometimes
used as synonyms for clustering, these terms are frequently used for approaches
outside the traditional bounds of cluster analysis. For example, the term
partitioning is often used in connection with techniques that divide graphs into
subgraphs and that are not strongly connected to clustering. Segmentation
often refers to the division of data into groups using simple techniques; e.g.,
an image can be split into segments based only on pixel intensity and color, or
people can be divided into groups based on their income. Nonetheless, some
work in graph partitioning and in image and segmentation is related to cluster
analysis.

5.1.2 Different Types of Clusterings

An entire collection of clusters is commonly referred to as a clustering, and in
this section, we distinguish various types of clusterings: hierarchical (nested)
versus partitional (unnested), exclusive versus overlapping versus fuzzy, and
complete versus partial.

Hierarchical versus Partitional The most commonly discussed distinc-
tion among different types of clusterings is whether the set of clusters is nested
or unnested, or in more traditional terminology, hierarchical or partitional. A
partitional clustering is simply a division of the set of data objects into
non-overlapping subsets (clusters) such that each data object is in exactly one

�

M05 TAN9224 02 GE C05 page 312

� �

�

312 Chapter 5 Cluster Analysis: Basic Concepts and Algorithms

subset. Taken individually, each collection of clusters in Figures 5.1 (b–d) is a
partitional clustering.

If we permit clusters to have subclusters, then we obtain a hierarchical
clustering, which is a set of nested clusters that are organized as a tree. Each
node (cluster) in the tree (except for the leaf nodes) is the union of its children
(subclusters), and the root of the tree is the cluster containing all the objects.
Often, but not always, the leaves of the tree are singleton clusters of individual
data objects. If we allow clusters to be nested, then one interpretation of
Figure 5.1(a) is that it has two subclusters (Figure 5.1(b)), each of which, in
turn, has three subclusters (Figure 5.1(d)). The clusters shown in Figures 5.1
(a–d), when taken in that order, also form a hierarchical (nested) clustering
with, respectively, 1, 2, 4, and 6 clusters on each level. Finally, note that a
hierarchical clustering can be viewed as a sequence of partitional clusterings
and a partitional clustering can be obtained by taking any member of that
sequence; i.e., by cutting the hierarchical tree at a particular level.

Exclusive versus Overlapping versus Fuzzy The clusterings shown in
Figure 5.1 are all exclusive, as they assign each object to a single cluster.
There are many situations in which a point could reasonably be placed in more
than one cluster, and these situations are better addressed by non-exclusive
clustering. In the most general sense, an overlapping or non-exclusive
clustering is used to reflect the fact that an object can simultaneously belong
to more than one group (class). For instance, a person at a university can be
both an enrolled student and an employee of the university. A non-exclusive
clustering is also often used when, for example, an object is “between” two
or more clusters and could reasonably be assigned to any of these clusters.
Imagine a point halfway between two of the clusters of Figure 5.1. Rather
than make a somewhat arbitrary assignment of the object to a single cluster,
it is placed in all of the “equally good” clusters.

In a fuzzy clustering (Section 8.2.1), every object belongs to every cluster
with a membership weight that is between 0 (absolutely doesn’t belong)
and 1 (absolutely belongs). In other words, clusters are treated as fuzzy
sets. (Mathematically, a fuzzy set is one in which an object belongs to every
set with a weight that is between 0 and 1. In fuzzy clustering, we often
impose the additional constraint that the sum of the weights for each object
must equal 1.) Similarly, probabilistic clustering techniques (Section 8.2.2)
compute the probability with which each point belongs to each cluster, and
these probabilities must also sum to 1. Because the membership weights or
probabilities for any object sum to 1, a fuzzy or probabilistic clustering does

�

M05 TAN9224 02 GE C05 page 313

� �

�

5.1 Overview 313

not address true multiclass situations, such as the case of a student employee,
where an object belongs to multiple classes. Instead, these approaches are most
appropriate for avoiding the arbitrariness of assigning an object to only one
cluster when it is close to several. In practice, a fuzzy or probabilistic clustering
is often converted to an exclusive clustering by assigning each object to the
cluster in which its membership weight or probability is highest.

Complete versus Partial A complete clustering assigns every object
to a cluster, whereas a partial clustering does not. The motivation for a
partial clustering is that some objects in a data set may not belong to well-
defined groups. Many times objects in the data set represent noise, outliers,
or “uninteresting background.” For example, some newspaper stories share a
common theme, such as global warming, while other stories are more generic
or one-of-a-kind. Thus, to find the important topics in last month’s stories, we
often want to search only for clusters of documents that are tightly related by a
common theme. In other cases, a complete clustering of the objects is desired.
For example, an application that uses clustering to organize documents for
browsing needs to guarantee that all documents can be browsed.

5.1.3 Different Types of Clusters

Clustering aims to find useful groups of objects (clusters), where usefulness
is defined by the goals of the data analysis. Not surprisingly, several different
notions of a cluster prove useful in practice. In order to visually illustrate the
differences among these types of clusters, we use two-dimensional points, as
shown in Figure 5.2, as our data objects. We stress, however, that the types
of clusters described here are equally valid for other kinds of data.

Well-Separated A cluster is a set of objects in which each object is closer
(or more similar) to every other object in the cluster than to any object not
in the cluster. Sometimes a threshold is used to specify that all the objects in
a cluster must be sufficiently close (or similar) to one another. This idealistic
definition of a cluster is satisfied only when the data contains natural clusters
that are quite far from each other. Figure 5.2(a) gives an example of well-
separated clusters that consists of two groups of points in a two-dimensional
space. The distance between any two points in different groups is larger than
the distance between any two points within a group. Well-separated clusters
do not need to be globular, but can have any shape.

�

M05 TAN9224 02 GE C05 page 314

� �

�

314 Chapter 5 Cluster Analysis: Basic Concepts and Algorithms

Prototype-Based A cluster is a set of objects in which each object is closer
(more similar) to the prototype that defines the cluster than to the prototype
of any other cluster. For data with continuous attributes, the prototype of a
cluster is often a centroid, i.e., the average (mean) of all the points in the clus-
ter. When a centroid is not meaningful, such as when the data has categorical
attributes, the prototype is often a medoid, i.e., the most representative point
of a cluster. For many types of data, the prototype can be regarded as the
most central point, and in such instances, we commonly refer to prototype-
based clusters as center-based clusters. Not surprisingly, such clusters tend
to be globular. Figure 5.2(b) shows an example of center-based clusters.

Graph-Based If the data is represented as a graph, where the nodes are
objects and the links represent connections among objects (see Section 2.1.2),
then a cluster can be defined as a connected component; i.e., a group of
objects that are connected to one another, but that have no connection to
objects outside the group. An important example of graph-based clusters is a
contiguity-based cluster, where two objects are connected only if they are
within a specified distance of each other. This implies that each object in a
contiguity-based cluster is closer to some other object in the cluster than to
any point in a different cluster. Figure 5.2(c) shows an example of such clusters
for two-dimensional points. This definition of a cluster is useful when clusters
are irregular or intertwined. However, this approach can have trouble when
noise is present since, as illustrated by the two spherical clusters of Figure
5.2(c), a small bridge of points can merge two distinct clusters.

Other types of graph-based clusters are also possible. One such approach
(Section 5.3.2) defines a cluster as a clique; i.e., a set of nodes in a graph that
are completely connected to each other. Specifically, if we add connections
between objects in the order of their distance from one another, a cluster is
formed when a set of objects forms a clique. Like prototype-based clusters,
such clusters tend to be globular.

Density-Based A cluster is a dense region of objects that is surrounded by
a region of low density. Figure 5.2(d) shows some density-based clusters for
data created by adding noise to the data of Figure 5.2(c). The two circular
clusters are not merged, as in Figure 5.2(c), because the bridge between them
fades into the noise. Likewise, the curve that is present in Figure 5.2(c) also
fades into the noise and does not form a cluster in Figure 5.2(d). A density-
based definition of a cluster is often employed when the clusters are irregular or

�

M05 TAN9224 02 GE C05 page 315

� �

�

5.1 Overview 315

intertwined, and when noise and outliers are present. By contrast, a contiguity-
based definition of a cluster would not work well for the data of Figure 5.2(d)
because the noise would tend to form bridges between clusters.

Shared-Property (Conceptual Clusters) More generally, we can define
a cluster as a set of objects that share some property. This definition en-
compasses all the previous definitions of a cluster; e.g., objects in a center-
based cluster share the property that they are all closest to the same centroid
or medoid. However, the shared-property approach also includes new types
of clusters. Consider the clusters shown in Figure 5.2(e). A triangular area
(cluster) is adjacent to a rectangular one, and there are two intertwined circles
(clusters). In both cases, a clustering algorithm would need a very specific
concept of a cluster to successfully detect these clusters. The process of finding
such clusters is called conceptual clustering. However, too sophisticated a
notion of a cluster would take us into the area of pattern recognition, and
thus, we only consider simpler types of clusters in this book.

Road Map

In this chapter, we use the following three simple, but important techniques
to introduce many of the concepts involved in cluster analysis.

• K-means. This is a prototype-based, partitional clustering technique
that attempts to find a user-specified number of clusters (K), which are
represented by their centroids.

• Agglomerative Hierarchical Clustering. This clustering approach
refers to a collection of closely related clustering techniques that produce
a hierarchical clustering by starting with each point as a singleton cluster
and then repeatedly merging the two closest clusters until a single, all-
encompassing cluster remains. Some of these techniques have a natural
interpretation in terms of graph-based clustering, while others have an
interpretation in terms of a prototype-based approach.

• DBSCAN. This is a density-based clustering algorithm that produces
a partitional clustering, in which the number of clusters is automatically
determined by the algorithm. Points in low-density regions are classified
as noise and omitted; thus, DBSCAN does not produce a complete
clustering.

�

M05 TAN9224 02 GE C05 page 316

� �

�

316 Chapter 5 Cluster Analysis: Basic Concepts and Algorithms

(a) Well-separated clusters. Each
point is closer to all of the points in its
cluster than to any point in another
cluster.

(b) Center-based clusters. Each
point is closer to the center of its
cluster than to the center of any
other cluster.

(c) Contiguity-based clusters. Each
point is closer to at least one point
in its cluster than to any point in
another cluster.

(d) Density-based clusters. Clusters
are regions of high density sepa-
rated by regions of low density.

(e) Conceptual clusters. Points in a cluster share some general
property that derives from the entire set of points. (Points in the
intersection of the circles belong to both.)

Figure 5.2. Different types of clusters as illustrated by sets of two-dimensional points.

5.2 K-means

Prototype-based clustering techniques create a one-level partitioning of the
data objects. There are a number of such techniques, but two of the most
prominent are K-means and K-medoid. K-means defines a prototype in terms
of a centroid, which is usually the mean of a group of points, and is typically

�

M05 TAN9224 02 GE C05 page 317

� �

�

5.2 K-means 317

applied to objects in a continuous n-dimensional space. K-medoid defines a
prototype in terms of a medoid, which is the most representative point for a
group of points, and can be applied to a wide range of data since it requires
only a proximity measure for a pair of objects. While a centroid almost never
corresponds to an actual data point, a medoid, by its definition, must be an
actual data point. In this section, we will focus solely on K-means, which is
one of the oldest and most widely-used clustering algorithms.

5.2.1 The Basic K-means Algorithm

The K-means clustering technique is simple, and we begin with a description
of the basic algorithm. We first choose K initial centroids, where K is a user-
specified parameter, namely, the number of clusters desired. Each point is
then assigned to the closest centroid, and each collection of points assigned to
a centroid is a cluster. The centroid of each cluster is then updated based on
the points assigned to the cluster. We repeat the assignment and update steps
until no point changes clusters, or equivalently, until the centroids remain the
same.

K-means is formally described by Algorithm 5.1. The operation of K-means
is illustrated in Figure 5.3, which shows how, starting from three centroids,
the final clusters are found in four assignment-update steps. In these and other
figures displaying K-means clustering, each subfigure shows (1) the centroids
at the start of the iteration and (2) the assignment of the points to those
centroids. The centroids are indicated by the “+” symbol; all points belonging
to the same cluster have the same marker shape.

Algorithm 5.1 Basic K-means algorithm.
1: Select K points as initial centroids.
2: repeat
3: Form K clusters by assigning each point to its closest centroid.
4: Recompute the centroid of each cluster.
5: until Centroids do not change.

In the first step, shown in Figure 5.3(a), points are assigned to the initial
centroids, which are all in the larger group of points. For this example, we use
the mean as the centroid. After points are assigned to a centroid, the centroid
is then updated. Again, the figure for each step shows the centroid at the
beginning of the step and the assignment of points to those centroids. In the
second step, points are assigned to the updated centroids, and the centroids

�

M05 TAN9224 02 GE C05 page 318

� �

�

318 Chapter 5 Cluster Analysis: Basic Concepts and Algorithms

(a) Iteration 1. (b) Iteration 2. (c) Iteration 3. (d) Iteration 4.

Figure 5.3. Using the K-means algorithm to find three clusters in sample data.

are updated again. In steps 2, 3, and 4, which are shown in Figures 5.3 (b),
(c), and (d), respectively, two of the centroids move to the two small groups of
points at the bottom of the figures. When the K-means algorithm terminates
in Figure 5.3(d), because no more changes occur, the centroids have identified
the natural groupings of points.

For a number of combinations of proximity functions and types of cen-
troids, K-means always converges to a solution; i.e., K-means reaches a state
in which no points are shifting from one cluster to another, and hence, the
centroids don’t change. Because most of the convergence occurs in the early
steps, however, the condition on line 5 of Algorithm 5.1 is often replaced by a
weaker condition, e.g., repeat until only 1% of the points change clusters.

We consider each of the steps in the basic K-means algorithm in more detail
and then provide an analysis of the algorithm’s space and time complexity.

Assigning Points to the Closest Centroid

To assign a point to the closest centroid, we need a proximity measure that
quantifies the notion of “closest” for the specific data under consideration.
Euclidean (L2) distance is often used for data points in Euclidean space, while
cosine similarity is more appropriate for documents. However, several types of
proximity measures can be appropriate for a given type of data. For example,
Manhattan (L1) distance can be used for Euclidean data, while the Jaccard
measure is often employed for documents.

Usually, the similarity measures used for K-means are relatively simple
since the algorithm repeatedly calculates the similarity of each point to each
centroid. In some cases, however, such as when the data is in low-dimensional

�

M05 TAN9224 02 GE C05 page 319

� �

�

5.2 K-means 319

Table 5.1. Table of notation.

Symbol Description
x An object.
Ci The ith cluster.
ci The centroid of cluster Ci.
c The centroid of all points.
mi The number of objects in the ith cluster.
m The number of objects in the data set.
K The number of clusters.

Euclidean space, it is possible to avoid computing many of the similarities,
thus significantly speeding up the K-means algorithm. Bisecting K-means
(described in Section 5.2.3) is another approach that speeds up K-means by
reducing the number of similarities computed.

Centroids and Objective Functions

Step 4 of the K-means algorithm was stated rather generally as “recompute
the centroid of each cluster,” since the centroid can vary, depending on the
proximity measure for the data and the goal of the clustering. The goal of
the clustering is typically expressed by an objective function that depends
on the proximities of the points to one another or to the cluster centroids;
e.g., minimize the squared distance of each point to its closest centroid. We
illustrate this with two examples. However, the key point is this: after we have
specified a proximity measure and an objective function, the centroid that we
should choose can often be determined mathematically. We provide mathe-
matical details in Section 5.2.6, and provide a non-mathematical discussion of
this observation here.

Data in Euclidean Space Consider data whose proximity measure is Eu-
clidean distance. For our objective function, which measures the quality of a
clustering, we use the sum of the squared error (SSE), which is also known
as scatter. In other words, we calculate the error of each data point, i.e., its
Euclidean distance to the closest centroid, and then compute the total sum
of the squared errors. Given two different sets of clusters that are produced
by two different runs of K-means, we prefer the one with the smallest squared
error since this means that the prototypes (centroids) of this clustering are
a better representation of the points in their cluster. Using the notation in
Table 5.1, the SSE is formally defined as follows:

�

M05 TAN9224 02 GE C05 page 320

� �

�

320 Chapter 5 Cluster Analysis: Basic Concepts and Algorithms

SSE =
K∑

i=1

∑

x∈Ci

dist(ci,x)2 (5.1)

where dist is the standard Euclidean (L2) distance between two objects in
Euclidean space.

Given these assumptions, it can be shown (see Section 5.2.6) that the
centroid that minimizes the SSE of the cluster is the mean. Using the notation
in Table 5.1, the centroid (mean) of the ith cluster is defined by Equation 5.2.

ci =
1
mi

∑

x∈Ci

x (5.2)

To illustrate, the centroid of a cluster containing the three two-dimensional
points, (1,1), (2,3), and (6,2), is ((1 + 2 + 6)/3, ((1 + 3 + 2)/3) = (3, 2).

Steps 3 and 4 of the K-means algorithm directly attempt to minimize
the SSE (or more generally, the objective function). Step 3 forms clusters
by assigning points to their nearest centroid, which minimizes the SSE for
the given set of centroids. Step 4 recomputes the centroids so as to further
minimize the SSE. However, the actions of K-means in Steps 3 and 4 are
guaranteed to only find a local minimum with respect to the SSE because
they are based on optimizing the SSE for specific choices of the centroids and
clusters, rather than for all possible choices. We will later see an example in
which this leads to a suboptimal clustering.

Document Data To illustrate that K-means is not restricted to data in
Euclidean space, we consider document data and the cosine similarity measure.
Here we assume that the document data is represented as a document-term
matrix as described on page 57. Our objective is to maximize the similarity
of the documents in a cluster to the cluster centroid; this quantity is known
as the cohesion of the cluster. For this objective it can be shown that the
cluster centroid is, as for Euclidean data, the mean. The analogous quantity
to the total SSE is the total cohesion, which is given by Equation 5.3.

Total Cohesion =
K∑

i=1

∑

x∈Ci

cosine(x, ci) (5.3)

The General Case There are a number of choices for the proximity func-
tion, centroid, and objective function that can be used in the basic K-means

�

M05 TAN9224 02 GE C05 page 321

� �

�

5.2 K-means 321

Table 5.2. K-means: Common choices for proximity, centroids, and objective functions.

Proximity Function Centroid Objective Function
Manhattan (L1) median Minimize sum of the L1 distance of an

object to its cluster centroid
Squared Euclidean (L2

2) mean Minimize sum of the squared L2 distance
of an object to its cluster centroid

cosine mean Maximize sum of the cosine similarity of
an object to its cluster centroid

Bregman divergence mean Minimize sum of the Bregman divergence
of an object to its cluster centroid

algorithm and that are guaranteed to converge. Table 5.2 shows some possible
choices, including the two that we have just discussed. Notice that for Man-
hattan (L1) distance and the objective of minimizing the sum of the distances,
the appropriate centroid is the median of the points in a cluster.

The last entry in the table, Bregman divergence (Section 2.4.8), is actually
a class of proximity measures that includes the squared Euclidean distance, L2

2,
the Mahalanobis distance, and cosine similarity. The importance of Bregman
divergence functions is that any such function can be used as the basis of a
K-means style clustering algorithm with the mean as the centroid. Specifically,
if we use a Bregman divergence as our proximity function, then the resulting
clustering algorithm has the usual properties of K-means with respect to con-
vergence, local minima, etc. Furthermore, the properties of such a clustering
algorithm can be developed for all possible Bregman divergences. For example,
K-means algorithms that use cosine similarity or squared Euclidean distance
are particular instances of a general clustering algorithm based on Bregman
divergences.

For the rest of our K-means discussion, we use two-dimensional data since
it is easy to explain K-means and its properties for this type of data. But,
as suggested by the last few paragraphs, K-means is a general clustering
algorithm and can be used with a wide variety of data types, such as documents
and time series.

Choosing Initial Centroids

When random initialization of centroids is used, different runs of K-means
typically produce different total SSEs. We illustrate this with the set of two-
dimensional points shown in Figure 5.3, which has three natural clusters of
points. Figure 5.4(a) shows a clustering solution that is the global minimum of

�

M05 TAN9224 02 GE C05 page 322

� �

�

322 Chapter 5 Cluster Analysis: Basic Concepts and Algorithms

(a) Optimal clustering. (b) Suboptimal clustering.

Figure 5.4. Three optimal and non-optimal clusters.

the SSE for three clusters, while Figure 5.4(b) shows a suboptimal clustering
that is only a local minimum.

Choosing the proper initial centroids is the key step of the basic K-means
procedure. A common approach is to choose the initial centroids randomly,
but the resulting clusters are often poor.

Example 5.1 (Poor Initial Centroids). Randomly selected initial centroids
can be poor. We provide an example of this using the same data set used in
Figures 5.3 and 5.4. Figures 5.3 and 5.5 show the clusters that result from two
particular choices of initial centroids. (For both figures, the positions of the
cluster centroids in the various iterations are indicated by crosses.) In Figure
5.3, even though all the initial centroids are from one natural cluster, the
minimum SSE clustering is still found. In Figure 5.5, however, even though
the initial centroids seem to be better distributed, we obtain a suboptimal
clustering, with higher squared error.

Example 5.2 (Limits of Random Initialization). One technique that is com-
monly used to address the problem of choosing initial centroids is to perform
multiple runs, each with a different set of randomly chosen initial centroids,
and then select the set of clusters with the minimum SSE. While simple, this
strategy might not work very well, depending on the data set and the number
of clusters sought. We demonstrate this using the sample data set shown in
Figure 5.6(a). The data consists of two pairs of clusters, where the clusters in
each (top-bottom) pair are closer to each other than to the clusters in the other
pair. Figure 5.6 (b–d) shows that if we start with two initial centroids per pair
of clusters, then even when both centroids are in a single cluster, the centroids

�

M05 TAN9224 02 GE C05 page 323

� �

�

5.2 K-means 323

(a) Iteration 1. (b) Iteration 2. (c) Iteration 3. (d) Iteration 4.

Figure 5.5. Poor starting centroids for K-means.

will redistribute themselves so that the “true” clusters are found. However,
Figure 5.7 shows that if a pair of clusters has only one initial centroid and the
other pair has three, then two of the true clusters will be combined and one
true cluster will be split.

Note that an optimal clustering will be obtained as long as two initial
centroids fall anywhere in a pair of clusters, since the centroids will redistribute
themselves, one to each cluster. Unfortunately, as the number of clusters
becomes larger, it is increasingly likely that at least one pair of clusters will
have only one initial centroid—see Exercise 4 on page 385. In this case, because
the pairs of clusters are farther apart than clusters within a pair, the K-means
algorithm will not redistribute the centroids between pairs of clusters, and
thus, only a local minimum will be achieved.

Because of the problems with using randomly selected initial centroids,
which even repeated runs might not overcome, other techniques are often
employed for initialization. One effective approach is to take a sample of
points and cluster them using a hierarchical clustering technique. K clusters
are extracted from the hierarchical clustering, and the centroids of those
clusters are used as the initial centroids. This approach often works well, but
is practical only if (1) the sample is relatively small, e.g., a few hundred to
a few thousand (hierarchical clustering is expensive), and (2) K is relatively
small compared to the sample size.

The following procedure is another approach to selecting initial centroids.
Select the first point at random or take the centroid of all points. Then, for
each successive initial centroid, select the point that is farthest from any of the
initial centroids already selected. In this way, we obtain a set of initial centroids

�

M05 TAN9224 02 GE C05 page 324

� �

�

324 Chapter 5 Cluster Analysis: Basic Concepts and Algorithms

(a) Initial points. (b) Iteration 1.

(c) Iteration 2. (d) Iteration 3.

Figure 5.6. Two pairs of clusters with a pair of initial centroids within each pair of clusters.

that is guaranteed to be not only randomly selected but also well separated.
Unfortunately, such an approach can select outliers, rather than points in
dense regions (clusters), which can lead to a situation where many clusters
have just one point—an outlier—which reduces the number of centroids for
forming clusters for the majority of points. Also, it is expensive to compute
the farthest point from the current set of initial centroids. To overcome these
problems, this approach is often applied to a sample of the points. Because
outliers are rare, they tend not to show up in a random sample. In contrast,
points from every dense region are likely to be included unless the sample size
is very small. Also, the computation involved in finding the initial centroids
is greatly reduced because the sample size is typically much smaller than the
number of points.

�

M05 TAN9224 02 GE C05 page 325

� �

�

5.2 K-means 325

(a) Iteration 1. (b) Iteration 2.

(c) Iteration 3. (d) Iteration 4.

Figure 5.7. Two pairs of clusters with more or fewer than two initial centroids within a pair of clusters.

K-means++ More recently, a new approach for initializing K-means, called
K-means++, has been developed. This procedure is guaranteed to find a
K-means clustering solution that is optimal to within a factor of O log(k),
which in practice translates into noticeably better clustering results in terms
of lower SSE. This technique is similar to the idea just discussed of picking
the first centroid at random and then picking each remaining centroid as the
point as far from the remaining centroids as possible. Specifically, K-means++
picks centroids incrementally until k centroids have been picked. At every such
step, each point has a probability of being picked as the new centroid that is
proportional to the square of its distance to its closest centroid. It might seem
that this approach might tend to choose outliers for centroids, but because
outliers are rare, by definition, this is unlikely.

�

M05 TAN9224 02 GE C05 page 326

� �

�

326 Chapter 5 Cluster Analysis: Basic Concepts and Algorithms

The details of K-means++ initialization are given by Algorithm 5.2. The
rest of the algorithm is the same as ordinary K-means.

Algorithm 5.2 K-means++ initialization algorithm.
1: For the first centroid, pick one of the points at random.
2: for i = 1 to number of trials do
3: Compute the distance, d(x), of each point to its closest centroid.
4: Assign each point a probability proportional to each point’s d(x)2.
5: Pick new centroid from the remaining points using the weighted probabilities.
6: end for

Later, we will discuss two other approaches that are also useful for pro-
ducing better-quality (lower SSE) clusterings: using a variant of K-means that
is less susceptible to initialization problems (bisecting K-means) and using
postprocessing to “fix up” the set of clusters produced. K-means++ could be
combined with either approach.

Time and Space Complexity

The space requirements for K-means are modest because only the data points
and centroids are stored. Specifically, the storage required is O((m + K)n),
where m is the number of points and n is the number of attributes. The time
requirements for K-means are also modest—basically linear in the number of
data points. In particular, the time required is O(I×K×m×n), where I is the
number of iterations required for convergence. As mentioned, I is often small
and can usually be safely bounded, as most changes typically occur in the
first few iterations. Therefore, K-means is linear in m, the number of points,
and is efficient as well as simple provided that K, the number of clusters, is
significantly less than m.

5.2.2 K-means: Additional Issues

Handling Empty Clusters

One of the problems with the basic K-means algorithm is that empty clusters
can be obtained if no points are allocated to a cluster during the assignment
step. If this happens, then a strategy is needed to choose a replacement
centroid, since otherwise, the squared error will be larger than necessary. One
approach is to choose the point that is farthest away from any current centroid.
If nothing else, this eliminates the point that currently contributes most to the

�

M05 TAN9224 02 GE C05 page 327

� �

�

5.2 K-means 327

total squared error. (A K-means++ approach could be used as well.) Another
approach is to choose the replacement centroid at random from the cluster
that has the highest SSE. This will typically split the cluster and reduce the
overall SSE of the clustering. If there are several empty clusters, then this
process can be repeated several times.

Outliers

When the squared error criterion is used, outliers can unduly influence the
clusters that are found. In particular, when outliers are present, the resulting
cluster centroids (prototypes) are typically not as representative as they oth-
erwise would be and thus, the SSE will be higher. Because of this, it is often
useful to discover outliers and eliminate them beforehand. It is important,
however, to appreciate that there are certain clustering applications for which
outliers should not be eliminated. When clustering is used for data compres-
sion, every point must be clustered, and in some cases, such as financial
analysis, apparent outliers, e.g., unusually profitable customers, can be the
most interesting points.

An obvious issue is how to identify outliers. A number of techniques for
identifying outliers will be discussed in Chapter 9. If we use approaches that
remove outliers before clustering, we avoid clustering points that will not
cluster well. Alternatively, outliers can also be identified in a postprocessing
step. For instance, we can keep track of the SSE contributed by each point,
and eliminate those points with unusually high contributions, especially over
multiple runs. Also, we often want to eliminate small clusters because they
frequently represent groups of outliers.

Reducing the SSE with Postprocessing

An obvious way to reduce the SSE is to find more clusters, i.e., to use a larger
K. However, in many cases, we would like to improve the SSE, but don’t want
to increase the number of clusters. This is often possible because K-means
typically converges to a local minimum. Various techniques are used to “fix up”
the resulting clusters in order to produce a clustering that has lower SSE. The
strategy is to focus on individual clusters since the total SSE is simply the sum
of the SSE contributed by each cluster. (We will use the terms total SSE and
cluster SSE, respectively, to avoid any potential confusion.) We can change the
total SSE by performing various operations on the clusters, such as splitting or
merging clusters. One commonly used approach is to employ alternate cluster
splitting and merging phases. During a splitting phase, clusters are divided,

�

M05 TAN9224 02 GE C05 page 328

� �

�

328 Chapter 5 Cluster Analysis: Basic Concepts and Algorithms

while during a merging phase, clusters are combined. In this way, it is often
possible to escape local SSE minima and still produce a clustering solution
with the desired number of clusters. The following are some techniques used
in the splitting and merging phases.

Two strategies that decrease the total SSE by increasing the number of
clusters are the following:

Split a cluster: The cluster with the largest SSE is usually chosen, but we
could also split the cluster with the largest standard deviation for one
particular attribute.

Introduce a new cluster centroid: Often the point that is farthest from
any cluster center is chosen. We can easily determine this if we keep
track of the SSE contributed by each point. Another approach is to
choose randomly from all points or from the points with the highest
SSE with respect to their closest centroids.

Two strategies that decrease the number of clusters, while trying to mini-
mize the increase in total SSE, are the following:

Disperse a cluster: This is accomplished by removing the centroid that
corresponds to the cluster and reassigning the points to other clusters.
Ideally, the cluster that is dispersed should be the one that increases the
total SSE the least.

Merge two clusters: The clusters with the closest centroids are typically
chosen, although another, perhaps better, approach is to merge the two
clusters that result in the smallest increase in total SSE. These two
merging strategies are the same ones that are used in the hierarchical
clustering techniques known as the centroid method and Ward’s method,
respectively. Both methods are discussed in Section 5.3.

Updating Centroids Incrementally

Instead of updating cluster centroids after all points have been assigned to a
cluster, the centroids can be updated incrementally, after each assignment of
a point to a cluster. Notice that this requires either zero or two updates to
cluster centroids at each step, since a point either moves to a new cluster (two
updates) or stays in its current cluster (zero updates). Using an incremental
update strategy guarantees that empty clusters are not produced because all

�

M05 TAN9224 02 GE C05 page 329

� �

�

5.2 K-means 329

clusters start with a single point, and if a cluster ever has only one point, then
that point will always be reassigned to the same cluster.

In addition, if incremental updating is used, the relative weight of the point
being added can be adjusted; e.g., the weight of points is often decreased as
the clustering proceeds. While this can result in better accuracy and faster
convergence, it can be difficult to make a good choice for the relative weight,
especially in a wide variety of situations. These update issues are similar to
those involved in updating weights for artificial neural networks.

Yet another benefit of incremental updates has to do with using objectives
other than “minimize SSE.” Suppose that we are given an arbitrary objective
function to measure the goodness of a set of clusters. When we process an
individual point, we can compute the value of the objective function for
each possible cluster assignment, and then choose the one that optimizes the
objective. Specific examples of alternative objective functions are given in
Section 5.5.2.

On the negative side, updating centroids incrementally introduces an order
dependency. In other words, the clusters produced usually depend on the
order in which the points are processed. Although this can be addressed by
randomizing the order in which the points are processed, the basic K-means
approach of updating the centroids after all points have been assigned to
clusters has no order dependency. Also, incremental updates are slightly more
expensive. However, K-means converges rather quickly, and therefore, the
number of points switching clusters quickly becomes relatively small.

5.2.3 Bisecting K-means

The bisecting K-means algorithm is a straightforward extension of the basic
K-means algorithm that is based on a simple idea: to obtain K clusters, split
the set of all points into two clusters, select one of these clusters to split, and
so on, until K clusters have been produced. The details of bisecting K-means
are given by Algorithm 5.3.

There are a number of different ways to choose which cluster to split. We
can choose the largest cluster at each step, choose the one with the largest
SSE, or use a criterion based on both size and SSE. Different choices result in
different clusters.

Because we are using the K-means algorithm “locally,” i.e., to bisect in-
dividual clusters, the final set of clusters does not represent a clustering that
is a local minimum with respect to the total SSE. Thus, we often refine the
resulting clusters by using their cluster centroids as the initial centroids for
the standard K-means algorithm.

�

M05 TAN9224 02 GE C05 page 330

� �

�

330 Chapter 5 Cluster Analysis: Basic Concepts and Algorithms

Algorithm 5.3 Bisecting K-means algorithm.
1: Initialize the list of clusters to contain the cluster consisting of all points.
2: repeat
3: Remove a cluster from the list of clusters.
4: {Perform several “trial” bisections of the chosen cluster.}
5: for i = 1 to number of trials do
6: Bisect the selected cluster using basic K-means.
7: end for
8: Select the two clusters from the bisection with the lowest total SSE.
9: Add these two clusters to the list of clusters.

10: until The list of clusters contains K clusters.

(a) Iteration 1. (b) Iteration 2. (c) Iteration 3.

Figure 5.8. Bisecting K-means on the four clusters example.

Example 5.3 (Bisecting K-means and Initialization). To illustrate that bi-
secting K-means is less susceptible to initialization problems, we show, in
Figure 5.8, how bisecting K-means finds four clusters in the data set originally
shown in Figure 5.6(a). In iteration 1, two pairs of clusters are found; in
iteration 2, the rightmost pair of clusters is split; and in iteration 3, the
leftmost pair of clusters is split. Bisecting K-means has less trouble with
initialization because it performs several trial bisections and takes the one
with the lowest SSE, and because there are only two centroids at each step.

Finally, by recording the sequence of clusterings produced as K-means
bisects clusters, we can also use bisecting K-means to produce a hierarchical
clustering.

5.2.4 K-means and Different Types of Clusters

K-means and its variations have a number of limitations with respect to finding
different types of clusters. In particular, K-means has difficulty detecting the

�

M05 TAN9224 02 GE C05 page 331

� �

�

5.2 K-means 331

“natural” clusters, when clusters have non-spherical shapes or widely different
sizes or densities. This is illustrated by Figures 5.9, 5.10, and 5.11. In Figure
5.9, K-means cannot find the three natural clusters because one of the clusters
is much larger than the other two, and hence, the larger cluster is broken, while
one of the smaller clusters is combined with a portion of the larger cluster.
In Figure 5.10, K-means fails to find the three natural clusters because the
two smaller clusters are much denser than the larger cluster. Finally, in Figure
5.11, K-means finds two clusters that mix portions of the two natural clusters
because the shape of the natural clusters is not globular.

The difficulty in these three situations is that the K-means objective
function is a mismatch for the kinds of clusters we are trying to find because it
is minimized by globular clusters of equal size and density or by clusters that
are well separated. However, these limitations can be overcome, in some sense,
if the user is willing to accept a clustering that breaks the natural clusters into
a number of subclusters. Figure 5.12 shows what happens to the three previous
data sets if we find six clusters instead of two or three. Each smaller cluster is
pure in the sense that it contains only points from one of the natural clusters.

5.2.5 Strengths and Weaknesses

K-means is simple and can be used for a wide variety of data types. It is also
quite efficient, even though multiple runs are often performed. Some variants,
including bisecting K-means, are even more efficient, and are less suscepti-
ble to initialization problems. K-means is not suitable for all types of data,
however. It cannot handle non-globular clusters or clusters of different sizes
and densities, although it can typically find pure subclusters if a large enough
number of clusters is specified. K-means also has trouble clustering data that
contains outliers. Outlier detection and removal can help significantly in such
situations. Finally, K-means is restricted to data for which there is a notion of
a center (centroid). A related technique, K-medoid clustering, does not have
this restriction, but is more expensive.

5.2.6 K-means as an Optimization Problem

Here, we delve into the mathematics behind K-means. This section, which can
be skipped without loss of continuity, requires knowledge of calculus through
partial derivatives. Familiarity with optimization techniques, especially those
based on gradient descent, can also be helpful.

As mentioned earlier, given an objective function such as “minimize SSE,”
clustering can be treated as an optimization problem. One way to solve this

�

M05 TAN9224 02 GE C05 page 332

� �

�

332 Chapter 5 Cluster Analysis: Basic Concepts and Algorithms

(a) Original points. (b) Three K-means clusters.

Figure 5.9. K-means with clusters of different size.

(a) Original points. (b) Three K-means clusters.

Figure 5.10. K-means with clusters of different density.

(a) Original points. (b) Two K-means clusters.

Figure 5.11. K-means with non-globular clusters.

�

M05 TAN9224 02 GE C05 page 333

� �

�

5.2 K-means 333

(a) Unequal sizes.

(b) Unequal densities.

(c) Non-spherical shapes.

Figure 5.12. Using K-means to find clusters that are subclusters of the natural clusters.

�

M05 TAN9224 02 GE C05 page 334

� �

�

334 Chapter 5 Cluster Analysis: Basic Concepts and Algorithms

problem—to find a global optimum—is to enumerate all possible ways of
dividing the points into clusters and then choose the set of clusters that
best satisfies the objective function, e.g., that minimizes the total SSE. Of
course, this exhaustive strategy is computationally infeasible and as a result,
a more practical approach is needed, even if such an approach finds solutions
that are not guaranteed to be optimal. One technique, which is known as
gradient descent, is based on picking an initial solution and then repeating
the following two steps: compute the change to the solution that best optimizes
the objective function and then update the solution.

We assume that the data is one-dimensional, i.e., dist(x, y) = (x − y)2.
This does not change anything essential, but greatly simplifies the notation.

Derivation of K-means as an Algorithm to Minimize the SSE

In this section, we show how the centroid for the K-means algorithm can be
mathematically derived when the proximity function is Euclidean distance
and the objective is to minimize the SSE. Specifically, we investigate how we
can best update a cluster centroid so that the cluster SSE is minimized. In
mathematical terms, we seek to minimize Equation 5.1, which we repeat here,
specialized for one-dimensional data.

SSE =
K∑

i=1

∑

x∈Ci

(ci − x)2 (5.4)

Here, Ci is the ith cluster, x is a point in Ci, and ci is the mean of the ith

cluster. See Table 5.1 for a complete list of notation.
We can solve for the kth centroid ck, which minimizes Equation 5.4, by

differentiating the SSE, setting it equal to 0, and solving, as indicated below.

∂

∂ck
SSE =

∂

∂ck

K∑

i=1

∑

x∈Ci

(ci − x)2

=
K∑

i=1

∑

x∈Ci

∂

∂ck
(ci − x)2

=
∑

x∈Ck

2× (ck − xk) = 0

∑

x∈Ck

2× (ck − xk) = 0⇒ mkck =
∑

x∈Ck

xk ⇒ ck =
1
mk

∑

x∈Ck

xk

�

M05 TAN9224 02 GE C05 page 335

� �

�

5.2 K-means 335

Thus, as previously indicated, the best centroid for minimizing the SSE of
a cluster is the mean of the points in the cluster.

Derivation of K-means for SAE

To demonstrate that the K-means algorithm can be applied to a variety of
different objective functions, we consider how to partition the data into K
clusters such that the sum of the Manhattan (L1) distances of points from the
center of their clusters is minimized. We are seeking to minimize the sum of
the L1 absolute errors (SAE) as given by the following equation, where distL1

is the L1 distance. Again, for notational simplicity, we use one-dimensional
data, i.e., distL1 = |ci − x|.

SAE =
K∑

i=1

∑

x∈Ci

distL1(ci, x) (5.5)

We can solve for the kth centroid ck, which minimizes Equation 5.5, by
differentiating the SAE, setting it equal to 0, and solving.

∂

∂ck
SAE =

∂

∂ck

K∑

i=1

∑

x∈Ci

|ci − x|

=
K∑

i=1

∑

x∈Ci

∂

∂ck
|ci − x|

=
∑

x∈Ck

∂

∂ck
|ck − x| = 0

∑

x∈Ck

∂

∂ck
|ck − x| = 0⇒

∑

x∈Ck

sign(x− ck) = 0

If we solve for ck, we find that ck = median{x ∈ Ck}, the median of the
points in the cluster. The median of a group of points is straightforward to
compute and less susceptible to distortion by outliers.

�

M05 TAN9224 02 GE C05 page 336

� �

�

336 Chapter 5 Cluster Analysis: Basic Concepts and Algorithms

p1 p2 p3 p4

(a) Dendrogram.

p1

p2

p3 p4

(b) Nested cluster diagram.

Figure 5.13. A hierarchical clustering of four points shown as a dendrogram and as nested clusters.

5.3 Agglomerative Hierarchical Clustering

Hierarchical clustering techniques are a second important category of cluster-
ing methods. As with K-means, these approaches are relatively old compared
to many clustering algorithms, but they still enjoy widespread use. There are
two basic approaches for generating a hierarchical clustering:

Agglomerative: Start with the points as individual clusters and, at each
step, merge the closest pair of clusters. This requires defining a notion
of cluster proximity.

Divisive: Start with one, all-inclusive cluster and, at each step, split a cluster
until only singleton clusters of individual points remain. In this case, we
need to decide which cluster to split at each step and how to do the
splitting.

Agglomerative hierarchical clustering techniques are by far the most common,
and, in this section, we will focus exclusively on these methods. A divisive
hierarchical clustering technique is described in Section 8.4.2.

A hierarchical clustering is often displayed graphically using a tree-like
diagram called a dendrogram, which displays both the cluster-subcluster
relationships and the order in which the clusters were merged (agglomerative
view) or split (divisive view). For sets of two-dimensional points, such as those
that we will use as examples, a hierarchical clustering can also be graphically
represented using a nested cluster diagram. Figure 5.13 shows an example of
these two types of figures for a set of four two-dimensional points. These points
were clustered using the single-link technique that is described in Section 5.3.2.

�

M05 TAN9224 02 GE C05 page 337

� �

�

5.3 Agglomerative Hierarchical Clustering 337

5.3.1 Basic Agglomerative Hierarchical Clustering Algorithm

Many agglomerative hierarchical clustering techniques are variations on a sin-
gle approach: starting with individual points as clusters, successively merge the
two closest clusters until only one cluster remains. This approach is expressed
more formally in Algorithm 5.4.

Algorithm 5.4 Basic agglomerative hierarchical clustering algorithm.
1: Compute the proximity matrix, if necessary.
2: repeat
3: Merge the closest two clusters.
4: Update the proximity matrix to reflect the proximity between the new

cluster and the original clusters.
5: until Only one cluster remains.

Defining Proximity between Clusters

The key operation of Algorithm 5.4 is the computation of the proximity
between two clusters, and it is the definition of cluster proximity that dif-
ferentiates the various agglomerative hierarchical techniques that we will dis-
cuss. Cluster proximity is typically defined with a particular type of cluster
in mind—see Section 5.1.3. For example, many agglomerative hierarchical
clustering techniques, such as MIN, MAX, and Group Average, come from a
graph-based view of clusters. MIN defines cluster proximity as the proximity
between the closest two points that are in different clusters, or using graph
terms, the shortest edge between two nodes in different subsets of nodes.
This yields contiguity-based clusters as shown in Figure 5.2(c). Alternatively,
MAX takes the proximity between the farthest two points in different clusters
to be the cluster proximity, or using graph terms, the longest edge between
two nodes in different subsets of nodes. (If our proximities are distances, then
the names, MIN and MAX, are short and suggestive. For similarities, however,
where higher values indicate closer points, the names seem reversed. For that
reason, we usually prefer to use the alternative names, single link and com-
plete link, respectively.) Another graph-based approach, the group average
technique, defines cluster proximity to be the average pairwise proximities
(average length of edges) of all pairs of points from different clusters. Figure
5.14 illustrates these three approaches.

�

M05 TAN9224 02 GE C05 page 338

� �

�

338 Chapter 5 Cluster Analysis: Basic Concepts and Algorithms

(a) MIN (single link). (b) MAX (complete link). (c) Group average.

Figure 5.14. Graph-based definitions of cluster proximity.

If, instead, we take a prototype-based view, in which each cluster is rep-
resented by a centroid, different definitions of cluster proximity are more
natural. When using centroids, the cluster proximity is commonly defined
as the proximity between cluster centroids. An alternative technique, Ward’s
method, also assumes that a cluster is represented by its centroid, but it
measures the proximity between two clusters in terms of the increase in the
SSE that results from merging the two clusters. Like K-means, Ward’s method
attempts to minimize the sum of the squared distances of points from their
cluster centroids.

Time and Space Complexity

The basic agglomerative hierarchical clustering algorithm just presented uses
a proximity matrix. This requires the storage of 1

2m
2 proximities (assuming

the proximity matrix is symmetric) where m is the number of data points.
The space needed to keep track of the clusters is proportional to the number
of clusters, which is m−1, excluding singleton clusters. Hence, the total space
complexity is O(m2).

The analysis of the basic agglomerative hierarchical clustering algorithm
is also straightforward with respect to computational complexity. O(m2) time
is required to compute the proximity matrix. After that step, there are m− 1
iterations involving steps 3 and 4 because there are m clusters at the start and
two clusters are merged during each iteration. If performed as a linear search of
the proximity matrix, then for the ith iteration, Step 3 requires O((m−i+1)2)
time, which is proportional to the current number of clusters squared. Step 4
requires O(m − i + 1) time to update the proximity matrix after the merger
of two clusters. (A cluster merger affects O(m − i + 1) proximities for the
techniques that we consider.) Without modification, this would yield a time
complexity of O(m3). If the distances from each cluster to all other clusters
are stored as a sorted list (or heap), it is possible to reduce the cost of finding

�

M05 TAN9224 02 GE C05 page 339

� �

�

5.3 Agglomerative Hierarchical Clustering 339

the two closest clusters to O(m − i + 1). However, because of the additional
complexity of keeping data in a sorted list or heap, the overall time required
for a hierarchical clustering based on Algorithm 5.4 is O(m2 logm).

The space and time complexity of hierarchical clustering severely limits the
size of data sets that can be processed. We discuss scalability approaches for
clustering algorithms, including hierarchical clustering techniques, in Section
8.5. Note, however, that the bisecting K-means algorithm presented in Section
5.2.3 is a scalable algorithm that produces a hierarchical clustering.

5.3.2 Specific Techniques

Sample Data

To illustrate the behavior of the various hierarchical clustering algorithms,
we will use sample data that consists of six two-dimensional points, which are
shown in Figure 5.15. The x and y coordinates of the points and the Euclidean
distances between them are shown in Tables 5.3 and 5.4, respectively.

0.6

0.5

0.4

0.3

0.2

0.1

0

5
2

3

4

6

1

0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 5.15. Set of six two-dimensional points.

Point x Coordinate y Coordinate
p1 0.4005 0.5306
p2 0.2148 0.3854
p3 0.3457 0.3156
p4 0.2652 0.1875
p5 0.0789 0.4139
p6 0.4548 0.3022

Table 5.3. xy-coordinates of six points.

p1 p2 p3 p4 p5 p6
p1 0.00 0.24 0.22 0.37 0.34 0.23
p2 0.24 0.00 0.15 0.20 0.14 0.25
p3 0.22 0.15 0.00 0.15 0.28 0.11
p4 0.37 0.20 0.15 0.00 0.29 0.22
p5 0.34 0.14 0.28 0.29 0.00 0.39
p6 0.23 0.25 0.11 0.22 0.39 0.00

Table 5.4. Euclidean distance matrix for six points.

�

M05 TAN9224 02 GE C05 page 340

� �

�

340 Chapter 5 Cluster Analysis: Basic Concepts and Algorithms

Single Link or MIN

For the single link or MIN version of hierarchical clustering, the proximity
of two clusters is defined as the minimum of the distance (maximum of the
similarity) between any two points in the two different clusters. Using graph
terminology, if you start with all points as singleton clusters and add links
between points one at a time, shortest links first, then these single links
combine the points into clusters. The single link technique is good at handling
non-elliptical shapes, but is sensitive to noise and outliers.

Example 5.4 (Single Link). Figure 5.16 shows the result of applying the
single link technique to our example data set of six points. Figure 5.16(a)
shows the nested clusters as a sequence of nested ellipses, where the numbers
associated with the ellipses indicate the order of the clustering. Figure 5.16(b)
shows the same information, but as a dendrogram. The height at which two
clusters are merged in the dendrogram reflects the distance of the two clusters.
For instance, from Table 5.4, we see that the distance between points 3 and
6 is 0.11, and that is the height at which they are joined into one cluster in
the dendrogram. As another example, the distance between clusters {3, 6} and
{2, 5} is given by

dist({3, 6}, {2, 5}) = min(dist(3, 2), dist(6, 2), dist(3, 5), dist(6, 5))
= min(0.15, 0.25, 0.28, 0.39)
= 0.15.

Complete Link or MAX or CLIQUE

For the complete link or MAX version of hierarchical clustering, the proximity
of two clusters is defined as the maximum of the distance (minimum of the
similarity) between any two points in the two different clusters. Using graph
terminology, if you start with all points as singleton clusters and add links
between points one at a time, shortest links first, then a group of points is
not a cluster until all the points in it are completely linked, i.e., form a clique.
Complete link is less susceptible to noise and outliers, but it can break large
clusters and it favors globular shapes.

Example 5.5 (Complete Link). Figure 5.17 shows the results of applying
MAX to the sample data set of six points. As with single link, points 3 and 6

�

M05 TAN9224 02 GE C05 page 341

� �

�

5.3 Agglomerative Hierarchical Clustering 341

6

4

5
2

1

3

32

4

5

1

(a) Single link clustering.

0.2

0.15

0.1

0.05

0
3 6 2 5 4 1

(b) Single link dendrogram.

Figure 5.16. Single link clustering of the six points shown in Figure 5.15.

are merged first. However, {3, 6} is merged with {4}, instead of {2, 5} or {1}
because

dist({3, 6}, {4}) = max(dist(3, 4), dist(6, 4))
= max(0.15, 0.22)
= 0.22.

dist({3, 6}, {2, 5}) = max(dist(3, 2), dist(6, 2), dist(3, 5), dist(6, 5))
= max(0.15, 0.25, 0.28, 0.39)
= 0.39.

dist({3, 6}, {1}) = max(dist(3, 1), dist(6, 1))
= max(0.22, 0.23)
= 0.23.

Group Average

For the group average version of hierarchical clustering, the proximity of
two clusters is defined as the average pairwise proximity among all pairs of
points in the different clusters. This is an intermediate approach between
the single and complete link approaches. Thus, for group average, the cluster

�

M05 TAN9224 02 GE C05 page 342

� �

�

342 Chapter 5 Cluster Analysis: Basic Concepts and Algorithms

6

4

5
2

1

3
3

2

4

5

1

(a) Complete link clustering.

0.4

0.3

0.2

0.1

0
3 6 4 1 2 5

(b) Complete link dendrogram.

Figure 5.17. Complete link clustering of the six points shown in Figure 5.15.

proximity proximity(Ci, Cj) of clusters Ci and Cj , which are of size mi and
mj , respectively, is expressed by the following equation:

proximity(Ci, Cj) =

∑
x∈Ci
y∈Cj

proximity(x,y)

mi ×mj
. (5.6)

Example 5.6 (Group Average). Figure 5.18 shows the results of applying
the group average approach to the sample data set of six points. To illustrate
how group average works, we calculate the distance between some clusters.

dist({3, 6, 4}, {1}) = (0.22 + 0.37 + 0.23)/(3× 1)
= 0.28

dist({2, 5}, {1}) = (0.24 + 0.34)/(2× 1)
= 0.29

dist({3, 6, 4}, {2, 5}) = (0.15 + 0.28 + 0.25 + 0.39 + 0.20 + 0.29)/(3× 2)
= 0.26

Because dist({3, 6, 4}, {2, 5}) is smaller than dist({3, 6, 4}, {1}) and dist({2, 5}, {1}),
clusters {3, 6, 4} and {2, 5} are merged at the fourth stage.

�

M05 TAN9224 02 GE C05 page 343

� �

�

5.3 Agglomerative Hierarchical Clustering 343

6

4

5
2

1

3
3

2

4

5

1

(a) Group average clustering.

0.2

0.25

0.1

0

0.15

0.05

3 6 4 2 5 1

(b) Group average dendrogram.

Figure 5.18. Group average clustering of the six points shown in Figure 5.15.

6

5
2

1

3

3

2

4
5

1

4

(a) Ward’s clustering.

0.2

0.25

0.1

0

0.15

0.05

3 6 4 1 2 5

(b) Ward’s dendrogram.

Figure 5.19. Ward’s clustering of the six points shown in Figure 5.15.

Ward’s Method and Centroid Methods

For Ward’s method, the proximity between two clusters is defined as the
increase in the squared error that results when two clusters are merged. Thus,
this method uses the same objective function as K-means clustering. While it
might seem that this feature makes Ward’s method somewhat distinct from
other hierarchical techniques, it can be shown mathematically that Ward’s

�

M05 TAN9224 02 GE C05 page 344

� �

�

344 Chapter 5 Cluster Analysis: Basic Concepts and Algorithms

method is very similar to the group average method when the proximity
between two points is taken to be the square of the distance between them.

Example 5.7 (Ward’s Method). Figure 5.19 shows the results of applying
Ward’s method to the sample data set of six points. The clustering that is
produced is different from those produced by single link, complete link, and
group average.

Centroid methods calculate the proximity between two clusters by calcu-
lating the distance between the centroids of clusters. These techniques may
seem similar to K-means, but as we have remarked, Ward’s method is the
correct hierarchical analog.

Centroid methods also have a characteristic—often considered bad—that
is not possessed by the other hierarchical clustering techniques that we have
discussed: the possibility of inversions. Specifically, two clusters that are
merged can be more similar (less distant) than the pair of clusters that were
merged in a previous step. For the other methods, the distance between merged
clusters monotonically increases (or is, at worst, non-increasing) as we proceed
from singleton clusters to one all-inclusive cluster.

5.3.3 The Lance-Williams Formula for Cluster Proximity

Any of the cluster proximities that we have discussed in this section can be
viewed as a choice of different parameters (in the Lance-Williams formula
shown below in Equation 5.7) for the proximity between clusters Q and R,
where R is formed by merging clusters A and B. In this equation, p(., .) is
a proximity function, while mA, mB, and mQ are the number of points in
clusters A, B, and Q, respectively. In other words, after we merge clusters A
and B to form cluster R, the proximity of the new cluster, R, to an existing
cluster, Q, is a linear function of the proximities of Q with respect to the
original clusters A and B. Table 5.5 shows the values of these coefficients for
the techniques that we have discussed.

p(R,Q) = αA p(A,Q) +αB p(B,Q) + β p(A,B) + γ |p(A,Q)− p(B,Q)| (5.7)

Any hierarchical clustering technique that can be expressed using the
Lance-Williams formula does not need to keep the original data points. In-
stead, the proximity matrix is updated as clustering occurs. While a general
formula is appealing, especially for implementation, it is easier to understand
the different hierarchical methods by looking directly at the definition of
cluster proximity that each method uses.

�

M05 TAN9224 02 GE C05 page 345

� �

�

5.3 Agglomerative Hierarchical Clustering 345

Table 5.5. Table of Lance-Williams coefficients for common hierarchical clustering approaches.

Clustering Method αA αB β γ

Single Link 1/2 1/2 0 −1/2
Complete Link 1/2 1/2 0 1/2
Group Average mA

mA+mB

mB

mA+mB
0 0

Centroid mA

mA+mB

mB

mA+mB

−mAmB

(mA+mB)2 0
Ward’s mA+mQ

mA+mB+mQ

mB+mQ

mA+mB+mQ

−mQ

mA+mB+mQ
0

5.3.4 Key Issues in Hierarchical Clustering

Lack of a Global Objective Function

We previously mentioned that agglomerative hierarchical clustering cannot be
viewed as globally optimizing an objective function. Instead, agglomerative
hierarchical clustering techniques use various criteria to decide locally, at each
step, which clusters should be merged (or split for divisive approaches). This
approach yields clustering algorithms that avoid the difficulty of attempting
to solve a hard combinatorial optimization problem. (It can be shown that
the general clustering problem for an objective function such as “minimize
SSE” is computationally infeasible.) Furthermore, such approaches do not
have difficulties in choosing initial points. Nonetheless, the time complexity
of O(m2 logm) and the space complexity of O(m2) are prohibitive in many
cases.

Ability to Handle Different Cluster Sizes

One aspect of agglomerative hierarchical clustering that we have not yet
discussed is how to treat the relative sizes of the pairs of clusters that are
merged. (This discussion applies only to cluster proximity schemes that involve
sums, such as centroid, Ward’s, and group average.) There are two approaches:
weighted, which treats all clusters equally, and unweighted, which takes the
number of points in each cluster into account. Note that the terminology of
weighted or unweighted refers to the data points, not the clusters. In other
words, treating clusters of unequal size equally—the weighted approach—gives
different weights to the points in different clusters, while taking the cluster
size into account—the unweighted approach—gives points in different clusters
the same weight.

We will illustrate this using the group average technique discussed in
Section 5.3.2, which is the unweighted version of the group average technique.
In the clustering literature, the full name of this approach is the Unweighted

�

M05 TAN9224 02 GE C05 page 346

� �

�

346 Chapter 5 Cluster Analysis: Basic Concepts and Algorithms

Pair Group Method using Arithmetic averages (UPGMA). In Table 5.5, which
gives the formula for updating cluster similarity, the coefficients for UPGMA
involve the size,mA andmB of each of the clusters, A and B that were merged:
αA = mA/(mA +mB), αB = mB/(mA +mB), β = 0, γ = 0. For the weighted
version of group average—known as WPGMA—the coefficients are constants
that are independent of the cluster sizes: αA = 1/2, αB = 1/2, β = 0, γ = 0. In
general, unweighted approaches are preferred unless there is reason to believe
that individual points should have different weights; e.g., perhaps classes of
objects have been unevenly sampled.

Merging Decisions Are Final

Agglomerative hierarchical clustering algorithms tend to make good local
decisions about combining two clusters because they can use information
about the pairwise similarity of all points. However, once a decision is made
to merge two clusters, it cannot be undone at a later time. This approach
prevents a local optimization criterion from becoming a global optimization
criterion. For example, although the “minimize squared error” criterion from
K-means is used in deciding which clusters to merge in Ward’s method, the
clusters at each level do not represent local minima with respect to the total
SSE. Indeed, the clusters are not even stable, in the sense that a point in one
cluster can be closer to the centroid of some other cluster than it is to the
centroid of its current cluster. Nonetheless, Ward’s method is often used as
a robust method of initializing a K-means clustering, indicating that a local
“minimize squared error” objective function does have a connection to a global
“minimize squared error” objective function.

There are some techniques that attempt to overcome the limitation that
merges are final. One approach attempts to fix up the hierarchical clustering
by moving branches of the tree around so as to improve a global objective
function. Another approach uses a partitional clustering technique such as K-
means to create many small clusters, and then performs hierarchical clustering
using these small clusters as the starting point.

5.3.5 Outliers

Outliers pose the most serious problems for Ward’s method and centroid-based
hierarchical clustering approaches because they increase SSE and distort cen-
troids. For clustering approaches, such as single link, complete link, and group
average, outliers are potentially less problematic. As hierarchical clustering
proceeds for these algorithms, outliers or small groups of outliers tend to form

�

M05 TAN9224 02 GE C05 page 347

� �

�

5.4 DBSCAN 347

singleton or small clusters that do not merge with any other clusters until
much later in the merging process. By discarding singleton or small clusters
that are not merging with other clusters, outliers can be removed.

5.3.6 Strengths and Weaknesses

The strengths and weaknesses of specific agglomerative hierarchical clustering
algorithms were discussed above. More generally, such algorithms are typically
used because the underlying application, e.g., creation of a taxonomy, requires
a hierarchy. Also, some studies have suggested that these algorithms can
produce better-quality clusters. However, agglomerative hierarchical clustering
algorithms are expensive in terms of their computational and storage require-
ments. The fact that all merges are final can also cause trouble for noisy,
high-dimensional data, such as document data. In turn, these two problems
can be addressed to some degree by first partially clustering the data using
another technique, such as K-means.

5.4 DBSCAN

Density-based clustering locates regions of high density that are separated
from one another by regions of low density. DBSCAN is a simple and effective
density-based clustering algorithm that illustrates a number of important
concepts that are important for any density-based clustering approach. In
this section, we focus solely on DBSCAN after first considering the key notion
of density. Other algorithms for finding density-based clusters are described
in the next chapter.

5.4.1 Traditional Density: Center-Based Approach

Although there are not as many approaches for defining density as there are for
defining similarity, there are several distinct methods. In this section we discuss
the center-based approach on which DBSCAN is based. Other definitions of
density will be presented in Chapter 8.

In the center-based approach, density is estimated for a particular point
in the data set by counting the number of points within a specified radius,
Eps, of that point. This includes the point itself. This technique is graphically
illustrated by Figure 5.20. The number of points within a radius of Eps of
point A is 7, including A itself.

This method is simple to implement, but the density of any point will
depend on the specified radius. For instance, if the radius is large enough,

�

M05 TAN9224 02 GE C05 page 348

� �

�

348 Chapter 5 Cluster Analysis: Basic Concepts and Algorithms

A

Eps

Figure 5.20. Center-based
density.

C

noise point

B

border point

A

core point

Eps
Eps

Eps

Figure 5.21. Core, border, and noise points.

then all points will have a density of m, the number of points in the data set.
Likewise, if the radius is too small, then all points will have a density of 1.
An approach for deciding on the appropriate radius for low-dimensional data
is given in the next section in the context of our discussion of DBSCAN.

Classification of Points According to Center-Based Density

The center-based approach to density allows us to classify a point as being (1)
in the interior of a dense region (a core point), (2) on the edge of a dense region
(a border point), or (3) in a sparsely occupied region (a noise or background
point). Figure 5.21 graphically illustrates the concepts of core, border, and
noise points using a collection of two-dimensional points. The following text
provides a more precise description.

Core points: These points are in the interior of a density-based cluster. A
point is a core point if there are at least MinPts within a distance of
Eps, where MinPts and Eps are user-specified parameters. In Figure
5.21, point A is a core point for the radius (Eps) if MinPts ≥ 7.

Border points: A border point is not a core point, but falls within the
neighborhood of a core point. In Figure 5.21, point B is a border point.
A border point can fall within the neighborhoods of several core points.

Noise points: A noise point is any point that is neither a core point nor a
border point. In Figure 5.21, point C is a noise point.

�

M05 TAN9224 02 GE C05 page 349

� �

�

5.4 DBSCAN 349

5.4.2 The DBSCAN Algorithm

Given the previous definitions of core points, border points, and noise points,
the DBSCAN algorithm can be informally described as follows. Any two core
points that are close enough—within a distance Eps of one another—are put
in the same cluster. Likewise, any border point that is close enough to a core
point is put in the same cluster as the core point. (Ties need to be resolved if
a border point is close to core points from different clusters.) Noise points are
discarded. The formal details are given in Algorithm 5.5. This algorithm uses
the same concepts and finds the same clusters as the original DBSCAN, but
is optimized for simplicity, not efficiency.

Algorithm 5.5 DBSCAN algorithm.
1: Label all points as core, border, or noise points.
2: Eliminate noise points.
3: Put an edge between all core points within a distance Eps of each other.
4: Make each group of connected core points into a separate cluster.
5: Assign each border point to one of the clusters of its associated core points.

Time and Space Complexity

The basic time complexity of the DBSCAN algorithm is O(m × time to
find points in the Eps-neighborhood), where m is the number of points.
In the worst case, this complexity is O(m2). However, in low-dimensional
spaces (especially 2D space), data structures such as kd-trees allow efficient
retrieval of all points within a given distance of a specified point, and the
time complexity can be as low as O(m logm) in the average case. The space
requirement of DBSCAN, even for high-dimensional data, is O(m) because it
is necessary to keep only a small amount of data for each point, i.e., the cluster
label and the identification of each point as a core, border, or noise point.

Selection of DBSCAN Parameters

There is, of course, the issue of how to determine the parameters Eps and
MinPts. The basic approach is to look at the behavior of the distance from
a point to its kth nearest neighbor, which we will call the k-dist. For points
that belong to some cluster, the value of k-dist will be small if k is not larger
than the cluster size. Note that there will be some variation, depending on the
density of the cluster and the random distribution of points, but on average,

�

M05 TAN9224 02 GE C05 page 350

� �

�

350 Chapter 5 Cluster Analysis: Basic Concepts and Algorithms

Figure 5.22. Sample data.

50

40

30

20

10

0
0 500 1000 1500 2000 2500 3000

Points Sorted by Distance to 4th Nearest Neighbor

4t
h

N
ea

re
st

 N
ei

gh
bo

r
D

is
ta

nc
e

Figure 5.23. K-dist plot for sample data.

Cluster CCluster BCluster A Cluster D

NoiseNoise

Figure 5.24. Four clusters embedded in noise.

the range of variation will not be huge if the cluster densities are not radically
different. However, for points that are not in a cluster, such as noise points,
the k-dist will be relatively large. Therefore, if we compute the k-dist for all
the data points for some k, sort them in increasing order, and then plot the
sorted values, we expect to see a sharp change at the value of k-dist that
corresponds to a suitable value of Eps. If we select this distance as the Eps
parameter and take the value of k as the MinPts parameter, then points for
which k-dist is less than Eps will be labeled as core points, while other points
will be labeled as noise or border points.

Figure 5.22 shows a sample data set, while the k-dist graph for the data is
given in Figure 5.23. The value of Eps that is determined in this way depends
on k, but does not change dramatically as k changes. If the value of k is too
small, then even a small number of closely spaced points that are noise or
outliers will be incorrectly labeled as clusters. If the value of k is too large,
then small clusters (of size less than k) are likely to be labeled as noise. The
original DBSCAN algorithm used a value of k = 4, which appears to be a
reasonable value for most two-dimensional data sets.

�

M05 TAN9224 02 GE C05 page 351

� �

�

5.4 DBSCAN 351

Clusters of Varying Density

DBSCAN can have trouble with density if the density of clusters varies widely.
Consider Figure 5.24, which shows four clusters embedded in noise. The den-
sity of the clusters and noise regions is indicated by their darkness. The noise
around the pair of denser clusters, A and B, has the same density as clusters
C and D. For a fixed MinPts, if the Eps threshold is chosen so that DBSCAN
finds C and D as distinct clusters, with the points surrounding them as noise,
then A and B and the points surrounding them will become a single cluster. If
the Eps threshold is set so that DBSCAN finds A and B as separate clusters,
and the points surrounding them are marked as noise, then C, D, and the
points surrounding them will also be marked as noise.

An Example

To illustrate the use of DBSCAN, we show the clusters that it finds in the
relatively complicated two-dimensional data set shown in Figure 5.22. This
data set consists of 3000 two-dimensional points. The Eps threshold for this
data was found by plotting the sorted distances of the fourth nearest neighbor
of each point (Figure 5.23) and identifying the value at which there is a sharp
increase. We selected Eps = 10, which corresponds to the knee of the curve.
The clusters found by DBSCAN using these parameters, i.e., MinPts = 4
and Eps = 10, are shown in Figure 5.25(a). The core points, border points,
and noise points are displayed in Figure 5.25(b).

5.4.3 Strengths and Weaknesses

Because DBSCAN uses a density-based definition of a cluster, it is relatively
resistant to noise and can handle clusters of arbitrary shapes and sizes. Thus,
DBSCAN can find many clusters that could not be found using K-means,
such as those in Figure 5.22. As indicated previously, however, DBSCAN has
trouble when the clusters have widely varying densities. It also has trouble
with high-dimensional data because density is more difficult to define for such
data. One possible approach to dealing with such issues is given in Section
8.4.9. Finally, DBSCAN can be expensive when the computation of nearest
neighbors requires computing all pairwise proximities, as is usually the case
for high-dimensional data.

�

M05 TAN9224 02 GE C05 page 352

� �

�

352 Chapter 5 Cluster Analysis: Basic Concepts and Algorithms

(a) Clusters found by DBSCAN.

x – Noise Point + – Border Point – Core Point

(b) Core, border, and noise points.

Figure 5.25. DBSCAN clustering of 3000 two-dimensional points.

�

M05 TAN9224 02 GE C05 page 353

� �

�

5.5 Cluster Evaluation 353

5.5 Cluster Evaluation

In supervised classification, the evaluation of the resulting classification model
is an integral part of the process of developing a classification model, and
there are well-accepted evaluation measures and procedures, e.g., accuracy
and cross-validation, respectively. However, because of its very nature, cluster
evaluation is not a well-developed or commonly used part of cluster analysis.
Nonetheless, cluster evaluation, or cluster validation as it is more tradition-
ally called, is important, and this section will review some of the most common
and easily applied approaches.

There might be some confusion as to why cluster evaluation is necessary.
Many times, cluster analysis is conducted as a part of an exploratory data
analysis. Hence, evaluation seems to be an unnecessarily complicated addition
to what is supposed to be an informal process. Furthermore, because there
are a number of different types of clusters—in some sense, each clustering
algorithm defines its own type of cluster—it can seem that each situation
might require a different evaluation measure. For instance, K-means clusters
might be evaluated in terms of the SSE, but for density-based clusters, which
need not be globular, SSE would not work well at all.

Nonetheless, cluster evaluation should be a part of any cluster analysis. A
key motivation is that almost every clustering algorithm will find clusters in a
data set, even if that data set has no natural cluster structure. For instance,
consider Figure 5.26, which shows the result of clustering 100 points that are
randomly (uniformly) distributed on the unit square. The original points are
shown in Figure 5.26(a), while the clusters found by DBSCAN, K-means, and
complete link are shown in Figures 5.26(b), 5.26(c), and 5.26(d), respectively.
Since DBSCAN found three clusters (after we set Eps by looking at the
distances of the fourth nearest neighbors), we set K-means and complete link
to find three clusters as well. (In Figure 5.26(b) the noise is shown by the small
markers.) However, the clusters do not look compelling for any of the three
methods. In higher dimensions, such problems cannot be so easily detected.

5.5.1 Overview

Being able to distinguish whether there is non-random structure in the data
is just one important aspect of cluster validation. The following is a list of
several important issues for cluster validation.

1. Determining the clustering tendency of a set of data, i.e., distinguish-
ing whether non-random structure actually exists in the data.

�

M05 TAN9224 02 GE C05 page 354

� �

�

354 Chapter 5 Cluster Analysis: Basic Concepts and Algorithms

(a) Original points. (b) Three clusters found by DBSCAN.

(c) Three clusters found by K-means. (d) Three clusters found by complete
link.

Figure 5.26. Clustering of 100 uniformly distributed points.

�

M05 TAN9224 02 GE C05 page 355

� �

�

5.5 Cluster Evaluation 355

2. Determining the correct number of clusters.

3. Evaluating how well the results of a cluster analysis fit the data without
reference to external information.

4. Comparing the results of a cluster analysis to externally known results,
such as externally provided class labels.

5. Comparing two sets of clusters to determine which is better.

Notice that items 1, 2, and 3 do not make use of any external information—
they are unsupervised techniques—while item 4 requires external information.
Item 5 can be performed in either a supervised or an unsupervised manner. A
further distinction can be made with respect to items 3, 4, and 5: Do we want
to evaluate the entire clustering or just individual clusters?

While it is possible to develop various numerical measures to assess the
different aspects of cluster validity mentioned above, there are a number of
challenges. First, a measure of cluster validity is sometimes quite limited in the
scope of its applicability. For example, most work on measures of clustering
tendency has been done for two- or three-dimensional spatial data. Second,
we need a framework to interpret any measure. If we obtain a value of 10 for a
measure that evaluates how well cluster labels match externally provided class
labels, does this value represent a good, fair, or poor match? The goodness
of a match often can be measured by looking at the statistical distribution of
this value, i.e., how likely it is that such a value occurs by chance. Finally, if
a measure is too complicated to apply or to understand, then few will use it.

The evaluation measures, or indices, that are applied to judge various
aspects of cluster validity are traditionally classified into the following three
types.

Unsupervised. Measures the goodness of a clustering structure without re-
spect to external information. An example of this is the SSE. Unsu-
pervised measures of cluster validity are often further divided into two
classes: measures of cluster cohesion (compactness, tightness), which
determine how closely related the objects in a cluster are, and measures
of cluster separation (isolation), which determine how distinct or well-
separated a cluster is from other clusters. Unsupervised measures are
often called internal indices because they use only information present
in the data set.

Supervised. Measures the extent to which the clustering structure discov-
ered by a clustering algorithm matches some external structure. An ex-
ample of a supervised index is entropy, which measures how well cluster

�

M05 TAN9224 02 GE C05 page 356

� �

�

356 Chapter 5 Cluster Analysis: Basic Concepts and Algorithms

labels match externally supplied class labels. Supervised measures are
often called external indices because they use information not present
in the data set.

Relative. Compares different clusterings or clusters. A relative cluster eval-
uation measure is a supervised or unsupervised evaluation measure that
is used for the purpose of comparison. Thus, relative measures are not
actually a separate type of cluster evaluation measure, but are instead a
specific use of such measures. As an example, two K-means clusterings
can be compared using either the SSE or entropy.

In the remainder of this section, we provide specific details concerning
cluster validity. We first describe topics related to unsupervised cluster eval-
uation, beginning with (1) measures based on cohesion and separation, and
(2) two techniques based on the proximity matrix. Since these approaches
are useful only for partitional sets of clusters, we also describe the popular
cophenetic correlation coefficient, which can be used for the unsupervised
evaluation of a hierarchical clustering. We end our discussion of unsupervised
evaluation with brief discussions about finding the correct number of clusters
and evaluating clustering tendency. We then consider supervised approaches
to cluster validity, such as entropy, purity, and the Jaccard measure. We
conclude this section with a short discussion of how to interpret the values of
(unsupervised or supervised) validity measures.

5.5.2 Unsupervised Cluster Evaluation Using Cohesion and
Separation

Many internal measures of cluster validity for partitional clustering schemes
are based on the notions of cohesion or separation. In this section, we use
cluster validity measures for prototype- and graph-based clustering techniques
to explore these notions in some detail. In the process, we will also see some
interesting relationships between prototype- and graph-based measures.

In general, we can consider expressing overall cluster validity for a set of
K clusters as a weighted sum of the validity of individual clusters,

overall validity =
K∑

i=1

wi validity(Ci). (5.8)

The validity function can be cohesion, separation, or some combination of
these quantities. The weights will vary depending on the cluster validity mea-
sure. In some cases, the weights are simply 1 or the size of the cluster, while

�

M05 TAN9224 02 GE C05 page 357

� �

�

5.5 Cluster Evaluation 357

(a) Cohesion. (b) Separation.

Figure 5.27. Graph-based view of cluster cohesion and separation.

in other cases to be discussed a bit later, they reflect a more complicated
property of the cluster.

Graph-Based View of Cohesion and Separation

From a graph-based view, the cohesion of a cluster can be defined as the sum of
the weights of the links in the proximity graph that connect points within the
cluster. See Figure 5.27(a). (Recall that the proximity graph has data objects
as nodes, a link between each pair of data objects, and a weight assigned to
each link that is the proximity between the two data objects connected by
the link.) Likewise, the separation between two clusters can be measured by
the sum of the weights of the links from points in one cluster to points in the
other cluster. This is illustrated in Figure 5.27(b).

Most simply, the cohesion and separation for a graph-based cluster can be
expressed using Equations 5.9 and 5.10, respectively. The proximity function
can be a similarity or a dissimilarity. For similarity, as in Table 5.6, higher
values are better for cohesion while lower values are better for separation.
For dissimilarity, the opposite is true, i.e., lower values are better for cohesion
while higher values are better for separation. More complicated approaches
are possible but typically embody the basic ideas of figure 5.27a and 5.27b.

cohesion(Ci) =
∑

x∈Ci
y∈Ci

proximity(x,y) (5.9)

separation(Ci, Cj) =
∑

x∈Ci
y∈Cj

proximity(x,y) (5.10)

�

M05 TAN9224 02 GE C05 page 358

� �

�

358 Chapter 5 Cluster Analysis: Basic Concepts and Algorithms

+

(a) Cohesion.

++

(b) Separation.

Figure 5.28. Prototype-based view of cluster cohesion and separation.

Prototype-Based View of Cohesion and Separation

For prototype-based clusters, the cohesion of a cluster can be defined as the
sum of the proximities with respect to the prototype (centroid or medoid) of
the cluster. Similarly, the separation between two clusters can be measured
by the proximity of the two cluster prototypes. This is illustrated in Figure
5.28, where the centroid of a cluster is indicated by a “+”.

Cohesion for a prototype-based cluster is given in Equation 5.11, while
two measures for separation are given in Equations 5.12 and 5.13, respectively,
where ci is the prototype (centroid) of cluster Ci and c is the overall prototype
(centroid). There are two measures for separation because, as we will see in the
next section, the separation of cluster prototypes from an overall prototype
is sometimes directly related to the separation of cluster prototypes from
one another. (This is true, for example, for Euclidean distance.) Note that
Equation 5.11 is the cluster SSE if we let proximity be the squared Euclidean
distance.

cohesion(Ci) =
∑

x∈Ci

proximity(x, ci) (5.11)

separation(Ci, Cj) = proximity(ci, cj) (5.12)
separation(Ci) = proximity(ci, c) (5.13)

�

M05 TAN9224 02 GE C05 page 359

� �

�

5.5 Cluster Evaluation 359

Relationship between Prototype-Based Cohesion and Graph-Based
Cohesion

While the graph-based and prototype-based approaches to measuring the
cohesion and separation of a cluster seem distinct, for some proximity measures
they are equivalent. For instance, for the SSE and points in Euclidean space,
it can be shown (Equation 5.14) that the average pairwise distance between
the points in a cluster is equivalent to the SSE of the cluster. See Exercise 27
on page 392.

Cluster SSE =
∑

x∈Ci

dist(ci,x)2 =
1

2mi

∑

x∈Ci

∑

y∈Ci

dist(x,y)2 (5.14)

Relationship of the Two Approaches to Prototype-Based Separation

When proximity is measured by Euclidean distance, the traditional measure of
separation between clusters is the between group sum of squares (SSB), which
is the sum of the squared distance of a cluster centroid, ci, to the overall mean,
c, of all the data points. The SSB is given by Equation 5.15, where ci is the
mean of the ith cluster and c is the overall mean. The higher the total SSB of
a clustering, the more separated the clusters are from one another.

Total SSB =
K∑

i=1

mi dist(ci, c)2 (5.15)

It is straightforward to show that the total SSB is directly related to the
pairwise distances between the centroids. In particular, if the cluster sizes are
equal, i.e., mi = m/K, then this relationship takes the simple form given by
Equation 5.16. (See Exercise 28 on page 392.) It is this type of equivalence that
motivates the definition of prototype separation in terms of both Equations
5.12 and 5.13.

Total SSB =
1

2K

K∑

i=1

K∑

j=1

m

K
dist(ci, cj)2 (5.16)

Relationship between Cohesion and Separation

For some validity measures, there is also a strong relationship between cohesion
and separation. Specifically, it is possible to show that the sum of the total
SSE and the total SSB is a constant; i.e., that it is equal to the total sum of
squares (TSS), which is the sum of squares of the distance of each point to

�

M05 TAN9224 02 GE C05 page 360

� �

�

360 Chapter 5 Cluster Analysis: Basic Concepts and Algorithms

the overall mean of the data. The importance of this result is that minimizing
SSE (cohesion) is equivalent to maximizing SSB (separation).

We provide the proof of this fact below, since the approach illustrates
techniques that are also applicable to proving the relationships stated in the
last two sections. To simplify the notation, we assume that the data is one-
dimensional, i.e., dist(x, y) = (x−y)2. Also, we use the fact that the cross-term∑K

i=1

∑
x∈Ci

(x− ci)(c− ci) is 0. (See Exercise 29 on page 392.)

TSS =
K∑

i=1

∑

x∈Ci

(x− c)2

=
K∑

i=1

∑

x∈Ci

((x− ci)− (c− ci))2

=
K∑

i=1

∑

x∈Ci

(x− ci)2 − 2
K∑

i=1

∑

x∈Ci

(x− ci)(c− ci) +
K∑

i=1

∑

x∈Ci

(c− ci)2

=
K∑

i=1

∑

x∈Ci

(x− ci)2 +
K∑

i=1

∑

x∈Ci

(c− ci)2

=
K∑

i=1

∑

x∈Ci

(x− ci)2 +
K∑

i=1

|Ci|(c− ci)2

= SSE + SSB

Relationship between Graph- and Centroid-Based Cohesion

It can also be shown that there is a relationship between graph- and centroid-
based cohesion measures for Euclidean distance. For simplicity, we once again
assume one-dimensional data. Recall that ci = 1/mi

∑
y∈Ci

y.

�

M05 TAN9224 02 GE C05 page 361

� �

�

5.5 Cluster Evaluation 361

m2
i cohesion(Ci) = m2

i

∑

x∈Ci

proximity(x, ci)

=
∑

x∈Ci

m2
i (x− ci)2

=
∑

x∈Ci

(mix−mici)2

=
∑

x∈Ci

(mix−mi(1/mi

∑

y∈Ci

y))2

=
∑

x∈Ci

∑

y∈Ci

(x− y)2

=
∑

x∈Ci
y∈Ci

(x− y)2

=
∑

x∈Ci
y∈Ci

proximity(x, y)

More generally, in cases where a centroid makes sense for the data, the
simple graph or centroid-based measures of cluster validity we presented are
often related.

Overall Measures of Cohesion and Separation

The previous definitions of cluster cohesion and separation gave us some
simple and well-defined measures of individual cluster validity that can be
combined into an overall measure of cluster validity by using a weighted sum,
as indicated in Equation 5.8. However, we need to decide what weights to use.
Not surprisingly, the weights used can vary widely. Often, but not always,
they are either a function of cluster size or 1, which treats all clusters equally
regardless of size.

The CLUstering TOolkit (CLUTO) (see the Bibliographic Notes) uses
the cluster evaluation measures described in Table 5.6, as well as some other
evaluation measures not mentioned here. Only similarity measures are used:
cosine, correlation, Jaccard, and the inverse of Euclidean distance. I1 is a
measure of cohesion in terms of the pairwise similarity of objects in the cluster.
I2 is a measure of cohesion that can be expressed either in terms of the sum of
the similarities of objects in the cluster to the cluster centroid or in terms of
the pairwise similarities of objects in the cluster. E1 is a measure of separation.

�

M05 TAN9224 02 GE C05 page 362

� �

�

362 Chapter 5 Cluster Analysis: Basic Concepts and Algorithms

It can be defined in terms of the similarity of a cluster centroid to the overall
centroid or in terms of the pairwise similarities of object in the cluster to
objects in other clusters. (Although E1 is a measure of separation, the second
definition shows that it also uses cluster cohesion, albeit in the cluster weight.)
G1, which is a cluster validity measure based on both cohesion and separation,
is the sum of the pairwise similarities of all objects in the cluster with all
objects outside the cluster—the total weight of the edges of the similarity
graph that must be cut to separate the cluster from all other clusters—divided
by the sum of the pairwise similarities of objects in the cluster.

Table 5.6. Table of graph-based cluster evaluation measures.

Name Cluster Measure Cluster Weight Type

I1
∑

x∈Ci
y∈Ci

sim(x,y) 1
mi

graph-based
cohesion

I2
∑

x∈Ci

sim(x, ci) prototype-based
cohesion

I2

√√√√
∑

x∈Ci
y∈Ci

sim(x,y) prototype-based
cohesion

E1 sim(ci, c) mi
prototype-based
separation

E1
k∑

j=1

∑

x∈Ci
y∈Cj

sim(x,y) mi√
(
∑

x∈Ci
y∈Ci

sim(x,y))
graph-based
separation

G1

k∑

j=1
j �=i

∑

x∈Ci
y ∈Cj

sim(x,y)
1∑

x∈Ci
y∈Ci

sim(x,y)
graph-based
separation and
cohesion

Note that any unsupervised measure of cluster validity potentially can be
used as an objective function for a clustering algorithm and vice versa. CLUTO

�

M05 TAN9224 02 GE C05 page 363

� �

�

5.5 Cluster Evaluation 363

takes this approach by using an algorithm that is similar to the incremental K-
means algorithm discussed in Section 5.2.2. Specifically, each point is assigned
to the cluster that produces the best value for the cluster evaluation function.
The cluster evaluation measure I2 corresponds to traditional K-means and
produces clusters that have good SSE values. The other measures produce
clusters that are not as good with respect to SSE, but that are more optimal
with respect to the specified cluster validity measure.

Evaluating Individual Clusters and Objects

So far, we have focused on using cohesion and separation in the overall eval-
uation of a group of clusters. Most of these measures of cluster validity also
can be used to evaluate individual clusters and objects. For example, we can
rank individual clusters according to their specific value of cluster validity, i.e.,
cluster cohesion or separation. A cluster that has a high value of cohesion may
be considered better than a cluster that has a lower value. This information
often can be used to improve the quality of a clustering. If, for example,
a cluster is not very cohesive, then we may want to split it into several
subclusters. On the other hand, if two clusters are relatively cohesive, but
not well separated, we may want to merge them into a single cluster.

We can also evaluate the objects within a cluster in terms of their contribu-
tion to the overall cohesion or separation of the cluster. Objects that contribute
more to the cohesion and separation are near the “interior” of the cluster.
Those objects for which the opposite is true are probably near the “edge” of
the cluster. In the following section, we consider a cluster evaluation measure
that uses an approach based on these ideas to evaluate points, clusters, and
the entire set of clusters.

The Silhouette Coefficient

The popular method of silhouette coefficients combines both cohesion and sep-
aration. The following steps explain how to compute the silhouette coefficient
for an individual point, a process that consists of the following three steps.
We use distances, but an analogous approach can be used for similarities.

1. For the ith object, calculate its average distance to all other objects in
its cluster. Call this value ai.

2. For the ith object and any cluster not containing the object, calculate
the object’s average distance to all the objects in the given cluster. Find
the minimum such value with respect to all clusters; call this value bi.

�

M05 TAN9224 02 GE C05 page 364

� �

�

364 Chapter 5 Cluster Analysis: Basic Concepts and Algorithms

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Silhouette Coefficient

Figure 5.29. Silhouette coefficients for points in ten clusters.

3. For the ith object, the silhouette coefficient is si = (bi− ai)/max(ai, bi).

The value of the silhouette coefficient can vary between −1 and 1. A
negative value is undesirable because this corresponds to a case in which ai,
the average distance to points in the cluster, is greater than bi, the minimum
average distance to points in another cluster. We want the silhouette coefficient
to be positive (ai < bi), and for ai to be as close to 0 as possible, since the
coefficient assumes its maximum value of 1 when ai = 0.

We can compute the average silhouette coefficient of a cluster by simply
taking the average of the silhouette coefficients of points belonging to the
cluster. An overall measure of the goodness of a clustering can be obtained by
computing the average silhouette coefficient of all points.

Example 5.8 (Silhouette Coefficient). Figure 5.29 shows a plot of the sil-
houette coefficients for points in 10 clusters. Darker shades indicate lower
silhouette coefficients.

5.5.3 Unsupervised Cluster Evaluation Using the Proximity
Matrix

In this section, we examine a couple of unsupervised approaches for assessing
cluster validity that are based on the proximity matrix. The first compares an
actual and idealized proximity matrix, while the second uses visualization.

General Comments on Unsupervised Cluster Evaluation Measures

In addition to the measures presented above, a large number of other measures
have been proposed as unsupervised cluster validity measures. Almost all these
measures, including the measures presented above are intended for partitional,
center-based clusters. In particular, none of them does well for continuity- or

�

M05 TAN9224 02 GE C05 page 365

� �

�

5.5 Cluster Evaluation 365

density-based clusters. Indeed, a recent evaluation—see Bibliographic Notes—
of a dozen such measures found that although a number of them did well in
terms of handling issues such as noise and differing sizes and density, none
of them except a relatively recently proposed measure, Clustering Validation
index based on Nearest Neighbors (CVNN), did well on handling arbitrary
shapes. The silhouette index, however, did well on all other issues examined
except for that.

Most unsupervised cluster evaluation measures, such as the silhouette
coefficient, incorporate both cohesion (compactness) and separation. When
used with a partitional clustering algorithm such as K-means, these measures
will tend to decrease until the “natural” set of clusters is found and start
increasing once clusters are being split “too finely” since separation will suffer
and cohesion will not improve much. Thus, these measures can provide a way
to determine the number of clusters. However, if the definition of a cluster used
by the clustering algorithm, differs from that of the cluster evaluation measure,
then the set of clusters identified as optimal by the algorithm and validation
measure can differ. For instance, CLUTO uses the measures described in Table
5.6 to drive its clustering, and thus, the clustering produced will not usually
match the optimal clusters according to the silhouette coefficient. Likewise for
standard K-means and SSE. In addition, if there actually are subclusters that
are not separated very well from one another, then methods that incorporate
both may provide only a coarse view of the cluster structure of the data.
Another consideration is that when clustering for summarization, we are not
interested in the “natural” cluster structure of the data, but rather want to
achieve a certain level of approximation, e.g., want to reduce SSE to a certain
level.

More generally, if there are not too many clusters, then it can be better
to examine cluster cohesion and separation independently. This can give a
more comprehensive view of how cohesive each cluster is and how well each
pair of clusters is separated from one another. For instance, given a centroid
based clustering, we could compute the pairwise similarity or distance of the
centroids, i.e., compute the distance or similarity matrix of the centroids. The
approach just outlined is similar to looking at the confusion matrix for a
classification problem instead of classification measures, such as accuracy or
the F -measure.

Measuring Cluster Validity via Correlation

If we are given the similarity matrix for a data set and the cluster labels from
a cluster analysis of the data set, then we can evaluate the “goodness” of

�

M05 TAN9224 02 GE C05 page 366

� �

�

366 Chapter 5 Cluster Analysis: Basic Concepts and Algorithms

the clustering by looking at the correlation between the similarity matrix and
an ideal version of the similarity matrix based on the cluster labels. (With
minor changes, the following applies to proximity matrices, but for simplicity,
we discuss only similarity matrices.) More specifically, an ideal cluster is one
whose points have a similarity of 1 to all points in the cluster, and a similarity
of 0 to all points in other clusters. Thus, if we sort the rows and columns of the
similarity matrix so that all objects belonging to the same cluster are together,
then an ideal cluster similarity matrix has a block diagonal structure. In
other words, the similarity is non-zero, i.e., 1, inside the blocks of the similarity
matrix whose entries represent intra-cluster similarity, and 0 elsewhere. The
ideal cluster similarity matrix is constructed by creating a matrix that has
one row and one column for each data point—just like an actual similarity
matrix—and assigning a 1 to an entry if the associated pair of points belongs
to the same cluster. All other entries are 0.

High correlation between the ideal and actual similarity matrices indicates
that the points that belong to the same cluster are close to each other, while
low correlation indicates the opposite. (Because the actual and ideal similarity
matrices are symmetric, the correlation is calculated only among the n(n−1)/2
entries below or above the diagonal of the matrices.) Consequently, this is not
a good measure for many density- or contiguity-based clusters, because they
are not globular and can be closely intertwined with other clusters.

Example 5.9 (Correlation of Actual and Ideal Similarity Matrices). To illus-
trate this measure, we calculated the correlation between the ideal and actual
similarity matrices for the K-means clusters shown in Figure 5.26(c) (random
data) and Figure 5.30(a) (data with three well-separated clusters). The corre-
lations were 0.5810 and 0.9235, respectively, which reflects the expected result
that the clusters found by K-means in the random data are worse than the
clusters found by K-means in data with well-separated clusters.

Judging a Clustering Visually by Its Similarity Matrix

The previous technique suggests a more general, qualitative approach to judg-
ing a set of clusters: Order the similarity matrix with respect to cluster
labels and then plot it. In theory, if we have well-separated clusters, then the
similarity matrix should be roughly block-diagonal. If not, then the patterns
displayed in the similarity matrix can reveal the relationships between clusters.
Again, all of this can be applied to dissimilarity matrices, but for simplicity,
we will only discuss similarity matrices.

�

M05 TAN9224 02 GE C05 page 367

� �

�

5.5 Cluster Evaluation 367

Example 5.10 (Visualizing a Similarity Matrix). Consider the points in
Figure 5.30(a), which form three well-separated clusters. If we use K-means to
group these points into three clusters, then we should have no trouble finding
these clusters because they are well-separated. The separation of these clusters
is illustrated by the reordered similarity matrix shown in Figure 5.30(b).
(For uniformity, we have transformed the distances into similarities using the
formula s = 1−(d−min d)/(max d−min d).) Figure 5.31 shows the reordered
similarity matrices for clusters found in the random data set of Figure 5.26 by
DBSCAN, K-means, and complete link.

The well-separated clusters in Figure 5.30 show a very strong, block-
diagonal pattern in the reordered similarity matrix. However, there are also
weak block diagonal patterns—see Figure 5.31—in the reordered similarity
matrices of the clusterings found by K-means, DBSCAN, and complete link
in the random data. Just as people can find patterns in clouds, data mining
algorithms can find clusters in random data. While it is entertaining to find
patterns in clouds, it is pointless and perhaps embarrassing to find clusters in
noise.

This approach may seem hopelessly expensive for large data sets, since
the computation of the proximity matrix takes O(m2) time, where m is the
number of objects, but with sampling, this method can still be used. We can
take a sample of data points from each cluster, compute the similarity between
these points, and plot the result. It is sometimes necessary to oversample small
clusters and undersample large ones to obtain an adequate representation of
all clusters.

5.5.4 Unsupervised Evaluation of Hierarchical Clustering

The previous approaches to cluster evaluation are intended for partitional
clusterings. Here we discuss the cophenetic correlation, a popular evaluation
measure for hierarchical clusterings. The cophenetic distance between two
objects is the proximity at which an agglomerative hierarchical clustering
technique puts the objects in the same cluster for the first time. For example, if
at some point in the agglomerative hierarchical clustering process, the smallest
distance between the two clusters that are merged is 0.1, then all points in
one cluster have a cophenetic distance of 0.1 with respect to the points in the
other cluster. In a cophenetic distance matrix, the entries are the cophenetic
distances between each pair of objects. The cophenetic distance is different for
each hierarchical clustering of a set of points.

�

M05 TAN9224 02 GE C05 page 368

� �

�

368 Chapter 5 Cluster Analysis: Basic Concepts and Algorithms

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

(a) Well-separated clusters.

Points

P
oi

nt
s

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100
Similarity

0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

(b) Similarity matrix sorted by K-means
cluster labels.

Figure 5.30. Similarity matrix for well-separated clusters.

Points

P
oi

nt
s

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100
Similarity

0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

(a) Similarity matrix
sorted by DBSCAN
cluster labels.

Points

P
oi

nt
s

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100
Similarity

0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

(b) Similarity matrix
sorted by K-means
cluster labels.

Points

P
oi

nt
s

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100
Similarity

0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

(c) Similarity matrix
sorted by complete link
cluster labels.

Figure 5.31. Similarity matrices for clusters from random data.

Example 5.11 (Cophenetic Distance Matrix). Table 5.7 shows the cophe-
netic distance matrix for the single link clustering shown in Figure 5.16. (The
data for this figure consists of the six two-dimensional points given in Table
2.14.)

The Cophenetic Correlation Coefficient (CPCC) is the correlation
between the entries of this matrix and the original dissimilarity matrix and is
a standard measure of how well a hierarchical clustering (of a particular type)

�

M05 TAN9224 02 GE C05 page 369

� �

�

5.5 Cluster Evaluation 369

Table 5.7. Cophenetic distance matrix for single link and data in Table 2.14 on page 110.

Point P1 P2 P3 P4 P5 P6
P1 0 0.222 0.222 0.222 0.222 0.222
P2 0.222 0 0.148 0.151 0.139 0.148
P3 0.222 0.148 0 0.151 0.148 0.110
P4 0.222 0.151 0.151 0 0.151 0.151
P5 0.222 0.139 0.148 0.151 0 0.148
P6 0.222 0.148 0.110 0.151 0.148 0

fits the data. One of the most common uses of this measure is to evaluate
which type of hierarchical clustering is best for a particular type of data.

Example 5.12 (Cophenetic Correlation Coefficient). We calculated the CPCC
for the hierarchical clusterings shown in Figures 5.16–5.19. These values are
shown in Table 5.8. The hierarchical clustering produced by the single link
technique seems to fit the data less well than the clusterings produced by
complete link, group average, and Ward’s method.

Table 5.8. Cophenetic correlation coefficient for data of Table 2.14 and four agglomerative hierarchical
clustering techniques.

Technique CPCC
Single Link 0.44

Complete Link 0.63
Group Average 0.66

Ward’s 0.64

5.5.5 Determining the Correct Number of Clusters

Various unsupervised cluster evaluation measures can be used to approxi-
mately determine the correct or natural number of clusters.

Example 5.13 (Number of Clusters). The data set of Figure 5.29 has 10
natural clusters. Figure 5.32 shows a plot of the SSE versus the number of
clusters for a (bisecting) K-means clustering of the data set, while Figure 5.33
shows the average silhouette coefficient versus the number of clusters for the
same data. There is a distinct knee in the SSE and a distinct peak in the
silhouette coefficient when the number of clusters is equal to 10.

�

M05 TAN9224 02 GE C05 page 370

� �

�

370 Chapter 5 Cluster Analysis: Basic Concepts and Algorithms

10

8

6

4

2

0
0 5 10 15 20 25 30

Number of Clusters

S
S

E

Figure 5.32. SSE versus number of clusters for
the data of Figure 5.29 on page 364.

0.75

0.7

0.55

0.4

0.35

0.3
0 5 10 15 20 25 30

Number of Clusters

S
ilh

ou
et

te
 C

oe
ffi

ci
en

t

0.65

0.6

0.45

0.5

Figure 5.33. Average silhouette coefficient ver-
sus number of clusters for the data of Figure
5.29.

Thus, we can try to find the natural number of clusters in a data set by
looking for the number of clusters at which there is a knee, peak, or dip in
the plot of the evaluation measure when it is plotted against the number of
clusters. Of course, such an approach does not always work well. Clusters can
be considerably more intertwined or overlapping than those shown in Figure
5.29. Also, the data can consist of nested clusters. Actually, the clusters in
Figure 5.29 are somewhat nested; i.e., there are five pairs of clusters since the
clusters are closer top to bottom than they are left to right. There is a knee
that indicates this in the SSE curve, but the silhouette coefficient curve is
not as clear. In summary, while caution is needed, the technique we have just
described can provide insight into the number of clusters in the data.

5.5.6 Clustering Tendency

One obvious way to determine if a data set has clusters is to try to cluster
it. However, almost all clustering algorithms will dutifully find clusters when
given data. To address this issue, we could evaluate the resulting clusters and
only claim that a data set has clusters if at least some of the clusters are of good
quality. However, this approach does not address the fact the clusters in the
data can be of a different type than those sought by our clustering algorithm.
To handle this additional problem, we could use multiple algorithms and again
evaluate the quality of the resulting clusters. If the clusters are uniformly poor,
then this may indeed indicate that there are no clusters in the data.

�

M05 TAN9224 02 GE C05 page 371

� �

�

5.5 Cluster Evaluation 371

Alternatively, and this is the focus of measures of clustering tendency, we
can try to evaluate whether a data set has clusters without clustering. The
most common approach, especially for data in Euclidean space, has been to
use statistical tests for spatial randomness. Unfortunately, choosing the correct
model, estimating the parameters, and evaluating the statistical significance
of the hypothesis that the data is non-random can be quite challenging.
Nonetheless, many approaches have been developed, most of them for points
in low-dimensional Euclidean space.

Example 5.14 (Hopkins Statistic). For this approach, we generate p points
that are randomly distributed across the data space and also sample p actual
data points. For both sets of points, we find the distance to the nearest
neighbor in the original data set. Let the ui be the nearest neighbor distances
of the artificially generated points, while the wi are the nearest neighbor
distances of the sample of points from the original data set. The Hopkins
statistic H is then defined by Equation 5.17.

H =
∑p

i=1wi∑p
i=1 ui +

∑p
i=1wi

(5.17)

If the randomly generated points and the sample of data points have
roughly the same nearest neighbor distances, then H will be near 0.5. Values
of H near 0 and 1 indicate, respectively, data that is highly clustered and
data that is regularly distributed in the data space. To give an example, the
Hopkins statistic for the data of Figure 5.26 was computed for p = 20 and 100
different trials. The average value of H was 0.56 with a standard deviation
of 0.03. The same experiment was performed for the well-separated points of
Figure 5.30. The average value of H was 0.95 with a standard deviation of
0.006.

5.5.7 Supervised Measures of Cluster Validity

When we have external information about data, it is typically in the form
of externally derived class labels for the data objects. In such cases, the
usual procedure is to measure the degree of correspondence between the
cluster labels and the class labels. But why is this of interest? After all,
if we have the class labels, then what is the point in performing a cluster
analysis? Motivations for such an analysis include the comparison of clustering
techniques with the “ground truth” or the evaluation of the extent to which
a manual classification process can be automatically produced by cluster
analysis, e.g., the clustering of news articles. Another potential motivation

�

M05 TAN9224 02 GE C05 page 372

� �

�

372 Chapter 5 Cluster Analysis: Basic Concepts and Algorithms

could be to evaluate whether objects in the same cluster tend to have the
same label for semi-supervised learning techniques.

We consider two different kinds of approaches. The first set of techniques
use measures from classification, such as entropy, purity, and the F -measure.
These measures evaluate the extent to which a cluster contains objects of a
single class. The second group of methods is related to the similarity measures
for binary data, such as the Jaccard measure that we saw in Chapter 2. These
approaches measure the extent to which two objects that are in the same class
are in the same cluster and vice versa. For convenience, we will refer to these
two types of measures as classification-oriented and similarity-oriented,
respectively.

Classification-Oriented Measures of Cluster Validity

There are a number of measures that are commonly used to evaluate the per-
formance of a classification model. In this section, we will discuss five: entropy,
purity, precision, recall, and the F -measure. In the case of classification, we
measure the degree to which predicted class labels correspond to actual class
labels, but for the measures just mentioned, nothing fundamental is changed
by using cluster labels instead of predicted class labels. Next, we quickly review
the definitions of these measures in the context of clustering.

Entropy: The degree to which each cluster consists of objects of a single class.
For each cluster, the class distribution of the data is calculated first, i.e.,
for cluster i we compute pij , the probability that a member of cluster i
belongs to class j as pij = mij/mi, where mi is the number of objects in
cluster i and mij is the number of objects of class j in cluster i. Using
this class distribution, the entropy of each cluster i is calculated using
the standard formula, ei = −∑L

j=1 pij log2 pij , where L is the number of
classes. The total entropy for a set of clusters is calculated as the sum
of the entropies of each cluster weighted by the size of each cluster, i.e.,
e =

∑K
i=1

mi
m ei, where K is the number of clusters and m is the total

number of data points.

Purity: Another measure of the extent to which a cluster contains objects
of a single class. Using the previous terminology, the purity of cluster
i is purity(i) = max

j
pij , the overall purity of a clustering is purity =

∑K
i=1

mi
m purity(i).

�

M05 TAN9224 02 GE C05 page 373

� �

�

5.5 Cluster Evaluation 373

Table 5.9. K-means clustering results for the LA Times document data set.

Cluster Enter-
tainment

Financial Foreign Metro National Sports Entropy Purity

1 3 5 40 506 96 27 1.2270 0.7474
2 4 7 280 29 39 2 1.1472 0.7756
3 1 1 1 7 4 671 0.1813 0.9796
4 10 162 3 119 73 2 1.7487 0.4390
5 331 22 5 70 13 23 1.3976 0.7134
6 5 358 12 212 48 13 1.5523 0.5525

Total 354 555 341 943 273 738 1.1450 0.7203

Precision: The fraction of a cluster that consists of objects of a specified
class. The precision of cluster i with respect to class j is precision(i, j) =
pij .

Recall: The extent to which a cluster contains all objects of a specified class.
The recall of cluster i with respect to class j is recall(i, j) = mij/mj ,
where mj is the number of objects in class j.

F -measure A combination of both precision and recall that measures the ex-
tent to which a cluster contains only objects of a particular class and all
objects of that class. The F -measure of cluster i with respect to class j is
F (i, j) = (2×precision(i, j)×recall(i, j))/(precision(i, j)+recall(i, j)).
The F -measure of a set of clusters, partitional or hierarchical is presented
on page 376 when we discuss cluster validity for hierarchical clusterings.

Example 5.15 (Supervised Evaluation Measures). We present an example
to illustrate these measures. Specifically, we use K-means with the cosine
similarity measure to cluster 3204 newspaper articles from the Los Angeles
Times. These articles come from six different classes: Entertainment, Finan-
cial, Foreign, Metro, National, and Sports. Table 5.9 shows the results of a
K-means clustering to find six clusters. The first column indicates the cluster,
while the next six columns together form the confusion matrix; i.e., these
columns indicate how the documents of each category are distributed among
the clusters. The last two columns are the entropy and purity of each cluster,
respectively.

Ideally, each cluster will contain documents from only one class. In reality,
each cluster contains documents from many classes. Nevertheless, many clus-
ters contain documents primarily from just one class. In particular, cluster
3, which contains mostly documents from the Sports section, is exceptionally
good, both in terms of purity and entropy. The purity and entropy of the other

�

M05 TAN9224 02 GE C05 page 374

� �

�

374 Chapter 5 Cluster Analysis: Basic Concepts and Algorithms

clusters is not as good, but can typically be greatly improved if the data is
partitioned into a larger number of clusters.

Precision, recall, and the F -measure can be calculated for each cluster. To
give a concrete example, we consider cluster 1 and the Metro class of Table
5.9. The precision is 506/677 = 0.75, recall is 506/943 = 0.26, and hence, the
F value is 0.39. In contrast, the F value for cluster 3 and Sports is 0.94. As in
classification, the confusion matrix gives the most detailed information.

Similarity-Oriented Measures of Cluster Validity

The measures that we discuss in this section are all based on the premise
that any two objects that are in the same cluster should be in the same class
and vice versa. We can view this approach to cluster validity as involving
the comparison of two matrices: (1) the ideal cluster similarity matrix
discussed previously, which has a 1 in the ijth entry if two objects, i and j,
are in the same cluster and 0, otherwise, and (2) a class similarity matrix
defined with respect to class labels, which has a 1 in the ijth entry if two
objects, i and j, belong to the same class, and a 0 otherwise. As before, we can
take the correlation of these two matrices as the measure of cluster validity.
This measure is known as Hubert’s Γ statistic in the clustering validation
literature.

Example 5.16 (Correlation between Cluster and Class Matrices). To demon-
strate this idea more concretely, we give an example involving five data points,
p1, p2, p3, p4, andp5, two clusters, C1 = {p1, p2, p3} and C2 = {p4, p5}, and
two classes, L1 = {p1, p2} and L2 = {p3, p4, p5}. The ideal cluster and class
similarity matrices are given in Tables 5.10 and 5.11. The correlation between
the entries of these two matrices is 0.359.

Table 5.10. Ideal cluster similarity matrix.

Point p1 p2 p3 p4 p5
p1 1 1 1 0 0
p2 1 1 1 0 0
p3 1 1 1 0 0
p4 0 0 0 1 1
p5 0 0 0 1 1

Table 5.11. Class similarity matrix.

Point p1 p2 p3 p4 p5
p1 1 1 0 0 0
p2 1 1 0 0 0
p3 0 0 1 1 1
p4 0 0 1 1 1
p5 0 0 1 1 1

�

M05 TAN9224 02 GE C05 page 375

� �

�

5.5 Cluster Evaluation 375

More generally, we can use any of the measures for binary similarity that
we saw in Section 2.4.5. (For example, we can convert these two matrices into
binary vectors by appending the rows.) We repeat the definitions of the four
quantities used to define those similarity measures, but modify our descriptive
text to fit the current context. Specifically, we need to compute the following
four quantities for all pairs of distinct objects. (There are m(m − 1)/2 such
pairs, if m is the number of objects.)

f00 = number of pairs of objects having a different class and a different cluster
f01 = number of pairs of objects having a different class and the same cluster
f10 = number of pairs of objects having the same class and a different cluster
f11 = number of pairs of objects having the same class and the same cluster

In particular, the simple matching coefficient, which is known as the Rand
statistic in this context, and the Jaccard coefficient are two of the most
frequently used cluster validity measures.

Rand statistic =
f00 + f11

f00 + f01 + f10 + f11
(5.18)

Jaccard coefficient =
f11

f01 + f10 + f11
(5.19)

Example 5.17 (Rand and Jaccard Measures). Based on these formulas, we
can readily compute the Rand statistic and Jaccard coefficient for the example
based on Tables 5.10 and 5.11. Noting that f00 = 4, f01 = 2, f10 = 2, and
f11 = 2, the Rand statistic = (2 + 4)/10 = 0.6 and the Jaccard coefficient =
2/(2+2+2) = 0.33.

We also note that the four quantities, f00, f01, f10, and f11, define a
contingency table as shown in Table 5.12.

Table 5.12. Two-way contingency table for determining whether pairs of objects are in the same class
and same cluster.

Same Cluster Different Cluster
Same Class f11 f10

Different Class f01 f00

Previously, in the context of association analysis—see Section 4.7.1 on page
258—we presented an extensive discussion of measures of association that can

�

M05 TAN9224 02 GE C05 page 376

� �

�

376 Chapter 5 Cluster Analysis: Basic Concepts and Algorithms

be used for this type of contingency table. (Compare Table 5.12 on page 375
with Table 4.6 on page 258.) Those measures can also be applied to cluster
validity.

Cluster Validity for Hierarchical Clusterings

So far in this section, we have discussed supervised measures of cluster validity
only for partitional clusterings. Supervised evaluation of a hierarchical cluster-
ing is more difficult for a variety of reasons, including the fact that a preexisting
hierarchical structure often does not exist. In addition, although relatively
pure clusters often exist at certain levels in the hierarchical clustering, as
the clustering proceeds, the clusters will become impure. The key idea of the
approach presented here, which is based on the F -measure, is to evaluate
whether a hierarchical clustering contains, for each class, at least one cluster
that is relatively pure and includes most of the objects of that class. To
evaluate a hierarchical clustering with respect to this goal, we compute, for
each class, the F -measure for each cluster in the cluster hierarchy, and then
take the maximum F -measure attained for any cluster. Finally, we calculate an
overall F -measure for the hierarchical clustering by computing the weighted
average of all per-class F -measures, where the weights are based on the class
sizes. More formally, this hierarchical F -measure is defined as follows:

F =
∑

j

mj

m
max

i
F (i, j)

where the maximum is taken over all clusters i at all levels, mj is the number
of objects in class j, and m is the total number of objects. Note that this
measure can also be applied for a partitional clustering without modification.

5.5.8 Assessing the Significance of Cluster Validity Measures

Cluster validity measures are intended to help us measure the goodness of the
clusters that we have obtained. Indeed, they typically give us a single number
as a measure of that goodness. However, we are then faced with the problem
of interpreting the significance of this number, a task that might be even more
difficult.

The minimum and maximum values of cluster evaluation measures can
provide some guidance in many cases. For instance, by definition, a purity of
0 is bad, while a purity of 1 is good, at least if we trust our class labels and

�

M05 TAN9224 02 GE C05 page 377

� �

�

5.5 Cluster Evaluation 377

want our cluster structure to reflect the class structure. Likewise, an entropy
of 0 is good, as is an SSE of 0.

Sometimes, however, there is no minimum or maximum value, or the scale
of the data might affect the interpretation. Also, even if there are minimum
and maximum values with obvious interpretations, intermediate values still
need to be interpreted. In some cases, we can use an absolute standard. If, for
example, we are clustering for utility, we are often willing to tolerate only a
certain level of error in the approximation of our points by a cluster centroid.

But if this is not the case, then we must do something else. A common
approach is to interpret the value of our validity measure in statistical terms.
Specifically, we attempt to judge how likely it is that our observed value was
achieved by random chance. The value is good if it is unusual; i.e., if it is
unlikely to be the result of random chance. The motivation for this approach
is that we are interested only in clusters that reflect non-random structure in
the data, and such structures should generate unusually high (low) values of
our cluster validity measure, at least if the validity measures are designed to
reflect the presence of strong cluster structure.

Example 5.18 (Significance of SSE). To show how this works, we present an
example based on K-means and the SSE. Suppose that we want a measure of
how good the well-separated clusters of Figure 5.30 are with respect to random
data. We generate many random sets of 100 points having the same range as
the points in the three clusters, find three clusters in each data set using K-
means, and accumulate the distribution of SSE values for these clusterings. By
using this distribution of the SSE values, we can then estimate the probability
of the SSE value for the original clusters. Figure 5.34 shows the histogram of
the SSE from 500 random runs. The lowest SSE shown in Figure 5.34 is 0.0173.
For the three clusters of Figure 5.30, the SSE is 0.0050. We could therefore
conservatively claim that there is less than a 1% chance that a clustering such
as that of Figure 5.30 could occur by chance.

In the previous example, randomization was used to evaluate the statis-
tical significance of a cluster validity measure. However, for some measures,
such as Hubert’s Γ statistic, the distribution is known and can be used to
evaluate the measure. In addition, a normalized version of the measure can be
computed by subtracting the mean and dividing by the standard deviation.
See Bibliographic Notes for more details.

We stress that there is more to cluster evaluation (unsupervised or su-
pervised) than obtaining a numerical measure of cluster validity. Unless this
value has a natural interpretation based on the definition of the measure, we
need to interpret this value in some way. If our cluster evaluation measure

�

M05 TAN9224 02 GE C05 page 378

� �

�

378 Chapter 5 Cluster Analysis: Basic Concepts and Algorithms

0.015 0.02 0.025 0.03 0.035 0.04
0

10

20

30

40

50

SSE

C
ou

nt

Figure 5.34. Histogram of SSE for 500 random data sets.

is defined such that lower (higher) values indicate stronger clusters, then we
can use statistics to evaluate whether the value we have obtained is unusually
low (high), provided we have a distribution for the evaluation measure. We
have presented an example of how to find such a distribution, but there is
considerably more to this topic, and we refer the reader to the Bibliographic
Notes for more pointers.

Finally, even when an evaluation measure is used as a relative measure,
i.e., to compare two clusterings, we still need to assess the significance in the
difference between the evaluation measures of the two clusterings. Although
one value will almost always be better than another, it can be difficult to
determine if the difference is significant. Note that there are two aspects to
this significance: whether the difference is statistically significant (repeatable)
and whether the magnitude of the difference is meaningful with respect to the
application. Many would not regard a difference of 0.1% as significant, even if
it is consistently reproducible.

5.5.9 Choosing a Cluster Validity Measure

There are many more measures for evaluating cluster validity than have been
discussed here. Various books and articles propose various measures as being
superior to others. In this section, we offer some high-level guidance. First,
it is important to distinguish whether the clustering is being performed for
summarization or understanding. If summarization, typically class labels are
not involved and the goal is maximum compression. This is often done by
finding clusters that minimize the distance of objects to their closest cluster

�

M05 TAN9224 02 GE C05 page 379

� �

�

5.6 Bibliographic Notes 379

centroid. Indeed, the clustering process is often driven by the objective of
minimizing representation error. Measures such as SSE are more natural for
this application.

If the clustering is being performed for understanding, then the situation
is more complicated. For the unsupervised case, virtually all measures try
to maximize cohesion and separation. Some measures obtain a “best” value
for a particular value of K, the number of clusters. Although this might
seem appealing, such measures typically only identify one “right” number
of clusters, even when subclusters are present. (Recall that cohesion and
separation continue to increase for K-means until there is one cluster per
point.) More generally, if the number of clusters is not too large, it can
be useful to manually examine the cluster cohesion of each cluster and the
pairwise separation of clusters. However, note that very few cluster validity
measures are appropriate to contiguity or density-based clusters that can have
irregular and intertwined shapes.

For the supervised case, where clustering is almost always performed with
a goal of generating understandable clusters, the ideal result of clustering is
to produce clusters that match the underlying class structure. Evaluating the
match between a set of clusters and classes is a non-trivial problem. The F -
measure and hierarchical F -measure discussed earlier, are examples of how to
evaluate such a match. Other examples can be found in the references to cluster
evaluation provided in the Bibliographic Notes. In any case, when the number
of clusters are relatively small, the confusion matrix can be more informative
than any single measure of cluster validity since it an indicate which classes
tend to be appear in clusters with which other classes. Note that supervised
cluster evaluation indices are independent of whether the clusters are center-,
contiguity-, or density-based.

In conclusion, it is important to realize that clustering is often used as an
exploratory data technique whose goal is often not to provide a crisp answer,
but rather to provide some insight into the underlying structure of the data. In
this situation, cluster validity indices are useful to the extent they are useful
to that end goal.

5.6 Bibliographic Notes

Discussion in this chapter has been most heavily influenced by the books
on cluster analysis written by Jain and Dubes [370], Anderberg [343], and
Kaufman and Rousseeuw [374], as well as the more recent book edited by
and Aggarwal and Reddy [341]. Additional clustering books that may also

�

M05 TAN9224 02 GE C05 page 380

� �

�

380 Chapter 5 Cluster Analysis: Basic Concepts and Algorithms

be of interest include those by Aldenderfer and Blashfield [342], Everitt et al.
[361], Hartigan [367], Mirkin [382], Murtagh [384], Romesburg [387], and Späth
[391]. A more statistically oriented approach to clustering is given by the
pattern recognition book of Duda et al. [358], the machine learning book
of Mitchell [383], and the book on statistical learning by Hastie et al. [368].
General surveys of clustering are given by Jain et al. [371] and Xu and Wunsch
[394], while a survey of spatial data mining techniques is provided by Han et al.
[366]. Behrkin [349] provides a survey of clustering techniques for data mining.
A good source of references to clustering outside of the data mining field is
the article by Arabie and Hubert [345]. A paper by Kleinberg [375] provides a
discussion of some of the trade-offs that clustering algorithms make and proves
that it is impossible for a clustering algorithm to simultaneously possess three
simple properties. A wide-ranging, retrospective article by Jain provides a look
at clustering during the 50 years from the invention of K-means [369].

The K-means algorithm has a long history, but is still the subject of
current research. The K-means algorithm was named by MacQueen [379],
although its history is more extensive. Bock examines the origins of K-means
and some of its extensions [350]. The ISODATA algorithm by Ball and Hall
[347] was an early, but sophisticated version of K-means that employed var-
ious pre- and postprocessing techniques to improve on the basic algorithm.
The K-means algorithm and many of its variations are described in detail
in the books by Anderberg [343] and Jain and Dubes [370]. The bisecting
K-means algorithm discussed in this chapter was described in a paper by
Steinbach et al. [392], and an implementation of this and other clustering
approaches is freely available for academic use in the CLUTO (CLUstering
TOolkit) package created by Karypis [354]. Boley [351] has created a divisive
partitioning clustering algorithm (PDDP) based on finding the first principal
direction (component) of the data, and Savaresi and Boley [389] have explored
its relationship to bisecting K-means. Recent variations of K-means are a
new incremental version of K-means (Dhillon et al. [356]), X-means (Pelleg
and Moore [386]), and K-harmonic means (Zhang et al [396]). Hamerly and
Elkan [365] discuss some clustering algorithms that produce better results
than K-means. While some of the previously mentioned approaches address
the initialization problem of K-means in some manner, other approaches to
improving K-means initialization can also be found in the work of Bradley and
Fayyad [352]. The K-means++ initialization approach was proposed by Arthur
and Vassilvitskii [346]. Dhillon and Modha [357] present a generalization of K-
means, called spherical K-means, which works with commonly used similarity
functions. A general framework for K-means clustering that uses dissimilarity

�

M05 TAN9224 02 GE C05 page 381

� �

�

5.6 Bibliographic Notes 381

functions based on Bregman divergences was constructed by Banerjee et al.
[348].

Hierarchical clustering techniques also have a long history. Much of the
initial activity was in the area of taxonomy and is covered in books by Jardine
and Sibson [372] and Sneath and Sokal [390]. General-purpose discussions
of hierarchical clustering are also available in most of the clustering books
mentioned above. Agglomerative hierarchical clustering is the focus of most
work in the area of hierarchical clustering, but divisive approaches have also
received some attention. For example, Zahn [395] describes a divisive hierar-
chical technique that uses the minimum spanning tree of a graph. While both
divisive and agglomerative approaches typically take the view that merging
(splitting) decisions are final, there has been some work by Fisher [362] and
Karypis et al. [373] to overcome these limitations. Murtagh and Contreras
provide a recent overview of hierarchical clustering algorithms [385] and have
also proposed a linear time hierarchical clustering algorithm [355].

Ester et al. proposed DBSCAN [360], which was later generalized to the
GDBSCAN algorithm by Sander et al. [388] in order to handle more general
types of data and distance measures, such as polygons whose closeness is
measured by the degree of intersection. An incremental version of DBSCAN
was developed by Kriegel et al. [359]. One interesting outgrowth of DBSCAN
is OPTICS (Ordering Points To Identify the Clustering Structure) (Ankerst
et al. [344]), which allows the visualization of cluster structure and can also be
used for hierarchical clustering. A recent discussion of density-based clustering
by Kriegel et al. [376] provides a very readable synopsis of density-based
clustering and recent developments.

An authoritative discussion of cluster validity, which strongly influenced
the discussion in this chapter, is provided in Chapter 6 of Jain and Dubes’
clustering book [370]. A recent review of cluster validity measures by Xiong
and Li can be found in [393]. Other recent reviews of cluster validity are
those of Halkidi et al. [363, 364] and Milligan [381]. Silhouette coefficients are
described in Kaufman and Rousseeuw’s clustering book [374]. The source of
the cohesion and separation measures in Table 5.6 is a paper by Zhao and
Karypis [397], which also contains a discussion of entropy, purity, and the
hierarchical F -measure. The original source of the hierarchical F -measure is
an article by Larsen and Aone [377]. The CVNN measure was introduced by
Li et al. [378]. An axiomatic approach to clustering validity is presented in
[380]. Many of the popular indices for cluster validation are implemented in
the NbClust R package, which is described in the article by Charrad et al.
[353].

�

M05 TAN9224 02 GE C05 page 382

� �

�

382 Chapter 5 Cluster Analysis: Basic Concepts and Algorithms

Bibliography
[341] C. C. Aggarwal and C. K. Reddy, editors. Data Clustering: Algorithms and

Applications. Chapman & Hall/CRC, 1st edition, 2013.

[342] M. S. Aldenderfer and R. K. Blashfield. Cluster Analysis. Sage Publications, Los
Angeles, 1985.

[343] M. R. Anderberg. Cluster Analysis for Applications. Academic Press, New York,
December 1973.

[344] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. OPTICS: Ordering Points
To Identify the Clustering Structure. In Proc. of 1999 ACM-SIGMOD Intl. Conf. on
Management of Data, pages 49–60, Philadelphia, Pennsylvania, June 1999. ACM Press.

[345] P. Arabie, L. Hubert, and G. D. Soete. An overview of combinatorial data analysis.
In P. Arabie, L. Hubert, and G. D. Soete, editors, Clustering and Classification, pages
188–217. World Scientific, Singapore, January 1996.

[346] D. Arthur and S. Vassilvitskii. k-means++: The advantages of careful seeding. In
Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms,
pages 1027–1035. Society for Industrial and Applied Mathematics, 2007.

[347] G. Ball and D. Hall. A Clustering Technique for Summarizing Multivariate Data.
Behavior Science, 12:153–155, March 1967.

[348] A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh. Clustering with Bregman
Divergences. In Proc. of the 2004 SIAM Intl. Conf. on Data Mining, pages 234–245,
Lake Buena Vista, FL, April 2004.

[349] P. Berkhin. Survey Of Clustering Data Mining Techniques. Technical report, Accrue
Software, San Jose, CA, 2002.

[350] H.-H. Bock. Origins and extensions of the-means algorithm in cluster analysis.
Journal Électronique d’Histoire des Probabilités et de la Statistique [electronic only],
4(2):Article–14, 2008.

[351] D. Boley. Principal Direction Divisive Partitioning. Data Mining and Knowledge
Discovery, 2(4):325–344, 1998.

[352] P. S. Bradley and U. M. Fayyad. Refining Initial Points for K-Means Clustering. In
Proc. of the 15th Intl. Conf. on Machine Learning, pages 91–99, Madison, WI, July
1998. Morgan Kaufmann Publishers Inc.

[353] M. Charrad, N. Ghazzali, V. Boiteau, and A. Niknafs. NbClust: an R package for
determining the relevant number of clusters in a data set. Journal of Statistical Software,
61(6):1–36, 2014.

[354] CLUTO 2.1.2: Software for Clustering High-Dimensional Datasets.
www.cs.umn.edu/∼karypis, October 2016.

[355] P. Contreras and F. Murtagh. Fast, linear time hierarchical clustering using the Baire
metric. Journal of classification, 29(2):118–143, 2012.

[356] I. S. Dhillon, Y. Guan, and J. Kogan. Iterative Clustering of High Dimensional Text
Data Augmented by Local Search. In Proc. of the 2002 IEEE Intl. Conf. on Data
Mining, pages 131–138. IEEE Computer Society, 2002.

[357] I. S. Dhillon and D. S. Modha. Concept Decompositions for Large Sparse Text Data
Using Clustering. Machine Learning, 42(1/2):143–175, 2001.

[358] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. John Wiley & Sons,
Inc., New York, second edition, 2001.

[359] M. Ester, H.-P. Kriegel, J. Sander, M. Wimmer, and X. Xu. Incremental Clustering
for Mining in a Data Warehousing Environment. In Proc. of the 24th VLDB Conf.,
pages 323–333, New York City, August 1998. Morgan Kaufmann.

www.cs.umn.edu/~karypis

�

M05 TAN9224 02 GE C05 page 383

� �

�

Bibliography 383

[360] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise. In Proc. of the 2nd Intl.
Conf. on Knowledge Discovery and Data Mining, pages 226–231, Portland, Oregon,
August 1996. AAAI Press.

[361] B. S. Everitt, S. Landau, and M. Leese. Cluster Analysis. Arnold Publishers, London,
4th edition, May 2001.

[362] D. Fisher. Iterative Optimization and Simplification of Hierarchical Clusterings.
Journal of Artificial Intelligence Research, 4:147–179, 1996.

[363] M. Halkidi, Y. Batistakis, and M. Vazirgiannis. Cluster validity methods: part I.
SIGMOD Record (ACM Special Interest Group on Management of Data), 31(2):40–45,
June 2002.

[364] M. Halkidi, Y. Batistakis, and M. Vazirgiannis. Clustering validity checking methods:
part II. SIGMOD Record (ACM Special Interest Group on Management of Data), 31
(3):19–27, Sept. 2002.

[365] G. Hamerly and C. Elkan. Alternatives to the k-means algorithm that find better
clusterings. In Proc. of the 11th Intl. Conf. on Information and Knowledge Management,
pages 600–607, McLean, Virginia, 2002. ACM Press.

[366] J. Han, M. Kamber, and A. Tung. Spatial Clustering Methods in Data Mining: A
review. In H. J. Miller and J. Han, editors, Geographic Data Mining and Knowledge
Discovery, pages 188–217. Taylor and Francis, London, December 2001.

[367] J. Hartigan. Clustering Algorithms. Wiley, New York, 1975.
[368] T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of Statistical Learning:

Data Mining, Inference, Prediction. Springer, New York, 2001.
[369] A. K. Jain. Data clustering: 50 years beyond K-means. Pattern recognition letters, 31

(8):651–666, 2010.
[370] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice Hall Advanced

Reference Series. Prentice Hall, March 1988.
[371] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM Computing

Surveys, 31(3):264–323, September 1999.
[372] N. Jardine and R. Sibson. Mathematical Taxonomy. Wiley, New York, 1971.
[373] G. Karypis, E.-H. Han, and V. Kumar. Multilevel Refinement for Hierarchical

Clustering. Technical Report TR 99-020, University of Minnesota, Minneapolis, MN,
1999.

[374] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster
Analysis. Wiley Series in Probability and Statistics. John Wiley and Sons, New York,
November 1990.

[375] J. M. Kleinberg. An Impossibility Theorem for Clustering. In Proc. of the 16th Annual
Conf. on Neural Information Processing Systems, December, 9–14 2002.

[376] H.-P. Kriegel, P. Kröger, J. Sander, and A. Zimek. Density-based clustering. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(3):231–240, 2011.

[377] B. Larsen and C. Aone. Fast and Effective Text Mining Using Linear-Time Document
Clustering. In Proc. of the 5th Intl. Conf. on Knowledge Discovery and Data Mining,
pages 16–22, San Diego, California, 1999. ACM Press.

[378] Y. Liu, Z. Li, H. Xiong, X. Gao, J. Wu, and S. Wu. Understanding and enhancement
of internal clustering validation measures. Cybernetics, IEEE Transactions on, 43(3):
982–994, 2013.

[379] J. MacQueen. Some methods for classification and analysis of multivariate observa-
tions. In Proc. of the 5th Berkeley Symp. on Mathematical Statistics and Probability,
pages 281–297. University of California Press, 1967.

�

M05 TAN9224 02 GE C05 page 384

� �

�

384 Chapter 5 Cluster Analysis: Basic Concepts and Algorithms

[380] M. Meilǎ. Comparing Clusterings: An Axiomatic View. In Proceedings of the 22Nd
International Conference on Machine Learning, ICML ’05, pages 577–584, New York,
NY, USA, 2005. ACM.

[381] G. W. Milligan. Clustering Validation: Results and Implications for Applied Analyses.
In P. Arabie, L. Hubert, and G. D. Soete, editors, Clustering and Classification, pages
345–375. World Scientific, Singapore, January 1996.

[382] B. Mirkin. Mathematical Classification and Clustering, volume 11 of Nonconvex
Optimization and Its Applications. Kluwer Academic Publishers, August 1996.

[383] T. Mitchell. Machine Learning. McGraw-Hill, Boston, MA, 1997.

[384] F. Murtagh. Multidimensional Clustering Algorithms. Physica-Verlag, Heidelberg and
Vienna, 1985.

[385] F. Murtagh and P. Contreras. Algorithms for hierarchical clustering: an overview.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(1):86–97,
2012.

[386] D. Pelleg and A. W. Moore. X-means: Extending K-means with Efficient Estimation
of the Number of Clusters. In Proc. of the 17th Intl. Conf. on Machine Learning, pages
727–734. Morgan Kaufmann, San Francisco, CA, 2000.

[387] C. Romesburg. Cluster Analysis for Researchers. Life Time Learning, Belmont, CA,
1984.

[388] J. Sander, M. Ester, H.-P. Kriegel, and X. Xu. Density-Based Clustering in Spatial
Databases: The Algorithm GDBSCAN and its Applications. Data Mining and
Knowledge Discovery, 2(2):169–194, 1998.

[389] S. M. Savaresi and D. Boley. A comparative analysis on the bisecting K-means and
the PDDP clustering algorithms. Intelligent Data Analysis, 8(4):345–362, 2004.

[390] P. H. A. Sneath and R. R. Sokal. Numerical Taxonomy. Freeman, San Francisco, 1971.

[391] H. Späth. Cluster Analysis Algorithms for Data Reduction and Classification of
Objects, volume 4 of Computers and Their Application. Ellis Horwood Publishers,
Chichester, 1980. ISBN 0-85312-141-9.

[392] M. Steinbach, G. Karypis, and V. Kumar. A Comparison of Document Clustering
Techniques. In Proc. of KDD Workshop on Text Mining, Proc. of the 6th Intl. Conf.
on Knowledge Discovery and Data Mining, Boston, MA, August 2000.

[393] H. Xiong and Z. Li. Clustering Validation Measures. In C. C. Aggarwal and C. K.
Reddy, editors, Data Clustering: Algorithms and Applications, pages 571–605. Chapman
& Hall/CRC, 2013.

[394] R. Xu, D. Wunsch, et al. Survey of clustering algorithms. Neural Networks, IEEE
Transactions on, 16(3):645–678, 2005.

[395] C. T. Zahn. Graph-Theoretical Methods for Detecting and Describing Gestalt
Clusters. IEEE Transactions on Computers, C-20(1):68–86, Jan. 1971.

[396] B. Zhang, M. Hsu, and U. Dayal. K-Harmonic Means—A Data Clustering Algorithm.
Technical Report HPL-1999-124, Hewlett Packard Laboratories, Oct. 29 1999.

[397] Y. Zhao and G. Karypis. Empirical and theoretical comparisons of selected criterion
functions for document clustering. Machine Learning, 55(3):311–331, 2004.

�

M05 TAN9224 02 GE C05 page 385

� �

�

5.7 Exercises 385

5.7 Exercises

1. Consider a data set consisting of 230 data vectors, where each vector has
32 components and each component is a 4-byte value. Suppose that vector
quantization is used for compression, and that 224 prototype vectors are used.
How many bytes of storage does that data set take before and after compression
and what is the compression ratio?

2. Find all well-separated clusters in the set of points shown in Figure 5.35.

Figure 5.35. Points for Exercise 2.

3. Many partitional clustering algorithms that automatically determine the num-
ber of clusters claim that this is an advantage. List two situations in which this
is not the case.

4. Given K equally sized clusters, the probability that a randomly chosen initial
centroid will come from any given cluster is 1/K, but the probability that each
cluster will have exactly one initial centroid is much lower. (It should be clear
that having one initial centroid in each cluster is a good starting situation for K-
means.) In general, if there areK clusters and each cluster has n points, then the
probability, p, of selecting in a sample of size K one initial centroid from each
cluster is given by Equation 5.20. (This assumes sampling with replacement.)
From this formula we can calculate, for example, that the chance of having one
initial centroid from each of four clusters is 4!/44 = 0.0938.

p =
number of ways to select one centroid from each cluster

number of ways to select K centroids
=

K!nK

(Kn)K
=

K!

KK
(5.20)

(a) Plot the probability of obtaining one point from each cluster in a sample
of size K for values of K between 2 and 100.

(b) For K clusters, K = 10, 100, and 1000, find the probability that a sample
of size 2K contains at least one point from each cluster. You can use either
mathematical methods or statistical simulation to determine the answer.

5. Identify the clusters in Figure 5.36 using the center-, contiguity-, and density-
based definitions. Also indicate the number of clusters for each case and give

�

M05 TAN9224 02 GE C05 page 386

� �

�

386 Chapter 5 Cluster Analysis: Basic Concepts and Algorithms

a brief indication of your reasoning. Note that darkness or the number of dots
indicates density. If it helps, assume center-based means K-means, contiguity-
based means single link, and density-based means DBSCAN.

(a) (b) (c) (d)

Figure 5.36. Clusters for Exercise 5.

6. For the following sets of two-dimensional points, (1) provide a sketch of how
they would be split into clusters by K-means for the given number of clusters
and (2) indicate approximately where the resulting centroids would be. Assume
that we are using the squared error objective function. If you think that there
is more than one possible solution, then please indicate whether each solution
is a global or local minimum. Note that the label of each diagram in Figure
5.37 matches the corresponding part of this question, e.g., Figure 5.37(a) goes
with part (a).

(a) (b) (c) (d) (e)

Figure 5.37. Diagrams for Exercise 6.

(a) K = 2. Assuming that the points are uniformly distributed in the circle,
how many possible ways are there (in theory) to partition the points
into two clusters? What can you say about the positions of the two
centroids? (Again, you don’t need to provide exact centroid locations,
just a qualitative description.)

(b) K = 3. The distance between the edges of the circles is slightly greater
than the radii of the circles.

�

M05 TAN9224 02 GE C05 page 387

� �

�

5.7 Exercises 387

(c) K = 3. The distance between the edges of the circles is much less than
the radii of the circles.

(d) K = 2.
(e) K = 3. Hint: Use the symmetry of the situation and remember that we

are looking for a rough sketch of what the result would be.

7. Suppose that for a data set

• there are m points and K clusters,
• half the points and clusters are in “more dense” regions,
• half the points and clusters are in “less dense” regions, and
• the two regions are well-separated from each other.

For the given data set, which of the following should occur in order to minimize
the squared error when finding K clusters:

(a) Centroids should be equally distributed between more dense and less
dense regions.

(b) More centroids should be allocated to the less dense region.
(c) More centroids should be allocated to the denser region.

Note: Do not get distracted by special cases or bring in factors other than
density. However, if you feel the true answer is different from any given above,
justify your response.

8. Consider the mean of a cluster of objects from a binary transaction data
set. What are the minimum and maximum values of the components of the
mean? What is the interpretation of components of the cluster mean? Which
components most accurately characterize the objects in the cluster?

9. Give an example of a data set consisting of three natural clusters, for which
(almost always) K-means would likely find the correct clusters, but bisecting
K-means would not.

10. Would the cosine measure be the appropriate similarity measure to use with K-
means clustering for time series data? Why or why not? If not, what similarity
measure would be more appropriate?

11. Total SSE is the sum of the SSE for each separate attribute. What does it mean
if the SSE for one variable is low for all clusters? Low for just one cluster? High
for all clusters? High for just one cluster? How could you use the per variable
SSE information to improve your clustering?

12. The leader algorithm (Hartigan [367]) represents each cluster using a point,
known as a leader, and assigns each point to the cluster corresponding to the
closest leader, unless this distance is above a user-specified threshold. In that
case, the point becomes the leader of a new cluster.

�

M05 TAN9224 02 GE C05 page 388

� �

�

388 Chapter 5 Cluster Analysis: Basic Concepts and Algorithms

(a) What are the advantages and disadvantages of the leader algorithm as
compared to K-means?

(b) Suggest ways in which the leader algorithm might be improved.

13. The Voronoi diagram for a set of K points in the plane is a partition of all the
points of the plane into K regions, such that every point (of the plane) is as-
signed to the closest point among theK specified points—see Figure 5.38. What
is the relationship between Voronoi diagrams and K-means clusters? What do
Voronoi diagrams tell us about the possible shapes of K-means clusters?

Figure 5.38. Voronoi diagram for Exercise 13.

14. You are given a data set with 100 records and are asked to cluster the data.
You use K-means to cluster the data, but for all values of K, 1 ≤ K ≤ 100,
the K-means algorithm returns only one non-empty cluster. You then apply
an incremental version of K-means, but obtain exactly the same result. How is
this possible? How would single link or DBSCAN handle such data?

15. Traditional agglomerative hierarchical clustering routines merge two clusters
at each step. Does it seem likely that such an approach accurately captures the
(nested) cluster structure of a set of data points? If not, explain how you might
postprocess the data to obtain a more accurate view of the cluster structure.

16. Use the similarity matrix in Table 5.13 to perform single and complete link
hierarchical clustering. Show your results by drawing a dendrogram. The den-
drogram should clearly show the order in which the points are merged.

17. Hierarchical clustering is sometimes used to generate K clusters, K > 1 by
taking the clusters at the Kth level of the dendrogram. (Root is at level 1.) By
looking at the clusters produced in this way, we can evaluate the behavior of
hierarchical clustering on different types of data and clusters, and also compare
hierarchical approaches to K-means.

The following is a set of one-dimensional points: {6, 12, 18, 24, 30, 42, 48}.

�

M05 TAN9224 02 GE C05 page 389

� �

�

5.7 Exercises 389

Table 5.13. Similarity matrix for Exercise 16.

p1 p2 p3 p4 p5
p1 1.00 0.10 0.41 0.55 0.35
p2 0.10 1.00 0.64 0.47 0.98
p3 0.41 0.64 1.00 0.44 0.85
p4 0.55 0.47 0.44 1.00 0.76
p5 0.35 0.98 0.85 0.76 1.00

(a) For each of the following sets of initial centroids, create two clusters by
assigning each point to the nearest centroid, and then calculate the total
squared error for each set of two clusters. Show both the clusters and the
total squared error for each set of centroids.

i. {18, 45}
ii. {15, 40}

(b) Do both sets of centroids represent stable solutions; i.e., if the K-means
algorithm was run on this set of points using the given centroids as the
starting centroids, would there be any change in the clusters generated?

(c) What are the two clusters produced by single link?

(d) Which technique, K-means or single link, seems to produce the “most
natural” clustering in this situation? (For K-means, take the clustering
with the lowest squared error.)

(e) What definition(s) of clustering does this natural clustering correspond
to? (Well-separated, center-based, contiguous, or density.)

(f) What well-known characteristic of the K-means algorithm explains the
previous behavior?

18. Suppose we find K clusters using Ward’s method, bisecting K-means, and ordi-
nary K-means. Which of these solutions represents a local or global minimum?
Explain.

19. Hierarchical clustering algorithms requireO(m2 log(m)) time, and consequently,
are impractical to use directly on larger data sets. One possible technique for
reducing the time required is to sample the data set. For example, if K clusters
are desired and

√
m points are sampled from the m points, then a hierarchical

clustering algorithm will produce a hierarchical clustering in roughly O(m)
time. K clusters can be extracted from this hierarchical clustering by taking
the clusters on the Kth level of the dendrogram. The remaining points can then
be assigned to a cluster in linear time, by using various strategies. To give a
specific example, the centroids of the K clusters can be computed, and then
each of the m−√m remaining points can be assigned to the cluster associated
with the closest centroid.

�

M05 TAN9224 02 GE C05 page 390

� �

�

390 Chapter 5 Cluster Analysis: Basic Concepts and Algorithms

For each of the following types of data or clusters, discuss briefly if (1) sampling
will cause problems for this approach and (2) what those problems are. Assume
that the sampling technique randomly chooses points from the total set of m
points and that any unmentioned characteristics of the data or clusters are
as optimal as possible. In other words, focus only on problems caused by the
particular characteristic mentioned. Finally, assume that K is very much less
than m.

(a) Data with very different sized clusters.

(b) High-dimensional data.

(c) Data with outliers, i.e., atypical points.

(d) Data with highly irregular regions.

(e) Data with globular clusters.

(f) Data with widely different densities.

(g) Data with a small percentage of noise points.

(h) Non-Euclidean data.

(i) Euclidean data.

(j) Data with many and mixed attribute types.

20. Consider the following four faces shown in Figure 5.39. Again, darkness or
number of dots represents density. Lines are used only to distinguish regions
and do not represent points.

(a) (b) (c) (d)

Figure 5.39. Figure for Exercise 20.

(a) For each figure, could you use single link to find the patterns represented
by the nose, eyes, and mouth? Explain.

(b) For each figure, could you use K-means to find the patterns represented
by the nose, eyes, and mouth? Explain.

�

M05 TAN9224 02 GE C05 page 391

� �

�

5.7 Exercises 391

(c) What limitation does clustering have in detecting all the patterns formed
by the points in Figure 5.39(c)?

21. Compute the entropy and purity for the confusion matrix in Table 5.14.

Table 5.14. Confusion matrix for Exercise 21.

Cluster Entertainment Financial Foreign Metro National Sports Total
#1 1 1 0 11 4 676 693
#2 27 89 333 827 253 33 1562
#3 326 465 8 105 16 29 949

Total 354 555 341 943 273 738 3204

22. You are given two sets of 100 points that fall within the unit square. One set
of points is arranged so that the points are uniformly spaced. The other set of
points is generated from a uniform distribution over the unit square.

(a) Is there a difference between the two sets of points?

(b) If so, which set of points will typically have a smaller SSE for K=10
clusters?

(c) What will be the behavior of DBSCAN on the uniform data set? The
random data set?

23. Using the data in Exercise 24, compute the silhouette coefficient for each point,
each of the two clusters, and the overall clustering.

24. Given the set of cluster labels and similarity matrix shown in Tables 5.15 and
5.16, respectively, compute the correlation between the similarity matrix and
the ideal similarity matrix, i.e., the matrix whose ijth entry is 1 if two objects
belong to the same cluster, and 0 otherwise.

Table 5.15. Table of cluster labels for Exercise 24.

Point Cluster Label
P1 1
P2 1
P3 2
P4 2

Table 5.16. Similarity matrix for Exercise 24.

Point P1 P2 P3 P4
P1 1 0.8 0.65 0.55
P2 0.8 1 0.7 0.6
P3 0.65 0.7 1 0.9
P4 0.55 0.6 0.9 1

25. Compute the hierarchical F -measure for the eight objects {p1, p2, p3, p4,
p5, p6, p7, and p8} and hierarchical clustering shown in Figure 5.40. Class A
contains points p1, p2, and p3, while p4, p5, p6, p7, and p8 belong to class B.

�

M05 TAN9224 02 GE C05 page 392

� �

�

392 Chapter 5 Cluster Analysis: Basic Concepts and Algorithms

{p1, p2, p3, p4, p5, p6, p7, p8}

{p3, p6, p7, p8}

{p1, p2} {p4, p5} {p3, p6} {p7, p8}

{p1, p2, p4, p5,}

Figure 5.40. Hierarchical clustering for Exercise 25.

26. Compute the cophenetic correlation coefficient for the hierarchical clusterings
in Exercise 16. (You will need to convert the similarities into dissimilarities.)

27. Prove Equation 5.14.

28. Prove Equation 5.16.

29. Prove that
∑K

i=1

∑
x∈Ci

(x−mi)(m−mi) = 0. This fact was used in the proof
that TSS = SSE + SSB in Section 5.5.2.

30. Clusters of documents can be summarized by finding the top terms (words) for
the documents in the cluster, e.g., by taking the most frequent k terms, where
k is a constant, say 10, or by taking all terms that occur more frequently than
a specified threshold. Suppose that K-means is used to find clusters of both
documents and words for a document data set.

(a) How might a set of term clusters defined by the top terms in a document
cluster differ from the word clusters found by clustering the terms with
K-means?

(b) How could term clustering be used to define clusters of documents?

31. We can represent a data set as a collection of object nodes and a collection of
attribute nodes, where there is a link between each object and each attribute,
and where the weight of that link is the value of the object for that attribute. For
sparse data, if the value is 0, the link is omitted. Bipartite clustering attempts
to partition this graph into disjoint clusters, where each cluster consists of a
set of object nodes and a set of attribute nodes. The objective is to maximize
the weight of links between the object and attribute nodes of a cluster, while
minimizing the weight of links between object and attribute links in different
clusters. This type of clustering is also known as co-clustering because the
objects and attributes are clustered at the same time.

(a) How is bipartite clustering (co-clustering) different from clustering the
sets of objects and attributes separately?

(b) Are there any cases in which these approaches yield the same clusters?

�

M05 TAN9224 02 GE C05 page 393

� �

�

5.7 Exercises 393

(c) What are the strengths and weaknesses of co-clustering as compared to
ordinary clustering?

32. Show with an example that randomly selected initial centroids may be poor in
K-means. While multiple runs can address this problem, they may not work
well. Show this with an example.

33. Why is the space complexity of the DBSCAN algorithm linear even for data
with high dimensions?

34. How can we use cluster evaluation measures to determine the correct number
of natural clusters? Do these methods always indicate the correct number of
natural clusters?

35. How are single-link clustering, complete-link clustering, group average cluster-
ing, and Ward’s method clustering different?

36. Consider five data points P1, P2, P3, P4, and P5. They belong to two clusters
C1 = {P1, P2, P3} and C2 = {P4, P5} and two classes L1 = {P1, P2} and
L2 = {P3, P4, P5}. Compute the ideal cluster and class similarity matrices and
find the Rand statistic.

37. In Figure 5.41, match the similarity matrices, which are sorted according to
cluster labels, with the sets of points. Differences in shading and marker shape
distinguish between clusters, and each set of points contains 100 points and
three clusters. In the set of points labeled 2, there are three very tight, equal-
sized clusters.

�

M05 TAN9224 02 GE C05 page 394

� �

�

394 Chapter 5 Cluster Analysis: Basic Concepts and Algorithms

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.2 0.4 0.6 0.8 1

x

y

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.2 0.4 0.6 0.8 1

x

y

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.2 0.4 0.6 0.8 1

x

y

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.2 0.4 0.6 0.8 1

x

y

1

3

2

4

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0.9

A B

C D

10

20

30

40

50

60

70

80

90

100
20 40 60 80 100

1

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0.910

20

30

40

50

60

70

80

90

100
20 40 60 80 100

1

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0.910

20

30

40

50

60

70

80

90

100
20 40 60 80 100

1

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0.910

20

30

40

50

60

70

80

90

100
20 40 60 80 100

1

Figure 5.41. Points and similarity matrices for Exercise 37.

�

M06 TAN9224 02 GE C06 page 395

� �

�

6

Classification:
Alternative Techniques

Chapter 3 introduced the classification problem and presented a technique
known as the decision tree classifier. Issues such as model overfitting and model
evaluation were also discussed. This chapter presents alternative techniques
for building classification models—from simple techniques such as rule-based
and nearest neighbor classifiers to more sophisticated techniques such as arti-
ficial neural networks, deep learning, support vector machines, and ensemble
methods. Other practical issues such as the class imbalance and multiclass
problems are also discussed at the end of the chapter.

6.1 Types of Classifiers

Before presenting specific techniques, we first categorize the different types
of classifiers available. One way to distinguish classifiers is by considering the
characteristics of their output.

Binary versus Multiclass Binary classifiers assign each data instance to
one of two possible labels, typically denoted as +1 and −1. The positive class
usually refers to the category we are more interested in predicting correctly
compared to the negative class (e.g., the spam category in email classification
problems). If there are more than two possible labels available, then the
technique is known as a multiclass classifier. As some classifiers were designed
for binary classes only, they must be adapted to deal with multiclass problems.
Techniques for transforming binary classifiers into multiclass classifiers are
described in Section 6.12.

�

M06 TAN9224 02 GE C06 page 396

� �

�

396 Chapter 6 Classification: Alternative Techniques

Deterministic versus Probabilistic A deterministic classifier produces a
discrete-valued label to each data instance it classifies whereas a probabilistic
classifier assigns a continuous score between 0 and 1 to indicate how likely
it is that an instance belongs to a particular class, where the probability
scores for all the classes sum up to 1. Some examples of probabilistic classifiers
include the näıve Bayes classifier, Bayesian networks, and logistic regression.
Probabilistic classifiers provide additional information about the confidence in
assigning an instance to a class than deterministic classifiers. A data instance is
typically assigned to the class with the highest probability score, except when
the cost of misclassifying the class with lower probability is significantly higher.
We will discuss the topic of cost-sensitive classification with probabilistic
outputs in Section 6.11.2.

Another way to distinguish the different types of classifiers is based on
their technique for discriminating instances from different classes.

Linear versus Nonlinear A linear classifier uses a linear separating hy-
perplane to discriminate instances from different classes whereas a nonlin-
ear classifier enables the construction of more complex, nonlinear decision
surfaces. We illustrate an example of a linear classifier (perceptron) and its
nonlinear counterpart (multi-layer neural network) in Section 6.7. Although
the linearity assumption makes the model less flexible in terms of fitting
complex data, linear classifiers are thus less susceptible to model overfitting
compared to nonlinear classifiers. Furthermore, one can transform the original
set of attributes, x = (x1, x2, · · · , xd), into a more complex feature set, e.g.,
φ(x) = (x1, x2, x1x2, x

2
1, x

2
2, · · ·), before applying the linear classifier. Such

feature transformation allows the linear classifier to fit data sets with nonlinear
decision surfaces (see Section 6.9.4).

Global versus Local A global classifier fits a single model to the entire data
set. Unless the model is highly nonlinear, this one-size-fits-all strategy may not
be effective when the relationship between the attributes and the class labels
varies over the input space. In contrast, a local classifier partitions the input
space into smaller regions and fits a distinct model to training instances in each
region. The k-nearest neighbor classifier (see Section 6.3) is a classic example
of local classifiers. While local classifiers are more flexible in terms of fitting
complex decision boundaries, they are also more susceptible to the model
overfitting problem, especially when the local regions contain few training
examples.

�

M06 TAN9224 02 GE C06 page 397

� �

�

6.2 Rule-Based Classifier 397

Generative versus Discriminative Given a data instance x, the primary
objective of any classifier is to predict the class label, y, of the data instance.
However, apart from predicting the class label, we may also be interested in
describing the underlying mechanism that generates the instances belonging
to every class label. For example, in the process of classifying spam email
messages, it may be useful to understand the typical characteristics of email
messages that are labeled as spam, e.g., specific usage of keywords in the
subject or the body of the email. Classifiers that learn a generative model of
every class in the process of predicting class labels are known as generative
classifiers. Some examples of generative classifiers include the näıve Bayes
classifier and Bayesian networks. In contrast, discriminative classifiers directly
predict the class labels without explicitly describing the distribution of every
class label. They solve a simpler problem than generative models since they
do not have the onus of deriving insights about the generative mechanism of
data instances. They are thus sometimes preferred over generative models,
especially when it is not crucial to obtain information about the properties of
every class. Some examples of discriminative classifiers include decision trees,
rule-based classifier, nearest neighbor classifier, artificial neural networks, and
support vector machines.

6.2 Rule-Based Classifier

A rule-based classifier uses a collection of “if . . .then. . .” rules (also known
as a rule set) to classify data instances. Table 6.1 shows an example of a
rule set generated for the vertebrate classification problem described in the
previous chapter. Each classification rule in the rule set can be expressed in
the following way:

ri : (Conditioni) −→ yi. (6.1)

The left-hand side of the rule is called the rule antecedent or precondition.
It contains a conjunction of attribute test conditions:

Conditioni = (A1 op v1) ∧ (A2 op v2) ∧ . . . (Ak op vk), (6.2)

where (Aj , vj) is an attribute-value pair and op is a comparison operator
chosen from the set {=, �=, <,>,≤,≥}. Each attribute test (Aj op vj) is
also known as a conjunct. The right-hand side of the rule is called the rule
consequent, which contains the predicted class yi.

A rule r covers a data instance x if the precondition of r matches the
attributes of x. r is also said to be fired or triggered whenever it covers a

�

M06 TAN9224 02 GE C06 page 398

� �

�

398 Chapter 6 Classification: Alternative Techniques

Table 6.1. Example of a rule set for the vertebrate classification problem.

r1: (Gives Birth = no) ∧ (Aerial Creature = yes) −→ Birds
r2: (Gives Birth = no) ∧ (Aquatic Creature = yes) −→ Fishes
r3: (Gives Birth = yes) ∧ (Body Temperature = warm-blooded) −→ Mammals
r4: (Gives Birth = no) ∧ (Aerial Creature = no) −→ Reptiles
r5: (Aquatic Creature = semi) −→ Amphibians

given instance. For an illustration, consider the rule r1 given in Table 6.1 and
the following attributes for two vertebrates: hawk and grizzly bear.

Name Body Skin Gives Aquatic Aerial Has Hiber-
Temperature Cover Birth Creature Creature Legs nates

hawk warm-blooded feather no no yes yes no
grizzly bear warm-blooded fur yes no no yes yes

r1 covers the first vertebrate because its precondition is satisfied by the hawk’s
attributes. The rule does not cover the second vertebrate because grizzly bears
give birth to their young and cannot fly, thus violating the precondition of r1.

The quality of a classification rule can be evaluated using measures such as
coverage and accuracy. Given a data setD and a classification rule r : A −→ y,
the coverage of the rule is the fraction of instances in D that trigger the rule r.
On the other hand, its accuracy or confidence factor is the fraction of instances
triggered by r whose class labels are equal to y. The formal definitions of these
measures are

Coverage(r) =
|A|
|D|

Accuracy(r) =
|A ∩ y|
|A| , (6.3)

where |A| is the number of instances that satisfy the rule antecedent, |A ∩ y|
is the number of instances that satisfy both the antecedent and consequent,
and |D| is the total number of instances.

Example 6.1. Consider the data set shown in Table 6.2. The rule

(Gives Birth = yes) ∧ (Body Temperature = warm-blooded) −→ Mammals

has a coverage of 33% since five of the fifteen instances support the rule
antecedent. The rule accuracy is 100% because all five vertebrates covered
by the rule are mammals.

�

M06 TAN9224 02 GE C06 page 399

� �

�

6.2 Rule-Based Classifier 399

Table 6.2. The vertebrate data set.

Name Body Skin Gives Aquatic Aerial Has Hiber- Class Label
Temperature Cover Birth Creature Creature Legs nates

human warm-blooded hair yes no no yes no Mammals
python cold-blooded scales no no no no yes Reptiles
salmon cold-blooded scales no yes no no no Fishes
whale warm-blooded hair yes yes no no no Mammals
frog cold-blooded none no semi no yes yes Amphibians
komodo
dragon

cold-blooded scales no no no yes no Reptiles

bat warm-blooded hair yes no yes yes yes Mammals
pigeon warm-blooded feathers no no yes yes no Birds
cat warm-blooded fur yes no no yes no Mammals
guppy cold-blooded scales yes yes no no no Fishes
alligator cold-blooded scales no semi no yes no Reptiles
penguin warm-blooded feathers no semi no yes no Birds
porcupine warm-blooded quills yes no no yes yes Mammals
eel cold-blooded scales no yes no no no Fishes
salamander cold-blooded none no semi no yes yes Amphibians

6.2.1 How a Rule-Based Classifier Works

A rule-based classifier classifies a test instance based on the rule triggered by
the instance. To illustrate how a rule-based classifier works, consider the rule
set shown in Table 6.1 and the following vertebrates:

Name Body Skin Gives Aquatic Aerial Has Hiber-
Temperature Cover Birth Creature Creature Legs nates

lemur warm-blooded fur yes no no yes yes
turtle cold-blooded scales no semi no yes no
dogfish shark cold-blooded scales yes yes no no no

• The first vertebrate, which is a lemur, is warm-blooded and gives birth
to its young. It triggers the rule r3, and thus, is classified as a mammal.

• The second vertebrate, which is a turtle, triggers the rules r4 and r5.
Since the classes predicted by the rules are contradictory (reptiles versus
amphibians), their conflicting classes must be resolved.

• None of the rules are applicable to a dogfish shark. In this case, we need
to determine what class to assign to such a test instance.

�

M06 TAN9224 02 GE C06 page 400

� �

�

400 Chapter 6 Classification: Alternative Techniques

6.2.2 Properties of a Rule Set

The rule set generated by a rule-based classifier can be characterized by the
following two properties.

Definition 6.1 (Mutually Exclusive Rule Set). The rules in a rule set R are
mutually exclusive if no two rules in R are triggered by the same instance.
This property ensures that every instance is covered by at most one rule in R.

Definition 6.2 (Exhaustive Rule Set). A rule set R has exhaustive coverage if
there is a rule for each combination of attribute values. This property ensures
that every instance is covered by at least one rule in R.

Table 6.3. Example of a mutually exclusive and exhaustive rule set.

r1: (Body Temperature = cold-blooded) −→ Non-mammals
r2: (Body Temperature = warm-blooded) ∧ (Gives Birth = yes) −→ Mammals
r3: (Body Temperature = warm-blooded) ∧ (Gives Birth = no) −→ Non-mammals

Together, these two properties ensure that every instance is covered by
exactly one rule. An example of a mutually exclusive and exhaustive rule set
is shown in Table 6.3. Unfortunately, many rule-based classifiers, including
the one shown in Table 6.1, do not have such properties. If the rule set is
not exhaustive, then a default rule, rd : () −→ yd, must be added to cover
the remaining cases. A default rule has an empty antecedent and is triggered
when all other rules have failed. yd is known as the default class and is typically
assigned to the majority class of training instances not covered by the existing
rules. If the rule set is not mutually exclusive, then an instance can be covered
by more than one rule, some of which may predict conflicting classes.

Definition 6.3 (Ordered Rule Set). The rules in an ordered rule set R are
ranked in decreasing order of their priority. An ordered rule set is also known
as a decision list.

The rank of a rule can be defined in many ways, e.g., based on its accuracy
or total description length. When a test instance is presented, it will be
classified by the highest-ranked rule that covers the instance. This avoids the
problem of having conflicting classes predicted by multiple classification rules
if the rule set is not mutually exclusive.

An alternative way to handle a non-mutually exclusive rule set without
ordering the rules is to consider the consequent of each rule triggered by a

�

M06 TAN9224 02 GE C06 page 401

� �

�

6.2 Rule-Based Classifier 401

test instance as a vote for a particular class. The votes are then tallied to
determine the class label of the test instance. The instance is usually assigned
to the class that receives the highest number of votes. The vote may also be
weighted by the rule’s accuracy. Using unordered rules to build a rule-based
classifier has both advantages and disadvantages. Unordered rules are less
susceptible to errors caused by the wrong rule being selected to classify a test
instance unlike classifiers based on ordered rules, which are sensitive to the
choice of rule-ordering criteria. Model building is also less expensive because
the rules do not need to be kept in sorted order. Nevertheless, classifying a
test instance can be quite expensive because the attributes of the test instance
must be compared against the precondition of every rule in the rule set.

In the next two sections, we present techniques for extracting an ordered
rule set from data. A rule-based classifier can be constructed using (1) direct
methods, which extract classification rules directly from data, and (2) indirect
methods, which extract classification rules from more complex classification
models, such as decision trees and neural networks. Detailed discussions of
these methods are presented in Sections 6.2.3 and 6.2.4, respectively.

6.2.3 Direct Methods for Rule Extraction

To illustrate the direct method, we consider a widely-used rule induction
algorithm called RIPPER. This algorithm scales almost linearly with the
number of training instances and is particularly suited for building models
from data sets with imbalanced class distributions. RIPPER also works well
with noisy data because it uses a validation set to prevent model overfitting.

RIPPER uses the sequential covering algorithm to extract rules directly
from data. Rules are grown in a greedy fashion one class at a time. For binary
class problems, RIPPER chooses the majority class as its default class and
learns the rules to detect instances from the minority class. For multiclass
problems, the classes are ordered according to their prevalence in the training
set. Let (y1, y2, . . . , yc) be the ordered list of classes, where y1 is the least
prevalent class and yc is the most prevalent class. All training instances that
belong to y1 are initially labeled as positive examples, while those that belong
to other classes are labeled as negative examples. The sequential covering
algorithm learns a set of rules to discriminate the positive from negative
examples. Next, all training instances from y2 are labeled as positive, while
those from classes y3, y4, · · · , yc are labeled as negative. The sequential
covering algorithm would learn the next set of rules to distinguish y2 from
other remaining classes. This process is repeated until we are left with only
one class, yc, which is designated as the default class.

�

M06 TAN9224 02 GE C06 page 402

� �

�

402 Chapter 6 Classification: Alternative Techniques

Algorithm 6.1 Sequential covering algorithm.
1: Let E be the training instances and A be the set of attribute-value pairs,
{(Aj , vj)}.

2: Let Yo be an ordered set of classes {y1, y2, . . . , yk}.
3: Let R = { } be the initial rule list.
4: for each class y ∈ Yo − {yk} do
5: while stopping condition is not met do
6: r ← Learn-One-Rule (E, A, y).
7: Remove training instances from E that are covered by r.
8: Add r to the bottom of the rule list: R←− R ∨ r.
9: end while

10: end for
11: Insert the default rule, {} −→ yk, to the bottom of the rule list R.

A summary of the sequential covering algorithm is shown in Algorithm
6.1. The algorithm starts with an empty decision list, R, and extracts rules
for each class based on the ordering specified by the class prevalence. It
iteratively extracts the rules for a given class y using the Learn-One-Rule
function. Once such a rule is found, all the training instances covered by the
rule are eliminated. The new rule is added to the bottom of the decision list R.
This procedure is repeated until the stopping criterion is met. The algorithm
then proceeds to generate rules for the next class.

Figure 6.1 demonstrates how the sequential covering algorithm works for
a data set that contains a collection of positive and negative examples. The
rule R1, whose coverage is shown in Figure 6.1(b), is extracted first because
it covers the largest fraction of positive examples. All the training instances
covered by R1 are subsequently removed and the algorithm proceeds to look
for the next best rule, which is R2.

Learn-One-Rule Function

Finding an optimal rule is computationally expensive due to the exponential
search space to explore. The Learn-One-Rule function addresses this problem
by growing the rules in a greedy fashion. It generates an initial rule r : {} −→
+, where the left-hand side is an empty set and the right-hand side corresponds
to the positive class. It then refines the rule until a certain stopping criterion
is met. The accuracy of the initial rule may be poor because some of the
training instances covered by the rule belong to the negative class. A new
conjunct must be added to the rule antecedent to improve its accuracy.

�

M06 TAN9224 02 GE C06 page 403

� �

�

6.2 Rule-Based Classifier 403

R1

R1

R1

R2

(a) Original Data (b) Step 1

(c) Step 2 (d) Step 3

Figure 6.1. An example of the sequential covering algorithm.

RIPPER uses the FOIL’s information gain measure to choose the best
conjunct to be added into the rule antecedent. The measure takes into con-
sideration both the gain in accuracy and support of a candidate rule, where
support is defined as the number of positive examples covered by the rule. For
example, suppose the rule r : A −→ + initially covers p0 positive examples
and n0 negative examples. After adding a new conjunct B, the extended rule
r′ : A ∧B −→ + covers p1 positive examples and n1 negative examples. The
FOIL’s information gain of the extended rule is computed as follows:

FOIL’s information gain = p1 ×
(

log2

p1

p1 + n1
− log2

p0

p0 + n0

)
. (6.4)

RIPPER chooses the conjunct with highest FOIL’s information gain to extend
the rule, as illustrated in the next example.

Example 6.2. [Foil’s Information Gain] Consider the training set for the
vertebrate classification problem shown in Table 6.2. Suppose the target class
for the Learn-One-Rule function is mammals. Initially, the antecedent of the
rule {} → Mammals covers 5 positive and 10 negative examples. Thus, the

�

M06 TAN9224 02 GE C06 page 404

� �

�

404 Chapter 6 Classification: Alternative Techniques

accuracy of the rule is only 0.333. Next, consider the following three candidate
conjuncts to be added to the left-hand side of the rule: Skin cover = hair,
Body temperature = warm, and Has legs = No. The number of positive and
negative examples covered by the rule after adding each conjunct along with
their respective accuracy and FOIL’s information gain are shown in the fol-
lowing table.

Candidate rule p1 n1 Accuracy Info Gain
{Skin cover = hair} → Mammals 3 0 1.000 4.755
{Body temperature = warm} → Mammals 5 2 0.714 5.498
{Has legs = No} → Mammals 1 4 0.200 -0.737

Although Skin cover = hair has the highest accuracy among the three
candidates, the conjunct Body temperature = warm has the highest FOIL’s
information gain. Thus, it is chosen to extend the rule (see Figure 6.2).
This process continues until adding new conjuncts no longer improves the
information gain measure.

Rule Pruning The rules generated by the Learn-One-Rule function can
be pruned to improve their generalization errors. RIPPER prunes the rules
based on their performance on the validation set. The following metric is
computed to determine whether pruning is needed: (p − n)/(p + n), where p
(n) is the number of positive (negative) examples in the validation set covered
by the rule. This metric is monotonically related to the rule’s accuracy on
the validation set. If the metric improves after pruning, then the conjunct is
removed. Pruning is done starting from the last conjunct added to the rule.
For example, given a rule ABCD −→ y, RIPPER checks whether D should be
pruned first, followed by CD, BCD, etc. While the original rule covers only
positive examples, the pruned rule may cover some of the negative examples
in the training set.

Building the Rule Set After generating a rule, all the positive and nega-
tive examples covered by the rule are eliminated. The rule is then added into
the rule set as long as it does not violate the stopping condition, which is
based on the minimum description length principle. If the new rule increases
the total description length of the rule set by at least d bits, then RIPPER
stops adding rules into its rule set (by default, d is chosen to be 64 bits).
Another stopping condition used by RIPPER is that the error rate of the rule
on the validation set must not exceed 50%.

�

M06 TAN9224 02 GE C06 page 405

� �

�

6.2 Rule-Based Classifier 405

Body Temperature = warm-blooded,
Has Legs = yes = > Mammals

Body Temperature = warm-blooded, Skin Cover = hair,
Gives Birth = yes, Aquatic Creature = no, Aerial Creature = no

Has Legs = yes, Hibernates = no = > Mammals

Body Temperature = warm-blooded,
Skin Cover = hair, Gives Birth = yes,

Aquatic creature = no, Aerial Creature = no
Has Legs = yes = > Mammals

Skin Cover = hair
= > Mammals

{ } = > Mammals

Body Temperature = warm-blooded
= > Mammals

Body Temperature = warm-blooded,
Gives Birth = yes = > Mammals

Has Legs = No
= > Mammals

(a) General-to-specific

(b) Specific-to-general

. . .

. . .

. . .

Skin Cover = hair, Gives Birth = yes
Aquatic Creature = no, Aerial Creature = no,

Has Legs = yes, Hibernates = no
= > Mammals

Figure 6.2. General-to-specific and specific-to-general rule-growing strategies.

RIPPER also performs additional optimization steps to determine whether
some of the existing rules in the rule set can be replaced by better alternative
rules. Readers who are interested in the details of the optimization method
may refer to the reference cited at the end of this chapter.

Instance Elimination

After a rule is extracted, RIPPER eliminates the positive and negative exam-
ples covered by the rule. The rationale for doing this is illustrated in the next
example.

Figure 6.3 shows three possible rules, R1, R2, and R3, extracted from a
training set that contains 29 positive examples and 21 negative examples. The
accuracies of R1, R2, and R3 are 12/15 (80%), 7/10 (70%), and 8/12 (66.7%),
respectively. R1 is generated first because it has the highest accuracy. After
generating R1, the algorithm must remove the examples covered by the rule
so that the next rule generated by the algorithm is different than R1. The

�

M06 TAN9224 02 GE C06 page 406

� �

�

406 Chapter 6 Classification: Alternative Techniques

class = +

class = -

+

+

+
+
+
+

+ +
+

+
+

+
+

+

+ + + + +
+

+
+

+

+
+

+
+

+ +

-
-

-

-
-

-

-

-

- -
-

-
-

- -
-
-
-

- -
-

R1

R3 R2

Figure 6.3. Elimination of training instances by the sequential covering algorithm. R1, R2, and R3
represent regions covered by three different rules.

question is, should it remove the positive examples only, negative examples
only, or both? To answer this, suppose the algorithm must choose between
generating R2 or R3 after R1. Even though R2 has a higher accuracy than
R3 (70% versus 66.7%), observe that the region covered by R2 is disjoint
from R1, while the region covered by R3 overlaps with R1. As a result, R1
and R3 together cover 18 positive and 5 negative examples (resulting in an
overall accuracy of 78.3%), whereas R1 and R2 together cover 19 positive
and 6 negative examples (resulting in a lower overall accuracy of 76%). If the
positive examples covered by R1 are not removed, then we may overestimate
the effective accuracy of R3. If the negative examples covered by R1 are not
removed, then we may underestimate the accuracy of R3. In the latter case,
we might end up preferring R2 over R3 even though half of the false positive
errors committed by R3 have already been accounted for by the preceding rule,
R1. This example shows that the effective accuracy after adding R2 or R3 to
the rule set becomes evident only when both positive and negative examples
covered by R1 are removed.

6.2.4 Indirect Methods for Rule Extraction

This section presents a method for generating a rule set from a decision tree. In
principle, every path from the root node to the leaf node of a decision tree can
be expressed as a classification rule. The test conditions encountered along the
path form the conjuncts of the rule antecedent, while the class label at the leaf
node is assigned to the rule consequent. Figure 6.4 shows an example of a rule

�

M06 TAN9224 02 GE C06 page 407

� �

�

6.2 Rule-Based Classifier 407

set generated from a decision tree. Notice that the rule set is exhaustive and
contains mutually exclusive rules. However, some of the rules can be simplified
as shown in the next example.

Figure 6.4. Converting a decision tree into classification rules.

Example 6.3. Consider the following three rules from Figure 6.4:

r2 : (P = No) ∧ (Q = Yes) −→ +
r3 : (P = Yes) ∧ (R = No) −→ +
r5 : (P = Yes) ∧ (R = Yes) ∧ (Q = Yes) −→ +

Observe that the rule set always predicts a positive class when the value of Q
is Yes. Therefore, we may simplify the rules as follows:

r2′: (Q = Yes) −→ +
r3: (P = Yes) ∧ (R = No) −→ +.

r3 is retained to cover the remaining instances of the positive class. Although
the rules obtained after simplification are no longer mutually exclusive, they
are less complex and are easier to interpret.

In the following, we describe an approach used by the C4.5rules algorithm
to generate a rule set from a decision tree. Figure 6.5 shows the decision tree
and resulting classification rules obtained for the data set given in Table 6.2.

Rule Generation Classification rules are extracted for every path from the
root to one of the leaf nodes in the decision tree. Given a classification rule
r : A −→ y, we consider a simplified rule, r′ : A′ −→ y, where A′ is obtained
by removing one of the conjuncts in A. The simplified rule with the lowest

�

M06 TAN9224 02 GE C06 page 408

� �

�

408 Chapter 6 Classification: Alternative Techniques

Gives
Birth?

Mammals

Yes No

(Gives Birth=No, Aerial Creature=Yes) => Birds

(Gives Birth=No, Aerial Creature=No, Aquatic Creature=No)
 => Reptiles

(Gives Birth=No, Aquatic Creature=Yes) => Fishes

(Gives Birth=Yes) => Mammals

() => Amphibians

Yes No

Semi

Yes No

Fishes Amphibians

Birds Reptiles

Aquatic
Creature

Aerial
Creature

Rule-Based Classifier:

Figure 6.5. Classification rules extracted from a decision tree for the vertebrate classification problem.

pessimistic error rate is retained provided its error rate is less than that of the
original rule. The rule-pruning step is repeated until the pessimistic error of
the rule cannot be improved further. Because some of the rules may become
identical after pruning, the duplicate rules are discarded.

Rule Ordering After generating the rule set, C4.5rules uses the class-based
ordering scheme to order the extracted rules. Rules that predict the same class
are grouped together into the same subset. The total description length for
each subset is computed, and the classes are arranged in increasing order
of their total description length. The class that has the smallest description
length is given the highest priority because it is expected to contain the best
set of rules. The total description length for a class is given by Lexception + g×
Lmodel, where Lexception is the number of bits needed to encode the misclassified
examples, Lmodel is the number of bits needed to encode the model, and g is
a tuning parameter whose default value is 0.5. The tuning parameter depends
on the number of redundant attributes present in the model. The value of the
tuning parameter is small if the model contains many redundant attributes.

6.2.5 Characteristics of Rule-Based Classifiers

1. Rule-based classifiers have very similar characteristics as decision trees.
The expressiveness of a rule set is almost equivalent to that of a decision

�

M06 TAN9224 02 GE C06 page 409

� �

�

6.2 Rule-Based Classifier 409

tree because a decision tree can be represented by a set of mutually ex-
clusive and exhaustive rules. Both rule-based and decision tree classifiers
create rectilinear partitions of the attribute space and assign a class to
each partition. However, a rule-based classifier can allow multiple rules
to be triggered for a given instance, thus enabling the learning of more
complex models than decision trees.

2. Like decision trees, rule-based classifiers can handle varying types of
categorical and continuous attributes and can easily work in multiclass
classification scenarios. Rule-based classifiers are generally used to pro-
duce descriptive models that are easier to interpret but give comparable
performance to the decision tree classifier.

3. Rule-based classifiers can easily handle the presence of redundant at-
tributes that are highly correlated with one other. This is because once
an attribute has been used as a conjunct in a rule antecedent, the re-
maining redundant attributes would show little to no FOIL’s information
gain and would thus be ignored.

4. Since irrelevant attributes show poor information gain, rule-based clas-
sifiers can avoid selecting irrelevant attributes if there are other relevant
attributes that show better information gain. However, if the problem
is complex and there are interacting attributes that can collectively
distinguish between the classes but individually show poor information
gain, it is likely for an irrelevant attribute to be accidentally favored over
a relevant attribute just by random chance. Hence, rule-based classifiers
can show poor performance in the presence of interacting attributes,
when the number of irrelevant attributes is large.

5. The class-based ordering strategy adopted by RIPPER, which empha-
sizes giving higher priority to rare classes, is well suited for handling
training data sets with imbalanced class distributions.

6. Rule-based classifiers are not well-suited for handling missing values in
the test set. This is because the position of rules in a rule set follows
a certain ordering strategy and even if a test instance is covered by
multiple rules, they can assign different class labels depending on their
position in the rule set. Hence, if a certain rule involves an attribute that
is missing in a test instance, it is difficult to ignore the rule and proceed
to the subsequent rules in the rule set, as such a strategy can result in
incorrect class assignments.

�

M06 TAN9224 02 GE C06 page 410

� �

�

410 Chapter 6 Classification: Alternative Techniques

6.3 Nearest Neighbor Classifiers

The classification framework shown in Figure 3.3 involves a two-step process:
(1) an inductive step for constructing a classification model from data, and
(2) a deductive step for applying the model to test examples. Decision tree
and rule-based classifiers are examples of eager learners because they are
designed to learn a model that maps the input attributes to the class label
as soon as the training data becomes available. An opposite strategy would
be to delay the process of modeling the training data until it is needed to
classify the test instances. Techniques that employ this strategy are known as
lazy learners. An example of a lazy learner is the Rote classifier, which
memorizes the entire training data and performs classification only if the
attributes of a test instance match one of the training examples exactly. An
obvious drawback of this approach is that some test instances may not be
classified because they do not match any training example.

One way to make this approach more flexible is to find all the training
examples that are relatively similar to the attributes of the test instances.
These examples, which are known as nearest neighbors, can be used to
determine the class label of the test instance. The justification for using
nearest neighbors is best exemplified by the following saying: “If it walks
like a duck, quacks like a duck, and looks like a duck, then it’s probably a
duck.” A nearest neighbor classifier represents each example as a data point
in a d-dimensional space, where d is the number of attributes. Given a test
instance, we compute its proximity to the training instances according to one
of the proximity measures described in Section 2.4 on page 91. The k-nearest
neighbors of a given test instance z refer to the k training examples that are
closest to z.

Figure 6.6 illustrates the 1-, 2-, and 3-nearest neighbors of a test instance
located at the center of each circle. The instance is classified based on the class
labels of its neighbors. In the case where the neighbors have more than one
label, the test instance is assigned to the majority class of its nearest neighbors.
In Figure 6.6(a), the 1-nearest neighbor of the instance is a negative example.
Therefore the instance is assigned to the negative class. If the number of
nearest neighbors is three, as shown in Figure 6.6(c), then the neighborhood
contains two positive examples and one negative example. Using the majority
voting scheme, the instance is assigned to the positive class. In the case where
there is a tie between the classes (see Figure 6.6(b)), we may randomly choose
one of them to classify the data point.

The preceding discussion underscores the importance of choosing the right
value for k. If k is too small, then the nearest neighbor classifier may be

�

M06 TAN9224 02 GE C06 page 411

� �

�

6.3 Nearest Neighbor Classifiers 411

x x x

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

Figure 6.6. The 1-, 2-, and 3-nearest neighbors of an instance.

x

Figure 6.7. k-nearest neighbor classification with large k.

susceptible to overfitting due to noise, i.e., mislabeled examples in the training
data. On the other hand, if k is too large, the nearest neighbor classifier may
misclassify the test instance because its list of nearest neighbors includes train-
ing examples that are located far away from its neighborhood (see Figure 6.7).

6.3.1 Algorithm

A high-level summary of the nearest neighbor classification method is given in
Algorithm 6.2. The algorithm computes the distance (or similarity) between
each test instance z = (x′, y′) and all the training examples (x, y) ∈ D to
determine its nearest neighbor list, Dz. Such computation can be costly if the
number of training examples is large. However, efficient indexing techniques

�

M06 TAN9224 02 GE C06 page 412

� �

�

412 Chapter 6 Classification: Alternative Techniques

Algorithm 6.2 The k-nearest neighbor classifier.
1: Let k be the number of nearest neighbors and D be the set of training examples.
2: for each test instance z = (x′, y′) do
3: Compute d(x′,x), the distance between z and every example, (x, y) ∈ D.
4: Select Dz ⊆ D, the set of k closest training examples to z.
5: y′ = argmax

v

∑
(xi,yi)∈Dz

I(v = yi)

6: end for

are available to reduce the computation needed to find the nearest neighbors
of a test instance.

Once the nearest neighbor list is obtained, the test instance is classified
based on the majority class of its nearest neighbors:

Majority Voting: y′ = argmax
v

∑

(xi,yi)∈Dz

I(v = yi), (6.5)

where v is a class label, yi is the class label for one of the nearest neighbors,
and I(·) is an indicator function that returns the value 1 if its argument is
true and 0 otherwise.

In the majority voting approach, every neighbor has the same impact
on the classification. This makes the algorithm sensitive to the choice of
k, as shown in Figure 6.6. One way to reduce the impact of k is to weight
the influence of each nearest neighbor xi according to its distance: wi =
1/d(x′,xi)2. As a result, training examples that are located far away from z
have a weaker impact on the classification compared to those that are located
close to z. Using the distance-weighted voting scheme, the class label can be
determined as follows:

Distance-Weighted Voting: y′ = argmax
v

∑

(xi,yi)∈Dz

wi × I(v = yi). (6.6)

6.3.2 Characteristics of Nearest Neighbor Classifiers

1. Nearest neighbor classification is part of a more general technique known
as instance-based learning, which does not build a global model, but
rather uses the training examples to make predictions for a test instance.
(Thus, such classifiers are often said to be “model free.”) Such algorithms
require a proximity measure to determine the similarity or distance
between instances and a classification function that returns the predicted
class of a test instance based on its proximity to other instances.

�

M06 TAN9224 02 GE C06 page 413

� �

�

6.3 Nearest Neighbor Classifiers 413

2. Although lazy learners, such as nearest neighbor classifiers, do not re-
quire model building, classifying a test instance can be quite expensive
because we need to compute the proximity values individually between
the test and training examples. In contrast, eager learners often spend
the bulk of their computing resources for model building. Once a model
has been built, classifying a test instance is extremely fast.

3. Nearest neighbor classifiers make their predictions based on local in-
formation. (This is equivalent to building a local model for each test
instance.) By contrast, decision tree and rule-based classifiers attempt
to find a global model that fits the entire input space. Because the
classification decisions are made locally, nearest neighbor classifiers (with
small values of k) are quite susceptible to noise.

4. Nearest neighbor classifiers can produce decision boundaries of arbitrary
shape. Such boundaries provide a more flexible model representation
compared to decision tree and rule-based classifiers that are often con-
strained to rectilinear decision boundaries. The decision boundaries of
nearest neighbor classifiers also have high variability because they de-
pend on the composition of training examples in the local neighborhood.
Increasing the number of nearest neighbors may reduce such variability.

5. Nearest neighbor classifiers have difficulty handling missing values in
both the training and test sets since proximity computations normally
require the presence of all attributes. Although, the subset of attributes
present in two instances can be used to compute a proximity, such an
approach may not produce good results since the proximity measures
may be different for each pair of instances and thus hard to compare.

6. Nearest neighbor classifiers can handle the presence of interacting at-
tributes, i.e., attributes that have more predictive power taken in com-
bination then by themselves, by using appropriate proximity measures
that can incorporate the effects of multiple attributes together.

7. The presence of irrelevant attributes can distort commonly used proxim-
ity measures, especially when the number of irrelevant attributes is large.
Furthermore, if there are a large number of redundant attributes that
are highly correlated with each other, then the proximity measure can
be overly biased toward such attributes, resulting in improper estimates
of distance. Hence, the presence of irrelevant and redundant attributes
can adversely affect the performance of nearest neighbor classifiers.

�

M06 TAN9224 02 GE C06 page 414

� �

�

414 Chapter 6 Classification: Alternative Techniques

8. Nearest neighbor classifiers can produce wrong predictions unless the
appropriate proximity measure and data preprocessing steps are taken.
For example, suppose we want to classify a group of people based on
attributes such as height (measured in meters) and weight (measured
in pounds). The height attribute has a low variability, ranging from 1.5
m to 1.85 m, whereas the weight attribute may vary from 90 lb. to 250
lb. If the scale of the attributes are not taken into consideration, the
proximity measure may be dominated by differences in the weights of a
person.

6.4 Näıve Bayes Classifier

Many classification problems involve uncertainty. First, the observed attributes
and class labels may be unreliable due to imperfections in the measurement
process, e.g., due to the limited preciseness of sensor devices. Second, the set
of attributes chosen for classification may not be fully representative of the
target class, resulting in uncertain predictions. To illustrate this, consider the
problem of predicting a person’s risk for heart disease based on a model that
uses their diet and workout frequency as attributes. Although most people
who eat healthily and exercise regularly have less chance of developing heart
disease, they may still be at risk due to other latent factors, such as heredity,
excessive smoking, and alcohol abuse, that are not captured in the model.
Third, a classification model learned over a finite training set may not be able
to fully capture the true relationships in the overall data, as discussed in the
context of model overfitting in Chapter 3. Finally, uncertainty in predictions
may arise due to the inherent random nature of real-world systems, such as
those encountered in weather forecasting problems.

In the presence of uncertainty, there is a need to not only make predictions
of class labels but also provide a measure of confidence associated with every
prediction. Probability theory offers a systematic way for quantifying and
manipulating uncertainty in data, and thus, is an appealing framework for
assessing the confidence of predictions. Classification models that make use of
probability theory to represent the relationship between attributes and class
labels are known as probabilistic classification models. In this section,
we present the näıve Bayes classifier, which is one of the simplest and most
widely-used probabilistic classification models.

�

M06 TAN9224 02 GE C06 page 415

� �

�

6.4 Näıve Bayes Classifier 415

6.4.1 Basics of Probability Theory

Before we discuss how the näıve Bayes classifier works, we first introduce
some basics of probability theory that will be useful in understanding the
probabilistic classification models presented in this chapter. This involves
defining the notion of probability and introducing some common approaches
for manipulating probability values.

Consider a variable X, which can take any discrete value from the set
{x1, . . . , xk}. When we have multiple observations of that variable, such as in
a data set where the variable describes some characteristic of data objects,
then we can compute the relative frequency with which each value occurs.
Specifically, suppose that X has the value xi for ni data objects. The relative
frequency with which we observe the event X = xi is then ni/N, where
N denotes the total number of occurrences (N =

∑k
i=1 ni). These relative

frequencies characterize the uncertainty that we have with respect to what
value X may take for an unseen observation and motivates the notion of
probability.

More formally, the probability of an event e, e.g., P (X = xi), measures
how likely it is for the event e to occur. The most traditional view of probability
is based on relative frequency of events (frequentist), while the Bayesian
viewpoint (described later) takes a more flexible view of probabilities. In either
case, a probability is always a number between 0 and 1. Further, the sum of
probability values of all possible events, e.g., outcomes of a variable X is equal
to 1. Variables that have probabilities associated with each possible outcome
(values) are known as random variables.

Now, let us consider two random variables, X and Y , that can each take k
discrete values. Let nij be the number of times we observe X = xi and Y = yj ,
out of a total number of N occurrences. The joint probability of observing
X = xi and Y = yj together can be estimated as

P (X = xi, Y = yi) =
nij

N
. (6.7)

(This is an estimate since we typically have only a finite subset of all possible
observations.) Joint probabilities can be used to answer questions such as
“what is the probability that there will be a surprise quiz today AND I will
be late for the class.” Joint probabilities are symmetric, i.e., P (X = x, Y =
y) = P (Y = y,X = x). For joint probabilities, it is to useful to consider their
sum with respect to one of the random variables, as described in the following
equation:

�

M06 TAN9224 02 GE C06 page 416

� �

�

416 Chapter 6 Classification: Alternative Techniques

k∑

j=1

P (X = xi, Y = yj) =

∑k
j=1 nij

N
=
ni

N
= P (X = xi), (6.8)

where ni is the total number of times we observe X = xi irrespective of
the value of Y . Notice that ni/N is essentially the probability of observing
X = xi. Hence, by summing out the joint probabilities with respect to a
random variable Y , we obtain the probability of observing the remaining
variable X. This operation is called marginalization and the probability
value P (X = xi) obtained by marginalizing out Y is sometimes called the
marginal probability of X. As we will see later, joint probability and
marginal probability form the basic building blocks of a number of proba-
bilistic classification models discussed in this chapter.

Notice that in the previous discussions, we used P (X = xi) to denote the
probability of a particular outcome of a random variable X. This notation can
easily become cumbersome when a number of random variables are involved.
Hence, in the remainder of this section, we will use P (X) to denote the
probability of any generic outcome of the random variable X, while P (xi)
will be used to represent the probability of the specific outcome xi.

Bayes Theorem

Suppose you have invited two of your friends Alex and Martha to a dinner
party. You know that Alex attends 40% of the parties he is invited to.
Further, if Alex is going to a party, there is an 80% chance of Martha
coming along. On the other hand, if Alex is not going to the party, the
chance of Martha coming to the party is reduced to 30%. If Martha has
responded that she will be coming to your party, what is the probability
that Alex will also be coming?

Bayes theorem presents the statistical principle for answering questions
like the previous one, where evidence from multiple sources has to be com-
bined with prior beliefs to arrive at predictions. Bayes theorem can be briefly
described as follows.

Let P (Y |X) denote the conditional probability of observing the random
variable Y whenever the random variable X takes a particular value. P (Y |X)
is often read as the probability of observing Y conditioned on the outcome
of X. Conditional probabilities can be used for answering questions such as
“given that it is going to rain today, what will be the probability that I will go
to the class.” Conditional probabilities of X and Y are related to their joint

�

M06 TAN9224 02 GE C06 page 417

� �

�

6.4 Näıve Bayes Classifier 417

probability in the following way:

P (Y |X) =
P (X,Y)
P (X)

, which implies (6.9)

P (X,Y) = P (Y |X)× P (X) (6.10)
= P (X|Y)× P (Y).

Rearranging the last two expressions in Equation 6.10 leads to Equation 6.11,
which is known as Bayes theorem:

P (Y |X) =
P (X|Y)P (Y)

P (X)
. (6.11)

Bayes theorem provides a relationship between the conditional proba-
bilities P (Y |X) and P (X|Y). Note that the denominator in Equation 6.11
involves the marginal probability of X, which can also be represented as

P (X) =
k∑

i=1

P (X, yi) =
k∑

i=1

P (X|yi)× P (yi).

Using the previous expression for P (X), we can obtain the following equation
for P (Y |X) solely in terms of P (X|Y) and P (Y):

P (Y |X) =
P (X|Y)P (Y)

∑k
i=1 P (X|yi)P (yi)

. (6.12)

Example 6.4. [Bayes Theorem] Bayes theorem can be used to solve a
number of inferential questions about random variables. For example, consider
the problem stated at the beginning on inferring whether Alex will come to
the party. Let P (A = 1) denote the probability of Alex going to a party, while
P (A = 0) denotes the probability of him not going to a party. We know that

P (A = 1) = 0.4,
and P (A = 0) = 1− P (A = 1) = 0.6.

Further, let P (M = 1|A) denote the conditional probability of Martha go-
ing to a party conditioned on whether Alex is going to the party. P (M = 1|A)
takes the following values:

P (M = 1|A = 1) = 0.8,
and P (M = 1|A = 0) = 0.3.

�

M06 TAN9224 02 GE C06 page 418

� �

�

418 Chapter 6 Classification: Alternative Techniques

We can use the above values of P (M |A) and P (A) to compute the prob-
ability of Alex going to the party given Martha is going to the party, P (A =
1|M = 1), as follows:

P (A = 1|M = 1) =
P (M = 1|A = 1)P (A = 1)

P (M = 1|A = 0)P (A = 0) + P (M = 1|A = 1)P (A = 1)
,

=
0.8× 0.4

0.3× 0.6 + 0.8× 0.4

=
0.32
0.5

= 0.64.

(6.13)

Notice that even though the prior probability P (A) of Alex going to
the party is low, the observation that Martha is going, M = 1, affects the
conditional probability P (A = 1|M = 1). This shows the value of Bayes
theorem in combining prior assumptions with observed outcomes to make
predictions. Since P (A = 1|M = 1) > 0.5, it is more likely for Alex to join if
Martha is going to the party.

Using Bayes Theorem for Classification

For the purpose of classification, we are interested in computing the probability
of observing a class label y for a data instance given its set of attribute
values x. This can be represented as P (y|x), which is known as the posterior
probability of the target class. Using the Bayes Theorem, we can represent
the posterior probability as

P (y|x) =
P (x|y)P (y)

P (x)
(6.14)

Note that the numerator of the previous equation involves two terms, P (x|y)
and P (y), both of which contribute to the posterior probability P (y|x). We
describe both of these terms in the following.

The first term P (x|y) is known as the class-conditional probability of the
attributes given the class label. P (x|y) measures the likelihood of observing x
from the distribution of instances belonging to y. If x indeed belongs to class
y, then we should expect P (x|y) to be high. From this point of view, the use of
class-conditional probabilities attempts to capture the process from which the
data instances were generated. Because of this interpretation, probabilistic

�

M06 TAN9224 02 GE C06 page 419

� �

�

6.4 Näıve Bayes Classifier 419

classification models that involve computing class-conditional probabilities
are known as generative classification models. Apart from their use in
computing posterior probabilities and making predictions, class-conditional
probabilities also provide insights about the underlying mechanism behind
the generation of attribute values.

The second term in the numerator of Equation 6.14 is the prior prob-
ability P (y). The prior probability captures our prior beliefs about the dis-
tribution of class labels, independent of the observed attribute values. (This
is the Bayesian viewpoint.) For example, we may have a prior belief that the
likelihood of any person to suffer from a heart disease is α, irrespective of their
diagnosis reports. The prior probability can either be obtained using expert
knowledge, or inferred from historical distribution of class labels.

The denominator in Equation 6.14 involves the probability of evidence,
P (x). Note that this term does not depend on the class label and thus can be
treated as a normalization constant in the computation of posterior probabili-
ties. Further, the value of P (x) can be calculated as P (x) =

∑
i P (x|yi)P (yi).

Bayes theorem provides a convenient way to combine our prior beliefs
with the likelihood of obtaining the observed attribute values. During the
training phase, we are required to learn the parameters for P (y) and P (x|y).
The prior probability P (y) can be easily estimated from the training set by
computing the fraction of training instances that belong to each class. To
compute the class-conditional probabilities, one approach is to consider the
fraction of training instances of a given class for every possible combination of
attribute values. For example, suppose that there are two attributes X1 and
X2 that can each take a discrete value from c1 to ck. Let n0 denote the number
of training instances belonging to class 0, out of which n0

ij number of training
instances have X1 = ci and X2 = cj . The class-conditional probability can
then be given as

P (X1 = ci, X2 = cj |Y = 0) =
n0

ij

n0
.

This approach can easily become computationally prohibitive as the number of
attributes increase, due to the exponential growth in the number of attribute
value combinations. For example, if every attribute can take k discrete values,
then the number of attribute value combinations is equal to kd, where d is
the number of attributes. The large number of attribute value combinations
can also result in poor estimates of class-conditional probabilities, since every
combination will have fewer training instances when the size of training set is
small.

In the following, we present the näıve Bayes classifier, which makes a
simplifying assumption about the class-conditional probabilities, known as the

�

M06 TAN9224 02 GE C06 page 420

� �

�

420 Chapter 6 Classification: Alternative Techniques

näıve Bayes assumption. The use of this assumption significantly helps in
obtaining reliable estimates of class-conditional probabilities, even when the
number of attributes are large.

6.4.2 Näıve Bayes Assumption

The näıve Bayes classifier assumes that the class-conditional probability of all
attributes x can be factored as a product of class-conditional probabilities of
every attribute xi, as described in the following equation:

P (x|y) =
d∏

i=1

P (xi|y), (6.15)

where every data instance x consists of d attributes, {x1, x2, . . . , xd}. The
basic assumption behind the previous equation is that the attribute values xi

are conditionally independent of each other, given the class label y. This
means that the attributes are influenced only by the target class and if we
know the class label, then we can consider the attributes to be independent of
each other. The concept of conditional independence can be formally stated
as follows.

Conditional Independence

Let X1, X2, and Y denote three sets of random variables. The variables in
X1 are said to be conditionally independent of X2, given Y, if the following
condition holds:

P (X1|X2,Y) = P (X1|Y). (6.16)

This means that conditioned on Y, the distribution of X1 is not influenced
by the outcomes of X2, and hence is conditionally independent of X2. To
illustrate the notion of conditional independence, consider the relationship
between a person’s arm length (X1) and his or her reading skills (X2). One
might observe that people with longer arms tend to have higher levels of
reading skills, and thus consider X1 and X2 to be related to each other.
However, this relationship can be explained by another factor, which is the
age of the person (Y). A young child tends to have short arms and lacks the
reading skills of an adult. If the age of a person is fixed, then the observed
relationship between arm length and reading skills disappears. Thus, we can
conclude that arm length and reading skills are not directly related to each
other and are conditionally independent when the age variable is fixed.

�

M06 TAN9224 02 GE C06 page 421

� �

�

6.4 Näıve Bayes Classifier 421

Another way of describing conditional independence is to consider the joint
conditional probability, P (X1,X2|Y), as follows:

P (X1,X2|Y) =
P (X1,X2,Y)

P (Y)

=
P (X1,X2,Y)
P (X2,Y)

× P (X2,Y)
P (Y)

= P (X1|X2,Y)× P (X2|Y)
= P (X1|Y)× P (X2|Y), (6.17)

where Equation 6.16 was used to obtain the last line of Equation 6.17. The
previous description of conditional independence is quite useful from an op-
erational perspective. It states that the joint conditional probability of X1

and X2 given Y can be factored as the product of conditional probabilities
of X1 and X2 considered separately. This forms the basis of the näıve Bayes
assumption stated in Equation 6.15.

How a Näıve Bayes Classifier Works

Using the näıve Bayes assumption, we only need to estimate the conditional
probability of each xi given Y separately, instead of computing the class-
conditional probability for every combination of attribute values. For example,
if n0

i and n0
j denote the number of training instances belonging to class 0 with

X1 = ci and X2 = cj , respectively, then the class-conditional probability can
be estimated as

P (X1 = ci, X2 = cj |Y = 0) =
n0

i

n0
× n0

j

n0
.

In the previous equation, we only need to count the number of training
instances for every one of the k values of an attribute X, irrespective of
the values of other attributes. Hence, the number of parameters needed to
learn class-conditional probabilities is reduced from dk to dk. This greatly
simplifies the expression for the class-conditional probability and makes it
more amenable to learning parameters and making predictions, even in high-
dimensional settings.

The näıve Bayes classifier computes the posterior probability for a test
instance x by using the following equation:

P (y|x) =
P (y)

∏d
i=1 P (xi|y)
P (x)

. (6.18)

�

M06 TAN9224 02 GE C06 page 422

� �

�

422 Chapter 6 Classification: Alternative Techniques

Since P (x) is fixed for every y and only acts as a normalizing constant to
ensure that P (y|x) ∈ [0, 1], we can write

P (y|x) ∝ P (y)
d∏

i=1

P (xi|y).

Hence, it is sufficient to choose the class that maximizes P (y)
∏d

i=1 P (xi|y).
One of the useful properties of the näıve Bayes classifier is that it can

easily work with incomplete information about data instances, when only a
subset of attributes are observed at every instance. For example, if we only
observe p out of d attributes at a data instance, then we can still compute
P (y)

∏p
i=1 P (xi|y) using those p attributes and choose the class with the

maximum value. The näıve Bayes classifier can thus naturally handle missing
values in test instances. In fact, in the extreme case where no attributes are
observed, we can still use the prior probability P (y) as an estimate of the
posterior probability. As we observe more attributes, we can keep refining
the posterior probability to better reflect the likelihood of observing the data
instance.

In the next two subsections, we describe several approaches for estimating
the conditional probabilities P (xi|y) for categorical and continuous attributes
from the training set.

Estimating Conditional Probabilities for Categorical Attributes

For a categorical attribute Xi, the conditional probability P (Xi = c|y) is
estimated according to the fraction of training instances in class y where Xi

takes on a particular categorical value c.

P (Xi = c|y) =
nc

n
,

where n is the number of training instances belonging to class y, out of which
nc number of instances have Xi = c. For example, in the training set given in
Figure 6.8, seven people have the class label Defaulted Borrower=No, out of
which three people have Home Owner=Yes while the remaining four have Home
Owner=No. As a result, the conditional probability for P (Home Owner=Yes|
Defaulted Borrower=No) is equal to 3/7. Similarly, the conditional prob-
ability for defaulted borrowers with Marital Status = Single is given by
P (Marital Status = Single|Defaulted Borrower=Yes) = 2/3. Note that
the sum of conditional probabilities over all possible outcomes of Xi is equal
to one, i.e.,

∑
c P (Xi = c|y) = 1.

�

M06 TAN9224 02 GE C06 page 423

� �

�

6.4 Näıve Bayes Classifier 423

binary

categoric
al

contin
uous

cla
ss

Tid Defaulted
Borrower

Home
Owner

Marital
Status

Annual
Income

1

2

3

4

5

6

7

8

9

10

Yes

No

No

Yes

No

No

Yes

No

No

No

No

No

No

No

Yes

No

No

Yes

No

Yes

125K

100K

70K

120K

95K

60K

220K

85K

75K

90K

Single

Married

Single

Married

Divorced

Married

Divorced

Single

Married

Single

Figure 6.8. Training set for predicting the loan default problem.

Estimating Conditional Probabilities for Continuous Attributes

There are two ways to estimate the class-conditional probabilities for contin-
uous attributes:

1. We can discretize each continuous attribute and then replace the contin-
uous values with their corresponding discrete intervals. This approach
transforms the continuous attributes into ordinal attributes, and the
simple method described previously for computing the conditional prob-
abilities of categorical attributes can be employed. Note that the esti-
mation error of this method depends on the discretization strategy (as
described in Section 2.3.6 on page 83), as well as the number of discrete
intervals. If the number of intervals is too large, every interval may have
an insufficient number of training instances to provide a reliable estimate
of P (Xi|Y). On the other hand, if the number of intervals is too small,
then the discretization process may loose information about the true
distribution of continuous values, and thus result in poor predictions.

2. We can assume a certain form of probability distribution for the con-
tinuous variable and estimate the parameters of the distribution using
the training data. For example, we can use a Gaussian distribution
to represent the conditional probability of continuous attributes. The
Gaussian distribution is characterized by two parameters, the mean, μ,
and the variance, σ2. For each class yj , the class-conditional probability

�

M06 TAN9224 02 GE C06 page 424

� �

�

424 Chapter 6 Classification: Alternative Techniques

for attribute Xi is

P (Xi = xi|Y = yj) =
1√

2πσij

exp
[
− (xi − μij)2

2σ2
ij

]
. (6.19)

The parameter μij can be estimated using the sample mean of Xi (x) for
all training instances that belong to yj . Similarly, σ2

ij can be estimated
from the sample variance (s2) of such training instances. For example,
consider the annual income attribute shown in Figure 6.8. The sample
mean and variance for this attribute with respect to the class No are

x =
125 + 100 + 70 + . . .+ 75

7
= 110

s2 =
(125− 110)2 + (100− 110)2 + . . .+ (75− 110)2

6
= 2975

s =
√

2975 = 54.54.

Given a test instance with taxable income equal to $120K, we can use
the following value as its conditional probability given class No:

P (Income=120|No) =
1√

2π(54.54)
exp− (120−110)2

2×2975 = 0.0072.

Example 6.5. [Näıve Bayes Classifier] Consider the data set shown in
Figure 6.9(a), where the target class is Defaulted Borrower, which can take
two values Yes and No. We can compute the class-conditional probability
for each categorical attribute and the sample mean and variance for the
continuous attribute, as summarized in Figure 6.9(b).

We are interested in predicting the class label of a test instance x = (Home
Owner=No, Marital Status = Married, Annual Income = $120K). To do this,
we first compute the prior probabilities by counting the number of training
instances belonging to every class. We thus obtain P (Yes) = 0.3 and P (No) =

�

M06 TAN9224 02 GE C06 page 425

� �

�

6.4 Näıve Bayes Classifier 425

Tid Defaulted
Borrower

Home
Owner

Marital
Status

Annual
Income

1
2
3
4
5
6
7
8
9
10

Yes
No
No
Yes
No
No
Yes
No
No
No

No
No
No
No
Yes
No
No
Yes
No
Yes

125K
100K
70K
120K
95K
60K
220K
85K
75K
90K

Single
Married
Single
Married
Divorced
Married
Divorced
Single
Married
Single

P(Home Owner=Yes|No) = 3/7
P(Home Owner=No|No) = 4/7
P(Home Owner=Yes|Yes) = 0
P(Home Owner=No|Yes) = 1
P(Marital Status=Single|No) = 2/7
P(Marital Status=Divorced|No) = 1/7
P(Marital Status=Married|No) = 4/7
P(Marital Status=Single|Yes) = 2/3
P(Marital Status=Divorced|Yes) = 1/3
P(Marital Status=Married|Yes) = 0

For Annual Income:
If class=No:

If class=Yes:

sample mean=110
sample variance=2975
sample mean=90
sample variance=25

(a) (b)

Figure 6.9. The naı̈ve Bayes classifier for the loan classification problem.

0.7. Next, we can compute the class-conditional probability as follows:

P (x|No) = P (Home Owner = No|No)× P (Status = Married|No)
× P (Annual Income = $120K|No)

= 4/7× 4/7× 0.0072 = 0.0024.

P (x|Yes) = P (Home Owner = No|Yes)× P (Status = Married|Yes)
× P (Annual Income = $120K|Yes)

= 1× 0× 1.2× 10−9 = 0.

Notice that the class-conditional probability for class Yes has become 0
because there are no instances belonging to class Yes with Status = Married
in the training set. Using these class-conditional probabilities, we can estimate
the posterior probabilities as

P (No|x) =
0.7× 0.0024

P (x)
.

= 0.0016α.

P (Yes|x) =
0.3× 0
P (x)

.

= 0.

�

M06 TAN9224 02 GE C06 page 426

� �

�

426 Chapter 6 Classification: Alternative Techniques

where α = 1/P (X) is a normalizing constant. Since P (No|x) > P (Yes|x), the
instance is classified as No.

Handling Zero Conditional Probabilities

The preceding example illustrates a potential problem with using the näıve
Bayes assumption in estimating class-conditional probabilities. If the condi-
tional probability for any of the attributes is zero, then the entire expression
for the class-conditional probability becomes zero. Note that zero conditional
probabilities arise when the number of training instances is small and the
number of possible values of an attribute is large. In such cases, it may happen
that a combination of attribute values and class labels are never observed,
resulting in a zero conditional probability.

In a more extreme case, if the training instances do not cover some com-
binations of attribute values and class labels, then we may not be able to
even classify some of the test instances. For example, if P (Marital Status =
Divorced|No) is zero instead of 1/7, then a data instance with attribute set
x = (Home Owner = Yes, Marital Status = Divorced, Income = $120K) has
the following class-conditional probabilities:

P (x|No) = 3/7× 0× 0.0072 = 0.
P (x|Yes) = 0× 1/3× 1.2× 10−9 = 0.

Since both the class-conditional probabilities are 0, the näıve Bayes classifier
will not be able to classify the instance. To address this problem, it is impor-
tant to adjust the conditional probability estimates so that they are not as
brittle as simply using fractions of training instances. This can be achieved by
using the following alternate estimates of conditional probability:

Laplace estimate: P (Xi = c|y) =
nc + 1
n+ v

, (6.20)

m-estimate: P (Xi = c|y) =
nc +mp

n+m
, (6.21)

where n is the number of training instances belonging to class y, nc is the
number of training instances with Xi = c and Y = y, v is the total number of
attribute values thatXi can take, p is some initial estimate of P (Xi = c|y) that
is known a priori, and m is a hyper-parameter that indicates our confidence in
using p when the fraction of training instances is too brittle. Note that even

�

M06 TAN9224 02 GE C06 page 427

� �

�

6.4 Näıve Bayes Classifier 427

if nc = 0, both Laplace and m-estimate provide non-zero values of conditional
probabilities. Hence, they avoid the problem of vanishing class-conditional
probabilities and thus generally provide more robust estimates of posterior
probabilities.

Characteristics of Näıve Bayes Classifiers

1. Näıve Bayes classifiers are probabilistic classification models that are
able to quantify the uncertainty in predictions by providing posterior
probability estimates. They are also generative classification models as
they treat the target class as the causative factor for generating the
data instances. Hence, apart from computing posterior probabilities,
näıve Bayes classifiers also attempt to capture the underlying mechanism
behind the generation of data instances belonging to every class. They
are thus useful for gaining predictive as well as descriptive insights.

2. By using the näıve Bayes assumption, they can easily compute class-
conditional probabilities even in high-dimensional settings, provided that
the attributes are conditionally independent of each other given the class
labels. This property makes näıve Bayes classifier a simple and effective
classification technique that is commonly used in diverse application
problems, such as text classification.

3. Näıve Bayes classifiers are robust to isolated noise points because such
points are not able to significantly impact the conditional probability
estimates, as they are often averaged out during training.

4. Näıve Bayes classifiers can handle missing values in the training set
by ignoring the missing values of every attribute while computing its
conditional probability estimates. Further, näıve Bayes classifiers can
effectively handle missing values in a test instance, by using only the
non-missing attribute values while computing posterior probabilities. If
the frequency of missing values for a particular attribute value depends
on class label, then this approach will not accurately estimate posterior
probabilities.

5. Näıve Bayes classifiers are robust to irrelevant attributes. If Xi is an
irrelevant attribute, then P (Xi|Y) becomes almost uniformly distributed
for every class y. The class-conditional probabilities for every class thus
receive similar contributions of P (Xi|Y), resulting in negligible impact
on the posterior probability estimates.

�

M06 TAN9224 02 GE C06 page 428

� �

�

428 Chapter 6 Classification: Alternative Techniques

6. Correlated attributes can degrade the performance of näıve Bayes clas-
sifiers because the näıve Bayes assumption of conditional independence
no longer holds for such attributes. For example, consider the following
probabilities:

P (A = 0|Y = 0) = 0.4, P (A = 1|Y = 0) = 0.6,
P (A = 0|Y = 1) = 0.6, P (A = 1|Y = 1) = 0.4,

where A is a binary attribute and Y is a binary class variable. Suppose
there is another binary attribute B that is perfectly correlated with A
when Y = 0, but is independent of A when Y = 1. For simplicity, assume
that the conditional probabilities for B are the same as for A. Given
an instance with attributes A = 0, B = 0, and assuming conditional
independence, we can compute its posterior probabilities as follows:

P (Y = 0|A = 0, B = 0) =
P (A = 0|Y = 0)P (B = 0|Y = 0)P (Y = 0)

P (A = 0, B = 0)

=
0.16× P (Y = 0)
P (A = 0, B = 0)

.

P (Y = 1|A = 0, B = 0) =
P (A = 0|Y = 1)P (B = 0|Y = 1)P (Y = 1)

P (A = 0, B = 0)

=
0.36× P (Y = 1)
P (A = 0, B = 0)

.

If P (Y = 0) = P (Y = 1), then the näıve Bayes classifier would assign
the instance to class 1. However, the truth is,

P (A = 0, B = 0|Y = 0) = P (A = 0|Y = 0) = 0.4,

because A and B are perfectly correlated when Y = 0. As a result, the
posterior probability for Y = 0 is

P (Y = 0|A = 0, B = 0) =
P (A = 0, B = 0|Y = 0)P (Y = 0)

P (A = 0, B = 0)

=
0.4× P (Y = 0)
P (A = 0, B = 0)

,

which is larger than that for Y = 1. The instance should have been clas-
sified as class 0. Hence, the näıve Bayes classifier can produce incorrect

�

M06 TAN9224 02 GE C06 page 429

� �

�

6.5 Bayesian Networks 429

results when the attributes are not conditionally independent given the
class labels. Näıve Bayes classifiers are thus not well-suited for handling
redundant or interacting attributes.

6.5 Bayesian Networks

The conditional independence assumption made by näıve Bayes classifiers may
seem too rigid, especially for classification problems where the attributes are
dependent on each other even after conditioning on the class labels. We thus
need an approach to relax the näıve Bayes assumption so that we can capture
more generic representations of conditional independence among attributes.

In this section, we present a flexible framework for modeling probabilistic
relationships between attributes and class labels, known as Bayesian Net-
works. By building on concepts from probability theory and graph theory,
Bayesian networks are able to capture more generic forms of conditional
independence using simple schematic representations. They also provide the
necessary computational structure to perform inferences over random variables
in an efficient way. In the following, we first describe the basic representation
of a Bayesian network, and then discuss methods for performing inference and
learning model parameters in the context of classification.

6.5.1 Graphical Representation

Bayesian networks belong to a broader family of models for capturing proba-
bilistic relationships among random variables, known as probabilistic graph-
ical models. The basic concept behind these models is to use graphical
representations where the nodes of the graph correspond to random variables
and the edges between the nodes express probabilistic relationships. Figures
6.10(a) and 6.10(b) show examples of probabilistic graphical models using
directed edges (with arrows) and undirected edges (without arrows), respec-
tively. Directed graphical models are also known as Bayesian networks while
undirected graphical models are known as Markov random fields. The two
approaches use different semantics for expressing relationships among random
variables and are thus useful in different contexts. In the following, we briefly
describe Bayesian networks that are useful in the context of classification.

A Bayesian network (also referred to as a belief network) involves di-
rected edges between nodes, where every edge represents a direction of influ-
ence among random variables. For example, Figure 6.10(a) shows a Bayesian
network where variable C depends upon the values of variables A and B,
as indicated by the arrows pointing toward C from A and B. Consequently,

�

M06 TAN9224 02 GE C06 page 430

� �

�

430 Chapter 6 Classification: Alternative Techniques

A

C

D E

B

(a) Directed graphi-
cal model (Bayesian
Network).

A

C D

FE

B

(b) Undirected graphical model
(Markov Random Field).

Figure 6.10. Illustrations of two basic types of graphical models.

the variable C influences the values of variables D and E. Every edge in a
Bayesian network thus encodes a dependence relationship between random
variables with a particular directionality.

Bayesian networks are directed acyclic graphs (DAG) because they do not
contain any directed cycles such that the influence of a node loops back to
the same node. Figure 6.11 shows some examples of Bayesian networks that
capture different types of dependence structures among random variables. In a
directed acyclic graph, if there is a directed edge from X to Y , then X is called
the parent of Y and Y is called the child of X. Note that a node can have
multiple parents in a Bayesian network, e.g., node D has two parent nodes,
B and C, in Figure 6.11(a). Furthermore, if there is a directed path in the
network from X to Z, then X is an ancestor of Z, while Z is a descendant
of X. For example, in the diagram shown in Figure 6.11(b), A is a descendant
of D and D is an ancestor of B. Note that there can be multiple directed
paths between two nodes of a directed acyclic graph, as is the case for nodes
A and D in Figure 6.11(a).

Conditional Independence

An important property of a Bayesian network is its ability to represent varying
forms of conditional independence among random variables. There are several
ways of describing the conditional independence assumptions captured by

�

M06 TAN9224 02 GE C06 page 431

� �

�

6.5 Bayesian Networks 431

A

C

D

B

(a)

A

C

D

B

(b)

Figure 6.11. Examples of Bayesian networks.

Bayesian networks. One of the most generic ways of expressing conditional
independence is the concept of d-separation, which can be used to determine
if any two sets of nodes A and B are conditionally independent given another
set of nodes C. Another useful concept is that of the Markov blanket of a
node Y , which denotes the minimal set of nodes X that makes Y independent
of the other nodes in the graph, when conditioned on X. (See Bibliographic
Notes for more details on d-separation and Markov blanket.) However, for
the purpose of classification, it is sufficient to describe a simpler expression of
conditional independence in Bayesian networks, known as the local Markov
property.
Property 1 (Local Markov Property). A node in a Bayesian network is
conditionally independent of its non-descendants, if its parents are known.

To illustrate the local Markov property, consider the Bayes network shown
in Figure 6.11(b). We can state that A is conditionally independent of both
B and D given C, because C is the parent of A and nodes B and D are non-
descendants of A. The local Markov property helps in interpreting parent-child
relationships in Bayesian networks as representations of conditional probabil-
ities. Since a node is conditionally independent of its non-descendants given
it parents, the conditional independence assumptions imposed by a Bayesian
network is often sparse in structure. Nonetheless, Bayesian networks are able to
express a richer class of conditional independence statements among attributes
and class labels than the näıve Bayes classifier. In fact, the näıve Bayes
classifier can be viewed as a special type of Bayesian network, where the
target class Y is at the root of a tree and every attribute Xi is connected to
the root node by a directed edge, as shown in Figure 6.12(a).

�

M06 TAN9224 02 GE C06 page 432

� �

�

432 Chapter 6 Classification: Alternative Techniques

(a) Näıve Bayes. (b) Bayesian
network.

Figure 6.12. Comparing the graphical representation of a naı̈ve Bayes classifier with that of a generic
Bayesian network.

Note that in a näıve Bayes classifier, every directed edge points from the
target class to the observed attributes, suggesting that the class label is a factor
behind the generation of attributes. Inferring the class label can thus be viewed
as diagnosing the root cause behind the observed attributes. On the other
hand, Bayesian networks provide a more generic structure of probabilistic
relationships, since the target class is not required to be at the root of a tree
but can appear anywhere in the graph, as shown in Figure 6.12(b). In this
diagram, inferring Y not only helps in diagnosing the factors influencing X3

and X4, but also helps in predicting the influence of X1 and X2.

Joint Probability

The local Markov property can be used to succinctly express the joint proba-
bility of the set of random variables involved in a Bayesian network. To realize
this, let us first consider a Bayesian network consisting of d nodes, X1 to Xd,
where the nodes have been numbered in such a way that Xi is an ancestor of
Xj only if i < j. The joint probability of X = {X1, . . . , Xd} can be generically
factorized using the chain rule of probability as

P (X) = P (X1)P (X2|X1)P (X3|X1, X2) . . . P (Xd|X1, . . . Xd−1)

=
d∏

i=1

P (Xi|X1, . . . Xi−1) (6.22)

�

M06 TAN9224 02 GE C06 page 433

� �

�

6.5 Bayesian Networks 433

By the way we have constructed the graph, note that the set {X1, . . . Xi−1}
contains only non-descendants of Xi. Hence, by using the local Markov prop-
erty, we can write P (Xi|X1, . . . Xi−1) as P (Xi|pa(Xi)), where pa(Xi) denotes
the parents of Xi. The joint probability can then be represented as

P (X) =
d∏

i=1

P (Xi|pa(Xi)) (6.23)

It is thus sufficient to represent the probability of every node Xi in terms
of its parent nodes, pa(Xi), for computing P (X). This is achieved with the
help of probability tables that associate every node to its parent nodes as
follows:

1. The probability table for node Xi contains the conditional probability
values P (Xi|pa(Xi)) for every combination of values in Xi and pa(Xi).

2. If Xi has no parents (pa(Xi) = φ), then the table contains only the prior
probability P (Xi).

Example 6.6. [Probability Tables] Figure 6.13 shows an example of a
Bayesian network for modeling the relationships between a patient’s symptoms
and risk factors. The probability tables are shown at the side of every node
in the figure. The probability tables associated with the risk factors (Exercise
and Diet) contain only the prior probabilities, whereas the tables for heart
disease, heartburn, blood pressure, and chest pain, contain the conditional
probabilities.

Use of Hidden Variables

A Bayesian network typically involves two types of variables: observed vari-
ables that are clamped to specific observed values, and unobserved variables,
whose values are not known and need to be inferred from the network. To dis-
tinguish between these two types of variables, observed variables are generally
represented using shaded nodes while unobserved variables are represented
using empty nodes. Figure 6.14 shows an example of a Bayesian network with
observed variables (A, B, and E) and unobserved variables (C and D).

In the context of classification, the observed variables correspond to the
set of attributes X, while the target class is represented using an unobserved
variable Y that needs to be inferred during testing. However, note that a

�

M06 TAN9224 02 GE C06 page 434

� �

�

434 Chapter 6 Classification: Alternative Techniques

E=Yes
D=Healthy

E=No
D=Healthy

E=Yes
D=Unhealthy

E=No
D=Unhealthy

0.25

0.45

0.55

0.75

HD=Yes
Hb=Yes

CP=Yes

Blood
Pressure

Chest
Pain

BP=High

HD=Yes
HD=No

0.85
0.2

E=Yes

0.7

D=Healthy

0.25

D=Healthy
D=Unhealthy

0.2
0.85

HD=Yes
Hb=Yes

HD=No
Hb=Yes
HD=No
Hb=No

HD=Yes
Hb=No

0.8

0.6

0.4

0.1

DietExercise

Heartburn
Heart

Disease

Figure 6.13. A Bayesian network for detecting heart disease and heartburn in patients.

Figure 6.14. Observed and unobserved variables are represented using unshaded and shaded circles,
respectively.

generic Bayesian network may contain many other unobserved variables apart
from the target class, as represented in Figure 6.15 as the set of variables
H. These unobserved variables represent hidden or confounding factors that
affect the probabilities of attributes and class labels, although they are never
directly observed. The use of hidden variables enhances the expressive power of
Bayesian networks in representing complex probabilistic relationships between

�

M06 TAN9224 02 GE C06 page 435

� �

�

6.5 Bayesian Networks 435

attributes and class labels. This is one of the key distinguishing properties of
Bayesian networks as compared to näıve Bayes classifiers.

6.5.2 Inference and Learning

Given the probability tables corresponding to every node in a Bayesian net-
work, the problem of inference corresponds to computing the probabilities of
different sets of random variables. In the context of classification, one of the
key inference problems is to compute the probability of a target class Y taking
on a specific value y, given the set of observed attributes at a data instance,
x. This can be represented using the following conditional probability:

P (Y = y|x) =
P (y,x)
P (x)

=
P (y,x)∑
y′ P (y′,x)

(6.24)

The previous equation involves marginal probabilities of the form P (y,x).
They can be computed by marginalizing out the hidden variables H from the
joint probability as follows:

P (y,x) =
∑

H

P (y,x,H), (6.25)

where the joint probability P (y,x,H) can be obtained by using the factoriza-
tion described in Equation 6.23. To understand the nature of computations
involved in estimating P (y,x), consider the example Bayesian network shown
in Figure 6.15, which involves a target class, Y , three observed attributes, X1

Figure 6.15. An example of a Bayesian network with four hidden variables, H1 to H4, three observed
attributes, X1 to X3, and one target class Y .

�

M06 TAN9224 02 GE C06 page 436

� �

�

436 Chapter 6 Classification: Alternative Techniques

to X3, and four hidden variables, H1 to H4. For this network, we can express
P (y,x) as

P (y,x) =
∑
h1

∑
h2

∑
h3

∑
h4

P (y, x1, x2, h1, h2, h3, h4),

=
∑
h1

∑
h2

∑
h3

∑
h4

[
P (h1)P (h2)P (x2)P (h4)P (x1|h1, h2)

×P (h3|x2, h2)P (y|x1, h3)P (x3|h3, h4)
]
, (6.26)

=
∑
h1

∑
h2

∑
h3

∑
h4

f(h1, h2, h3, h4), (6.27)

where f is a factor that depends on the values of h1 to h4. In the previ-
ous simplistic expression of P (y,x), a different summand is considered for
every combination of values, h1 to h4, in the hidden variables, H1 to H4.
If we assume that every variable in the network can take k discrete values,
then the summation has to be carried out for a total number of k4 times.
The computational complexity of this approach is thus O(k4). Moreover,
the number of computations grows exponentially with the number of hidden
variables, making it difficult to use this approach with networks that have
a large number of hidden variables. In the following, we present different
computational techniques for efficiently performing inferences in Bayesian
networks.

Variable Elimination

To reduce the number of computations involved in estimating P (y,x), let
us closely examine the expressions in Equations 6.26 and 6.27. Notice that
although f(h1, h2, h3, h4) depends on the values of all four hidden variables, it
can be decomposed as a product of several smaller factors, where every factor
involves only a small number of hidden variables. For example, the factor P (h4)
depends only on the value of h4, and thus acts as a constant multiplicative term
when summations are performed over h1, h2, or h3. Hence, if we place P (h4)
outside the summations of h1 to h3, we can save some repeated multiplications
occurring inside every summand.

In general, we can push every summation as far inside as possible, so that
the factors that do not depend on the summing variable are placed outside
the summation. This will help reduce the number of wasteful computations by
using smaller factors at every summation. To illustrate this process, consider
the following sequence of steps for computing P (y,x), by rearranging the order

�

M06 TAN9224 02 GE C06 page 437

� �

�

6.5 Bayesian Networks 437

of summations in Equation 6.26.

P (y,x) = P (x2)
∑

h4

P (h4)
∑

h3

P (y|x1, h3)P (x3|h3, h4)

×
∑

h2

P (h2)P (h3|x2, h2)
∑

h1

P (h1)P (x1|h1, h2)
(6.28)

= P (x2)
∑

h4

P (h4)
∑

h3

P (y|x1, h3)P (x3|h3, h4)

×
∑

h2

P (h2)P (h3|x2, h2)f1(h2)
(6.29)

= P (x2)
∑

h4

P (h4)
∑

h3

P (y|x1, h3)P (x3|h3, h4)f2(h3) (6.30)

= P (x2)
∑

h4

P (h4)f3(h4) (6.31)

where fi represents the intermediate factor term obtained by summing out
hi. To check if the previous rearrangements provide any improvements in
computational efficiency, let us count the number of computations occurring
at every step of the process. At the first step (Equation 6.28), we perform
a summation over h1 using factors that depend on h1 and h2. This requires
considering every pair of values in h1 and h2, resulting in O(k2) computations.
Similarly, the second step (Equation 6.29) involves summing out h2 using
factors of h2 and h3, leading to O(k2) computations. The third step (Equation
6.30) again requires O(k2) computations as it involves summing out h3 over
factors depending on h3 and h4. Finally, the fourth step (Equation 6.31)
involves summing out h4 using factors depending on h4, resulting in O(k)
computations.

The overall complexity of the previous approach is thus O(k2), which is
considerably smaller than the O(k4) complexity of the basic approach. Hence,
by merely rearranging summations and using algebraic manipulations, we
are able to improve the computational efficiency in computing P (y,x). This
procedure is known as variable elimination.

The basic concept that variable elimination exploits to reduce the number
of computations is the distributive nature of multiplication over addition
operations. For example, consider the following multiplication and addition
operations:

a.(b+ c+ d) = a.b+ a.c+ a.d

Notice that the right-hand side of the previous equation involves three mul-
tiplications and three additions, while the left-hand side involves only one

�

M06 TAN9224 02 GE C06 page 438

� �

�

438 Chapter 6 Classification: Alternative Techniques

multiplication and three additions, thus saving on two arithmetic operations.
This property is utilized by variable elimination in pushing out constant terms
outside the summation, such that they are multiplied only once.

Note that the efficiency of variable elimination depends on the order of
hidden variables used for performing summations. Hence, we would ideally
like to find the optimal order of variables that result in the smallest number
of computations. Unfortunately, finding the optimal order of summations for a
generic Bayesian network is an NP-Hard problem, i.e., there does not exist an
efficient algorithm for finding the optimal ordering that can run in polynomial
time. However, there exists efficient techniques for handling special types of
Bayesian networks, e.g., those involving tree-like graphs, as described in the
following.

Sum-Product Algorithm for Trees

Note that in Equations 6.28 and 6.29, whenever a variable hi is eliminated
during marginalization, it results in the creation of a factor fi that depends
on the neighboring nodes of hi. fi is then absorbed in the factors of neigh-
boring variables and the process is repeated until all unobserved variables
have marginalized. This phenomena of variable elimination can be viewed
as transmitting a local message from the variable being marginalized to its
neighboring nodes. This idea of message passing utilizes the structure of the
graph for performing computations, thus making it possible to use graph-
theoretic approaches for making effective inferences. The sum-product al-
gorithm builds on the concept of message passing for computing marginal
and conditional probabilities on tree-based graphs.

Figure 6.16 shows an example of a tree involving five variables, X1 to X5.
A key characteristic of a tree is that every node in the tree has exactly one
parent, and there is only one directed edge between any two nodes in the tree.
For the purpose of illustration, let us consider the problem of estimating the
marginal probability of X2, P (X2). This can be obtained by marginalizing
out every variable in the graph except X2 and rearranging the summations to

�

M06 TAN9224 02 GE C06 page 439

� �

�

6.5 Bayesian Networks 439

Figure 6.16. An example of a Bayesian network with a tree structure.

obtain the following expression:

P (x2) =
∑

x1

∑

x3

∑

x4

∑

x5

P (x1)P (x2|x1)P (x3|x2)P (x4|x3)P (x5|x3),

=
(∑

x1

P (x1)P (x2|x1)
)

︸ ︷︷ ︸
m12(x2)

(∑

x3

P (x3|x2)
(∑

x4

P (x4|x3)
)

︸ ︷︷ ︸
m43(x3)

(∑

x5

P (x5|x3)
)

︸ ︷︷ ︸
m53(x3)

)

︸ ︷︷ ︸
m32(x2)

,

wheremij(xj) has been conveniently chosen to represent the factor of xj that is
obtained by summing out xi. We can view mij(xj) as a local message passed
from node xi to node xj , as shown using arrows in Figure 6.17(a). These
local messages capture the influence of eliminating nodes on the marginal
probabilities of neighboring nodes.

Before we formally describe the formula for computing mij(xj) and P (xj),
we first define a potential function ψ(.) that is associated every node and edge
of the graph. We can define the potential of a node Xi as

ψ(Xi) =

{
P (Xi), if Xi is the root node.
1, otherwise.

(6.32)

�

M06 TAN9224 02 GE C06 page 440

� �

�

440 Chapter 6 Classification: Alternative Techniques

(a) Message passing
for computing P (x2).

(b) Complete message
passing approach.

Figure 6.17. Illustration of message passing in the sum-product algorithm.

Similarly, we can define the potential of an edge between nodes Xi and Xj

(where Xi is the parent of Xj) as

ψ(Xi, Xj) = P (Xj |Xi).

Using ψ(Xi) and ψ(Xi, Xj), we can represent mij(xj) using the following
equation:

mij(xj) =
∑

xi

(
ψ(xi)ψ(xi, xj)

∏

k∈N(i)\i
mki(xi)

)
, (6.33)

where N(i) represents the set of neighbors of node Xi. The message mij that
is transmitted from Xi to Xj can thus be recursively computed using the
messages incident on Xi from its neighboring nodes excluding Xi. Note that
the formula for mij involves taking a sum over all possible values of Xj , after
multiplying the factors obtained from the neighbors of Xj . This approach of
message passing is thus called the “sum-product” algorithm. Further, since
mij represents a notion of “belief” propagated from Xi to Xj , this algorithm
is also known as belief propagation. The marginal probability of a node Xi

�

M06 TAN9224 02 GE C06 page 441

� �

�

6.5 Bayesian Networks 441

is then given as
P (xi) = ψ(xi)

∏

j∈N(i)

mji(xi). (6.34)

A useful property of the sum-product algorithm is that it allows the
messages to be reused for computing a different marginal probability in the
future. For example, if we had to compute the marginal probability for node
X3, we would require the following messages from its neighboring nodes:
m23(x3),m43(x3), andm53(x3). However, note thatm43(x3), andm53(x3) have
already been computed in the process of computing the marginal probability
of X2 and thus can be reused.

Notice that the basic operations of the sum-product algorithm resemble
a message passing protocol over the edges of the network. A node sends out
a message to all its neighboring nodes only after it has received incoming
messages from all its neighbors. Hence, we can initialize the message passing
protocol from the leaf nodes, and transmit messages till we reach the root
node. We can then run a second pass of messages from the root node back
to the leaf nodes. In this way, we can compute the messages for every edge
in both directions, using just O(2|E|) operations, where |E| is the number
of edges. Once we have transmitted all possible messages as shown in Figure
6.17(b), we can easily compute the marginal probability of every node in the
graph using Equation 6.34.

In the context of classification, the sum-product algorithm can be easily
modified for computing the conditional probability of the class label y given
the set of observed attributes x̂, i.e., P (y|x̂). This basically amounts to com-
puting P (y,X = x̂) in Equation 6.24, where X is clamped to the observed
values x̂. To handle the scenario where some of the random variables are fixed
and do not need to be normalized, we consider the following modification.

If Xi is a random variable that is fixed to a specific value x̂i, then we can
simply modify ψ(Xi) and ψ(Xi, Xj) as follows:

ψ(Xi) =

{
1, if Xi = x̂i.
0, otherwise.

(6.35)

ψ(Xi, Xj) =

{
P (Xj |x̂i), if Xi = x̂i.
0, otherwise.

(6.36)

We can run the sum-product algorithm using these modified values for every
observed variable and thus compute P (y,X = x̂).

�

M06 TAN9224 02 GE C06 page 442

� �

�

442 Chapter 6 Classification: Alternative Techniques

(a) Poly-tree. (b) Factor graph.

Figure 6.18. Example of a poly-tree and its corresponding factor graph.

Generalizations for Non-Tree Graphs

The sum-product algorithm is guaranteed to optimally converge in the case
of trees using a single run of message passing in both directions of every edge.
This is because any two nodes in a tree have a unique path for the transmission
of messages. Furthermore, since every node in a tree has a single parent, the
joint probability involves only factors of at most two variables. Hence, it is
sufficient to consider potentials over edges and not other generic substructures
in the graph.

Both of the previous properties are violated in graphs that are not trees,
thus making it difficult to directly apply the sum-product algorithm for mak-
ing inferences. However, a number of variants of the sum-product algorithm
have been devised to perform inferences on a broader family of graphs than
trees. Many of these variants transform the original graph into an alternative
tree-based representation, and then apply the sum-product algorithm on the
transformed tree. In this section, we briefly discuss one such transformations
known as factor graphs.

Factor graphs are useful for making inferences over graphs that violate
the condition that every node has a single parent. Nonetheless, they still
require the absence of multiple paths between any two nodes, to guarantee
convergence. Such graphs are known as poly-trees. An example of a poly-
tree is shown in Figure 6.18(a).

�

M06 TAN9224 02 GE C06 page 443

� �

�

6.5 Bayesian Networks 443

A poly-tree can be transformed into a tree-based representation with the
help of factor graphs. These graphs consist of two types of nodes, variables
nodes (that are represented using circles) and factor nodes (that are repre-
sented using squares). The factor nodes represent conditional independence
relationships among the variables of the poly-tree. In particular, every prob-
ability table can be represented as a factor node. The edges in a factor graph
are undirected in nature and relate a variable node to a factor node if the
variable is involved in the probability table corresponding to the factor node.
Figure 6.18(b) presents the factor graph representation of the poly-tree shown
in Figure 6.18(a).

Note that the factor graph of a poly-tree always forms a tree-like structure,
where there is a unique path of influence between any two nodes in the factor
graph. Hence, we can apply a modified form of sum-product algorithm to
transmit messages between variable nodes and factor nodes, which is guaran-
teed to converge to optimal values.

Learning Model Parameters

In all our previous discussions on Bayesian networks, we had assumed that
the topology of the Bayesian network and the values in the probability tables
of every node were already known. In this section, we discuss approaches for
learning both the topology and the probability table values of a Bayesian
network from the training data.

Let us first consider the case where the topology of the network is known
and we are only required to compute the probability tables. If there are
no unobserved variables in the training data, then we can easily compute
the probability table for P (Xi|pa(Xi)), by counting the fraction of training
instances for every value of Xi and every combination of values in pa(Xi).
However, if there are unobserved variables inXi or pa(Xi), then computing the
fraction of training instances for such variables is non-trivial and requires the
use of advances techniques such as the Expectation-Maximization algorithm
(described later in Chapter 8).

Learning the structure of the Bayesian network is a much more challenging
task than learning the probability tables. Although there are some scoring
approaches that attempt to find a graph structure that maximizes the training
likelihood, they are often computationally infeasible when the graph is large.
Hence, a common approach for constructing Bayesian networks is to use the
subjective knowledge of domain experts.

�

M06 TAN9224 02 GE C06 page 444

� �

�

444 Chapter 6 Classification: Alternative Techniques

6.5.3 Characteristics of Bayesian Networks

1. Bayesian networks provide a powerful approach for representing prob-
abilistic relationships between attributes and class labels with the help
of graphical models. They are able to capture complex forms of depen-
dencies among variables. Apart from encoding prior beliefs, they are
also able to model the presence of latent (unobserved) factors as hidden
variables in the graph. Bayesian networks are thus quite expressive and
provide predictive as well as descriptive insights about the behavior of
attributes and class labels.

2. Bayesian networks can easily handle the presence of correlated or re-
dundant attributes, as opposed to the näıve Bayes classifier. This is
because Bayesian networks do not use the näıve Bayes assumption about
conditional independence, but instead are able to express richer forms
of conditional independence.

3. Similar to the näıve Bayes classifier, Bayesian networks are also quite
robust to the presence of noise in the training data. Further, they can
handle missing values during training as well as testing. If a test in-
stance contains an attribute Xi with a missing value, then a Bayesian
network can perform inference by treating Xi as an unobserved node
and marginalizing out its effect on the target class. Hence, Bayesian
networks are well-suited for handling incompleteness in the data, and
can work with partial information. However, unless the pattern with
which missing values occurs is completely random, then their presence
will likely introduce some degree of error and/or bias into the analysis.

4. Bayesian networks are robust to irrelevant attributes that contain no
discriminatory information about the class labels. Such attributes show
no impact on the conditional probability of the target class, and are thus
rightfully ignored.

5. Learning the structure of a Bayesian network is a cumbersome task
that often requires assistance from expert knowledge. However, once the
structure has been decided, learning the parameters of the network can
be quite straightforward, especially if all the variables in the network
are observed.

6. Due to its additional ability of representing complex forms of relation-
ships, Bayesian networks are more susceptible to overfitting as compared
to the näıve Bayes classifier. Furthermore, Bayesian networks typically

�

M06 TAN9224 02 GE C06 page 445

� �

�

6.6 Logistic Regression 445

require more training instances for effectively learning the probability
tables than the näıve Bayes classifier.

7. Although the sum-product algorithm provides computationally efficient
techniques for performing inference over tree-like graphs, the complexity
of the approach increase significantly when dealing with generic graphs
of large sizes. In situations where exact inference is computationally
infeasible, it is quite common to use approximate inference techniques.

6.6 Logistic Regression

The näıve Bayes and the Bayesian network classifiers described in the previous
sections provide different ways of estimating the conditional probability of an
instance x given class y, P (x|y). Such models are known as probabilistic
generative models. Note that the conditional probability P (x|y) essentially
describes the behavior of instances in the attribute space that are generated
from class y. However, for the purpose of making predictions, we are finally
interested in computing the posterior probability P (y|x). For example, com-
puting the following ratio of posterior probabilities is sufficient for inferring
class labels in a binary classification problem:

P (y = 1|x)
P (y = 0|x)

This ratio is known as the odds. If this ratio is greater than 1, then x is
classified as y = 1. Otherwise, it is assigned to class y = 0. Hence, one may
simply learn a model of the odds based on the attribute values of training
instances, without having to compute P (x|y) as an intermediate quantity in
the Bayes theorem.

Classification models that directly assign class labels without comput-
ing class-conditional probabilities are called discriminative models. In this
section, we present a probabilistic discriminative model known as logistic
regression, which directly estimates the odds of a data instance x using its
attribute values. The basic idea of logistic regression is to use a linear predictor,
z = wTx + b, for representing the odds of x as follows:

P (y = 1|x)
P (y = 0|x)

= ez = ew
T x+b, (6.37)

�

M06 TAN9224 02 GE C06 page 446

� �

�

446 Chapter 6 Classification: Alternative Techniques

where w and b are the parameters of the model and aT denotes the transpose
of a vector a. Note that if wTx + b > 0, then x belongs to class 1 since its
odds is greater than 1. Otherwise, x belongs to class 0.

Figure 6.19. Plot of sigmoid (logistic) function, σ(z).

Since P (y = 0|x) + P (y = 1|x) = 1, we can re-write Equation 6.37 as

P (y = 1|x)
1− P (y = 1|x)

= ez.

This can be further simplified to express P (y = 1|x) as a function of z.

P (y = 1|x) =
1

1 + e−z
= σ(z), (6.38)

where the function σ(.) is known as the logistic or sigmoid function. Figure
6.19 shows the behavior of the sigmoid function as we vary z. We can see that
σ(z) ≥ 0.5 only when z ≥ 0. We can also derive P (y = 0|x) using σ(z) as
follows:

P (y = 0|x) = 1− σ(z) =
1

1 + ez
(6.39)

Hence, if we have learned a suitable value of parameters w and b, we can use
Equations 6.38 and 6.39 to estimate the posterior probabilities of any data
instance x and determine its class label.

6.6.1 Logistic Regression as a Generalized Linear Model

Since the posterior probabilities are real-valued, their estimation using the
previous equations can be viewed as solving a regression problem. In fact,

�

M06 TAN9224 02 GE C06 page 447

� �

�

6.6 Logistic Regression 447

logistic regression belongs to a broader family of statistical regression models,
known as generalized linear models (GLM). In these models, the target
variable y is considered to be generated from a probability distribution P (y|x),
whose mean μ can be estimated using a link function g(.) as follows:

g(μ) = z = wTx + b. (6.40)

For binary classification using logistic regression, y follows a Bernoulli
distribution (y can either be 0 or 1) and μ is equal to P (y = 1|x). The
link function g(.) of logistic regression, called the logit function, can thus be
represented as

g(μ) = log
(μ

1− μ
)
.

Depending on the choice of link function g(.) and the form of probability
distribution P (y|x), GLMs are able to represent a broad family of regression
models, such as linear regression and Poisson regression. They require different
approaches for estimating their model parameters, (w, b). In this chapter, we
will only discuss approaches for estimating the model parameters of logistic
regression, although methods for estimating parameters of other types of
GLMs are often similar (and sometimes even simpler). (See Bibliographic
Notes for more details on GLMs.)

Note that even though logistic regression has relationships with regression
models, it is a classification model since the computed posterior probabilities
are eventually used to determine the class label of a data instance.

6.6.2 Learning Model Parameters

The parameters of logistic regression, (w, b), are estimated during training
using a statistical approach known as the maximum likelihood estimation
(MLE) method. This method involves computing the likelihood of observing
the training data given (w, b), and then determining the model parameters
(w∗, b∗) that yield maximum likelihood.

Let D.train = {(x1, y1), (x2, y2), . . . , (xn, yn)} denote a set of n training
instances, where yi is a binary variable (0 or 1). For a given training instance
xi, we can compute its posterior probabilities using Equations 6.38 and 6.39.
We can then express the likelihood of observing yi given xi, w, and b as

P (yi|xi,w, b) = P (y = 1|xi)yi × P (y = 0|xi)1−yi , (6.41)
= (σ(zi))yi × (1− σ(zi))1−yi ,

= (σ(wTxi + b))yi × (1− σ(wTxi + b))1−yi ,

�

M06 TAN9224 02 GE C06 page 448

� �

�

448 Chapter 6 Classification: Alternative Techniques

where σ(.) is the sigmoid function as described above, Equation 6.41 basically
means that the likelihood P (yi|xi,w, b) is equal to P (y = 1|xi) when yi = 1,
and equal to P (y = 0|xi) when yi = 0. The likelihood of all training instances,
L(w, b), can then be computed by taking the product of individual likelihoods
(assuming independence among training instances) as follows:

L(w, b) =
n∏

i=1

P (yi|xi,w, b) =
n∏

i=1

P (y = 1|xi)yi × P (y = 0|xi)1−yi . (6.42)

The previous equation involves multiplying a large number of probability
values, each of which are smaller than or equal to 1. Since this näıve computa-
tion can easily become numerically unstable when n is large, a more practical
approach is to consider the negative logarithm (to base e) of the likelihood
function, also known as the cross entropy function:

− logL(w, b) = −
n∑

i=1

yi log(P (y = 1|xi)) + (1− yi) log(P (y = 0|xi)).

= −
n∑

i=1

yi log(σ(wTxi + b)) + (1− yi) log(1− σ(wTxi + b)).

The cross entropy is a loss function that measures how unlikely it is for
the training data to be generated from the logistic regression model with
parameters (w, b). Intuitively, we would like to find model parameters (w∗, b∗)
that result in the lowest cross entropy, − logL(w∗, b∗).

(w∗, b∗) = arg min
(w,b)

E(w, b) (6.43)

= arg min
(w,b)
− logL(w, b),

where E(w, b) = − logL(w, b) is the loss function. It is worth emphasizing
that E(w, b) is a convex function, i.e., any minima of E(w, b) will be a global
minima. Hence, we can use any of the standard convex optimization techniques
to solve Equation 6.43, which are mentioned in Appendix E. Here, we briefly
describe the Newton-Raphson method that is commonly used for estimating
the parameters of logistic regression. For ease of representation, we will use a
single vector to describe w̃ = (wT b)T , which is of size one greater than w.

�

M06 TAN9224 02 GE C06 page 449

� �

�

6.6 Logistic Regression 449

Similarly, we will consider the concatenated feature vector x̃ = (xT 1)T , such
that the linear predictor z = wTx + b can be succinctly written as z = w̃T x̃.
Also, the concatenation of all training labels, y1 to yn, will be represented
as y, the set consisting of σ(z1) to σ(zn) will be represented as σ, and the
concatenation of x̃1 to x̃n will be represented as X̃.

The Newton-Raphson is an iterative method for finding w̃∗ that uses the
following equation to update the model parameters at every iteration:

w̃(new) = w̃(old) −H−1∇E(w̃), (6.44)

where ∇E(w̃) and H are the first- and second-order derivatives of the loss
function E(w̃) with respect to w̃, respectively. The key intuition behind
Equation 6.44 is to move the model parameters in the direction of maximum
gradient, such that w̃ takes larger steps when ∇E(w̃) is large. When w̃ arrives
at a minima after some number of iterations, then∇E(w̃) would become equal
to 0 and thus result in convergence. Hence, we start with some initial values of
w̃ (either randomly assigned or set to 0) and use Equation 6.44 to iteratively
update w̃ till there are no significant changes in its value (beyond a certain
threshold).

The first-order derivative of E(w̃) is given by

∇E(w̃) = −
n∑

i=1

yix̃i(1− σ(w̃T x̃i))− (1− yi)x̃iσ(w̃T x̃i),

=
n∑

i=1

(σ(w̃T x̃i)− yi)x̃i,

= X̃(σ − y), (6.45)

where we have used the fact that dσ(z)/dz = σ(z)(1 − σ(z)). Using ∇E(w̃),
we can compute the second-order derivative of E(w̃) as

H = ∇∇E(w̃) =
n∑

i=1

σ(w̃T x̃i)(1− σ(w̃T x̃i))x̃ix̃i
T .

= X̃TRX̃, (6.46)

where R is a diagonal matrix whose ith diagonal element Rii = σi(1−σi). We
can now use the first- and second-order derivatives of E(w̃) in Equation 6.44
to obtain the following update equation at the kth iteration:

w̃(k+1) = w̃(k) − (X̃TRkX̃)−1X̃T (σk − y) (6.47)

�

M06 TAN9224 02 GE C06 page 450

� �

�

450 Chapter 6 Classification: Alternative Techniques

where the subscript k under Rk and σk refers to using w̃(k) to compute both
terms.

6.6.3 Characteristics of Logistic Regression

1. Logistic Regression is a discriminative model for classification that di-
rectly computes the poster probabilities without making any assumption
about the class conditional probabilities. Hence, it is quite generic and
can be applied in diverse applications. It can also be easily extended
to multiclass classification, where it is known as multinomial logistic
regression. However, its expressive power is limited to learning only
linear decision boundaries.

2. Because there are different weights (parameters) for every attribute, the
learned parameters of logistic regression can be analyzed to understand
the relationships between attributes and class labels.

3. Because logistic regression does not involve computing densities and
distances in the attribute space, it can work more robustly even in
high-dimensional settings than distance-based methods such as nearest
neighbor classifiers. However, the objective function of logistic regression
does not involve any term relating to the complexity of the model.
Hence, logistic regression does not provide a way to make a trade-off
between model complexity and training performance, as compared to
other classification models such as support vector machines. Neverthe-
less, variants of logistic regression can easily be developed to account
for model complexity, by including appropriate terms in the objective
function along with the cross entropy function.

4. Logistic regression can handle irrelevant attributes by learning weight
parameters close to 0 for attributes that do not provide any gain in
performance during training. It can also handle interacting attributes
since the learning of model parameters is achieved in a joint fashion
by considering the effects of all attributes together. Furthermore, if
there are redundant attributes that are duplicates of each other, then
logistic regression can learn equal weights for every redundant attribute,
without degrading classification performance. However, the presence of
a large number of irrelevant or redundant attributes in high-dimensional
settings can make logistic regression susceptible to model overfitting.

5. Logistic regression cannot handle data instances with missing values,
since the posterior probabilities are only computed by taking a weighted

�

M06 TAN9224 02 GE C06 page 451

� �

�

6.7 Artificial Neural Network (ANN) 451

sum of all the attributes. If there are missing values in a training in-
stance, it can be discarded from the training set. However, if there are
missing values in a test instance, then logistic regression would fail to
predict its class label.

6.7 Artificial Neural Network (ANN)

Artificial neural networks (ANN) are powerful classification models that are
able to learn highly complex and nonlinear decision boundaries purely from
the data. They have gained widespread acceptance in several applications such
as vision, speech, and language processing, where they have been repeatedly
shown to outperform other classification models (and in some cases even
human performance). Historically, the study of artificial neural networks was
inspired by attempts to emulate biological neural systems. The human brain
consists primarily of nerve cells called neurons, linked together with other
neurons via strands of fiber called axons. Whenever a neuron is stimulated
(e.g., in response to a stimuli), it transmits nerve activations via axons to other
neurons. The receptor neurons collect these nerve activations using structures
called dendrites, which are extensions from the cell body of the neuron.
The strength of the contact point between a dendrite and an axon, known
as a synapse, determines the connectivity between neurons. Neuroscientists
have discovered that the human brain learns by changing the strength of the
synaptic connection between neurons upon repeated stimulation by the same
impulse.

The human brain consists of approximately 100 billion neurons that are
inter-connected in complex ways, making it possible for us to learn new tasks
and perform regular activities. Note that a single neuron only performs a
simple modular function, which is to respond to the nerve activations coming
from sender neurons connected at its dendrite, and transmit its activation to
receptor neurons via axons. However, it is the composition of these simple
functions that together is able to express complex functions. This idea is at
the basis of constructing artificial neural networks.

Analogous to the structure of a human brain, an artificial neural network
is composed of a number of processing units, called nodes, that are connected
with each other via directed links. The nodes correspond to neurons that
perform the basic units of computation, while the directed links correspond
to connections between neurons, consisting of axons and dendrites. Further,
the weight of a directed link between two neurons represents the strength of
the synaptic connection between neurons. As in biological neural systems, the

�

M06 TAN9224 02 GE C06 page 452

� �

�

452 Chapter 6 Classification: Alternative Techniques

primary objective of ANN is to adapt the weights of the links until they fit
the input-output relationships of the underlying data.

The basic motivation behind using an ANN model is to extract useful
features from the original attributes that are most relevant for classification.
Traditionally, feature extraction has been achieved by using dimensionality
reduction techniques such as PCA (introduced in Chapter 2), which show
limited success in extracting nonlinear features, or by using hand-crafted
features provided by domain experts. By using a complex combination of
inter-connected nodes, ANN models are able to extract much richer sets of
features, resulting in good classification performance. Moreover, ANN models
provide a natural way of representing features at multiple levels of abstraction,
where complex features are seen as compositions of simpler features. In many
classification problems, modeling such a hierarchy of features turns out to be
very useful. For example, in order to detect a human face in an image, we can
first identify low-level features such as sharp edges with different gradients
and orientations. These features can then be combined to identify facial parts
such as eyes, nose, ears, and lips. Finally, an appropriate arrangement of facial
parts can be used to correctly identify a human face. ANN models provide a
powerful architecture to represent a hierarchical abstraction of features, from
lower levels of abstraction (e.g., edges) to higher levels (e.g., facial parts).

Artificial neural networks have had a long history of developments span-
ning over five decades of research. Although classical models of ANN suffered
from several challenges that hindered progress for a long time, they have re-
emerged with widespread popularity because of a number of recent devel-
opments in the last decade, collectively known as deep learning. In this
section, we examine classical approaches for learning ANN models, starting
from the simplest model called perceptrons to more complex architectures
called multi-layer neural networks. In the next section, we discuss some
of the recent advancements in the area of ANN that have made it possible to
effectively learn modern ANN models with deep architectures.

6.7.1 Perceptron

A perceptron is a basic type of ANN model that involves two types of nodes:
input nodes, which are used to represent the input attributes, and an output
node, which is used to represent the model output. Figure 6.20 illustrates the
basic architecture of a perceptron that takes three input attributes, x1, x2,
and x3, and produces a binary output y. The input node corresponding to
an attribute xi is connected via a weighted link wi to the output node. The

�

M06 TAN9224 02 GE C06 page 453

� �

�

6.7 Artificial Neural Network (ANN) 453

weighted link is used to emulate the strength of a synaptic connection between
neurons.

Figure 6.20. Basic architecture of a perceptron.

The output node is a mathematical device that computes a weighted sum
of its inputs, adds a bias factor b to the sum, and then examines the sign of
the result to produce the output ŷ as follows:

3̂y =

{
1, if wTx + b > 0.
−1, otherwise.

(6.48)

To simplify notations, w and b can be concatenated to form w̃ = (wT b)T ,
while x can be appended with 1 at the end to form x̃ = (xT 1)T . The output
of the perceptron ŷ can then be written:

ŷ = sign(w̃T x̃),

where the sign function acts as an activation function by providing an
output value of +1 if the argument is positive and −1 if its argument is
negative.

Learning the Perceptron

Given a training set, we are interested in learning parameters w̃ such that ŷ
closely resembles the true y of training instances. This is achieved by using the
perceptron learning algorithm given in Algorithm 6.3. The key computation
for this algorithm is the iterative weight update formula given in Step 8 of the
algorithm:

w
(k+1)
j = w

(k)
j + λ

(
yi − ŷ(k)

i

)
xij , (6.49)

�

M06 TAN9224 02 GE C06 page 454

� �

�

454 Chapter 6 Classification: Alternative Techniques

where w(k) is the weight parameter associated with the ith input link after
the kth iteration, λ is a parameter known as the learning rate, and xij is
the value of the jth attribute of the training example xi. The justification for
Equation 6.49 is rather intuitive. Note that (yi− ŷi) captures the discrepancy
between yi and ŷi, such that its value is 0 only when the true label and the
predicted output match. Assume xij is positive. If ŷ = 0 and y = 1, then
wj is increased at the next iteration so that w̃Txi can become positive. On
the other hand, if ŷ = 1 and y = 0, then wj is decreased so that w̃Txi can
become negative. Hence, the weights are modified at every iteration to reduce
the discrepancies between ŷ and y across all training instances. The learning
rate λ, a parameter whose value is between 0 and 1, can be used to control
the amount of adjustments made in each iteration. The algorithm halts when
the average number of discrepancies are smaller than a threshold γ.

Algorithm 6.3 Perceptron learning algorithm.
1: Let D.train = {(x̃i, yi) | i = 1, 2, . . . , n} be the set of training instances.
2: Set k ← 0.
3: Initialize the weight vector w̃(0) with random values.
4: repeat
5: for each training instance (x̃i, yi) ∈ D.train do
6: Compute the predicted output ŷ(k)

i using w̃(k).
7: for each weight component wj do
8: Update the weight, w(k+1)

j = w
(k)
j + λ(yi − ŷ(k)

i)xij .
9: end for

10: Update k ← k + 1.
11: end for
12: until

∑n
i=1 |yi − ŷi

(k)|/n is less than a threshold γ

The perceptron is a simple classification model that is designed to learn
linear decision boundaries in the attribute space. Figure 6.21 shows the de-
cision boundary obtained by applying the perceptron learning algorithm to
the data set provided on the left of the figure. However, note that there can
be multiple decision boundaries that can separate the two classes, and the
perceptron arbitrarily learns one of these boundaries depending on the random
initial values of parameters. (The selection of the optimal decision boundary
is a problem that will be revisited in the context of support vector machines
in Section 6.9.) Further, the perceptron learning algorithm is only guaranteed
to converge when the classes are linearly separable. However, if the classes
are not linearly separable, the algorithm fails to converge. Figure 6.22 shows

�

M06 TAN9224 02 GE C06 page 455

� �

�

6.7 Artificial Neural Network (ANN) 455

Figure 6.21. Perceptron decision boundary for the data given on the left (+ represents a positively
labeled instance while o represents a negatively labeled instance.

an example of a nonlinearly separable data given by the XOR function. The
perceptron cannot find the right solution for this data because there is no
linear decision boundary that can perfectly separate the training instances.
Thus, the stopping condition at line 12 of Algorithm 6.3 would never be met
and hence, the perceptron learning algorithm would fail to converge. This is a
major limitation of perceptrons since real-world classification problems often
involve nonlinearly separable classes.

X1 X2 y

0
1
0
1

0
0
1
1

–1
1
1

–1

1.5

0.5

–0.5
–0.5

1

0

0 10.5 1.5

X2

X1

Figure 6.22. XOR classification problem. No linear hyperplane can separate the two classes.

�

M06 TAN9224 02 GE C06 page 456

� �

�

456 Chapter 6 Classification: Alternative Techniques

6.7.2 Multi-layer Neural Network

A multi-layer neural network generalizes the basic concept of a perceptron to
more complex architectures of nodes that are capable of learning nonlinear
decision boundaries. A generic architecture of a multi-layer neural network is
shown in Figure 6.23 where the nodes are arranged in groups called layers.
These layers are commonly organized in the form of a chain such that every
layer operates on the outputs of its preceding layer. In this way, the layers
represent different levels of abstraction that are applied on the input features
in a sequential manner. The composition of these abstractions generates the
final output at the last layer, which is used for making predictions. In the
following, we briefly describe the three types of layers used in multi-layer
neural networks.

Input
Layer

Hidden
Layer

Output
Layer

X1 X2 X3 X4 X5

y

Figure 6.23. Example of a multi-layer artificial neural network (ANN).

The first layer of the network, called the input layer, is used for repre-
senting inputs from attributes. Every numerical or binary attribute is typically
represented using a single node on this layer, while a categorical attribute is
either represented using a different node for each categorical value, or by
encoding the k-ary attribute using �log2 k� input nodes. These inputs are
fed into intermediary layers known as hidden layers, which are made up
of processing units known as hidden nodes. Every hidden node operates on
signals received from the input nodes or hidden nodes at the preceding layer,
and produces an activation value that is transmitted to the next layer. The

�

M06 TAN9224 02 GE C06 page 457

� �

�

6.7 Artificial Neural Network (ANN) 457

1.5

0.5

–0.5
–0.5

1

0

0 10.5 1.5

X2

X1

(a) Decision boundary.

X1

X2

Input
Layer

Hidden
Layer

Output
Layer

n1

n2

n3 w53

w54

w31

w32

w41

w42

n5

n4

y

(b) Neural network topology.

Figure 6.24. A two-layer neural network for the XOR problem.

final layer is called the output layer and processes the activation values
from its preceding layer to produce predictions of output variables. For binary
classification, the output layer contains a single node representing the binary
class label. In this architecture, since the signals are propagated only in the
forward direction from the input layer to the output layer, they are also called
feedforward neural networks.

A major difference between multi-layer neural networks and perceptrons
is the inclusion of hidden layers, which dramatically improves their ability to
represent arbitrarily complex decision boundaries. For example, consider the
XOR problem described in the previous section. The instances can be classified
using two hyperplanes that partition the input space into their respective
classes, as shown in Figure 6.24(a). Because a perceptron can create only one
hyperplane, it cannot find the optimal solution. However, this problem can be
addressed by using a hidden layer consisting of two nodes, as shown in Figure
6.24(b). Intuitively, we can think of each hidden node as a perceptron that
tries to construct one of the two hyperplanes, while the output node simply
combines the results of the perceptrons to yield the decision boundary shown
in Figure 6.24(a).

The hidden nodes can be viewed as learning latent representations or
features that are useful for distinguishing between the classes. While the
first hidden layer directly operates on the input attributes and thus captures
simpler features, the subsequent hidden layers are able to combine them and
construct more complex features. From this perspective, multi-layer neural
networks learn a hierarchy of features at different levels of abstraction that

�

M06 TAN9224 02 GE C06 page 458

� �

�

458 Chapter 6 Classification: Alternative Techniques

Figure 6.25. Schematic illustration of the parameters of an ANN model with (L− 1) hidden layers.

are finally combined at the output nodes to make predictions. Further, there
are combinatorially many ways we can combine the features learned at the
hidden layers of ANN, making them highly expressive. This property chiefly
distinguishes ANN from other classification models such as decision trees,
which can learn partitions in the attribute space but are unable to combine
them in exponential ways.

To understand the nature of computations happening at the hidden and
output nodes of ANN, consider the ith node at the lth layer of the network
(l > 0), where the layers are numbered from 0 (input layer) to L (output
layer), as shown in Figure 6.25. The activation value generated at this node,
al

i, can be represented as a function of the inputs received from nodes at the
preceding layer. Let wl

ij represent the weight of the connection from the jth

node at layer (l−1) to the ith node at layer l. Similarly, let us denote the bias
term at this node as bli. The activation value al

i can then be expressed as

al
i = f(zl

i) = f
(∑

j

wl
ija

l−1
j + bli

)
,

where z is called the linear predictor and f(.) is the activation function that
converts z to a. Further, note that, by definition, a0

j = xj at the input layer
and aL = ŷ at the output node.

There are a number of alternate activation functions apart from the sign
function that can be used in multi-layer neural networks. Some examples
include linear, sigmoid (logistic), and hyperbolic tangent functions, as shown
in Figure 6.26. These functions are able to produce real-valued and nonlinear

�

M06 TAN9224 02 GE C06 page 459

� �

�

6.7 Artificial Neural Network (ANN) 459

–1 0 0.5–0.5 1

–1 0 0.5–0.5 1

–1 0 0.5–0.5 1

–1 0 0.5–0.5 1

1

–0.5

0.5

0

1

1

–0.5

0.5

0

1

1

–0.5

0.5

0

1
Linear function Sigmoid function

Tanh function Sign function
1.5

1

0.5

0

–0.5

–1

–1.5

Figure 6.26. Types of activation functions used in multi-layer neural networks.

activation values. Among these activation functions, the sigmoid σ(.) has been
widely used in many ANN models, although the use of other types of activation
functions in the context of deep learning will be discussed in Section 6.8. We
can thus represent al

i as

al
i = σ(zl

i) =
1

1 + e−zl
i

. (6.50)

Learning Model Parameters

The weights and bias terms (w,b) of the ANN model are learned during
training so that the predictions on training instances match the true labels.
This is achieved by using a loss function

E(w,b) =
n∑

k=1

Loss (yk, ŷk) (6.51)

�

M06 TAN9224 02 GE C06 page 460

� �

�

460 Chapter 6 Classification: Alternative Techniques

where yk is the true label of the kth training instance and ŷk is equal to aL,
produced by using xk. A typical choice of the loss function is the squared
loss function:.

Loss (yk, ŷk) = (yk − ŷk)2. (6.52)

Note that E(w,b) is a function of the model parameters (w,b) because
the output activation value aL depends on the weights and bias terms. We
are interested in choosing (w,b) that minimizes the training loss E(w,b).
Unfortunately, because of the use of hidden nodes with nonlinear activation
functions, E(w,b) is not a convex function of w and b, which means that
E(w,b) can have local minima that are not globally optimal. However, we can
still apply standard optimization techniques such as the gradient descent
method to arrive at a locally optimal solution. In particular, the weight
parameter wl

ij and the bias term bli can be iteratively updated using the
following equations:

wl
ij ←− wl

ij − λ
∂E

∂wl
ij

, (6.53)

bli ←− bli − λ
∂E

∂bli
, (6.54)

where λ is a hyper-parameter known as the learning rate. The intuition behind
this equation is to move the weights in a direction that reduces the training
loss. If we arrive at a minima using this procedure, the gradient of the training
loss will be close to 0, eliminating the second term and resulting in the
convergence of weights. The weights are commonly initialized with values
drawn randomly from a Gaussian or a uniform distribution.

A necessary tool for updating weights in Equation 6.53 is to compute
the partial derivative of E with respect to wl

ij . This computation is non-
trivial especially at hidden layers (l < L), since wl

ij does not directly affect
ŷ = aL (and hence the training loss), but has complex chains of influences via
activation values at subsequent layers. To address this problem, a technique
known as backpropagation was developed, which propagates the derivatives
backward from the output layer to the hidden layers. This technique can be
described as follows.

Recall that the training loss E is simply the sum of individual losses at
training instances. Hence the partial derivative of E can be decomposed as a
sum of partial derivatives of individual losses.

∂E

∂wl
j

=
n∑

k=1

∂ Loss (yk, ŷk)
∂wl

j

.

�

M06 TAN9224 02 GE C06 page 461

� �

�

6.7 Artificial Neural Network (ANN) 461

To simplify discussions, we will consider only the derivatives of the loss at the
kth training instance, which will be generically represented as Loss(y, aL). By
using the chain rule of differentiation, we can represent the partial derivatives
of the loss with respect to wl

ij as

∂ Loss
∂wl

ij

=
∂ Loss
∂al

i

× ∂al
i

∂zl
i

× ∂zl
i

∂wl
ij

. (6.55)

The last term of the previous equation can be written as

∂zl
i

∂wl
ij

=
∂
(∑

j w
l
ija

l−1
j + bli

)

∂wl
ij

= al−1
j .

Also, if we use the sigmoid activation function, then

∂al
i

∂zl
i

=
∂ σ(zl

i)
∂zl

i

= al
i(1− al

i).

Equation 6.55 can thus be simplified as

∂ Loss
∂wl

ij

= δl
i × al

i(1− al
i)× al−1

j , (6.56)

where δl
i =

∂ Loss
∂al

i

.

A similar formula for the partial derivatives with respect to the bias terms bli
is given by

∂ Loss
∂bli

= δl
i × al

i(1− al
i). (6.57)

Hence, to compute the partial derivatives, we only need to determine δl
i.

Using a squared loss function, we can easily write δL at the output node as

δL =
∂ Loss
∂aL

=
∂ (y − aL)2

∂aL
= 2(aL − y). (6.58)

However, the approach for computing δl
j at hidden nodes (l < L) is more

involved. Notice that al
j affects the activation values al+1

i of all nodes at the

�

M06 TAN9224 02 GE C06 page 462

� �

�

462 Chapter 6 Classification: Alternative Techniques

next layer, which in turn influences the loss. Hence, again using the chain rule
of differentiation, δl

j can be represented as

δl
j =

∂ Loss
∂al

j

=
∑

i

(
∂ Loss
∂al+1

i

× ∂al+1
i

∂al
j

)
.

=
∑

i

(
∂ Loss
∂al+1

i

× ∂al+1
i

∂zl+1
i

× ∂zl+1
i

∂al
j

)
.

=
∑

i

(δl+1
i × al+1

i (1− al+1
i)× wl+1

ij). (6.59)

The previous equation provides a concise representation of the δl
j values at

layer l in terms of the δl+1
i values computed at layer l+ 1. Hence, proceeding

backward from the output layer L to the hidden layers, we can recursively
apply Equation 6.59 to compute δl

i at every hidden node. δl
i can then be used

in Equations 6.56 and 6.57 to compute the partial derivatives of the loss with
respect to wl

ij and bli, respectively. Algorithm 6.4 summarizes the complete
approach for learning the model parameters of ANN using backpropagation
and gradient descent method.

Algorithm 6.4 Learning ANN using backpropagation and gradient descent.
1: Let D.train = {(xk, yk) | k = 1, 2, . . . , n} be the set of training instances.
2: Set counter c← 0.
3: Initialize the weight and bias terms (w(0),b(0)) with random values.
4: repeat
5: for each training instance (xk, yk) ∈ D.train do
6: Compute the set of activations (al

i)k by making a forward pass using xk.
7: Compute the set (δl

i)k by backpropagation using Equations 6.58 and 6.59.
8: Compute (∂ Loss/∂wl

ij , ∂ Loss/∂bli)k using Equations 6.56 and 6.57.
9: end for

10: Compute ∂E/∂wl
ij ←−

∑n
k=1(∂ Loss/∂wl

ij)k.

11: Compute ∂E/∂bli ←−
∑n

k=1(∂ Loss/∂bli)k.
12: Update (w(c+1),b(c+1)) by gradient descent using Equations 6.53 and 6.54.
13: Update c← c+ 1.
14: until (w(c+1),b(c+1)) and (w(c),b(c)) converge to the same value

�

M06 TAN9224 02 GE C06 page 463

� �

�

6.7 Artificial Neural Network (ANN) 463

6.7.3 Characteristics of ANN

1. Multi-layer neural networks with at least one hidden layer are universal
approximators; i.e., they can be used to approximate any target func-
tion. They are thus highly expressive and can be used to learn complex
decision boundaries in diverse applications. ANN can also be used for
multiclass classification and regression problems, by appropriately mod-
ifying the output layer. However, the high model complexity of classical
ANN models makes it susceptible to overfitting, which can be overcome
to some extent by using deep learning techniques discussed in Section
6.8.3.

2. ANN provides a natural way to represent a hierarchy of features at
multiple levels of abstraction. The outputs at the final hidden layer of
the ANN model thus represent features at the highest level of abstraction
that are most useful for classification. These features can also be used
as inputs in other supervised classification models, e.g., by replacing the
output node of the ANN by any generic classifier.

3. ANN represents complex high-level features as compositions of simpler
lower-level features that are easier to learn. This provides ANN the
ability to gradually increase the complexity of representations, by adding
more hidden layers to the architecture. Further, since simpler features
can be combined in combinatorial ways, the number of complex features
learned by ANN is much larger than traditional classification models.
This is one of the main reasons behind the high expressive power of
deep neural networks.

4. ANN can easily handle irrelevant attributes, by using zero weights for at-
tributes that do not help in improving the training loss. Also, redundant
attributes receive similar weights and do not degrade the quality of the
classifier. However, if the number of irrelevant or redundant attributes is
large, the learning of the ANN model may suffer from overfitting, leading
to poor generalization performance.

5. Since the learning of ANN model involves minimizing a non-convex
function, the solutions obtained by gradient descent are not guaranteed
to be globally optimal. For this reason, ANN has a tendency to get stuck
in local minima, a challenge that can be addressed by using deep learning
techniques discussed in Section 6.8.4.

�

M06 TAN9224 02 GE C06 page 464

� �

�

464 Chapter 6 Classification: Alternative Techniques

6. Training an ANN is a time consuming process, especially when the
number of hidden nodes is large. Nevertheless, test examples can be
classified rapidly.

7. Just like logistic regression, ANN can learn in the presence of interacting
variables, since the model parameters are jointly learned over all vari-
ables together. In addition, ANN cannot handle instances with missing
values in the training or testing phase.

6.8 Deep Learning

As described above, the use of hidden layers in ANN is based on the general
belief that complex high-level features can be constructed by combining sim-
pler lower-level features. Typically, the greater the number of hidden layers,
the deeper the hierarchy of features learned by the network. This motivates
the learning of ANN models with long chains of hidden layers, known as deep
neural networks. In contrast to “shallow” neural networks that involve only
a small number of hidden layers, deep neural networks are able to represent
features at multiple levels of abstraction and often require far fewer nodes per
layer to achieve generalization performance similar to shallow networks.

Despite the huge potential in learning deep neural networks, it has re-
mained challenging to learn ANN models with a large number of hidden layers
using classical approaches. Apart from reasons related to limited computa-
tional resources and hardware architectures, there have been a number of
algorithmic challenges in learning deep neural networks. First, learning a deep
neural network with low training error has been a daunting task because of
the saturation of sigmoid activation functions, resulting in slow convergence
of gradient descent. This problem becomes even more serious as we move
away from the output node to the hidden layers, because of the compounded
effects of saturation at multiple layers, known as the vanishing gradient
problem. Because of this reason, classical ANN models have suffered from
slow and ineffective learning, leading to poor training and test performance.
Second, the learning of deep neural networks is quite sensitive to the initial
values of model parameters, chiefly because of the non-convex nature of the
optimization function and the slow convergence of gradient descent. Third,
deep neural networks with a large number of hidden layers have high model
complexity, making them susceptible to overfitting. Hence, even if a deep
neural network has been trained to show low training error, it can still suffer
from poor generalization performance.

�

M06 TAN9224 02 GE C06 page 465

� �

�

6.8 Deep Learning 465

These challenges have deterred progress in building deep neural networks
for several decades and it is only recently that we have started to unlock their
immense potential with the help of a number of advances being made in the
area of deep learning. Although some of these advances have been around
for some time, they have only gained mainstream attention in the last decade,
with deep neural networks continually beating records in various competitions
and solving problems that were too difficult for other classification approaches.

There are two factors that have played a major role in the emergence of
deep learning techniques. First, the availability of larger labeled data sets, e.g.,
the ImageNet data set contains more than 10 million labeled images, has made
it possible to learn more complex ANN models than ever before, without falling
easily into the traps of model overfitting. Second, advances in computational
abilities and hardware infrastructures, such as the use of graphical processing
units (GPU) for distributed computing, have greatly helped in experimenting
with deep neural networks with larger architectures that would not have been
feasible with traditional resources.

In addition to the previous two factors, there have been a number of algo-
rithmic advancements to overcome the challenges faced by classical methods
in learning deep neural networks. Some examples include the use of more
responsive combinations of loss functions and activation functions, better
initialization of model parameters, novel regularization techniques, more agile
architecture designs, and better techniques for model learning and hyper-
parameter selection. In the following, we describe some of the deep learning
advances made to address the challenges in learning deep neural networks.
Further details on recent developments in deep learning can be obtained from
the Bibliographic Notes.

6.8.1 Using Synergistic Loss Functions

One of the major realizations leading to deep learning has been the importance
of choosing appropriate combinations of activation and loss functions. Classical
ANN models commonly made use of the sigmoid activation function at the
output layer, because of its ability to produce real-valued outputs between 0
and 1, which was combined with a squared loss objective to perform gradient
descent. It was soon noticed that this particular combination of activation and
loss function resulted in the saturation of output activation values, which can
be described as follows.

�

M06 TAN9224 02 GE C06 page 466

� �

�

466 Chapter 6 Classification: Alternative Techniques

−15 −10 −5 0 5 10 15

0

0.2

0.4

0.6

0.8

1

(a) σ(z).

−15 −10 −5 0 5 10 15

0

0.05

0.1

0.15

0.2

0.25

(b) ∂σ(z)/∂z.

Figure 6.27. Plots of sigmoid function and its derivative.

Saturation of Outputs

Although the sigmoid has been widely-used as an activation function, it easily
saturates at high and low values of inputs that are far away from 0. Observe
from Figure 6.27(a) that σ(z) shows variance in its values only when z is close
to 0. For this reason, ∂σ(z)/∂z is non-zero for only a small range of z around
0, as shown in Figure 6.27(b). Since ∂σ(z)/∂z is one of the components in the
gradient of loss (see Equation 6.55), we get a diminishing gradient value when
the activation values are far from 0.

To illustrate the effect of saturation on the learning of model parameters
at the output node, consider the partial derivative of loss with respect to the
weight wL

j at the output node. Using the squared loss function, we can write
this as

∂ Loss
∂wL

j

= 2(aL − y)× σ(zL)(1− σ(zL))× aL−1
j . (6.60)

In the previous equation, notice that when zL is highly negative, σ(zL) (and
hence the gradient) is close to 0. On the other hand, when zL is highly positive,
(1 − σ(zL)) becomes close to 0, nullifying the value of the gradient. Hence,
irrespective of whether the prediction aL matches the true label y or not, the
gradient of the loss with respect to the weights is close to 0 whenever zL is
highly positive or negative. This causes an unnecessarily slow convergence of
the model parameters of the ANN model, often resulting in poor learning.

Note that it is the combination of the squared loss function and the sigmoid
activation function at the output node that together results in diminishing
gradients (and thus poor learning) upon saturation of outputs. It is thus

�

M06 TAN9224 02 GE C06 page 467

� �

�

6.8 Deep Learning 467

important to choose a synergistic combination of loss function and activation
function that does not suffer from the saturation of outputs.

Cross entropy loss function

The cross entropy loss function, which was described in the context of logistic
regression in Section 6.6.2, can significantly avoid the problem of saturating
outputs when used in combination with the sigmoid activation function. The
cross entropy loss function of a real-valued prediction ŷ ∈ (0, 1) on a data
instance with binary label y ∈ {0, 1} can be defined as

Loss (y, ŷ) = −y log(ŷ)− (1− y) log(1− ŷ), (6.61)

where log represents the natural logarithm (to base e) and 0 log(0) = 0 for
convenience. The cross entropy function has foundations in information theory
and measures the amount of disagreement between y and ŷ. The partial
derivative of this loss function with respect to ŷ = aL can be given as

δL =
∂ Loss

∂aL
=
−y
aL

+
(1− y)
(1− aL)

.

=
(aL − y)
aL(1− aL)

. (6.62)

Using this value of δL in Equation 6.56, we can obtain the partial derivative
of the loss with respect to the weight wl

j at the output node as

∂ Loss
∂wL

j

=
(aL − y)
aL(1− aL)

× aL(1− aL)× aL−1
j .

= (aL − y)× aL−1
j . (6.63)

Notice the simplicity of the previous formula using the cross entropy loss
function. The partial derivatives of the loss with respect to the weights at
the output node depend only on the difference between the prediction aL and
the true label y. In contrast to Equation 6.60, it does not involve terms such
as σ(zL)(1 − σ(zL)) that can be impacted by saturation of zL. Hence, the
gradients are high whenever (aL − y) is large, promoting effective learning of
the model parameters at the output node. This has been a major breakthrough
in the learning of modern ANN models and it is now a common practice to use
the cross entropy loss function with sigmoid activations at the output node.

�

M06 TAN9224 02 GE C06 page 468

� �

�

468 Chapter 6 Classification: Alternative Techniques

6.8.2 Using Responsive Activation Functions

Even though the cross entropy loss function helps in overcoming the problem
of saturating outputs, it still does not solve the problem of saturation at hidden
layers, arising due to the use of sigmoid activation functions at hidden nodes.
In fact, the effect of saturation on the learning of model parameters is even
more aggravated at hidden layers, a problem known as the vanishing gradient
problem. In the following, we describe the vanishing gradient problem and
the use of a more responsive activation function, called the rectified linear
output unit (ReLU), to overcome this problem.

Vanishing Gradient Problem

The impact of saturating activation values on the learning of model parameters
increases at deeper hidden layers that are farther away from the output node.
Even if the activation in the output layer does not saturate, the repeated
multiplications performed as we backpropagate the gradients from the output
layer to the hidden layers may lead to decreasing gradients in the hidden
layers. This is called the vanishing gradient problem, which has been one of
the major hindrances in learning deep neural networks.

To illustrate the vanishing gradient problem, consider an ANN model that
consists of a single node at every hidden layer of the network, as shown in
Figure 6.28. This simplified architecture involves a single chain of hidden nodes
where a single weighted link wl connects the node at layer l−1 to the node at
layer l. Using Equations 6.56 and 6.59, we can represent the partial derivative
of the loss with respect to wl as

∂ Loss
∂wl

= δl × al(1− al)× al−1,

where δl = 2(aL − y)×
L−1∏

r=l

(ar+1(1− ar+1)× wr+1). (6.64)

Notice that if any of the linear predictors zr+1 saturates at subsequent lay-
ers, then the term ar+1(1 − ar+1) becomes close to 0, thus diminishing the
overall gradient. The saturation of activations thus gets compounded and has

Figure 6.28. An example of an ANN model with only one node at every hidden layer.

�

M06 TAN9224 02 GE C06 page 469

� �

�

6.8 Deep Learning 469

−15 −10 −5 0 5 10 15

0

5

10

15

Figure 6.29. Plot of the rectified linear unit (ReLU) activation function.

multiplicative effects on the gradients at hidden layers, making them highly
unstable and thus, unsuitable for use with gradient descent. Even though
the previous discussion only pertains to the simplified architecture involving
a single chain of hidden nodes, a similar argument can be made for any
generic ANN architecture involving multiple chains of hidden nodes. Note
that the vanishing gradient problem primarily arises because of the use of
sigmoid activation function at hidden nodes, which is known to easily saturate
especially after repeated multiplications.

Rectified Linear Units (ReLU)

To overcome the vanishing gradient problem, it is important to use an activa-
tion function f(z) at the hidden nodes that provides a stable and significant
value of the gradient whenever a hidden node is active, i.e., z > 0. This
is achieved by using rectified linear units (ReLU) as activation functions at
hidden nodes, which can be defined as

a = f(z) =

{
z, if z > 0.
0, otherwise.

(6.65)

The idea of ReLU has been inspired from biological neurons, which are either
in an inactive state (f(z) = 0) or show an activation value proportional to
the input. Figure 6.29 shows a plot of the ReLU function. We can see that it
is linear with respect to z when z > 0. Hence, the gradient of the activation

�

M06 TAN9224 02 GE C06 page 470

� �

�

470 Chapter 6 Classification: Alternative Techniques

value with respect to z can be written as

∂a

∂z
=

{
1, if z > 0.
0, if z < 0.

(6.66)

Although f(z) is not differentiable at 0, it is common practice to use ∂a/∂z = 0
when z = 0. Since the gradient of the ReLU activation function is equal to
1 whenever z > 0, it avoids the problem of saturation at hidden nodes, even
after repeated multiplications. Using ReLU, the partial derivatives of the loss
with respect to the weight and bias parameters can be given by

∂ Loss
∂wl

ij

= δl
i × I(zl

i)× al−1
j , (6.67)

∂ Loss
∂bli

= δl
i × I(zl

i), (6.68)

where δl
i =

n∑

i=1

(δl+1
i × I(zl+1

i)× wl+1
ij),

and I(z) =

{
1, if z > 0.
0, otherwise.

Notice that ReLU shows a linear behavior in the activation values whenever
a node is active, as compared to the nonlinear properties of the sigmoid func-
tion. This linearity promotes better flows of gradients during backpropagation,
and thus simplifies the learning of ANN model parameters. The ReLU is
also highly responsive at large values of z away from 0, as opposed to the
sigmoid activation function, making it more suitable for gradient descent.
These differences give ReLU a major advantage over the sigmoid function.
Indeed, ReLU is used as the preferred choice of activation function at hidden
layers in most modern ANN models.

6.8.3 Regularization

A major challenge in learning deep neural networks is the high model com-
plexity of ANN models, which grows with the addition of hidden layers in
the network. This can become a serious concern, especially when the train-
ing set is small, due to the phenomena of model overfitting. To overcome
this challenge, it is important to use techniques that can help in reducing

�

M06 TAN9224 02 GE C06 page 471

� �

�

6.8 Deep Learning 471

the complexity of the learned model, known as regularization techniques.
Classical approaches for learning ANN models did not have an effective way
to promote regularization of the learned model parameters. Hence, they had
often been sidelined by other classification methods, such as support vector
machines (SVM), which have in-built regularization mechanisms. (SVMs will
be discussed in more detail in Section 6.9).

One of the major advancements in deep learning has been the development
of novel regularization techniques for ANN models that are able to offer
significant improvements in generalization performance. In the following, we
discuss one of the regularization techniques for ANN, known as the dropout
method, that have gained a lot of attention in several applications.

Dropout

The main objective of dropout is to avoid the learning of spurious features at
hidden nodes, occurring due to model overfitting. It uses the basic intuition
that spurious features often “co-adapt” themselves such that they show good
training performance only when used in highly selective combinations. On the
other hand, relevant features can be used in a diversity of feature combinations
and hence are quite resilient to the removal or modification of other features.
The dropout method uses this intuition to break complex “co-adaptations”
in the learned features by randomly dropping input and hidden nodes in the
network during training.

Dropout belongs to a family of regularization techniques that uses the
criteria of resilience to random perturbations as a measure of the robustness
(and hence, simplicity) of a model. For example, one approach to regularization
is to inject noise in the input attributes of the training set and learn a model
with the noisy training instances. If a feature learned from the training data
is indeed generalizable, it should not be affected by the addition of noise.
Dropout can be viewed as a similar regularization approach that perturbs the
information content of the training set not only at the level of attributes but
also at multiple levels of abstractions, by dropping input and hidden nodes.

The dropout method draws inspiration from the biological process of gene
swapping in sexual reproduction, where half of the genes from both parents
are combined together to create the genes of the offspring. This favors the
selection of parent genes that are not only useful but can also inter-mingle
with diverse combinations of genes coming from the other parent. On the other
hand, co-adapted genes that function only in highly selective combinations are
soon eliminated in the process of evolution. This idea is used in the dropout

�

M06 TAN9224 02 GE C06 page 472

� �

�

472 Chapter 6 Classification: Alternative Techniques

(a) Original network.

(b) Sub-networks.

Figure 6.30. Examples of sub-networks generated in the dropout method using γ = 0.5.

method for eliminating spurious co-adapted features. A simplified description
of the dropout method is provided in the rest of this section.

Let (wk,bk) represent the model parameters of the ANN model at the
kth iteration of the gradient descent method. At every iteration, we randomly
select a fraction γ of input and hidden nodes to be dropped from the network,
where γ ∈ (0, 1) is a hyper-parameter that is typically chosen to be 0.5. The
weighted links and bias terms involving the dropped nodes are then eliminated,
resulting in a “thinned” sub-network of smaller size. The model parameters
of the sub-network (wk

s ,b
k
s) are then updated by computing activation values

and performing backpropagation on this smaller sub-network. These updated
values are then added back in the original network to obtain the updated
model parameters, (wk+1,bk+1), to be used in the next iteration.

Figure 6.30 shows some examples of sub-networks that can be generated
at different iterations of the dropout method, by randomly dropping input
and hidden nodes. Since every sub-network has a different architecture, it is
difficult to learn complex co-adaptations in the features that can result in
overfitting. Instead, the features at the hidden nodes are learned to be more

�

M06 TAN9224 02 GE C06 page 473

� �

�

6.8 Deep Learning 473

agile to random modifications in the network structure, thus improving their
generalization ability. The model parameters are updated using a different
random sub-network at every iteration, till the gradient descent method con-
verges.

Let (wkmax ,bkmax) denote the model parameters at the last iteration kmax

of the gradient descent method. These parameters are finally scaled down by
a factor of (1 − γ), to produce the weights and bias terms of the final ANN
model, as follows:

(w∗,b∗) = ((1− γ)×wkmax , (1− γ)× bkmax)

We can now use the complete neural network with model parameters
(w∗,b∗) for testing. The dropout method has been shown to provide significant
improvements in the generalization performance of ANN models in a number
of applications. It is computationally cheap and can be applied in combination
with any of the other deep learning techniques. It also has a number of
similarities with a widely-used ensemble learning method known as bagging,
which learns multiple models using random subsets of the training set, and
then uses the average output of all the models to make predictions. (Bagging
will be presented in more detail later in Section 6.10.4). In a similar vein, it
can be shown that the predictions of the final network learned using dropout
approximates the average output of all possible 2n sub-networks that can
be formed using n nodes. This is one of the reasons behind the superior
regularization abilities of dropout.

6.8.4 Initialization of Model Parameters

Because of the non-convex nature of the loss function used by ANN models,
it is possible to get stuck in locally optimal but globally inferior solutions.
Hence, the initial choice of model parameter values plays a significant role in
the learning of ANN by gradient descent. The impact of poor initialization is
even more aggravated when the model is complex, the network architecture is
deep, or the classification task is difficult. In such cases, it is often advisable
to first learn a simpler model for the problem, e.g., using a single hidden layer,
and then incrementally increase the complexity of the model, e.g., by adding
more hidden layers. An alternate approach is to train the model for a simpler
task and then use the learned model parameters as initial parameter choices
in the learning of the original task. The process of initializing ANN model
parameters before the actual training process is known as pretraining.

Pretraining helps in initializing the model to a suitable region in the
parameter space that would otherwise be inaccessible by random initialization.

�

M06 TAN9224 02 GE C06 page 474

� �

�

474 Chapter 6 Classification: Alternative Techniques

Pretraining also reduces the variance in the model parameters by fixing the
starting point of gradient descent, thus reducing the chances of overfitting due
to multiple comparisons. The models learned by pretraining are thus more
consistent and provide better generalization performance.

Supervised Pretraining

A common approach for pretraining is to incrementally train the ANN model
in a layer-wise manner, by adding one hidden layer at a time. This approach,
known as supervised pretraining, ensures that the parameters learned at
every layer are obtained by solving a simpler problem, rather than learning
all model parameters together. These parameter values thus provide a good
choice for initializing the ANN model. The approach for supervised pretraining
can be briefly described as follows.

We start the supervised pretraining process by considering a reduced ANN
model with only a single hidden layer. By applying gradient descent on this
simple model, we are able to learn the model parameters of the first hidden
layer. At the next run, we add another hidden layer to the model and apply
gradient descent to learn the parameters of the newly added hidden layer, while
keeping the parameters of the first layer fixed. This procedure is recursively
applied such that while learning the parameters of the lth hidden layer, we
consider a reduced model with only l hidden layers, whose first (l− 1) hidden
layers are not updated on the lth run but are instead fixed using pretrained
values from previous runs. In this way, we are able to learn the model param-
eters of all (L−1) hidden layers. These pretrained values are used to initialize
the hidden layers of the final ANN model, which is fine-tuned by applying a
final round of gradient descent over all the layers.

Unsupervised Pretraining

Supervised pretraining provides a powerful way to initialize model parameters,
by gradually growing the model complexity from shallower to deeper net-
works. However, supervised pretraining requires a sufficient number of labeled
training instances for effective initialization of the ANN model. An alternate
pretraining approach is unsupervised pretraining, which initializes model
parameters by using unlabeled instances that are often abundantly available.
The basic idea of unsupervised pretraining is to initialize the ANN model
in such a way that the learned features capture the latent structure in the
unlabeled data.

�

M06 TAN9224 02 GE C06 page 475

� �

�

6.8 Deep Learning 475

c

c

c

c

Figure 6.31. The basic architecture of a single-layer autoencoder.

Unsupervised pretraining relies on the assumption that learning the dis-
tribution of the input data can indirectly help in learning the classification
model. It is most helpful when the number of labeled examples is small and the
features for the supervised problem bear resemblance to the factors generating
the input data. Unsupervised pretraining can be viewed as a different form
of regularization, where the focus is not explicitly toward finding simpler
features but instead toward finding features that can best explain the input
data. Historically, unsupervised pretraining has played an important role in
reviving the area of deep learning, by making it possible to train any generic
deep neural network without requiring specialized architectures.

Use of Autoencoders

One simple and commonly used approach for unsupervised pretraining is to
use an unsupervised ANN model known as an autoencoder. The basic archi-
tecture of an autoencoder is shown in Figure 6.31. An autoencoder attempts to
learn a reconstruction of the input data by mapping the attributes x to latent
features c, and then re-projecting c back to the original attribute space to
create the reconstruction x̂. The latent features are represented using a hidden
layer of nodes, while the input and output layers represent the attributes and
contain the same number of nodes. During training, the goal is to learn an
autoencoder model that provides the lowest reconstruction error, RE(x, x̂),
on all input data instances. A typical choice of the reconstruction error is the
squared loss function:

RE(x, x̂) = ||x− x̂||2.

�

M06 TAN9224 02 GE C06 page 476

� �

�

476 Chapter 6 Classification: Alternative Techniques

The model parameters of the autoencoder can be learned by using a similar
gradient descent method as the one used for learning supervised ANN models
for classification. The key difference is the use of the reconstruction error on
all training instances as the training loss. Autoencoders that have multiple
layers of hidden layers are known as stacked autoencoders.

Autoencoders are able to capture complex representations of the input
data by the use of hidden nodes. However, if the number of hidden nodes
is large, it is possible for an autoencoder to learn the identity relationship,
where the input x is just copied and returned as the output x̂, resulting in a
trivial solution. For example, if we use as many hidden nodes as the number
of attributes, then it is possible for every hidden node to copy an attribute
and simply pass it along to an output node, without extracting any useful
information. To avoid this problem, it is common practice to keep the number
of hidden nodes smaller than the number of input attributes. This forces the
autoencoder to learn a compact and useful encoding of the input data, similar
to a dimensionality reduction technique. An alternate approach is to corrupt
the input instances by adding random noise, and then learn the autoencoder
to reconstruct the original instance from the noisy input. This approach is
known as the denoising autoencoder, which offers strong regularization
capabilities and is often used to learn complex features even in the presence
of a large number of hidden nodes.

To use an autoencoder for unsupervised pretraining, we can follow a similar
layer-wise approach like supervised pretraining. In particular, to pretrain the
model parameters of the lth hidden layer, we can construct a reduced ANN
model with only l hidden layers and an output layer containing the same num-
ber of nodes as the attributes and is used for reconstruction. The parameters
of the lth hidden layer of this network are then learned using a gradient descent
method to minimize the reconstruction error. The use of unlabeled data can
be viewed as providing hints to the learning of parameters at every layer that
aid in generalization. The final model parameters of the ANN model are then
learned by applying gradient descent over all the layers, using the initial values
of parameters obtained from pretraining.

Hybrid Pretraining

Unsupervised pretraining can also be combined with supervised pretraining by
using two output layers at every run of pretraining, one for reconstruction and
the other for supervised classification. The parameters of the lth hidden layer
are then learned by jointly minimizing the losses on both output layers, usually
weighted by a trade-off hyper-parameter α. Such a combined approach often

�

M06 TAN9224 02 GE C06 page 477

� �

�

6.8 Deep Learning 477

shows better generalization performance than either of the approaches, since
it provides a way to balance between the competing objectives of representing
the input data and improving classification performance.

6.8.5 Characteristics of Deep Learning

Apart from the basic characteristics of ANN discussed in Section 6.7.3, the use
of deep learning techniques provides the following additional characteristics:

1. An ANN model trained for some task can be easily re-used for a different
task that involves the same attributes, by using pretraining strategies.
For example, we can use the learned parameters of the original task
as initial parameter choices for the target task. In this way, ANN pro-
motes re-usability of learning, which can be quite useful when the target
application has a smaller number of labeled training instances.

2. Deep learning techniques for regularization, such as the dropout method,
help in reducing the model complexity of ANN and thus promoting good
generalization performance. The use of regularization techniques is espe-
cially useful in high-dimensional settings, where the number of training
labels is small but the classification problem is inherently difficult.

3. The use of an autoencoder for pretraining can help eliminate irrelevant
attributes that are not related to other attributes. Further, it can help
reduce the impact of redundant attributes by representing them as copies
of the same attribute.

4. Although the learning of an ANN model can succumb to finding infe-
rior and locally optimal solutions, there are a number of deep learning
techniques that have been proposed to ensure adequate learning of an
ANN. Apart from the methods discussed in this section, some other
techniques involve novel architecture designs such as skip connections
between the output layer and lower layers, which aids the easy flow of
gradients during backpropagation.

5. A number of specialized ANN architectures have been designed to handle
a variety of input data sets. Some examples include convolutional
neural networks (CNN) for two-dimensional gridded objects such as
images, and recurrent neural network (RNN) for sequences. While
CNNs have been extensively used in the area of computer vision, RNNs
have found applications in processing speech and language.

�

M06 TAN9224 02 GE C06 page 478

� �

�

478 Chapter 6 Classification: Alternative Techniques

6.9 Support Vector Machine (SVM)

A support vector machine (SVM) is a discriminative classification model
that learns linear or nonlinear decision boundaries in the attribute space to
separate the classes. Apart from maximizing the separability of the two classes,
SVM offers strong regularization capabilities, i.e., it is able to control the
complexity of the model in order to ensure good generalization performance.
Due to its unique ability to innately regularize its learning, SVM is able to
learn highly expressive models without suffering from overfitting. It has thus
received considerable attention in the machine learning community and is
commonly used in several practical applications, ranging from handwritten
digit recognition to text categorization. SVM has strong roots in statistical
learning theory and is based on the principle of structural risk minimization.
Another unique aspect of SVM is that it represents the decision boundary
using only a subset of the training examples that are most difficult to classify,
known as the support vectors. Hence, it is a discriminative model that is
impacted only by training instances near the boundary of the two classes, in
contrast to learning the generative distribution of every class.

To illustrate the basic idea behind SVM, we first introduce the concept
of the margin of a separating hyperplane and the rationale for choosing such
a hyperplane with maximum margin. We then describe how a linear SVM
can be trained to explicitly look for this type of hyperplane. We conclude
by showing how the SVM methodology can be extended to learn nonlinear
decision boundaries by using kernel functions.

6.9.1 Margin of a Separating Hyperplane

The generic equation of a separating hyperplane can be written as

wTx + b = 0,

where x represents the attributes and (w, b) represent the parameters of the
hyperplane. A data instance xi can belong to either side of the hyperplane
depending on the sign of (wTxi + b). For the purpose of binary classification,
we are interested in finding a hyperplane that places instances of both classes
on opposite sides of the hyperplane, thus resulting in a separation of the two
classes. If there exists a hyperplane that can perfectly separate the classes
in the data set, we say that the data set is linearly separable. Figure 6.32
shows an example of linearly separable data involving two classes, squares and
circles. Note that there can be infinitely many hyperplanes that can separate

�

M06 TAN9224 02 GE C06 page 479

� �

�

6.9 Support Vector Machine (SVM) 479

B1

B2b21 b22

b11 b12margin for B1

margin for B2

Figure 6.32. Margin of a hyperplane in a two-dimensional data set.

the classes, two of which are shown in Figure 6.32 as lines B1 and B2. Even
though every such hyperplane will have zero training error, they can provide
different results on previously unseen instances. Which separating hyperplane
should we thus finally choose to obtain the best generalization performance?
Ideally, we would like to choose a simple hyperplane that is robust to small
perturbations. This can be achieved by using the concept of the margin of a
separating hyperplane, which can be briefly described as follows.

For every separating hyperplane Bi, let us associate a pair of parallel
hyperplanes, bi1 and bi2, such that they touch the closest instances of both
classes, respectively. For example, if we move B1 parallel to its direction, we
can touch the first square using b11 and the first circle using b12. bi1 and bi2
are known as the margin hyperplanes of Bi and the distance between them
is known as the margin of the separating hyperplane Bi. From the diagram
shown in Figure 6.32, notice that the margin for B1 is considerably larger than
that for B2. In this example, B1 turns out to be the separating hyperplane
with the maximum margin, known as the maximum margin hyperplane.

Rationale for Maximum Margin

Hyperplanes with large margins tend to have better generalization perfor-
mance than those with small margins. Intuitively, if the margin is small, then

�

M06 TAN9224 02 GE C06 page 480

� �

�

480 Chapter 6 Classification: Alternative Techniques

any slight perturbation in the hyperplane or the training instances located
at the boundary can have quite an impact on the classification performance.
Small margin hyperplanes are thus more susceptible to overfitting, as they
are barely able to separate the classes with a very narrow room to allow
perturbations. On the other hand, a hyperplane that is farther away from
training instances of both classes has sufficient leeway to be robust to minor
modifications in the data, and thus shows superior generalization performance.

The idea of choosing the maximum margin separating hyperplane also
has strong foundations in statistical learning theory. It can be shown that
the margin of such a hyperplane is inversely related to the V C-dimension
of the classifier, which is a commonly used measure of the complexity of a
model. As discussed in Section 3.4, a simpler model should be preferred over
a more complex model if they both show similar training performance. Hence,
maximizing the margin results in the selection of a separating hyperplane with
the lowest model complexity, which is expected to show better generalization
performance.

6.9.2 Linear SVM

A linear SVM is a classifier that searches for a separating hyperplane with
the largest margin, which is why it is often known as a maximal margin
classifier. The basic idea of SVM can be described as follows.

Consider a binary classification problem consisting of n training instances,
where every training instance xi is associated with a binary label yi ∈ {−1, 1}.
Let wTx + b = 0 be the equation of a separating hyperplane that separates
the two classes by placing them on opposite sides. This means that

wTxi + b > 0 if yi = 1,
wTxi + b < 0 if yi = −1.

The distance of any point x from the hyperplane is then given by

D(x) =
|wTx + b|
||w||

where |.| denotes the absolute value and ||.|| denotes the length of a vector. Let
the distance of the closest point from the hyperplane with y = 1 be k+ > 0.
Similarly, let k− > 0 denote the distance of the closest point from class −1.

�

M06 TAN9224 02 GE C06 page 481

� �

�

6.9 Support Vector Machine (SVM) 481

This can be represented using the following constraints:

wT xi+b
||w|| ≥ k+ if yi = 1,

wT xi+b
||w|| ≤ −k− if yi = −1. (6.69)

The previous equations can be succinctly represented by using the product of
yi and (wTxi + b) as

yi(wTxi + b) ≥M ||w|| (6.70)

where M is a parameter related to the margin of the hyperplane, i.e., if k+ =
k− = M , then margin = k+ − k− = 2M . In order to find the maximum
margin hyperplane that adheres to the previous constraints, we can consider
the following optimization problem:

max
w,b

M

subject to yi(wTxi + b) ≥M ||w||. (6.71)

To find the solution to the previous problem, note that if w and b satisfy the
constraints of the previous problem, then any scaled version of w and b would
satisfy them too. Hence, we can conveniently choose ||w|| = 1/M to simplify
the right-hand side of the inequalities. Furthermore, maximizing M amounts
to minimizing ||w||2. Hence, the optimization problem of SVM is commonly
represented in the following form:

min
w,b

||w||2
2

(6.72)

subject to yi(wTxi + b) ≥ 1.

Learning Model Parameters

Equation 6.72 represents a constrained optimization problem with linear in-
equalities. Since the objective function is convex and quadratic with respect
to w, it is known as a quadratic programming problem (QPP), which can be
solved using standard optimization techniques, as described in Appendix E.
In the following, we present a brief sketch of the main ideas for learning the
model parameters of SVM.

First, we rewrite the objective function in a form that takes into account
the constraints imposed on its solutions. The new objective function is known

�

M06 TAN9224 02 GE C06 page 482

� �

�

482 Chapter 6 Classification: Alternative Techniques

as the Lagrangian primal problem, which can be represented as follows,

LP =
1
2
‖w‖2 −

n∑

i=1

λi

(
yi(wTxi + b)− 1

)
, (6.73)

where the parameters λi ≥ 0 correspond to the constraints and are called
the Lagrange multipliers. Next, to minimize the Lagrangian, we take the
derivative of LP with respect to w and b and set them equal to zero:

∂Lp

∂w
= 0 =⇒ w =

n∑

i=1

λiyixi, (6.74)

∂Lp

∂b
= 0 =⇒

n∑

i=1

λiyi = 0. (6.75)

Note that using Equation 6.74, we can represent w completely in terms of
the Lagrange multipliers. There is another relationship between (w, b) and λi

that is derived from the Karush-Kuhn-Tucker (KKT) conditions, a commonly
used technique for solving QPP. This relationship can be described as

λi

[
yi(wTxi + b)− 1

]
= 0. (6.76)

Equation 6.76 is known as the complementary slackness condition,
which sheds light on a valuable property of SVM. It states that the Lagrange
multiplier λi is strictly greater than 0 only when xi satisfies the equation
yi(w · xi + b) = 1, which means that xi lies exactly on a margin hyperplane.
However, if xi is farther away from the margin hyperplanes such that yi(w ·
xi + b) > 1, then λi is necessarily 0. Hence, λi > 0 for only a small number of
instances that are closest to the separating hyperplane, which are known as
support vectors. Figure 6.33 shows the support vectors of a hyperplane as
filled circles and squares. Further, if we look at Equation 6.74, we will observe
that training instances with λi = 0 do not contribute to the weight parameter
w. This suggests that w can be concisely represented only in terms of the
support vectors in the training data, which are quite fewer than the overall
number of training instances. This ability to represent the decision function
only in terms of the support vectors is what gives this classifier the name
support vector machines.

�

M06 TAN9224 02 GE C06 page 483

� �

�

6.9 Support Vector Machine (SVM) 483

Figure 6.33. Support vectors of a hyperplane shown as filled circles and squares.

Using equations 6.74, 6.75, and 6.76 in Equation 6.73, we obtain the
following optimization problem in terms of the Lagrange multipliers λi:

max
λi

n∑

i=1

λi − 1
2

n∑

i=1

n∑

j=1

λiλjyiyjxT
i xj (6.77)

subject to
n∑

i=1

λiyi = 0,

λi ≥ 0.

The previous optimization problem is called the dual optimization prob-
lem. Maximizing the dual problem with respect to λi is equivalent to mini-
mizing the primal problem with respect to w and b.

The key differences between the dual and primal problems are as follows:

1. Solving the dual problem helps us identify the support vectors in the
data that have non-zero values of λi. Further, the solution of the dual
problem is influenced only by the support vectors that are closest to the
decision boundary of SVM. This helps in summarizing the learning of
SVM solely in terms of its support vectors, which are easier to manage
computationally. Further, it represents a unique ability of SVM to be

�

M06 TAN9224 02 GE C06 page 484

� �

�

484 Chapter 6 Classification: Alternative Techniques

dependent only on the instances closest to the boundary, which are
harder to classify, rather than the distribution of instances farther away
from the boundary.

2. The objective of the dual problem involves only terms of the form xT
i xj ,

which are basically inner products in the attribute space. As we will
see later in Section 6.9.4, this property will prove to be quite useful in
learning nonlinear decision boundaries using SVM.

Because of these differences, it is useful to solve the dual optimization
problem using any of the standard solvers for QPP. Having found an optimal
solution for λi, we can use Equation 6.74 to solve for w. We can then use
Equation 6.76 on the support vectors to solve for b as follows:

b =
1
nS

∑

i∈S

1− yiwTxi

yi
(6.78)

where S represents the set of support vectors (S = {i|λi > 0}) and nS is the
number of support vectors. The maximum margin hyperplane can then be
expressed as

f(x) =
(n∑

i=1

λiyixT
i x
)

+ b = 0. (6.79)

Using this separating hyperplane, a test instance x can be assigned a class
label using the sign of f(x).

Example 6.7. Consider the two-dimensional data set shown in Figure 6.34,
which contains eight training instances. Using quadratic programming, we
can solve the optimization problem stated in Equation 6.77 to obtain the
Lagrange multiplier λi for each training instance. The Lagrange multipliers
are depicted in the last column of the table. Notice that only the first two
instances have non-zero Lagrange multipliers. These instances correspond to
the support vectors for this data set.

Let w = (w1, w2) and b denote the parameters of the decision boundary.
Using Equation 6.74, we can solve for w1 and w2 in the following way:

w1 =
∑

i

λiyixi1 = 65.5261× 1× 0.3858 + 65.5261×−1× 0.4871 = −6.64.

w2 =
∑

i

λiyixi2 = 65.5261× 1× 0.4687 + 65.5261×−1× 0.611 = −9.32.

�

M06 TAN9224 02 GE C06 page 485

� �

�

6.9 Support Vector Machine (SVM) 485

–6.64 x1 – 9.32 x2 + 7.93 = 0

0 0.2 0.4 0.6 0.8 1
0

0.3858
0.4871
0.9218
0.7382
0.1763
0.4057
0.9355
0.2146

65.5261
65.5261

0
0
0
0
0
0

0.4687
0.611
0.4103
0.8936
0.0579
0.3529
0.8132
0.0099

1
–1
–1
–1
1
1

–1
1

x2x1 y Lagrange
Multiplier

x1

x 2

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Figure 6.34. Example of a linearly separable data set.

The bias term b can be computed using Equation 6.76 for each support vector:

b(1) = 1−w · x1 = 1− (−6.64)(0.3858)− (−9.32)(0.4687) = 7.9300.
b(2) = −1−w · x2 = −1− (−6.64)(0.4871)− (−9.32)(0.611) = 7.9289.

Averaging these values, we obtain b = 7.93. The decision boundary corre-
sponding to these parameters is shown in Figure 6.34.

�

M06 TAN9224 02 GE C06 page 486

� �

�

486 Chapter 6 Classification: Alternative Techniques

6.9.3 Soft-margin SVM

Figure 6.35 shows a data set that is similar to Figure 6.32, except it has two
new examples, P and Q. Although the decision boundary B1 misclassifies the
new examples, while B2 classifies them correctly, this does not mean that B2 is
a better decision boundary than B1 because the new examples may correspond
to noise in the training data. B1 should still be preferred over B2 because it
has a wider margin, and thus, is less susceptible to overfitting. However, the
SVM formulation presented in the previous section only constructs decision
boundaries that are mistake-free.

B1

B2b21 b22

b11 b21margin for B1

margin for B2 Q

P

Figure 6.35. Decision boundary of SVM for the non-separable case.

This section examines how the formulation of SVM can be modified to
learn a separating hyperplane that is tolerable to small number of training
errors using a method known as the soft-margin approach. More importantly,
the method presented in this section allows SVM to learn linear hyperplanes
even in situations where the classes are not linearly separable. To do this,
the learning algorithm in SVM must consider the trade-off between the width
of the margin and the number of training errors committed by the linear
hyperplane.

�

M06 TAN9224 02 GE C06 page 487

� �

�

6.9 Support Vector Machine (SVM) 487

To introduce the concept of training errors in the SVM formulation, let
us relax the inequality constraints to accommodate for some violations on a
small number of training instances. This can be done by introducing a slack
variable ξ ≥ 0 for every training instance xi as follows:

yi(wTxi + b) ≥ 1− ξi (6.80)

The variable ξi allows for some slack in the inequalities of the SVM such
that every instance xi does not need to strictly satisfy yi(wTxi + b) ≥ 1.
Further, ξi is non-zero only if the margin hyperplanes are not able to place xi

on the same side as the rest of the instances belonging to yi. To illustrate this,
Figure 6.36 shows a circle P that falls on the opposite side of the separating
hyperplane as the rest of the circles, and thus satisfies wTx + b = −1 + ξ.
The distance between P and the margin hyperplane wTx + b = −1 is equal
to ξ/‖w‖. Hence, ξi provides a measure of the error of SVM in representing
xi using soft inequality constraints.

In the presence of slack variables, it is important to learn a separating
hyperplane that jointly maximizes the margin (ensuring good generalization
performance) and minimizes the values of slack variables (ensuring low train-
ing error). This can be achieved by modifying the optimization problem of

P

/|| ||

Figure 6.36. Slack variables used in soft-margin SVM.

�

M06 TAN9224 02 GE C06 page 488

� �

�

488 Chapter 6 Classification: Alternative Techniques

SVM as follows:

min
w,b,ξi

||w||2
2

+ C

n∑

i=1

ξi (6.81)

subject to yi(wTxi + b) ≥ 1− ξi,
ξi ≥ 0.

where C is a hyper-parameter that makes a trade-off between maximizing
the margin and minimizing the training error. A large value of C pays more
emphasis on minimizing the training error than maximizing the margin. Notice
the similarity of the previous equation with the generic formula of generaliza-
tion error rate introduced in Section 3.4. Indeed, SVM provides a natural way
to balance between model complexity and training error in order to maximize
generalization performance.

To solve Equation 6.81 we apply the Lagrange multiplier method and
convert the primal problem to its corresponding dual problem, similar to the
approach described in the previous section. The Lagrangian primal problem
of Equation 6.81 can be written as follows:

LP =
1
2
‖w‖2 +C

n∑

i=1

ξi−
n∑

i=1

λi

(
yi(wTxi + b)− 1+ ξi

)
−

n∑

i=1

μi

(
ξi

)
, (6.82)

where λi ≥ 0 and μi ≥ 0 are the Lagrange multipliers corresponding to the
inequality constraints of Equation 6.81. Setting the derivative of LP with
respect to w, b, and ξi equal to 0, we obtain the following equations:

∂LP

∂w
= 0 =⇒ w =

n∑

i=1

λiyixi. (6.83)

∂L

∂b
= 0 =⇒

n∑

i=1

λiyi = 0. (6.84)

∂L

∂ξi
= 0 =⇒ λi + μi = C. (6.85)

We can also obtain the complementary slackness conditions by using the
following KKT conditions:

�

M06 TAN9224 02 GE C06 page 489

� �

�

6.9 Support Vector Machine (SVM) 489

λi

(
yi(wTxi + b)− 1 + ξi

)
= 0, (6.86)

μiξi = 0. (6.87)

Equation 6.86 suggests that λi is zero for all training instances except those
that reside on the margin hyperplanes wTxi + b = ±1, or have ξi > 0. These
instances with λi > 0 are known as support vectors. On the other hand, μi

given in Equation 6.87 is zero for any training instance that is misclassified,
i.e., ξi > 0. Further, λi and μi are related with each other by Equation 6.85.
This results in the following three configurations of (λi, μi):

1. If λi = 0 and μi = C, then xi does not reside on the margin hyperplanes
and is correctly classified on the same side as other instances belonging
to yi.

2. If λi = C and μi = 0, then xi is misclassified and has a non-zero slack
variable ξi.

3. If 0 < λi < C and 0 < μi < C, then xi resides on one of the margin
hyperplanes.

Substituting Equations 6.83 to 6.87 into Equation 6.82, we obtain the
following dual optimization problem:

max
λi

n∑

i=1

λi − 1
2

n∑

i=1

n∑

j=1

λiλjyiyjxT
i xj (6.88)

subject to
n∑

i=1

λiyi = 0,

0 ≤ λi ≤ C.

Notice that the previous problem looks almost identical to the dual prob-
lem of SVM for the linearly separable case (Equation 6.77), except that λi

is required to not only be greater than 0 but also smaller than a constant
value C. Clearly, when C reaches infinity, the previous optimization problem
becomes equivalent to Equation 6.77, where the learned hyperplane perfectly
separates the classes (with no training errors). However, by capping the values
of λi to C, the learned hyperplane is able to tolerate a few training errors that
have ξi > 0.

�

M06 TAN9224 02 GE C06 page 490

� �

�

490 Chapter 6 Classification: Alternative Techniques

Figure 6.37. Hinge loss as a function of yŷ.

As before, Equation 6.88 can be solved by using any of the standard solvers
for QPP, and the optimal value of w can be obtained by using Equation 6.83.
To solve for b, we can use Equation 6.86 on the support vectors that reside on
the margin hyperplanes as follows:

b =
1
nS

∑

i∈S

1− yiwTxi

yi
(6.89)

where S represents the set of support vectors residing on the margin hyper-
planes (S = {i|0 < λi < C}) and nS is the number of elements in S.

SVM as a Regularizer of Hinge Loss

SVM belongs to a broad class of regularization techniques that use a loss
function to represent the training errors and a norm of the model parameters
to represent the model complexity. To realize this, notice that the slack variable
ξ, used for measuring the training errors in SVM, is equivalent to the hinge
loss function, which can be defined as follows:

Loss (y, ŷ) = max (0, 1− yŷ),

where y ∈ {+1,−1}. In the case of SVM, ŷ corresponds to wTx + b. Figure
6.37 shows a plot of the hinge loss function as we vary yŷ. We can see that

�

M06 TAN9224 02 GE C06 page 491

� �

�

6.9 Support Vector Machine (SVM) 491

the hinge loss is equal to 0 as long as y and ŷ have the same sign and |ŷ| ≥ 1.
However, the hinge loss grows linearly with |ŷ| whenever y and ŷ are of the
opposite sign or |ŷ| < 1. This is similar to the notion of the slack variable ξ,
which is used to measure the distance of a point from its margin hyperplane.
Hence, the optimization problem of SVM can be represented in the following
equivalent form:

min
w,b

||w||2
2

+ C

n∑

i=1

Loss (yi,wTxi + b) (6.90)

Note that using the hinge loss ensures that the optimization problem is convex
and can be solved using standard optimization techniques. However, if we use
a different loss function, such as the squared loss function that was introduced
in Section 6.7 on ANN, it will result in a different optimization problem that
may or may not remain convex. Nevertheless, different loss functions can
be explored to capture varying notions of training error, depending on the
characteristics of the problem.

Another interesting property of SVM that relates it to a broader class
of regularization techniques is the concept of a margin. Although minimizing
||w||2 has the geometric interpretation of maximizing the margin of a separat-
ing hyperplane, it is essentially the squared L2 norm of the model parameters,
||w||22. In general, the Lq norm of w, ||w||q, is equal to the Minkowski distance
of order q from w to the origin, i.e.,

||w||q =
(p∑

i

wq
i

)1/q

Minimizing the Lq norm of w to achieve lower model complexity is a generic
regularization concept that has several interpretations. For example, minimiz-
ing the L2 norm amounts to finding a solution on a hypersphere of smallest
radius that shows suitable training performance. To visualize this in two-
dimensions, Figure 6.38(a) shows the plot of a circle with constant radius
r, where every point has the same L2 norm. On the other hand, using the
L1 norm ensures that the solution lies on the surface of a hypercube with
smallest size, with vertices along the axes. This is illustrated in Figure 6.38(b)
as a square with vertices on the axes at a distance of r from the origin. The L1

norm is commonly used as a regularizer to obtain sparse model parameters
with only a small number of non-zero parameter values, such as the use of
Lasso in regression problems (see Bibliographic Notes).

�

M06 TAN9224 02 GE C06 page 492

� �

�

492 Chapter 6 Classification: Alternative Techniques

(a) L2 norm. (b) L1 norm.

Figure 6.38. Plots showing the behavior of two-dimensional solutions with constantL2 andL1 norms.

In general, depending on the characteristics of the problem, different com-
binations of Lq norms and training loss functions can be used for learning the
model parameters, each requiring a different optimization solver. This forms
the backbone of a wide range of modeling techniques that attempt to improve
the generalization performance by jointly minimizing training error and model
complexity. However, in this section, we focus only on the squared L2 norm
and the hinge loss function, resulting in the classical formulation of SVM.

6.9.4 Nonlinear SVM

The SVM formulations described in the previous sections construct a linear
decision boundary to separate the training examples into their respective
classes. This section presents a methodology for applying SVM to data sets
that have nonlinear decision boundaries. The basic idea is to transform the
data from its original attribute space in x into a new space ϕ(x) so that a linear
hyperplane can be used to separate the instances in the transformed space,
using the SVM approach. The learned hyperplane can then be projected back
to the original attribute space, resulting in a nonlinear decision boundary.

�

M06 TAN9224 02 GE C06 page 493

� �

�

6.9 Support Vector Machine (SVM) 493

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

X
2

X1

(a) Decision boundary in the original
two-dimensional space.

–0.25 –0.2 –0.15 –0.1 –0.05 0

–0.25

–0.2

–0.15

–0.1

–0.05

0

X
2

–
X

2
2

X1 – X1
2

(b) Decision boundary in the trans-
formed space.

Figure 6.39. Classifying data with a nonlinear decision boundary.

Attribute Transformation

To illustrate how attribute transformation can lead to a linear decision bound-
ary, Figure 6.39(a) shows an example of a two-dimensional data set consisting
of squares (classified as y = 1) and circles (classified as y = −1). The data set
is generated in such a way that all the circles are clustered near the center of
the diagram and all the squares are distributed farther away from the center.
Instances of the data set can be classified using the following equation:

y =

{
1 if

√
(x1 − 0.5)2 + (x2 − 0.5)2 > 0.2,

−1 otherwise.
(6.91)

The decision boundary for the data can therefore be written as follows:

√
(x1 − 0.5)2 + (x2 − 0.5)2 = 0.2,

which can be further simplified into the following quadratic equation:

x2
1 − x1 + x2

2 − x2 = −0.46.

A nonlinear transformation ϕ is needed to map the data from its original
attribute space into a new space such that a linear hyperplane can separate

�

M06 TAN9224 02 GE C06 page 494

� �

�

494 Chapter 6 Classification: Alternative Techniques

the classes. This can be achieved by using the following simple transformation:

ϕ : (x1, x2) −→ (x2
1 − x1, x

2
2 − x2). (6.92)

Figure 6.39(b) shows the points in the transformed space, where we can see
that all the circles are located in the lower left-hand side of the diagram. A
linear hyperplane with parameters w and b can therefore be constructed in
the transformed space, to separate the instances into their respective classes.

One may think that because the nonlinear transformation possibly in-
creases the dimensionality of the input space, this approach can suffer from
the curse of dimensionality that is often associated with high-dimensional
data. However, as we will see in the following section, nonlinear SVM is able
to avoid this problem by using kernel functions.

Learning a Nonlinear SVM Model

Using a suitable function, ϕ(.), we can transform any data instance x to
ϕ(x). (The details on how to choose ϕ(.) will become clear later.) The linear
hyperplane in the transformed space can be expressed as wTϕ(x) + b = 0. To
learn the optimal separating hyperplane, we can substitute ϕ(x) for x in the
formulation of SVM to obtain the following optimization problem:

min
w,b,ξi

||w||2
2

+ C

n∑

i=1

ξi (6.93)

subject to yi(wTϕ(xi) + b) ≥ 1− ξi,
ξi ≥ 0.

Using Lagrange multipliers λi, this can be converted into a dual optimization
problem:

max
λi

n∑

i=1

λi − 1
2

n∑

i=1

n∑

j=1

λiλjyiyj〈ϕ(xi), ϕ(xj)〉 (6.94)

subject to
n∑

i=1

λiyi = 0,

0 ≤ λi ≤ C,

where 〈a,b〉 denotes the inner product between vectors a and b. Also, the
equation of the hyperplane in the transformed space can be represented using

�

M06 TAN9224 02 GE C06 page 495

� �

�

6.9 Support Vector Machine (SVM) 495

λi as follows:
n∑

i=1

λiyi〈ϕ(xi), ϕ(x)〉+ b = 0. (6.95)

Further, b is given by

b =
1
nS

(∑

i∈S

1
yi
−
∑

i∈S

n∑

j=1

λjyiyj〈ϕ(xi), ϕ(xj)〉
yi

)
, (6.96)

where S = {i|0 < λi < C} is the set of support vectors residing on the margin
hyperplanes and nS is the number of elements in S.

Note that in order to solve the dual optimization problem in Equation 6.94,
or to use the learned model parameters to make predictions using Equations
6.95 and 6.96, we need only inner products of ϕ(x). Hence, even though ϕ(x)
may be nonlinear and high-dimensional, it suffices to use a function of the
inner products of ϕ(x) in the transformed space. This can be achieved by
using a kernel trick, which can be described as follows.

The inner product between two vectors is often regarded as a measure of
similarity between the vectors. For example, the cosine similarity described
in Section 2.4.5 on page 99 can be defined as the dot product between two
vectors that are normalized to unit length. Analogously, the inner product
〈ϕ(xi), ϕ(xj)〉 can also be regarded as a measure of similarity between two in-
stances, xi and xj , in the transformed space. The kernel trick is a method for
computing this similarity as a function of the original attributes. Specifically,
the kernel function K(u,v) between two instances u and v can be defined as
follows:

K(u,v) = 〈ϕ(u), ϕ(v)〉 = f(u,v). (6.97)

where f(.) is a function that follows certain conditions as stated by the
Mercer’s Theorem. Although the details of this theorem are outside the scope
of the book, we provide a list of some of the commonly used kernel functions:

Polynomial kernel K(u,v) = (uTv + 1)p (6.98)

Radial Basis Function kernel K(u,v) = e−‖u−v‖2/(2σ2) (6.99)
Sigmoid kernel K(u,v) = tanh(kuTv − δ) (6.100)

By using a kernel function, we can directly work with inner products in
the transformed space without dealing with the exact forms of the nonlinear

�

M06 TAN9224 02 GE C06 page 496

� �

�

496 Chapter 6 Classification: Alternative Techniques

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

X1

X
2

Figure 6.40. Decision boundary produced by a nonlinear SVM with polynomial kernel.

transformation function ϕ. Specifically, this allows us to use high-dimensional
transformations (sometimes even involving infinitely many dimensions), while
performing calculations only in the original attribute space. Computing the
inner products using kernel functions is also considerably cheaper than using
the transformed attribute set ϕ(x). Hence, the use of kernel functions provides
a significant advantage in representing nonlinear decision boundaries, without
suffering from the curse of dimensionality. This has been one of the major
reasons behind the widespread usage of SVM in highly complex and nonlinear
problems.

Figure 6.40 shows the nonlinear decision boundary obtained by SVM using
the polynomial kernel function given in Equation 6.98. We can see that the
learned decision boundary is quite close to the true decision boundary shown
in Figure 6.39(a). Although the choice of kernel function depends on the
characteristics of the input data, a commonly used kernel function is the radial
basis function (RBF) kernel, which involves a single hyper-parameter σ, known
as the standard deviation of the RBF kernel.

6.9.5 Characteristics of SVM

1. The SVM learning problem can be formulated as a convex optimization
problem, in which efficient algorithms are available to find the global
minimum of the objective function. Other classification methods, such

�

M06 TAN9224 02 GE C06 page 497

� �

�

6.9 Support Vector Machine (SVM) 497

as rule-based classifiers and artificial neural networks, employ a greedy
strategy to search the hypothesis space. Such methods tend to find only
locally optimum solutions.

2. SVM provides an effective way of regularizing the model parameters by
maximizing the margin of the decision boundary. Furthermore, it is able
to create a balance between model complexity and training errors by
using a hyper-parameter C. This trade-off is generic to a broader class
of model learning techniques that capture the model complexity and the
training loss using different formulations.

3. Linear SVM can handle irrelevant attributes by learning zero weights
corresponding to such attributes. It can also handle redundant attributes
by learning similar weights for the duplicate attributes. Furthermore,
the ability of SVM to regularize its learning makes it more robust to
the presence of a large number of irrelevant and redundant attributes
than other classifiers, even in high-dimensional settings. For this reason,
nonlinear SVMs are less impacted by irrelevant and redundant attributes
than other highly expressive classifiers that can learn nonlinear decision
boundaries such as decision trees.

To compare the effect of irrelevant attributes on the performance of non-
linear SVMs and decision trees, consider the two-dimensional data set
shown in Figure 6.41(a) containing 500 + and 500 o instances, where the
two classes can be easily separated using a nonlinear decision boundary.
We incrementally add irrelevant attributes to this data set and compare
the performance of two classifiers: decision tree and nonlinear SVM
(using radial basis function kernel), using 70% of the data for training
and the rest for testing. Figure 6.41(b) shows the test error rates of
the two classifiers as we increase the number of irrelevant attributes.
We can see that the test error rate of decision trees swiftly reaches 0.5
(same as random guessing) in the presence of even a small number of
irrelevant attributes. This can be attributed to the problem of multiple
comparisons while choosing splitting attributes at internal nodes as dis-
cussed in Example 3.7. On the other hand, nonlinear SVM shows a more
robust and steady performance even after adding a moderately large
number of irrelevant attributes. Its test error rate gradually declines and
eventually reaches close to 0.5 after adding 125 irrelevant attributes, at
which point it becomes difficult to discern the discriminative information
in the original two attributes from the noise in the remaining attributes
for learning nonlinear decision boundaries.

�

M06 TAN9224 02 GE C06 page 498

� �

�

498 Chapter 6 Classification: Alternative Techniques

0
0 5 10 15 20

2

4

6

8

10

12

14

16

18

20

(a) Original data with two at-
tributes.

0 25 50 75 100 125 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Irrelevant Attributes

T
es

t E
rr

or
 R

at
e

Nonlinear SVM
Decision Tree

(b) Test error rates after adding irrelevant
attributes to the original data.

Figure 6.41. Comparing the effect of adding irrelevant attributes on the performance of nonlinear SVMs
and decision trees.

4. SVM can be applied to categorical data by introducing dummy variables
for each categorical attribute value present in the data. For example, if
Marital Status has three values {Single, Married, Divorced}, we can
introduce a binary variable for each of the attribute values.

5. The SVM formulation presented in this chapter is for binary class prob-
lems. However, multiclass extensions of SVM have also been proposed.

6. Although the training time of an SVM model can be large, the learned
parameters can be succinctly represented with the help of a small number
of support vectors, making the classification of test instances quite fast.

6.10 Ensemble Methods

This section presents techniques for improving classification accuracy by ag-
gregating the predictions of multiple classifiers. These techniques are known
as ensemble or classifier combination methods. An ensemble method con-
structs a set of base classifiers from training data and performs classification
by taking a vote on the predictions made by each base classifier. This section
explains why ensemble methods tend to perform better than any single clas-
sifier and presents techniques for constructing the classifier ensemble.

�

M06 TAN9224 02 GE C06 page 499

� �

�

6.10 Ensemble Methods 499

6.10.1 Rationale for Ensemble Method

The following example illustrates how an ensemble method can improve a
classifier’s performance.

Example 6.8. Consider an ensemble of 25 binary classifiers, each of which
has an error rate of ε = 0.35. The ensemble classifier predicts the class label of
a test example by taking a majority vote on the predictions made by the base
classifiers. If the base classifiers are identical, then all the base classifiers will
commit the same mistakes. Thus, the error rate of the ensemble remains 0.35.
On the other hand, if the base classifiers are independent—i.e., their errors
are uncorrelated—then the ensemble makes a wrong prediction only if more
than half of the base classifiers predict incorrectly. In this case, the error rate
of the ensemble classifier is

eensemble =
25∑

i=13

(
25
i

)
εi(1− ε)25−i = 0.06, (6.101)

which is considerably lower than the error rate of the base classifiers.

Figure 6.42 shows the error rate of an ensemble of 25 binary classifiers
(eensemble) for different base classifier error rates (ε). The diagonal line repre-
sents the case in which the base classifiers are identical, while the solid line
represents the case in which the base classifiers are independent. Observe that
the ensemble classifier performs worse than the base classifiers when ε is larger
than 0.5.

The preceding example illustrates two necessary conditions for an ensemble
classifier to perform better than a single classifier: (1) the base classifiers
should be independent of each other, and (2) the base classifiers should do
better than a classifier that performs random guessing. In practice, it is
difficult to ensure total independence among the base classifiers. Neverthe-
less, improvements in classification accuracies have been observed in ensemble
methods in which the base classifiers are somewhat correlated.

6.10.2 Methods for Constructing an Ensemble Classifier

A logical view of the ensemble method is presented in Figure 6.43. The
basic idea is to construct multiple classifiers from the original data and then
aggregate their predictions when classifying unknown examples. The ensemble
of classifiers can be constructed in many ways:

1. By manipulating the training set. In this approach, multiple train-
ing sets are created by resampling the original data according to some

�

M06 TAN9224 02 GE C06 page 500

� �

�

500 Chapter 6 Classification: Alternative Techniques

Figure 6.42. Comparison between errors of base classifiers and errors of the ensemble classifier.

Figure 6.43. A logical view of the ensemble learning method.

sampling distribution and constructing a classifier from each training set.
The sampling distribution determines how likely it is that an example
will be selected for training, and it may vary from one trial to another.
Bagging and boosting are two examples of ensemble methods that
manipulate their training sets. These methods are described in further
detail in Sections 6.10.4 and 6.10.5.

�

M06 TAN9224 02 GE C06 page 501

� �

�

6.10 Ensemble Methods 501

2. By manipulating the input features. In this approach, a subset
of input features is chosen to form each training set. The subset can
be either chosen randomly or based on the recommendation of domain
experts. Some studies have shown that this approach works very well
with data sets that contain highly redundant features. Random forest,
which is described in Section 6.10.6, is an ensemble method that manip-
ulates its input features and uses decision trees as its base classifiers.

3. By manipulating the class labels. This method can be used when the
number of classes is sufficiently large. The training data is transformed
into a binary class problem by randomly partitioning the class labels
into two disjoint subsets, A0 and A1. Training examples whose class
label belongs to the subset A0 are assigned to class 0, while those that
belong to the subset A1 are assigned to class 1. The relabeled examples
are then used to train a base classifier. By repeating this process multiple
times, an ensemble of base classifiers is obtained. When a test example
is presented, each base classifier Ci is used to predict its class label. If
the test example is predicted as class 0, then all the classes that belong
to A0 will receive a vote. Conversely, if it is predicted to be class 1,
then all the classes that belong to A1 will receive a vote. The votes are
tallied and the class that receives the highest vote is assigned to the test
example. An example of this approach is the error-correcting output
coding method described on page 533.

4. By manipulating the learning algorithm. Many learning algorithms
can be manipulated in such a way that applying the algorithm several
times on the same training data will result in the construction of dif-
ferent classifiers. For example, an artificial neural network can change
its network topology or the initial weights of the links between neurons.
Similarly, an ensemble of decision trees can be constructed by injecting
randomness into the tree-growing procedure. For example, instead of
choosing the best splitting attribute at each node, we can randomly
choose one of the top k attributes for splitting.

The first three approaches are generic methods that are applicable to any
classifier, whereas the fourth approach depends on the type of classifier used.
The base classifiers for most of these approaches can be generated sequentially
(one after another) or in parallel (all at once). Once an ensemble of classifiers
has been learned, a test example x is classified by combining the predictions

�

M06 TAN9224 02 GE C06 page 502

� �

�

502 Chapter 6 Classification: Alternative Techniques

made by the base classifiers Ci(x):

C∗(x) = f(C1(x), C2(x), . . . , Ck(x)).

where f is the function that combines the ensemble responses. One simple
approach for obtaining C∗(x) is to take a majority vote of the individual
predictions. An alternate approach is to take a weighted majority vote, where
the weight of a base classifier denotes its accuracy or relevance.

Ensemble methods show the most improvement when used with unstable
classifiers, i.e., base classifiers that are sensitive to minor perturbations in the
training set, because of high model complexity. Although unstable classifiers
may have a low bias in finding the optimal decision boundary, their predictions
have a high variance for minor changes in the training set or model selection.
This trade-off between bias and variance is discussed in detail in the next
section. By aggregating the responses of multiple unstable classifiers, ensemble
learning attempts to minimize their variance without worsening their bias.

6.10.3 Bias-Variance Decomposition

Bias-variance decomposition is a formal method for analyzing the generaliza-
tion error of a predictive model. Although the analysis is slightly different
for classification than regression, we first discuss the basic intuition of this
decomposition by using an analogue of a regression problem.

Consider the illustrative task of reaching a target y by firing projectiles
from a starting position x, as shown in Figure 6.44. The target corresponds to
the desired output at a test instance, while the starting position corresponds
to its observed attributes. In this analogy, the projectile represents the model
used for predicting the target using the observed attributes. Let ŷ denote the

Figure 6.44. Bias-variance decomposition.

�

M06 TAN9224 02 GE C06 page 503

� �

�

6.10 Ensemble Methods 503

point where the projectile hits the ground, which is analogous of the prediction
of the model.

Ideally, we would like our predictions to be as close to the true target as
possible. However, note that different trajectories of projectiles are possible
based on differences in the training data or in the approach used for model
selection. Hence, we can observe a variance in the predictions ŷ over different
runs of projectile. Further, the target in our example is not fixed but has
some freedom to move around, resulting in a noise component in the true
target. This can be understood as the non-deterministic nature of the output
variable, where the same set of attributes can have different output values. Let
ŷavg represent the average prediction of the projectile over multiple runs, and
yavg denote the average target value. The difference between ŷavg and yavg is
known as the bias of the model.

In the context of classification, it can be shown that the generalization
error of a classification model m can be decomposed into terms involving the
bias, variance, and noise components of the model in the following way:

gen.error(m) = c1 × noise+ bias(m) + c2 × variance(m)

where c1 and c2 are constants that depend on the characteristics of training
and test sets. Note that while the noise term is intrinsic to the target class, the
bias and variance terms depend on the choice of the classification model. The
bias of a model represents how close the average prediction of the model is to
the average target. Models that are able to learn complex decision boundaries,
e.g., models produced by k-nearest neighbor and multi-layer ANN, generally
show low bias. The variance of a model captures the stability of its predictions
in response to minor perturbations in the training set or the model selection
approach.

We can say that a model shows better generalization performance if it
has a lower bias and lower variance. However, if the complexity of a model is
high but the training size is small, we generally expect to see a lower bias but
higher variance, resulting in the phenomena of overfitting. This phenomena
is pictorially represented in Figure 6.45(a). On the other hand, an overly
simplistic model that suffers from underfitting may show a lower variance
but would suffer from a high bias, as shown in Figure 6.45(b). Hence, the
trade-off between bias and variance provides a useful way for interpreting the
effects of underfitting and overfitting on the generalization performance of a
model.

�

M06 TAN9224 02 GE C06 page 504

� �

�

504 Chapter 6 Classification: Alternative Techniques

(a) Phenomena of Overfitting.

(b) Phenomena of Underfitting.

Figure 6.45. Plots showing the behavior of two-dimensional solutions with constantL2 andL1 norms.

The bias-variance trade-off can be used to explain why ensemble learning
improves the generalization performance of unstable classifiers. If a base clas-
sifier show low bias but high variance, it can become susceptible to overfitting,
as even a small change in the training set will result in different predictions.
However, by combining the responses of multiple base classifiers, we can expect
to reduce the overall variance. Hence, ensemble learning methods show better
performance primarily by lowering the variance in the predictions, although
they can even help in reducing the bias. One of the simplest approaches
for combining predictions and reducing their variance is to compute their
average. This forms the basis of the bagging method, described in the following
subsection.

6.10.4 Bagging

Bagging, which is also known as bootstrap aggregating, is a technique that
repeatedly samples (with replacement) from a data set according to a uniform
probability distribution. Each bootstrap sample has the same size as the
original data. Because the sampling is done with replacement, some instances
may appear several times in the same training set, while others may be

�

M06 TAN9224 02 GE C06 page 505

� �

�

6.10 Ensemble Methods 505

omitted from the training set. On average, a bootstrap sample Di contains
approximately 63% of the original training data because each sample has a
probability 1 − (1 − 1/N)N of being selected in each Di. If N is sufficiently
large, this probability converges to 1 − 1/e � 0.632. The basic procedure for
bagging is summarized in Algorithm 6.5. After training the k classifiers, a test
instance is assigned to the class that receives the highest number of votes.

To illustrate how bagging works, consider the data set shown in Table 6.4.
Let x denote a one-dimensional attribute and y denote the class label. Suppose
we use only one-level binary decision trees, with a test condition x ≤ k, where
k is a split point chosen to minimize the entropy of the leaf nodes. Such a tree
is also known as a decision stump.

Table 6.4. Example of data set used to construct an ensemble of bagging classifiers.

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
y 1 1 1 −1 −1 −1 −1 1 1 1

Without bagging, the best decision stump we can produce splits the in-
stances at either x ≤ 0.35 or x ≤ 0.75. Either way, the accuracy of the tree
is at most 70%. Suppose we apply the bagging procedure on the data set
using 10 bootstrap samples. The examples chosen for training in each bagging
round are shown in Figure 6.46. On the right-hand side of each table, we also
describe the decision stump being used in each round.

We classify the entire data set given in Table 6.4 by taking a majority
vote among the predictions made by each base classifier. The results of the
predictions are shown in Figure 6.47. Since the class labels are either −1 or
+1, taking the majority vote is equivalent to summing up the predicted values
of y and examining the sign of the resulting sum (refer to the second to last

Algorithm 6.5 Bagging algorithm.
1: Let k be the number of bootstrap samples.
2: for i = 1 to k do
3: Create a bootstrap sample of size N , Di.
4: Train a base classifier Ci on the bootstrap sample Di.
5: end for
6: C∗(x) = argmax

y

∑
i δ
(
Ci(x) = y

)
.

{δ(·) = 1 if its argument is true and 0 otherwise.}

�

M06 TAN9224 02 GE C06 page 506

� �

�

506 Chapter 6 Classification: Alternative Techniques

x <= 0.35 ==> y = 1
x > 0.35 ==> y = -1

x <= 0.65 ==> y = 1
x > 0.65 ==> y = 1

x <= 0.35 ==> y = 1
x > 0.35 ==> y = -1

x <= 0.3 ==> y = 1
x > 0.3 ==> y = -1

x <= 0.35 ==> y = 1
x > 0.35 ==> y = -1

x <= 0.75 ==> y = -1
x > 0.75 ==> y = 1

x <= 0.75 ==> y = -1
x > 0.75 ==> y = 1

x <= 0.75 ==> y = -1
x > 0.75 ==> y = 1

x <= 0.75 ==> y = -1
x > 0.75 ==> y = 1

x <= 0.05 ==> y = -1
x > 0.05 ==> y = 1

Bagging Round 1:

x 0.1 0.2 0.2 0.3 0.4 0.4 0.5 0.6 0.9 0.9
y 1 1 1 1 -1 -1 -1 -1 1 1

Bagging Round 2:

x 0.1 0.2 0.3 0.4 0.5 0.8 0.9 1 1 1
y 1 1 1 -1 -1 11 1 1 1

Bagging Round 3:

x 0.1 0.2 0.3 0.4 0.4 0.5 0.7 0.7 0.8 0.9
y 1 1 1 -1 -1 -1 -1 -1 1 1

Bagging Round 4:

x 0.1 0.1 0.2 0.4 0.4 0.5 0.5 0.7 0.8 0.9
y 1 1 1 -1 -1 -1 -1 -1 1 1

Bagging Round 5:

x 0.1 0.1 0.2 0.5 0.6 0.6 0.6 1 1 1
y 1 1 1 -1 -1 -1 -1 1 1 1

Bagging Round 6:

x 0.2 0.4 0.5 0.6 0.7 0.7 0.7 0.8 0.9 1
y 1 -1 -1 -1 -1 -1 -1 1 1 1

Bagging Round 7:

x 0.1 0.4 0.4 0.6 0.7 0.8 0.9 0.9 0.9 1
y 1 -1 -1 -1 -1 1 1 1 1 1

Bagging Round 8:

x 0.1 0.2 0.5 0.5 0.5 0.7 0.7 0.8 0.9 1
y 1 1 -1 -1 -1 -1 -1 1 1 1

Bagging Round 9:

x 0.1 0.3 0.4 0.4 0.6 0.7 0.7 0.8 1 1
y 1 1 -1 -1 -1 -1 -1 1 1 1

Bagging Round 10:

x 0.1 0.1 0.1 0.1 0.3 0.3 0.8 0.8 0.9 0.9
y 1 1 1 1 1 1 1 1 1 1

Figure 6.46. Example of bagging.

row in Figure 6.47). Notice that the ensemble classifier perfectly classifies all
10 examples in the original data.

The preceding example illustrates another advantage of using ensemble
methods in terms of enhancing the representation of the target function. Even
though each base classifier is a decision stump, combining the classifiers can
lead to a decision boundary that mimics a decision tree of depth 2.

Bagging improves generalization error by reducing the variance of the base
classifiers. The performance of bagging depends on the stability of the base

�

M06 TAN9224 02 GE C06 page 507

� �

�

6.10 Ensemble Methods 507

Round x=0.1 x=0.2 x=0.3 x=0.4 x=0.5 x=0.6 x=0.7 x=0.8 x=0.9 x=1.0

1 1 1 1 -1 -1 -1 -1 -1 -1 -1

2 1 1 1 1 1 1 1 1 1 1

3 1 1 1 -1 -1 -1 -1 -1 -1 -1

4 1 1 1 -1 -1 -1 -1 -1 -1 -1

5 1 1 1 -1 -1 -1 -1 -1 -1 -1

6 -1 -1 -1 -1 -1 -1 -1 1 1 1

7 -1 -1 -1 -1 -1 -1 -1 1 1 1

8 -1 -1 -1 -1 -1 -1 -1 1 1 1

9 -1 -1 -1 -1 -1 -1 -1 1 1 1

10 1 1 1 1 1 1 1 1 1 1

Sum 2 2 2 -6 -6 -6 -6 2 2 2

Sign 1 1 1 -1 -1 -1 -1 1 1 1

True Class 1 1 1 -1 -1 -1 -1 1 1 1

Figure 6.47. Example of combining classifiers constructed using the bagging approach.

classifier. If a base classifier is unstable, bagging helps to reduce the errors
associated with random fluctuations in the training data. If a base classifier is
stable, i.e., robust to minor perturbations in the training set, then the error of
the ensemble is primarily caused by bias in the base classifier. In this situation,
bagging may not be able to improve the performance of the base classifiers
significantly. It may even degrade the classifier’s performance because the
effective size of each training set is about 37% smaller than the original data.

6.10.5 Boosting

Boosting is an iterative procedure used to adaptively change the distribution
of training examples for learning base classifiers so that they increasingly focus
on examples that are hard to classify. Unlike bagging, boosting assigns a weight
to each training example and may adaptively change the weight at the end of
each boosting round. The weights assigned to the training examples can be
used in the following ways:

1. They can be used to inform the sampling distribution used to draw a
set of bootstrap samples from the original data.

2. They can be used to learn a model that is biased toward examples with
higher weight.

This section describes an algorithm that uses weights of examples to de-
termine the sampling distribution of its training set. Initially, the examples

�

M06 TAN9224 02 GE C06 page 508

� �

�

508 Chapter 6 Classification: Alternative Techniques

are assigned equal weights, 1/N , so that they are equally likely to be chosen
for training. A sample is drawn according to the sampling distribution of
the training examples to obtain a new training set. Next, a classifier is built
from the training set and used to classify all the examples in the original
data. The weights of the training examples are updated at the end of each
boosting round. Examples that are classified incorrectly will have their weights
increased, while those that are classified correctly will have their weights
decreased. This forces the classifier to focus on examples that are difficult
to classify in subsequent iterations.

The following table shows the examples chosen during each boosting round,
when applied to the data shown in Table 6.4.

Boosting (Round 1): 7 3 2 8 7 9 4 10 6 3
Boosting (Round 2): 5 4 9 4 2 5 1 7 4 2
Boosting (Round 3): 4 4 8 10 4 5 4 6 3 4

Initially, all the examples are assigned the same weights. However, some ex-
amples may be chosen more than once, e.g., examples 3 and 7, because the
sampling is done with replacement. A classifier built from the data is then
used to classify all the examples. Suppose example 4 is difficult to classify.
The weight for this example will be increased in future iterations as it gets
misclassified repeatedly. Meanwhile, examples that were not chosen in the
previous round, e.g., examples 1 and 5, also have a better chance of being
selected in the next round since their predictions in the previous round were
likely to be wrong. As the boosting rounds proceed, examples that are the
hardest to classify tend to become even more prevalent. The final ensemble
is obtained by aggregating the base classifiers obtained from each boosting
round.

Over the years, several implementations of the boosting algorithm have
been developed. These algorithms differ in terms of (1) how the weights of
the training examples are updated at the end of each boosting round, and (2)
how the predictions made by each classifier are combined. An implementation
called AdaBoost is explored in the next section.

AdaBoost

Let {(xj , yj) | j = 1, 2, . . . , N} denote a set of N training examples. In the
AdaBoost algorithm, the importance of a base classifier Ci depends on its

�

M06 TAN9224 02 GE C06 page 509

� �

�

6.10 Ensemble Methods 509

0 0.2 0.4 0.6 0.8 1
–5

–4

–3

–2

–1

0

1

2

3

4

5

ε

In
 (

(1
 –

 ε
)/

ε)

Figure 6.48. Plot of α as a function of training error ε.

error rate, which is defined as

εi =
1
N

[N∑

j=1

wj I

(
Ci(xj) �= yj

)]
, (6.102)

where I(p) = 1 if the predicate p is true, and 0 otherwise. The importance of
a classifier Ci is given by the following parameter,

αi =
1
2

ln
(

1− εi
εi

)
.

Note that αi has a large positive value if the error rate is close to 0 and a large
negative value if the error rate is close to 1, as shown in Figure 6.48.

The αi parameter is also used to update the weight of the training ex-
amples. To illustrate, let w(j)

i denote the weight assigned to example (xi, yi)
during the jth boosting round. The weight update mechanism for AdaBoost
is given by the equation:

w
(j+1)
i =

w
(j)
i

Zj
×
{
e−αj if Cj(xi) = yi

eαj if Cj(xi) �= yi

, (6.103)

where Zj is the normalization factor used to ensure that
∑

iw
(j+1)
i = 1.

The weight update formula given in Equation 6.103 increases the weights

�

M06 TAN9224 02 GE C06 page 510

� �

�

510 Chapter 6 Classification: Alternative Techniques

of incorrectly classified examples and decreases the weights of those classified
correctly.

Instead of using a majority voting scheme, the prediction made by each
classifier Cj is weighted according to αj . This approach allows AdaBoost to
penalize models that have poor accuracy, e.g., those generated at the earlier
boosting rounds. In addition, if any intermediate rounds produce an error
rate higher than 50%, the weights are reverted back to their original uniform
values, wi = 1/N , and the resampling procedure is repeated. The AdaBoost
algorithm is summarized in Algorithm 6.6.

Algorithm 6.6 AdaBoost algorithm.
1: w = {wj = 1/N | j = 1, 2, . . . , N}. {Initialize the weights for all N examples.}
2: Let k be the number of boosting rounds.
3: for i = 1 to k do
4: Create training set Di by sampling (with replacement) from D according to w.
5: Train a base classifier Ci on Di.
6: Apply Ci to all examples in the original training set, D.
7: εi = 1

N

[∑
j wj δ

(
Ci(xj) �= yj

)] {Calculate the weighted error.}
8: if εi > 0.5 then
9: w = {wj = 1/N | j = 1, 2, . . . , N}. {Reset the weights for all N examples.}

10: Go back to Step 4.
11: end if
12: αi = 1

2 ln 1−εi

εi
.

13: Update the weight of each example according to Equation 6.103.
14: end for
15: C∗(x) = argmax

y

∑T
j=1 αjδ(Cj(x) = y)

)
.

Let us examine how the boosting approach works on the data set shown
in Table 6.4. Initially, all the examples have identical weights. After three
boosting rounds, the examples chosen for training are shown in Figure 6.49(a).
The weights for each example are updated at the end of each boosting round
using Equation 6.103, as shown in Figure 6.50(b).

Without boosting, the accuracy of the decision stump is, at best, 70%.
With AdaBoost, the results of the predictions are given in Figure 6.50(b).
The final prediction of the ensemble classifier is obtained by taking a weighted
average of the predictions made by each base classifier, which is shown in the
last row of Figure 6.50(b). Notice that AdaBoost perfectly classifies all the
examples in the training data.

�

M06 TAN9224 02 GE C06 page 511

� �

�

6.10 Ensemble Methods 511

Boosting Round 1:

x 0.1 0.4 0.5 0.6 0.6 0.7 0.7 0.7 0.8 1

y 1 -1 -1 -1 -1 -1 -1 -1 1 1

Boosting Round 2:

x 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3

y 1 1 1 1 1 1 1 1 1 1

Boosting Round 3:

x 0.2 0.2 0.4 0.4 0.4 0.4 0.5 0.6 0.6 0.7

y 1 1 -1 -1 -1 -1 -1 -1 -1 -1

Round x=0.1 x=0.2 x=0.3 x=0.4 x=0.5 x=0.6 x=0.7 x=0.8 x=0.9 x=1.0

1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

2 0.311 0.311 0.311 0.01 0.01 0.01 0.01 0.01 0.01 0.01

3 0.029 0.029 0.029 0.228 0.228 0.228 0.228 0.009 0.009 0.009

(b) Weights of training records.

(a) Training records chosen during boosting.

Figure 6.49. Example of boosting.

An important analytical result of boosting shows that the training error
of the ensemble is bounded by the following expression:

eensemble ≤
∏

i

[√
εi(1− εi)

]
, (6.104)

where εi is the error rate of each base classifier i. If the error rate of the base
classifier is less than 50%, we can write εi = 0.5− γi, where γi measures how
much better the classifier is than random guessing. The bound on the training
error of the ensemble becomes

eensemble ≤
∏

i

√
1− 4γ2

i ≤ exp
(
− 2

∑

i

γ2
i

)
. (6.105)

Hence, the training error of the ensemble decreases exponentially, which leads
to the fast convergence of the algorithm. By focusing on examples that are
difficult to classify by base classifiers, it is able to reduce the bias of the final
predictions along with the variance. AdaBoost has been shown to provide
significant improvements in performance over base classifiers on a range of data

�

M06 TAN9224 02 GE C06 page 512

� �

�

512 Chapter 6 Classification: Alternative Techniques

(a)

(b)

Round Split Point Left Class Right Class
1 0.75 -1 1 1.738

2 0.05 1 1 2.7784

3 0.3 1 -1 4.1195

Round x=0.1 x=0.2 x=0.3 x=0.4 x=0.5 x=0.6 x=0.7 x=0.8 x=0.9 x=1.0

1 -1 -1 -1 -1 -1 -1 -1 1 1 1

2 1 1 1 1 1 1 1 1 1 1

3 1 1 1 -1 -1 -1 -1 -1 -1 -1

Sum 5.16 5.16 5.16 -3.08 -3.08 -3.08 -3.08 0.397 0.397 0.397

Sign 1 1 1 -1 -1 -1 -1 1 1 1

α

Figure 6.50. Example of combining classifiers constructed using the AdaBoost approach.

sets. Nevertheless, because of its tendency to focus on training examples that
are wrongly classified, the boosting technique can be susceptible to overfitting,
resulting in poor generalization performance in some scenarios.

6.10.6 Random Forests

Random forests attempt to improve the generalization performance by con-
structing an ensemble of decorrelated decision trees. Random forests build on
the idea of bagging to use a different bootstrap sample of the training data for
learning decision trees. However, a key distinguishing feature of random forests
from bagging is that at every internal node of a tree, the best splitting criterion
is chosen among a small set of randomly selected attributes. In this way,
random forests construct ensembles of decision trees by not only manipulating
training instances (by using bootstrap samples similar to bagging), but also
the input attributes (by using different subsets of attributes at every internal
node).

Given a training set D consisting of n instances and d attributes, the basic
procedure of training a random forest classifier can be summarized using the
following steps:

1. Construct a bootstrap sample Di of the training set by randomly sam-
pling n instances (with replacement) from D.

�

M06 TAN9224 02 GE C06 page 513

� �

�

6.10 Ensemble Methods 513

2. Use Di to learn a decision tree Ti as follows. At every internal node of
Ti, randomly sample a set of p attributes and choose an attribute from
this subset that shows the maximum reduction in an impurity measure
for splitting. Repeat this procedure till every leaf is pure, i.e., containing
instances from the same class.

Once an ensemble of decision trees have been constructed, their average
prediction (majority vote) on a test instance is used as the final prediction of
the random forest. Note that the decision trees involved in a random forest
are unpruned trees, as they are allowed to grow to their largest possible size
till every leaf is pure. Hence, the base classifiers of random forest represent
unstable classifiers that have low bias but high variance, because of their large
size.

Another property of the base classifiers learned in random forests is the lack
of correlation among their model parameters and test predictions. This can
be attributed to the use of an independently sampled data set Di for learning
every decision tree Ti, similar to the bagging approach. However, random
forests have the additional advantage of choosing a splitting criterion at every
internal node using a different (and randomly selected) subset of attributes.
This property significantly helps in breaking the correlation structure, if any,
among the decision trees Ti.

To realize this, consider a training set involving a large number of at-
tributes, where only a small subset of attributes are strong predictors of the
target class, whereas other attributes are weak indicators. Given such a train-
ing set, even if we consider different bootstrap samples Di for learning Ti, we
would mostly be choosing the same attributes for splitting at internal nodes,
because the weak attributes would be largely overlooked when compared with
the strong predictors. This can result in a considerable correlation among the
trees. However, if we restrict the choice of attributes at every internal node to
a random subset of attributes, we can ensure the selection of both strong and
weak predictors, thus promoting diversity among the trees. This principle is
utilized by random forests for creating decorrelated decision trees.

By aggregating the predictions of an ensemble of strong and decorrelated
decision trees, random forests are able to reduce the variance of the trees
without negatively impacting their low bias. This makes random forests quite
robust to overfitting. Additionally, because of their ability to consider only a
small subset of attributes at every internal node, random forests are compu-
tationally fast and robust even in high-dimensional settings.

The number of attributes to be selected at every node, p, is a hyper-
parameter of the random forest classifier. A small value of p can reduce the

�

M06 TAN9224 02 GE C06 page 514

� �

�

514 Chapter 6 Classification: Alternative Techniques

correlation among the classifiers but may also reduce their strength. A large
value can improve their strength but may result in correlated trees similar to
bagging. Although common suggestions for p in the literature include

√
d and

log2 d+1, a suitable value of p for a given training set can always be selected by
tuning it over a validation set, as described in Chapter 3. However, there is an
alternative way for selecting hyper-parameters in random forests, which does
not require using a separate validation set. It involves computing a reliable
estimate of the generalization error rate directly during training, known as
the out-of-bag (oob) error estimate. The oob estimate can be computed for
any generic ensemble learning method that builds independent base classifiers
using bootstrap samples of the training set, e.g., bagging and random forests.
The approach for computing oob estimate can be described as follows.

Consider an ensemble learning method that uses an independent base clas-
sifier Ti built on a bootstrap sample of the training set Di. Since every training
instance x will be used for training approximately 63% of base classifiers, we
can call x as an out-of-bag sample for the remaining 27% of base classifiers
that did not use it for training. If we use these remaining 27% classifiers to
make predictions on x, we can obtain the oob error on x by taking their
majority vote and comparing it with its class label. Note that the oob error
estimates the error of 27% classifiers on an instance that was not used for
training those classifiers. Hence, the oob error can be considered as a reliable
estimate of generalization error. By taking the average of oob errors of all
training instances, we can compute the overall oob error estimate. This can
be used as an alternative to the validation error rate for selecting hyper-
parameters. Hence, random forests do not need to use a separate partition of
the training set for validation, as it can simultaneously train the base classifiers
and compute generalization error estimates on the same data set.

Random forests have been empirically found to provide significant improve-
ments in generalization performance that are often comparable, if not superior,
to the improvements provided by the AdaBoost algorithm. Random forests
are also more robust to overfitting and run much faster than the AdaBoost
algorithm.

6.10.7 Empirical Comparison among Ensemble Methods

Table 6.5 shows the empirical results obtained when comparing the perfor-
mance of a decision tree classifier against bagging, boosting, and random
forest. The base classifiers used in each ensemble method consist of 50 decision

�

M06 TAN9224 02 GE C06 page 515

� �

�

6.11 Class Imbalance Problem 515

Table 6.5. Comparing the accuracy of a decision tree classifier against three ensemble methods.

Data Set Number of Decision Bagging Boosting RF
(Attributes, Classes, Tree (%) (%) (%) (%)

Instances)

Anneal (39, 6, 898) 92.09 94.43 95.43 95.43
Australia (15, 2, 690) 85.51 87.10 85.22 85.80
Auto (26, 7, 205) 81.95 85.37 85.37 84.39
Breast (11, 2, 699) 95.14 96.42 97.28 96.14
Cleve (14, 2, 303) 76.24 81.52 82.18 82.18
Credit (16, 2, 690) 85.8 86.23 86.09 85.8
Diabetes (9, 2, 768) 72.40 76.30 73.18 75.13
German (21, 2, 1000) 70.90 73.40 73.00 74.5
Glass (10, 7, 214) 67.29 76.17 77.57 78.04
Heart (14, 2, 270) 80.00 81.48 80.74 83.33
Hepatitis (20, 2, 155) 81.94 81.29 83.87 83.23
Horse (23, 2, 368) 85.33 85.87 81.25 85.33
Ionosphere (35, 2, 351) 89.17 92.02 93.73 93.45
Iris (5, 3, 150) 94.67 94.67 94.00 93.33
Labor (17, 2, 57) 78.95 84.21 89.47 84.21
Led7 (8, 10, 3200) 73.34 73.66 73.34 73.06
Lymphography (19, 4, 148) 77.03 79.05 85.14 82.43
Pima (9, 2, 768) 74.35 76.69 73.44 77.60
Sonar (61, 2, 208) 78.85 78.85 84.62 85.58
Tic-tac-toe (10, 2, 958) 83.72 93.84 98.54 95.82
Vehicle (19, 4, 846) 71.04 74.11 78.25 74.94
Waveform (22, 3, 5000) 76.44 83.30 83.90 84.04
Wine (14, 3, 178) 94.38 96.07 97.75 97.75
Zoo (17, 7, 101) 93.07 93.07 95.05 97.03

trees. The classification accuracies reported in this table are obtained from ten-
fold cross-validation. Notice that the ensemble classifiers generally outperform
a single decision tree classifier on many of the data sets.

6.11 Class Imbalance Problem

In many data sets there are a disproportionate number of instances that
belong to different classes, a property known as skew or class imbalance. For
example, consider a health-care application where diagnostic reports are used
to decide whether a person has a rare disease. Because of the infrequent nature
of the disease, we can expect to observe a smaller number of subjects who
are positively diagnosed. Similarly, in credit card fraud detection, fraudulent
transactions are greatly outnumbered by legitimate transactions.

�

M06 TAN9224 02 GE C06 page 516

� �

�

516 Chapter 6 Classification: Alternative Techniques

The degree of imbalance between the classes varies across different ap-
plications and even across different data sets from the same application. For
example, the risk for a rare disease may vary across different populations of
subjects depending on their dietary and lifestyle choices. However, despite
their infrequent occurrences, a correct classification of the rare class often has
greater value than a correct classification of the majority class. For example,
it may be more dangerous to ignore a patient suffering from a disease than to
misdiagnose a healthy person.

More generally, class imbalance poses two challenges for classification.
First, it can be difficult to find sufficiently many labeled samples of a rare
class. Note that many of the classification methods discussed so far work
well only when the training set has a balanced representation of both classes.
Although some classifiers are more effective at handling imbalance in the
training data than others, e.g., rule-based classifiers and k-NN, they are all
impacted if the minority class is not well-represented in the training set. In
general, a classifier trained over an imbalanced data set shows a bias toward
improving its performance over the majority class, which is often not the
desired behavior. As a result, many existing classification models, when trained
on an imbalanced data set, may not effectively detect instances of the rare
class.

Second, accuracy, which is the traditional measure for evaluating classifi-
cation performance, is not well-suited for evaluating models in the presence of
class imbalance in the test data. For example, if 1% of the credit card trans-
actions are fraudulent, then a trivial model that predicts every transaction as
legitimate will have an accuracy of 99% even though it fails to detect any of
the fraudulent activities. Thus, there is a need to use alternative evaluation
metrics that are sensitive to the skew and can capture different criteria of
performance than accuracy.

In this section, we first present some of the generic methods for building
classifiers when there is class imbalance in the training set. We then discuss
methods for evaluating classification performance and adapting classification
decisions in the presence of a skewed test set. In the remainder of this sec-
tion, we will consider binary classification problems for simplicity, where the
minority class is referred as the positive (+) class while the majority class is
referred as the negative (−) class.

6.11.1 Building Classifiers with Class Imbalance

There are two primary considerations for building classifiers in the presence of
class imbalance in the training set. First, we need to ensure that the learning

�

M06 TAN9224 02 GE C06 page 517

� �

�

6.11 Class Imbalance Problem 517

algorithm is trained over a data set that has adequate representation of both
the majority as well as the minority classes. Some common approaches for
ensuring this includes the methodologies of oversampling and undersampling
the training set. Second, having learned a classification model, we need a way
to adapt its classification decisions (and thus create an appropriately tuned
classifier) to best match the requirements of the imbalanced test set. This is
typically done by converting the outputs of the classification model to real-
valued scores, and then selecting a suitable threshold on the classification score
to match the needs of a test set. Both these considerations are discussed in
detail in the following.

Oversampling and Undersampling

The first step in learning with imbalanced data is to transform the training set
to a balanced training set, where both classes have nearly equal representation.
The balanced training set can then be used with any of the existing classifica-
tion techniques (without making any modifications in the learning algorithm)
to learn a model that gives equal emphasis to both classes. In the following,
we present some of the common techniques for transforming an imbalanced
training set to a balanced one.

A basic approach for creating balanced training sets is to generate a
sample of training instances where the rare class has adequate representation.
There are two types of sampling methods that can be used to enhance the
representation of the minority class: (a) undersampling, where the frequency
of the majority class is reduced to match the frequency of the minority class,
and (b) oversampling, where artificial examples of the minority class are
created to make them equal in proportion to the number of negative instances.

To illustrate undersampling, consider a training set that contains 100
positive examples and 1000 negative examples. To overcome the skew among
the classes, we can select a random sample of 100 examples from the negative
class and use them with the 100 positive examples to create a balanced
training set. A classifier built over the resultant balanced set will then be
unbiased toward both classes. However, one limitation of undersampling is
that some of the useful negative examples (e.g., those closer to the actual
decision boundary) may not be chosen for training, therefore, resulting in an
inferior classification model. Another limitation is that the smaller sample of
100 negative instances may have a higher variance than the larger set of 1000.

Oversampling attempts to create a balanced training set by artificially
generating new positive examples. A simple approach for oversampling is to
duplicate every positive instance n−/n+ times, where n+ and n− are the

�

M06 TAN9224 02 GE C06 page 518

� �

�

518 Chapter 6 Classification: Alternative Techniques

x1

x 2

(a) Without oversampling.

x1

x 2

(b) With oversampling.

Figure 6.51. Illustrating the effect of oversampling of the rare class.

numbers of positive and negative training instances, respectively. Figure 6.51
illustrates the effect of oversampling on the learning of a decision boundary
using a classifier such as a decision tree. Without oversampling, only the
positive examples at the bottom right-hand side of Figure 6.51(a) are classified
correctly. The positive example in the middle of the diagram is misclassified
because there are not enough examples to justify the creation of a new deci-
sion boundary to separate the positive and negative instances. Oversampling
provides the additional examples needed to ensure that the decision bound-
ary surrounding the positive example is not pruned, as illustrated in Figure
6.51(b). Note that duplicating a positive instance is analogous to doubling
its weight during the training stage. Hence, the effect of oversampling can be
alternatively achieved by assigning higher weights to positive instances than
negative instances. This method of weighting instances can be used with a
number of classifiers such as logistic regression, ANN, and SVM.

One limitation of the duplication method for oversampling is that the
replicated positive examples have an artificially lower variance when compared
with their true distribution in the overall data. This can bias the classifier to
the specific distribution of training instances, which may not be representative
of the overall distribution of test instances, leading to poor generalizability.
To overcome this limitation, an alternative approach for oversampling is to
generate synthetic positive instances in the neighborhood of existing posi-
tive instances. In this approach, called the Synthetic Minority Oversampling
Technique (SMOTE), we first determine the k-nearest positive neighbors of
every positive instance x, and then generate a synthetic positive instance

�

M06 TAN9224 02 GE C06 page 519

� �

�

6.11 Class Imbalance Problem 519

at some intermediate point along the line segment joining x to one of its
randomly chosen k-nearest neighbor, xk. This process is repeated until the
desired number of positive instances is reached. However, one limitation of
this approach is that it can only generate new positive instances in the convex
hull of the existing positive class. Hence, it does not help improve the represen-
tation of the positive class outside the boundary of existing positive instances.
Despite their complementary strengths and weaknesses, undersampling and
oversampling provide useful directions for generating balanced training sets in
the presence of class imbalance.

Assigning Scores to Test Instances

If a classifier returns an ordinal score s(x) for every test instance x such that
a higher score denotes a greater likelihood of x belonging to the positive class,
then for every possible value of score threshold, sT , we can create a new binary
classifier where a test instance x is classified positive only if s(x) > sT . Thus,
every choice of sT can potentially lead to a different classifier, and we are
interested in finding the classifier that is best suited for our needs.

Ideally, we would like the classification score to vary monotonically with
the actual posterior probability of the positive class, i.e., if s(x1) and s(x2)
are the scores of any two instances, x1 and x2, then s(x1) ≥ s(x2) =⇒
P (y = 1|x1) ≥ P (y|x2). However, this is difficult to guarantee in practice as
the properties of the classification score depends on several factors such as
the complexity of the classification algorithm and the representative power of
the training set. In general, we can only expect the classification score of a
reasonable algorithm to be weakly related to the actual posterior probability of
the positive class, even though the relationship may not be strictly monotonic.
Most classifiers can be easily modified to produce such a real valued score.
For example, the signed distance of an instance from the positive margin
hyperplane of SVM can be used as a classification score. As another example,
test instances belonging to a leaf in a decision tree can be assigned a score
based on the fraction of training instances labeled as positive in the leaf. Also,
probabilistic classifiers such as näıve Bayes, Bayesian networks, and logistic
regression naturally output estimates of posterior probabilities, P (y = 1|x).
Next, we discuss some evaluation measures for assessing the goodness of a
classifier in the presence of class imbalance.

�

M06 TAN9224 02 GE C06 page 520

� �

�

520 Chapter 6 Classification: Alternative Techniques

Table 6.6. A confusion matrix for a binary classification problem in which the classes are not equally
important.

Predicted Class

+ −
Actual + f++ (TP) f+− (FN)

Class − f−+ (FP) f−− (TN)

6.11.2 Evaluating Performance with Class Imbalance

The most basic approach for representing a classifier’s performance on a
test set is to use a confusion matrix, as shown in Table 6.6. This table
is essentially the same as Table 3.4, which was introduced in the context
of evaluating classification performance in Section 3.2. A confusion matrix
summarizes the number of instances predicted correctly or incorrectly by a
classifier using the following four counts:

• True positive (TP) or f++, which corresponds to the number of positive
examples correctly predicted by the classifier.

• False positive (FP) or f−+ (also known as Type I error), which corre-
sponds to the number of negative examples wrongly predicted as positive
by the classifier.

• False negative (FN) or f+− (also known as Type II error), which corre-
sponds to the number of positive examples wrongly predicted as negative
by the classifier.

• True negative (TN) or f−−, which corresponds to the number of negative
examples correctly predicted by the classifier.

The confusion matrix provides a concise representation of classification
performance on a given test data set. However, it is often difficult to interpret
and compare the performance of classifiers using the four-dimensional rep-
resentations (corresponding to the four counts) provided by their confusion
matrices. Hence, the counts in the confusion matrix are often summarized
using a number of evaluation measures. Accuracy is an example of one
such measure that combines these four counts into a single value, which is
used extensively when classes are balanced. However, the accuracy measure
is not suitable for handling data sets with imbalanced class distributions as
it tends to favor classifiers that correctly classify the majority class. In the

�

M06 TAN9224 02 GE C06 page 521

� �

�

6.11 Class Imbalance Problem 521

following, we describe other possible measures that capture different criteria
of performance when working with imbalanced classes.

A basic evaluation measure is the true positive rate (TPR), which is
defined as the fraction of positive test instances correctly predicted by the
classifier:

TPR =
TP

TP + FN
.

In the medical community, TPR is also known as sensitivity, while in the
information retrieval literature, it is also called recall (r). A classifier with a
high TPR has a high chance of correctly identifying the positive instances of
the data.

Analogously to TPR, the true negative rate (TNR) (also known as
specificity) is defined as the fraction of negative test instances correctly
predicted by the classifier, i.e.,

TNR =
TN

FP + TN
.

A high TNR value signifies that the classifier correctly classifies any randomly
chosen negative instance in the test set. A commonly used evaluation measure
that is closely related to TNR is the false positive rate (FPR), which is
defined as 1− TNR.

FPR =
FP

FP + TN
.

Similarly, we can define false negative rate (FNR) as 1− TPR.

FNR =
FN

FN + TP
.

Note that the evaluation measures defined above do not take into account
the skew among the classes, which can be formally defined as α = P/(P+N),
where P and N denote the number of actual positives and actual negatives,
respectively. As a result, changing the relative numbers of P and N will
have no effect on TPR, TNR, FPR, or FNR, since they depend only on the
fraction of correct classifications for every class, independently of the other
class. Furthermore, knowing the values of TPR and TNR (and consequently
FNR and FPR) does not by itself help us uniquely determine all four entries
of the confusion matrix. However, together with information about the skew
factor, α, and the total number of instances, N , we can compute the entire
confusion matrix using TPR and TNR, as shown in Table 6.7.

�

M06 TAN9224 02 GE C06 page 522

� �

�

522 Chapter 6 Classification: Alternative Techniques

Table 6.7. Entries of the confusion matrix in terms of the TPR, TNR, skew, α, and total number of
instances, N .

Predicted + Predicted −
Actual + TPR × α×N (1 - TPR) × α×N α×N
Actual − (1 - TNR) × (1− α)×N TNR × (1− α)×N (1− α)×N

N

An evaluation measure that is sensitive to the skew is precision, which
can be defined as the fraction of correct predictions of the positive class over
the total number of positive predictions, i.e.,

Precision, p =
TP

TP + FP
.

Precision is also referred as the positive predicted value (PPV). A classifier
that has a high precision is likely to have most of its positive predictions
correct. Precision is a useful measure for highly skewed test sets where the
positive predictions, even though small in numbers, are required to be mostly
correct. A measure that is closely related to precision is the false discovery
rate (FDR), which can be defined as 1− p.

FDR =
FP

TP + FP
.

Although both FDR and FPR focus on FP, they are designed to capture
different evaluation objectives and thus can take quite contrasting values,
especially in the presence of class imbalance. To illustrate this, consider a
classifier with the following confusion matrix.

Predicted Class
+ −

Actual + 100 0
Class − 100 900

Since half of the positive predictions made by the classifier are incorrect,
it has a FDR value of 100/(100 + 100) = 0.5. However, its FPR is equal to
100/(100 + 900) = 0.1, which is quite low. This example shows that in the
presence of high skew (i.e., very small value of α), even a small FPR can result
in high FDR. See Section 10.6 for further discussion of this issue.

Note that the evaluation measures defined above provide an incomplete
representation of performance, because they either only capture the effect of

�

M06 TAN9224 02 GE C06 page 523

� �

�

6.11 Class Imbalance Problem 523

false positives (e.g., FPR and precision) or the effect of false negatives (e.g.,
TPR or recall), but not both. Hence, if we optimize only one of these evaluation
measures, we may end up with a classifier that shows low FN but high FP, or
vice-versa. For example, a classifier that declares every instance to be positive
will have a perfect recall, but high FPR and very poor precision. On the other
hand, a classifier that is very conservative in classifying an instance as positive
(to reduce FP) may end up having high precision but very poor recall. We thus
need evaluation measures that account for both types of misclassifications, FP
and FN. Some examples of such evaluation measures are summarized by the
following definitions.

Positive Likelihood Ratio =
TPR
FPR

.

F1 measure =
2rp
r + p

=
2× TP

2× TP + FP + FN
.

G measure =
√
rp =

TP√
(TP + FP)(TP + FN)

.

While some of these evaluation measures are invariant to the skew (e.g.,
the positive likelihood ratio), others (e.g., precision and the F1 measure) are
sensitive to skew. Further, different evaluation measures capture the effects of
different types of misclassification errors in various ways. For example, the F1

measure represents a harmonic mean between recall and precision, i.e.,

F1 =
2

1
r + 1

p

.

Because the harmonic mean of two numbers tends to be closer to the
smaller of the two numbers, a high value of F1-measure ensures that both pre-
cision and recall are reasonably high. Similarly, the G measure represents the
geometric mean between recall and precision. A comparison among harmonic,
geometric, and arithmetic means is given in the next example.

Example 6.9. Consider two positive numbers a = 1 and b = 5. Their
arithmetic mean is μa = (a + b)/2 = 3 and their geometric mean is μg =√
ab = 2.236. Their harmonic mean is μh = (2 × 1 × 5)/6 = 1.667, which is

closer to the smaller value between a and b than the arithmetic and geometric
means.

�

M06 TAN9224 02 GE C06 page 524

� �

�

524 Chapter 6 Classification: Alternative Techniques

A generic extension of the F1 measure is the Fβ measure, which can be
defined as follows.

Fβ =
(β2 + 1)rp
r + β2p

=
(β2 + 1)× TP

(β2 + 1)TP + β2FP + FN
. (6.106)

Both precision and recall can be viewed as special cases of Fβ by setting β = 0
and β = ∞, respectively. Low values of β make Fβ closer to precision, and
high values make it closer to recall.

A more general measure that captures Fβ as well as accuracy is the weighted
accuracy measure, which is defined by the following equation:

Weighted accuracy =
w1TP + w4TN

w1TP + w2FP + w3FN + w4TN
. (6.107)

The relationship between weighted accuracy and other performance measures
is summarized in the following table:

Measure w1 w2 w3 w4

Recall 1 1 0 0
Precision 1 0 1 0
Fβ β2 + 1 β2 1 0
Accuracy 1 1 1 1

6.11.3 Finding an Optimal Score Threshold

Given a suitably chosen evaluation measure E and a distribution of classifica-
tion scores, s(x), on a validation set, we can obtain the optimal score threshold
s∗ on the validation set using the following approach:

1. Sort the scores in increasing order of their values.

2. For every unique value of score, s, consider the classification model that
assigns an instance x as positive only if s(x) > s. Let E(s) denote the
performance of this model on the validation set.

3. Find s∗ that maximizes the evaluation measure, E(s).

s∗ = argmaxs E(s).

Note that s∗ can be treated as a hyper-parameter of the classification
algorithm that is learned during model selection. Using s∗, we can assign a

�

M06 TAN9224 02 GE C06 page 525

� �

�

6.11 Class Imbalance Problem 525

positive label to a future test instance x only if s(x) > s∗. If the evaluation
measure E is skew invariant (e.g., Positive Likelihood Ratio), then we can
select s∗ without knowing the skew of the test set, and the resultant classifier
formed using s∗ can be expected to show optimal performance on the test
set (with respect to the evaluation measure E). On the other hand, if E is
sensitive to the skew (e.g., precision or F1-measure), then we need to ensure
that the skew of the validation set used for selecting s∗ is similar to that of the
test set, so that the classifier formed using s∗ shows optimal test performance
with respect to E. Alternatively, given an estimate of the skew of the test
data, α, we can use it along with the TPR and TNR on the validation set
to estimate all entries of the confusion matrix (see Table 6.7), and thus the
estimate of any evaluation measure E on the test set. The score threshold s∗

selected using this estimate of E can then be expected to produce optimal test
performance with respect to E. Furthermore, the methodology of selecting s∗

on the validation set can help in comparing the test performance of different
classification algorithms, by using the optimal values of s∗ for each algorithm.

6.11.4 Aggregate Evaluation of Performance

Although the above approach helps in finding a score threshold s∗ that pro-
vides optimal performance with respect to a desired evaluation measure and
a certain amount of skew, α, sometimes we are interested in evaluating the
performance of a classifier on a number of possible score thresholds, each
corresponding to a different choice of evaluation measure and skew value. As-
sessing the performance of a classifier over a range of score thresholds is called
aggregate evaluation of performance. In this style of analysis, the emphasis
is not on evaluating the performance of a single classifier corresponding to the
optimal score threshold, but to assess the general quality of ranking produced
by the classification scores on the test set. In general, this helps in obtaining
robust estimates of classification performance that are not sensitive to specific
choices of score thresholds.

ROC Curve

One of the widely-used tools for aggregate evaluation is the receiver oper-
ating characteristic (ROC) curve. An ROC curve is a graphical approach
for displaying the trade-off between TPR and FPR of a classifier, over varying
score thresholds. In an ROC curve, the TPR is plotted along the y-axis and
the FPR is shown on the x-axis. Each point along the curve corresponds to a

�

M06 TAN9224 02 GE C06 page 526

� �

�

526 Chapter 6 Classification: Alternative Techniques

classification model generated by placing a threshold on the test scores pro-
duced by the classifier. The following procedure describes the generic approach
for computing an ROC curve:

1. Sort the test instances in increasing order of their scores.

2. Select the lowest ranked test instance (i.e., the instance with lowest
score). Assign the selected instance and those ranked above it to the
positive class. This approach is equivalent to classifying all the test
instances as positive class. Because all the positive examples are classified
correctly and the negative examples are misclassified, TPR = FPR = 1.

3. Select the next test instance from the sorted list. Classify the selected
instance and those ranked above it as positive, while those ranked below
it as negative. Update the counts of TP and FP by examining the actual
class label of the selected instance. If this instance belongs to the positive
class, the TP count is decremented and the FP count remains the same
as before. If the instance belongs to the negative class, the FP count is
decremented and TP count remains the same as before.

4. Repeat Step 3 and update the TP and FP counts accordingly until the
highest ranked test instance is selected. At this final threshold, TPR =
FPR = 0, as all instances are labeled as negative.

5. Plot the TPR against FPR of the classifier.

Example 6.10. [Generating ROC Curve] Figure 6.52 shows an example
of how to compute the TPR and FPR values for every choice of score threshold.
There are five positive examples and five negative examples in the test set.
The class labels of the test instances are shown in the first row of the table,
while the second row corresponds to the sorted score values for each instance.
The next six rows contain the counts of TP , FP , TN , and FN , along with
their corresponding TPR and FPR. The table is then filled from left to right.
Initially, all the instances are predicted to be positive. Thus, TP = FP = 5
and TPR = FPR = 1. Next, we assign the test instance with the lowest
score as the negative class. Because the selected instance is actually a positive
example, the TP count decreases from 5 to 4 and the FP count is the same as
before. The FPR and TPR are updated accordingly. This process is repeated
until we reach the end of the list, where TPR = 0 and FPR=0. The ROC
curve for this example is shown in Figure 6.53.

�

M06 TAN9224 02 GE C06 page 527

� �

�

6.11 Class Imbalance Problem 527

0.25 0.43 0.53 0.76 0.85 0.85 0.85 0.87 0.93 0.95 1.00

Class + – + + + +– – – –

TP 5

5

0

0

1

1

4

5

0

1

0.8

1 2

1

4

4 3

0.8

0.8

1

4

0.6

2

2

3

3

0.6

2

2

3

3

0.6

2 3 3 4 5

5 54 4

1

3

1 0

2 2

0

1

5

0

0

0.6 0.4 0.4

0.2 0.2 0

0.2

0

0

00.40.60.81

TN

TPR

FPR

FN

FP

Figure 6.52. Computing the TPR and FPR at every score threshold.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.53. ROC curve for the data shown in Figure 6.52.

Note that in an ROC curve, the TPR monotonically increases with FPR,
because the inclusion of a test instance in the set of predicted positives can
either increase the TPR or the FPR. The ROC curve thus has a staircase
pattern. Furthermore, there are several critical points along an ROC curve
that have well-known interpretations:

(TPR=0, FPR=0): Model predicts every instance to be a negative class.
(TPR=1, FPR=1): Model predicts every instance to be a positive class.
(TPR=1, FPR=0): The perfect model with zero misclassifications.

A good classification model should be located as close as possible to
the upper left corner of the diagram, while a model that makes random
guesses should reside along the main diagonal, connecting the points (TPR =
0, FPR = 0) and (TPR = 1, FPR = 1). Random guessing means that an

�

M06 TAN9224 02 GE C06 page 528

� �

�

528 Chapter 6 Classification: Alternative Techniques

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e
M1

M2

Figure 6.54. ROC curves for two different classifiers.

instance is classified as a positive class with a fixed probability p, irrespective
of its attribute set. For example, consider a data set that contains n+ positive
instances and n− negative instances. The random classifier is expected to
correctly classify pn+ of the positive instances and to misclassify pn− of the
negative instances. Therefore, the TPR of the classifier is (pn+)/n+ = p, while
its FPR is (pn−)/p = p. Hence, this random classifier will reside at the point
(p, p) in the ROC curve along the main diagonal.

Since every point on the ROC curve represents the performance of a
classifier generated using a particular score threshold, they can be viewed
as different operating points of the classifier. One may choose one of these
operating points depending on the requirements of the application. Hence, an
ROC curve facilitates the comparison of classifiers over a range of operating
points. For example, Figure 6.54 compares the ROC curves of two classifiers,
M1 and M2, generated by varying the score thresholds. We can see that M1

is better than M2 when FPR is less than 0.36, as M1 shows better TPR than
M2 for this range of operating points. On the other hand, M2 is superior when
FPR is greater than 0.36, since the TPR of M2 is higher than that of M1 for
this range. Clearly, neither of the two classifiers dominates (is strictly better
than) the other, i.e., shows higher values of TPR and lower values of FPR
over all operating points.

�

M06 TAN9224 02 GE C06 page 529

� �

�

6.11 Class Imbalance Problem 529

To summarize the aggregate behavior across all operating points, one of
the commonly used measures is the area under the ROC curve (AUC). If
the classifier is perfect, then its area under the ROC curve will be equal 1. If
the algorithm simply performs random guessing, then its area under the ROC
curve will be equal to 0.5.

Although the AUC provides a useful summary of aggregate performance,
there are certain caveats in using the AUC for comparing classifiers. First,
even if the AUC of algorithm A is higher than the AUC of another algorithm
B, this does not mean that algorithm A is always better than B, i.e., the ROC
curve of A dominates that of B across all operating points. For example, even
though M1 shows a slightly lower AUC than M2 in Figure 6.54, we can see
that both M1 and M2 are useful over different ranges of operating points and
none of them are strictly better than the other across all possible operating
points. Hence, we cannot use the AUC to determine which algorithm is better,
unless we know that the ROC curve of one of the algorithms dominates the
other.

Second, although the AUC summarizes the aggregate performance over all
operating points, we are often interested in only a small range of operating
points in most applications. For example, even though M1 shows slightly
lower AUC than M2, it shows higher TPR values than M2 for small FPR
values (smaller than 0.36). In the presence of class imbalance, the behavior
of an algorithm over small FPR values (also termed as early retrieval) is
often more meaningful for comparison than the performance over all FPR
values. This is because, in many applications, it is important to assess the
TPR achieved by a classifier in the first few instances with highest scores,
without incurring a large FPR. Hence, in Figure 6.54, due to the high TPR
values of M1 during early retrieval (FPR < 0.36), we may prefer M1 over
M2 for imbalanced test sets, despite the lower AUC of M1. Hence, care must
be taken while comparing the AUC values of different classifiers, usually by
visualizing their ROC curves rather than just reporting their AUC.

A key characteristic of ROC curves is that they are agnostic to the skew
in the test set, because both the evaluation measures used in constructing
ROC curves (TPR and FPR) are invariant to class imbalance. Hence, ROC
curves are not suitable for measuring the impact of skew on classification
performance. In particular, we will obtain the same ROC curve for two test
data sets that have very different skew.

�

M06 TAN9224 02 GE C06 page 530

� �

�

530 Chapter 6 Classification: Alternative Techniques

Figure 6.55. PR curves for two different classifiers.

Precision-Recall Curve

An alternate tool for aggregate evaluation is the precision recall curve (PR
curve). The PR curve plots the precision and recall values of a classifier on
the y and x axes respectively, by varying the threshold on the test scores.
Figure 6.55 shows an example of PR curves for two hypothetical classifiers,
M1 andM2. The approach for generating a PR curve is similar to the approach
described above for generating an ROC curve. However, there are some key
distinguishing features in the PR curve:

1. PR curves are sensitive to the skew factor α = P/(P +N), and different
PR curves are generated for different values of α.

2. When the score threshold is lowest (every instance is labeled as posi-
tive), the precision is equal to α while recall is 1. As we increase the
score threshold, the number of predicted positives can stay the same or
decrease. Hence, the recall monotonically declines as the score threshold
increases. In general, the precision may increase or decrease for the same
value of recall, upon addition of an instance into the set of predicted
positives. For example, if the kth ranked instance belongs to the negative
class, then including it will result in a drop in the precision without
affecting the recall. The precision may improve at the next step, which

�

M06 TAN9224 02 GE C06 page 531

� �

�

6.11 Class Imbalance Problem 531

adds the (k+1)th ranked instance, if this instance belongs to the positive
class. Hence, the PR curve is not a smooth, monotonically increasing
curve like the ROC curve, and generally has a zigzag pattern. This
pattern is more prominent in the left part of the curve, where even
a small change in the number of false positives can cause a large change
in precision.

3. As, as we increase the imbalance among the classes (reduce the value of
α), the rightmost points of all PR curves will move downwards. At and
near the leftmost point on the PR curve (corresponding to larger values
of score threshold), the recall is close to zero, while the precision is equal
to the fraction of positives in the top ranked instances of the algorithm.
Hence, different classifiers can have different values of precision at the
leftmost points of the PR curve. Also, if the classification score of an
algorithm monotonically varies with the posterior probability of the
positive class, we can expect the PR curve to gradually decrease from
a high value of precision on the leftmost point to a constant value of α
at the rightmost point, albeit with some ups and downs. This can be
observed in the PR curve of algorithm M1 in Figure 6.55, which starts
from a higher value of precision on the left that gradually decreases as we
move towards the right. On the other hand, the PR curve of algorithm
M2 starts from a lower value of precision on the left and shows more
drastic ups and downs as we move right, suggesting that the classification
score of M2 shows a weaker monotonic relationship with the posterior
probability of the positive class.

4. A random classifier that assigns an instance to be positive with a fixed
probability p has a precision of α and a recall of p. Hence, a classifier
that performs random guessing has a horizontal PR curve with y = α, as
shown using a dashed line in Figure 6.55. Note that the random baseline
in PR curves depends on the skew in the test set, in contrast to the fixed
main diagonal of ROC curves that represents random classifiers.

5. Note that the precision of an algorithm is impacted more strongly by
false positives in the top ranked test instances than the FPR of the
algorithm. For this reason, the PR curve generally helps to magnify
the differences between classifiers in the left portion of the PR curve.
Hence, in the presence of class imbalance in the test data, analyzing the
PR curves generally provides a deeper insight into the performance of
classifiers than the ROC curves, especially in the early retrieval range of
operating points.

�

M06 TAN9224 02 GE C06 page 532

� �

�

532 Chapter 6 Classification: Alternative Techniques

6. The classifier corresponding to (precision = 1, recall = 1) represents
the perfect classifier. Similar to AUC, we can also compute the area
under the PR curve of an algorithm, known as AUC-PR. The AUC-PR
of a random classifier is equal to α, while that of a perfect algorithm
is equal to 1. Note that AUC-PR varies with changing skew in the test
set, in contrast to the area under the ROC curve, which is insensitive
to the skew. The AUC-PR helps in accentuating the differences between
classification algorithms in the early retrieval range of operating points.
Hence, it is more suited for evaluating classification performance in
the presence of class imbalance than the area under the ROC curve.
However, similar to ROC curves, a higher value of AUC-PR does not
guarantee the superiority of a classification algorithm over another. This
is because the PR curves of two algorithms can easily cross each other,
such that they both show better performances in different ranges of
operating points. Hence, it is important to visualize the PR curves
before comparing their AUC-PR values, in order to ensure a meaningful
evaluation.

6.12 Multiclass Problem

Some of the classification techniques described in this chapter are originally
designed for binary classification problems. Yet there are many real-world
problems, such as character recognition, face identification, and text classifi-
cation, where the input data is divided into more than two categories. This sec-
tion presents several approaches for extending the binary classifiers to handle
multiclass problems. To illustrate these approaches, let Y = {y1, y2, . . . , yK}
be the set of classes of the input data.

The first approach decomposes the multiclass problem into K binary prob-
lems. For each class yi ∈ Y , a binary problem is created where all instances
that belong to yi are considered positive examples, while the remaining in-
stances are considered negative examples. A binary classifier is then con-
structed to separate instances of class yi from the rest of the classes. This
is known as the one-against-rest (1-r) approach.

The second approach, which is known as the one-against-one (1-1) ap-
proach, constructs K(K − 1)/2 binary classifiers, where each classifier is used
to distinguish between a pair of classes, (yi, yj). Instances that do not belong to
either yi or yj are ignored when constructing the binary classifier for (yi, yj).
In both 1-r and 1-1 approaches, a test instance is classified by combining
the predictions made by the binary classifiers. A voting scheme is typically

�

M06 TAN9224 02 GE C06 page 533

� �

�

6.12 Multiclass Problem 533

employed to combine the predictions, where the class that receives the highest
number of votes is assigned to the test instance. In the 1-r approach, if an
instance is classified as negative, then all classes except for the positive class
receive a vote. This approach, however, may lead to ties among the different
classes. Another possibility is to transform the outputs of the binary classifiers
into probability estimates and then assign the test instance to the class that
has the highest probability.

Example 6.11. Consider a multiclass problem where Y = {y1, y2, y3, y4}.
Suppose a test instance is classified as (+,−,−,−) according to the 1-r ap-
proach. In other words, it is classified as positive when y1 is used as the positive
class and negative when y2, y3, and y4 are used as the positive class. Using
a simple majority vote, notice that y1 receives the highest number of votes,
which is four, while the remaining classes receive only three votes. The test
instance is therefore classified as y1.

Example 6.12. Suppose the test instance is classified using the 1-1 approach
as follows:

Binary pair +: y1 +: y1 +: y1 +: y2 +: y2 +: y3

of classes −: y2 −: y3 −: y4 −: y3 −: y4 −: y4

Classification + + − + − +

The first two rows in this table correspond to the pair of classes (yi, yj) chosen
to build the classifier and the last row represents the predicted class for the test
instance. After combining the predictions, y1 and y4 each receive two votes,
while y2 and y3 each receives only one vote. The test instance is therefore
classified as either y1 or y4, depending on the tie-breaking procedure.

Error-Correcting Output Coding

A potential problem with the previous two approaches is that they may be
sensitive to binary classification errors. For the 1-r approach given in Example
6.12, if at least of one of the binary classifiers makes a mistake in its prediction,
then the classifier may end up declaring a tie between classes or making
a wrong prediction. For example, suppose the test instance is classified as
(+,−,+,−) due to misclassification by the third classifier. In this case, it will
be difficult to tell whether the instance should be classified as y1 or y3, unless
the probability associated with each class prediction is taken into account.

The error-correcting output coding (ECOC) method provides a more ro-
bust way for handling multiclass problems. The method is inspired by an
information-theoretic approach for sending messages across noisy channels.

�

M06 TAN9224 02 GE C06 page 534

� �

�

534 Chapter 6 Classification: Alternative Techniques

The idea behind this approach is to add redundancy into the transmitted
message by means of a codeword, so that the receiver may detect errors in the
received message and perhaps recover the original message if the number of
errors is small.

For multiclass learning, each class yi is represented by a unique bit string
of length n known as its codeword. We then train n binary classifiers to predict
each bit of the codeword string. The predicted class of a test instance is given
by the codeword whose Hamming distance is closest to the codeword produced
by the binary classifiers. Recall that the Hamming distance between a pair of
bit strings is given by the number of bits that differ.

Example 6.13. Consider a multiclass problem where Y = {y1, y2, y3, y4}.
Suppose we encode the classes using the following seven bit codewords:

Class Codeword
y1 1 1 1 1 1 1 1
y2 0 0 0 0 1 1 1
y3 0 0 1 1 0 0 1
y4 0 1 0 1 0 1 0

Each bit of the codeword is used to train a binary classifier. If a test instance
is classified as (0,1,1,1,1,1,1) by the binary classifiers, then the Hamming
distance between the codeword and y1 is 1, while the Hamming distance to
the remaining classes is 3. The test instance is therefore classified as y1.

An interesting property of an error-correcting code is that if the minimum
Hamming distance between any pair of codewords is d, then any �(d− 1)/2)�
errors in the output code can be corrected using its nearest codeword. In
Example 6.13, because the minimum Hamming distance between any pair of
codewords is 4, the classifier may tolerate errors made by one of the seven
binary classifiers. If there is more than one classifier that makes a mistake,
then the classifier may not be able to compensate for the error.

An important issue is how to design the appropriate set of codewords for
different classes. From coding theory, a vast number of algorithms have been
developed for generating n-bit codewords with bounded Hamming distance.
However, the discussion of these algorithms is beyond the scope of this book.
It is worthwhile mentioning that there is a significant difference between
the design of error-correcting codes for communication tasks compared to
those used for multiclass learning. For communication, the codewords should
maximize the Hamming distance between the rows so that error correction can
be performed. Multiclass learning, however, requires that both the row-wise

�

M06 TAN9224 02 GE C06 page 535

� �

�

6.13 Bibliographic Notes 535

and column-wise distances of the codewords must be well separated. A larger
column-wise distance ensures that the binary classifiers are mutually indepen-
dent, which is an important requirement for ensemble learning methods.

6.13 Bibliographic Notes

Mitchell [481] provides excellent coverage on many classification techniques
from a machine learning perspective. Extensive coverage on classification can
also be found in Aggarwal [398], Duda et al. [432], Webb [510], Fukunaga
[440], Bishop [407], Hastie et al. [452], Cherkassky and Mulier [418], Witten
and Frank [513], Hand et al. [450], Han and Kamber [447], and Dunham [433].

Direct methods for rule-based classifiers typically employ the sequential
covering scheme for inducing classification rules. Holte’s 1R [458] is the sim-
plest form of a rule-based classifier because its rule set contains only a single
rule. Despite its simplicity, Holte found that for some data sets that exhibit
a strong one-to-one relationship between the attributes and the class label,
1R performs just as well as other classifiers. Other examples of rule-based
classifiers include IREP [437], RIPPER [421], CN2 [419, 420], AQ [479], RISE
[427], and ITRULE [499]. Table 6.8 shows a comparison of the characteristics
of four of these classifiers.

Table 6.8. Comparison of various rule-based classifiers.

RIPPER CN2 CN2 AQR
(unordered) (ordered)

Rule-growing General-to- General-to- General-to- General-to-specific
strategy specific specific specific (seeded by a

positive example)
Evaluation FOIL’s Info gain Laplace Entropy and Number of
metric likelihood ratio true positives
Stopping All examples No performance No performance Rules cover only
condition for belong to the gain gain positive class
rule-growing same class
Rule pruning Reduced None None None

error pruning
Instance Positive and Positive only Positive only Positive and
elimination negative negative
Stopping Error > 50% or No performance No performance All positive
condition for based on MDL gain gain examples are
adding rules covered
Rule set Replace or Statistical None None
pruning modify rules tests
Search strategy Greedy Beam search Beam search Beam search

�

M06 TAN9224 02 GE C06 page 536

� �

�

536 Chapter 6 Classification: Alternative Techniques

For rule-based classifiers, the rule antecedent can be generalized to include
any propositional or first-order logical expression (e.g., Horn clauses). Readers
who are interested in first-order logic rule-based classifiers may refer to refer-
ences such as [481] or the vast literature on inductive logic programming [482].
Quinlan [490] proposed the C4.5rules algorithm for extracting classification
rules from decision trees. An indirect method for extracting rules from artificial
neural networks was given by Andrews et al. in [401].

Cover and Hart [423] presented an overview of the nearest neighbor clas-
sification method from a Bayesian perspective. Aha provided both theoretical
and empirical evaluations for instance-based methods in [399]. PEBLS, which
was developed by Cost and Salzberg [422], is a nearest neighbor classifier that
can handle data sets containing nominal attributes. Each training example in
PEBLS is also assigned a weight factor that depends on the number of times
the example helps make a correct prediction. Han et al. [446] developed a
weight-adjusted nearest neighbor algorithm, in which the feature weights are
learned using a greedy, hill-climbing optimization algorithm. A more recent
survey of k-nearest neighbor classification is given by Steinbach and Tan [501].

Näıve Bayes classifiers have been investigated by many authors, including
Langley et al. [470], Ramoni and Sebastiani [491], Lewis [473], and Domingos
and Pazzani [430]. Although the independence assumption used in näıve Bayes
classifiers may seem rather unrealistic, the method has worked surprisingly
well for applications such as text classification. Bayesian networks provide a
more flexible approach by allowing some of the attributes to be interdependent.
An excellent tutorial on Bayesian networks is given by Heckerman in [455] and
Jensen in [461]. Bayesian networks belong to a broader class of models known
as probabilistic graphical models. A formal introduction to the relationships
between graphs and probabilities was presented in Pearl [486]. Other great
resources on probabilistic graphical models include books by Bishop [408], and
Jordan [462]. Detailed discussions of concepts such as d-separation and Markov
blankets are provided in Geiger et al. [441] and Russell and Norvig [494].

Generalized linear models (GLM) are a rich class of regression models
that have been extensively studied in the statistical literature. They were
formulated by Nelder and Wedderburn in 1972 [483] to unify a number of
regression models such as linear regression, logistic regression, and Poisson
regression, which share some similarities in their formulations. An extensive
discussion of GLMs is provided in the book by McCullagh and Nelder [477].

Artificial neural networks (ANN) have witnessed a long and winding his-
tory of developments, involving multiple phases of stagnation and resurgence.
The idea of a mathematical model of a neural network was first introduced
in 1943 by McCulloch and Pitts [478]. This led to a series of computational

�

M06 TAN9224 02 GE C06 page 537

� �

�

6.13 Bibliographic Notes 537

machines to simulate a neural network based on the theory of neural plasticity
[492]. The perceptron, which is the simplest prototype of modern ANNs, was
developed by Rosenblatt in 1958 [493]. The perceptron uses a single layer
of processing units that can perform basic mathematical operations such as
addition and multiplication. However, the perceptron can only learn linear
decision boundaries and is guaranteed to converge only when the classes are
linearly separable. Despite the interest in learning multi-layer networks to
overcome the limitations of perceptron, progress in this area remain halted
until the invention of the backpropagation algorithm by Werbos in 1974 [512],
which allowed for the quick training of multi-layer ANNs using the gradient
descent method. This led to an upsurge of interest in the artificial intelligence
(AI) community to develop multi-layer ANN models, a trend that continued
for more than a decade. Historically, ANNs mark a paradigm shift in AI from
approaches based on expert systems (where knowledge is encoded using if-then
rules) to machine learning approaches (where the knowledge is encoded in the
parameters of a computational model). However, there were still a number
of algorithmic and computational challenges in learning large ANN models,
which remained unresolved for a long time. This hindered the development of
ANN models to the scale necessary for solving real-world problems. Slowly,
ANNs started getting outpaced by other classification models such as support
vector machines, which provided better performance as well as theoretical
guarantees of convergence and optimality. It is only recently that the chal-
lenges in learning deep neural networks have been circumvented, owing to
better computational resources and a number of algorithmic improvements
in ANNs since 2006. This re-emergence of ANN has been dubbed as “deep
learning,” which has often outperformed existing classification models and
gained wide-spread popularity.

Deep learning is a rapidly evolving area of research with a number of
potentially impactful contributions being made every year. Some of the land-
mark advancements in deep learning include the use of large-scale restricted
Boltzmann machines for learning generative models of data [404, 456], the
use of autoencoders and its variants (denoising autoencoders) for learning
robust feature representations [402, 508, 509], and sophistical architectures
to promote sharing of parameters across nodes such as convolutional neural
networks for images [468, 471] and recurrent neural networks for sequences
[444, 445, 480]. Other major improvements include the approach of unsuper-
vised pretraining for initializing ANN models [435], the dropout technique
for regularization [457, 500], batch normalization for fast learning of ANN
parameters [459], and maxout networks for effective usage of the dropout
technique [443]. Even though the discussions in this chapter on learning ANN

�

M06 TAN9224 02 GE C06 page 538

� �

�

538 Chapter 6 Classification: Alternative Techniques

models were centered around the gradient descent method, most of the modern
ANN models involving a large number of hidden layers are trained using the
stochastic gradient descent method since it is highly scalable [410]. An exten-
sive survey of deep learning approaches has been presented in review articles
by Bengio [403], LeCun et al. [472], and Schmidhuber [496]. An excellent
summary of deep learning approaches can also be obtained from recent books
by Goodfellow et al. [442] and Nielsen [484].

Vapnik [506, 507] has written two authoritative books on Support Vector
Machines (SVM). Other useful resources on SVM and kernel methods include
the books by Cristianini and Shawe-Taylor [424] and Schölkopf and Smola
[497]. There are several survey articles on SVM, including those written by
Burges [415], Bennet et al. [405], Hearst [454], and Mangasarian [475]. SVM
can also be viewed as an L2 norm regularizer of the hinge loss function, as
described in detail by Hastie et al. [452]. The L1 norm regularizer of the square
loss function can be obtained using the least absolute shrinkage and selection
operator (Lasso), which was introduced by Tibshirani in 1996 [504]. The Lasso
has several interesting properties such as the ability to simultaneously perform
feature selection as well as regularization, so that only a subset of features are
selected in the final model. An excellent review of Lasso can be obtained from
a book by Hastie et al. [453].

A survey of ensemble methods in machine learning was given by Diet-
terich [425]. The bagging method was proposed by Breiman [412]. Freund and
Schapire [439] developed the AdaBoost algorithm. Arcing, which stands for
adaptive resampling and combining, is a variant of the boosting algorithm pro-
posed by Breiman [413]. It uses the non-uniform weights assigned to training
examples to resample the data for building an ensemble of training sets. Unlike
AdaBoost, the votes of the base classifiers are not weighted when determining
the class label of test examples. The random forest method was introduced
by Breiman in [414]. The concept of bias-variance decomposition is explained
in detail by Hastie et al. [452]. While the bias-variance decomposition was
initially proposed for regression problems with squared loss function, a unified
framework for classification problems involving 0–1 losses was introduced by
Domingos [429].

Related work on mining rare and imbalanced data sets can be found in the
survey papers written by Chawla et al. [417] and Weiss [511]. Sampling-based
methods for mining imbalanced data sets have been investigated by many au-
thors, such as Kubat and Matwin [469], Japkowitz [460], and Drummond and
Holte [431]. Joshi et al. [464] discussed the limitations of boosting algorithms
for rare class modeling. Other algorithms developed for mining rare classes
include SMOTE [416], PNrule [463], and CREDOS [465].

�

M06 TAN9224 02 GE C06 page 539

� �

�

6.13 Bibliographic Notes 539

Various alternative metrics that are well-suited for class imbalanced prob-
lems are available. The precision, recall, and F1-measure are widely-used
metrics in information retrieval [505]. ROC analysis was originally used in
signal detection theory for performing aggregate evaluation over a range of
score thresholds. A method for comparing classifier performance using the
convex hull of ROC curves was suggested by Provost and Fawcett in [489].
Bradley [411] investigated the use of area under the ROC curve (AUC) as a
performance metric for machine learning algorithms. Despite the vast body of
literature on optimizing the AUC measure in machine learning models, it is
well-known that AUC suffers from certain limitations. For example, the AUC
can be used to compare the quality of two classifiers only if the ROC curve
of one classifier strictly dominates the other. However, if the ROC curves of
two classifiers intersect at any point, then it is difficult to assess the relative
quality of classifiers using the AUC measure. An in-depth discussion of the
pitfalls in using AUC as a performance measure can be obtained in works by
Hand [448, 449], and Powers [487]. The AUC has also been considered to be an
incoherent measure of performance, i.e., it uses different scales while compar-
ing the performance of different classifiers, although a coherent interpretation
of AUC has been provided by Ferri et al. [438]. Berrar and Flach [406] describe
some of the common caveats in using the ROC curve for clinical microarray
research. An alternate approach for measuring the aggregate performance of
a classifier is the precision-recall (PR) curve, which is especially useful in the
presence of class imbalance [495].

An excellent tutorial on cost-sensitive learning can be found in a review ar-
ticle by Ling and Sheng [474]. The properties of a cost matrix had been studied
by Elkan in [434]. Margineantu and Dietterich [476] examined various methods
for incorporating cost information into the C4.5 learning algorithm, including
wrapper methods, class distribution-based methods, and loss-based methods.
Other cost-sensitive learning methods that are algorithm-independent include
AdaCost [436], MetaCost [428], and costing [515].

Extensive literature is also available on the subject of multiclass learning.
This includes the works of Hastie and Tibshirani [451], Allwein et al. [400],
Kong and Dietterich [467], and Tax and Duin [503]. The error-correcting
output coding (ECOC) method was proposed by Dietterich and Bakiri [426].
They had also investigated techniques for designing codes that are suitable for
solving multiclass problems.

Apart from exploring algorithms for traditional classification settings where
every instance has a single set of features with a unique categorical label, there
has been a lot of recent interest in non-traditional classification paradigms,
involving complex forms of inputs and outputs. For example, the paradigm of

�

M06 TAN9224 02 GE C06 page 540

� �

�

540 Chapter 6 Classification: Alternative Techniques

multi-label learning allows for an instance to be assigned multiple class labels
rather than just one. This is useful in applications such as object recognition in
images, where a photo image may include more than one classification object,
such as, grass, sky, trees, and mountains. A survey on multi-label learning can
be found in [516]. As another example, the paradigm of multi-instance learning
considers the problem where the instances are available in the form of groups
called bags, and training labels are available at the level of bags rather than
individual instances. Multi-instance learning is useful in applications where
an object can exist as multiple instances in different states (e.g., the different
isomers of a chemical compound), and even if a single instance shows a specific
characteristic, the entire bag of instances associated with the object needs to
be assigned the relevant class. A survey on multi-instance learning is provided
in [517].

In a number of real-world applications, it is often the case that the training
labels are scarce in quantity, because of the high costs associated with ob-
taining gold-standard supervision. However, we almost always have abundant
access to unlabeled test instances, which do not have supervised labels but
contain valuable information about the structure or distribution of instances.
Traditional learning algorithms, which only make use of the labeled instances
in the training set for learning the decision boundary, are unable to exploit the
information contained in unlabeled instances. In contrast, learning algorithms
that make use of the structure in the unlabeled data for learning the classi-
fication model are known as semi-supervised learning algorithms [518, 519].
The use of unlabeled data is also explored in the paradigm of multi-view
learning [502, 514], where every object is observed in multiple views of the
data, involving diverse sets of features. A common strategy used by multi-view
learning algorithms is co-training [409], where a different model is learned
for every view of the data, but the model predictions from every view are
constrained to be identical to each other on the unlabeled test instances.

Another learning paradigm that is commonly explored in the paucity of
training data is the framework of active learning, which attempts to seek the
smallest set of label annotations to learn a reasonable classification model.
Active learning expects the annotator to be involved in the process of model
learning, so that the labels are requested incrementally over the most relevant
set of instances, given a limited budget of label annotations. For example, it
may be useful to obtain labels over instances closer to the decision boundary
that can play a bigger role in fine-tuning the boundary. A review on active
learning approaches can be found in [488, 498].

In some applications, it is important to simultaneously solve multiple
learning tasks together, where some of the tasks may be similar to one another.

�

M06 TAN9224 02 GE C06 page 541

� �

�

Bibliography 541

For example, if we are interested in translating a passage written in English
into different languages, the tasks involving lexically similar languages (such
as Spanish and Portuguese) would require similar learning of models. The
paradigm of multi-task learning helps in simultaneously learning across all
tasks while sharing the learning among related tasks. This is especially useful
when some of the tasks do not contain sufficiently many training samples,
in which case borrowing the learning from other related tasks helps in the
learning of robust models. A special case of multi-task learning is transfer
learning, where the learning from a source task (with sufficient number of
training samples) has to be transferred to a destination task (with paucity of
training data). An extensive survey of transfer learning approaches is provided
by Pan et al. [485].

Most classifiers assume every data instance must belong to a class, which is
not always true for some applications. For example, in malware detection, due
to the ease in which new malwares are created, a classifier trained on existing
classes may fail to detect new ones even if the features for the new malwares
are considerably different than those for existing malwares. Another example
is in critical applications such as medical diagnosis, where prediction errors are
costly and can have severe consequences. In this situation, it would be better
for the classifier to refrain from making any prediction on a data instance if it is
unsure of its class. This approach, known as classifier with reject option, does
not need to classify every data instance unless it determines the prediction
is reliable (e.g., if the class probability exceeds a user-specified threshold).
Instances that are unclassified can be presented to domain experts for further
determination of their true class labels.

Classifiers can also be distinguished in terms of how the classification model
is trained. A batch classifier assumes all the labeled instances are available
during training. This strategy is applicable when the training set size is not too
large and for stationary data, where the relationship between the attributes
and classes does not vary over time. An online classifier, on the other hand,
trains an initial model using a subset of the labeled data [466]. The model is
then updated incrementally as more labeled instances become available. This
strategy is effective when the training set is too large or when there is concept
drift due to changes in the distribution of the data over time.

Bibliography
[398] C. C. Aggarwal. Data classification: algorithms and applications. CRC Press, 2014.

[399] D. W. Aha. A study of instance-based algorithms for supervised learning tasks:
mathematical, empirical, and psychological evaluations. PhD thesis, University of
California, Irvine, 1990.

�

M06 TAN9224 02 GE C06 page 542

� �

�

542 Chapter 6 Classification: Alternative Techniques

[400] E. L. Allwein, R. E. Schapire, and Y. Singer. Reducing Multiclass to Binary: A
Unifying Approach to Margin Classifiers. Journal of Machine Learning Research, 1:
113–141, 2000.

[401] R. Andrews, J. Diederich, and A. Tickle. A Survey and Critique of Techniques For
Extracting Rules From Trained Artificial Neural Networks. Knowledge Based Systems,
8(6):373–389, 1995.

[402] P. Baldi. Autoencoders, unsupervised learning, and deep architectures. ICML
unsupervised and transfer learning, 27(37-50):1, 2012.

[403] Y. Bengio. Learning deep architectures for AI. Foundations and trends R© in Machine
Learning, 2(1):1–127, 2009.

[404] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):
1798–1828, 2013.

[405] K. Bennett and C. Campbell. Support Vector Machines: Hype or Hallelujah. SIGKDD
Explorations, 2(2):1–13, 2000.

[406] D. Berrar and P. Flach. Caveats and pitfalls of ROC analysis in clinical microarray
research (and how to avoid them). Briefings in bioinformatics, page bbr008, 2011.

[407] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,
Oxford, U.K., 1995.

[408] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[409] A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training.
In Proceedings of the eleventh annual conference on Computational learning theory,
pages 92–100. ACM, 1998.

[410] L. Bottou. Large-scale machine learning with stochastic gradient descent. In
Proceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

[411] A. P. Bradley. The use of the area under the ROC curve in the Evaluation of Machine
Learning Algorithms. Pattern Recognition, 30(7):1145–1149, 1997.

[412] L. Breiman. Bagging Predictors. Machine Learning, 24(2):123–140, 1996.

[413] L. Breiman. Bias, Variance, and Arcing Classifiers. Technical Report 486, University
of California, Berkeley, CA, 1996.

[414] L. Breiman. Random Forests. Machine Learning, 45(1):5–32, 2001.

[415] C. J. C. Burges. A Tutorial on Support Vector Machines for Pattern Recognition.
Data Mining and Knowledge Discovery, 2(2):121–167, 1998.

[416] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. SMOTE: Synthetic
Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16:
321–357, 2002.

[417] N. V. Chawla, N. Japkowicz, and A. Kolcz. Editorial: Special Issue on Learning from
Imbalanced Data Sets. SIGKDD Explorations, 6(1):1–6, 2004.

[418] V. Cherkassky and F. Mulier. Learning from Data: Concepts, Theory, and Methods.
Wiley Interscience, 1998.

[419] P. Clark and R. Boswell. Rule Induction with CN2: Some Recent Improvements. In
Machine Learning: Proc. of the 5th European Conf. (EWSL-91), pages 151–163, 1991.

[420] P. Clark and T. Niblett. The CN2 Induction Algorithm. Machine Learning, 3(4):
261–283, 1989.

[421] W. W. Cohen. Fast Effective Rule Induction. In Proc. of the 12th Intl. Conf. on
Machine Learning, pages 115–123, Tahoe City, CA, July 1995.

[422] S. Cost and S. Salzberg. A Weighted Nearest Neighbor Algorithm for Learning with
Symbolic Features. Machine Learning, 10:57–78, 1993.

�

M06 TAN9224 02 GE C06 page 543

� �

�

Bibliography 543

[423] T. M. Cover and P. E. Hart. Nearest Neighbor Pattern Classification. Knowledge
Based Systems, 8(6):373–389, 1995.

[424] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines and
Other Kernel-based Learning Methods. Cambridge University Press, 2000.

[425] T. G. Dietterich. Ensemble Methods in Machine Learning. In First Intl. Workshop
on Multiple Classifier Systems, Cagliari, Italy, 2000.

[426] T. G. Dietterich and G. Bakiri. Solving Multiclass Learning Problems via Error-
Correcting Output Codes. Journal of Artificial Intelligence Research, 2:263–286, 1995.

[427] P. Domingos. The RISE system: Conquering without separating. In Proc. of the 6th
IEEE Intl. Conf. on Tools with Artificial Intelligence, pages 704–707, New Orleans,
LA, 1994.

[428] P. Domingos. MetaCost: A General Method for Making Classifiers Cost-Sensitive. In
Proc. of the 5th Intl. Conf. on Knowledge Discovery and Data Mining, pages 155–164,
San Diego, CA, August 1999.

[429] P. Domingos. A unified bias-variance decomposition. In Proceedings of 17th
International Conference on Machine Learning, pages 231–238, 2000.

[430] P. Domingos and M. Pazzani. On the Optimality of the Simple Bayesian Classifier
under Zero-One Loss. Machine Learning, 29(2-3):103–130, 1997.

[431] C. Drummond and R. C. Holte. C4.5, Class imbalance, and Cost sensitivity: Why
under-sampling beats over-sampling. In ICML’2004 Workshop on Learning from
Imbalanced Data Sets II, Washington, DC, August 2003.

[432] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. John Wiley & Sons,
Inc., New York, 2nd edition, 2001.

[433] M. H. Dunham. Data Mining: Introductory and Advanced Topics. Prentice Hall, 2006.

[434] C. Elkan. The Foundations of Cost-Sensitive Learning. In Proc. of the 17th Intl. Joint
Conf. on Artificial Intelligence, pages 973–978, Seattle, WA, August 2001.

[435] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Bengio. Why
does unsupervised pre-training help deep learning? Journal of Machine Learning
Research, 11(Feb):625–660, 2010.

[436] W. Fan, S. J. Stolfo, J. Zhang, and P. K. Chan. AdaCost: misclassification cost-
sensitive boosting. In Proc. of the 16th Intl. Conf. on Machine Learning, pages 97–105,
Bled, Slovenia, June 1999.

[437] J. Fürnkranz and G. Widmer. Incremental reduced error pruning. In Proc. of the 11th
Intl. Conf. on Machine Learning, pages 70–77, New Brunswick, NJ, July 1994.

[438] C. Ferri, J. Hernández-Orallo, and P. A. Flach. A coherent interpretation of AUC
as a measure of aggregated classification performance. In Proceedings of the 28th
International Conference on Machine Learning (ICML-11), pages 657–664, 2011.

[439] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences, 55(1):
119–139, 1997.

[440] K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press, New
York, 1990.

[441] D. Geiger, T. S. Verma, and J. Pearl. d-separation: From theorems to algorithms.
arXiv preprint arXiv:1304.1505, 2013.

[442] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. Book in preparation for
MIT Press, 2016.

[443] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. C. Courville, and Y. Bengio. Maxout
networks. ICML (3), 28:1319–1327, 2013.

�

M06 TAN9224 02 GE C06 page 544

� �

�

544 Chapter 6 Classification: Alternative Techniques

[444] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and J. Schmidhuber.
A novel connectionist system for unconstrained handwriting recognition. IEEE
transactions on pattern analysis and machine intelligence, 31(5):855–868, 2009.

[445] A. Graves and J. Schmidhuber. Offline handwriting recognition with multidimensional
recurrent neural networks. In Advances in neural information processing systems,
pages 545–552, 2009.

[446] E.-H. Han, G. Karypis, and V. Kumar. Text Categorization Using Weight Adjusted k-
Nearest Neighbor Classification. In Proc. of the 5th Pacific-Asia Conf. on Knowledge
Discovery and Data Mining, Lyon, France, 2001.

[447] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann
Publishers, San Francisco, 2001.

[448] D. J. Hand. Measuring classifier performance: a coherent alternative to the area under
the ROC curve. Machine learning, 77(1):103–123, 2009.

[449] D. J. Hand. Evaluating diagnostic tests: the area under the ROC curve and the balance
of errors. Statistics in medicine, 29(14):1502–1510, 2010.

[450] D. J. Hand, H. Mannila, and P. Smyth. Principles of Data Mining. MIT Press, 2001.

[451] T. Hastie and R. Tibshirani. Classification by pairwise coupling. Annals of Statistics,
26(2):451–471, 1998.

[452] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer, 2nd edition, 2009.

[453] T. Hastie, R. Tibshirani, and M. Wainwright. Statistical learning with sparsity: the
lasso and generalizations. CRC Press, 2015.

[454] M. Hearst. Trends & Controversies: Support Vector Machines. IEEE Intelligent
Systems, 13(4):18–28, 1998.

[455] D. Heckerman. Bayesian Networks for Data Mining. Data Mining and Knowledge
Discovery, 1(1):79–119, 1997.

[456] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with
neural networks. Science, 313(5786):504–507, 2006.

[457] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov.
Improving neural networks by preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580, 2012.

[458] R. C. Holte. Very Simple Classification Rules Perform Well on Most Commonly Used
Data sets. Machine Learning, 11:63–91, 1993.

[459] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[460] N. Japkowicz. The Class Imbalance Problem: Significance and Strategies. In Proc.
of the 2000 Intl. Conf. on Artificial Intelligence: Special Track on Inductive Learning,
volume 1, pages 111–117, Las Vegas, NV, June 2000.

[461] F. V. Jensen. An introduction to Bayesian networks, volume 210. UCL press London,
1996.

[462] M. I. Jordan. Learning in graphical models, volume 89. Springer Science & Business
Media, 1998.

[463] M. V. Joshi, R. C. Agarwal, and V. Kumar. Mining Needles in a Haystack: Classifying
Rare Classes via Two-Phase Rule Induction. In Proc. of 2001 ACM-SIGMOD Intl.
Conf. on Management of Data, pages 91–102, Santa Barbara, CA, June 2001.

[464] M. V. Joshi, R. C. Agarwal, and V. Kumar. Predicting rare classes: can boosting make
any weak learner strong? In Proc. of the 8th Intl. Conf. on Knowledge Discovery and
Data Mining, pages 297–306, Edmonton, Canada, July 2002.

�

M06 TAN9224 02 GE C06 page 545

� �

�

Bibliography 545

[465] M. V. Joshi and V. Kumar. CREDOS: Classification Using Ripple Down Structure
(A Case for Rare Classes). In Proc. of the SIAM Intl. Conf. on Data Mining, pages
321–332, Orlando, FL, April 2004.

[466] J. Kivinen, A. J. Smola, and R. C. Williamson. Online learning with kernels. IEEE
transactions on signal processing, 52(8):2165–2176, 2004.

[467] E. B. Kong and T. G. Dietterich. Error-Correcting Output Coding Corrects Bias and
Variance. In Proc. of the 12th Intl. Conf. on Machine Learning, pages 313–321, Tahoe
City, CA, July 1995.

[468] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems,
pages 1097–1105, 2012.

[469] M. Kubat and S. Matwin. Addressing the Curse of Imbalanced Training Sets: One
Sided Selection. In Proc. of the 14th Intl. Conf. on Machine Learning, pages 179–186,
Nashville, TN, July 1997.

[470] P. Langley, W. Iba, and K. Thompson. An analysis of Bayesian classifiers. In Proc.
of the 10th National Conf. on Artificial Intelligence, pages 223–228, 1992.

[471] Y. LeCun and Y. Bengio. Convolutional networks for images, speech, and time series.
The handbook of brain theory and neural networks, 3361(10):1995, 1995.

[472] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444, 2015.

[473] D. D. Lewis. Naive Bayes at Forty: The Independence Assumption in Information
Retrieval. In Proc. of the 10th European Conf. on Machine Learning (ECML 1998),
pages 4–15, 1998.

[474] C. X. Ling and V. S. Sheng. Cost-sensitive learning. In Encyclopedia of Machine
Learning, pages 231–235. Springer, 2011.

[475] O. Mangasarian. Data Mining via Support Vector Machines. Technical Report
Technical Report 01-05, Data Mining Institute, May 2001.

[476] D. D. Margineantu and T. G. Dietterich. Learning Decision Trees for Loss
Minimization in Multi-Class Problems. Technical Report 99-30-03, Oregon State
University, 1999.

[477] P. McCullagh and J. A. Nelder. Generalized linear models, volume 37. CRC press,
1989.

[478] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[479] R. S. Michalski, I. Mozetic, J. Hong, and N. Lavrac. The Multi-Purpose Incremental
Learning System AQ15 and Its Testing Application to Three Medical Domains. In
Proc. of 5th National Conf. on Artificial Intelligence, Orlando, August 1986.

[480] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and S. Khudanpur. Recurrent neural
network based language model. In Interspeech, volume 2, page 3, 2010.

[481] T. Mitchell. Machine Learning. McGraw-Hill, Boston, MA, 1997.

[482] S. Muggleton. Foundations of Inductive Logic Programming. Prentice Hall, Englewood
Cliffs, NJ, 1995.

[483] J. A. Nelder and R. J. Baker. Generalized linear models. Encyclopedia of statistical
sciences, 1972.

[484] M. A. Nielsen. Neural networks and deep learning. Published online: http: //

neuralnetworksanddeeplearning. com/ .(visited: 10. 15. 2016) , 2015.

[485] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on knowledge
and data engineering, 22(10):1345–1359, 2010.

�

M06 TAN9224 02 GE C06 page 546

� �

�

546 Chapter 6 Classification: Alternative Techniques

[486] J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference.
Morgan Kaufmann, 2014.

[487] D. M. Powers. The problem of area under the curve. In 2012 IEEE International
Conference on Information Science and Technology, pages 567–573. IEEE, 2012.

[488] M. Prince. Does active learning work? A review of the research. Journal of engineering
education, 93(3):223–231, 2004.

[489] F. J. Provost and T. Fawcett. Analysis and Visualization of Classifier Performance:
Comparison under Imprecise Class and Cost Distributions. In Proc. of the 3rd Intl.
Conf. on Knowledge Discovery and Data Mining, pages 43–48, Newport Beach, CA,
August 1997.

[490] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan-Kaufmann Publishers,
San Mateo, CA, 1993.

[491] M. Ramoni and P. Sebastiani. Robust Bayes classifiers. Artificial Intelligence, 125:
209–226, 2001.

[492] N. Rochester, J. Holland, L. Haibt, and W. Duda. Tests on a cell assembly theory of the
action of the brain, using a large digital computer. IRE Transactions on information
Theory, 2(3):80–93, 1956.

[493] F. Rosenblatt. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, 65(6):386, 1958.

[494] S. J. Russell, P. Norvig, J. F. Canny, J. M. Malik, and D. D. Edwards. Artificial
intelligence: a modern approach, volume 2. Prentice hall Upper Saddle River, 2003.

[495] T. Saito and M. Rehmsmeier. The precision-recall plot is more informative than the
ROC plot when evaluating binary classifiers on imbalanced datasets. PloS one, 10(3):
e0118432, 2015.

[496] J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks,
61:85–117, 2015.

[497] B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, 2001.

[498] B. Settles. Active learning literature survey. University of Wisconsin, Madison, 52
(55-66):11, 2010.

[499] P. Smyth and R. M. Goodman. An Information Theoretic Approach to Rule Induction
from Databases. IEEE Trans. on Knowledge and Data Engineering, 4(4):301–316,
1992.

[500] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

[501] M. Steinbach and P.-N. Tan. kNN: k-Nearest Neighbors. In X. Wu and V. Kumar,
editors, The Top Ten Algorithms in Data Mining. Chapman and Hall/CRC Reference,
1st edition, 2009.

[502] S. Sun. A survey of multi-view machine learning. Neural Computing and Applications,
23(7-8):2031–2038, 2013.

[503] D. M. J. Tax and R. P. W. Duin. Using Two-Class Classifiers for Multiclass
Classification. In Proc. of the 16th Intl. Conf. on Pattern Recognition (ICPR 2002),
pages 124–127, Quebec, Canada, August 2002.

[504] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), pages 267–288, 1996.

[505] C. J. van Rijsbergen. Information Retrieval. Butterworth-Heinemann, Newton, MA,
1978.

�

M06 TAN9224 02 GE C06 page 547

� �

�

6.14 Exercises 547

[506] V. Vapnik. The Nature of Statistical Learning Theory. Springer Verlag, New York,
1995.

[507] V. Vapnik. Statistical Learning Theory. John Wiley & Sons, New York, 1998.
[508] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing

robust features with denoising autoencoders. In Proceedings of the 25th international
conference on Machine learning, pages 1096–1103. ACM, 2008.

[509] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked denoising
autoencoders: Learning useful representations in a deep network with a local denoising
criterion. Journal of Machine Learning Research, 11(Dec):3371–3408, 2010.

[510] A. R. Webb. Statistical Pattern Recognition. John Wiley & Sons, 2nd edition, 2002.
[511] G. M. Weiss. Mining with Rarity: A Unifying Framework. SIGKDD Explorations, 6

(1):7–19, 2004.
[512] P. Werbos. Beyond regression: new fools for prediction and analysis in the behavioral

sciences. PhD thesis, Harvard University, 1974.
[513] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and

Techniques with Java Implementations. Morgan Kaufmann, 1999.
[514] C. Xu, D. Tao, and C. Xu. A survey on multi-view learning. arXiv preprint

arXiv:1304.5634, 2013.
[515] B. Zadrozny, J. C. Langford, and N. Abe. Cost-Sensitive Learning by Cost-

Proportionate Example Weighting. In Proc. of the 2003 IEEE Intl. Conf. on Data
Mining, pages 435–442, Melbourne, FL, August 2003.

[516] M.-L. Zhang and Z.-H. Zhou. A review on multi-label learning algorithms. IEEE
transactions on knowledge and data engineering, 26(8):1819–1837, 2014.

[517] Z.-H. Zhou. Multi-instance learning: A survey. Department of Computer Science &
Technology, Nanjing University, Tech. Rep, 2004.

[518] X. Zhu. Semi-supervised learning. In Encyclopedia of machine learning, pages 892–897.
Springer, 2011.

[519] X. Zhu and A. B. Goldberg. Introduction to semi-supervised learning. Synthesis
lectures on artificial intelligence and machine learning, 3(1):1–130, 2009.

6.14 Exercises

1. Consider a binary classification problem with the following set of attributes
and attribute values:

• Air Conditioner = {Working, Broken}
• Engine = {Good, Bad}
• Mileage = {High, Medium, Low}
• Rust = {Yes, No}

Suppose a rule-based classifier produces the following rule set:

Mileage = High −→ Value = Low
Mileage = Low −→ Value = High
Air Conditioner = Working, Engine = Good −→ Value = High
Air Conditioner = Working, Engine = Bad −→ Value = Low
Air Conditioner = Broken −→ Value = Low

�

M06 TAN9224 02 GE C06 page 548

� �

�

548 Chapter 6 Classification: Alternative Techniques

(a) Are the rules mutually exclusive?

(b) Is the rule set exhaustive?

(c) Is ordering needed for this set of rules?

(d) Do you need a default class for the rule set?

2. The RIPPER algorithm (by Cohen [421]) is an extension of an earlier algorithm
called IREP (by Fürnkranz and Widmer [437]). Both algorithms apply the
reduced-error pruning method to determine whether a rule needs to be
pruned. The reduced error pruning method uses a validation set to estimate
the generalization error of a classifier. Consider the following pair of rules:

R1: A −→ C
R2: A ∧B −→ C

R2 is obtained by adding a new conjunct, B, to the left-hand side of R1. For
this question, you will be asked to determine whether R2 is preferred over R1

from the perspectives of rule-growing and rule-pruning. To determine whether
a rule should be pruned, IREP computes the following measure:

vIREP =
p+ (N − n)
P +N

,

where P is the total number of positive examples in the validation set, N is
the total number of negative examples in the validation set, p is the number of
positive examples in the validation set covered by the rule, and n is the number
of negative examples in the validation set covered by the rule. vIREP is actually
similar to classification accuracy for the validation set. IREP favors rules that
have higher values of vIREP . On the other hand, RIPPER applies the following
measure to determine whether a rule should be pruned:

vRIPPER =
p− n
p+ n

.

(a) Suppose R1 is covered by 350 positive examples and 150 negative ex-
amples, while R2 is covered by 300 positive examples and 50 negative
examples. Compute the FOIL’s information gain for the rule R2 with
respect to R1.

(b) Consider a validation set that contains 500 positive examples and 500
negative examples. For R1, suppose the number of positive examples
covered by the rule is 200, and the number of negative examples covered
by the rule is 50. For R2, suppose the number of positive examples covered
by the rule is 100 and the number of negative examples is 5. Compute
vIREP for both rules. Which rule does IREP prefer?

�

M06 TAN9224 02 GE C06 page 549

� �

�

6.14 Exercises 549

(c) Compute vRIPPER for the previous problem. Which rule does RIPPER
prefer?

3. C4.5rules is an implementation of an indirect method for generating rules from
a decision tree. RIPPER is an implementation of a direct method for generating
rules directly from data.

(a) Discuss the strengths and weaknesses of both methods.

(b) Consider a data set that has a large difference in the class size (i.e., some
classes are much bigger than others). Which method (between C4.5rules
and RIPPER) is better in terms of finding high accuracy rules for the
small classes?

4. Consider a training set that contains 100 positive examples and 400 negative
examples. For each of the following candidate rules,

R1: A −→ + (covers 4 positive and 1 negative examples),
R2: B −→ + (covers 30 positive and 10 negative examples),
R3: C −→ + (covers 100 positive and 90 negative examples),

determine which is the best and worst candidate rule according to:

(a) Rule accuracy.

(b) FOIL’s information gain.

(c) The likelihood ratio statistic.

(d) The Laplace measure.

(e) The m-estimate measure (with k = 2 and p+ = 0.2).

(f) Rule coverage

5. Figure 6.3 illustrates the coverage of the classification rules R1, R2, and R3.
Determine which is the best and worst rule according to:

(a) The likelihood ratio statistic.

(b) The Laplace measure.

(c) The m-estimate measure (with k = 2 and p+ = 0.58).

(d) The rule accuracy after R1 has been discovered, where none of the exam-
ples covered by R1 are discarded.

(e) The rule accuracy after R1 has been discovered, where only the positive
examples covered by R1 are discarded.

(f) The rule accuracy after R1 has been discovered, where both positive and
negative examples covered by R1 are discarded.

�

M06 TAN9224 02 GE C06 page 550

� �

�

550 Chapter 6 Classification: Alternative Techniques

6. (a) Suppose the fraction of undergraduate students who smoke is 15% and
the fraction of graduate students who smoke is 23%. If one-fifth of the
college students are graduate students and the rest are undergraduates,
what is the probability that a student who smokes is a graduate student?

(b) Given the information in part (a), is a randomly chosen college student
more likely to be a graduate or undergraduate student?

(c) Repeat part (b) assuming that the student is a smoker.

(d) Suppose 30% of the graduate students live in a dorm but only 10% of
the undergraduate students live in a dorm. If a student smokes and lives
in the dorm, is he or she more likely to be a graduate or undergraduate
student? You can assume independence between students who live in a
dorm and those who smoke.

7. Consider the data set shown in Table 6.9

Table 6.9. Data set for Exercise 7.
Instance A B C Class

1 0 0 0 +
2 0 0 1 −
3 0 1 1 −
4 0 1 1 −
5 0 0 1 +
6 1 0 1 +
7 1 0 1 −
8 1 0 1 −
9 1 1 1 +
10 1 0 1 +

(a) Estimate the conditional probabilities for P (A|+), P (B|+), P (C|+), P (A|−),
P (B|−), and P (C|−).

(b) Use the estimate of conditional probabilities given in the previous question
to predict the class label for a test sample (A = 0, B = 1, C = 0) using
the näıve Bayes approach.

(c) Estimate the conditional probabilities using the m-estimate approach,
with p = 1/2 and m = 4.

(d) Repeat part (b) using the conditional probabilities given in part (c).

(e) Compare the two methods for estimating probabilities. Which method is
better and why?

�

M06 TAN9224 02 GE C06 page 551

� �

�

6.14 Exercises 551

Table 6.10. Data set for Exercise 8.
Instance A B C Class

1 0 0 1 −
2 1 0 1 +
3 0 1 0 −
4 1 0 0 −
5 1 0 1 +
6 0 0 1 +
7 1 1 0 −
8 0 0 0 −
9 0 1 0 +
10 1 1 1 +

8. Consider the data set shown in Table 6.10.

(a) Estimate the conditional probabilities for P (A = 1|+), P (B = 1|+),
P (C = 1|+), P (A = 1|−), P (B = 1|−), and P (C = 1|−) using the same
approach as in the previous problem.

(b) Use the conditional probabilities in part (a) to predict the class label for
a test sample (A = 1, B = 1, C = 1) using the näıve Bayes approach.

(c) Compare P (A = 1), P (B = 1), and P (A = 1, B = 1). State the relation-
ships between A and B.

(d) Repeat the analysis in part (c) using P (A = 1), P (B = 0), and P (A =
1, B = 0).

(e) Compare P (A = 1, B = 1|Class = +) against P (A = 1|Class = +) and
P (B = 1|Class = +). Are the variables conditionally independent given
the class?

9. (a) Explain how näıve Bayes performs on the data set shown in Figure 6.56.

(b) If each class is further divided such that there are four classes (A1, A2,
B1, and B2), will näıve Bayes perform better?

(c) How will a decision tree perform on this data set (for the two-class
problem)? What if there are four classes?

10. Show empirically why correlated attributes degrade the performance of the
näıve Bayes classifier.

11. Figure 6.57 illustrates the Bayesian network for the data set shown in Table
6.11. (Assume that all the attributes are binary).

(a) Draw the probability table for each node in the network.

(b) Use the Bayesian network to compute P (Engine = Bad, Air Conditioner
= Broken).

�

M06 TAN9224 02 GE C06 page 552

� �

�

552 Chapter 6 Classification: Alternative Techniques

Distinguishing Attributes Noise Attributes

Class A

Class B

Records

Attributes

A1

A2

B1

B2

Figure 6.56. Data set for Exercise 9.

Mileage

Engine

Car
Value

Air
Conditioner

Figure 6.57. Bayesian network.

Table 6.11. Data set for Exercise 11.
Mileage Engine Air Conditioner Number of Instances Number of Instances

with Car Value=Hi with Car Value=Lo

Hi Good Working 3 4
Hi Good Broken 1 2
Hi Bad Working 1 5
Hi Bad Broken 0 4
Lo Good Working 9 0
Lo Good Broken 5 1
Lo Bad Working 1 2
Lo Bad Broken 0 2

�

M06 TAN9224 02 GE C06 page 553

� �

�

6.14 Exercises 553

12. Show empirically that the following conditions are necessary for an effective
ensemble.

(a) The base classifiers should be independent of each other.

(b) The performance of the base classifiers should be better than random
guessing.

13. Given the Bayesian network shown in Figure 6.58, compute the following prob-
abilities:

(a) P (B = good, F = empty, G = empty, S = yes).

(b) P (B = bad, F = empty, G = not empty, S = no).

(c) Given that the battery is bad, compute the probability that the car will
start.

Battery

Gauge

Start

Fuel

P (B = bad) = 0.1 P (F = empty) = 0.2

P (G = empty | B = good, F = not empty) = 0.1
P (G = empty | B = good, F = empty) = 0.8
P (G = empty | B = bad, F = not empty) = 0.2
P (G = empty | B = bad, F = empty) = 0.9

P (S = no | B = good, F = not empty) = 0.1
P (S = no | B = good, F = empty) = 0.8
P (S = no | B = bad, F = not empty) = 0.9
P (S = no | B = bad, F = empty) = 1.0

Figure 6.58. Bayesian network for Exercise 13.

14. Consider the one-dimensional data set shown in Table 6.12.

Table 6.12. Data set for Exercise 14.

x 1 2 3 4 5 6 7 8 9 10
y + − + − + − + − + −

�

M06 TAN9224 02 GE C06 page 554

� �

�

554 Chapter 6 Classification: Alternative Techniques

(a) Classify the data point x = 4.9 according to its 1-, 3-, 5-, and 9-nearest
neighbors (using the majority vote).

(b) Repeat the previous analysis using the distance-weighted voting approach.

15. The nearest neighbor algorithm described in Section 6.3 can be extended to
handle nominal attributes. A variant of the algorithm called PEBLS (Parallel
Exemplar-Based Learning System) by Cost and Salzberg [422] measures the
distance between two values of a nominal attribute using the modified value
difference metric (MVDM). Given a pair of nominal attribute values, V1 and
V2, the distance between them is defined as follows:

d(V1, V2) =
k∑

i=1

∣∣∣∣
ni1

n1
− ni2

n2

∣∣∣∣, (6.108)

where nij is the number of examples from class i with attribute value Vj and
nj is the number of examples with attribute value Vj .

Consider the training set for the loan classification problem shown in Figure
6.8. Use the MVDM measure to compute the distance between every pair of
attribute values for the Home Owner and Marital Status attributes.

16. (a) The nearest-neighbor classifier does not build a model, so it should be
fast. However, on the contrary, it is a slow learner. Why?

(b) What effect does noise have on the nearest-neighbor classifier?

(c) Why is pre-processing data more important in the nearest-neighbor
classifier?

(d) How does variability affect the decision boundary of the nearest-neighbor
classifier?

17. For each of the Boolean functions given below, state whether the problem is
linearly separable.

(a) A AND B AND C

(b) NOT A AND B

(c) (A OR B) AND (A OR C)

(d) (A XOR B) AND (A OR B)

18. (a) Demonstrate how the perceptron model can be used to represent the AND
and OR functions between a pair of Boolean variables.

(b) Comment on the disadvantage of using linear functions as activation
functions for multi-layer neural networks.

19. You are asked to evaluate the performance of two classification models, M1 and
M2. The test set you have chosen contains 26 binary attributes, labeled as A
through Z.

�

M06 TAN9224 02 GE C06 page 555

� �

�

6.14 Exercises 555

Table 6.13. Posterior probabilities for Exercise 19.

Instance True Class P (+|A, . . . , Z,M1) P (+|A, . . . , Z,M2)
1 + 0.73 0.61
2 + 0.69 0.03
3 − 0.44 0.68
4 − 0.55 0.31
5 + 0.67 0.45
6 + 0.47 0.09
7 − 0.08 0.38
8 − 0.15 0.05
9 + 0.45 0.01
10 − 0.35 0.04

Table 6.13 shows the posterior probabilities obtained by applying the models to
the test set. (Only the posterior probabilities for the positive class are shown).
As this is a two-class problem, P (−) = 1 − P (+) and P (−|A, . . . , Z) = 1 −
P (+|A, . . . , Z). Assume that we are mostly interested in detecting instances
from the positive class.

(a) Plot the ROC curve for both M1 and M2. (You should plot them on the
same graph.) Which model do you think is better? Explain your reasons.

(b) For model M1, suppose you choose the cutoff threshold to be t = 0.5.
In other words, any test instances whose posterior probability is greater
than t will be classified as a positive example. Compute the precision,
recall, and F -measure for the model at this threshold value.

(c) Repeat the analysis for part (b) using the same cutoff threshold on model
M2. Compare the F -measure results for both models. Which model is
better? Are the results consistent with what you expect from the ROC
curve?

(d) Repeat part (b) for model M1 using the threshold t = 0.1. Which thresh-
old do you prefer, t = 0.5 or t = 0.1? Are the results consistent with what
you expect from the ROC curve?

20. Following is a data set that contains two attributes, X and Y , and two class
labels, “+” and “−”. Each attribute can take three different values: 0, 1, or 2.

�

M06 TAN9224 02 GE C06 page 556

� �

�

556 Chapter 6 Classification: Alternative Techniques

X Y
Number of
Instances
+ −

0 0 0 100
1 0 0 0
2 0 0 100
0 1 10 100
1 1 10 0
2 1 10 100
0 2 0 100
1 2 0 0
2 2 0 100

The concept for the “+” class is Y = 1 and the concept for the “−” class is
X = 0 ∨X = 2.

(a) Build a decision tree on the data set. Does the tree capture the “+” and
“−” concepts?

(b) What are the accuracy, precision, recall, and F1-measure of the decision
tree? (Note that precision, recall, and F1-measure are defined with respect
to the “+” class.)

(c) Build a new decision tree with the following cost function:

C(i, j) =

⎧
⎨

⎩

0, if i = j;
1, if i = +, j = −;
Number of − instances
Number of + instances , if i = −, j = +.

(Hint: only the leaves of the old decision tree need to be changed.) Does
the decision tree capture the “+” concept?

(d) What are the accuracy, precision, recall, and F1-measure of the new
decision tree?

21. Consider the task of building a classifier from random data, where the attribute
values are generated randomly irrespective of the class labels. Assume the data
set contains instances from two classes, “+” and “−.” Half of the data set is
used for training while the remaining half is used for testing.

(a) Suppose there are an equal number of positive and negative instances in
the data and the decision tree classifier predicts every test instance to be
positive. What is the expected error rate of the classifier on the test data?

�

M06 TAN9224 02 GE C06 page 557

� �

�

6.14 Exercises 557

(b) Repeat the previous analysis assuming that the classifier predicts each
test instance to be positive class with probability 0.8 and negative class
with probability 0.2.

(c) Suppose two-thirds of the data belong to the positive class and the re-
maining one-third belong to the negative class. What is the expected error
of a classifier that predicts every test instance to be positive?

(d) Repeat the previous analysis assuming that the classifier predicts each
test instance to be positive class with probability 2/3 and negative class
with probability 1/3.

22. Derive the dual Lagrangian for the linear SVM with non-separable data where
the objective function is

f(w) =
‖w‖2

2
+ C

(N∑

i=1

ξi
)2
.

23. Consider the XOR problem where there are four training points:

(1, 1,−), (1, 0,+), (0, 1,+), (0, 0,−).

Transform the data into the following feature space:

ϕ = (1,
√

2x1,
√

2x2,
√

2x1x2, x
2
1, x

2
2).

Find the maximum margin linear decision boundary in the transformed space.

24. Given the data sets shown in Figures 6.59, explain how the decision tree, näıve
Bayes, and k-nearest neighbor classifiers would perform on these data sets.

�

M06 TAN9224 02 GE C06 page 558

� �

�

558 Chapter 6 Classification: Alternative Techniques

Distinguishing
Attributes Noise Attributes

Class A

Class B

Records

Attributes

(a) Synthetic data set 1.

Distinguishing Attributes Noise Attributes

Class A

Class B

Records

Attributes

(b) Synthetic data set 2.

Distinguishing
Attribute set 1 Noise Attributes

Class A

Class B

Records

Attributes

Distinguishing
Attribute set 2

60% filled
with 1

60% filled
with 1

40% filled
with 1

40% filled
with 1

(c) Synthetic data set 3.

Class A Class B Class A Class B Class A

Class A Class B Class A Class BClass B

Class A Class B Class A Class B Class A

Class A Class B Class A Class BClass B

Attribute X

A
tt

ri
bu

te
 Y

(d) Synthetic data set 4.

Attribute X

A
tt

ri
bu

te
 Y

Class A

Class B

(e) Synthetic data set 5.

Attribute X

A
tt

ri
bu

te
 Y

Class A

Class B

Class B

(f) Synthetic data set 6.

Figure 6.59. Data set for Exercise 24.

�

M07 TAN9224 02 GE C07 page 559

� �

�

7

Association Analysis:
Advanced Concepts

The association rule mining formulation described in Chapter 4 assumes that
the input data consists of binary attributes called items. The presence of an
item in a transaction is also assumed to be more important than its absence.
As a result, an item is treated as an asymmetric binary attribute and only
frequent patterns are considered interesting.

This chapter extends the formulation to data sets with symmetric bi-
nary, categorical, and continuous attributes. The formulation will also be
extended to incorporate more complex entities such as sequences and graphs.
Although the overall structure of association analysis algorithms remains un-
changed, certain aspects of the algorithms must be modified to handle the
non-traditional entities.

7.1 Handling Categorical Attributes

There are many applications that contain symmetric binary and nominal
attributes. The Internet survey data shown in Table 7.1 contains symmetric
binary attributes such as Gender, Computer at Home, Chat Online, Shop
Online, and Privacy Concerns; as well as nominal attributes such as Level
of Education and State. Using association analysis, we may uncover inter-
esting information about the characteristics of Internet users such as

{Shop Online = Yes} −→ {Privacy Concerns = Yes}.

This rule suggests that most Internet users who shop online are concerned
about their personal privacy.

�

M07 TAN9224 02 GE C07 page 560

� �

�

560 Chapter 7 Association Analysis: Advanced Concepts

Table 7.1. Internet survey data with categorical attributes.

Gender Level of State Computer Chat Shop Privacy
Education at Home Online Online Concerns

Female Graduate Illinois Yes Yes Yes Yes
Male College California No No No No
Male Graduate Michigan Yes Yes Yes Yes

Female College Virginia No No Yes Yes
Female Graduate California Yes No No Yes
Male College Minnesota Yes Yes Yes Yes
Male College Alaska Yes Yes Yes No
Male High School Oregon Yes No No No

Female Graduate Texas No Yes No No
. .

To extract such patterns, the categorical and symmetric binary attributes
are transformed into “items” first, so that existing association rule mining
algorithms can be applied. This type of transformation can be performed
by creating a new item for each distinct attribute-value pair. For example,
the nominal attribute Level of Education can be replaced by three binary
items: Education = College, Education = Graduate, and Education = High
School. Similarly, symmetric binary attributes such as Gender can be con-
verted into a pair of binary items, Male and Female. Table 7.2 shows the
result of binarizing the Internet survey data.

Table 7.2. Internet survey data after binarizing categorical and symmetric binary attributes.

Male Female Education Education . . . Privacy Privacy
= Graduate = College = Yes = No

0 1 1 0 . . . 1 0
1 0 0 1 . . . 0 1
1 0 1 0 . . . 1 0
0 1 0 1 . . . 1 0
0 1 1 0 . . . 1 0
1 0 0 1 . . . 1 0
1 0 0 1 . . . 0 1
1 0 0 0 . . . 0 1
0 1 1 0 . . . 0 1
. .

�

M07 TAN9224 02 GE C07 page 561

� �

�

7.1 Handling Categorical Attributes 561

There are several issues to consider when applying association analysis to
the binarized data:

1. Some attribute values may not be frequent enough to be part of a
frequent pattern. This problem is more evident for nominal attributes
that have many possible values, e.g., state names. Lowering the support
threshold does not help because it exponentially increases the number
of frequent patterns found (many of which may be spurious) and makes
the computation more expensive. A more practical solution is to group
related attribute values into a small number of categories. For exam-
ple, each state name can be replaced by its corresponding geographical
region, such as Midwest, Pacific Northwest, Southwest, and East
Coast. Another possibility is to aggregate the less frequent attribute
values into a single category called Others, as shown in Figure 7.1.

Virginia

New York

California

Massachusetts
Oregon

Texas

Minnesota

Florida

Michigan

Illinois

Ohio

Others

Figure 7.1. A pie chart with a merged category called Others.

2. Some attribute values may have considerably higher frequencies than
others. For example, suppose 85% of the survey participants own a
home computer. By creating a binary item for each attribute value
that appears frequently in the data, we may potentially generate many
redundant patterns, as illustrated by the following example:

{Computer at home = Yes, Shop Online = Yes}
−→ {Privacy Concerns = Yes}.

�

M07 TAN9224 02 GE C07 page 562

� �

�

562 Chapter 7 Association Analysis: Advanced Concepts

The rule is redundant because it is subsumed by the more general
rule given at the beginning of this section. Because the high-frequency
items correspond to the typical values of an attribute, they seldom
carry any new information that can help us to better understand the
pattern. It may therefore be useful to remove such items before applying
standard association analysis algorithms. Another possibility is to apply
the techniques presented in Section 4.8 for handling data sets with a
wide range of support values.

3. Although the width of every transaction is the same as the number
of attributes in the original data, the computation time may increase
especially when many of the newly created items become frequent. This
is because more time is needed to deal with the additional candidate
itemsets generated by these items (see Exercise 1 on page 618). One
way to reduce the computation time is to avoid generating candidate
itemsets that contain more than one item from the same attribute. For
example, we do not have to generate a candidate itemset such as {State
= X, State = Y, . . .} because the support count of the itemset is zero.

7.2 Handling Continuous Attributes

The Internet survey data described in the previous section may also contain
continuous attributes such as the ones shown in Table 7.3. Mining the con-
tinuous attributes may reveal useful insights about the data such as “users
whose annual income is more than $120K belong to the 45–60 age group” or
“users who have more than 3 email accounts and spend more than 15 hours
online per week are often concerned about their personal privacy.” Association
rules that contain continuous attributes are commonly known as quantitative
association rules.

This section describes the various methodologies for applying association
analysis to continuous data. We will specifically discuss three types of methods:
(1) discretization-based methods, (2) statistics-based methods, and (3) non-
discretization methods. The quantitative association rules derived using these
methods are quite different in nature.

7.2.1 Discretization-Based Methods

Discretization is the most common approach for handling continuous attributes.
This approach groups the adjacent values of a continuous attribute into a
finite number of intervals. For example, the Age attribute can be divided into

�

M07 TAN9224 02 GE C07 page 563

� �

�

7.2 Handling Continuous Attributes 563

Table 7.3. Internet survey data with continuous attributes.

Gender . . . Age Annual No. of Hours Spent No. of Email Privacy
Income Online per Week Accounts Concern

Female . . . 26 90K 20 4 Yes
Male . . . 51 135K 10 2 No
Male . . . 29 80K 10 3 Yes

Female . . . 45 120K 15 3 Yes
Female . . . 31 95K 20 5 Yes
Male . . . 25 55K 25 5 Yes
Male . . . 37 100K 10 1 No
Male . . . 41 65K 8 2 No

Female . . . 26 85K 12 1 No
. .

the following intervals: Age ∈ [12, 16), Age ∈ [16, 20), Age ∈ [20, 24), . . . ,
Age ∈ [56, 60), where [a, b) represents an interval that includes a but not b.
Discretization can be performed using any of the techniques described in Sec-
tion 2.3.6 (equal interval width, equal frequency, entropy-based, or clustering).
The discrete intervals are then mapped into asymmetric binary attributes so
that existing association analysis algorithms can be applied. Table 7.4 shows
the Internet survey data after discretization and binarization.

Table 7.4. Internet survey data after binarizing categorical and continuous attributes.

Male Female . . . Age Age Age . . . Privacy Privacy
< 13 ∈ [13, 21) ∈ [21, 30) = Yes = No

0 1 . . . 0 0 1 . . . 1 0
1 0 . . . 0 0 0 . . . 0 1
1 0 . . . 0 0 1 . . . 1 0
0 1 . . . 0 0 0 . . . 1 0
0 1 . . . 0 0 0 . . . 1 0
1 0 . . . 0 0 1 . . . 1 0
1 0 . . . 0 0 0 . . . 0 1
1 0 . . . 0 0 0 . . . 0 1
0 1 . . . 0 0 1 . . . 0 1
. .

A key parameter in attribute discretization is the number of intervals used
to partition each attribute. This parameter is typically provided by the users
and can be expressed in terms of the interval width (for the equal interval

�

M07 TAN9224 02 GE C07 page 564

� �

�

564 Chapter 7 Association Analysis: Advanced Concepts

Table 7.5. A breakdown of Internet users who participated in online chat according to their age group.

Age Group Chat Online = Yes Chat Online = No
[12, 16) 12 13
[16, 20) 11 2
[20, 24) 11 3
[24, 28) 12 13
[28, 32) 14 12
[32, 36) 15 12
[36, 40) 16 14
[40, 44) 16 14
[44, 48) 4 10
[48, 52) 5 11
[52, 56) 5 10
[56, 60) 4 11

width approach), the average number of transactions per interval (for the equal
frequency approach), or the number of desired clusters (for the clustering-
based approach). The difficulty in determining the right number of intervals
can be illustrated using the data set shown in Table 7.5, which summarizes the
responses of 250 users who participated in the survey. There are two strong
rules embedded in the data:

R1: Age ∈ [16, 24) −→ Chat Online = Yes (s = 8.8%, c = 81.5%).
R2: Age ∈ [44, 60) −→ Chat Online = No (s = 16.8%, c = 70%).

These rules suggest that most of the users from the age group of 16–24 often
participate in online chatting, while those from the age group of 44–60 are less
likely to chat online. In this example, we consider a rule to be interesting only
if its support (s) exceeds 5% and its confidence (c) exceeds 65%. One of the
problems encountered when discretizing the Age attribute is how to determine
the interval width.

1. If the interval is too wide, then we may lose some patterns because of
their lack of confidence. For example, when the interval width is 24 years,
R1 and R2 are replaced by the following rules:

R′
1: Age ∈ [12, 36) −→ Chat Online = Yes (s = 30%, c = 57.7%).

R′
2: Age ∈ [36, 60) −→ Chat Online = No (s = 28%, c = 58.3%).

Despite their higher supports, the wider intervals have caused the con-
fidence for both rules to drop below the minimum confidence threshold.
As a result, both patterns are lost after discretization.

�

M07 TAN9224 02 GE C07 page 565

� �

�

7.2 Handling Continuous Attributes 565

2. If the interval is too narrow, then we may lose some patterns because of
their lack of support. For example, if the interval width is 4 years, then
R1 is broken up into the following two subrules:

R
(4)
11 : Age ∈ [16, 20) −→ Chat Online = Yes (s=4.4%, c=84.6%).

R
(4)
12 : Age ∈ [20, 24) −→ Chat Online = Yes (s=4.4%, c=78.6%).

Since the supports for the subrules are less than the minimum support
threshold, R1 is lost after discretization. Similarly, the rule R2, which
is broken up into four subrules, will also be lost because the support of
each subrule is less than the minimum support threshold.

3. If the interval width is 8 years, then the rule R2 is broken up into the
following two subrules:

R
(8)
21 : Age ∈ [44, 52) −→ Chat Online = No (s=8.4%, c=70%).

R
(8)
22 : Age ∈ [52, 60) −→ Chat Online = No (s=8.4%, c=70%).

Since R(8)
21 and R

(8)
22 have sufficient support and confidence, R2 can be

recovered by aggregating both subrules. Meanwhile, R1 is broken up into
the following two subrules:

R
(8)
11 : Age ∈ [12, 20) −→ Chat Online = Yes (s=9.2%, c=60.5%).

R
(8)
12 : Age ∈ [20, 28) −→ Chat Online = Yes (s=9.2%, c=60.0%).

Unlike R2, we cannot recover the rule R1 by aggregating the subrules
because both subrules fail the confidence threshold.

One way to address these issues is to consider every possible grouping of
adjacent intervals. For example, we can start with an interval width of 4 years
and then merge the adjacent intervals into wider intervals: Age ∈ [12, 16),
Age ∈ [12, 20), . . . , Age ∈ [12, 60), Age ∈ [16, 20), Age ∈ [16, 24), etc. This
approach enables the detection of both R1 and R2 as strong rules. However,
it also leads to the following computational issues:

1. The computation becomes extremely expensive. If the range is
initially divided into k intervals, then k(k − 1)/2 binary items must be
generated to represent all possible intervals. Furthermore, if an item
corresponding to the interval [a,b) is frequent, then all other items
corresponding to intervals that subsume [a,b) must be frequent too. This

�

M07 TAN9224 02 GE C07 page 566

� �

�

566 Chapter 7 Association Analysis: Advanced Concepts

approach can therefore generate far too many candidate and frequent
itemsets. To address these problems, a maximum support threshold can
be applied to prevent the creation of items corresponding to very wide
intervals and to reduce the number of itemsets.

2. Many redundant rules are extracted. For example, consider the
following pair of rules:

R3 : {Age ∈ [16, 20), Gender = Male} −→ {Chat Online = Yes},
R4 : {Age ∈ [16, 24), Gender = Male} −→ {Chat Online = Yes}.
R4 is a generalization of R3 (and R3 is a specialization of R4) because
R4 has a wider interval for the Age attribute. If the confidence values
for both rules are the same, then R4 should be more interesting be-
cause it covers more examples—including those for R3. R3 is therefore
a redundant rule.

7.2.2 Statistics-Based Methods

Quantitative association rules can be used to infer the statistical properties of
a population. For example, suppose we are interested in finding the average age
of certain groups of Internet users based on the data provided in Tables 7.1 and
7.3. Using the statistics-based method described in this section, quantitative
association rules such as the following can be extracted:

{Annual Income > $100K, Shop Online = Yes} −→ Age: Mean = 38.

The rule states that the average age of Internet users whose annual income
exceeds $100K and who shop online regularly is 38 years old.

Rule Generation

To generate the statistics-based quantitative association rules, the target at-
tribute used to characterize interesting segments of the population must be
specified. By withholding the target attribute, the remaining categorical and
continuous attributes in the data are binarized using the methods described
in the previous section. Existing algorithms such as Apriori or FP-growth
are then applied to extract frequent itemsets from the binarized data. Each
frequent itemset identifies an interesting segment of the population. The dis-
tribution of the target attribute in each segment can be summarized using
descriptive statistics such as mean, median, variance, or absolute deviation.
For example, the preceding rule is obtained by averaging the age of Internet

�

M07 TAN9224 02 GE C07 page 567

� �

�

7.2 Handling Continuous Attributes 567

users who support the frequent itemset {Annual Income > $100K, Shop
Online = Yes}.

The number of quantitative association rules discovered using this method
is the same as the number of extracted frequent itemsets. Because of the way
the quantitative association rules are defined, the notion of confidence is not
applicable to such rules. An alternative method for validating the quantitative
association rules is presented next.

Rule Validation

A quantitative association rule is interesting only if the statistics computed
from transactions covered by the rule are different than those computed from
transactions not covered by the rule. For example, the rule given at the
beginning of this section is interesting only if the average age of Internet users
who do not support the frequent itemset {Annual Income > 100K, Shop
Online = Yes} is significantly higher or lower than 38 years old. To deter-
mine whether the difference in their average ages is statistically significant,
statistical hypothesis testing methods should be applied.

Consider the quantitative association rule, A −→ t : μ, where A is a
frequent itemset, t is the continuous target attribute, and μ is the average value
of t among transactions covered by A. Furthermore, let μ′ denote the average
value of t among transactions not covered by A. The goal is to test whether
the difference between μ and μ′ is greater than some user-specified threshold,
Δ. In statistical hypothesis testing, two opposite propositions, known as the
null hypothesis and the alternative hypothesis, are given. A hypothesis test
is performed to determine which of these two hypotheses should be accepted,
based on evidence gathered from the data (see Appendix C).

In this case, assuming that μ < μ′, the null hypothesis is H0 : μ′ = μ+ Δ,
while the alternative hypothesis is H1 : μ′ > μ + Δ. To determine which
hypothesis should be accepted, the following Z-statistic is computed:

Z =
μ′ − μ−Δ√

s2
1

n1
+ s2

2
n2

, (7.1)

where n1 is the number of transactions supporting A, n2 is the number of
transactions not supporting A, s1 is the standard deviation for t among
transactions that support A, and s2 is the standard deviation for t among
transactions that do not support A. Under the null hypothesis, Z has a
standard normal distribution with mean 0 and variance 1. The value of Z
computed using Equation 7.1 is then compared against a critical value, Zα,

�

M07 TAN9224 02 GE C07 page 568

� �

�

568 Chapter 7 Association Analysis: Advanced Concepts

which is a threshold that depends on the desired confidence level. If Z > Zα,
then the null hypothesis is rejected and we may conclude that the quantitative
association rule is interesting. Otherwise, there is not enough evidence in the
data to show that the difference in mean is statistically significant.

Example 7.1. Consider the quantitative association rule

{Income > 100K, Shop Online = Y es} −→ Age : μ = 38.

Suppose there are 50 Internet users who supported the rule antecedent. The
standard deviation of their ages is 3.5. On the other hand, the average age of
the 200 users who do not support the rule antecedent is 30 and their standard
deviation is 6.5. Assume that a quantitative association rule is considered
interesting only if the difference between μ and μ′ is more than 5 years. Using
Equation 7.1 we obtain

Z =
38− 30− 5√

3.52

50 + 6.52

200

= 4.4414.

For a one-sided hypothesis test at a 95% confidence level, the critical value
for rejecting the null hypothesis is 1.64. Since Z > 1.64, the null hypothesis
can be rejected. We therefore conclude that the quantitative association rule
is interesting because the difference between the average ages of users who
support and do not support the rule antecedent is more than 5 years.

7.2.3 Non-discretization Methods

There are certain applications in which analysts are more interested in find-
ing associations among the continuous attributes, rather than associations
among discrete intervals of the continuous attributes. For example, consider
the problem of finding word associations in text documents. Table 7.6 shows
a document-word matrix where every entry represents the number of times a
word appears in a given document. Given such a data matrix, we are interested
in finding associations between words (e.g., data and mining) instead of asso-
ciations between ranges of word counts (e.g., data ∈ [1, 4] and mining ∈ [2, 3]).
One way to do this is to transform the data into a 0/1 matrix, where the entry
is 1 if the count exceeds some threshold t, and 0 otherwise. While this approach
allows analysts to apply existing frequent itemset generation algorithms to the
binarized data set, finding the right threshold for binarization can be quite
tricky. If the threshold is set too high, it is possible to miss some interesting

�

M07 TAN9224 02 GE C07 page 569

� �

�

7.2 Handling Continuous Attributes 569

Table 7.6. Document-word matrix.

Document word1 word2 word3 word4 word5 word6

d1 3 6 0 0 0 2
d2 1 2 0 0 0 2
d3 4 2 7 0 0 2
d4 2 0 3 0 0 1
d5 0 0 0 1 1 0

associations. Conversely, if the threshold is set too low, there is a potential for
generating a large number of spurious associations.

This section presents another methodology for finding associations among
continuous attributes, known as the min-Apriori approach. Analogous to
traditional association analysis, an itemset is considered to be a collection
of continuous attributes, while its support measures the degree of association
among the attributes, across multiple rows of the data matrix. For example, a
collection of words in Table 7.6 can be referred to as an itemset, whose support
is determined by the co-occurrence of words across documents. In min-Apriori,
the association among attributes in a given row of the data matrix is obtained
by taking the minimum value of the attributes. For example, the association
between words, word1 and word2, in the document d1 is given by min(3, 6) = 3.
The support of an itemset is then computed by aggregating its association over
all the documents.

s({word1, word2}) = min(3, 6) + min(1, 2) + min(4, 2)
+ min(2, 0)

= 6.

The support measure defined in min-Apriori has the following desired prop-
erties, which makes it suitable for finding word associations in documents:

1. Support increases monotonically as the number of occurrences of a word
increases.

2. Support increases monotonically as the number of documents that con-
tain the word increases.

3. Support has an anti-monotone property. For example, consider a pair
of itemsets {A,B} and {A,B,C}. Since min({A,B}) ≥ min({A,B,C}),
s({A,B}) ≥ s({A,B,C}). Therefore, support decreases monotonically
as the number of words in an itemset increases.

�

M07 TAN9224 02 GE C07 page 570

� �

�

570 Chapter 7 Association Analysis: Advanced Concepts

Food

Bread

Milk

Skim 2%

Electronics

Computers Home

Desktop LaptopWheat DVDTV

AC
adaptor

Docking
station

Laptop
Accessories

White

Figure 7.2. Example of an item taxonomy.

The standard Apriori algorithm can be modified to find associations among
words using the new support definition.

7.3 Handling a Concept Hierarchy

A concept hierarchy is a multilevel organization of the various entities or
concepts defined in a particular domain. For example, in market basket anal-
ysis, a concept hierarchy has the form of an item taxonomy describing the
“is-a” relationships among items sold at a grocery store—e.g., milk is a kind
of food and DVD is a kind of home electronics equipment (see Figure 7.2).
Concept hierarchies are often defined according to domain knowledge or based
on a standard classification scheme defined by certain organizations (e.g., the
Library of Congress classification scheme is used to organize library materials
based on their subject categories).

A concept hierarchy can be represented using a directed acyclic graph,
as shown in Figure 7.2. If there is an edge in the graph from a node p to
another node c, we call p the parent of c and c the child of p. For example,
milk is the parent of skim milk because there is a directed edge from the
node milk to the node skim milk. X̂ is called an ancestor of X (and X a
descendent of X̂) if there is a path from node X̂ to node X in the directed
acyclic graph. In the diagram shown in Figure 7.2, food is an ancestor of skim
milk and AC adaptor is a descendent of electronics.

�

M07 TAN9224 02 GE C07 page 571

� �

�

7.3 Handling a Concept Hierarchy 571

The main advantages of incorporating concept hierarchies into association
analysis are as follows:

1. Items at the lower levels of a hierarchy may not have enough support to
appear in any frequent itemset. For example, although the sale of AC
adaptors and docking stations may be low, the sale of laptop accessories,
which is their parent node in the concept hierarchy, may be high. Also,
rules involving high-level categories may have lower confidence than the
ones generated using low-level categories. Unless the concept hierarchy
is used, there is a potential to miss interesting patterns at different levels
of categories.

2. Rules found at the lower levels of a concept hierarchy tend to be overly
specific and may not be as interesting as rules at the higher levels. For
example, staple items such as milk and bread tend to produce many low-
level rules such as skim milk −→ wheat bread, 2% milk −→ wheat
bread, and skim milk −→ white bread. Using a concept hierarchy,
they can be summarized into a single rule, milk −→ bread. Considering
only items residing at the top level of their hierarchies also may not
be good enough, because such rules may not be of any practical use.
For example, although the rule electronics −→ food may satisfy the
support and confidence thresholds, it is not informative because the
combination of electronics and food items that are frequently purchased
by customers are unknown. If milk and batteries are the only items sold
together frequently, then the pattern {food, electronics} may have
overgeneralized the situation.

Standard association analysis can be extended to incorporate concept
hierarchies in the following way. Each transaction t is initially replaced with its
extended transaction t′, which contains all the items in t along with their
corresponding ancestors. For example, the transaction {DVD, wheat bread}
can be extended to {DVD, wheat bread, home electronics, electronics,
bread, food}, where home electronics and electronics are the ancestors
of DVD, while bread and food are the ancestors of wheat bread.

We can then apply existing algorithms, such as Apriori, to the database of
extended transactions. Although such an approach would find rules that span
different levels of the concept hierarchy, it would suffer from several obvious
limitations as described below:

1. Items residing at the higher levels tend to have higher support counts
than those residing at the lower levels of a concept hierarchy. As a result,

�

M07 TAN9224 02 GE C07 page 572

� �

�

572 Chapter 7 Association Analysis: Advanced Concepts

if the support threshold is set too high, then only patterns involving the
high-level items are extracted. On the other hand, if the threshold is set
too low, then the algorithm generates far too many patterns (most of
which may be spurious) and becomes computationally inefficient.

2. Introduction of a concept hierarchy tends to increase the computation
time of association analysis algorithms because of the larger number
of items and wider transactions. The number of candidate patterns
and frequent patterns generated by these algorithms may also grow
exponentially with wider transactions.

3. Introduction of a concept hierarchy may produce redundant rules. A
rule X −→ Y is redundant if there exists a more general rule X̂ −→ Ŷ ,
where X̂ is an ancestor of X, Ŷ is an ancestor of Y , and both rules
have very similar confidence. For example, suppose {bread} −→ {milk},
{white bread} −→ {2% milk}, {wheat bread} −→ {2% milk}, {white
bread} −→ {skim milk}, and {wheat bread} −→ {skim milk} have
very similar confidence. The rules involving items from the lower level of
the hierarchy are considered redundant because they can be summarized
by a rule involving the ancestor items. An itemset such as {skim milk,
milk, food} is also redundant because food and milk are ancestors of
skim milk. Fortunately, it is easy to eliminate such redundant itemsets
during frequent itemset generation, given the knowledge of the hierarchy.

7.4 Sequential Patterns

Market basket data often contains temporal information about when an item
was purchased by customers. Such information can be used to piece together
the sequence of transactions made by a customer over a certain period of time.
Similarly, event-based data collected from scientific experiments or the mon-
itoring of physical systems, such as telecommunications networks, computer
networks, and wireless sensor networks, have an inherent sequential nature
to them. This means that an ordinal relation, usually based on temporal
precedence, exists among events occurring in such data. However, the con-
cepts of association patterns discussed so far emphasize only “co-occurrence”
relationships and disregard the sequential information of the data. The latter
information may be valuable for identifying recurring features of a dynamic
system or predicting future occurrences of certain events. This section presents
the basic concept of sequential patterns and the algorithms developed to
discover them.

�

M07 TAN9224 02 GE C07 page 573

� �

�

7.4 Sequential Patterns 573

Figure 7.3. Example of a sequence database.

7.4.1 Preliminaries

The input to the problem of discovering sequential patterns is a sequence data
set, an example of which is shown on the left-hand side of Figure 7.3. Each
row records the occurrences of events associated with a particular object at a
given time. For example, the first row contains the set of events occurring at
timestamp t = 10 for object A. Note that if we only consider the last column
of this sequence data set, it would look similar to a market basket data where
every row represents a transaction containing a set of events (items). The
traditional concept of association patterns in this data would correspond to
common co-occurrences of events across transactions. However, a sequence
data set also contains information about the object and the timestamp of a
transaction of events in the first two columns. These columns add context
to every transaction, which enables a different style of association analysis
for sequence data sets. The right-hand side of Figure 7.3 shows a different
representation of the sequence data set where the events associated with
every object appear together, sorted in increasing order of their timestamps.
In a sequence data set, we can look for association patterns of events that
commonly occur in a sequential order across objects. For example, in the
sequence data shown in Figure 7.3, event 6 is followed by event 1 in all of the
sequences. Note that such a pattern cannot be inferred if we treat this as a
market basket data by ignoring information about the object and timestamp.

�

M07 TAN9224 02 GE C07 page 574

� �

�

574 Chapter 7 Association Analysis: Advanced Concepts

Before presenting a methodology for finding sequential patterns, we pro-
vide a brief description of sequences and subsequences.

Sequences

Generally speaking, a sequence is an ordered list of elements (transactions).
A sequence can be denoted as s = 〈e1e2e3 . . . en〉, where each element ej is a
collection of one or more events (items), i.e., ej = {i1, i2, . . . , ik}. The following
is a list of examples of sequences:

• Sequence of web pages viewed by a web site visitor:

〈 {Homepage} {Electronics} {Cameras and Camcorders} {Digital Cam-
eras} {Shopping Cart} {Order Confirmation} {Return to Shopping} 〉
• Sequence of events leading to the nuclear accident at Three-Mile Island:

〈 {clogged resin} {outlet valve closure} {loss of feedwater} {condenser
polisher outlet valve shut} {booster pumps trip} {main waterpump
trips} {main turbine trips} {reactor pressure increases} 〉
• Sequence of classes taken by a computer science major student in differ-

ent semesters:

〈 {Algorithms and Data Structures, Introduction to Operating Sys-
tems} {Database Systems, Computer Architecture} {Computer Net-
works, Software Engineering} {Computer Graphics, Parallel Program-
ming} 〉

A sequence can be characterized by its length and the number of occurring
events. The length of a sequence corresponds to the number of elements present
in the sequence, while we refer to a sequence that contains k events as a
k-sequence. The web sequence in the previous example contains 7 elements
and 7 events; the event sequence at Three-Mile Island contains 8 elements
and 8 events; and the class sequence contains 4 elements and 8 events.

Figure 7.4 provides examples of sequences, elements, and events defined for
a variety of application domains. Except for the last row, the ordinal attribute
associated with each of the first three domains corresponds to calendar time.
For the last row, the ordinal attribute corresponds to the location of the bases
(A, C, G, T) in the gene sequence. Although the discussion on sequential
patterns is primarily focused on temporal events, it can be extended to the
case where the events have non-temporal ordering, such as spatial ordering.

�

M07 TAN9224 02 GE C07 page 575

� �

�

7.4 Sequential Patterns 575

Bases A,T,G,C

Event (Item)Element
(Transaction)

An element of the DNA
sequence

DNA sequence of a
particular species

Genome
sequences

Types of alarms
generated by sensors

Events triggered by a
sensor at time t

History of events generated
by a given sensor

Event data

Home page, index
page, contact info, etc

The collection of files
viewed by a Web visitor
after a single mouse click

Browsing activity of a
particular Web visitor

Web Data

Books, diary products,
CDs, etc

A set of items bought by
a customer at time t

Purchase history of a given
customer

Customer

Event
(Item)

Element
(Transaction)

SequenceSequence
Database

Ordinal Attribute

E3
E4

E1
E3

E1
E2

E2E2

Sequence

Figure 7.4. Examples of elements and events in sequence data sets.

Table 7.7. Examples illustrating the concept of a subsequence.

Sequence, s Sequence, t Is t a subsequence of s?
〈{2,4} {3,5,6} {8} 〉 〈 {2} {3,6} {8} 〉 Yes
〈{2,4} {3,5,6} {8} 〉 〈 {2} {8} 〉 Yes
〈{1,2} {3,4} 〉 〈 {1} {2} 〉 No
〈{2,4} {2,4} {2,5} 〉 〈 {2} {4} 〉 Yes

Subsequences

A sequence t is a subsequence of another sequence s if it is possible to derive
t from s by simply deleting some events from elements in s or even deleting
some elements in s completely. Formally, the sequence t = 〈t1t2 . . . tm〉 is a
subsequence of s = 〈s1s2 . . . sn〉 if there exist integers 1 ≤ j1 < j2 < · · · <
jm ≤ n such that t1 ⊆ sj1 , t2 ⊆ sj2 , . . . , tm ⊆ sjm . If t is a subsequence of s,
then we say that t is contained in s. Table 7.7 gives examples illustrating the
idea of subsequences for various sequences.

�

M07 TAN9224 02 GE C07 page 576

� �

�

576 Chapter 7 Association Analysis: Advanced Concepts

Object Timestamp Events

Examples of Sequential Patterns:

A
A
A
B
B
C
C
C
D
D
D
E
E

1
2
3
1
2
1
2
3
1
2
3
1
2

1, 2, 4
2, 3
5
1, 2
2, 3, 4
1, 2
2, 3, 4
2, 4, 5
2
3, 4
4, 5
1, 3
2, 4, 5

Minsup = 50%

<{1,2}>
<{2,3}>
<{2,4}>
<{3} {5}>
<{1} {2}>
<{2} {2}>
<{1} {2,3}>
<{2} {2,3}>
<{1,2} {2,3}>

s=60%
s=60%
s=80%
s=80%
s=80%
s=60%
s=60%
s=60%
s=60%

Figure 7.5. Sequential patterns derived from a data set that contains five data sequences.

7.4.2 Sequential Pattern Discovery

Let D be a data set that contains one or more data sequences. The term
data sequence refers to an ordered list of elements associated with a single
data object. For example, the data set shown in Figure 7.5 contains five data
sequences, one for each object A, B, C, D, and E.

The support of a sequence s is the fraction of all data sequences that
contain s. If the support for s is greater than or equal to a user-specified
threshold minsup, then s is declared to be a sequential pattern (or frequent
sequence).

Definition 7.1 (Sequential Pattern Discovery). Given a sequence data set D
and a user-specified minimum support threshold minsup, the task of sequen-
tial pattern discovery is to find all sequences with support ≥ minsup.

In Figure 7.5, the support for the sequence 〈{1}{2}〉 is equal to 80% be-
cause it is contained in four of the five data sequences (every object except for
D). Assuming that the minimum support threshold is 50%, any sequence that
is contained in at least three data sequences is considered to be a sequential
pattern. Examples of sequential patterns extracted from the given data set
include 〈{1}{2}〉, 〈{1,2}〉, 〈{2,3}〉, 〈{1,2}{2,3}〉, etc.

Sequential pattern discovery is a computationally challenging task because
the set of all possible sequences that can be generated from a collection
of events is exponentially large and difficult to enumerate. For example, a
collection of n events can result in the following examples of 1-sequences,
2-sequences, and 3-sequences:

�

M07 TAN9224 02 GE C07 page 577

� �

�

7.4 Sequential Patterns 577

1-sequences: 〈i1〉, 〈i2〉, . . ., 〈in〉
2-sequences: 〈{i1, i2}〉, 〈{i1, i3}〉, . . ., 〈{in−1, in}〉, . . .

〈{i1}{i1}〉, 〈{i1}{i2}〉,. . ., 〈{in}{in}〉
3-sequences: 〈{i1, i2, i3}〉, 〈{i1, i2, i4}〉, . . ., 〈{in−2, in−1, in}〉, . . .

〈{i1}{i1, i2}〉, 〈{i1}{i1, i3}〉, . . ., 〈{in−1}{in−1, in}〉, . . .
〈{i1, i2}{i2}〉, 〈{i1, i2}{i3}〉, . . ., 〈{in−1, in}{in}〉, . . .
〈{i1}{i1}{i1}〉, 〈{i1}{i1}{i2}〉, . . ., 〈{in}{in}{in}〉

The above enumeration is similar in some ways to the itemset lattice
introduced in Chapter 4 for market basket data. However, note that the above
enumeration is not exhaustive; it only shows some sequences and omits a
large number of remaining ones by the use of ellipses (. . .). This is because
the number of candidate sequences is substantially larger than the number of
candidate itemsets, which makes their enumeration difficult. There are three
reasons for the additional number of candidates sequences:

1. An item can appear at most once in an itemset, but an event can
appear more than once in a sequence, in different elements of the se-
quence. For example, given a pair of items, i1 and i2, only one candidate
2-itemset, {i1, i2}, can be generated. In contrast, there are many candi-
date 2-sequences that can be generated using only two events: 〈{i1}{i1}〉,
〈{i1}{i2}〉, 〈{i2}{i1}〉, 〈{i2}{i2}〉, and 〈{i1, i2}〉.

2. Order matters in sequences, but not for itemsets. For example, {i1, i2}
and {i2, i1} refers to the same itemset, whereas 〈{i1}{i2}〉, 〈{i2}{i1}〉,
and 〈{i1, i2}〉 correspond to different sequences, and thus must be gen-
erated separately.

3. For market basket data, the number of distinct items n puts an upper
bound on the number of candidate itemsets (2n−1), whereas for sequence
data, even two events a and b can lead to infinitely many candidate
sequences (see Figure 7.6 for an illustration).

Because of the above reasons, it is challenging to create a sequence lattice
that enumerates all possible sequences even when the number of events in the
data is small. It is thus difficult to use a brute-force approach for generating
sequential patterns that enumerates all possible sequences by traversing the
sequence lattice. Despite these challenges, the Apriori principle still holds
for sequential data because any data sequence that contains a particular
k-sequence must also contain all of its (k−1)-subsequences. As we will see later,
even though it is challenging to construct the sequence lattice, it is possible
to generate candidate k-sequences from the frequent (k − 1)-sequences using

�

M07 TAN9224 02 GE C07 page 578

� �

�

578 Chapter 7 Association Analysis: Advanced Concepts

Figure 7.6. Comparing the number of itemsets with the number of sequences generated using two
events (items). We only show 1-sequences, 2-sequences, and 3-sequences for illustration.

the Apriori principle. This allows us to extract sequential patterns from a
sequence data set using an Apriori -like algorithm. The basic structure of this
algorithm is shown in Algorithm 7.1.

Algorithm 7.1 Apriori -like algorithm for sequential pattern discovery.
1: k = 1.
2: Fk = { i | i ∈ I ∧ σ({i})

N
≥ minsup}. {Find all frequent 1-subsequences.}

3: repeat
4: k = k + 1.
5: Ck = candidate-gen(Fk−1). {Generate candidate k-subsequences.}
6: Ck = candidate-prune(Ck, Fk−1). {Prune candidate k-subsequences.}
7: for each data sequence t ∈ T do
8: Ct = subsequence(Ck, t). {Identify all candidates contained in t.}
9: for each candidate k-subsequence c ∈ Ct do

10: σ(c) = σ(c) + 1. {Increment the support count.}
11: end for
12: end for
13: Fk = { c | c ∈ Ck ∧ σ(c)

N
≥ minsup}. {Extract the frequent k-subsequences.}

14: until Fk = ∅
15: Answer =

⋃
Fk.

Notice that the structure of the algorithm is almost identical to Apriori
algorithm for frequent itemset discovery, presented in Chapter 4. The algo-
rithm would iteratively generate new candidate k-sequences, prune candidates
whose (k − 1)-sequences are infrequent, and then count the supports of the
remaining candidates to identify the sequential patterns. The detailed aspects
of these steps are given next.

�

M07 TAN9224 02 GE C07 page 579

� �

�

7.4 Sequential Patterns 579

Candidate Generation We generate candidate k-sequences by merging a
pair of frequent (k − 1)-sequences. Although this approach is similar to the
Fk−1×Fk−1 strategy introduced in Chapter 4 for generating candidate item-
sets, there are certain differences. First, in the case of generating sequences,
we can merge a (k−1)-sequence with itself to produce a k-sequence, since. For
example, we can merge the 1-sequence 〈a〉 with itself to produce a candidate
2-sequence, 〈{a}{a}〉. Second, recall that in order to avoid generating dupli-
cate candidates, the traditional Apriori algorithm merges a pair of frequent
k-itemsets only if their first k − 1 items, arranged in lexicographic order, are
identical. In the case of generating sequences, we still use the lexicographic
order for arranging events within an element. However, the arrangement of
elements in a sequence may not follow the lexicographic order. For example,
〈{b, c}{a}{d}〉 is a viable representation of a 4-sequence, even though the
elements in the sequence are not arranged according to their lexicographic
ranks. On the other hand, 〈{c, b}{a}{d}〉 is not a viable representation of the
same 4-sequence, since the events in the first element violate the lexicographic
order.

Given a sequence s = 〈e1e2e3 . . . en〉, where the events in every element are
arranged lexicographically, we can refer to first event of e1 as the first event
of s and the last event of en as the last event of s. The criteria for merging
sequences can then be stated in the form of the following procedure.

Sequence Merging Procedure

A sequence s(1) is merged with another sequence s(2) only if the subsequence
obtained by dropping the first event in s(1) is identical to the subsequence
obtained by dropping the last event in s(2). The resulting candidate is given by
extending the sequence s(1) as follows:

1. If the last element of s(2) has only one event, append the last element of s(2)

to the end of s(1) and obtain the merged sequence.

2. If the last element of s(2) has more than one event, append the last event from
the last element of s(2) (that is absent in the last element of s(1)) to the last
element of s(1) and obtain the merged sequence.

Figure 7.7 illustrates examples of candidate 4-sequences obtained by merg-
ing pairs of frequent 3-sequences. The first candidate, 〈{1}{2}{3}{4}〉, is ob-
tained by merging 〈{1}{2}{3}〉 with 〈{2}{3}{4}〉. Since the last element of the
second sequence ({4}) contains only one element, it is simply appended to the

�

M07 TAN9224 02 GE C07 page 580

� �

�

580 Chapter 7 Association Analysis: Advanced Concepts

Figure 7.7. Example of the candidate generation and pruning steps of a sequential pattern mining
algorithm.

first sequence to generate the merged sequence. On the other hand, merging
〈{1}{5}{3}〉 with 〈{5}{3, 4}〉 produces the candidate 4-sequence 〈{1}{5}{3, 4}〉.
In this case, the last element of the second sequence ({3, 4}) contains two
events. Hence, the last event in this element (4) is added to the last element
of the first sequence ({3}) to obtain the merged sequence.

It can be shown that the sequence merging procedure is complete, i.e.,
it generates every frequent k-subsequence. This is because every frequent k-
subsequence s includes a frequent (k − 1)-sequence s1, that does not contain
the first event of s, and a frequent (k − 1)-sequence s2, that does not contain
the last event of s. Since s1 and s2 are frequent and follow the criteria
for merging sequences, they will be merged to produce every frequent k-
subsequence s as one of the candidates. Also, the sequence merging procedure
ensures that there is a unique way of generating s only by merging s1 and s2.
For example, in Figure 7.7, the sequences 〈{1}{2}{3}〉 and 〈{1}{2, 5}〉 do not
have to be merged because removing the first event from the first sequence
does not give the same subsequence as removing the last event from the
second sequence. Although 〈{1}{2, 5}{3}〉 is a viable candidate, it is generated
by merging a different pair of sequences, 〈{1}{2, 5}〉 and 〈{2, 5}{3}〉. This
example illustrates that the sequence merging procedure does not generate
duplicate candidate sequences.

Candidate Pruning A candidate k-sequence is pruned if at least one of its
(k−1)-sequences is infrequent. For example, consider the candidate 4-sequence
〈{1}{2}{3}{4}〉. We need to check if any of the 3-sequences contained in this
4-sequence is infrequent. Since the sequence 〈{1}{2}{4}〉 is contained in this

�

M07 TAN9224 02 GE C07 page 581

� �

�

7.4 Sequential Patterns 581

sequence and is infrequent, the candidate 〈{1}{2}{3}{4}〉 can be eliminated.
Readers should be able to verify that the only candidate 4-sequence that
survives the candidate pruning step in Figure 7.7 is 〈{1}{2 5}{3}〉.

Support Counting During support counting, the algorithm identifies all
candidate k-sequences belonging to a particular data sequence and increments
their support counts. After performing this step for each data sequence, the
algorithm identifies the frequent k-sequences and discards all candidate se-
quences whose support values are less than the minsup threshold.

7.4.3 Timing Constraints∗

This section presents a sequential pattern formulation where timing con-
straints are imposed on the events and elements of a pattern. To motivate
the need for timing constraints, consider the following sequence of courses
taken by two students who enrolled in a data mining class:

Student A: 〈 {Statistics} {Database Systems} {Data Mining} 〉.
Student B: 〈 {Database Systems} {Statistics} {Data Mining} 〉.

The sequential pattern of interest is 〈 {Statistics, Database Systems}
{Data Mining} 〉, which means that students who are enrolled in the data
mining class must have previously taken a course in statistics and database
systems. Clearly, the pattern is supported by both students even though they
do not take statistics and database systems at the same time. In contrast, a
student who took a statistics course ten years earlier should not be considered
as supporting the pattern because the time gap between the courses is too long.
Because the formulation presented in the previous section does not incorporate
these timing constraints, a new sequential pattern definition is needed.

Figure 7.8 illustrates some of the timing constraints that can be imposed
on a pattern. The definition of these constraints and the impact they have
on sequential pattern discovery algorithms will be discussed in the following
sections. Note that each element of the sequential pattern is associated with
a time window [l, u], where l is the earliest occurrence of an event within
the time window and u is the latest occurrence of an event within the time
window. Note that in this discussion, we allow events within an element to
occur at different times. Hence, the actual timing of the event occurrence may
not be the same as the lexicographic ordering.

�

M07 TAN9224 02 GE C07 page 582

� �

�

582 Chapter 7 Association Analysis: Advanced Concepts

Sequence:
1
3

3
5

2
4
5

1
2

3 42

u(sn) - I(s1) <= maxspan

u(sj+1) - I(sj) <= maxgap
I(sj+1) - u(sj) > mingap

Time window (w) for each element is characterized by [I,u]
where I : earliest time of occurrence of an event in w

u : latest time of occurrence of an event in w

window size
ws

Figure 7.8. Timing constraints of a sequential pattern.

The maxspan Constraint

The maxspan constraint specifies the maximum allowed time difference be-
tween the latest and the earliest occurrences of events in the entire sequence.
For example, suppose the following data sequences contain elements that occur
at consecutive time stamps (1, 2, 3, . . .), i.e., the ith element in the sequence
occurs at the ith timestamp. Assuming that maxspan = 3, the following table
contains sequential patterns that are supported and not supported by a given
data sequence.

Data Sequence, s Sequential Pattern, t Does s support t?
〈{1,3} {3,4} {4} {5} {6,7} {8} 〉 〈 {3} {4} 〉 Yes
〈{1,3} {3,4} {4} {5} {6,7} {8} 〉 〈 {3} {6} 〉 Yes
〈{1,3} {3,4} {4} {5} {6,7} {8} 〉 〈 {1,3} {6} 〉 No

In general, the longer the maxspan, the more likely it is to detect a
pattern in a data sequence. However, a longer maxspan can also capture
spurious patterns because it increases the chance for two unrelated events to
be temporally related. In addition, the pattern may involve events that are
already obsolete.

The maxspan constraint affects the support counting step of sequential
pattern discovery algorithms. As shown in the preceding examples, some data
sequences no longer support a candidate pattern when themaxspan constraint
is imposed. If we simply apply Algorithm 7.1, the support counts for some
patterns may be overestimated. To avoid this problem, the algorithm must

�

M07 TAN9224 02 GE C07 page 583

� �

�

7.4 Sequential Patterns 583

be modified to ignore cases where the interval between the first and last
occurrences of events in a given pattern is greater than maxspan.

The mingap and maxgap Constraints

Timing constraints can also be specified to restrict the time difference be-
tween two consecutive elements of a sequence. If the maximum time difference
(maxgap) is one week, then events in one element must occur within a week’s
time of the events occurring in the previous element. If the minimum time
difference (mingap) is zero, then events in one element must occur after
the events occurring in the previous element. (See Figure 7.8.) The following
table shows examples of patterns that pass or fail the maxgap and mingap
constraints, assuming that maxgap = 3 and mingap = 1. These examples
assume each element occurs at consecutive time steps.

Data Sequence, s Sequential Pattern, t maxgap mingap

〈{1,3} {3,4} {4} {5} {6,7} {8} 〉 〈 {3} {6} 〉 Pass Pass
〈{1,3} {3,4} {4} {5} {6,7} {8} 〉 〈 {6} {8} 〉 Pass Fail
〈{1,3} {3,4} {4} {5} {6,7} {8} 〉 〈 {1,3} {6} 〉 Fail Pass
〈{1,3} {3,4} {4} {5} {6,7} {8} 〉 〈 {1} {3} {8} 〉 Fail Fail

As with maxspan, these constraints will affect the support counting step
of sequential pattern discovery algorithms because some data sequences no
longer support a candidate pattern when mingap and maxgap constraints are
present. These algorithms must be modified to ensure that the timing con-
straints are not violated when counting the support of a pattern. Otherwise,
some infrequent sequences may mistakenly be declared as frequent patterns.

A side effect of using the maxgap constraint is that the Apriori principle
might be violated. To illustrate this, consider the data set shown in Figure
7.5. Without mingap or maxgap constraints, the support for 〈{2}{5}〉 and
〈{2}{3}{5}〉 are both equal to 60%. However, if mingap = 0 and maxgap = 1,
then the support for 〈{2}{5}〉 reduces to 40%, while the support for 〈{2}{3}{5}〉
is still 60%. In other words, support has increased when the number of events
in a sequence increases—which contradicts the Apriori principle. The violation
occurs because the object D does not support the pattern 〈{2}{5}〉 since the
time gap between events 2 and 5 is greater than maxgap. This problem can
be avoided by using the concept of a contiguous subsequence.

Definition 7.2 (Contiguous Subsequence). A sequence s is a contiguous
subsequence of w = 〈e1e2 . . . ek〉 if any one of the following conditions hold:

1. s is obtained from w after deleting an event from either e1 or ek,

�

M07 TAN9224 02 GE C07 page 584

� �

�

584 Chapter 7 Association Analysis: Advanced Concepts

2. s is obtained from w after deleting an event from any element ei ∈ w
that contains at least two events, or

3. s is a contiguous subsequence of t and t is a contiguous subsequence of
w.

The following examples illustrate the concept of a contiguous subsequence:

Data Sequence, s Sequential Pattern, t Is t a contiguous
subsequence of s?

〈{1} {2,3}〉 〈 {1} {2} 〉 Yes
〈{1,2} {2} {3} 〉 〈 {1} {2} 〉 Yes
〈{3,4} {1,2} {2,3} {4} 〉 〈 {1} {2} 〉 Yes
〈{1} {3} {2} 〉 〈 {1} {2} 〉 No
〈{1,2} {1} {3} {2} 〉 〈 {1} {2} 〉 No

Using the concept of contiguous subsequences, the Apriori principle can
be modified to handle maxgap constraints in the following way.

Definition 7.3 (Modified Apriori Principle). If a k-sequence is frequent, then
all of its contiguous k − 1-subsequences must also be frequent.

The modified Apriori principle can be applied to the sequential pattern
discovery algorithm with minor modifications. During candidate pruning, not
all k-sequences need to be verified since some of them may violate the maxgap
constraint. For example, if maxgap = 1, it is not necessary to check whether
the subsequence 〈{1}{2, 3}{5}〉 of the candidate 〈{1}{2, 3}{4}{5}〉 is frequent
since the time difference between elements {2, 3} and {5} is greater than one
time unit. Instead, only the contiguous subsequences of 〈{1}{2, 3}{4}{5}〉 need
to be examined. These subsequences include 〈{1}{2, 3}{4}〉, 〈{2, 3}{4}{5}〉,
〈{1}{2}{4}{5}〉, and 〈{1}{3}{4}{5}〉.

The Window Size Constraint

Finally, events within an element sj do not have to occur at the same time. A
window size threshold (ws) can be defined to specify the maximum allowed
time difference between the latest and earliest occurrences of events in any
element of a sequential pattern. A window size of 0 means all events in the
same element of a pattern must occur simultaneously.

The following example uses ws = 2 to determine whether a data se-
quence supports a given sequence (assuming mingap = 0, maxgap = 3, and
maxspan =∞).

�

M07 TAN9224 02 GE C07 page 585

� �

�

7.4 Sequential Patterns 585

Data Sequence, s Sequential Pattern, t Does s support t?
〈{1,3} {3,4} {4} {5} {6,7} {8} 〉 〈 {3,4} {5} 〉 Yes
〈{1,3} {3,4} {4} {5} {6,7} {8} 〉 〈 {4,6} {8} 〉 Yes
〈{1,3} {3,4} {4} {5} {6,7} {8} 〉 〈 {3, 4, 6} {8} 〉 No
〈{1,3} {3,4} {4} {5} {6,7} {8} 〉 〈 {1,3,4} {6,7,8} 〉 No

In the last example, although the pattern 〈{1,3,4} {6,7,8}〉 satisfies the win-
dow size constraint, it violates the maxgap constraint because the maximum
time difference between events in the two elements is 5 units. The window
size constraint also affects the support counting step of sequential pattern
discovery algorithms. If Algorithm 7.1 is applied without imposing the window
size constraint, the support counts for some of the candidate patterns might
be underestimated, and thus some interesting patterns may be lost.

7.4.4 Alternative Counting Schemes∗

There are multiple ways of defining a sequence given a data sequence. For ex-
ample, if our database involves long sequences of events, we might be interested
in finding subsequences that occur multiple times in the same data sequence.
Hence, instead of counting the support of a subsequence as the number of
data sequences it is contained in, we can also take into account the number
of times a subsequence is contained in a data sequence. This viewpoint gives
rise to several different formulations for counting the support of a candidate
k-sequence from a database of sequences. For illustrative purposes, consider
the problem of counting the support for sequence 〈{p}{q}〉, as shown in Figure
7.9. Assume that ws = 0, mingap = 0, maxgap = 2, and maxspan = 2.

• COBJ: One occurrence per object.
This method looks for at least one occurrence of a given sequence in
an object’s timeline. In Figure 7.9, even though the sequence 〈(p)(q)〉
appears several times in the object’s timeline, it is counted only once—
with p occurring at t = 1 and q occurring at t = 3.

• CWIN: One occurrence per sliding window.
In this approach, a sliding time window of fixed length (maxspan) is
moved across an object’s timeline, one unit at a time. The support
count is incremented each time the sequence is encountered in the sliding
window. In Figure 7.9, the sequence 〈{p}{q}〉 is observed six times using
this method.

• CMINWIN: Number of minimal windows of occurrence.
A minimal window of occurrence is the smallest window in which the

�

M07 TAN9224 02 GE C07 page 586

� �

�

586 Chapter 7 Association Analysis: Advanced Concepts

1 2 3 4 5 6 7

p p
p
q

p
q

p
q qq

Object’s Timeline
Sequence: (p) (q)

(Method, Count)

COBJ 1

CWIN 6

CMINWIN 4

CDIST_O 8

CDIST 5

Figure 7.9. Comparing different support counting methods.

sequence occurs given the timing constraints. In other words, a minimal
window is the time interval such that the sequence occurs in that time
interval, but it does not occur in any of the proper subintervals of it. This
definition can be considered as a restrictive version of CWIN, because
its effect is to shrink and collapse some of the windows that are counted
by CWIN. For example, sequence 〈{p}{q}〉 has four minimal window
occurrences: (1) the pair (p: t = 2, q: t = 3), (2) the pair (p: t = 3, q:
t = 4), (3) the pair (p: t = 5, q: t = 6), and (4) the pair (p: t = 6, q:
t = 7). The occurrence of event p at t = 1 and event q at t = 3 is not a
minimal window occurrence because it contains a smaller window with
(p: t = 2, q: t = 3), which is indeed a minimal window of occurrence.

• CDIST O: Distinct occurrences with possibility of event-timestamp
overlap.

�

M07 TAN9224 02 GE C07 page 587

� �

�

7.5 Subgraph Patterns 587

A distinct occurrence of a sequence is defined to be the set of event-
timestamp pairs such that there has to be at least one new event-
timestamp pair that is different from a previously counted occurrence.
Counting all such distinct occurrences results in the CDIST O method.
If the occurrence time of events p and q is denoted as a tuple (t(p), t(q)),
then this method yields eight distinct occurrences of sequence 〈{p}{q}〉
at times (1,3), (2,3), (2,4), (3,4), (3,5), (5,6), (5,7), and (6,7).

• CDIST: Distinct occurrences with no event-timestamp overlap allowed.
In CDIST O above, two occurrences of a sequence were allowed to have
overlapping event-timestamp pairs, e.g., the overlap between (1,3) and
(2,3). In the CDIST method, no overlap is allowed. Effectively, when an
event-timestamp pair is considered for counting, it is marked as used and
is never used again for subsequent counting of the same sequence. As
an example, there are five distinct, non-overlapping occurrences of the
sequence 〈{p}{q}〉 in the diagram shown in Figure 7.9. These occurrences
happen at times (1,3), (2,4), (3,5), (5,6), and (6,7). Observe that these
occurrences are subsets of the occurrences observed in CDIST O.

One final point regarding the counting methods is the need to determine
the baseline for computing the support measure. For frequent itemset mining,
the baseline is given by the total number of transactions. For sequential pattern
mining, the baseline depends on the counting method used. For the COBJ
method, the total number of objects in the input data can be used as the
baseline. For the CWIN and CMINWIN methods, the baseline is given by the
sum of the number of time windows possible in all objects. For methods such
as CDIST and CDIST O, the baseline is given by the sum of the number of
distinct timestamps present in the input data of each object.

7.5 Subgraph Patterns

This section describes the application of association analysis methods to graphs,
which are more complex entities than itemsets and sequences. A number
of entities such as chemical compounds, 3-D protein structures, computer
networks, and tree structured XML documents can be modeled using a graph
representation, as shown in Table 7.8.

A useful data mining task to perform on this type of data is to derive a set
of frequently occurring substructures in a collection of graphs. Such a task is
known as frequent subgraph mining. A potential application of frequent
subgraph mining can be seen in the context of computational chemistry.

�

M07 TAN9224 02 GE C07 page 588

� �

�

588 Chapter 7 Association Analysis: Advanced Concepts

Table 7.8. Graph representation of entities in various application domains.

Application Graphs Vertices Edges

Web mining Collection of inter-linked Web pages Hyperlink between pages
Web pages

Computational Chemical compounds Atoms or Bond between atoms or
chemistry ions ions

Computer Computer networks Computers and Interconnection between
security servers machines

Semantic Web XML documents XML elements Parent-child relationship
between elements

Bioinformatics 3-D Protein structures Amino acids Contact residue

Each year, new chemical compounds are designed for the development of
pharmaceutical drugs, pesticides, fertilizers, etc. Although the structure of
a compound is known to play a major role in determining its chemical prop-
erties, it is difficult to establish their exact relationship. Frequent subgraph
mining can aid this undertaking by identifying the substructures commonly
associated with certain properties of known compounds. Such information can
help scientists to develop new chemical compounds that have certain desired
properties.

This section presents a methodology for applying association analysis to
graph-based data. The section begins with a review of some of the basic
graph-related concepts and definitions. The frequent subgraph mining problem
is then introduced, followed by a description of how the traditional Apriori
algorithm can be extended to discover such patterns.

7.5.1 Preliminaries

Graphs

A graph is a data structure that can be used to represent relationships among
a set of entities. Mathematically, a graph G = (V,E) is composed of a vertex
set V and a set of edges E connecting pairs of vertices. Each edge is denoted
by a vertex pair (vi, vj), where vi, vj ∈ V . A label l(vi) can be assigned to each
vertex vi representing the name of an entity. Similarly each edge (vi, vj) can
also be associated with a label l(vi, vj) describing the relationship between a
pair of entities. Table 7.8 shows the vertices and edges associated with different
types of graphs. For example, in a web graph, the vertices correspond to web
pages and the edges represent the hyperlinks between web pages.

Although the size of a graph can generally be represented either by the
number of its vertices or its edges, in this chapter, we will consider the size of

�

M07 TAN9224 02 GE C07 page 589

� �

�

7.5 Subgraph Patterns 589

A

A

A

A

A

B

B

B

B

B

B

B B

A

A A

Figure 7.10. Graph isomorphism

a graph as its number of edges. Further, we will denote a graph with k edges
as a k-graph.

Graph Isomorphism

A basic primitive that is needed to work with graphs is to decide if two
graphs with the same number of vertices and edges are equivalent to each
other, i.e., represent the same structure of relationships among entities. Graph
isomorphism provides a formal definition of graph equivalence that serves as
a building block for computing similarities among graphs.

Definition 7.4 (Graph Isomorphism). Two graphs G1 = (V1, E1) and G2 =
(V2, E2) are isomorphic to each other (denoted as G1
 G2) if there exists
functions, fv : V1 → V2 and fe : E1 → E2, that map every vertex and edge,
respectively, from G1 to G2, such that the following properties are satisfied:

1. Edge-preserving property : Two vertices va and vb in G1 form an edge in
G1 if and only if the vertices fv(va) and fv(vb) form an edge in G2.

2. Label-preserving property : The labels of two vertices va and vb in G1

are equal if and only if the labels of fv(va) and fv(vb) in G2 are equal.
Similarly, the labels of two edges (va, vb) and (vc, vd) in G1 are equal if
and only if the labels of fe(va, vb) and fe(vc, vd) are equal.

The mapping functions (fv, fe) constitute the isomorphism between the
graphs G1 and G2. This is denoted as (fv, fe) : G1 → G2. An automorphism is

�

M07 TAN9224 02 GE C07 page 590

� �

�

590 Chapter 7 Association Analysis: Advanced Concepts

a special type of isomorphism where a graph is mapped unto itself, i.e., V1 = V2

and E1 = E2. Figure 7.10 shows an example of a graph automorphism where
the set of vertex labels in both graphs is {A,B}. Even though both graphs look
different, they are actually isomorphic to each other because there is a one-to-
one mapping between the vertices and edges of both graphs. Since the same
graph can be depicted in multiple forms, detecting graph automorphism is a
non-trivial problem. A common approach to solving this problem is to assign a
canonical label to every graph, such that every automorphism of a graph shares
the same canonical label. Canonical labels can also help in arranging graphs
in a particular (canonical) order and checking for duplicates. Techniques for
constructing canonical labels are not covered in this chapter, but interested
readers may consult the Bibliographic Notes at the end of this chapter for
more details.

Subgraphs

Definition 7.5 (Subgraph). A graph G′ = (V ′, E′) is a subgraph of another
graph G = (V,E) if its vertex set V ′ is a subset of V and its edge set E′ is a
subset of E, such that the endpoints of every edge in E′ is contained in V ′.
The subgraph relationship is denoted as G′ ⊆S G.

Example 7.2. Figure 7.11 shows a graph that contains 6 vertices and 11
edges along with one of its possible subgraphs. The subgraph, which is shown
in Figure 7.11(b), contains only 4 of the 6 vertices and 4 of the 11 edges in
the original graph.

b a

a

b

c c

q

qp

p

p

p

r

r
t t

s
a

a

b

c

p

p

t

s

(a) Labeled graph. (b) Subgraph.

Figure 7.11. Example of a subgraph.

�

M07 TAN9224 02 GE C07 page 591

� �

�

7.5 Subgraph Patterns 591

support = 80%

support = 60%

support = 40%

1 1

1 1

1

1

1
1

1

1

1

G1

G3 G4

G5

Subgraph g1

Subgraph g2

Subgraph g3

G2

1 1

1

1

11

1

1

11 1

1

Graph Data Set

1

1

1

11

a

a

a

a

a a

a

a

d

b

b

b

bc

c

c

c

d

d
d

d

d

d

e

e

e

e

e

e

e

e

Figure 7.12. Computing the support of a subgraph from a set of graphs.

Definition 7.6 (Support). Given a collection of graphs G, the support for
a subgraph g is defined as the fraction of all graphs that contain g as its
subgraph, i.e.,

s(g) =
|{Gi|g ⊆S Gi, Gi ∈ G}|

|G| . (7.2)

Example 7.3. Consider the five graphs, G1 through G5, shown in Figure
7.12, where the set of vertex labels ranges from a to e but all the edges in
the graphs have the same label. The graph g1 shown on the top right-hand
diagram is a subgraph of G1, G3, G4, and G5. Therefore, s(g1) = 4/5 = 80%.
Similarly, we can show that s(g2) = 60% because g2 is a subgraph of G1, G2,
and G3, while s(g3) = 40% because g3 is a subgraph of G1 and G3.

7.5.2 Frequent Subgraph Mining

This section presents a formal definition of the frequent subgraph mining
problem and illustrates the complexity of this task.

Definition 7.7 (Frequent Subgraph Mining). Given a set of graphs G and a
support threshold, minsup, the goal of frequent subgraph mining is to find all
subgraphs g such that s(g) ≥ minsup.

�

M07 TAN9224 02 GE C07 page 592

� �

�

592 Chapter 7 Association Analysis: Advanced Concepts

While this formulation is generally applicable to any type of graph, the
discussion presented in this chapter focuses primarily on undirected, con-
nected graphs. The definitions of these graphs are given below:

1. A graph is undirected if it contains only undirected edges. An edge
(vi, vj) is undirected if it is indistinguishable from (vj , vi).

2. A graph is connected if there exists a path between every pair of vertices
in the graph, in which a path is a sequence of vertices 〈v1v2 . . . vk〉 such
that there is an edge connecting every pair of adjacent vertices (vi, vi+1)
in the sequence.

Methods for handling other types of subgraphs (directed or disconnected) are
left as an exercise to the readers (see Exercise 15 on page 627).

Mining frequent subgraphs is a computationally expensive task that is
much more challenging than mining frequent itemsets or frequent subsequences.
The additional complexity in frequent subgraph mining arises due to two
major reasons. First, computing the support of a subgraph g given a collection
of graphs G is not as straightforward as for itemsets or sequences. This is
because it is a non-trivial problem to check if a subgraph g is contained in a
graph g′ ∈ G, since the same graph g can be present in a different form in g′

due to graph isomorphism. The problem of verifying if a graph is a subgraph
of another graph is known as the subgraph isomorphism problem, which is
proven to be NP-complete, i.e., there is no known algorithm for this problem
that runs in polynomial time.

Second, the number of candidate subgraphs that can be generated from a
given set of vertex and edge labels is far larger than the number of candidate
itemsets generated using traditional market basket data sets. This is because
of the following reasons:

1. A collection of items forms a unique itemset but the same set of edge
labels can be arranged in exponential number of ways in a graph, with
multiple choices of vertex labels at their endpoints. For example, items
p, q, and r form a unique itemset {p, q, r}, but three edges with labels
p, q, and r can form multiple graphs, some examples of which are shown
in Figure 7.13.

2. An item can appear at most once in an itemset but an edge label can
appear multiple times in a graph, because different arrangements of
edges with the same edge label represent different graphs. For example,
an item p can only generate a single candidate itemset, which is the
item itself. However, using a single edge label p and vertex label a, we

�

M07 TAN9224 02 GE C07 page 593

� �

�

7.5 Subgraph Patterns 593

p

r

q qp

r

r

q

p

p rq

Figure 7.13. Examples of graphs generated using three edges with labels p, q, and r.

p

p

p

p

p

p pp

p p p
p

(a) 1-graph (b) 2-graph

(b) 3-graphs

Figure 7.14. Graphs of sizes one to three generated using a single edge label p and vertex label a.

can generate a number of graphs with different sizes, as shown in Figure
7.14.

Because of the above reasons, it is challenging to enumerate all possible
subgraphs that can be generated using a given set of vertex and edge labels.
Figure 7.15 shows some examples of 1-graphs, 2-graphs, and 3-graphs that
can be generated using vertex labels {a, b} and edge labels {p, q}. It can be
seen that even using two vertex and edge labels, enumerating all possible
graphs becomes difficult even for size two. Hence, it is highly impractical to
use a brute-force method for frequent subgraph mining, that enumerates all
possible subgraphs and counts their respective supports.

However, note that the Apriori principle still holds for subgraphs because
a k-graph is frequent only if all of its (k − 1)-subgraphs are frequent. Hence,

�

M07 TAN9224 02 GE C07 page 594

� �

�

594 Chapter 7 Association Analysis: Advanced Concepts

p

p

p

p

p

p p

p

p p pp

k = 1

p

p

q

q

q

k = 2

p q q q

p p p q q q

p p p q q q

k = 3

q

q

q
q

q

q

q q q

Figure 7.15. Examples of graphs generated using two edge labels, p and q, and two vertex labels, a
and b, for sizes varying from one to three.

despite the computational challenges in enumerating all possible candidate
subgraphs, we can use the Apriori principle to generate candidate k-subgraphs
using frequent (k−1)-subgraphs. Algorithm 7.2 presents a generic Apriori -like
approach for frequent subgraph mining. In the following, we briefly describe
the three main steps of the algorithm: candidate generation, candidate prun-
ing, and support counting.

�

M07 TAN9224 02 GE C07 page 595

� �

�

7.5 Subgraph Patterns 595

Algorithm 7.2 Apriori -like algorithm for frequent subgraph mining.
1: F1 ← Find all frequent 1-subgraphs in G
2: F2 ← Find all frequent 2-subgraphs in G
3: k = 2.
4: repeat
5: k = k + 1.
6: Ck = candidate-gen(Fk−1). {Generate candidate k-subgraphs.}
7: Ck = candidate-prune(Ck,Fk−1). {Perform candidate pruning.}
8: for each graph g ∈ G do
9: Ct = subgraph(Ck, g). {Identify all candidates contained in t.}

10: for each candidate k-subgraph c ∈ Ct do
11: σ(c) = σ(c) + 1. {Increment the support count.}
12: end for
13: end for
14: Fk = { c | c ∈ Ck ∧ σ(c)

N
≥ minsup}. {Extract the frequent k-subgraphs.}

15: until Fk = ∅
16: Answer =

⋃
Fk.

7.5.3 Candidate Generation

A pair of frequent (k−1)-subgraphs are merged to form a candidate k-subgraph
if they share a common (k − 2)-subgraph, known as their core. Given a
common core, the subgraph merging procedure can be described as follows:

Subgraph Merging Procedure

Let G(k−1)
i and G(k−1)

j be two frequent (k − 1)-subgraphs. Let G(k−1)
i consist of a

core G(k−2)
i and an extra edge (u, u′), where u is part of the core. This is depicted

in Figure 7.16(a), where the core is represented by a square and the extra edge is
represented by a line between u and u′. Similarly, let G(k−1)

j consist of the core
G

(k−2)
j and the extra edge, (v, v′), as shown in Figure 7.16(b).
Using these cores, the two graphs are merged only if there exists an

automorphism between the two cores: (fv, fe) : G(k−2)
i → G

(k−2)
j . The resulting

candidates are obtained by adding an edge to G(k−1)
j as follows:

1. If fv(u) = v, i.e., u is mapped to v in the automorphism between the cores,
then generate a candidate by adding (v, u′) to G(k−1)

j , as shown in Figure 7.17(a).

2. If fv(u) = w �= v, i.e., u is not mapped to v but a different vertex w, then generate
a candidate by adding (w, u′) to G(k−1)

j . Additionally, if the labels of u′ and v′

are identical, then generate another candidate by adding (w, v′) to G(k−1)
j , as

shown in Figure 7.17(b).

�

M07 TAN9224 02 GE C07 page 596

� �

�

596 Chapter 7 Association Analysis: Advanced Concepts

u u'

Core: Gi
(k-2)

(a) G
(k−1)
i .

v v'

Core: Gj
(k-2)

(b) G
(k−1)
j .

Figure 7.16. A compact representation of a pair of frequent (k−1)-subgraphs considered for merging.

v v'

Core: Gj
(k-2)

u u'

Core: Gi
(k-2)

v v'

Core: Gj
(k-2)

u'

(a) Merging subgraphs when fv(u) = v (shown using dotted line).

v v'

Core: Gj
(k-2)

u u'

Core: Gi
(k-2)

w

v'

Core: Gj
(k-2)

u'

v

w

v'

Core: Gj
(k-2)

v

if l(u') = l(v')

and
w

(b) Merging subgraphs when fv(u) = w �= v (shown using dotted line).

Figure 7.17. Illustration of Candidate Merging Procedures.

Figure 7.18(a) shows the candidate subgraphs generated by merging G1

and G2. The shaded vertices and thicker lines represent the core vertices and
edges, respectively, of the two graphs, while the dotted lines represent the
mapping between the two cores. Note that this example illustrates condition
1 of the subgraph merging procedure, since the endpoints of the extra edges
in both the graphs are mapped to each other. This results in a single candi-
date subgraph, G3. On the other hand, Figure 7.18(b) shows an example of
condition 2 of the subgraph merging procedure, where the endpoints of the
extra edges do not map to each other and the labels of the new endpoints are

�

M07 TAN9224 02 GE C07 page 597

� �

�

7.5 Subgraph Patterns 597

b

a c

b

a c

b

a c

(a) Merging graphs G1 and G2 when the endpoints of the extra edges are not
mapped to each other, and the labels of the new endpoints are identical.

a

a

a

a

a a

aa

a

a

a

a

(b) Merging graphs G4 and G5 when the endpoints of the extra edges are
mapped to each other.

Figure 7.18. Two examples of candidate k-subgraph generation using a pair of (k − 1)-subgraphs.

identical. Merging the two graphs G4 and G5 thus results in two subgraphs,
as shown in the Figure as G6 and G7.

The approach presented above of merging two frequent (k − 1)-subgraphs
is similar to the Fk−1 × Fk−1 candidate generation strategy introduced for
itemsets in Chapter 4, and is guaranteed to exhaustively generate all frequent
k-subgraphs as viable candidates (see Exercise 18). However, there are several
notable differences in the candidate generation procedures of itemsets and
subgraphs.

1. Merging with Self : Unlike itemsets, a frequent (k − 1)-subgraph can
be merged with itself to create a candidate k-subgraph. This is especially
important when a k-graph contains repeating units of edges contained
in a (k − 1)-subgraph. As an example, the 3-graphs shown in Figure

�

M07 TAN9224 02 GE C07 page 598

� �

�

598 Chapter 7 Association Analysis: Advanced Concepts

a

a

a

aa

b b

b

b

bb

and

and

Figure 7.19. Multiplicity of cores for the same pair of (k − 1)-subgraphs.

7.14 can only be generated from the 2-graphs shown in Figure 7.14, if
self-merging is allowed.

2. Multiplicity of Candidates: As described in the subgraph merging
procedure, a pair of frequent (k − 1)-subgraphs sharing a common core
can generate multiple candidates. As an example, if the labels at the
endpoints of the extra edges are identical, i.e., l(u′) = l(v′), we will
generate two candidates as shown in Figure 7.18(b). On the other hand,
merging a pair of frequent itemsets or subsequences generates a unique
candidate itemset or subsequence.

3. Multiplicity of Cores: Two frequent (k−1)-subgraphs can share more
than one core of size k−2 that is common in both the graphs. Figure 7.19
shows an example of a pair of graphs that share two common cores. Since
every choice of a common core can result in a different way of merging
the two graphs, this can potentially contribute to the multiplicity of
candidates generated by merging the same pair of subgraphs.

4. Multiplicity of Automorphisms: The common cores of the two graphs
can be mapped to each other using multiple choices of mapping func-
tions, each resulting in a different automorphism. To illustrate this,
Figure 7.20 shows a pair of graphs that share a common core of size
four, represented as a square. The first core can exist in three different
forms (rotated views), each resulting in a different mapping between the
two cores. Since the choice of the mapping function affects the candidate
generation procedure, every automorphism of the core can potentially
result in a different set of candidates, as shown in Figure 7.20.

�

M07 TAN9224 02 GE C07 page 599

� �

�

7.5 Subgraph Patterns 599

b

p

p

p

p

q
b

p

p

p

p

r
b

p

p

p

p

q

br

b

p

p

p

p

q
b

p

p

p

p

r
b

p

p

p

p

q
b

r
p

p

p

p

q
b

r

b

p

p

p

p

q

b

p

p

p

p

r
b

p

p

p

p

q

b

r
p

p

p

pq

r
b

and

and

Figure 7.20. An example showing multiple ways of mapping the cores of two (k − 1)-subgraphs with
one another.

5. Generation of Duplicate Candidates: In the case of itemsets, gen-
eration of duplicate candidates is avoided by the use of lexicographic
ordering, such that two frequent k-itemsets are merged only if their first
k−1 items, arranged in lexicographic order, are identical. Unfortunately,
in the case of subgraphs, there does not exist a notion of lexicographic
ordering among the vertices or edges of a graph. Hence, the same candi-
date k-subgraph can be generated by merging two different pairs of k−1-
subgraphs. Figure 7.21 shows an example of a candidate 4-subgraph that
can be generated in two different ways, using different pairs of frequent
3-subgraphs. Thus, it is necessary to check for duplicates and eliminate
the redundant graphs during candidate pruning.

Algorithm 7.3 presents the complete procedure for generating the set of all
candidate k-subgraphs, Ck, using the set of frequent (k− 1)-subgraphs, Fk−1.
We consider merging every pair of subgraphs in Fk−1, including pairs involving
the same subgraph twice (to ensure self-merging). For every pair of (k − 1)-
subgraphs, we consider all possible connected cores of size k − 2, that can
be constructed from the two graphs by removing an edge from each graph.

�

M07 TAN9224 02 GE C07 page 600

� �

�

600 Chapter 7 Association Analysis: Advanced Concepts

dd dd

dd dd

Figure 7.21. Different pairs of (k− 1)-subgraphs can generate the same candidate k-subgraph, thus
resulting in duplicate candidates.

If the two cores are isomorphic, we consider all possible mappings between
the vertices and edges of the two cores. For every such mapping, we employ
the subgraph merging procedure to produce candidate k-subgraphs, that are
added to Ck.

Algorithm 7.3 Procedure for candidate generation: candidate-gen(Fk−1).
1: Ck = ∅.
2: for each pair, G

(k−1)
i ∈ Fk−1 and G

(k−1)
j ∈ Fk−1, i ≤ j do

3: {Considering all pairs of frequent (k − 1)-subgraphs for merging.}
4: for each pair, ei ∈ G

(k−1)
i and ej ∈ G

(k−1)
j do

5: {Finding all common cores between a pair of frequent (k − 1)-subgraphs.}
6: G

(k−2)
i = G

(k−1)
i \ ei. {Removing an edge from G

(k−1)
i .}

7: G
(k−2)
j = G

(k−1)
j \ ej . {Removing an edge from G

(k−1)
j .}

8: if G
(k−2)
i 	 G

(k−2)
j AND G

(k−2)
i and G

(k−2)
j are connected graphs then

9: {G(k−2)
i and G

(k−2)
j are common cores of G

(k−1)
i and G

(k−1)
j , respectively.}

10: for each (fv, fe) : G
(k−2)
i → G

(k−2)
j do

11: {Generating candidates for every automorphism between the cores.}
12: Ck = Ck

⋃
subgraph-merge(G

(k−2)
i ,G

(k−2)
j ,fv,fe,ei,ej).

13: end for
14: end if
15: end for
16: end for
17: Answer = Ck.

�

M07 TAN9224 02 GE C07 page 601

� �

�

7.6 Infrequent Patterns∗ 601

7.5.4 Candidate Pruning

After the candidate k-subgraphs are generated, the candidates whose (k − 1)-
subgraphs are infrequent need to be pruned. The pruning step can be per-
formed by identifying all possible connected (k − 1)-subgraphs that can be
constructed by removing one edge from a candidate k-subgraph and then
checking if they have already been identified as frequent. If any of the (k − 1)-
subgraphs are infrequent, the candidate k-subgraph is discarded. Also, du-
plicate candidates need to be detected and eliminated. This can be done by
comparing the canonical labels of candidate graphs, since the canonical labels
of duplicate graphs will be identical. Canonical labels can also help in checking
if a (k − 1)-subgraph contained in a candidate k-subgraph is frequent or not,
by matching its canonical label with that of every frequent (k − 1)-subgraph
in Fk−1.

7.5.5 Support Counting

Support counting is also a potentially costly operation because all the can-
didate subgraphs contained in each graph G ∈ G must be determined. One
way to speed up this operation is to maintain a list of graph IDs associated
with each frequent (k−1)-subgraph. Whenever a new candidate k-subgraph is
generated by merging a pair of frequent (k−1)-subgraphs, their corresponding
lists of graph IDs are intersected. Finally, the subgraph isomorphism tests are
performed on the graphs in the intersected list to determine whether they
contain a particular candidate subgraph.

7.6 Infrequent Patterns∗

The association analysis formulation described so far is based on the premise
that the presence of an item in a transaction is more important than its
absence. As a consequence, patterns that are rarely found in a database are
often considered to be uninteresting and are eliminated using the support
measure. Such patterns are known as infrequent patterns.

Definition 7.8 (Infrequent Pattern). An infrequent pattern is an itemset or
a rule whose support is less than the minsup threshold.

Although a vast majority of infrequent patterns are uninteresting, some
of them might be useful to the analysts, particularly those that correspond
to negative correlations in the data. For example, the sale of DVDs and VCRs
together is low because any customer who buys a DVD will most likely not buy

�

M07 TAN9224 02 GE C07 page 602

� �

�

602 Chapter 7 Association Analysis: Advanced Concepts

a VCR, and vice versa. Such negative-correlated patterns are useful to help
identify competing items, which are items that can be substituted for one
another. Examples of competing items include tea versus coffee, butter versus
margarine, regular versus diet soda, and desktop versus laptop computers.

Some infrequent patterns may also suggest the occurrence of interesting
rare events or exceptional situations in the data. For example, if {Fire = Yes}
is frequent but {Fire = Yes, Alarm = On} is infrequent, then the latter is an
interesting infrequent pattern because it may indicate faulty alarm systems.
To detect such unusual situations, the expected support of a pattern must
be determined, so that, if a pattern turns out to have a considerably lower
support than expected, it is declared as an interesting infrequent pattern.

Mining infrequent patterns is a challenging endeavor because there is an
enormous number of such patterns that can be derived from a given data set.
More specifically, the key issues in mining infrequent patterns are: (1) how
to identify interesting infrequent patterns, and (2) how to efficiently discover
them in large data sets. To get some perspective on various types of interesting
infrequent patterns, two related concepts—negative patterns and negatively
correlated patterns—are introduced in Sections 7.6.1 and 7.6.2, respectively.
The relationships among these patterns are elucidated in Section 7.6.3. Finally,
two classes of techniques developed for mining interesting infrequent patterns
are presented in Sections 7.6.5 and 7.6.6.

7.6.1 Negative Patterns

Let I = {i1, i2, . . . , id} be a set of items. A negative item, ik, denotes the
absence of item ik from a given transaction. For example, coffee is a negative
item whose value is 1 if a transaction does not contain coffee.

Definition 7.9 (Negative Itemset). A negative itemset X is an itemset that
has the following properties: (1) X = A∪B, where A is a set of positive items,
B is a set of negative items, |B| ≥ 1, and (2) s(X) ≥ minsup.
Definition 7.10 (Negative Association Rule). A negative association rule is
an association rule that has the following properties: (1) the rule is extracted
from a negative itemset, (2) the support of the rule is greater than or equal to
minsup, and (3) the confidence of the rule is greater than or equal to minconf.

The negative itemsets and negative association rules are collectively known
as negative patterns throughout this chapter. An example of a negative
association rule is tea −→ coffee, which may suggest that people who drink
tea tend to not drink coffee.

�

M07 TAN9224 02 GE C07 page 603

� �

�

7.6 Infrequent Patterns∗ 603

7.6.2 Negatively Correlated Patterns

Section 4.7.1 on page 258 described how correlation analysis can be used to
analyze the relationship between a pair of categorical variables. Measures such
as interest factor (Equation 4.5) and the φ-coefficient (Equation 4.8) were
shown to be useful for discovering itemsets that are positively correlated. This
section extends the discussion to negatively correlated patterns.

Definition 7.11 (Negatively Correlated Itemset). An itemset X, which is
defined as X = {x1, x2, . . . , xk}, is negatively correlated if

s(X) <
k∏

j=1

s(xj) = s(x1)× s(x2)× . . .× s(xk), (7.3)

where s(x) is the support of the item x.

Note that the support of an itemset is an estimate of the probability
that a transaction contains the itemset. Hence, the right-hand side of the
preceding expression,

∏k
j=1 s(xj), represents an estimate of the probability

that all the items in X are statistically independent. Definition 7.11 suggests
that an itemset is negatively correlated if its support is below the expected
support computed using the statistical independence assumption. The smaller
s(X), the more negatively correlated is the pattern.

Definition 7.12 (Negatively Correlated Association Rule). An association
rule X −→ Y is negatively correlated if

s(X ∪ Y) < s(X)s(Y), (7.4)

where X and Y are disjoint itemsets; i.e., X ∪ Y = ∅.
The preceding definition provides only a partial condition for negative

correlation between items in X and items in Y . A full condition for negative
correlation can be stated as follows:

s(X ∪ Y) <
∏

i

s(xi)
∏

j

s(yj), (7.5)

where xi ∈ X and yj ∈ Y . Because the items in X (and in Y) are often
positively correlated, it is more practical to use the partial condition to de-
fine a negatively correlated association rule instead of the full condition. For
example, although the rule

{eyeglass, lens cleaner} −→ {contact lens, saline solution}

�

M07 TAN9224 02 GE C07 page 604

� �

�

604 Chapter 7 Association Analysis: Advanced Concepts

is negatively correlated according to Inequality 7.4, eyeglass is positively
correlated with lens cleaner and contact lens is positively correlated with
saline solution. If Inequality 7.5 is applied instead, such a rule could be
missed because it may not satisfy the full condition for negative correlation.

The condition for negative correlation can also be expressed in terms
of the support for positive and negative itemsets. Let X and Y denote the
corresponding negative itemsets for X and Y , respectively. Since

s(X ∪ Y)− s(X)s(Y)

= s(X ∪ Y)−
[
s(X ∪ Y) + s(X ∪ Y)

][
s(X ∪ Y) + s(X ∪ Y)

]

= s(X ∪ Y)
[
1− s(X ∪ Y)− s(X ∪ Y)− s(X ∪ Y)

]
− s(X ∪ Y)s(X ∪ Y)

= s(X ∪ Y)s(X ∪ Y)− s(X ∪ Y)s(X ∪ Y),

the condition for negative correlation can be stated as follows:

s(X ∪ Y)s(X ∪ Y) < s(X ∪ Y)s(X ∪ Y). (7.6)

The negatively correlated itemsets and association rules are known as nega-
tively correlated patterns throughout this chapter.

7.6.3 Comparisons among Infrequent Patterns, Negative
Patterns, and Negatively Correlated Patterns

Infrequent patterns, negative patterns, and negatively correlated patterns are
three closely related concepts. Although infrequent patterns and negatively
correlated patterns refer only to itemsets or rules that contain positive items,
while negative patterns refer to itemsets or rules that contain both positive
and negative items, there are certain commonalities among these concepts, as
illustrated in Figure 7.22.

First, note that many infrequent patterns have corresponding negative
patterns. To understand why this is the case, consider the contingency table
shown in Table 7.9. If X ∪ Y is infrequent, then it is likely to have a corre-
sponding negative itemset unless minsup is too high. For example, assuming
that minsup ≤ 0.25, if X∪Y is infrequent, then the support for at least one of
the following itemsets, X ∪Y , X ∪ Y , or X ∪ Y , must be higher than minsup
since the sum of the supports in a contingency table is 1.

�

M07 TAN9224 02 GE C07 page 605

� �

�

7.6 Infrequent Patterns∗ 605

Infrequent Patterns

Frequent Patterns

Negative
Patterns

Negatively
Correlated
Patterns

Figure 7.22. Comparisons among infrequent patterns, negative patterns, and negatively correlated
patterns.

Table 7.9. A two-way contingency table for the association rule X −→ Y .

Y Y

X s(X ∪ Y) s(X ∪ Y) s(X)

X s(X ∪ Y) s(X ∪ Y) s(X)

s(Y) s(Y) 1

Second, note that many negatively correlated patterns also have corre-
sponding negative patterns. Consider the contingency table shown in Table
7.9 and the condition for negative correlation stated in Inequality 7.6. If X
and Y have strong negative correlation, then

s(X ∪ Y)× s(X ∪ Y)� s(X ∪ Y)× s(X ∪ Y).

Therefore, either X ∪ Y or X ∪ Y , or both, must have relatively high support
when X and Y are negatively correlated. These itemsets correspond to the
negative patterns. Finally, because the lower the support of X ∪ Y , the more
negatively correlated is the pattern, infrequent patterns tend to be stronger
negatively correlated patterns than frequent ones.

�

M07 TAN9224 02 GE C07 page 606

� �

�

606 Chapter 7 Association Analysis: Advanced Concepts

null

ba c d e

decebeaeadacab

abc abd abe

abcd

acd

abce abde bcde

ace ade bcd bce bde cde

bdbc cd

abcde

acde

Maximal Frequent
Itemset

 Frequent
 Itemset
Border

Frequent

Infrequent

Figure 7.23. Frequent and infrequent itemsets.

7.6.4 Techniques for Mining Interesting Infrequent Patterns

In principle, infrequent itemsets are given by all itemsets that are not extracted
by standard frequent itemset generation algorithms such as Apriori and FP-
growth. These itemsets correspond to those located below the frequent itemset
border shown in Figure 7.23.

Since the number of infrequent patterns can be exponentially large, es-
pecially for sparse, high-dimensional data, techniques developed for mining
infrequent patterns focus on finding only interesting infrequent patterns. An
example of such patterns includes the negatively correlated patterns discussed
in Section 7.6.2. These patterns are obtained by eliminating all infrequent
itemsets that fail the negative correlation condition provided in Inequality 7.3.
This approach can be computationally intensive because the supports for all
infrequent itemsets must be computed in order to determine whether they are
negatively correlated. Unlike the support measure used for mining frequent
itemsets, correlation-based measures used for mining negatively correlated
itemsets do not possess an anti-monotone property that can be exploited for
pruning the exponential search space. Although an efficient solution remains

�

M07 TAN9224 02 GE C07 page 607

� �

�

7.6 Infrequent Patterns∗ 607

TID

1 {A,B}

Items

{B,C}

{B,D}

{A,B,C}

{C}

2

3

4

5

TID A A B B C C D D

1

2

3

4

5

1

1

0

0

0

1

1

0

1

1

0

0

1

1

1

0

0

1

0

0

1

0

0

0

1

0

0

0

0

1

0

1

1

1

0

1

1

1

1

0

Original Transactions Transactions with Negative Items

Figure 7.24. Augmenting a data set with negative items.

elusive, several innovative methods have been developed, as mentioned in the
Bibliographic Notes provided at the end of this chapter.

The remainder of this chapter presents two classes of techniques for mining
interesting infrequent patterns. Section 7.6.5 describes methods for mining
negative patterns in data, while Section 7.6.6 describes methods for finding
interesting infrequent patterns based on support expectation.

7.6.5 Techniques Based on Mining Negative Patterns

The first class of techniques developed for mining infrequent patterns treats
every item as a symmetric binary variable. Using the approach described in
Section 7.1, the transaction data can be binarized by augmenting it with
negative items. Figure 7.24 shows an example of transforming the original data
into transactions having both positive and negative items. By applying existing
frequent itemset generation algorithms such as Apriori on the augmented
transactions, all the negative itemsets can be derived.

Such an approach is feasible only if a few variables are treated as symmetric
binary (i.e., we look for negative patterns involving the negation of only a
small number of items). If every item must be treated as symmetric binary,
the problem becomes computationally intractable due to the following reasons.

1. The number of items doubles when every item is augmented with its
corresponding negative item. Instead of exploring an itemset lattice of
size 2d, where d is the number of items in the original data set, the lattice
becomes considerably larger, as shown in Exercise 23 on page 630.

2. Support-based pruning is no longer effective when negative items are
augmented. For each variable x, either x or x has support greater than

�

M07 TAN9224 02 GE C07 page 608

� �

�

608 Chapter 7 Association Analysis: Advanced Concepts

or equal to 50%. Hence, even if the support threshold is as high as
50%, half of the items will remain frequent. For lower thresholds, many
more items and possibly itemsets containing them will be frequent. The
support-based pruning strategy employed by Apriori is effective only
when the support for most itemsets is low; otherwise, the number of
frequent itemsets grows exponentially.

3. The width of each transaction increases when negative items are aug-
mented. Suppose there are d items available in the original data set. For
sparse data sets such as market basket transactions, the width of each
transaction tends to be much smaller than d. As a result, the maximum
size of a frequent itemset, which is bounded by the maximum transaction
width, wmax, tends to be relatively small. When negative items are
included, the width of the transactions increases to d because an item
is either present in the transaction or absent from the transaction, but
not both. Since the maximum transaction width has grown from wmax

to d, this will increase the number of frequent itemsets exponentially. As
a result, many existing algorithms tend to break down when they are
applied to the extended data set.

The previous brute-force approach is computationally expensive because it
forces us to determine the support for a large number of positive and negative
patterns. Instead of augmenting the data set with negative items, another
approach is to determine the support of the negative itemsets based on the
support of their corresponding positive items. For example, the support for
{p, q, r} can be computed in the following way:

s({p, q, r}) = s({p})− s({p, q})− s({p, r}) + s({p, q, r}).

More generally, the support for any itemset X ∪Y can be obtained as follows:

s(X ∪ Y) = s(X) +
n∑

i=1

∑

Z⊂Y,|Z|=i

{
(−1)i × s(X ∪ Z)

}
. (7.7)

To apply Equation 7.7, s(X ∪ Z) must be determined for every Z that is a
subset of Y . The support for any combination of X and Z that exceeds the
minsup threshold can be found using the Apriori algorithm. For all other
combinations, the supports must be determined explicitly, e.g., by scanning
the entire set of transactions. Another possible approach is to either ignore
the support for any infrequent itemset X ∪ Z or to approximate it with the
minsup threshold.

�

M07 TAN9224 02 GE C07 page 609

� �

�

7.6 Infrequent Patterns∗ 609

Several optimization strategies are available to further improve the per-
formance of the mining algorithms. First, the number of variables considered
as symmetric binary can be restricted. More specifically, a negative item y
is considered interesting only if y is a frequent item. The rationale for this
strategy is that rare items tend to produce a large number of infrequent
patterns and many of which are uninteresting. By restricting the set Y given
in Equation 7.7 to variables whose positive items are frequent, the number
of candidate negative itemsets considered by the mining algorithm can be
substantially reduced. Another strategy is to restrict the type of negative
patterns. For example, the algorithm may consider only a negative pattern
X ∪ Y if it contains at least one positive item (i.e., |X| ≥ 1). The rationale
for this strategy is that if the data set contains very few positive items with
support greater than 50%, then most of the negative patterns of the form
X ∪ Y will become frequent, thus degrading the performance of the mining
algorithm.

7.6.6 Techniques Based on Support Expectation

Another class of techniques considers an infrequent pattern to be interesting
only if its actual support is considerably smaller than its expected support. For
negatively correlated patterns, the expected support is computed based on the
statistical independence assumption. This section describes two alternative
approaches for determining the expected support of a pattern using (1) a
concept hierarchy and (2) a neighborhood-based approach known as indirect
association.

Support Expectation Based on Concept Hierarchy

Objective measures alone may not be sufficient to eliminate uninteresting
infrequent patterns. For example, suppose bread and laptop computer are
frequent items. Even though the itemset {bread, laptop computer} is infre-
quent and perhaps negatively correlated, it is not interesting because their lack
of support seems obvious to domain experts. Therefore, a subjective approach
for determining expected support is needed to avoid generating such infrequent
patterns.

In the preceding example, bread and laptop computer belong to two
completely different product categories, which is why it is not surprising to
find that their support is low. This example also illustrates the advantage of
using domain knowledge to prune uninteresting patterns. For market basket
data, the domain knowledge can be inferred from a concept hierarchy such

�

M07 TAN9224 02 GE C07 page 610

� �

�

610 Chapter 7 Association Analysis: Advanced Concepts

Food

Meat

ChickenPorkCookiesChips

Soda

Regular Diet

Snack Food

Potato Taco Oatmeal Chocolate
Chip

Ham Bacon Boneless Whole

Figure 7.25. Example of a concept hierarchy.

as the one shown in Figure 7.25. The basic assumption of this approach is
that items from the same product family are expected to have similar types
of interaction with other items. For example, since ham and bacon belong to
the same product family, we expect the association between ham and chips
to be somewhat similar to the association between bacon and chips. If the
actual support for any one of these pairs is less than their expected support,
then the infrequent pattern is interesting.

To illustrate how to compute the expected support, consider the diagram
shown in Figure 7.26. Suppose the itemset {C,G} is frequent. Let s(·) denote
the actual support of a pattern and ε(·) denote its expected support. The
expected support for any children or siblings of C and G can be computed
using the formula shown below.

ε(s(E, J)) = s(C,G)× s(E)
s(C)

× s(J)
s(G)

(7.8)

ε(s(C, J)) = s(C,G)× s(J)
s(G)

(7.9)

ε(s(C,H)) = s(C,G)× s(H)
s(G)

(7.10)

For example, if soda and snack food are frequent, then the expected
support between diet soda and chips can be computed using Equation 7.8
because these items are children of soda and snack food, respectively. If
the actual support for diet soda and chips is considerably lower than their

�

M07 TAN9224 02 GE C07 page 611

� �

�

7.6 Infrequent Patterns∗ 611

A

 B
 C G H

 KJED

F

Figure 7.26. Mining interesting negative patterns using a concept hierarchy.

expected value, then diet soda and chips form an interesting infrequent
pattern.

Support Expectation Based on Indirect Association

Consider a pair of items, (a, b), that are rarely bought together by customers. If
a and b are unrelated items, such as bread and DVD player, then their support
is expected to be low. On the other hand, if a and b are related items, then
their support is expected to be high. The expected support was previously
computed using a concept hierarchy. This section presents an approach for
determining the expected support between a pair of items by looking at other
items commonly purchased together with these two items.

For example, suppose customers who buy a sleeping bag also tend to
buy other camping equipment, whereas those who buy a desktop computer
also tend to buy other computer accessories such as an optical mouse or a
printer. Assuming there is no other item frequently bought together with both
a sleeping bag and a desktop computer, the support for these unrelated items
is expected to be low. On the other hand, suppose diet and regular soda are
often bought together with chips and cookies. Even without using a concept
hierarchy, both items are expected to be somewhat related and their support
should be high. Because their actual support is low, diet and regular soda
form an interesting infrequent pattern. Such patterns are known as indirect
association patterns.

A high-level illustration of indirect association is shown in Figure 7.27.
Items a and b correspond to diet soda and regular soda, while Y , which

�

M07 TAN9224 02 GE C07 page 612

� �

�

612 Chapter 7 Association Analysis: Advanced Concepts

Y

a b

y1

y2

yk

•

•

•

Figure 7.27. An indirect association between a pair of items.

is known as the mediator set, contains items such as chips and cookies. A
formal definition of indirect association is presented next.

Definition 7.13 (Indirect Association). A pair of items a, b is indirectly
associated via a mediator set Y if the following conditions hold:

1. s({a, b}) < ts (Itempair support condition).

2. ∃Y �= ∅ such that:

(a) s({a}∪Y) ≥ tf and s({b}∪Y) ≥ tf (Mediator support condition).

(b) d({a}, Y) ≥ td, d({b}, Y) ≥ td, where d(X,Z) is an objective mea-
sure of the association between X and Z (Mediator dependence
condition).

Note that the mediator support and dependence conditions are used to
ensure that items in Y form a close neighborhood to both a and b. Some
of the dependence measures that can be used include interest, cosine or IS,
Jaccard, and other measures previously described in Section 4.7.1 on page 258.

Indirect association has many potential applications. In the market basket
domain, a and b may refer to competing items such as desktop and laptop
computers. In text mining, indirect association can be used to identify syn-
onyms, antonyms, or words that are used in different contexts. For example,
given a collection of documents, the word data may be indirectly associated
with gold via the mediator mining. This pattern suggests that the word
mining can be used in two different contexts—data mining versus gold mining.

Indirect associations can be generated in the following way. First, the set
of frequent itemsets is generated using standard algorithms such as Apriori
or FP-growth. Each pair of frequent k-itemsets are then merged to obtain
a candidate indirect association (a, b, Y), where a and b are a pair of items

�

M07 TAN9224 02 GE C07 page 613

� �

�

7.7 Bibliographic Notes 613

Algorithm 7.4 Algorithm for mining indirect associations.
1: Generate Fk, the set of frequent itemsets.
2: for k = 2 to kmax do
3: Ck = {(a, b, Y)|{a} ∪ Y ∈ Fk, {b} ∪ Y ∈ Fk, a �= b}
4: for each candidate (a, b, Y) ∈ Ck do
5: if s({a, b}) < ts ∧ d({a}, Y) ≥ td ∧ d({b}, Y) ≥ td then
6: Ik = Ik ∪ {(a, b, Y)}
7: end if
8: end for
9: end for

10: Result =
⋃
Ik.

and Y is their common mediator. For example, if {p, q, r} and {p, q, s} are
frequent 3-itemsets, then the candidate indirect association (r, s, {p, q}) is
obtained by merging the pair of frequent itemsets. Once the candidates have
been generated, it is necessary to verify that they satisfy the itempair support
and mediator dependence conditions provided in Definition 7.13. However, the
mediator support condition does not have to be verified because the candidate
indirect association is obtained by merging a pair of frequent itemsets. A
summary of the algorithm is shown in Algorithm 7.4.

7.7 Bibliographic Notes

The problem of mining association rules from categorical and continuous data
was introduced by Srikant and Agrawal in [552]. Their strategy was to binarize
the categorical attributes and to apply equal-frequency discretization to the
continuous attributes. A partial completeness measure was also proposed
to determine the amount of information loss as a result of discretization. This
measure was then used to determine the number of discrete intervals needed
to ensure that the amount of information loss can be kept at a certain desired
level. Following this work, numerous other formulations have been proposed for
mining quantitative association rules. Instead of discretizing the quantitative
attributes, a statistical-based approach was developed by Aumann and Lindell
[522], where summary statistics such as mean and standard deviation are com-
puted for the quantitative attributes of the rules. This formulation was later
extended by other authors including Webb [558] and Zhang et al. [563]. The
min-Apriori algorithm was developed by Han et al. [531] for finding association
rules in continuous data without discretization. Following the min-Apriori, a

�

M07 TAN9224 02 GE C07 page 614

� �

�

614 Chapter 7 Association Analysis: Advanced Concepts

range of techniques for capturing different types of associations among contin-
uous attributes have been explored. For example, the RAnge support Patterns
(RAP) developed by Pandey et al. [544] finds groups of attributes that show
coherent values across multiple rows of the data matrix. The RAP framework
was extended by to deal with noisy data by Gupta et al. [530]. Since the rules
can be designed to satisfy multiple objectives, evolutionary algorithms for min-
ing quantitative association rules [541, 542] have also been developed. Other
techniques include those proposed by Fukuda et al. [528], Lent et al. [537],
Wang et al. [557], Ruckert et al. [547] and Miller and Yang [543].

The method described in Section 7.3 for handling concept hierarchy us-
ing extended transactions was developed by Srikant and Agrawal [551]. An
alternative algorithm was proposed by Han and Fu [532], where frequent
itemsets are generated one level at a time. More specifically, their algorithm
initially generates all the frequent 1-itemsets at the top level of the concept
hierarchy. The set of frequent 1-itemsets is denoted as L(1, 1). Using the
frequent 1-itemsets in L(1, 1), the algorithm proceeds to generate all frequent
2-itemsets at level 1, L(1, 2). This procedure is repeated until all the frequent
itemsets involving items from the highest level of the hierarchy, L(1, k) (k > 1),
are extracted. The algorithm then continues to extract frequent itemsets at the
next level of the hierarchy, L(2, 1), based on the frequent itemsets in L(1, 1).
The procedure is repeated until it terminates at the lowest level of the concept
hierarchy requested by the user.

The sequential pattern formulation and algorithm described in Section
7.4 was proposed by Agrawal and Srikant in [520, 553]. Similarly, Mannila
et al. [540] introduced the concept of frequent episode, which is useful for
mining sequential patterns from a long stream of events. Another formula-
tion of sequential pattern mining based on regular expressions was proposed
by Garofalakis et al. in [529]. Joshi et al. have attempted to reconcile the
differences between various sequential pattern formulations [534]. The result
was a universal formulation of sequential pattern with the different counting
schemes described in Section 7.4.4. Alternative algorithms for mining sequen-
tial patterns were also proposed by Pei et al. [546], Ayres et al. [523], Cheng
et al. [525], and Seno et al. [549]. A review on sequential pattern mining
algorithms can be found in [539] and [550]. Extensions of the formulation to
maximal [527, 538] and closed [556, 561] sequential pattern mining have also
been developed in recent years.

The frequent subgraph mining problem was initially introduced by Inokuchi
et al. in [533]. They used a vertex-growing approach for generating frequent
induced subgraphs from a graph data set. The edge-growing strategy was
developed by Kuramochi and Karypis in [535], where they also presented an

�

M07 TAN9224 02 GE C07 page 615

� �

�

Bibliography 615

Apriori -like algorithm called FSG that addresses issues such as multiplicity of
candidates, canonical labeling, and vertex invariant schemes. Another frequent
subgraph mining algorithm known as gSpan was developed by Yan and Han
in [560]. The authors proposed using a minimum DFS code for encoding the
various subgraphs. Other variants of the frequent subgraph mining problems
were proposed by Zaki in [562], Parthasarathy and Coatney in [545], and
Kuramochi and Karypis in [536]. A recent review on graph mining is given by
Cheng et al. in [526].

The problem of mining infrequent patterns has been investigated by many
authors. Savasere et al. [548] examined the problem of mining negative asso-
ciation rules using a concept hierarchy. Tan et al. [554] proposed the idea of
mining indirect associations for sequential and non-sequential data. Efficient
algorithms for mining negative patterns have also been proposed by Boulicaut
et al. [524], Teng et al. [555], Wu et al. [559], and Antonie and Zäiane [521].

Bibliography
[520] R. Agrawal and R. Srikant. Mining Sequential Patterns. In Proc. of Intl. Conf. on

Data Engineering, pages 3–14, Taipei, Taiwan, 1995.

[521] M.-L. Antonie and O. R. Zäıane. Mining Positive and Negative Association Rules:
An Approach for Confined Rules. In Proc. of the 8th European Conf. of Principles
and Practice of Knowledge Discovery in Databases, pages 27–38, Pisa, Italy, September
2004.

[522] Y. Aumann and Y. Lindell. A Statistical Theory for Quantitative Association Rules.
In KDD99, pages 261–270, San Diego, CA, August 1999.

[523] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu. Sequential Pattern mining using a
bitmap representation. In Proc. of the 8th Intl. Conf. on Knowledge Discovery and
Data Mining, pages 429–435, Edmonton, Canada, July 2002.

[524] J.-F. Boulicaut, A. Bykowski, and B. Jeudy. Towards the Tractable Discovery of
Association Rules with Negations. In Proc. of the 4th Intl. Conf on Flexible Query
Answering Systems FQAS’00, pages 425–434, Warsaw, Poland, October 2000.

[525] H. Cheng, X. Yan, and J. Han. IncSpan: incremental mining of sequential patterns
in large database. In Proc. of the 10th Intl. Conf. on Knowledge Discovery and Data
Mining, pages 527–532, Seattle, WA, August 2004.

[526] H. Cheng, X. Yan, and J. Han. Mining Graph Patterns. In C. Aggarwal and J. Han,
editors, Frequent Pattern Mining, pages 307–338. Springer, 2014.

[527] P. Fournier-Viger, C.-W. Wu, A. Gomariz, and V. S. Tseng. VMSP: Efficient vertical
mining of maximal sequential patterns. In Proceedings of the Canadian Conference on
Artificial Intelligence, pages 83–94, 2014.

[528] T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Mining Optimized
Association Rules for Numeric Attributes. In Proc. of the 15th Symp. on Principles of
Database Systems, pages 182–191, Montreal, Canada, June 1996.

[529] M. N. Garofalakis, R. Rastogi, and K. Shim. SPIRIT: Sequential Pattern Mining with
Regular Expression Constraints. In Proc. of the 25th VLDB Conf., pages 223–234,
Edinburgh, Scotland, 1999.

�

M07 TAN9224 02 GE C07 page 616

� �

�

616 Chapter 7 Association Analysis: Advanced Concepts

[530] R. Gupta, N. Rao, and V. Kumar. Discovery of error-tolerant biclusters from noisy
gene expression data. BMC bioinformatics, 12(12):1, 2011.

[531] E.-H. Han, G. Karypis, and V. Kumar. Min-Apriori: An Algorithm for Finding
Association Rules in Data with Continuous Attributes. http://www.cs.umn.edu/˜han,
1997.

[532] J. Han and Y. Fu. Mining Multiple-Level Association Rules in Large Databases. IEEE
Trans. on Knowledge and Data Engineering, 11(5):798–804, 1999.

[533] A. Inokuchi, T. Washio, and H. Motoda. An Apriori-based Algorithm for Mining
Frequent Substructures from Graph Data. In Proc. of the 4th European Conf. of
Principles and Practice of Knowledge Discovery in Databases, pages 13–23, Lyon,
France, 2000.

[534] M. V. Joshi, G. Karypis, and V. Kumar. A Universal Formulation of Sequential
Patterns. In Proc. of the KDD’2001 workshop on Temporal Data Mining, San Francisco,
CA, August 2001.

[535] M. Kuramochi and G. Karypis. Frequent Subgraph Discovery. In Proc. of the 2001
IEEE Intl. Conf. on Data Mining, pages 313–320, San Jose, CA, November 2001.

[536] M. Kuramochi and G. Karypis. Discovering Frequent Geometric Subgraphs. In Proc.
of the 2002 IEEE Intl. Conf. on Data Mining, pages 258–265, Maebashi City, Japan,
December 2002.

[537] B. Lent, A. Swami, and J. Widom. Clustering Association Rules. In Proc. of the 13th
Intl. Conf. on Data Engineering, pages 220–231, Birmingham, U.K, April 1997.

[538] C. Luo and S. M. Chung. Efficient mining of maximal sequential patterns using
multiple samples. In Proceedings of the SIAM International Conference on Data Mining,
pages 415–426, 2005.

[539] N. R. Mabroukeh and C. Ezeife. A taxonomy of sequential pattern mining algorithms.
ACM Computing Survey, 43(1), 2010.

[540] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of Frequent Episodes in Event
Sequences. Data Mining and Knowledge Discovery, 1(3):259–289, November 1997.

[541] D. Martin, A. Rosete, J. Alcalá-Fdez, and F. Herrera. A new multiobjective
evolutionary algorithm for mining a reduced set of interesting positive and negative
quantitative association rules. IEEE Transactions on Evolutionary Computation, 18
(1):54–69, 2014.

[542] J. Mata, J. L. Alvarez, and J. C. Riquelme. Mining Numeric Association Rules with
Genetic Algorithms. In Proceedings of the International Conference on Artificial Neural
Nets and Genetic Algorithms, pages 264–267, Prague, Czech Republic, 2001. Springer.

[543] R. J. Miller and Y. Yang. Association Rules over Interval Data. In Proc. of 1997
ACM-SIGMOD Intl. Conf. on Management of Data, pages 452–461, Tucson, AZ, May
1997.

[544] G. Pandey, G. Atluri, M. Steinbach, C. L. Myers, and V. Kumar. An association anal-
ysis approach to biclustering. In Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 677–686. ACM, 2009.

[545] S. Parthasarathy and M. Coatney. Efficient Discovery of Common Substructures in
Macromolecules. In Proc. of the 2002 IEEE Intl. Conf. on Data Mining, pages 362–369,
Maebashi City, Japan, December 2002.

[546] J. Pei, J. Han, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M. Hsu. PrefixSpan: Mining
Sequential Patterns efficiently by prefix-projected pattern growth. In Proc of the 17th
Intl. Conf. on Data Engineering, Heidelberg, Germany, April 2001.

http://www.cs.umn.edu/�han1997
http://www.cs.umn.edu/�han1997

�

M07 TAN9224 02 GE C07 page 617

� �

�

Bibliography 617

[547] U. Ruckert, L. Richter, and S. Kramer. Quantitative association rules based on half-
spaces: An optimization approach. In Proceedings of the Fourth IEEE International
Conference on Data Mining, pages 507–510, 2004.

[548] A. Savasere, E. Omiecinski, and S. Navathe. Mining for Strong Negative Associations
in a Large Database of Customer Transactions. In Proc. of the 14th Intl. Conf. on Data
Engineering, pages 494–502, Orlando, Florida, February 1998.

[549] M. Seno and G. Karypis. SLPMiner: An Algorithm for Finding Frequent Sequential
Patterns Using Length-Decreasing Support Constraint. In Proc. of the 2002 IEEE Intl.
Conf. on Data Mining, pages 418–425, Maebashi City, Japan, December 2002.

[550] W. Shen, J. Wang, and J. Han. Sequential Pattern Mining. In C. Aggarwal and
J. Han, editors, Frequent Pattern Mining, pages 261–282. Springer, 2014.

[551] R. Srikant and R. Agrawal. Mining Generalized Association Rules. In Proc. of the
21st VLDB Conf., pages 407–419, Zurich, Switzerland, 1995.

[552] R. Srikant and R. Agrawal. Mining Quantitative Association Rules in Large Relational
Tables. In Proc. of 1996 ACM-SIGMOD Intl. Conf. on Management of Data, pages
1–12, Montreal, Canada, 1996.

[553] R. Srikant and R. Agrawal. Mining Sequential Patterns: Generalizations and
Performance Improvements. In Proc. of the 5th Intl Conf. on Extending Database
Technology (EDBT’96), pages 18–32, Avignon, France, 1996.

[554] P. N. Tan, V. Kumar, and J. Srivastava. Indirect Association: Mining Higher Order
Dependencies in Data. In Proc. of the 4th European Conf. of Principles and Practice
of Knowledge Discovery in Databases, pages 632–637, Lyon, France, 2000.

[555] W. G. Teng, M. J. Hsieh, and M.-S. Chen. On the Mining of Substitution Rules for
Statistically Dependent Items. In Proc. of the 2002 IEEE Intl. Conf. on Data Mining,
pages 442–449, Maebashi City, Japan, December 2002.

[556] P. Tzvetkov, X. Yan, and J. Han. TSP: Mining top-k closed sequential patterns.
Knowledge and Information Systems, 7(4):438–457, 2005.

[557] K. Wang, S. H. Tay, and B. Liu. Interestingness-Based Interval Merger for Numeric
Association Rules. In Proc. of the 4th Intl. Conf. on Knowledge Discovery and Data
Mining, pages 121–128, New York, NY, August 1998.

[558] G. I. Webb. Discovering associations with numeric variables. In Proc. of the 7th Intl.
Conf. on Knowledge Discovery and Data Mining, pages 383–388, San Francisco, CA,
August 2001.

[559] X. Wu, C. Zhang, and S. Zhang. Mining Both Positive and Negative Association
Rules. ACM Trans. on Information Systems, 22(3):381–405, 2004.

[560] X. Yan and J. Han. gSpan: Graph-based Substructure Pattern Mining. In Proc.
of the 2002 IEEE Intl. Conf. on Data Mining, pages 721–724, Maebashi City, Japan,
December 2002.

[561] X. Yan, J. Han, and R. Afshar. CloSpan: Mining: Closed sequential patterns in large
datasets. In Proceedings of the SIAM International Conference on Data Mining, pages
166–177, 2003.

[562] M. J. Zaki. Efficiently mining frequent trees in a forest. In Proc. of the 8th Intl. Conf.
on Knowledge Discovery and Data Mining, pages 71–80, Edmonton, Canada, July 2002.

[563] H. Zhang, B. Padmanabhan, and A. Tuzhilin. On the Discovery of Significant
Statistical Quantitative Rules. In Proc. of the 10th Intl. Conf. on Knowledge Discovery
and Data Mining, pages 374–383, Seattle, WA, August 2004.

�

M07 TAN9224 02 GE C07 page 618

� �

�

618 Chapter 7 Association Analysis: Advanced Concepts

7.8 Exercises

1. Consider the traffic accident data set shown in Table 7.10.

Table 7.10. Traffic accident data set.

Weather Driver’s Traffic Seat Belt Crash
Condition Condition Violation Severity

Good Alcohol-impaired Exceed speed limit No Major
Bad Sober None Yes Minor
Good Sober Disobey stop sign Yes Minor
Good Sober Exceed speed limit Yes Major
Bad Sober Disobey traffic signal No Major
Good Alcohol-impaired Disobey stop sign Yes Minor
Bad Alcohol-impaired None Yes Major
Good Sober Disobey traffic signal Yes Major
Good Alcohol-impaired None No Major
Bad Sober Disobey traffic signal No Major
Good Alcohol-impaired Exceed speed limit Yes Major
Bad Sober Disobey stop sign Yes Minor

(a) Show a binarized version of the data set.

(b) What is the maximum width of each transaction in the binarized data?

(c) Assuming that the support threshold is 30%, how many candidate and
frequent itemsets will be generated?

(d) Create a data set that contains only the following asymmetric binary
attributes: (Weather = Bad, Driver’s condition = Alcohol-impaired,
Traffic violation = Yes, Seat Belt = No, Crash Severity = Major).
For Traffic violation, only None has a value of 0. The rest of the
attribute values are assigned to 1. Assuming that the support threshold
is 30%, how many candidate and frequent itemsets will be generated?

(e) Compare the number of candidate and frequent itemsets generated in
parts (c) and (d).

2. (a) Consider the data set shown in Table 7.11. Suppose we apply the following
discretization strategies to the continuous attributes of the data set.

D1: Partition the range of each continuous attribute into 3 equal-sized
bins.

D2: Partition the range of each continuous attribute into 3 bins; where
each bin contains an equal number of transactions

�

M07 TAN9224 02 GE C07 page 619

� �

�

7.8 Exercises 619

Table 7.11. Data set for Exercise 2.

TID Temperature Pressure Alarm 1 Alarm 2 Alarm 3
1 95 1105 0 0 1
2 85 1040 1 1 0
3 103 1090 1 1 1
4 97 1084 1 0 0
5 80 1038 0 1 1
6 100 1080 1 1 0
7 83 1025 1 0 1
8 86 1030 1 0 0
9 101 1100 1 1 1

For each strategy, answer the following questions:

i. Construct a binarized version of the data set.
ii. Derive all the frequent itemsets having support ≥ 30%.

(b) The continuous attribute can also be discretized using a clustering ap-
proach.

i. Plot a graph of temperature versus pressure for the data points shown
in Table 7.11.

ii. How many natural clusters do you observe from the graph? Assign
a label (C1, C2, etc.) to each cluster in the graph.

iii. What type of clustering algorithm do you think can be used to
identify the clusters? State your reasons clearly.

iv. Replace the temperature and pressure attributes in Table 7.11 with
asymmetric binary attributes C1, C2, etc. Construct a transaction
matrix using the new attributes (along with attributes Alarm1,
Alarm2, and Alarm3).

v. Derive all the frequent itemsets having support ≥ 30% from the
binarized data.

3. Consider the data set shown in Table 7.3. The first attribute is continuous while
the remaining two are asymmetric binary. A rule is considered to be strong if
its support exceeds 15% and its confidence exceeds 60%. The data given in
Table 7.12 supports the following two strong rules:

(i) {(1 ≤ A ≤ 2), B = 1} → {C = 1}
(ii) {(5 ≤ A ≤ 8), B = 1} → {C = 1}

(a) Compute the support and confidence for both rules.

(b) To find the rules using the traditional Apriori algorithm, we need to
discretize the continuous attribute A. Suppose we apply the equal width

�

M07 TAN9224 02 GE C07 page 620

� �

�

620 Chapter 7 Association Analysis: Advanced Concepts

Table 7.12. Data set for Exercise 3.

A B C
1 1 1
2 1 1
3 1 0
4 1 0
5 1 1
6 0 1
7 0 0
8 1 1
9 0 0
10 0 1

binning approach to discretize the data, with bin-width = 2 and 5. For
each bin-width, state whether the above two rules are discovered by the
Apriori algorithm. (Note that the rules may not be in the same exact
form as before because it may contain wider or narrower intervals for A.)
For each rule that corresponds to one of the above two rules, compute its
support and confidence.

(c) Comment on the effectiveness of using the equal width approach for
classifying the above data set. Is there a bin-width that allows you to
find both rules satisfactorily? If not, what alternative approach can you
take to ensure that you will find both rules?

4. Consider the data set shown in Table 7.13.

Table 7.13. Data set for Exercise 4.

Age Number of Hours Online per Week (B)
(A) 0 – 5 5 – 10 10 – 20 20 – 30 30 – 40

10 – 15 2 3 5 3 2
15 – 25 2 5 10 10 3
25 – 35 10 15 5 3 2
35 – 50 4 6 5 3 2

(a) For each combination of rules given below, specify the rule that has the
highest confidence.

i. 15 < A < 25 −→ 10 < B < 20, 10 < A < 25 −→ 10 < B < 20, and
15 < A < 35 −→ 10 < B < 20.

ii. 15 < A < 25 −→ 10 < B < 20, 15 < A < 25 −→ 5 < B < 20, and
15 < A < 25 −→ 5 < B < 30.

iii. 15 < A < 25 −→ 10 < B < 20 and 10 < A < 35 −→ 5 < B < 30.

�

M07 TAN9224 02 GE C07 page 621

� �

�

7.8 Exercises 621

(b) Suppose we are interested in finding the average number of hours spent
online per week by Internet users between the age of 15 and 35. Write
the corresponding statistics-based association rule to characterize the
segment of users. To compute the average number of hours spent online,
approximate each interval by its midpoint value (e.g., use B = 7.5 to
represent the interval 5 < B < 10).

(c) Test whether the quantitative association rule given in part (b) is statis-
tically significant by comparing its mean against the average number of
hours spent online by other users who do not belong to the age group.

5. For the data set with the attributes given below, describe how you would
convert it into a binary transaction data set appropriate for association analysis.
Specifically, indicate for each attribute in the original data set

(a) how many binary attributes it would correspond to in the transaction
data set,

(b) how the values of the original attribute would be mapped to values of the
binary attributes, and

(c) if there is any hierarchical structure in the data values of an attribute
that could be useful for grouping the data into fewer binary attributes.

The following is a list of attributes for the data set along with their possible
values. Assume that all attributes are collected on a per-student basis:

• Year : Freshman, Sophomore, Junior, Senior, Graduate:Masters, Gradu-
ate:PhD, Professional

• Zip code : zip code for the home address of a U.S. student, zip code for
the local address of a non-U.S. student

• College : Agriculture, Architecture, Continuing Education, Education,
Liberal Arts, Engineering, Natural Sciences, Business, Law, Medical, Den-
tistry, Pharmacy, Nursing, Veterinary Medicine

• On Campus : 1 if the student lives on campus, 0 otherwise

• Each of the following is a separate attribute that has a value of 1 if the
person speaks the language and a value of 0, otherwise.

– Arabic
– Bengali
– Chinese Mandarin
– English
– Portuguese
– Russian
– Spanish

�

M07 TAN9224 02 GE C07 page 622

� �

�

622 Chapter 7 Association Analysis: Advanced Concepts

6. Consider the data set shown in Table 7.14. Suppose we are interested in ex-
tracting the following association rule:

{α1 ≤ Age ≤ α2,Email Account = Yes} −→ {Privacy Concern = Yes}

Table 7.14. Data set for Exercise 6.

Age Email Account Privacy Concern
9 Yes No
11 Yes No
14 Yes Yes
17 Yes Yes
19 Yes Yes
21 No Yes
25 No Yes
29 Yes No
33 Yes No
39 No Yes
41 No No
47 Yes Yes

To handle the continuous attribute, we apply the equal-frequency approach
with 3, 4, and 6 intervals. Categorical attributes are handled by introducing as
many new asymmetric binary attributes as the number of categorical values.
Assume that the support threshold is 12% and the confidence threshold is 43%.

(a) Suppose we discretize the Age attribute into 3 equal-frequency intervals.
Find a pair of values for α1 and α2 that satisfy the minimum support and
minimum confidence requirements.

(b) Repeat part (a) by discretizing the Age attribute into 4 equal-frequency
intervals. Compare the extracted rules against the ones you had obtained
in part (a).

(c) Repeat part (a) by discretizing the Age attribute into 6 equal-frequency
intervals. Compare the extracted rules against the ones you had obtained
in part (a).

(d) From the results in part (a), (b), and (c), discuss how the choice of
discretization intervals will affect the rules extracted by association rule
mining algorithms.

7. Consider the transactions shown in Table 7.15, with an item taxonomy given
in Figure 7.25.

(a) What are the main challenges of mining association rules with item tax-
onomy?

�

M07 TAN9224 02 GE C07 page 623

� �

�

7.8 Exercises 623

Table 7.15. Example of market basket transactions.

Transaction ID Items Bought
1 Chips, Cookies, Regular Soda, Ham
2 Chips, Ham, Boneless Chicken, Diet Soda
3 Ham, Bacon, Whole Chicken, Regular Soda
4 Chips, Ham, Boneless Chicken, Diet Soda
5 Chips, Bacon, Boneless Chicken
6 Chips, Ham, Bacon, Whole Chicken, Regular Soda
7 Chips, Cookies, Boneless Chicken, Diet Soda

(b) Consider the approach where each transaction t is replaced by an extended
transaction t′ that contains all the items in t as well as their respective
ancestors. For example, the transaction t = { Chips, Cookies} will be
replaced by t′ = {Chips, Cookies, Snack Food, Food}. Use this approach
to derive all frequent itemsets (up to size 4) with support ≥ 70%.

(c) Consider an alternative approach where the frequent itemsets are gen-
erated one level at a time. Initially, all the frequent itemsets involving
items at the highest level of the hierarchy are generated. Next, we use
the frequent itemsets discovered at the higher level of the hierarchy to
generate candidate itemsets involving items at the lower levels of the
hierarchy. For example, we generate the candidate itemset {Chips, Diet
Soda} only if {Snack Food, Soda} is frequent. Use this approach to derive
all frequent itemsets (up to size 4) with support ≥ 70%.

(d) Compare the frequent itemsets found in parts (b) and (c). Comment on
the efficiency and completeness of the algorithms.

8. The following questions examine how the support and confidence of an associ-
ation rule may vary in the presence of a concept hierarchy.

(a) Consider an item x in a given concept hierarchy. Let x1, x2, . . ., xk denote
the k children of x in the concept hierarchy. Show that s(x) ≤∑k

i=1 s(xi),
where s(·) is the support of an item. Under what conditions will the
inequality become an equality?

(b) Let p and q denote a pair of items, while p̂ and q̂ are their corresponding
parents in the concept hierarchy. If s({p, q}) > minsup, which of the fol-
lowing itemsets are guaranteed to be frequent? (i) s({p̂, q}), (ii) s({p, q̂}),
and (iii) s({p̂, q̂}).

(c) Consider the association rule {p} −→ {q}. Suppose the confidence of the
rule exceeds minconf . Which of the following rules are guaranteed to
have confidence higher than minconf? (i) {p} −→ {q̂}, (ii) {p̂} −→ {q},
and (iii) {p̂} −→ {q̂}.

�

M07 TAN9224 02 GE C07 page 624

� �

�

624 Chapter 7 Association Analysis: Advanced Concepts

9. (a) List all the 4-subsequences contained in the following data sequence:

〈{1, 3} {2} {2, 3} {4}〉,

assuming no timing constraints.

(b) List all the 3-element subsequences contained in the data sequence for
part (a) assuming that no timing constraints are imposed.

(c) List all the 4-subsequences contained in the data sequence for part (a)
(assuming the timing constraints are flexible).

(d) List all the 3-element subsequences contained in the data sequence for
part (a) (assuming the timing constraints are flexible).

10. Find all the frequent subsequences with support ≥ 50% given the sequence
database shown in Table 7.16. Assume that there are no timing constraints
imposed on the sequences.

Table 7.16. Example of event sequences generated by various sensors.

Sensor Timestamp Events
S1 1 A, B

2 C
3 D, E
4 C

S2 1 A, B
2 C, D
3 E

S3 1 B
2 A
3 B
4 D, E

S4 1 C
2 D, E
3 C
4 E

S5 1 B
2 A
3 B, C
4 A, D

�

M07 TAN9224 02 GE C07 page 625

� �

�

7.8 Exercises 625

11. (a) For each of the sequences w = 〈e1e2 . . . ei . . . ei+1 . . . elast〉 given below,
determine whether they are subsequences of the sequence

〈{1, 2, 3}{2, 4}{2, 4, 5}{3, 5}{6}〉

subjected to the following timing constraints:
mingap = 0 (interval between last event in ei and first event

in ei+1 is 〉 0)
maxgap = 3 (interval between first event in ei and last event

in ei+1 is ≤ 3)
maxspan = 5 (interval between first event in e1 and last event

in elast is ≤ 5)
ws = 1 (time between first and last events in ei is ≤ 1)

• w = 〈{1}{2}{3}〉
• w = 〈{1, 2, 3, 4}{5, 6}〉
• w = 〈{2, 4}{2, 4}{6}〉
• w = 〈{1}{2, 4}{6}〉
• w = 〈{1, 2}{3, 4}{5, 6}〉

(b) Determine whether each of the subsequences w given in the previous
question are contiguous subsequences of the following sequences s.

• s = 〈{1, 2, 3, 4, 5, 6}{1, 2, 3, 4, 5, 6}{1, 2, 3, 4, 5, 6}〉
• s = 〈{1, 2, 3, 4}{1, 2, 3, 4, 5, 6}{3, 4, 5, 6}〉
• s = 〈{1, 2}{1, 2, 3, 4}{3, 4, 5, 6}{5, 6}〉
• s = 〈{1, 2, 3}{2, 3, 4, 5}{4, 5, 6}〉

12. For each of the sequence w = 〈e1, . . . , elast〉 below, determine whether they are
subsequences of the following data sequence:

〈{A,B}{C,D}{A,B}{C,D}{A,B}{C,D}〉

subjected to the following timing constraints:

mingap = 0 (interval between last event in ei and first event
in ei+1 is > 0)

maxgap = 2 (interval between first event in ei and last event
in ei+1 is ≤ 2)

maxspan = 6 (interval between first event in e1 and last event
in elast is ≤ 6)

ws = 1 (time between first and last events in ei is ≤ 1)

(a) w = 〈{A}{B}{C}{D}〉
(b) w = 〈{A}{B,C,D}{A}〉
(c) w = 〈{A}{A,B,C,D}{A}〉

�

M07 TAN9224 02 GE C07 page 626

� �

�

626 Chapter 7 Association Analysis: Advanced Concepts

(d) w = 〈{B,C}{A,D}{B,C}〉
(e) w = 〈{A,B,C,D}{A,B,C,D}〉

13. Consider the following frequent 3-sequences:

〈{1, 2, 3}〉, 〈{1, 2}{3}〉, 〈{1}{2, 3}〉, 〈{1, 2}{4}〉,
〈{1, 3}{4}〉, 〈{1, 2, 4}〉, 〈{2, 3}{3}〉, 〈{2, 3}{4}〉,
〈{2}{3}{3}〉, and 〈{2}{3}{4}〉.

(a) List all the candidate 4-sequences produced by the candidate generation
step of the GSP algorithm.

(b) List all the candidate 4-sequences pruned during the candidate pruning
step of the GSP algorithm (assuming no timing constraints).

(c) List all the candidate 4-sequences pruned during the candidate pruning
step of the GSP algorithm (assuming maxgap = 1).

14. Consider the data sequence shown in Table 7.17 for a given object. Count
the number of occurrences of the sequence 〈{p}{q}〉 according to the following
counting methods:

(a) COBJ (one occurrence per object).

(b) CWIN (one occurrence per sliding window).

(c) CMINWIN (number of minimal windows of occurrence).

(d) CDIST O (distinct occurrences with possibility of event-timestamp over-
lap).

(e) CDIST (distinct occurrences with no event timestamp overlap allowed).

Table 7.17. Example of event sequence data for Exercise 14.

Timestamp Events
1 p, q
2 r
3 s
4 p, q
5 r, s
6 p
7 q, r
8 q, s
9 p
10 q, r, s

�

M07 TAN9224 02 GE C07 page 627

� �

�

7.8 Exercises 627

15. Describe the types of modifications necessary to adapt the frequent subgraph
mining algorithm to handle:

(a) Directed graphs

(b) Unlabeled graphs

(c) Acyclic graphs

(d) Disconnected graphs

For each type of graph given above, describe which step of the algorithm will be
affected (candidate generation, candidate pruning, and support counting), and
any further optimization that can help improve the efficiency of the algorithm.

16. Draw all candidate subgraphs obtained from joining the pair of graphs shown
in Figure 7.28.

a

b

a

ab a

ab a

a

a

a

b

a

a

a

ab a

ac a

(a)

(b)

Figure 7.28. Graphs for Exercise 16.

17. Draw all the candidate subgraphs obtained by joining the pair of graphs shown
in Figure 7.29.

�

M07 TAN9224 02 GE C07 page 628

� �

�

628 Chapter 7 Association Analysis: Advanced Concepts

b ba

b b

(a)

(b)

b ba

b b

b ba

ab a

b aa

ac a

Figure 7.29. Graphs for Exercise 17.

18. Show that the candidate generation procedure introduced in Section 7.5.3 for
frequent subgraph mining is complete, i.e., no frequent k-subgraph can be
missed from being generated if every pair of frequent (k − 1)-subgraphs is
considered for merging.

19. (a) If support is defined in terms of induced subgraph relationship, show that
the confidence of the rule g1 −→ g2 can be greater than 1 if g1 and g2 are
allowed to have overlapping vertex sets.

(b) What is the time complexity needed to determine the canonical label of
a graph that contains |V | vertices?

(c) The core of a subgraph can have multiple automorphisms. This will
increase the number of candidate subgraphs obtained after merging two
frequent subgraphs that share the same core. Determine the maximum
number of candidate subgraphs obtained due to automorphism of a core
of size k.

(d) Two frequent subgraphs of size k may share multiple cores. Determine
the maximum number of cores that can be shared by the two frequent
subgraphs.

20. (a) Consider the two graphs shown below.

i. Draw all the distinct cores obtained when merging the two subgraphs.
ii. How many candidates are generated using the following core?

�

M07 TAN9224 02 GE C07 page 629

� �

�

7.8 Exercises 629

A A

A A

B

A A

A A

B

A A

A A

B

21. Show theoretically, as well as with an example, that frequent subgraph mining
is a computationally expensive task.

22. The original association rule mining framework considers only presence of items
together in the same transaction. There are situations in which itemsets that
are infrequent may also be informative. For instance, the itemset TV, DVD,
¬ VCR suggests that many customers who buy TVs and DVDs do not buy
VCRs.

In this problem, you are asked to extend the association rule framework to
negative itemsets (i.e., itemsets that contain both presence and absence of
items). We will use the negation symbol (¬) to refer to absence of items.

(a) A näıve way for deriving negative itemsets is to extend each transaction
to include absence of items as shown in Table 7.18.

Table 7.18. Example of numeric data set.

TID TV ¬TV DVD ¬DVD VCR ¬VCR . . .

1 1 0 0 1 0 1 . . .
2 1 0 0 1 0 1 . . .

i. Suppose the transaction database contains 1000 distinct items. What
is the total number of positive itemsets that can be generated from
these items? (Note: A positive itemset does not contain any negated
items).

�

M07 TAN9224 02 GE C07 page 630

� �

�

630 Chapter 7 Association Analysis: Advanced Concepts

ii. What is the maximum number of frequent itemsets that can be
generated from these transactions? (Assume that a frequent itemset
may contain positive, negative, or both types of items)

iii. Explain why such a näıve method of extending each transaction with
negative items is not practical for deriving negative itemsets.

(b) Consider the database shown in Table 7.15. What are the support and
confidence values for the following negative association rules involving
regular and diet soda?

i. ¬Regular −→ Diet.
ii. Regular −→ ¬Diet.
iii. ¬Diet −→ Regular.
iv. Diet −→ ¬Regular.

23. Suppose we would like to extract positive and negative itemsets from a data
set that contains d items.

(a) Consider an approach where we introduce a new variable to represent each
negative item. With this approach, the number of items grows from d to
2d. What is the total size of the itemset lattice, assuming that an itemset
may contain both positive and negative items of the same variable?

(b) Assume that an itemset must contain positive or negative items of dif-
ferent variables. For example, the itemset {a, a, b, c} is invalid because it
contains both positive and negative items for variable a. What is the total
size of the itemset lattice?

24. For each type of pattern defined below, determine whether the support measure
is monotone, anti-monotone, or non-monotone (i.e., neither monotone nor anti-
monotone) with respect to increasing itemset size.

(a) Itemsets that contain both positive and negative items such as {a, b, c, d}.
Is the support measure monotone, anti-monotone, or non-monotone when
applied to such patterns?

(b) Boolean logical patterns such as {(a ∨ b ∨ c), d, e}, which may con-
tain both disjunctions and conjunctions of items. Is the support measure
monotone, anti-monotone, or non-monotone when applied to such pat-
terns?

25. Many association analysis algorithms rely on an Apriori -like approach for
finding frequent patterns. The overall structure of the algorithm is given below.

Suppose we are interested in finding Boolean logical rules such as

{a ∨ b} −→ {c, d},
which may contain both disjunctions and conjunctions of items. The corre-
sponding itemset can be written as {(a ∨ b), c, d}.

�

M07 TAN9224 02 GE C07 page 631

� �

�

7.8 Exercises 631

Algorithm 7.5 Apriori -like algorithm.
1: k = 1.
2: Fk = { i | i ∈ I ∧ σ({i})

N
≥ minsup}. {Find frequent 1-patterns.}

3: repeat
4: k = k + 1.
5: Ck = genCandidate(Fk−1). {Candidate Generation}
6: Ck = pruneCandidate(Ck, Fk−1). {Candidate Pruning}
7: Ck = count(Ck, D). {Support Counting}
8: Fk = { c | c ∈ Ck ∧ σ(c)

N
≥ minsup}. {Extract frequent patterns}

9: until Fk = ∅
10: Answer =

⋃
Fk.

(a) Does the Apriori principle still hold for such itemsets?

(b) How should the candidate generation step be modified to find such pat-
terns?

(c) How should the candidate pruning step be modified to find such patterns?

(d) How should the support counting step be modified to find such patterns?

�

M07 TAN9224 02 GE C07 page 632

� �

�

This page is intentionally left blank

�

M08 TAN9224 02 GE C08 page 633

� �

�

8

Cluster Analysis:
Additional Issues and
Algorithms

A large number of clustering algorithms have been developed in a variety of
domains for different types of applications. No algorithm is suitable for all
types of data, clusters, and applications. In fact, it seems that there is always
room for a new clustering algorithm that is more efficient or better suited to
a particular type of data, cluster, or application. Instead, we can only claim
that we have techniques that work well in some situations. The reason is that,
in many cases, what constitutes a good set of clusters is open to subjective
interpretation. Furthermore, when an objective measure is employed to give
a precise definition of a cluster, the problem of finding the optimal clustering
is often computationally infeasible.

This chapter focuses on important issues in cluster analysis and explores
the concepts and approaches that have been developed to address them. We
begin with a discussion of the key issues of cluster analysis, namely, the
characteristics of data, clusters, and algorithms that strongly impact cluster-
ing. These issues are important for understanding, describing, and comparing
clustering techniques, and provide the basis for deciding which technique to use
in a specific situation. For example, many clustering algorithms have a time or
space complexity of O(m2) (m being the number of objects) and, thus, are not
suitable for large data sets. We then discuss additional clustering techniques.
For each technique, we describe the algorithm, including the issues it addresses
and the methods that it uses to address them. We conclude this chapter by
providing some general guidelines for selecting a clustering algorithm for a
given application.

�

M08 TAN9224 02 GE C08 page 634

� �

�

634 Chapter 8 Cluster Analysis: Additional Issues and Algorithms

8.1 Characteristics of Data, Clusters, and Cluster-
ing Algorithms

This section explores issues related to the characteristics of data, clusters, and
algorithms that are important for a broad understanding of cluster analysis.
Some of these issues represent challenges, such as handling noise and outliers.
Other issues involve a desired feature of an algorithm, such as an ability to
produce the same result regardless of the order in which the data objects
are processed. The discussion in this section, along with the discussion of
different types of clusterings in Section 5.1.2 and different types of clusters
in Section 5.1.3, identifies a number of “dimensions” that can be used to
describe and compare various clustering algorithms and the clustering results
that they produce. To illustrate this, we begin this section with an example
that compares two clustering algorithms that were described in Chapter 5,
DBSCAN and K-means. This is followed by a more detailed description of the
characteristics of data, clusters, and algorithms that impact cluster analysis.

8.1.1 Example: Comparing K-means and DBSCAN

To simplify the comparison, we assume that there are no ties in distances for
either K-means or DBSCAN and that DBSCAN always assigns a border point
that is associated with several core points to the closest core point.

• Both DBSCAN and K-means are partitional clustering algorithms that
assign each object to a single cluster, but K-means typically clusters all
the objects, while DBSCAN discards objects that it classifies as noise.

• K-means uses a prototype-based notion of a cluster; DBSCAN uses a
density-based concept.

• DBSCAN can handle clusters of different sizes and shapes and is not
strongly affected by noise or outliers. K-means has difficulty with non-
globular clusters and clusters of different sizes. Both algorithms can
perform poorly when clusters have widely differing densities.

• K-means can only be used for data that has a well-defined centroid,
such as a mean or median. DBSCAN requires that its definition of
density, which is based on the traditional Euclidean notion of density,
be meaningful for the data.

• K-means can be applied to sparse, high-dimensional data, such as doc-
ument data. DBSCAN typically performs poorly for such data because

�

M08 TAN9224 02 GE C08 page 635

� �

�

8.1 Characteristics of Data, Clusters, and Clustering Algorithms 635

the traditional Euclidean definition of density does not work well for
high-dimensional data.

• The original versions of K-means and DBSCAN were designed for Eu-
clidean data, but both have been extended to handle other types of
data.

• DBSCAN makes no assumption about the distribution of the data. The
basic K-means algorithm is equivalent to a statistical clustering approach
(mixture models) that assumes all clusters come from spherical Gaussian
distributions with different means but the same covariance matrix. See
Section 8.2.2.

• DBSCAN and K-means both look for clusters using all attributes, that is,
they do not look for clusters that involve only a subset of the attributes.

• K-means can find clusters that are not well separated, even if they
overlap (see Figure 5.2(b)), but DBSCAN merges clusters that overlap.

• The K-means algorithm has a time complexity of O(m), while DBSCAN
takes O(m2) time, except for special cases such as low-dimensional Eu-
clidean data.

• DBSCAN produces the same set of clusters from one run to another,
while K-means, which is typically used with random initialization of
centroids, does not.

• DBSCAN automatically determines the number of clusters; for K-means,
the number of clusters needs to be specified as a parameter. However,
DBSCAN has two other parameters that must be specified, Eps and
MinPts.

• K-means clustering can be viewed as an optimization problem; i.e., mini-
mize the sum of the squared error of each point to its closest centroid, and
as a specific case of a statistical clustering approach (mixture models).
DBSCAN is not based on any formal model.

8.1.2 Data Characteristics

The following are some characteristics of data that can strongly affect cluster
analysis.

�

M08 TAN9224 02 GE C08 page 636

� �

�

636 Chapter 8 Cluster Analysis: Additional Issues and Algorithms

High Dimensionality In high-dimensional data sets, the traditional Eu-
clidean notion of density, which is the number of points per unit volume,
becomes meaningless. To see this, consider that as the number of dimensions
increases, the volume increases rapidly, and unless the number of points grows
exponentially with the number of dimensions, the density tends to 0. (Volume
is exponential in the number of dimensions. For instance, a hypersphere with
radius, r, and dimension, d, has volume proportional to rd.) Also, proximity
tends to become more uniform in high-dimensional spaces. Another way to
view this fact is that there are more dimensions (attributes) that contribute
to the proximity between two points and this tends to make the proximity
more uniform. Since most clustering techniques are based on proximity or
density, they can often have difficulty with high-dimensional data. One way
to address such problems is to employ dimensionality reduction techniques.
Another approach, as discussed in Sections 8.4.6 and 8.4.8, is to redefine the
notions of proximity and density.

Size Many clustering algorithms that work well for small or medium-size
data sets are unable to handle larger data sets. This is addressed further
in the discussion of the characteristics of clustering algorithms—scalability is
one such characteristic—and in Section 8.5, which discusses scalable clustering
algorithms.

Sparseness Sparse data often consists of asymmetric attributes, where zero
values are not as important as non-zero values. Therefore, similarity measures
appropriate for asymmetric attributes are commonly used. However, other,
related issues also arise. For example, are the magnitudes of non-zero entries
important, or do they distort the clustering? In other words, does the cluster-
ing work best when there are only two values, 0 and 1?

Noise and Outliers An atypical point (outlier) can often severely degrade
the performance of clustering algorithms, especially algorithms such as K-
means that are prototype-based. On the other hand, noise can cause tech-
niques, such as single link, to join clusters that should not be joined. In
some cases, algorithms for removing noise and outliers are applied before a
clustering algorithm is used. Alternatively, some algorithms can detect points
that represent noise and outliers during the clustering process and then delete
them or otherwise eliminate their negative effects. In Chapter 5, for instance,
we saw that DBSCAN automatically classifies low-density points as noise
and removes them from the clustering process. Chameleon (Section 8.4.4),

�

M08 TAN9224 02 GE C08 page 637

� �

�

8.1 Characteristics of Data, Clusters, and Clustering Algorithms 637

SNN density-based clustering (Section 8.4.9), and CURE (Section 8.5.3) are
three of the algorithms in this chapter that explicitly deal with noise and
outliers during the clustering process.

Type of Attributes and Data Set As discussed in Chapter 2, data
sets can be of various types, such as structured, graph, or ordered, while
attributes are usually categorical (nominal or ordinal) or quantitative (interval
or ratio), and are binary, discrete, or continuous. Different proximity and
density measures are appropriate for different types of data. In some situations,
data needs to be discretized or binarized so that a desired proximity measure or
clustering algorithm can be used. Another complication occurs when attributes
are of widely differing types, e.g., continuous and nominal. In such cases,
proximity and density are more difficult to define and often more ad hoc.
Finally, special data structures and algorithms are often needed to handle
certain types of data efficiently.

Scale Different attributes, e.g., height and weight, are often measured on
different scales. These differences can strongly affect the distance or similarity
between two objects and, consequently, the results of a cluster analysis. Con-
sider clustering a group of people based on their heights, which are measured
in meters, and their weights, which are measured in kilograms. If we use
Euclidean distance as our proximity measure, then height will have little
impact and people will be clustered mostly based on the weight attribute.
If, however, we standardize each attribute by subtracting off its mean and
dividing by its standard deviation, then we will have eliminated effects due
to the difference in scale. More generally, normalization techniques, such as
those discussed in Section 2.3.7, are typically used to handle these issues.

Mathematical Properties of the Data Space Some clustering tech-
niques calculate the mean of a collection of points or use other mathematical
operations that only make sense in Euclidean space or in other specific data
spaces. Other algorithms require that the definition of density be meaningful
for the data.

8.1.3 Cluster Characteristics

The different types of clusters, such as prototype-, graph-, and density-based,
were described earlier in Section 5.1.3. Here, we describe other important
characteristics of clusters.

�

M08 TAN9224 02 GE C08 page 638

� �

�

638 Chapter 8 Cluster Analysis: Additional Issues and Algorithms

Data Distribution Some clustering techniques assume a particular type
of distribution for the data. More specifically, they often assume that data
can be modeled as arising from a mixture of distributions, where each cluster
corresponds to a distribution. Clustering based on mixture models is discussed
in Section 8.2.2.

Shape Some clusters are regularly shaped, e.g., rectangular or globular, but
in general, clusters can be of arbitrary shape. Techniques such as DBSCAN and
single link can handle clusters of arbitrary shape, but prototype-based schemes
and some hierarchical techniques, such as complete link and group average,
cannot. Chameleon (Section 8.4.4) and CURE (Section 8.5.3) are examples of
techniques that were specifically designed to address this problem.

Differing Sizes Many clustering methods, such as K-means, don’t work well
when clusters have different sizes. (See Section 5.2.4.) This topic is discussed
further in Section 8.6.

Differing Densities Clusters that have widely varying density can cause
problems for methods such as DBSCAN and K-means. The SNN density-based
clustering technique presented in Section 8.4.9 addresses this issue.

Poorly Separated Clusters When clusters touch or overlap, some cluster-
ing techniques combine clusters that should be kept separate. Even techniques
that find distinct clusters arbitrarily assign points to one cluster or another.
Fuzzy clustering, which is described in Section 8.2.1, is one technique for
dealing with data that does not form well-separated clusters.

Relationships among Clusters In most clustering techniques, there is
no explicit consideration of the relationships between clusters, such as their
relative position. Self-organizing maps (SOM), which are described in Section
8.2.3, are a clustering technique that directly considers the relationships be-
tween clusters during the clustering process. Specifically, the assignment of a
point to one cluster affects the definitions of nearby clusters.

Subspace Clusters Clusters may only exist in a subset of dimensions (at-
tributes), and the clusters determined using one set of dimensions are fre-
quently quite different from the clusters determined by using another set.
While this issue can arise with as few as two dimensions, it becomes more
acute as dimensionality increases, because the number of possible subsets of

�

M08 TAN9224 02 GE C08 page 639

� �

�

8.1 Characteristics of Data, Clusters, and Clustering Algorithms 639

dimensions is exponential in the total number of dimensions. For that reason,
it is not feasible to simply look for clusters in all possible subsets of dimensions
unless the number of dimensions is relatively low.

One approach is to apply feature selection, which was discussed in Sec-
tion 2.3.4. However, this approach assumes that there is only one subset of
dimensions in which the clusters exist. In reality, clusters can exist in many
distinct subspaces (sets of dimensions), some of which overlap. Section 8.3.2
considers techniques that address the general problem of subspace clustering,
i.e., of finding both clusters and the dimensions they span.

8.1.4 General Characteristics of Clustering Algorithms

Clustering algorithms are quite varied. We provide a general discussion of
important characteristics of clustering algorithms here, and make more specific
comments during our discussion of particular techniques.

Order Dependence For some algorithms, the quality and number of clus-
ters produced can vary, perhaps dramatically, depending on the order in which
the data is processed. While it would seem desirable to avoid such algorithms,
sometimes the order dependence is relatively minor or the algorithm has other
desirable characteristics. SOM (Section 8.2.3) is an example of an algorithm
that is order dependent.

Nondeterminism Clustering algorithms, such as K-means, are not order-
dependent, but they produce different results for each run because they rely
on an initialization step that requires a random choice. Because the quality of
the clusters can vary from one run to another, multiple runs can be necessary.

Scalability It is not unusual for a data set to contain millions of objects, and
the clustering algorithms used for such data sets should have linear or near-
linear time and space complexity. Even algorithms that have a complexity of
O(m2) are not practical for large data sets. Furthermore, clustering techniques
for data sets cannot always assume that all the data will fit in main memory or
that data elements can be randomly accessed. Such algorithms are infeasible
for large data sets. Section 8.5 is devoted to the issue of scalability.

Parameter Selection Most clustering algorithms have one or more pa-
rameters that need to be set by the user. It can be difficult to choose the
proper values; thus, the attitude is usually, “the fewer parameters, the better.”

�

M08 TAN9224 02 GE C08 page 640

� �

�

640 Chapter 8 Cluster Analysis: Additional Issues and Algorithms

Choosing parameter values becomes even more challenging if a small change
in the parameters drastically changes the clustering results. Finally, unless
a procedure (which might involve user input) is provided for determining
parameter values, a user of the algorithm is reduced to using trial and error
to find suitable parameter values.

Perhaps the most well-known parameter selection problem is that of “choos-
ing the right number of clusters” for partitional clustering algorithms, such as
K-means. One possible approach to that issue is given in Section 5.5.5, while
references to others are provided in the Bibliographic Notes.

Transforming the Clustering Problem to Another Domain One ap-
proach taken by some clustering techniques is to map the clustering problem
to a problem in a different domain. Graph-based clustering, for instance, maps
the task of finding clusters to the task of partitioning a proximity graph into
connected components.

Treating Clustering as an Optimization Problem Clustering is often
viewed as an optimization problem: divide the points into clusters in a way
that maximizes the goodness of the resulting set of clusters as measured
by a user-specified objective function. For example, the K-means clustering
algorithm (Section 5.2) tries to find the set of clusters that minimizes the
sum of the squared distance of each point from its closest cluster centroid.
In theory, such problems can be solved by enumerating all possible sets of
clusters and selecting the one with the best value of the objective function, but
this exhaustive approach is computationally infeasible. For this reason, many
clustering techniques are based on heuristic approaches that produce good,
but not optimal clusterings. Another approach is to use objective functions
on a greedy or local basis. In particular, the hierarchical clustering techniques
discussed in Section 5.3 proceed by making locally optimal (greedy) decisions
at each step of the clustering process.

Road Map

We arrange our discussion of clustering algorithms in a manner similar to that
of Chapter 5, grouping techniques primarily according to whether they are
prototype-based, density-based, or graph-based. There is, however, a separate
discussion for scalable clustering techniques. We conclude this chapter with a
discussion of how to choose a clustering algorithm.

�

M08 TAN9224 02 GE C08 page 641

� �

�

8.2 Prototype-Based Clustering 641

8.2 Prototype-Based Clustering

In prototype-based clustering, a cluster is a set of objects in which any object
is closer to the prototype that defines the cluster than to the prototype of
any other cluster. Section 5.2 described K-means, a simple prototype-based
clustering algorithm that uses the centroid of the objects in a cluster as the
prototype of the cluster. This section discusses clustering approaches that
expand on the concept of prototype-based clustering in one or more ways, as
discussed next:

• Objects are allowed to belong to more than one cluster. More specifically,
an object belongs to every cluster with some weight. Such an approach
addresses the fact that some objects are equally close to several cluster
prototypes.

• A cluster is modeled as a statistical distribution, i.e., objects are gen-
erated by a random process from a statistical distribution that is char-
acterized by a number of statistical parameters, such as the mean and
variance. This viewpoint generalizes the notion of a prototype and en-
ables the use of well-established statistical techniques.

• Clusters are constrained to have fixed relationships. Most commonly,
these relationships are constraints that specify neighborhood relation-
ships; i.e., the degree to which two clusters are neighbors of each other.
Constraining the relationships among clusters can simplify the interpre-
tation and visualization of the data.

We consider three specific clustering algorithms to illustrate these exten-
sions of prototype-based clustering. Fuzzy c-means uses concepts from the field
of fuzzy logic and fuzzy set theory to propose a clustering scheme, which is
much like K-means, but which does not require a hard assignment of a point
to only one cluster. Mixture model clustering takes the approach that a set of
clusters can be modeled as a mixture of distributions, one for each cluster. The
clustering scheme based on Self-Organizing Maps (SOM) performs clustering
within a framework that requires clusters to have a prespecified relationship
to one another, e.g., a two-dimensional grid structure.

8.2.1 Fuzzy Clustering

If data objects are distributed in well-separated groups, then a crisp clas-
sification of the objects into disjoint clusters seems like an ideal approach.
However, in most cases, the objects in a data set cannot be partitioned into

�

M08 TAN9224 02 GE C08 page 642

� �

�

642 Chapter 8 Cluster Analysis: Additional Issues and Algorithms

well-separated clusters, and there will be a certain arbitrariness in assigning an
object to a particular cluster. Consider an object that lies near the boundary
of two clusters, but is slightly closer to one of them. In many such cases,
it might be more appropriate to assign a weight to each object and each
cluster that indicates the degree to which the object belongs to the cluster.
Mathematically, wij is the weight with which object xi belongs to cluster Cj .

As shown in the next section, probabilistic approaches can also provide
such weights. While probabilistic approaches are useful in many situations,
there are times when it is difficult to determine an appropriate statistical
model. In such cases, non-probabilistic clustering techniques are needed to
provide similar capabilities. Fuzzy clustering techniques are based on fuzzy
set theory and provide a natural technique for producing a clustering in
which membership weights (the wij) have a natural (but not probabilistic)
interpretation. This section describes the general approach of fuzzy clustering
and provides a specific example in terms of fuzzy c-means (fuzzy K-means).

Fuzzy Sets

Lotfi Zadeh introduced fuzzy set theory and fuzzy logic in 1965 as a
way of dealing with imprecision and uncertainty. Briefly, fuzzy set theory
allows an object to belong to a set with a degree of membership between
0 and 1, while fuzzy logic allows a statement to be true with a degree of
certainty between 0 and 1. Traditional set theory and logic are special cases
of their fuzzy counterparts that restrict the degree of set membership or the
degree of certainty to be either 0 or 1. Fuzzy concepts have been applied to
many different areas, including control systems, pattern recognition, and data
analysis (classification and clustering).

Consider the following example of fuzzy logic. The degree of truth of the
statement “It is cloudy” can be defined to be the percentage of cloud cover in
the sky, e.g., if the sky is 50% covered by clouds, then we would assign “It is
cloudy” a degree of truth of 0.5. If we have two sets, “cloudy days” and “non-
cloudy days,” then we can similarly assign each day a degree of membership
in the two sets. Thus, if a day were 25% cloudy, it would have a 25% degree of
membership in “cloudy days” and a 75% degree of membership in “non-cloudy
days.”

Fuzzy Clusters

Assume that we have a set of data points X = {x1, . . . ,xm}, where each point,
xi, is an n-dimensional point, i.e., xi = (xi1, . . . , xin). A collection of fuzzy

�

M08 TAN9224 02 GE C08 page 643

� �

�

8.2 Prototype-Based Clustering 643

clusters, C1, C2, . . ., Ck is a subset of all possible fuzzy subsets of X . (This
simply means that the membership weights (degrees), wij , have been assigned
values between 0 and 1 for each point, xi, and each cluster, Cj .) However, we
also want to impose the following reasonable conditions on the clusters in order
to ensure that the clusters form what is called a fuzzy pseudo-partition.

1. All the weights for a given point, xi, add up to 1.
k∑

j=1
wij = 1

2. Each cluster, Cj , contains, with non-zero weight, at least one point, but
does not contain, with a weight of one, all of the points.

0 <
m∑

i=1
wij < m

Fuzzy c-means

While there are many types of fuzzy clustering—indeed, many data analysis
algorithms can be “fuzzified”—we only consider the fuzzy version of K-means,
which is called fuzzy c-means. In the clustering literature, the version of K-
means that does not use incremental updates of cluster centroids is sometimes
referred to as c-means, and this was the term adapted by the fuzzy community
for the fuzzy version of K-means. The fuzzy c-means algorithm, also sometimes
known as FCM, is given by Algorithm 8.1.

Algorithm 8.1 Basic fuzzy c-means algorithm.
1: Select an initial fuzzy pseudo-partition, i.e., assign values to all the wij .
2: repeat
3: Compute the centroid of each cluster using the fuzzy pseudo-partition.
4: Recompute the fuzzy pseudo-partition, i.e., the wij .
5: until The centroids don’t change.

(Alternative stopping conditions are “if the change in the error is below a specified
threshold” or “if the absolute change in any wij is below a given threshold.”)

After initialization, FCM repeatedly computes the centroids of each cluster
and the fuzzy pseudo-partition until the partition does not change. FCM
is similar in structure to the K-means algorithm, which after initialization,
alternates between a step that updates the centroids and a step that assigns
each object to the closest centroid. Specifically, computing a fuzzy pseudo-
partition is equivalent to the assignment step. As with K-means, FCM can be

�

M08 TAN9224 02 GE C08 page 644

� �

�

644 Chapter 8 Cluster Analysis: Additional Issues and Algorithms

interpreted as attempting to minimize the sum of the squared error (SSE),
although FCM is based on a fuzzy version of SSE. Indeed, K-means can be
regarded as a special case of FCM and the behavior of the two algorithms is
quite similar. The details of FCM are described below.

Computing SSE The definition of the sum of the squared error (SSE) is
modified as follows:

SSE(C1,C2, . . . , Ck) =
k∑

j=1

m∑

i=1

wp
ijdist(xi, cj)2 (8.1)

where cj is the centroid of the jth cluster and p, which is the exponent that
determines the influence of the weights, has a value between 1 and ∞. Note
that this SSE is just a weighted version of the traditional K-means SSE given
in Equation 5.1.

Initialization Random initialization is often used. In particular, weights
are chosen randomly, subject to the constraint that the weights associated
with any object must sum to 1. As with K-means, random initialization is
simple, but often results in a clustering that represents a local minimum in
terms of the SSE. Section 5.2.1, which contains a discussion on choosing initial
centroids for K-means, has considerable relevance for FCM as well.

Computing Centroids The definition of the centroid given in Equation
8.2 can be derived by finding the centroid that minimizes the fuzzy SSE as
given by Equation 8.1. (See the approach in Section 5.2.6.) For a cluster, Cj ,
the corresponding centroid, cj , is defined by the following equation:

cj =
m∑

i=1

wp
ijxi/

m∑

i=1

wp
ij (8.2)

The fuzzy centroid definition is similar to the traditional definition except
that all points are considered (any point can belong to any cluster, at least
somewhat) and the contribution of each point to the centroid is weighted by
its membership degree. In the case of traditional crisp sets, where all wij are
either 0 or 1, this definition reduces to the traditional definition of a centroid.

There are a few considerations when choosing the value of p. Choosing
p = 2 simplifies the weight update formula—see Equation 8.4. However, if p

�

M08 TAN9224 02 GE C08 page 645

� �

�

8.2 Prototype-Based Clustering 645

is chosen to be near 1, then fuzzy c-means behaves like traditional K-means.
Going in the other direction, as p gets larger, all the cluster centroids approach
the global centroid of all the data points. In other words, the partition becomes
fuzzier as p increases.

Updating the Fuzzy Pseudo-partition Because the fuzzy pseudo-partition
is defined by the weight, this step involves updating the weights wij associated
with the ith point and jth cluster. The weight update formula given in Equation
8.3 can be derived by minimizing the SSE of Equation 8.1 subject to the
constraint that the weights sum to 1.

wij =
(
1/dist(xi, cj)2

) 1
p−1

/ k∑

q=1

(
1/dist(xi, cq)2

) 1
p−1 (8.3)

This formula might appear a bit mysterious. However, note that if p =
2, then we obtain Equation 8.4, which is somewhat simpler. We provide an
intuitive explanation of Equation 8.4, which, with a slight modification, also
applies to Equation 8.3.

wij = 1/dist(xi, cj)2
/ k∑

q=1

1/dist(xi, cq)2 (8.4)

Intuitively, the weight wij , which indicates the degree of membership of
point xi in cluster Cj , should be relatively high if xi is close to centroid cj (if
dist(xi, cj) is low) and relatively low if xi is far from centroid cj (if dist(xi, cj)
is high). If wij = 1/dist(xi, cj)2, which is the numerator of Equation 8.4, then
this will indeed be the case. However, the membership weights for a point
will not sum to one unless they are normalized; i.e., divided by the sum of all
the weights as in Equation 8.4. To summarize, the membership weight of a
point in a cluster is just the reciprocal of the square of the distance between
the point and the cluster centroid divided by the sum of all the membership
weights of the point.

Now consider the impact of the exponent 1/(p − 1) in Equation 8.3. If
p > 2, then this exponent decreases the weight assigned to clusters that are
close to the point. Indeed, as p goes to infinity, the exponent tends to 0 and
weights tend to the value 1/k. On the other hand, as p approaches 1, the
exponent increases the membership weights of points to which the cluster is
close. As p goes to 1, the membership weight goes to 1 for the closest cluster
and to 0 for all the other clusters. This corresponds to K-means.

�

M08 TAN9224 02 GE C08 page 646

� �

�

646 Chapter 8 Cluster Analysis: Additional Issues and Algorithms

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Maximum
Membership

Figure 8.1. Fuzzy c-means clustering of a two-dimensional point set.

Example 8.1 (Fuzzy c-means on Three Circular Clusters). Figure 8.1 shows
the result of applying fuzzy c-means to find three clusters for a two-dimensional
data set of 100 points. Each point was assigned to the cluster in which it had
the largest membership weight. The points belonging to each cluster are shown
by different marker shapes, while the degree of membership in the cluster is
shown by the shading. The darker the points, the stronger their membership
in the cluster to which they have been assigned. The membership in a cluster
is strongest toward the center of the cluster and weakest for those points that
are between clusters.

Strengths and Limitations

A positive feature of FCM is that it produces a clustering that provides an
indication of the degree to which any point belongs to any cluster. Otherwise,
it has much the same strengths and weaknesses as K-means, although it is
somewhat more computationally intensive.

�

M08 TAN9224 02 GE C08 page 647

� �

�

8.2 Prototype-Based Clustering 647

8.2.2 Clustering Using Mixture Models

This section considers clustering based on statistical models. It is often con-
venient and effective to assume that data has been generated as a result of a
statistical process and to describe the data by finding the statistical model
that best fits the data, where the statistical model is described in terms
of a distribution and a set of parameters for that distribution. At a high
level, this process involves deciding on a statistical model for the data and
estimating the parameters of that model from the data. This section describes
a particular kind of statistical model, mixture models, which model the data
by using a number of statistical distributions. Each distribution corresponds
to a cluster and the parameters of each distribution provide a description of
the corresponding cluster, typically in terms of its center and spread.

The discussion in this section proceeds as follows. After providing a de-
scription of mixture models, we consider how parameters can be estimated for
statistical data models. We first describe how a procedure known as maxi-
mum likelihood estimation (MLE) can be used to estimate parameters
for simple statistical models and then discuss how we can extend this approach
for estimating the parameters of mixture models. Specifically, we describe the
well-known Expectation-Maximization (EM) algorithm, which makes
an initial guess for the parameters, and then iteratively improves these esti-
mates. We present examples of how the EM algorithm can be used to cluster
data by estimating the parameters of a mixture model and discuss its strengths
and limitations.

A firm understanding of statistics and probability, as covered in Appendix
C, is essential for understanding this section. Also, for convenience in the
following discussion, we use the term probability to refer to both probability
and probability density.

Mixture Models

Mixture models view the data as a set of observations from a mixture of differ-
ent probability distributions. The probability distributions can be anything,
but are often taken to be multivariate normal, as this type of distribution
is well understood, mathematically easy to work with, and has been shown
to produce good results in many instances. These types of distributions can
model ellipsoidal clusters.

Conceptually, mixture models correspond to the following process of gen-
erating data. Given several distributions, usually of the same type, but with
different parameters, randomly select one of these distributions and generate

�

M08 TAN9224 02 GE C08 page 648

� �

�

648 Chapter 8 Cluster Analysis: Additional Issues and Algorithms

an object from it. Repeat the process m times, where m is the number of
objects.

More formally, assume that there are K distributions and m objects, X =
{x1, . . . ,xm}. Let the jth distribution have parameters θj , and let Θ be the set
of all parameters, i.e., Θ = {θ1, . . . , θK}. Then, prob(xi|θj) is the probability
of the ith object if it comes from the jth distribution. The probability that
the jth distribution is chosen to generate an object is given by the weight wj ,
1 ≤ j ≤ K, where these weights (probabilities) are subject to the constraint
that they sum to one, i.e.,

∑K
j=1wj = 1. Then, the probability of an object x

is given by Equation 8.5.

prob(x|Θ) =
K∑

j=1

wjpj(x|θj) (8.5)

If the objects are generated in an independent manner, then the probability
of the entire set of objects is just the product of the probabilities of each
individual xi.

prob(X|Θ) =
m∏

i=1

prob(xi|Θ) =
m∏

i=1

K∑

j=1

wjpj(xi|θj) (8.6)

For mixture models, each distribution describes a different group, i.e., a
different cluster. By using statistical methods, we can estimate the parameters
of these distributions from the data and thus describe these distributions (clus-
ters). We can also identify which objects belong to which clusters. However,
mixture modeling does not produce a crisp assignment of objects to clusters,
but rather gives the probability with which a specific object belongs to a
particular cluster.

Example 8.2 (Univariate Gaussian Mixture). We provide a concrete illus-
tration of a mixture model in terms of Gaussian distributions. The probability
density function for a one-dimensional Gaussian distribution at a point x is

prob(x|Θ) =
1√
2πσ

e−
(x−μ)2

2σ2 . (8.7)

The parameters of the Gaussian distribution are given by θ = (μ, σ), where
μ is the mean of the distribution and σ is the standard deviation. Assume
that there are two Gaussian distributions, with a common standard deviation

�

M08 TAN9224 02 GE C08 page 649

� �

�

8.2 Prototype-Based Clustering 649

–10 –5 0 5 10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

x

P
ro

ba
bi

lit
y

D
en

si
ty

(a) Probability density function for
the mixture model.

–15 –10 5 0 5 10 15
0

50

100

150

200

250

300

350

400

450

500

x

N
um

be
r

of
 P

oi
nt

s

(b) 20,000 points generated from the
mixture model.

Figure 8.2. Mixture model consisting of two normal distributions with means of -4 and 4, respectively.
Both distributions have a standard deviation of 2.

of 2 and means of −4 and 4, respectively. Also assume that each of the two
distributions is selected with equal probability, i.e., w1 = w2 = 0.5. Then
Equation 8.5 becomes the following:

prob(x|Θ) =
1

2
√

2π
e−

(x+4)2

8 +
1

2
√

2π
e−

(x−4)2

8 . (8.8)

Figure 8.2(a) shows a plot of the probability density function of this
mixture model, while Figure 8.2(b) shows the histogram for 20,000 points
generated from this mixture model.

Estimating Model Parameters Using Maximum Likelihood

Given a statistical model for the data, it is necessary to estimate the pa-
rameters of that model. A standard approach used for this task is maximum
likelihood estimation, which we now explain.

Consider a set of m points that are generated from a one-dimensional
Gaussian distribution. Assuming that the points are generated independently,
the probability of these points is just the product of their individual prob-
abilities. (Again, we are dealing with probability densities, but to keep our
terminology simple, we will refer to probabilities.) Using Equation 8.7, we
can write this probability as shown in Equation 8.9. Because this probability
would be a very small number, we typically will work with the log probability,
as shown in Equation 8.10.

�

M08 TAN9224 02 GE C08 page 650

� �

�

650 Chapter 8 Cluster Analysis: Additional Issues and Algorithms

prob(X|Θ) =
m∏

i=1

1√
2πσ

e−
(xi−μ)2

2σ2 (8.9)

log prob(X|Θ) = −
m∑

i=1

(xi − μ)2

2σ2
− 0.5m log 2π −m log σ (8.10)

We would like to find a procedure to estimate μ and σ if they are unknown.
One approach is to choose the values of the parameters for which the data is
most probable (most likely). In other words, choose the μ and σ that maximize
Equation 8.9. This approach is known in statistics as the maximum likeli-
hood principle, and the process of applying this principle to estimate the
parameters of a statistical distribution from the data is known as maximum
likelihood estimation (MLE).

The principle is called the maximum likelihood principle because, given a
set of data, the probability of the data, regarded as a function of the param-
eters, is called a likelihood function. To illustrate, we rewrite Equation 8.9
as Equation 8.11 to emphasize that we view the statistical parameters μ and
σ as our variables and that the data is regarded as a constant. For practical
reasons, the log likelihood is more commonly used. The log likelihood function
derived from the log probability of Equation 8.10 is shown in Equation 8.12.
Note that the parameter values that maximize the log likelihood also maximize
the likelihood since log is a monotonically increasing function.

likelihood(Θ|X) = L(Θ|X) =
m∏

i=1

1√
2πσ

e−
(xi−μ)2

2σ2 (8.11)

log likelihood(Θ|X) = �(Θ|X) = −
m∑

i=1

(xi − μ)2

2σ2
− 0.5m log 2π −m log σ (8.12)

Example 8.3 (Maximum Likelihood Parameter Estimation). We provide a
concrete illustration of the use of MLE for finding parameter values. Suppose
that we have the set of 200 points whose histogram is shown in Figure 8.3(a).
Figure 8.3(b) shows the maximum log likelihood plot for the 200 points under
consideration. The values of the parameters for which the log probability is a
maximum are μ = −4.1 and σ = 2.1, which are close to the parameter values
of the underlying Gaussian distribution, μ = −4.0 and σ = 2.0.

Graphing the likelihood of the data for different values of the parameters is
not practical, at least if there are more than two parameters. Thus, standard

�

M08 TAN9224 02 GE C08 page 651

� �

�

8.2 Prototype-Based Clustering 651

–10 –8 –6 –4 –2 0 2
0

5

10

15

20

25

30

35

40

45

50

x

N
um

be
r

of
 P

oi
nt

s

(a) Histogram of 200 points from a
Gaussian distribution.

–5
–4.5

–4
–3.5

–3

1.5
2

2.5
3

–520

–500

–480

–460

–440

–420

uσ

lo
g

pr
ob

ab
ili

ty

log prob

–510

–500

–490

–480

–470

–460

–450

–440

(b) Log likelihood plot of the 200 points for
different values of the mean and standard
deviation.

Figure 8.3. 200 points from a Gaussian distribution and their log probability for different parameter
values.

statistical procedure is to derive the maximum likelihood estimates of a sta-
tistical parameter by taking the derivative of likelihood function with respect
to that parameter, setting the result equal to 0, and solving. In particular,
for a Gaussian distribution, it can be shown that the mean and standard
deviation of the sample points are the maximum likelihood estimates of the
corresponding parameters of the underlying distribution. (See Exercise 13 on
720.) Indeed, for the 200 points considered in our example, the parameter
values that maximized the log likelihood were precisely the mean and standard
deviation of the 200 points, i.e., μ = −4.1 and σ = 2.1.

Estimating Mixture Model Parameters Using Maximum Likelihood:
The EM Algorithm

We can also use the maximum likelihood approach to estimate the model
parameters for a mixture model. In the simplest case, we know which data
objects come from which distributions, and the situation reduces to one of
estimating the parameters of a single distribution given data from that distri-
bution. For most common distributions, the maximum likelihood estimates of
the parameters are calculated from simple formulas involving the data.

In a more general (and more realistic) situation, we do not know which
points were generated by which distribution. Thus, we cannot directly cal-
culate the probability of each data point, and hence, it would seem that we

�

M08 TAN9224 02 GE C08 page 652

� �

�

652 Chapter 8 Cluster Analysis: Additional Issues and Algorithms

cannot use the maximum likelihood principle to estimate parameters. The
solution to this problem is the EM algorithm, which is shown in Algorithm 8.2.
Briefly, given a guess for the parameter values, the EM algorithm calculates
the probability that each point belongs to each distribution and then uses these
probabilities to compute a new estimate for the parameters. (These parameters
are the ones that maximize the likelihood.) This iteration continues until the
estimates of the parameters either do not change or change very little. Thus,
we still employ maximum likelihood estimation, but via an iterative search.

Algorithm 8.2 EM algorithm.
1: Select an initial set of model parameters.

(As with K-means, this can be done randomly or in a variety of ways.)
2: repeat
3: Expectation Step For each object, calculate the probability

that each object belongs to each distribution, i.e., calculate
prob(distribution j|xi,Θ).

4: Maximization Step Given the probabilities from the expectation step,
find the new estimates of the parameters that maximize the expected
likelihood.

5: until The parameters do not change.
(Alternatively, stop if the change in the parameters is below a specified
threshold.)

The EM algorithm is similar to the K-means algorithm given in Section
5.2.1. Indeed, the K-means algorithm for Euclidean data is a special case of
the EM algorithm for spherical Gaussian distributions with equal covariance
matrices, but different means. The expectation step corresponds to the K-
means step of assigning each object to a cluster. Instead, each object is
assigned to every cluster (distribution) with some probability. The maxi-
mization step corresponds to computing the cluster centroids. Instead, all
the parameters of the distributions, as well as the weight parameters, are
selected to maximize the likelihood. This process is often straightforward, as
the parameters are typically computed using formulas derived from maximum
likelihood estimation. For instance, for a single Gaussian distribution, the
MLE estimate of the mean is the mean of the objects in the distribution.
In the context of mixture models and the EM algorithm, the computation
of the mean is modified to account for the fact that every object belongs

�

M08 TAN9224 02 GE C08 page 653

� �

�

8.2 Prototype-Based Clustering 653

to a distribution with a certain probability. This is illustrated further in the
following example.

Example 8.4 (Simple Example of EM Algorithm). This example illustrates
how EM operates when applied to the data in Figure 8.2. To keep the example
as simple as possible, we assume that we know that the standard deviation of
both distributions is 2.0 and that points were generated with equal probability
from both distributions. We will refer to the left and right distributions as
distributions 1 and 2, respectively.

We begin the EM algorithm by making initial guesses for μ1 and μ2,
say, μ1 = −2 and μ2 = 3. Thus, the initial parameters, θ = (μ, σ), for the
two distributions are, respectively, θ1 = (−2, 2) and θ2 = (3, 2). The set of
parameters for the entire mixture model is Θ = {θ1, θ2}. For the expectation
step of EM, we want to compute the probability that a point came from a
particular distribution; i.e., we want to compute prob(distribution 1|xi,Θ)
and prob(distribution 2|xi,Θ). These values can be expressed by Equation
8.13, which is a straightforward application of Bayes rule, which is described
in Appendix C.

prob(distribution j|xi, θ) =
0.5 prob(xi|θj)

0.5 prob(xi|θ1) + 0.5 prob(xi|θ2) , (8.13)

where 0.5 is the probability (weight) of each distribution and j is 1 or 2.
For instance, assume one of the points is 0. Using the Gaussian den-

sity function given in Equation 8.7, we compute that prob(0|θ1) = 0.12 and
prob(0|θ2) = 0.06. (Again, we are really computing probability densities.)
Using these values and Equation 8.13, we find that prob(distribution 1|0,Θ) =
0.12/(0.12+0.06) = 0.66 and prob(distribution 2|0,Θ) = 0.06/(0.12+0.06) =
0.33. This means that the point 0 is twice as likely to belong to distribution 1
as distribution 2 based on the current assumptions for the parameter values.

After computing the cluster membership probabilities for all 20,000 points,
we compute new estimates for μ1 and μ2 (using Equations 8.14 and 8.15) in
the maximization step of the EM algorithm. Notice that the new estimate for
the mean of a distribution is just a weighted average of the points, where the
weights are the probabilities that the points belong to the distribution, i.e.,
the prob(distribution j|xi) values.

μ1 =
20,000∑

i=1

xi
prob(distribution 1|xi,Θ)

∑20,000
i=1 prob(distribution 1|xi,Θ)

(8.14)

�

M08 TAN9224 02 GE C08 page 654

� �

�

654 Chapter 8 Cluster Analysis: Additional Issues and Algorithms

Table 8.1. First few iterations of the EM algorithm for the simple example.

Iteration μ1 μ2

0 −2.00 3.00
1 −3.74 4.10
2 −3.94 4.07
3 −3.97 4.04
4 −3.98 4.03
5 −3.98 4.03

μ2 =
20,000∑

i=1

xi
prob(distribution 2|xi,Θ)

∑20,000
i=1 prob(distribution 2|xi,Θ)

(8.15)

We repeat these two steps until the estimates of μ1 and μ2 either don’t
change or change very little. Table 8.1 gives the first few iterations of the EM
algorithm when it is applied to the set of 20,000 points. For this data, we know
which distribution generated which point, so we can also compute the mean of
the points from each distribution. The means are μ1 = −3.98 and μ2 = 4.03.

Example 8.5 (The EM Algorithm on Sample Data Sets). We give three
examples that illustrate the use of the EM algorithm to find clusters using
mixture models. The first example is based on the data set used to illustrate
the fuzzy c-means algorithm—see Figure 8.1. We modeled this data as a
mixture of three two-dimensional Gaussian distributions with different means
and identical covariance matrices. We then clustered the data using the EM
algorithm. The results are shown in Figure 8.4. Each point was assigned to the
cluster in which it had the largest membership weight. The points belonging
to each cluster are shown by different marker shapes, while the degree of
membership in the cluster is shown by the shading. Membership in a cluster
is relatively weak for those points that are on the border of the two clusters,
but strong elsewhere. It is interesting to compare the membership weights and
probabilities of Figures 8.4 and 8.1. (See Exercise 16 on page 720.)

For our second example, we apply mixture model clustering to data that
contains clusters with different densities. The data consists of two natural
clusters, each with roughly 500 points. This data was created by combining
two sets of Gaussian data, one with a center at (−4,1) and a standard deviation
of 2, and one with a center at (0,0) and a standard deviation of 0.5. Figure 8.5
shows the clustering produced by the EM algorithm. Despite the differences
in the density, the EM algorithm is quite successful at identifying the original
clusters.

�

M08 TAN9224 02 GE C08 page 655

� �

�

8.2 Prototype-Based Clustering 655

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Maximum
Probablility

Figure 8.4. EM clustering of a two-dimensional point set with three clusters.

–10 –8 –6 –4 –2 0 2 4
–8

–6

–4

–2

0

2

4

6

x

y

Figure 8.5. EM clustering of a two-dimensional point set with two clusters of differing density.

�

M08 TAN9224 02 GE C08 page 656

� �

�

656 Chapter 8 Cluster Analysis: Additional Issues and Algorithms

(a) Clusters produced by mixture model clustering.

(b) Clusters produced by K-means clustering.

Figure 8.6. Mixture model and K-means clustering of a set of two-dimensional points.

�

M08 TAN9224 02 GE C08 page 657

� �

�

8.2 Prototype-Based Clustering 657

For our third example, we use mixture model clustering on a data set that
K-means cannot properly handle. Figure 8.6(a) shows the clustering produced
by a mixture model algorithm, while Figure 8.6(b) shows the K-means cluster-
ing of the same set of 1,000 points. For mixture model clustering, each point
has been assigned to the cluster for which it has the highest probability. In
both figures, different markers are used to distinguish different clusters. Do
not confuse the ‘+’ and ‘x’ markers in Figure 8.6(a).

Advantages and Limitations of Mixture Model Clustering Using the
EM Algorithm

Finding clusters by modeling the data using mixture models and applying
the EM algorithm to estimate the parameters of those models has a variety of
advantages and disadvantages. On the negative side, the EM algorithm can be
slow, it is not practical for models with large numbers of components, and it
does not work well when clusters contain only a few data points or if the data
points are nearly co-linear. There is also a problem in estimating the number
of clusters or, more generally, in choosing the exact form of the model to use.
This problem typically has been dealt with by applying a Bayesian approach,
which, roughly speaking, gives the odds of one model versus another, based
on an estimate derived from the data. Mixture models can also have difficulty
with noise and outliers, although work has been done to deal with this problem.

On the positive side, mixture models are more general than K-means or
fuzzy c-means because they can use distributions of various types. As a result,
mixture models (based on Gaussian distributions) can find clusters of different
sizes and elliptical shapes. Also, a model-based approach provides a disciplined
way of eliminating some of the complexity associated with data. To see the
patterns in data, it is often necessary to simplify the data, and fitting the data
to a model is a good way to do that if the model is a good match for the data.
Furthermore, it is easy to characterize the clusters produced, because they can
be described by a small number of parameters. Finally, many sets of data are
indeed the result of random processes, and thus should satisfy the statistical
assumptions of these models.

8.2.3 Self-Organizing Maps (SOM)

The Kohonen Self-Organizing Feature Map (SOFM or SOM) is a clustering
and data visualization technique based on a neural network viewpoint. Despite
the neural network origins of SOM, it is more easily presented—at least in the
context of this chapter—as a variation of prototype-based clustering. As with

�

M08 TAN9224 02 GE C08 page 658

� �

�

658 Chapter 8 Cluster Analysis: Additional Issues and Algorithms

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

Figure 8.7. Two-dimensional 3-by-3 rectangular SOM neural network.

other types of centroid-based clustering, the goal of SOM is to find a set of
centroids (reference vectors in SOM terminology) and to assign each object
in the data set to the centroid that provides the best approximation of that
object. In neural network terminology, there is one neuron associated with
each centroid.

As with incremental K-means, data objects are processed one at a time and
the closest centroid is updated. Unlike K-means, SOM imposes a topographic
ordering on the centroids and nearby centroids are also updated. Furthermore,
SOM does not keep track of the current cluster membership of an object, and,
unlike K-means, if an object switches clusters, there is no explicit update of the
old cluster centroid. However, if the old cluster is in the neighborhood of the
new cluster, it will be updated. The processing of points continues until some
predetermined limit is reached or the centroids are not changing very much.
The final output of the SOM technique is a set of centroids that implicitly
define clusters. Each cluster consists of the points closest to a particular
centroid. The following section explores the details of this process.

The SOM Algorithm

A distinguishing feature of SOM is that it imposes a topographic (spatial)
organization on the centroids (neurons). Figure 8.7 shows an example of a
two-dimensional SOM in which the centroids are represented by nodes that
are organized in a rectangular lattice. Each centroid is assigned a pair of coor-
dinates (i, j). Sometimes, such a network is drawn with links between adjacent
nodes, but that can be misleading because the influence of one centroid on
another is via a neighborhood that is defined in terms of coordinates, not links.
There are many types of SOM neural networks, but we restrict our discussion
to two-dimensional SOMs with a rectangular or hexagonal organization of the
centroids.

�

M08 TAN9224 02 GE C08 page 659

� �

�

8.2 Prototype-Based Clustering 659

Even though SOM is similar to K-means or other prototype-based ap-
proaches, there is a fundamental difference. Centroids used in SOM have a
predetermined topographic ordering relationship. During the training process,
SOM uses each data point to update the closest centroid and centroids that are
nearby in the topographic ordering. In this way, SOM produces an ordered set
of centroids for any given data set. In other words, the centroids that are close
to each other in the SOM grid are more closely related to each other than to
the centroids that are farther away. Because of this constraint, the centroids of
a two-dimensional SOM can be viewed as lying on a two-dimensional surface
that tries to fit the n-dimensional data as well as possible. The SOM centroids
can also be thought of as the result of a nonlinear regression with respect to
the data points.

At a high level, clustering using the SOM technique consists of the steps
described in Algorithm 8.3.

Algorithm 8.3 Basic SOM Algorithm.
1: Initialize the centroids.
2: repeat
3: Select the next object.
4: Determine the closest centroid to the object.
5: Update this centroid and the centroids that are close, i.e., in a specified

neighborhood.
6: until The centroids don’t change much or a threshold is exceeded.
7: Assign each object to its closest centroid and return the centroids and clusters.

Initialization This step (line 1) can be performed in a number of ways.
One approach is to choose each component of a centroid randomly from the
range of values observed in the data for that component. While this approach
works, it is not necessarily the best approach, especially for producing rapid
convergence. Another approach is to randomly choose the initial centroids
from the available data points. This is very much like randomly selecting
centroids for K-means.

Selection of an Object The first step in the loop (line 3) is the selection of
the next object. This is fairly straightforward, but there are some difficulties.
Because convergence can require many steps, each data object may be used
multiple times, especially if the number of objects is small. However, if the
number of objects is large, then not every object needs to be used. It is also

�

M08 TAN9224 02 GE C08 page 660

� �

�

660 Chapter 8 Cluster Analysis: Additional Issues and Algorithms

possible to enhance the influence of certain groups of objects by increasing
their frequency in the training set.

Assignment The determination of the closest centroid (line 4) is also rel-
atively straightforward, although it requires the specification of a distance
metric. The Euclidean distance metric is often used, as is the dot product
metric. When using the dot product distance, the data vectors are typically
normalized beforehand and the reference vectors are normalized at each step.
In such cases, using the dot product metric is equivalent to using the cosine
measure.

Update The update step (line 5) is the most complicated. Let m1, . . . ,
mk be the centroids. (For a rectangular grid, note that k is the product of
the number of rows and the number of columns.) For time step t, let p(t)
be the current object (point) and assume that the closest centroid to p(t) is
mj . Then, for time t + 1, the jth centroid is updated by using the following
equation. (We will see shortly that the update is really restricted to centroids
whose neurons are in a small neighborhood of mj .)

mj(t+ 1) = mj(t) + hj(t)(p(t)−mj(t)) (8.16)

Thus, at time t, a centroid mj(t) is updated by adding a term, hj(t) (p(t)−
mj(t)), which is proportional to the difference, p(t) − mj(t), between the
current object, p(t), and centroid, mj(t). hj(t), determines the effect that the
difference, p(t)−mj(t), will have and is chosen so that (1) it diminishes with
time and (2) it enforces a neighborhood effect, i.e., the effect of an object is
strongest on the centroids closest to the centroid mj . Here we are referring to
the distance in the grid, not the distance in the data space. Typically, hj(t) is
chosen to be one of the following two functions:

hj(t) = α(t)exp(−dist(rj , rk)2/(2σ2(t)) (Gaussian function)
hj(t) = α(t) if dist(rj , rk) ≤ threshold, 0 otherwise (step function)

These functions require more explanation. α(t) is a learning rate param-
eter, 0 < α(t) < 1, which decreases monotonically with time and controls
the rate of convergence. rk = (xk, yk) is the two-dimensional point that gives
the grid coordinates of the kth centroid. dist(rj , rk) is the Euclidean distance
between the grid location of the two centroids, i.e.,

√
(xj − xk)2 + (yj − yk)2.

�

M08 TAN9224 02 GE C08 page 661

� �

�

8.2 Prototype-Based Clustering 661

Consequently, for centroids whose grid locations are far from the grid location
of centroid mj , the influence of object p(t) will be either greatly diminished or
non-existent. Finally, note that σ is the typical Gaussian variance parameter
and controls the width of the neighborhood, i.e., a small σ will yield a small
neighborhood, while a large σ will yield a wide neighborhood. The threshold
used for the step function also controls the neighborhood size.

Remember, it is the neighborhood updating technique that enforces a
relationship (ordering) between centroids associated with neighboring neurons.

Termination Deciding when we are close enough to a stable set of centroids
is an important issue. Ideally, iteration should continue until convergence
occurs, that is, until the reference vectors either do not change or change very
little. The rate of convergence will depend on a number of factors, such as
the data and α(t). We will not discuss these issues further, except to mention
that, in general, convergence can be slow and is not guaranteed.

Example 8.6 (Document Data). We present two examples. In the first case,
we apply SOM with a 4-by-4 hexagonal grid to document data. We clustered
3204 newspaper articles from the Los Angeles Times, which come from 6
different sections: Entertainment, Financial, Foreign, Metro, National, and
Sports. Figure 8.8 shows the SOM grid. We have used a hexagonal grid, which
allows each centroid to have six immediate neighbors instead of four. Each
SOM grid cell (cluster) has been labeled with the majority class label of the
associated points. The clusters of each particular category form contiguous
groups, and their position relative to other categories of clusters gives us
additional information, e.g., that the Metro section contains stories related
to all other sections.

Example 8.7 (Two-Dimensional Points). In the second case, we use a rectan-
gular SOM and a set of two-dimensional data points. Figure 8.9(a) shows the
points and the positions of the 36 reference vectors (shown as x’s) produced by
SOM. The points are arranged in a checkerboard pattern and are split into five
classes: circles, triangles, squares, diamonds, and hexagons (stars). A 6-by-6
two-dimensional rectangular grid of centroids was used with random initial-
ization. As Figure 8.9(a) shows, the centroids tend to distribute themselves
to the dense areas. Figure 8.9(b) indicates the majority class of the points
associated with that centroid. The clusters associated with triangle points are
in one contiguous area, as are the centroids associated with the four other
types of points. This is a result of the neighborhood constraints enforced by
SOM. While there are the same number of points in each of the five groups,
notice also that the centroids are not evenly distributed. This is partly due

�

M08 TAN9224 02 GE C08 page 662

� �

�

662 Chapter 8 Cluster Analysis: Additional Issues and Algorithms

Sports Sports Metro Metro

Sports Sports Metro Foreign

Entertainment Metro Financial Financial

Entertainment Metro Metro National

Figure 8.8. Visualization of the relationships between SOM cluster for Los Angeles Times document
data set.

(a) Distribution of SOM reference vectors
(X’s) for a two-dimensional point set.

diamond diamond diamond hexagon hexagon hexagon

diamond diamond diamond circle hexagon hexagon

diamond diamond circle circle circle hexagon

square square circle circle triangle triangle

square square circle circle triangle triangle

square square square triangle triangle triangle

(b) Classes of the SOM cen-
troids.

Figure 8.9. SOM applied to two-dimensional data points.

to the overall distribution of points and partly an artifact of putting each
centroid in a single cluster.

�

M08 TAN9224 02 GE C08 page 663

� �

�

8.2 Prototype-Based Clustering 663

Applications

Once the SOM vectors are found, they can be used for many purposes other
than clustering. For example, with a two-dimensional SOM, it is possible to
associate various quantities with the grid points associated with each centroid
(cluster) and to visualize the results via various types of plots. For example,
plotting the number of points associated with each cluster yields a plot that
reveals the distribution of points among clusters. A two-dimensional SOM is a
nonlinear projection of the original probability distribution function into two
dimensions. This projection attempts to preserve topological features; thus,
using SOM to capture the structure of the data has been compared to the
process of “pressing a flower.”

Strengths and Limitations

SOM is a clustering technique that enforces neighborhood relationships on
the resulting cluster centroids. Because of this, clusters that are neighbors are
more related to one another than clusters that are not. Such relationships
facilitate the interpretation and visualization of the clustering results. Indeed,
this aspect of SOM has been exploited in many areas, such as visualizing web
documents or gene array data.

SOM also has a number of limitations, which are listed next. Some of
the listed limitations are only valid if we consider SOM to be a standard
clustering technique that aims to find the true clusters in the data, rather
than a technique that uses clustering to help discover the structure of the
data. Also, some of these limitations have been addressed either by extensions
of SOM or by clustering algorithms inspired by SOM. (See the Bibliographic
Notes.)

• The user must choose the settings of parameters, the neighborhood
function, the grid type, and the number of centroids.

• A SOM cluster often does not correspond to a single natural cluster.
In some cases, a SOM cluster might encompass several natural clusters,
while in other cases a single natural cluster is split into several SOM
clusters. This problem is partly due to the use of a grid of centroids and
partly due to the fact that SOM, like other prototype-based clustering
techniques, tends to split or combine natural clusters when they are of
varying sizes, shapes, and densities.

• SOM lacks a specific objective function. SOM attempts to find a set of
centroids that best approximate the data, subject to the topographic

�

M08 TAN9224 02 GE C08 page 664

� �

�

664 Chapter 8 Cluster Analysis: Additional Issues and Algorithms

constraints among the centroids, but the success of SOM in doing this
cannot be expressed by a function. This can make it difficult to compare
different SOM clustering results.

• SOM is not guaranteed to converge, although, in practice, it typically
does.

8.3 Density-Based Clustering

In Section 5.4, we considered DBSCAN, a simple, but effective algorithm for
finding density-based clusters, i.e., dense regions of objects that are surrounded
by low-density regions. This section examines additional density-based clus-
tering techniques that address issues of efficiency, finding clusters in subspaces,
and more accurately modeling density. First, we consider grid-based clustering,
which breaks the data space into grid cells and then forms clusters from cells
that are sufficiently dense. Such an approach can be efficient and effective, at
least for low-dimensional data. Next, we consider subspace clustering, which
looks for clusters (dense regions) in subsets of all dimensions. For a data
space with n dimensions, potentially 2n − 1 subspaces need to be searched,
and thus an efficient technique is needed to do this. CLIQUE is a grid-
based clustering algorithm that provides an efficient approach to subspace
clustering based on the observation that dense areas in a high-dimensional
space imply the existence of dense areas in lower-dimensional space. Finally, we
describe DENCLUE, a clustering technique that uses kernel density functions
to model density as the sum of the influences of individual data objects. While
DENCLUE is not fundamentally a grid-based technique, it does employ a grid-
based approach to improve efficiency.

8.3.1 Grid-Based Clustering

A grid is an efficient way to organize a set of data, at least in low dimensions.
The idea is to split the possible values of each attribute into a number of
contiguous intervals, creating a set of grid cells. (We are assuming, for this
discussion and the remainder of the section, that our attributes are ordinal,
interval, or continuous.) Each object falls into a grid cell whose corresponding
attribute intervals contain the values of the object. Objects can be assigned to
grid cells in one pass through the data, and information about each cell, such
as the number of points in the cell, can also be gathered at the same time.

There are a number of ways to perform clustering using a grid, but most
approaches are based on density, at least in part, and thus, in this section, we

�

M08 TAN9224 02 GE C08 page 665

� �

�

8.3 Density-Based Clustering 665

will use grid-based clustering to mean density-based clustering using a grid.
Algorithm 8.4 describes a basic approach to grid-based clustering. Various
aspects of this approach are explored next.

Algorithm 8.4 Basic grid-based clustering algorithm.
1: Define a set of grid cells.
2: Assign objects to the appropriate cells and compute the density of each cell.
3: Eliminate cells having a density below a specified threshold, τ .
4: Form clusters from contiguous (adjacent) groups of dense cells.

Defining Grid Cells

This is a key step in the process, but also the least well defined, as there
are many ways to split the possible values of each attribute into a number
of contiguous intervals. For continuous attributes, one common approach is
to split the values into equal width intervals. If this approach is applied to
each attribute, then the resulting grid cells all have the same volume, and the
density of a cell is conveniently defined as the number of points in the cell.

However, more sophisticated approaches can also be used. In particular,
for continuous attributes any of the techniques that are commonly used to
discretize attributes can be applied. (See Section 2.3.6.) In addition to the
equal width approach already mentioned, this includes (1) breaking the values
of an attribute into intervals so that each interval contains an equal number
of points, i.e., equal frequency discretization, or (2) using clustering. Another
approach, which is used by the subspace clustering algorithm MAFIA, initially
breaks the set of values of an attribute into a large number of equal width
intervals and then combines intervals of similar density.

Regardless of the approach taken, the definition of the grid has a strong
impact on the clustering results. We will consider specific aspects of this later.

The Density of Grid Cells

A natural way to define the density of a grid cell (or a more generally shaped
region) is as the number of points divided by the volume of the region. In other
words, density is the number of points per amount of space, regardless of the
dimensionality of that space. Specific, low-dimensional examples of density are
the number of road signs per mile (one dimension), the number of eagles per
square kilometer of habitat (two dimensions), and the number of molecules

�

M08 TAN9224 02 GE C08 page 666

� �

�

666 Chapter 8 Cluster Analysis: Additional Issues and Algorithms

of a gas per cubic centimeter (three dimensions). As mentioned, however, a
common approach is to use grid cells that have the same volume so that the
number of points per cell is a direct measure of the cell’s density.

Example 8.8 (Grid-Based Density). Figure 8.10 shows two sets of two-di-
mensional points divided into 49 cells using a 7-by-7 grid. The first set contains
200 points generated from a uniform distribution over a circle centered at (2, 3)
of radius 2, while the second set has 100 points generated from a uniform
distribution over a circle centered at (6, 3) of radius 1. The counts for the grid
cells are shown in Table 8.2. Since the cells have equal volume (area), we can
consider these values to be the densities of the cells.

1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

x

y

Figure 8.10. Grid-based density.

0 0 0 0 0 0 0
0 0 0 0 0 0 0
4 17 18 6 0 0 0
14 14 13 13 0 18 27
11 18 10 21 0 24 31
3 20 14 4 0 0 0
0 0 0 0 0 0 0

Table 8.2. Point counts for grid cells.

Forming Clusters from Dense Grid Cells

Forming clusters from adjacent groups of dense cells is relatively straightfor-
ward. (In Figure 8.10, for example, it is clear that there would be two clusters.)
There are, however, some issues. We need to define what we mean by adjacent
cells. For example, does a two-dimensional grid cell have 4 adjacent cells or
8? Also, we need an efficient technique to find the adjacent cells, particularly
when only occupied cells are stored.

The clustering approach defined by Algorithm 8.4 has some limitations
that could be addressed by making the algorithm slightly more sophisticated.
For example, there are likely to be partially empty cells on the boundary of
a cluster. Often, these cells are not dense. If so, they will be discarded and
parts of a cluster will be lost. Figure 8.10 and Table 8.2 show that four parts

�

M08 TAN9224 02 GE C08 page 667

� �

�

8.3 Density-Based Clustering 667

of the larger cluster would be lost if the density threshold is 9. The clustering
process could be modified to avoid discarding such cells, although this would
require additional processing.

It is also possible to enhance basic grid-based clustering by using more than
just density information. In many cases, the data has both spatial and non-
spatial attributes. In other words, some of the attributes describe the location
of objects in time or space, while other attributes describe other aspects of
the objects. A common example is houses, which have both a location and
a number of other characteristics, such as price or floor space in square feet.
Because of spatial (or temporal) autocorrelation, objects in a particular cell
often have similar values for their other attributes. In such cases, it is possible
to filter the cells based on the statistical properties of one or more non-spatial
attributes, e.g., average house price, and then form clusters based on the
density of the remaining points.

Strengths and Limitations

On the positive side, grid-based clustering can be very efficient and effective.
Given a partitioning of each attribute, a single pass through the data can
determine the grid cell of every object and the count of every grid. Also,
even though the number of potential grid cells can be high, grid cells need to
be created only for non-empty cells. Thus, the time and space complexity of
defining the grid, assigning each object to a cell, and computing the density
of each cell is only O(m), where m is the number of points. If adjacent,
occupied cells can be efficiently accessed, for example, by using a search tree,
then the entire clustering process will be highly efficient, e.g., with a time
complexity of O(m logm). For this reason, the grid-based approach to density
clustering forms the basis of a number of clustering algorithms, such as STING,
GRIDCLUS, WaveCluster, Bang-Clustering, CLIQUE, and MAFIA.

On the negative side, grid-based clustering, like most density-based clus-
tering schemes, is very dependent on the choice of the density threshold τ .
If τ is too high, then clusters will be lost. If τ is too low, two clusters that
should be separate may be joined. Furthermore, if there are clusters and noise
of differing densities, then it might not be possible to find a single value of τ
that works for all parts of the data space.

There are also a number of issues related to the grid-based approach. In
Figure 8.10, for example, the rectangular grid cells do not accurately capture
the density of the circular boundary areas. We could attempt to alleviate this
problem by making the grid finer, but the number of points in the grid cells
associated with a cluster would likely show more fluctuation because points

�

M08 TAN9224 02 GE C08 page 668

� �

�

668 Chapter 8 Cluster Analysis: Additional Issues and Algorithms

in the cluster are not evenly distributed. Indeed, some grid cells, including
those in the interior of the cluster, might even be empty. Another issue is
that, depending on the placement or size of the cells, a group of points can
appear in just one cell or be split between several different cells. The same
group of points might be part of a cluster in the first case, but be discarded
in the second. Finally, as dimensionality increases, the number of potential
grid cells increases rapidly—exponentially in the number of dimensions. Even
though it is not necessary to explicitly consider empty grid cells, it can easily
happen that most grid cells contain a single object. In other words, grid-based
clustering tends to work poorly for high-dimensional data.

8.3.2 Subspace Clustering

The clustering techniques considered until now found clusters by using all
of the attributes. However, if only subsets of the features are considered, i.e.,
subspaces of the data, then the clusters that we find can be quite different from
one subspace to another. There are two reasons that subspace clusters might
be interesting. First, the data may be clustered with respect to a small set of
attributes, but randomly distributed with respect to the remaining attributes.
Second, there are cases in which different clusters exist in different sets of
dimensions. Consider a data set that records the sales of various items at
various times. (The times are the dimensions and the items are the objects.)
Some items might show similar behavior (cluster together) for particular sets
of months, e.g., summer, but different clusters would likely be characterized
by different months (dimensions).

Example 8.9 (Subspace Clusters). Figure 8.11(a) shows a set of points in
three-dimensional space. There are three clusters of points in the full space,
which are represented by squares, diamonds, and triangles. In addition, there
is one set of points, represented by circles, that is not a cluster in three-
dimensional space. Each dimension (attribute) of the example data set is split
into a fixed number (η) of equal width intervals. There are η = 20 intervals,
each of size 0.1. This partitions the data space into rectangular cells of equal
volume, and thus, the density of each unit is the fraction of points it contains.
Clusters are contiguous groups of dense cells. To illustrate, if the threshold
for a dense cell is ξ = 0.06, or 6% of the points, then three one-dimensional
clusters can be identified in Figure 8.12, which shows a histogram of the data
points of Figure 8.11(a) for the x attribute.

Figure 8.11(b) shows the points plotted in the xy plane. (The z attribute
is ignored.) This figure also contains histograms along the x and y axes that

�

M08 TAN9224 02 GE C08 page 669

� �

�

8.3 Density-Based Clustering 669

0.6 0.8 1 1.2 1.4 1.6 1.8
0.5
1

1.5

1

1.2

1.4

1.6
z

y

x

(a) Four clusters in three dimensions.

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

x

y

(b) View in the xy plane.

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

x

z

(c) View in the xz plane.

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

y

z

(d) View in the yz plane.

Figure 8.11. Example figures for subspace clustering.

show the distribution of the points with respect to their x and y coordinates,
respectively. (A higher bar indicates that the corresponding interval contains
relatively more points, and vice versa.) When we consider the y axis, we see
three clusters. One is from the circle points that do not form a cluster in the
full space, one consists of the square points, and one consists of the diamond
and triangle points. There are also three clusters in the x dimension; they
correspond to the three clusters—diamonds, triangles, and squares—in the full
space. These points also form distinct clusters in the xy plane. Figure 8.11(c)
shows the points plotted in the xz plane. There are two clusters, if we consider
only the z attribute. One cluster corresponds to the points represented by

�

M08 TAN9224 02 GE C08 page 670

� �

�

670 Chapter 8 Cluster Analysis: Additional Issues and Algorithms

0 0.5 1 1.5 2 2.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

x

Fr
ac

tio
n

of
 P

oi
nt

s

Figure 8.12. Histogram showing the distribution of points for the x attribute.

circles, while the other consists of the diamond, triangle, and square points.
These points also form distinct clusters in the xz plane. In Figure 8.11(d),
there are three clusters when we consider both the y and z coordinates. One
of these clusters consists of the circles; another consists of the points marked by
squares. The diamonds and triangles form a single cluster in the yz plane.

These figures illustrate a couple of important facts. First, a set of points—
the circles—may not form a cluster in the entire data space, but may form
a cluster in a subspace. Second, clusters that exist in the full data space (or
even a subspace) show up as clusters in lower-dimensional spaces. The first
fact tells us that we need to look in subsets of dimensions to find clusters,
while the second fact tells us that many of the clusters we find in subspaces
are likely to be “shadows” (projections) of higher-dimensional clusters. The
goal is to find the clusters and the dimensions in which they exist, but we are
typically not interested in clusters that are projections of higher-dimensional
clusters.

CLIQUE

CLIQUE (CLustering In QUEst) is a grid-based clustering algorithm that
methodically finds subspace clusters. It is impractical to check each subspace

�

M08 TAN9224 02 GE C08 page 671

� �

�

8.3 Density-Based Clustering 671

for clusters because the number of such subspaces is exponential in the number
of dimensions. Instead, CLIQUE relies on the following property:

Monotonicity property of density-based clusters If a set of points forms
a density-based cluster in k dimensions (attributes), then the same set of
points is also part of a density-based cluster in all possible subsets of those
dimensions.

Consider a set of adjacent, k-dimensional cells that form a cluster; i.e., there is
a collection of adjacent cells that have a density above the specified threshold
ξ. A corresponding set of cells in k − 1 dimensions can be found by omitting
one of the k dimensions (attributes). The lower-dimensional cells are still ad-
jacent, and each low-dimensional cell contains all points of the corresponding
high-dimensional cell. It can contain additional points as well. Thus, a low-
dimensional cell has a density greater than or equal to that of its corresponding
high-dimensional cell. Consequently, the low-dimensional cells form a cluster;
i.e., the points form a cluster with the reduced set of attributes.

Algorithm 8.5 gives a simplified version of the steps involved in CLIQUE.
Conceptually, the CLIQUE algorithm is similar to the Apriori algorithm for
finding frequent itemsets. See Chapter 4.

Algorithm 8.5 CLIQUE.
1: Find all the dense areas in the one-dimensional spaces corresponding to each

attribute. This is the set of dense one-dimensional cells.
2: k ← 2
3: repeat
4: Generate all candidate dense k-dimensional cells from dense (k−1)-dimensional

cells.
5: Eliminate cells that have fewer than ξ points.
6: k ← k + 1
7: until There are no candidate dense k-dimensional cells.
8: Find clusters by taking the union of all adjacent, high-density cells.
9: Summarize each cluster using a small set of inequalities that describe the attribute

ranges of the cells in the cluster.

�

M08 TAN9224 02 GE C08 page 672

� �

�

672 Chapter 8 Cluster Analysis: Additional Issues and Algorithms

Strengths and Limitations of CLIQUE

The most useful feature of CLIQUE is that it provides an efficient technique
for searching subspaces for clusters. Since this approach is based on the well-
known Apriori principle from association analysis, its properties are well
understood. Another useful feature is CLIQUE’s ability to summarize the
list of cells that comprises a cluster with a small set of inequalities.

Many limitations of CLIQUE are identical to the previously discussed lim-
itations of other grid-based density schemes. Other limitations are similar to
those of the Apriori algorithm. Specifically, just as frequent itemsets can share
items, the clusters found by CLIQUE can share objects. Allowing clusters to
overlap can greatly increase the number of clusters and make interpretation
difficult. Another issue is that Apriori—like CLIQUE—potentially has expo-
nential time complexity. In particular, CLIQUE will have difficulty if too many
dense cells are generated at lower values of k. Raising the density threshold
ξ can alleviate this problem. Still another potential limitation of CLIQUE is
explored in Exercise 25 on page 722.

8.3.3 DENCLUE: A Kernel-Based Scheme for Density-Based
Clustering

DENCLUE (DENsity CLUstEring) is a density-based clustering approach that
models the overall density of a set of points as the sum of influence functions
associated with each point. The resulting overall density function will have
local peaks, i.e., local density maxima, and these local peaks can be used
to define clusters in a natural way. Specifically, for each data point, a hill-
climbing procedure finds the nearest peak associated with that point, and
the set of all data points associated with a particular peak (called a local
density attractor) becomes a cluster. However, if the density at a local
peak is too low, then the points in the associated cluster are classified as noise
and discarded. Also, if a local peak can be connected to a second local peak
by a path of data points, and the density at each point on the path is above
the minimum density threshold, then the clusters associated with these local
peaks are merged. Therefore, clusters of any shape can be discovered.

Example 8.10 (DENCLUE Density). We illustrate these concepts with Fig-
ure 8.13, which shows a possible density function for a one-dimensional data
set. Points A–E are the peaks of this density function and represent local
density attractors. The dotted vertical lines delineate local regions of influence
for the local density attractors. Points in these regions will become center-
defined clusters. The dashed horizontal line shows a density threshold, ξ. All

�

M08 TAN9224 02 GE C08 page 673

� �

�

8.3 Density-Based Clustering 673

D
en

si
ty

x

A B
C

E
D

ξ

Figure 8.13. Illustration of DENCLUE density concepts in one dimension.

points associated with a local density attractor that has a density less than ξ,
such as those associated with C, will be discarded. All other clusters are kept.
Note that this can include points whose density is less than ξ, as long as they
are associated with local density attractors whose density is greater than ξ.
Finally, clusters that are connected by a path of points with a density above ξ
are combined. Clusters A and B would remain separate, while clusters D and
E would be combined.

The high-level details of the DENCLUE algorithm are summarized in
Algorithm 8.6. Next, we explore various aspects of DENCLUE in more detail.
First, we provide a brief overview of kernel density estimation and then present
the grid-based approach that DENCLUE uses for approximating the density.

Algorithm 8.6 DENCLUE algorithm.
1: Derive a density function for the space occupied by the data points.
2: Identify the points that are local maxima.

(These are the density attractors.)
3: Associate each point with a density attractor by moving in the direction of

maximum increase in density.
4: Define clusters consisting of points associated with a particular density attractor.
5: Discard clusters whose density attractor has a density less than a user-specified

threshold of ξ.
6: Combine clusters that are connected by a path of points that all have a density

of ξ or higher.

�

M08 TAN9224 02 GE C08 page 674

� �

�

674 Chapter 8 Cluster Analysis: Additional Issues and Algorithms

Kernel Density Estimation

DENCLUE is based on a well-developed area of statistics and pattern recogni-
tion that is known as kernel density estimation. The goal of this collection
of techniques (and many other statistical techniques as well) is to describe
the distribution of the data by a function. For kernel density estimation, the
contribution of each point to the overall density function is expressed by an
influence or kernel function. The overall density function is simply the sum
of the influence functions associated with each point.

Typically, the influence or kernel function is symmetric (the same in all
directions) and its value (contribution) decreases as the distance from the
point increases. For example, for a particular point, x, the Gaussian function,
K(y) = e−distance(x,y)2/2σ2

, is often used as a kernel function. σ is a parameter,
analogous to standard deviation, which governs how quickly the influence of a
point diminishes with distance. Figure 8.14(a) shows what a Gaussian density
function would look like for a single point in two dimensions, while Figures
8.14(c) and 8.14(d) show the overall density function produced by applying
the Gaussian influence function to the set of points shown in Figure 8.14(b).

Implementation Issues

Computation of kernel density can be quite expensive, and DENCLUE uses a
number of approximations to implement its basic approach efficiently. First,
it explicitly computes density only at data points. However, this still would
result in an O(m2) time complexity because the density at each point is
a function of the density contributed by every point. To reduce the time
complexity, DENCLUE uses a grid-based implementation to efficiently define
neighborhoods and thus limit the number of points that need to be considered
to define the density at a point. First, a preprocessing step creates a set of
grid cells. Only occupied cells are created, and these cells and their related in-
formation can be efficiently accessed via a search tree. Then, when computing
the density of a point and finding its nearest density attractor, DENCLUE
considers only the points in the neighborhood; i.e., points in the same cell and
in cells that are connected to the point’s cell. While this approach can sacrifice
some accuracy with respect to density estimation, computational complexity
is greatly reduced.

Strengths and Limitations of DENCLUE

DENCLUE has a solid theoretical foundation because it is based on the con-
cept of kernel density estimation, which is a well-developed area of statistics.

�

M08 TAN9224 02 GE C08 page 675

� �

�

8.3 Density-Based Clustering 675

0
2

4
0

5
0

0.2

0.4

0.6

0.8

1

x
y

D
en

si
ty

–5 –4
–2

(a) Gaussian kernel (b) Set of 12 points.

(c) Overall density—gray scale plot. (d) Overall density—surface plot.

Figure 8.14. Example of the Gaussian influence (kernel) function and an overall density function.

For this reason, DENCLUE provides a more flexible and potentially more
accurate way to compute density than other grid-based clustering techniques
and DBSCAN. (DBSCAN is a special case of DENCLUE.) An approach
based on kernel density functions is inherently computationally expensive, but
DENCLUE employs grid-based techniques to address such issues. Nonetheless,
DENCLUE can be more computationally expensive than other density-based
clustering techniques. Also, the use of a grid can adversely affect the accuracy
of the density estimation, and it makes DENCLUE susceptible to problems
common to grid-based approaches; e.g., the difficulty of choosing the proper
grid size. More generally, DENCLUE shares many of the strengths and lim-
itations of other density-based approaches. For instance, DENCLUE is good
at handling noise and outliers and it can find clusters of different shapes and

�

M08 TAN9224 02 GE C08 page 676

� �

�

676 Chapter 8 Cluster Analysis: Additional Issues and Algorithms

size, but it has trouble with high-dimensional data and data that contains
clusters of widely different densities.

8.4 Graph-Based Clustering

Section 5.3 discussed a number of clustering techniques that took a graph-
based view of data, in which data objects are represented by nodes and
the proximity between two data objects is represented by the weight of the
edge between the corresponding nodes. This section considers some additional
graph-based clustering algorithms that use a number of key properties and
characteristics of graphs. The following are some key approaches, different
subsets of which are employed by these algorithms.

1. Sparsify the proximity graph to keep only the connections of an object
with its nearest neighbors. This sparsification is useful for handling noise
and outliers. It also allows the use of highly efficient graph partitioning
algorithms that have been developed for sparse graphs.

2. Define a similarity measure between two objects based on the number
of nearest neighbors that they share. This approach, which is based
on the observation that an object and its nearest neighbors usually
belong to the same class, is useful for overcoming problems with high
dimensionality and clusters of varying density.

3. Define core objects and build clusters around them. To do this for graph-
based clustering, it is necessary to introduce a notion of density-based
on a proximity graph or a sparsified proximity graph. As with DBSCAN,
building clusters around core objects leads to a clustering technique that
can find clusters of differing shapes and sizes.

4. Use the information in the proximity graph to provide a more sophisti-
cated evaluation of whether two clusters should be merged. Specifically,
two clusters are merged only if the resulting cluster will have character-
istics similar to the original two clusters.

We begin by discussing the sparsification of proximity graphs, providing
three examples of techniques whose approach to clustering is based solely on
this technique: MST, which is equivalent to the single link clustering algorithm,
Opossum, and spectral clustering. We then discuss Chameleon, a hierarchical
clustering algorithm that uses a notion of self-similarity to determine if clusters
should be merged. We next define Shared Nearest Neighbor (SNN) similarity,

�

M08 TAN9224 02 GE C08 page 677

� �

�

8.4 Graph-Based Clustering 677

a new similarity measure, and introduce the Jarvis-Patrick clustering algo-
rithm, which uses this similarity. Finally, we discuss how to define density and
core objects based on SNN similarity and introduce an SNN density-based
clustering algorithm, which can be viewed as DBSCAN with a new similarity
measure.

8.4.1 Sparsification

The m by m proximity matrix for m data points can be represented as a dense
graph in which each node is connected to all others and the weight of the edge
between any pair of nodes reflects their pairwise proximity. Although every
object has some level of similarity to every other object, for most data sets,
objects are highly similar to a small number of objects and weakly similar
to most other objects. This property can be used to sparsify the proximity
graph (matrix), by setting many of these low-similarity (high-dissimilarity)
values to 0 before beginning the actual clustering process. The sparsification
may be performed, for example, by breaking all links that have a similarity
(dissimilarity) below (above) a specified threshold or by keeping only links to
the k-nearest neighbors of point. This latter approach creates what is called
a k-nearest neighbor graph.

Sparsification has several beneficial effects:

• Data size is reduced. The amount of data that needs to be processed
to cluster the data is drastically reduced. Sparsification can often elim-
inate more than 99% of the entries in a proximity matrix. As a result,
the size of problems that can be handled is increased.

• Clustering often works better. Sparsification techniques keep the
connections to their nearest neighbors of an object while breaking the
connections to more distant objects. This is in keeping with the nearest
neighbor principle that the nearest neighbors of an object tend to
belong to the same class (cluster) as the object itself. This reduces
the impact of noise and outliers and sharpens the distinction between
clusters.

• Graph partitioning algorithms can be used. There has been a
considerable amount of work on heuristic algorithms for finding min-
cut partitionings of sparse graphs, especially in the areas of parallel
computing and the design of integrated circuits. Sparsification of the
proximity graph makes it possible to use graph partitioning algorithms
for the clustering process. For example, Opossum and Chameleon use
graph partitioning.

�

M08 TAN9224 02 GE C08 page 678

� �

�

678 Chapter 8 Cluster Analysis: Additional Issues and Algorithms

Partition the
Graph

Construct a
Proximity Matrix

Construct a
Sparse Graph

Data Set

Construct a Modified
Proximity Matrix

Figure 8.15. Ideal process of clustering using sparsification.

Sparsification of the proximity graph should be regarded as an initial step
before the use of actual clustering algorithms. In theory, a perfect sparsification
could leave the proximity matrix split into connected components correspond-
ing to the desired clusters, but in practice, this rarely happens. It is easy for
a single edge to link two clusters or for a single cluster to be split into several
disconnected subclusters. As we shall see when we discuss Jarvis-Patrick and
SNN density-based clustering, the sparse proximity graph is often modified to
yield a new proximity graph. This new proximity graph can again be sparsified.
Clustering algorithms work with the proximity graph that is the result of all
these preprocessing steps. This process is summarized in Figure 8.15.

8.4.2 Minimum Spanning Tree (MST) Clustering

In Section 5.3, where we described agglomerative hierarchical clustering tech-
niques, we mentioned that divisive hierarchical clustering algorithms also exist.
We saw an example of one such technique, bisecting K-means, in Section
5.2.3. Another divisive hierarchical technique, MST, starts with the minimum
spanning tree of the proximity graph and can be viewed as an application
of sparsification for finding clusters. We briefly describe this algorithm. In-
terestingly, this algorithm also produces the same clustering as single link
agglomerative clustering. See Exercise 18 on page 720.

A minimum spanning tree of a graph is a subgraph that (1) has no
cycles, i.e., is a tree, (2) contains all the nodes of the graph, and (3) has the
minimum total edge weight of all possible spanning trees. The terminology,
minimum spanning tree, assumes that we are working only with dissimilarities
or distances, and we will follow this convention. This is not a limitation,
however, since we can convert similarities to dissimilarities or modify the
notion of a minimum spanning tree to work with similarities. An example of
a minimum spanning tree for some two-dimensional points is shown in Figure
8.16.

The MST divisive hierarchical algorithm is shown in Algorithm 8.7. The
first step is to find the MST of the original dissimilarity graph. Note that a

�

M08 TAN9224 02 GE C08 page 679

� �

�

8.4 Graph-Based Clustering 679

0 0.1 0.2 0.3 0.4 0.5 0.6

1

2

3

4

5

6

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 8.16. Minimum spanning tree for a set of six two-dimensional points.

minimum spanning tree can be viewed as a special type of sparsified graph.
Step 3 can also be viewed as graph sparsification. Hence, MST can be viewed
as a clustering algorithm based on the sparsification of the dissimilarity graph.

Algorithm 8.7 MST divisive hierarchical clustering algorithm.
1: Compute a minimum spanning tree for the dissimilarity graph.
2: repeat
3: Create a new cluster by breaking the link corresponding to the largest

dissimilarity.
4: until Only singleton clusters remain.

8.4.3 OPOSSUM: Optimal Partitioning of Sparse Similarities
Using METIS

OPOSSUM is a clustering technique for clustering sparse, high-dimensional
data, e.g., document or market basket data. Like MST, it performs clustering
based on the sparsification of a proximity graph. However, OPOSSUM uses
the METIS algorithm, which was specifically created for partitioning sparse
graphs. The steps of OPOSSUM are given in Algorithm 8.8.

The similarity measures used are those appropriate for sparse, high-dimensional
data, such as the extended Jaccard measure or the cosine measure. The
METIS graph partitioning program partitions a sparse graph into k distinct

�

M08 TAN9224 02 GE C08 page 680

� �

�

680 Chapter 8 Cluster Analysis: Additional Issues and Algorithms

Algorithm 8.8 OPOSSUM clustering algorithm.
1: Compute a sparsified similarity graph.
2: Partition the similarity graph into k distinct components (clusters) using METIS.

components, where k is a user-specified parameter, in order to (1) minimize
the weight of the edges (the similarity) between components and (2) fulfill
a balance constraint. OPOSSUM uses one of the following two balance con-
straints: (1) the number of objects in each cluster must be roughly the same,
or (2) the sum of the attribute values must be roughly the same. The second
constraint is useful when, for example, the attribute values represent the cost
of an item.

Strengths and Weaknesses

OPOSSUM is simple and fast. It partitions the data into roughly equal-sized
clusters, which, depending on the goal of the clustering, can be viewed as an
advantage or a disadvantage. Because they are constrained to be of roughly
equal size, clusters can be broken or combined. However, if OPOSSUM is
used to generate a large number of clusters, then these clusters are typically
relatively pure pieces of larger clusters. Indeed, OPOSSUM is similar to the
initial step of the Chameleon clustering routine, which is discussed next.

8.4.4 Chameleon: Hierarchical Clustering with Dynamic
Modeling

Agglomerative hierarchical clustering techniques operate by merging the two
most similar clusters, where the definition of cluster similarity depends on the
particular algorithm. Some agglomerative algorithms, such as group average,
base their notion of similarity on the strength of the connections between
the two clusters (e.g., the pairwise similarity of points in the two clusters),
while other techniques, such as the single link method, use the closeness of
the clusters (e.g., the minimum distance between points in different clusters)
to measure cluster similarity. Although there are two basic approaches, using
only one of these two approaches can lead to mistakes in merging clusters.
Consider Figure 8.17, which shows four clusters. If we use the closeness of
clusters (as measured by the closest two points in different clusters) as our
merging criterion, then we would merge the two circular clusters, (c) and
(d),which almost touch, instead of the rectangular clusters, (a) and (b), which
are separated by a small gap. However, intuitively, we should have merged

�

M08 TAN9224 02 GE C08 page 681

� �

�

8.4 Graph-Based Clustering 681

(a) (b) (c) (d)

Figure 8.17. Situation in which closeness is not the appropriate merging criterion. c©1999, IEEE

rectangular clusters, (a) and (b). Exercise 20 on page 721 asks for an exam-
ple of a situation in which the strength of connections likewise leads to an
unintuitive result.

Another problem is that most clustering techniques have a global (static)
model of clusters. For instance, K-means assumes that the clusters will be
globular, while DBSCAN defines clusters based on a single density threshold.
Clustering schemes that use such a global model cannot handle cases in which
cluster characteristics, such as size, shape, and density, vary widely between
clusters. As an example of the importance of the local (dynamic) modeling of
clusters, consider Figure 8.18. If we use the closeness of clusters to determine
which pair of clusters should be merged, as would be the case if we used, for
example, the single link clustering algorithm, then we would merge clusters (a)
and (b). However, we have not taken into account the characteristics of each
individual cluster. Specifically, we have ignored the density of the individual
clusters. For clusters (a) and (b), which are relatively dense, the distance
between the two clusters is significantly larger than the distance between a
point and its nearest neighbors within the same cluster. This is not the case
for clusters (c) and (d), which are relatively sparse. Indeed, when clusters (c)
and (d) are merged, they yield a cluster that seems more similar to the original
clusters than the cluster that results from merging clusters (a) and (b).

Chameleon is an agglomerative clustering algorithm that addresses the
issues of the previous two paragraphs. It combines an initial partitioning of the
data, using an efficient graph partitioning algorithm, with a novel hierarchical
clustering scheme that uses the notions of closeness and interconnectivity,
together with the local modeling of clusters. The key idea is that two clusters
should be merged only if the resulting cluster is similar to the two original
clusters. Self-similarity is described first, and then the remaining details of the
Chameleon algorithm are presented.

�

M08 TAN9224 02 GE C08 page 682

� �

�

682 Chapter 8 Cluster Analysis: Additional Issues and Algorithms

(a) (b) (c) (d)

Figure 8.18. Illustration of the notion of relative closeness. c©1999, IEEE

(a) (b)

(c) (d)

Figure 8.19. Illustration of the notion of relative interconnectedness. c©1999, IEEE

Deciding Which Clusters to Merge

The agglomerative hierarchical clustering techniques considered in Section 5.3
repeatedly combine the two closest clusters and are principally distinguished
from one another by the way they define cluster proximity. In contrast, Cha-
meleon aims to merge the pair of clusters that results in a cluster that is
most similar to the original pair of clusters, as measured by closeness and
interconnectivity. Because this approach depends only on the pair of clusters
and not on a global model, Chameleon can handle data that contains clusters
with widely different characteristics.

Following are more detailed explanations of the properties of closeness
and interconnectivity. To understand these properties, it is necessary to take
a proximity graph viewpoint and to consider the number of the links and the
strength of those links among points within a cluster and across clusters.

�

M08 TAN9224 02 GE C08 page 683

� �

�

8.4 Graph-Based Clustering 683

• Relative Closeness (RC) is the absolute closeness of two clusters
normalized by the internal closeness of the clusters. Two clusters are
combined only if the points in the resulting cluster are almost as close
to each other as in each of the original clusters. Mathematically,

RC(Ci, Cj) =
S̄EC(Ci, Cj)

mi
mi+mj

S̄EC(Ci) + mj

mi+mj
S̄EC(Cj)

, (8.17)

where mi and mj are the sizes of clusters Ci and Cj , respectively;
S̄EC(Ci, Cj) is the average weight of the edges (of the k-nearest neighbor
graph) that connect clusters Ci and Cj ; S̄EC(Ci) is the average weight of
edges if we bisect cluster Ci; and S̄EC(Cj) is the average weight of edges
if we bisect cluster Cj . (EC stands for edge cut.) Figure 8.18 illustrates
the notion of relative closeness. As discussed previously, while clusters
(a) and (b) are closer in absolute terms than clusters (c) and (d), this is
not true if the nature of the clusters is taken into account.

• Relative Interconnectivity (RI) is the absolute interconnectivity of
two clusters normalized by the internal connectivity of the clusters.
Two clusters are combined if the points in the resulting cluster are
almost as strongly connected as points in each of the original clusters.
Mathematically,

RI(Ci, Cj) =
EC(Ci, Cj)

1
2(EC(Ci) + EC(Cj))

, (8.18)

where EC(Ci, Cj) is the sum of the edges (of the k-nearest neighbor
graph) that connect clusters Ci and Cj ; EC(Ci) is the minimum sum
of the cut edges if we bisect cluster Ci; and EC(Cj) is the minimum
sum of the cut edges if we bisect cluster Cj . Figure 8.19 illustrates the
notion of relative interconnectivity. The two circular clusters, (c) and
(d), have more connections than the rectangular clusters, (a) and (b).
However, merging (c) and (d) produces a cluster that has connectivity
quite different from that of (c) and (d). In contrast, merging (a) and (b)
produces a cluster with connectivity very similar to that of (a) and (b).

RI and RC can be combined in many different ways to yield an overall
measure of self-similarity. One approach used in Chameleon is to merge the
pair of clusters that maximizes RI(Ci, Cj) ∗ RC(Ci, Cj)α, where α is a user-
specified parameter that is typically greater than 1.

�

M08 TAN9224 02 GE C08 page 684

� �

�

684 Chapter 8 Cluster Analysis: Additional Issues and Algorithms

Chameleon Algorithm

Chameleon consists of three key steps: sparsification, graph partitioning, and
hierarchical clustering. Algorithm 8.9 and Figure 8.20 describe these steps.

Algorithm 8.9 Chameleon algorithm.
1: Build a k-nearest neighbor graph.
2: Partition the graph using a multilevel graph partitioning algorithm.
3: repeat
4: Merge the clusters that best preserve the cluster self-similarity with respect to

relative interconnectivity and relative closeness.
5: until No more clusters can be merged.

Merge
Partitions

Partition the
Graph

Contrast a
Sparse Graph

Data Set
k-nearest Neighbor Graph Final Clusters

Figure 8.20. Overall process by which Chameleon performs clustering. c©1999, IEEE

Sparsification The first step in Chameleon is to generate a k-nearest neigh-
bor graph. Conceptually, such a graph is derived from the proximity graph,
and it contains links only between a point and its k-nearest neighbors, i.e., the
points to which it is closest. As mentioned, working with a sparsified proximity
graph instead of the full proximity graph can significantly reduce the effects
of noise and outliers and improve computational efficiency.

Graph Partitioning

Once a sparsified graph has been obtained, an efficient multilevel graph par-
titioning algorithm, such as METIS (see Bibliographic Notes), can be used to
partition the data set. Chameleon starts with an all-inclusive graph (cluster)
and then bisects the largest current subgraph (cluster) until no cluster has
more than MIN_SIZE points, where MIN_SIZE is a user-specified parameter.
This process results in a large number of roughly equally sized groups of well-
connected vertices (highly similar data points). The goal is to ensure that each
partition contains objects mostly from one true cluster.

�

M08 TAN9224 02 GE C08 page 685

� �

�

8.4 Graph-Based Clustering 685

(a) (b)

Figure 8.21. Chameleon applied to cluster a pair of two-dimensional sets of points. c©1999, IEEE

Agglomerative Hierarchical Clustering As discussed previously, Cha-
meleon merges clusters based on the notion of self-similarity. Chameleon can
be parameterized to merge more than one pair of clusters in a single step and
to stop before all objects have been merged into a single cluster.

Complexity Assume that m is the number of data points and p is the
number of partitions. Performing an agglomerative hierarchical clustering of
the p partitions obtained from the graph partitioning requires time O(p2 log p).
(See Section 5.3.1.) The amount of time required for partitioning the graph is
O(mp+m logm). The time complexity of graph sparsification depends on how
much time it takes to build the k-nearest neighbor graph. For low-dimensional
data, this takes O(m logm) time if a k-d tree or a similar type of data structure
is used. Unfortunately, such data structures only work well for low-dimensional
data sets, and thus, for high-dimensional data sets, the time complexity of the
sparsification becomes O(m2). Because only the k-nearest neighbor list needs
to be stored, the space complexity is O(km) plus the space required to store
the data.

Example 8.11. Chameleon was applied to two data sets that clustering algo-
rithms such as K-means and DBSCAN have difficulty clustering. The results
of this clustering are shown in Figure 8.21. The clusters are identified by the
shading of the points. In Figure 8.21(a), the two clusters are irregularly shaped
and quite close to each other. Also, noise is present. In Figure 8.21(b), the two
clusters are connected by a bridge, and again, noise is present. Nonetheless,
Chameleon identifies what most people would identify as the natural clusters.
Chameleon has specifically been shown to be very effective for clustering
spatial data. Finally, notice that Chameleon does not discard noise points,
as do other clustering schemes, but instead assigns them to the clusters.

�

M08 TAN9224 02 GE C08 page 686

� �

�

686 Chapter 8 Cluster Analysis: Additional Issues and Algorithms

0.7
v1

v3

v5

v2 v6

v4

0.8
0

W = D =

0 0 0 00.7

0 0 0 0 00.5

0.7 0.5 0 0 00

0 0 0 0.8 0.80

0 0 0.8 0 00

0 0 0.8 0 00

0.7 0 0 0 00

0 0.5 0 0 00

0 0 0 0 01.2

0 0 1.6 0 00

0 0 0 0.8 00

0 0 0 0 0.80
0.5 0.8

L = V ==

0 0 0 0 00

0 0 0 0 00

0 0 0 0 00.58

0 0 0.8 0 00

0 0 0 1.8 00

0 0 0 0 2.40

0.7 0 0 0 0–0.7

0 0.5 0 0 0–0.5

–0.7 –0.5 0 0 01.2

0 0 1.6 –0.8 –0.80

0 0 –0.8 0.8 00

0 0 –0.8 0 0.80

0.58 0 0 –0.50 00.64

0.58 0 0 –0.31 0–0.76

0.58 0 0 0.81 00.11

0 –0.58 0 0 –0.820

0 –0.5 –0.71 0 0.410

0 –0.5 0.71 0 0.410

Figure 8.22. Example of a similarity graph with two connected components along with its weighted
adjacency matrix (W), graph Laplacian matrix (L), and eigendecomposition.

Strengths and Limitations

Chameleon can effectively cluster spatial data, even though noise and out-
liers are present and the clusters are of different shapes, sizes, and density.
Chameleon assumes that the groups of objects produced by the sparsification
and graph partitioning process are subclusters; i.e., that most of the points
in a partition belong to the same true cluster. If not, then agglomerative
hierarchical clustering will only compound the errors because it can never
separate objects that have been wrongly put together. (See the discussion in
Section 5.3.4.) Thus, Chameleon has problems when the partitioning process
does not produce subclusters, as is often the case for high-dimensional data.

8.4.5 Spectral Clustering

Spectral clustering is an elegant graph partitioning approach that exploits
properties of the similarity graph to determine the cluster partitions. Specif-
ically, it examines the graph’s spectrum, i.e., eigenvalues and eigenvectors
associated with the adjacency matrix of the graph, to identify the natural
clusters of the data. To motivate the ideas behind this approach, consider
the similarity graph shown in Figure 8.22 for a data set that contains 6 data
points. The link weights in the graph are computed based on some similarity
measure, with a threshold applied to remove links with low similarity values.
The sparsification produces a graph with two connected components, which
trivially represent the two clusters in the data, {v1, v2, v3} and {v4, v5, v6}.

�

M08 TAN9224 02 GE C08 page 687

� �

�

8.4 Graph-Based Clustering 687

The top right-hand panel of the figure also shows the weighted adjacency
matrix of the graph, denoted as W, and a diagonal matrix, D, whose diagonal
elements correspond to the sum of the weights of the links incident to each
node in the graph, i.e.,

Dij =
{ ∑

k Wik, if i = j;
0, otherwise.

Note that the rows and columns of the weighted adjacency matrix have been
ordered in such a way that nodes belonging to the same connected component
are next to each other. With this ordering, the matrix W has a block structure
of the form

W =
(

W1 0
0 W2

)
,

in which the off-diagonal blocks are matrices of zero values since there are
no links connecting a node from the first connected component to a node
from the second connected component. Indeed, if the sparse graph contains k
connected components, its weighted adjacency matrix can be re-ordered into
the following block diagonal form:

W =

⎛

⎜⎜⎝

W1 0 · · · 0
0 W2 · · · 0
· · · · · · · · · · · ·
0 0 · · · Wk

⎞

⎟⎟⎠ , (8.19)

This example suggests the possibility of identifying the inherent clusters of a
data set by examining the block structure of its weighted adjacency matrix.

Unfortunately, unless the clusters are well-separated, the adjacency ma-
trices associated with most similarity graphs are not in block diagonal form.
For example, consider the graph shown in Figure 8.23, in which there is a link
between nodes v3 and v4, with a low similarity value. If we are interested in
generating two clusters, we could break the weakest link, located between
(v3, v4), to split the graph into two partitions. Because there is only one
connected component in the graph, the block structure in W is harder to
discern.

Fortunately, there is a more objective way to create the cluster partitions
by considering the graph spectrum. First, we need to compute the graph
Laplacian matrix, which is formally defined as follows:

L = D−W (8.20)

�

M08 TAN9224 02 GE C08 page 688

� �

�

688 Chapter 8 Cluster Analysis: Additional Issues and Algorithms

L = V ==

0 0 0 0 00

0 0.06 0 0 00

0 0 0 0 00.58

0 0 0.80 0 00

0 0 0 1.88 00

0 0 0 0 2.470

0.7 0 0 0 0–0.7

0 0.5 0 0 0–0.5

–0.7 –0.5 –0.1 0 01.3

0 0 1.7 –0.8 –0.8–0.1

0 0 –0.8 0.8 00

0 0 –0.8 0 0.80

0.41 –0.41 0 0.48 –0.040.65

0.41 –0.43 0 0.29 0.03–0.75

0.41 –0.38 0 –0.81 0.100.11

0.41 0.38 0 0.08 –0.820

0.41 0.42 –0.71 0.06 0.390

0.41 0.42 0.71 0.06 0.390

0

W = D =

0 0 0 00.7

0 0 0 0 00.5

0.7 0.5 0.1 0 00

0 0 0 0.8 0.80.1

0 0 0.8 0 00

0 0 0.8 0 00

0.7 0 0 0 00

0 0.5 0 0 00

0 0 0 0 01.3

0 0 1.7 0 00

0 0 0 0.8 00

0 0 0 0 0.80

0.7
v1

v3

v5

v2 v6

v4

0.8

0.5 0.8

0.1

Figure 8.23. Example of a similarity graph with a single connected component along with its weighted
adjacency matrix (W), graph Laplacian matrix (L), and eigendecomposition.

The graph Laplacian matrices for the examples shown in Figures 8.22 and
8.23 are depicted in the bottom left panel of both diagrams. The matrix has
several notable properties:

1. It is a symmetric matrix since both W and D are symmetric.

2. It is a positive semi-definite matrix, which means vTLv ≥ 0 for any
input vector v.

3. All eigenvalues of L must be non-negative. The eigenvalues and eigen-
vectors for the graphs shown in Figure 8.22 and 8.23 are denoted in
the diagrams as Λ and V, respectively. Note that the eigenvalues of the
graph Laplacian matrix are given by the diagonal elements of Λ.

4. The smallest eigenvalue of L is zero, with the corresponding eigenvector
e, which is a vector of 1s. This is because

We =

⎛

⎜⎜⎝

W11 W12 · · · W1n

W21 W22 · · · W2n

· · · · · · · · · · · ·
Wn1 Wn2 · · · Wnn

⎞

⎟⎟⎠

⎛

⎜⎜⎝

1
1
· · ·
1

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

∑
j W1j∑
j W2j

· · ·∑
j Wnj

⎞

⎟⎟⎠

De =

⎛

⎜⎜⎝

∑
j W1j 0 · · · 0
0

∑
j W2j · · · 0

· · · · · · · · · · · ·
0 0 · · · ∑j Wnj

⎞

⎟⎟⎠

⎛

⎜⎜⎝

1
1
· · ·
1

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

∑
j W1j∑
j W2j

· · ·∑
j Wnj

⎞

⎟⎟⎠

�

M08 TAN9224 02 GE C08 page 689

� �

�

8.4 Graph-Based Clustering 689

Thus, We = De, which is equivalent to (D −W)e = 0. This can be
simplified into the eigenvalue equation Le = 0e since L = D−W.

5. A graph with k connected components has an adjacency matrix W in
block diagonal form as shown in Equation 8.19. Its graph Laplacian
matrix also has a block diagonal form

L =

⎛

⎜⎜⎝

L1 0 · · · 0
0 L2 · · · 0
· · · · · · · · · · · ·
0 0 · · · Lk

⎞

⎟⎟⎠ ,

In addition, its graph Laplacian matrix has k eigenvalues of zeros, with
the corresponding eigenvectors

⎛

⎜⎜⎝

e1

0
· · ·
0

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

0
e2

· · ·
0

⎞

⎟⎟⎠ , · · · ,

⎛

⎜⎜⎝

0
0
· · ·
ek

⎞

⎟⎟⎠ ,

where the ei’s are vectors of 1’s and 0’s are vectors of 0’s. For example,
the graph shown in Figure 8.22 contains two connected components,
which is why its graph Laplacian matrix has two eigenvalues of zeros.
More importantly, its first two eigenvectors (normalized to unit length),

v1 →
v2 →
v3 →
v4 →
v5 →
v6 →

⎛

⎜⎜⎜⎜⎜⎜⎝

0.58 0
0.58 0
0.58 0
0 −0.58
0 −0.58
0 −0.58

⎞

⎟⎟⎟⎟⎟⎟⎠
,

corresponding to the first two columns in V, provide information about
the cluster membership of each node. A node that belong to the first
cluster has a positive value in the its first eigenvector and a zero value
in its second eigenvector, whereas a node that belong to the second
cluster has a zero value in the first eigenvector and a negative value in
the second eigenvector.

The graph shown in Figure 8.23 has one eigenvalue of zero because it
has only one connected component. Nevertheless, if we examine the first two

�

M08 TAN9224 02 GE C08 page 690

� �

�

690 Chapter 8 Cluster Analysis: Additional Issues and Algorithms

eigenvectors of its graph Laplacian matrix

v1 →
v2 →
v3 →
v4 →
v5 →
v6 →

⎛

⎜⎜⎜⎜⎜⎜⎝

0.41 −0.41
0.41 −0.43
0.41 −0.38
0.41 0.38
0.41 0.42
0.41 0.42

⎞

⎟⎟⎟⎟⎟⎟⎠
,

the graph can be easily split into two clusters since the set of nodes {v1, v2, v3}
has a negative value in the second eigenvector whereas {v4, v5, v6} has a
positive value in the second eigenvector. In short, the eigenvectors of the graph
Laplacian matrix contain information that can be used to partition the graph
into its underlying components. However, instead of manually checking the
eigenvectors, it is common practice to apply a simple clustering algorithm such
as K-means to help extract the clusters from the eigenvectors. A summary of
the spectral clustering algorithm is given in Algorithm 8.10.

Algorithm 8.10 Spectral clustering algorithm.
1: Create a sparsified similarity graph G.
2: Compute the graph Laplacian for G, L (see Equation (8.20)).
3: Create a matrix V from the first k eigenvectors of L.
4: Apply K-means clustering on V to obtain the k clusters.

Example 8.12. Consider the two-dimensional ring data shown in Figure 8.24(b),
which contains 350 data points. The first 100 points belong to the inner
ring while the remaining 250 points belong to the outer ring. A heat map
showing the Euclidean distance between every pair of points is depicted in
Figure 8.24(a). While the points in the inner ring are relatively close to each
other, those located in the outer ring can be quite far from each other. As
a result, standard clustering algorithms such as K-means perform poorly on
the data. In contrast, applying spectral clustering on the sparsified similarity
graph can produce the correct clustering results (see Figure 8.24(d)). Here, the
similarity between points is calculated using the Gaussian radial basis function
and the graph is sparsified by choosing the 10-nearest neighbors for each data
point. The sparsification reduces the similarity between a data point located
in the inner ring and a corresponding point in the outer ring, which enables
spectral clustering to effectively partition the data set into two clusters.

�

M08 TAN9224 02 GE C08 page 691

� �

�

8.4 Graph-Based Clustering 691

50 100 150 200 250 300 350

50

100

150

200

250

300

350

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Heat map of Euclidean distance.

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

(b) Results of K-means clustering.

50 100 150 200 250 300 350

50

100

150

200

250

300

350 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Heat map of sparsified similarity.

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

(d) Results of spectral clustering.

Figure 8.24. Application of K-means and spectral clustering to a two-dimensional ring data.

Relationship between Spectral Clustering and Graph Partitioning

The objective of graph partitioning is to break the weak links in a graph
until the desired number of cluster partitions is obtained. One way to assess
the quality of the partitions is by summing up the weights of the links that
were removed. The resulting measure is known as graph cut. Unfortunately,
minimizing the graph cut of the partitions alone is insufficient as it tends to
produce clusters with highly imbalanced sizes. For example, consider the graph
shown in Figure 8.25. Suppose we are interested in partitioning the graph into
two connected components. The graph cut measure prefers to break the link
between v4 and v5 because it has the lowest weight.

�

M08 TAN9224 02 GE C08 page 692

� �

�

692 Chapter 8 Cluster Analysis: Additional Issues and Algorithms

0.7
v1

v3

v5

v2 v6

v4

0.2

0.5 0.8

0.3

Figure 8.25. Example to illustrate the limitation of using graph cut as evaluation measure for graph
partitioning.

Unfortunately, such a split would create one cluster with a single isolated
node and another cluster containing all the remaining nodes. To overcome this
limitation, alternative measures have been proposed including

Ratio cut(C1, C2, · · · , Ck) = 1
2

∑k
i=1

∑
p∈Ci,q �∈Ci

Wpq

|Ci| ,
where C1, C2, · · · , Ck denote the cluster partitions. The numerator represents
the sum of the weights of the broken links, i.e., the graph cut, while the
denominator represents the size of each cluster partition. Such a measure can
be used to ensure that the resulting clusters are more balanced in terms of their
sizes. More importantly, it can be shown that minimizing the ratio cut for a
graph is equivalent to finding a cluster membership matrix Y that minimizes
the expression Tr[YTLY], where Tr[·] denotes the trace of a matrix and L
is the graph Laplacian, subject to the constraint YTY = I. By relaxing the
requirement that Y is a binary matrix, we can use the Lagrange multiplier
method to solve the optimization problem.

Lagrangian, L = Tr[YTLY]− λ(Tr[YTY − I])
∂L
∂Y

= LY − λY = 0

=⇒ LY = λY

In other words, an approximate solution to the ratio cut minimization problem
can be obtained by finding the eigenvectors of the graph Laplacian matrix,
which is exactly the approach used by spectral clustering.

Strengths and Limitations

As shown in Example 8.12, the strength of spectral clustering lies in its
ability to detect clusters of varying sizes and shapes. However, the clustering

�

M08 TAN9224 02 GE C08 page 693

� �

�

8.4 Graph-Based Clustering 693

performance depends on how the similarity graph is created and sparsified.
In particular, tuning the parameters of the similarity function (e.g., Gaussian
radial basis function) to produce an appropriate sparse graph for spectral
clustering can be quite a challenge. The time complexity of the algorithm
depends on how fast the eigenvectors of the graph Laplacian matrix can
be computed. Efficient eigensolvers for sparse matrices are available, e.g.,
those based on Krylov subspace methods, especially when the number of
clusters chosen is small. The storage complexity is O(N2), though it can be
significantly reduced using a sparse representation for the graph Laplacian
matrix. In many ways, spectral clustering behaves similarly to the K-means
clustering algorithm. First, they both require the user to specify the number
of clusters as input parameter. Both methods are also susceptible to the
presence of outliers, which tend to form their own connected components
(clusters). Thus, preprocessing or postprocessing methods will be needed to
handle outliers in the data.

8.4.6 Shared Nearest Neighbor Similarity

In some cases, clustering techniques that rely on standard approaches to
similarity and density do not produce the desired clustering results. This
section examines the reasons for this and introduces an indirect approach
to similarity that is based on the following principle:

If two points are similar to many of the same points, then they are
similar to one another, even if a direct measurement of similarity
does not indicate this.

We motivate the discussion by first explaining two problems that an SNN
version of similarity addresses: low similarity and differences in density.

Problems with Traditional Similarity in High-Dimensional Data

In high-dimensional spaces, it is not unusual for similarity to be low. Consider,
for example, a set of documents such as a collection of newspaper articles that
come from a variety of sections of the newspaper: Entertainment, Financial,
Foreign, Metro, National, and Sports. As explained in Chapter 2, these doc-
uments can be viewed as vectors in a high-dimensional space, where each
component of the vector (attribute) records the number of times that each
word in a vocabulary occurs in a document. The cosine similarity measure
is often used to assess the similarity between documents. For this example,
which comes from a collection of articles from the Los Angeles Times, Table

�

M08 TAN9224 02 GE C08 page 694

� �

�

694 Chapter 8 Cluster Analysis: Additional Issues and Algorithms

Table 8.3. Similarity among documents in different sections of a newspaper.

Section Average Cosine Similarity
Entertainment 0.032
Financial 0.030
Foreign 0.030
Metro 0.021
National 0.027
Sports 0.036
All Sections 0.014

8.3 gives the average cosine similarity in each section and among the entire
set of documents.

The similarity of each document to its most similar document (the first
nearest neighbor) is better, 0.39 on average. However, a consequence of low
similarity among objects of the same class is that their nearest neighbor is
often not of the same class. In the collection of documents from which Table
8.3 was generated, about 20% of the documents have a nearest neighbor of
a different class. In general, if direct similarity is low, then it becomes an
unreliable guide for clustering objects, especially for agglomerative hierarchical
clustering, where the closest points are put together and cannot be separated
afterward. Nonetheless, it is still usually the case that a large majority of the
nearest neighbors of an object belong to the same class; this fact can be used
to define a proximity measure that is more suitable for clustering.

Problems with Differences in Density

Another problem relates to differences in densities between clusters. Figure
8.26 shows a pair of two-dimensional clusters of points with differing density.
The lower density of the rightmost cluster is reflected in a lower average
distance among the points. Even though the points in the less dense cluster
form an equally valid cluster, typical clustering techniques will have more
difficulty finding such clusters. Also, normal measures of cohesion, such as
SSE, will indicate that these clusters are less cohesive. To illustrate with a
real example, the stars in a galaxy are no less real clusters of stellar objects
than the planets in a solar system, even though the planets in a solar system
are considerably closer to one another on average, than the stars in a galaxy.

�

M08 TAN9224 02 GE C08 page 695

� �

�

8.4 Graph-Based Clustering 695

Figure 8.26. Two circular clusters of 200 uniformly distributed points.

SNN Similarity Computation

In both situations, the key idea is to take the context of points into account in
defining the similarity measure. This idea can be made quantitative by using
a shared nearest neighbor definition of similarity in the manner indicated
by Algorithm 8.11. Essentially, the SNN similarity is the number of shared
neighbors as long as the two objects are on each other’s nearest neighbor lists.
Note that the underlying proximity measure can be any meaningful similarity
or dissimilarity measure.

Algorithm 8.11 Computing shared nearest neighbor similarity
1: Find the k-nearest neighbors of all points.
2: if two points, x and y, are not among the k-nearest neighbors of each other then
3: similarity(x,y)← 0
4: else
5: similarity(x,y)← number of shared neighbors
6: end if

The computation of SNN similarity is described by Algorithm 8.11 and
graphically illustrated by Figure 8.27. Each of the two black points has eight
nearest neighbors, including each other. Four of those nearest neighbors—
the points in gray—are shared. Thus, the shared nearest neighbor similarity
between the two points is 4.

The similarity graph of the SNN similarities among objects is called the
SNN similarity graph. Because many pairs of objects will have an SNN
similarity of 0, this is a very sparse graph.

�

M08 TAN9224 02 GE C08 page 696

� �

�

696 Chapter 8 Cluster Analysis: Additional Issues and Algorithms

4

Figure 8.27. Computation of SNN similarity between two points.

SNN Similarity versus Direct Similarity

SNN similarity is useful because it addresses some of the problems that occur
with direct similarity. First, since it takes into account the context of an object
by using the number of shared nearest neighbors, SNN similarity handles the
situation in which an object happens to be relatively close to another object,
but belongs to a different class. In such cases, the objects typically do not
share many near neighbors and their SNN similarity is low.

SNN similarity also addresses problems with clusters of varying density.
In a low-density region, the objects are farther apart than objects in denser
regions. However, the SNN similarity of a pair of points only depends on the
number of nearest neighbors two objects share, not how far these neighbors
are from each object. Thus, SNN similarity performs an automatic scaling
with respect to the density of the points.

8.4.7 The Jarvis-Patrick Clustering Algorithm

Algorithm 8.12 expresses the Jarvis-Patrick clustering algorithm using the
concepts of the last section. The JP clustering algorithm replaces the proximity
between two points with the SNN similarity, which is calculated as described
in Algorithm 8.11. A threshold is then used to sparsify this matrix of SNN
similarities. In graph terms, an SNN similarity graph is created and sparsified.
Clusters are simply the connected components of the SNN graph.

Algorithm 8.12 Jarvis-Patrick clustering algorithm.
1: Compute the SNN similarity graph.
2: Sparsify the SNN similarity graph by applying a similarity threshold.
3: Find the connected components (clusters) of the sparsified SNN similarity graph.

The storage requirements of the JP clustering algorithm are only O(km),
because it is not necessary to store the entire similarity matrix, even initially.
The basic time complexity of JP clustering is O(m2), since the creation of

�

M08 TAN9224 02 GE C08 page 697

� �

�

8.4 Graph-Based Clustering 697

(a) Original data. (b) Clusters found by Jarvis-Patrick.

Figure 8.28. Jarvis-Patrick clustering of a two-dimensional point set.

the k-nearest neighbor list can require the computation of O(m2) proximities.
However, for certain types of data, such as low-dimensional Euclidean data,
special techniques, e.g., a k-d tree, can be used to more efficiently find the
k-nearest neighbors without computing the entire similarity matrix. This can
reduce the time complexity from O(m2) to O(m logm).

Example 8.13 (JP Clustering of a Two-Dimensional Data Set). We applied
JP clustering to the “fish” data set shown in Figure 8.28(a) to find the clusters
shown in Figure 8.28(b). The size of the nearest neighbor list was 20, and two
points were placed in the same cluster if they shared at least 10 points. The
different clusters are shown by the different markers and different shading.
The points whose marker is an “x” were classified as noise by Jarvis-Patrick.
They are mostly in the transition regions between clusters of different density.

Strengths and Limitations

Because JP clustering is based on the notion of SNN similarity, it is good
at dealing with noise and outliers and can handle clusters of different sizes,
shapes, and densities. The algorithm works well for high-dimensional data and
is particularly good at finding tight clusters of strongly related objects.

However, JP clustering defines a cluster as a connected component in
the SNN similarity graph. Thus, whether a set of objects is split into two
clusters or left as one can depend on a single link. Hence, JP clustering is

�

M08 TAN9224 02 GE C08 page 698

� �

�

698 Chapter 8 Cluster Analysis: Additional Issues and Algorithms

somewhat brittle; i.e., it can split true clusters or join clusters that should be
kept separate.

Another potential limitation is that not all objects are clustered. However,
these objects can be added to existing clusters, and in some cases, there
is no requirement for a complete clustering. JP clustering has a basic time
complexity of O(m2), which is the time required to compute the nearest
neighbor list for a set of objects in the general case. In certain cases, e.g., low-
dimensional data, special techniques can be used to reduce the time complexity
for finding nearest neighbors to O(m logm). Finally, as with other clustering
algorithms, choosing the best values for the parameters can be challenging.

8.4.8 SNN Density

As discussed in the introduction to this chapter, traditional Euclidean density
becomes meaningless in high dimensions. This is true whether we take a grid-
based view, such as that used by CLIQUE, a center-based view, such as that
used by DBSCAN, or a kernel-density estimation approach, such as that used
by DENCLUE. It is possible to use the center-based definition of density
with a similarity measure that works well for high dimensions, e.g., cosine or
Jaccard, but as described in Section 8.4.6, such measures still have problems.
However, because the SNN similarity measure reflects the local configuration
of the points in the data space, it is relatively insensitive to variations in
density and the dimensionality of the space, and is a promising candidate for
a new measure of density.

This section explains how to define a concept of SNN density by using
SNN similarity and following the DBSCAN approach described in Section
5.4. For clarity, the definitions of that section are repeated, with appropriate
modification to account for the fact that we are using SNN similarity.

Core points. A point is a core point if the number of points within a given
neighborhood around the point, as determined by SNN similarity and a
supplied parameter Eps exceeds a certain threshold MinPts, which is
also a supplied parameter.

Border points. A border point is a point that is not a core point, i.e., there
are not enough points in its neighborhood for it to be a core point, but
it falls within the neighborhood of a core point.

Noise points. A noise point is any point that is neither a core point nor a
border point.

�

M08 TAN9224 02 GE C08 page 699

� �

�

8.4 Graph-Based Clustering 699

(a) All points. (b) High SNN
density.

(c) Medium SNN
density.

(d) Low SNN
density.

Figure 8.29. SNN density of two-dimensional points.

SNN density measures the degree to which a point is surrounded by similar
points (with respect to nearest neighbors). Thus, points in regions of high and
low density will typically have relatively high SNN density, while points in
regions where there is a transition from low to high density—points that are
between clusters—will tend to have low SNN density. Such an approach is
well-suited for data sets in which there are wide variations in density, but
clusters of low density are still interesting.

Example 8.14 (Core, Border, and Noise Points). To make the preceding
discussion of SNN density more concrete, we provide an example of how SNN
density can be used to find core points and remove noise and outliers. There
are 10,000 points in the 2D point data set shown in Figure 8.29(a). Figures
8.29(b–d) distinguish between these points based on their SNN density. Figure
8.29(b) shows the points with the highest SNN density, while Figure 8.29(c)
shows points of intermediate SNN density, and Figure 8.29(d) shows figures of
the lowest SNN density. From these figures, we see that the points that have
high density (i.e., high connectivity in the SNN graph) are candidates for
being representative or core points since they tend to be located well inside
the cluster, while the points that have low connectivity are candidates for
being noise points and outliers, as they are mostly in the regions surrounding
the clusters.

8.4.9 SNN Density-Based Clustering

The SNN density defined above can be combined with the DBSCAN algorithm
to create a new clustering algorithm. This algorithm is similar to the JP
clustering algorithm in that it starts with the SNN similarity graph. However,
instead of using a threshold to sparsify the SNN similarity graph and then
taking connected components as clusters, the SNN density-based clustering
algorithm simply applies DBSCAN.

�

M08 TAN9224 02 GE C08 page 700

� �

�

700 Chapter 8 Cluster Analysis: Additional Issues and Algorithms

The SNN Density-based Clustering Algorithm

The steps of the SNN density-based clustering algorithm are shown in Algo-
rithm 8.13.

Algorithm 8.13 SNN density-based clustering algorithm.
1: Compute the SNN similarity graph.
2: Apply DBSCAN with user-specified parameters for Eps and MinPts.

The algorithm automatically determines the number of clusters in the
data. Note that not all the points are clustered. The points that are discarded
include noise and outliers, as well as points that are not strongly connected
to a group of points. SNN density-based clustering finds clusters in which the
points are strongly related to one another. Depending on the application, we
might want to discard many of the points. For example, SNN density-based
clustering is good for finding topics in groups of documents.

Example 8.15 (SNN Density-based Clustering of Time Series). The SNN
density-based clustering algorithm presented in this section is more flexible
than Jarvis-Patrick clustering or DBSCAN. Unlike DBSCAN, it can be used
for high-dimensional data and situations in which the clusters have different
densities. Unlike Jarvis-Patrick, which performs a simple thresholding and
then takes the connected components as clusters, SNN density-based cluster-
ing uses a less brittle approach that relies on the concepts of SNN density and
core points.

To demonstrate the capabilities of SNN density-based clustering on high-
dimensional data, we applied it to monthly time series data of atmospheric
pressure at various points on the Earth. More specifically, the data consists
of the average monthly sea-level pressure (SLP) for a period of 41 years at
each point on a 2.5◦ longitude-latitude grid. The SNN density-based clustering
algorithm found the clusters (gray regions) indicated in Figure 8.30. Note that
these are clusters of time series of length 492 months, even though they are
visualized as two-dimensional regions. The white areas are regions in which
the pressure was not as uniform. The clusters near the poles are elongated
because of the distortion of mapping a spherical surface to a rectangle.

Using SLP, Earth scientists have defined time series, called climate in-
dices, which are useful for capturing the behavior of phenomena involving
the Earth’s climate. For example, anomalies in climate indices are related to
abnormally low or high precipitation or temperature in various parts of the

�

M08 TAN9224 02 GE C08 page 701

� �

�

8.5 Scalable Clustering Algorithms 701

world. Some of the clusters found by SNN density-based clustering have a
strong connection to some of the climate indices known to Earth scientists.

Figure 8.31 shows the SNN density structure of the data from which the
clusters were extracted. The density has been normalized to be on a scale
between 0 and 1. The density of a time series may seem like an unusual concept,
but it measures the degree to which the time series and its nearest neighbors
have the same nearest neighbors. Because each time series is associated with
a location, it is possible to plot these densities on a two-dimensional plot.
Because of temporal autocorrelation, these densities form meaningful patterns,
e.g., it is possible to visually identify the clusters of Figure 8.31.

Strengths and Limitations

The strengths and limitations of SNN density-based clustering are similar to
those of JP clustering. However, the use of core points and SNN density adds
considerable power and flexibility to this approach.

8.5 Scalable Clustering Algorithms

Even the best clustering algorithm is of little value if it takes an unacceptably
long time to execute or requires too much memory. This section examines
clustering techniques that place significant emphasis on scalability to the very
large data sets that are becoming increasingly common. We start by discussing
some general strategies for scalability, including approaches for reducing the
number of proximity calculations, sampling the data, partitioning the data,
and clustering a summarized representation of the data. We then discuss two
specific examples of scalable clustering algorithms: CURE and BIRCH.

8.5.1 Scalability: General Issues and Approaches

The amount of storage required for many clustering algorithms is more than
linear; e.g., with hierarchical clustering, memory requirements are usually
O(m2), where m is the number of objects. For 10,000,000 objects, for example,
the amount of memory required is proportional to 1014, a number still well
beyond the capacities of current systems. Note that because of the requirement
for random data access, many clustering algorithms cannot easily be modified
to efficiently use secondary storage (disk), for which random data access
is slow. Likewise, the amount of computation required for some clustering
algorithms is more than linear. In the remainder of this section, we discuss
a variety of techniques for reducing the amount of computation and storage

�

M08 TAN9224 02 GE C08 page 702

� �

�

702 Chapter 8 Cluster Analysis: Additional Issues and Algorithms

90

60

30

0

–30

–60

–90
–180 –150 –120 –90 –60 –30 30 60 90 120 150 1800

La
tit

ud
e

Longitude

Figure 8.30. Clusters of pressure time series found using SNN density-based clustering.

Density

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

90

60

30

0

–30

–60

–90
–180–150 –120 –90 –60 –30 30 60 90 120 150 1800

La
tit

ud
e

Longitude

Figure 8.31. SNN density of pressure time series.

�

M08 TAN9224 02 GE C08 page 703

� �

�

8.5 Scalable Clustering Algorithms 703

required by a clustering algorithm. CURE and BIRCH use some of these
techniques.

Multidimensional or Spatial Access Methods Many techniques, such
as K-means, Jarvis Patrick clustering, and DBSCAN, need to find the closest
centroid, the nearest neighbors of a point, or all points within a specified
distance. It is possible to use special techniques called multidimensional or
spatial access methods to more efficiently perform these tasks, at least for low-
dimensional data. These techniques, such as the k-d tree or R*-tree, typically
produce a hierarchical partition of the data space that can be used to reduce
the time required to find the nearest neighbors of a point. Note that grid-based
clustering schemes also partition the data space.

Bounds on Proximities Another approach to avoiding proximity compu-
tations is to use bounds on proximities. For instance, when using Euclidean
distance, it is possible to use the triangle inequality to avoid many distance
calculations. To illustrate, at each stage of traditional K-means, it is necessary
to evaluate whether a point should stay in its current cluster or be moved
to a new cluster. If we know the distance between the centroids and the
distance of a point to the (newly updated) centroid of the cluster to which
it currently belongs, then we might be able to use the triangle inequality to
avoid computing the distance of the point to any of the other centroids. See
Exercise 27 on page 722.

Sampling Another approach to reducing the time complexity is to sample.
In this approach, a sample of points is taken, these points are clustered, and
then the remaining points are assigned to the existing clusters—typically to
the closest cluster. If the number of points sampled is

√
m, then the time

complexity of an O(m2) algorithm is reduced to O(m). A key problem with
sampling, though, is that small clusters can be lost. When we discuss CURE,
we will provide a technique for investigating how frequently such problems
occur.

Partitioning the Data Objects Another common approach to reducing
time complexity is to use some efficient technique to partition the data into
disjoint sets and then cluster these sets separately. The final set of clusters
either is the union of these separate sets of clusters or is obtained by combining
and/or refining the separate sets of clusters. We only discuss bisecting K-
means (Section 5.2.3) in this section, although many other approaches based

�

M08 TAN9224 02 GE C08 page 704

� �

�

704 Chapter 8 Cluster Analysis: Additional Issues and Algorithms

on partitioning are possible. One such approach will be described, when we
describe CURE later on in this section.

If K-means is used to find K clusters, then the distance of each point to
each cluster centroid is calculated at each iteration. When K is large, this can
be very expensive. Bisecting K-means starts with the entire set of points and
uses K-means to repeatedly bisect an existing cluster until we have obtained
K clusters. At each step, the distance of points to two cluster centroids is
computed. Except for the first step, in which the cluster being bisected consists
of all the points, we only compute the distance of a subset of points to the
two centroids being considered. Because of this fact, bisecting K-means can
run significantly faster than regular K-means.

Summarization Another approach to clustering is to summarize the data,
typically in a single pass, and then cluster the summarized data. In particular,
the leader algorithm (see Exercise 12 in Chapter 5, page 387) either puts a data
object in the closest cluster (if that cluster is sufficiently close) or starts a new
cluster that contains the current object. This algorithm is linear in the number
of objects and can be used to summarize the data so that other clustering
techniques can be used. The BIRCH algorithm uses a similar concept.

Parallel and Distributed Computation If it is not possible to take ad-
vantage of the techniques described earlier, or if these approaches do not yield
the desired accuracy or reduction in computation time, then other approaches
are needed. A highly effective approach is to distribute the computation among
multiple processors.

8.5.2 BIRCH

BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) is a
highly efficient clustering technique for data in Euclidean vector spaces, i.e.,
data for which averages make sense. BIRCH can efficiently cluster such data
with one pass and can improve that clustering with additional passes. BIRCH
can also deal effectively with outliers.

BIRCH is based on the notion of a Clustering Feature (CF) and a CF tree.
The idea is that a cluster of data points (vectors) can be represented by a triple
of numbers (N,LS, SS), where N is the number of points in the cluster, LS
is the linear sum of the points, and SS is the sum of squares of the points.
These are common statistical quantities that can be updated incrementally
and that can be used to compute a number of important quantities, such as

�

M08 TAN9224 02 GE C08 page 705

� �

�

8.5 Scalable Clustering Algorithms 705

the centroid of a cluster and its variance (standard deviation). The variance
is used as a measure of the diameter of a cluster.

These quantities can also be used to compute the distance between clusters.
The simplest approach is to calculate an L1 (city block) or L2 (Euclidean)
distance between centroids. We can also use the diameter (variance) of the
merged cluster as a distance. A number of different distance measures for
clusters are defined by BIRCH, but all can be computed using the summary
statistics.

A CF tree is a height-balanced tree. Each interior node has entries of the
form [CFi, childi], where childi is a pointer to the ith child node. The space
that each entry takes and the page size determine the number of entries in an
interior node. The space of each entry is, in turn, determined by the number
of attributes of each point.

Leaf nodes consist of a sequence of clustering features, CFi, where each
clustering feature represents a number of points that have been previously
scanned. Leaf nodes are subject to the restriction that each leaf node must
have a diameter that is less than a parameterized threshold, T . The space
that each entry takes, together with the page size, determines the number of
entries in a leaf.

By adjusting the threshold parameter T , the height of the tree can be
controlled. T controls the fineness of the clustering, i.e., the extent to which
the data in the original set of data is reduced. The goal is to keep the CF tree
in main memory by adjusting the T parameter as necessary.

A CF tree is built as the data is scanned. As each data point is encountered,
the CF tree is traversed, starting from the root and choosing the closest node
at each level. When the closest leaf cluster for the current data point is finally
identified, a test is performed to see if adding the data item to the candidate
cluster will result in a new cluster with a diameter greater than the given
threshold, T . If not, then the data point is added to the candidate cluster by
updating the CF information. The cluster information for all nodes from the
leaf to the root is also updated.

If the new cluster has a diameter greater than T , then a new entry is
created if the leaf node is not full. Otherwise the leaf node must be split. The
two entries (clusters) that are farthest apart are selected as seeds and the
remaining entries are distributed to one of the two new leaf nodes, based on
which leaf node contains the closest seed cluster. Once the leaf node has been
split, the parent node is updated and split if necessary; i.e., if the parent node
is full. This process may continue all the way to the root node.

BIRCH follows each split with a merge step. At the interior node where the
split stops, the two closest entries are found. If these entries do not correspond

�

M08 TAN9224 02 GE C08 page 706

� �

�

706 Chapter 8 Cluster Analysis: Additional Issues and Algorithms

to the two entries that just resulted from the split, then an attempt is made to
merge these entries and their corresponding child nodes. This step is intended
to increase space utilization and avoid problems with skewed data input order.

BIRCH also has a procedure for removing outliers. When the tree needs
to be rebuilt because it has run out of memory, then outliers can optionally
be written to disk. (An outlier is defined to be a node that has far fewer data
points than average.) At certain points in the process, outliers are scanned
to see if they can be absorbed back into the tree without causing the tree to
grow in size. If so, they are reabsorbed. If not, they are deleted.

BIRCH consists of a number of phases beyond the initial creation of the
CF tree. All the phases of BIRCH are described briefly in Algorithm 8.14.

Algorithm 8.14 BIRCH.
1: Load the data into memory by creating a CF tree that summarizes the

data.
2: Build a smaller CF tree if it is necessary for phase 3. T is increased, and

then the leaf node entries (clusters) are reinserted. Since T has increased, some
clusters will be merged.

3: Perform global clustering. Different forms of global clustering (clustering that
uses the pairwise distances between all the clusters) can be used. However, an
agglomerative, hierarchical technique was selected. Because the clustering features
store summary information that is important to certain kinds of clustering, the
global clustering algorithm can be applied as if it were being applied to all the
points in a cluster represented by the CF.

4: Redistribute the data points using the centroids of clusters discovered
in step 3, and thus, discover a new set of clusters. This overcomes
certain problems that can occur in the first phase of BIRCH. Because of page
size constraints and the T parameter, points that should be in one cluster are
sometimes split, and points that should be in different clusters are sometimes
combined. Also, if the data set contains duplicate points, these points can
sometimes be clustered differently, depending on the order in which they are
encountered. By repeating this phase multiple times, the process converges to a
locally optimal solution.

8.5.3 CURE

CURE (Clustering Using REpresentatives) is a clustering algorithm that uses
a variety of different techniques to create an approach that can handle large
data sets, outliers, and clusters with non-spherical shapes and non-uniform
sizes. CURE represents a cluster by using multiple representative points from

�

M08 TAN9224 02 GE C08 page 707

� �

�

8.5 Scalable Clustering Algorithms 707

the cluster. These points will, in theory, capture the geometry and shape of the
cluster. The first representative point is chosen to be the point farthest from
the center of the cluster, while the remaining points are chosen so that they are
farthest from all the previously chosen points. In this way, the representative
points are naturally relatively well distributed. The number of points chosen
is a parameter, but it was found that a value of 10 or more worked well.

Once the representative points are chosen, they are shrunk toward the
center by a factor, α. This helps moderate the effect of outliers, which are
usually farther away from the center and thus, are shrunk more. For example,
a representative point that was a distance of 10 units from the center would
move by 3 units (for α = 0.7), while a representative point at a distance of 1
unit would only move 0.3 units.

CURE uses an agglomerative hierarchical scheme to perform the actual
clustering. The distance between two clusters is the minimum distance between
any two representative points (after they are shrunk toward their respective
centers). While this scheme is not exactly like any other hierarchical scheme
that we have seen, it is equivalent to centroid-based hierarchical clustering if
α = 0, and roughly the same as single link hierarchical clustering if α = 1.
Notice that while a hierarchical clustering scheme is used, the goal of CURE
is to find a given number of clusters as specified by the user.

CURE takes advantage of certain characteristics of the hierarchical clus-
tering process to eliminate outliers at two different points in the clustering
process. First, if a cluster is growing slowly, then it may consist of outliers, since
by definition, outliers are far from others and will not be merged with other
points very often. In CURE, this first phase of outlier elimination typically
occurs when the number of clusters is 1/3 the original number of points. The
second phase of outlier elimination occurs when the number of clusters is on
the order of K, the number of desired clusters. At this point, small clusters
are again eliminated.

Because the worst-case complexity of CURE is O(m2 logm), it cannot be
applied directly to large data sets. For this reason, CURE uses two techniques
to speed up the clustering process. The first technique takes a random sample
and performs hierarchical clustering on the sampled data points. This is fol-
lowed by a final pass that assigns each remaining point in the data set to one
of the clusters by choosing the cluster with the closest representative point.
We discuss CURE’s sampling approach in more detail later.

In some cases, the sample required for clustering is still too large and a
second additional technique is required. In this situation, CURE partitions the
sample data and then clusters the points in each partition. This preclustering
step is then followed by a clustering of the intermediate clusters and a final

�

M08 TAN9224 02 GE C08 page 708

� �

�

708 Chapter 8 Cluster Analysis: Additional Issues and Algorithms

pass that assigns each point in the data set to one of the clusters. CURE’s
partitioning scheme is also discussed in more detail later.

Algorithm 8.15 summarizes CURE. Note that K is the desired number of
clusters, m is the number of points, p is the number of partitions, and q is
the desired reduction of points in a partition, i.e., the number of clusters in a
partition is m

pq . Therefore, the total number of clusters is m
q . For example, if

m = 10,000, p = 10, and q = 100, then each partition contains 10,000/10 =
1000 points, and there would be 1000/100 = 10 clusters in each partition and
10,000/100 = 100 clusters overall.

Algorithm 8.15 CURE.
1: Draw a random sample from the data set. The CURE paper is notable for

explicitly deriving a formula for what the size of this sample should be in order to
guarantee, with high probability, that all clusters are represented by a minimum
number of points.

2: Partition the sample into p equal-sized partitions.
3: Cluster the points in each partition into m

pq clusters using CURE’s
hierarchical clustering algorithm to obtain a total of m

q clusters. Note
that some outlier elimination occurs during this process.

4: Use CURE’s hierarchical clustering algorithm to cluster the m
q clusters

found in the previous step until only K clusters remain.
5: Eliminate outliers. This is the second phase of outlier elimination.
6: Assign all remaining data points to the nearest cluster to obtain a

complete clustering.

Sampling in CURE

A key issue in using sampling is whether the sample is representative, that
is, whether it captures the characteristics of interest. For clustering, the issue
is whether we can find the same clusters in the sample as in the entire set
of objects. Ideally, we would like the sample to contain some objects for each
cluster and for there to be a separate cluster in the sample for those objects
that belong to separate clusters in the entire data set.

A more concrete and attainable goal is to guarantee (with a high probabil-
ity) that we have at least some points from each cluster. The number of points
required for such a sample varies from one data set to another and depends
on the number of objects and the sizes of the clusters. The creators of CURE
derived a bound for the sample size that would be needed to ensure (with high

�

M08 TAN9224 02 GE C08 page 709

� �

�

8.5 Scalable Clustering Algorithms 709

probability) that we obtain at least a certain number of points from a cluster.
Using the notation of this book, this bound is given by the following theorem.
Theorem 8.1. Let f be a fraction, 0 ≤ f ≤ 1. For cluster Ci of size mi,
we will obtain at least f ∗ mi objects from cluster Ci with a probability of
1− δ, 0 ≤ δ ≤ 1, if our sample size s is given by the following:

s = fm+
m

mi
∗ log

1
δ

+
m

mi

√
log

1
δ

2

+ 2 ∗ f ∗mi ∗ log
1
δ
. (8.21)

where m is the number of objects.
While this expression might look intimidating, it is reasonably easy to use.

Suppose that there are 100,000 objects and that the goal is to have an 80%
chance of obtaining 10% of the objects in cluster Ci, which has a size of 1000.
In this case, f = 0.1, δ = 0.2, m =100,000, mi = 1000, and thus s =11,962. If
the goal is a 5% sample of Ci, which is 50 objects, then a sample size of 6440
will suffice.

Again, CURE uses sampling in the following way. First a sample is drawn,
and then CURE is used to cluster this sample. After clusters have been found,
each unclustered point is assigned to the closest cluster.

Partitioning

When sampling is not enough, CURE also uses a partitioning approach. The
idea is to divide the points into p groups of size m/p and to use CURE to
cluster each partition in order to reduce the number of objects by a factor of
q > 1, where q can be roughly thought of as the average size of a cluster in a
partition. Overall, m

q clusters are produced. (Note that since CURE represents
each cluster by a number of representative points, the reduction in the number
of objects is not q.) This preclustering step is then followed by a final clustering
of the m/q intermediate clusters to produce the desired number of clusters
(K). Both clustering passes use CURE’s hierarchical clustering algorithm and
are followed by a final pass that assigns each point in the data set to one of
the clusters.

The key issue is how p and q should be chosen. Algorithms such as CURE
have a time complexity of O(m2) or higher, and furthermore, require that all
the data be in main memory. We therefore want to choose p small enough so
that an entire partition can be processed in main memory and in a ‘reasonable’
amount of time. At the current time, a typical desktop computer can perform
a hierarchical clustering of a few thousand objects in a few seconds.

Another factor for choosing p, and also q, concerns the quality of the
clustering. Specifically, the objective is to choose the values of p and q such

�

M08 TAN9224 02 GE C08 page 710

� �

�

710 Chapter 8 Cluster Analysis: Additional Issues and Algorithms

that objects from the same underlying cluster end up in the same clusters
eventually. To illustrate, suppose there are 1000 objects and a cluster of
size 100. If we randomly generate 100 partitions, then each partition will,
on average, have only one point from our cluster. These points will likely be
put in clusters with points from other clusters or will be discarded as outliers.
If we generate only 10 partitions of 100 objects, but q is 50, then the 10 points
from each cluster (on average) will likely still be combined with points from
other clusters, because there are only (on average) 10 points per cluster and we
need to produce, for each partition, two clusters. To avoid this last problem,
which concerns the proper choice of q, a suggested strategy is not to combine
clusters if they are too dissimilar.

8.6 Which Clustering Algorithm?

A variety of factors need to be considered when deciding which type of clus-
tering technique to use. Many, if not all, of these factors have been discussed
to some extent in the current and previous chapters. Our goal in this section is
to succinctly summarize these factors in a way that sheds some light on which
clustering algorithm might be appropriate for a particular clustering task.

Type of Clustering For a clustering algorithm to be appropriate for a task,
the type of clustering produced by the algorithm needs to match the type of
clustering needed by the application. For some applications, such as creating
a biological taxonomy, a hierarchy is preferred. In the case of clustering for
summarization, a partitional clustering is typical. In yet other applications,
both can prove useful.

Most clustering applications require a clustering of all (or almost all) of the
objects. For instance, if clustering is used to organize a set of documents for
browsing, then we would like most documents to belong to a group. However,
if we wanted to find the strongest themes in a set of documents, then we might
prefer to have a clustering scheme that produces only very cohesive clusters,
even if many documents were left unclustered.

Finally, most applications of clustering assume that each object is assigned
to one cluster (or one cluster on a level for hierarchical schemes). As we have
seen, however, probabilistic and fuzzy schemes provide weights that indicate
the degree or probability of membership in various clusters. Other techniques,
such as DBSCAN and SNN density-based clustering, have the notion of core
points, which strongly belong to one cluster. Such concepts may be useful in
certain applications.

�

M08 TAN9224 02 GE C08 page 711

� �

�

8.6 Which Clustering Algorithm? 711

Type of Cluster Another key aspect is whether the type of cluster matches
the intended application. There are three commonly encountered types of
clusters: prototype-, graph-, and density-based. Prototype-based clustering
schemes, as well as some graph-based clustering schemes—complete link, cen-
troid, and Ward’s—tend to produce globular clusters in which each object is
close to the cluster’s prototype and/or to the other objects in the cluster. If,
for example, we want to summarize the data to reduce its size and we want to
do so with the minimum amount of error, then one of these types of techniques
would be most appropriate. In contrast, density-based clustering techniques,
as well as some graph-based clustering techniques, such as single link, tend to
produce clusters that are not globular and thus contain many objects that are
not very similar to one another. If clustering is used to segment a geographical
area into contiguous regions based on the type of land cover, then one of these
techniques is more suitable than a prototype-based scheme such as K-means.

Characteristics of Clusters Besides the general type of cluster, other clus-
ter characteristics are important. If we want to find clusters in subspaces of the
original data space, then we must choose an algorithm such as CLIQUE, which
explicitly looks for such clusters. Similarly, if we are interested in enforcing
spatial relationships between clusters, then SOM or some related approach
would be appropriate. Also, clustering algorithms differ widely in their ability
to handle clusters of varying shapes, sizes, and densities.

Characteristics of the Data Sets and Attributes As discussed in the
introduction, the type of data set and attributes can dictate the type of
algorithm to use. For instance, the K-means algorithm can only be used
on data for which an appropriate proximity measure is available that allows
meaningful computation of a cluster centroid. For other clustering techniques,
such as many agglomerative hierarchical approaches, the underlying nature of
the data sets and attributes is less important as long as a proximity matrix
can be created.

Noise and Outliers Noise and outliers are particularly important aspects
of the data. We have tried to indicate the effect of noise and outliers on the
various clustering algorithms that we have discussed. In practice, however, it
can be difficult to evaluate the amount of noise in the data set or the number
of outliers. More than that, what is noise or an outlier to one person might
be interesting to another person. For example, if we are using clustering to
segment an area into regions of different population density, we do not want

�

M08 TAN9224 02 GE C08 page 712

� �

�

712 Chapter 8 Cluster Analysis: Additional Issues and Algorithms

to use a density-based clustering technique, such as DBSCAN, that assumes
that regions or points with density lower than a global threshold are noise or
outliers. As another example, hierarchical clustering schemes, such as CURE,
often discard clusters of points that are growing slowly as such groups tend
to represent outliers. However, in some applications we are most interested
in relatively small clusters; e.g., in market segmentation, such groups might
represent the most profitable customers.

Number of Data Objects We have considered how clustering is affected
by the number of data objects in considerable detail in previous sections. We
reiterate, however, that this factor often plays an important role in determining
the type of clustering algorithm to be used. Suppose that we want to create
a hierarchical clustering of a set of data, we are not interested in a complete
hierarchy that extends all the way to individual objects, but only to the point
at which we have split the data into a few hundred clusters. If the data is
very large, we cannot directly apply an agglomerative hierarchical clustering
technique. We could, however, use a divisive clustering technique, such as
the minimum spanning tree (MST) algorithm, which is the divisive analog to
single link, but this would only work if the data set is not too large. Bisecting
K-means would also work for many data sets, but if the data set is large
enough that it cannot be contained completely in memory, then this scheme
also runs into problems. In this situation, a technique such as BIRCH, which
does not require that all data be in main memory, becomes more useful.

Number of Attributes We have also discussed the impact of dimension-
ality at some length. Again, the key point is to realize that an algorithm
that works well in low or moderate dimensions may not work well in high
dimensions. As in many other cases in which a clustering algorithm is inap-
propriately applied, the clustering algorithm will run and produce clusters,
but the clusters will likely not represent the true structure of the data.

Cluster Description One aspect of clustering techniques that is often
overlooked is how the resulting clusters are described. Prototype clusters are
succinctly described by a small set of cluster prototypes. In the case of mixture
models, the clusters are described in terms of small sets of parameters, such as
the mean vector and the covariance matrix. This is also a very compact and un-
derstandable representation. For SOM, it is typically possible to visualize the
relationships between clusters in a two-dimensional plot, such as that of Figure
8.8. For graph- and density-based clustering approaches, however, clusters are

�

M08 TAN9224 02 GE C08 page 713

� �

�

8.7 Bibliographic Notes 713

typically described as sets of cluster members. Nonetheless, in CURE, clusters
can be described by a (relatively) small set of representative points. Also, for
grid-based clustering schemes, such as CLIQUE, more compact descriptions
can be generated in terms of conditions on the attribute values that describe
the grid cells in the cluster.

Algorithmic Considerations There are also important aspects of algo-
rithms that need to be considered. Is the algorithm non-deterministic or
order-dependent? Does the algorithm automatically determine the number of
clusters? Is there a technique for determining the values of various parameters?
Many clustering algorithms try to solve the clustering problem by trying
to optimize an objective function. Is the objective a good match for the
application objective? If not, then even if the algorithm does a good job of
finding a clustering that is optimal or close to optimal with respect to the
objective function, the result is not meaningful. Also, most objective functions
give preference to larger clusters at the expense of smaller clusters.

Summary The task of choosing the proper clustering algorithm involves
considering all of these issues, and domain-specific issues as well. There is no
formula for determining the proper technique. Nonetheless, a general knowl-
edge of the types of clustering techniques that are available and consideration
of the issues mentioned above, together with a focus on the intended appli-
cation, should allow a data analyst to make an informed decision on which
clustering approach (or approaches) to try.

8.7 Bibliographic Notes

An extensive discussion of fuzzy clustering, including a description of fuzzy
c-means and formal derivations of the formulas presented in Section 8.2.1, can
be found in the book on fuzzy cluster analysis by Höppner et al. [595]. While
not discussed in this chapter, AutoClass by Cheeseman et al. [573] is one
of the earliest and most prominent mixture-model clustering programs. An
introduction to mixture models can be found in the tutorial of Bilmes [568],
the book by Mitchell [606] (which also describes how the K-means algorithm
can be derived from a mixture model approach), and the article by Fraley
and Raftery [581]. Mixture model is an example of a probabilistic clustering
method, in which the clusters are represented as hidden variables in the model.
More sophisticated probabilistic clustering methods such as latent Dirichlet

�

M08 TAN9224 02 GE C08 page 714

� �

�

714 Chapter 8 Cluster Analysis: Additional Issues and Algorithms

allocation (LDA) [570] have been developed in recent years for domains such
as text clustering.

Besides data exploration, SOM and its supervised learning variant, Learn-
ing Vector Quantization (LVQ), have been used for many tasks: image segmen-
tation, organization of document files, and speech processing. Our discussion
of SOM was cast in the terminology of prototype-based clustering. The book
on SOM by Kohonen et al. [601] contains an extensive introduction to SOM
that emphasizes its neural network origins, as well as a discussion of some
of its variations and applications. One important SOM-related clustering de-
velopment is the Generative Topographic Map (GTM) algorithm by Bishop
et al. [569], which uses the EM algorithm to find Gaussian models satisfying
two-dimensional topographic constraints.

The description of Chameleon can be found in the paper by Karypis et al.
[599]. Capabilities similar, although not identical to those of Chameleon have
been implemented in the CLUTO clustering package by Karypis [575]. The
METIS graph partitioning package by Karypis and Kumar [600] is used to
perform graph partitioning in both programs, as well as in the OPOSSUM
clustering algorithm by Strehl and Ghosh [616]. A detailed discussion on spec-
tral clustering can be found in the tutorial by von Luxburg [618]. The spectral
clustering method described in this chapter is based on an unnormalized graph
Laplacian matrix and the ratio cut measure [590]. Alternative formulations of
spectral clustering have been developed using normalized graph Laplacian
matrices for other evaluation measures [613].

The notion of SNN similarity was introduced by Jarvis and Patrick [596].
A hierarchical clustering scheme based on a similar concept of mutual near-
est neighbors was proposed by Gowda and Krishna [586]. Guha et al. [589]
created ROCK, a hierarchical graph-based clustering algorithm for clustering
transaction data, which among other interesting features, also uses a notion of
similarity based on shared neighbors that closely resembles the SNN similarity
developed by Jarvis and Patrick. A description of the SNN density-based
clustering technique can be found in the publications of Ertöz et al. [578, 579].
SNN density-based clustering was used by Steinbach et al. [614] to find climate
indices.

Examples of grid-based clustering algorithms are OptiGrid (Hinneburg
and Keim [594]), the BANG clustering system (Schikuta and Erhart [611]),
and WaveCluster (Sheikholeslami et al. [612]). The CLIQUE algorithm is
described in the paper by Agrawal et al. [564]. MAFIA (Nagesh et al. [608])
is a modification of CLIQUE whose goal is improved efficiency. Kailing et al.
[598] have developed SUBCLU (density-connected SUBspace CLUstering), a

�

M08 TAN9224 02 GE C08 page 715

� �

�

8.7 Bibliographic Notes 715

subspace clustering algorithm based on DBSCAN. The DENCLUE algorithm
was proposed by Hinneburg and Keim [593].

Our discussion of scalability was strongly influenced by the article of Ghosh
[584]. A wide-ranging discussion of specific techniques for clustering massive
data sets can be found in the paper by Murtagh [607]. CURE is work by
Guha et al. [588], while details of BIRCH are in the paper by Zhang et al.
[620]. CLARANS (Ng and Han [609]) is an algorithm for scaling K-medoid
clustering to larger databases. A discussion of scaling EM and K-means clus-
tering to large data sets is provided by Bradley et al. [571, 572]. A parallel
implementation of K-means on the MapReduce framework has also been devel-
oped [621]. In addition to K-means, other clustering algorithms that have been
implemented on the MapReduce framework include DBScan [592], spectral
clustering [574], and hierarchical clustering [617].

In addition to the approaches described in this chapter, there are many
other clustering methods proposed in the literature. One class of methods that
has become increasingly popular in recent years is based on non-negative ma-
trix factorization (NMF) [602]. The idea is an extension of the singular value
decomposition (SVD) approach described in Chapter 2, in which the data
matrix is decomposed into a product of lower-rank matrices that represent
the underlying components or clusters in the data. In NMF, additional con-
straints are imposed to ensure non-negativity in the elements of the component
matrices. With different formulations and constraints, the NMF method can
be shown to be equivalent to other clustering approaches, including K-means
and spectral clustering [577, 603]. Another popular class of methods utilizes
the constraints provided by users to guide the clustering algorithm. Such
algorithms are commonly known as constrained clustering or semi-supervised
clustering [566, 567, 576, 619].

There are many aspects of clustering that we have not covered. Additional
pointers are given in the books and surveys mentioned in the Bibliographic
Notes of Chapter 5. Here, we mention four areas—omitting, unfortunately,
many more. Clustering of transaction data (Ganti et al. [582], Gibson et al.
[585], Han et al. [591], and Peters and Zaki [610]) is an important area,
as transaction data is common and of commercial importance. Streaming
data is also becoming increasingly common and important as communications
and sensor networks become pervasive. Two introductions to clustering for
data streams are given in articles by Barbará [565] and Guha et al. [587].
Conceptual clustering (Fisher and Langley [580], Jonyer et al. [597], Mishra
et al. [605], Michalski and Stepp [604], Stepp and Michalski [615]), which uses
more complicated definitions of clusters that often correspond better to human
notions of a cluster, is an area of clustering whose potential has perhaps not

�

M08 TAN9224 02 GE C08 page 716

� �

�

716 Chapter 8 Cluster Analysis: Additional Issues and Algorithms

been fully realized. Finally, there has been a great deal of clustering work for
data compression in the area of vector quantization. The book by Gersho and
Gray [583] is a standard text in this area.

Bibliography
[564] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace

clustering of high dimensional data for data mining applications. In Proc. of 1998 ACM-
SIGMOD Intl. Conf. on Management of Data, pages 94–105, Seattle, Washington, June
1998. ACM Press.

[565] D. Barbará. Requirements for clustering data streams. SIGKDD Explorations
Newsletter, 3(2):23–27, 2002.

[566] S. Basu, A. Banerjee, and R. Mooney. Semi-supervised clustering by seeding. In
Proceedings of 19th International Conference on Machine Learning, pages 19–26, 2002.

[567] S. Basu, I. Davidson, and K. Wagstaff. Constrained Clustering: Advances in
Algorithms, Theory, and Applications. CRC Press, 2008.

[568] J. Bilmes. A Gentle Tutorial on the EM Algorithm and its Application to Parameter
Estimation for Gaussian Mixture and Hidden Markov Models. Technical Report ICSI-
TR-97-021, University of California at Berkeley, 1997.

[569] C. M. Bishop, M. Svensen, and C. K. I. Williams. GTM: A principled alternative to
the self-organizing map. In C. von der Malsburg, W. von Seelen, J. C. Vorbruggen, and
B. Sendhoff, editors, Artificial Neural Networks—ICANN96. Intl. Conf, Proc., pages
165–170. Springer-Verlag, Berlin, Germany, 1996.

[570] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet Allocation. Journal of
Machine Learning Research, 3(4-5):993–1022, 2003.

[571] P. S. Bradley, U. M. Fayyad, and C. Reina. Scaling Clustering Algorithms to Large
Databases. In Proc. of the 4th Intl. Conf. on Knowledge Discovery and Data Mining,
pages 9–15, New York City, August 1998. AAAI Press.

[572] P. S. Bradley, U. M. Fayyad, and C. Reina. Scaling EM (Expectation Maximization)
Clustering to Large Databases. Technical Report MSR-TR-98-35, Microsoft Research,
October 1999.

[573] P. Cheeseman, J. Kelly, M. Self, J. Stutz, W. Taylor, and D. Freeman. AutoClass:
a Bayesian classification system. In Readings in knowledge acquisition and learning:
automating the construction and improvement of expert systems, pages 431–441. Morgan
Kaufmann Publishers Inc., 1993.

[574] W. Y. Chen, Y. Song, H. Bai, C. J. Lin, and E. Y. Chang. Parallel spectral clustering in
distributed systems. IEEE Transactions on Pattern Analysis and Machine Intelligence,
33(3):568586, 2011.

[575] CLUTO 2.1.2: Software for Clustering High-Dimensional Datasets.
www.cs.umn.edu/∼karypis, October 2016.

[576] I. Davidson and S. Basu. A survey of clustering with instance level constraints. ACM
Transactions on Knowledge Discovery from Data, 1:1–41, 2007.

[577] C. Ding, X. He, and H. Simon. On the equivalence of nonnegative matrix factorization
and spectral clustering. In Proc of the SIAM International Conference on Data Mining,
page 606610, 2005.

[578] L. Ertöz, M. Steinbach, and V. Kumar. A New Shared Nearest Neighbor Clustering
Algorithm and its Applications. In Workshop on Clustering High Dimensional Data
and its Applications, Proc. of Text Mine’01, First SIAM Intl. Conf. on Data Mining,
Chicago, IL, USA, 2001.

www.cs.umn.edu/~karypis

�

M08 TAN9224 02 GE C08 page 717

� �

�

Bibliography 717

[579] L. Ertöz, M. Steinbach, and V. Kumar. Finding Clusters of Different Sizes, Shapes,
and Densities in Noisy, High Dimensional Data. In Proc. of the 2003 SIAM Intl. Conf.
on Data Mining, San Francisco, May 2003. SIAM.

[580] D. Fisher and P. Langley. Conceptual clustering and its relation to numerical
taxonomy. Artificial Intelligence and Statistics, pages 77–116, 1986.

[581] C. Fraley and A. E. Raftery. How Many Clusters? Which Clustering Method? Answers
Via Model-Based Cluster Analysis. The Computer Journal, 41(8):578–588, 1998.

[582] V. Ganti, J. Gehrke, and R. Ramakrishnan. CACTUS–Clustering Categorical Data
Using Summaries. In Proc. of the 5th Intl. Conf. on Knowledge Discovery and Data
Mining, pages 73–83. ACM Press, 1999.

[583] A. Gersho and R. M. Gray. Vector Quantization and Signal Compression, volume 159
of Kluwer International Series in Engineering and Computer Science. Kluwer Academic
Publishers, 1992.

[584] J. Ghosh. Scalable Clustering Methods for Data Mining. In N. Ye, editor, Handbook
of Data Mining, pages 247–277. Lawrence Ealbaum Assoc, 2003.

[585] D. Gibson, J. M. Kleinberg, and P. Raghavan. Clustering Categorical Data: An
Approach Based on Dynamical Systems. VLDB Journal, 8(3–4):222–236, 2000.

[586] K. C. Gowda and G. Krishna. Agglomerative Clustering Using the Concept of Mutual
Nearest Neighborhood. Pattern Recognition, 10(2):105–112, 1978.

[587] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering Data
Streams: Theory and Practice. IEEE Transactions on Knowledge and Data Engineering,
15(3):515–528, May/June 2003.

[588] S. Guha, R. Rastogi, and K. Shim. CURE: An Efficient Clustering Algorithm for Large
Databases. In Proc. of 1998 ACM-SIGMOD Intl. Conf. on Management of Data, pages
73–84. ACM Press, June 1998.

[589] S. Guha, R. Rastogi, and K. Shim. ROCK: A Robust Clustering Algorithm for
Categorical Attributes. In Proc. of the 15th Intl. Conf. on Data Engineering, pages
512–521. IEEE Computer Society, March 1999.

[590] L. Hagen and A. Kahng. New spectral methods for ratio cut partitioning and
clustering. IEEE Trans. Computer-Aided Design, 11(9):1074 1085, 1992.

[591] E.-H. Han, G. Karypis, V. Kumar, and B. Mobasher. Hypergraph Based Clustering
in High-Dimensional Data Sets: A Summary of Results. IEEE Data Eng. Bulletin, 21
(1):15–22, 1998.

[592] Y. He, H. Tan, W. Luo, H. Mao, D. Ma, S. Feng, and J. Fan. MR-DBSCAN: an
efficient parallel density-based clustering algorithm using MapReduce. In Proc of the
IEEE International Conference on Parallel and Distributed Systems, pages 473–480,
2011.

[593] A. Hinneburg and D. A. Keim. An Efficient Approach to Clustering in Large
Multimedia Databases with Noise. In Proc. of the 4th Intl. Conf. on Knowledge
Discovery and Data Mining, pages 58–65, New York City, August 1998. AAAI Press.

[594] A. Hinneburg and D. A. Keim. Optimal Grid-Clustering: Towards Breaking the Curse
of Dimensionality in High-Dimensional Clustering. In Proc. of the 25th VLDB Conf.,
pages 506–517, Edinburgh, Scotland, UK, September 1999. Morgan Kaufmann.

[595] F. Höppner, F. Klawonn, R. Kruse, and T. Runkler. Fuzzy Cluster Analysis: Methods
for Classification, Data Analysis and Image Recognition. John Wiley & Sons, New
York, July 2 1999.

[596] R. A. Jarvis and E. A. Patrick. Clustering Using a Similarity Measure Based on Shared
Nearest Neighbors. IEEE Transactions on Computers, C-22(11):1025–1034, 1973.

�

M08 TAN9224 02 GE C08 page 718

� �

�

718 Chapter 8 Cluster Analysis: Additional Issues and Algorithms

[597] I. Jonyer, D. J. Cook, and L. B. Holder. Graph-based hierarchical conceptual
clustering. Journal of Machine Learning Research, 2:19–43, 2002.

[598] K. Kailing, H.-P. Kriegel, and P. Kröger. Density-Connected Subspace Clustering for
High-Dimensional Data. In Proc. of the 2004 SIAM Intl. Conf. on Data Mining, pages
428–439, Lake Buena Vista, Florida, April 2004. SIAM.

[599] G. Karypis, E.-H. Han, and V. Kumar. CHAMELEON: A Hierarchical Clustering
Algorithm Using Dynamic Modeling. IEEE Computer, 32(8):68–75, August 1999.

[600] G. Karypis and V. Kumar. Multilevel k-way Partitioning Scheme for Irregular Graphs.
Journal of Parallel and Distributed Computing, 48(1):96–129, 1998.

[601] T. Kohonen, T. S. Huang, and M. R. Schroeder. Self-Organizing Maps. Springer-
Verlag, December 2000.

[602] D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix
factorization. Nature, 401(6755):788791, 1999.

[603] T. Li and C. H. Q. Ding. The Relationships Among Various Nonnegative Matrix
Factorization Methods for Clustering. In Proc of the IEEE International Conference
on Data Mining, pages 362–371, 2006.

[604] R. S. Michalski and R. E. Stepp. Automated Construction of Classifications:
Conceptual Clustering Versus Numerical Taxonomy. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 5(4):396–409, 1983.

[605] N. Mishra, D. Ron, and R. Swaminathan. A New Conceptual Clustering Framework.
Machine Learning Journal, 56(1–3):115–151, July/August/September 2004.

[606] T. Mitchell. Machine Learning. McGraw-Hill, Boston, MA, 1997.

[607] F. Murtagh. Clustering massive data sets. In J. Abello, P. M. Pardalos, and M. G. C.
Reisende, editors, Handbook of Massive Data Sets. Kluwer, 2000.

[608] H. Nagesh, S. Goil, and A. Choudhary. Parallel Algorithms for Clustering High-
Dimensional Large-Scale Datasets. In R. L. Grossman, C. Kamath, P. Kegelmeyer,
V. Kumar, and R. Namburu, editors, Data Mining for Scientific and Engineering
Applications, pages 335–356. Kluwer Academic Publishers, Dordrecht, Netherlands,
October 2001.

[609] R. T. Ng and J. Han. CLARANS: A Method for Clustering Objects for Spatial Data
Mining. IEEE Transactions on Knowledge and Data Engineering, 14(5):1003–1016,
2002.

[610] M. Peters and M. J. Zaki. CLICKS: Clustering Categorical Data using K-partite
Maximal Cliques. In Proc. of the 21st Intl. Conf. on Data Engineering, Tokyo, Japan,
April 2005.

[611] E. Schikuta and M. Erhart. The BANG-Clustering System: Grid-Based Data
Analysis. In Advances in Intelligent Data Analysis, Reasoning about Data, Second
Intl. Symposium, IDA-97, London, volume 1280 of Lecture Notes in Computer Science,
pages 513–524. Springer, August 1997.

[612] G. Sheikholeslami, S. Chatterjee, and A. Zhang. Wavecluster: A multi-resolution
clustering approach for very large spatial databases. In Proc. of the 24th VLDB Conf.,
pages 428–439, New York City, August 1998. Morgan Kaufmann.

[613] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22(8):888 905, 2000.

[614] M. Steinbach, P.-N. Tan, V. Kumar, S. Klooster, and C. Potter. Discovery of
climate indices using clustering. In KDD ’03: Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 446–455, New
York, NY, USA, 2003. ACM Press.

�

M08 TAN9224 02 GE C08 page 719

� �

�

8.8 Exercises 719

[615] R. E. Stepp and R. S. Michalski. Conceptual clustering of structured objects: A goal-
oriented approach. Artificial Intelligence, 28(1):43–69, 1986.

[616] A. Strehl and J. Ghosh. A Scalable Approach to Balanced, High-dimensional
Clustering of Market-Baskets. In Proc. of the 7th Intl. Conf. on High Performance
Computing (HiPC 2000), volume 1970 of Lecture Notes in Computer Science, pages
525–536, Bangalore, India, December 2000. Springer.

[617] T. Sun, C. Shu, F. Li, H. Yu, L. Ma, and Y. Fang. An efficient hierarchical clustering
method for large datasets with map-reduce. In Proc of the IEEE International
Conference on Parallel and Distributed Computing, Applications and Technologies,
pages 494–499, 2009.

[618] U. von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):
395–416, 2007.

[619] K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl. Constrained K-means Clustering
with Background Knowledge. In Proceedings of 18th International Conference on
Machine Learning, pages 577–584, 2001.

[620] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: an efficient data clustering method
for very large databases. In Proc. of 1996 ACM-SIGMOD Intl. Conf. on Management
of Data, pages 103–114, Montreal, Quebec, Canada, June 1996. ACM Press.

[621] W. Zhao, H. Ma, and Q. He. Parallel K-Means Clustering based on MapReduce. In
Proc of the IEEE International Conference on Cloud Computing, page 674679, 2009.

8.8 Exercises

1. For sparse data, discuss why considering only the presence of non-zero values
might give a more accurate view of the objects than considering the actual
magnitudes of values. When would such an approach not be desirable?

2. What are the general strengths and weaknesses of density-based clustering
algorithms?

3. Describe the change in the time complexity of fuzzy c-means as the number of
clusters to be found increases.

4. Describe the change in the time complexity of K-means as the number of
clusters to be found increases.

5. Consider a set of documents. Assume that all documents have been normalized
to have unit length of 1. What is the “shape” of a cluster that consists of all
documents whose cosine similarity to a centroid is greater than some specified
constant? In other words, cos(d, c) ≥ δ, where 0 < δ ≤ 1.

6. Discuss the advantages and disadvantages of treating clustering as an optimiza-
tion problem. Among other factors, consider efficiency, non-determinism, and
whether an optimization-based approach captures all types of clusterings that
are of interest.

7. Which of the following can handle (i) noise and outliers and (ii) clusters of
different sizes and densities?

�

M08 TAN9224 02 GE C08 page 720

� �

�

720 Chapter 8 Cluster Analysis: Additional Issues and Algorithms

(a) Fuzzy c-means

(b) DENCLUE

(c) Jarvis-Patrick Clustering Algorithm

8. What is the time and space complexity of fuzzy c-means? Of SOM? How do
these complexities compare to those of K-means?

9. Traditional K-means has a number of limitations, such as sensitivity to outliers
and difficulty in handling clusters of different sizes and densities, or with non-
globular shapes. Comment on the ability of fuzzy c-means to handle these
situations.

10. Consider a dataset for which no appropriate proximity measure is available. Is
a K-means algorithm appropriate for clustering this dataset?

11. For the fuzzy c-means algorithm described in this book, the sum of the mem-
bership degree of any point over all clusters is 1. Instead, we could only require
that the membership degree of a point in a cluster be between 0 and 1. What
are the advantages and disadvantages of such an approach?

12. Explain the difference between likelihood and probability.

13. Equation 8.12 gives the likelihood for a set of points from a Gaussian dis-
tribution as a function of the mean μ and the standard deviation σ. Show
mathematically that the maximum likelihood estimate of μ and σ are the
sample mean and the sample standard deviation, respectively.

14. Why do SOM clusters often not correspond to natural clusters?

15. We take a sample of adults and measure their heights. If we record the gender of
each person, we can calculate the average height and the variance of the height,
separately, for men and women. Suppose, however, that this information was
not recorded. Would it be possible to still obtain this information? Explain.

16. Compare the membership weights and probabilities of Figures 8.1 and 8.4,
which come, respectively, from applying fuzzy and EM clustering to the same
set of data points. What differences do you detect, and how might you explain
these differences?

17. Figure 8.32 shows a clustering of a two-dimensional point data set with two
clusters: The leftmost cluster, whose points are marked by asterisks, is some-
what diffuse, while the rightmost cluster, whose points are marked by circles, is
compact. To the right of the compact cluster, there is a single point (marked by
an arrow) that belongs to the diffuse cluster, whose center is farther away than
that of the compact cluster. Explain why this is possible with EM clustering,
but not K-means clustering.

18. Show that the MST clustering technique of Section 8.4.2 produces the same
clusters as single link. To avoid complications and special cases, assume that
all the pairwise similarities are distinct.

�

M08 TAN9224 02 GE C08 page 721

� �

�

8.8 Exercises 721

–10 –8 –6 –4 –2 0 2 4
–8

–6

–4

–2

0

2

4

6

x

y

Figure 8.32. Data set for Exercise 17. EM clustering of a two-dimensional point set with two clusters
of differing density.

19. One way to sparsify a proximity matrix is the following: For each object (row
in the matrix), set all entries to 0 except for those corresponding to the objects
k-nearest neighbors. However, the sparsified proximity matrix is typically not
symmetric.

(a) If object a is among the k-nearest neighbors of object b, why is b not
guaranteed to be among the k-nearest neighbors of a?

(b) Suggest at least two approaches that could be used to make the sparsified
proximity matrix symmetric.

20. Give an example of a set of clusters in which merging based on the closeness
of clusters leads to a more natural set of clusters than merging based on the
strength of connection (interconnectedness) of clusters.

21. Table 8.4 lists the two nearest neighbors of four points.
Calculate the SNN similarity between each pair of points using the definition
of SNN similarity defined in Algorithm 8.11.

22. For the definition of SNN similarity provided by Algorithm 8.11, the calculation
of SNN distance does not take into account the position of shared neighbors
in the two nearest neighbor lists. In other words, it might be desirable to give
higher similarity to two points that share the same nearest neighbors in the
same or roughly the same order.

�

M08 TAN9224 02 GE C08 page 722

� �

�

722 Chapter 8 Cluster Analysis: Additional Issues and Algorithms

Table 8.4. Two nearest neighbors of four points.

Point First Neighbor Second Neighbor
1 4 3
2 3 4
3 4 2
4 3 1

(a) Describe how you might modify the definition of SNN similarity to give
higher similarity to points whose shared neighbors are in roughly the same
order.

(b) Discuss the advantages and disadvantages of such a modification.

23. Name at least one situation in which you would not want to use clustering
based on SNN similarity or density.

24. Grid-clustering techniques are different from other clustering techniques in that
they partition space instead of sets of points.

(a) How does this affect such techniques in terms of the description of the
resulting clusters and the types of clusters that can be found?

(b) What kind of cluster can be found with grid-based clusters that cannot
be found by other types of clustering approaches? (Hint: See Exercise 20
in Chapter 5, page 390.)

25. In CLIQUE, the threshold used to find cluster density remains constant, even as
the number of dimensions increases. This is a potential problem because density
drops as dimensionality increases; i.e., to find clusters in higher dimensions the
threshold has to be set at a level that may well result in the merging of low-
dimensional clusters. Comment on whether you feel this is truly a problem and,
if so, how you might modify CLIQUE to address this problem.

26. What is the most positive and the most negative aspect of the BIRCH clustering
algorithm?

27. Given a set of points in Euclidean space, which are being clustered using the
K-means algorithm with Euclidean distance, the triangle inequality can be used
in the assignment step to avoid calculating all the distances of each point to
each cluster centroid. Provide a general discussion of how this might work.

28. Instead of using the formula derived in CURE—see Equation 8.21—we could
run a Monte Carlo simulation to directly estimate the probability that a sample
of size s would contain at least a certain fraction of the points from a cluster.
Using a Monte Carlo simulation compute the probability that a sample of size
s contains 50% of the elements of a cluster of size 100, where the total number
of points is 1000, and where s can take the values 100, 200, or 500.

�

M09 TAN9224 02 GE C09 page 723

� �

�

9

Anomaly Detection

In anomaly detection, the goal is to find objects that do not conform to normal
patterns or behavior. Often, anomalous objects are known as outliers, since,
on a scatter plot of the data, they lie far away from other data points. Anomaly
detection is also known as deviation detection, because anomalous objects
have attribute values that deviate significantly from the expected or typical
attribute values, or as exception mining, because anomalies are exceptional
in some sense. In this chapter, we will mostly use the terms anomaly or
outlier. There are a variety of anomaly detection approaches from several
areas, including statistics, machine learning, and data mining. All try to
capture the idea that an anomalous data object is unusual or in some way
inconsistent with other objects.

Although unusual objects or events are, by definition, relatively rare, their
detection and analysis provides critical insights that are useful in a number of
applications. The following examples illustrate applications for which anoma-
lies are of considerable interest.

• Fraud Detection. The purchasing behavior of someone who steals a
credit card is often different from that of the original owner. Credit card
companies attempt to detect a theft by looking for buying patterns that
characterize theft or by noticing a change from typical behavior. Similar
approaches are relevant in many domains such as detecting insurance
claim fraud and insider trading.

• Intrusion Detection. Unfortunately, attacks on computer systems and
computer networks are commonplace. While some of these attacks, such
as those designed to disable or overwhelm computers and networks,
are obvious, other attacks, such as those designed to secretly gather

�

M09 TAN9224 02 GE C09 page 724

� �

�

724 Chapter 9 Anomaly Detection

information, are difficult to detect. Many of these intrusions can only be
detected by monitoring systems and networks for unusual behavior.

• Ecosystem Disturbances. The Earth’s ecosystem has been experienc-
ing rapid changes in the last few decades due to natural or anthropogenic
reasons. This includes an increased propensity for extreme events, such
as heat waves, droughts, and floods, which have a huge impact on the
environment. Identifying such extreme events from sensor recordings
and satellite images is important for understanding their origins and
behavior, as well as for devising sustainable adaptation policies.

• Medicine and Public Health. For a particular patient, unusual symp-
toms or test results, such as an anomalous MRI scan, may indicate
potential health problems. However, whether a particular test result is
anomalous may depend on many other characteristics of the patient,
such as age, sex, and genetic makeup. Furthermore, the categorization
of a result as anomalous or not incurs a cost—unneeded additional tests
if a patient is healthy and potential harm to the patient if a condition
is left undiagnosed and untreated. The detection of emerging disease
outbreaks, such as H1N1-influenza or SARS, which result in unusual
and alarming test results in a series of patients, is also important for
monitoring the spread of diseases and taking preventive actions.

• Aviation Safety. Since aircrafts are highly complex and dynamic sys-
tems, they are prone to accidents—often with drastic consequences—
due to mechanical, environmental or human factors. To monitor the
occurrence of such anomalies, most commercial airplanes are equipped
with a large number of sensors to measure different flight parameters,
such as information from the control system, the avionics and propulsion
systems, and pilot actions. Identifying abnormal events in these sensor
recordings (e.g., an anomalous sequence of pilot actions or an abnormally
functioning aircraft component) can help prevent aircraft accidents and
promote aviation safety.

Although much of the recent interest in anomaly detection is driven by
applications in which anomalies are the focus, historically, anomaly detection
(and removal) has been viewed as a data preprocessing technique to elimi-
nate erroneous data objects that may be recorded because of human error, a
problem with the measuring device, or the presence of noise. Such anomalies
provide no interesting information but only distort the analysis of normal
objects. The identification and removal of such erroneous data objects is not

�

M09 TAN9224 02 GE C09 page 725

� �

�

9.1 Characteristics of Anomaly Detection Problems 725

the focus of this chapter. Instead, the emphasis is on detecting anomalous
objects that are interesting in their own right.

9.1 Characteristics of Anomaly Detection Problems

Anomaly detection problems are quite diverse in nature as they appear in
multiple application domains under different settings. This diversity in prob-
lem characteristics has resulted in a rich variety of anomaly detection methods
that are useful in different situations. Before we discuss these methods, it will
be useful to describe some of the key characteristics of anomaly detection
problems that motivate the different styles of anomaly detection methods.

9.1.1 A Definition of an Anomaly

An important characteristic of an anomaly detection problem is the way an
anomaly is defined. Since anomalies are rare occurrences that are not fully
understood, they can be defined in different ways depending on the prob-
lem requirements. However, the following high-level definition of an anomaly
encompasses most of the definitions commonly employed.

Definition 9.1. An anomaly is an observation that doesn’t fit the distribu-
tion of the data for normal instances, i.e., is unlikely under the distribution of
the majority of instances.

We note the following points:

• This definition does not assume that the distribution is easy to express
in terms of well-known statistical distributions. Indeed, the difficulty of
doing so is the reason that many anomaly detection approaches use non-
statistical approaches. Nonetheless, these approaches aim to find data
objects that are not common.

• Conceptually, we can rank data objects according to the probability of
seeing such an object or something more extreme. The lower the proba-
bility, the more likely the object is an anomaly. Often, the reciprocal of
the probability is used as a ranking score. Again, this is only practical
in some cases. Such approaches are discussed in Section 9.3.

• There can be various causes of an anomaly: noise, the object comes from
another distribution, e.g., a few grapefruit mixed with oranges, or the
object is just a rare occurrence of data from the distribution, e.g., a 7

�

M09 TAN9224 02 GE C09 page 726

� �

�

726 Chapter 9 Anomaly Detection

foot tall person. As mentioned, we are not interested in anomalies due
to noise.

9.1.2 Nature of Data

The nature of the input data plays a key role in deciding the choice of a suitable
anomaly detection technique. Some of the common characteristics of the input
data include the number and types of attributes, and the representation used
for describing every data instance.

Univariate or Multivariate If the data contains a single attribute, the
question of whether an object is anomalous depends on whether the object’s
value for that attribute is anomalous. However, if the data objects are rep-
resented using many attributes, a data object may have anomalous values
for some attributes but ordinary values for other attributes. Furthermore, an
object may be anomalous even if none of its attribute values are individually
anomalous. For example, it is common to have people who are two feet tall
(children) or are 100 pounds in weight, but uncommon to have a two-foot
tall person who weighs 100 pounds. Identifying an anomaly in a multivariate
setting is thus challenging, particularly when the dimensionality of the data
is high.

Record Data or Proximity Matrix The most common approach for
representing a data set is to use record data or its variants, e.g., a data
matrix, where every data instance is described using the same set of attributes.
However, for the purpose of anomaly detection, it is often sufficient to know
how different an instance is in comparison to other instances. Hence, some
anomaly detection methods work with a different representation of the input
data known as a proximity matrix, where every entry in the matrix denotes
the pairwise proximity (similarity or dissimilarity) between two instances.
Note that a data matrix can always be converted to a proximity matrix by
using an appropriate proximity measure. Also, a similarity matrix can be easily
converted to a distance matrix using any of the transformations presented in
Section 2.4.1.

Availability of Labels The label of a data instance denotes whether the
instance is normal or anomalous. If we have a training set with labels for
every data instance, then the problem of anomaly detection translates to a
supervised learning (classification) problem. Classification techniques that

�

M09 TAN9224 02 GE C09 page 727

� �

�

9.1 Characteristics of Anomaly Detection Problems 727

address the so-called rare class problem are particularly relevant because
anomalies are relatively rare with respect to normal objects. See Section 6.11.

However, in most practical applications, we do not have a training set with
accurate and representative labels of the normal and anomalous classes. Note
that obtaining labels of the anomalous class is especially challenging because
of their rarity. It is thus difficult for a human expert to catalog every type of
anomaly since the properties of the anomalous class are often unknown. Hence,
most anomaly detection problems are unsupervised in nature, i.e., the input
data does not have any labels. All anomaly detection methods presented in
this chapter operate in the unsupervised setting.

Note that in the absence of labels, it is challenging to differentiate anoma-
lies from normal instances given an input data set. However, anomalies typ-
ically have some properties that techniques can take advantage of to make
finding anomalies practical. Two key properties are the following:

Relatively Small in Number Since anomalies are infrequent, most input
data sets have a predominance of normal instances. The input data set is thus
often used as an imperfect representation of the normal class in most anomaly
detection techniques. However, the performance of such methods needs to be
robust to the presence of outliers in the input data. Some anomaly detection
methods also provide a mechanism to specify the expected number of outliers
in the input data. Such methods can work with a larger number of anomalies
in the data.

Sparsely Distributed Anomalies, unlike normal objects, are often unre-
lated to each other and hence distributed sparsely in the space of attributes.
Indeed, the successful operation of most anomaly detection methods depends
on anomalies not being tightly clustered. However, some anomaly detection
methods are specifically designed to find clustered anomalies (see Section
9.5.1), which are assumed to either be small in size or distant from other
instances.

9.1.3 How Anomaly Detection is Used

There are two different ways in which any generic anomaly detection method
can be used. In the first approach, we are given an input data that contains
both normal and anomalous instances, and are required to identify anomalies
in this input data. All anomaly detection approaches presented in this chapter
are able to operate in this setup. In the second approach, we are also provided
with test instances (appearing one at a time) that need to be identified

�

M09 TAN9224 02 GE C09 page 728

� �

�

728 Chapter 9 Anomaly Detection

as anomalies. Most anomaly detection methods (with a few exceptions) are
able to use the input data set to provide outputs on new test instances.
Finding anomalies by finding anomalous clusters—Section 9.5.1—is one of
the exceptions.

9.2 Characteristics of Anomaly Detection Methods

To cater to the diverse needs of anomaly detection problems, a number of tech-
niques have been explored using concepts from different research disciplines.
In this section, we provide a high-level description of some of the common
characteristics of anomaly detection methods that are helpful in understanding
their commonalities and differences.

Model-based vs. Model-free

Many approaches for anomaly detection use the input data to build models
that can be used to identify whether a test instance is anomalous or not. Most
model-based techniques for anomaly detection build a model of the normal
class and identify anomalies that do not fit this model. For example, we can fit
a Gaussian distribution to model the normal class and then identify anomalies
that do not conform well to the learned distribution. The other type of model-
based techniques learns a model of both the normal and anomalous classes,
and identifies instances as anomalies if they are more likely to belong to the
anomalous class. Although these approaches technically require representative
labels from both classes, they often make assumptions about the nature of the
anomalous class, e.g., that anomalies are rare and sparsely distributed, and
thus can work even in an unsupervised setting.

In addition to identifying anomalies, model-based methods provide infor-
mation about the nature the normal class and sometimes even the anomalous
class. However, the assumptions they make about the properties of normal and
anomalous classes may not hold true in every problem. In contrast, model-
free approaches do not explicitly characterize the distribution of the normal
or anomalous classes. Instead, they directly identify instances as anomalies
without learning models from the input data. For example, an instance can
be identified as an anomaly if it is quite different from other instances in its
neighborhood. Model-free approaches are often intuitive and simple to use.

�

M09 TAN9224 02 GE C09 page 729

� �

�

9.2 Characteristics of Anomaly Detection Methods 729

Global vs. Local Perspective

An instance can be identified as an anomaly either by considering the global
context, e.g., by building a model over all normal instances and using this
global model for anomaly detection, or by considering the local perspective
of every data instance. Specifically, an anomaly detection approach is termed
local if its output on a given instance does not change if instances outside its
local neighborhood are modified or removed. The difference between the global
and local perspective can result in significant differences in the results of an
anomaly detection method, because an object may seem unusual with respect
to all objects globally, but not with respect to objects in its local neighbor-
hood. For example, a person whose height is 6 feet 5 inches is unusually tall
with respect to the general population, but not with respect to professional
basketball players.

Label vs. Score

Different approaches for anomaly detection produce their outputs in different
formats. The most basic type of output is a binary anomaly label: an object
is either identified as an anomaly or as a normal instance. However, labels
do not provide any information about the degree to which an instance is
anomalous. Frequently, some of the detected anomalies are more extreme than
others, while some instances labeled as normal may be on the verge of being
identified as anomalies.

Hence, many anomaly detection methods produce an anomaly score that
indicates how strongly an instance is likely to be an anomaly. An anomaly
score can easily be sorted and converted into ranks, so that an analyst can
be provided with only the top-most scoring anomalies. Alternatively, a cutoff
threshold can be applied to an anomaly score to obtain binary anomaly labels.
The task of choosing the right threshold is often left to the discretion of
the analyst. However, sometimes the scores have an associated meaning, e.g.,
statistical significance (see Section 9.3), which makes the analysis of anomalies
easier and more interpretable.

In the following sections, we provide brief descriptions of six types of
anomaly detection approaches. For each type, we will describe their basic
idea, key features, and underlying assumptions using illustrative examples.
At the end of every section, we also discuss their strengths and weakness in
handling different aspects of anomaly detection problems. To follow common
practice, we will use the terms outlier and anomaly interchangeably in the
remainder of this chapter.

�

M09 TAN9224 02 GE C09 page 730

� �

�

730 Chapter 9 Anomaly Detection

9.3 Statistical Approaches

Statistical approaches make use of probability distributions (e.g., the Gaussian
distribution) to model the normal class. A key feature of such distributions is
that they associate a probability value to every data instance, indicating how
likely it is for the instance to be generated from the distribution. Anomalies
are then identified as instances that are unlikely to be generated from the
probability distribution of the normal class.

There are two types of models that can be used to represent the proba-
bility distribution of the normal class: parametric models and non-parametric
models. While parametric models use well-known families of statistical dis-
tributions that require estimating parameters from the data, non-parametric
models are more flexible and learn the distribution of the normal class directly
from the available data. In the following, we discuss both of these types of
models for anomaly detection.

9.3.1 Using Parametric Models

Some of the common types of parametric models that are widely used for
describing many types of data sets, include the Gaussian distribution, the
Poisson distribution, and the binomial distribution. They involve parameters
that need to be learned from the data, e.g., a Gaussian distribution requires
identifying the mean and variance parameters from the data.

Parametric models are quite effective in representing the behavior of the
normal class, especially when the normal class is known to follow a specific
distribution. The anomaly scores computed by parametric models also have
strong theoretical properties, which can be used for analyzing the anomaly
scores and assessing their statistical significance. In the following, we discuss
the use of the Gaussian distribution for modeling the normal class, in the
univariate and multivariate settings.

Using the Univariate Gaussian Distribution

The Gaussian (normal) distribution is one of the most frequently used dis-
tributions in statistics, and we will use it to describe a simple approach to
statistical outlier detection. The Gaussian distribution has two parameters,
μ and σ, which are the mean and standard deviation, respectively, and is
represented using the notation N(μ, σ). The probability density function f(x)
of a point x under the Gaussian distribution is given as

�

M09 TAN9224 02 GE C09 page 731

� �

�

9.3 Statistical Approaches 731

0 1 2 3 4 5–5 –4 –3 –2 –1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

P
ro

ba
bi

lit
y

D
en

si
ty

Figure 9.1. Probability density function of a Gaussian distribution with a mean of 0 and a standard
deviation of 1.

f(x) =
1√

2πσ2
e−

(x−μ)2

2σ2 (9.1)

Figure 9.1 shows the probability density function of N(0, 1). We can see
that the p(x) declines as x moves farther from the center of the distribution.
We can thus use the distance of a point x from the origin as an anomaly score.
As we will see later in Section 9.3.4, this distance value has an interpretation
in terms of probability that can be used to assess the confidence in calling x
as an outlier.

If the attribute of interest x follows a Gaussian distribution with mean μ
and standard deviation σ, i.e., N(μ, σ), a common approach is to transform
the attribute x to a new attribute z, which has a N(0, 1) distribution. This
can be done by using z = (x − μ)/σ, which is called the z-score. Note that
z2 is directly related to the probability density of the point x in Equation 9.1
since that equation can be rewritten as follows:

p(x) =
1√

2πσ2
e−z2/2 (9.2)

The parameters μ and σ of the Gaussian distribution can be estimated
from the training data of mostly normal instances, by using the sample mean

�

M09 TAN9224 02 GE C09 page 732

� �

�

732 Chapter 9 Anomaly Detection

x as μ and the sample standard deviation sx as σ. However, if we believe
the outliers are distorting the estimates of these parameters too much, more
robust estimates of these quantities can be used—see Bibliographic Notes.

Using the Multivariate Gaussian Distribution

For a data set comprised of more than one continuous attribute, we can use a
multivariate Gaussian distribution to model the normal class. A multivariate
Gaussian distribution N(µ,Σ) involves two parameters, the mean vector µ
and the covariance matrix Σ, which need to be estimated from the data. The
probability density of a point x distributed as N(µ,Σ) is given by

f(x) =
1

(
√

2π)m|Σ|1/2
e−

(x−µ)Σ−1(x−µ)
2 , (9.3)

where p is the number of dimensions of x and |Σ| denotes the determinant of
the covariance matrix Σ.

In the case of a multivariate Gaussian distribution, the distance of a point
x from the center μ cannot be directly used as a viable anomaly score. This
is because a multivariate normal distribution is not symmetrical with respect
to its center if there are correlations between the attributes. To illustrate this,
Figure 9.2 shows the probability density of a two-dimensional multivariate
Gaussian distribution with mean of (0,0) and a covariance matrix of

Σ =
(

1.00 0.75
0.75 3.00

)
.

The probability density varies asymmetrically as we move outward from
the center in different directions. To account for this fact, we need a distance
measure that takes the shape of the data into consideration. The Mahalanobis
distance is one such distance measure. (See Equation 2.26 on page 116.) The
Mahalanobis distance between a point x and the mean of the data x is given
by

Mahalanobis(x,x) = (x− x)S−1(x− x)T , (9.4)

where S is the estimated covariance matrix of the data. Note that the Ma-
halanobis distance between x and x is directly related to the probability
density of x in Equation 9.3, when x and S are used as estimates of µ and Σ,
respectively. (See Exercise 9 on page 771.)

Example 9.1 (Outliers in a Multivariate Normal Distribution). Figure 9.3
shows the Mahalanobis distance (from the mean of the distribution) for points
in a two-dimensional data set. The points A (−4, 4) and B (5, 5) are outliers

�

M09 TAN9224 02 GE C09 page 733

� �

�

9.3 Statistical Approaches 733

x

y

−4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

6

7

8

probability
 Density

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Figure 9.2. Probability density of points for the Gaussian distribution used to generate the points of
Figure 9.3.

5

10

15

20

25

30

35

Mahalanobis
Distance

8

6

4

2

0

–2

–4

–6

35

y

x
–5 –4 –3 –2 –1 0 1 2 3 4 5

24A

B

X

Figure 9.3. Mahalanobis distance of points from the center of a two-dimensional set of 2002 points.

�

M09 TAN9224 02 GE C09 page 734

� �

�

734 Chapter 9 Anomaly Detection

that were added to the data set, and their Mahalanobis distance is indicated
in the figure. The other 2000 points of the data set were randomly generated
using the distribution used for Figure 9.2.

Both A and B have large Mahalanobis distances. However, even though A
is closer to the center (the large black x at (0,0)) as measured by Euclidean dis-
tance, it is farther away than B in terms of the Mahalanobis distance because
the Mahalanobis distance takes the shape of the distribution into account.
In particular, point B has a Euclidean distance of 5

√
2 and a Mahalanobis

distance of 24, while the point A has a Euclidean distance of 4
√

2 and a
Mahalanobis distance of 35.

The above approaches assume that the normal class is generated from
a single Gaussian distribution. Note that this may not always be the case,
especially if there are multiple types of normal classes that have different
means and variances. In such cases, we can use a Gaussian mixture model (as
described in Chapter 8.2.2) to represent the normal class. For each point, the
smallest Mahalanobis distance of the point to any of the Gaussian distributions
is computed and used as the anomaly score. This approach is related to the
clustering-based approaches for anomaly detection, which will be described in
Section 9.5.

9.3.2 Using Non-parametric Models

An alternative for modeling the distribution of the normal class is to use kernel
density estimation-based techniques that employ kernel functions (described
in Section 8.3.3) to approximate the density of the normal class from the
available data. This results in the construction of a non-parametric probability
distribution of the normal class, such that regions with a dense occurrence of
normal instances have high probability and vice-versa. Note that kernel-based
approaches do not assume that the data conforms to any known family of
distributions but instead derive the distribution purely from the data. Having
learned a probability density for the normal class using the kernel density
approach, the anomaly score of an instance is computed as the inverse of its
probability with respect to the learned density.

A simpler non-parametric approach to modeling the normal class is to
build a histogram of the normal data. For example, if the data contains a
single continuous attribute, then we can construct bins for different ranges
of the attribute, using the equal-width discretization technique described in
Section 2.3.6. We can then check if a new test instance falls in any of the bins
of the histogram. If it does not fall in any of the bins, we can identify it as

�

M09 TAN9224 02 GE C09 page 735

� �

�

9.3 Statistical Approaches 735

an anomaly. Otherwise, we can use the inverse of the height (frequency) of
the bin in which it falls as its anomaly score. This approach is known as the
frequency-based or counting-based approach for anomaly detection.

A key step in using frequency-based approaches for anomaly detection is
choosing the size of the bin used for constructing the histogram. A small bin
size can falsely identify many normal instances as anomalous, since they might
fall in empty or sparsely populated bins. On the other hand, if the bin size is
too large, many anomalous instances may fall in heavily populated bins and go
unnoticed. Thus, choosing the right bin size is challenging, and often requires
trying multiple size options or using expert knowledge.

9.3.3 Modeling Normal and Anomalous Classes

The statistical approaches described so far only model the distribution of the
normal class but not the anomalous class. They assume that the training set
predominantly has normal instances. However, if there are outliers present
in the training data, which is common in most practical applications, the
learning of the probability distributions corresponding to the normal class
may be distorted, resulting in poor identification of anomalies.

Here, we present a statistical approach for anomaly detection that can
tolerate a considerable fraction (λ) of outliers in the training set, provided
that the outliers are uniformly distributed (and thus not clustered) in the
attribute space. This approach makes use of a mixture modeling technique
to learn the distribution of normal and anomalous classes. This approach is
similar to the Expectation-Maximization (EM) based technique introduced
in the context of clustering in Chapter 8.2.2. Note that λ), the fraction of
outliers, is like a prior.

The basic idea of this approach is to assume that instances are generated
with probability λ from the anomalous class, which has uniform distribution,
pA, and with probability 1 − λ and from the normal class, which has the
distribution, fM (θ), where θ represents the parameters of the distribution.
The approach for assigning training instances to the normal and anomaly
classes can be described as follows. Initially, all the objects are assigned to
the normal class and the set of anomalous objects is empty. At every iteration
of the EM algorithm, objects are transferred from the normal class to the
anomaly class to improve the likelihood of the overall data. Let Mt and At

be the set of normal and anomalous objects, respectively, at iteration t. The
likelihood of the data set D, Lt(D), and its log-likelihood, logLt(D), are then
given by the following equations:

�

M09 TAN9224 02 GE C09 page 736

� �

�

736 Chapter 9 Anomaly Detection

Lt(D) =
∏

xi∈D

P (xi) =

⎛

⎝(1 − λ)|Mt|
∏

xi∈Mt

PM (xi, θt)

⎞

⎠

⎛

⎝λ|At|
∏

xi∈At

PA(xi)

⎞

⎠ (9.5)

logLt(D) = |Mt| log(1 − λ) +
∑

xi∈Mt

log PM (xi, θt) + |At| log λ +
∑

xi∈At

log PA(xi) (9.6)

where |Mt| and |At| are the number of objects in the normal and anomaly
classes, respectively, and θt represents the parameters of the distribution of
the normal class, which can be estimated using Mt. If the transfer of an object
x from Mt to At results in a significant increase in the log-likelihood of the
data (greater than a threshold c), then x is assigned to the set of outliers At.
The set of outliers At keeps growing till we achieve the maximum likelihood
of the data using Mt and At. This approach is summarized in Algorithm 9.1.

Algorithm 9.1 Likelihood-based outlier detection.
1: Initialization: At time t = 0, let Mt contain all the objects, while At is empty.
2: for each object x that belongs to Mt do
3: Move x from Mt to At to produce the new data sets At+1 and Mt+1.
4: Compute the new log-likelihood of D, logLt+1(D)
5: Compute the difference, Δ = logLt+1(D)− logLt(D)
6: if Δ > c, where c is some threshold then
7: Classify x as an anomaly.
8: Increment t by one and use Mt+1 and At+1 in the next iteration.
9: end if

10: end for

Because the number of normal objects is large compared to the number of
anomalies, the distribution of the normal objects may not change much when
an object is moved to the set of anomalies. In that case, the contribution of
each normal object to the overall likelihood of the normal objects will remain
relatively constant. Furthermore, each object moved to the set of anomalies
contributes a fixed amount to the likelihood of the anomalies. Thus, the overall
change in the total likelihood of the data when an object is moved to the set
of anomalies is roughly equal to the probability of the object under a uniform
distribution (weighted by λ) minus the probability of the object under the
distribution of the normal data objects (weighted by 1−λ). Consequently, the
set of anomalies will tend to consist of those objects that have significantly
higher probability under a uniform distribution than under the distribution
of the normal objects.

�

M09 TAN9224 02 GE C09 page 737

� �

�

9.3 Statistical Approaches 737

In the situation just discussed, the approach described by Algorithm 9.1
is roughly equivalent to classifying objects with a low probability under the
distribution of normal objects as outliers. For example, when applied to the
points in Figure 9.3, this technique would classify points A and B (and other
points far from the mean) as outliers. However, if the distribution of the normal
objects changes significantly as anomalies are removed or the distribution
of the anomalies can be modeled in a more sophisticated manner, then the
results produced by this approach will be different than the results of simply
classifying low-probability objects as outliers. Also, this approach can work
even when the distribution of normal objects is multi-modal, e.g., by using a
mixture of Gaussian distributions for fM (θ). Also, conceptually, it should be
possible to use this approach with distributions other than Gaussian.

9.3.4 Assessing Statistical Significance

Statistical approaches provide a way to assign a measure of confidence for
the instances detected as anomalies. For example, since the anomaly scores
computed by statistical approaches have a probabilistic meaning, we can apply
a threshold to these scores with statistical guarantees. Alternatively, it is
possible to define statistical tests (also termed as discordancy tests) that
can identify the statistical significance of an instance being identified as an
anomaly by a statistical approach. Many of these discordancy tests are highly
specialized and assume a level of statistical knowledge beyond the scope of
this text. Thus, we illustrate the basic ideas with a simple example that uses
univariate Gaussian distributions, and refer the reader to the Bibliographic
Notes for further pointers.

Consider the Gaussian distribution N(0, 1) shown in Figure 9.1. As dis-
cussed previously in Section 9.3.1, most of the probability density is centered
around zero and there is little probability that an object (value) belonging to
N(0, 1) will occur in the tails of the distribution. For instance, there is only a
probability of 0.0027 that an object lies beyond the central area between ±3
standard deviations. More generally, if c is a constant and x is the attribute
value of an object, then the probability that |x| ≥ c decreases rapidly as c
increases. Let α = prob(|x| ≥ c). Table 9.1 shows some sample values for c
and the corresponding values for α when the distribution is N(0, 1). Note that
a value that is more than 4 standard deviations from the mean is a one-in-
ten-thousand occurrence.

This interpretation of the distance of a point from the center can be used as
the basis of a test to assess whether an object is an outlier, using the following
definition.

�

M09 TAN9224 02 GE C09 page 738

� �

�

738 Chapter 9 Anomaly Detection

Table 9.1. Sample pairs (c, α), α = prob(|x| ≥ c) for a Gaussian distribution with mean 0 and
standard deviation 1.

c α for N(0, 1)
1.00 0.3173
1.50 0.1336
2.00 0.0455
2.50 0.0124
3.00 0.0027
3.50 0.0005
4.00 0.0001

Definition 9.2 (Outlier for a Single N(0,1) Gaussian Attribute). An object
with attribute value x from a Gaussian distribution with mean of 0 and
standard deviation 1 is an outlier if

|x| ≥ c, (9.7)

where c is a constant chosen so that P (|x| ≥ c) = α, where P represents
probability.

To use this definition it is necessary to specify a value for α. From the
viewpoint that unusual values (objects) indicate a value from a different
distribution, α indicates the probability that we mistakenly classify a value
from the given distribution as an outlier. From the viewpoint that an outlier
is a rare value of a N(0, 1) distribution, α specifies the degree of rareness.

More generally, for a Gaussian distribution with mean μ and standard
deviation σ, we can first compute the z score of x and then apply the above
test on x. In practice, this works well when μ and σ are estimated from a large
population. A more sophisticated statistical procedure (Grubbs’ test), which
takes into account the distortion of parameter estimates caused by outliers, is
explored in Exercise 7 on page 770.

The approach to outlier detection presented here is equivalent to testing
data objects for statistical significance and classifying the statistically signifi-
cant objects as anomalies. This is discussed in more detail in Chapter 10.

9.3.5 Strengths and Weaknesses

Statistical approaches to outlier detection have a firm theoretical foundation
and build on standard statistical techniques. When there is sufficient knowl-
edge of the data and the type of test that should be applied, these approaches
are statistically justifiable and can be very effective. They can also provide

�

M09 TAN9224 02 GE C09 page 739

� �

�

9.4 Proximity-based Approaches 739

confidence intervals associated with the anomaly scores, which can be very
helpful in making decisions about test instances, e.g., determining thresholds
on the anomaly score.

However, if the wrong model is chosen, then a normal instance can be
erroneously identified as an outlier. For example, the data may be modeled as
coming from a Gaussian distribution, but may actually come from a distribu-
tion that has a higher probability (than the Gaussian distribution) of having
values far from the mean. Statistical distributions with this type of behavior
are common in practice and are known as heavy-tailed distributions. Also,
we note that while there are a wide variety of statistical outlier tests for single
attributes, far fewer options are available for multivariate data, and these tests
can perform poorly for high-dimensional data.

9.4 Proximity-based Approaches

Proximity-based methods identify anomalies as those instances that are most
distant from the other objects. This relies on the assumption that normal
instances are related and hence appear close to each other, while anomalies
are different from the other instances and hence are relatively far from other in-
stances. Since many of the proximity-based techniques are based on distances,
they are also referred to as distance-based outlier detection techniques.

Proximity-based approaches are model-free anomaly detection techniques,
since they do not construct an explicit model of the normal class for computing
the anomaly score. They make use of the local perspective of every data
instance to compute its anomaly score. They are more general than statis-
tical approaches, since it is often easier to determine a meaningful proximity
measure for a data set than to determine its statistical distribution. In the
following, we present some of the basic proximity-based approaches for defining
an anomaly score. Primarily, these techniques differ in the way they analyze
the locality of a data instance.

9.4.1 Distance-based Anomaly Score

One of the simplest ways to define a proximity-based anomaly score of a data
instance x is to use the distance to its kth nearest neighbor, dist(x, k). If
an instance x has many other instances located close to it (characteristic of
the normal class), it will have a low value of dist(x, k). On other hand, an
anomalous instance x will be quite distant from its k-neighboring instances
and would thus have a high value of dist(x, k).

�

M09 TAN9224 02 GE C09 page 740

� �

�

740 Chapter 9 Anomaly Detection

Figure 9.4 shows a set of points in a two-dimensional space that have
been shaded according to their distance to the kth nearest neighbor, dist(x, k)
(where k = 5). Note that point C has been correctly assigned a high anomaly
score, as it is located far away from other instances.

Note that dist(x, k) can be quite sensitive to the value of k. If k is too
small, e.g., 1, then a small number of outliers located close to each other can
show a low anomaly score. For example, Figure 9.5 shows anomaly scores using
k = 1 for a set of normal points and two outliers that are located close to each
other (shading reflects anomaly scores). Note that both C and its neighbor
have a low anomaly score. If k is too large, then it is possible for all objects
in a cluster that has fewer than k objects to become anomalies. For example,
Figure 9.6 shows a data set that has a small cluster of size 5 and a larger
cluster of size 30. For k = 5, the anomaly score of all points in the smaller
cluster is very high.

An alternative distance-based anomaly score that is more robust to the
choice of k is the average distance to the first k-nearest neighbors, avg.dist(x, k).
Indeed, avg.dist(x, k) is widely used in a number of applications as a reliable
proximity-based anomaly score.

9.4.2 Density-based Anomaly Score

The density around an instance can be defined as n/V (d), where n is the
number of instances within a specified distance d from the instance, and V (d)
is the volume of the neighborhood. Since V (d) is constant for a given d, the
density around an instance is often represented using the number of instances
n within a fixed distance d. This definition is similar to the one used by the
DBSCAN clustering algorithm in Section 5.4. From a density-based viewpoint,
anomalies are instances that are in regions of low density. Hence, an anomaly
will have a smaller number of instances within a distance d than a normal
instance.

Similar to the trade-off in choosing the parameter k in distance-based mea-
sures, it is challenging to choose the parameter d in density-based measures.
If d is too small, then many normal instances can incorrectly show low density
values. If d is too large, then many anomalies may have densities that are
similar to normal instances.

Note that the distance-based and density-based views of proximity are
quite similar to each other. To realize this, consider the k-nearest neighbors
of a data instance x, whose distance to the kth nearest neighbor is given
by dist(x, k). In this approach, dist(x, k) provides a measure of the density
around x, using a different value of d for every instance. If dist(x, k) is large,

�

M09 TAN9224 02 GE C09 page 741

� �

�

9.4 Proximity-based Approaches 741

C

Anomaly
Score

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 9.4. Anomaly score based on the
distance to fifth nearest neighbor.

C

Anomaly
Score

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Figure 9.5. Anomaly score based on the
distance to the first nearest neighbor. Nearby
outliers have low anomaly scores.

C

Anomaly
Score

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 9.6. Anomaly score based on distance
to the fifth nearest neighbor. A small cluster
becomes an outlier.

C

Anomaly
Score

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

D
B

A

Figure 9.7. Anomaly score based on the
distance to the fifth nearest neighbor, when
there are clusters of varying densities.

�

M09 TAN9224 02 GE C09 page 742

� �

�

742 Chapter 9 Anomaly Detection

the density around x is small, and vice-versa. Distance-based and density-
based anomaly scores thus follow an inverse relationship. This can be used to
define the following measures of density that are based on the two distance
measures, dist(x, k) and avg.dist(x, k):

density(x, k) = 1/dist(x, k),

avg.density(x, k) = 1/avg.dist(x, k).

9.4.3 Relative Density-based Anomaly Score

The above proximity-based approaches only consider the locality of an in-
dividual instance for computing its anomaly score. In scenarios where the
data contains regions of varying densities, such methods would not be able to
correctly identify anomalies, as the notion of a normal locality would change
across regions.

To illustrate this, consider the set of two-dimensional points in Figure 9.7.
This figure has one rather loose cluster of points, another dense cluster of
points, and two points, C and D, which are quite far from these two clusters.
Assigning anomaly scores to points according to dist(x, k) with k = 5 correctly
identifies point C to be an anomaly, but shows a low score for point D. In
fact, the score for D is much lower than many points that are part of the loose
cluster. To correctly identify anomalies in such data sets, we need a notion of
density that is relative to the densities of neighboring instances. For example,
point D in Figure 9.7 has a higher absolute density than point A, but its
density is lower relative to its nearest neighbors.

There are many ways to define the relative density of an instance. For a
point x, One approach is to compute the ratio of the average density of its
k-nearest neighbors, y1 to yk to the density of x, as follows:

relative density(x, k) =
∑k

i=1 density(yi, k)/k
density(x, k)

. (9.8)

The relative density of a point is high when the average density of points in
its neighborhood is significantly higher than the density of the point.

Note that by replacing density(x, k) with avg.density(x, k) in the above
equation, we can obtain a more robust measure of relative density. The above
approach is similar to that used by the Local Outlier Factor (LOF) score,
which is a widely-used measure for detecting anomalies using relative density.
(See Bibliographic Notes.) However, LOF uses a somewhat different definition
of density to achieve results that are more robust.

�

M09 TAN9224 02 GE C09 page 743

� �

�

9.4 Proximity-based Approaches 743

1

2

3

4

5

6

LOF

6.85

1.33

1.40

A

C

D

Figure 9.8. Relative density (LOF) outlier scores for two-dimensional points of Figure 9.7.

Example 9.2 (Relative Density Anomaly Detection). Figure 9.8 shows the
performance of the relative density-based anomaly detection method on the
example data set used previously in Figure 9.7. The anomaly score of every
point is computed using Equation 9.8 (with k = 10). The shading of every
point represents its score, i.e., points with a higher score are darker. We
have labeled points A, C, and D, which have the largest anomaly scores.
Respectively, these points are the most extreme anomaly, the most extreme
point with respect to the compact set of points, and the most extreme point
in the loose set of points.

9.4.4 Strengths and Weaknesses

Proximity-based approaches are non-parametric in nature and hence are not
restricted to any particular form of distribution of the normal and anomalous
classes. They have a broad applicability over a wide range of anomaly detec-
tion problems where a reasonable proximity measure can be defined between
instances. They are quite intuitive and visually appealing, since proximity-
based anomalies can be interpreted visually when the data can be displayed
in two- or three-dimensional scatter plots.

�

M09 TAN9224 02 GE C09 page 744

� �

�

744 Chapter 9 Anomaly Detection

However, the effectiveness of proximity-based methods depends greatly on
the choice of the distance measure. Defining distances in high-dimensional
spaces can be challenging. In some cases, dimensionality reduction techniques
can be used to map the instances into a lower dimensional feature space.
Proximity-based methods can then be applied in the reduced space for detect-
ing anomalies. Another challenge common to all proximity-based methods is
their high computational complexity. Given n points, computing the anomaly
score for every point requires considering all pair-wise distances, resulting in an
O(n2) running time. For large data sets this can be too expensive, although
specialized algorithms can be used to improve performance in some cases,
e.g., with low-dimensional data sets. Choosing the right value of parameters
(k or d) in proximity-based methods is also difficult and often requires domain
expertise.

9.5 Clustering-based Approaches

Clustering-based methods for anomaly detection use clusters to represent the
normal class. This relies on the assumption that normal instances appear
close to each other and hence can be grouped into clusters. Anomalies are
then identified as instances that do not fit well in the clustering of the normal
class, or appear in small clusters that are far apart from the clusters of the
normal class. Clustering-based methods can be categorized into two types:
methods that consider small clusters as anomalies, and methods that define
a point as anomalous if does not fit the clustering well, typically as measured
by distance from a cluster center. We describe both types of clustering-based
methods next.

9.5.1 Finding Anomalous Clusters

This approach assumes the presence of clustered anomalies in the data, where
the anomalies appear in tight groups of small size. Clustered anomalies appear
when the anomalies are being generated from the same anomalous class. For
example, a network attack may have a common pattern in its occurrence, pos-
sibly because of a common attacker, who appears in similar ways in multiple
instances.

Clusters of anomalies are generally small in size, since anomalies are rare
in nature. They are also expected to be quite distant from the clusters of the
normal class, since anomalies do not conform to normal patterns or behavior.
Hence, a basic approach for detecting anomalous clusters is to cluster the

�

M09 TAN9224 02 GE C09 page 745

� �

�

9.5 Clustering-based Approaches 745

overall data and flag clusters that are either too small in size or too far from
other clusters.

For instance, if we use a prototype-based method for clustering the overall
data, e.g., using K-means, every cluster can be represented by its prototype,
e.g., the centroid of the cluster. We can then treat every prototype as a
point and straightforwardly identify clusters that are distant from the rest. As
another example, if we are using hierarchical techniques such as MIN, MAX, or
Group Average—see Section 5.3—then anomalies are often identified as those
instances that are in small clusters or remain singletons even after almost all
other points have been clustered.

9.5.2 Finding Anomalous Instances

From a clustering perspective, another way of describing an anomaly is as an
instance that cannot be explained well by any of the normal clusters. Hence, a
basic approach for anomaly detection is to first cluster all the data (comprised
mainly of normal instances) and then assess the degree to which every instance
belongs to its respective cluster. For example, if we use K-means clustering,
the distance of an instance to its cluster centroid represents how strongly it
belongs to the cluster. Instances that are quite distant from their respective
cluster centroids can thus be identified as anomalies.

Although clustering-based methods for anomaly detection are quite intu-
itive and simple to use, there are a number of considerations that must be
kept in mind while using them, as we discuss in the following.

Assessing the Extent to Which an Object Belongs to a Cluster

For prototype-based clusters, there are several ways to assess the extent to
which an instance belongs to a cluster. One method is to measure the distance
of an instance from its cluster prototype and consider this as the anomaly score
of the instance. However, if the clusters are of differing densities, then we can
construct an anomaly score that measures the relative distance of an instance
from the cluster prototype with respect to the distances of the other instances
in the cluster. Another possibility, provided that the clusters can be accurately
modeled in terms of Gaussian distributions, is to use the Mahalanobis distance.

For clustering techniques that have an objective function, we can assign an
anomaly score to an instance that reflects the improvement in the objective
function when that instance is eliminated from the overall data. However, such
an approach is often computationally intensive. For that reason, the distance-
based approaches of the previous paragraph are usually preferred.

�

M09 TAN9224 02 GE C09 page 746

� �

�

746 Chapter 9 Anomaly Detection

Example 9.3 (Clustering-Based Example). This example is based on the set
of points shown in Figure 9.7. Prototype-based clustering in this example uses
the K-means algorithm, and the anomaly score of a point is computed in two
ways: (1) by the point’s distance from its closest centroid, and (2) by the
point’s relative distance from its closest centroid, where the relative distance
is the ratio of the point’s distance from the centroid to the median distance
of all points in the cluster from the centroid. The latter approach is used to
adjust for the large difference in density between compact and loose clusters.

The resulting anomaly scores are shown in Figures 9.9 and 9.10. As before,
the anomaly score, measured in this case by the distance or relative distance, is
indicated by the shading. We use two clusters in each case. The approach based
on raw distance has problems with the differing densities of the clusters, e.g.,
D is not considered an outlier. For the approach based on relative distances,
the points that have previously been identified as outliers using LOF (A, C,
and D) also show up as anomalies here.

Impact of Outliers on the Initial Clustering

Clustering based schemes are often sensitive to the presence of outliers in the
data. Hence, the presence of outliers can degrade the quality of clusters corre-
sponding to the normal class since these clusters are discovered by clustering
the overall data, which is comprised of normal and anomalous instances. To
address this issue, the following approach can be used: instances are clustered,
outliers, which are the points farthest from any cluster, are removed, and then
the instances are clustered again. This approach is used at every iteration of
the K-means algorithm. The K-means-- algorithm is an example of such an
algorithm. While there is no guarantee that this approach will yield optimal
results, it is easy to use.

A more sophisticated approach is to have a special group for instances that
do not currently fit well in any cluster. This group represents potential outliers.
As the clustering process proceeds, clusters change. Instances that no longer
belong strongly to any cluster are added to the set of potential outliers, while
instances currently in the outlier group are tested to see if they now strongly
belong to a cluster and can be removed from the set of potential outliers. The
instances remaining in the set at the end of the clustering are classified as
outliers. Again, there is no guarantee of an optimal solution or even that this
approach will work better than the simpler one described previously.

�

M09 TAN9224 02 GE C09 page 747

� �

�

9.5 Clustering-based Approaches 747

0.5

1.5

1

2

2.5

3.5

3

4.5

4

Distance

D

C

A

1.2

0.17

4.6

Figure 9.9. Distance of points from closest centroid.

10

20

30

40

60

50

70

Relative
Distance

A

D

C

15.0

13.1

76.9

Figure 9.10. Relative distance of points from closest centroid.

�

M09 TAN9224 02 GE C09 page 748

� �

�

748 Chapter 9 Anomaly Detection

The Number of Clusters to Use

Clustering techniques such as K-means do not automatically determine the
number of clusters. This is a problem when using clustering-based methods
for anomaly detection, since whether an object is considered an anomaly or
not may depend on the number of clusters. For instance, a group of 10 objects
may be relatively close to one another, but may be included as part of a larger
cluster if only a few large clusters are found. In that case, each of the 10
points could be regarded as an anomaly, even though they would have formed
a cluster if a large enough number of clusters had been specified.

As with some of the other issues, there is no simple answer to this problem.
One strategy is to repeat the analysis for different numbers of clusters. Another
approach is to find a large number of small clusters. The idea is that (1) smaller
clusters tend to be more cohesive and (2) if an object is an anomaly even when
there are a large number of small clusters, then it is likely a true anomaly.
The downside is that groups of anomalies may form small clusters and thus
escape detection.

9.5.3 Strengths and Weaknesses

Clustering-based techniques can operate in an unsupervised setting as they
do not require training data consisting of only normal instances. Along with
identifying anomalies, the learned clusters of the normal class help in under-
standing the nature of the normal data. Some clustering techniques, such as
K-means, have linear or near-linear time and space complexity and thus, an
anomaly detection technique based on such algorithms can be highly efficient.
However, the performance of clustering-based anomaly detection methods is
heavily dependent upon the number of clusters used as well as the presence of
outliers in the data. As discussed in Chapters 5 and 8, each clustering algo-
rithm is suitable only for a certain type of data; hence the clustering algorithm
needs to be chosen carefully to effectively capture the cluster structure in the
data.

9.6 Reconstruction-based Approaches

Reconstruction-based techniques rely on the assumption that the normal class
resides in a space of lower dimensionality than the original space of attributes.
In other words, there are patterns in the distribution of the normal class
that can be captured using lower-dimensional representations, e.g., by using
dimensionality reduction techniques.

�

M09 TAN9224 02 GE C09 page 749

� �

�

9.6 Reconstruction-based Approaches 749

To illustrate this, consider a data set of normal instances, where every
instance is represented using p continuous attributes, x1, . . . , xp. If there is
a hidden structure in the normal class, we can expect to approximate this
data using fewer than p derived features. One common approach for deriving
useful features from a data set is to use principal components analysis (PCA),
as described in Section 2.3.3. By applying PCA on the original data, we
obtain p principal components, y1, . . . , yp, where every principal component
is a linear combination of the original attributes. Each principal component
captures the maximum amount of variation in the original data subject to the
constraint that it must be orthogonal to the preceding principal components.
Thus, the amount of variation captured decreases for each successive principal
component, and hence, it is possible to approximate the original data using the
top k principal components, y1, . . . , yk. Indeed, if there is a hidden structure
in the normal class, we can expect to obtain a good approximation using a
smaller number of features, k < p.

Once, we have derived a smaller set of k features, we can project any
new data instance x to its k-dimensional representation y. Moreover, we can
also re-project y back to the original space of p attributes, resulting in a
reconstruction of x. Let us denote this reconstruction as x̂ and the squared
Euclidean distance between x and x̂ as the reconstruction error.

Reconstruction Error(x) = ||x− x̂||2

Since the low-dimensional features are specifically learned to explain most
of the variation in the normal data, we can expect the reconstruction error
to be low for normal instances. However, the reconstruction error is high for
anomalous instances, as they do not conform to the hidden structure of the
normal class. The reconstruction error can thus be used as an effective anomaly
detection score.

As an illustration of a reconstruction-based approach for anomaly detec-
tion, consider a two-dimensional data set of normal instances, shown as circles
in Figure 9.11. The black squares are anomalous instances. The solid black line
shows the first principal component learned from this data, which corresponds
to the direction of maximum variance of normal instances.

We can see that most of the normal instances are centered around this line.
This suggests that the first principal component provides a good approxima-
tion to the normal class using a lower-dimensional representation. Using this
representation, we can project every data instance x to a point on the line.
This projection, x̂, serves as a reconstruction of the original instance using a
single principal component.

�

M09 TAN9224 02 GE C09 page 750

� �

�

750 Chapter 9 Anomaly Detection

The distance between x and x̂, which corresponds to the reconstruction
error of x, is shown as dashed lines in Figure 9.11. We can see that, since the
first principal component has been learned to best fit the normal class, the
reconstruction errors of the normal instances are quite small in value. However,
the reconstruction errors for anomalous instances (shown as squares) are high,
since they do not adhere to the structure of the normal class.

Although PCA provides a simple approach for capturing low-dimensional
representations, it can only derive features that are linear combinations of the
original attributes. When the normal class exhibits nonlinear patterns, it is
difficult to capture them using PCA. In such scenarios, the use of an artificial
neural network known an autoencoder provides one possible approach for
nonlinear dimensionality reduction and reconstruction. As described in Section
6.7, autoencoders are widely used in the context of deep learning to derive
complex features from the training data in an unsupervised setting.

An autoencoder (also referred to as an autoassociator or a mirroring net-
work) is a multi-layer neural network, where the number of input and output
neurons is equal to the number of original attributes. Figure 9.12 shows the
general architecture of an autoencoder, which involves two basic steps, encod-
ing and decoding. During encoding, a data instance x is transformed to a
low-dimensional representation y, using a number of nonlinear transformations
in the encoding layers. Notice that the number of neurons reduces at every
encoding layer, so as to learn low-dimensional representations from the original
data. The learned representation y is then mapped back to the original space
of attributes using the decoding layers, resulting in a reconstruction of x,

0 1 2 3 4 5 6 7 8 9 10

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Figure 9.11. Reconstruction of a two-dimensional data using a single principal component (shown as
solid black line).

�

M09 TAN9224 02 GE C09 page 751

� �

�

9.6 Reconstruction-based Approaches 751

Figure 9.12. A basic architecture of the autoencoder.

denoted by x̂. The distance between x and x̂ (the reconstruction error) is
then used as a measure of an anomaly score.

In order to learn an autoencoder from an input data set comprising primar-
ily of normal instances, we can use the backpropagation techniques introduced
in the context of artificial neural networks in Section 6.7. The autoencoder
scheme provides a powerful approach for learning complex and nonlinear rep-
resentations of the normal class. A number of variants of the basic autoencoder
scheme described above have also been explored to learn representations in
different types of data sets. For example, the denoising autoencoder is able
to robustly learn nonlinear representations from the training data, even in the
presence of noise. For more details on the different types of autoencoders, see
the Bibliographic Notes.

9.6.1 Strengths and Weaknesses

Reconstruction-based techniques provide a generic approach for modeling the
normal class that does not require many assumptions about the distribution
of normal instances. They are able to learn a rich variety of representations
of the normal class by using a broad family of dimensionality reduction tech-
niques. They can also be used in the presence of irrelevant attributes, since
an attribute that does not share any relationship with the other attributes
is likely to be ignored in the encoding step, as it would not be of much use
in reconstructing the normal class. However, since the reconstruction error is

�

M09 TAN9224 02 GE C09 page 752

� �

�

752 Chapter 9 Anomaly Detection

computed by measuring the distance between x and x̂ in the original space of
attributes, performance can suffer when the number of attributes is large.

9.7 One-class Classification

One-class classification approaches learn a decision boundary in the attribute
space that encloses all normal objects on one side of the boundary. Figure 9.13
shows an example of a decision boundary in the one-class setting, where points
belonging to one side of the boundary (shaded) belong to the normal class.
This is in contrast to binary classification approaches introduced in chapters
3 and 6 that learn boundaries to separate objects from two classes.

One-class classification presents a unique perspective on anomaly detec-
tion, where, instead of learning the distribution of the normal class, the focus
is on modeling the boundary of the normal class. From an operational stand-
point, learning the boundary is indeed what we need to distinguish anomalies
from normal objects. In the words of Vladimir Vapnik, “One should solve the
[classification] problem directly and never solve a more general problem [such
as learning the distribution of the normal class] as an intermediate step.”

In this section, we present an SVM-based a one-class approach, known as
one-class SVM, which only uses training instances from the normal class to
learn its decision boundary. Contrast this with a normal SVM—see Section
6.9–which uses training instances from two classes. This involves the use of
kernels and a novel “origin trick,” described as follows. (See Section 2.4.7 for
an introduction to kernel methods.)

2.0

1.5

1.0

0.5

0.0

–0.5

–1.0

–1.5

–2.0
2.01.51.00.50.0–0.5–1.0–1.5–2.0

Figure 9.13. The decision boundary of a one-class classification problem attempts to enclose the
normal instances on the same side of the boundary.

�

M09 TAN9224 02 GE C09 page 753

� �

�

9.7 One-class Classification 753

9.7.1 Use of Kernels

In order to learn a nonlinear boundary that encloses the normal class, we
transform the data to a higher dimensional space where the normal class
can be separated using a linear hyperplane. This can be done by using a
function φ that maps every data instance x in the original space of attributes
to a point φ(x) in the transformed high-dimensional space. (The choice of
the mapping function will become clear later.) In the transformed space,
the training instances can be separated using a linear hyperplane defined by
parameters (w, ρ) as follows.

〈w, φ(x)〉 = ρ,

where 〈x,y〉 denotes the inner product between vectors x and y. Ideally, we
want a linear hyperplane that places all of the normal instances on one side.
Hence, we want (w, ρ) to be such that 〈w, φ(x)〉 > ρ if x belongs to the normal
class, and 〈w, φ(x)〉 < ρ if x belongs to the anomaly class.

Let {x1,x2, . . .xn} be the set of training instances belonging to the normal
class. Similar to the use of kernels in SVMs (see Chapter 6), we define w as a
linear combination of φ(xi)’s:

w =
n∑

i=1

αiφ(xi).

The separating hyperplane can then be described using αi’s and ρ as
follows.

n∑

i=1

αi〈φ(xi), φ(x)〉 = ρ,

Note that the above equation deals with inner products of φ(x) in the
transformed space to describe the hyperplane. To compute such inner prod-
ucts, we can make use of kernel functions, κ(x,y) = 〈φ(x), φ(y)〉, introduced
in Section 2.4.7. Note that kernel functions are extensively used for learn-
ing nonlinear boundaries in binary classification problems, e.g., using kernel-
SVMs presented in Chapter 6. However, learning nonlinear boundaries in the
one-class setting is challenging in the absence of any information about the
anomaly class during training. To overcome this challenge, one-class SVM uses
the “origin trick” to learn the separating hyperplane, which works best with
certain types of kernel functions. This approach can be briefly described as
follows.

�

M09 TAN9224 02 GE C09 page 754

� �

�

754 Chapter 9 Anomaly Detection

9.7.2 The Origin Trick

Consider the Gaussian kernel that is commonly used for learning nonlinear
boundaries, which can be defined as

κ(x,y) = exp(−||x− y||2
2σ2

),

where ||.|| denotes the length of a vector and σ is a hyper-parameter. Before
we use the Gaussian kernel to learn a separating hyperplane in the one-class
setting, it will be worthwhile to first understand what the transformed space
φ(x) of a Gaussian kernel looks like. There are two important properties of
the transformed space of Gaussian kernels that are useful for understanding
the intuition behind one-class SVMs:

1. Every point is mapped to a hypersphere of unit radius.

To realize this, consider the kernel function κ(x,x) of a point x onto
itself. Since ||x− x||2 = 0,

κ(x,x) = 〈φ(x), φ(x)〉 = ||φ(x)||2 = 1.

This implies that the length of φ(x) is equal to 1, and hence, φ(x) resides
on a hypersphere of unit radius for all x.

2. Every point is mapped to the same orthant in the transformed space.

For any two points x and y, since κ(x,y) = 〈φ(x), φ(y)〉 ≥ 0, the
angle between φ(x) and φ(y) is always smaller than π/2. Hence, the
mappings of all points lie in the same orthant (high-dimensional analogue
of “quadrant”) in the transformed space.

For illustrative purposes, Figure 9.14 shows a schematic visualization of
the transformed space of Gaussian kernels, using the above two considerations.
The black dots represent the mappings of training instances in the transformed
space, which lie on a quarter arc of a circle with unit radius. In this view, the
objective of one-class SVM is to learn a linear hyperplane that can separate the
black dots from the mappings of anomalous instances, which would also reside
on the same quarter arc. There are many possible hyperplanes that can achieve
this task, two of which are shown in Figure 9.14 as dashed lines. In order to
choose the best hyperplane (shown as a bold line), we make use the principle
of structural risk minimization, discussed in Chapter 6 in the context of SVM.
There are three main requirements that we seek in the optimal hyperplane
defined by parameters (w, ρ):

�

M09 TAN9224 02 GE C09 page 755

� �

�

9.7 One-class Classification 755

1. The hyperplane should have a large “margin” or a small value of ||w||2.
Having a large margin ensures that the model is simple and hence less
susceptible to the phenomenon of overfitting.

2. The hyperplane should be as distant from the origin as possible. This
ensures a tight representation of points on the upper side of the hyper-
plane (corresponding to the normal class). Notice from Figure 9.14 that
the distance of a hyperplane from the origin is essentially ρ

||w|| . Hence,
maximizing ρ translates to maximizing the distance of the hyperplane
from the origin.

3. In the style of “soft-margin” SVMs, if some of the training instances lie
on the opposite side of the hyperplane (corresponding to the anomaly
class), then the distance of such points from the hyperplane should be
minimized.

Note that it is important for an anomaly detection algorithm to be
robust to a small number of outliers in the training set as that is quite
common in real-world problems. An example of an anomalous training
instance is shown in Figure 9.14 as the lower-most black dot on the
quarter arc. If a training instance xi lies on the opposite side of the
hyperplane (corresponding to the anomaly class), its distance from the

Figure 9.14. Illustrating the concept of one-class SVM in the transformed space.

�

M09 TAN9224 02 GE C09 page 756

� �

�

756 Chapter 9 Anomaly Detection

hyperplane, as measured by its slack variable ξi, should be kept small.
If xi lies on the side corresponding to the normal class, then ξi = 0.

The above three requirements provide the foundation of the optimization
objective of one-class SVM, which can be formally described as follows:

min
w, ρ, ξ

1
2
||w||2 − ρ+

1
nν

n∑

i=1

ξi, (9.9)

subject to 〈w, φ(xi)〉 ≥ ρ− ξi, ξi ≥ 0,

where n is the number of training instances and ν ∈ (0, 1] is a hyper-parameter
that maintains a trade-off between reducing the model complexity and improv-
ing the coverage of the decision boundary in keeping the training instances on
the same side.

Notice the similarity of the above equation to the optimization objective
of binary SVM, introduced in Chapter 6. However, a key difference in one-
class SVM is that the constraints are only defined for the normal class but not
the anomaly class. At a first glance, this might seem to be a serious problem,
because the hyperplane is held by constraints from one side (corresponding
to the normal class) but is unconstrained from the other side. However, with
the help of the “origin trick,” one-class SVM is able to overcome this insuf-
ficiency by maximizing the distance of the hyperplane from the origin. From
this perspective, the origin acts as a surrogate second class and the learned
hyperplane attempts to separate the normal class from this second class in a
manner similar to the way a binary SVM separates two classes.

Equation 9.7.2 is an instance of a quadratic programming problem (QPP)
with linear inequality constraints, which is similar to the optimization problem
of binary SVM. Hence, the optimization procedures discussed in Chapter 6 for
learning a binary SVM can be directly applied for solving Equation 9.7.2. The
learned one-class SVM can then be applied on a test instance to identify if it
belongs to the normal class or the anomaly class. Further, if a test instance is
identified as an anomaly, its distance from the hyperplane can be seen as an
estimate of its anomaly score.

The hyper-parameter ν of one-class SVM has a special interpretation. It
represents an upper bound on the fraction of training instances that can be
tolerated as anomalies while learning the hyperplane. This means that nν
represents the maximum number of training instances that can be placed on
the other side of the hyperplane (corresponding to the anomaly class). A low
value of ν assumes that the training set has a smaller number of outliers, while

�

M09 TAN9224 02 GE C09 page 757

� �

�

9.7 One-class Classification 757

2.0

1.5

1.0

0.5

0.0

–0.5

–1.0

–1.5

–2.0
2.01.51.00.50.0–0.5–1.0–1.5–2.0

Figure 9.15. Decision boundary of one-class SVM with ν = 0.1.

a high value of ν ensures that the learning of the hyperplane is robust to a
large number of outliers during training.

Figure 9.15 shows the learned decision boundary for an example training
set of size 200 using ν = 0.1. We can see that the training data consists of
mostly normal instances generated from a Gaussian distribution centered at
(0,0). However, there are also some outliers in the input data that do not
conform the distribution of the normal class. With ν = 0.1, the one-class
SVM is able to place at most 20 training instances on the other side of the
hyperplane (corresponding to the normal class). This results in a decision
boundary that robustly encloses the majority of normal instances. If we instead
use ν = 0.05, we would only have the budget to tolerate at most 10 outliers in
the training set, resulting in the decision boundary shown in Figure 9.16(a).
We can see that this decision boundary assigns a much larger region to the
normal class than is necessary. On the other hand, the decision boundary
learned using ν = 0.2 is shown in Figure 9.16(b), which appears to be much
more compact as it can tolerate up to 40 outliers in the training data. The
choice of ν thus plays a crucial role in the learning of the decision boundary
in one-class SVMs.

�

M09 TAN9224 02 GE C09 page 758

� �

�

758 Chapter 9 Anomaly Detection

2.0

1.5

1.0

0.5

0.0

–0.5

–1.0

–1.5

–2.0
2.01.51.00.50.0–0.5–1.0–1.5–2.0

(a) ν = 0.05.

2.0

1.5

1.0

0.5

0.0

–0.5

–1.0

–1.5

–2.0
2.01.51.00.50.0–0.5–1.0–1.5–2.0

(b) ν = 0.2.

Figure 9.16. Decision boundaries of one-class SVM for varying values of ν.

9.7.3 Strengths and Weaknesses

One-class SVMs leverage the principle of structural risk minimization in the
learning of the decision boundary, which has strong theoretical foundations.
They have the ability to strike a balance between the simplicity of the model
and the effectiveness of the boundary in enclosing the distribution of the nor-
mal class. By using the hyper-parameter ν, they provide a built-in mechanism
to avoid outliers in the training data, which is often common in real-world
problems. However, as illustrated in Figure 9.16, the choice of ν significantly
impacts the properties of the learned decision boundary. Choosing the right
value of ν is difficult, since the hyper-parameter selection techniques discussed
in Chapter 6 are only applicable in the multiclass setting, where it is possible
to define validation error rates. Also, the use of a Gaussian kernel requires
a relatively large training size to effectively learn nonlinear decision bound-
aries in the attribute space. Further, like regular SVM, one-class SVM has a
high computational cost. Hence, it is expensive to train, especially when the
training set is large.

9.8 Information Theoretic Approaches

These approaches assume that the normal class can be represented using com-
pact representations, also known as codes. Instead of explicitly learning such
representations, the focus of information theoretic approaches is to quantify

�

M09 TAN9224 02 GE C09 page 759

� �

�

9.8 Information Theoretic Approaches 759

the amount of information required for encoding them. If the normal class
shows some structure or pattern, we can expect to encode it using a small
number of bits. Anomalies can then be identified as instances that introduce
irregularities in the data, which increase the overall information content of
the data set. This is an admissible definition of an anomaly in an operational
setting, since anomalies are often associated with an element of surprise, as
they do not conform to the patterns or behavior of the normal class.

There are a number of approaches for quantifying the information content
(also referred to as complexity) of a data set. For example, if the data set
contains a categorical variable, we can assess its information content using the
entropy measure, described in Section 2.3.6. For data sets with other types of
attributes, other measures such as the Kolmogorov complexity can be used.
Intuitively, the Kolmogorov complexity measures the complexity of a data
set by the size of the smallest computer program (written in a pre-specified
language) that can reproduce the original data. A more practical approach is
to compress the data using standard compression techniques, and use the size
of the resulting compressed file as a measure of the information content of the
original data.

A basic information theoretic approach for anomaly detection can be de-
scribed as follows. Let us denote the information content of a data set D as
Info(D). Consider computing the anomaly score of a data instance x in D. If
we remove x from D, we can measure the information content of the remaining
data as Info(D \ x). If x is indeed an anomaly, it would show a high value of

Gain(x) = Info(D)− Info(D \ x).

This happens because anomalies are expected to be surprising, and thus, their
elimination should result in a substantial reduction in the information content.
We can thus use Gain(x) as a measure of anomaly score.

Typically, the reduction in information content is measured by eliminating
a subset of instances (that are deemed anomalous) and not just a single in-
stance. This is because most measures of information content are not sensitive
to the elimination of a single instance, e.g., the size of a compressed data
file does not change substantially by removing a single data entry. It is thus
necessary to identify the smallest subset of instances X that show the largest
value of Gain(X) upon elimination. This is a non-trivial problem requiring
exponential time complexity, although approximate solutions with linear time
complexity have also been proposed. (See Bibliographic Notes.)

Example 9.4. Given a survey report of the weight and height of a collection
of participants, we want to identify those participants that have unusual

�

M09 TAN9224 02 GE C09 page 760

� �

�

760 Chapter 9 Anomaly Detection

Table 9.2. Survey data of weight and height of 100 participants.

weight height Frequency
low low 20
low medium 15

medium medium 40
high high 20
high low 5

heights and weights. Both weight and height can be represented as cate-
gorical variables that take three values: {low, medium, high}. Table 9.2 shows
the data for the weight and height information of 100 participants, which has
an entropy of 2.08. We can see that there is a pattern in the height and weight
distribution of normal participants, since most participants that have a high
value of weight also have a high value of height, and vice-versa. However,
there are 5 participants that have a high weight value but low height value,
which is quite unusual. By eliminating these 5 instances, the entropy of the
resulting data set becomes 1.89, resulting in a gain of 2.08− 1.89 = 0.19.

9.8.1 Strengths and Weaknesses

Information theoretic approaches operate in the unsupervised setting, as they
do not require a separate training set of normal-only instances. They do not
make many assumptions about the structure of the normal class and are
generic enough to be applied with data sets of varying types and properties.
However, the performance of information theoretic approaches depends heavily
on the choice of the measure used for capturing the information content of a
data set. The measure should be suitably chosen so that it is sensitive to the
elimination of a small number of instances. This is often a challenge, since
compression techniques are often robust to small deviations, rendering them
useful only when anomalies are large in numbers. Further, information theo-
retic approaches suffer from high computational cost, making them expensive
to apply on large data sets.

9.9 Evaluation of Anomaly Detection

When class labels are available to distinguish between anomalies and normal
data, then the effectiveness of an anomaly detection scheme can be evaluated
by using measures of classification performance discussed in Section 6.11.

�

M09 TAN9224 02 GE C09 page 761

� �

�

9.9 Evaluation of Anomaly Detection 761

Since the anomalous class is usually much smaller than the normal class,
measures such as precision, recall, and false positive rate are more appropriate
than accuracy. In particular, the false positive rate, which is often referred
to the false alarm rate, often determines the practicality of the anomaly
detection scheme since too many false alarms render an anomaly detection
system useless.

If class labels are not available, then evaluation is challenging. For model-
based approaches, the effectiveness of outlier detection can be judged with
respect to the improvement in the goodness of fit of the model once anomalies
are eliminated. Similarly for information theoretic approaches, the information
gain gives a measure of the effectiveness. For reconstruction-based approaches,
the reconstruction error provides a measure that can be used for evaluation.

The evaluation presented in the last paragraph is analogous to the unsu-
pervised evaluation measures for cluster analysis, where measures—see Section
5.5, such as the sum of the squared error (SSE) or the silhouette index, can be
computed even when class labels are not present. Such measures were referred
to as “internal” measures because they use only information present in the
data set. The same is true of the anomaly evaluation measures mentioned in
the last paragraph, i.e., they are internal measures. The key point is that the
anomalies of interest for a particular application may not be those that an
anomaly detection algorithm labels as anomalies, just as the cluster labels
produced by a clustering algorithm may not be consistent with the class
labels provided externally. In practice, this means that selecting and tuning
an anomaly detection approach based on feedback from the users of such a
system.

A more general way to evaluate the results of anomaly detection is to
look at the distribution of the anomaly scores. The techniques that we have
discussed assume that only a relatively small fraction of the data consists
of anomalies. Thus, the majority of anomaly scores should be relatively low,
with a smaller fraction of scores toward the high end. (This assumes that a
higher score indicates an instance is more anomalous.) Thus, by looking at
the distribution of the scores via a histogram or density plot, we can assess
whether the approach we are using generates scores that behave in a reasonable
manner. We illustrate with an example.

Example 9.5 (Distribution of Anomaly Scores.). Figures 9.17 and 9.18 show
the anomaly scores of two clusters of points. Both have 100 points, but the
leftmost cluster is less dense. Figure 9.17, which uses the average distance to
the kth neighbor (average KNN dist), shows higher anomaly scores for the

�

M09 TAN9224 02 GE C09 page 762

� �

�

762 Chapter 9 Anomaly Detection

points in the less dense cluster. In contrast, Figure 9.18, which uses the LOF
for its anomaly scoring, shows similar scores between the two clusters.

The histograms of the average KNN dist and the LOF score are shown
in figures 9.19 and 9.20, respectively. The histogram of the LOF scores shows
most points with similar anomaly scores and a few points with significantly
larger values. The histogram of the average KNN dist shows a bimodal distri-
bution.

The key point is that the distribution of anomaly scores should look similar
to that of the LOF scores in this example. There may be one or more secondary
peaks in the distribution as one moves to the right, but these secondary peaks
should only contain a relatively small fraction of the points, and not a large
fraction of the points as with the average KNN dist approach.

9.10 Bibliographic Notes

Anomaly detection has a long history, particularly in statistics, where it is
known as outlier detection. Relevant books on the topic are those of Aggarwal
[623], Barnett and Lewis [627], Hawkins [648], and Rousseeuw and Leroy [683].
The article by Beckman and Cook [629] provides a general overview of how
statisticians look at the subject of outlier detection and provides a history of
the subject dating back to comments by Bernoulli in 1777. Also see the related
articles [630, 649]. Another general article on outlier detection is the one by
Barnett [626]. Articles on finding outliers in multivariate data include those
by Davies and Gather [639], Gnanadesikan and Kettenring [646], Rocke and
Woodruff [681], Rousseeuw and van Zomerenand [685], and Scott [690]. Rosner
[682] provides a discussion of finding multiple outliers at the same time.

Surveys by Chandola et al. [633] and Hodge and Austin [651] provide
extensive coverage of outlier detection methods, as does a recent book on
the topic by Aggarwal [623]. Markou and Singh [674, 675] give a two-part
review of techniques for novelty detection that covers statistical and neural
network techniques, respectively. Pimento et al. [678] is another review of
novelty detection approaches, including many of the methods discussed in
this chapter.

Statistical approaches for anomaly detection in the univariate case are
well covered by the books in the first paragraph. Shyu et al. [692] use an
approach based on principal components and the Mahalanobis distance to
produce anomaly scores for multivariate data. An example of the kernel density
approach for anomaly detection is given by Schubert et al. [688]. The mixture

�

M09 TAN9224 02 GE C09 page 763

� �

�

9.10 Bibliographic Notes 763

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Average KNN Dist

Figure 9.17. Anomaly score based on aver-
age distance to fifth nearest neighbor.

0.95

1

1.05

1.1

1.15

1.2

LOF

Figure 9.18. Anomaly score based on LOF
using five nearest neighbors.

Average KNN Dist
0 0.2 0.4 0.6 0.8 1

C
ou

nt

0

5

10

15

20

25

Figure 9.19. Histogram of anomaly score
based on average distance to the fifth nearest
neighbor.

LOF
0.9 1 1.1 1.2 1.3

C
ou

nt

0

5

10

15

20

Figure 9.20. Histogram of LOF anomaly
score using five nearest neighbors.

model outlier approach discussed in Section 9.3.3 is from Eskin [641]. An
approach based on the χ2 measure is given by Ye and Chen [695]. Outlier
detection based on geometric ideas, such as the depth of convex hulls, has been
explored in papers by Johnson et al. [654], Liu et al. [673], and Rousseeuw et
al. [684].

The notion of a distance-based outlier and the fact that this definition
can include many statistical definitions of an outlier was described by Knorr
et al. [663–665]. Ramaswamy et al. [680] propose an efficient distance-based
outlier detection procedure that gives each object an outlier score based on the
distance of its k-nearest neighbor. Efficiency is achieved by partitioning the
data using the first phase of BIRCH (Section 8.5.2). Chaudhary et al. [634]

�

M09 TAN9224 02 GE C09 page 764

� �

�

764 Chapter 9 Anomaly Detection

use k-d trees to improve the efficiency of outlier detection, while Bay and
Schwabacher [628] use randomization and pruning to improve performance.

For relative density-based approaches, the best known technique is the
local outlier factor (LOF) (Breunig et al. [631, 632]), which grew out of
DBSCAN. Another locally aware anally detection algorithm is LOCI by Pa-
padimitriou et al. [677]. A more recent view of the local approach is given by
Schubert et al. [689]. Proximities can be viewed as a graph. The connectivity-
based outlier factor (COF) by Tang et al. [694] is a graph-based approach
to local outlier detection. A survey of graph based approaches is provided by
Akoglu et al. [625].

High dimensionality poses significant problems for distance- and density-
based approaches. A discussion of outlier removal in high-dimensional space
can be found in the papers by Aggarwal and Yu [624] and Dunagan and
Vempala [640]. Zimek et al. provide a survey of anomaly detection approaches
for high-dimensional numerical data [696].

Clustering and anomaly detection have a long relationship. In Chapters 5
and 8, we considered techniques, such as BIRCH, CURE, DENCLUE, DB-
SCAN, and SNN density-based clustering, which specifically include tech-
niques for handling anomalies. Statistical approaches that further discuss this
relationship are described in papers by Scott [690] and Hardin and Rocke
[647]. The K-means-- algorithm, which can simultaneously handle clustering
and outliers, was proposed by Chawla and Gionis [637].

Our discussion of reconstruction-based approaches focused on a neural
network-based approach, i.e., the autoencoder. More broadly, a discussion of
approaches in the area of neural networks can be found in papers by Ghosh
and Schwartzbard [645], Sykacek [693], and Hawkins et al. [650], who discuss
replicator networks. The one class SVM approach for anomaly detection was
created by Schölkopf et al. [686] and improved by Li et al. [672]. More gen-
erally, techniques for one class classification are surveyed in [662]. The use
of information measures in anomaly detection is described by Lee and Xiang
[671].

In this chapter, we focused on unsupervised anomaly detection. Supervised
anomaly detection falls into the category of rare class classification. Work on
rare class detection includes the work of Joshi et al. [655–659]. The rare class
problem is also sometimes referred to as the imbalanced data set problem.
Of relevance are an AAAI workshop (Japkowicz [653]), an ICML workshop
(Chawla et al. [635]), and a special issue of SIGKDD Explorations (Chawla et
al. [636]).

Evaluation of unsupervised anomaly detection approaches was discussed
in Section 9.9. See also the discussion in Chapter 8 of the book by Aggarwal

�

M09 TAN9224 02 GE C09 page 765

� �

�

Bibliography 765

[623]. In summary, evaluation approaches are quite limited. For supervised
anomaly detection, an overview of current approaches for evaluation can be
found in Schubert et al. [687].

In this chapter, we have focused on basic anomaly detection schemes. We
have not considered schemes that take into account the spatial or temporal
nature of the data. Shekhar et al. [691] provide a detailed discussion of the
problem of spatial outliers and present a unified approach to spatial outlier
detection. A discussion of the challenges for anomaly detection in climate data
is provided by Kawale et al. [660].

The issue of outliers in time series was first considered in a statistically
rigorous way by Fox [643]. Muirhead [676] provides a discussion of different
types of outliers in time series. Abraham and Chuang [622] propose a Bayesian
approach to outliers in time series, while Chen and Liu [638] consider different
types of outliers in time series and propose a technique to detect them and
obtain good estimates of time series parameters. Work on finding deviant or
surprising patterns in time series databases has been performed by Jagadish
et al. [652] and Keogh et al. [661].

An important application area for anomaly detection is intrusion detection.
Surveys of the applications of data mining to intrusion detection are given by
Lee and Stolfo [669] and Lazarevic et al. [668]. In a different paper, Lazarevic
et al. [667] provide a comparison of anomaly detection routines specific to
network intrusion. Garcia et al. [644] provide a recent survey of anomaly
detection for network intrusion detection. A framework for using data mining
techniques for intrusion detection is provided by Lee et al. [670]. Clustering-
based approaches in the area of intrusion detection include work by Eskin et
al. [642], Lane and Brodley [666], and Portnoy et al. [679].

Bibliography
[622] B. Abraham and A. Chuang. Outlier Detection and Time Series Modeling. Techno-

metrics, 31(2):241–248, May 1989.

[623] C. C. Aggarwal. Outlier Analysis. Springer Science & Business Media, 2013.

[624] C. C. Aggarwal and P. S. Yu. Outlier Detection for High Dimensional Data. In
Proceedings of the 2001 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’01, pages 37–46, New York, NY, USA, 2001. ACM.

[625] L. Akoglu, H. Tong, and D. Koutra. Graph based anomaly detection and description:
a survey. Data Mining and Knowledge Discovery, 29(3):626–688, 2015.

[626] V. Barnett. The Study of Outliers: Purpose and Model. Applied Statistics, 27(3):
242–250, 1978.

[627] V. Barnett and T. Lewis. Outliers in Statistical Data. Wiley Series in Probability and
Statistics. John Wiley & Sons, 3rd edition, April 1994.

�

M09 TAN9224 02 GE C09 page 766

� �

�

766 Chapter 9 Anomaly Detection

[628] S. D. Bay and M. Schwabacher. Mining distance-based outliers in near linear time with
randomization and a simple pruning rule. In Proc. of the 9th Intl. Conf. on Knowledge
Discovery and Data Mining, pages 29–38. ACM Press, 2003.

[629] R. J. Beckman and R. D. Cook. ‘Outlier..........s’. Technometrics, 25(2):119–149, May
1983.

[630] R. J. Beckman and R. D. Cook. [‘Outlier..........s’]: Response. Technometrics, 25(2):
161–163, May 1983.

[631] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. OPTICS-OF: Identifying
Local Outliers. In Proceedings of the Third European Conference on Principles of Data
Mining and Knowledge Discovery, pages 262–270. Springer-Verlag, 1999.

[632] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. LOF: Identifying density-based
local outliers. In Proc. of 2000 ACM-SIGMOD Intl. Conf. on Management of Data,
pages 93–104. ACM Press, 2000.

[633] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM
computing surveys (CSUR), 41(3):15, 2009.

[634] A. Chaudhary, A. S. Szalay, and A. W. Moore. Very fast outlier detection in large
multidimensional data sets. In Proc. ACM SIGMOD Workshop on Research Issues in
Data Mining and Knowledge Discovery (DMKD), 2002.

[635] N. V. Chawla, N. Japkowicz, and A. Kolcz, editors. Workshop on Learning from
Imbalanced Data Sets II, 20th Intl. Conf. on Machine Learning, 2000. AAAI Press.

[636] N. V. Chawla, N. Japkowicz, and A. Kolcz, editors. SIGKDD Explorations Newsletter,
Special issue on learning from imbalanced datasets, volume 6(1), June 2004. ACM Press.

[637] S. Chawla and A. Gionis. k-means-: A Unified Approach to Clustering and Outlier
Detection. In SDM, pages 189–197. SIAM, 2013.

[638] C. Chen and L.-M. Liu. Joint Estimation of Model Parameters and Outlier Effects in
Time Series. Journal of the American Statistical Association, 88(421):284–297, March
1993.

[639] L. Davies and U. Gather. The Identification of Multiple Outliers. Journal of the
American Statistical Association, 88(423):782–792, September 1993.

[640] J. Dunagan and S. Vempala. Optimal outlier removal in high-dimensional spaces.
Journal of Computer and System Sciences, Special Issue on STOC 2001, 68(2):335–
373, March 2004.

[641] E. Eskin. Anomaly Detection over Noisy Data using Learned Probability Distributions.
In Proc. of the 17th Intl. Conf. on Machine Learning, pages 255–262, 2000.

[642] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. J. Stolfo. A geometric framework
for unsupervised anomaly detection. In Applications of Data Mining in Computer
Security, pages 78–100. Kluwer Academics, 2002.

[643] A. J. Fox. Outliers in Time Series. Journal of the Royal Statistical Society. Series B
(Methodological), 34(3):350–363, 1972.

[644] P. Garcia-Teodoro, J. Diaz-Verdejo, G. Maciá-Fernández, and E. Vázquez. Anomaly-
based network intrusion detection: Techniques, systems and challenges. computers &
security, 28(1):18–28, 2009.

[645] A. Ghosh and A. Schwartzbard. A Study in Using Neural Networks for Anomaly and
Misuse Detection. In 8th USENIX Security Symposium, August 1999.

[646] R. Gnanadesikan and J. R. Kettenring. Robust Estimates, Residuals, and Outlier
Detection with Multiresponse Data. Biometrics, 28(1):81–124, March 1972.

[647] J. Hardin and D. M. Rocke. Outlier Detection in the Multiple Cluster Setting using
the Minimum Covariance Determinant Estimator. Computational Statistics and Data
Analysis, 44:625–638, 2004.

�

M09 TAN9224 02 GE C09 page 767

� �

�

Bibliography 767

[648] D. M. Hawkins. Identification of Outliers. Monographs on Applied Probability and
Statistics. Chapman & Hall, May 1980.

[649] D. M. Hawkins. ‘[Outlier..........s]’: Discussion. Technometrics, 25(2):155–156, May
1983.

[650] S. Hawkins, H. He, G. J. Williams, and R. A. Baxter. Outlier Detection Using
Replicator Neural Networks. In DaWaK 2000: Proc. of the 4th Intnl. Conf. on Data
Warehousing and Knowledge Discovery, pages 170–180. Springer-Verlag, 2002.

[651] V. J. Hodge and J. Austin. A Survey of Outlier Detection Methodologies. Artificial
Intelligence Review, 22:85–126, 2004.

[652] H. V. Jagadish, N. Koudas, and S. Muthukrishnan. Mining Deviants in a Time Series
Database. In Proc. of the 25th VLDB Conf., pages 102–113, 1999.

[653] N. Japkowicz, editor. Workshop on Learning from Imbalanced Data Sets I, Seventeenth
National Conference on Artificial Intelligence, Published as Technical Report WS-00-05,
2000. AAAI Press.

[654] T. Johnson, I. Kwok, and R. T. Ng. Fast Computation of 2-Dimensional Depth
Contours. In KDD98, pages 224–228, 1998.

[655] M. V. Joshi. On Evaluating Performance of Classifiers for Rare Classes. In Proc. of
the 2002 IEEE Intl. Conf. on Data Mining, pages 641–644, 2002.

[656] M. V. Joshi, R. C. Agarwal, and V. Kumar. Mining needle in a haystack: Classifying
rare classes via two-phase rule induction. In Proc. of 2001 ACM-SIGMOD Intl. Conf.
on Management of Data, pages 91–102. ACM Press, 2001.

[657] M. V. Joshi, R. C. Agarwal, and V. Kumar. Predicting rare classes: can boosting make
any weak learner strong? In Proc. of 2002 ACM-SIGMOD Intl. Conf. on Management
of Data, pages 297–306. ACM Press, 2002.

[658] M. V. Joshi, R. C. Agarwal, and V. Kumar. Predicting Rare Classes: Comparing
Two-Phase Rule Induction to Cost-Sensitive Boosting. In Proc. of the 6th European
Conf. of Principles and Practice of Knowledge Discovery in Databases, pages 237–249.
Springer-Verlag, 2002.

[659] M. V. Joshi, V. Kumar, and R. C. Agarwal. Evaluating Boosting Algorithms to
Classify Rare Classes: Comparison and Improvements. In Proc. of the 2001 IEEE Intl.
Conf. on Data Mining, pages 257–264, 2001.

[660] J. Kawale, S. Chatterjee, A. Kumar, S. Liess, M. Steinbach, and V. Kumar. Anomaly
construction in climate data: issues and challenges. In NASA Conference on Intelligent
Data Understanding CIDU, 2011.

[661] E. Keogh, S. Lonardi, and B. Chiu. Finding Surprising Patterns in a Time Series
Database in Linear Time and Space. In Proc. of the 8th Intl. Conf. on Knowledge
Discovery and Data Mining, Edmonton, Alberta, Canada, July 2002.

[662] S. S. Khan and M. G. Madden. One-class classification: taxonomy of study and review
of techniques. The Knowledge Engineering Review, 29(03):345–374, 2014.

[663] E. M. Knorr and R. T. Ng. A Unified Notion of Outliers: Properties and Computation.
In Proc. of the 3rd Intl. Conf. on Knowledge Discovery and Data Mining, pages 219–222,
1997.

[664] E. M. Knorr and R. T. Ng. Algorithms for Mining Distance-Based Outliers in Large
Datasets. In Proc. of the 24th VLDB Conf., pages 392–403, August 1998.

[665] E. M. Knorr, R. T. Ng, and V. Tucakov. Distance-based outliers: algorithms and
applications. The VLDB Journal, 8(3-4):237–253, 2000.

[666] T. Lane and C. E. Brodley. An Application of Machine Learning to Anomaly
Detection. In Proc. 20th NIST-NCSC National Information Systems Security Conf.,
pages 366–380, 1997.

�

M09 TAN9224 02 GE C09 page 768

� �

�

768 Chapter 9 Anomaly Detection

[667] A. Lazarevic, L. Ertöz, V. Kumar, A. Ozgur, and J. Srivastava. A Comparative Study
of Anomaly Detection Schemes in Network Intrusion Detection. In Proc. of the 2003
SIAM Intl. Conf. on Data Mining, 2003.

[668] A. Lazarevic, V. Kumar, and J. Srivastava. Intrusion Detection: A Survey. In Managing
Cyber Threats: Issues, Approaches and Challenges, pages 19–80. Kluwer Academic
Publisher, 2005.

[669] W. Lee and S. J. Stolfo. Data Mining Approaches for Intrusion Detection. In 7th
USENIX Security Symposium, pages 26–29, January 1998.

[670] W. Lee, S. J. Stolfo, and K. W. Mok. A Data Mining Framework for Building Intrusion
Detection Models. In IEEE Symposium on Security and Privacy, pages 120–132, 1999.

[671] W. Lee and D. Xiang. Information-theoretic measures for anomaly detection. In Proc.
of the 2001 IEEE Symposium on Security and Privacy, pages 130–143, May 2001.

[672] K.-L. Li, H.-K. Huang, S.-F. Tian, and W. Xu. Improving one-class SVM for anomaly
detection. In Machine Learning and Cybernetics, 2003 International Conference on,
volume 5, pages 3077–3081. IEEE, 2003.

[673] R. Y. Liu, J. M. Parelius, and K. Singh. Multivariate analysis by data depth:
descriptive statistics, graphics and inference. Annals of Statistics, 27(3):783–858, 1999.

[674] M. Markou and S. Singh. Novelty detection: A review–part 1: Statistical approaches.
Signal Processing, 83(12):2481–2497, 2003.

[675] M. Markou and S. Singh. Novelty detection: A review–part 2: Neural network based
approaches. Signal Processing, 83(12):2499–2521, 2003.

[676] C. R. Muirhead. Distinguishing Outlier Types in Time Series. Journal of the Royal
Statistical Society. Series B (Methodological), 48(1):39–47, 1986.

[677] S. Papadimitriou, H. Kitagawa, P. B. Gibbons, and C. Faloutsos. Loci: Fast outlier
detection using the local correlation integral. In Data Engineering, 2003. Proceedings.
19th International Conference on, pages 315–326. IEEE, 2003.

[678] M. A. Pimentel, D. A. Clifton, L. Clifton, and L. Tarassenko. A review of novelty
detection. Signal Processing, 99:215–249, 2014.

[679] L. Portnoy, E. Eskin, and S. J. Stolfo. Intrusion detection with unlabeled data using
clustering. In In ACM Workshop on Data Mining Applied to Security, 2001.

[680] S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for mining outliers from
large data sets. In Proc. of 2000 ACM-SIGMOD Intl. Conf. on Management of Data,
pages 427–438. ACM Press, 2000.

[681] D. M. Rocke and D. L. Woodruff. Identification of Outliers in Multivariate Data.
Journal of the American Statistical Association, 91(435):1047–1061, September 1996.

[682] B. Rosner. On the Detection of Many Outliers. Technometrics, 17(3):221–227, 1975.
[683] P. J. Rousseeuw and A. M. Leroy. Robust Regression and Outlier Detection. Wiley

Series in Probability and Statistics. John Wiley & Sons, September 2003.
[684] P. J. Rousseeuw, I. Ruts, and J. W. Tukey. The Bagplot: A Bivariate Boxplot. The

American Statistician, 53(4):382–387, November 1999.
[685] P. J. Rousseeuw and B. C. van Zomeren. Unmasking Multivariate Outliers and

Leverage Points. Journal of the American Statistical Association, 85(411):633–639,
September 1990.

[686] B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, J. C. Platt, et al.
Support Vector Method for Novelty Detection. In NIPS, volume 12, pages 582–588,
1999.

[687] E. Schubert, R. Wojdanowski, A. Zimek, and H.-P. Kriegel. On evaluation of outlier
rankings and outlier scores. In Proceedings of the 2012 SIAM International Conference
on Data Mining. SIAM, 2012.

�

M09 TAN9224 02 GE C09 page 769

� �

�

9.11 Exercises 769

[688] E. Schubert, A. Zimek, and H.-P. Kriegel. Generalized Outlier Detection with Flexible
Kernel Density Estimates. In SDM, volume 14, pages 542–550. SIAM, 2014.

[689] E. Schubert, A. Zimek, and H.-P. Kriegel. Local outlier detection reconsidered: a
generalized view on locality with applications to spatial, video, and network outlier
detection. Data Mining and Knowledge Discovery, 28(1):190–237, 2014.

[690] D. W. Scott. Partial Mixture Estimation and Outlier Detection in Data and
Regression. In M. Hubert, G. Pison, A. Struyf, and S. V. Aelst, editors, Theory
and Applications of Recent Robust Methods, Statistics for Industry and Technology.
Birkhauser, 2003.

[691] S. Shekhar, C.-T. Lu, and P. Zhang. A Unified Approach to Detecting Spatial Outliers.
GeoInformatica, 7(2):139–166, June 2003.

[692] M.-L. Shyu, S.-C. Chen, K. Sarinnapakorn, and L. Chang. A Novel Anomaly Detection
Scheme Based on Principal Component Classifier. In Proc. of the 2003 IEEE Intl. Conf.
on Data Mining, pages 353–365, 2003.

[693] P. Sykacek. Equivalent error bars for neural network classifiers trained by bayesian
inference. In Proc. of the European Symposium on Artificial Neural Networks, pages
121–126, 1997.

[694] J. Tang, Z. Chen, A. W.-c. Fu, and D. Cheung. A robust outlier detection scheme for
large data sets. In In 6th Pacific-Asia Conf. on Knowledge Discovery and Data Mining.
Citeseer, 2001.

[695] N. Ye and Q. Chen. Chi-square Statistical Profiling for Anomaly Detection. In Proc.
of the 2000 IEEE Workshop on Information Assurance and Security, pages 187–193,
June 2000.

[696] A. Zimek, E. Schubert, and H.-P. Kriegel. A survey on unsupervised outlier detection
in high-dimensional numerical data. Statistical Analysis and Data Mining, 5(5):363–
387, 2012.

9.11 Exercises

1. Compare and contrast the different techniques for anomaly detection that were
presented in Section 9.2. In particular, try to identify circumstances in which
the definitions of anomalies used in the different techniques might be equivalent
or situations in which one might make sense, but another would not. Be sure
to consider different types of data.

2. Consider the following definition of an anomaly: An anomaly is an object that
is unusually influential in the creation of a data model.

(a) Compare this definition to that of the standard model-based definition of
an anomaly.

(b) For what sizes of data sets (small, medium, or large) is this definition
appropriate?

�

M09 TAN9224 02 GE C09 page 770

� �

�

770 Chapter 9 Anomaly Detection

3. In one approach to anomaly detection, objects are represented as points in a
multidimensional space, and the points are grouped into successive shells, where
each shell represents a layer around a grouping of points, such as a convex hull.
An object is an anomaly if it lies in one of the outer shells.

(a) To which of the definitions of an anomaly in Section 9.2 is this definition
most closely related?

(b) Name two problems with this definition of an anomaly.

4. Association analysis can be used to find anomalies as follows. Find strong asso-
ciation patterns, which involve some minimum number of objects. Anomalies
are those objects that do not belong to any such patterns. To make this more
concrete, we note that the hyperclique association pattern discussed in Section
4.8 is particularly suitable for such an approach. Specifically, given a user-
selected h-confidence level, maximal hyperclique patterns of objects are found.
All objects that do not appear in a maximal hyperclique pattern of at least size
three are classified as outliers.

(a) Does this technique fall into any of the categories discussed in this chap-
ter? If so, which one?

(b) Name one potential strength and one potential weakness of this approach.

5. Discuss techniques for combining multiple anomaly detection techniques to
improve the identification of anomalous objects. Consider both supervised and
unsupervised cases.

6. Describe the potential time complexity of anomaly detection approaches based
on the following approaches: model-based using clustering, proximity-based,
and density. No knowledge of specific techniques is required. Rather, focus
on the basic computational requirements of each approach, such as the time
required to compute the density of each object.

7. The Grubbs’ test, which is described by Algorithm 9.2, is a more statistically
sophisticated procedure for detecting outliers than that of Definition 9.2. It is
iterative and also takes into account the fact that the z-score does not have a
normal distribution. This algorithm computes the z-score of each value based
on the sample mean and standard deviation of the current set of values. The
value with the largest magnitude z-score is discarded if its z-score is larger
than gc, the critical value of the test for an outlier at significance level α. This
process is repeated until no objects are eliminated. Note that the sample mean,
standard deviation, and gc are updated at each iteration.

(a) What is the limit of the value m−1√
m

√
t2c

m−2+t2c
used for Grubbs’ test as m

approaches infinity? Use a significance level of 0.05.

(b) Describe, in words, the meaning of the previous result.

�

M09 TAN9224 02 GE C09 page 771

� �

�

9.11 Exercises 771

Algorithm 9.2 Grubbs’ approach for outlier elimination.
1: Input the values and α
{m is the number of values, α is a parameter, and tc is a value chosen so that
α = P (x ≥ tc) for a t distribution with m− 2 degrees of freedom.}

2: repeat
3: Compute the sample mean (x) and standard deviation (sx).
4: Compute a value gc so that P (|z| ≥ gc) = α.

(In terms of tc and m, gc = m−1√
m

√
t2c

m−2+t2c
.)

5: Compute the z-score of each value, i.e., z = (x− x)/sx.
6: Let g = max |z|, i.e., find the z-score of largest magnitude and call it g.
7: if g > gc then
8: Eliminate the value corresponding to g.
9: m← m− 1

10: end if
11: until No objects are eliminated.

8. Many statistical tests for outliers were developed in an environment in which
a few hundred observations was a large data set. We explore the limitations of
such approaches.

(a) For a set of 1,000,000 values, how likely are we to have outliers according
to the test that says a value is an outlier if it is more than three standard
deviations from the average? (Assume a normal distribution.)

(b) Does the approach that states an outlier is an object of unusually low
probability need to be adjusted when dealing with large data sets? If so,
how?

9. The probability density of a point x with respect to a multivariate normal
distribution having a mean µ and covariance matrix Σ is given by the equation

f(x) =
1

(
√

2π)m|Σ|1/2
e−

(x−µ)Σ−1(x−µ)
2 . (9.10)

Using the sample mean x and covariance matrix S as estimates of the mean µ
and covariance matrix Σ, respectively, show that the log(f(x)) is equal to the
Mahalanobis distance between a data point x and the sample mean x plus a
constant that does not depend on x.

10. Compare the following two measures of the extent to which an object belongs
to a cluster: (1) distance of an object from the centroid of its closest cluster
and (2) the silhouette coefficient described in Section 5.5.2.

�

M09 TAN9224 02 GE C09 page 772

� �

�

772 Chapter 9 Anomaly Detection

11. Consider the (relative distance) K-means scheme for outlier detection described
in Section 9.5 and the accompanying figure, Figure 9.10.

(a) The points at the bottom of the compact cluster shown in Figure 9.10
have a somewhat higher outlier score than those points at the top of the
compact cluster. Why?

(b) Suppose that we choose the number of clusters to be much larger, e.g.,
10. Would the proposed technique still be effective in finding the most
extreme outlier at the top of the figure? Why or why not?

(c) The use of relative distance adjusts for differences in density. Give an
example of where such an approach might lead to the wrong conclusion.

12. If the probability that a normal object is classified as an anomaly is 0.01 and
the probability that an anomalous object is classified as anomalous is 0.98,
then what is the false alarm rate and detection rate if 97% of the objects are
normal? (Use the definitions given below.)

detection rate =
number of anomalies detected

total number of anomalies
(9.11)

false alarm rate =
number of false anomalies

number of objects classified as anomalies
(9.12)

13. If the probability that a normal object is classified as an anomaly is 0.01 and
the probability that an anomalous object is classified as anomalous is 0.99,
then what is the false alarm rate and detection rate if 99% of the objects are
normal? (Use the definitions given below.)

detection rate =
number of anomalies detected

total number of anomalies
(9.13)

false alarm rate =
number of false anomalies

number of objects classified as anomalies
(9.14)

14. When a comprehensive training set is available, a supervised anomaly detection
technique can typically outperform an unsupervised anomaly technique when
performance is evaluated using measures such as the detection and false alarm
rate. However, in some cases, such as fraud detection, new types of anomalies
are always developing. Performance can be evaluated according to the detection
and false alarm rates, because it is usually possible to determine upon investiga-
tion whether an object (transaction) is anomalous. Discuss the relative merits
of supervised and unsupervised anomaly detection under such conditions.

15. Consider a group of documents that has been selected from a much larger
set of diverse documents so that the selected documents are as dissimilar
from one another as possible. If we consider documents that are not highly

�

M09 TAN9224 02 GE C09 page 773

� �

�

9.11 Exercises 773

related (connected, similar) to one another as being anomalous, then all of the
documents that we have selected might be classified as anomalies. Is it possible
for a data set to consist only of anomalous objects or is this an abuse of the
terminology?

16. Consider a set of points that are uniformly distributed on the interval
[–100,100]. Is the statistical notion of an outlier as an infrequently observed
value meaningful for this data?

17. Consider a set of points, where most points are in regions of low density, but a
few points are in regions of high density. If we define an anomaly as a point in
a region of low density, then most points will be classified as anomalies. Is this
an appropriate use of the density-based definition of an anomaly or should the
definition be modified in some way?

18. Consider a set of points that are uniformly distributed on the interval [0,1]. Is
the statistical notion of an outlier as an infrequently observed value meaningful
for this data?

19. An analyst applies an anomaly detection algorithm to a data set and finds a
set of anomalies. Being curious, the analyst then applies the anomaly detection
algorithm to the set of anomalies.

(a) Discuss the behavior of each of the anomaly detection techniques de-
scribed in this chapter. (If possible, try this for real data sets and algo-
rithms.)

(b) What do you think the behavior of an anomaly detection algorithm should
be when applied to a set of anomalous objects?

�

M09 TAN9224 02 GE C09 page 774

� �

�

This page is intentionally left blank

�

M10 TAN9224 02 GE C10 page 775

� �

�

10

Avoiding False
Discoveries

The previous chapters have described the algorithms, concepts, and method-
ologies of four key areas of data mining: classification, association analysis,
cluster analysis, and anomaly detection. A thorough understanding of this
material provides the foundation required to start analyzing data in real-
world situations. However, without careful consideration of some important
issues in evaluating the performance of a data mining procedure, the results
produced may not be meaningful or reproducible, i.e., the results may be
false discoveries. The widespread nature of this problem has been reported
by a number of high-profile publications in scientific fields, and is likewise,
common in commerce and government. Hence, it is important to understand
some of the common reasons for unreliable data mining results and how to
avoid these false discoveries.

When a data mining algorithm is applied to a data set, it will dutifully
produce clusters, patterns, predictive models, or a list of anomalies. However,
any available data set is only a finite sample from the overall population
(distribution) of all instances, and there is often significant variability among
instances within a population. Thus, the patterns and models discovered from
a specific data set may not always capture the true nature of the population,
i.e., allow accurate estimation or modeling of the properties of interest. Some-
times, the same algorithm will produce entirely different or inconsistent results
when applied to another sample of data, thus indicating that the discovered
results are spurious, e.g., not reproducible.

To produce valid (reliable and reproducible) results, it is important to
ensure that a discovered pattern or relationship in the data is not an outcome
of random chance (arising due to natural variability in the data samples),

�

M10 TAN9224 02 GE C10 page 776

� �

�

776 Chapter 10 Avoiding False Discoveries

but rather, represents a significant effect. This often involves using statistical
procedures, as will be described later. While ensuring the significance of a
single result is demanding, the problem becomes more complex when we
have multiple results that need to be evaluated simultaneously, such as the
large numbers of itemsets typically discovered by a frequent pattern mining
algorithm. In this case, many or even most of the results will represent false
discoveries. This is also discussed in detail in this chapter.

The purpose of this chapter is to cover a few selected topics, knowledge of
which is important for avoiding common data analysis problems and producing
valid data mining results. Some of these topics have been discussed in specific
contexts earlier in the book, particularly in the evaluation sections of the
preceding chapters. We will build upon these discussions to provide an in-
depth view of some standard procedures for avoiding false discoveries that
are applicable across most areas of data mining. Many of these approaches
were developed by statisticians for designed experiments, where the goal was
to control external factors as much as possible. Currently, however, these
approaches are often (perhaps even mostly) applied to observational data.
A key goal of this chapter is to show how these techniques can be applied
to typical data mining tasks to help ensure that the resulting models and
patterns are valid.

10.1 Preliminaries: Statistical Testing

Before we discuss approaches for producing valid results in data mining prob-
lems, we first introduce the basic paradigm of statistical testing that is widely
used for making inferences about the validity of results. A statistical test
is a generic procedure for measuring the evidence for accepting or rejecting
a hypothesis that the outcome (result) of an experiment or a data analysis
procedure provides. For example, given the outcome of an experiment to study
a new drug for a disease, we can test the evidence for the hypothesis that there
is a measurable effect of the drug in treating the disease. As another example,
given the outcome of a classifier on a test data set, we can test the evidence
for the hypothesis that the classifier performs better than random guessing.
In the following, we describe different frameworks for statistical testing.

10.1.1 Significance Testing

Suppose you want to hire a stockbroker who can make profitable decisions
on your investments with a high success rate. You know of a stockbroker,
Alice, who made profitable decisions for 7 of her last 10 stock picks. How

�

M10 TAN9224 02 GE C10 page 777

� �

�

10.1 Preliminaries: Statistical Testing 777

confident would you be in offering her the job because of your assumption
that a performance as good as Alice’s is not likely due to random chance?

Questions of the above type can be answered using the basic tools of signif-
icance testing. Note that in any general problem of statistical testing, we are
looking for some evidence in the outcome to validate a desired phenomenon,
pattern, or relationship. For the problem of hiring a successful stockbroker,
the desired phenomenon is that Alice indeed has knowledge of how the stock
prices vary and uses this knowledge to make 7 correct decisions out of 10.
However, there is also a possibility that Alice’s performance is no better than
what might be obtained by randomly guessing on all 10 decisions. The primary
goal of significance testing is to check whether there are sufficient evidence in
the outcome to reject the default hypothesis (also called null hypothesis) that
Alice’s performance for making profitable stock decisions is no better than
random.

Null Hypothesis

The null hypothesis is a general statement that the desired pattern or
phenomenon of interest is not true and the observed outcome can be explained
by the natural variability, e.g., by random chance. The null hypothesis is
assumed to be true until there is sufficient evidence to indicate otherwise. It
is commonly denoted as H0. Informally, if the result obtained from the data
is unlikely under the null hypothesis, this provides evidence that our result is
not just a result of natural variability in the data.

For example, the null hypothesis in the stockbroker problem could be that
Alice is no better at making decisions than a person who performs random
guessing. Rejecting this null hypothesis would imply that there is sufficient
grounds to believe Alice’s performance is better than random guessing. More
generally, we are interested in the rejection of the null hypothesis since that
typically implies an outcome that is not due to natural variability.

Since declaring the null hypothesis is the first step in the framework of
significance testing, care must be taken to state it in a precise and complete
manner so that the subsequent steps produce meaningful results. This is
important because misstating or loosely stating the null hypothesis can yield
misleading conclusions. A general approach is to begin with a statement of the
desired result, e.g., a pattern captures an actual relationship between variables,
and take the null hypothesis to be the negation (opposite) of that statement,
e.g., the pattern is due to natural variability in the data.

�

M10 TAN9224 02 GE C10 page 778

� �

�

778 Chapter 10 Avoiding False Discoveries

Test Statistic

To perform significance testing, we first need a way to quantify the evidence in
the observed outcome with respect to the null hypothesis. This is achieved by
using a test statistic, R, which typically summarizes every possible outcome
as a numerical value. More specifically, the test statistic enables the computa-
tion of the probability of an outcome under the null hypothesis. For example,
in the stockbroker problem, R could be the number of successful (profitable)
decisions made in the last 10 decisions. In this way, the test statistic reduces
an outcome consisting of 10 different decisions into a single numerical value,
i.e., the count of successful decisions.

The test statistic is typically a count or real-valued quantity and measures
how “extreme” an observed result is under the null hypothesis. Depending on
the choice of the null hypothesis and the way the test statistic is designed,
there can be different ways of defining what is “extreme” relative to the null
hypothesis. For example, an observed test statistic, Robs, can be considered
extreme if it is greater than or equal to a certain value, RH , smaller than or
equal to a certain value, RL, or outside a specified interval, [RL, RH]. The first
two cases result in “one-sided tests” (right-tailed and left-tailed, respectively),
while the last case results in a “two-sided test.”

Null Distribution

Having decided an appropriate test statistic for a problem, the next step in
significance testing is to determine the distribution of the test statistic under
the null hypothesis. This is known as the null distribution, which can be
formally described as follows.

Definition 10.1 (null distribution). Given a test statistic, R, the distri-
bution of R under the null hypothesis, H0, is called the null distribution,
P (R | H0).

The null distribution can be determined in a number of ways. For example,
we can use statistical assumptions about the behavior of R under H0 to
generate exact statistical models of the null distribution. We can also conduct
experiments to produce samples from H0 and then analyze these samples to
approximate the null distribution. In general, the approach for determining
the null distribution depends on the specific characteristics of the problem. We
will discuss approaches for determining the null distribution in the context of
data mining problems in Section 10.2. We illustrate with an example of the
null distribution for the stockbroker problem.

�

M10 TAN9224 02 GE C10 page 779

� �

�

10.1 Preliminaries: Statistical Testing 779

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

R

P
ro

b
ab

ili
ty

 D
en

si
ty

Figure 10.1. Null distribution for the stockbroker problem with N = 100.

Example 10.1 (Null Distribution for Stockbroker Problem). Consider
the stockbroker problem where the test statistic, R, is the number of successes
of a stockbroker in the last N = 100 decisions. Under the null hypothesis that
the stockbroker performs no better than random guessing, the probability of
making a successful decision would be p = 0.5. Assuming that the decisions
on different days are independent of each other, the probability of obtaining
an observed value of R, the total number of successes in N decisions, under
the null hypothesis can be modeled using the binomial distribution, which is
described by the following equation:

P (R|H0) =
(
N

R

)
× pR × (1− p)N−R.

Figure 10.1 shows the plot of this null distribution as a function of R for
N = 100.

The null distribution can be used to determine how unlikely is it to obtain
the observed value of test statistic, Robs, under the null hypothesis. In partic-
ular, the null hypothesis can be used to compute the probability of obtaining
Robs or “something more extreme” under the null hypothesis. This probability
is called the p-value, which can be formally defined as follows:

Definition 10.2 (p-value). The p-value of an observed test statistic, Robs,
is the probability of obtaining Robs or something more extreme from the null

�

M10 TAN9224 02 GE C10 page 780

� �

�

780 Chapter 10 Avoiding False Discoveries

Figure 10.2. Illustration of p-values as shaded regions for left-tailed, right-tailed, and two-sided tests.

distribution. Depending on how “more extreme” is defined for the test statistic,
R, under the null hypothesis, H0, the p-value of Robs can be written as follows:

p-value(Robs) =

⎧
⎪⎨

⎪⎩

P (R ≥ Robs | H0), for right-tailed tests.
P (R ≤ Robs | H0), for left-tailed tests.
P (R ≥ |Robs| or R ≤ −|Robs| | H0), for two-sided tests.

The reason that we account for “something more extreme” in the calcu-
lation of p-values is that the probability of any particular result is often 0 or
close to 0. P-values thus capture the aggregate tail probabilities of the null
distribution for test statistic values that are at least as extreme as Robs. For the
stockbroker problem, since larger values of the test statistic (count of successful
decisions) would be considered more extreme under the null hypothesis, we
would compute p-values using the right tail of the null distribution.

Example 10.2 (P-values are Tail Probabilities). To illustrate the fact
that p-values can be computed using the left tail, right tail, or both, consider
an example where the null distribution has a Gaussian distribution with mean
0 and standard deviation 1, i.e., N (0, 1). Figure 10.2 shows the test statistic
values corresponding to a p-value of 0.05 for left-tailed, right tailed, or two-
sided tests. (See shaded regions.) We can see that the p-values correspond to
the area in the tails of the null distribution. While a two-sided test has 0.025
probability in each of the tails, a one-sided test has all of its 0.05 probability
in a single tail.

Assessing Statistical Significance

P-values provide the necessary tool to assess the strength of the evidence in
a result against the null hypothesis. The key idea is that if the p-value is low,
then a result at least as extreme as the observed result is less likely to be
obtained from H0. For example, if the p-value of a result is 0.01, then there

�

M10 TAN9224 02 GE C10 page 781

� �

�

10.1 Preliminaries: Statistical Testing 781

is only a 1% chance of observing a result from the null hypothesis that is at
least as extreme as the observed result.

A low p-value indicates smaller probabilities in the tails of the null dis-
tribution (for both one-sided and two-sided tests). This can provide sufficient
evidence to believe that the observed result is a significant departure from
the null hypothesis, thus convincing us to reject H0. Formally, we often a use
a threshold on p-values (called the level of significance) and describe an
observed p-value that is lower than this threshold as statistically significant.

Definition 10.3 (Statistically Significant Result). Given a user-defined
level of significance, α, a result is called statistically significant if it has a
p-value lower than α.

Some common choices for the level of significance are 0.05 (5%) and 0.01
(1%). The p-value of a statistically significant result denotes the probability
of falsely rejecting H0 when H0 is true. Hence, a low p-value provides higher
confidence that the observed result is not likely to be consistent with H0,
thus making it worthy of further investigation. This often means gathering
additional data or conducting non-statistical verification, e.g., by performing
experimental validation. (See Bibliographic Notes.) However, even when the
p-value is low, there is always some chance (unless the p-value is 0) that H0

is true and we have merely encountered a rare event.
It is important to keep in mind that a p-value is conditional probability,

i.e., is computed under the assumption that H0 is true. Consequently, a p-
value is not the probability of H0, which may be likely or unlikely even if
the test result is not significant. Thus, if a result is not significant, then it
is not appropriate to say that we accept the null hypothesis. Instead, it is
better to say that we fail to reject the null hypothesis. However, when the
null hypothesis is known to be true most of the time, e.g., when testing for an
effect or result that is rarely seen, it is common to say that we accept the null
hypothesis. (See Exercise 7.)

10.1.2 Hypothesis Testing

While significance testing was developed by the famous statistician Fisher
as an actionable framework for statistical inference, its intended use is only
limited to exploratory analyses of the null hypothesis in the preliminary stages
of a study, e.g., to refine the null hypothesis or modify future experiments.
One of the major limitations of significance testing is that it does not explicitly
specify an alternative hypothesis, H1, which is typically that the statement
we would like to establish as true, i.e., that a result is not spurious. Hence,

�

M10 TAN9224 02 GE C10 page 782

� �

�

782 Chapter 10 Avoiding False Discoveries

significance testing can be used to reject the null hypothesis but is unsuitable
for determining whether an observed result actually supports H1.

The framework of hypothesis testing, developed by the statisticians Ney-
man and Pearson, provides a more objective and rigorous approach for statisti-
cal testing, by explicitly defining both null and alternative hypotheses. Hence,
apart from computing a p-value, i.e., the probability of falsely rejecting the
null hypothesis when H0 is true, we can also compute the probability of falsely
saying a result is not significant when the alternative hypothesis is true. This
allows hypothesis testing to provide a more detailed assessment of the evidence
provided by an observed result.

In hypothesis testing, we first define both the null and alternative hy-
potheses (H0 and H1, respectively) and choose a test statistic, R, that helps
to differentiate the behavior of results under the null hypothesis from the
behavior of results under the alternative hypothesis. As with significance
testing, care must be taken to ensure that the null and alternative hypotheses
are precisely and comprehensively defined. We then model the distribution
of the test statistic under the null hypothesis, P (R | H0), as well as under
the alternative hypothesis, P (R | H1). Similar to the null distribution, there
can be many ways of generating the distribution of R under the alternative
hypothesis, e.g., by making statistical assumptions about the nature of H1 or
by conducting experiments and analyzing samples from H1. In the following
example, we concretely illustrate a simple approach for modeling P (R | H1)
in the stockbroker problem.

Example 10.3 (Alternative Hypothesis for Stockbroker Problem).
In Example 10.1, we saw that under the null hypothesis of random guessing,
the probability of obtaining a success on any given day can be assumed to be
p = 0.5. There could be many alternative hypotheses for this problem, all of
which would assume that the probability of success is greater than 0.5, i.e.,
p > 0.5, thus representing a situation where the stockbroker performs better
than random guessing. To be specific, assume p = 0.7. The distribution of the
test statistic (number of successes in N = 100 decisions) under the alternative
hypothesis would then be given by the following binomial distribution.

P (R|H1) =
(
N

R

)
× pR × (1− p)N−R.

Figure 10.3 shows the plot of this distribution (dotted line) with respect to
the null distribution (solid line). We can see that the alternative distribution
is shifted toward the right. Notice that if a stockbroker has more than 60
successes, then this outcome will be more likely under H1 than H0.

�

M10 TAN9224 02 GE C10 page 783

� �

�

10.1 Preliminaries: Statistical Testing 783

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

R

P
ro

b
ab

ili
ty

 D
en

si
ty

Null Distribution

Alternative Distribution

Figure 10.3. Null and alternative distributions for the stockbroker problem with N = 100.

Critical Region

Given the distributions of the test statistic under the null and alternative
hypotheses, the framework of hypothesis testing decides if we should “reject”
the null hypothesis or “not reject” the null hypothesis given the evidence
provided by the test statistic computed from an observed result. This binary
decision is typically made by specifying a range of possible values of the test
statistic that are too extreme under H0. This set of values is called the critical
region. If the observed test statistic, Robs, falls in this region, then the null
hypothesis is rejected. Otherwise, the null hypothesis is not rejected.

The critical region corresponds to the collection of extreme results whose
probability of occurrence under the null hypothesis is less than a threshold.
The critical region can either be in the left tail, right tail, or both left and right
tails of the null distribution, depending on the type of statistical testing being
used. The probability of the critical region under H0 is called the significance
level, α. In other words, it is the probability of falsely rejecting the null
hypothesis for results belonging to the critical region when H0 is true. In
most applications, a low value of α (e.g., 0.05 or 0.01) is specified by the user
to define the critical region.

Rejecting the null hypothesis if the test statistic falls in the critical region
is equivalent to evaluating the p-value of the test statistic and rejecting the
null hypothesis if the p-value falls below a pre-specified threshold, α. Note

�

M10 TAN9224 02 GE C10 page 784

� �

�

784 Chapter 10 Avoiding False Discoveries

that while every result has a different p-value, the significance level, α, in
hypothesis testing is a fixed constant whose value is decided before any tests
are performed.

Type I and Type II Errors

Up to this point, hypothesis testing may seem similar to significance testing,
at least superficially. However, by considering both the null and alternative
hypotheses, hypothesis testing allows us to look at two different types of errors,
type I error and type II errors, as defined below.

Definition 10.4 (Type I Error). A type I error is the error of incorrectly
rejecting the null hypothesis for a result. The probability of incurring a type
I error is called the type I error rate, α. It is equal to the probability of
the critical region under H0, i.e., α is the same as the significance level.
Formally,

α = P (R ∈ Critical Region | H0).

Definition 10.5 (Type II Error). A type II Error is the error of falsely
calling a result to be not significant when the alternative hypothesis is true.
The probability of incurring a type II error is called the type II error rate, β,
which is equal to the probability of observing test statistic values outside the
critical region under H1, i.e.,

β = P (R �∈ Critical Region | H1).

Note that deciding the critical region (specifying α) automatically determines
the value of β for a particular test, given the distribution of the test statistic
under the alternative hypothesis.

A closely related concept to the type II error rate is the power of the
test, which is the probability of the critical region under H1, i.e., 1−β. Power
is an important characteristic of a test because it indicates how effective a
test will be at correctly rejecting the null hypothesis. Low power means that
many results that actually show the desired pattern or phenomenon will not
be considered significant and thus will be missed. As a consequence, if the
power of a test is low, then it may not be appropriate to ignore results that
fall outside the critical region. Increasing the size of the critical regions to
increase power and decrease type II errors will increase type I errors, and
vice-versa. Hence, it is the balance between ensuring a low value of α and a
high value of power that is at the core of hypothesis testing.

When the distribution of the test statistic under the null and alternative
hypotheses depends on the number of samples used to estimate the test

�

M10 TAN9224 02 GE C10 page 785

� �

�

10.1 Preliminaries: Statistical Testing 785

statistic, then increasing the number of samples helps obtain less variable
estimates of the true null and alternative distributions. This reduces the
chances of type I and type II errors. For example, evaluating a stockbroker on
100 decisions is more likely to give us an accurate estimate of their true success
rate than evaluating the stockbroker on 10 decisions. The minimum number
of samples required for ensuring a low value of α while having a high value
of power is often determined by a statistical procedure called power analysis.
(See Bibliographic Notes for more details.)

Example 10.4 (Classifying Medical Results). Suppose the value of a
blood test is used as the test statistic, R, to identify whether a patient has a
certain disease or not. It is known that the value of this test statistic has a
Gaussian distribution with mean 40 and standard deviation 5 for patients that
do not have the disease. For patients having the disease, the test statistic has
a mean of 60 and a standard deviation of 5. These distributions are shown in
Figure 10.4.H0 is the null hypothesis that the patient doesn’t have the disease,
i.e., comes from the leftmost distribution shown in subfigures of Figure 10.4.
H1 is the alternative hypothesis that the patient has the disease, i.e., comes
from the rightmost distribution in the subfigures of Figure 10.4.

Suppose the critical region is chosen to be 50 and above, since a level of
50 is exactly halfway between means of the two distributions. The significance
level, α, corresponding to this choice of critical region, shown as the shaded
region in the right subfigure of Figure 10.4, can then be calculated as follows:

α = P (R ≥ 50 | H0)
= P (R ≥ 50 | R), R ∼ N (μ = 40, σ = 5))

=
∫ ∞

50

1√
2πσ2

e−
(R−μ)2

2σ2 dR

=
∫ ∞

50

1√
50π

e−
(R−40)2

50 dR

= 0.023

The type II error rate, β, for this choice of critical region can also be found
to be equal to 0.023. (This is only because null and alternative hypotheses
have the same distribution, except for their means, and the observed value is
halfway between their means.) This is shown as the shaded region in the left
subfigure of Figure 10.5. The power is then equal to 1− 0.023 = 0.977, which
is shown in the right subfigure of Figure 10.5.

�

M10 TAN9224 02 GE C10 page 786

� �

�

786 Chapter 10 Avoiding False Discoveries

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

P
ro

b
ab

ili
ty

 D
en

si
ty

50 60 70 80403020

R

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

P
ro

b
ab

ili
ty

 D
en

si
ty

50 60 70 80403020

R

Figure 10.4. Distribution of test statistic for the alternative hypothesis (rightmost density curve) and
null hypothesis (leftmost density curve). Shaded region in right subfigure is α.

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

P
ro

b
ab

ili
ty

 D
en

si
ty

50 60 70 80403020

R

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

P
ro

b
ab

ili
ty

 D
en

si
ty

50 60 70 80403020

R

Figure 10.5. Shaded region in left subfigure is β and shaded region in right subfigure is power.

If we use α of 0.05 instead of 0.023, the critical region would be slightly
expanded to 48.22 and above. This would increase the power from 0.977 to
0.991, though at the cost of a higher value of α. On the other hand, decreasing
α to 0.01 would decrease the power to 0.952.

Effect Size

Effect size brings in domain considerations by considering whether the ob-
served result is significant from a domain point of view. For example, suppose
that a new drug is found to lower blood pressure, but only by 1%. This
difference will be statistically significant with a large enough test group, but
the medical significance of an effect size of 1% is probably not worth the cost

�

M10 TAN9224 02 GE C10 page 787

� �

�

10.1 Preliminaries: Statistical Testing 787

of the medicine and the potential for side effects. Thus, a consideration of
effect size is critical since it can often happen that a result is statistically
significant, but of no practical importance in the domain. This is particularly
true for large data sets.

Definition 10.6 (effect size). The effect size measures the magnitude of the
effect or characteristic being evaluated, and is typically the magnitude of the
test statistic.

In most problems there is a desired effect size that helps determines the
null and alternative hypotheses. For the stockbroker problem, as illustrated in
Example 10.3, the desired effect size is the desired probability of success, 0.7.
For the medical testing problem, which was just discussed in Example 10.4,
the effect size is the value of the threshold used to define the cutoff between
normal patients and those with the disease. When comparing the means of two
sets of observations (A and B), the effect size is the difference in the means,
i.e., μA − uB or the absolute difference, |μA − uB|.

The desired effect size impacts the choice of the critical region, and thus
the significance level and power of the test. Exercises 9 and 10 further explore
some of these concepts.

10.1.3 Multiple Hypothesis Testing

The statistical testing frameworks discussed so far are designed to measure
the evidence in a single result, i.e., whether the result belongs to the null
hypothesis or the alternative hypothesis. However, many situations produce
multiple results that need to be evaluated. For example, frequent pattern
mining typically produces many frequent itemsets from a given transaction
data set, and we need to test every frequent itemset to determine whether
there is a statistically significant association among its constituent items.
The multiple hypothesis testing problem (also called the multiple testing
problem or multiple comparison problem) addresses the statistical testing
problem where multiple results are involved and a statistical test is performed
on every result.

The simplest approach is to compute the p-value under the null hypothesis
for each result independently of other results. If the p-value is significant for
any result, then the null hypothesis is rejected for that result. However, this
strategy will typically produce many erroneous results when the number of
results to be tested is large. For example, even if something only has a 5%
chance of happening for a single result, then it will happen, on average, 5 times
out of a 100. Thus, our approach for hypothesis testing needs to be modified.

�

M10 TAN9224 02 GE C10 page 788

� �

�

788 Chapter 10 Avoiding False Discoveries

Table 10.1. Confusion table in the context of multiple hypothesis testing.

Declared significant
(+ prediction)

Declared not significant
(- prediction)

Total

H1 True
(actual +)

True Positive (TP) False Negative (FN)
type II error

Positives
(m1)

H0 True
(actual -)

False Positive (FP)
type I error

True Negative (TN) Negatives
(m0)

Positive Predictions
(Ppred)

Negative Predictions
(Npred)

m

When working with multiple tests, we are interested in reporting the total
number of errors committed on a collection of results (also referred to as a
family of results). For example, if we have a collection of m results, we can
count the total number of times a type I error is committed or a type II error is
committed out of the m tests. The aggregate information of the performance
across all tests can be summarized by the confusion matrix shown in Table
10.1. In this table, a result that actually belongs to the null hypothesis is called
a ‘negative’ while a result that actually belongs to the alternative hypothesis
is called a ‘positive.’ This table is essentially the same as Table 6.6, which was
introduced in the context of evaluating classification performance in Section
6.11.2.

In most practical situations where we are performing multiple hypothesis
testing, e.g., while using statistical tests to evaluate whether a collection of
patterns, clusters, etc. are spurious, the required entries in Table 10.1 are
seldom available. (For classification, the table is available when reliable labels
are available, in which case, many of the quantities of interest can be directly
estimated. See Section 10.3.2.) When entries are not available, we need to
estimate them, or more typically, quantities derived from these entries. The
following paragraphs of this section describe various approaches for doing this.

Family-wise Error Rate (FWER)

A useful error metric when dealing with a family of results is the family-wise
error rate (FWER), which is the probability of observing even a single false
positive (type I error) in the entire set of m results. In particular,

FWER = P (FP > 0).

�

M10 TAN9224 02 GE C10 page 789

� �

�

10.1 Preliminaries: Statistical Testing 789

If the FWER is lower than a certain threshold, say α, then the probability of
observing any type I error among all the results is less than α.

The FWER thus measures the probability of observing a type I error in
any or all of the m tests. Controlling the FWER, i.e., ensuring the FWER
to be low, is useful in applications where a set of results is discarded if even
a single test is erroneous (produces a type I error). For example, consider
the problem of selecting a stockbroker described in Example 10.3. In this
case, the goal is to find, from a pool of applicants, a stockbroker that makes
correct decisions at least 70% of the time. Even a single type I error can lead
to an erroneous hiring decision. In such cases, estimating the FWER gives
us a better picture of the performance of the entire set of results than the
näıve approach of computing p-values separately for each result. The following
example illustrates this concept in the context of the stockbroker problem.

Example 10.5 (Testing Multiple Stockbrokers). Consider the problem
of selecting successful stockbrokers from a pool of m = 50 candidates. For
every stockbroker, we perform a statistical test to check whether their perfor-
mance (number of successful decisions in the last N decisions) is better than
random guessing. If we use a significance level of α = 0.05 for every such test,
the probability of making a type I error on any individual candidate is equal to
0.05. However, if we assume that the results are independent, the probability
of observing even a single type I error in any of the 50 tests, i.e., the FWER,
is given by

FWER = 1− (1− α)m (10.1)
= 1− (1− 0.05)50 = 0.923,

which is extremely high. Even though the probability of observing no false
positives on a single test is quite high (1−α = 0.95), the probability of seeing
no false positives across all tests (0.9550 = 0.077) diminishes by repeated
multiplication. Hence, the FWER can be quite high when m is large, even if
the type I error rate, α, is low.

Bonferroni Procedure

A number of procedures have been developed to ensure that the FWER of a set
of results is lower than an acceptable threshold, α, which is often 0.05. These
approaches, called FWER controlling procedures, basically try to adjust the p-
value threshold which is used for every test, so that there is only a small chance
of erroneously rejecting the null hypothesis in the presence of multiple tests.

�

M10 TAN9224 02 GE C10 page 790

� �

�

790 Chapter 10 Avoiding False Discoveries

To illustrate this category of procedures, we describe the most conservative
approach, which is the Bonferroni procedure.

Definition 10.7 (Bonferroni procedure). If m results are to be tested so
that the FWER is less than α, the Bonferroni procedure sets the significance
level for every test to be α∗ = α/m.

The intuition behind the Bonferroni procedure can be understood by
observing the formula for FWER in Equation 10.1, where the m tests are
assumed to be independent of each other. Using a reduced significance level
of α/m in Equation 10.1 and applying the binomial theorem, we can see that
the FWER is controlled below α as follows:

FWER = 1−
(
1− α

m

)m

= 1−
(
1 +m

(
− α

m

)
+
(
m

2

)(
− α

m

)2
+ . . .+

(
− α

m

)m)

= α−
(
m

2

)(
− α

m

)2 −
(
m

3

)(
− α

m

)3 − . . .−
(
− α

m

)m

≤ α.

While the above discussion was for the case where the tests are assumed
to be independent, the Bonferroni approach guarantees no type I error in the
m tests with a probability of 1− α, irrespective of whether the tests (results)
are correlated or independent. We illustrate the importance of the Bonferroni
procedure for controlling FWER using the following example.

Example 10.6 (Bonferroni Procedure). In the multiple stockbroker prob-
lem described in Example 10.5, we analyze the effect of the Bonferroni proce-
dure in controlling the FWER. The null distribution for an individual stock-
broker can be modeled using the binomial distribution where p = 0.5 and
N = 100. Given a set of m results simulated from the null distribution
(assuming the results are independent), we compare the performance of two
competing approaches: the näıve approach, which uses a significance level of
α = 0.05, and the Bonferroni procedure, which uses a significance level of
α∗ = 0.05/m.

Figure 10.6 shows the FWER of these two approaches as we vary the
number of results, m. (We used 106 simulations.) We can see that the FWER
of the Bonferroni procedure is always controlled to be α, while the FWER
of the näıve approach shoots up rapidly and reaches a value close to 1 for m
greater than 70. Hence, the Bonferroni procedure is preferred over the näıve

�

M10 TAN9224 02 GE C10 page 791

� �

�

10.1 Preliminaries: Statistical Testing 791

0 10 20 30 40 50 60 70 80 90 100
0

0.05
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Results, m

F
am

ily
−w

is
e

E
rr

o
r

R
at

e
(F

W
E

R
)

Naive Approach

Bonferroni

Figure 10.6. The family wise error rate (FWER) curves for the naı̈ve approach and the Bonferroni
procedure as a function of the number of results, m.

approach when m is large and the FWER is the error metric we wish to
control.

The Bonferroni procedure is almost always overly conservative, i.e., it will
eliminate some non-spurious results, especially when the number of results
is large and the results may be correlated to each other, e.g., in frequent
pattern mining. In the extreme case where allm results are perfectly correlated
to each other (and hence identical), the Bonferroni procedure would still
use a significance level of α/m even though a significance level of α would
have sufficed. To address this limitation, a number of alternative FWER
controlling procedures have been developed that are less conservative than
Bonferroni when dealing with correlated results. (See Bibliographic Notes for
more details.)

False discovery rate (FDR)

By definition, all FWER controlling procedures seek a low probability for ob-
taining any false positives, and thus, are not the appropriate tool when the goal
is to allow some false positives in order to get more true positives. For example,
in frequent pattern mining, we are interested in selecting frequent itemsets that
show statistically significant associations (actual positives), while discarding
the remaining ones. As another example, when testing for a serious disease, it
is better to get more true positives (detect more actual cases of the disease)

�

M10 TAN9224 02 GE C10 page 792

� �

�

792 Chapter 10 Avoiding False Discoveries

even if that means generating some false positives. In both cases, we are ready
to tolerate a few false positives as long as we are able to achieve reasonable
power for the detection of true positives.

The false discovery rate (FDR) provides an error metric to measure the
rate of false positives, which are also called false discoveries. To compute FDR,
we first define a variable, Q, that is equal to the number of false positives, FP,
divided by the total number of results predicted as positive, Ppred. (See Table
10.1.)

Q =
FP

Ppred
=

FP
TP + FP

, if Ppred > 0

= 0, if Ppred = 0

When we know FP, the number of false positives, as in classification, Q is es-
sentially the false discovery rate, as defined in Section 6.11.2, which introduced
measures for evaluating classification performance under class imbalance. As
such, Q is closely related to the precision. Specifically, precision = 1−FDR =
1 − Q. However, in the context of statistical testing, when Ppred = 0, i.e.,
when no results are predicted as positive, Q = 0 by definition. However, in
data mining, precision and thus FDR, as defined in Section 6.11.2, are typically
considered to be undefined in that situation.

In the cases where we do not know FP , it is not possible to use Q as the
false discovery rate. Nonetheless, it is still possible to estimate the value of Q,
on average, i.e., to compute the expected value of Q and use that as our false
discovery rate. Formally,

FDR = E(Q). (10.2)

The FDR is a useful metric for ensuring that the rate of false positives is
low, especially in cases where the positives are highly skewed, i.e., the number
of actual positives in the collection of results, m0, is very small compared to
the number of actual negatives, m1.

Benjamini-Hochberg Procedure

Statistical testing procedures that try to control the FDR are known as FDR
controlling procedures. These procedures can typically ensure a low num-
ber of false positives (even when the positive class is relatively infrequent)
while providing higher power than the more conservative FWER controlling
procedures. A widely-used FDR controlling procedure is the Benjamini-
Hochberg (BH) procedure, which sorts the results in increasing order of
their p-values and uses a different significance level, α(i), for every result, Ri.

�

M10 TAN9224 02 GE C10 page 793

� �

�

10.1 Preliminaries: Statistical Testing 793

The basic idea behind the BH procedure is that if we have observed a large
number of significant results that have a lower p-value than a given result, Ri,
we can be less stringent while testing Ri and use a more relaxed significance
level than α/m. Algorithm 10.1 provides a summary of the BH procedure.
The first step in this algorithm is to compute the p-values for every result and
sort the results in increasing order of their p-values (steps 1 to 2). Thus, pi

would correspond to the ith smallest p-value. The significance level, αi, for pi

is then computed using the following correction (line 3)

αi = i× α

m
.

Notice that the significance level for the smallest p-value, p1, is equal
to α/m, which is same as the correction used in the Bonferroni procedure.
Further, the significance level for the largest p-value, pm, is equal to α, which
is the significance level for a single test (without accounting for multiple
hypothesis testing). In between these two p-values, the significance level grows
linearly from α/m to α. Hence, the BH procedure can be viewed as striking a
balance between the overly conservative Bonferroni procedure and the overly
liberal näıve approach, thus resulting in higher power (finding more actual
positives) without producing too many false positives. Let k be the largest
index such that pk is lower than its significance level, αk (line 4). The BH
procedure then declares the first k p-values as significant (lines 4 to 5). It can
be shown that the FDR computed using the BH procedure is guaranteed to
be smaller than α. In particular,

FDR ≤ m0

m
α ≤ α, (10.3)

where m0 is the number of actual negative results and m is the total number
of results. (See Table 10.1.)

Algorithm 10.1 Benjamini-Hochberg (BH) FDR algorithm.
1: Compute p-values for the m results.
2: Order the p-values from smallest to largest (p1 to pm).
3: Compute the significance level for pi as αi = i× α

m .
4: Let k be the largest index such that pk ≤ αk.
5: Reject H0 for all results corresponding to the first k p-values, pi, 1 ≤ i ≤ k.

Example 10.7 (BH and Bonferroni procedure). Consider the multiple
stockbroker problem discussed in Example 10.6, where instead of assuming

�

M10 TAN9224 02 GE C10 page 794

� �

�

794 Chapter 10 Avoiding False Discoveries

all m stockbrokers to belong to the null distribution, we may have a small
number of m1 candidates who belong to an alternative distribution. The null
distribution can be modeled by the binomial distribution with 0.5 probability
of making a successful decision. The alternative distribution can be modeled
by the binomial distribution with 0.55 probability of success, which is a slightly
higher probability of success than that of random guessing. We consider N =
100 decisions for both the null and alternative distributions.

We are interested in comparing the performance of the Bonferroni and BH
procedures in detecting a large fraction of actual positives (stockbrokers that
indeed perform better than random guessing) without incurring a lot of false
positives. We ran 106 simulations of m stockbrokers where m1 stockbrokers
in each simulation belong to the alternative distribution while the rest belong
to the null distribution. We chose m1 = m/3 to demonstrate the effect of a
skewed positive class, which is quite common in most practical applications of
multiple hypothesis testing. Figure 10.7 shows the plots of FDR and expected
power as we vary the number of stockbrokers in each simulation run, m, for
three competing procedures: the näıve approach, the Bonferroni procedure,
and the BH procedure. The choice of the threshold, α, in each of the three
procedures was chosen to be 0.05.

We can see that the FDR of both the Bonferroni and the BH procedures
are smaller than 0.05 for all values of m, but the FDR of the näıve approach is
not controlled and is close to 0.1. This shows that the näıve approach is quite
relaxed in calling a result to be positive, and thus incurs more false positives.
However, it also generally shows a high power as many of the actual positives
are indeed labeled as positive. On the other hand, the FDR of the Bonferroni
is much smaller than 0.05 and is the lowest among all the three approaches.
This is because the Bonferroni approach aims at controlling a more stringent
error metric, i.e., the FWER, to be smaller than 0.05. However, it also has
low power as it is conservative in calling an actual positive to be significant
since its goal is to avoid any false positives.

The BH procedure makes a balance between being conservative and relaxed
such that its FDR is always smaller than 0.05 but its expected power is quite
high and comparable to the näıve approach. Hence, at the cost of a minor
increase in the FDR over the Bonferroni procedure, it is able to achieve much
higher power and thus obtain a better trade-off between minimizing type I
errors and type II errors in multiple hypothesis testing problems. However, we
emphasize, that FWER procedures, such as Bonferroni, and FDR controlling
procedures, such as BH, are intended for two different tasks, and thus, the
best procedure to use in any particular situation will vary depending on the
goal of the analysis.

�

M10 TAN9224 02 GE C10 page 795

� �

�

10.1 Preliminaries: Statistical Testing 795

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.05

0.06

0.08

0.1

0.12

Number of stockbrokers, m

F
al

se
 D

is
co

ve
ry

 R
at

e
(F

D
R

)

Naive Approach

Bonferroni

BH Procedure

(a) False Discovery Rate as function of m.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of stockbrokers, m

E
xp

ec
te

d
 P

o
w

er
 (

T
ru

e
P

o
si

ti
ve

 R
at

e)

Naive Approach

Bonferroni

BH Procedure

(b) Expected Power as function of m.

Figure 10.7. Comparing the performance of multiple comparison procedures as we vary the number
of results, m, and set m1 = m/3 results as positive. α = 0.05 for each of the three procedures.

Equation 10.3 states that the FDR of the BH procedure is less than or equal
to m0/m× α, which is equal to α only when m0 = m, i.e., when there are no
actual positives in the results. Hence, the BH procedure generally discovers
a smaller number of true positives, i.e., has lower power, than it should be

�

M10 TAN9224 02 GE C10 page 796

� �

�

796 Chapter 10 Avoiding False Discoveries

given a desired FDR of α. To address this limitation of the BH procedure,
a number of statistical testing procedures have been developed to provide
tighter control over FDR, such as the positive FDR controlling procedures,
and the local FDR controlling procedures. These techniques generally show
better power than the BH procedure while ensuring a small number of false
positives. (See Bibliographic Notes for more details.)

Note that some users of FDR controlling procedures assume that α should
be chosen in the same way as for hypothesis (significance) testing or for FWER
controlling procedures, which traditionally use α = 0.05 or α = 0.01. However,
for FDR controlling procedures, α is the desired false discovery rate and is
often chosen to have a value greater than 0.05, e.g., 0.20. The reason for this
is that in many cases the person evaluating the results is willing to accept
more false positives in order to get more true positives. This is especially true
when few, if any, potential positive results are produced when α is set to a
low value, such as 0.05 or 0.01. In the previous example, we chose α to be the
same for all three techniques to keep the discussion simple.

10.1.4 Pitfalls in Statistical Testing

The statistical testing approaches presented above provide an effective frame-
work for measuring the evidence in results. However, as with other data
analysis techniques, using them incorrectly can often produce misleading con-
clusions. Much of the misunderstanding is centered on the use of p-values.
In particular, p-values are commonly assigned additional meaning beyond
what can be supported by the data and these procedures. In the following,
we discuss some of the common pitfalls in statistical testing that should be
avoided to produce valid results. Some of these describe p-values and their
proper role while others identify common misinterpretations and misuses. (See
Bibliographic Notes for more details.)

1. A p-value is not the probability that the null hypothesis is true. As
described previously in Definition 10.2, the p-value is the conditional
probability of observing a particular value of a test statistic, R, or
something more extreme under the null hypothesis. Hence, we are as-
suming the null hypothesis is true in order to compute the p-value. A
p-value does measure how compatible the observed result is with the
null hypothesis.

2. Typically, there can be many hypotheses that explain a result that is
found to be significant or non-significant under the null hypothesis. Note
that a result that is declared non-significant, i.e., has a high p-value,

�

M10 TAN9224 02 GE C10 page 797

� �

�

10.1 Preliminaries: Statistical Testing 797

was not necessarily generated from the null distribution. For example,
if we model the null distribution using a Gaussian distribution with
mean 0 and standard deviation 1, we will find an observed test statistic,
Robs = 1.5, to be non-significant at a 5% level. However, the result
could be from the alternative distribution, even if there is a low (but
nonzero) probability of that event. Further, if we misspecified our null
hypothesis, then the same observation could have easily come from
another distribution, e.g., a Gaussian distribution with mean 1 and
standard deviation 1, under which it is more likely. Hence, declaring
a result to be non-significant does not amount to “accepting” the null
hypothesis. Likewise, a significant result may be explained by many
alternative hypothesis. Hence, rejecting the null hypothesis does not
necessarily imply that we have accepted the alternative hypothesis. This
is one of the reasons that p-values, or more generally the result of
statistical testing, are not usually sufficient for making decisions. Factors
external to the statistics, such as domain knowledge, must be applied as
well.

3. A low p-value does not imply a useful effect size (magnitude of the test
statistic) and vice versa. Recall that the effect size is the size of the test
statistic for which the result is considered important in the domain of
interest. Thus, effect size brings in domain considerations by considering
whether the observed result is significant from a domain point of view.
For example, suppose that a new drug is found to lower blood pressure,
but only by 1%. This difference may be statistically significant, but the
medical significance of an effect size of 1% is probably not worth the
cost of the medicine and the potential for side effects. In particular, a
significant p-value may not have a large effect size and a non-significant
p-value does not imply no effect size. Since p-values depend very strongly
on the size of the data set, small p-values for big data applications
are becoming increasingly common since even small effect sizes will
show up as being statistically significant. Thus, it becomes critical to
take effect size into consideration to avoid generating results that are
statistically significant but not useful. In particular, even if a result is
declared significant, we should ensure that its effect size is greater than
a domain-specified threshold to be of practical importance.

Example 10.8 (Significant p-values in random data). To illustrate
the point that we can obtain significantly low p-values even with small
effect sizes, we consider the pairwise correlation of 10 random vectors
that were generated from a Gaussian distribution of mean 0 and standard

�

M10 TAN9224 02 GE C10 page 798

� �

�

798 Chapter 10 Avoiding False Discoveries

deviation 1. The null hypothesis is that the correlation of any two vectors
is 0. Figures 10.8a and 10.8b show that as the length of the vectors,
n, increases, the maximum absolute pairwise correlation of any pair of
vectors tends to 0, but the average number of pairwise correlations that
have a p-value less than 0.05 remains constant at about 2.25. This shows
that the number of significant pair-wise correlations does not decrease
when n is large, although the effect size (maximum absolute correlation)
is quite low.

This example also illustrates the importance of adjusting for multiple
tests. There are 45 pairwise correlations and thus, on average, we would
expect 0.05 × 45 = 2.25 significant correlations at the 5% level, as is
shown in Figure 10.8b.

4. It is unsound to analyze a result in multiple ways until we are able
to declare it statistically significant. This creates a multiple hypothesis
testing problem and the p-values of individual results are no longer a
good guide as to whether the null hypothesis should be rejected or not.
(Such approaches are known as p-value hacking.) This can include cases
where p-values are not explicitly used but the data is pre-processed or
adjusted until a model is found that is acceptable to the investigator.

10.2 Modeling Null and Alternative Distributions

A primary requirement for conducting statistical testing is to know how the
test statistic is distributed under the null hypothesis (and sometimes under
the alternative hypothesis). In conventional problems of statistical testing,
this consideration is kept in mind while designing the experimental setup for
collecting data, so that we have enough data samples pertaining to the null and
alternative hypotheses. For example, in order to test the effect of a new drug
in curing a disease, experimental data is usually collected from two groups of
subjects that are as similar as possible in all respects, except that one group is
administered the drug while the control group is not. The data samples from
the two groups then provide information to model the alternative and null
distributions, respectively. There is an extensive body of work on experimental
design that provides guidelines for conducting experiments and collecting data
pertaining to the null and alternative hypotheses, so that they can be used
later for statistical testing. However, such guidelines cannot be directly applied

�

M10 TAN9224 02 GE C10 page 799

� �

�

10.2 Modeling Null and Alternative Distributions 799

100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
n

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

M
ax

im
um

 a
bs

ol
ut

e
pa

irw
is

e
co

rr
el

at
io

n

(a) Plot of maximum absolute pairwise correlation between 10
random vectors.

100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
n

0

1

2

3

4

5

6

7

8

9

10

A
ve

ra
ge

 n
um

be
r

of
 s

ig
ni

fic
an

t p
-v

al
ue

s

(b) Plot of average number of significant pairwise correlations

Figure 10.8. Visualizing the effect of changing the vector length, n, on the correlations among 10
random vectors.

when dealing with observational data where the data is collected without a
prior hypothesis in mind, as is common in many data mining problems.

�

M10 TAN9224 02 GE C10 page 800

� �

�

800 Chapter 10 Avoiding False Discoveries

Hence, a central objective when using statistical testing with observational
data is to come up with an approach to model the distribution of the test
statistic under the null and alternative hypotheses. In some cases, this can be
done by making some statistical assumptions about the observations, e.g., that
the data follows a known statistical distribution such as the normal, binomial,
or hypergeometric distributions. For example, the instances in a data set may
be generated by a single normal distribution whose mean and variance can be
estimated from the data set. Note that in almost all cases where a statistical
model is used, the parameters of that model must be estimated from the data.
Hence, any probabilities calculated using a statistical model may have some
inherent error, with the magnitude of that error dependent on how well the
chosen distribution fits the data and how well the parameters of the model
can be estimated.

In some scenarios, it is difficult, or even impossible, to adequately model
the behavior of the data with a known statistical distribution. An alternative
method is to first generate sample data sets under the null or alternative
hypotheses, and then model the distribution of the test statistic using the new
data sets. For the alternative hypothesis, the new data sets must be similar to
the current data set, but should reflect the natural variability inherent in the
data. For the null hypothesis, these data sets should be as similar as possible
to the original data set, but lack the structure or pattern of interest, e.g., a
connection between attributes and values, cluster structure, or associations
between attributes.

In the following, we describe some generic procedures for estimating the
null distribution in the context of statistical testing for data mining problems.
(Unfortunately, outside of using a known statistical distribution, there are
not many widely used methods for generating the alternative distribution.)
These procedures will serve as the building blocks of the specific approaches
for statistical testing discussed in Sections 10.3 to 10.6. Note that the exact
details of the approach used for estimating the null distribution depends on
the specific type of problem being studied and the nature of hypotheses
being considered. However, at a high level, approaches involve generating
completely new synthetic data sets or randomizing labels. In addition, we
will discuss approaches for resampling existing instances, which can be useful
for generating confidence intervals for various data mining results, such as the
accuracy of a predictive model.

�

M10 TAN9224 02 GE C10 page 801

� �

�

10.2 Modeling Null and Alternative Distributions 801

10.2.1 Generating Synthetic Data Sets

For analyses involving unlabeled data such as clustering and frequent pattern
mining, the main approach for estimating a null distribution is to generate
synthetic data sets, either by randomizing the order of attribute values or
by generating new instances. The resultant data sets should be similar to the
original data set in all manners except that they lack a pattern of interest, e.g.,
cluster structure or frequent patterns, whose significance has to be assessed.

For example, if we need to assess whether the items in a transaction data
set are related to each other beyond whatever association occurs by random
chance, we can generate synthetic transaction data sets by randomizing (per-
muting) the order of existing entries within rows and columns of the binary
representation of a transaction data set. The goal is that the resulting data set
should have properties similar to the original data set in terms of the number
of times an item occurs in the transactions (i.e., the support of an item) and
the number of items in every transaction (i.e., the length of a transaction),
but have statistically independent items. These synthetic data sets can be
processed to find association patterns and these results can be used to provide
an estimate of the distribution of the test statistic of interest, e.g., the support
or confidence of an itemset, under the null hypothesis. See Section 10.4 for
more details

If we need to evaluate whether the cluster structure in a data set is better
than we might expect by random chance, we need to generate new instances
that, when combined in a data set, lack cluster structure. The synthetic data
sets can be clustered and used to estimate the null distribution of test statistic.
For cluster analysis, the quantity of interest, i.e., the test statistic, is typically
some measure of clustering goodness, such as SSE or the silhouette coefficient.
See Section 10.5.

Although the process of randomizing attributes may appear simple, execut-
ing this approach can be very challenging since a näive attempt at generating
synthetic data sets may omit important characteristics or structure of the
original data and thus may yield an inadequate approximation of the true null
distribution. For example, given a time series data, we need to ensure that the
consecutive values in the randomized time series are similar to each other,
since time series data typically exhibit temporal autocorrelation. Further, if
the time series data have a yearly cycle (e.g., in climate data), we would need
to ensure that such cyclic patterns are also preserved in the synthetically
generated time series.

�

M10 TAN9224 02 GE C10 page 802

� �

�

802 Chapter 10 Avoiding False Discoveries

Specific techniques for generating synthetic data sets will be discussed in
more detail in the context of association analysis and clustering in Sections
10.4 and 10.5, respectively.

10.2.2 Randomizing Class Labels

When every data instance has an associated class label, a common approach
for generating new data is to randomly permute the class labels, a process
also referred to as permutation testing. This involves repeatedly shuffling
(permuting) labels among data objects at random to generate a new data
set that is identical to the old data set except for the label assignments. A
classification model is built on each of these data sets and a test statistic
calculated, e.g., classification accuracy. The resulting set of values—one for
each permutation—can be used to provide a distribution for the statistic under
the null hypothesis that the attributes in the data set have no relationship
with the class labels. As will be described in Section 10.3.1, this approach can
be used to test how likely is it to achieve the classification performance of a
learned classifier on a test set just by random chance. Although permuting
the labels is simple, it can result in inferior models of the null distribution.
(See Bibliographic Notes.)

10.2.3 Resampling Instances

Ideally, we would like to have multiple samples from the underlying population
of data instances so that we can assess the validity and generalizability of
the models and patterns our data mining algorithms produce. One way to
simulate such samples is to randomly sample instances from the original data
to create synthetic collections of data instances—an approach called statistical
resampling. For example, a common approach for generating new data sets is
to use bootstrap sampling, where data instances are randomly selected with
replacement such that the resultant data set is of the same size as the original
set. For classification, an alternative to bootstrap sampling is k-fold cross-
validation, where the data set is systematically split into subsets for k number
of times. As we will see later in Section 10.3.1, such statistical resampling
approaches are used to compute distributions of measures of classification
performance, such as accuracy, precision, and recall. Resampling approaches
such as the bootstrap can also be used to estimate the distribution of the
support of a frequent itemset. We can also use these distributions to produce
confidence intervals for these measures.

�

M10 TAN9224 02 GE C10 page 803

� �

�

10.3 Statistical Testing for Classification 803

10.2.4 Modeling the Distribution of the Test Statistic

Given multiple samples of data sets generated under the null hypothesis, we
can compute the test statistic on every set of samples to obtain the null
distribution of the test statistic. This distribution can be used for providing
estimates of the probabilities used in statistical testing procedures, such as
p-values. One way to achieve this is to fit statistical models, e.g., the normal
or the binomial distribution, on the test statistic values from the data sets
generated under the null hypothesis. Alternatively, we can also make use of
non-parametric approaches for computing p-values, given enough samples. For
instance, we can count the fraction of times the test statistic generated under
the null distribution exceeds (or takes “more extreme” values than) the test
statistic of the observed result, and use this fraction as the p-value of the
result.

10.3 Statistical Testing for Classification

There are a number of problems in classification that can be viewed from
the perspective of statistical testing and thus can benefit from the techniques
described previously in this chapter for avoiding false discoveries. In the follow-
ing, we discuss some of these problems and the statistical testing approaches
that can be used to address them. Note that approaches for comparing whether
the performance of two models is significantly different is provided in Section
3.9.2.

10.3.1 Evaluating Classification Performance

Suppose that a classifier applied to a test set shows an accuracy of x%. In order
to assess the validity of the classifier’s results, it is important to understand
how likely it is to obtain x% accuracy by random chance, i.e., when there is no
relationship between the attributes in the data set and the class label. Also, if
we choose a certain threshold for the classification accuracy to identify effective
classifiers, then we would like to know how many times we can expect to falsely
reject a good classifier that shows an accuracy lower than the threshold due
to the natural variability in the data.

Such questions about the validity of a classifier’s performance can be
addressed by viewing this problem from the perspective of hypothesis testing
as follows. Consider a statistical testing setup where we learn a classifier on a
training set and evaluate the learned classifier on a test set. The null hypothesis

�

M10 TAN9224 02 GE C10 page 804

� �

�

804 Chapter 10 Avoiding False Discoveries

for this test is that the classifier is not able to learn a generalizable relation-
ship between the attributes and the class labels from the given training set.
The alternative hypothesis is that the classifier indeed learns a generalizable
relationship between the attributes and the class labels from the training set.
To evaluate whether an observed result belongs to the null hypothesis or the
alternative hypothesis, we can use a measure of the classifier’s performance
on the test set, e.g., precision, recall, or accuracy, as the test statistic.

Randomization In order to perform statistical testing using the above
setup, we first need to generate new sample data sets under the null hypothesis
that there are no non-random relationships between the attributes and class
labels. This can be achieved by randomly permuting the class labels of the
training data such that for every permutation of the labels, we produce a
new training set where the attributes and class labels are unrelated to each
other. We can then learn a classifier on every sample training set and apply
the learned models on the test set to obtain a null distribution of the test
statistic (classification performance). Then, for example, if we use accuracy as
our test statistic, the observed value of accuracy for the model learned using
original labels should be significantly higher than most or all of the accuracies
generated by models learned over randomly permuted labels. However, note
that a classifier may have a significant p-value but have an accuracy only
slightly better than a random classifier, especially if the data set is large.
Hence, it is important to take the effect size of the classifier (actual value
of classification performance) into account along with information about its
p-value.

Bootstrap and Cross-Validation Another type of analysis relevant to
predictive models, such as classification, is to model the distribution of various
measures of classification performance. One way to estimate such distributions
is to generate bootstrap samples from the labeled data (preserving the original
labels) to create new training and test sets. The performance of a classification
model trained and evaluated on a number of these bootstrapped data sets can
then be used to generate a distribution for the measure of interest. Another
way to create the alternative distribution would be to use the randomized
cross-validation procedure (discussed in Section 3.6.2) where the process of
randomly partitioning the labeled data into k folds is repeated multiple times.

Such resampling approaches can also help in estimating confidence inter-
vals for measures of the true performance of the classifier trained over all
possible instances. A confidence interval is an interval of parameter values in
which an estimated parameter value is guaranteed to fall a certain percentage
of times. The confidence level is the percentage of times the estimated pa-
rameter will fall within the interval. For example, given the distribution of a

�

M10 TAN9224 02 GE C10 page 805

� �

�

10.3 Statistical Testing for Classification 805

classifier’s accuracy, we can estimate the interval of values that contains 95%
of the distribution. This serves as the confidence interval of the classifier’s true
accuracy at the 95% confidence level. To quantify the inherent uncertainty in
the result, confidence intervals are often reported along with point estimates
of a model’s output.

10.3.2 Binary Classification as Multiple Hypothesis Testing

The process of estimating the generalization performance of a binary classifier
resembles the problem of multiple hypothesis testing discussed previously in
Section 10.1.2. In particular, every test instance belongs to the null hypothesis
(negative class) or the alternative hypothesis (positive class). By applying a
classification model on every test instance, we assign each instance to the
positive or the negative class. The performance of a classification model on
a set of results (results of classifying instances in a test set) can then be
summarized by the familiar confusion matrix presented in Table 10.1.

A unique aspect of binary classification that differentiates it from con-
ventional problems of multiple hypothesis testing is the availability of ground
truth labels on test instances. Hence, instead of making inferences using statis-
tical assumptions (e.g., the distribution of the test statistic under the null and
alternative hypothesis), we can directly compute error estimates for rejecting
the null or alternative hypotheses using empirical methods, such as those
presented in Section 6.11.2. Table 10.2 shows the correspondence between
the error metrics used in statistical testing and evaluation measures used in
classification problems.

Table 10.2. Correspondence between statistical testing concepts and classifier evaluation measures

Statistical Testing Concept Classifier Evaluation Measure Formula

Type I Error Rate, α False Positive Rate FP
FP + TN

Type II Error Rate, β False Negative Rate FN
TP + FN

Power, 1− β Recall TP
TP + FN

While these error metrics can be readily computed with the help of labeled
data, the reliability of such estimates depends on the accuracy of test labels
which may not always be perfect. In such cases, it is important to quantify
the uncertainty in the evaluation measures arising due to inaccuracies in the

�

M10 TAN9224 02 GE C10 page 806

� �

�

806 Chapter 10 Avoiding False Discoveries

test labels. (See Bibliographic Notes for more details.) Further, when we apply
a learned classification model on unlabeled instances, we can use statistical
methods for quantifying the uncertainty in the classification outputs. For
example, we can bootstrap the training set (as discussed in Section 10.3.1) to
generate multiple classification models, and the distribution of their outputs
on an unseen instance can be used to estimate the confidence interval of the
output on that instance.

Although the above discussion was focused on assessing the quality of a
classifier that produces binary outputs, statistical considerations can also be
used to assess the quality of a classifier that produces real-valued outputs
such as classification scores. The performance of a classifier across a range
of score thresholds is generally analyzed with the help of Receiver Operating
Characteristic curves, as discussed in Section 6.11.4. The basic approach be-
hind generating an ROC curve is to sort the predictions according to their
score values and then plot the true positive rate and the false positive rate
for every possible value of score threshold. Note that this approach bears
some resemblance to the FDR controlling procedures described in Section
10.1.3, where the top few ranking instances (with the lowest p-values) are
labeled as positive by the classifier in order to maximize the FDR. However,
in the presence of ground truth labels, we can empirically estimate measures
of classification performance for different score thresholds without making use
of any explicit statistical models or assumptions.

10.3.3 Multiple Hypothesis Testing in Model Selection

The problem of multiple hypothesis testing plays a major role in the pro-
cess of model selection, where even if a more complex model shows better
performance than a simpler model, the difference in their performances may
not be statistically significant. Specifically, from a statistical perspective, a
model with a higher complexity offers a larger number of possible solutions
that a learning algorithm can choose from, for a given classification problem.
For example, having a larger number of attributes provides a larger set of
candidate splitting criteria that a decision tree learning algorithm can choose
to best fit the training data. However, when the training size is small and the
number of candidate models are large, there is a higher chance of picking
a spurious model. More generally, this version of the multiple hypothesis
testing is known as selective inference. This problem arises in situations
where the number of possible solutions for a given problem, such as building a
predictive model, are numerous, but the number of tests to robustly determine

�

M10 TAN9224 02 GE C10 page 807

� �

�

10.4 Statistical Testing for Association Analysis 807

the efficacy of a solution is quite small. Selective inference may lead to the
model overfitting problem described in Section 3.4.

How does the multiple comparison procedure relate to model overfitting?
Many learning algorithms explore a set of independent alternatives, {γi}, and
then choose an alternative, γmax, that maximizes a given criterion function.
The algorithm will add γmax to the current model in order to improve its
training error. This procedure is repeated until no further improvement is
observed. As an example, during decision tree growing, multiple tests are
performed to determine which attribute can best split the training data. The
attribute that leads to the best split is chosen to extend the tree as long as
the stopping criterion has not been satisfied.

Let T0 be the initial decision tree and Tx be the new tree after inserting
an internal node for attribute x. Consider the following stopping criterion for
a decision tree classifier: x is added to the tree if the observed gain, Δ(T0, Tx),
is greater than some predefined threshold α. If there is only one attribute
test condition to be evaluated, then we can avoid inserting spurious nodes
by choosing a large enough value of α. However, in practice, there is more
than one test condition available and the decision tree algorithm must choose
the best splitting attribute xmax from a set of candidates, {x1, x2, . . . , xk}.
The multiple comparison problem arises because the algorithm applies the
following test, Δ(T0, Txmax) > α instead of Δ(T0, Tx) > α, to decide whether
a decision tree should be extended. Just as with the multiple stockbroker
example, as the number of alternatives k increases, so does our chance of
finding Δ(T0, Txmax) > α. Unless the gain function Δ or threshold α is modified
to account for k, the algorithm may inadvertently add spurious nodes with
low predictive power to the tree, which leads to the model overfitting problem.

This effect becomes more pronounced when the number of training in-
stances from which xmax is chosen is small, because the variance of Δ(T0, Txmax)
is higher when fewer training instances are available. As a result, the proba-
bility of finding Δ(T0, Txmax) > α increases when there are very few training
instances. This often happens when the decision tree grows deeper, which in
turn reduces the number of instances covered by the nodes and increases the
likelihood of adding unnecessary nodes into the tree.

10.4 Statistical Testing for Association Analysis

Since problems in association analysis are usually unsupervised, i.e., we do
not have access to ground truth labels to evaluate results, it is important
to employ robust statistical testing approaches to ensure that the discovered

�

M10 TAN9224 02 GE C10 page 808

� �

�

808 Chapter 10 Avoiding False Discoveries

results are statistically significant and not spurious. For example, in the dis-
covery of frequent itemsets, we often use evaluation measures such as the
support of an itemset to measure its interestingness. (The uncertainty in such
evaluation measures can be quantified by using resampling methods, e.g., by
bootstrapping the transactions and generating a distribution of the support of
an itemset from the resulting data sets.) Given a suitable evaluation measure,
we also need to specify a threshold on the measure to identify interesting
patterns such as frequent itemsets. Although the choice of a relevant threshold
is generally guided by domain considerations, it can also be informed with the
help of statistical procedures, as we discuss in the following. To simplify this
discussion, we assume that our transaction data set is represented as a sparse
binary matrix, with 1’s representing the presence of items and 0’s representing
their absence. (See Section 2.1.2.)

Given a transaction data set, consider a result to be the discovery of a
frequent k-itemset and the test statistic to be the support of the itemset or
any other evaluation measure described in Section 4.7. The null hypothesis
for this result would be that the k items in an itemset are unrelated to each
other. Given a collection of frequent itemsets, we could then apply multiple
hypothesis testing methods such as the FWER or FDR controlling procedures
to identify significant patterns with strongly associated items. However, the
itemsets found by an association mining algorithm overlap in terms of the
items they contain. Hence, the multiple results in association analysis cannot
be assumed to be independent of each other. For this reason, approaches such
as the Bonferroni procedure may be overly conservative in calling a result
significant, which leads to low power. Further, a transaction data set may
have structure or characteristics, e.g., a subset of transactions containing a
large number of items, which need to be accounted for when applying multiple
hypothesis testing procedures.

Before we can apply statistical testing procedures for problems related
to association analysis, we first need to estimate the distribution of the test
statistic of an itemset under the null hypothesis of no association among the
items. This can be done by either making use of statistical models or by
performing randomization experiments. Both these categories of approaches
are described in the following.

10.4.1 Using Statistical Models

Under the null hypothesis that the items are unrelated, we can model the
support count of an itemset using statistical models of independence among
items. For itemsets containing two independent items, we can use Fisher’s

�

M10 TAN9224 02 GE C10 page 809

� �

�

10.4 Statistical Testing for Association Analysis 809

exact test. For itemsets containing more than two items, we can use alternative
tests of independence such as the chi-squared (χ2) test. Both these approaches
are illustrated in the following.

Using Fisher’s Exact Test

Consider the problem of modeling the support count of a 2-itemset, {A,B},
under the null hypothesis that A and B occur independently of each other. We
are given a data set with N transactions where A and B appear NA and NB

times, respectively. Assuming that A and B are independent, the probability
of observing A and B together would then be given by

pAB = pA × pB =
NA

N
× NB

N
,

where pA and pB are the probabilities of observing A and B individually,
which are approximated by their support. The probability of not observing
A and B together would then be equal to (1 − pAB). Assuming that the N
transactions are independent, we can consider modeling NAB, the number of
times A and B appear together, using the binomial distribution (introduced
in Section 10.1) as follows:

P (NAB = k) =
(
N

k

)
(pAB)k(1− pAB)N−k.

However, the binomial distribution does not accurately model the support
count of {A,B} because it assigns, NAB, the support count of {A,B}, a
positive probability even when NAB exceeds the individual support counts
of A and B. More specifically, the binomial distribution represents the prob-
ability of observing an event (co-occurrence of A and B) when sampled with
replacement with a fixed probability (pAB). However, in reality, the probability
of observing {A,B} decreases if we have already sampled A and B a number
of times, because the support counts of A and B are fixed.

Fisher’s exact test was designed to handle the above situation where we
perform sampling without replacement from a finite population of fixed size.
This test is readily explained using the same terminology used in Section 4.7,
which dealt with the evaluation of association patterns. For easy reference, we
reproduce the contingency table, Table 4.6, which was used in that discussion.
See Table 10.3.

We use the notation A (B) to indicate that A (B) is absent from a
transaction. Each entry fij in this 2 × 2 table denotes a frequency count.

�

M10 TAN9224 02 GE C10 page 810

� �

�

810 Chapter 10 Avoiding False Discoveries

Table 10.3. A 2-way contingency table for variables A and B.

B B

A f11 f10 f1+

A f01 f00 f0+

f+1 f+0 N

For example, f11 is the number of times A and B appear together in the same
transaction, while f01 is the number of transactions that contain B but not A.
The row sum f1+ represents the support count for A, while the column sum
f+1 represents the support count for B.

Note that if N , the number of transactions, and the supports of A (f1+)
and B (f+1) are fixed, i.e., held constant, then f0+ and f+0 are fixed. This also
implies that specifying the value for one of the entries, f11, f10, f01, or f00,
completely specifies the rest of the entries in the table. In that case, Fisher’s
exact test gives us a simple formula for exactly computing the probability of
any specific contingency table. Because of our intended application, we express
the formula in terms of the support count,NAB, for the 2-itemset {A,B}. Note
that f11 is the observed support count of {A,B}.

P (NAB = f11) =

(f1+

f11

)(f0+

f+1−f11

)

(
N

f+1

) (10.4)

Example 10.9 (Fisher’s Exact Test). We illustrate the application of
Fisher’s exact test using the tea-coffee example described at the beginning of
Section 4.7.1. We are interested in modeling the null distribution of the support
count of {Tea,Coffee}. As described in Section 4.7.1, the co-occurrence of Tea
and Coffee can be summarized using the contingency table shown in Table
10.4. We can see that the support count of Coffee is 800 and the support
count of Tea is 200, out of a total of 1000 transactions.

Table 10.4. Beverage preferences among a group of 1000 people.

Coffee Coffee

Tea 150 50 200

Tea 650 150 800

800 200 1000

�

M10 TAN9224 02 GE C10 page 811

� �

�

10.4 Statistical Testing for Association Analysis 811

To model the null distribution of the support count of {Tea,Coffee}, we
simply apply Equation 10.4 from our discussion Fisher’s exact test. This yields
the following.

P (NAB = f11) =

(
200
f11

)(
800

800−f11

)
(
1000
800

) ,

where NAB is the support count of {Tea, Coffee}.
Figure 10.9 shows a plot of the null distribution of the support count

for {Tea, Coffee}. We can see that the largest probability for support count
occurs when it is equal to 160. An intuitive explanation for this fact is that
when Tea and Coffee are independent, the probability of observing Tea and
Coffee together is equal to the product of their individual probabilities, i.e.,
0.8 × 0.2 = 0.16. The expected support count of {Tea,Coffee} is thus equal
to 0.16× 1000 = 160. Support counts that are less than 160 indicate negative
associations among items.

Hence, the p-value of a support count of 150 can be calculated by summing
the probabilities in the left tail of the null distribution for support count 150
and smaller. This yields a p-value of 0.032. This result is not conclusive, since a
support count of 150 or less will occur roughly 3 times out of a 100, on average,
if Tea and Coffee are independent. However, the low p-value tends to indicate
that tea and coffee are related, albeit in a negative way, i.e., tea drinkers are
less likely to drink coffee than those who don’t drink tea. Note that this is just
an example and does not necessarily reflect reality. Also note that this finding
is consistent with our previous analysis using alternative measures, such as
the interest factor (lift measure), as described in Section 4.7.1.

Although the discussion above was centered on the support measure, we
can also model the null distribution of any other objective interestingness
measure of a 2-itemset introduced in Section 4.7, such as interest, odds ratio,
cosine, or all-confidence. This is because all the entries of the contingency table
can be uniquely determined by the support measure of the 2-itemset, given
the number of transactions and the support counts of the two items. More
specifically, the probabilities displayed in Figure 10.9 are the probabilities of
specific contingency tables corresponding to a specific value of support for the
2-itemset. For each of these tables, the values of any objective interestingness
measure (of two items) can be calculated, and these values define the null
distribution of the measure being considered. This approach can also be used
to evaluate interestingness measures of association rules such as the confidence
of A→ B, where A and B are itemsets.

�

M10 TAN9224 02 GE C10 page 812

� �

�

812 Chapter 10 Avoiding False Discoveries

Support Count

12080400 160 200

P
ro

ba
bi

lit
y

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Figure 10.9. Plot of the probability of support count given the independence of Tea and Coffee

Note that using Fisher’s exact test is equivalent to using the hypergeomet-
ric distribution.

Using the Chi-Squared Test

The chi-squared (χ2) test provides a generic but approximate approach for
measuring the statistical independence among multiple items in an itemset.
The basic idea behind the χ2 test is to compute the expected value of every en-
try in a contingency table, such as the one shown in Table 10.4, assuming that
the items are statistically independent. The differences between the observed
and expected values in the contingency table can then be used to compute a
test statistic that follows the χ2 distribution under the null hypothesis of no
association between items.

Formally, consider a two-dimensional contingency table where the entry
at the ith row and jth column is denoted by Oi,j (i, j ∈ {0, 1}). (We use the
notation Oi,j instead of fij since the former is traditionally used to represent
the “observed” value in discussions of the χ2 statistic.) If the sum of all entries

�

M10 TAN9224 02 GE C10 page 813

� �

�

10.4 Statistical Testing for Association Analysis 813

is equal to N , then we can compute the expected value at every entry as

Eij = N ×
(∑

i

Oi,j

N

)
×
(∑

j

Oi,j

N

)
. (10.5)

This follows from the fact that the joint probability of observing inde-
pendent events is equal to the product of the individual probabilities. When
all items are statistically independent, Oi,j would usually be close to Ei,j for
all values of i and j. Hence, the differences between Oi,j and Ei,j can be
used to measure the deviation of the observed contingency table from the null
hypothesis of no association. In particular, we can compute the following test
statistic:

R =
∑

i

∑

j

(Oi,j − Ei,j)2

Ei,j
. (10.6)

Note that R = 0 only if Oi,j and Ei,j are equal for every value of i and j. It
can be shown that the null distribution of R can be approximated by the χ2

distribution with 1 degree of freedom when N is large. We can thus compute
the p-value of an observed value of R using standard implementations of the
χ2 distribution.

While the above discussion was centered on the analysis of a two-dimensional
contingency table involving two items, the χ2 test can be readily extended to
multi-dimensional contingency tables involving more than two items. For ex-
ample, given a k-itemsetX = {i1, i2, . . . , ik}, we can construct a k-dimensional
contingency table with observed entries represented asOi1,i2,...,ik (i1, i2, . . . , ik ∈
{0, 1}). The expected values of the contingency table and the test statistic R
could then be computed as follows

Ei1,i2,...,ik = N ×
k∏

j=1

(∑

ij

Oi1,i2,...,ik

N

)
. (10.7)

R =
∑

i1

∑

i2

. . .
∑

ik

(Oi1,i2,...,ik − Ei1,i2,...,ik)2

Ei1,i2,...,ik

. (10.8)

Under the null hypothesis that all k items in the itemset X are statistically
independent, the distribution of R can again be approximated by a χ2 dis-
tribution. However, the general formula for the degrees of freedom is df =
(number of rows − 1)×(number of columns − 1). Thus, if we have a 4 by 3
contingency table, then df = (4− 1)×(3− 1) = 6.

�

M10 TAN9224 02 GE C10 page 814

� �

�

814 Chapter 10 Avoiding False Discoveries

10.4.2 Using Randomization Methods

When it is difficult to model the null distribution of itemsets using statistical
models, an alternative approach is to generate synthetic transaction data sets
under the null hypothesis of no association among the items, with the same
number of items and transactions as the original data. This involves randomly
permuting the rows or columns in the original data such that the items in the
resultant data are unrelated to each other. As discussed in Section 10.2.1, we
must ensure while randomizing the attributes that the resultant data sets are
similar to the original data set in all respects except for the desired effect we
are interested in evaluating, which is the association among items.

A basic structure we would like to preserve in the synthetic data sets is the
support of every item in the original data. In particular, every item should
appear in the same number of transactions in the synthetic data sets as in
the original data set. One way to preserve this support structure of items
is to randomly permute the entries in each column of the original data set
independently of the other columns. This ensures that the items have the
same support in the synthetically generated data sets but are independent of
each other. However, this may violate a different property of the original data
that we would like to preserve, which is the length of every transaction (num-
ber of items in a transaction). This property can be preserved by randomly
shuffling the rows, i.e., the row sums are preserved. However, a drawback of
this approach is that the support of every item in the resultant data set may
be different than the support of items in the original data set.

A randomization approach that can preserve both the supports and the
transaction lengths of the original data is swap randomization. The basic
idea is to pick a pair of ones in the original data set from two different rows
and columns, say at (row k, column i) and (row l, column j), where k �= l and
i �= j. (See left table in Figure 10.10.) These two entries define the diagonal
of a rectangle of values in the binary transaction matrix. If the entries at
opposite corners of the rectangle, i.e., (row k, column j) and (row l, column
i), are zeros, then we can swap these zeros with the ones, as shown in Figure
10.10. Note that by performing this swap, both the row sums and column sums
are preserved while the association with other items is broken. This process
continues until it is likely that the data set is significantly different from the
original one. (An appropriate threshold for the number of swaps needs to be
determined depending on the size and nature of the original data set.)

Swap randomization has been shown to preserve the properties of transac-
tion data sets more accurately than the other approaches mentioned. However,
it is very computationally intensive, particularly for larger data sets, which

�

M10 TAN9224 02 GE C10 page 815

� �

�

10.5 Statistical Testing for Cluster Analysis 815

col i . . . col j col i . . . col j
...

... . . .
...

...
... . . .

...

row k 1 . . . 0 row k 0 . . . 1
...

... . . .
... ⇒ ...

... . . .
...

row l 0 . . . 1 row l 1 . . . 0
...

... . . .
...

...
... . . .

...

Figure 10.10. Illustration of a swap for swap randomization.

can limit its application. Furthermore, apart from the support of items and
transaction lengths, there may be other types of structure in the transaction
data that swap randomization may not be able to preserve. For instance, there
may be some known correlations among the items (due to domain considera-
tions) that we would like to retain in the synthetic data sets while breaking the
correlations among other items. A good example are data sets that record the
presence or absence of a genetic variation at various locations on the genome
(items) across multiple subjects (transactions). Items representing locations
that are close on the genetic sequence are known to be highly correlated. This
local structure of correlation may be lost in the synthetic data sets if we treat
each column identically while randomizing. What is needed in this case is to
keep the local correlation but to break correlation of areas that are further
away.

After constructing synthetic data sets pertaining to the null hypothesis, we
can generate the null distribution of the support of an itemset by observing its
support in the synthetic data sets. This procedure can help in deciding sup-
port thresholds using statistical considerations so that the discovered frequent
itemsets are statistically significant.

10.5 Statistical Testing for Cluster Analysis

The goodness of a clustering is typically evaluated with the help of cluster
validity measures that either capture the cohesion or separation of clusters,
such as the sum of squared errors (SSE), or make use of external labels such
as entropy. In some cases, the minimum and maximum values of measures
have intuitive interpretations that can be used to examine the goodness of a
clustering. For instance, if we are given the true class labels of instances and
we want our clustering to reflect the class structure, then a purity of 0 is bad,

�

M10 TAN9224 02 GE C10 page 816

� �

�

816 Chapter 10 Avoiding False Discoveries

while a purity of 1 is good. Likewise, an entropy of 0 is good, as is an SSE of
0. However, in many cases, we are given intermediate values of cluster validity
measures which are difficult to interpret directly without the help of domain
considerations.

Statistical testing procedures provide a useful way of measuring the signifi-
cance of a discovered clustering. In particular, we can consider the null hypoth-
esis that there is no cluster structure among the instances and the clustering
algorithm is producing a random partitioning of the data. The approach is to
use the cluster validity measure as a test statistic. The distribution of that
test statistic under the assumption that the data has no clustering structure is
the null distribution. We can then test whether the validity measure actually
observed for the data is significant. In the following, we consider two general
cases: (1) the test statistic is an internal clustering validity index computed for
unlabeled data, such as SSE or the silhouette coefficient, or (2) the test statistic
is an external index, i.e., the cluster labels are to be compared against class
labels, such as entropy or purity. These cluster validity measures are described
in Section 5.5.

10.5.1 Generating a Null Distribution for Internal Indices

Internal indices measure the goodness of a cluster only by reference to the
data itself—see Section 5.5.2. Furthermore, often the clustering is driven by an
objective function, and in those cases, the measure of a clustering’s goodness
is provided by the objective function. Thus, most of the time, statistical
evaluation of a clustering is not performed.

Another reason that such an evaluation is not performed is the diffi-
culty in generating a null distribution. In particular, to get a meaningful null
distribution for determining cluster structure, we need to create data with
similar overall properties and characteristics as the data we have except that
it has no cluster structure. But this can be difficult since data often has a
complex structure, e.g., the dependencies among observations in time series
data. Nonetheless, statistical testing can be useful if the difficulties can be
overcome. We present a simple example to illustrate the approach.

Example 10.10 (Significance of SSE). This example is based on K-means
and the SSE. Suppose that we want a measure of how the well-separated
clusters of Figure 10.11a compare with respect to random data. We generate
many random (uniformly distributed) sets of 100 points having the same range
of values along the two dimensions as the points in the three clusters, find three
clusters in each data set using K-means, and accumulate the distribution of

�

M10 TAN9224 02 GE C10 page 817

� �

�

10.5 Statistical Testing for Cluster Analysis 817

SSE values for these clusterings. By using this distribution of the SSE values,
we can then estimate the probability of the SSE value for the original clusters.
Figure 10.11b shows the histogram of the SSE from 500 random runs. The
lowest SSE in the histogram is 0.0173. For the three clusters of Figure 10.11a,
the SSE is 0.0050. We could therefore conservatively claim that there is less
than a 1% chance that a clustering such as that of Figure 10.11a could occur
by chance.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

(a) Three well separated clusters.

0.015 0.02 0.025 0.03 0.035 0.04
0

10

20

30

40

50

SSE

C
ou

nt

(b) Histogram of SSE for 500 random data
sets.

Figure 10.11. Using randomization to evaluate the p-value for a clustering.

In the previous example, it was relatively straightforward to use random-
ization to evaluate the statistical significance of an internal cluster validity
measure. In practice, domain evaluation is usually more important. For in-
stance, a document clustering scheme could be evaluated by looking at the
documents and judging whether the clusters make sense. More generally, a do-
main expert would evaluate the cluster for suitability to a desired application.
Nonetheless, a statistical evaluation of clustering is sometimes necessary. A
reference to an example for climate time series is provided in the Bibliographic
Notes.

�

M10 TAN9224 02 GE C10 page 818

� �

�

818 Chapter 10 Avoiding False Discoveries

10.5.2 Generating a Null Distribution for External Indices

If external labels are used for evaluation, then a clustering is evaluated using a
measure such as entropy or the Rand statistic—see Section 5.5.7 which assesses
how closely the cluster structure, as reflected in the cluster labels, matches
the class labels. Some of these measures can be modeled with a statistical
distribution, e.g., the adjusted Rand index, which is based on the multivariate
hypergeometric distribution. If a measure has a well-known distribution, then
this distribution can be used to compute a p-value.

However, randomization can also be used to generate a null distribution
in this case, as follows.

1. Generate M randomized sets of labels, L1, . . . , Li, . . . , LM

2. For each randomized set of labels, compute the value of the external
index. Let mi be the value of the external index obtained for the ith

randomization. Let m0 be the value of the external index for the original
set of labels.

3. Assuming that a larger value of the external index is more desirable,
define the p-value of m0 to be the fraction of mi for which mi > m0.

p-value(m0) =
|{mi : mi > mo}|

M
(10.9)

As with the case of unsupervised evaluation of a clustering, domain signif-
icance often assumes a dominant role. For example, consider clustering new
articles into distinct groups as in Example 5.15, where the articles belong to
the classes: Entertainment, Financial, Foreign, Metro, National, and Sports. If
we have the same number of clusters as the number of classes of news articles,
then an ideal clustering would have two characteristics. First, every cluster
would contain only documents from one class, i.e., it would be pure. Second,
every cluster would contain all of the documents from a particular class. An
actual clustering of documents can be statistically significant, but still be quite
poor in terms of purity and/or containing all the documents of a particular
document class. Sometimes, such situations are still of interest, as we describe
next.

10.5.3 Enrichment

In some cases involving labeled data, the goal of evaluating clusters is to find
clusters that have more instances of a particular class than would be expected

�

M10 TAN9224 02 GE C10 page 819

� �

�

10.5 Statistical Testing for Cluster Analysis 819

for a random clustering. When a cluster has more than the expected number
of instances of a specific class, we say that the cluster is enriched in that
class. This approach is commonly used in the analysis of bioinformatics data,
such as gene expression data, but is applicable in many other areas as well.
Furthermore, this approach can be used for any collection of groups, not just
those created by clustering. We illustrate this approach with a simple example.

Example 10.11 (Enrichment of Neighborhoods of a City in Terms
of Income Levels). Assume that in a particular city there are 10 distinct
neighborhoods, which correspond to clusters in our problem. Overall, there
are 10,000 people in the city. Further, assume that there are 3 income levels,
Poor (30%), Medium (50%), and Wealthy (20%). Finally, assume that one
of the neighborhoods has 1,000 residents, 23% of whom fall into the Wealthy
category. The question is whether this neighborhood has more wealthy people
than expected by random chance. The contingency table for this example is
shown in Table 10.5. We can analyze this table by using Fisher’s exact test.
(See Example 10.9 in Section 10.4.1.)

Table 10.5. Beverage preferences among a group of 1000 people.

In Neighborhood In Neighborhood

Wealthy 230 1770 2,000

Wealthy 770 7,230 8,000

20,000 1,000 10,000

Using Fisher’s exact test, we find that the p-value for this result is 0.0076.
This would seem to indicate that more wealthy people live in this neighbor-
hood than would be expected by random chance at a significance level of 1%.
However, several points need to be made. First, we may very well be testing
every group against every neighborhood to look for enrichment. Thus, there
would be 30 tests overall and the p-values should be adjusted for multiple
comparisons. For instance, if we use the Bonferroni procedure, 0.0076 would
not be a significant result since the significance threshold is now 0.01/30 =
0.0003. Also, the odds ratio for this contingency table is only 1.22. Hence,
even if the difference is significant, the actual magnitude of the difference
doesn’t seem very large, i.e., very far from an odds ratio of 1. In addition,
note that multiplying all the entries of the table by 10 will greatly decrease
the p-value (≈ 10−9), but the odds ratio will remain the same. Despite these

�

M10 TAN9224 02 GE C10 page 820

� �

�

820 Chapter 10 Avoiding False Discoveries

issues, enrichment can be a valuable tool and has yielded useful results for a
variety of applications.

10.6 Statistical Testing for Anomaly Detection

Anomaly detection algorithms typically produce outputs in the form of class
labels (when a classification model is trained over labeled anomalies) or anomaly
scores. Statistical considerations can be used to ensure the validity of both
these types of outputs as described in the following.

Supervised Anomaly Detection

If we have access to labeled anomalous instances, the problem of anomaly de-
tection can be converted to a binary classification problem, where the negative
class corresponds to the normal data instances, while the positive class corre-
sponds to the anomalous instances. Statistical testing procedures discussed in
Section 10.3 for classification are directly relevant for avoiding false discoveries
in supervised anomaly detection, albeit with the additional challenges of build-
ing a model for imbalanced classes (See Section 6.11.) In particular, we need
to ensure that the classification error metric used during statistical testing is
sensitive to the imbalance among the classes and gives enough emphasis to the
errors related to the rare anomaly class (false positives and false negatives).
After learning a valid classification model, we can also use statistical methods
to capture the uncertainty in the outputs of the model on unseen instances.
For example, we can use resampling approaches such as the bootstrapping
technique to learn multiple classification models from the training set, and
the distribution of their labels produced on an unseen instance can be used to
estimate confidence intervals of the true class label of the instance.

Unsupervised Anomaly Detection

Most unsupervised anomaly detection approaches produce an anomaly score
on data instances to indicate how anomalous an instance is with respect to
the normal class. It is then important to decide a suitable threshold on the
anomaly score to identify instances that are significantly anomalous and hence
are worthy of further investigation. The choice of a threshold is generally
specified by the user based on domain considerations on what is acceptable as
a significant departure from the normal behavior. Such decisions can also be
reinforced with the help of statistical testing methods.

�

M10 TAN9224 02 GE C10 page 821

� �

�

10.6 Statistical Testing for Anomaly Detection 821

In particular, from a statistical perspective, we can consider every instance
to be a result and its anomaly score to be the test statistic. The null hypothesis
is that the instance belongs to the normal class while the alternative hypothesis
is that the instance is significantly different from other points from the normal
class and hence is an anomaly. Hence, given the null distribution of the
anomaly score, we can compute the p-value of every result and use this
information to determine statistically significant anomalies.

A prime requirement for performing statistical testing for anomaly detec-
tion is to obtain the distribution of anomaly scores for instances that belong
to the normal class, as this is the null distribution. If the anomaly detection
approach is based on statistical techniques (see Section 9.3), we have access
to a statistical model for estimating the distribution of the normal class. In
other cases, we can use randomization methods to generate synthetic data
sets where the instances only belong to the normal class. For example, if it
is possible to construct a model of the data without anomalies, then this
model can be used to generate multiple samples of the data, and in turn,
those samples can be used to create a distribution of the anomaly scores for
instances that are normal. Unfortunately, just as for generating synthetic data
for clustering, there is usually no easy way to construct random data sets that
look similar to the original data in all respects except that they contain only
normal instances.

If anomaly detection is to be useful, however, then at some point, the
results of the anomaly detection, particularly the top ranking anomalies,
need to be evaluated by domain experts to assess the performance of the
algorithm. If the anomalies produced by the algorithm do not agree with the
expert assessment, this does not necessarily mean that the algorithm is not
performing well. Instead, it may just mean that the definition of an anomaly
being used by the expert and the algorithm differ. For instance, the expert
may view certain aspects of the data as irrelevant, but the algorithm may be
treating them as important. In such cases, these aspects of the data can be
deemphasized to help refine the statistical testing procedures. Alternatively,
there may be new types of anomalies that the expert is unfamiliar with, since
anomalies are, by their very nature, supposed to be surprising.

Base Rate Fallacy

Consider an anomaly detection system that can accurately detect 99.9% of
the fraudulent credit card transactions with a false alarm rate of only 0.01%.
If a transaction is flagged as an anomaly by the system, how likely it is to be
genuinely fraudulent? A common misconception is that the majority of the

�

M10 TAN9224 02 GE C10 page 822

� �

�

822 Chapter 10 Avoiding False Discoveries

detected anomalies are fraudulent transactions given the high detection rate
and low false alarm rate of the system. However, this can be misleading if the
skew of the data is not taken into consideration. This problem is also known
as base rate fallacy or base rate neglect.

Table 10.6. Contingency table for an anomaly detection system with detection rate d and false alarm
rate f .

Alarm No Alarm
Fraud dαN (1− d)αN αN
No Fraud f(1− α)N (1− f)(1− α)N (1− α)N

dαN + f(1− α)N (1− d)αN + (1− f)(1− α)N N

To illustrate the problem, consider the contingency table shown in Table
10.6. Let d be the detection rate (i.e., true positive rate) of the system and f
be its false alarm rate, or to be more specific

P (Alarm|Fraud) = d and P (Alarm|Not Fraud) = f.

Our goal is to calculate the precision of the system, i.e., P(Fraud|Alarm). If
the precision is high, then the majority of the alarms are indeed triggered
by fraudulent transactions. Based on the information given in Table 10.6, the
precision of the system can be calculated as follows:

Precision =
dαN

dαN + f(1− α)N
=

dα

f + (d− f)α
, (10.10)

where α is the percentage of fraudulent transactions in the data. Since d =
0.999 and f = 0.0001, the precision of the system is

Precision =
0.999α

0.0001 + 0.9989α
(10.11)

If the data is not skewed, e.g., when α = 0.5, then its precision would be very
high, 0.9999, so we can trust that the majority of the flagged transactions are
fraudulent. However, if the data is highly skewed, e.g., when α = 2 × 10−5
(one in fifty thousand transactions), then the precision is only 0.167, which
means that only about one is six alarms is a true anomalies.

The preceding example illustrates the importance of considering skewness
of the data when choosing an appropriate anomaly detection system for a given

�

M10 TAN9224 02 GE C10 page 823

� �

�

10.7 Bibliographic Notes 823

application. If the event of interest occurs rarely, say, one in fifty thousand
of the population, then even a system with 99.9% detection rate and 0.01%
false alarm rate can still make 5 mistakes for every 6 anomalies flagged by the
system. The precision of the system degrades significantly as the percentage
of skewness in the data increases. The crux of this problem lies in the fact
that detection rate and false alarm rate are metrics that are not sensitive to
skewness in the class distribution, a problem that was first alluded to in Section
6.11 during our discussion on the class imbalanced problem. The lesson here
is that any evaluation of an anomaly detection system must take into account
the degree of skewness in the data before deploying the system into practice.

10.7 Bibliographic Notes

Recently, there has been a growing body of literature that is concerned with
the validity and reproducibility of research results. Perhaps the most well-
known work in that area is the paper by Ioannidis [721], which asserts that
most published research findings are false. There have been various critiques of
this work, e.g., see Goodman and Greenland [717] and Ioannidis rebuttal [716,
722]. Regardless, concern about the validity and reproducibility of results has
only continued to expand. A paper by Simmons et al. [742] states that almost
any effect in psychology can be presented as statistically significant given
current practice. The paper also suggests recommended changes in research
practice and article review. A Nature survey by Baker [697] reported that more
than 70% of researchers have tried and failed to replicate other researchers’
results, and 50% have failed to replicate their own results. On a more positive
note, Jager and Leek [724] looked at published medical research and although
they identified a need for improvements, concluded that “our analysis suggests
that the medical literature remains a reliable record of scientific progress.”
The recent book by Nate Silver [741] has discussed a number of predictive
failures in various areas, including baseball, politics, and economics. Although
numerous other studies and references can be cited in a number of areas, the
key point is that there is a widespread perception, backed by a fair amount of
evidence, that many current data analyses are not trustworthy and that there
are various steps that can be taken to improve the situation [699, 723, 729].
Although this chapter has focused on statistical issues, many of the changes
advocated, e.g., by Ioannidis in his original paper, are not statistical in nature.

The notion of significance testing was introduced by the prominent statisti-
cian Ronald Fisher [710, 734]. In response to perceived shortcomings, Neyman
and Pearson [735, 736] introduced hypothesis testing. The two approaches

�

M10 TAN9224 02 GE C10 page 824

� �

�

824 Chapter 10 Avoiding False Discoveries

have often been merged in an approach known as null hypothesis statistical
testing (NHST) [731], which has been the source of many problems [712, 720].
A number of p-value misconceptions are summarized in various recent papers,
for example, those by Goodman [715], Nuzzo [737], and Gelman [711]. The
American Statistical Association has recently issued a statement on p-values
[751]. Papers that describe the Bayesian approach, as exemplified by the
Bayes factor and prior odds, are Kass and Raftery [727] and Goodman and
Sander [716]. A recent paper by Benjamin and large number of other promi-
nent statisticians [699], uses such an approach to argue that 0.005, instead
of 0.05, should be the default p-value threshold for statistical significance.
More generally, the misinterpretation and misuse of p-values is not the only
problem as some have noted [730]. Note that both Fisher’s significance testing
and the Neyman-Pearson hypothesis testing approaches were designed with
statistically designed experiments in mind, but are often, perhaps mostly,
applied to observational data. Indeed, most data being analyzed nowadays is
observational data.

The seminal paper for the false discovery rate is by Benjamini and Hochberg
[701]. The positive false discovery rate was proposed by Storey [743–745]. Efron
has advocated the use of the local false discovery rate [704–707]. The work
of Efron, Storey, Tibshirani, and others has been applied in a software pack-
age for analyzing microarry data: SAM: Significance Analysis of Microarrays
[707, 746, 750]. More generally, most mathematical and statistical software has
packages for computing FDR. In particular, see the FDRtool in R by Strimmer
[748, 749] or the q-value routine [698, 747], which is available in Bioconductor,
a well-known R package. A recent survey of past and current work in multiple
hypothesis testing (multiple comparison) is given by Benjamini [700].

As discussed in Section 10.2, resampling approaches, especially those based
on the randomization / permutation and the bootstrap / cross-validation, are
the main approach to modeling the null distribution or the distributions of
evaluation metrics, and thus, computing evaluation measures of interest, such
as p-values, false discovery rates, and confidence intervals. Discussion and ref-
erences to the bootstrap and cross-validation are provided in the Bibliographic
Notes of Chapter 3. General resources on permutation / randomization include
books by Edgington and Onghena [703], Good [714], and Pesarin and Luigi
[740], as well as the articles by Collingridge [702], Ernst [709] and Welch
[756]. Although such techniques are widely used, there are limitations, such as
those discussed in some detail by Efron [705]. In this paper, Efron describes a
Bayesian approach for estimating an empirical null distribution and using it to
compute a “local” false discovery rate that is more accurate than approaches
using a null distribution based on randomization or theoretical approaches.

�

M10 TAN9224 02 GE C10 page 825

� �

�

10.7 Bibliographic Notes 825

As we have seen in the application specific sections, different areas of data
analysis tend to use approaches specific to their problem. The permutation
(randomization) of class labels described in Section 10.3.1 is a straightforward
and well-known technique in classification. The paper by Ojala and Garigga
[738] examines this approach in more depth and presents an alternative ran-
domization approach that can help identify, for a given data set, whether
dependency among features is important in the classification performance.
The paper by Jensen and Cohen [726] is a relevant reference for the discussion
of multiple hypothesis testing in model selection. Clustering has relatively
little work in terms of statistical validation since most users rely on measures
of clustering goodness to evaluate outcomes. However, some useful resources
are Chapter 6 of Jain and Dubes’ clustering book [725] and the recent survey of
clustering validity measures by Xiong and Li. [757]. The swap randomization
approach was introduced into association analysis by Gionis et al. [713]. This
paper has a number of references that trace the origin of this approach in other
areas, as well as references to other papers for the assessment of association
patterns. This work was extended to real-valued matrices by Ojala et al. [739].
Another important resource for statistically sound association pattern discov-
ery is the work of Webb [752–755]. Hämäläinen and Webb taught a tutorial
in KDD 2014, Statistically Sound Pattern Discovery. Relevant publications by
Hämäläinen include [719] and [718].

The design of experiments to reduce variability and increase power is a core
component of statistics. There are a number of general books on the topic,
e.g., the one by Montgomery [732], but many more specialized treatments of
the topic are available for various domains. In recent years, A/B testing has
emerged as a common tool of companies for comparing two alternatives, e.g.,
two web pages. A recent paper by Kohavi et al. [728] provides a survey and
practical guide to A/B testing and some of its variants.

Much of the material presented in sections 10.1 and 10.2 is covered in
various statistics books and articles, many of which were mentioned previ-
ously. Additional reference material for significance and hypothesis testing
can be found in introductory texts, although as mentioned above, these two
approaches are not always clearly distinguished. The use of hypothesis testing
is widespread in a number of domains, e.g., medicine, since the approach allow
investigators to determine how many samples will be needed to achieve certain
target values for the Type I error, power, and effect size. See, for example, Ellis
[708] and Murphy et al. [733].

�

M10 TAN9224 02 GE C10 page 826

� �

�

826 Chapter 10 Avoiding False Discoveries

Bibliography
[697] M. Baker. 1,500 scientists lift the lid on reproducibility. Nature, 533(7604):452–454,

2016.

[698] D. Bass, A. Dabney, and D. Robinson. qvalue: Q-value estimation for false discovery
rate control. R package, 2012.

[699] D. J. Benjamin, J. Berger, M. Johannesson, B. A. Nosek, E.-J. Wagenmakers, R. Berk,
K. Bollen, B. Brembs, L. Brown, C. Camerer, et al. Redefine statistical significance.
PsyArXiv, 2017.

[700] Y. Benjamini. Simultaneous and selective inference: current successes and future
challenges. Biometrical Journal, 52(6):708–721, 2010.

[701] Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practical and
powerful approach to multiple testing. Journal of the royal statistical society. Series B
(Methodological), pages 289–300, 1995.

[702] D. S. Collingridge. A primer on quantitized data analysis and permutation testing.
Journal of Mixed Methods Research, 7(1):81–97, 2013.

[703] E. Edgington and P. Onghena. Randomization tests. CRC Press, 2007.

[704] B. Efron. Local false discovery rates. Division of Biostatistics, Stanford University,
2005.

[705] B. Efron. Large-scale simultaneous hypothesis testing. Journal of the American
Statistical Association, 2012.

[706] B. Efron et al. Microarrays, empirical Bayes and the two-groups model. Statistical
science, 23(1):1–22, 2008.

[707] B. Efron, R. Tibshirani, J. D. Storey, and V. Tusher. Empirical Bayes analysis of a
microarray experiment. Journal of the American statistical association, 96(456):1151–
1160, 2001.

[708] P. D. Ellis. The essential guide to effect sizes: Statistical power, meta-analysis, and
the interpretation of research results. Cambridge University Press, 2010.

[709] M. D. Ernst et al. Permutation methods: a basis for exact inference. Statistical Science,
19(4):676–685, 2004.

[710] R. A. Fisher. Statistical methods for research workers. In Breakthroughs in Statistics,
pages 66–70. Springer, 1992 (originally, 1925).

[711] A. Gelman. Commentary: P values and statistical practice. Epidemiology, 24(1):69–72,
2013.

[712] G. Gigerenzer. Mindless statistics. The Journal of Socio-Economics, 33(5):587–606,
2004.

[713] A. Gionis, H. Mannila, T. Mielikäinen, and P. Tsaparas. Assessing data mining
results via swap randomization. ACM Transactions on Knowledge Discovery from Data
(TKDD), 1(3):14, 2007.

[714] P. Good. Permutation tests: a practical guide to resampling methods for testing
hypotheses. Springer Science & Business Media, 2013.

[715] S. Goodman. A dirty dozen: twelve p-value misconceptions. In Seminars in hematology,
volume 45(13), pages 135–140. Elsevier, 2008.

[716] S. Goodman and S. Greenland. Assessing the Unreliability of the Medical Literature:
A response to Why Most Published Research Findings are False. bepress, 2007.

[717] S. Goodman and S. Greenland. Why most published research findings are false:
problems in the analysis. PLoS Med, 4(4):e168, 2007.

�

M10 TAN9224 02 GE C10 page 827

� �

�

Bibliography 827

[718] W. Hämäläinen. Efficient search for statistically significant dependency rules in binary
data. PhD Thesis, Department of Computer Science, University of Helsinki, 2010.

[719] W. Hämäläinen. Kingfisher: an efficient algorithm for searching for both positive
and negative dependency rules with statistical significance measures. Knowledge and
information systems, 32(2):383–414, 2012.

[720] R. Hubbard. Alphabet Soup: Blurring the Distinctions Between ps and α’s in
Psychological Research. Theory & Psychology, 14(3):295–327, 2004.

[721] J. P. Ioannidis. Why most published research findings are false. PLoS Med, 2(8):e124,
2005.

[722] J. P. Ioannidis. Why most published research findings are false: author’s reply to
Goodman and Greenland. PLoS medicine, 4(6):e215, 2007.

[723] J. P. Ioannidis. How to make more published research true. PLoS medicine, 11(10):
e1001747, 2014.

[724] L. R. Jager and J. T. Leek. An estimate of the science-wise false discovery rate and
application to the top medical literature. Biostatistics, 15(1):1–12, 2013.

[725] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice Hall Advanced
Reference Series. Prentice Hall, March 1988.

[726] D. Jensen and P. R. Cohen. Multiple Comparisons in Induction Algorithms. Machine
Learning, 38(3):309–338, March 2000.

[727] R. E. Kass and A. E. Raftery. Bayes factors. Journal of the american statistical
association, 90(430):773–795, 1995.

[728] R. Kohavi, A. Deng, B. Frasca, T. Walker, Y. Xu, and N. Pohlmann. Online controlled
experiments at large scale. In Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 1168–1176. ACM, 2013.

[729] D. Lakens, F. G. Adolfi, C. Albers, F. Anvari, M. A. Apps, S. E. Argamon, M. A. van
Assen, T. Baguley, R. Becker, S. D. Benning, et al. Justify Your Alpha: A Response to
Redefine Statistical Significance. PsyArXiv, 2017.

[730] J. T. Leek and R. D. Peng. Statistics: P values are just the tip of the iceberg. Nature,
520(7549):612, 2015.

[731] E. F. Lindquist. Statistical analysis in educational research. Houghton Mifflin, 1940.

[732] D. C. Montgomery. Design and analysis of experiments. John Wiley & Sons, 2017.

[733] K. R. Murphy, B. Myors, and A. Wolach. Statistical power analysis: A simple and
general model for traditional and modern hypothesis tests. Routledge, 2014.

[734] J. Neyman. RA Fisher (1890–1962): An Appreciation. Science, 156(3781):1456–1460,
1967.

[735] J. Neyman and E. S. Pearson. On the use and interpretation of certain test criteria
for purposes of statistical inference: Part I. Biometrika, pages 175–240, 1928.

[736] J. Neyman and E. S. Pearson. On the use and interpretation of certain test criteria
for purposes of statistical inference: Part II. Biometrika, pages 263–294, 1928.

[737] R. Nuzzo. Scientific method: Statistical errors. Nature News, Feb. 12 2014.

[738] M. Ojala and G. C. Garriga. Permutation tests for studying classifier performance.
Journal of Machine Learning Research, 11(Jun):1833–1863, 2010.

[739] M. Ojala, N. Vuokko, A. Kallio, N. Haiminen, and H. Mannila. Randomization of
real-valued matrices for assessing the significance of data mining results. In Proceedings
of the 2008 SIAM International Conference on Data Mining, pages 494–505. SIAM,
2008.

[740] F. Pesarin and L. Salmaso. Permutation tests for complex data: theory, applications
and software. John Wiley & Sons, 2010.

�

M10 TAN9224 02 GE C10 page 828

� �

�

828 Chapter 10 Avoiding False Discoveries

[741] N. Silver. The signal and the noise: Why so many predictions fail-but some don’t.
Penguin, 2012.

[742] J. P. Simmons, L. D. Nelson, and U. Simonsohn. False-positive psychology undisclosed
flexibility in data collection and analysis allows presenting anything as significant.
Psychological science, page 0956797611417632, 2011.

[743] J. D. Storey. A direct approach to false discovery rates. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 64(3):479–498, 2002.

[744] J. D. Storey. The positive false discovery rate: a Bayesian interpretation and the
q-value. Annals of statistics, pages 2013–2035, 2003.

[745] J. D. Storey, J. E. Taylor, and D. Siegmund. Strong control, conservative point
estimation and simultaneous conservative consistency of false discovery rates: a unified
approach. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
66(1):187–205, 2004.

[746] J. D. Storey and R. Tibshirani. SAM: thresholding and false discovery rates for
detecting differential gene expression in DNA microarrays. In The analysis of gene
expression data, pages 272–290. Springer, 2003.

[747] J. D. Storey, W. Xiao, J. T. Leek, R. G. Tompkins, and R. W. Davis. Significance
analysis of time course microarray experiments. Proceedings of the National Academy
of Sciences of the United States of America, 102(36):12837–12842, 2005.

[748] K. Strimmer. fdrtool: a versatile R package for estimating local and tail area-based
false discovery rates. Bioinformatics, 24(12):1461–1462, 2008.

[749] K. Strimmer. A unified approach to false discovery rate estimation. BMC
bioinformatics, 9(1):303, 2008.

[750] V. G. Tusher, R. Tibshirani, and G. Chu. Significance analysis of microarrays applied
to the ionizing radiation response. Proceedings of the National Academy of Sciences, 98
(9):5116–5121, 2001.

[751] R. L. Wasserstein and N. A. Lazar. The ASA’s statement on p-values: context, process,
and purpose. The American Statistician, 2016.

[752] G. I. Webb. Discovering significant patterns. Machine Learning, 68(1):1–33, 2007.

[753] G. I. Webb. Layered critical values: a powerful direct-adjustment approach to
discovering significant patterns. Machine Learning, 71(2):307–323, 2008.

[754] G. I. Webb. Self-sufficient itemsets: An approach to screening potentially interesting
associations between items. ACM Transactions on Knowledge Discovery from Data
(TKDD), 4(1):3, 2010.

[755] G. I. Webb and J. Vreeken. Efficient discovery of the most interesting associations.
ACM Transactions on Knowledge Discovery from Data (TKDD), 8(3):15, 2014.

[756] W. J. Welch. Construction of permutation tests. Journal of the American Statistical
Association, 85(411):693–698, 1990.

[757] H. Xiong and Z. Li. Clustering Validation Measures. In C. C. Aggarwal and C. K.
Reddy, editors, Data Clustering: Algorithms and Applications, pages 571–605. Chapman
& Hall/CRC, 2013.

10.8 Exercises

1. Describe the following terms: (a) Null hypothesis, (b) Test statistic, (c) Null
distribution, (d) Alternative distribution, (e) Critical region, and (f) Signifi-
cance level.

�

M10 TAN9224 02 GE C10 page 829

� �

�

10.8 Exercises 829

2. What is false discovery rate (FDR)? Why is it important?

3. What are the common pitfalls associated with p-value tests?

4. What is Fisher’s exact test? When and what is it used for?

5. What is the role of a domain expert in statistical testing of unsupervised
anomaly detection? What happens when the algorithm and the domain expert
do not agree on the outcome?

6. Statistical testing proceeds in a manner analogous to the mathematical proof
technique, proof by contradiction, which proves a statement by assuming it
is false and then deriving a contradiction. Compare and contrast statistical
testing and proof by contradiction.

7. Which of the following are suitable null hypotheses. If not, explain why.

(a) Comparing two groups Consider comparing the average blood pressure of
a group of subjects, both before and after they are placed on a low salt
diet. In this case, the null hypothesis is that a low salt diet does reduce
blood pressure, i.e., that the average blood pressure of the subjects is the
same before and after the change in diet.

(b) Classification Assume there are two classes, labeled + and -, where we
are most interested in the positive class, e.g., the presence of a disease.
H0 is the statement that the class of an object is negative, i.e., that the
patient does not have the disease.

(c) Association Analysis For frequent patterns, the null hypothesis is that the
items are independent and thus, any pattern that we detect is spurious.

(d) Clustering The null hypothesis is that there is cluster structure in the
data beyond what might occur at random.

(e) Anomaly Detection Our assumption, H0, is that an object is not anoma-
lous.

8. Consider once again the coffee-tea example, presented in Example 10.9. The
following two tables are the same as the one presented in Example 10.9 except
that each entry has been divided by 10 (left table) or multiplied by 10 (right
table).

Table 10.7. Beverage preferences among a group of 100 people (left) and 10,000 people (right).

Coffee Coffee Coffee Coffee

Tea 15 5 20 Tea 1500 500 2000

Tea 65 15 80 Tea 6500 1500 8000

80 20 100 8000 2000 10000

�

M10 TAN9224 02 GE C10 page 830

� �

�

830 Chapter 10 Avoiding False Discoveries

(a) Compute the p-value of the observed support count for each table, i.e., for
15 and 1500. What pattern do you observe as the sample size increases?

(b) Compute the odds ratio and interest factor for the two contingency tables
presented in this problem and the original table of Example 10.9. (See
Section 4.7.1 for definitions of these two measures.) What pattern do you
observe?

(c) The odds ratio and interest factor are measures of effect size. Are these
two effect sizes significant from a practical point of view?

(d) What would you conclude about the relationship between p-values and
effect size for this situation?

9. Consider the different combinations of effect size and p-value applied to an
experiment where we want to determine the efficacy of a new drug.
(i) effect size small, p-value small
(ii) effect size small, p-value large
iii) effect size large, p-value small
(iv) effect size large, p-value large

Whether effect size is small or large depends on the domain, which in this case
is medical. For this problem consider a small p-value to be less than 0.001, while
a large p-value is above 0.05. Assume that the sample size is relatively large,
e.g., thousands of patients with the condition that the drug hopes to treat.

(a) Which combination(s) would very likely be of interest?

(b) Which combinations(s) would very likely not be of interest?

(c) If the sample size were small, would that change your answers?

10. For Neyman-Pearson hypothesis testing, we need to balance the tradeoff be-
tween α, the probability of a type I error and power, i.e., 1 − β, where β is
the probability of a type II error. Compute α, β, and the power for the cases
given below, where we specify the null and alternative distributions and the
accompanying critical region. All distributions are Gaussian with some specified
mean u and standard deviation σ, i.e., N (μ, σ). Let T be the test statistic.

(a) H0: N (0, 1), H1 : N (3, 1), critical region: T > 2.

(b) H0: N (0, 1), H1 : N (3, 1), critical region: |T | > 2.

(c) H0: N (−1, 1), H1 : N (3, 1), critical region: T > 1.

(d) H0: N (−1, 1), H1 : N (3, 1), critical region: |T | > 1.

(e) H0: N (−1, 0.5), H1 : N (3, 0.5), critical region: T > 1.

(f) H0: N (−1, 0.5), H1 : N (3, 0.5), critical region: |T | > 1.

�

M10 TAN9224 02 GE C10 page 831

� �

�

10.8 Exercises 831

11. A p-value measures the probability of the result given that the null hypothesis
is true. However, many people who calculate p-values have used it as the prob-
ability of the null hypothesis given the result, which is erroneous. A Bayesian
approach to this problem is summarized by Equation 10.12.

P(H1|xobs)
P(H0|xobs)

=
f(H1|xobs)
f(H0|xobs)

× P(H1)
P(H0)

(10.12)

posterior odds of H1 = Bayes Factor× prior odds of H1

This approach computes the ratio of the probability of the alternative and null
hypotheses (H1 and H0, respectively) given the observed outcome, xobs. In
turn, this quantity is expressed as the product of two factors: the Bayes factor
and the prior odds. The prior odds is the ratio of the probability of H1 to the
probability of H0 based on prior information about how likely we believe each
hypothesis is. Usually, the prior odds is estimated directly based on experience,
For example, in drug testing in the laboratory, it may be known that most drugs
do not produce potentially therapeutic effects. The Bayes factor is the ratio of
the probability or probability density of the observed outcome, xobs, under H1

and H0. This quantity is computed and represents a measure of how much
more or less likely the observed result is under the alternative hypothesis than
the null hypothesis. Conceptually, the higher it is, the more we would tend to
prefer the alternative to the null. The higher the Bayes factor, the stronger
the evidence provided by the data for H1. More generally, this approach can
be applied to assess the evidence for any hypothesis versus another. Thus, the
roles of H0 can be (and often are) reversed in Equation 10.12.

(a) Suppose that the Bayes factor is 20, which is very strong, but the prior
odds are 0.01. Would you be inclined to prefer the alternative or null
hypothesis?

(b) Suppose the prior odds are 0.25, the null distribution is Gaussian with
density given by f0(x) = N (0, 2), and the alternative distribution is given
by f1(x) = N (3, 1). Compute the Bayes factor and posterior odds of H1

for the following values of xobs: 2, 2.5, 3, 3.5, 4, 4.5, 5. Explain the pattern
that you see in both quantities.

12. Consider the problem of determining whether a coin is a fair one, i.e., P(heads)
= P(tails) = 0.5, by flipping the coin 10 times. Use the binomial theorem and
basic probability to answer the following questions.

(a) A coin is flipped ten times and it comes up heads every time. What is
the probability of getting 10 heads in a row and what would you conclude
about whether the coin is fair?

(b) Suppose 10,000 coins are each flipped 10 times in a row and the flips of
10 coins result in all heads, can you confidently say that these coins are
not fair?

�

M10 TAN9224 02 GE C10 page 832

� �

�

832 Chapter 10 Avoiding False Discoveries

(c) What can you conclude about results when evaluated individually versus
in a group?

(d) Suppose that you flip each coin 20 times and then evaluate 10,000 coins.
Can you now confidently say that any coin which yields all heads is not
fair?

13. Algorithm 10.1 on 793 provides an method for calculating the false discovery
rate using the method advocated by Benjamini and Hochberg. The description
in the text is presented in terms of ordering the p-values and adjusting the
significance level to assess whether a p-value is significant. Another way to
interpret this method is in terms of ordering the p-values, smallest to largest,
and computing adjusted” p-values, p′i = pi ∗ m/i, where i identifies the ith

smallest p-value and m is the number of p-values. The statistical significance
is determined based on whether p′i ≤ α, where α is the desired false discovery
rate.

(a) Compute the adjusted p-values for the p-values in Table 10.8. Note that
the adjusted p-values may not be monotonic. In that case, an adjusted
p-value that is larger than its successor is changed to have the same value
as its successor.

(b) If the desired FDR is 20%, i.e., α = 0.20, then for which p-values is H0

rejected?

(c) Suppose that we use the Bonferroni procedure instead. For different values
of α, namely 0.01, 0.05, and 0.10, compute the modified p-value threshold,
α∗ = α/10, that the Bonferroni procedure will use to evaluate p-values.
Then determine, for each value of α∗, for which p-values, H0 will be
rejected. (If a p-value equals the threshold, it is rejected.)

1 2 3 4 5 6 7 8 9 10
original
p-values

0.001 0.005 0.05 0.065 0.15 0.21 0.25 0.3 0.45 0.5

Table 10.8. Ordered Collection of p-values.

14. The positive false discovery rate (pFDR) is similar to the false discovery rate
defined in Section 10.1.3 but assumes that the number of true positives is
greater than 0. Calculation of the pFDR is similar to that of FDR, but requires
an assumption on the value of m0, the number of results that satisfy the null
hypothesis. The pFDR is less conservative than FDR, but more complicated to
compute.
The positive false discovery rate also allows the definition of an FDR analogue
of the p-value. The q-value is the expected fraction of hypotheses that will be

�

M10 TAN9224 02 GE C10 page 833

� �

�

10.8 Exercises 833

false if the given hypothesis is accepted. Specifically, the q-value associated with
a p-value is the expected proportion of false positives among all hypotheses that
are more extreme, i.e., have a lower p-value. Thus, the q-value associated with
a p-value is the positive false discovery rate that would result if the p-value was
used as the threshold for rejection.
Below we show 50 p-values, their Benjamini-Hochberg adjusted p-values, and
their q-values.

p-values
0.0000 0.0000 0.0002 0.0004 0.0004 0.0010 0.0089 0.0089 0.0288 0.0479
0.0755 0.0755 0.0755 0.1136 0.1631 0.2244 0.2964 0.3768 0.3768 0.3768
0.4623 0.4623 0.4623 0.5491 0.5491 0.6331 0.7107 0.7107 0.7107 0.7107
0.7107 0.8371 0.9201 0.9470 0.9470 0.9660 0.9660 0.9660 0.9790 0.9928
0.9928 0.9928 0.9928 0.9960 0.9960 0.9989 0.9989 0.9995 0.9999 1.0000
BH adjusted p-values
0.0000 0.0000 0.0033 0.0040 0.0040 0.0083 0.0556 0.0556 0.1600 0.2395
0.2904 0.2904 0.2904 0.4057 0.5437 0.7012 0.8718 0.9420 0.9420 0.9420
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
q-Values
0.0000 0.0000 0.0023 0.0033 0.0033 0.0068 0.0454 0.0454 0.1267 0.1861
0.2509 0.2509 0.2509 0.3351 0.4198 0.4989 0.5681 0.6257 0.6257 0.6257
0.6723 0.6723 0.6723 0.7090 0.7090 0.7375 0.7592 0.7592 0.7592 0.7592
0.7592 0.7879 0.8032 0.8078 0.8078 0.8108 0.8108 0.8108 0.8129 0.8150
0.8150 0.8150 0.8150 0.8155 0.8155 0.8159 0.8159 0.8160 0.8161 0.8161

(a) How many p-values are considered significant using BH adjusted p-values
and thresholds of 0.05, 0.10, 0.15, 0.20, 0.25, and 0.30?

(b) How many p-values are considered significant using q-values and thresh-
olds of 0.05, 0.10, 0.15, 0.20, 0.25, and 0.30?

(c) Compare the two sets of results.

15. An alternative to the definitions of the false discovery rate discussed so far is the
local false discover rate, which is based on modeling the observed values of the
test statistic as a mixture of two distributions, where most of the observations
come from the null distribution and some observations (the interesting ones)
come from the alternative distribution. (See Section 8.2.2 for more information
on mixture models.) If Z is our test statistic, the density, f(z) of Z, is given
by the following:

f(z) = p0f0(z) + p1f1(z), (10.13)
where p0 is the probability an instance comes from the null distribution, f0(z)
is the distribution of the p-values under the null hypothesis, p1 is the prob-
ability an instance comes from the alternative distribution, and f1(z) is the
distribution of p-values under the alternative hypothesis.

�

M10 TAN9224 02 GE C10 page 834

� �

�

834 Chapter 10 Avoiding False Discoveries

Using Bayes theorem, we can derive the probability of the null hypothesis for
any value of z as follows.

p(H0|z) = f(H0 and z)/f(z) = p0f0(z)/f(z) (10.14)

The quantity, p(H0|z), is the quantity that we would like to define as the local
fdr. Since p0 is often close to 1, the local false discovery rate, represented as
fdr, all lowercase, is defined as the following:

fdr(z) =
f0(z)
f(z)

(10.15)

This is a point estimate, not an interval estimate as with the standard FDR,
which is based on p-value, and as such, it will vary with the value of the test
statistic. Note that the local fdr has an easy interpretation, namely as the ratio
of the density of observations from the null distribution to observations from
both the null and alternative distributions. It also has the advantage of being
interpretable directly as a real probability.
The challenge, of course, is in estimating the densities involved in Equation
10.15, which are usually estimated empirically. We consider the following simple
case, where we specify the distributions by Gaussian distributions. The null
distribution is given by, f0(z) = N (0, 1), while the alternative distribution is
given by f0(z) = N (3, 1). p0 = 0.999 and p1 = 0.001.

(a) Compute p(H0|z) for the following values of z: 2, 2.5, 3, 3.5, 4, 4.5, 5.

(b) Compute the local fdr for the following values of z: 2, 2.5, 3, 3.5, 4, 4.5,
5.

(c) How close are these two sets of values?

16. The following are two alternatives to swap randomization—presented in Section
10.4.2—for randomizing a binary matrix so that the number of 1’s in any row
and column are preserved. Examine each method and (i) verify that it does
indeed preserve the number of 1’s in any row and column, and (ii) identify the
problem with the alternative approach.

(a) Randomly permute the order of the columns and rows. An example is
shown in Figure 10.12.

i1 i2 i3
t1 1 1 0
t2 1 0 1
t3 1 1 1

i3 i2 i1
t2 0 0 1
t3 1 1 1
t1 1 1 1

Figure 10.12. A 3 × 3 matrix before and after randomizing the order of the rows and columns. The
leftmost matrix is the original.

�

M10 TAN9224 02 GE C10 page 835

� �

�

10.8 Exercises 835

(b) Figure 10.13 shows another approach to randomizing a binary matrix.
This approach converts the binary matrix to a row-column representa-
tion, then randomly reassigns the columns to various entries, and finally
converts the data back into the original binary matrix format.

i1 i2 i3 i4
t1 1 1 0 0
t2 0 1 0 1
t3 1 1 1 0
t4 0 0 1 1

row col
1 1
1 2
2 2
2 4
3 1
3 2
3 3
4 3
4 4

row col
1 4
1 2
2 2
2 1
3 1
3 2
3 3
4 3
4 1

i1 i2 i3 i4
t1 0 1 0 1
t2 1 1 0 0
t3 0 1 1 1
t4 1 0 1 0

Figure 10.13. A 4 × 4 matrix before and after randomizing the entries. From right to left, the tables
represent the following: The original binary data matrix, the matrix in row-column format, the row-
column format after randomly permuting the entries in the col column, and the matrix reconstructed
from the randomized row-column representation.

�

M10 TAN9224 02 GE C10 page 836

� �

�

Author Index

Abdulghani, A., 289
Abe, N., 547
Abello, J., 718
Abiteboul, S., 293
Abraham, B., 765
Adams, N. M., 286
Adolfi, F. G., 827
Adomavicius, G., 38
Aelst, S. V., 769
Afshar, R., 617
Agarwal, R. C., 285, 544, 767
Aggarwal, C., 38, 286, 615, 617
Aggarwal, C. C., 285, 286, 382, 384, 541,

765, 828
Agrawal, R., 38, 124, 203, 204, 286, 287,

291, 292, 615, 617, 716
Aha, D. W., 201, 541
Akaike, H., 201
Akoglu, L., 765
Aksehirli, E., 290
Albers, C., 827
Alcalá-Fdez, J., 616
Aldenderfer, M. S., 382
Alexandridis, M. G., 204
Ali, K., 286
Allen, D. M., 201
Allison, D. B., 201
Allwein, E. L., 542
Alsabti, K., 201
Altman, R. B., 39
Alvarez, J. L., 616
Amatriain, X., 38
Ambroise, C., 201
Anderberg, M. R., 122, 382
Anderson, T. W., 893
Andrews, R., 542
Ankerst, M., 382
Antonie, M.-L., 615

Anvari, F., 827
Aone, C., 383
Apps, M. A., 827
Arabie, P., 382, 384
Argamon, S. E., 827
Arnold, A., 766
Arthur, D., 382
Atluri, G., 39, 616
Atwal, G. S., 123
Aumann, Y., 615
Austin, J., 767
Ayres, J., 615

Baguley, T., 827
Bai, H., 716
Baker, M., 826
Baker, R. J., 545
Bakiri, G., 543
Bakos, J., 294
Baldi, P., 542
Ball, G., 382
Bandyopadhyay, S., 123
Banerjee, A., 38, 39, 382, 716, 766
Barbará, D., 286, 716
Barnett, V., 765
Bass, D., 826
Bastide, Y., 291
Basu, S., 716
Batistakis, Y., 383
Baxter, R. A., 767
Bay, S. D., 286, 766
Bayardo, R., 286
Becker, R., 827
Beckman, R. J., 766
Belanche, L., 124
Belkin, M., 893
Ben-David, S., 39
Bengio, S., 543

�

M10 TAN9224 02 GE C10 page 837

� �

�

Author Index 837

Bengio, Y., 542, 543, 545, 547
Benjamin, D. J., 826
Benjamini, Y., 286, 826
Bennett, K., 542
Benning, S. D., 827
Berger, J., 826
Berk, R., 826
Berkhin, P., 382
Bernecker, T., 286
Berrar, D., 542
Berry, M. J. A., 38
Bertino, E., 40
Bertolami, R., 544
Bhaskar, R., 286
Bienenstock, E., 202
Bilmes, J., 716
Bins, M., 203
Bishop, C. M., 201, 542, 716
Blashfield, R. K., 382
Blei, D. M., 716
Blondel, M., 40, 204
Blum, A., 122, 542
Bobadilla, J., 38
Bock, H.-H., 382
Bock, H. H., 122
Boiteau, V., 382
Boley, D., 382, 384
Bollen, K., 826
Bolton, R. J., 286
Borg, I., 122
Borgwardt, K. M., 290
Boswell, R., 542
Bosworth, A., 123
Bottou, L., 542
Boulicaut, J.-F., 615
Bowyer, K. W., 542
Bradley, A. P., 542
Bradley, P. S., 38, 294, 382, 716
Bradski, G., 202
Bratko, I., 203
Breiman, L., 201, 542
Brembs, B., 826
Breslow, L. A., 201
Breunig, M. M., 382, 766
Brin, S., 286, 287, 292
Brockwell, A., 40
Brodley, C. E., 204, 767
Brown, L., 826
Brucher, M., 40, 204

Bunke, H., 544
Buntine, W., 201
Burges, C. J. C., 542
Burget, L., 545
Burke, R., 38
Buturovic, L. J., 203
Bykowski, A., 615

Cai, C. H., 287
Cai, J., 294
Camerer, C., 826
Campbell, C., 542
Canny, J. F., 546
Cantú-Paz, E., 201
Cao, H., 287
Cardie, C., 719
Carreira-Perpinan, M. A., 893
Carvalho, C., 291
Catanzaro, B., 202
Ceri, S., 290
Cernockỳ, J., 545
Chakrabarti, S., 38
Chan, P. K., 39, 543
Chan, R., 287
Chandola, V., 766
Chang, E. Y., 716
Chang, L., 769
Charrad, M., 382
Chatterjee, S., 718, 767
Chaudhary, A., 766
Chaudhuri, S., 123
Chawla, N. V., 542, 766
Chawla, S., 766
Cheeseman, P., 716
Chen, B., 292
Chen, C., 766
Chen, M.-S., 38, 291, 617
Chen, Q., 287, 616, 769
Chen, S., 290
Chen, S.-C., 769
Chen, W. Y., 716
Chen, Z., 769
Cheng, C. H., 287
Cheng, H., 288, 615
Cheng, R., 293
Cherkassky, V., 38, 202, 542
Chervonenkis, A. Y., 204
Cheung, D., 769
Cheung, D. C., 287

�

M10 TAN9224 02 GE C10 page 838

� �

�

838 Author Index

Cheung, D. W., 287, 293
Chiu, B., 767
Chiu, J., 289
Choudhary, A., 290, 718
Chrisman, N. R., 122
Chu, C., 202
Chu, G., 828
Chuang, A., 765
Chui, C. K., 287
Chung, S. M., 289, 616
Clark, P., 542
Clifton, C., 38, 293
Clifton, D. A., 768
Clifton, L., 768
Coatney, M., 291, 616
Cochran, W. G., 122
Codd, E. F., 122
Codd, S. B., 122
Cohen, P. R., 203, 827
Cohen, W. W., 542
Collingridge, D. S., 826
Contreras, P., 382, 384
Cook, D. J., 718
Cook, R. D., 766
Cooley, R., 287
Cost, S., 542
Cotter, A., 202
Cournapeau, D., 40, 204
Courville, A., 542, 543
Courville, A. C., 543
Couto, J., 286
Cover, T. M., 122, 543
Cristianini, N., 124, 543
Cui, X., 201

Dabney, A., 826
Dash, M., 123
Datta, S., 39
Davidson, I., 716
Davies, L., 766
Davis, R. W., 828
Dayal, U., 287, 384, 616
Dean, J., 934
Demmel, J. W., 122, 876, 893
Deng, A., 827
Desrosiers, C., 38
Dhillon, I. S., 382
Diaz-Verdejo, J., 766
Diday, E., 122

Diederich, J., 542
Dietterich, T. G., 543, 545
Ding, C., 293, 716
Ding, C. H. Q., 718
Dokas, P., 287
Domingos, P., 38, 202, 543
Dong, G., 287
Donoho, D. L., 893
Doster, W., 204
Dougherty, J., 122
Doursat, R., 202
Drummond, C., 543
Dubes, R. C., 123, 383, 827
Dubourg, V., 40, 204
Duchesnay, E., 40, 204
Duda, R. O., 38, 202, 382, 543
Duda, W., 546
Dudoit, S., 202
Duin, R. P. W., 202, 546
DuMouchel, W., 287
Dunagan, J., 766
Dunham, M. H., 38, 543
Dunkel, B., 287

Edgington, E., 826
Edwards, D. D., 546
Efron, B., 202, 826
Elkan, C., 383, 543
Ellis, P. D., 826
Elomaa, T., 123
Erhan, D., 543
Erhart, M., 718
Erickson III, D. J., 123
Ernst, M. D., 826
Ertöz, L., 287, 716, 717, 768
Eskin, E., 766, 768
Esposito, F., 202
Ester, M., 382–384
Everitt, B. S., 383
Evfimievski, A. V., 287
Ezeife, C., 616

Fürnkranz, J., 543
Fabris, C. C., 287
Faghmous, J., 39
Faghmous, J. H., 38
Faloutsos, C., 40, 124, 768, 893
Fan, J., 717
Fan, W., 543

�

M10 TAN9224 02 GE C10 page 839

� �

�

Author Index 839

Fang, G., 288, 292
Fang, Y., 719
Fawcett, T., 546
Fayyad, U. M., 38, 123, 294, 382, 716
Feng, L., 288, 293
Feng, S., 717
Fernández, S., 544
Ferri, C., 543
Field, B., 288
Finucane, H. K., 124
Fisher, D., 383, 717
Fisher, N. I., 288
Fisher, R. A., 202, 826
Flach, P., 542
Flach, P. A., 543
Flannick, J., 615
Flynn, P. J., 383
Fodor, I. K., 893
Fournier-Viger, P., 615
Fovino, I. N., 40
Fox, A. J., 766
Fraley, C., 717
Frank, E., 39, 40, 202, 547
Frasca, B., 827
Frawley, W., 291
Freeman, D., 716
Freitas, A. A., 287, 288
Freund, Y., 543
Friedman, J., 202, 544
Friedman, J. H., 39, 201, 288, 383
Fu, A., 287, 289
Fu, A. W.-c., 769
Fu, Y., 288, 616
Fukuda, T., 288, 290, 615
Fukunaga, K., 202, 543
Furuichi, E., 291

Gada, D., 123
Ganguly, A., 39
Ganguly, A. R., 38, 123
Ganti, V., 202, 717
Gao, X., 383
Gaohua Gu, F. H., 123
Garcia-Teodoro, P., 766
Garofalakis, M. N., 615
Garriga, G. C., 827
Gather, U., 766
Geatz, M., 40

Gehrke, J., 38, 39, 124, 202, 287, 615, 716,
717

Geiger, D., 543
Geisser, S., 202
Gelman, A., 826
Geman, S., 202
Gersema, E., 203
Gersho, A., 717
Ghazzali, N., 382
Ghemawat, S., 934
Ghosh, A., 766
Ghosh, J., 382, 717, 719
Giannella, C., 39
Gibbons, P. B., 768
Gibson, D., 717
Gigerenzer, G., 826
Gionis, A., 766, 826
Glymour, C., 39
Gnanadesikan, R., 766
Goethals, B., 290
Goil, S., 718
Goldberg, A. B., 547
Golub, G. H., 876
Gomariz, A., 615
Good, P., 826
Goodfellow, I., 543
Goodfellow, I. J., 543
Goodman, R. M., 546
Goodman, S., 826
Gorfine, M., 123
Gowda, K. C., 717
Grama, A., 40
Gramfort, A., 40, 204
Graves, A., 544
Gray, J., 123
Gray, R. M., 717
Greenland, S., 826
Gries, D., 934
Grimes, C., 893
Grinstein, G. G., 38
Grisel, O., 40, 204
Groenen, P., 122
Grossman, R. L., 39, 718
Grossman, S. R., 124
Guan, Y., 382
Guestrin, C., 40
Guha, S., 39, 717
Gunopulos, D., 288, 293, 716
Guntzer, U., 288

�

M10 TAN9224 02 GE C10 page 840

� �

�

840 Author Index

Gupta, M., 288
Gupta, R., 288, 616
Gutiérrez, A., 38

Hagen, L., 717
Haibt, L., 546
Haight, R., 292
Haiminen, N., 827
Halic, M., 203
Halkidi, M., 383
Hall, D., 382
Hall, L. O., 542
Hall, M., 39, 202
Hamerly, G., 383
Hamilton, H. J., 288
Han, E., 288
Han, E.-H., 203, 288, 383, 544, 616, 717,

718
Han, J., 38, 39, 286, 288–291, 293, 383,

544, 615–617, 718
Hand, D. J., 39, 123, 286, 544
Hardin, J., 766
Hart, P. E., 38, 202, 382, 543
Hartigan, J., 383
Hastie, T., 39, 202, 383, 544
Hatonen, K., 293
Hawkins, D. M., 767
Hawkins, S., 767
He, H., 767
He, Q., 289, 719
He, X., 293, 716
He, Y., 293, 717
Hearst, M., 544
Heath, D., 202
Heckerman, D., 544
Heller, R., 123
Heller, Y., 123
Hernando, A., 38
Hernández-Orallo, J., 543
Herrera, F., 616
Hey, T., 39
Hidber, C., 288
Hilderman, R. J., 288
Hinneburg, A., 717
Hinton, G., 545
Hinton, G. E., 544–546
Hipp, J., 288
Ho, C.-T., 40
Hochberg, Y., 286, 826

Hodge, V. J., 767
Hofmann, H., 288
Holbrook, S. R., 293
Holder, L. B., 718
Holland, J., 546
Holmes, G., 39, 202
Holt, J. D., 289
Holte, R. C., 543, 544
Hong, J., 545
Hornick, M. F., 39
Houtsma, M., 289
Hsieh, M. J., 617
Hsu, M., 287, 384, 616
Hsu, W., 290
Hsueh, S., 289
Huang, H.-K., 768
Huang, T. S., 718
Huang, Y., 289
Hubbard, R., 827
Hubert, L., 382, 384
Hubert, M., 769
Hulten, G., 38
Hung, E., 287
Hussain, F., 123
Hwang, S., 289
Hämäläinen, W., 827
Höppner, F., 717

Iba, W., 545
Imielinski, T., 286, 289
Inokuchi, A., 289, 616
Ioannidis, J. P., 827
Ioffe, S., 544
Irani, K. B., 123

Jagadish, H. V., 767
Jager, L. R., 827
Jain, A. K., 39, 123, 202, 383, 827
Jajodia, S., 286
Janardan, R., 893
Japkowicz, N., 542, 544, 766, 767
Jardine, N., 383
Jaroszewicz, S., 289
Jarvis, R. A., 717
Jensen, D., 124, 203, 827
Jensen, F. V., 544
Jeudy, B., 615
Johannesson, M., 826
John, G. H., 123

�

M10 TAN9224 02 GE C10 page 841

� �

�

Author Index 841

Johnson, T., 767
Jolliffe, I. T., 123, 893
Jonyer, I., 718
Jordan, M. I., 544, 716
Joshi, A., 39
Joshi, M. V., 203, 544, 545, 616, 767

Kahng, A., 717
Kailing, K., 718
Kallio, A., 827
Kalpakis, K., 123
Kamath, C., 39, 201, 718
Kamber, M., 39, 289, 383, 544
Kantarcioglu, M., 38
Kantardzic, M., 39
Kao, B., 287
Karafiát, M., 545
Kargupta, H., 39
Karpatne, A., 39
Karypis, G., 38, 203, 288, 289, 292, 383,

384, 544, 616, 617, 717, 718
Kasif, S., 202, 203
Kass, G. V., 203
Kass, R. E., 827
Kaufman, L., 123, 383
Kawale, J., 767
Kegelmeyer, P., 39, 718
Kegelmeyer, W. P., 542
Keim, D. A., 717
Kelly, J., 716
Keogh, E., 767
Keogh, E. J., 123
Keshet, J., 202
Kettenring, J. R., 766
Keutzer, K., 202
Khan, S., 123
Khan, S. S., 767
Khardon, R., 288
Khoshgoftaar, T. M., 40
Khudanpur, S., 545
Kifer, D., 39
Kim, B., 203
Kim, S. K., 202
Kinney, J. B., 123
Kitagawa, H., 768
Kitsuregawa, M., 292
Kivinen, J., 545
Klawonn, F., 717
Kleinberg, J., 39

Kleinberg, J. M., 383, 717
Klemettinen, M., 289, 293
Klooster, S., 291, 292, 718
Knorr, E. M., 767
Kogan, J., 382
Kohavi, R., 122, 123, 203, 827
Kohonen, T., 718
Kolcz, A., 542, 766
Kong, E. B., 545
Koperski, K., 288
Kosters, W. A., 289
Koudas, N., 767
Koutra, D., 765
Kröger, P., 718
Kramer, S., 617
Krantz, D., 123–125
Kriegel, H., 286
Kriegel, H.-P., 382–384, 718, 766, 768, 769
Krishna, G., 717
Krizhevsky, A., 544–546
Krstajic, D., 203
Kruse, R., 717
Kruskal, J. B., 123, 893
Kröger, P., 383
Kubat, M., 545
Kuhara, S., 291
Kulkarni, S. R., 203
Kumar, A., 767
Kumar, V., 38, 39, 203, 287, 288, 291–293,

383, 384, 544–546, 616, 617, 716–
718, 766–768, 893

Kuok, C. M., 289
Kuramochi, M., 289, 616
Kwok, I., 767
Kwong, W. W., 287

Lagani, V., 204
Lajoie, I., 547
Lakens, D., 827
Lakhal, L., 291
Lakshmanan, L. V. S., 290
Lambert, D., 39
Landau, S., 383
Lander, E. S., 124
Landeweerd, G., 203
Landgrebe, D., 203, 204
Lane, T., 767
Langford, J. C., 547, 893
Langley, P., 122, 545, 717

�

M10 TAN9224 02 GE C10 page 842

� �

�

842 Author Index

Larochelle, H., 547
Larsen, B., 383
Lavrac, N., 545
Lavrač, N., 290
Law, M. H. C., 39
Laxman, S., 286
Layman, A., 123
Lazar, N. A., 828
Lazarevic, A., 287, 768
Leahy, D. E., 203
LeCun, Y., 545
Lee, D. D., 718
Lee, P., 289
Lee, S. D., 287, 293
Lee, W., 289, 768
Lee, Y. W., 125
Leek, J. T., 827, 828
Leese, M., 383
Lent, B., 616
Leroy, A. M., 768
Lewis, D. D., 545
Lewis, T., 765
Li, F., 719
Li, J., 287
Li, K.-L., 768
Li, N., 289
Li, Q., 893
Li, T., 718
Li, W., 125, 289, 294
Li, Y., 286
Li, Z., 383, 384, 828
Liao, W.-K., 290
Liess, S., 767
Lim, E., 289
Lin, C. J., 716
Lin, K.-I., 290, 893
Lin, M., 289
Lin, Y.-A., 202
Lindell, Y., 615
Lindgren, B. W., 123
Lindquist, E. F., 827
Ling, C. X., 545
Linoff, G., 38
Lipton, Z. C., 40
Liu, B., 290, 293, 617
Liu, H., 123, 124
Liu, J., 290
Liu, L.-M., 766
Liu, R. Y., 768

Liu, Y., 289, 290, 383
Livny, M., 719
Liwicki, M., 544
Llinares-López, F., 290
Lonardi, S., 767
Lu, C.-T., 769
Lu, H. J., 288, 291, 293
Lu, Y., 294
Luce, R. D., 123–125
Ludwig, J., 39
Lugosi, G., 203
Luo, C., 616
Luo, W., 717

Ma, D., 717
Ma, H., 719
Ma, L., 719
Ma, Y., 290
Mabroukeh, N. R., 616
Maciá-Fernández, G., 766
MacQueen, J., 383
Madden, M. G., 767
Madigan, D., 39
Malerba, D., 202
Maletic, J. I., 290
Malik, J., 718
Malik, J. M., 546
Mamoulis, N., 287
Manganaris, S., 286
Mangasarian, O., 545
Mannila, H., 39, 288, 293, 544, 616, 826,

827
Manzagol, P.-A., 543, 547
Mao, H., 717
Mao, J., 202
Maranell, G. M., 124
Marchiori, E., 289
Marcus, A., 290
Margineantu, D. D., 545
Markou, M., 768
Martin, D., 616
Masand, B., 287
Mata, J., 616
Matsuzawa, H., 290
Matwin, S., 545
McCullagh, P., 545
McCulloch, W. S., 545
McLachlan, G. J., 201
McVean, G., 124

�

M10 TAN9224 02 GE C10 page 843

� �

�

Author Index 843

Megiddo, N., 290
Mehta, M., 203, 204
Meilǎ, M., 384
Meira Jr., W., 40
Meo, R., 290
Merugu, S., 382
Meyer, G., 39
Meyerson, A., 39, 717
Michalski, R. S., 203, 545, 718, 719
Michel, V., 40, 204
Michie, D., 203, 204
Mielikäinen, T., 826
Mikolov, T., 545
Miller, H. J., 383
Miller, R. J., 290, 616
Milligan, G. W., 384
Mingers, J., 203
Mirkin, B., 384
Mirza, M., 543
Mishra, N., 39, 717, 718
Misra, J., 934
Mitchell, T., 40, 203, 384, 542, 545, 718
Mitzenmacher, M., 124
Mobasher, B., 288, 717
Modha, D. S., 382
Moens, S., 290
Mok, K. W., 289, 768
Molina, L. C., 124
Montgomery, D. C., 827
Mooney, R., 716
Moore, A. W., 384, 766
Moret, B. M. E., 203
Morimoto, Y., 288, 290, 615
Morishita, S., 288, 615
Mortazavi-Asl, B., 291, 616
Mosteller, F., 124, 290
Motoda, H., 123, 124, 289, 616
Motwani, R., 39, 286, 287, 292, 293, 717
Mozetic, I., 545
Mueller, A., 290
Muggleton, S., 545
Muirhead, C. R., 768
Mulier, F., 38, 542
Mulier, F. M., 202
Mullainathan, S., 39
Murphy, K. P., 203
Murphy, K. R., 827
Murtagh, F., 382, 384, 718
Murthy, S. K., 203

Murty, M. N., 383
Muthukrishnan, S., 767
Myers, C. L., 616
Myneni, R., 291
Myors, B., 827
Müller, K.-R., 893

Nagesh, H., 718
Nakhaeizadeh, G., 288
Namburu, R., 39, 718
Naughton, J. F., 294
Navathe, S., 291, 617
Nebot, A., 124
Nelder, J. A., 545
Nelson, L. D., 828
Nemani, R., 291
Nestorov, S., 293
Neyman, J., 827
Ng, A. Y., 202, 716
Ng, R. T., 290, 718, 766, 767
Niblett, T., 203, 542
Nielsen, M. A., 545
Niknafs, A., 382
Nishio, S., 291
Niyogi, P., 893
Nobel, A. B., 290
Norvig, P., 546
Nosek, B. A., 826
Novak, P. K., 290
Nuzzo, R., 827

O’Callaghan, L., 39, 717
Oates, T., 124
Oerlemans, A., 289
Ogihara, M., 125, 294
Ohsuga, S., 294
Ojala, M., 827
Olken, F., 124
Olshen, R., 201
Olukotun, K., 202
Omiecinski, E., 291, 617
Onghena, P., 826
Ono, T., 291
Orihara, M., 294
Ortega, F., 38
Osborne, J., 124
Ostrouchov, G., 123
others, 39, 204, 384, 768, 826, 827
Ozden, B., 291

�

M10 TAN9224 02 GE C10 page 844

� �

�

844 Author Index

Ozgur, A., 291, 768

Padmanabhan, B., 294, 617
Page, G. P., 201
Palit, I., 203
Palmer, C. R., 124
Pan, S. J., 545
Pandey, G., 288, 616
Pang, A., 290
Papadimitriou, S., 40, 768
Papaxanthos, L., 290
Pardalos, P. M., 718
Parelius, J. M., 768
Park, H., 893
Park, J. S., 291
Parr Rud, O., 40
Parthasarathy, S., 125, 291, 294, 616
Pasquier, N., 291
Passos, A., 40, 204
Patrick, E. A., 717
Pattipati, K. R., 204
Paulsen, S., 290
Pazzani, M., 286, 543
Pazzani, M. J., 123
Pearl, J., 543, 546
Pearson, E. S., 827
Pedregosa, F., 40, 204
Pei, J., 39, 288, 289, 291, 616
Pelleg, D., 384
Pellow, F., 123
Peng, R. D., 827
Perrot, M., 40, 204
Pesarin, F., 827
Peters, M., 718
Pfahringer, B., 39, 202
Piatetsky-Shapiro, G., 38, 40, 291
Pimentel, M. A., 768
Pirahesh, H., 123
Pison, G., 769
Pitts, W., 545
Platt, J. C., 768
Pohlmann, N., 827
Portnoy, L., 766, 768
Potter, C., 291, 292, 718
Powers, D. M., 546
Prasad, V. V. V., 285
Pregibon, D., 39, 40, 287
Prerau, M., 766
Prettenhofer, P., 40, 204

Prince, M., 546
Prins, J., 290
Protopopescu, V., 123
Provenza, L. P., 40
Provost, F. J., 124, 546
Psaila, G., 290
Pujol, J. M., 38
Puttagunta, V., 123
Pyle, D., 40

Quinlan, J. R., 204, 546

Raftery, A. E., 717, 827
Raghavan, P., 716, 717
Rakhshani, A., 204
Ramakrishnan, N., 40
Ramakrishnan, R., 38, 124, 202, 717, 719
Ramaswamy, S., 291, 768
Ramkumar, G. D., 291
Ramoni, M., 546
Ranka, S., 201, 291
Rao, N., 616
Rastogi, R., 615, 717, 768
Reddy, C. K., 203, 382, 384, 828
Redman, T. C., 124
Rehmsmeier, M., 546
Reichart, D., 123
Reina, C., 716
Reisende, M. G. C., 718
Renz, M., 286
Reshef, D., 124
Reshef, D. N., 124
Reshef, Y., 124
Reshef, Y. A., 124
Reutemann, P., 39, 202
Ribeiro, M. T., 40
Richter, L., 617
Riondato, M., 291
Riquelme, J. C., 616
Rissanen, J., 203
Rivest, R. L., 204
Robinson, D., 826
Rochester, N., 546
Rocke, D. M., 766, 768
Rogers, S., 719
Roiger, R., 40
Romesburg, C., 384
Ron, D., 718
Ronkainen, P., 293

�

M10 TAN9224 02 GE C10 page 845

� �

�

Author Index 845

Rosenblatt, F., 546
Rosenthal, A., 293
Rosete, A., 616
Rosner, B., 768
Rotem, D., 124
Rousseeuw, P. J., 123, 383, 768
Rousu, J., 123
Roweis, S. T., 893
Ruckert, U., 617
Runkler, T., 717
Russell, S. J., 546
Ruts, I., 768

Sabeti, P., 124
Sabeti, P. C., 124
Sabripour, M., 201
Safavian, S. R., 204
Sahami, M., 122
Saigal, S., 123
Saito, T., 546
Salakhutdinov, R., 546
Salakhutdinov, R. R., 544
Salmaso, L., 827
Salzberg, S., 202, 203, 542
Samatova, N., 38, 39
Sander, J., 382–384, 766
Sarawagi, S., 291
Sarinnapakorn, K., 769
Satou, K., 291
Saul, L. K., 893
Savaresi, S. M., 384
Savasere, A., 291, 617
Saygin, Y., 40
Schölkopf, B., 546
Schafer, J., 40
Schaffer, C., 204
Schapire, R. E., 542, 543
Scheuermann, P., 292
Schikuta, E., 718
Schmidhuber, J., 544, 546
Schroeder, M. R., 718
Schroedl, S., 719
Schubert, E., 768, 769
Schuermann, J., 204
Schwabacher, M., 766
Schwartzbard, A., 766
Schwarz, G., 204
Schölkopf, B., 124, 768, 893
Scott, D. W., 769

Sebastiani, P., 546
Self, M., 716
Semeraro, G., 202
Sendhoff, B., 716
Seno, M., 292, 617
Settles, B., 546
Seung, H. S., 718
Shafer, J. C., 204, 285
Shasha, D. E., 40
Shawe-Taylor, J., 124, 543, 768
Sheikholeslami, G., 718
Shekhar, S., 38, 39, 289, 291, 293, 769
Shen, W., 617
Shen, Y., 287
Sheng, V. S., 545
Shi, J., 718
Shi, Z., 289
Shibayama, G., 291
Shim, K., 615, 717, 768
Shinghal, R., 289
Shintani, T., 292
Shu, C., 719
Shyu, M.-L., 769
Sibson, R., 383
Siebes, A. P. J. M., 288
Siegmund, D., 828
Silberschatz, A., 291, 292
Silva, V. d., 893
Silver, N., 828
Silverstein, C., 286, 292
Simmons, J. P., 828
Simon, H., 716
Simon, N., 124
Simon, R., 204
Simonsohn, U., 828
Simovici, D., 289
Simpson, E.-H., 292
Singer, Y., 542
Singh, K., 768
Singh, L., 292
Singh, S., 40, 768
Singh, V., 201
Sivakumar, K., 39
Smalley, C. T., 122
Smith, A. D., 286
Smola, A. J., 124, 545, 546, 768, 893
Smyth, P., 38–40, 544, 546
Sneath, P. H. A., 124, 384
Soete, G. D., 382, 384

�

M10 TAN9224 02 GE C10 page 846

� �

�

846 Author Index

Sokal, R. R., 124, 384
Song, Y., 716
Soparkar, N., 287
Speed, T., 124
Spiegelhalter, D. J., 203
Spiliopoulou, M., 287
Späth, H., 384
Srebro, N., 202
Srikant, R., 38, 124, 286, 287, 290, 292,

615, 617
Srivastava, J., 287, 292, 617, 768
Srivastava, N., 544, 546
Steinbach, M., 38, 39, 203, 288, 291–293,

384, 546, 616, 716–718, 767
Stepp, R. E., 718, 719
Stevens, S. S., 124
Stolfo, S. J., 289, 543, 766, 768
Stone, C. J., 201
Stone, M., 204
Storey, J. D., 826, 828
Stork, D. G., 38, 202, 382, 543
Strang, G., 876
Strehl, A., 719
Strimmer, K., 828
Struyf, A., 769
Stutz, J., 716
Su, X., 40
Suen, C. Y., 205
Sugiyama, M., 290
Sun, S., 546
Sun, T., 719
Sun, Z., 286
Sundaram, N., 202
Suppes, P., 123–125
Sutskever, I., 544–546
Suzuki, E., 292
Svensen, M., 716
Swami, A., 286, 289, 616
Swaminathan, R., 718
Sykacek, P., 769
Szalay, A. S., 766
Szegedy, C., 544

Takagi, T., 291
Tan, C. L., 123
Tan, H., 717
Tan, P.-N., 546, 718
Tan, P. N., 203, 287, 291–293, 617
Tang, J., 769

Tang, S., 291
Tansley, S., 39
Tao, D., 547
Taouil, R., 291
Tarassenko, L., 768
Tatti, N., 293
Tax, D. M. J., 546
Tay, S. H., 293, 617
Taylor, C. C., 203
Taylor, J. E., 828
Taylor, W., 716
Tenenbaum, J. B., 893
Teng, W. G., 617
Thakurta, A., 286
Theodoridis, Y., 40
Thirion, B., 40, 204
Thomas, J. A., 122
Thomas, S., 203, 291
Thompson, K., 545
Tian, S.-F., 768
Tibshirani, R., 39, 124, 202, 204, 383, 544,

546, 826, 828
Tibshirani, R. J., 204
Tickle, A., 542
Timmers, T., 203
Toivonen, H., 40, 125, 288, 293, 616
Tokuyama, T., 288, 290, 615
Tolle, K. M., 39
Tompkins, R. G., 828
Tong, H., 765
Torregrosa, A., 292
Tsamardinos, I., 204
Tsaparas, P., 826
Tseng, V. S., 615
Tsoukatos, I., 293
Tsur, S., 287, 291, 293
Tucakov, V., 767
Tukey, J. W., 124, 125, 768
Tung, A., 293, 383
Turnbaugh, P. J., 124
Tusher, V., 826
Tusher, V. G., 828
Tuzhilin, A., 38, 292, 294, 617
Tversky, A., 123–125
Tzvetkov, P., 617

Ullman, J., 287, 293
Uslaner, E. M., 123
Utgoff, P. E., 204

�

M10 TAN9224 02 GE C10 page 847

� �

�

Author Index 847

Uthurusamy, R., 38

Vaidya, J., 38, 293
Valiant, L., 204
van Assen, M. A., 827
van Rijsbergen, C. J., 546
van Zomeren, B. C., 768
Vanderplas, J., 40, 204
Vandin, F., 291
van der Laan, M. J., 202
Van Loan, C. F., 876
Vapnik, V., 547
Vapnik, V. N., 204
Varma, S., 204
Varoquaux, G., 40, 204
Vassilvitskii, S., 382
Vazirgiannis, M., 383
Velleman, P. F., 125
Vempala, S., 766
Venkatesh, S. S., 203
Venkatrao, M., 123
Verhein, F., 286
Verkamo, A. I., 616
Verma, T. S., 543
Verykios, V. S., 40
Vincent, P., 542, 543, 547
Virmani, A., 289
Vitter, J. S., 934
von Luxburg, U., 719
von Seelen, W., 716
von der Malsburg, C., 716
Vorbruggen, J. C., 716
Vreeken, J., 828
Vu, Q., 292
Vuokko, N., 827
Vázquez, E., 766

Wagenmakers, E.-J., 826
Wagstaff, K., 716, 719
Wainwright, M., 544
Walker, T., 827
Wang, H., 204
Wang, J., 286, 617
Wang, J. T. L., 40
Wang, K., 293, 617
Wang, L., 293
Wang, Q., 39
Wang, Q. R., 205
Wang, R. Y., 125

Wang, W., 288, 290
Wang, Y. R., 125
Warde-Farley, D., 543
Washio, T., 289, 616
Wasserstein, R. L., 828
Webb, A. R., 40, 547
Webb, G. I., 290, 293, 617, 828
Weiss, G. M., 547
Weiss, R., 40, 204
Welch, W. J., 828
Werbos, P., 547
Widmer, G., 543
Widom, J., 616
Wierse, A., 38
Wilhelm, A. F. X., 288
Wilkinson, L., 125
Williams, C. K. I., 716
Williams, G. J., 767
Williamson, R. C., 545, 768
Wimmer, M., 382
Wish, M., 893
Witten, I. H., 39, 40, 202, 547
Wojdanowski, R., 768
Wolach, A., 827
Wong, M. H., 289
Woodruff, D. L., 768
Wu, C.-W., 615
Wu, J., 383
Wu, N., 286
Wu, S., 383
Wu, X., 40, 546, 617
Wunsch, D., 384

Xiang, D., 768
Xiao, W., 828
Xin, D., 288
Xiong, H., 289, 292, 293, 383, 384, 828,

893
Xu, C., 547
Xu, R., 384
Xu, W., 768
Xu, X., 382–384
Xu, Y., 827

Yamamura, Y., 291
Yan, X., 39, 288, 293, 615, 617
Yang, C., 294
Yang, Q., 287, 545
Yang, Y., 205, 290, 616

�

M10 TAN9224 02 GE C10 page 848

� �

�

848 Author Index

Yao, Y. Y., 294
Ye, J., 893
Ye, N., 124, 717, 769
Yesha, Y., 39
Yin, Y., 288
Yiu, T., 615
Yoda, K., 290
Yu, H., 292, 719
Yu, J. X., 288
Yu, L., 124
Yu, P. S., 38–40, 286, 291, 765
Yu, Y., 202

Zäıane, O. R., 288, 615
Zadrozny, B., 547
Zahn, C. T., 384
Zaki, M. J., 40, 125, 294, 617, 718
Zaniolo, C., 204
Zeng, C., 294
Zeng, L., 289
Zhang, A., 718
Zhang, B., 294, 384
Zhang, C., 617
Zhang, F., 294
Zhang, H., 294, 617
Zhang, J., 543
Zhang, M.-L., 547
Zhang, N., 39
Zhang, P., 769
Zhang, S., 617
Zhang, T., 719
Zhang, Y., 205, 293, 294
Zhang, Z., 294
Zhao, W., 719
Zhao, Y., 384
Zhong, N., 294
Zhou, Z.-H., 547
Zhu, H., 291
Zhu, X., 547
Ziad, M., 125
Zimek, A., 383, 768, 769
Züfle, A., 286

�

M10 TAN9224 02 GE C10 page 849

� �

�

Subject Index

k-nearest neighbor graph, 677, 683, 684

accuracy, 139, 398
activation function, 453
AdaBoost, 508
aggregation, 71–72
anomaly detection

applications, 723–724
clustering-based, 744–748

example, 746
impact of outliers, 746
membership in a cluster, 745
number of clusters, 748
strengths and weaknesses, 748

definition, 725–726
definitions

distance-based, 739
density-based, 740–744
deviation detection, 723
exception mining, 723
outliers, 723
proximity-based

distance-based, see anomaly detec-
tion, distance-based

relative density, 742–743
example, 743

statistical, 730–739
Gaussian, 730
Grubbs, 771
likelihood approach, 735
multivariate, 732
strengths and weaknesses, 738

techniques, 728–729
Apriori

algorithm, 220
principle, 219

association
analysis, 213

categorical attributes, 559
continuous attributes, 562
indirect, 611
pattern, 214
rule, see rule

attribute, 46–53
definition of, 47
number of values, 52
type, 47–52

asymmetric, 52–53
binary, 52
continuous, 50, 52
discrete, 52
general comments, 53–54
interval, 49, 50
nominal, 49, 50
ordinal, 49, 50
qualitative, 50
quantitative, 50
ratio, 49

avoiding false discoveries, 775–826
considerations for anomaly detection,

820–823
considerations for association analy-

sis, 807
randomization, 813–815

considerations for classification, 803–
807

considerations for cluster analysis, 815–
820

generating a null distribution, 796–
803

permutation test, 801
randomization, 801

hypothesis testing, see hypothesis test-
ing

�

M10 TAN9224 02 GE C10 page 850

� �

�

850 Subject Index

multiple hypothesis testing, see False
Discovery Rate

problems with significance and hy-
pothesis testing, 798

axon, 451

backpropagation, 460
bagging, see classifier
Bayes

naive, see classifier
network, see classifier
theorem, 416

bias variance decomposition, 502
binarization, see discretization, binariza-

tion, 560, 563
BIRCH, 704–706
Bonferroni Procedure), 788
boosting, see classifier
Bregman divergence, 114–115

candidate
generation, 223, 224, 579, 595
itemset, 218
pruning, 224, 580, 601
rule, 237
sequence, 576

case, see object
chameleon, 680–686

algorithm, 684–685
graph partitioning, 684, 685
merging strategy, 682
relative closeness, 683
relative interconnectivity, 683
self-similarity, 676, 681, 683–685
strengths and limitations, 686

characteristic, see attribute
city block distance, see distance, city block
class

imbalance, 515
classification

class label, 134
evaluation, 139

classifier
bagging, 504
base, 498
Bayesian belief, 429
boosting, 507
combination, 498
decision tree, 139

ensemble, 498
logistic regression, 445
maximal margin, 480
naive-Bayes, 420
nearest neighbor, 410
neural networks, 451
perceptron, 452
probabilistic, 414
random forest, 512
Rote, 410
rule-based, 397
support vector machine, 478
unstable, 502

climate indices, 700
cluster analysis

algorithm characteristics, 639–640
mapping to another domain, 640
nondeterminism, 639
optimization, 640
order dependence, 639
parameter selection, see parame-

ter selection
scalability, see scalability

applications, 307–309
as an optimization problem, 640
chameleon, see chameleon
choosing an algorithm, 710–713
cluster characteristics, 637–638

data distribution, 638
density, 638
poorly separated, 638
relationships, 638
shape, 638
size, 638
subspace, 638

cluster density, 638
cluster shape, 330, 638
cluster size, 638
data characteristics, 635–637

attribute types, 637
data types, 637
high-dimensionality, 636
mathematical properties, 637
noise, 636
outliers, 636
scale, 637
size, 636
sparseness, 636

DBSCAN, see DBSCAN

�

M10 TAN9224 02 GE C10 page 851

� �

�

Subject Index 851

definition of, 307, 310
DENCLUE, see DENCLUE
density-based clustering, 664–676
fuzzy clustering, see fuzzy clustering
graph-based clustering, 676–701

sparsification, 677–678
grid-based clustering, see grid-based

clustering
hierarchical, see hierarchical cluster-

ing
CURE, see CURE, see CURE
minimum spanning tree, 678–679

Jarvis-Patrick, see Jarvis-Patrick
K-means, see K-means
mixture modes, see mixture models
opossum, see opossum
parameter selection, 349, 369, 639
prototype-based clustering, 641–664
seeshared nearest neighbor, density-

based clustering, 699
self-organizing maps, see self-organizing

maps
spectral clustering, 686
subspace clustering, see subspace clus-

tering
subspace clusters, 638
types of clusterings, 311–313

complete, 313
exclusive, 312
fuzzy, 312
hierarchical, 311
overlapping, 312
partial, 313
partitional, 311

types of clusters, 313–315
conceptual, 315
density-based, 314
graph-based, 314
prototype-based, 313
well-separated, 313

validation, see cluster validation
cluster validation, 353–379

assessment of measures, 376–378
clustering tendency, 353, 370
cohesion, 356–361
cophenetic correlation, 368
for individual clusters, 363
for individual objects, 363
hierarchical, 367, 376

number of clusters, 369
relative measures, 356
separation, 356–360
silhouette coefficient, 363–364
supervised, 371–376

classification measures, 372–374
similarity measures, 374–376

supervised measures, 355
unsupervised, 356–371
unsupervised measures, 355
with proximity matrix, 364–367

codeword, 534
compaction factor, 256
concept hierarchy, 570
conditional independence, 431
confidence

factor, 398
level, 901
measure, see measure

confusion matrix, 138
constraint

maxgap, 583
maxspan, 582
mingap, 583
timing, 581
window size, 584

contingency table, 258
correlation

φ-coefficient, 262
coverage, 398
critical region, see hypothesis testing, crit-

ical region
cross-validation, 185
CURE, 706–710

algorithm, 706, 708
cluster feature, 704
clustering feature

tree, 704
use of partitioning, 709–710
use of sampling, 708–709

curse of dimensionality, 494

dag, see graph
data

attribute, see attribute
attribute types, 637
cleaning, see data quality, data clean-

ing
distribution, 638

�

M10 TAN9224 02 GE C10 page 852

� �

�

852 Subject Index

high-dimensional, 636
problems with similarity, 693

market basket, 213
mathematical properties, 637
noise, 636
object, see object
outliers, 636
preprocessing, see preprocessing
quality, see data quality
scale, 637
set, see data set
similarity, see similarity
size, 636
sparse, 636
transformations, see transformations
types, 637
types of, 43, 46–62

data quality, 43, 62–70
application issues, 69–70

data documentation, 70
relevance, 69
timliness, 69

data cleaning, 62
errors, 63–68

accuracy, 65
artifacts, 64
bias, 65
collection, 63
duplicate data, 68
inconsistent values, 67–68
measurment, 63
missing values, 66–67
noise, 63–64
outliers, 66
precision, 65
significant digits, 65

data set, 46
characteristics, 54–55

dimensionality, 54
resolution, 55
sparsity, 54

types of, 54–62
graph-based, 57–58
matrix, see matrix
ordered, 58–61
record, 55–57
sequence, 60
sequential, 58
spatial, 61

temporal, 58
time series, 59
transaction, 56

DBSCAN, 347–351
algorithm, 349
comparison to K-means, 634–635
complexity, 349
definition of density, 347
parameter selection, 349
types of points, 348

border, 348
core, 348
noise, 348

decision
boundary, 166
list, 400
stump, 505
tree, see classifier

deduplication, 68
DENCLUE, 672–676

algorithm, 673
implementation issues, 674
kernel density estimation, 674
strengths and limitations, 674

dendrite, 451
density

center based, 347
dimension, see attribute
dimensionality

curse, 77
dimensionality reduction, 76–78, 877–892

factor analysis, 884–886
FastMap, 889
ISOMAP, 889–891
issues, 891–892
Locally Linear Embedding, 886–888
multidimensional scaling, 888–889
PCA, 78
SVD, 78

discretization, 83–89, 423
association, see association
binarization, 84–85
clustering, 564
equal frequency, 564
equal width, 564
of binary attributes, see discretiza-

tion, binarization
of categorical variables, 88–89
of continuous attributes, 85–88

�

M10 TAN9224 02 GE C10 page 853

� �

�

Subject Index 853

supervised, 86–88
unsupervised, 85–86

dissimilarity, 96–98, 114–115
choosing, 118–120
definition of, 92
distance, see distance
non-metric, 97
transformations, 92–95

distance, 96–97
city block, 96
Euclidean, 96, 866
Hamming, 534
L1 norm, 96
L2 norm, 96
L∞, 96
Lmax, 96
Mahalanobis, 116
Manhattan, 96
metric, 97

positivity, 97
symmetry, 97
triangle inequality, 97

Minkowski, 96–97
supremum, 96

distribution
binomial, 182
Gaussian, 182, 423

eager learner, see learner
edge, 588
effect size, see hypothesis testing, effect

size
element, 574
EM algorithm, 651–657
ensemble method, see classifier
entity, see object
entropy, 87, 148

use in discretization, see discretiza-
tion, supervised

error
error-correcting output coding, 533
generalization, 176
pessimistic, 178

error rate, 139
estimate error, 184
Euclidean distance, see distance, Euclidean
evaluation

association, 257
exhaustive, 400

factor analysis, see dimensionality reduc-
tion, factor analysis

False Discovery Rate, 798
Benjamini-Hochberg FDR, 792

family-wise error rate, 788
FastMap, see dimensionality reduction, FastMap
feature

irrelevant, 164
feature creation, 81–83

feature extraction, 81–82
mapping data to a new space, 82–83

feature extraction, see feature creation,
feature extraction

feature selection, 78–81
architecture for, 79–80
feature weighting, 81
irrelevant features, 78
redundant features, 78
types of, 78–79

embedded, 78
filter, 79
wrapper, 79

field, see attribute
Fourier transform, 82
FP-growth, 249
FP-tree, see tree
frequent subgraph, 587
fuzzy clustering, 641–646

fuzzy c-means, 643–646
algorithm, 643
centroids, 644
example, 646
initialization, 644
SSE, 644
strenths and limitations, 646
weight update, 645

fuzzy sets, 642
fuzzy psuedo-partition, 643

gain ratio, 155
generalization, see rule
gini index, 148
graph, 588

connected, 592
directed acyclic, 570
Laplacian, 687
undirected, 592

grid-based clustering, 664–668
algorithm, 665

�

M10 TAN9224 02 GE C10 page 854

� �

�

854 Subject Index

clusters, 666
density, 665
grid cells, 665

hierarchical clustering, 336–347
agglomerative algorithm, 337
centroid methods, 344
cluster proximity, 337

Lance-Williams formula, 344
complete link, 337, 340–341
complexity, 338
group average, 337, 341–342
inversions, 344
MAX, see complete link
merging decisions, 346
MIN, see single link
single link, 337, 340
Ward’s method, 343

high-dimensionality
seedata,high-dimensional, 636

holdout, 185
hypothesis

alternative, 567, 902
null, 567, 902

hypothesis testing, 781
critical region, 783
effect size, 786
power, 784
Type I error, 783
Type II error, 784

independence
conditional, 420

information gain
entropy-based, 151
FOIL’s, 403

interest, see measure
ISOMAP, see dimensionality reduction, ISOMAP
isomorphism

definition, 589
item, see attribute, 214

competing, 602
negative, 602

itemset, 215
candidate, see candidate
closed, 242
maximal, 240

Jarvis-Patrick, 696–698

algorithm, 696
example, 697
strengths and limitations, 697

K-means, 316–335
algorithm, 317–318
bisecting, 329–330
centroids, 319, 321

choosing initial, 321–326
comparison to dBSCAN, 634–635
complexity, 326
derivation, 331–335
empty clusters, 326
incremental, 328
K-means++, 325–326
limitations, 330–331
objective functions, 319, 321
outliers, 327
reducing SEE, 327–328

kernel density estimation, 674
kernel function, 110–114

L1 norm, see distance, L1 norm
L2 norm, see distance, L2 norm
Lagrangian, 482
lazy learner, see learner
learner

eager, 410, 413
lazy, 410, 413

least squares, 875
leave-one-out, 187
lexicographic order, 227
linear algebra, 861–876

matrix, see matrix
vector, see vector

linear regression, 875
linear systems of equations, 875
linear transformation, see matrix, linear

transformation
Locally Linear Embedding, see dimension-

ality reduction, Locally Linear
Embedding

m-estimate, 426
majority voting, see voting
Manhattan distance, see distance, Man-

hattan
margin

soft, 486

�

M10 TAN9224 02 GE C10 page 855

� �

�

Subject Index 855

market basket data, see data
matrix, 57, 867–873

addition, 868–869
column vector, 868
confusion, see confusion matrix
definition, 867–868
document-term, 57
eigenvalue, 873
eigenvalue decomposition, 873–874
eigenvector, 873
in data analysis, 875–876
inverse, 872–873
linear combination, 879
linear transformations, 871–873

column space, 872
left nullspace, 872
nullspace, 872
projection, 871
reflection, 871
rotation, 871
row space, 872
scaling, 871

multiplication, 869–871
positive semidefinite, 879
rank, 872
row vector, 868
scalar multiplication, 869
singular value, 874
singular value decomposition, 874
singular vector, 874
sparse, 57

maxgap, see constraint
maximum likelihood estimation, 649–651
maxspan, see constraint
MDL, 180
mean, 424
measure

confidence, 216
consistency, 264
interest, 261
IS, 262
objective, 257
properties, 265
support, 216
symmetric, 270

measurement, 47–52
definition of, 47
scale, 47

permissible transformations, 50–51

types, 47–52
metric

accuracy, 139
metrics

classification, 139
min-Apriori, 569
mingap, see constraint
minimum description length, see MDL
missing values, see data quality, errors,

missing values
mixture models, 647–657

advantages and limitations, 657
definition of, 647–649
EM algorithm, 651–657
maximum likelihood estimation, 649–

651
model

comparison, 193
descriptive, 136
generalization, 138
overfitting, 167
predictive, 136
selection, 176

model complexity
Occam’s Razor

AIC, 178
BIC, 178

monotonicity, 220
multiclass, 532
multidimensional scaling, see dimension-

ality reduction, multidimensional
scaling

multiple comparison, see False Discovery
Rate

multiple hypothesis testing, see False Dis-
covery Rate

family-wise error rate, see family-wise
error rate

mutual exclusive, 400
mutual information, 108–109

nearest neighbor classifier, see classifier
network

Bayesian, see classifier
multilayer, see classifier
neural, see classifier

neuron, 451
node

internal, 140

�

M10 TAN9224 02 GE C10 page 856

� �

�

856 Subject Index

leaf, 140
non-terminal, 140
root, 140
terminal, 140

noise, 413
null distribution, 778
null hypothesis, 777

object, 46
observation, see object
Occam’s razor, 177
OLAP, 71
opposum, 679–680

algorithm, 680
strengths and weaknesses, 680

outliers, see data quality
overfitting, see model, 169

p-value, 779
pattern

cross-support, 276
hyperclique, 279
infrequent, 601
negative, 602
negatively correlated, 603, 604
sequential, see sequential
subgraph, see subgraph

PCA, 877–880
examples, 880
mathematics, 878–879

perceptron, see classifier
permutation test, 801
Piatesky-Shapiro

PS, 261
point, see object
power, see hypothesis testing, power
Precision-Recall Curve, 530
precondition, 397
preprocessing, 43, 70–91

aggregation, see aggregation
binarization, see discretization, bina-

rization
dimensionality reduction, 76
discretization, see discretization
feature creation, see feature creation
feature selection, see feature selec-

tion
sampling, see sampling
transformations, see transformations

proximity, 91–120
choosing, 118–120
cluster, 337
definition of, 91
dissimilarity, see dissimilarity
distance, see distance
for simple attributes, 94–95
issues, 116–118

attribute weights, 118
combining proximities, 117–118
correlation, 116
standardization, 116

similarity, see similarity
transformations, 92–94

pruning
post-pruning, 183
prepruning, 182

random forest
seeclassifier, 512

randomization, 801
association patterns, 813–815

Receiver Operating Characteristic curve,
see ROC

record, see object
reduced error pruning, 209, 548
regression

logistic, 445
ROC, 525
Rote classifier, see classifier
rule

antecedent, 397
association, 216
candidate, see candidate
consequent, 397
generalization, 566
generation, 218, 236, 407, 566
ordered, 400
ordering, 408
pruning, 404
quantitative, 562

discretization-based, 562
non-discretization, 568
statistics-based, 566

redundant, 566
specialization, 566
validation, 567

rule set, 397

�

M10 TAN9224 02 GE C10 page 857

� �

�

Subject Index 857

sample, see object
sampling, 72–76, 516

approaches, 73–74
progressive, 75–76
random, 73
stratified, 74
with replacement, 74
without replacement, 74

sample size, 74–75
scalability

clustering algorithms, 701–710
BIRCH, 704–706
CURE, 706–710
general issues, 701–704

segmentation, 311
self-organizing maps, 657–664

algorithm, 658–661
applications, 663
strengths and limitations, 663

sensitivity, 521
sequence

data sequence, 576
definition, 574

sequential
pattern, 572
pattern discovery, 576
timing constraints, see constraint

sequential covering, 401
shared nearest neighbor, 676

density, 698–699
density-based clustering, 699–701

algorithm, 700
example, 700
strengths and limitations, 701

principle, 677
similarity, 693–696

computation, 695
differences in density, 694
versus direct similarity, 696

significance
level, 903

significance testing, 781
null distribution, see null distribu-

tion
null hypothesis, see null hypothesis
p-value, see p-value
statistical significance, see statistical

significance
similarity, 44, 98–105

choosing, 118–120
correlation, 103–105
cosine, 101–102, 866
definition of, 92
differences, 105–108
extended Jaccard, 103
Jaccard, 100–101
kernel function, 110–114
mutual information, 108–109
shared nearest neighbor, see shared

nearest neighbor, similarity
simple matching coefficient, 100
Tanimoto, 103
transformations, 92–95

Simpson’s paradox, 272
soft splitting, 198
SOM, 638, see self-organizing maps
specialization, see rule
split information, 155
statistical significance, 780
statistics

covarinace matrix, 878
subgraph

core, 595
definition, 590
pattern, 587
support, see support

subsequence, 575
contiguous, 583

subspace clustering, 668–672
CLIQUE, 670

algorithm, 671
monotonicity property, 671
strengths and limitations, 672

example, 668
subtree

replacement, 183
support

count, 215
counting, 229, 581, 585, 601
limitation, 258
measure, see measure
pruning, 220
sequence, 576
subgraph, 591

support vector, 478
support vector machine, see classifier
SVD, 882–884

example, 882–884

�

M10 TAN9224 02 GE C10 page 858

� �

�

858 Subject Index

mathematics, 882
SVM, see classifier

nonlinear, 492
svm

non-separable, 486
synapse, 451

taxonomy, see concept hierarchy
transaction, 214

extended, 571
width, 235

transformations, 89–91
between similarity and dissimilarity,

92–94
normalization, 90–91
simple functions, 90
standardization, 90–91

tree
conditional FP-tree, 254
decision, see classifier
FP-tree, 250
hash, 231
oblique, 166

triangle inequality, 97
true positive, 521
Type I error, see hypothesis testing, Type

I error
Type II error, see hypothesis testing, Type

II error

underfitting, 169
universal approximator, 463

variable, see attribute
variance, 424
vector, 861–867

addition, 861–862
column, see matrix, column vector
definition, 861
dot product, 864–866
in data analysis, 866–867
linear independence, 865–866
mean, 867
mulitplication by a scalar, 862–863
norm, 864
orthogonal, 863–865
orthogonal projection, 865
row, see matrix, row vector
space, 863–864

basis, 863
dimension, 863
independent components, 863
linear combination, 863
span, 863

vector quantization, 309
vertex, 588
voting

distance-weighted, 412
majority, 412

wavelet transform, 83
web crawler, 158
window size, see constraint

�

M10 TAN9224 02 GE C10 page 859

� �

�

859

Copyright Permissions

Some figures and part of the text of Chapter 8 originally appeared in the
article “Finding Clusters of Different Sizes, Shapes, and Densities in Noisy,
High Dimensional Data,” Levent Ertöz, Michael Steinbach, and Vipin Kumar,
Proceedings of the Third SIAM International Conference on Data Mining, San
Francisco, CA, May 1–3, 2003, SIAM. c©2003, SIAM.

Some figures and part of the text of Chapter 4 appeared in the article “Select-
ing the Right Objective Measure for Association Analysis,” Pang-Ning Tan,
Vipin Kumar, and Jaideep Srivastava, Information Systems, 29(4), 293-313,
2004, Elsevier. c©2004, Elsevier.

Some of the figures and text of Chapters 8 appeared in the article “Discovery of
Climate Indices Using Clustering,” Michael Steinbach, Pang-Ning Tan, Vipin
Kumar, Steven Klooster, and Christopher Potter, KDD ’03: Proceedings of the
Ninth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 446–455, Washington, DC, August 2003, ACM. c©2003, ACM,
INC. DOI = http://doi.acm.org/10.1145/956750.956801

Some of the figures (1-7,13) and text of Chapter 5 originally appeared in the
chapter “The Challenge of Clustering High-Dimensional Data,” Levent Ertoz,
Michael Steinbach, and Vipin Kumar in New Directions in Statistical Physics,
Econophysics, Bioinformatics, and Pattern Recognition, 273–312, Editor, Luc
Wille, Springer, ISBN 3-540-43182-9. c©2004, Springer-Verlag.

Some of the figures and text of Chapter 8 originally appeared in the article
“Chameleon: Hierarchical Clustering Using Dynamic Modeling,” by George
Karypis, Eui-Hong (Sam) Han, and Vipin Kumar, IEEE Computer, Volume
32(8), 68-75, August, 1999, IEEE. c©1999, IEEE.

http://doi.acm.org/10.1145/956750.956801

�

M10 TAN9224 02 GE C10 page 859

� �

�

This page is intentionally left blank

�

M10 TAN9224 02 GE C10 page 859

� �

�

This page is intentionally left blank

�

M10 TAN9224 02 GE C10 page 859

� �

�

This page is intentionally left blank

�

M10 TAN9224 02 GE C10 page 859

� �

�

This page is intentionally left blank

�

M10 TAN9224 02 GE C10 page 859

� �

�

This page is intentionally left blank

GLOBAL
EDITION

This is a special edition of an established title widely used by colleges and
universities throughout the world. Pearson published this exclusive edition
for the benefit of students outside the United States and Canada. If you
purchased this book within the United States or Canada, you should be aware
that it has been imported without the approval of the Publisher or Author.

Features

• New – A chapter on avoiding false discoveries

 o Discusses statistical concepts relevant to avoiding spurious results, novel among
contemporary textbooks on data mining

 o Addresses the increasing concern over the validity and reproducibility of results
obtained from data analysis

• New – A separate section on deep networks to address the current
developments in this area

• Classification, association analysis, and cluster analysis covered in a pair
of chapters each – the first covering introductory concepts and the second
covering more advanced concepts and algorithms

• Coverage of classification significantly improved, including topics such as
overfitting, underfitting, and model complexity and selection

• Coverage of anomaly detection greatly revised and expanded – existing
approaches updated and new ones like reconstruction-based detection added

• Over 100 examples, 250 figures, and 150 exercises to help readers better
understand concepts

	Front Cover
	Title Page
	Copyright Page
	Dedication
	Preface to the Second Edition
	Contents
	1 Introduction
	1.1 What Is Data Mining?
	1.2 Motivating Challenges
	1.3 the Origins of Data Mining
	1.4 Data Mining Tasks
	1.5 Scope and Organization of the Book
	1.6 Bibliographic Notes
	1.7 Exercises

	2 Data
	2.1 Types of Data
	2.1.1 Attributes and Measurement
	2.1.2 Types of Data Sets

	2.2 Data Quality
	2.2.1 Measurement and Data Collection Issues
	2.2.2 Issues Related to Applications

	2.3 Data Preprocessing
	2.3.1 Aggregation
	2.3.2 Sampling
	2.3.3 Dimensionality Reduction
	2.3.4 Feature Subset Selection
	2.3.5 Feature Creation
	2.3.6 Discretization and Binarization
	2.3.7 Variable Transformation

	2.4 Measures of Similarity and Dissimilarity
	2.4.1 Basics
	2.4.2 Similarity and Dissimilarity Between Simple Attributes
	2.4.3 Dissimilarities Between Data Objects
	2.4.4 Similarities Between Data Objects
	2.4.5 Examples of Proximity Measures
	2.4.6 Mutual Information
	2.4.7 Kernel Functions*
	2.4.8 Bregman Divergence*
	2.4.9 Issues in Proximity Calculation
	2.4.10 Selecting the Right Proximity Measure

	2.5 Bibliographic Notes
	2.6 Exercises

	3 Classification: Basic Concepts and Techniques
	3.1 Basic Concepts
	3.2 General Framework for Classification
	3.3 Decision Tree Classifier
	3.3.1 A Basic Algorithm to Build a Decision Tree
	3.3.2 Methods for Expressing Attribute Test Conditions
	3.3.3 Measures for Selecting an Attribute Test Condition
	3.3.4 Algorithm for Decision Tree Induction
	3.3.5 Example Application: Web Robot Detection
	3.3.6 Characteristics of Decision Tree Classifiers

	3.4 Model Overfitting
	3.4.1 Reasons for Model Overfitting

	3.5 Model Selection
	3.5.1 Using a Validation Set
	3.5.2 Incorporating Model Complexity
	3.5.3 Estimating Statistical Bounds
	3.5.4 Model Selection for Decision Trees

	3.6 Model Evaluation
	3.6.1 Holdout Method
	3.6.2 Cross-validation

	3.7 Presence of Hyper-parameters
	3.7.1 Hyper-parameter Selection
	3.7.2 Nested Cross-validation

	3.8 Pitfalls of Model Selection and Evaluation
	3.8.1 Overlap Between Training and Test Sets
	3.8.2 Use of Validation Error as Generalization Error

	3.9 Model Comparison*
	3.9.1 Estimating the Confidence Interval for Accuracy
	3.9.2 Comparing the Performance of Two Models

	3.10 Bibliographic Notes
	3.11 Exercises

	4 Association Analysis: Basic Concepts and Algorithms
	4.1 Preliminaries
	4.2 Frequent Itemset Generation
	4.2.1 The Apriori Principle
	4.2.2 Frequent Itemset Generation in the Algorithm
	4.2.3 Candidate Generation and Pruning
	4.2.4 Support Counting
	4.2.5 Computational Complexity

	4.3 Rule Generation
	4.3.1 Confidence-based Pruning
	4.3.2 Rule Generation in Algorithm
	4.3.3 an Example: Congressional Voting Records

	4.4 Compact Representation of Frequent Itemsets
	4.4.1 Maximal Frequent Itemsets
	4.4.2 Closed Itemsets

	4.5 Alternative Methods for Generating Frequent Itemsets*
	4.6 FP-Growth Algorithm*
	4.6.1 FP-Tree Representation
	4.6.2 Frequent Itemset Generation in FP-Growth Algorithm

	4.7 Evaluation of Association Patterns
	4.7.1 Objective Measures of Interestingness
	4.7.2 Measures Beyond Pairs of Binary Variables
	4.7.3 Simpson’s Paradox

	4.8 Effect of Skewed Support Distribution
	4.9 Bibliographic Notes
	4.10 Exercises

	5 Cluster Analysis: Basic Concepts and Algorithms
	5.1 Overview
	5.1.1 What Is Cluster Analysis?
	5.1.2 Different Types of Clusterings
	5.1.3 Different Types of Clusters
	Road Map

	5.2 K-means
	5.2.1 The Basic K-means Algorithm
	5.2.2 K-means: Additional Issues
	5.2.3 Bisecting K-means
	5.2.4 K-means and Different Types of Clusters
	5.2.5 Strengths and Weaknesses
	5.2.6 K-means as an Optimization Problem

	5.3 Agglomerative Hierarchical Clustering
	5.3.1 Basic Agglomerative Hierarchical Clustering Algorithm
	5.3.2 Specific Techniques
	5.3.3 The Lance-williams Formula for Cluster Proximity
	5.3.4 Key Issues in Hierarchical Clustering
	5.3.5 Outliers
	5.3.6 Strengths and Weaknesses

	5.4 DBSCAN
	5.4.1 Traditional Density: Center-based Approach
	5.4.2 The Dbscan Algorithm
	5.4.3 Strengths and Weaknesses

	5.5 Cluster Evaluation
	5.5.1 Overview
	5.5.2 Unsupervised Cluster Evaluation Using Cohesion and Separation
	5.5.3 Unsupervised Cluster Evaluation Using the Proximity Matrix
	5.5.4 Unsupervised Evaluation of Hierarchical Clustering
	5.5.5 Determining the Correct Number of Clusters
	5.5.6 Clustering Tendency
	5.5.7 Supervised Measures of Cluster Validity
	5.5.8 Assessing the Significance of Cluster Validity Measures
	5.5.9 Choosing a Cluster Validity Measure

	5.6 Bibliographic Notes
	5.7 Exercises

	6 Classification: Alternative Techniques
	6.1 Types of Classifiers
	6.2 Rule-Based Classifier
	6.2.1 How a Rule-Based Classifier Works
	6.2.2 Properties of a Rule Set
	6.2.3 Direct Methods for Rule Extraction
	6.2.4 Indirect Methods for Rule Extraction
	6.2.5 Characteristics of Rule-Based Classifiers

	6.3 Nearest Neighbor Classifiers
	6.3.1 Algorithm
	6.3.2 Characteristics of Nearest Neighbor Classifiers

	6.4 Na¨ive Bayes Classifier
	6.4.1 Basics of Probability Theory
	6.4.2 Na¨ive Bayes Assumption

	6.5 Bayesian Networks
	6.5.1 Graphical Representation
	6.5.2 Inference and Learning
	6.5.3 Characteristics of Bayesian Networks

	6.6 Logistic Regression
	6.6.1 Logistic Regression as a Generalized Linear Model
	6.6.2 Learning Model Parameters
	6.6.3 Characteristics of Logistic Regression

	6.7 Artificial Neural Network (ann)
	6.7.1 Perceptron
	6.7.2 Multi-layer Neural Network
	6.7.3 Characteristics of Ann

	6.8 Deep Learning
	6.8.1 Using Synergistic Loss Functions
	6.8.2 Using Responsive Activation Functions
	6.8.3 Regularization
	6.8.4 Initialization of Model Parameters
	6.8.5 Characteristics of Deep Learning

	6.9 Support Vector Machine (svm)
	6.9.1 Margin of a Separating Hyperplane
	6.9.2 Linear SVM
	6.9.3 Soft-margin SVM
	6.9.4 Nonlinear SVM
	6.9.5 Characteristics of SVM

	6.10 Ensemble Methods
	6.10.1 Rationale for Ensemble Method
	6.10.2 Methods for Constructing an Ensemble Classifier
	6.10.3 Bias-Variance Decomposition
	6.10.4 Bagging
	6.10.5 Boosting
	6.10.6 Random Forests
	6.10.7 Empirical Comparison Among Ensemble Methods

	6.11 Class Imbalance Problem
	6.11.1 Building Classifiers with Class Imbalance
	6.11.2 Evaluating Performance with Class Imbalance
	6.11.3 Finding an Optimal Score Threshold
	6.11.4 Aggregate Evaluation of Performance

	6.12 Multiclass Problem
	6.13 Bibliographic Notes
	6.14 Exercises

	7 Association Analysis: Advanced Concepts
	7.1 Handling Categorical Attributes
	7.2 Handling Continuous Attributes
	7.2.1 Discretization-Based Methods
	7.2.2 Statistics-Based Methods
	7.2.3 Non-Discretization Methods

	7.3 Handling a Concept Hierarchy
	7.4 Sequential Patterns
	7.4.1 Preliminaries
	7.4.2 Sequential Pattern Discovery
	7.4.3 Timing Constraints*
	7.4.4 Alternative Counting Schemes*

	7.5 Subgraph Patterns
	7.5.1 Preliminaries
	7.5.2 Frequent Subgraph Mining
	7.5.3 Candidate Generation
	7.5.4 Candidate Pruning
	7.5.5 Support Counting

	7.6 Infrequent Patterns*
	7.6.1 Negative Patterns
	7.6.2 Negatively Correlated Patterns
	7.6.3 Comparisons Among Infrequent Patterns, Negative Patterns, and Negatively Correlated Patterns
	7.6.4 Techniques for Mining Interesting Infrequent Patterns
	7.6.5 Techniques Based on Mining Negative Patterns
	7.6.6 Techniques Based on Support Expectation

	7.7 Bibliographic Notes
	7.8 Exercises

	8 Cluster Analysis: Additional Issues and Algorithms
	8.1 Characteristics of Data, Clusters, and Clustering Algorithms
	8.1.1 Example: Comparing K-means and Dbscan
	8.1.2 Data Characteristics
	8.1.3 Cluster Characteristics
	8.1.4 General Characteristics of Clustering Algorithms
	Road Map

	8.2 Prototype-based Clustering
	8.2.1 Fuzzy Clustering
	8.2.2 Clustering Using Mixture Models
	8.2.3 Self-organizing Maps (SOM)

	8.3 Density-Based Clustering
	8.3.1 Grid-Based Clustering
	8.3.2 Subspace Clustering
	8.3.3 Denclue: A Kernel-Based Scheme for Density-based Clustering

	8.4 Graph-Based Clustering
	8.4.1 Sparsification
	8.4.2 Minimum Spanning Tree (MST) Clustering
	8.4.3 Opossum: Optimal Partitioning of Sparse Similarities Using Metis
	8.4.4 Chameleon: Hierarchical Clustering with Dynamic Modeling
	8.4.5 Spectral Clustering
	8.4.6 Shared Nearest Neighbor Similarity
	8.4.7 the Jarvis-patrick Clustering Algorithm
	8.4.8 SNN Density
	8.4.9 SNN Density-Based Clustering

	8.5 Scalable Clustering Algorithms
	8.5.1 Scalability: General Issues and Approaches
	8.5.2 Birch
	8.5.3 Cure

	8.6 Which Clustering Algorithm?
	8.7 Bibliographic Notes
	8.8 Exercises

	9 Anomaly Detection
	9.1 Characteristics of Anomaly Detection Problems
	9.1.1 A Definition of an Anomaly
	9.1.2 Nature of Data
	9.1.3 How Anomaly Detection is Used

	9.2 Characteristics of Anomaly Detection Methods
	9.3 Statistical Approaches
	9.3.1 Using Parametric Models
	9.3.2 Using Non-Parametric Models
	9.3.3 Modeling Normal and Anomalous Classes
	9.3.4 Assessing Statistical Significance
	9.3.5 Strengths and Weaknesses

	9.4 Proximity-Based Approaches
	9.4.1 Distance-Based Anomaly Score
	9.4.2 Density-Based Anomaly Score
	9.4.3 Relative Density-Based Anomaly Score
	9.4.4 Strengths and Weaknesses

	9.5 Clustering-Based Approaches
	9.5.1 Finding Anomalous Clusters
	9.5.2 Finding Anomalous Instances
	9.5.3 Strengths and Weaknesses

	9.6 Reconstruction-Based Approaches
	9.6.1 Strengths and Weaknesses

	9.7 One-Class Classification
	9.7.1 Use of Kernels
	9.7.2 The Origin Trick
	9.7.3 Strengths and Weaknesses

	9.8 Information Theoretic Approaches
	9.8.1 Strengths and Weaknesses

	9.9 Evaluation of Anomaly Detection
	9.10 Bibliographic Notes
	9.11 Exercises

	10 Avoiding False Discoveries
	10.1 Preliminaries: Statistical Testing
	10.1.1 Significance Testing
	10.1.2 Hypothesis Testing
	10.1.3 Multiple Hypothesis Testing
	10.1.4 Pitfalls in Statistical Testing

	10.2 Modeling Null and Alternative Distributions
	10.2.1 Generating Synthetic Data Sets
	10.2.2 Randomizing Class Labels
	10.2.3 Resampling Instances
	10.2.4 Modeling the Distribution of the Test Statistic

	10.3 Statistical Testing for Classification
	10.3.1 Evaluating Classification Performance
	10.3.2 Binary Classification as Multiple Hypothesis Testing
	10.3.3 Multiple Hypothesis Testing in Model Selection

	10.4 Statistical Testing for Association Analysis
	10.4.1 Using Statistical Models
	10.4.2 Using Randomization Methods

	10.5 Statistical Testing for Cluster Analysis
	10.5.1 Generating a Null Distribution for Internal Indices
	10.5.2 Generating a Null Distribution for External Indices
	10.5.3 Enrichment

	10.6 Statistical Testing for Anomaly Detection
	10.7 Bibliographic Notes
	10.8 Exercises

	Author Index
	Subject Index
	Copyright Permissions
	Back Cover

<<
 /ASCII85EncodePages false
 /AllowTransparency true
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /PDFXOutputConditionIdentifier (FOGRA27)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Pearson 1.4'] [Based on '[PDF/X-4:2007]'] Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-4:2007, an ISO standard for graphic content exchange. For more information on creating PDF/X-4 compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 24
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency true
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /PDFXOutputConditionIdentifier (FOGRA27)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Pearson 1.4'] [Based on '[PDF/X-4:2007]'] Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-4:2007, an ISO standard for graphic content exchange. For more information on creating PDF/X-4 compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 24
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency true
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /PDFXOutputConditionIdentifier (FOGRA27)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Pearson 1.4'] [Based on '[PDF/X-4:2007]'] Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-4:2007, an ISO standard for graphic content exchange. For more information on creating PDF/X-4 compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 24
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency true
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /PDFXOutputConditionIdentifier (FOGRA27)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Pearson 1.4'] [Based on '[PDF/X-4:2007]'] Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-4:2007, an ISO standard for graphic content exchange. For more information on creating PDF/X-4 compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 24
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency true
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /PDFXOutputConditionIdentifier (FOGRA27)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Pearson 1.4'] [Based on '[PDF/X-4:2007]'] Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-4:2007, an ISO standard for graphic content exchange. For more information on creating PDF/X-4 compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 24
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency true
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /PDFXOutputConditionIdentifier (FOGRA27)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Pearson 1.4'] [Based on '[PDF/X-4:2007]'] Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-4:2007, an ISO standard for graphic content exchange. For more information on creating PDF/X-4 compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 24
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency true
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /PDFXOutputConditionIdentifier (FOGRA27)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Pearson 1.4'] [Based on '[PDF/X-4:2007]'] Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-4:2007, an ISO standard for graphic content exchange. For more information on creating PDF/X-4 compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 24
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency true
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /PDFXOutputConditionIdentifier (FOGRA27)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Pearson 1.4'] [Based on '[PDF/X-4:2007]'] Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-4:2007, an ISO standard for graphic content exchange. For more information on creating PDF/X-4 compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 24
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency true
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /PDFXOutputConditionIdentifier (FOGRA27)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Pearson 1.4'] [Based on '[PDF/X-4:2007]'] Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-4:2007, an ISO standard for graphic content exchange. For more information on creating PDF/X-4 compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 24
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency true
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /PDFXOutputConditionIdentifier (FOGRA27)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Pearson 1.4'] [Based on '[PDF/X-4:2007]'] Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-4:2007, an ISO standard for graphic content exchange. For more information on creating PDF/X-4 compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 24
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency true
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /PDFXOutputConditionIdentifier (FOGRA27)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Pearson 1.4'] [Based on '[PDF/X-4:2007]'] Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-4:2007, an ISO standard for graphic content exchange. For more information on creating PDF/X-4 compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 24
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency true
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /PDFXOutputConditionIdentifier (FOGRA27)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Pearson 1.4'] [Based on '[PDF/X-4:2007]'] Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-4:2007, an ISO standard for graphic content exchange. For more information on creating PDF/X-4 compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 24
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

