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Foreword

It is becoming obvious that only by fundamentally rethinking our healthcare systems
we can successfully address the serious challenges we are facing globally.

One of the most significant challenges is the aging of populations, which comes
with a high percentage of chronically ill people, often with multiple conditions. In
addition, there is a rising incidence of preventable lifestyle-related diseases caused
by risk factors such as obesity, smoking, and alcohol consumption. Today, chronic
diseases in EU already result in the loss of 3.4 million potential productive life years,
which amounts to an annual loss of e115 billion for the EU economy. At the same
time, we are being faced with a shortage of qualified healthcare professionals, and
with quality and efficiency issues in the way healthcare is delivered. Finally, public
spending on healthcare is steadily rising. The EU spends around 10% of its GDP
on healthcare. In 2015, US healthcare spending increased 5.8% to $3.2 trillion. The
costs are expected to continue rising—to unaffordable levels.

We need to transition to new care delivery models, addressing the quadruple
aim of (1) improving the health of populations, (2) reducing the per capita cost of
healthcare, (3) improving the patient experience including quality and satisfaction,
and (4) improving the work life of healthcare providers by providing necessary
support.

The good news is that digital technologies are by now so powerful, affordable,
and pervasive, that they help to make these goals achievable. The Internet of Medical
Things and artificial intelligence (AI) in particular are key enablers of the digital
transformation in healthcare. Connected medical devices will soon be everywhere,
from hospital to home, providing a rich variety of data. AI will be instrumental in
turning these data into actionable insights across the continuum of care.

But technology by itself will not be the answer. In the end, healthcare is all about
people. Meaningful innovation occurs when technology enables professionals to
deliver better care and when it empowers consumers and patients to better manage
their own health. This means that applying AI and data science to healthcare requires
a deep understanding of the personal, clinical, or operational context in which they
are used. That is why, at Philips, we believe in the power of adaptive intelligence.
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vi Foreword

Adaptive intelligence combines AI with human domain knowledge to create
solutions that adapt to people’s needs and environments—supporting them in their
daily work and lives. Adaptive intelligence augments people, rather than replacing
them. It acts like a personal assistant that can learn and adapt to the skills and
preferences of the person that uses it, and to the situation he or she is in. The
technology does not call attention to itself, but runs in the background—deeply
integrated into the interfaces and workflows of hospitals, and almost invisibly
embedded into solutions for the consumer environment.

This is not merely a future vision—it is becoming a reality today. This book
includes examples that show how data science and AI-enabled solutions are
already supporting clinical care and prevention of disease or health incidents. It
is very encouraging that advances in AI methods such as machine learning, natural
language processing, and computer vision can all improve people’s lives, when they
are employed wisely.

As we continue to make strides in the digital transformation of healthcare
systems, it is important to be aware of the possibilities of AI and data science—
and how they can be used in an effective and responsible way to help achieve
the quadruple aim. This book will help the reader to learn how to (1) extract new
knowledge from health data to improve healthcare delivery, (2) enable healthcare
systems to deliver better outcomes at lower costs, and (3) support the transition
from an acute, episodic care model to proactive chronic disease management.

Enjoy the read, and join this exciting journey!

Chief Technology Officer, Philips Henk van Houten
Eindhoven, The Netherlands



Preface

Healthcare systems around the world are facing vast challenges in responding to
trends of aging population, the rise of chronic diseases, resources constraints, and
the growing focus of citizens on healthy living and prevention. Consequently, there
is an increasing focus on answering important questions such as: (1) How do we
improve the rate of fast, accurate first-time-right diagnoses? (2) How can we reduce
the huge variance in costs and outcomes in health systems? (3) How do we get
people to take more accountability for their own health? (4) How can we provide
better health care at lower cost?

On the other hand, digitization and rapid advances in ICT technology are
enabling the capture of more data than ever before, including medical health records,
people’s vital signs and their lifestyle, data about health systems, and data about
population health in general. This tsunami of data per se does not immediately result
in better healthcare insights, but, on the contrary, if not used properly, it can be a
burden to people and result in clinicians spending more time with computers than
face to face with patients, or citizens being lost in data they are getting from health
trackers and many different sensors, or, again, patients reluctant to accept assistive
technologies. This is exactly the point where unlocking the power of data science
and artificial intelligence can help by making sense of the large amounts of data,
turning them into actionable insights providing mutual benefits to both patient and
medical professionals, also helping in answering the abovementioned questions.

Aim

The goal of this book is to boost the adoption of data science and artificial
intelligence solutions for healthcare by raising awareness of existing proof points
of these applications and underlying world-class innovations on data science and
artificial intelligence in healthcare. The book builds on several interconnected
disciplines, including advanced machine learning, big data analytics, data mining,
statistics, probabilistic modeling, pattern recognition, computer vision, and seman-
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viii Preface

tic reasoning, with direct application to modern HealthTech. Consequently, it shows
how the advances in the aforementioned scientific disciplines, as well as digital
data platforms, can create value within the healthcare domain and help in reaching
the quadruple aim of improving healthcare outcomes, lowering the cost of care,
enhancing the patient experience, and improving the work life of care providers.

In particular, the focus of this book is threefold. Firstly, the book aims at
demystifying data science and artificial intelligence methods that can be used to
extract new knowledge from health data and to improve healthcare delivery. The
application of digital technologies for healthcare is seeing a gradual transition to
integrated care delivery networks with the consumer at the center. The incoming
trends include increased self-management and individualized treatment paths. Thus,
secondly, the focus is on applications that enable health systems to deliver better
outcomes at lower cost, by boosting the digitization of the healthcare system. This
is the starting point for the application of data science and artificial intelligence
technologies supporting the move from reactive acute care to pro-active chronic
disease management, which is the third focus point of this book. By unlocking the
power of big data, connected health systems will be able to deliver personalized and
industrialized care models that will lead to a new era of outcome-based healthcare.

Organization

The book starts with three solid tutorial chapters on data science in healthcare,
to help readers understand the opportunities and challenges; become familiar
with the latest methodological findings in machine learning, in particular deep
learning, for healthcare; and help them understand how to use and evaluate the
performance of novel data science and artificial intelligence tools and frameworks.
These chapters are followed by 11 other chapters showing successful stories on the
application of the specific data science technologies in healthcare. The discussed
data science technologies and their applications in healthcare focus on, among
others, supervised learning, unsupervised learning, deep learning, natural language
processing, information retrieval, knowledge management and reasoning, data-
to-text, cognitive computation, process mining, smart networking, computational
optimization, visual analytics, and robotics.

Audience

This book is primarily intended for data scientists involved in the healthcare domain.
There is a clear need for healthcare data analysts to make sense of clinical and
personally generated health data more systematically. By reading this book, on
one hand computer scientists involved in the medical sector will be able to learn
the modern effective data science technologies to create innovation for HealthTech
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businesses; on the other, experts involved in the healthcare sector will become more
familiar with the advances in ICT and will be able to analyze and process (big) data
in order to apply these technologies holistically for patient care. Prior knowledge in
data science with real-world applications to the healthcare sector is recommended
to interested readers in order to have a clear understanding of this book.

Final Words

We are quite convinced that artificial intelligence and data science will further
advance, creating a great potential to industrialize the healthcare sector and to
improve the quality of healthcare while managing the costs. In the long run, these
technologies might be so impactful that they could result in a giant leap of humanity,
changing also the healthcare beyond our current expectations and bringing it closer
to maintenance of robotic technology. Let’s see which future we will create. Enjoy
the reading!

Eindhoven, The Netherlands Sergio Consoli
Cagliari, Italy Diego Reforgiato Recupero
Eindhoven, The Netherlands Milan Petković
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4 Z. Abedjan et al.

1 Introduction and Preliminaries

An improvement in health leads to economic growth through long-term gains in
human and physical capital, which ultimately raises productivity and per capita
GDP [27, 35, 61]. The healthcare sector currently accounts for 10% of the EU’s
GDP. In 2014 the EU-28’s total healthcare expenditure was e 1.39 trillion. This
is expected to increase to 30% by 2060. The increase in healthcare costs is primarily
due to a rapidly ageing population (e.g. proportion of individuals aged 65 years and
older is projected to grow from 15% in 2000 to 23.5% by 2030), rising prevalence of
chronic diseases and costly developments in medical technology. Chronic diseases
result in the loss of 3.4 million potential productive life years. This amounts to an
annual loss of e 115 billion for EU economies. However, the EU spends only 3%
of its healthcare budget on prevention, with chronic diseases being among the most
preventable illnesses (https://euobserver.com/chronic-diseases/125922).
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The relatively large share of public healthcare spending in total government
expenditure underscores the need to improve the sustainability of current health
system models. However, the effectiveness of a healthcare system depends on
three components, namely, quality, access and cost. To improve productivity
of the healthcare sector, it is necessary to reduce cost while maintaining or
improving the quality of care provided. The fastest, least costly and most effective
way to achieve this is to use the knowledge that is hiding within the already
existing large amounts of generated medical data (http://www.healthparliament.
eu/documents/10184/0/EHP_papers_BIGDATAINHEALTHCARE.pdf/8c3fa388-
b870-47b9-b489-d4d3e8c64bad). According to current estimates, medical data is
already in the zettabyte scale and will soon reach the yottabyte (https://www.ncbi.
nlm.nih.gov/pmc/articles/PMC4341817/). While most of this data was previously
stored in a hard copy format, the current trend is towards digitization of these large
amounts of data resulting in what is known as Big Data.

This chapter provides an overview of needs, opportunities and challenges of
using (Big) Data Science technologies in the healthcare sector, including several
recommendations:

• Breaking down data silos in healthcare. Access to high-quality, large health-
care datasets will optimize care processes, disease diagnosis, personalized care
and in general the healthcare system. Furthermore, true transformation of the
healthcare sector can only be achieved if all stakeholders and verticals in
the healthcare sector (healthtech industry, healthcare providers, pharma and
insurance companies, etc.) share big data and allow free data flow.

• Standardization and interoperability. In the healthcare sector, data is often
fragmented or generated in different systems with incompatible formats. There-
fore, interoperability and standardization are key to deploy the full potential of
data.

• Privacy and ethics. Health data presents specific challenges and opportunities.
Better clinical outcomes, more tailored therapeutic responses and disease man-
agement with improved quality of life are all appealing aspects of data usage
in health. However, because of the personal and sensitive nature of health data,
special attention needs to be paid to legal and ethical aspects concerning privacy,
as well as to privacy-preserving technologies that can overcome these barriers.

• Increased focus on prevention. Currently, 97% of healthcare budgets are spent
on treating patients both with acute and chronic conditions. Only 3% is spent on
prevention, with chronic diseases being among the most preventable illnesses.
Considering the economic impact of chronic diseases on the productivity of the
EU workforce, an increased focus on primary and secondary prevention is clearly
needed.

http://www.healthparliament.eu/documents/10184/0/EHP_papers_BIGDATAINHEALTHCARE.pdf/8c3fa388-b870-47b9-b489-d4d3e8c64bad
http://www.healthparliament.eu/documents/10184/0/EHP_papers_BIGDATAINHEALTHCARE.pdf/8c3fa388-b870-47b9-b489-d4d3e8c64bad
http://www.healthparliament.eu/documents/10184/0/EHP_papers_BIGDATAINHEALTHCARE.pdf/8c3fa388-b870-47b9-b489-d4d3e8c64bad
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4341817/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4341817/
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• Policy. Dealing with different health data protection regimes across EU Member
States creates difficulties in accessing and sharing health data at EU level. The
implementation of the GDPR is an opportunity to look for alignment. Finally,
innovative approaches to healthcare, such as value-based healthcare, should
be supported by policy to drive the transformation of the healthcare sector.
Developing policies and technologies will contribute towards enabling the digital
single market strategy.

To prove the impact of these recommendations, it is essential to demonstrate the
value created by Data Science in large-scale pilots. These pilots are meant to serve as
the best practice examples of transforming the health sector with the aim to increase
its quality, decrease costs and improve accessibility. This can be done by putting
Data Science technologies at their core with the goal that their results can be scaled
up and potentially transferred to other sectors.

2 Healthcare Opportunities

The healthcare [35] sector currently accounts for 8% of the total European
workforce and for 10% of the EU’s GDP [31]. However, public expenditure on
healthcare and long-term care is expected to increase by one third by 2060 [35].
This is primarily due to a rapidly ageing population, rising prevalence of chronic
diseases and costly developments in medical technology. The relatively large share
of public healthcare spending in total government expenditure, combined with
the need to consolidate government budget balances across the EU, underscores
the need to improve the sustainability of current health system models. Evidence
suggests that by improving the productivity of the healthcare system, public
spending savings would be large, approaching 2% of GDP on average in the
OECD [30] which would be equivalent to e 330 billion in Europe based on GDP
figures for 2014 [27].

Data Science technologies have already made some impact in fields related
to healthcare: medical diagnosis from imaging data in medicine, quantifying
lifestyle data in the fitness industry, just to mention a few. Nevertheless, for
several reasons that will be discussed in the book, healthcare has been lagging
in taking data analytics approaches, which is a paradoxical situation, since it was
already estimated by the Ponemon Institute in 2012 that 30% of all the electronic
data storage in the world was occupied by the healthcare industry [29]. It is
evident that within existing mounds of big data, there is hidden knowledge that
could change the life of a patient or, at a very large extent, change the world
itself. Extracting this knowledge is the fastest, least costly and most effective
path to improving people’s health (http://www.healthparliament.eu/documents/
10184/0/EHP_papers_BIGDATAINHEALTHCARE.pdf/8c3fa388-b870-47b9-
b489-d4d3e8c64bad).

http://www.healthparliament.eu/documents/10184/0/EHP_papers_BIGDATAINHEALTHCARE.pdf/8c3fa388-b870-47b9-b489-d4d3e8c64bad
http://www.healthparliament.eu/documents/10184/0/EHP_papers_BIGDATAINHEALTHCARE.pdf/8c3fa388-b870-47b9-b489-d4d3e8c64bad
http://www.healthparliament.eu/documents/10184/0/EHP_papers_BIGDATAINHEALTHCARE.pdf/8c3fa388-b870-47b9-b489-d4d3e8c64bad
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Data Science technologies will definitely open new opportunities and enable
breakthroughs related to, among the others, healthcare data analytics (http://www.
gartner.com/it-glossary/predictive-analytics/) addressing different perspectives: (1)
descriptive, to answer what happened; (2) diagnostic, to answer the reason why it
happened; (3) predictive, to understand what will happen; and (4) prescriptive, to
detect how we can make it happen.

It is out of any doubt that the potential impact of Data Science on technology,
economic and society is extremely relevant, boosting innovations in organizations
and leading to the improvement of business models. This chapter emphasizes that
Data Science has the potential to unlock vast productivity bottlenecks and radically
improve the quality and accessibility of the healthcare system and discusses steps
that need to be taken towards a large and in-depth adoption.

2.1 Economic Potential

The rapidly ageing population is contributing to the ever-increasing demands as
chronic diseases are more prevalent in the elderly. The number of people aged
85 years and older is projected to rise from 14 million to 19 million by 2020
and to 40 million by 2050 [32]. The effect of these ever-increasing demands is
clearly illustrated by a study conducted by Accenture in 2014 which found that a
third of European hospitals had reported operating losses [1]. This only exacerbates
the fact that countries in Europe are finding it increasingly challenging to provide
good-quality care at a reasonable cost to their citizens when it is needed [61]. The
concept of the Iron Triangle of Healthcare [38] is often quoted to describe this
very challenge. The three components of the triangle are quality, access and cost.
Efficacy, value and outcome of the care reflect the quality of a healthcare system.
Access describes who can receive care when they need it. Cost represents the price
tag of the care and the affordability of the patients and payers. The problem is that
all the components are typically in competition with one another in the healthcare
sector. Thus while it may be possible to improve any one or two components, in
most of the cases this comes at the expense of the third [38], as illustrated in Fig. 1.

However, while the present healthcare optimization approaches may help intro-
duce minor changes in the balance of the Iron Triangle of Healthcare, only a radical
breakthrough has the potential to totally disrupt the Iron Triangle of Healthcare such
that all three components including quality, access and cost are all further optimized
simultaneously. Given that healthcare is one of the most data-intensive industries
around, the multitude of high volume, high variety, high veracity and value of data
sources within the healthcare sector has the potential to disrupt the Iron Triangle
of Healthcare. While most of this healthcare data was previously stored in a hard
copy format, the current trend is towards digitization of these large amounts of data,
which can facilitate this process.

http://www.gartner.com/it-glossary/predictive-analytics/
http://www.gartner.com/it-glossary/predictive-analytics/
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Fig. 1 The examples indicate how current approaches to healthcare improvement often lead to
suboptimal solutions

2.2 Technical and Organizational Challenges

Although there is already a huge amount of healthcare data around the world and
while it is growing at an exponential rate, nearly all of the data is stored in individual
silos [14]. Data collected by a general practice (GP) clinic or by a hospital is mostly
kept within the boundaries of the healthcare provider. Moreover, data stored within
a hospital is hardly ever integrated across multiple IT systems. For example, if
we consider all the available data at a hospital from a single patient’s perspective,
information about the patient will exist in the EMR system, laboratory, imaging
system and prescription databases. Information describing which doctors and nurses
attended to the specific patient will also exist. However, in the vast majority of cases,
every data source mentioned here is stored in separate silos. Thus deriving insights
and therefore value from the aggregation of these datasets is often not possible at
this stage. It is also important to realize that in today’s world a patient’s medical data
does not only reside within the boundaries of a healthcare provider. The medical
insurance and pharmaceutical industries also hold information about specific claims
and the characteristics of prescribed drugs, respectively. Increasingly, patient-
generated data from IoT (Internet of Things) devices such as fitness trackers, blood
pressure monitors and weighing scales provide critical information about the day-
to-day lifestyle characteristics of an individual. Insights derived from such data
generated by the linking among EMR data, vital data, laboratory data, medication
information, symptoms (to mention some of these) and their aggregation, even more
with doctor notes, patient discharge letters, patient diaries and medical publications,
namely, linking structured with unstructured data, can be crucial to design coaching
programmes that would help improving peoples’ lifestyles and eventually reduce
incidences of chronic disease, medication and hospitalization.

As the healthcare sector transitions from a volume- to value-based care model, it
is essential for different stakeholders to get a complete and accurate understanding
of treatment trajectories of specific patient populations. The only way to achieve this
is to be able to aggregate the disparate data sources not just within a single hospital’s
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IT infrastructure but also across multiple healthcare providers, other healthcare
players (e.g. insurance and pharma) and even consumer-generated data. Such unified
datasets would not only bring benefits to every player within the healthcare industry
(thus allowing better-quality care and access to healthcare at lower costs) but the
population health in general, and the patient in particular, by providing first-time
right treatment based on a sustainable pricing model.

However, achieving such a vision which involves the integration of such disparate
healthcare datasets in terms of data granularity, quality and type (e.g. ranging from
free text, images, (streaming) sensor data to structured datasets) poses major legal,
business and technical challenges from a data perspective, in terms of the volume,
variety, veracity and velocity of the datasets. The only way to successfully address
these challenges is to utilize big data and Data Science.

“Big Data” has a wide range of definitions in health research [5, 51]. However, a
viable definition of what Big Data means for healthcare is the following: “Big Data
in Health encompasses high volume, high diversity biological, clinical, environmen-
tal, and lifestyle information collected from single individuals to large cohorts, in
relation to their health and wellness status, at one or several time points” [4]. A
more general definition of Big Data refers to “datasets whose size is beyond the
ability of typical database software tools to capture, store, manage and analyse”
(McKinsey Global Institute). This definition puts the accent on size/volume, but,
as we stated above, the dimensions are many: variety (handling with a multiplicity
of types, sources and format), data veracity (related to the quality and validity of
these data) and data velocity (availability in real time). In addition, there are other
factors that should also be considered such as data trustworthiness, data protection
and privacy (due to the sensitivity of data managed). All these aspects lead to the
need for new algorithms, techniques and approaches to handle these new challenges.

3 Opportunities with Most Impact

This section describes particular areas in health (including healthy living and
healthcare) that would most benefit from the application of Data Science.

3.1 Healthy Living: Prevention and Health Promotion

3.1.1 Lifestyle Support

Data analytics technologies could help provide more effective tools for behavioural
change. Especially mobile health (mHealth) has the potential to personalize inter-
ventions, taking advantage of lifestyle data (nutrition, physical activity, sleep) and
coaching style effectiveness data from large reference populations. Besides pro-
viding information to people, mHealth technologies exploit contextual information
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which is the key to personal and precision medicine. This can help provide a fully
integrated picture of what influences progress and setbacks in therapy.

3.1.2 Better Understanding of Triggers of Chronic Diseases for Effective
Early Detection

Data Science tools can support ongoing research into better understanding the
relation between social and physical behaviours, nutrition, genetic factors, envi-
ronmental factors and the development of mental/physical diseases. The complex
interactions between the different systems that determine disease progression are
still not fully understood, and it is expected that an integrated view of health based
on various markers (i.e. omics, quantified self-data) can help improve early detection
of diseases and long-term management of adverse health factors, thereby reducing
costs.

3.1.3 Population Health

Public health policy is based on a thorough analysis of the health status of a
population stratified by region and socio-economic status (SES) in order to define
and focus on societal actions to improve health outcomes. Big data analysis can
guide policies to address a certain population segment by specific interventions.
The success of the policy is critically dependent on the quality of the underlying
research and the quality (effectiveness) of the interventions. For many interventions
(for instance, in the social/mental health domain), universally accepted methods
for validating success are still lacking. There are several challenges regarding Data
Science and population health such as:

• Data protection regulation makes it difficult to analyse data from different
healthcare providers and services in combination;

• A significant part of the population health records is unstructured text;
• There are interoperability, data quality and data integration limitations;
• Existing systems are not dynamically scalable to manage and maintain Big Data

structures.

The large-scale, systematic and privacy-respecting measurement and collection
of outcomes along with careful validation involving advanced statistical methods
for handling missing data will allow for strengthening the evidence base for
policymaking and developing more precise and effective (stratified/personalized)
interventions.
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3.1.4 Infectious Diseases

Technology in recent years has made it possible to not only get data from
the healthcare environment (hospitals, health centres, laboratories, etc.) but also
information from society itself (sensors, monitoring, IoT devices, social networks,
etc.). The health environments would benefit directly through the acquisition and
analysis of the information generated in any kind of social environment such as
social networks, forums, chats, social sensors, IoT devices, surveillance systems,
virtual worlds, to name a few. These environments provide an incredible and
rich amount of information that could be analysed and applied to the benefit
of public health. Combining information from informal (e.g. web-based searches
and Google) and syndromic surveillance and diagnostic data including the next-
generation sequencing can provide much earlier detection of disease outbreaks and
detailed information for understanding links and transmission [9]. The ARGO [39]
model, for instance, uses several data sources, including Google search data to
create a predictive model for influenza. Different systems have been created to track
disease activity levels (http://journals.plos.org/plosone/article?id=10.1371/journal.
pone.0019467) or spread dynamics and surveillance (http://dl.acm.org/citation.
cfm?id=2487709; http://journals.plos.org/plosone/article?id=10.1371/journal.pone.
0055205; http://link.springer.com/article/10.1007/s10916-016-0545-y) using social
information provided by Twitter. Analysing these data in combination with explana-
tory variables, such as travel, trade, climate changes, etc., could allow for the devel-
opment of predictive models for population-based interventions as well as improved
individual patient treatment. Governmental public health experts can better detect
early signs of disease outbreaks (http://searchhealthit.techtarget.com/feature/Social-
data-a-new-source-for-disease-surveillance; e.g. influenza, bacterial-caused food
poisoning) and coordinate quarantine and vaccination responses.

3.2 Healthcare

3.2.1 Precision Medicine

The systematic collection and analysis of genetic data in combination with diseases,
therapies, and outcomes has the potential to dramatically improve the selection of
the best treatments, avoiding the harming of patients, and the use of ineffective
therapies. The availability of historical longitudinal patient data concerning envi-
ronmental exposure and lifestyle would also help better determine the (ensemble
of) causes triggering the onset of a disease state. An important new technology
driving precision medicine is high-performance genome analysis. The vast amount
of genomic data that will become available enables new analytical algorithms for
clinical use. It will, for example, become possible to compare whole genomes of
patients against a large population of other individuals. Screening large genomic
databases for rare diseases located at different centres is such an example. This

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0019467
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0019467
http://dl.acm.org/citation.cfm?id=2487709
http://dl.acm.org/citation.cfm?id=2487709
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0055205
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0055205
http://link.springer.com/article/10.1007/s10916-016-0545-y
http://searchhealthit.techtarget.com/feature/Social-data-a-new-source-for-disease-surveillance
http://searchhealthit.techtarget.com/feature/Social-data-a-new-source-for-disease-surveillance
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process is complex, since data is non-centralized, and—if the data is not readily
available yet—it requires large amounts of computing power.

3.2.2 Collecting Patient-Reported Outcomes and Total Pathway Costs
for Value-Based Healthcare

A guiding principle for sustainable healthcare is “value-based healthcare” (VBHC)
Porter [62], where patient-reported outcomes, normalized by the total cost of the
care path, determine the decision to pay for a specific treatment. In healthcare, pay
for performance is a model that offers financial incentives to healthcare provider for
improving quality and effectiveness of healthcare by meeting certain performance
measures (e.g. a healthcare provider is not paid for the time spent treating a patient
but for the outcome). In order to make VBHC reality, data must be collected,
analysed and aggregated regarding care paths, therapies and costs. In particular,
“patient-related health outcomes” need to be collected and verified before, during
and after treatments, all of which is not currently common practice. On the other
hand, it is also a challenge to reorganize administrative care systems to be able to
connect all the involved costs of specific care paths in order to have an accurate
estimate of the full costs involved. As soon as care processes have been linked
and care paths can be traced, decisions for particular therapies can be based on
empirical evidence, as supported by a huge database of “patient-reported outcomes”
(patient self-assessment of health parameters based on, e.g. questionnaires and
tracking devices) of patients with similar diseases and the associated total cost of
treatments and therapies. It is essential that the methods to collect patient-reported
health outcomes and costs per therapy/care path are standardized and validated.

3.2.3 Optimizing Workflows in Healthcare

The manufacturing industry involves processes which are in many cases predictable.
However, conditions within a hospital are highly dynamic and often dependent on
a huge number of interrelated factors spanning the patients themselves and their
needs, multiple departments, staff members and assets. This volatile situation makes
any form of workflow orchestration to improve productivity highly challenging
unless hospital staff and administrators have a proper overview of the hospital’s
operation. This makes it essential for a healthcare provider to have necessary tools
to integrate multiple data streams such as real-time location tracking systems, elec-
tronic medical records, nursing information systems, patient monitors, laboratory
data and machine logs to automatically identify the current operational state of a
hospital. This allows more effective decision-making that results in better resource
utilization and thus higher productivity and quality.
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3.2.4 Infection Prevention, Prediction and Control

Data Science can make a difference in very specific healthcare challenges too. For
example, infection control is the discipline concerned with preventing hospital-
acquired or healthcare-associated infection (HAI). According to the European
Centre for Disease Prevention and Control [22], 100,000 patients are estimated
to acquire a healthcare-associated infection in the EU each year. The number of
deaths occurring as a direct consequence of these infections is estimated to be
at least 37,000, and these infections are thought to contribute to an additional
110,000 deaths each year. It is estimated that approximately 20–30% of healthcare-
associated infections are preventable by intensive hygiene and control programmes.
Furthermore, the Centres for Disease Control and Prevention in the USA estimated
722,000 HAIs in US acute care hospitals in 2011. About 75,000 hospital patients
with HAIs died during their hospitalizations [26]. Preventing HAIs could save
$25–32 billion in the USA alone [58]. The World Health Organization has strict
guidelines on protocols that need to be followed to minimize the risk of the spread
of infection. While some of the guidelines are easy to implement and follow, there
are others that are hard to implement simply due to the lack of any technology that
can ensure strict adherence to the guidelines. Real-time and big data technologies
are needed to integrate genomics with epidemiology data not to just control but also
prevent and predict the spread of infections within a healthcare setting.

3.2.5 Social-Clinical Care Path

Healthcare is moving towards an integrated care approach, which according to the
definition of the World Health Organization (WHO) is “a concept bringing together
inputs, delivery, management and organization of services related to diagnosis,
treatment, care, rehabilitation and health promotion. Integration is a means to
improve services in relation to access, quality, user satisfaction and efficiency [24]”.
Care integration means the involvement of both clinical and social actors (e.g. care
workers) which are active in care management after the patients are discharged from
the hospital but still need assistance and care. This defines new pathways involving
different actors from different domains all managing and generating data evolving
around the patient. The data collected in the operation of these care pathways can be
used to identify inefficiencies and to recommend “optimal treatment pathways” [43].

3.2.6 Patient Support and Involvement

In addition to collecting patient-reported health outcomes, there are other
opportunities for patient empowerment and involvement. Notable examples are
patient-centred care paths, patient-controlled health data and shared decision-
making of clinicians together with patients. For all these methods, the control of
patients on their own health data is vital. The patient controls for managing health
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data should support different levels of digital/health literacy and allow tracking
patient consent of opting in/out for clinical research studies. For example, web
fora of patient organizations play an important role in exchanging information
about disease, medication and coping strategies, complementary to regular patient
briefing information. Recent studies show that mining these fora can yield valuable
hypotheses for clinical research and practice (e.g. chronomedication or side
effects [41]). Also, new approaches to interact with the general population directly,
e.g. via crowdsourcing, analysing search logs (http://blogs.microsoft.com/next/
2016/06/07/how-web-search-data-might-help-diagnose-serious-illness-earlier/#
sm.0001mr81jwowvcp6zs81tmj7zmo81) or AI-based chatbots, are ways to collect
information that previously was not available.

3.2.7 Shared Decision Support

By emphasizing the patient’s involvement within decision processes, patients are
able to gain a better understanding of all health-related issues. In this sense, giving
patients control over and insight in their own health data can help strengthen
patient-centred care after decades of a disease-centred model of care and allow
the easier customization of healthcare and precision medicine. Logically, lifestyle
data collected and aggregated into meaningful information should motivate patients
to achieve higher compliance rates and lower pharmaceutical costs. Meaningful
information critically depends on the ability of systems to quantify the inherent
uncertainty involved in the diagnosis and also the uncertainty with respect to the
outcomes of treatment alternatives and associated risks.

3.2.8 Home Care

Professional tracking and recording of medical data as well as personal data
should not be limited to only hospitals and doctors. Due to demographic changes,
new models for home care or outpatient care (facilities) have to be developed.
Data Science can support the general ICT-based transformation in this area. By
combining smart home technologies, wearables, clinical data and periodic vital
sign measurements, home care providers could remotely support, by an expanded
healthcare infrastructure, individuals (chronically ill or elderly), who will be
empowered to live longer on their own.

3.2.9 Clinical Research

The integration and analysis of the huge volume of health data coming from many
different resources such as electronic health records, social media environments,
drug and toxicology databases and all the “omics” data such as genomics, pro-
teomics and metabolomics is a key driver for the change from (population-level)

http://blogs.microsoft.com/next/2016/06/07/how-web-search-data-might-help-diagnose-serious-illness-earlier/#sm.0001mr81jwowvcp6zs81tmj7zmo81
http://blogs.microsoft.com/next/2016/06/07/how-web-search-data-might-help-diagnose-serious-illness-earlier/#sm.0001mr81jwowvcp6zs81tmj7zmo81
http://blogs.microsoft.com/next/2016/06/07/how-web-search-data-might-help-diagnose-serious-illness-earlier/#sm.0001mr81jwowvcp6zs81tmj7zmo81
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evidence-based medicine towards precision medicine. Data Science can enhance
clinical research by:

• discovering hidden patterns and associations within the heterogeneous data,
uncovering new biomarkers and drug targets

• allowing the development of predictive disease progression models;
• analysing real-world data (RWD) as a complementary instrument to clinical

trials, for the rapid development of new personalized medicines (http://www.
pmlive.com/pharma_thought_leadership/the_importance_of_real-world_data_
to_the_pharma_industry_740092). The development of advanced statistical
methods for learning causal relations from large-scale observational data is a
crucial element for this analysis.

A prerequisite for the effective use and reuse of the various kinds of data for
clinical research is that the data is FAIR (Findable, Accessible, Interoperable,
Reusable) [63]. To support this requirement, organizations like the World Wide
Web Consortium (W3C) have worked on the development of interoperability guide-
lines (https://www.w3.org/blog/hcls/) in the realm of healthcare and life sciences.

3.3 Healthcare Data Stewardship Challenges

In addition to requiring data to be FAIR, it is also crucial to store health data in
secure and privacy-respecting databases. Trustworthiness is the main concern of
individuals (citizens and patients) when faced with the usage of their health-related
data. Intentional or unintentional disclosure of, e.g. medication record, lifestyle
data and health risks can compromise individuals and their relatives. National
governments and the EU are faced with the problem of integrating the diverse
legal regulations and practices on sensitive data and their analysis. This has to fit to
the needs of society (all of society, including patients), research institutes, medical
institutes, insurance schemes and all healthcare providers, as well as companies and
many more stakeholders.

Currently various approaches exist for analysing data sources available in a
specific domain or for connecting these different databases across domains or
repositories. Still several conflicts and risks have to be addressed to accomplish
the ambitious plan of combining health databases by new anonymization and
pseudonymization approaches to guarantee privacy. Analysis techniques need to be
adapted to work with encrypted or distributed data [50]. The close collaboration
between domain experts and data analysts along all steps of the data analytics chain
is of utmost importance.

http://www.pmlive.com/pharma_thought_leadership/the_importance_of_real-world_data_to_the_pharma_industry_740092
http://www.pmlive.com/pharma_thought_leadership/the_importance_of_real-world_data_to_the_pharma_industry_740092
http://www.pmlive.com/pharma_thought_leadership/the_importance_of_real-world_data_to_the_pharma_industry_740092
https://www.w3.org/blog/hcls/
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4 Privacy, Ethics and Security

This section will document the regulations, which influence and drive the adoption
of Data Science in terms of privacy, data protection and ethics.

In this increasingly digital and connected world, where there are more oppor-
tunities to access and combine databases from various sources, we can assume
that more insights and information can and will be derived from records of patient
data/people’s activities. This implies that various parties could also misuse the new
discovery [28]. In this respect, a lot of skepticism with regard to “where the data
goes to”, “by whom it is used” and “for what purpose” is present in most public
opinion, and, so far, European and international fragmented approaches together
with an overly complex legal environment did not help.

However, a new General Data Protection Regulation (GDPR), replacing the
previous Data Protection Directive (1995), was adopted in April 2016 and aims at
harmonizing legislation across EU Member States. As a “regulation”, the GDPR
applies to all Member States without the need of transposition into national
legislation. The GDPR was implemented by mid-2018 to allow public and private
sector to adapt their organizational measures to the new legal framework.

The Regulation also provides a margin of manoeuvre for Member States to
specify their rules including the processing of special categories of personal data
(“sensitive data”). Thus the Regulation does not prevent Member States’ law from
setting out the circumstances for specific processing situations, e.g. introducing
“further conditions, including limitations, with regard to the processing of genetic
data, biometric data, and data concerning health”. As a result, it is probable that
different data protection implementations for health data will continue persisting
across the European Union. To enable the single EU digital market also in the
healthcare sector, it is of utmost importance to harmonize the national member state
laws that regulate sensitive health data.

The adopted legislation went through long discussions and reflects a tension
between fostering and facilitating innovation (e.g. establishment of a single Euro-
pean Data Protection Board comprising all national data protection authorities,
harmonization of laws, etc.) and a political drive to protect privacy and enable
individual citizens’ control over their data. The latter is strictly connected with
Articles 7 and 8 in the Charter of Fundamental Rights of the European Union
on the “respect for private and family life” and the “protection of personal data”,
respectively.

Health data presents specific challenges and opportunities. Better clinical
outcomes, more tailored therapeutic responses and disease management with
improved quality of life are all appealing aspects of data usage in health. However,
because of the personal and sensitive nature of health data, special attention needs
to be paid to legal and ethical aspects concerning privacy. To unlock its potential,
health (and genomic) data sharing, with all the challenges it presents, is often
necessary, and much work is currently being done to ensure such endeavours are
undertaken responsibly (https://genomicsandhealth.org/about-the-global-alliance/

https://genomicsandhealth.org/about-the-global-alliance/key-documents/framework-responsible-sharing-genomic-and-health-related-data
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key-documents/framework-responsible-sharing-genomic-and-health-related-data).
In this context, the temptation needs to be resisted to see free data flow and
data protection as irreconcilable opposites.1 Data sharing can bring benefit at
individual and societal levels and therefore should be further promoted; for example,
organizations can put in place appropriate technical and organizational measures to
mitigate privacy risks.

Besides top-down approaches to protect the privacy of people, there are other
ways in which the community can enhance ethical approaches to data and support
the understanding of the delicate nuances of working in this field. Internet data
and big data tend to blur the lines between areas that are traditionally perceived as
separate and that are a stronghold of how to use data and, for example, do research
on these. They complicate the distinction between what is public and private (e.g.
social media), between people and the data they produce, whether data producers
can be considered “human subjects” for research and if people are even aware of
being such a subject (e.g. passive sensing) and finally raise issues on accountability,
transparency and the unanticipated consequences of automation (e.g. algorithmic
decisions, autonomous machines).

To support data users in understanding this difficult landscape, ethical
guidelines have been generated, and professional codes of conduct are being
discussed among different communities of practice (http://aoir.org/reports/ethics2.
pdf). Simultaneously, efforts to embed ethical thinking in the engineering and
innovation community (e.g. value sensitive design (http://www.vsdesign.org/)
and the responsible research and innovation frameworks (https://ec.europa.eu/
programmes/horizon2020/en/h2020-section/responsible-research-innovation)) are
also being promoted to ensure technologies that are designed to anticipate
consequences, mitigate risks and encourage “privacy by design”. Privacy by
design is an essential principle to establish privacy-aware computing environments.
In this context, “consent” by a data subject to the processing of health-related
data plays a key role. When applying Data Science, it will not be uncommon to
process thousands or millions of health data points originating from data subjects.
However, this processing must thus similarly respect thousands or millions of
specific consent agreements to the processing of each subject’s data. The need to
automate such a verification process becomes obvious, and there are ongoing efforts
(https://genomicsandhealth.org/working-groups/our-work/automatable-discovery-
and-access) to represent consent data types in computer-readable format allowing
for the automated discovery of accessible data across networked environments. In
line with above, there have been also refined approaches enabling joint analysis
of data without the need to share it, which are based on privacy-preserving data
analytics techniques. Processing medical data brings major privacy challenges

1In the EU context, it has been pointed out that, even though the argument for free data flow and
privacy are both strong, the latter prevails and the “solution must respect the rights of the individual
to data protection, as laid down in the EU Charter, which also specifies that such data must be
processed fairly for specified purposes and on the basis of the consent of the person concerned or
some other legitimate basis laid down by law” (EAPM 2013: 38).

https://genomicsandhealth.org/about-the-global-alliance/key-documents/framework-responsible-sharing-genomic-and-health-related-data
http://aoir.org/reports/ethics2.pdf
http://aoir.org/reports/ethics2.pdf
http://www.vsdesign.org/
https://ec.europa.eu/programmes/horizon2020/en/h2020-section/responsible-research-innovation
https://ec.europa.eu/programmes/horizon2020/en/h2020-section/responsible-research-innovation
https://genomicsandhealth.org/working-groups/our-work/automatable-discovery-and-access
https://genomicsandhealth.org/working-groups/our-work/automatable-discovery-and-access
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in terms of who can process data and for what purpose. In particular, for joint
analysis on data from different providers (e.g. hospitals), there is typically no single
place in which the data can be collected and processed. Anonymization may require
removing so much information from datasets that the quality of the analysis severely
degrades. With privacy-preserving data analytics, on the other hand, different
providers can contribute non-anonymized sensitive inputs to an analysis without
the need to collect the data in one place. Smart use of encryption guarantees that
no sensitive information leaves the provider—only the (non-sensitive) aggregated
result of the analysis is shared.

5 Technology Landscape

This section provides a technology landscape on the application of Data Science
to healthcare, in terms of (1) the technical challenges; (2) the various enabling
platforms, services and infrastructures; and (3) data analytics methods, along with
several success stories.

5.1 Technical Challenges

In the following, technical challenges and opportunities are discussed regarding the
application of Data Science in healthcare.

5.1.1 Data Quality

There is the need to have reliable and reproducible results particularly in medical
and pharmaceutical research where data gathering is extremely expensive. Data
provenance provides an understanding of the source of the data—how it was
collected, under which conditions but also how it was processed and transformed
before being stored. This is important not only for reproducibility of analysis and
experiments but also for understanding the reliability of the data that can affect
outcomes in clinical and pharmacological research. As the complexity of operations
grows, with new analysis methods being developed quite rapidly, it becomes key to
record and understand the origin of data which in turn can significantly influence
the conclusion from the analysis.

5.1.2 Data Quantity

The health sector is a knowledge-intensive industry depending on data and analytics
to improve therapies and practices. There has been tremendous growth in the
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range of information being collected, including clinical, genetic, behavioural,
environmental, financial and operational data [47]. Healthcare data is growing at
staggering rates that have not been seen in the past. There is a need to deal with this
large volume and velocity of data to derive valuable insights to improve healthcare
quality and efficiency. Organizations today are gathering a large volume of data from
both proprietary data sources and public sources such as social media and open data.
Through better analysis of these big data datasets, there is a significant potential
to better understand stakeholder (e.g. patient, clinician) needs, optimize existing
products and services as well as develop new value propositions. The breakthrough
technologies, such as deep learning, require large quantities of data for training
purposes. This data needs to come with annotations (ground truth). It is still very
challenging in healthcare to arrange large quantity of representative data with high-
quality annotations.

5.1.3 Multimodal Data

In healthcare, different types of information are available from different sources
such as electronic healthcare records; patient summaries; genomic and pharma-
ceutical data; clinical test results; imaging (e.g. X-ray, MRI, etc.); insurance
claims; vital signs from, e.g. telemedicine; mobile apps; home monitoring; ongoing
clinical trials; real-time sensors; and information on wellbeing, behaviour and
socioeconomic indicators. This data can be both structured and unstructured. The
fusion of healthcare data from multiple sources could take advantage of existing
synergies between data to improve clinical decisions and to reveal entirely new
approaches to treat diseases [42]. For instance, the fusion of different health
data sources could make the study and correlation of different phenotypes (e.g.
observed expression of diseases or risk factors) possible that have proved difficult
to accurately characterize from a genomic point of view only and thus enable
the development of automatic diagnostic tools and personalized medicine. The
combination and analysis of multimodal data poses several technical challenges
related to interoperability, machine learning and mining.

Integration of multiple data sources is only possible if there are on the one
hand de jure or de facto standards and data integration tooling and on the other
hand methods and tools for integrating structured and unstructured (textual, sound,
image) data. An example for the interoperability and data integration limitations is
the relation between national and international health data standards. For example,
in Germany, the xDT family of standards (ftp://ftp.kbv.de/ita-update/Abrechnung/
KBV_ITA_VGEX_Datensatzbeschreibung_KVDT.pdf) is widely used by physi-
cians and healthcare administration. xDT is not yet mapped to FHIR (http://hl7.
org/implement/standards/fhir/index.html), its international counterpart in the HL7
framework. Without such a mapping, a Data Science solution will not be able to
integrate the data fields relevant for a given analytics task.

ftp://ftp.kbv.de/ita-update/Abrechnung/KBV_ITA_VGEX_Datensatzbeschreibung_KVDT.pdf
ftp://ftp.kbv.de/ita-update/Abrechnung/KBV_ITA_VGEX_Datensatzbeschreibung_KVDT.pdf
http://hl7.org/implement/standards/fhir/index.html
http://hl7.org/implement/standards/fhir/index.html
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5.1.4 Data Access

Although there is a sense of great opportunities regarding the analysis of health
data for improving healthcare, there are very important barriers that limit the access
and sharing of health data among different institutions (see the previous section
on “Privacy, Ethics and Security”) and countries. Political concerns, ethics and
emotional aspects have a significant weight in this area. Privacy concerns form a
very important aspect that needs to be overcome as well. There is a high degree of
fragmentation in the health sector: collected data is not shared among institutions,
even not within departments. This leads to the existence and spread of different
isolated data silos that are not fully exploited. Insights cannot be derived from
datasets that are disconnected. Top-down Data Science initiatives have not made
much progress so far, and then several efforts are now focusing on a bottom-
up approach. Changing the perspective to be patient-oriented gives patients more
control over their data. Patients should thus be able to access their own data and
decide whom to share it with and for what purpose. Examples are the social network
PatientsLikeMe, which not only allows patients to interact and learn from other
people with the same conditions but also provides an evidence base of personal data
for analysis and a platform for linking patients with clinical trials.

5.1.5 Patient-Generated Data

Patient-generated health data (PGHD [16]) is defined as “health-related data includ-
ing health history, symptoms, biometric data, treatment history, lifestyle choices
which is created, recorded, gathered, inferred by, or from patients/caregivers to help
address a health concern” (http://jop.ascopubs.org/content/early/2015/04/07/JOP.
2015.003715.full#ref-3). This is differentiated from data generated during clinical
care, because patients (not providers) are the ones responsible for capturing this data
and also have the control over how this data are shared.

The proliferation of more affordable wearable devices, sensors and technologies
such as patient portals to capture and transmit PGHD provides an unparalleled
opportunity for long-term, persistent monitoring of the daily activities and responses
of chronically ill patients. This engages patients as partners in their care allowing
for advancements towards a true learning-based healthcare system for management
of chronic diseases.

PGHD can help closing gaps in information and can offer healthcare providers
a way to monitor a patient’s health status and compliance to a therapy in between
medical visits. It allows a way to gather information on a continuous basis rather
than at a single point in time. Moreover, PGHD can provide the foundation for
real-time care management programmes tailored to a single patient and their
conditions. It can also aid in the management of chronic and acute conditions such
as cardiac arrhythmias, congestive heart failure and diabetes. By providing relevant
information about a patient’s condition and health status, PGHD technologies can

http://jop.ascopubs.org/content/early/2015/04/07/JOP.2015.003715.full#ref-3
http://jop.ascopubs.org/content/early/2015/04/07/JOP.2015.003715.full#ref-3
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encourage healthy behaviours and increase the success of preventive health and
wellness programmes.

One of the largest concerns facing PGHD is in regard to data quality and
provenance—i.e. the process of tracing and recording the quality and source of the
data as it enters the system and moves across databases.

5.1.6 Usability/Deployment Methodology

Data Science holds tremendous promises for improving healthcare. But how should
an organization get started with handling, organizing and analysing big data?
Capitalizing on its opportunities requires an end-to-end strategy in which IT
departments or groups are the technical enablers; but key executives, business
groups and other stakeholders help setting objectives, identify critical success
factors and make relevant decisions. Together these groups should consider existing
problems that have been difficult to address as well as problems that have never been
addressed before since data sources were unavailable or data was too unstructured
to utilize. IT groups must solicit information from peers and vendors to identify
the best software and hardware solutions for analysing big data in a healthcare
context. Defining and developing use cases will help organizations focusing on the
right solutions and creating the best strategies. As part of this process, IT groups
should:

• map out data flows,
• decide what data to include and what to leave out,
• determine how different pieces of information relate to one another,
• identify the rules that apply to data,
• consider which use cases require real-time results and which do not, and
• define the analytical queries and algorithms required to generate the desired

outputs.

They should define the presentation and analytic application layers, establish a data
lake or warehousing environment and, if applicable, implement private- or public-
based cloud data management. Some questions that should be asked are:

• What are the data requirements on collecting, cleansing and aggregating data?
• What data governance policies need to be in place for classifying data and

meeting regulatory requirements?
• What infrastructure is needed to ensure scalability, low latency and performance?
• How will data be presented to business and clinical users in an easy-to-

understand and easily accessible way?
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5.2 Platforms, Services and Infrastructures

5.2.1 High-Performance Computers and Exascale Computing

There will be use cases, e.g. precision medicine, where the promises brought by
Data Science will only be fulfilled through dramatic improvements in computational
performance and capacity, along with advances in software, tools and algorithms.
Exascale computers (HPCs)—machines that perform one billion calculations per
second and are over 100 times more powerful than today’s fastest systems—will be
needed to analyse vast stores of clinical and genomic data. The use cases that will
benefit the most from HPC—Data Science integration—are:

• Precision medicine. The new technology driving precision medicine is the area
of omics. Omics data of a patient (genomics, metabolomics, proteomics, etc.) in
combination with historical data about diseases and outcomes of different treat-
ments allow making decisions whether a certain treatment would be beneficial
for a patient, avoiding potential harming and the use of inefficient therapies. In
life-threatening situations, these decisions need to be made in real time. Due to
vast amount of data that needs to be analysed, the domain of precision medicine
will benefit from using the HPC infrastructure and can help saving lives in an
emergency department (ED).

• Deep learning. Deep learning algorithms have already shown a breakthrough
performance in the medical domain. The advantage of deep learning algorithms
is the capability that they can analyse very complex data, such as medical images,
videos, text and other unstructured data. Deep learning algorithms will benefit
from HPC infrastructure in cases when a large amount of data needs to be
used for training of deep neural networks in order to provide relevant inputs
to medical specialists as quickly as possible. One of the main areas where deep
learning showed a tremendous potential is in the area of radiology. Deep learning
algorithms can help in improving workflows within a hospital related to the
diagnosis and treatments of the patients in the radiology department. This allows
clinicians making quick decisions that would secure right and timely treatments
of the patients.

5.2.2 Infrastructure

To manage and exploit this new flood of data, it is necessary to offer new
infrastructures able to address the big data dimensions (i.e. volume, variety, veracity,
velocity). In this respect, well-designed, solid and reliable infrastructures, which are
not limited only to the IaaS level, provide the foundation on top of which all the
other platforms and services can be provided. Advances offered by virtualization
and cloud computing are today facilitating the development of platforms for more
effective capture, storage and manipulation of large volumes of data [51] but will
need to be more expansive to cope with the expected impact of future (healthcare)
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data. The current cloud infrastructures are potentially ready to welcome the big data
tsunami, and some technologies (e.g. Hadoop, Spark, MongoDB, Cassandra, etc.)
are already going in this direction. Even if some requirements are satisfied, many
issues still remain. Many applications and platforms, although used as services
(SaaS/PaaS) directly from the cloud infrastructure, have not been designed to be
dynamically scalable, to enable distributed computation, to work with nontraditional
databases or to interoperate with infrastructures. For this reason, for (existing)
cloud infrastructures, it will also be necessary to massively invest in solutions
designed to offer dynamic scalability, infrastructure interoperability and massive
parallel computing in order to effectively enable reliable execution of, for example,
machine learning algorithms, pattern recognition of images, languages, media,
artificial intelligence techniques, semantic interoperability and 3D visualization and
other services. Furthermore, healthcare poses specific requirements on Data Science
infrastructures (e.g. regulatory compliance, reliability, etc.).

Still there are several platforms and infrastructure in use in the healthcare sector.
As an example, the Philips HealthSuite (http://www.usa.philips.com/healthcare/
innovation/about-health-suite) [54] provides a cloud-based infrastructure for con-
nected healthcare. With this platform, clinical and other data (from medical systems
and devices) can be collected, combined and analysed. It enables care to become
more personalized and efficient. Care providers and individuals are empowered
to access (individual or aggregated) data on personal health, patient conditions
and entire populations. Data from both the hospital and home are analysed with
proprietary algorithms to identify health patterns and trends. This will lead to
improved (clinical) decisions.

The importance of cloud computing was recently highlighted by the European
Commission through its European Cloud Initiative (http://europa.eu/rapid/press-
release_IP-16-1408_en.htm). They proposed a European Open Science Cloud; a
trusted, open environment for the scientific community for storing, sharing and
reusing scientific data and results; and a European data infrastructure targeting the
build-up of the European supercomputing capacity. Data Science for the healthcare
community must become an active partner supporting this initiative to ensure it
accounts for its needs and that it serves the entire spectrum of professionals working
in the field. In the following sections, further functionalities and features that the
Data Science infrastructures should offer are described.

5.2.3 Data Integration

Data is being generated by different sources and comes in a variety of formats
including unstructured data. All of this data needs to be integrated or ingested into
big data repositories or data warehouses. This involves at least three steps, namely,
extract, transform and load (ETL). With the ETL processes that have to be tailored
for medical data have to identify and overcome structural, syntactic and semantic
heterogeneity across the different data sources. The syntactic heterogeneity appears
in the form of different data access interfaces, which were mentioned above, and

http://www.usa.philips.com/healthcare/innovation/about-health-suite
http://www.usa.philips.com/healthcare/innovation/about-health-suite
http://europa.eu/rapid/press-release_IP-16-1408_en.htm
http://europa.eu/rapid/press-release_IP-16-1408_en.htm


24 Z. Abedjan et al.

needs to be wrapped and mediated. Structural heterogeneity refers to different data
models and different data schema models that require integration on schema level.
Finally, the process of integration can result in duplication of data that requires
consolidation.

The process of data integration can be further enhanced with information
extraction, machine learning and Semantic Web technologies that enable context-
based information interpretation. Information extraction will be a means to obtain
data from additional sources for enrichment, which improves the accuracy of data
integration routines, such as deduplication and data alignment. Applying an active
learning approach ensures that the deployment of automatic data integration routines
will meet a required level of data quality. Finally, the Semantic Web technology
can be used to generate graph-based knowledge bases and ontologies to represent
important concepts and mappings in the data. The use of standardized ontologies
will facilitate collaboration, sharing, modelling and reuse across applications.

5.2.4 Interoperability Standards

In a data-driven healthcare environment, interoperability and standardization are
key to deploy the full potential of data. However, there are still standardization
problems in the healthcare sector since data is often fragmented or generated in
IT systems with incompatible formats [56]. Research, clinical activities, hospital
services, education and administrative services are organized in silos, and, in many
organizations, each silo maintains its own separate organizational (and sometimes
duplicated) data and information infrastructure. This poses barriers to combine and
analyse data from different sources so as to identify insights and facilitate diagnosis.
The lack of cross-border coordination and technology integration calls for standards
to facilitate interoperability among the components of the Data Science value chain.
As such, the creation of open, interoperable, patient-centred environments that
promote rapid innovation and broad dissemination of advances is necessary as well
as the promotion of open standards.

A large amount of terminological knowledge sources has been created in the
realm of healthcare, e.g. the SNOMED clinical terms, the series of ICD classifica-
tions (ICD-9, ICD-10, etc.) or the Medical Subject Headings (MeSH) metathesaurus
which is part of the Unified Medical Language System (UMLS (https://www.nlm.
nih.gov/research/umls/knowledge_sources/metathesaurus)). Within SNOMED-CT,
there are mappings between terms and also across languages. Since these knowledge
sources are used in healthcare frameworks like HL7, a data analytics system must
be able to process them in (cross-lingual) indexing and retrieval scenarios. Hence,
there is a need for:

• tooling that allows processing and integrating these knowledge sources in a
given healthcare framework and that can be deployed in different Data Science
healthcare workflows;

https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus
https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus
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• and guidelines and best practices that inform providers and users of healthcare
data on adequate processes and workflows, for handling knowledge systems in
healthcare.

In addition to terminology, there are several other areas with interoperability
challenges (http://www.lider-project.eu/sites/default/files/D3.2.2-Phase-II.pdf). For
laboratory analytical processes, the Allotrope Foundation2 is developing a common
vocabulary and file format to support exchange of laboratory data. For the reuse of
patient data, not only technical challenges but also regulatory and legal frameworks
make data sharing extremely difficult. A general concern is the language barrier.
Many knowledge systems like ICD or SNOMED-CT have a restricted set of
multilingual labels. Reusing the knowledge systems in another language or health
system comes with high costs.

In the realm of PGHD, the lack of industry-wide standards is a growing concern
within the information technology community. Although many device companies
are using standards profiled by Continua Health Alliance or the consolidated care
document (CCD) standard (http://www.hl7.org/implement/standards/product_brief.
cfm?product_id=258) that enables connectivity between sources, many devices
(such as the popular “Fitbit” device) still use proprietary architectures and formats
making it more difficult for interoperability given that patients may have multiple
devices.

Integrating outside data sources (like PGHD) into the EHR is difficult because
there are no industry standards for this activity and EHRs are often designed to
be proprietary. This can have a significant impact on both project time and cost.
Industry standards organizations such as HL7 are actively working on these issues
and especially on standard methods for capturing PGHD, recording PGHD and
making PGHD interoperable within the current framework of structured docu-
ments. Common health IT standards and terminologies should be leveraged where
possible—e.g. LOINC for lab results and RxNorm for medication terminologies—
however, it is likely that, due to the demands and needs of the various stakeholders
involved (patients, providers, EHR vendors, application developers, etc.), new
standards will have to be developed. Since healthcare recommendations, standards
and policies are constantly evolving, flexibility should be built into the new
technology to allow for rapid response to change.

5.3 Data Analytics

Medical research has always been a data-driven science, with randomized clinical
trials being a gold standard in many cases. However, due to recent advances in
omics technologies, medical imaging, comprehensive electronic health records and

2http://www.allotrope.org/.

http://www.lider-project.eu/sites/default/files/D3.2.2-Phase-II.pdf
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smart devices, medical research and clinical practice are quickly changing into
data-driven fields. As such, the healthcare domain as a whole—doctors, patients,
management, insurance and politics—can significantly profit from current advances
in Data Science, and in particular from data analytics.

There are certain challenges and requirements to develop specialized methods
and approaches for data analytics in healthcare. These include:

• Multimodal data:
Optimally, in data analytics, there is a set of well-curated, standardized and

structured data—for example, as sometimes found in electronic health records.
However, a high percentage of health data is a variety of unstructured data. Much
of it comes in forms of real-time sensor readings such as ECG measurements in
intensive care, text data in clinical reports by doctors, medical literature in natural
language, imaging data or omics data in personalized medicine. Furthermore, the
use of external data such as lifestyle information, e.g. for disease management,
or geospatial data and social media for epidemiology is becoming increasingly
common. It is vital to gain knowledge from that information. The goal should
be to obtain valuable information from such heterogeneous data through multi-
modal learning, make the insights from such combined information available to
clinicians and incorporate knowledge into the clinical history of patients.

• Complex background knowledge:
Medical data needs to describe very complex phenomena, from multi-level

patient data on medical treatment and procedures, lifestyle and information to
the vast amount of available medical knowledge in the literature, biobanks or
trial repositories. Hence, medical data usually comes with complex metadata
that needs to be taken into account in order to optimally analyse the data, draw
conclusions, find appropriate hypotheses and support clinical decisions.

• Explainable trustworthy models:
End users of analytical tools in medicine—such as doctors, clinical

researchers and bioinformaticians—are highly qualified. They also have a high
responsibility, from which follow high expectations on the quality of analytics
tools before trusting them in the treatment of patients. Hence, an optimal
analytical approach should, as much as possible, generate understandable
patterns in order to allow for cross-checking results and enabling trust in the
solutions. It should also enable expert-driven self-service analytics to allow the
expert to control the analytics process.

• Supporting complex decision:
The analysis of imaging data, pathology, intensive care monitoring and the

treatment of multi-morbidities are examples of areas in which medical decisions
have to be taken from noisy data, in complex situations, and with possibly
missing information. Neither humans nor algorithms may be guaranteed to
always deliver an optimal solution, yet they may be required to take important
decisions or specify options in minimal time. Another area of medical decision
support with potentially very high future impact is smart assistants for patients
that make use of smartphones and new wearable devices and sensor technologies
to help patients manage diseases and lead healthier lives.
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• Privacy:
Medical data is a highly sensitive information that is protected by strong

legal safeguards at the European level. An adequate legal framework to enable
the analysis of such data, and the development of adequate privacy-preserving
analytical tools to implement this framework, is of high importance for the
practical applicability and impact of data-driven medicine and healthcare.

Approaches to address data analytics under the aforementioned challenges are
presented in the following.

5.3.1 Advanced Machine Learning and Reinforcement Learning

Many healthcare applications would significantly benefit from the processing and
analysis of multimodal data—such as images, signals, video, 3D models, genomic
sequences, reports, etc. Advanced machine learning systems [37] can be used to
learn and relate information from multiple sources and identify hidden correlations
not visible when considering only one source of data. For instance, combining
features from images (e.g. CT scans, radiographs) and text (e.g. clinical reports)
can significantly improve the performance of solutions.

The fusion of different health data sources could also enable the study of
phenotypes (e.g. diseases or risk factors) that have proven difficult to characterize
from a genomic point of view only. This will enable the development of automatic
diagnostic tools and personalized medicine. This technology will be key to leverage
the full potential of the varied sources of big data.

Another aspect is the analysis of lifestyle data collected from apps on smart-
phones and from which may include information about risk factors for diseases and
disease management such as specialized hardware, activity information, GPS tracks
and mood tracking, which can otherwise not be reliably collected. This information
can be used within (learning) recommender systems that help monitoring patients,
raise alarms or give advice for the better handling of a disease.

Reinforcement learning is a new very promising advanced machine learning
method with a paradigm of learning by trial-and-error, solely from rewards or
punishments. It was successfully applied in breakthrough innovation, such as
AlphaGo system of DeepMind that won the Go game against the best human
player. It can also be applied in the healthcare domain, for example, to dynamically
optimize workflows.

5.3.2 Deep Learning

Deep learning [13] typically refers to a set of machine learning algorithms based on
learning data representations (capturing highly nonlinear relationships of low-level
unstructured input data to form high-level concepts). Deep learning approaches [3]
made a real breakthrough in the performance of several tasks with which traditional
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machine learning methods were struggling such as speech recognition, machine
translation, computer vision (object recognition), etc. For example, they are nowa-
days a preferred method in medical image analysis, allowing medical specialists,
who depend on insights from medical images, e.g. radiologists or pathologists, to
quickly analyse these images.

Deep hierarchical models are artificial neural networks (ANN) with deep struc-
tures and related approaches, such as deep restricted Boltzmann machines, deep
belief networks and deep convolutional neural networks. The current success of
deep learning methods is enabled by advances in algorithms and high-performance
computing technology, which allow analysing the large datasets that have now
become available.

5.3.3 Real-Time Analytics

Certain time-critical healthcare applications need actions to be taken right at the
point when a particular event is detected (e.g. alarms in the ICU). Multiple streams
of heterogeneous data offer the possibility to extract insights in real time. Several
relevant, interconnected approaches exist:

• Real-time analytics refers to analytics techniques, which can analyse and create
insights from all available data and resources in real time as they come into a
system.

• Data stream mining refers to the ability to analyse and process streaming data in
the present (or as it arrives), rather than storing the data and retrieving it at some
point in the future.

• Complex event detection refers to the discovery and management of patterns over
multiple data streams, where patterns are high-level, semantically rich and made
ultimately understandable to the user.

5.3.4 Clinical Reasoning

There is the need to improve clinical decisions by incorporating information derived
from various forms of human input (e.g. free text, voice input, medical records,
medical ontologies, etc.) and where semantics can be used to facilitate this [20].
Scientific insights from cognitive science, neuroanatomy and neurophysiology have
resulted in the generation of mathematical models that can simulate large multilayer
and nonrandom networks of components for data processing and inferencing to
accomplish complex tasks such as automated reasoning and decision-making.
Clinical reasoning leverages various techniques including distributed information
representation, machine learning, natural language processing (NLP), semantic rea-
soning, statistical inferencing, fuzzy logic, image processing, signal processing and
the synaptic-type communications in biological neurons. Artificial neural networks
which are, essentially, models of unsupervised learning in a cognitive system with
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hidden layers representing “weighted” connections and fault tolerance similar to
thought processes in animals and humans are critical to cognitive computing [18].

5.3.5 End User-Driven Data Analytics

End user-driven data analytics—which is also becoming more and more promi-
nent under the name Citizen Data Science (http://www.gartner.com/newsroom/id/
3114217)—enables the average user to make use of modern analytical solutions.
The user in this case may be a patient or a very experienced domain expert—a
doctor, hospital management staff, biological researcher, etc.—but without an in-
depth knowledge of statistics, data processing and methods and tools. Approaches
for end user-driven analytics include visual and interactive analytics. More and more
question-answering approaches that allow a party to phrase more complex natural
language questions are reaching maturity. The availability of such smart, easy-to-use
tools enables professionals to make use of data-driven decision-making on all levels.
A particular case of end user-driven analytics may be found in the phenomenon of
the “quantified self”, where patients collect much data about themselves and analyse
it to find insights about their health status or disease.

5.3.6 Natural Language Processing and Text Analytics

From the perspectives of data content processing and data mining, textual data
belongs to so-called unstructured data just as images or videos because of the
complexities of their internal structures. Technologies such as information retrieval
and text analytics have been created for facilitating easy access to this wealth
of textual information. Text analytics is a broad term referring to technologies
and methods in computational linguistics and computer science for the automatic
detection and analysis of relevant information in unstructured textual content (free
text). Often machine learning and statistical methods are employed for text analytics
tasks. In the literature, text analytics is also regarded as a synonym of (1) text
mining or (2) information and knowledge discovery from text. Major subtasks are
(1) linguistic analysis, (2) named entity recognition, (3) coreference resolution, (4)
relation extraction and (5) opinion and sentiment analysis [21, 53]. In the context of
language processing and text analytics, there are several tools that have been widely
used for the extraction of knowledge from biomedical and clinical natural text such
as MetaMap [2], Apache cTAKES [57] or NCBO Annotator [36], among others. The
number of approaches in this area is really vast [25, 45, 52], and they are different in
specific domains (phenotype extraction, gene extraction, protein interactions, etc.).
However, most existing models, tools and corpora focus on English data only, which
makes the processing of non-English biomedical or clinical text more difficult.
Even though various non-English datasets exist (e.g. French [44], German [55],
Spanish [12] or Swedish [60]) which are required to train extraction models, datasets
are often not publicly available due to legal regulations.

http://www.gartner.com/newsroom/id/3114217
http://www.gartner.com/newsroom/id/3114217
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There is a strong need to improve clinical decisions by incorporating semantics
derived from various forms of human input (e.g. free text, medical records, litera-
ture). Vast amount of information is currently held in medical records in the form of
free text. Thus, text analytics is important to unravel the insights within the textual
data. Particularly in healthcare, but in almost all other industries, records (digital
or not) are still kept as free text. There is plethora of applications in the clinical
setting where practitioners produce and rely on free text for reporting diagnosis
and operations. Of particular importance is the mining of medical literature [34],
which enables the use of vast amounts of medical knowledge more efficiently.
Examples include literature recommender systems and also the detection of new
medical knowledge from literature, e.g. for drug repositioning [17].

Given the large amount of biomedical knowledge recorded in textual form,
full papers, abstracts and online content, there is the need for techniques that can
identify, extract, manage and integrate this knowledge. In parallel, text analytics
tools have been adapted and further developed for extracting relevant concepts
and relations among concepts from clinical data such as patient records or reports
written by doctors. The information extraction technology plays a central role for
text mining and text analytics. Even though there has been significant breakthrough
in natural language processing with the introduction of advanced machine learning
technologies (in particular, recently, deep learning), these technologies need to be
further developed to meet the challenges of large volumes and velocities.

5.3.7 Knowledge-Based Approaches

With the advent of the Semantic Web, description logics have become one of
the most prominent paradigms for knowledge representation and reasoning. In
medicine, the use of knowledge bases constructed from sophisticated ontologies
has proven to be an effective way to express complex medical knowledge and
support the structuring, quality management and integration of medical data. Also
the mining of other complex data types, such as graphs [19] and other relational
structures, is motivated by various applications in biological networks such as
pathways or in secondary structures of macromolecules such as RNA and DNA.

These and many other occurrences of data are arising and growing. Learning
from this type of complex data can hence yield more concise, semantically rich,
descriptive patterns in the data which better reflect its intrinsic properties. In this
way, discovered patterns promise more clinical relevance.

A complex analysis and multidisciplinary approach to knowledge is essential
to understand the impact of various factors on healthcare systems. The challenges
for understanding and addressing the issues concerning the healthcare world are
the use of big data, non-conformance to standards and heterogeneous sources (in
heterogeneous documents and formats), which need an immediate attention towards
multidisciplinary complex data analytics on top of rich semantic data models.
Ontology-driven systems result indeed in the effective implementation of healthcare
strategies for the policymakers. The creation of semantic knowledge bases for
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healthcare has an extremely high potential and practical impact. They facilitate
data integration from multiple heterogeneous sources, enable the development of
information filtering systems and support knowledge discovery tasks. In particular,
in the last years the linked open data (LOD) initiative reached significant adoption
and is considered the reference practice for sharing and publishing structured data on
the web [7, 8]. LOD offers the possibility of using data across different domains for
purposes like statistics, analysis, maps and publications. By linking this knowledge,
interrelations and associations can be inferred, and new conclusions arise.

Healthcare data is generated in various sources in diverse formats using different
terminologies. Due to the heterogeneous formats and lack of common vocabulary,
the accessibility of the healthcare data is very minimal for health data analytics
and decision support systems. Vocabulary standards are used to describe clinical
problems and procedures, medications and allergies [11]. Important examples
are, just to name a few, the Logical Observation Identifiers Names and Codes
(LOINC), International Classification of Diseases (ICD9 and ICD10), Systematized
Nomenclature of Medicine-Clinical Terms (SNOMED-CT), Current Procedural
Terminology, 4th Edition (CPT 4), Anatomic Therapeutic Chemical (ATC) Clas-
sification of Drugs, Gene Ontology (GO), RxNorm, General Equivalence Mappings
(GEMs), OBO Foundry (http://www.nature.com/nbt/journal/v25/n11/full/nbt1346.
html) and others.

Since healthcare systems are characterized by a large amount of data, heteroge-
neous in nature and with different quality and security requirements, research on
data reengineering, linking, formalization and consumption is of primary interest.
The heterogeneity problem has to be tackled at different levels. On the one hand,
syntactic interoperability is needed to unify the format of knowledge sources
enabling, e.g. distributed query [10]. Syntactic interoperability can be achieved
by conforming to universal knowledge representation languages and by adopting
standard practices. The widely adopted RDF, OWL and LOD approaches support
syntactic interoperability. On the other hand, semantic interoperability is also
needed. Semantic interoperability can be achieved by adopting a uniform data
representation and formalizing all concepts into a holistic data model (conceptual
interoperability). RDF and OWL assist in achieving the former goal. However,
conceptual interoperability is domain specific and cannot be achieved only by the
adoption of standard tools and practices but also through interlinking with existing
healthcare knowledge bases by means of domain experts and semiautomated
solutions. The large, heterogeneous data sources in the healthcare world make the
problem even harder, as different semantic perspectives must be addressed in order
to cope with knowledge source conceptualizations.

Once interoperability at both syntactic and conceptual levels is obtained, it is
possible to intercross data and exploit them more in depth, providing application
developers the opportunity to easily design their services and applications. Semantic
interoperability at the domain level allows making sense of distributed data and
enabling their automatic interpretation. In this way, the issue of resolving semantic
interoperability among different data sources is moved from the application level to
the data model level. Developers are then relieved from the burden of reconciling,

http://www.nature.com/nbt/journal/v25/n11/full/nbt1346.html
http://www.nature.com/nbt/journal/v25/n11/full/nbt1346.html
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uniforming and linking data at a conceptual level and are able to build their
solutions in a more intuitive and efficient way. The published data sources are
made discoverable and become accessible via queries and/or public facilities and
integrated into higher-level services.

Presently several international organizations and agencies across the world, e.g.
the World Health Organization (WHO), make use of semantic knowledge bases in
healthcare systems to:

• Improve accuracy of diagnoses by providing real-time correlations of symptoms,
test results and individual medical histories;

• Help to build more powerful and more interoperable information systems in
healthcare;

• Support the need of the healthcare process to transmit, reuse and share patient
data;

• Provide semantic-based criteria to support different statistical aggregations for
different purposes;

• Bring healthcare systems to support the integration of knowledge and data.

Putting knowledge management systems in place for healthcare can facilitate the
flow of information and result in better, more-informed decisions.

5.3.8 High-Performance Genome Analysis

Currently, clinical applications of next-generation sequencing primarily focus on
exome sequencing (about 2–3% of the genome) and more targeted assays, such
as diagnostic panels of cancer genes. On the other hand, whole-genome analysis
(WGS) delivers a complete and integrated view of the genome of a patient and
as such can advantageously replace complex series of older ad hoc targeted genetic
tests in areas such as cancer genomics, rare genetic diseases, preimplantation genetic
diagnosis (PGD) and preimplantation genetic screening (PGS) or non-invasive
prenatal testing (NIPT). WGS is quickly becoming economically competitive and
promises that a correct diagnosis can be reached more often and more quickly. With
thousands of patients in need of WGS at any large hospital each year, the computing
and storage needs for clinical applications of WGS are set to explode.

Most genome analysis software was created incrementally during the last
decade targeting single computer systems. Because of this legacy, the software
is not optimized for throughput, concurrency and parallelism which is needed to
achieve good performance and efficient usage of server-based systems. Running this
software—as is—on a shared backend compute cluster will result in slow runtimes
and too costly usage of the compute infrastructure.

WGS software pipelines consist of a number of software applications where each
runs part of the computation. These applications tend to be written by different
teams and in different programming languages. The most common interface
between these applications in use today is raw data files. This results in severe per-
formance penalties. Recently, a number of methods have been introduced to accel-
erate read mapping and variant calling through the use of high-performance and
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distributed computing techniques (e.g. HugeSeq [40], Halvade [15], ADAM [46] or
elPrep [33]). There is still a long road ahead to optimize the complete WGS software
stacks, including the analysis tools, and get them fully adopted in practice.

5.3.9 Understanding and Reliability in Analytics

Often in medical decision-making, important—often literally life or death—
decisions must be taken under time pressure and in complex and unclear situations
with potentially severe consequences of errors if the right decision is not made.
Even while recognizing that a data-driven approach may never be 100% correct,
and even while considering that neither are human doctors always right, very high
standards are required for data analytics in medical applications. Measuring and
managing the performance (e.g. accuracy of data-driven systems) are therefore of
utmost importance. Not only this is a basic ethical requirement, but the uptake
of novel smart solutions into clinical practice is often hindered by unaddressed
questions of liability and safety.

Key features of an analytical solution that inspire trust in its practical use are
understanding—in particular enabling the human doctor or researcher to be aware of
its advantages and limits and reliability—in particular for complex learning systems
that evolve over time from a stream of new input data, guaranteeing reliability has
been recognized as a major challenge [59].

As a consequence, understanding and reliability should be particularly addressed
as a basic requirement in all applications of data analytics in medicine and
healthcare.

5.4 Example Success Stories

• Precision medicine initiative (https://www.whitehouse.gov/precision-
medicine) launched by President Obama:

By taking into account individual differences in people’s genes, environments
and lifestyles, treatments can be tailored to the individual instead of applying
a one-size-fits-all approach designed for the average patient. Six personal
stories (https://www.whitehouse.gov/blog/2015/01/29/precision-medicine-
already-working-cure-americans-these-are-their-stories) describe how precision
medicine has led to a successful outcome with a personalized treatment.

• European Medical Information Framework (EMIF) [23]:
An IMI project with a common platform for the reuse of clinical information is

funded with 60 million EUR. It includes clinical information of about 50 million
patients around Europe.

• Open PHACTS Discovery Platform [48]:
Also funded by IMI, the platform integrates and links information from the

most important drug and compound databases.

https://www.whitehouse.gov/precision-medicine
https://www.whitehouse.gov/precision-medicine
https://www.whitehouse.gov/blog/2015/01/29/precision-medicine-already-working-cure-americans-these-are-their-stories
https://www.whitehouse.gov/blog/2015/01/29/precision-medicine-already-working-cure-americans-these-are-their-stories
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• Integration of clinical research networks conforming Data Science reposito-
ries:

The value of integrating clinical research networks is widely recognized by
researchers and funding agencies, since connecting networks means clinical
research can be conducted more effectively, conforming communities with
shared operational knowledge and data. Examples are the Li Ka Shing Centre
for Health Information and Discovery of the University of Oxford, recently
supported by a £90 M initiative in Data Science and drug discovery [49], or the
NIH Big Data to Knowledge (BD2K) initiative [6] enabling biomedical scientists
to capitalize on the data being generated by the research communities.

• Philips HealthSuite digital platform:
HealthSuite offers both a native cloud-based infrastructure and the core

services needed to develop and run a new generation of connected healthcare
applications. Unlike other digital platforms, HealthSuite is built on purpose for
the complex challenges of healthcare, featuring deep clinical databases, patient
privacy, industry standards and protocols and personal and population data
visualizations. This empowers healthcare providers to efficiently impact patient
care.

6 Conclusions and Recommendations

This chapter has shown that there is a lot of potential in delivering more targeted,
wide-reaching, and cost-efficient healthcare by exploiting Data Science and AI
technologies. However, it has also been shown that the healthcare domain has some
very specific characteristics and challenges that require a targeted effort and research
in order to realize the full potential:

• Data access, availability and quality: There is a huge amount of existing data
distributed in several repositories and new data generated daily by billions of
connected devices or self-generated by people. It is necessary to find more
appropriate and effective ways to leverage these data in line with privacy and
ethical principles, to access it, to understand the purposes for its use and quality
in order to improve and optimize care processes, disease diagnosis, personalized
care and in general the healthcare system. However, in the healthcare sector, data
is often fragmented or generated in different systems with incompatible formats.
Therefore, interoperability and standardization are key to deploy the full potential
of data.

• Patients and healthcare professionals profiting from Data Science: There is the
need to develop approaches that allow for humans and machines to cooperate
more closely on exploiting Data Science for a better health. This includes guar-
antees on the trustworthiness of information, a focus on generating actionable
advice and improving the interactivity and understandability of data processing
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and analytics. The requirements of different target groups—researchers, doctors
and caregivers or patients and general population—may demand different focus.

• Multimodal data analytics: There is the need for technologies, which can handle,
analyse and exploit the set of very diverse, interlinked and complex data that
already exists in the healthcare universe to improve healthcare quality and
decrease healthcare costs.

• Healthcare knowledge: Next to the big and heterogeneous healthcare datasets,
there is already a big amount of medical and healthcare knowledge. This
knowledge exists in books and research papers but also in the heads of healthcare
professionals. In fields such as epidemiology or wearable sensors, also com-
pletely different knowledge on the real world, organizations and how people
live their lives is very valuable to understand patients and the healthcare system
in general. New approaches are needed that bring together data-driven and
knowledge-based approaches, such that knowledge can be used to make better
sense of data, and data can be used to generate more knowledge.

• Ethics and privacy in Data Science: Further practical approaches are needed to
adequately balance the benefit and threats of more and more detailed and sen-
sitive data being available. With respect to an increasing amount of complexity
and automation in clinical data processing and decision support, and in particular
in the light of the move towards personal health assistant on smartphones, a
targeted focus on the ethical problems connected with these new technologies
seems advisable.

• Increasing focus on primary and secondary prevention: Currently, 97% of
healthcare budgets are spent on treating patients both with acute and chronic
conditions (https://euobserver.com/chronic-diseases/125922). Only 3% is spent
on prevention, with chronic diseases being among the most preventable illnesses.
Considering the economic impact of chronic diseases on the productivity of the
EU workforce, an increased focus on primary and secondary prevention is clearly
needed, and Data Science and AI are geared to help here.

• Policies and technologies towards digital single market strategy: Dealing with
different health data protection regimes across EU Member States creates diffi-
culties in accessing and sharing health data at EU level. The implementation of
the GDPR is an opportunity to look for alignment. Finally, innovative approaches
to healthcare, such as value-based healthcare, should be supported by policy
to drive the transformation of the healthcare sector. Developing policies and
technologies will contribute towards enabling the digital single market strategy.

To prove the impact of Data Science and AI technologies on the healthcare sector,
it is essential to apply these recommendations in large-scale pilots. The pilots are
meant to serve as the best practice examples. Their objective is to demonstrate
how the health sector can be transformed with the aim to increase its quality,
decrease costs and improve accessibility. This can be done by putting Data Science
technologies at their core with the goal that their results can be scaled up and adopted
by the whole healthcare sector.

https://euobserver.com/chronic-diseases/125922
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Introduction to Classification Algorithms
and Their Performance Analysis Using
Medical Examples

Jan Korst, Verus Pronk, Mauro Barbieri, and Sergio Consoli

1 Introduction

An important area in machine learning is concerned with handling classification
problems. A classification problem can be characterized by a data set of instances
(items or persons). As we will focus on medical applications, we will assume
that a data set contains patients. Each patient is characterized by a vector x =
{x1, x2, . . . , xn} of n features and a class label y, where the set of the different
values that feature xi can attain is denoted by domain Di .

In this chapter, we restrict ourselves to two-class classification problems, i.e., all
patients in the given data set belong to one of two possible classes. For references
on multiclass classification and other types of machine learning problems and
algorithms, we refer to Sect. 4.2. A machine learning algorithm that handles a
classification problem is called a classification algorithm.

Considering a certain disease, a patient either has the disease or does not have the
disease. By tradition, patients having the disease are called positives, and patients
not having the disease are called negatives. Correspondingly, the class labels are
given by y ∈ {−,+}.

Two-class classification algorithms usually aim to estimate P(+|x), the condi-
tional probability that a patient is a positive, given the patient’s feature vector x,
using the given data set. For simplicity, we denote the estimate of P(+|x) as the
score s(x). Although it estimates a probability, the score s(x) is not required to be
in the interval [0, 1], but we implicitly assume that the higher the s(x), the more
likely it is that the patient is a positive.
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Machine learning algorithms will typically use part of the given data set
for repeated training and testing and leave the remaining part of the data set
unseen to be used only for a final validation. Let these two parts be denoted by
training/test set and hold-out set, respectively. It is common to experimentally tune
the parameters of a machine learning algorithm on the basis of intermediate results
obtained by training and testing on the training/test set only. Training and testing is
typically carried out using a k-fold cross-validation approach [31, 39], whereby the
training/test set is split into k equal parts and repeatedly k − 1 parts are used for
training and the remaining part is used for testing, whereby each of the k parts is
used as test set once. In this way, we generate and test k slightly different classifiers
for which we can determine the average performance and corresponding variance.
After repeated tuning of the parameters, the parameter setting is fixed, the algorithm
is trained using the complete training/test set, and a final validation is carried out
using the hold-out set.

The reason for using cross-validation is that in this way, the classifier is tested on
unseen data. Would the classifier instead be trained using the complete training/test
set, and successively be tested on the same set, a problem called overfitting may
occur: the algorithm performs well on the training/test set, but it fails to generalize,
i.e., fails to perform well on unseen data.

To classify a patient with feature vector x from a test or validation set, a
classification algorithm A can use a threshold T , such that a patient is classified
as positive if and only if s(x) ≥ T ; see Fig. 1. Let the estimated class be denoted by
ŷ, then we have

ŷ =
{+ if s(x) ≥ T

− if s(x) < T

For a given choice of threshold T , a negative with s(x) ≥ T is misclassified as a
positive and is called a false positive, and a positive with s(x) < T is misclassified
as a negative and is called a false negative. The remaining two cases, i.e., a positive
with s(x) ≥ T and a negative with s(x) < T , are called a true positive and
a true negative, respectively. The performance of a classification algorithm will

Fig. 1 By ordering the scores obtained by applying the classifier on each of the patients in a given
validation set, and showing the associated class labels, we can see how well the positives and
negatives are separated. In an ideal situation, a point p on the axis exists such that all negatives are
to the left of p and all positives are to the right of p
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depend on the number of these misclassifications. Depending on the threshold
and possibly other parameter settings, a classification algorithm A will have a
different performance. To avoid confusion, we will use the term classifier to denote a
classification algorithm with fixed parameter settings, and we will denote a classifier
by C and a classification algorithm by A.

The remainder of this chapter is organized as follows. In the next section,
we give a detailed description of a well-known classification algorithm, called
naive Bayesian classification (NBC), including a small example to illustrate how
it works. Next, in Sect. 3, we review the different performance metrics that are used
to quantify the performance of classification algorithms, including scalar metrics
as well as pairs of metrics and their respective two-dimensional spaces, such as
receiver operating characteristic (ROC) space, precision-recall space, and cost-
curve space. We argue that correctly evaluating the performance of a classification
algorithm requires taking into account the conditions in which the algorithm has to
operate in practice. These so-called operating conditions consist of two elements:
class skew and cost skew. We show that both elements can be combined into a
single parameter that defines cost, and that iso-cost curves are straight lines in
ROC space. We end this chapter with (1) references to further extensions of NBC,
(2) references to extensions of performance analysis, and (3) a summary of the main
lessons learned.

2 Naive Bayesian Classification

In this section, we provide the basics of the classification algorithm known as
naive Bayesian classification (NBC). It is based on a probabilistic approach toward
classification and relies on a rule called Bayes’ Rule, after its inventor Thomas
Bayes (1701–1761). NBC is a classical machine learning algorithm that excels in
simplicity and transparency: it is mainly based on counting, and the influence of the
individual features on a score can be quantified.

In Sect. 2.1, we cover the mathematical background of NBC. Section 2.2 gives
an alternative look at NBC, providing additional insight into its operation. Then,
in Sect. 2.3 we give additional details on NBC, considering, e.g., zero counts and
missing feature values.

2.1 Mathematical Background

For the time being, we assume that the domains of the individual features are finite,
i.e., that we only have discrete values. Continuous features are treated in Sect. 2.3.

Consider an instance x, not present in the training set. The problem is to infer its
class y ∈ {0, 1}. The approach in NBC is to obtain an estimate of the probability
that x has class +. More formally, we wish to estimate P(+|x) and use this as the
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score s(x) as explained in Sect. 1. NBC makes use of Bayes’ Rule, which is stated
as follows.

Lemma 1 Given are two events A and B. It then holds that

P(B|A) = P(A|B) · P(B)

P (A)
.

Proof This rule easily follows from the definition of conditional probability

P(B|A) = P(A ∧ B)

P(A)
, (1)

from which we obtain P(A ∧ B) = P(B|A) · P(A). By interchanging A and B, we
obtain a second way to write P(A ∧ B), so that

P(B|A) · P(A) = P(A ∧ B) = P(A|B) · P(B), (2)

from which the result follows by dividing both the left-hand and the right-hand side
by P(A). ��
We use Bayes’ Rule as follows.

P(y|x) = P(x|y) · P(y)

P (x)
. (3)

In this formula, P(y) is called the prior probability of class y, P(x|y) the likelihood
of class y given x, P(x) the evidence, and P(y|x) the posterior probability of class
y.

Note that the evidence P(x) is independent of y. As the posterior probabilities
add up to 1, P(x) can be considered as a normalizing constant. It follows that

P(y|x) = C · P(x|y) · P(y), (4)

where C is given by

C = 1

P(x)
= 1∑

y∈{−,+} P(x|y) · P(y)
. (5)

By estimating the right-hand side of Eq. (4) for each class, we end up with the
estimated probabilities.

The next thing to consider is how to estimate the likelihood and the prior
probability. The main problem is that, as x is an n-dimensional vector, it is infeasible
to obtain a reasonable estimate for so many conditional probabilities: we would need∏n

i=1 |Di | parameters for this.
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The approach taken, and that is what the “naive” part in NBC is about, is
to assume conditional independence: the features are, conditional on the class,
assumed to be independent [14, 23, 27].

As x is actually a vector, we can rewrite P(x|y) as P(x1, x2, . . . , xn|y).
Conditional independence allows us to write the latter as

P(x1, x2, . . . , xn|y) =
n∏

i=1

P(xi |y). (6)

Although the assumption of conditional independence will generally not hold in
practice, it is nevertheless often used, and with good results [6, 7, 18, 37]. Before
moving on, let us illustrate this assumption with the following example.

Example 1 (Conditional Independence) To get a better understanding of condi-
tional independence, consider a group of people, of which a fraction has a given
disease (+) and the rest does not have the disease (−), and suppose that the
symptoms of the disease are called A and B, each of which has a value in the set
{1, 2, . . . , 49}. Figure 2 shows how pairs (A,B) could be distributed on the unit
square, green specifying negative and red specifying positive. A and B are clearly
dependent: a low value of A implies a low value of B. However, conditioned on the
class, i.e., color, they seem independent. In other words, when only looking at the
red (green) dots, A and B seem independent. ��
Substituting Eq. (6) into Eq. (4) leads to the following result.

Fig. 2 The two variables A and B are clearly dependent, but conditional on the class (color), they
seem independent
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Lemma 2 For an instance with x = (x1, x2, . . . , xn) and class y, under the
assumption of conditional independence, it holds that

P(y|x) = C · P(y) ·
n∏

i=1

P(xi |y). (7)

The next step is to estimate the prior and conditional probabilities in Eq. (7). It is
here where the training set comes in. The given training set S consists of pairs
(x, y), where x is a feature vector and y is its corresponding label. Assuming that
the feature vectors in S represent a random, uniformly chosen subset of the relevant
instance space, P(y) can be estimated directly from the number of instances of
class y, divided by the total number of instances. For the conditional probabilities,
we can do a similar thing, by rewriting P(xi |y) as P(xi ∧ y)/P (y) and estimating
the numerator and denominator separately.

To this end, we define, for y ∈ {−,+}, i = 1, 2, . . . , n, and v ∈ Di , the quantities
N(y) and N(i, v, y) as follows.

N(y) = ∣∣{x | (x, y) ∈ S}∣∣,
N(i, v, y) = ∣∣{x | (x, y) ∈ S ∧ xi = v}∣∣.

Hence, N(y) is the number of class-y instances in the training set, and N(i, v, y)

is the number of class-y instances in the training set having their ith feature value
equal to v. Using these definitions, we can estimate the probabilities as follows.

P(y) ≈ N(y)

|S| ,

P (xi |y) ≈ N(i, xi, y)/|S|
N(y)/|S| = N(i, xi , y)

N(y)
. (8)

We have arrived at the following result.

Lemma 3 For an instance with x = (x1, x2, . . . , xn) and class y, under the
assumptions of conditional independence and the training set S being a random,
uniformly chosen subset of the relevant instance space, it holds that P(y|x) can be
estimated by

P(y|x) ≈ C · N(y)

|S| ·
n∏

i=1

N(i, xi , y)

N(y)
, (9)

where C is a normalization constant.

On the Priors In case we are only interested in the relative ordering of different
instances by P(+|x), the prior P(+) can also be omitted, as it is identical for all
instances. This leaves only the product of the conditional probabilities. Also from a
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practical point of view, it may make sense not to include the priors, or at least not to
use the estimation from the training set. This is because, in practice, it is often the
case that the training set is not uniformly chosen from the relevant instance space.
For example, in a trial, often a balanced set of positives and negatives is selected,
whereas in practice the balance between positives and negatives may be different. In
this case, the estimates of the priors will not give accurate results. For the conditional
probabilities, this is irrelevant, as they are normalized values within their class. It is
also possible to estimate the priors, based on other information, e.g., by using expert
knowledge. From a mathematical point of view, however, it is more elegant to keep
the priors in the formulas, as will become clear in the next section.

Performance In general, NBC does not operate error-free, i.e., it may misclassify
some of the instances. A number of assumptions have been made, such as condi-
tional independence and the training set being a random sample from the instance
space, each of which need not hold. Also, the estimations of the probabilities above
will generally not be exact, and the feature values of an instance may not carry
sufficient information to always infer the proper class. NBC may thus make errors.
Section 3 extensively covers how the performance of a classifier can be evaluated.

This concludes the description of NBC. In the next section, we provide a more
intuitive view on the conditional probabilities, specific for two-class classification.
Next, in Sect. 2.3, we provide some additional details about NBC.

2.2 Skewing Factors and Terms

Instead of estimating P(+|x), we can look at the ratio of P(+|x) and P(−|x). With
only two classes, we have that P(−|x) = 1 − P(+|x), so we in fact then look at

P(+|x)

1 − P(+|x)
. (10)

As the function f (z) = z/(1 − z) is monotonically increasing on the interval [0, 1),
Eq. (10) provides an equivalent alternative to P(+|x), as we are only interested in
the relative ordering of instances by P(+|x). As z is increasing from 0 to 1, f (z) is
increasing from 0 to ∞, thus keeping the ordering among instances intact.

By considering this ratio, we do not have to omit the evidence P(x) from Eq. (3)
anymore, as it cancels out in the ratio.

P(+|x)

P (−|x)
= P(x|+) · P(+)/P (x)

P (x|−) · P(−)/P (x)
= P(x|+) · P(+)

P (x|−) · P(−)
. (11)

In the literature, the ratio P(x|+)/P (x|−) is known as a likelihood ratio or Bayes
factor.
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On the basis of the assumption of conditional independence, as given by Eq. (6),
we can rewrite Eq. (11) as follows.

P(+|x)

P (−|x)
= P(+)

P (−)
·

n∏
i=1

P(xi |+)

P (xi |−)
. (12)

Also here, P(xi |+)/P (xi |−) is a likelihood ratio. Replacing in Eq. (12) the
probabilities by their estimations, as shown by Eq. (8), we arrive at the following
result.

Lemma 4 For an instance x = (x1, x2, . . . , xn), under the assumption of condi-
tional independence and the training set being a random, uniformly chosen subset
of the relevant instance space, it holds that

P(+|x)

P (−|x)
≈ N(+)

N(−)
·

n∏
i=1

N(i, xi ,+)/N(+)

N(i, xi ,−)/N(−)
. (13)

As the function f (z) = z/(1−z) introduced above has as inverse function f −1(z) =
z/(1 + z), the right-hand side of Eq. (13) can be translated back to the estimate of
the positive posterior probability P(+|x) by applying f −1 to this expression.

Let us next take a closer look at Eq. (12). By rewriting P(xi |y) as P(xi ∧
y)/P (y), we can rephrase this equation as

P(+|x)

P (−|x)
= P(+)

P (−)
·

n∏
i=1

(
P(xi ∧ +)/P (+)

P (xi ∧ −)/P (−)

)
. (14)

Equation (14) suggests that, for an individual feature i, we can consider the ratio of
the conditional probabilities as a so-called skewing factor: it skews the ratio of the
priors by replacing them by P(xi∧+)/P (xi∧−), effectively adding the information
on the i-th feature value of x. The fact that this can be observed for each feature
separately is a consequence of the assumption of conditional independence.

We can make this explicit in Eq. (13) by introducing the skewing factor σ(i, v)

as an estimate of the corresponding likelihood ratio P(xi |+)/P (xi |−).

σ(i, v) = N(i, v,+)/N(+)

N(i, v,−)/N(−)
,

and rewriting Eq. (13) as follows.

P(+|x)

P (−|x)
≈ N(+)

N(−)
·

n∏
i=1

σ(i, xi).



Classification Algorithms and Their Performance Analysis 47

The function f −1 can also be applied to the individual skewing factors. This causes
the range [0,∞) of a skewing factor to be mapped onto the interval [0, 1). This unit
scale has symmetry properties: the value 0.5 is neutral, as it comes from a skewing
factor of 1, and two values v and 1−v, both in the range (0, 1), cancel each other out
when they are converted to skewing factors and multiplied together. More formally,

f (v) · f (1 − v) = v

1 − v
· 1 − v

1 − (1 − v)
= 1.

It is for these reasons that f −1(σ ) for a skewing factor σ can be used to represent σ

in an intuitive way. To make this more explicit, we introduce the notion of skewing
term. Selecting a skewing term τ in the interval [0, 1) corresponds to a skewing
factor f (τ). Note that the skewing term associated to the posterior probability ratio
is the positive posterior probability.

The reason for choosing the words “factor” and “term” is because factors are
multiplied together and terms have more to do with addition. Taking the arithmetic
mean of two skewing terms results in a sensible combination, e.g., taking the average
of v and 1 − v results in the neutral value of 0.5.

Conversely, a skewing factor can be explicitly set in this way, say by an expert,
allowing for a hybrid learning-expert classifier; see [34]. It is also possible to form
a flexible combination σ ′ of a learned skewing factor σL and an expert skewing
factor σE, i.e., by translating them to skewing terms using f −1, taking the weighted
average of these terms, and translating this average back to a skewing factor using
f . More formally,

σ ′ = f (α · f −1(σL) + (1 − α) · f −1(σE)
)
.

for some α ∈ [0, 1].
The notion of skewing terms enables a classification by a classifier to be

explainable. Each involved feature value xi has an associated skewing term on the
[0, 1) scale, making them not only easily comparable to each other but also allowing
the user to evaluate why the classifier came to its decision.

Let us bring the above in practice with a simple example, highlighting the
learnings thus far.

Example 2 (NBC in Action) Suppose we have a fictitious training set consisting of
N(+) = 50 persons having a given disease and N(−) = 50 persons not having this
disease. Suppose that we have for each person two features, i.e., their temperature
and heart rate, with temperature as well as heart rate having values normal, elevated,
and high, each value being specified by appropriate limits on temperature and heart
rate, respectively. The counts N(i, v, y) are distributed as given in Table 1.
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Table 1 The values of the
N(i, v, y) counts in
Example 2

Feature i Value v N(i, v,+) N(i, v,−)

Temperature Normal 7 21

Elevated 19 16

High 24 13

Heart rate Normal 8 16

Elevated 20 24

High 22 10

Consider a person with a normal temperature and normal heart rate. Using
Eq. (9), the posterior probabilities are estimated as follows.

P(+|(normal, normal)) ≈ C · 50

100
· 7

50
· 8

50
= C · 0.0112,

P (−|(normal, normal)) ≈ C · 50

100
· 21

50
· 16

50
= C · 0.0674,

We next normalize them by dividing each by their sum of C · 0.0786, yielding

P(+|(normal, normal)) ≈ 0.142,

P (−|(normal, normal)) ≈ 0.858.

If we set the threshold T on 0.5, this person would be classified as not having the
disease, since P(+|x) < 0.5. For the feature temperature, the associated skewing
factor is simply the ratio of the numbers 7/50 and 21/50, which is approximately
0.333, and for the feature heart rate the skewing factor is, similarly calculated, 0.500.
Both skewing factors thus have a decreasing effect on the posterior probability
ratio. The associated skewing terms are 0.250 and 0.333, respectively, both well
below 0.500, the neutral value. The ratio of the posterior probabilities is 0.166, with
associated skewing term of 0.142.

For a person with feature values (normal, high), the calculations are

P(+|(normal, high)) ≈ C · 50

100
· 7

50
· 22

50
= C · 0.0308 → 0.478,

P (−|(normal, high)) ≈ C · 50

100
· 21

50
· 8

50
= C · 0.0336 → 0.522,

where the arrows indicate the normalization step. Still, this person would not be
classified as diseased, but the probabilities are closer together. For the feature
temperature, the associated skewing factor is again 0.333, and for the feature heart
rate the skewing factor is the ratio of 22/50 and 8/50, which amounts to 2.75. In
this case, the temperature skewing factor has a decreasing effect on the posterior
probability ratio and the heart rate skewing factor has an increasing effect on the
posterior probability ratio. The associated skewing terms are 0.250 and 0.730,
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respectively. It is the temperature that offsets the heart rate in this case, leading
to the classification of not having the disease. The ratio of the posterior probabilities
is 0.916, which translates to a skewing term of 0.478, which is close to neutral.

Finally, let us take a look at a person with feature values (high, elevated). The
corresponding calculations are as follows.

P(+|(high, elevated)) ≈ C · 50

100
· 28

50
· 20

50
= C · 0.112 → 0.624,

P (−|(high, elevated)) ≈ C · 50

100
· 13

50
· 26

50
= C · 0.0676 → 0.376.

This person would be classified as diseased, as its positive posterior probability
exceeds 0.5. The skewing factor for temperature is 28/50 divided by 13/50, which is
2.15, and for heart rate it is, similarly calculated, 0.769. The corresponding skewing
terms are 0.683 and 0.435. In this case, also the temperature offsets the heart rate, but
now resulting in the classification diseased. The ratio of the posterior probabilities
is 1.66, corresponding to a skewing term of 0.624. ��

2.3 Additional Details of NBC

In this section, we will cover a number of issues related to NBC. These are (1) zero
counts, (2) missing feature values, and (3) continuous features.

Zero Counts In case we have some N(i, v, y) = 0, this will set the corresponding
estimate of the likelihood to zero, and thus the corresponding posterior probability.
Notwithstanding the fact that dividing by zero is problematic for skewing factors, it
also causes all other features present in the estimation of the posterior probability to
be overruled by this zero count, which is an undesirable situation.

In this case, use can be made of a heuristic called the Laplace correction [42],
which works as follows. Suppose we do an experiment with r possible outcomes n

times. For example, we roll a dice n times, so that r = 6. Suppose an outcome e

occurs k times. Instead of estimating the probability P(e) of this outcome as P(e) =
k/n, we estimate it as

P(e) = k + 1

n + r
.

Although we consider a full treatment of this result outside the scope of this book,
we do make the following, intuitive remark. The addition of 1 in the numerator
and r in the denominator expresses the assumption that we have already seen each
outcome once.
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By multiplying both the 1 and the r by a small constant, e.g., 1/|Di | for feature
i, this correction can be further refined. The latter is of importance for skewed data
sets, i.e., for data sets with a high class imbalance.

In NBC, Laplace correction is only applied when k = 0, i.e., only if
N(i, xi , y) = 0. In this case, the estimation of the conditional probability becomes

P(xi |y) = 1

N(y) + |Di | .

Missing Feature Values In practice, it may occur that feature values are missing.
In the case that it concerns an instance to be classified, a missing feature value can
be dealt with by not including it in the estimation of any of the class probabilities.
An alternative to this is to treat the missing value as a special value. The choice will
depend on the application.

In the case that the instance is in the training set, and we do not treat the
missing value as a special value, we may want to adapt the conditional probability
estimations. Missing feature values cause underestimations in Eq. (9). We define
N(i, y) as

N(i, y) =
∑
v∈Di

N(i, v, y).

In N(i, y), only those class-y instances are counted that do have a value for feature
i. We adapt the estimation of the conditional probabilities to

P(xi |y) ≈ N(i, xi , y)

N(i, y)
.

We note that if the total count of a feature, given by N(i,−) + N(i,+), is low,
it may be a good idea to eliminate this feature altogether from classification.
Especially when there are many zero counts, it also provides an alternative to
Laplace correction for this feature. We end this section by referring to semi-
supervised learning [1, 43] for how to deal with missing class labels.

Continuous Features In general, features do not have to be discrete, e.g., temper-
ature, weight, or length. Although measurements will make values discrete, we do
not want to treat the many possible values that such a feature can attain separately
as in the discrete case. This could result in many Laplace corrections, making the
feature practically useless. Instead, we would like to consider them as if they are
continuous.

The formulation of NBC in the previous section can easily be extended to
incorporate continuous features. There are two ways to do that.

The first is to discretize the feature values, i.e., to subdivide the domain in a
finite and reasonably small number of numbered bins and translate a continuous
value to the number of the bin to which it belongs. In this way, the infinite domain
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is quite intuitively translated to a finite domain and results in an estimation of the
probability density function. There are numerous ways in which this discretization
can be done. A simple example is to use bins of constant width. More elaborate
binning algorithms typically make use of the values as well as the class labels. For
further details, we refer to Dougherty et al. [8] and Kotsiantis and Kanellopoulos
[24]. This discretization is also possible if the domain is finite, but contains many
values. In either case, a relatively small number of suitably chosen bins is the result.

The second way to deal with continuous feature values is to try and fit a prob-
ability density function per class and use these instead of the discrete conditional
probability estimates in Eq. (8). Note that, in this case, we are not using probability
estimates anymore, but instead use probability density estimates. It goes without
saying that finite and infinite domains may coexist in the data set.

There are various ways to fit a probability density function to a continuous
feature. Often used is assuming Gaussian conditional distributions and estimating
their class-conditional expectations and variances. An alternative is known as kernel
density estimation, whereby each feature value is replaced by a probability density
function, called a kernel, with known parameters and, for each class, taking the
average of all kernels associated to this class as the conditional density function.
For more details on kernel density estimation, see [38].

3 Performance Analysis

The second part of this chapter is devoted to the analysis of the performance of
classification algorithms. After introducing the basic performance metrics, we argue
that correctly evaluating the performance of a classification algorithm necessitates
taking into account the conditions in which the algorithm will have to operate
in practice. These so-called operating conditions consist of two elements: class
skew and cost skew. We show that both elements can be combined into a single
parameter that defines cost and that iso-cost curves are straight lines in ROC space.
Additionally, as alternatives to ROC space, we briefly review two other spaces,
namely, precision-recall space and cost-curve space.

3.1 Confusion Matrix and Performance Metrics

The performance of a classifier C can be given in the form of a confusion matrix.
In the case of a two-class classification problem, a confusion matrix is a 2 × 2
table, where the columns relate to the true classes (y) and the rows relate to the
estimated classes (ŷ). Figure 3 gives an example of a confusion matrix. The resulting
four sets are denoted by true positives (TP), false positives (FP), false negatives
(FN), and true negatives (TN). False positives are sometimes called false alarms,
and false negatives are sometimes called missed hits. To easily define and remember
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Fig. 3 For a two-class classification problem, the performance of a classifier C is presented as a
2 × 2 table called a confusion matrix, here given by the orange center part

Table 2 Definitions of various performance metrics, where TPR denotes true positive rate, FPR
denotes false positive rate, PPV denotes positive predictive value, and NPV denotes negative
predictive value

Sensitivity = recall = TPR A
A+C

The fraction of positives correctly classified
as positives

Specificity D
B+D

The fraction of negatives correctly classified
as negatives

1 − specificity = FPR B
B+D

The fraction of negatives wrongly classified
as positives

PPV = precision A
A+B

The fraction of positives in the set of patients
that have been classified as positives

NPV D
C+D

The fraction of negatives in the set of patients
that have been classified as negatives

Accuracy A+D
A+B+C+D

The fraction of correctly classified patients

the various derived performance metrics, we simply denote these four classes by A,
B, C, and D, respectively. In addition, for convenience, we defined P = A+C and
N = B + D.

We now briefly discuss the performance metrics defined in Table 2. We note
that sensitivity and specificity are each defined within a column of the confusion
matrix. In other words, they indicate the performance of a classifier within a real set:
either within the positives or within the negatives. Conversely, the PPV and NPV are
each defined within a row of the confusion matrix. Correspondingly, they indicate
the performance of a classifier within a classified set: either within the classified
positives or within the classified negatives. Furthermore, the TPR and FPR are given
explicitly in Table 2, as they are used as the dimensions of ROC space that we
will discuss in detail later. Additionally, we observe that sensitivity and specificity
can be confusing terms for persons new in the field and that in retrospect positive
accuracy and negative accuracy would have been less confusing terms. Figure 4
gives a schematic overview of four of the performance metrics.
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Fig. 4 A schematic overview of four performance metrics

3.2 Accuracy and Its Limitations

When taking a naive view on the above metrics, one could argue that accuracy is
the best scalar metric to quantify the overall performance of a classifier. This can be
supported by the following observation.

Observation 1 Given that sensitivity is defined as A/(A + C) and specificity as
D/(B + D), and given that accuracy is defined as (A + D)/(A + B + C + D), it
is easily seen that accuracy is a convex combination of sensitivity and specificity.

This observation directly follows from the following lemma.

Lemma 5 Given two fractions a/b and c/d , with a/b < c/d and a, b, c, d > 0,
the mediant (a + c)/(b + d) has the property

a

b
<

a + c

b + d
<

c

d
.

Proof The lemma directly follows from

a + c

b + d
− a

b
= bc − ad

b(b + d)
= d

b + d

( c

d
− a

b

)
> 0

and

c

d
− a + c

b + d
= bc − ad

d(b + d)
= b

b + d

( c

d
− a

b

)
> 0

where we use that a, b, c, d > 0 and a/b < c/d . ��
However, accuracy alone is not sufficient to quantify the performance of a classifier.
Let us illustrate this with the following example. Let P and N denote the total
number of positives and negatives in a given validation set. Furthermore, let
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N = mP , for some positive number m. In addition, let NO denote the classifier
that assigns a class label ŷ = − to each patient in the validation set, irrespective
of the feature vector x of the patient. Likewise, let YES denote the classifier that
assigns a class label ŷ = + to each patient, irrespective of the feature vector x of
the patient. Now, if m is sufficiently large, then NO will have a high accuracy. For
example, if m > 9, then the accuracy is given by

N

N + P
= m

m + 1
> 0.9.

We say that a given data set is skewed whenever N � P or P � N . So, if a data
set is skewed, then the accuracy of NO or YES will be high, without actually using
the information that may be captured in the data set.

Generally speaking, the accuracy of a classifier may be high simply because of
the skewness of the data set. Furthermore, the accuracy does not take into account
the differences in costs that can be associated to missed hits (false negatives) and
false alarms (false positives). Before explicitly considering these costs in the next
section, let us first illustrate the effect of a skewed data set with the following
example.

Example 3 (Drug Test) Suppose that a company has developed a drug test that can
detect whether a person has taken specific types of drugs that may not be combined
with car driving. It is estimated that on Saturday nights 0.5% of the car drivers are
using these drugs. The police considers using the drug test in random tests on car
drivers on Saturday nights. It is known that both sensitivity and specificity of the
drug test are 0.99. Hence, the fraction of positives incorrectly classified as negative
is 0.01 and also the fraction of negatives incorrectly classified as positive is 0.01.
Suppose that a person A is identified as a positive by the drug test at a Saturday
night police control.

Now, what is the probability that person A has actually taken the drugs? This
can be calculated as follows. Suppose that 20,000 persons are tested. Of these, 0.5%
will be positives, i.e., 100 persons will be positives and 19,900 will be negatives.
Given the 0.99 sensitivity, 99 of the 100 positives will be true positives and 1 person
will be a false negative. Given the 0.99 specificity, 19,701 of the 19,900 negatives
will be true negatives and 199 will be false positives. Table 3 gives the confusion
matrix for the given drug test. Hence, of the 99 + 199 = 298 persons identified
as positive, only 99 are true positives. So, the probability that A is a true positive
is 100/298 ≈ 1/3. In other words, the precision of the test is approximately 1/3.
Despite the high sensitivity and specificity of the drug test, still two out of three
persons will be incorrectly identified as a positive by the drug test. ��

Table 3 Confusion matrix
for the drug test example

True + True −
Classified + 99 199

Classified − 1 19,701
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3.3 Operating Conditions

To better quantify the performance of a classifier, one has to take into account the
operating conditions, i.e., the conditions that specify the environment in which the
classifier will have to operate when it is deployed. The operating conditions are
defined by two elements called class skew and cost skew.

1. Class skew defines the difference between the fraction p(+) of positives and the
fraction p(−) of negatives.

2. Cost skew defines the difference between the cost c(+|−) of a false alarm and
the cost c(−|+) of a missed hit.

It will be clear that in some medical applications, the cost of missed hit can be much
higher than the cost of a false alarm. In a cancer screening program, the cost of an
unnecessary invasive procedure (as a consequence of a false alarm) will be much
lower than the cost of not noticing a lethal disease in a patient (as a consequence
of a missed hit). By definition, p(+) + p(−) = 1. We also assume that c(+|−) +
c(−|+) = 1, i.e., that cost values are normalized. Note that we implicitly assume
that no costs are associated to correct classifications, i.e., c(+|+) = c(−|−) = 0.
Furthermore, we assume that all p(+), p(−), c(+|−), and c(−|+) are positive.

Now, the operating conditions of a classifier can simply be specified by a point
in a unit square:

(
p(+), c(−|+)

) ∈ (0, 1) × (0, 1).

We observe that this specification is arbitrary. We could also have chosen the point
to represent, for example,

(
p(−), c(+|−)

)
. Before considering an example, we

note that p(+) can be considered equivalent to the prevalence of a disease, when
considering a complete population. However, p(+) will generally differ from this as
the classification will be carried out on a specific subset of the complete population.

Example 4 (Cancer Screening) To detect a specific cancer at an early stage, the
government of a country is considering to start a screening program to screen all
persons above a certain age, every 3 years. One assumes that 1% of the tested
persons will have the cancer. Furthermore, for this hypothetical case, the relative
costs of a missed hit and a false alarm are assumed to be 0.8 and 0.2, respectively.
These relative costs may combine monetary as well as ethical aspects. For the given
choice, the operating conditions are thus given by p(+) = 0.01 and c(−|+) = 0.8.
Now, two screening tests have been proposed for this screening program: screening
test T1 with a sensitivity of 0.90 and a specificity of 0.99 and screening test T2 with a
sensitivity of 0.99 and a specificity of 0.98. Which of the two screening tests should
be chosen for the given operating conditions?

Let us calculate the relative costs to test 10,000 persons. Given that p(+) = 0.01,
there are 100 positives and 9900 negatives. Using T1, out of the 100 positives, 10
will be classified as negative, and out of the 9900 negatives, 99 will be classified as
positive, resulting in total relative costs of 10 ·0.8+99 ·0.2 = 27.8. Using T2, out of
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the 100 positives, 1 will be classified as negative, and out of the 9900 negatives, 198
will be classified as positive, resulting in total relative costs of 1 · 0.8 + 198 · 0.2 =
40.4. Hence, for the given operating conditions, where the cost of a missed hit is
assumed four times as high as the cost of a false alarm, the less sensitive test, T1,
would still be preferred.

3.4 Dependency of Class Skew

As we have seen, the values of sensitivity and specificity are each defined within a
real set: sensitivity is defined within the positives, specificity within the negatives.
Consequently, these values do not change if the class skew changes over time. As
a consequence, the class skew of a training/test set need not be the same as the
class skew during operation. For some classification problems, the learning process
will give better results whenever the training/test set is better balanced [2, 40], i.e.,
whenever the number of positives and negatives is approximately the same. For such
algorithms, we can construct a balanced training/test set by under- or oversampling
the positives or negatives. If the resulting set is still representative of the complete
data set, then the resulting sensitivity and specificity derived from the balanced set
should also be valid for the complete data set. Not only sensitivity and specificity
are independent of class skew but also recall, TPR, and FPR, since TPR = recall =
sensitivity and FPR = 1− specificity.

The precision, however, is defined using both positives and negatives and
consequently depends on the class skew. For a data set, let P and N denote the
number of positives and negatives, respectively. Using that TPR = A/(A + C),
FPR = B/(B + D), P = A + C, and N = B + D, we can reformulate A and B as
A = P · TPR and B = N · FPR, where TPR and FPR are class skew independent.
As a consequence, precision can be formulated as

P · TPR
P · TPR + N · FPR , (15)

which clearly depends on the relative values of P and N , i.e., on the class skew.
However, the precision obtained by a classifier C that uses a balanced data set S ′
with P ′ positives and N ′ negatives can be used on a skewed data set S as follows. As
shown above, the precision of classifier C is given by (P ′·TPR)/(P ′·TPR+N ′·FPR).
This precision can be transformed to an estimated precision for data set S with P

positives and N negatives, using (P · TPR)/(P · T PR + N · FPR) by taking the
same values for TPR and FPR that classifier C obtained for S ′. Note that we assume
that the P ′ positives in S ′ are representative of the positives in S and, likewise, that
the N ′ negatives are representative of the negatives in S.
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3.5 ROC Space

The receiver operating characteristic (ROC) of a classifier C gives the sensitivity
as a function of 1 − specificity, or in other words, the true positive rate (TPR) as
a function of the false positive rate (FPR). This is usually represented as a point
(FPR,TPR) in a unit square called ROC space. For a given classifier C, the FPR and
TPR are denoted by FPR(C) and TPR(C). Figure 5 gives the points in ROC space of
four classifiers, numbered C1, C2, C3, and C4.

Before answering the question which one of these four classifiers should be used
to obtain the best performance, let us first consider the following two lemmas, where
we say that a classifier C is said to dominate a classifier C ′ if it results in lower costs
[35, 36].

Lemma 6 A classifier C dominates a classifier C ′, irrespective of the operating
conditions, if and only if

FPR(C) < FPR(C ′) ∧ TPR(C) > TPR(C ′).

Fig. 5 ROC space is a unit square with horizontally the FPR and vertically the TPR. For four
classifiers called C1, C2, C3, and C4, the performance is given as a point (FPR,TPR) in this unit
square
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Fig. 6 Whenever
FPR(C) < FPR(C′) ∧
T PR(C) > TPR(C′), we say
that C dominated C′,
irrespective of the operating
conditions

This lemma, which we will prove in Sect. 3.7, is illustrated by Fig. 6. From
Lemma 6, we conclude that classifier C4 in Fig. 5 is dominated by each of the other
three classifiers.

Lemma 7 Any classifier C can be transformed into a classifier ¬ C by simply
reversing its outcome for each patient. As a consequence,

FPR(¬ C) = 1 − FPR(C) and TPR(¬ C) = 1 − TPR(C).

Proof This easily follows from the observation that by negating a classifier, the rows
in the confusion matrix are interchanged, resulting in complementing the fractions
TPR and FPR. ��
Using Lemma 7, we conclude that ¬ C4 will have a FPR of 0.1 and a TPR of 0.9.
And using Lemma 6, we finally observe that ¬ C4 dominates C1, C2, C3, as well as
C4. Consequently, one can argue that of the four classifiers in Fig. 5, one should use
C4 by first negating it.

3.6 Expected Cost

As we showed in Sect. 3.3, the operating conditions are given by two elements, the
class skew (with related p(+) and p(−)) and the cost skew (with related c(−|+)

and c(+|−)). We have seen that the operating conditions can be uniquely specified
by a point

(
p(+), c(−|+)

)
in the unit square.
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Let the performance of a classifier C be given by a point (FPR, TPR) in ROC
space. The expected cost of classifier C for the given operating conditions is given
by

E[cost] = FPR · p(−) · c(+|−) + (1 − TPR) · p(+) · c(−|+).

This can be seen as follows. The fraction of negatives is given by p(−), and
multiplying this with FPR we get the expected number of false alarms. Likewise,
the fraction of positives is given by p(+), and multiplying this with (1 − T PR), we
get the expected number of missed hits. Multiplying each of these numbers with the
corresponding cost gives the expected cost.

3.7 Iso-Cost Curves

We next consider, for given operating conditions, how we can draw iso-cost curves
in ROC space, that is, how we can connect points in ROC space that have the same
expected cost [35, 36].

Consider a classifier C1 with performance (FPR1,TPR1) and a classifier C2 with
performance (FPR2,TPR2). If they have the same expected cost, then we have

FPR1 · p(−) · c(+|−) + (1 − TPR1) · p(+) · c(−|+)

= FPR2 · p(−) · c(+|−) + (1 − TPR2) · p(+) · c(−|+).

This can be rewritten into

(TPR2 − TPR1) · p(+) · c(−|+) = (FPR2 − FPR1) · p(+) · c(−|+),

which leads to

TPR2 − TPR1

FPR2 − FPR1
= p(−) · c(+|−)

p(+) · c(−|+)
.

Note that the left-hand side of this equation gives the slope of the line between
(FPR1,TPR1) and (FPR2,TPR2) as it has the form of Δy/Δx. Hence, we have
proven the following lemma.

Lemma 8 For given operating conditions, two classifiers have the same expected
cost if the slope of the line connecting their points in ROC space is given by

p(−) · c(+|−)

p(+) · c(−|+)
. (16)
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Fig. 7 Two points in ROC
space have the same expected
cost if and only if the slope of
the line between both points
is given by (16)

As stated earlier, we assume p(+), p(−), c(+|−) and c(−|+) to be positive. This
avoids dividing by zero. We can now derive the following results; see Fig. 7.

Observation 2 Iso-cost curves in ROC space are lines with a positive slope.

Lemma 9 The closer an iso-cost line is to point (0, 1), the lower the expected cost.

Proof We note that all ingredients of the expected costs are non-negative. So, the
expected cost cannot be negative. Then, clearly, the expected cost will be minimal
if both its terms are zero. This happens when FPR = 0 and TPR = 1. ��

The above observation and lemma justify Lemma 6. Since iso-cost curves are
straight lines with a positive slope and since an iso-cost line closer to (0, 1) implies
a lower cost, we see that the combination of FPR(C) < FPR(C ′) and TPR(C) >

TPR(C ′) implies the dominance of classifier C over classifier C ′, irrespective of the
operating conditions.

It is rather surprising to observe that both elements of the operation conditions,
class skew and cost skew, can be combined into a single parameter given by (16)
to define iso-cost lines. For ease of reference, this parameter is called the iso-cost
slope.

3.8 ROC Curves

Many classification algorithms produce scores s(x) as an estimate of P(+|x). For
such an algorithm A, one can simply vary the threshold T to obtain a sequence
of points in ROC space that can be associated with algorithm A. This sequence
of points is called an ROC curve. Hence, with each classification algorithm, we
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associate an ROC curve, and with each classifier C (i.e., classification algorithm A
with a fixed choice of threshold), we associate a single point of this curve.

The reason to show TPR as a function of FPR, instead of simply sensitivity as
a function of specificity, can be appreciated as follows. Consider all ordered scores
s(x) that are associated with patients, as in Fig. 1, and let us choose as initial value
for threshold T a value larger than the maximum occurring score. Then, clearly, no
patient is classified as positive: zero TPs as well as zero FPs. If we next decrease
the threshold by repeatedly jumping over a score associated to one or more patients,
then we can make the following observation. If we jump over a positive, then the
number of TPs will increase by one. If we jump over a negative, then the number
of FPs will increase by one. This can be continued until all positives end up as TPs
and all negatives end up as FPs. Visualizing these intermediate counts as points
(|FP|, |TP|) in a two-dimensional space results in a path from (0, 0) to (N, P ).
Now, simply normalizing the dimensions of this two-dimensional space, by dividing
the x-axis by N and dividing the y-axis by P , results in the corresponding ROC
curve. Hence, ROC space allows us to visualize this intuitive approach of stepwise
decreasing the threshold.

For a given ROC curve, we can realize the performance given by any point on the
line segment between any two points on the ROC curve. This can be derived from
the following lemma.

Lemma 10 Let classifier C define a point p and let C ′ define a point p′ in ROC
space. The performance of any point on the line segment between p and p′ can be
realized by a combined use of both classifiers.

Proof Suppose that we want to obtain the performance of the classifier given by
point p′′ = α · p + (1 − α) · p′, with α ∈ [0, 1]. By definition, p′′ is a convex
combination of p = (x, y) and p′ = (x ′, y ′) and lies on the line segment between
p and p′. Now, by simply using the outcome of classifier C with probability α and
using the outcome of classifier C ′ with probability (1 − α), we get the following
performance: the expected value of FPR is given by α · x + (1 − α) · x ′, and the
expected value of TPR is given by α · y + (1 − α) · y ′, which proves the required
result. ��

Figure 8 illustrates this lemma. As a consequence, the performance of a non-
convex ROC curve can be improved by taking its convex hull [4]. Hence, in the
remainder of this chapter, we will implicitly assume that an ROC curve is convex. If
it is not the case, then we will first take the convex hull of the ROC curve to improve
it.

To choose the point with the smallest expected cost of a given ROC curve, we
can use the following observation [35, 36].

Observation 3 A classifier C on a given convex ROC curve is optimal if and only if

sloperight ≤ p(−) · c(+|−)

p(+) · c(−|+)
≤ slopelef t ,
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Fig. 8 The performance of
any point on the line segment
between two points of an
ROC curve can be obtained
by combining the respective
classifiers. In this way,
classifier C′′ is dominated by
an appropriate combination of
classifiers C and C′

Fig. 9 Choosing the best
point from a given ROC curve

where sloperight gives the slope of the line segment connecting to the right of the
classifier’s ROC point and slopelef t the slope of the line segment connecting to the
left of the classifier’s ROC point.

Figure 9 gives an example of a classifier C that is optimal whenever the iso-
cost slope is between 0.75 and 2.5, being the slopes of the line segments that are
connected to the given point in ROC space.

An ROC curve is said to dominate another ROC curve whenever its convex hull
completely encompasses the convex hull of the other. Figure 10 gives two examples.
On the left, we see an example where curve 1 dominates curve 2. On the right, we
see two crossing ROC curves: curve 1 does not dominate curve 2, nor does curve 2
dominate curve 1.
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Fig. 10 Two examples illustrating the dominance of ROC curves

Clearly, if we have two classification algorithms A and A′ of which the first’s
ROC curve dominates the ROC curve of the second, then we can decide to use the
first instead of the second irrespective of the operating conditions. However, if their
ROC curves cross, then it will depend on the operating conditions which one of them
will give the lowest cost. For more information on ROC space and convex hulls in
ROC space, we refer to Fawcett [11] and Provost and Fawcett [35, 36].

3.9 Area Under the Curve

The area under the curve (AUC) is often used as a scalar to represent the quality
of a classification algorithm. It is often implicitly assumed to be the area under the
convex hull of the ROC curve.

The AUC seems a better scalar metric than accuracy, since it takes into account
the multiple points of an ROC curve, while accuracy is only defined for a single
point. However, it also does not explicitly take into account the operation conditions
of a classification algorithm. As such it is not really suited to directly compare
the performance of two classification algorithms, unless the ROC curve of one
algorithm is completely dominated by the ROC curve of the other.

Nevertheless, the AUC has its merits. For one, it does not require the specification
of a threshold T . Additionally, the AUC has an interesting interpretation: it is the
probability that a randomly selected positive has a higher score than a randomly
selected negative. For other interesting properties and interpretations of AUC, we
refer to Hand [16] and Flach et al. [12].

Figure 11 gives an example of two ROC curves that each have an AUC of 0.75.
Depending on the operating conditions, either the blue point (0, 0.5) or the green
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Fig. 11 Two ROC curves
that each have an AUC of
0.75

point (0.5, 1) will be optimal, or both. If the iso-cost slope is at least 1, the blue
point will be optimal, if the iso-cost slope is at most 1, the green point will be
optimal.

Suppose that the iso-cost slope is given by 4 + ε. Now, if the green point would
be shifted to the left to coordinates (0.125, 1), then the AUC of the green ROC curve
would be 0.90, while still the blue point would give the best results. In other words,
the AUC cannot be used to choose between two classification algorithms, whenever
their ROC curves intersect. To take into account operating conditions, methods have
been proposed to adjust the AUC, such that it is not computed over the full FPR
range. For these partial AUC variants, we refer to McClish [28] and Dodd and Pepe
[5].

Fortunately, whenever the ROC curves of two classification algorithms intersect,
we can combine both classification algorithms by constructing the convex hull of
both curves. This assumes that, depending on the operating conditions, we use one
or the other or a combination of both, in the same way as explained in Lemma 10.

3.10 Precision-Recall Space

For some application areas such as information retrieval and recommender systems,
it is common to use precision and recall instead of sensitivity and specificity as
classification metrics. In those areas one often aims to get a relatively small subset S

of all possible instances to offer as suggestions to a user, where preferably S should
contain only positives. In these cases, FPR is not a relevant metric, as the number N

of negatives will be much larger than the size of S. Hence, even if S would contain
only negatives, still the FPR would be very small. In the medical domain, FPR will
mostly be very relevant, but precision is also an important parameter, as we have
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seen in the above examples. For that reason, we here briefly consider the relation
between ROC space and precision-recall (PR) space. We note that in the medical
literature, precision may be better known as PPV.

If the operating conditions are known and assumed not to change, it may make
sense to express the performance directly in precision and recall. Since recall is
identical to sensitivity, we can choose PR space as a unit square, with precision on
the x-axis and recall on the y-axis. In that case, PR space can be directly compared
to ROC space, as they present the same information on their y-axes.

Unless A + B = 0, one can associate with each point in ROC space a
corresponding point in PR space. Given that the TPR and FPR are given by a point
in ROC space, and given that we know the number P of positives and the number
N of negatives, we can obtain precision given by

P · TPR
P · TPR + N · FPR ,

as derived in Sect. 3.4. Figure 12 gives an example of an ROC curve with the
corresponding PR curve, assuming that P = N . If threshold T is chosen smaller
than the minimum occurring score, then TPR = FPR = 1, giving point (1, 1)

in ROC space. Assuming that P = N , the precision will be 0.5. Hence, the
corresponding point in PR space is given by (0.5, 1).

Figure 13 gives another example, where for a given ROC curve we show two
different corresponding PR curves, one for N = P and one for N = 10P . Since the
latter has a higher class skew, the precision will be lower.

As we have shown by Lemma 10, a convex combination of two classifiers C and
C ′ in ROC can be used to obtain any point on the line segment between the points
corresponding to C and C ′. This does not hold for PR space, though. We can however
generate intermediate points between C and C ′ in ROC space and map these one by
one to the corresponding points in PR space. We note, however, that these points

Fig. 12 ROC curve with the corresponding PR curve
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Fig. 13 ROC curve with two corresponding PR curves, one for N = P and one for N = 10P

Fig. 14 Points that lie on a straight line going through (0, 0) have the same precision

generally will not lie on a straight line. An exception is given by points on a line in
ROC space that goes through the origin, as stated by the following observation; see
Fig. 14.

Observation 4 Points that lie on a same line in ROC space passing through (0, 0)

have the same precision.

For a line through the origin, we have that TPR/FPR is constant, so that
precision, see Eq. (15), is also constant. For more information on the relation
between ROC and PR curves, we refer to Davis and Goadrich [3].

3.11 Cost Curve Space

When the operating conditions are not yet known or when it is to be expected that
the operating conditions will change over time, it does not make sense to present the
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performance of a classification algorithm in PR space. In that case, we can present
the performance in ROC space. Depending on the operating conditions, the iso-
cost slope given by (16) may change. Correspondingly, the optimal point on an
ROC curve may change. A disadvantage of ROC space is that cost is not visualized
explicitly. One has to compute the relevant slope of iso-cost lines oneself. And one
cannot easily see the relative difference in cost of two points in ROC space.

For those reasons, [9, 10] suggested an alternative space, called cost curve (CC)
space. A cost curve shows normalized expected cost as a function of p(+) ·c(−|+).
This product is denoted by PC(+).

3.12 Special Case: c(−|+) = c(+|−)

To explain the details of cost curves, let us first focus on the special case where
c(−|+) = c(+|−). For ease of notation, let us assume that c(−|+) = c(+|−) = 1,
instead of c(−|+) = c(+|−) = 0.5. In that case, expected cost is given by

E[cost] = FPR · p(−) · c(+|−) + (1 − TPR) · p(+) · c(−|+)

= FPR · p(−) + (1 − TPR) · p(+)

= FPR · (1 − p(+)) + (1 − TPR) · p(+).

Equivalent to the definition of FPR, let the false negative rate FNR be defined by
1 − TPR. We can then rewrite the above expression of the expected cost as

E[cost] = FPR · (1 − p(+)) + FNR · p(+) (17)

= FPR+ p(+) · (FNR − FPR).

In other words, the expected cost is a convex combination of FPR and FNR and the
expected cost can be written as a function that is linear in p(+). Using this result, for
the case that c(−|+) = c(+|−), CC space gives E[cost] as a function of p(+). The
x-axis ranges from 0 (all instances are negatives) to 1 (all instances are positives).

Observation 5 A point (FPR,TPR) in ROC space corresponds to a line in CC
space from point (0,FPR) to point (1,FNR).

In addition, an intersection point in CC space defines the slope of an iso-cost line in
ROC space.

Observation 6 There is a duality between ROC space and cost space: each point
in ROC space relates to a line in cost space, and each point in cost space relates to
a line in ROC space.

Figure 15 shows two points in ROC space, with the corresponding lines in CC
space. The two lines in CC space give the expected cost as a function of p(+). In
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Fig. 15 Two points in ROC space and their corresponding lines in CC space are shown

Fig. 16 The main diagonals in CC space relate to classifiers YES and NO

this figure, the blue point (0.2, 0.3) is better until the point where the lines in CC
space intersect. For this point, we have p(+) = 1/3, as is easily verified, and it
corresponds to the iso-cost line in ROC space through the blue and black points.

Observation 7 The NO and YES classifiers correspond to the main diagonals in
CC space.

Figure 16 shows the main diagonals related to classifiers YES and NO, as defined
just after Lemma 5. Classifier YES corresponds to the diagonal from (0, 1) to (1, 0)

and classifier NO to the diagonal from (0, 0) to (1, 1). As a consequence, the area of
interest in CC space is restricted to the triangle formed by the points (0, 0), (1, 0),
and (0.5, 0.5). Any point above one of the two main diagonals will not be of interest,
as the corresponding classifier is dominated by YES or NO. As a consequence, the
upper half of CC space is not really of interest and often only the y-axis ranges from
0 to 0.5.

Figure 17 shows another example, with four classifiers, including YES and NO.
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Fig. 17 For four points in ROC space, the corresponding lines in CC space are shown

3.13 General Case

In the general case where c(−|+) need not equal c(+|−), a cost curve shows
the normalized expected cost as a function of PC(+) = p(+) · c(−|+). For
this general case, an additional normalization is applied, such that the maximally
possible expected cost equals 1. The maximally possible expected cost occurs
when all instances are incorrectly classified, i.e. when FPR = 1 and FNR = 1,
corresponding to the right lower corner of ROC space. We determine the maximally
possible value of E[cost] by

E[cost] = FPR · p(−) · c(+|−) + FNR · p(+) · c(−|+)

≤ p(−) · c(+|−) + p(+) · c(−|+).

Hence, on the y-axis, the normalized expected cost is defined by

Norm(E[Cost]) = FPR · p(−) · c(+|−) + FNR · p(+) · c(−|+)

p(−) · c(+|−) + p(+) · c(−|+)
.

By also normalizing PC(+) to

PC′(+) = PC(+)

PC(+) + PC(−)
, (18)

we have arrived at the following lemma.

Lemma 11

Norm(E[Cost]) = FPR · (
1 − PC′(+)

) + FNR · PC′(+).
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Hence, we get a similar expression as for the case that c(−|+) = c(+|−), see
Eq. (17), where p(+) is replaced by PC′(+). For further details on this alternative
to ROC space, we refer to Drummond and Holte [9, 10].

4 Concluding Remarks

We end this chapter with (1) references to further extensions of NBC, (2) references
to extensions of performance analysis and alternative machine learning algorithms,
and (3) a summary of the main lessons learned.

4.1 Extensions of NBC

The classical NBC described in Sect. 2 can be extended in several ways. We consider
an in-depth treatment of these subjects outside the scope of this book and instead
supply references to relevant literature.

Incorporating a Confidence Measure The conditional probability estimates can
be analyzed to add confidence intervals around the posterior probability estimates.
These may be used to refine the classification. For more details, we refer to Laird
and Louis [25] and Pronk et al. [33].

Multivalued Features It is conceivable that a feature value is actually a set of
values, for example, a history of illnesses. Such a feature can be given special
treatment by weighing the individual conditional probabilities. For more details on
so-called multivalued features, we refer to Pronk et al. [34].

Bayesian Networks It is possible to take conditional dependence explicitly into
consideration. This can be realized by so-called Bayesian networks, where the
dependence between features is made explicit by a directed, acyclic graph. For an
introduction to Bayesian networks, see, e.g., [32].

4.2 Extensions of Performance Analysis

After focusing on using NBC for two-class classification problems in this chapter,
we would like to broaden again our view with some pointers for further reading on
performance metrics for broader settings.

Generalizations of performance analysis to multiclass classification are given
by Hand and Till [17] and Wu et al. [41]. Performance analysis can also be
extended to machine learning areas, other than classification. Fürnkranz and Flach
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[13] extensively discuss ROC-related concepts in the context of rule learning. ROC
curves for regression are given by Hernández-Orallo [20].

In addition to NBC, there is a broad range of machine learning algorithms
including logistic regression, support vector machines, decision trees, random
forests, and algorithms based on artificial neural networks, including the now
popular deep learning variants. Overviews of various learning algorithms and
corresponding performance metrics are given by, for example, James et al. [22] and
Friedman et al. [19]. Overviews on deep learning are given by LeCun et al. [26] and
Goodfellow et al. [15].

Finally, we refer to recent ROC variants proposed by Millard et al. [29, 30] and
Hernández-Orallo et al. [21].

4.3 Lessons Learned

Let us briefly summarize the most important lessons that we want to convey.
NBC is a relatively simple and transparent classification algorithm, based on

a probabilistic approach, using Bayes’ Rule. It is primarily based on counting
occurrences of individual feature values in the training set, which is made possible
by the assumption of conditional independence.

In the case of only two classes, the explainability of a classification result
is considerably enhanced by introducing skewing factors and associated skewing
terms. The latter provide an intuitive measure of the influence of a feature value on
the eventual classification result.

A scalar metric generally does not give sufficient information to judge the
performance of a classifier or classification algorithm. Both the accuracy of a
classifier C and the AUC of the ROC curve of a classification algorithm A do not
explicitly take into account the operating conditions.

The operating conditions take into account two aspects: class skew and cost skew.
Surprisingly, both aspects can be combined into a single parameter, called iso-cost
slope, given by

p(−) · c(+|−)

p(+) · c(−|+)
.

An ROC curve gives the performance of a classification algorithm in a way that does
not depend on the operating conditions. The operating conditions define the slope
of iso-cost lines that implicitly determine optimal points on an ROC curve.

If the operating conditions are known beforehand and do not change over time,
then a PR curve may give a better insight into the performance of a classification
algorithm as it directly shows precision, which in many applications is a very
relevant metric.

If the operating conditions are not known beforehand or if they may change
over time, then cost curves provide additional ways to visualize the performance
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of a classification algorithm, offering a more explicit visualization of (normalized)
expected cost as a function of the p(+) · c(−|+).
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The Role of Deep Learning in Improving
Healthcare

Stefan Thaler and Vlado Menkovski

1 Introduction

Many industries including healthcare benefit significantly from advances in infor-
mation technologies particularly with the growing trend of digitalization. Significant
improvements in efficiency and reduction of costs are achievable through automa-
tion of processes, cost-effective storage, and efficient retrieval of information and
data [122]. This cost reduction is particularly important in industries such as
healthcare where rising costs and aging populations impose continuous pressure
on existing practices. The need for improving medical procedures, improving
prevention, early detection, and more efficient and more accurate diagnosis is
evident. The role of artificial intelligence (AI) technologies in this context is partic-
ularly important. The promise of these technologies is to deliver an unprecedented
opportunity for automation [82].

One AI technology that already creates a significant impact on healthcare is
machine learning (ML). ML allows for the development of data-driven solutions
to complex problems. These approaches deliver more scalable and robust solutions
to existing expert designs, i.e., solutions that have been manually crafted by human
domain experts. They can be developed and adapted much more efficiently than
manually devised solution having a lot of data already collected. The predictive
analysis enabled by ML can deliver solutions in clinical diagnosis, prevention, and
healthy living.

However, in the realm of high-dimensional data (high-resolution imaging, high-
precision patient monitoring, molecular testing), traditional ML algorithms face
the curse of dimensionality [59] and have to rely on costly feature engineering by
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experts to deliver solutions. Recent developments in ML focus on approaches that
use multiple layers of representations. These layered architectures allow learning
representations that are useful for solving a task purely from data without the need
for features that are crafted by a domain expert. These technologies that use multiple
layers of representation can loosely be grouped as Deep Learning technologies,
and form a subfield of ML. In this chapter, we will focus on Deep Learning (DL)
technologies and their impact on healthcare.

We will present an overview of the underlying concepts and algorithms that
drive the success of DL. We will motivate the use of DL on different types of data
and discuss applications of DL to various fields in healthcare. DL is a data-driven
technology. The way DL is applied mainly depends on the structure of the data.
Even though in different applications the data indeed comes in a different context
with specific semantics, we present a data-centric view of the structure and organize
the applications of DL based on the type of data. We start by discussing spatially
correlated data, which includes various imaging modalities ranging from radiology
to digital pathology. Furthermore, we relate this to other spatially correlated
data such as patient monitoring systems such as electrocardiography (ECG) or
electroencephalography (EEG). Although they are time series, these data also carry
spatial correlations; hence we treat it as 1D spatially correlated data. Then we
present an overview of sequential data (temporal and other sequences) and natural
language text.

This survey aims to consolidate a wide range of work in DL applications to
healthcare with a data-centric perspective that brings insights into the maturity of
the technology and its drawbacks and invites directions for future applications.

The remainder of this chapter is organized as follows. In Sect. 2, we motivate on
a general level the use of ML for healthcare problems. In the same section, we
proceed to motivate DL by pointing out a few shortcomings of ML. In Sect. 3,
we briefly describe major building blocks for DL methods, and in Sect. 4, we
outline general strategies on how to use such building blocks to solve problems.
Sections 3 and 4 describe the background knowledge that is necessary to understand
the main contents of this book chapter, but a proficient reader may safely skip
them. Section 5 describes application of DL technologies on healthcare problems.
Section 5 is structured into three subsections, each of which presents an overview of
state-of-the-art approaches for a data modality, i.e., Sect. 5.1 describes approaches
on sequential data, Sect. 5.2 describes approaches on spatial data, and Sect. 5.3
describes approaches on text data. Each of these three subsections follows the
same structure: first, the data modality and the sources of this data modality are
introduced; then, we present an overview of approaches grouped by the problem
that they are solving. We link the approaches to advancements in other fields such
as recognition and outline characteristics of the architectures that were used. We
conclude this chapter with a summary and pointers for future research in Sect. 6.
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2 Learning from Data

In data analysis, there are some tasks which are difficult to solve with computer
algorithms. For example, it is very challenging to create an algorithm for detecting
or segmenting organs in a CT scan. Such tasks are challenging because their creation
requires a deep understanding of the domain, and often complex relationships in the
data are not fully understood.

Expert systems such as CADUCEUS [7] are one way to address such tasks.
Expert systems are rule-based systems that emulate human experts and attempt
to solve a task by evaluating a set of rules about the data. Expert systems have
their important role in many applications particularly when it is critical to have
graceful degradation of performance. Furthermore, expert systems clearly explain
the decision, which is vital for domains where accountability is important, e.g.,
healthcare, information security, or law enforcement. Expert systems are useful.
However, they have a few caveats. First, designing rules is difficult and time-
consuming. To devise good rules, domain experts need to understand the domain
and the data very well. They need to adapt to evolving contexts, and often
domain knowledge requires to produce a large number of exceptions for each rule.
Moreover, handcrafted rules are often brittle, and their maintenance is costly, mainly
when the expert system contains many, potentially conflicting rules.

Another possibility of addressing such difficult data analysis tasks are data-driven
approaches, which offer the potential to build models purely from observation. Here
machine learning algorithms allow for developing such models by processing avail-
able observations or data. There is a vital role for such algorithms in healthcare since
in many domains the underlying processes are not fully understood particularly in
medicine. Another aspect is noisy measurements that may require observing data to
extract the useful information using machine learnings.

Machine learning can broadly be categorized into three categories: supervised
learning, unsupervised learning, and reinforcement learning. In a supervised learn-
ing setting, data are associated with one or more targets, and a model is learned
to predict such associations. For example, to categorize nuclei images, the pixels
of the image are the data, and the different nuclei are the targets. In healthcare,
many problems such as clinical decision support, image segmentation, or image
registration have been addressed in a supervised way.

Unsupervised learning attempts to discover patterns in the unlabeled data.
Such patterns can be used, for example, to learn more suitable representations, to
compress the data, or to find cohorts in data. In healthcare, unsupervised learning is
used primarily for learning useful features, e.g., if the dimensions of the input space
are too large. In the context of DL, the algorithms themselves for unsupervised and
supervised learning cannot clearly be distinguished, i.e., an unsupervised learning
algorithm will also learn model parameters by optimizing for specific targets. The
critical difference is that these targets have not been labeled by some external agent.

In reinforcement learning, an agent interacts with an environment in a feedback
loop and attempts to learn to complete a task. Reinforcement learning is also applied
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in healthcare, e.g., [72]. However, in this chapter, we will omit reinforcement
learning since the developments are very recent and in a relatively small number.
In the future, reinforcement learning may play a greater role in healthcare, e.g., for
drug design or autonomous health support agents.

Early machine learning methods devised handcrafted features from the input
data and learned predictive, so-called “shallow” models for these input features.
Shallow machine learning methods have been hugely successful in many application
domains, but they have a few shortcomings. First, they require domain experts to
devise sensible features for the task at hand. These handcrafted features suffer from
the same limitations as rule-based systems: they are brittle, domain-specific, and
labor expensive and challenging to create.

Another major limitation of shallow algorithms is working with high-
dimensional data. When the dimensionality grows, particularly when the ratio
of features to data points becomes low, many shallow machine learning algorithms
perform poorly. This problem is known as the curse of dimensionality and results in
the machine learning model to overfit, i.e., the inability to generalize well.

DL enables a high level of generalization when working with high-dimensional
data. It relies on models built with artificial neural networks, which process the data
in a sequential fashion and allow for creating composite features, starting from low-
level to high-level features in a hierarchical manner. This process is referred to as
representation learning and enables this model to be successful in this type of data.

Furthermore, DL methods deal well with noisy data. In fact, noisy data enables
DL models to learn better generalizations, because it is assumed that data lies on a
lower-dimensional manifold. The noise in the data helps discover this manifold.

Another significant advantage of deep neural networks is computational effi-
ciency. Composed hidden layers result in exponentially less required training steps
to achieve good generalizations [111]. Furthermore, stochastic gradient descent
enables to train on very large datasets effectively.

Finally, DL methods learn features that are useful for the task at hand from data,
which reduces the need for domain-specific feature engineering. Input features to
DL algorithms are generally domain independent and impose very few assumptions
on the input data. Consequently, architectures that work for data types in one domain
can readily apply in other areas which face different problems, but a similar data
type.

3 Deep Learning Methods

Similar to many machine learning algorithms, DL algorithms consist of four
components: data, a learning objective, a model, and a training procedure. The
right combination of these four components is essential for solving a task using
DL techniques.

In this section, we will only briefly outline building blocks of core DL models.
We start by introducing a single artificial neuron. We’ll elaborate the interaction
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between the model, the data, the objective, and the training procedure on such an
artificial neuron. Artificial neurons are not deep models, but they are a fundamental
building block of deep neural networks. We then use multiple artificial neurons to
create a layer, and we compose feed-forward neural networks out of multiple of
such layers. Using a combination of such layers and parameter sharing, we then
introduce recurrent neural networks and convolutional neural networks, which are
well suited for data with sequential and spatial correlation. We conclude this chapter
with generative models, which use layers of neural networks to learn the data-
generating distribution.

3.1 Artificial Neuron Model

An artificial neuron is a parametric function that is very loosely inspired by the way
neurons in human beings work. Artificial neurons are a fundamental building block
of modern deep neural networks. A human neuron receives inputs from multiple
other neurons. If the stimuli of the neural cell surpass a certain threshold, the neuron
will pass a signal to the other cells that it is connected with via its Axon.

Similarly, artificial neurons receive “stimuli” from the input data. The artificial
neuron processes these stimuli, and if they surpass a certain threshold defined by
the activation function, the neuron “fires.” Figure 1 depicts a schematic overview of
such a neuron. The pixels of the image are treated as input stimuli to the neuron;
the neuron processes the input stimuli by multiplying them with a weight for each
input and summing up the result. It decides to fire if the activation function returns
a value larger than zero, and it does not fire otherwise.

y = f (x; W) (1)

A single neuron with the logistic function as activation is similar to logistic
regression [95]. For DL methods, artificial neurons only play an important role as
building block for more sophisticated architectures, such as fully connected layer.

Fig. 1 The schematic architecture of an artificial neuron. The input values are multiplied by
weights and summed up to a. The output of the neuron is the result of the nonlinear activation
function σ of a. The X-ray image is a courtesy of Wikimedia Commons
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Any smoothly differentiable function can be an activation function. Smooth
means with continuous derivatives within a certain domain to a desired order.
In some cases activation functions may also be non-smooth, e.g., in case of the
ReLU, which use sub-gradients for solving gradient-based optimization problems.
However, certain properties are desirable. The activation function should be mono-
tonic so that the error surface remains convex. It should be nonlinear so that
more complicated functions can be approximated. Popular activation functions are
ReLU [84] (ConvNet, RBM), TanH (LSTM), Softmax (MultiClass, Single Label),
and Sigmoid (Multi-Class, Multi-Label).

3.1.1 Objective Function

In DL, the goal is to complete a task using a model. The available data “teaches”
the model the parameters. These parameters should be chosen in such a way that
they enable the model to complete the task in the best possible way. However, one
needs to define what the best possible way is. In DL, this is achieved by the objective
function or cost or goal function. The objective is a function defined over the output
of the model and tells it how wrong its prediction was based on the ground truth
information ŷ for that example. This information can then be used to minimize such
wrong predictions; hence find a model that approximates the desired target function.

c = J (f (W ; x), ŷ)

Objective functions have different properties, which significantly impact the
outcome of the DL procedure. If the objective function is convex such as the mean
squared error (MSE), a global minimum can be found. Otherwise, it is possible only
to find a locally optimal solution. Popular objectives are the MSE for regression
tasks, binary cross-entropy for binary classification problems, and categorical cross-
entropy for multiclass, single-label classification tasks.

3.1.2 Training Artificial Neurons

Our goal is to find an approximate model that allows us to solve a task at hand. To do
so, we need to find the parameters that approximate the model in the best possible
way defined by the data. Within DL, parameters are almost exclusively learned by
back propagation [107] and variants of mini-batch stochastic gradient descent [107].

The back propagation algorithm consists of three main steps: a forward pass,
a backward pass, and a parameter update. The forward pass calculates the cost
of given input examples concerning the objective using a model with current
parameters. In other words, the forward pass calculates how wrong the model with
current parameters is. In the backward pass, the partial derivatives of the model’s
parameters are computed with respect to the objective function. This backward
pass tells how much a parameter influences the cost of the result. In the final step,
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the parameters get updated using the partial derivatives from the parameter update
multiplied by a learning rate. The learning rate ensures that we progress along to a
minimum of the objective along the error surface.

Ideally, the parameters are calculated for all available training data. However,
many datasets these days are large, which renders this procedure computationally
impractical. Instead, parameter updates are computed for a small subset of the data.
Such a subset is often called a batch or a mini-batch. If the learning rate is well-
chosen, mini-batch stochastic gradient descent will eventually find a minimum of
the cost function—either a local minimum or in case of a convex cost function a
global minimum.

To speed up the parameter learning process, multiple momentum-based variants
of mini-batch stochastic gradient descent have been proposed. Such variants will
increase or decrease the learning rate depending on the stage of the learning process
or some properties of the data. Popular variants of stochastic gradient descent are
Adagrad [29], RMSProp [123], and Adam and Adamax [61].

3.2 Deep Feed-Forward Neural Network

Feed-forward neural networks are neural networks that are composed of layers of
artificial neurons. This composition allows each layer to use the features of the
previous layer to create more abstract features. Such a network learns to produce
features that are helping to solve the task at hand.

More formally, a feed-forward neural network is a nonlinear, parameterized
function that is composed of multiple, nonlinear parameterized functions. These
various functions are commonly referred to as layers. This function maps input data
x to output data y in such a way that it approximates the desired function for the
task at hand in the best possible way.

For example, if the task is cancer detection in X-ray images, then the feed-
forward neural network is a function that maps the input pixels of the X-ray images
to two classes, cancer or no cancer.

Each layer of a feed-forward neural network is a function that maps input x

to some output h in a nonlinear way. Commonly, layers of feed-forward neural
networks have three components: parameters W , biases b, and a nonlinear function
σ that is referred to as activation function.

The number of neurons (often called neural units or simply units) per layer
determines the output dimension of representation that is learned by this layer. For
example, if a layer has 20 units (or neurons), the representation that is learned by this
layer is 20-dimensional. The more neurons a layer has, the more capacity it has to
describe the input data. However, if a layer has too many units, it will start overfitting
the data, i.e., learn to memorize the training data. If a layer has too few neurons, it
will begin underfitting, i.e., generalizing too much. This problem is known as bias-
variance problem [34] in the machine learning community and is also applicable
to DL.
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Fig. 2 Schematic of a feed-forward neural network with one hidden layer for X-ray image
classification. The pixels of the X-ray image get mapped to a hidden representation, which in
turn gets assigned to another hidden representation, which then gets mapped to the classes. The
X-ray image is a courtesy of Wikimedia Commons

Deep neural networks learn distributed representations [41]. Distributed rep-
resentations are compelling because they potentially can express an exponential
amount of data. For example, a binary, k-dimensional representation can represent
up to 2k data samples, as each dimension of the representation can store associations
of the data independently. An example of non-distributed representations is one-hot
vectors. A k-dimensional one-hot vector can only represent k examples (Fig. 2).

A feed-forward network is defined by a model that maps an input x to an
output y. They are composed of multiple layers: an input layer, one or many
hidden layers, and an output layer. The input layer represents the function from
the input data x to the first intermediate output h1, the output layer a mapping
from the last intermediate result hn to the output data y, and the hidden layers map
one intermediate result hn−1 to another intermediate result hn. The output of the
intermediate layers is unknown a priori; therefore they are commonly referred to as
hidden layers. The neural network chooses the output of the hidden layer in such a
way that it approximates the desired function defined by the learning objective well.

Feed-forward neural networks can be used on any data and, given sufficient
capacity, can learn arbitrary functions [46]. Intuitively, this makes sense because
a single-layer model with sufficient capacity will learn to map one input to one
output. Neural networks that are composed of multiple layers learn such a mapping
more efficiently by generalizing.

However, feed-forward neural networks come with several limitations. Firstly,
the number of parameters to train a deep feed-forward neural networks is potentially
very high since the input of each layer is connected to all outputs of the layer.
Another limitation is that the input dimension is fixed. For example, if a feed-
forward neural network is used to classify images, the input images all need to
have the same dimension. Thirdly, feed-forward neural networks tend to overfit the
data [34], and finally, it may take a long time for the model’s parameters to converge.

Purely deep feed-forward neural networks are rarely used to solve healthcare
challenges. Instead, they are often part of a more sophisticated architecture, such
as convolutional neural networks (see Sect. 3.3), recurrent neural networks (see
Sect. 3.4), or autoencoders (see Sect. 4.1).
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Fig. 3 Schematic overview
of the convolution layer. A
local receptive field “slides”
over the input to create an
activation map. Each
convolution operation shares
the parameters of that
particular receptive field

3.3 Convolutional Neural Networks

Feed-forward neural networks make minimal assumptions about the data that they
are processing. However, often we have general information about the data that we
are processing. One example of such data is images. Pixels in images usually have
a loose spatial correlation, e.g., consider an image of a tree. If a pixel of the image
represents the tree’s bark and has a brown color, the pixels close to that pixel are
also a bit more likely to be brown.

Convolutional neural networks (CNNs) are a particular type of feed-forward
neural networks that use this spatial information correlation to design neural
networks that perform better at processing such data. CNNs combine three key
ideas: local receptive fields, parameter sharing, and local subsampling.

Local receptive fields, also called kernels, connect small patches of the input
data with one point of the output data. Local receptive fields assume that the input
data are spatially correlated, i.e., that the neighborhood of a data point influences
this data point and vice versa. Fully connecting all small patches with the outputs
is computationally impractical as it drastically increases the number of parameters.
Instead, parameters for such local receptive fields are “slid” over the input, and
an output is calculated for each different position. The parameters are shared for
each position. When training CNNs, multiple kernels per convolutional layer will
be trained and slid over the input, thereby producing multiple activation maps. This
approach drastically reduces the number of parameters needed. Figure 3 depicts
schematically how local receptive fields and shared parameters are used to create an
activation map.

Networks that are composed of multiple convolutional layers also require a large
number of parameters to learn. To reduce the computational strain, subsampling
layers, also called pooling layers, can be inserted. Such pooling layers reduce the
spatial size of the activation map by pooling multiple locally connected values to
a single value. Various such pooling strategies have been proposed. Two popular
approaches are max pooling and average pooling. In max pooling, the maximum of
a local receptive field is passed on, and in average pooling, the average of the values
of the receptive field is passed on. Alternatively, one can subsample the network
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using convolutions with local receptive fields of width and height of one [120].
These 1×1 convolutions will have a subsampling effect, but instead of choosing the
best value of a local receptive field, they will select the best available one.

A CNN generally consists of multiple convolutional and pooling layers. This
chaining of layers results in a hierarchical structure of the locally receptive fields.
Consequently, the more layers such a network has, the larger the total receptive field
of the network is. The network will use this hierarchy of features to represent more
high-level concepts.

Since CNNs are a special case of feed-forward neural networks, they are com-
monly trained similarly by backpropagation and a variant of mini-batch stochastic
gradient descent. Also, often last layers of CNNs are fully connected layers.

CNNs work well on data that is locally spatially correlated. They do not necessar-
ily require two-dimensional inputs but also work on one or more dimensional input,
as long as there is a local, spatial correlation. An example for 1D locally correlated
data is ECG signals, and an example for 2D locally correlated data is X-ray images.

CNNs bear advantages over plain feed-forward neural networks when applied
to spatially, locally correlated data. Firstly, they require far fewer parameters to be
trained and are therefore much more computationally efficient than feed-forward
neural networks. Secondly, the subsampling operations lead to a particular shift,
scale, and distortion invariance of the learned model. Another advantage is that they
work on input data of arbitrary size. Sliding kernels on differently sized input result
merely in differently sized activation maps. Finally, many applications demonstrated
that CNNs are well suited for transfer learning [129], i.e., they are trained on a large,
generic image dataset of one domain and fine-tuned on a small dataset in another
area.

Modern CNNs may consist of more than 100 layers (e.g., [40]) and have
many hundreds of millions of parameters, in extreme cases even billions of
parameters [108]. Such large models are costly to train and need lots of training
data to converge. Finally, they do not perform well on data which is not locally
correlated.

An example application of CNNs in healthcare is presented in the work of Shen
et al., who use CNNs to predict whether lung nodules are malicious or not [110].

3.4 Recurrent Neural Networks

Another generic assumption one can make about the data is temporal (or sequential)
interdependence of data, as time series, natural language, or sound. If the data is
locally sequentially correlated, 1D CNNs can be used to learn representations from
such patterns. For more complex patterns or patterns that occur over time, recurrent
neural networks (RNNs) have been developed.

RNNs are neural networks that are designed in a way to reuse the outputs of the
network in later calculations, i.e., in a recursive way. Similar to CNNs, RNNs rely
on parameter sharing, but in a different fashion. In addition to parameter sharing,
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Fig. 4 Schematic overview over an RNN. It processes a sequence of inputs and consists of two
functions: one that yields the next state and one that generates the output of the current network.
The parameters are shared over the whole sequence of inputs

RNNs remain a state (or context) of the network, which they pass on for further
processing.

RNNs require the input sequence to be discretized into a series of time steps. For
each of the time steps, the current input and the context of the previous time step
are used to calculate the output of the network and the next state. Two functions are
learned: one that yields the output of the current time step and one that produces
the context for the next time step. The parameters of the network are shared over
the whole sequence. The state maintains a “memory” of which inputs have been
processed so far. Figure 4 schematically depicts the processing steps of an RNN.

RNNs can be used to learn functions in flexible ways. They can be used to
learn functions to map sequences to a single output (many-to-one), for example,
to classify sequences. They can be used to learn functions that map sequences to
other sequences (many-to-many), for example, to tag sequences with specific labels
or for natural language translation [16]. And they can be used to map a single value
to multiple outputs (one-to-many), for example, to generate descriptive text from an
input image [128].

Due to the feedback connections, RNNs cannot be trained using the
standard backpropagation algorithm. Instead, an extended algorithm is used—
backpropagation through time (BPTT) [130]. BPTT follows the three basic steps of
back propagation: forward pass, backward pass, and parameter update. To do this,
the neural network is unrolled for n time steps. That is, the parameters are replicated
n times, which allows the outputs and contexts for the forward pass to be calculated.
Then, the gradients are calculated for each time step individually in the backward
pass. The gradients are averaged by the n. Finally, the parameters are updated with
these averaged gradients.

Theoretically, RNNs can be used to learn functions that deal with sequences of
an arbitrary length. In practices, however, two problems occur when the processed
sequences are too long. First, the gradient that flows back throughout the time
gets very small, so that the network stops learning, which is also referred to as
vanishing gradient problem. To overcome these problems, long short-term memory
(LSTM) networks have been proposed [43]. They introduce trainable gates that learn
when to forget and when to pass on gradients. The other problem that commonly
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occurs when training RNNs for longer networks is exploding gradients. That is, the
network stops learning because some of the gradients get excessively large over
time. To counter exploding gradients, gradient clipping has been proposed [93],
which truncates gradients if they surpass a certain threshold.

RNNs are versatile DL models. They can be used on sequential data of arbitrary
length, and they are capable of capturing complex, time-dependent relationships
within the sequential data.

However, training them may be difficult, and it may require large amounts of data
to converge. Also, unrolling them for many time steps requires the parameters to be
replicated many times, which is computationally very expensive.

In healthcare, RNNs are commonly applied to solve problems on sequential data.
An example for such an application is to predict seizures from raw EEG data [83].

3.5 Autoencoders

Autoencoders are composite models that consist of two components: an encoder
model and a decoder model. The task of an autoencoder is to output a reconstruction
of the input under certain constraints. Figure 5 depicts this general architecture
schematically. The encoder and the decoder model can be any neural network,
preferably one that works well with the data type. So one can imagine an
autoencoder for images where the component models are CNNs or an autoencoder
for text where the component models are RNNs.

If autoencoders have sufficient capacity, they will learn two functions that will
simply copy the input to the output. Such functions are generally not useful. There-
fore the representations that the autoencoder has to learn are typically constrained
in specific ways, for example, by sparsity or by a form of regularization. Such
constraints force the encoding model to learn representations that contain potentially
useful properties or regularities of the data.

Autoencoders can be used for many tasks. One such task is that they can be used
to learn representations in an unsupervised way. To do so, an autoencoder is trained,
and after that, the encoding model is used to derive the representations from the
input data. Such a representation can be thought of as a nonlinear dimensionality
reduction of the input. Another task is to denoise input data. To do so, the input

Fig. 5 Schematic of an autoencoder. An autoencoder consists of two models, an encoder and a
decoder. The encoder maps an input x to a representation h, and the decoder reconstructs x given
h. Encoder or decoder can be any neural network
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of the encoder is distorted by some noise, e.g., Gaussian noise, and the target of
the autoencoder is learning to reconstruct the original input and thereby learning to
remove certain distortions from the data.

Autoencoders can be trained in an unsupervised fashion since both the input and
the target output are both the data x. If an autoencoder is used to combine many
sparse layers, then each of the layers is trained one after the other. For example,
let xn be the input of the n-th layer, x̂n the output of the n-th layer, len the n-th
encoding layer, and ldn the n-th decoding layer of the autoencoder. Then the first
training step for an autoencoder is to learn the functions le1 and ld1 such that x̂1 =
ld1(le1(x1)) and the loss l1 = L(x1, x̂1) are minimal to a given loss function L. Then
the parameters of the functions le1 and ld1 will be fixed, and the next layer’s function
will be trained in a similar fashion as the first layer, but by using x̂1 instead of x as
input and target output.

Autoencoders may be used for a variety of useful tasks such as enhancing input
data quality or learning to compress input data in a meaningful way. Autoencoders
can be trained in an unsupervised fashion, which may help to solve problems where
there is a significant amount of unlabeled data and labeling data is scarce and
typically costly to obtain. An example application for autoencoders for healthcare is
to predict the future of patients by learning suitable representations from electronic
healthcare records [81].

3.6 Generative Models

From a probabilistic perspective, the DL methods that we discussed in the previous
sections learn the conditional distribution P(y|x), i.e., the likelihood of seeing the
output y given an input x. In contrast to that, generative models aim to learn the
data-generating distribution P(x, y) from the data, i.e., how likely it is to see both
x and y at the same time. Knowing the joint distribution allows to predict specific
outputs given an input and also to generate new data from the learned model.

There are three major types of DL methods that are used to train generative
models: deep belief networks [9, 42], variational autoencoders [62], and generative
adversarial networks [37]. An example for generative models in healthcare is image
synthesis to increase the amount of available training data and thereby improve
existing data analysis methods [89].

3.6.1 Deep Belief Networks

Deep belief networks (DBNs) [42] were among the first deep, generative models.
They are directed, probabilistic graphical models. They are composed of multiple
layers of restricted Boltzmann machines (RBMs) [114]. RBMs are energy-based
models that learn a joint probability distribution of the input and output data. This
joint probability distribution is defined by an energy function. Figure 6 depicts a
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Fig. 6 Schematic of a RBM. The network learns P (x, h) by learning P (h|x) and then P (x|h).
DBNs are composed of multiple RBM layers

Fig. 7 Overview over a variational autoencoder (VAE). An encoder model learns μ and Σ of a
multivariate Gaussian given x. A decoder model learns to predict x given a random value z that
was sampled from this Gaussian. The decoder network is the generative model

schematic overview over a RBM. The restriction in the RBM is that there are no
intra-layer connections in the hidden layer.

RBMs learn the joint probability distribution P(x, y) of the input x and output
y by first learning the conditional distribution P(x|y) of output y given input x and
then learning the conditional distribution P(x|y) of input x given output y. DBNs
are trained by using multiple layers of RBMs after each other in a similar way
autoencoders are trained. DBNs and RBMs have an intractable partition function,
which means that they need to learn an approximation.

Among others, deep belief models and RBMs can be used for dimensionality
reduction or data sampling. For example, DBNs have been used to learn suitable
representations from microarray data to predict breast cancer [60].

3.6.2 Variational Autoencoders

Similar to autoencoders, variational autoencoders (VAEs) consist of two models,
an encoder model and a decoder model. The encoder model learns Σ and μ of a
multivariate Gaussian distribution given a certain input x. This distribution is used
to sample a random variable z. The decoder model learns to reconstruct x given z.
The decoder model is the generative model. Figure 7 depicts the architecture of a
VAE.

3.6.3 Generative Adversarial Networks

Generative adversarial networks (GANs) also consist of two models, a generator
model and a discriminator model. The input to the generator model is a random
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Fig. 8 Overview over a generative adversarial network (GAN). A generator model learns to
generate inputs x′ from z that was sampled from a multivariate uniform Gaussian. A discriminator
model is either presented a real input x or a generated x′ and has to decide which one is real and
which one generated

variable z that is sampled from a multivariate Gaussian distribution. The task of
the generator model is to generate an input x given z. The discriminator model is
trained on a binary classification task, namely, to distinguish if an input x is real or
fake input. Figure 8 depicts the architecture for a generative adversarial network.

3.6.4 Training of Generative Models

VAEs and DBNs can be trained in an unsupervised way and with standard mini-
batch SGD. GANs are trained with a game-theoretical approach where the generator
model tries to beat the discriminator model. In its simplest form, training GANs
resembles a two-player minimax game, where each player attempts to maximize its
own value function. Training GANs may be challenging in practice due to problems
such non-convergence [36]; however many improvements have been suggested, e.g.,
[2, 105].

3.7 Other Methods

There are many more existing DL methods and many recent developments
such as deep reinforcement learning, capsule networks [104], or neural Turing
machines [38] or architectures for metric learning such as Siamese [21] or triplet
networks [45]. Outlining them is out of the scope of this chapter, but [10] and [107]
provide an overview of the field.

4 Data Analysis Strategies Based on Deep Learning

In this section, we describe abstract solutions for common DL problems. DL
problems usually consist of a task to be solved, an objective function, a model
architecture, and data which is used to learn the parameters of the model. The model
architecture and the objective function commonly depend on the nature of the data
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that is analyzed. However, the strategy to address a problem can often be reused
for other problems. For example, consider the task of organ segmentation. This task
can be framed as a classification task where each pixel is categorized as belonging
to the organ or not belonging. The model architecture and objective function depend
on the data, e.g., CT scans. However, the strategy of classifying pixels can be used
for other tasks as well.

In this section, we will use x as the vector of input features, y as ground
truth target, and ŷ as the predicted target that was derived by the DL solution.
Furthermore, f will be the parameterized DL model that we are attempting to learn.
f maps input x to the predicted target ŷ, i.e. ŷ = f (x). We refer to C(y, ŷ) as our
objective function that defines a measure of correctness of our prediction.

4.1 Representation Learning

DL architectures are usually composed of multiple layers of nonlinear functions.
Layers closer to the input learn representations that are useful for next layers to
minimize the objective function for that problem. As a consequence, multilayer
architectures always learn representations to solve a particular task. For example,
in a classification task, the representations that are learned by a multilayer network
are used to perform that classification. However, sometimes it is desirable to learn
such features (or representations) directly. For example, if the input data is high
dimensional, it is desirable to learn a lower-dimensional representation for another
model to be able to solve a task. There are two common strategies of representation
learning using DL technologies—using unsupervised methods such as autoencoders
and transfer learning approaches.

The general strategy on how to learn representations using autoencoders is
depicted in Fig. 9. First, the autoencoder is trained in an unsupervised way. After
training, only the encoding function is used to derive representations from data. We
have described autoencoders in more detail in Sect. 3.5.

A variant of unsupervised representation learning is stacked autoencoders.
Generally, deep autoencoders consist of two deep neural networks that are trained in
an end-to-end fashion. Stacked autoencoders are also deep models, but their layers
are trained one at a time. Figure 10 depicts this approach. Stacked autoencoders
are useful for solving large problems where the whole model would go beyond the

Fig. 9 Overview of how to learn representations using autoencoders. During training, an encoder
e maps the input x to the representation z and a decoder d attempts to reconstruct the input x given
z. After training, the decoder is discarded, and the encoder e is used to derive the learned input
representations
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Fig. 10 Overview of how to learn representations using stacked autoencoders. Each layer is
trained to reconstruct its input. After the training, the decoding layers are discarded and the
encoding layers chained to derive the learned representation

Fig. 11 Overview transfer learning for representation learning. A network consists of an encoding
part e and a domain- and task-specific model f . After training, f is dropped and representations
are derived using e. Any multilayer neural network can be considered a combination of a decoding
part and a domain-specific model

scope of the computational resources available. Deep belief networks [42], which
are composed of multiple layers of RBMs, were among the first architectures that
were successfully trained for deep representation learning.

Representation learning can be used for many useful tasks, such as compressing
or denoising the input. In healthcare, representation learning using autoencoders has
been applied to a broad variety of tasks. A selection of these tasks is learning repre-
sentations from EHR to predict diseases [81], reducing the input dimensionality for
gene expression profiling [32], and learning features from breast images to predict
cancer risk [54].

Another way to learn representations is in a supervised fashion using transfer
learning. Transfer learning is based on the idea that any multilayer neural network
can be represented as two parts: an encoding part and a task-specific model. Both
parts can be multilayer and are not restricted to any particular architecture. If such
a model is trained with a sufficiently large corpus of data, then the features learned
in the encoding part should generally apply to other problems. Figure 11 depicts the
general strategy for transfer schematically.

In healthcare, representations obtained by transfer learning have been mainly
applied to medical image analysis. There, large models such as VGGNet [113]
or ResNet [40] were trained on general image corpora such as image net on a
classification task. In many cases, all layers except the last classification layer were
considered to be the encoder model for deriving the image features. These generic
image features were then used for domain-specific tasks, for example, Esteva et al.
used a pre-trained Inception V3 architecture to detect skin cancers [31].
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4.2 Classification

Classification is the task of assigning one or multiple discrete labels y to a given
input x. The general strategy to solve such a problem is to learn a function that
maps the input to the output ŷ = f (x), where f can be any architecture that is
suitable for the data at hand.

In healthcare, many challenges can be solved by treating them as classification
problems. For example, lesion segmentation can be framed as binary classification
problem by learning a function that for each pixel of the input image predicts
whether it is a boundary pixel of a lesion or not, e.g., [103]. Another example of
classification in the medical domain is nodule classification. There, the input is an
image of an object, and the DL network needs to decide whether the shown object
is a nodule or not, e.g., [109]. A third example of a classification task in healthcare
is learning word vectors from electronic health records. There, the task is to predict
a word given a context of other words, i.e., the words are considered the classes that
can be chosen for a given input [18].

Another task that is related to classification and can be solved with similar
strategies is regression. Regression differs from classification only by the output.
That is, in classification commonly you have discrete outputs, whereas in regression
the output can be real-valued. In healthcare, regression is often used for registration
tasks such as [79], where a CNN is used to regress the spatial alignments between
two X-ray images.

4.3 Anomaly Detection

Anomaly detection is the task of finding outliers in data. One strategy to detect
anomalies using DL is to train a model to learn to predict “normal” values, where
normal is defined by your training data. Anomalies are then detected when for a test
case the predicted data deviates more than a specified threshold from the actual data.
We depict the general strategy for anomaly detection using DL in Fig. 12. The model
f is agnostic to the architecture and again should be chosen to fit the peculiarities of

Fig. 12 Overview of the anomaly detection task. Anomalies are then detected when for a test case
when the prediction ŷ of a model f deviates more than a specified threshold from the expected
value y
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the data at hand. For example, if the task is to detect an anomaly in an ECG, f could
be a variant of an RNN, whereas if the task is to identify an anomaly in an electronic
health record, then f could be a multilayer perceptron. An example application of
anomaly detection in healthcare is the detection of anomalous sensor measurements
such as brain waves in EEGs using DBNs [133].

4.4 Strategies for Sequential Data

Sequential data are ordered lists of events. Dealing with sequential data usually
means that the input to the DL model is an ordered, variable length list of vectors.
Many DL architectures and other ML methods required fixed length input. Another
problem is that of the high number of input variables, as sequential data often
contains many elements, which leads to neural networks with many parameters that
are difficult to train.

There are three common strategies to deal with variable length input: zero
padding, RNNs, and global pooling of CNNs. Zero padding means that each input
sequence will be brought to equal length by adding zero vectors to lists that are
short than the longest sequence. RNNs are designed to deal with sequential data of
theoretically arbitrary length.

A common approach to reducing the complexity of the input data is time
windowing. A windowing function w is used to summarize t time steps of input
data, thereby reducing the length and consequently the complexity of the input
sequences. A model is trained on the reduced data size. Figure 13 depicts the general
time windowing strategy. An example of a window function is binning, i.e., multiple
input events are summed up together.

More recently, 1D CNNs were used to learn the windowing function instead
of handcrafting the windowing function. Similar to 2D CNNs, shared parameters
are learned that describe local correlations of the input data well. CNNs can deal

Fig. 13 Time windowing
strategy for sequential data. A
window function w is used to
summarize a fixed number of
input events and reduce the
length of the sequence. A DL
model is learned on the
summaries z to complete a
certain task
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with variable length input, i.e., a long input sequence will generate a longer output
sequence.

One can also combine a CNN and an RNN to analyze variable length sequential
data. In this case, the CNN reduces the dimensionality of the sequential data by
capturing local, spatial correlations, and the RNN learns long-term relationships
between the reduced dimensionality time series. A combination of 2D CNNs and
RNNs is frequently used to analyze video input.

4.5 Strategies for 2D Spatial Data

One major problem when analyzing spatial data is that the dimensions of the
input data may be very high dimensional. For example, the input dimensions of
a 1024 × 1024 image result in a prohibitively large number of neurons that need to
analyze it using a fully connected neural network or other non-deep methods. One
widespread and successful strategy to analyze 2D spatial is to use convolutional
layers to simplify complex local correlations and the number of features that need
to be processed. 2D convolutions function similarly as 1D convolution but have 2D
filters instead of 1D filters, and these filters are moved in both dimensions over the
input.

2D spatial data can also be considered a sequence of 2D patches. Consequen-
tially, another strategy for analyzing 2D spatial data is to employ similar strategies
as for sequential data, i.e., using RNNs or a combination of CNNs/RNNs to solve
the task at hand. Treating 2D spatial data as a sequence of patches is beneficial
when global contextual information is more important than local, spatial correlation.
For example, Stollenga et al. proposed a multidimensional variant of an LSTM to
segment tissues from images [119].

5 Deep Learning in Healthcare

DL methods are data-driven machine learning methods, which derive representa-
tions that are suitable for solving a task from data. Therefore, we describe the
medical DL solutions from a data type perspective. Based on the type of signals,
we will discuss suitability for different DL applications and specific methods. For
each method, we will present a few solutions from the literature that are exemplary
for those particular problems.

First, we will review sequential data in Sect. 5.1. Sequential data in healthcare can
roughly be divided into three groups, time series, protein and DNA sequences, and
longitudinal data from electronic health records. For all three of them, most tasks
deal with the classification of the sequence or learning a suitable representation for
the sequence so that it can be used for further analysis.
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We then will provide an overview of the use of DL for analyzing spatial data in
Sect. 5.2. Spatial data in healthcare are mainly images from a wide variety of devices
and sources such as MRI, X-ray, or CT. The two predominant tasks are object
classification and object localization. Object classification takes many forms, e.g.,
classifying parts of an image into cell types or classifying pixels for segmentation
tasks.

Section 5.3 provides an overview of applications on health text data. Text data is
mainly treated as sequential data of tokens or characters. Common DL tasks on text
include sequence labeling, e.g., classification of text to identify diseases or sequence
labeling for extracting named medical entities.

We did exclude a few applications and data types because they were out of
scope. We will briefly mention these applications here. First, we have omitted
applications of DL for analyzing spatiotemporal data such as medical videos
that have both a spatial and sequential nature. Approaches generally combine
methods from analyzing sequential and spatial data. Furthermore, we excluded
3D spatial data, e.g., 3D scans from an MRI. They are a more general case of
the 2D spatial data, and the primary challenge is the computational complexity.
Successful applications include 3D convolution and specially arranged CNN-RNN
architectures that manage to reduce the computational complexity. Finally, we have
excluded early DL approaches that combine handcrafted features with deep neural
networks.

5.1 Applications of Deep Learning on Sequential Data

Generally, sequential data are ordered lists of events, where an event can be
represented as a symbolic value, a real numerical value, a vector of real or symbolic
values, or a complex data type [135].

In this chapter, we distinguish between simple sequences and time series. A
simple sequence is an ordered list of symbols or an ordered list of vectors. A time
series is also an ordered list of symbols or vector, but each event has a time stamp
associated with it. The delta between two time stamps in a time series is commonly
fixed.

Sequential data can also be considered as 1D spatial data, that is, locally corre-
lated, and each event is referable via a 1D coordinate system. The distinguishing is
arbitrary and depends on the data and the chosen data analysis techniques.

Furthermore, text can also be seen as sequential data, either as a sequence of
characters or as a sequence of words. We chose to treat text data as different data
modality because the relationship between the elements of text is complex.

In healthcare, there are three major sources of sequential data: electronic health
records, sensor readings, and simple symbolic sequences of protein structures such
as RNA, DNA, or genes. Electronic health records include a mix of demographic
data and information about visits, examination results, and laboratory tests. While
parts of electronic health records such as demographic data are not sequential, others
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such as information about each visits or longitudinal information over time can be
treated sequentially. Sensor readings include time series of different medical and
other sensors such as records of electrocardiogram (ECG) or electroencephalogram
(EEG) signals or other bodily worn sensors. Protein structures such as DNA or RNA
parts are primary sequential data sources in healthcare. In some cases, sequential
data can also be represented as graph data, e.g., some DNA data is treated as
functional graph.

The majority of reviewed applications of DL on sequential data in healthcare can
be categorized to two groups: sequence classification and representation learning. In
sequence classification, the goal is to assign one or more discrete labels to a given
sequence of data, for example, to predict the sleep stage of a patient presented in an
EEG input sequence. In representation learning, the primary objective is to derive
features from a given input sequence that allow further data processing, e.g., classify
the sequence. Other tasks that have been addressed using DL in healthcare include
sequence regression, anomaly detection, and sequence denoising. In the next two
sections, we will detail sequence classification and representation tasks that have
been addressed using DL.

5.1.1 Representation Learning for Sequential Data

Electronic health records contain collected information on patients in a digital
way. Electronic health records carry a variety of information such as medical
history, laboratory test results, and demographic data. Often, this data documents a
patient’s development over time. The variety of data often requires to learn suitable
representations to be able to analyze the data further.

Choi et al. propose Med2Vec, an approach to learn representations of electronic
health records [18]. Med2Vec is based on the ideas of Doc2Vec, which is an
approach for learning document representations from text data [80]. Med2Vec
learns interpretable representations of sequential code- and visit-level data in an
unsupervised way. Med2Vec uses a fully connected neural network to learn a
representation of the sequential information of visits by solving the following task:
given a task, predict the previous and the next visits. The learned embedding
space allows to interpret the clinical meaning as each coordinate of the embedding
vector can be viewed as a disease group. Choi et al. demonstrate the application of
Med2Vec representations on the onset of heart failure prediction tasks [19], where
Med2Vec yields up to 23% improvement in area under the ROC curve compared to
various baselines.

Lasko et al. use autoencoders on small time windows of longitudinal serum acid
measurements to discover clinical phenotypes [66]. The phenotypes are derived by
Gaussian processes, which use the representations that have been extracted by the
autoencoder. The derived features are as accurate as the handcrafted features.

The prediction of medical events and future diseases is another task where DL
can be used to learn representations from electronic health records. Beaulieu-Jones
et al. propose to use stacked denoising autoencoders to extract the phenotypes
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from electronic health records [8]. Denoising autoencoders are a variant of autoen-
coders (see Sect. 4.1), where the input is corrupted and the decoding function needs
to learn to reconstruct the original input. The phenotypes that are extracted from
the health records are used to predict the survival of ALS patients using random
forests. Miotto et al. use denoising autoencoders in a similar fashion to predict future
diseases from EHR [81]. They find that representations that are learned in such a
way are useful to robustly predict future diseases such as liver cancer, diabetes, or
heart failure. Their method achieves an ROC area under curve of up to 0.925.

Electrocardiogram (ECG) signals measure the electronic activity of the heart.
Such data can be used to detect heart diseases and other anomalies. Huanhuan et
al. propose to learn representations from ECG signals by splitting the signal to
timeframes (see Sect. 4.4) and use DBNs to extract the features [48]. Using a support
vector machine which uses these representations, they are able to classify heartbeats
with an accuracy of 0.984. Similar to ECG data, deep neural networks can be used
to learn representations from EEG data, which are used for multiple applications.
Wulsin et al. use learned features to detect anomalies in EEG measurements [134].
Turner et al. use learned representations to discover whether seizures have happened
in EEG data [125]. Jia et al. determine whether subjects have liked or disliked
videos given features that are learned from brain waves [53]. Zhao et al. use a
similar representation learning approach to detect Alzheimer’s disease from EEG
data [143]. Learned representations from EEG data can also be used to classify
sleep stages [65].

One of the major challenges in gene expression profiling is the high dimension-
ality of the input sequences. Fakoor et al. propose to reduce the input dimensionality
of the input space with stacked autoencoders [32]. They demonstrate that the
learned representations can be used to detect various forms of cancers from gene
expressions with an accuracy of up to 0.975, which is significantly better than their
baseline methods. Lyons et al. and Nguyen et al. propose a similar approach to
extract features from protein sequences. Lyons et al. demonstrate the applicability
of the features on predicting backbone Cα angles from protein sequences [77], and
Nguyen et al. use the features to assess the quality of proteins [85]. DBNs can
also be used to learn representations from protein sequences. Zhang et al. use such
representations to predict the RNA-binding sites of proteins [141] with an accuracy
of up to 0.983. Lee et al. learn representations to predict the splicing junction [68].
Liu et al. use representations learned by a DBN from DNA sequences to identify
replication domains using replication timing profiles [74]. Finally, Asgari et al.
propose BioVec, ProtVec, and GenVec, three methods that are inspired by Word2Vec
that learn vector representation of biological sequences, proteins, and genes [3].
They demonstrate the applicability of the learned features on classification tasks
such as protein family classification, where they achieve an average classification
accuracy of 93%.
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5.1.2 Sequence Classification

Sequence classification is the task of assigning one or multiple discrete labels to
a complete sequence. Most approaches for sequence classification follow a com-
bination of the strategies for representation learning, classification, and sequential
data (see Sects. 4.1, 4.2, 4.4). Sequence labeling is closely related to sequence
classification, but instead of classifying a whole sequence, the task is to assign to
parts of a sequence one or multiple labels.

For classification of sequences from electronic health records (EHRs), there
are two main strategies: to use 1D CNNs or to use RNNs, both combined with
a form of fully connected classification layer. Nguyen et al. predict the risk of
future, unplanned readmission within 6 months after a procedure given the patients
EHRs [86]. They use a 1D CNN to detect motives in the EHR and use max pooling
and a Softmax layer to predict the risk. Cheng et al. propose a similar strategy to
identify risks that certain diseases will develop in the future given a patient’s record
with an accuracy of up to 0.767 [15]. RNNs are also proposed for the tasks of
predicting risks from EHR [98] as well as predicting future medication [17, 30] and
predicting heart failures [20].

For clinical time series, i.e., a series of lab measurements, two strategies have
been proposed. Lipton et al. and Che et al. use RNNs to predict diagnoses [73] and
to predict patient mortality and ICD9 diagnosis [13]. Razavian et al. use a 1D CNN
and a Softmax classifier to predict disease onset from longitudinal lab tests [100].
The DL approach significantly outperforms the baseline approaches which rely on
handcrafted features.

Both CNNs and RNNs can be used to classify body and wearable signal measure-
ments. Hammerla et al. propose a combination of convolutional and recurrent neural
networks to classify activities of daily living [39]. Sathyanarayana et al. propose a
method for predicting the quality of sleep states from wearable sensor data using
CNNs. Their method achieves a 46% better result than the baseline approach [106].
Li et al. divide sensor data collected from RFID chips into frames and use a fully
connected neural network to classify resuscitation activities [71].

A number of classification tasks on EEG and ECG data can be addressed using
DL. Petrosian et al. propose to use RNNs, and Mirowski propose to use CNNs to
predict seizures from EEG data [83, 97]. They achieve up to 71% sensitivity without
false positives.

Stober et al. propose to use CNNs to classify EEG waves based on the rhythm that
test subjects were hearing [118], achieving up to 50% per subject accuracy. Nurse et
al. propose to use CNNs to predict movement controls from EEG data [90]. Finally,
Pourbabaee et al. use a CNN to classify ECG data of patients to predict the risk to
develop paroxysmal atrial fibrillation [99].

DNA sequences are high-dimensional data structures, and DL models allow to
discover complex relationships from these structures. Similar to other classification
tasks for sequences, the task that are addressed with DL on DNA and other protein
sequences can be grouped into two major categories: CNNs and RNNs. Zhou et al.
predict chromatin markers from DNA sequences using CNNs [144]. CNNs can also
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be used to predict sequence specificities of DNA- and RNA-binding proteins [1], to
predict the protein binding sites [140], and to predict the cell type by DNA seq [57].
Often, these DL approaches offer a high performance, e.g., AUC over 0.92%, and in
the other cases show at least a significant performance increase over the baselines.

For proteins, one of the most common tasks is secondary protein structure
prediction. The classification task is to classify the amino residue to a number of
discrete states, e.g., helix, sheet, or coil. Often, such secondary protein structures
are predicted with a variant of an RNN. Baldi et al. propose to predict secondary
protein structures with a bi-directional RNN [6] or predict such structures with a
graph-based RNN [5]. Sonderby et al. propose to use an LSTM to predict secondary
protein structures [115]. Instead of using an LSTM, Spencer et al. divide the protein
sequences into window frames and predict the structures with a combined DBN
and fully connected neural network [117]. Other tasks on proteins include the
prediction of subcellular location of proteins given only the protein sequence with
convolutional RNNs with an accuracy of above 0.90 [116], the detection of protein
homologies using LSTMs [44], and the prediction of the protein contact map using
RNNs [27].

5.1.3 Other Tasks on Sequential Data

Except for representation learning and classification of sequences, a few other tasks
on sequential data can be addressed using DL. Wulsin et al. use DBNs to detect
anomalies in brain waves [133]. Koh et al. use CNNs to denoise sequences to
impute missing values of DNA sequences [63]. To do this, they learn a CNN,
which, given a distorted input, attempts to predict the non-corrupted input. Zhu et
al. use a combination of CNNs and fully connected neural networks to predict the
energy expenditure of certain ambulatory activities given measurements from body
sensors [145]. Their method achieves a mean regression error up to 35% lower than
baseline models.

5.2 Applications of Deep Learning on Spatial Data

Depending on the content organizing data in 2D, 3D or multidimensional structures
(tensors) rather than a flat vector of features (tabular data) are of significant advan-
tage. The typical example for this is digital images where each feature corresponds
to a pixel or a voxel (3D pixel). In this case the features are measurements of a sensor
that is naturally organized in a spatial manner. In other words, in addition to the
pixel intensities (colors), the spatial location of the information carries much of the
information. Furthermore, these features demonstrate significant spatial correlation.
Pixel values are highly correlated to the values of its neighbors. As an effect of
this, when modeling this data, it is rather useful to look at groups of features rather
than individual features. This results in spatial features that are composition of the
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activations of co-located finer (smaller) features. This property is commonly utilized
by methods that use image data, such that features are typically edges, lines, and
superpixels of similar properties. Various different techniques have been developed
that detect these engineered features and enable processing of images and other data
with spatial correlation. Traditional image analysis methods would build compound
rule-based systems to form a hierarchical structure of features that would eventually
produce the results of the analysis. DL methods also leverage the spatial properties
of this data. However, rather than relying on designed rules, it uses representation
learning to develop spatial features. Convolutional layers in a neural network are
mainly designed for this purpose. We presented a detailed description of the CNNs
in Sect. 3.3.

Images are a significant part of the spatial data of interest in the healthcare
domain. To some extent, the impact of DL on healthcare is most evident on DL
applications to medical image analysis. There are many sources of image data
in medical and healthcare applications. A prominent area is radiology consisting
of various medical imaging modalities such as MRI, CT, X-ray, and ultrasound.
Furthermore, there are multiple sources of microscopy images produced in digital
pathology and related domains. The number of specializations that use these modal-
ities and their applications is broad including domains such as imaging of the brain,
lung, abdomen, and retina and histopathology. Furthermore, some applications are
part of the diagnostic processing, while others are in the interventional domains
where the images are processed in real time.

From the perspective of image analysis, the applications are typically reduced to
a set of tasks. The processing of the image can result with a label from a discrete
set of labels or a continuous value. This task commonly detects an object in the
image and determines the type of the image or the presence of specific patterns
in the image. From a ML point of view, these tasks are referred to as classification
and regression, respectively. Next, image processing can be used to detect regions of
interest or assign a label to a region. This is the task of localization. In the case where
each pixel of the image is assigned a class or property, the application commonly
falls within the task of segmentation. Registration is the task of aligning the content
of two images, and filtering is the task of processing an input image to produce an
output image with specific characteristics. Even though these are some of the most
common tasks, the variation and separation between them are not always clear, and
some applications will fall within more than one or none of the tasks. However, this
structure is useful for our purpose, since many of the DL applications within the
same tasks have shared properties.

The rest of the section is organized based on the different image analysis tasks
and the kind of advances that DL methods have delivered in each of them as well as
the healthcare applications that rely on those technologies.
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5.2.1 Classification

Classification is ML supervised learning task where the model assigns a label (class)
to a data point. Medical imaging classification tasks are typically associated with
a single diagnostic output variable assigned to an image. For example, in [47],
Hosseini-Asl et al. present a CNN model for Alzheimer disease classification.
The model processes 3D MRI images of the brain, extracts relevant features, and
detects the presence of mild cognitive impairment or Alzheimer disease. Another
example of image classification with DL models is presented by Shen et al. [110].
In this work, the model is used to detect lung nodules in thoracic CT images.
Shen et al. demonstrate the classification of malignant and benign nodules without
segmentation.

An example of this approach to digital pathology for mitotic figure count for
breast cancer histology images is developed by Cirecsan et al. [23]. The model
classifies patches of images that contain the cell figures as mitotic or not. This count
is later used for staging and diagnosis of the disease.

Many of these models are based on the most successful DL architectures for
image analysis. The introduction of the CNNs is presented in the work of LeCun
et al. [67]. The breakthrough and demonstration of the capability of DL models
to process images on a large scale are significantly attributed to the AlexNet
model [64]. This architecture introduced a deep neural network with a large number
of parameters that at the time demonstrated the best performance in assigning
labels to images on the ImageNet dataset [25]. Following the initial success,
some advances have been proposed in neural network architectures that have
shown superior performance. However, the large number of design choices that
are involved in building this model commonly makes the process complicated.
Particularly for deep CNNs, the shape and size of the filters, the number of filters
per layer, and the number of layers are to name a few. The VGG architecture [113]
offers a simplification of facing this challenge by using a fixed size of filters (3×3).
The approach captures larger features by adding multiple convolutional layers with
the same filter size without subsampling layers (pooling). In this way, a set of layers
acts as one layer with a wider reach and fewer parameters.

A more recent and successful development is introduced by the GoogLeNet
(Inception) model [120]. This model uses an inception block consisting of multiple
layers that include convolutional filters of different sizes. The module, therefore,
removes the need to select the “right” size of the filters by allowing for a range
of filters to work together. The inception module processes the image in multiple
ways, and this combined output is provided to the next part of the model. By
stacking a number of inception modules, the network has a broad capability to
detect various features and build composite hierarchical representations that achieve
excellent performance. One of the main strong sides of this model comes from its
depth and the capability to build complex high-level features. However, even with
the many advances in DL, very deep neural networks would still suffer from the
vanishing gradient problem. As the depth of the model increases, the capability to
train them effectively diminishes. This problem was addressed by the introduction
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of the skip connections in the ResNet architecture [40]. This architecture allows
for effective training of very deep architectures exceeding 150 layers. The idea
was then incorporated in the inception network [121]. In healthcare applications
the GoogLeNet model is used in Esteva et al. [31] for the detection of skin cancer
on two tasks, both discriminating between malignant and benign cases. The authors
find the performance of the model in both cases on par with a dermatologist.

In the medical context, labels are expensive, and, given the possible variations of
the diseases and the imaging conditions, collecting sufficient amount of annotations
is a major challenge. This is also the case in the work of [31]. In this work, and
many others, the authors rely on pre-training the model on another dataset and
transferring this model to the medical domain where the model is fine-tuned. This
technique is referred to as transfer learning. This is commonly used to deal with the
lack of annotations particularly if the application warrants a large neural network
with a significant amount of parameters. Transfer learning from different domains
is studied by Menegola et al. [78]. Here the authors conclude that even though
it would be expected that pre-training on medical datasets would be favorable to
general natural images, they did not find any evidence that this has an advantage.

Another approach to deal with this problem is to use unsupervised pre-training
when a significant amount of images is available without annotations. These models
typically use RBMs and autoencoders to build an unsupervised representation of the
data. The parameters of these models are then used to build classification models on
small labeled datasets [14, 54, 126, 142].

5.2.2 Localization

Object recognition is a common task in image analysis and is frequently designed as
a classification task. Detecting the presence of an object can be extended to detecting
its location in different ways using similar approaches. This can be accomplished
by processing patches of the image by an object detection model. In this way, the
localization task is reduced to a classification task [33]. More recent approaches
run bounding box proposal methods first, then followed by a classification model to
achieve localization [35].

The drawback of this approach is that it is computationally inefficient given that
the image needs to be processed many times by patching it, where significant parts
of the image will overlap and will be processed multiple times. Furthermore, if the
size of the object can vary, the patches will also need to be of different sizes, as well
as the model should be able to process images with different sizes. Overall, such
approaches tend to involve multiple steps of preprocessing of the data, inference,
and post-processing of the model’s output for successful applications.

Many of these challenges are addressed the Yolo architecture (You only look
once) [101] where the whole image is processed directly. The output of this model
is bounding boxes with assigned labels to them.

Application of localization with CNN to the medical domain is wide ranging.
In [76], Lo et al. develop a model for localization in X-ray images.
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In [24], de Vos et al. implement a model for localization of regions of interest
around specific parts of the anatomy (heart, aortic arch, and descending aorta). Their
method produces bounding boxes of 3D volumes by classifying 2D regions with a
CNN.

Payer et al. propose a method [94] to directly regress landmark locations
analogously to the approach that the Yolo model took for producing bounding boxes
in a single pass. The model produces parameterized Gaussian distribution in the
image space that denotes the probability of a landmark to exist effectively creating
a map of landmarks on the image.

5.2.3 Semantic Segmentation

Applications that require precise annotation of each pixel are assigned to the image
segmentation or semantic segmentation task. Segmentation problems typically deal
with finding the boundary of objects of interest. In healthcare, this task translates
to finding the boundaries of organs, cells, nuclei, blood vessels, lesions, or other
objects or regions of interest. Segmentation aids either as a preprocessing step for
analysis pipelines or for aiding the medical professional. In this context semantic
segmentation determines which pixels belong to a particular organ or tissues.
Extracting accurate boundaries can be challenging for multiple reasons: the input
data may be noisy, the input data often lacks contrasting edges, and the objects of
interest may vary significantly mainly due to specific pathologies.

To achieve semantic segmentation with deep neural networks, the task can
be reduced to classification. In this case, the model sees a patch of the image
and assigns a label to a specific pixel. Pixel-wise classification is applied to skin
lesion detection [56]. The drawback of such methods is that it is computational
complex because the overlapping patches results in processing images many times.
To improve on this approach, the model would need to handle the whole image in a
single pass and produce a segmentation map for the whole image.

Typically CNNs process the image in stages, and for efficiency large amount
of information is removed in each step. This works very well for classification
tasks; however, for localization, the output is very detailed since we assign a class
for each pixel. In this context, highly detailed information is important to achieve
pixel-level accuracy. At the same time, global information from different parts of
the image is also important to bring the context for each of the decisions. The
UNet [103] architecture does this very well. It processes the information in steps
reducing the details and producing global context. However, it also introduces
“skip” connections that can carry the locally important details at each level such
that the final segmentation can be achieved by combining both global context and
local details.

This work is extended for 3D segmentations by Cicek et al. in [22]. Another
application of a network architecture similar to U-Net that uses both the global and
local contexts to assign semantics to the pixels is presented by Brosch et al. in [24].
Brosch et al. present a model that segments white matter lesions in brain MRI.
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5.2.4 Registration

Registration is the task of spatially aligning data about an object from different
sources. The data which should be combined may come from various devices and
be recorded from different angles or with a different technology.

DL’s main contribution to registration is derived from CNNs’ capability to
represent locally correlated, spatial data well. Methods are mainly based on
successful architectures from other domains such as VGGNet [113] or U-Net [103].
Representations learned by these architectures are used to calculate a similarity
score to determine overlapping areas.

Wu et al. use a stacked convolutional autoencoder to extract essential features
from brain MRI images. To determine whether two of these representation patches
are overlapping, they calculate the normalized cross-correlation. Their method
achieves an overall 2.74% improvement [131].

Instead of learning representations from the images, Yang et al. propose to
use a convolutional encoder-decoder network to learn to predict the pixel-wise
momentum-parameterization. The encoder and decoding networks resemble a
VGGNet [137], and they test their approach on the OASIS longitudinal dataset.
Their approach is released as freely available software [139].

Miao et al. frame the registration problem as regression task [79]. They train a
CNN to learn a mapping between a 3D X-ray and a digitally reconstructed radio-
graph by estimating the difference of their underlying transformation parameters.

Simonovsky et al. frame the registration problem as classification task [112].
They train a two-channel, five-layer CNN to discriminate between aligned and
misaligned patches from different modalities to align neonatal brain images.

5.2.5 Quality Enhancement

Medical image quality enhancement methods are based on the advancement of the
image processing domain. Image quality enhancement is mainly concerned with
three different tasks: denoising input images, imputing missing data, and increasing
the resolution of low-resolution images.

The fundamental idea of image denoising using deep neural networks is that
the problem can be described as a mapping from an image with noisy to a
noise-free image [12]. To learn such a function, noise is added to an image, and
given a noisy image, the noise-free version needs to be constructed. The noise
can be domain-specific such as dust particles on the image, or it can be domain
independent, e.g., Gaussian noise. Such a denoising function can be learned in an
unsupervised way. More generally, denoising autoencoders can be used to learn
robust representations from input data [127]. Benaou et al. propose to use an
ensemble of stacked, denoising autoencoders to improve the contrast from MRI
images [11]. Each member of the ensemble is trained with a different noise type,
and the result is selected via a Softmax activation function. Janowczyk et al. apply a
similar strategy to normalize the colors of H&E stained histopathology images [52].
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Instead of an ensemble of different autoencoders, they normalize the images by
color deconvolution followed by thresholding of the images.

Another application for enhancing images is proposed by Yang et al. [138]. They
use CNNs to suppress bone structures in chest X-rays. The CNN learns a mapping
between chest X-rays and their bone components in the gradient domain. They base
their approach on the edge filtering architecture that is proposed in [136], which
resembles a denoising autoencoder. Instead of adding noise to the image, they apply
edge detection filters.

Image super-resolution is the task of deriving a high-resolution from a low-
resolution image. Dong et al. propose a DL method based on CNNs to tackle this
task [28]. Their approach is structured like a CNN autoencoder, with one CNN that
learns to represent the input patches and a second one that learns to construct high-
resolution images from this representation. In healthcare, Oktay et al. improve the
layer design and the training procedure of this strategy to enhance the resolution of
cardiac MRIs [91].

Also using CNN autoencoders, Nie et al. derive CT images from MRI
images [88], and Bahrami et al. derive high-quality 7T MRI images from lower-
quality 3T MRI images [4].

Deep neural networks can also be used to impute missing data. Conceptually,
the task of imputing missing data from images is very similar to denoising them.
But, instead of adding noise to the input images, parts of the input image will be
removed, and the task of the network is to learn to reconstruct the complete image
given the incomplete one [92]. Within healthcare, Li et al. use 3D CNNs to learn to
reconstruct missing PET patterns from MRI images [70].

5.3 Applications of Deep Learning on Text Data

Text data is a form of unstructured, sequential data. Commonly, a text is interpreted
in two ways: as sequence of characters and as sequence of tokens where tokens can
be words, word parts, punctuation, or stopping characters. The elements of a time
series are generally related to each other in a linear, temporal fashion, i.e., elements
from earlier time steps. This relationship is often also true for text data. However,
the relationships between the elements are more complicated, often long-term, and
high-level.

In the healthcare domain, text data occurs mostly in electronic health records
(EHRs) in the form of text messages, clinical notes, medical notes, memos, or free
text entries in medical databases. More recently, few works have analyzed health-
related issues using social media data, e.g., predicting the outbreaks of infectious
diseases using text from social media [146].

Text data is generally treated as sequential data and analyzed with similar means.
One problem of analyzing text is to find suitable representations of the input words.
Text data is high dimensional, which renders sparse representations computationally
impractical. Hence, commonly dense representations such as Word2Vec [80] and
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GloVe [96] are used to represent input words. In healthcare, analyzing text centers
around three major problems: question answering, information extraction, and
finding a suitable representation of medical text for further analysis.

5.3.1 Question Answering by Sequence Classification

Nie et al. address a medical question answering problem by framing it as a
sequence classification problem [87]. They use a sparsely connected, multilayer
neural network that is pre-trained in an unsupervised way to infer soft layers of
fixed frames of the question text. Their method allows inferring diseases of patients
given a free text question that these patients ask with an accuracy of up to 98.21%.
Jacobsen et al. propose a method for disease prediction from electronic health
records. This method also treats text as a sequence of tokens [49]. Their best-
performing model is a combination of a deep belief network and a fully connected
classification layer, which yields an F1 score of 0.81.

Tweets are short text messages that do not contain medical data per se, but they
can be used to analyze specific general trends in population health. Kendra et al. treat
tweets as sequence of tokens to classify them into medical categories by using a fully
connected neural network [58]. Zou et al. use the text data from tweets to predict
the outbreaks of infectious diseases [146]. They combine Word2Vec skip-gram [80]
representations of the tweets with elastic nets to predict the time of outbreak of a
specific disease, e.g., Norovirus of food poisoning.

Dernoncourt et al. concern themselves with the privacy of patients. They show
that it is possible to de-identify patients from text in electronic health records by
framing the task as a sequence classification problem. They use a bi-directional
LSTM to encode text from EHRs to predict a patient’s ID. Their best-performing
model achieves an F1 score of 99.23 [26].

5.4 Information Extraction by Sequence Labeling

Jagannatha et al. propose a DL-based method to extract medical entities like
medication from EHR text. To do this, they frame the problem as a sequence-
labeling problem comparable to named entity recognition problems from the natural
language processing domain. Their first proposed method evaluates various forms of
bi-directional RNNs on their capability of labeling medical entities from electronic
health records [50]. Their best-performing model achieves a labeling F1 score
of 0.813. They extend their method by combining the bi-directional RNNs with
conditional random fields and achieve an F1 score of 0.8614 on the same task [51].
Wu et al. address a similar problem using a combination of context vectors, CNNs,
and a fully connected classification layer to recognize medical events [132]. Their
method achieves an F1 score of 0.928.
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5.4.1 Representation Learning of Medical Text

Tran et al. propose to learn suitable representations from a text of electronic health
records using RBMs [124]. They demonstrate the applicability of representations
that have been learned by risk group discovery. Depending on the group, they
achieve an F1 score of 0.359, which is roughly a 5.6% performance improvement
over the baseline.

Liu et al. propose to learn word embeddings to expand medical abbrevia-
tions [75]. Their methods calculate the similarity score between the learned rep-
resentations of large, medical text corpora. Their best-performing model achieves
an accuracy of 82.27%, which is better than the accuracy of a general physician
(80%) but worse than the accuracy of a domain expert that has received additional
training in the respective field (>90%).

6 Conclusion

Deep Learning methods learn a hierarchy of representations from data. This multi-
layered architecture allows solving machine learning problems more efficiently than
shallow machine learning methods. Furthermore, it reduces the need for manually
designing data representations, because each layer automatically learns representa-
tions that are useful for next layers to solve a task. Learning representations has a
few advantages over manually designing the features. The most striking of them is
solving a task which becomes independent of the domain of the data. For example,
Deep Learning methods that address face recognition tasks can now easily be
used for a medical segmentation tasks, since the underlying data—spatial data—is
similar in structure. In contrast to that, handcrafted features for face recognition are
challenging to use for a medical segmentation task. This domain independence of
Deep Learning methods combined with generally good performance on many tasks
has led to the adoption of Deep Learning in many domains and also in healthcare.

In this chapter, we presented advances in Deep Learning in healthcare from a
data analysis perspective. Machine learning is already widely used in the healthcare
domain for a variety of tasks, and recently Deep Learning has become more
prominent. We motivated the use of Deep Learning over “traditional” machine
learning by highlighting the significant problems that Deep Learning addresses:
it provides an efficient way to learn distributed representations which are domain
independent; it also provides an effective strategy for addressing the curse of
dimensionality.

Deep Learning methods have shown remarkable success on many healthcare-
related tasks and also on tasks of many other domains. There are, however, a large
number of open challenges in Deep Learning that are hardly addressed up to now
but need to be solved.

While Deep Learning methods perform remarkably well on many tasks, their
inner workings still remain poorly understood. In many domains, but particularly in
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healthcare, being able to justify and explain a prediction made by a machine learning
model is very important for two reasons. First, if a model can justifiably tell why
a specific prediction was made, it will increase the trust of a user in the prediction,
and secondly, it will provide means to validate the prediction. In other domains,
first steps toward interpretable predictions have been made, e.g., [55, 69, 102],
but interpretability of Deep Learning model predictions still remains an unsolved
challenge.

Deep Learning learns hierarchies of representations from data to solve specific
tasks. Other issues that are rarely addressed but are essential for practical use in
healthcare are methods to ensure that the data is (a) representative for the tasks
that are being addressed and (b) free from biases. The models that are trained with
Deep Learning can only be as good as the data that was used to learn them. Any
conclusions about the validity of a decision or prediction depend on the confidence
that the data that was learned was bias-free and representative. Generally, if a dataset
is large enough, it is assumed to be normal. In healthcare, datasets are often small
and may not be representative. Methods to ensure the quality of the data would be
required in this case.

Another challenge that needs to be addressed is to ensure consistency of
performance on the deployment in real-life systems. Many academic DL methods
are currently trained on benchmark datasets, which may or may not be representative
of data in real-life applications. More research would be needed to guarantee
robustness of these methods.

Finally, another regulatory approval for DL methods is a challenge that is
currently poorly addressed but crucial for the healthcare domain. Progress on the
challenges of justifiable predictions, data quality assurance, and robustness will
be required to make Deep Learning methods suitable for regulatory approval by
organizations such as the Food and Drug Administration in the United States, the
European Medicines Agency in the EU, or the China Food and Drug Administration.
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Making Effective Use of Healthcare Data
Using Data-to-Text Technology

Steffen Pauws, Albert Gatt, Emiel Krahmer, and Ehud Reiter

1 Introduction

Note-taking in medicine stems back from the time of Hippocrates in Classical
Greece, when physicians wrote down case histories in the chronological order
of observed events, signs, and symptoms. A physician learned from the ailment
of a patient simply by listening and writing down the history of events and
sensations mostly felt and experienced by the patient [64]. In the early 1800s,
physicians started to produce and permanently keep free-format patient case records
for teaching purposes and personal remembrance. These records were complete
narratives reflecting physician style and personality. Only in the 1900s did structured
forms of documentation start to emerge to support patient examination, laboratory
results, nurse notes, and the like [75].

Since the advent of digitization, clinical practice and workflows in healthcare
delivery have a fully electronic and standardized flow of communication among
healthcare professionals. This communication shares findings on patient status
including examination, diagnosis, prognosis, and treatment outcome, but also
supports entering medication orders or other physician instructions, submitting
billings and following up with health insurers for receiving reimbursement of
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services rendered. As the first medical specialty experiencing disruptive digital
change, radiology has a fully digitized clinical workflow including a standardized
setup of networked computers and storage devices that are put into use for reporting
and communication, mainly aimed at increasing workflow efficiency and patient
throughput.

Text is the preferred modality to convey patient findings in clinical practice. It
has been shown that clinical staff makes better clinical decisions when exposed
to expert-authored textual summaries compared to time-trend physiological data
only [46, 88]. The need for text comes with a downside for healthcare professionals:
the text needs to be produced by them. Indirect patient care such as report writing
and administration takes up a considerable amount of time. For instance, some
recent observational studies revealed that medical specialists in the hospital spend
about 40% of their time on administrative tasks [76, 91]. This chapter claims that
a significant portion of professional text writing in healthcare can be taken over by
computers by leveraging data-to-text technologies, potentially freeing clinical staff
from many administrative duties and making them available for direct patient care.
In addition, data-to-text allows for consistent, fast, and timely text writing, because
it is not susceptible to time pressure and subjectivity, which can negatively impact
the quality of human-authored reports.

Data-to-text is a particular instance of Natural Language Generation (NLG),
which is commonly defined as “the subfield of artificial intelligence and computa-
tional linguistics that is concerned with the construction of computer systems that
can produce understandable texts in English or other human languages from some
underlying non-linguistic representation of information” [66]. Though there is little
room for ambiguity about the type of output produced by a data-to-text system,
since it is textual, the input can change significantly from one application to the
other, varying from time-series, numerical data or aggregated statistics to images
or video. A crucial strength of data-to-text techniques is that they can be tailored
to an intended reading audience and/or serve a particular communicative purpose.
The same kind of information can be provided to a medical specialist, a nurse, or a
patient, in each instance changing the precise content, the presentation order of the
information, the language used, and the tone of the text. In a similar vein, the style
and language in the text can be designed to, for example, inform, convince, or coach
a reader.

Research in data-to-text draws on computational models of human language
production, as well as on algorithms for search and planning in artificial intelligence;
to some degree it also draws on studies of human cognition and psycholinguistics. In
recent years, there has been an increasing emphasis in NLG research on deploying
machine learning techniques on large datasets and text corpora, which are increas-
ingly available through digital publishing and social media. These have resulted in
many successful on-demand data-to-text applications in finance, meteorology, news,
sports, education, and healthcare. A recent and comprehensive survey of the current
state of the art in Natural Language Generation, and data-to-text in particular, can
be found elsewhere [23].
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In the following sections, this chapter introduces data-to-text technologies, with
an emphasis on both existing and potential use cases for data-to-text in healthcare.
We offer a strong case for assessing, evaluating, and implementing data-to-text in
healthcare settings and highlight recent research activities which have arisen from
synergies with adjacent data science fields.

2 Data-to-Text Technologies

Traditionally, data-to-text systems make use of a pipeline of computing tasks to
produce a coherent piece of text from input data [66, 67]. Roughly speaking and as
shown in Fig. 1, these tasks focus on what is known and what can be said, on decid-
ing what to say and how to say it, and finally on culminating in actually saying it.

• What is known involves the representation of domain knowledge for reasoning
purposes. This serves as a common vocabulary in the application context that
needs to be integrated in the whole functioning of the data-to-text system. Both
domain knowledge and vocabulary can be kept in thesauri, taxonomies, and
ontologies, which are formal knowledge representations of medical concepts and
their relationships. Some well-known ontologies in medicine are the System-
atized Nomenclature of Medicine Clinical Terminology (SNOMED-CT1) and
those hosted by OBO Foundry.2

• What can be said involves the task of data analysis, abstraction, and interpreta-
tion. This first core task is application-specific. Examples include the calculation
of key performance indicators from medical billing data to be used in healthcare
financial reporting, the interpretation of physiological sensor readings from
bedside monitors in patient reporting, or the computation of risk and benefit
estimates in patient data on diagnosis, treatment, and outcome in shared decision-
making.

• What to say involves the task of content determination and text structuring. The
former decides what information-bearing items will be presented in the output
text based on the intended reader and communicative purpose. The latter decides
the order of information-bearing items to be presented in the output text.

• How to say it involves tasks such as sentence aggregation, lexicalization, and
referring expression generation. The first task decides how information-bearing
items will be presented at individual sentence level, while the second one decides
on what words and phrases will be used in expressing sentence-level information.
The third task determines the content and form of phrases used to refer to domain
entities, including pronouns and noun phrases.

1https://www.snomed.org/snomed-ct.
2http://www.obofoundry.org/.

https://www.snomed.org/snomed-ct
http://www.obofoundry.org/
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• Actually saying it refers to the actual text to be produced by means of linguistic
realization. It produces a well-formed and coherent set of sentences as output
text.

Below we use an example to elaborate on What to say, which is the task of
content determination (Sect. 2.2); How to say it, including both how to structure
the text (Sect. 2.3) and identify the linguistic structures to express the content
(Sects. 2.4–2.6); and Actually saying it, which is usually referred to as linguistic
realization (Sect. 2.7).

We will not further discuss What is known and What can be said here, since these
are similar to standard data science tasks.

2.1 BabyTalk BT45 Example

We will use an example from the BabyTalk BT45 system [25, 61] (see Sect. 3.2.2),
which generates summaries of 45 min of clinical data from babies in a neonatal
intensive care unit (NICU), to support clinical decision-making. More specifically,
we will look at the process of summarizing the 3 min of example sensor input
shown in Fig. 2 (of course a real summary would look at considerably more data),
along with information about interventions in this period (in this example, morphine
was administered to the baby at 10:39). What is known in BT45 is based on a
custom ontology of NICU events, interventions, etc. BT45 determines What can
be said (data analysis and interpretation) by applying signal processing techniques

Fig. 2 Example time-series
input data for BabyTalk BT45
system (from [65]). HR is
heart rate, SO is oxygen
saturation, TC is core
temperature, TP is peripheral
(toe) temperature, and BM is
mean blood pressure
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to segment the raw data and then using the ontology, together with rules collected
from clinical experts, to label the events identified in the data with an index of their
clinical importance. In the current example, the list of events identified is:

• Bradycardia (significant downward spike) in HR (heart rate), just before 10:40;
• Desaturation (important downward step) in SO (blood oxygen saturation), again

just before 10:40;
• Upward spike in BM (mean blood pressure), at around 10:40;
• TC (core temperature) is stable at 37.5 ◦C;
• TP (peripheral temperature) is stable at 36 ◦C;
• Morphine given to the baby (intervention) at 10:39.

The output text produced by BT45 from this data is

An injection of morphine was given at 10.39. There was a momentary bradycardia and BM
rose to 40. SO fell to 79.

We discuss below the processing required to produce these 23 words from the
input data.

2.2 Content Determination

Selecting what information to convey and what not to convey to the reader is key in
achieving effective communication. In data-to-text, it is essential to strictly provide
as much information as is needed, relevant and supported by the input data for
the target reader, but no more. This, however, can depend on the communicative
purpose. For example, it has been argued that a certain degree of redundancy can
aid understanding, especially if the content being conveyed can be sensitive or
distressing [11, 90]. Information derived from input data is typically mapped to a
preverbal representation, which can range from sets of attribute-value pairs, graph
structures, schemas, or any other convenient logical data structure.

In our BT45 example, the content determination system decides that the text
needs to mention the bradycardia, desaturation, upward spike in BM, and morphine
administration, because clinicians making decisions should be aware of these events.
However it decides not to mention that TC and TP are stable, because these facts
are less important in clinical decision-making; hence the above BT45 text does
not mention TC or TP. This knowledge is encoded in the system in the form of
expert system rules that allow the system to perform limited reasoning on the events
identified in the data, assigning each event an index of importance. Importance may
be preset (e.g., certain events always have maximum importance and need to be
mentioned), or it may be contextually determined (e.g., a bradycardia may become
more important in the context of a previous event involving the administration of
morphine to the patient). Either way, importance values are used to decide what to
say, resulting in a list of selected events (see above). These constitute the input to
the text structuring stage.
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2.3 Text Structuring

A text can be defined as a set of ordered and structured representations of
information-bearing items. The optimal structure of a text often depends on the
application domain. For example, many texts would start with a general introduction
stating the general gist to be conveyed. Beyond that, the way information-bearing
elements are grouped may be subject to genre constraints. For example, if a text
describes several events, these can be ordered by time, by what the events are about,
or by how important the events are; the correct strategy depends on the domain and
genre. Sentence order also depends on relationships between sentences: we may
want the text to mention the cause of some event before it mentions the event itself
(the effect).

A commonly used formalism for representing the relations, such as causality,
contrast, and elaboration, which can hold between items in a text, is Rhetorical
Structure Theory (RST) [55]. The main idea behind RST is that items are repre-
sented as nodes in a labeled graph, whose edge labels indicate the relationships.
In a data-to-text system, such a graph serves to structure information for the
later modules responsible for fleshing out the text, in order to ensure that such
relationships are adequately conveyed to the reader.

BT45 uses rules to structure the events selected by the previous stage using RST
relations. These rules are domain-specific, and applying them results in an RST
graph whose nodes are the events themselves, linked via labeled edges, where the
labels indicate relations ranging from causality (x caused y) to temporal sequence
(x occurred prior to y), as well as groupings of events based on genre and domain
considerations (x is linked to y because they are relevant to the same physiological
system).

In our BT45 example, the text structuring system decides to mention the
morphine event first, because it may have caused some of the other events (giving a
baby medication can be stressful, hence leading to changes in heart rate, etc.). This
event is therefore linked to others by a link specifying causality. The system also
decides to mention the bradycardia and change in BM together, since these events
are both about the cardiovascular system.

The outcome of this stage is a labeled directed graph of events, which constitutes
the input to the next stage.

2.4 Sentence Aggregation

Aggregation can be loosely defined as the process of reducing redundancy and
enhancing the fluency of a text. Typically, this is done at sentence level, applying
syntactic rules to merge sentential structures, thereby making the output more
cohesive. For example, two sentences bearing the same subject (“The patient was
intubated” and “The patient was given morphine”) may undergo a rule to yield a
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single sentence (“The patient was intubated and given morphine”). While there is a
substantial body of work on domain-specific aggregation approaches [33, 73], more
recent work has sought to formulate generic algorithms that apply over syntactic
structures independently of domain [29]. This implies that aggregation would be
expected to apply later in the data-to-text process, after sentence planning has
mapped content to syntactic structures. Other approaches formulate aggregation in
tandem with content determination, jointly optimizing the choice and aggregation
steps [2], thus viewing aggregation as a prelinguistic step.

Given the RST graph produced in the previous step, BT45 traverses the graph
and determines which of the related events can be expressed in the same sentence.
This too is performed using rules, which fire in response to specific types of event
pairs in particular relations. In this case, the aggregation system decides to express
the bradycardia and BM events in the same sentence (There was a momentary
bradycardia and mean BM rose to 40.). This is because they are semantically
linked (both about cardiovascular system), and expressing them in the same sentence
highlights this linkage to the reader. Note that this is still a prelinguistic decision.

The outcome of this stage is a modified list of events, in which some may have
been explicitly grouped as a result of an aggregation rule.

2.5 Lexicalization

Given a piece of information to be conveyed, an important step is to determine the
words to use to convey it. Lexicalization takes as input the list of events (some of
which may have been aggregated) and the RST links between them and brings their
representations one step closer to their eventual linguistic expression.

Lexical choice can be driven by a number of considerations, including a target
reader profile (which could, e.g., determine the extent to which specialized terminol-
ogy would be used [53]). Among the challenges in this task are the choice between
near-synonymous terms, which could nevertheless indicate subtle differences in
meaning [14, 79], and the handling of vague expressions [85]. Previous studies have
suggested that in technical domains, such as weather forecasting, consistency in the
use of lexical items is a valuable asset. For example, Reiter et al. [69] compared
automatically generated weather forecasts for engineers to forecasts authored by
meteorologists and found that the former were preferred in part because they were
more consistent in their use of vague temporal expressions. While meteorologists
might exhibit slight variations in the meaning intended by an expression like “early
evening,” the system did not. This proved to be useful to the target users of the
system.

While lexicalization is often discussed as an isolated task, many of the decisions
taken at the word level will impact syntactic realization. For example, the same
piece of information could be conveyed using the verb give or the verb receive
(depending on the perspective from which an event is being viewed); this will
have obvious repercussions on the realization of the sentence (compare: “doctors
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gave the patient morphine” vs. “the patient received a dose of morphine”). For this
reason, lexicalization is often viewed as part and parcel of the syntactic realization
process [17].

In BT45, lexicalization relies on a large lexicon of English, where words are also
accompanied by information about their syntactic behavior (e.g., both “give” and
“receive” require two arguments, a recipient and an agent, but their order is different
and they need different prepositions to express the information). The lexicalizer uses
rules that map concepts in the ontology to possible lexicalizations. At its simplest,
this process simply chooses a noun or verb. However, additional information in
an event may also need to be expressed in words. For example, bradycardias are
typically reported with an indication of their duration. Here, other rules need to
be in place to map such information to the appropriate wording. In our running
example, it decides to express the length of the bradycardia using the vague word
momentary instead of a numerical descriptor such as 20-second or an alternate vague
descriptor such as brief. This was motivated by an analysis of how doctors described
bradycardias in texts they wrote [70].

At the conclusion of this stage, the original list of events has been fleshed out
with lexical information, together with information about the syntactic frame in
which the information needs to be expressed (e.g., RECIPIENT is given morphine
vs. RECIPIENT receive morphine from AGENT).

2.6 Referring Expression Generation

Referring expression generation (REG) is a heavily studied field in computational
linguistics [43]. When referring to an entity in text, it entails choosing a referential
form such as a pronoun (“he”), a proper name (“Donald Trump”), or a definite
description (“the 45th President of the United States”). The choice of form is
heavily dependent on the salience of a domain entity in the context, a fundamental
observation in many discourse representation frameworks [28, 60]. For example,
a system may choose to refer to the president as “he” if he has recently been
mentioned and there is no other, equally salient entity of the same gender with
which the pronoun’s intended referent might be confused. In case the intended
referent is confusable with some distractors, it might be necessary to generate a
full noun phrase (“the 45th US President” or “the man in the corner,” for instance).
This is actually a content determination problem: assuming some representation of
the relevant features or properties of the referent, algorithms have been proposed to
select a distinguishing subset of these properties [9]. Beyond pronouns and definite
descriptions, natural language provides many other referential forms, including
proper names. The choice of when to use proper names has only recently begun
to be investigated in NLG or data-to-text [5, 74, 86].

The REG module in BT45 operates over the lexicalized structures output by the
previous stage. It identifies the entities (e.g., the RECIPIENT of a drug) and decides
how to express them in the text. In our example, the referring expression system
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decides to refer to the BM data channel as mean BP instead of BM or mean blood
pressure. If this channel was being referred to many times, the system could initially
refer to it as mean BP (BM) and subsequently refer to it only as BM. This is based on
genre conventions. The reference to this data channel resembles the use of a proper
name (since there is typically only one blood pressure channel and it is a named
entity). In the case of BT45, the use of names in such instances was largely heuristic
in nature and guided by examination of example texts. Pronouns were used based
on an estimate of the salience of the entity in the text: if an entity was mentioned
previously, a pronoun might be generated instead of a name or a description.

At this stage, the original list of events identified during content determination
has been fleshed out by identifying links between events, aggregating them, and
fleshing out their lexical and syntactic properties, as well as referring expressions.

2.7 Linguistic Realization

Assuming that information-bearing units in a text have been selected, structured,
and mapped to lexical representations, the final step in the traditional data-to-text
pipeline involves realization. Lexical representations are mapped to syntactically
well-formed sentences in the target language, a process that also necessitates han-
dling morphological operations such as word inflections and subject-verb agreement
and inserting function words such as auxiliary verbs and complementizers. This is
perhaps the subtask of data-to-text for which there has been the greatest degree of
development of “domain-independent” and reusable modules.

Perhaps the simplest approach to realization is template-based. Syntactic tem-
plates often take the shape of well-formed sentences with slots in which specific
values can be filled in [56], although such templates can have a recursive form,
making them potentially very expressive [87].

Grammar-based systems tend to be much more complex. Realizers such as
FUF/SURGE [16], KPML [3], or OpenCCG [92] involve a theory-driven descrip-
tion of the morphosyntax of a language, using either hand-coded rules or rules that
are partially derived from treebanks.

Increasingly, morphosyntactic realization is handled in a data-driven manner.
For example, a realizer such as OpenCCG, or the earlier NITROGEN system [44],
might use language models derived from large corpora to select from among many
possible realization options for the same input. Many of these systems rely on a
chart algorithm as a base generator [40], which produces multiple realizations of
(parts of) input specifications and ranks them [63]. Other approaches use classifiers
to perform selection among options [4, 19]. A more recent turn, so far restricted
to the generation of relatively short texts, involves the use of Recurrent Neural
Networks as decoders to generate sentences directly, conditioning the generation
on some nonlinguistic input in an encoder-decoder framework [23, 27].

In our BT45 example, the Simplenlg realizer [24] is used to generate the final
23-word text, as provided in Sect. 2.1. This system provides an API for realization
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where the decisions that drive the realizer need to be implemented directly by
the developer. In BT45 this was handled by writing rules which deterministically
mapped input structures (lexicalized events) to sentence structures. For example,
bradycardias are typically mentioned using “existential” constructions (“there
is/was a bradycardia. . . ”); hence, a bradycardia event would typically be realized
by firing a Simplenlg procedure to produce such a sentence. Similarly, some events
needed to be expressed in the passive voice. For example, this was always the case
for drug administration events (“the patient was given morphine” rather than “the
doctor gave the patient morphine”). Following the recursive application of these
rules to map every part of a lexicalized input to a syntactic structure, Simplenlg’s
built-in functionality to handle morphology and agreement, as well as decide on
capitalization and punctuation, was applied and the final string was rendered, as
shown above.

3 Data-to-Text in Healthcare

In this section, we present existing and potential use cases of data-to-text in
healthcare and some of its adjacent fields. Use cases of data-to-text in healthcare are
numerous as effective text-based communication is fundamental to ensure proper
patient status sharing among clinical staff members. We discern five different
application areas, loosely referred to as report automation (Sect. 3.1), clinical
decision support (Sect. 3.2), behavior change (Sect. 3.3), patient engagement
(Sect. 3.4), and patient assistance (Sect. 3.5).

3.1 Data-to-Text for Report Automation

Report automation entails the automatic generation of routine text drafts that
summarize statistics and findings. These text drafts can be edited by the end
user before release, if desired. Automation saves time and increases accuracy and
consistency in routine report writing. We discuss existing and potential use cases
for healthcare finance, clinical practice, radiology, incidences during service, and
medical equipment utilization.

3.1.1 Routine Reporting on Healthcare Finance

Financial reporting by means of data-to-text is already a viable commercial service;
it includes annual, financial statements, investment, and audit reporting primarily
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for banking and energy industry.3 We conjecture that data-to-text will also be a
mainstay for financial reporting in value-based healthcare [34, 35]. Due to new
governmental legislation and health insurance policies, hospitals and health systems
around the world are increasingly held financially accountable for keeping a healthy
population in their catchment area, providing high-quality services in case of
sickness and improving patient experience. The commercial success of data-to-text
in financial reporting is mainly because financial reporting is a highly standardized
and periodical mandatory prerequisite for external accounting compliance purposes.
It retrospectively conveys financial standing of a hospital or health system over a
specific period of time on beneficiaries, cost, profits, and utilization statistics, while
making sure the reported numbers are compliant to prevailing accountancy rules.

3.1.2 Routine Reporting in Clinical Practice

Routine reports such as referral letters or patient examination findings are common
in clinical practice. Current methods to produce these routine texts, such as the use
of canned text or dictation, are far from optimal [37]. The Suregen system [38] used
data-to-text to assist physicians in a hospital to write cardiology routine case reports.
By using a graphical user interface (GUI), a physician indicated sign, symptoms, and
findings related to a patient suffering from heart disease, from which a case report
was drawn up in the German language. In a related vein, Narrative Engine [31]
assisted a general practitioner in generating legal narrative records of their patient
encounters. Complete and accurate narratives are an important part of the patient
record and are often used as legal records, for example, in the context of malpractice
lawsuits.

3.1.3 Routine Reporting in Radiology

Radiology is dominated by advanced imaging technologies and has fully embraced
digitization. On request of a treating clinician, a specially trained physician inter-
prets the images taken of a patient and produces a report containing the findings and
diagnosis. Voice recognition (VR) dictation and conventional transcription services
are the de facto method of report creation. Though performance of voice recognition
has improved remarkably in the last decade, there are ongoing challenges connected
to it, including production time, error, and cost [59]. Clinicians engaged in patient
treatment often encounter a lack of clarity in a radiology report when key pieces of
information need to be gleaned to plan patient care, as the reports come with great
variability in language use, length, style, and version [21, 58]. Structured reporting
by means of report templates has been proposed as a way of improving the quality

3See white papers of Arria at www.arria.com for further information on financial data-to-text
services for banking and energy industry.

www.arria.com
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of the reports. Related to that, there has been ample research on the preference of
healthcare professionals regarding radiology report structure [84].

Though there have been many proposals related to natural language and artificial
intelligence technologies from market leaders in radiology reporting solutions, data-
to-text has not yet been considered in these proposals but is a potential use case.
The tough nut to crack is the automated interpretation of medical imaging data and
laboratory measurement data in the correct clinical context [51]. Once this has been
sufficiently accomplished, the automatic generation of a report comes in naturally,
done with immediate reference to the medical images (multimodality reporting, see
also Sect. 5.2).

3.1.4 Routine Reporting on Incidents

A personal emergency response service (PERS) enables subscribers, especially
elderly people at risk of adverse events, to summon help at any time in situations that
potentially require emergency ambulance transport to a nearby hospital. This can
occur for a variety of reasons, such as a sudden worsening of a long-term condition,
a fall incident, or a sudden pain on the chest with shortness of breath. PERS involves
a wearable device such as a neck cord or wristband-style personal help button that,
upon a button press, provides immediate contact with an agent in a 24/7 call center.
The agent then dispatches the help request to an informal responder (e.g., a neighbor
or family member) or calls an ambulance based on the subscriber’s situation. The
agents reassure the subscriber that help is on its way. Follow-up calls are performed
to assess the outcome of each incoming help request. Call center agents record
unstructured and shorthand text notes during conversations with subscribers. Using
these case notes, all help requests are classified according to their type, situation, and
outcome. A call center may serve many subscribers across disparate geographical
areas, on behalf of various healthcare or home care organizations. These receive
reports on the incidents and help requests of their patients. In this context, data-to-
text technologies can provide a consistent and efficient method of producing these
reports from call center data.

In a similar vein, data-to-text can be used for the purposes of generating Case
Safety Reports (CSRs), for example, after people had adverse reactions to drugs.
By making this information available in structured and easily readable format
potentially helps to avoid future adverse reactions.

3.1.5 Routine Reporting on Utilization

Medical imaging technologies are capital investments of hospitals, for which
strategic decisions need to be made on deployment, replacement, and long-term
financing. As an alternative to capital investment, under newer business models,
the equipment can be provided to a hospital by a lease arrangement at a relatively
low cost, but with additional charges for the utilization of the equipment, estimated
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based on patient hours. Nevertheless, periodical routine reports on the inventory
of the imaging technologies available, including volume, modalities, condition,
maintenance, and utilization of the equipment, help a hospital to plan for strategic
equipment decisions. Data-to-text is the preeminent technology to generate these
routine reports. Past uses of such technology in related (albeit nonmedical) settings
include the generation of reports from time-series data collected in large gas
turbines, for the use of experts during maintenance [95].

3.2 Data-to-Text for Clinical Decision Support

Clinical decision support (CDS) aims at assisting medical staff in making the right
clinical decisions at point of care. We will discuss two existing use cases from
hematology and intensive care for neonates.

3.2.1 Hematology

Early data-to-text techniques were used in clinical decision support systems such as
TOPAZ [39]. TOPAZ summarizes blood cell counts and drug dosages of lymphoma
patients over a period of time. A complete blood cell count provides an overview of
the number and types of blood cells in a blood sample along with hemoglobin and
hematocrit tests. It indicates the health status of a lymphoma patient before, during,
and after treatment. Firstly, TOPAZ compares patient values on blood cell counts
over time with population-based normal ranges for identifying deviations. Secondly,
it groups deviating events into time intervals and searches for explanations. Lastly,
it converts these explanations into text to be read by clinicians.

3.2.2 Intensive Care

In intensive care facilities, nurses are requested to provide a nursing report on
patient observations and interventions at the end of their shift to facilitate handover
and inform the treating physician. These manually authored reports often lack
structure and can be rather biased due to subjectivity in interpreting a medical
incident or due to the prevailing workload. Automatic generation of reports can
overcome these limitations, notably because fast and timely generation technology
is not susceptible to time pressure, which is one obvious reason why the quality
of human-authored reports can suffer. Several pioneering data-to-text systems were
developed for and tested in neonatal intensive care units (NICUs) under the rubric of
the BabyTalk project (see also Sect. 2.1). The system described above, BT45, was
a pilot system that produced a nurse report by summarizing 45 min of historical
physiological sensor data of admitted newborns, together with observations and
records of interventions by the medical staff [25, 61]. Off-ward tests in the NICU
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revealed that though BT45 summaries did not match human-authored summaries
in the quality of decision support they provided, they did yield comparable results
to data presented using a visualization, which is the standard way of presenting
information in this context. Considering that the human-authored reports for each
45-min segment used in the off-ward study took hours to produce, these results
provided encouraging indicators on the feasibility of data-to-text technology in the
NICU context. The successor to BT45, BT-Nurse, summarizes 12 h of live patient
data [36] and was tested on-ward. During a 2-month on-ward live evaluation, the
majority of the BT-Nurse summaries were found to be understandable, accurate, and
helpful, providing evidence that nurse report generation by computers is feasible
and useful in clinical practice. Another system, BT-Family, generated summaries
from patient data for parents of an admitted newborn. In this case, the system took
into account the affective connotations of the information being presented, so as
to reassure and help guardians understand how their child is doing [53, 54]. In an
off-ward evaluation, parents who had previously had a preterm baby admitted to the
NICU appreciated the affective language in the summaries.

3.3 Data-to-Text for Behavior Change

A person’s health status is unmistakably affected by the person’s biology and
genetics and the quality of healthcare available to that person in case of sickness.
However, health is predominantly determined by a person’s behavior and lifestyle.
Unhealthy lifestyles such as smoking, alcohol consumption, lack of physical
activity, and poor access to healthcare result in increased risk of mortality and
morbidity [20]. Interventions to change “unhealthy” behavior in lifestyle are needed
to enhance longevity, but they seem to have only limited impact. We will discuss an
existing use case in health promotion and a potential use case in recreational sports.

3.3.1 Health Promotion

Health promotion concerns public policy on helping people to change their behavior
to adopt a healthy lifestyle to prevent sickness later on in life. Smoking cessation
is one of the foremost public health concerns, with promotion policies that
target taxation of tobacco, smoking restrictions in public areas, mass advertising
campaigns, and health warning on tobacco products, among other measures. STOP
is a data-to-text system designed to generate tailored smoking cessation letters from
data about an individual, acquired through a four-page smoking survey [68]. STOP
was tested through a collaboration with general practitioners. In a clinical trial,
tailored letters proved to be equally effective in motivating cessation as non-tailored
letters, though they led to a change in intent to stop heavy smokers [48]. Despite the
lack of evidence that tailored letters yielded superior outcomes, letters did overall
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result in greater cessation rates, compared to a control group of participants who did
not receive any letters [68].

3.3.2 Sports

Recreational sports practice, such as running in the park, can reduce risks for
cardiovascular diseases and have mood-improving benefits [47]. However, any
individual sports practice can have downsides on motivation, sustainability, and
responsible practice. Recreational runners tend to set personal goals and targets
for themselves, with only little follow-up after these targets have been met. While
exercising for health purposes only, the enjoyment experienced may not be sufficient
to guarantee that practitioners sustain the practice. Finally, new and inexperienced
sports people are prone to risky or unhealthy practices, for example, by neglecting
warming up, cooling down, or carefully pacing the exercise [72]. This can result in
injuries and early dropouts. Data-to-text can generate personalized and persuasive
coaching instructions from individual sports performance data, to be verbalized
during exercising. Coaching instructions themselves are considered part of domain
knowledge.

In addition, based on the performance data, data-to-text can tailor training
schemes and draw up key points of attention for a healthy and responsible sports
practice, thereby also enhancing motivation and the potential to sustain the practice
over long periods. As the use of wearable devices to monitor performance during
sporting activities increases, the potential for generation of personalized reports
and messages is becoming ever greater. One application that has been piloted in
a personal sporting context is ScubaText, a system to generate reports for scuba
divers, to complement existing visualization techniques [78].

3.4 Data-to-Text for Patient Engagement

Patient engagement refers to empowering patients in making their own choices in
health and healthcare. Below we discuss decision aids, psychosocial plans, and sleep
quality as potential use cases for empowering patients.

Engagement starts with informing patients adequately about their health status
and treatment options for building up trust between patient and doctor. Increasingly,
patients demand better access to and more say about their data and treatments. If
patients are more engaged with their health and treatment, it is generally assumed
that better outcomes, higher patient satisfaction, and lower costs in healthcare can
be achieved.

Technological advances, including data-to-text, offer the promise of automati-
cally making health information more accessible for a broader range of patients and
their relatives, by presenting information in a more personalized manner and by
automatically adjusting the readability level of the text to the intended audience.



Making Effective Use of Healthcare Data Using Data-to-Text Technology 135

Since medical terminology is notoriously difficult for patients [15, 97], tools to
automatically simplify and/or explain this terminology can play a major role in
conveying health information to patients with various levels of understanding [96].

Rephrasing words and sentences, or even modifying the text structure, as far
as possible retaining the intended meaning, can be done using techniques such as
paraphrasing [52, 94], simplification [13, 98], or compression [8]. Many of these
techniques are considered text-to-text (see [1], e.g., for a survey of these techniques),
where the input is (possibly complex) text and the output is (simplified) text.
However, such techniques can also be combined with the data-to-text techniques
discussed in the current overview. In general, such a combination of techniques
can be helpful for automatically generating different style variations of a particular
text (e.g., simple as opposed to more complex, but also formal and matter-of-factly
as opposed to informal and empathic), a topic to which we will briefly return in
Sect. 5.4.

3.4.1 Decision Aids

Patients with a life-threatening diagnosis often face a difficult decision to choose
from a range of treatment options with various outcomes and side effects. Physicians
are obliged to inform patients about the chances of a favorable effect (long-term sur-
vival) and the risks of adverse effects (e.g., death, side effects) of treatment options.
In the case of cancer, various initial and adjuvant treatments are possible, such as
surgery, radiotherapy, chemotherapy, and hormone therapy, which may have similar
survival outcomes. However, the right therapy co-depends on patient preferences,
since side effects can affect cosmetics, sexual functioning, neuropathy, and overall
quality of life after survival. Only when well informed can patients participate in
a shared decision-making process with their doctor to discuss treatment options
and preferences [71, 80]. Decision aids assist patients in taking a role in shared
decision-making by providing relevant treatment options; explaining risks, benefits,
and outcomes for each option; exploring patient’s values and goals in life to elicit
relevant preference; and reaching a joint decision.

Even though many decision aids have been developed already, their usefulness
arguably falls short due to their generic nature, being population-based and focusing
exclusively on long-term survival, but above all lacking personalized explanations
of health risks and benefits. A key question in the development of decision aids is
how to present patient-specific information on risks and uncertainties in treatments
in such a way that they can be appreciated and understood by the patient. The use
of accessible language [32] and the combination of textual and visual explanations
(multimodality) [22, 77] have been proposed for better risk communication. Data-
to-text allows decision aids to be automatically made, specific to the patient case
at hand by generating text (possibly in combination with suitable visuals) that is
tailored to the individual patient.

PIGLIT was an early forerunner of a personalized decision aid. It dynamically
generated hypertext pages explaining treatments to patient with cancer using the
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patient’s medical record as the basis for personalization. In a trial, patients preferred
the personalized information over general information [6]. In the same period,
similar systems were created for migraine patients and diabetes patients.

3.4.2 Psychosocial Plan

Living with a chronic disease such as heart or lung failure comes along with
coping with psychosocial problems as well. Patients who wake up every morning
knowing that they are sick will get sicker in due course and never get well again.
In addition, the disease limits them in everyday physical abilities, enlarges their
dependency upon family members, and prescribes a strict medicalized way of living.
Psychosocial factors play a major role in engaging patients in their treatment with
respect to motivation, therapy adherence, and lifestyle regimen [89]. Therefore,
patients are assessed on these psychosocial factors before treatment commences to
find ways how to best coach patients to add high quality life to years. Report writing
is an essential step to inform patients and instruct professionals about the coaching
strategy. Data-to-text can take over the tedious role of professionals to write patient
assessment and coaching reports.

3.4.3 Sleep Quality

Sleep apnea is a serious condition that reduces or stops breathing for several tens
of seconds, at least five times per hour overnight. In addition to great fatigue during
the day, it can lead to high blood pressure and even a stroke or a heart attack during
sleep. Sleep apnea requires adjustment of the lifestyle such as smoking cessation
or weight loss. An effective approach is positive airway pressure (PAP) therapy in
which a patient sleeps with a mask or cap on the mouth, nose, or face and with an
air pump device on the bedside table. The pump device provides a small air pressure
to keep the airways open so that the patient can continue to breathe freely during
sleep. The PAP therapy is only effective if the device is actually used. Therapy
adherence is also a prerequisite to receive reimbursement from health insurance.
Unfortunately, many patients struggle with the therapy or even stop the therapy
early due to inconveniences of the mask, the hose, and the pumping device. As
the pumping device collects treatment and usage data, tailored reports and visuals
were produced by human copy writers in a study to inform patients on sleep quality,
device use, and coaching instructions if they encounter difficulties when sleeping
with the device [81]. Such tailored feedback is crucial; from a total of 15,000
patients, patients receiving tailored feedback on their sleep had a therapy adherence
improvement of 22% and slept nearly one and a half hours longer than patients
without such feedback [30]. However, the tedious process of human report writing
can be easily taken over by data-to-text.
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3.5 Data-to-Text for Patient Assistance

Patient assistance refers to providing language tools to persons with communication
disabilities to meet their undeniable needs in communicating with their social
environment and relatives.

3.5.1 Communication Assistive Tools

Persons with severe communication disabilities such as voiceless locked-in patients
already make use of communication assistive tools that support the communication
of practical day-to-day goals and basic human needs such as hunger, thirst,
discomfort, and safety [93]. Some of these systems allow for simple question and
answering pairs with single words or short sentences. But to increase self-esteem of
these persons, social interaction needs to be widened up toward truly engaging inter-
personal communication, starting with telling a personal story of what happened
lately or has been in the news. However, producing a single sentence is extremely
time consuming and exhaustive for this patient group which results in these patients
being seldom engaged in social interaction. Data-to-text can generate personal
narratives based on sensor data of the still present limb or eye movements or the
latest record of a person’s activities. For children with complex communication
needs, a first data-to-text system named “How was school today?” exists and is
in an evaluation stage. It produces personal kid stories from sensor data, photos, and
video to support interactive narratives about personal everyday experiences [83].

4 Evaluation of Data-to-Text in Healthcare

Evaluation of data-to-text systems has become a central methodological concern
in NLG research [10, 23]. As a first fundamental methodological distinction,
evaluations can be considered intrinsic or extrinsic. An intrinsic evaluation of a
text assesses the linguistic quality or the correctness of the text, decoupled from the
end user purpose of the data-to-text system. An extrinsic evaluation, on the other
hand, assesses to what extent a data-to-text system is well-equipped to support the
intended end user purpose (e.g., does it help in making a decision?).

Intrinsic evaluation can be done by asking human judges to rate text qualities
such as fluency (e.g., “Does the text read naturally?”), comprehensibility (e.g., “Does
the text have clarity?”), or correctness/fidelity (e.g., “Does the text convey what
it should convey regarding the input data?”) while reading the texts. An intrinsic
evaluation can take various forms: judges can be asked to indicate their preference
among different alternatives (e.g., both system-generated texts and human written
ones), or by rating texts with or without a human-authored reference. Another
method of intrinsic evaluation relies on comparing the automatically generated text
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with human-authored texts using objective word-based metrics to assess the level
of “humanlikeness” of the text. Precision and recall-related metrics such as BLEU
(bilingual evaluation understudy) [50], METEOR (Metric for Evaluation of Trans-
lation with Explicit ORdering) [45], and ROUGE (Recall-Oriented Understudy for
Gisting Evaluation) [49] can be used for this purpose. These metrics originate
from, for example, machine translation (MT), and their application to NLG is not
uncontroversial.

With respect to extrinsic evaluation in the healthcare domain, we are concerned
with the efficacy of data-to-text in being supportive to a particular end user task in a
clinical workflow. In an evaluative setting, participants (i.e., prospective end users)
are asked to accomplish these tasks either in a controlled experimental setting or on-
site. A possibility in a controlled experiment is to have variants of generated texts
or human-authored reference texts randomly assigned to participants, before con-
ducting the tasks. Efficacy then relies on an objective measure of task performance
or achievement to indicate which text leads to better performance. The extrinsic
studies of the BabyTalk systems are pioneering examples of experimental and on-
site evaluation of data-to-text in a clinical setting [36, 61]. In case data-to-text acts as
an interventional device to better health outcome, a randomized clinical trial (RCT)
is considered a “gold standard” to demonstrate its efficacy. STOP was evaluated
in a RCT to assess its effect on smoking cessation [48] and is still one of the few
data-to-text systems evaluated in this way.

The breadth of intrinsic and extrinsic evaluation methods is more extensive than
can be discussed here (see elsewhere for a more complete overview [23]). In fact,
finding out what the best way is to evaluate a data-to-text system, and especially
finding out how different intrinsic and extrinsic measures relate to each other, is an
important research challenge.

5 Research Challenges

In this section, we touch on some research challenges (in addition to evaluation)
for data-to-text health applications: machine and deep learning (Sect. 5.1), use
of multimodality (Sect. 5.2), temporal aspects (Sect. 5.3), and stylistic variation
(Sect. 5.4). More insights on general future directions in data-to-text can be found
elsewhere [23].

5.1 Machine and Deep Learning

Traditionally, data-to-text systems often relied on hand-crafted rules [23, 67].
With more available data and computing power, data-driven approaches to text
generation have become popular using machine learning and deep learning [12, 23,
26, 27]. There is an interesting trade-off between these two approaches: rule-based
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approaches can generate output of a very high quality (essentially indistinguishable
from human-authored texts), but they are difficult to create and maintain and do not
scale up well. Data-driven approaches, on the other hand, are more efficient and scal-
able, but the output quality may be compromised, due to the reliance of statistical
information [7, 27, 41, 42]. As a result, there is at the moment no guarantee that texts
generated by the latter approach are always grammatically correct, accurate, and
easy to read. As a result, an important research question is how data-to-text systems
can combine the strengths of the approaches, and none of the weaknesses. One
promising line of future research involves hybrid approaches, which use statistical,
data-driven approaches in limited, well-defined subtasks of data-to-text.

5.2 Use of Multimodality

Multimodality refers to the combination of text and visuals in a single document,
such as a radiology report in which findings expressed in text are embellished by
cross-referencing to the medical images concerned. The integration of visuals in text
and document presentation are largely overlooked subject areas [62]. While textual
presentation of clinical data is known to improve decision-making, it is also well
established that combining this with appropriate visuals can be even more effective.
For example, one study revealed that the accuracy of decision-making by physicians
is affected by both the type of graphical charts used and the framing of the clinical
data [18]. In that study, icon displays and tables led to superior clinical decision-
making in comparison to pie charts and bar charts. Negatively framed data led
to better decision-making than positively framed data. If text is directly linked to
visuals, it can enhance trustworthiness of the generated text, since the reader is able
to cross-reference what is said in the text with what is visually represented. Key
research questions are how a system can decide automatically which information to
convey in text and which in images and how images, like text, can be automatically
generated in ways that make them easy to understand for readers.

5.3 Temporal Aspects

Textual summaries can extend over various time periods. For instance, a nurse
report can disclose a 12-h nursing shift or a weekly patient review. Temporal
aggregation ensures that information can be textually presented at various levels of
detail, given the time period over which reporting needs to take place. Besides the
linguistic component, aggregation also involves abstraction over the input data, for
example, by creating a summarized description of physiological sensor time-series
data. Examples of the latter are “heart rate decreasing ending into bradycardia”
or “saturation within target range for last hour.” Clearly, the number of potential
reports that can be generated for different levels of aggregation over data quickly
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increases. Various researchers have addressed the problem of aggregation in data-
to-text [2, 82], but it remains understudied and general solutions are lacking [23].

5.4 Stylistic Variation

Besides generating text from input data with high fidelity, data-to-text has focused
over the past 10 years on the “stylistic variation” of the produced texts [23].
Varying in style allows the system to tailor the text to the reading audience or the
communicative intent while being provided with the same input data. For instance,
the BabyTalk project was able to generate clinical summaries on newborns admitted
in the NICU in formal, professional language to medical staff, in its BT45 and BT-
Nurse system, but also to produce text in informal, affective language for parents,
in its BT-Family system. The challenge in “stylistic variation” is first of all being
able to operationalize the term “style” in the actual use of words and grammar for a
particular style. Second, varying in style implies that the data-to-text pipeline should
be able to adapt (or learn to adapt) to produce the desired stylistic effect. A key
challenge in data-to-text is developing systems that can indeed adapt their output
to the intended audience and communicative intent, at all stages of the generation
process.

In general, it seems fair to say that data-to-text techniques are eminently suitable
to automatically deal with variation, in ways which would not be feasible for human
authors. This also generalizes to, for example, multilingual generation, where the
same data is expressed in different languages. This is an emerging theme within
NLG, witness, for example, the recent multilingual surface (linguistic) realization
task [57].

6 Conclusion

Data is increasingly important for many areas of healthcare, ranging from clinical
diagnosis and decision support to patient empowerment and behavior change. Text
(possibly in combination with visuals) is the most preferred way of making data
accessible, but this currently has a stumbling downside: healthcare professionals
need to write these texts, which keeps them away from providing direct patient care.
In many cases, however, these texts are part of a routine administration and follow a
clear, well-defined structure, which raises the question whether the writing of texts
cannot be automated. In this chapter, we have argued that data-to-text algorithms
can indeed be used for this.

Data-to-text systems are capable of automatically converting input data into
coherent natural language texts, using insight from computational linguistics and
artificial intelligence. They can do this quickly, in large volumes and tailored toward
individual readers. The quality of generated texts is high, at least on a par with texts
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produced by healthcare professionals working under time pressure and increasing
workload.

In this chapter, we have introduced the core tasks addressed by data-to-text
system and seen how they can be combined to form end-to-end systems converting
input data into fluent output text. Moreover, we have surveyed a wide range of
applications of these techniques in the health and healthcare domain, including both
existing and potential future use cases.

In recent years, data-to-text technologies have matured considerably, and are now
commercially viable for the first time, in a range of application domains, including
finance, weather, and media. The immense increase in available data and computing
power and recent insights in data science and artificial intelligence have opened up
exciting new opportunities for data-to-text in many areas of healthcare.
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Clinical Natural Language Processing
with Deep Learning

Sadid A. Hasan and Oladimeji Farri

1 Introduction

Over the ages, humans continuously use written and spoken language as a means
of expressing and communicating our conceptualization of abstract and real-life
scenarios of varying complexity. Documented narratives are viewed as essential
sources of knowledge that can be transferred and synthesized to retrieve pertinent
insights for decision-making across all domains of expertise. The explosive growth
and access to unstructured data in the digital universe since the birth of the
Internet have helped establish natural language processing (NLP) as one of the
most important technologies needed to address complex and knowledge-dependent
tasks such as automated search, machine translation, automated question answering,
and opinion mining. In particular, the emergence of electronic health record (EHR)
systems since the 1960s has incrementally resulted in large volumes of clinical
free text documents available across healthcare networks, with the huge amount of
data inspiring research and development focused on novel clinical NLP solutions to
optimize clinical care and improve patient outcomes across the care continuum [1].

In recent years, deep learning techniques have demonstrated superior perfor-
mance over traditional machine learning (ML) techniques for various general-
domain NLP tasks, e.g., language modeling, parts-of-speech (POS) tagging, named
entity recognition, paraphrase identification, and sentiment analysis. Clinical docu-
ments generally pose unique challenges compared to general-domain text due to
the widespread use of acronyms and nonstandard clinical jargons by healthcare
providers, inconsistent document structure and organization, and requirement for
rigorous de-identification and anonymization to ensure patient data privacy. Ulti-
mately, overcoming these challenges could foster more research and innovation
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for various useful clinical applications including clinical decision support, patient
cohort identification, patient engagement support, population health management,
pharmacovigilance, personalized medicine, and clinical text summarization.

This tutorial chapter is an overview of how deep learning techniques can be
applied to solve NLP tasks, followed by a literature survey of existing deep learning
algorithms applied to clinical NLP problems, and, finally, a detailed description of
various deep learning-driven clinical NLP applications developed at the artificial
intelligence lab in Philips Research in recent years—such as diagnostic inferencing
from unstructured clinical narratives, relevant biomedical article retrieval based on
clinical case scenarios, clinical paraphrase generation, adverse drug event (ADE)
detection from social media, and medical image caption generation.

2 Deep Learning for NLP

NLP is a field intersecting computer science, artificial intelligence, and linguistics
where the goal is to process and understand human language to perform useful
tasks (e.g., automated question answering, language translation). NLP is generally
considered to be an AI-complete problem due to various complexities involved in
representing, learning, and using linguistic, situational, world, or visual knowledge.
Given an input text, NLP typically involves processing at various levels such as
tokenization, morphological analysis, syntactic analysis, semantic analysis, and
discourse processing.

Deep learning is a type of machine learning technique that utilizes multi-
layered (hence the term deep) neural network architectures to learn hierarchical
representations of data. Traditional machine learning approaches require labor-
intensive feature engineering for data representation [2]. By contrast, deep learning
approaches can automatically learn multiple levels of representations with increas-
ing order of abstractions [3]. Figure 1 shows an example of deep neural network
architecture. The recent surge in deep learning can be credited to the following:
the availability of a large amount of unlabeled data as well as faster computing
resources with powerful graphics processing units (GPUs), development of new
algorithms and frameworks, and easier adaptations/transformations of learned
features/representations from data to a related or a new domain of interest (transfer
learning).

Deep learning typically works well to solve nonlinear classification problems
with naturally occurring hierarchical inputs such as language and images. In recent
years, nonlinear neural network models applied to NLP techniques have achieved
promising results over approaches that use linear models such as support vector
machines (SVMs) or logistic regression [4].

In this section, we will introduce how deep learning techniques can be applied
to solve NLP problems in general. First, we will provide a brief description of
how input representations are generated for NLP applications. Then, we will focus
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Fig. 1 A deep neural network architecture

on two deep learning architectures that are widely used by the NLP research
community: convolutional neural networks (CNNs) and recurrent neural networks
(RNNs). Finally, we will describe memory networks and deep reinforcement
learning to facilitate the understanding of clinical NLP applications discussed in
Sect. 3.2.

2.1 Input Representation

Natural language inputs are typically represented as features such as words, named
entities, and parts-of-speech tags. Bag-of-words (BOW) modeling or one-hot vector
encoding techniques can be used to represent the meaning of the words in a
given text. In BOW modeling, the presence or absence of a word in a sentence
compared to the underlying corpus can be used to create a fixed-length vector
representation. Alternatively, term frequency-inverse document frequency (TF-IDF)
scoring can be used to create vector representations of input text. In one-hot vector
encoding, each word can be represented as a vector of size n, where n stands
for the dimensionality of the vector denoting the number of words present in the
corpus/vocabulary. For example, if there are ten words in the vocabulary, each word
can be represented as a ten-dimensional vector with one specific position set to 1 and
the rest to 0. The main limitations of BOW and one-hot encoding approaches include
inconsideration of word orders, dependency of dimensionality on the vocabulary
size, and, consequently, sparsity [4, 5].

Distributional similarity-based representations can be used to alleviate some of
the aforementioned limitations by forming a window-based co-occurrence matrix1

1This matrix can be constructed based on simple frequency count of co-occurring words in a fixed
window size across all possible combinations of the words in a corpus. The matrix can be plotted in
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for an underlying corpus. However, there still remain dimension size- and sparsity-
related issues, which can be alleviated further by reducing the dimensions via
techniques such as singular value decomposition (SVD) [6]. But, SVD involves
higher computational cost with difficulty to include new words/documents into the
considered corpus. A solution to this is to directly learn low-dimensional word
vectors from the corpus. Instead of computing co-occurrence counts, the main idea
here is to either predict surrounding words in a certain window of each word (skip-
gram model) or predict each word given the surrounding words (continuous BOW
or CBOW model) to represent words in terms of vectors (Word2Vec) [7]. A feed-
forward neural network architecture can be used to learn the vector representations
from a corpus by minimizing a loss function such as hierarchical softmax, cross-
entropy, negative sampling, etc. using an optimization technique such as stochastic
gradient descent (SGD) [8].

Deep learning for NLP applications mainly rely on learning high-dimensional
vector representations of character-level n-grams, words, phrases, sentences, or
documents and their relationships (called embeddings) using deep neural network
architectures [5, 9]. The trained language model transforms semantically similar
textual units into similar vector representations [8, 10]. The main advantage of such
architecture over the traditional bag-of-words model is its ability to capture the
embedded ordering and semantics by learning fixed-length vector representations
for variable-length text structures (via neural network architectures like RNNs),
thereby allowing the training of generative models for complex NLP tasks such
as machine translation and dialogue generation.

2.2 Convolutional Neural Networks (CNNs)

CNN is a multilayer neural network that uses a special kind of linear mathematical
operation called convolution instead of general matrix multiplication in at least
one of its layers. CNNs automatically learn the values of the filters (a.k.a. kernels)
from the input data based on an underlying task. Each filter essentially encodes a
local view of lower-level features into a higher-level representation via operating
a sliding window function to the input. Typically, a CNN is composed of three
layers/stages: convolution, detection (nonlinear activation), and pooling—to portray
two important aspects: location invariance (considers the presence of a feature as
important, not the specific location) and local compositionality (encodes lower-level
features into higher-level representations as they are passed to higher layers) [3]. The
convolution layer applies several convolutions parallelly to generate corresponding
linear activations, and then, the detector layer applies a nonlinear activation function
to each linear activation. The pooling layer computes the maximum value (max

a multidimensional space to essentially group the words with similar co-occurrence values together
denoting their semantic and syntactic relationships.
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Fig. 2 A simple CNN architecture

pooling) or the average value (average pooling) of a subset of outputs from the
underlying layers in order to provide it as input to the higher layers. Stacks of
convolutional and pooling layers can be added on top of a pooling layer to construct
a deep convolutional neural network. Figure 2 shows a simple CNN architecture.
W1,W2, . . . ,W6 are the weights of the model, and shared weights are shown with
the same color. Note that convolution and detection are plotted together in the figure
using rectified linear unit (ReLU) symbols in the convolution layer nodes.

In the NLP domain, CNNs are generally shown to be effective in solving classifi-
cation tasks [11] such as sentiment analysis, spam detection, or topic categorization
because they work similar to the BOW principles (i.e. location invariance being
similar to the lack of consideration of word order). Multiple filters/kernels can be
applied to learn various features from the input data. Each filter can essentially
transform a set of words in a certain window of size k to a d-dimensional (each
dimension is also known as a channel) vector representation that embeds key aspects
of the words in consideration [12]. Different filters can focus on certain words
inside variable window sizes to capture different features from the corpus. For
example, in a sentiment analysis task, a filter can detect a negation feature, e.g., “not
amazing” from the sentence “the product is not amazing.” However, since CNNs
do not capture the global information from the sentence due to location invariance
and local compositionality properties, they are not able to distinguish the difference
between “not amazing” and “amazing not (so much).” Hyperparameters of a CNN
model include number of filters, convolution type (narrow vs. wide), stride size,2

and number of channels.
Let xi(t) be the input vector (which can be pre-trained on a large unlabeled

dataset or can simply be initialized as one-hot encodings) for the i-th word wi(t)

of input sentence s, W be the corresponding weight matrix called kernel/filter, b be
the bias vector, and σ be the component-wise nonlinear activation function; then a
computational unit of the convolutional layer associated with the i-th word can be
formulated as follows:

σ(W · xi(t) + b) (1)

2Stride size denotes the amount by which a filter is shifted across the input data.
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W and b are the parameters of the model that are learned through training on
a labeled dataset and can be shared across all neurons of the same layer. The
rectifier, σ(x) = max(0, x), can be used as the nonlinear activation function
(other nonlinear activation functions include hyperbolic tangent or tanh(x)), max
pooling for computing higher-layer abstractions, and stochastic gradient descent for
optimization where the objective is to minimize the square loss or cross-entropy loss
with respect to the labeled training set. Finally, the output layer of the network may
use a linear classifier that exploits the learned features to predict the label for any
classification task [11, 13, 14].

In contrast to RNNs (discussed in the next subsection) that maintain a hidden
state to encode the previous sequence of the input data, CNNs do not rely on the
past steps to allow parallel processing of input elements for faster computations.
Thereby, CNNs are recently shown to achieve state-of-the-art results in sequence-to-
sequence learning tasks, e.g., neural machine translation, at a faster speed compared
to RNN-based models [15, 16].

2.3 Recurrent Neural Networks (RNNs)

RNNs generally work well for modeling sequences. Hence, they are used to solve
various NLP tasks due to their ability to deal with variable-length input and output
[17]. The RNN network architecture is similar to the standard feed-forward neural
network with the exception that hidden unit activation at a particular time t is
dependent on that of time t − 1.

Figure 3 shows an unrolled RNN architecture, where xt , yt , and ht are the input,
output, and hidden state at time step t , and W,U , and V are the parameters of the
model corresponding to input, hidden, and output layer weights (shared across all
time steps).

The hidden state ht is essentially the memory of the network as it can capture
necessary information about an input sequence by exploiting the previous hidden
state ht−1 and the current input xt as follows:

ht = f (Wxt + Uht−1), (2)

Fig. 3 Generic recurrent
neural network architecture
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where f is an element-wise nonlinear activation function. The output yt is computed
similarly as a function of the memory at time t: V ht . Although RNN is theoretically
a powerful model to encode sequential information, in practice it often suffers from
the vanishing/exploding gradient problems while learning long-range dependencies
[18]. Long short-term memory (LSTM) networks [19] and gated recurrent units
(GRU) [20] are known to be successful remedies to these problems.

A LSTM unit basically computes the hidden state ht using a different approach
than the generic RNN framework by introducing a gating mechanism. The main
idea is to control how much information to keep from the old memory and the most
recent information. Formally, LSTM computes ht using the following equations:

it = σ(Wixt + Uiht−1)

ft = σ(Wf xt + Uf ht−1)

ot = σ(Woxt + Uoht−1)

gt = tanh(Wgxt + Ught−1)

ct = ct−1 � ft + gt � it

ht = tanh(ct ) � ot (3)

where it , ft , and ot are the input, forget, and output gates, gt is the candidate
hidden state, σ(.) and tanh(.) are the element-wise sigmoid and hyperbolic tangent
functions, and � denotes element-wise multiplication. Note that all three gates and
the candidate hidden state are computed in a similar fashion as Eq. (2) with different
weight parameters. ct is the internal memory state that is essentially computed based
on the previous memory state at time t − 1 and the new input information at time
t . Finally, ht is calculated by combining the memory with the output gate, which
determines how much of the internal state information needs to be passed along to
the higher layers of the network.

GRU is a simplified version of LSTM with less number of parameters per unit,
and thus, the total number of parameters can be greatly reduced for a large neural
network [20]. In contrast to LSTM, GRU does not have an internal memory state and
the output gate; rather it introduces two gates termed update and reset to accomplish
the same goal. In fact, GRU computes the hidden state ht in a slightly alternative
fashion as follows:

zt = σ(Wzxt + Uzht−1)

rt = σ(Wrxt + Urht−1)

kt = tanh(Wkxt + Uk(rt � ht−1))

ht = (1 − zt ) � kt + zt � ht−1 (4)
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where zt and rt are the update gate and the reset gate and kt is the candidate hidden
state. Note that zt and rt are computed similarly as LSTM (using different weight
parameters) where zt determines how much of the old memory to keep, while rt
denotes how much new information is needed to be combined with the old memory.
Finally, kt is computed by exploiting rt , and ht is calculated to denote the amount
of information needed to be transmitted to the following layers.

2.4 Memory Networks (MemNNs)

MemNNs are a class of models that contain an external memory and a controller
to read from and write to the memory [21, 22]. MemNNs read a given input
source and a knowledge source several times (hops) while updating an internal
memory state. The memory state is the representation of relevant information from a
knowledge source optimized to solve a given task. In particular, a MemNN stores all
information (e.g., knowledge base, background context) into the external memory,
assigns a relevance probability to each memory slot using content-based addressing
schemes, and reads contents from each memory slot by taking their weighted
sum. MemNNs are generally harder to train than traditional networks as they need
supervision at every layer and they do not scale easily to a large memory. End-to-
end memory networks [21] and key-value memory networks (KV-MemNNs) [23]
can alleviate these issues by training multiple hops over memory (allowing for less
supervision) and compartmentalizing memory slots into hashes.

The basic structure of a MemNN involves learning memory representations
from a given knowledge base. Memory is typically organized as t number of
slots, m1, . . . ,mt . For a given input text x1, . . . , xn, an external knowledge base
represented as key-value pairs (k1, v1), (k2, v2), . . . , (km, vm), and the ground truth
outputs y, a model F can be learned as the following:

F (xn, (km, vm)) = ŷ → y (5)

where the function F has the following parts I (input memory representation), G
(generalization), O (output memory representation), and R (response) which are the
standard components of MemNNs [22].

2.5 Deep Reinforcement Learning

Reinforcement learning is a machine learning technique that considers an agent
to learn to take actions in an environment such that it can achieve the maximum
possible reward in the future. The environment can be modeled as a Markov decision
process (MDP) that includes a set of states, a set of actions, a transition function to
model the probability to move from one state to the other after taking an action,
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and a reward function that assigns a reward to the agent after its transition to a new
state. In a state s, the agent takes an action a to get to the next state, s′ = s + a. A
reward function r(s, a) can be used to estimate the reward at each state s after taking
an action a. A reinforcement learning problem can be formulated by estimating a
state-action value function Q(s, a), which determines the optimal action a to take
in a state s using the Q-learning technique [24]. In order to learn the Q-value, the
iterative updates are derived from the Bellman equation [25]:

Qi+1(s, a) = E[r + γ max
a′ Qi(s

′, a′)|s, a], (6)

where γ is a discount factor for the future rewards and the expectation is over the
whole training process. It is impractical to maintain the Q-values for all possible
state-action pairs. Hence, the Q-function can be approximated using a deep Q-
network (DQN) architecture [26] that uses a deep neural network (hence called
deep reinforcement learning) to obviate the need of explicitly designing the state
and action space. The DQN architecture approximates the Q-value function and
predicts Q(s, a) for all possible actions.

3 Clinical NLP with Deep Learning

In this section, we will focus on the application of deep learning techniques for
clinical NLP problems. First, in Sect. 3.1 we will discuss the most notable recent
clinical NLP applications developed by the research community that leverage deep
learning. Then, in Sect. 3.2 we will describe some deep learning-driven clinical NLP
applications developed at the AI lab in Philips Research.

3.1 Literature Survey

CNNs have been successfully applied to a variety of biomedical NLP tasks in
the literature. For example, CNNs are effectively used to build a biomedical
article classification model to identify the hallmarks of cancer associated with
a given article abstract [27], to learn time expression representation for clinical
temporal relation extraction [28], to model the article relevance with respect to the
query for the task of biomedical article retrieval [29], to identify protein-protein
interaction relations from biomedical articles [30], to extract drug-drug interactions
with an attention mechanism [31], to classify radiology free text reports based
on pulmonary embolism findings [32], to classify patient portal messages towards
providing necessary support [33], and to recognize named entities from biomedical
text [34]. CNN-based models are also shown to achieve better performance over
the traditional machine learning classifiers for automated coding of radiology
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reports using the International Classification of Diseases (ICD-10) coding scheme
[35]. Inspired by the aforementioned success of CNNs for various clinical NLP
applications, we proposed a novel semi-supervised CNN architecture (discussed
in Sect. 3.2.4) for automated ADE detection in social media. Unlike conventional
systems [36–41] that typically use lexicon- and traditional machine learning-based
approaches relying on expert annotations to generate large amounts of labeled
data to train supervised machine learning models for ADE detection, our proposed
system can efficiently learn from large volumes of unlabeled data in combination
with a relatively small seed set of labeled ADEs.

Some recent works explore the use of RNN architectures for the task of detecting
clinical events such as disorders, treatments, tests, and adverse drug events from
free text EHR notes [42–44] and for de-identification of patient data in EHRs
[45–47]. Bidirectional RNNs/LSTMs are used to develop models for missing
punctuation prediction in medical reports [48], for the task of biomedical event
trigger identification [49], to model relational and contextual similarities between
the named entities in biomedical articles to understand meaningful insights towards
providing appropriate treatment suggestions [50], to extract clinical concepts from
EHR reports [51], and for named entity recognition from clinical text [52, 53].
A recent work builds a bidirectional LSTM transducer by leveraging knowledge
graph embeddings to detect adverse drug reaction in social media data [54].
RNNs are also used in combination with CNNs to learn disease name recognition
models with word- and character-level embedding features [55]. Motivated by
these prior works, we proposed an attention-based bidirectional RNN architecture
inside an encoder-decoder framework for the task of clinical paraphrase generation
(discussed in Sect. 3.2.3) by casting it as a monolingual neural machine translation
problem. Unlike earlier work on clinical domain-specific paraphrasing that uses
some unsupervised textual similarity measures to generate/extract lexical and
phrasal paraphrases from monolingual parallel and comparable corpora [56, 57], or
adopts a semi-supervised word embedding model for medical synonym extraction
[58], our work was the first to propose a neural network-based architecture that
can model word/character sequences to essentially address all granularities of
paraphrase generation [59] for the clinical domain [60]. Furthermore, we have
leveraged the strengths of deep CNNs and attention-based RNNs in an encoder-
decoder framework to train medical image caption generation models (discussed in
Sect. 3.2.5) that achieved superior results in a benchmark evaluation challenge.

As stated in Sect. 2.4, variants of memory networks provide flexibility to
leverage knowledge sources to effectively accomplish NLP tasks requiring complex
reasoning and inferencing, e.g., question answering. In this regard, we proposed a
novel condensed memory network architecture for the task of clinical diagnostic
inferencing from unstructured clinical text narratives (see Sect. 3.2.1 for details).
Unlike conventional clinical decision support (CDS) systems that leverage LSTM
neural networks trained on time series data for diagnosis classification [61, 62], our
work was the first to propose the use of a novel memory network model trained
on unstructured clinical texts to recommend differential diagnoses. We have also
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utilized key-value memory networks for clinical diagnostic inferencing as a core
component of our biomedical article retrieval system discussed in Sect. 3.2.2.

Existing applications of reinforcement learning for related CDS tasks mainly
focus on modalities like medical imaging [63] or specific domain-dependent use
cases and clinical trials [64–66]. Some prior works demonstrate the utility of
deep reinforcement learning techniques for challenging tasks like playing games
and entity extraction [26, 67, 68]. These works inspired us to propose novel
deep reinforcement learning-based algorithms for clinical diagnosis inference from
unstructured text narratives (discussed in Sect. 3.2.1).

3.2 Applications Developed in Philips Research

3.2.1 Diagnostic Inferencing

Clinicians perform complex cognitive processes to infer the probable diagnosis
after observing several variables such as the patient’s past medical history, current
condition, and various clinical measurements. The cognitive burden of dealing
with complex patient situations could be reduced by having an automated assistant
provide suggestions to physicians of the most probable diagnoses for optimal
clinical decision-making.

We explored the discriminatory capability of the unstructured free text clinical
notes to correctly infer the most probable diagnoses from a complex clinical
scenario [69]. We also explored the use of an external knowledge source like
Wikipedia from which the model can extract relevant information, such as signs
and symptoms for various diseases. Our main goal was to combine such an external
clinical knowledge source with the free text clinical notes and use the learning
capability of memory networks to correctly infer the most probable diagnoses.

For real-world tasks, a large amount of memory is required to achieve state-of-
the-art results. Following the effective use of memory networks in solving question
answering tasks, we introduced condensed memory networks (C-MemNNs), an
approach to efficiently store condensed representations in memory, thereby maxi-
mizing the utility of limited memory slots. We showed that a condensed form of
memory state which contains some information from earlier hops learns efficient
representation. We took inspiration from human memory retention patterns for this
model. Humans can learn new information and yet retain relatively older mem-
ories as abstractions. We formulated the clinical diagnostic inferencing problem
as a supervised multi-label multi-class classification problem using C-MemNNs.
Figure 4 demonstrates the iterative updating process of the condensed memory
state (a, left) and the overall condensed memory network architecture (b, right) for
clinical diagnostic inferencing. Interested readers are referred to [69] for in-depth
details.
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Fig. 4 Condensed memory networks for clinical diagnostic inferencing [69]

MIMIC-III (Medical Information Mart for Intensive Care III) [70], a large
freely available clinical database, was used for our experiments. It contains phys-
iological signals and various measurements captured from patient monitors and
comprehensive clinical data obtained from hospital medical information systems
for over 58K intensive care unit (ICU) patients. We used the noteevents table from
MIMIC-III: v1.3, which contains unstructured free text clinical notes for patients.
Wikipedia pages corresponding to the diagnoses in the MIMIC-III notes are
utilized as our external knowledge source. Empirical results and analyses revealed
that C-MemNN improves the accuracy of clinical diagnostic inferencing over other
classes of memory networks by a considerable margin (up to 23% improvement in
average precision over the top five predictions with higher number of memory hops)
[69].

The efficacy of a supervised machine learning model largely depends on the size
of the annotated datasets used for training. Creation of labeled datasets requires
expert-derived annotations, which are typically very expensive and time-intensive
to obtain. To address the scarcity of large annotated datasets, we also formulated the
diagnostic inferencing problem as a sequential decision-making process using deep
reinforcement learning [71].

Extracting appropriate clinical concepts from free clinical text is a critical first
step for diagnosis inferencing. Existing clinical concept extraction tools are limited
to the original content of the text as they do not consider evidence from external
resources. Hence, clinical concepts extracted by these tools often lack aspects
related to in-domain normalization, which may have a negative impact on the
downstream clinical inferencing task. External (online) health-related resources
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Fig. 5 Clinical diagnostic inferencing via improving clinical concept extraction with deep rein-
forcement learning [71]

can serve as the evidence to improve the original extracted concepts using one of
the following ways: mapping of incomplete concepts to corresponding expressive
concepts, e.g., personality → personality changes; paraphrasing the concepts,
e.g., poor memory → memory loss; and supplementing with additional concepts.

We proposed a novel clinical diagnosis inferencing approach that uses a deep
reinforcement learning technique via a MDP formulation to incrementally learn
about the most appropriate clinical concepts that best describe the correct diagnosis
by using evidences gathered from relevant external resources (Fig. 5). During
training, the agent tries to learn the optimal policy through iterative search and
consolidation of the most relevant clinical concepts related to the given patient con-
dition. A deep Q-network architecture [26] is trained to optimize a reward function
that measures the accuracy of the candidate diagnoses and clinical concepts. Our
preliminary experiments on the Text REtrieval Conference (TREC) clinical decision
support (CDS) track3 dataset [72] demonstrated the effectiveness of our system over
various non-reinforcement learning-based baselines (up to 104% improvement in
mean reciprocal rank (MRR) scores and up to 56% improvement in average recall
at the top five diagnoses) [71].

Recently, we proposed another novel approach for clinical diagnostic inferencing
that focuses on the clinician’s cognitive process to infer the most probable diagnoses
from clinical narratives. Given a clinical text scenario, physicians typically review
the sentences sequentially, skipping irrelevant parts and focusing on those that
would contribute to the overall understanding of the clinical scenario. While
assimilating the sentences, clinicians generally try to recognize a logical pattern or

3http://www.trec-cds.org/.

http://www.trec-cds.org/
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Fig. 6 Replicating clinician’s cognitive process for clinical diagnostic inferencing using deep
reinforcement learning [73]

clinical progression similar to one or more prior patient encounters towards arriving
at a provisional diagnosis. Ultimately, the intuition of the clinicians is guided by
understanding these sentences, and they can make an overall assessment of the
scenario based on the narrative and/or additional evidence obtained from relevant
external knowledge sources. Our new system replicated this cognitive flow by
using a deep reinforcement learning technique (Fig. 6). During training, the agent
learns the optimal policy to obtain the final diagnoses through iterative search for
candidate diagnoses from external knowledge sources via a sentence-by-sentence
analysis of the inherent clinical context. A deep Q-network architecture [26] was
trained to optimize a reward function that measures the accuracy of the candidate
diagnoses. Our model predicted the differential diagnoses by utilizing the optimum
policy learned to maximize the overall possible reward for an action during training.
Extensive experiments on the TREC CDS track [72, 74] datasets demonstrated the
effectiveness of this novel approach over several non-reinforcement learning-based
systems (up to 100% improvement in terms of F -scores) [73].

We envisage that our recent works on clinical diagnostic inferencing can sup-
port the typically multitasking clinicians in considering some relevant differential
diagnoses that could otherwise be ignored leading to inadvertent diagnostic errors.
Also, relatively less skilled healthcare providers, e.g., nurse practitioners, can use
the proposed system as a source of second opinion before contacting a physician
towards accurately diagnosing and managing their patients.
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3.2.2 Biomedical Article Retrieval

The main objective of the TREC CDS track was to retrieve a ranked list of the
top biomedical articles that can answer generic clinical questions related to three
categories: diagnosis, test, and treatment given a short clinical narrative.

We participated in this challenge [75] and our approach (Fig. 7) centered on
three steps: (1) topical keyword analysis, identifying the most clinically relevant
keywords from the given topic descriptions, summaries, and clinical notes using a
clinical NLP engine [76]; (2) diagnostic inferencing, reasoning based on the topical
keywords to generate the diagnoses, tests, and treatments using the underlying
clinical contexts represented within a key-value memory network, powered by an
external clinical knowledge source; and (3) relevant article retrieval, retrieving and
ranking pertinent biomedical articles based on the topical keywords and clinical
inferences from steps (1) and (2).

We built a novel end-to-end diagnostic inferencing model using key-value
memory networks [23] trained on a large collection of MIMIC-II discharge notes
along with the Wikipedia articles in the clinical medicine category in order to
capture the overall context of a given clinical note towards inferring the most
probable diagnoses. The list of possible diagnoses was then used to extract a list of
candidate Wikipedia articles to mine related tests and treatments (from sections and
subsections of the Wikipedia article) accordingly. As the final step, topical keywords
and the corresponding diagnoses, tests, and treatments obtained from the diagnostic

Fig. 7 System architecture for biomedical article retrieval
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inferencing step were used to retrieve candidate biomedical articles by searching
through the given TREC CDS corpus of over 1.25M PubMed Central4 articles
(indexed using Elasticsearch). Evaluation results showed additional gains with the
use of the key-value memory network-based diagnostic inferencing approach for our
clinical question answering system. In particular, on average our key-value memory
network model with notes as input consistently outperformed the knowledge graph-
based system for notes and descriptions as inputs in terms of infNDCG, R-prec,
and Prec(10) scores. This system can be used to provide clinicians with biomedical
articles containing scientific findings focused on a clinical scenario towards better-
informed clinical decision-making.

3.2.3 Clinical Paraphrase Generation

Clinical paraphrase generation is important in building patient-centric decision
support applications where users are able to understand complex clinical jargons via
easily comprehensible alternative paraphrases. For example, the complex clinical
term “nocturnal enuresis” can be paraphrased as “nocturnal incontinence of urine”
or “bedwetting” to better clarify a well-known condition associated with children.
We proposed Neural Clinical Paraphrase Generation (NCPG), a novel approach
to cast the clinical paraphrase generation task as a monolingual neural machine
translation (NMT) problem. We used an end-to-end neural network in the form
of an attention-based bidirectional RNN architecture within an encoder-decoder
framework (Fig. 8) to perform the task [60].

Extensive experiments on a large curated clinical paraphrase corpus built on a
benchmark parallel paraphrase database, PPDB 2.0 [77], along with a comprehen-
sive medical metathesaurus [78], show that the proposed attention-based NCPG
model can outperform an RNN encoder-decoder based strong baseline for word-
level modeling (up to 27% improvement in BLEU scores), whereas character-level
models can achieve further improvements over their word-level counterparts (up
to 25% improvement in BLEU scores). Table 1 shows a few example paraphrases
generated by the proposed models.

Overall, the models demonstrate comparable performance relative to the state-
of-the-art phrase-based conventional machine translation models (e.g., Moses).
Recently, we further extended this work to go beyond lexical and phrasal para-
phrasing and proposed neural network-based models for sentence-level clinical
paraphrase generation and simplification [79]. We believe that these models can be
used to motivate patient engagement across the care continuum towards achieving
desired outcomes.

4http://www.ncbi.nlm.nih.gov/pmc/.

http://www.ncbi.nlm.nih.gov/pmc/


Clinical Natural Language Processing with Deep Learning 163

Fig. 8 Attention-based
bidirectional RNN
architecture for clinical
paraphrase generation [60]

Table 1 Paraphrase examples [60]

Source: Target:

Contagious diseases Communicable diseases

Model Paraphrase

Baseline (Word) Habitat

Baseline (Char) Contact diseases

NCPG (Word) An infectious disease

NCPG (Char) The diseases

Phrase-based model (Moses) Infectious diseases

Source: Target:

Secondary malignant neoplasm of spleen Secondary malignant deposit to spleen

Model Paraphrase

Baseline (Word) Secondary cancer of spleen

Baseline (Char) Separation of spleen

NCPG (Word) Secondary malignant neoplasm of spleen

NCPG (Char) Secondary malignant neoplasm

Phrase-based model (Moses) Metastatic ca spleen
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3.2.4 Adverse Drug Event (ADE) Detection from Social Media

Adverse drug events (ADEs) refer to negative side effects that may occur as a
result of medication use. Monitoring and detection of such events (also called,
Pharmacovigilance) are necessary to minimize potential health risks of patients by
issuing warnings or recommending possible withdrawals of harmful pharmaceutical
products.

Following pharmaceutical development, drugs are typically approved for use by
the general public after going through clinical trials in limited settings. It is often
impossible to uncover all adverse effects during these clinical trials. To address this
issue, pharmaceutical and regulatory organizations require post-market surveillance
programs to capture previously undiscovered adverse events. Traditional post-
market ADE surveillance systems suffer from underreporting and significant time
delays in data processing, resulting in high incidence of unidentified adverse events
related to medication use.

In the past decade, the rise of social media platforms (e.g., Twitter) has
revolutionized online communication and networking. Due to the high volume and
velocity of messages generated and distributed, social media data has been used for
real-time information retrieval and trends tracking, including digital disease surveil-
lance. Hence, we proposed a semi-supervised CNN-based architecture (Fig. 9) that
automatically detects ADEs as described in social media (e.g., Twitter feeds) [14].

Unlike conventional systems that typically rely on large amounts of labeled data
to train supervised machine learning models, our system can efficiently learn from
large volumes of unlabeled data in combination with a relatively small seed set of
labeled ADEs. Our experimental results showed that the proposed system achieves

Fig. 9 Semi-supervised CNN architecture for ADE detection [14]
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better performance compared to traditional supervised machine learning algorithms
for recommendations of ADEs from real-time social media streams (up to 9.9%
improvement in F1 scores) [14]. The proposed system can be used to augment
official post-market ADE surveillance systems. Readers are referred to [14] for
additional technical details and analyses.

3.2.5 Medical Image Caption Generation

Visual perception and cues remain an important component for efficient under-
standing of natural language. Automatically understanding the content of an image
and describing in natural language is a challenging task which has gained a lot of
attention from computer vision and NLP researchers in recent years through various
challenges for visual recognition and caption generation.

Due to the ever-increasing number of images in the medical domain that are
generated across the clinical diagnostic pipeline, automated understanding of the
image content could especially be beneficial for clinicians to provide useful insights
and reduce their overall cognitive burden during patient care. Motivated by this need
for automated image understanding methods in the healthcare domain, ImageCLEF5

recently organized its inaugural caption prediction and concept detection tasks
[80, 81]. The main objective of the concept detection task was to retrieve the
relevant clinical concepts (e.g., anatomy, finding, diagnosis) that are reflected in
a medical image, whereas in the caption prediction task, participants were supposed
to leverage the clinical concept vocabulary created in the concept detection task
towards generating a coherent caption for each medical image.

We submitted several runs for caption prediction and concept detection tasks
by using an attention-based image caption generation framework (Fig. 10). The
attention mechanism automatically learns to emphasize on salient parts of the
medical image while generating corresponding words in the output for the caption
prediction task and corresponding clinical concepts for the concept detection task.
In particular, motivated by the success of prior works in solving general-domain
image captioning tasks, we used an encoder-decoder-based deep neural network
architecture for the caption prediction task [84], where the encoder uses a deep
CNN [85] to encode a raw medical image to a feature representation, which is in
turn decoded using an attention-based RNN to generate the most relevant caption
for the given image. Figure 11 shows an example caption generated by our proposed
model.

We followed a similar approach to address the concept detection task by treating
it as a text generation problem. Our system was ranked first (with mean BLEU score
of 0.32) in the caption prediction task among submissions with no prior exposure to
the test set, while we showed a decent performance (with mean F1 score of 0.12) in

5http://www.imageclef.org/2017/caption.

http://www.imageclef.org/2017/caption
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Fig. 10 Attention-based image caption generation framework [82, 83]

Ground Truth: CT scan of the abdomen with contrast of Case 2
showing a large, loculated liver abscess measuring 10 cm.

Model: ct scan of the abdomen on the first visit shows an
irregular huge low density mass .

Fig. 11 Example caption generated by our model
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the concept detection task. Interested readers are referred to [82, 83] for additional
details and examples.

4 Conclusion

In this tutorial chapter, we have presented an overview of how deep learning tech-
niques can be applied to solve NLP tasks in general, followed by a literature survey
of existing deep learning algorithms applied to clinical NLP problems, and, finally,
a description of various deep learning-driven clinical NLP applications developed
at the artificial intelligence (AI) lab in Philips Research in recent years—such as
diagnostic inferencing from unstructured clinical narratives, relevant biomedical
article retrieval based on clinical case scenarios, clinical paraphrase generation,
adverse drug event (ADE) detection from social media, and medical image caption
generation. Our proposed models have demonstrated the effectiveness of deep
learning techniques to address various clinical NLP problems as they achieved state-
of-the-art results compared to lexicon-, knowledge source-, and traditional machine
learning-based systems.
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Ontology-Based Knowledge Management
for Comprehensive Geriatric Assessment
and Reminiscence Therapy on Social
Robots

Luigi Asprino, Aldo Gangemi, Andrea Giovanni Nuzzolese,
Valentina Presutti, Diego Reforgiato Recupero, and Alessandro Russo

1 Introduction

Dementia is a progressive and degenerative syndrome that affects the global
cognitive capabilities of an individual, gradually impairing cognition and causing a
deterioration of memory, thinking, language, social behavior, and emotional control.
The World Health Organization estimates that nowadays around 50 million people
are affected by this syndrome worldwide, and this number is expected to triple by
2050.1 Dementia is thus one of the major challenges for global public health, with
psychological and socioeconomical effects that extend to caregivers and family
members [10]. As there is still no definitive cure for dementia, standard phar-
macological therapy is often complemented with non-pharmacological treatments

1http://www.who.int/mediacentre/factsheets/fs362/en/.
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and cognitive rehabilitation therapies that focus on stimulating and maintaining the
functional and mental abilities of people with dementia (PWD).

In this general context, the potential of information and communication tech-
nology (ICT) in dementia care is increasingly investigated [21]. Specifically, in
recent years elderly and dementia care have emerged as the main application fields
for socially assistive robotics [12], given the great potential of social robots in
supporting people with cognitive impairment and their caregivers [4, 16, 19, 26, 28].
As overviewed in [27], existing robotic technologies for elderly care range from pet-
like devices to advanced anthropomorphic mobile robotic assistants. While service
robots often focus on providing physical support and interaction, a socially assistive
robot aims to provide cognitive support through social interaction. Companion
robots thus aim at providing services and assistive functions to improve daily life,
such as interactive media access, event reminding, cognitive training exercises,
mentally stimulating games, and communication facilities to enable connectedness
with caregivers and relatives. Robots able to provide companionship, support, and
assistance through social interaction have the potential to combat the impact of
loneliness by improving mood and quality of life and reduce social isolation by
enabling PWD to maintain social connectedness [8, 29]. However, in order to
perform complex tasks in real environments, socially engage human users, and
provide personalized support to PWD, a companion robot has to acquire and manage
heterogeneous information and data. A fundamental requirement for social robots
is thus the ability to capture knowledge from multiple domains and manage it in a
form that facilitates sharing, reuse, and integration, hence the need and importance
of providing robots with knowledge management frameworks able to handle
knowledge from different sources and support multiple tasks and applications.

In recent years, these challenges are increasingly addressed by exploring the
potential of ontology-based approaches and Semantic Web methods in supporting
robotic applications. Along this path, the H2020 European Project MARIO2 has
investigated the use of autonomous companion robots as cognitive stimulation tools
for people with dementia. The MARIO robot and its capabilities are specifically
designed to provide support to PWD, their caregivers, and related healthcare
professionals. Among its unique capabilities, MARIO can help caregivers in the
patient assessment process by autonomously performing comprehensive geriatric
assessment (CGA) evaluations and is able to deliver reminiscence therapy through
personalized interactive sessions. These capabilities are part of a robotic software
framework for companion robots and are supported by a knowledge representa-
tion and management framework, where ontology-based knowledge representation
techniques and Semantic Web technologies are combined. The overall framework
and the applications presented here have been deployed on Kompaï-2 robots
and evaluated and validated during supervised trials in different dementia care
environments, including a nursing home (Galway, Ireland), community groups

2http://www.mario-project.eu.

http://www.mario-project.eu
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(Stockport, UK), and a geriatric unit in hospital settings (San Giovanni Rotondo,
Italy).

In this work we present the ontology-based knowledge management framework
for companion robots, and we focus on the robotic applications developed on top of
the framework for supporting comprehensive geriatric assessment and reminiscence
therapy. In Sect. 2, we first outline the main challenges and requirements related
to knowledge management on companion robots for people with dementia, and we
provide an introduction to ontologies and Semantic Web principles. An overview
of relevant approaches and ontology-based frameworks for robotic applications is
provided as well. The MARIO knowledge management framework is discussed
in Sect. 3, focusing on the ontology network and the software framework we
designed. We then present the applications for comprehensive geriatric assessment
and reminiscence therapy in Sects. 4 and 5, respectively. Finally, Sect. 6 concludes
the chapter.

2 Knowledge Management on Social Robots

As robot acceptance and the perception of usefulness for both PWD and caregivers
play a fundamental role, different authors have focused on the main requirements
and challenges for social robots targeting elderly people with cognitive impairments,
as discussed, for example, in [7, 13, 18, 20].

2.1 Challenges and Requirements

Key functionalities range from the ability to perceive the environment and
autonomously move and operate to the capability of engaging the user in cognitively
stimulating entertainment activities. In terms of human-robot interaction, dialogue
is considered as one of the most important social interaction abilities for companion
robots, and the ability to communicate using natural language emerges as an
important requirement. Similarly, the need to provide the robot with the ability to
perceive and interpret emotions is recognized, so as to understand the emotional
state of the user and react accordingly. Orthogonally to these capabilities, the ability
to provide a personalized user experience and adapt to user needs is a major success
factor for acceptance of companion robots [9], particularly when designed for
PWD. Robot applications should be customizable to meet individual needs and
preferences and should be able to progressively gather user-specific information
through a knowledge acquisition and learning phase driven by actual interactions.

In a robotic framework, each subsystem and application accesses a variety of
information needed to support its task-specific internal logic and in turn produces
data as part of its processing. Each application can thus exploit knowledge coming
from multiple sources, including other subsystems and applications, and produces
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knowledge that can be used by other components or serve as a basis for data
analytics. As an example, the natural language understanding subsystem in charge of
processing user’s utterances would need access to (1) linguistic resources to build
a syntactic and semantic representation of textual utterances, (2) user-dependent
knowledge for linking language symbols to specific entities, and (3) sentiment-
related knowledge to enrich the interpretation with sentiment data. Language
interpretation results can then be exploited by the robot control subsystem to,
e.g., trigger the appropriate application, or by a running application to select
the next action. These decisional steps can also be influenced by combining
contextual information with user-specific knowledge, such as user preferences,
previous interactions, and other data that collectively define the user profile.

To address the requirement of capturing knowledge from multiple domains and
managing it in a form that facilitates sharing, reuse, and integration, two key
elements are needed: (1) a common conceptualization of the domains of inter-
est, captured and formalized in shared, extensible representational models where
domain concepts and their properties are defined, structured, and linked according to
a reference knowledge representation framework, and (2) a knowledge management
framework, supporting the storage in and retrieval from a common knowledge
base instantiated with knowledge produced according to the reference models.
The need to provide robots with a knowledge representation and management
framework able to handle knowledge from different sources (including external
data sources and knowledge bases) and support multiple tasks and applications
has long been considered in robotics. However, it is only in recent years that the
potential of ontology-based knowledge representation approaches and Semantic
Web technologies has been considered to address the two aforementioned points in
robotic platforms. In the following we first introduce in Sect. 2.2 the main definitions
and background concepts concerning ontologies and Linked Data, and then in
Sect. 2.3, we briefly present notable ontology-based frameworks and initiatives in
the robotic domain.

2.2 Ontologies and Linked Data

Historically ontology, listed as part of metaphysics, is the philosophical study of the
nature of being, becoming, existence or reality, as well as the basic categories of
being and their relations. Ontology deals with questions concerning what entities
exist or can be said to exist, and how such entities can be grouped, related within
a hierarchy, and subdivided according to similarities and differences. While the
term ontology has been rather confined to the philosophical sphere in the recent
past, it has gained a specific role in a variety of fields of computer science, such as
artificial intelligence, computational linguistics, and database theory and Semantic
Web. In computer science the term loses part of its metaphysical background, and,
still keeping a general expectation that the features of the model in an ontology
should closely resemble the real world, it is referred as a formal model consisting
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of a set of types, properties, and relationship types aimed at modeling objects in a
certain domain or in the world. In the early 1990s, Gruber [17] gave an initial and
widely accepted definition:

An ontology is a formal, explicit specification of a shared conceptualization. An ontology
is a description (like a formal specification of a program) of the concepts and relationships
that can formally exist for an agent or a community of agents.

Accordingly, ontologies are used to encode a description of some world (actual,
possible, counterfactual, impossible, desired, etc.), for some specific purpose. In the
Web of Data, aka the Semantic Web, ontologies have been used as a formalism
to define the logical backbone of the Web itself. The language used for designing
ontologies in the Web of Data is the Web Ontology Language (OWL) [31]. In
the last decade, there has been a lot of research for investigating best practices
for ontology design and reuse in the Web of Data. Among others, the EU-FP7
NeOn project3 has provided sound principles and guidelines for designing complex
knowledge networks called ontology networks. An ontology network is a set of
interconnected ontologies. According to [1], the interconnections can be defined
in a variety of ways, such as alignments, modularization based on owl:imports
axioms,4 and versioning. Ontology networks enable modular ontology design in
which each module conceptualizes a specific domain and can be designed by using
ontology design patterns [14] and pattern-based ontology design methodologies,
such as eXtreme Design [5]. This particular notion of ontologies and their evolving
trend toward networked, modular, and interconnected structures has encouraged us
to use them as the key technology for dealing with knowledge in MARIO.

While (networked) ontologies define the logical backbone of the Web, the Linked
Data principles define how data should be published and connected on the Web of
Data. Those principles behind are as simple as using HTTP URIs for identifying
things, responding to standard lookups (e.g., SPARQL or URI dereferencing) with
standard formats (e.g., RDF), and curating cross-links between things. Linked Data
provide a formalism to have data organized in MARIO as a knowledge graph. This
knowledge graph is modeled by using concepts and relations defined in a pertinent
ontology network, as detailed in Sect. 3.

2.3 Knowledge Management Frameworks for Robotics

Ontologies and Semantic Web technologies can support the development of robotic
systems and applications that deal with knowledge representation, acquisition, and
reasoning. Furthermore, Semantic Web standards enable the interlinking of local
robotic knowledge with available information and resources coming from the Web

3http://www.neon-project.org/.
4An ontology can import other ontologies in order to gain access to their entities, expressions, and
axioms.

http://www.neon-project.org/
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of Data. This trend has also led to the creation of the IEEE RAS Ontologies for
Robotics and Automation Working Group (ORA WG), with the goal of developing
a core ontology and an associated methodology for knowledge representation and
reasoning in robotics and automation [33].

In this direction, different frameworks have been proposed to model, manage,
and make available heterogeneous knowledge for robotic systems and applications.
Focusing on service robots that operate in indoor environments through perception,
planning, and action, the ontology-based unified robot knowledge framework
(OUR-K) [24] aims at supporting robot intelligence and inference methods by
integrating low-level perceptual and behavioral data with high-level knowledge
concerning objects, semantic maps, tasks, and contexts. An ontology-based
approach is also adopted in the ORO knowledge management platform [23]. The
platform stores and processes knowledge represented according to the OpenRobots
Common Sense Ontology,5 an OWL ontology based on the OpenCyc upper
ontology and extended with the definition of reference concepts for human-robot
interaction. When deployed on a robot, the knowledge base can be instantiated
with a priori commonsense knowledge and is then used as a “semantic blackboard”
where the robotic modules (such as the perception module, the language processing
module, the task planner, and the execution controller) can store the knowledge they
produce and query it back.

Along the same path, research projects and initiatives, such as KnowRob,6

RoboEarth,7 and RoboBrain,8 go beyond local knowledge bases and, also with the
emergence of cloud-based robotics, propose Web-scale approaches. KnowRob [37]
is a knowledge processing system and semantic framework for integrating infor-
mation from different sources, including encyclopedic knowledge, commonsense
knowledge, robot capabilities, task descriptions, environment models, and object
descriptions. Knowledge is represented and formally modeled according to a
reference upper ontology, defined using the Web Ontology Language (OWL).
The system supports different reasoning capabilities and provides interfaces for
accessing and querying the KnowRob ontology and knowledge base. Similarly,
the RoboEarth framework [38] provides a Web-based knowledge base for robots
to access and share semantic representations of actions, object models, and envi-
ronments, augmented with rule-based learning and reasoning capabilities. The
RoboEarth knowledge base relies on a reference ontology, as an extension of
the KnowRob ontology to (1) represent actions and relate them in a temporal
hierarchy, (2) describe object models to support recognition and articulation, and
(3) represent map-based environments. An HTTP-based API enables robots to
access the knowledge base for uploading, searching, and downloading information
from and to their local knowledge bases. Along the same path, the RoboBrain

5https://www.openrobots.org/wiki/oro-ontology.
6http://knowrob.org/.
7http://roboearth.ethz.ch/.
8http://robobrain.me/.

https://www.openrobots.org/wiki/oro-ontology
http://knowrob.org/
http://roboearth.ethz.ch/
http://robobrain.me/


Ontology-Based Knowledge Management for Social Robots 179

knowledge engine [35] aims at learning and sharing knowledge gathered from
different sources and existing knowledge bases, including linguistic resources, such
as WordNet; image databases, such as ImageNet; and Wikipedia. Although the
RoboBrain knowledge base does not explicitly adopt ontologies and Semantic Web
technologies, knowledge is represented in a graph structure and stored in a graph
database. A REST API enables robots to access RoboBrain as-a-service, to provide,
and retrieve knowledge on the basis of a specific query language.

3 The MARIO Knowledge Management Framework

At the heart of the MARIO robotic platform, a knowledge management framework
provides MARIO abilities with a reference ontology and common knowledge base
able to cover all relevant knowledge areas, as well as with mechanisms to interact
with such a knowledge base for organizing, accessing, and storing knowledge.
The framework consists of (1) the MARIO Ontology Network (MON), a set of
interconnected and modularized ontologies covering different knowledge areas and
defining reference models for representing and structuring the knowledge processed
by the robot, and (2) a knowledge management system that manages the shared
knowledge base and provides high-level access to the MON and knowledge base.

3.1 The MARIO Ontology Network

The MARIO Ontology Network has been designed following best design practices
and a pattern-based ontology engineering approach, aimed at extensively reusing
ontology design patterns (ODPs) [14] for modeling ontologies. The design method-
ology that we followed is based on an extension of eXtreme Design [5], an agile
design methodology for ontology engineering. Such an extension mainly focuses
on providing ontology engineers with clear strategies for ontology reuse [34].

In line with the eXtreme Design methodology, the core knowledge areas were
identified by analyzing the reference use cases outlined together with domain
experts, including professional caregivers from different pilot sites. These uses cases
mainly describe actions and behaviors that the robot should perform or select while
interacting with the user under different circumstances. At the same time, they
include detailed descriptions of the nature of the knowledge that the robot should
deal with in order to perform and select actions and behaviors. The process of
highlighting the knowledge domains was enabled by the identification from the use
cases of a set of competency questions, commonly identified as the requirements that
an ontology has to address. By iteratively generalizing the knowledge domains, we
then identified a set of top-level knowledge areas as a basis for the ontology network.
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As shown in Fig. 1, the MON was designed as a networked ontology9 composed
of interlinked modules that cover the different knowledge areas relevant to MARIO
in order to make it a cognitive agent able to support people with dementia. With
respect to the guidelines defined in [34], the strategy we adopted for the development
of the MON is the indirect reuse of ontology design patterns and alignments. Under
this approach, ODPs are used as templates. At the same time, the ontology guaran-
tees interoperability by keeping the appropriate alignments with the external ODPs
and provides extensions that satisfy domain-specific requirements. With this type of
reuse, the potential impact of possible changes in the external ontology modules
is minimized. Currently, the MON covers 12 knowledge areas and includes 40
modules for representing different knowledge domains, such as lexical knowledge
(e.g., natural language lexica and linguistic frames), user- and application-specific
knowledge (e.g., user profiles, life events, and multimedia content), environmental
knowledge (e.g., physical locations and maps), and metadata knowledge (e.g., entity
tagging).

3.2 The Knowledge Management System

The MON introduced in Sect. 3.1 serves as a basis for organizing in a knowledge
base (KB) the knowledge consumed and produced by the applications implementing
robot’s abilities. These applications, which can be plugged into the platform by
means of the REST architectural style, interact with the MON and KB. To this end,
a knowledge management system, whose layered conceptual architecture is shown
in Fig. 2, provides mechanisms for creating and storing knowledge and for querying
and reasoning over the shared knowledge base. These capabilities are abstracted
and made available through a set of software interfaces for programmatic, language-
independent access.

As shown in Fig. 2, while knowledge is concretely expressed by using RDF and
managed in a triple store that serves as physical storage, the knowledge management
system relies on an Object-RDF mapper called Lizard,10 responsible for enabling
transparent access to the ontology network and knowledge base by generating a
middleware API for client applications. An Object-RDF mapper is a system that
exposes the RDF triple sets as sets of resources and seamlessly integrates them
into the object-oriented paradigm. However, differently from existing systems, such
as SuRF11 or ActiveRDF12 [30], Lizard provides a RESTful layer that enables
the access to the knowledge base over HTTP. Basically, Lizard dynamically and

9As denoted by the arrows, each module can import other modules; the root of the MON and the
ontology part of the network are available at http://www.ontologydesignpatterns.org/ont/mario/.
10Available at https://github.com/anuzzolese/lizard.
11https://pythonhosted.org/SuRF/.
12https://github.com/ActiveRDF/ActiveRDF.

http://www.ontologydesignpatterns.org/ont/mario/
https://github.com/anuzzolese/lizard
https://pythonhosted.org/SuRF/
https://github.com/ActiveRDF/ActiveRDF
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Fig. 2 Layered model and
components of the knowledge
management system

automatically generates Java and HTTP REST APIs from the ontology network
specification. Those APIs reflect the semantics of the MON, but client applications
(i.e., any component of the MARIO robotic framework) can access the knowledge
base without any prior knowledge of the ontologies used within the system. For
example, this avoids client applications to directly deal with OWL and RDF or
to interact with the knowledge base by means of SPARQL queries. Additionally,
Lizard embeds an Access Control Management System (ACMS) that enables the
setup of specific access policies in order to restrict access to specific knowledge
areas (either in read or write mode) only to a set of allowed entities/systems.
For example, an application that performs some entertainment activity (e.g., an
interactive music player) would not be allowed to access knowledge about user’s
clinical status. Hence, the ACMS allows Lizard to deal with some important data
management aspects regarding data access, security, and privacy. As part of the
knowledge management system, reasoning services are made available through
Lizard as well. The reasoner relies on the Apache Jena Inference engine13 and
provides reasoning capabilities for knowledge consistency checking, classification,
and enrichment, to infer new knowledge by using the axiomatizations defined in the
MON and the knowledge stored in the knowledge base.

Personalization and Knowledge Acquisition Enabling the robot to provide per-
sonalized support and interactions requires to instantiate the knowledge base with
user-specific knowledge, exploited by the applications to adapt to user needs and
preferences. To this end, the platform provides a caregiver interface, as a Web-
based graphical user interface that supports caregivers and family members in the
process of building a user-specific knowledge graph, centered around user’s profile,
family/social relationships, and life events. The tool also enables the provision and
tagging of multimedia objects (such as music files and photos) and the configuration
and personalizations of the available applications. Through the interface, the
caregiver can set up the comprehensive geriatric assessment sessions and access

13https://jena.apache.org/documentation/inference/.

https://jena.apache.org/documentation/inference/
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generated health reports and scores resulting from the assessments, as detailed in
Sect. 4. The tool is responsible for storing the gathered data in the knowledge base,
by exploiting the interfaces provided by the knowledge management system.

This user-specific knowledge that has to be explicitly provided is complemented
with general purpose background knowledge that supports robot’s abilities, such
as linguistic resources managed in the local knowledge base, like the multilingual
Paraphrase Database (see Sect. 4), or accessed by linking to external resources like
the Framester hub [15].

4 The Comprehensive Geriatric Assessment Application

The comprehensive geriatric assessment (CGA) is a diagnostic process that aims
at collecting and analyzing data in order to determine the medical, psychosocial,
functional, and environmental status of elderly patients, with the goal of improving
the diagnostic plan and supporting physicians in the definition of personalized plans
for treatment and long-term care.

The Assessment Process A multidimensional assessment phase is at the heart of
the CGA process and represents a critical, time-consuming activity for caregivers.
To gather information about the patient, physicians rely on a set of widely accepted,
internationally validated formal assessment tools and standardized rating scales
designed to evaluate patient’s functional abilities, physical and mental health, and
cognitive status. As part of the assessment tools and procedures, the patient is
required to answer questions defined in standardized clinical questionnaires14 (e.g.,
about his/her daily life and ability to autonomously perform specific activities).
Depending on the answers, a score is given to the patient and evaluated according
to a reference rating scale. The assessment enables the evaluation of a Multidimen-
sional Prognostic Index (MPI), a prognostic tool that combines the scores resulting
from the questionnaires to derive a single score able to synthetically represent
patient’s health status and define the severity grade of mortality risk in elderly
subjects [32].

A CGA is typically carried out every 6 months, and, on average, a questionnaire-
based evaluation requires between 20 and 30 min per patient to be completed. As
most of the total time available to the formal caregiver is consumed to collect
information from the patient, the evaluation and definition of a personalized care
plan is often performed under time pressure, in particular in the setting of an
ambulatory geriatric care unit. Nowadays health professionals increasingly use
ICT supporting tools and devices, such as computers and tablets, during the

14A standard CGA includes eight assessment tools and scales: cohabitation status, medication
use, activities of daily living (ADL), instrumental activities of daily living (IADL), short portable
mental status questionnaire (SPMSQ), Exton-Smith Scale (ESS), Cumulative Illness Rating Scale
(CIRS), and Mini Nutritional Assessment (MNA).
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Fig. 3 Architectural model of the CGA and reminiscence applications

multidimensional assessment phase for recording test results and calculating the
corresponding scores. However, it has been observed that these devices and the need
to interact with them to input information can represent a “communication barrier”
between the caregiver and the patient during clinical interviews [11]. The lack of
visual contact with the caregiver can further increase stress and anxiety in frail
elderly patients undergoing a cognitive evaluation whose results may potentially
impact on their autonomy.

The introduction of a robotic solution able to autonomously perform parts of a
CGA is expected to reduce the direct involvement of health professionals in the
time-consuming data collection tasks, as well as the perceived tiredness resulting
from the performance of repetitive tests. This will enable them to concentrate their
efforts on the interpretation of the results and the elaboration of personalized care
plans. In the long term, the objective is to enable a continuous monitoring of
patient’s conditions (e.g., by increasing the frequency of CGA sessions), with an
opportunity to early detect relevant changes in the health status. In this direction,
the ASSESSTRONIC project15 and the CLARC framework [2] are investigating
robotic solutions for supporting the CGA process.

MARIO’s CGA application, whose components are shown in Fig. 3, aims at
enabling the robot to autonomously perform and manage the execution of the
questionnaire-based tests required in the CGA process,16 in order to assist the formal
caregivers and physicians in the multidimensional assessment phase and facilitate
the evaluation of the Multidimensional Prognostic Index. The CGA application is

15http://echord.eu/essential_grid/assesstronic/.
16The described solution manages, in English and Italian, eight assessment questionnaires as
defined in http://www.operapadrepio.it/contenuti/ricerca/pdf/TEST_MPI_en.pdf.

http://echord.eu/essential_grid/assesstronic/
http://www.operapadrepio.it/contenuti/ricerca/pdf/TEST_MPI_en.pdf
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Fig. 4 Graphical representation of the comprehensive geriatric assessment (CGA) ontology

thus designed to undertake a dialogue-based interaction with the patient, by posing
the defined questions and interpreting patient’s answers to assign the corresponding
scores. Moreover, by recording patient’s answers and calculated test scores, the
application can generate health reports for the care staff, to allow them to access,
analyze, and review test results.

Knowledge Base Support The CGA application relies on the CGA ontology
module17 defined as part of the MARIO Ontology Network introduced in Sect. 3.1.
While some ontologies have been proposed with high-level concepts for represent-
ing medical assessments and processes [3, 6], these models are not able to directly
represent the results of CGA executions. The CGA ontology we defined, whose
graphical representation is shown in Fig. 4, follows their approach and specializes
the high-level concepts where needed. The CGA ontology provides a high-level
conceptual model shared by all the tests included in the CGA process. Specific
ontology sub-modules, imported by the CGA ontology, were designed to capture
the peculiarities and requirements of the different tests that compose a CGA.

On the one hand, the CGA ontology supports the execution of the assessment pro-
cess by providing a reference model for storing test information, including questions
and their multilingual formulation, expected answers, and corresponding scores. On
the other hand, it allows storing and recording the data resulting from the assessment
sessions, including the answers provided by the patient, test results, and calculated
scores. As in [3], a patient assessment (i.e., cga:GeriatricAssessment) is an
action having as participant a healthrole:Patient and, as it specializes the class
action:Action, an action:Agent who makes the assessment. The agent can be
either a healthrole:Physician or another kind of agent (e.g., the MARIO robot).
To represent the description of how the assessment is to be executed, we rely on the

17http://www.ontologydesignpatterns.org/ont/mario/cga.owl.

http://www.ontologydesignpatterns.org/ont/mario/cga.owl
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Task Execution ontology design pattern. The action cga:GeriatricAssessment

executes a cga:ClinicalTest which provides a “description” of how the assess-
ment has to be executed. A cga:ClinicalTest can be composed of other clinical
tests or some cga:Question. Furthermore, the CGA ontology allows representing
information about the answers (i.e., cga:Answer) provided by a patient to specific
questions. The designed sub-modules specialize the CGA ontology on the basis
of the specific requirements of the tests, e.g., the CGA ontology defines the class
cga:GeriatricAssessment and the sub-modules representing the activities of
daily living (ADL) and instrumental activities of daily living (IADL) questionnaires
specialize this class with ca:CapabilityAssessment.

CGA Sessions In the CGA application (Fig. 3), the Session and State Manager
manages the overall execution and status of CGA sessions, coordinating the
scheduling and performance of the configured tests. It operates on the basis of user
profiles and configuration settings defined by the formal caregiver and available in
the knowledge base. To access the knowledge base, the CGA module exploits the
functionalities and API provided by the knowledge management system introduced
in Sect. 3.2. As CGA tests are typically performed during a clinical encounter (e.g.,
when the patient is admitted to or discharged from the geriatric unit), a CGA session
can be initiated by the caregiver either through the provided graphical interface or
by vocally interacting with the robot.

When the application is activated, the Session and State Manager initiates
and monitors the sequential execution of the specific tests to be performed.
Specifically, the Questionnaire-Based Test Executor is in charge of the execution
of questionnaire-driven tests and is thus responsible for engaging the patient in a
dialogue-based interaction, with the aim of gathering information that enables the
calculation of assessment scores and prognostic indexes. The dialogue flow is driven
by the robot and unfolds on the basis of a continuous question-answer interaction
pattern. To this end, the component relies on the speech-based communication
capabilities provided by the MARIO framework and operates on the basis of scripted
representations of the different questionnaires that are part of the CGA. Dialogue
management is driven by the questionnaire structure, which acts as a blueprint for
the question-answer interactions and provides the ordering and sequencing of the
assessment questions. For a specific test, the corresponding questionnaire script is
derived from its description and representation retrieved from the knowledge base.

Basically, the application gradually presents spoken questions to the patient and
gathers her vocal responses to be interpreted. Each question formulated by the app
and uttered by the robot is contextually shown on the touchscreen. Depending on
the question type (open-ended or closed-ended question), possible answers may be
shown on the screen as well. This enables the patient to provide her answers by
directly speaking to the robot or by interacting with the graphical interface. The
application relies on natural language understanding capabilities for interpreting
patient’s utterances representing answers to the evaluation questions. A proper
interpretation of provided answers ultimately results in the assignment of a score to
each answer. The Answers Understander takes as input the textual representation
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of patient’s utterances, as provided by the speech-to-text subsystem. The actual
interpretation strategy directly depends on the question and corresponding answer
type.

In the case of YES-NO questions (e.g., Do you need any help to wash or bathe
yourself?), which cover most of the items in the CGA questionnaires, patient’s
answers are matched against regular expression patterns that aim at capturing both
positive and negative answers. The patterns were built by exploiting existing lin-
guistic resources, in particular the Paraphrase Database (PPDB),18 an automatically
extracted multilingual database of paraphrases. PPDB has been reengineered in
RDF and included as part of the knowledge base, according to the reference PPDB
ontology19 we defined. In the case of Wh-questions, which cover most of the items
in the Short Portable Mental Status Questionnaire (e.g., What is the date today?
When were you born? Who is the current Pope?), the understanding process maps
to the task of comparing patient’s answers with known properties of named entities,
such as persons (including the patient herself, her parents, and well-known present
and historical individuals) and dates. These properties can be directly retrieved or
derived by querying the knowledge base (e.g., by accessing patient’s profile to get
her birthday or her mother’s maiden name) and then compared with the provided
answer. The matching process relies on specialized understanding capabilities that
restrict the recognition and interpretation to specific domains, such as locations
and numbers, used, for example, when the user is asked to perform basic math
calculations as part of the SPMSQ questionnaire.

Finally, theMPI Calculator is responsible for calculating the overall Multidimen-
sional Prognostic Index, taking into account the scores and rating scales resulting
from the execution of the assessment tests.

5 The Reminiscence Application

Reminiscence therapy is based on verbal interactions that focus on recalling positive
memories about people, past activities, experiences, and personal events, often with
the support of materials such as photos that act as memory triggers. Reminiscence
therapy thus targets and aims at stimulating long-term autobiographical memory,
which is relatively unaffected by the disease. Reported effects range from increased
socialization and self-esteem to improvements in cognition and mood, with a
general positive impact on quality of life [25, 39].

As discussed in [22, 36], existing systems for supporting reminiscence aim
at improving traditional practice and basically consist of software applications,
deployed on desktop/laptop computers or tablets, that act as personalized multi-
media systems for the storage and retrieval of digital reminiscence materials. Our

18http://paraphrase.org/.
19http://w3id.org/ppdb/ontology/ppdb.owl.
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approach focuses on robot-enabled delivery of so-called simple reminiscence [25],
based on a conversational approach and highly focused verbal and visual memory
triggers. The application, whose components are shown in Fig. 3, is thus specifically
designed to actively prompt the PWD and engage her in interactive and personalized
reminiscence sessions, where dialogue-based interactions are complemented with
multimedia content associated with relevant people, places, and life events.

Knowledge Base Support Supporting reminiscence requires the availability of
user-specific factual knowledge, gathered in the form of a life history from family
members and caregivers. In order to represent, structure, store, and make available
this heterogeneous information, specific ontology modules were defined as part of
the MARIO Ontology Network. The ontology modules supporting reminiscence
cover three main knowledge areas, i.e., personal sphere, life events, and multimedia
content. They address the need of representing persons and their basic biographic
information, family and social relationships among them, life events, and multime-
dia objects along with their association with persons, places, and life events.

While biographic information covers basic data (e.g., first/last name, birth date,
and hometown), family and social relationships enable the definition of a social
graph for the PWD. User profiles can be further enriched with the definition of
life events on the basis of a generalized representational schema, which includes
the primary properties of a life event and relies on the time-indexed situation
ontology design pattern. In addition to a title and a textual description, a life event
is characterized by (1) a temporal dimension, to allow representing events that
occurred in a specific date (e.g., a marriage) or over a period of time (e.g., attendance
to college); (2) a set of participants, to express the participation of potentially
multiple persons in the event; (3) a location where the event took place; and (4)
a set of multimedia objects (photos, videos, etc.) associated with the event. Starting
from this generic representational structure, the need to specialize life events to
cover specific domains led us to narrow down the scope of the modeling approach
and adopt a frame-based representational structure. Specific life events and their
properties are modeled as frames, to cover typical domains including work and
education (e.g., school attendance and working experiences), personal and family
events (such as a marriage and the birth of a child), and living and travel experiences.
A frame provides a schema for conceptualizing the description of an event type and
its participants in terms of frame elements or semantic roles [15]. For example, a
marriage involves two persons participating as partners and takes place in a specific
location and date. Similarly, a birth event includes an offspring (the person that was
born) and involves two persons as mother and father, along with the birthplace and
date.

The association between media objects and other entities relies on a semantic
tagging approach, as defined in a tagging ontology module20 designed so that
any object (including frames or even named graphs) can be used to categorize or

20http://www.ontologydesignpatterns.org/ont/mario/tagging.owl.
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describe the entity being tagged. This allows defining, for example, life events and
persons as tags for an image, in addition to simple properties expressing when and
where a photo was taken.

Reminiscence Sessions User-specific knowledge is directly exploited by the appli-
cation for engaging the patient in reminiscence sessions. A reminiscence session
can be triggered as a result of a direct request issued by the user, either through
the GUI provided by the MARIO framework and available on the touchscreen or
via vocal commands, exploiting the multimodal interaction capabilities provided
by the robot. Specifically, a dialogue-based reminiscence session is driven by an
extensible repertoire of interaction patterns, which allow the application to prompt
the user through specific questions and triggers, associated with media objects such
as images that are contextually shown on the touchscreen available onboard the
robot.

An interaction pattern consists of (1) a precondition, with constraints expressed
as queries over the knowledge base, defining under which conditions the prompt
can be instantiated and used; (2) a parametric prompting question to be used for
triggering reminiscence, represented as a partially formulated prompt template
containing variables to be instantiated with data from the knowledge base; and (3) a
set of queries over the knowledge base providing a binding for the variables in the
prompting question. On the basis of these patterns, the main step in the application
logic consists of contextually identifying the applicable patterns, by accessing the
knowledge base to evaluate their preconditions and instantiate the corresponding
prompt. As visual memory triggers are fundamental for reminiscence, the patterns
are always evaluated taking into account the availability of an image that will be
shown to the user while the prompt is uttered by the robot through its text-to-speech
capabilities.

Prompting questions are defined to cover the aforementioned knowledge ele-
ments, including life event types, people, and tagged media objects. As informally
shown in Fig. 5, given a photo with information on where it was taken, and
who appears in the picture, examples of parametric prompting questions that also
exploit family/social relationships include Is that your {familyRelationship}

Fig. 5 Example of prompting questions formulation from user-specific knowledge graph
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{personName} in the photo with you? or That’s you {patientName} in the
photo with your {familyRelationship} {personName}. Where was this taken?.
Similarly, the association between photos and life events can be exploited to
formulate questions about the event. Assuming, for example, that there is a
marriage event where the PWD is one of the partners, prompting questions such
as {patientName}, you got married to {partnerName} in {eventDate}. Where
did you get married? can be formulated.

In these examples, prompting questions take the form of targeted questions that
assume a specific, known answer, from a simple positive/negative reply to the
identification of specific persons, places, dates, or events. In the case of prompts
formulated as targeted questions, the interaction patterns are extended by defining
the answer type (e.g., a yes/no answer, a person, a date, etc.), the actual expected
answer (by referencing a concrete entity in the knowledge base, such as a specific
person or location), and the utterance templates that are used by the robot depending
on whether user’s reply matches the expected answer or not. These additional
elements are used by the application in the user answer processing step, where
the capabilities of the natural language understanding subsystem are used. Targeted
questions with specific answers constrain the language interpretation domain: the
interpretation maps to the task of named entity recognition and linking with respect
to the knowledge base, to identify mentions of named entities (e.g., a person
or a location) in user’s utterance and check the correspondence with the entity
representing the expected answer. Depending on the outcome of this step, the
robot can reply with a confirmation and encouragement if the answer is correct
or otherwise provide the patient with intermediate hints or the expected answer.

As an approach based on repeated questions can create stress and anxiety and
be inappropriate for people with cognitive impairments, prompting questions can
also be defined as open-ended prompts that aim at stimulating conversation. So,
for example, considering again a picture related to a marriage event, the robot
can use prompts like {patientName}, you got married to {partnerName} in
{eventDate}. Tell me about your wedding day! What was it like?. Similarly, given
a picture of one of the patient’s children, prompts like “{patientName}, this is your
{childRelationship} {childName} in this nice picture. What was {childName}
like as a child?”. When dealing with this type of prompts, the interpretation of
user’s replies adopts a different strategy and relies on sentiment analysis capabilities.
Basically, the application attempts to identify the polarity of user’s utterances, to
recognize whether the visual and verbal prompt is eliciting a positive, neutral, or
negative mood or reaction from the person. The interaction patterns are extended in
this case by defining utterance templates for the different polarities, so that the robot
can, e.g., encourage the user to tell more about the subject if the reaction is positive
or otherwise propose to move to another picture.

The selection of the interaction patterns is thus a dynamic process, driven by
patient’s replies and reactions and by traversing the links in the knowledge graph on
the basis of the dialogue context and history. So, for example, a question about when
a photo was taken can be followed by a question concerning a person that appears
in the picture and then move to a life event where the person participated in, and so
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on, exploiting the properties of and links between the entities in the knowledge
base. Similarly, sentiment data can influence the selection process as well: for
example, a negative reaction to a picture concerning an event or showing a specific
person may lead to avoid subsequent prompts with images about the same event
or with that person. Moreover, sentiment data emerging from the interactions can
be associated with the concerned entities (pictures, people, events, etc.) and stored
in the knowledge base. This knowledge is then used in subsequent reminiscence
sessions so that, for example, photos that generated a positive reaction are favored
in the selection process, whereas those causing negative reactions are less likely to
be reproposed.

6 Conclusions

Social robots can become useful tools in dementia care, improving patients’ daily
life and caregivers’ work practices. We focused on the challenges and possible
solutions for multi-domain knowledge management on companion robots, as a pre-
requisite for the development of applications based on knowledge sharing and reuse.
In the MARIO project, we explored an ontology-based approach and Semantic Web
technologies for knowledge representation and management. This approach and
technologies support innovative applications that enable the robot to autonomously
perform comprehensive geriatric assessment and deliver personalized reminiscence
therapy. Although ongoing trials in different dementia care settings confirm the
validity of the approach, an in-depth analysis of qualitative and quantitative data
collected from patients and caregivers will enable a multidisciplinary evaluation.
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Assistive Robots for the Elderly:
Innovative Tools to Gather Health
Relevant Data

Alessandra Vitanza, Grazia D’Onofrio, Francesco Ricciardi,
Daniele Sancarlo, Antonio Greco, and Francesco Giuliani

1 Introduction

Robotic systems can be thought of as data concentrators. Data can come from
built-in sensors or through connected devices, and, when compared with other
technologies, robotic systems have a clear advantage in terms of facilitating data
acquisition. In fact, it is proven [38] that robots can be designed to be accepted by
users and their affinity to humans can be assessed. As a consequence, they can enter
as data gathering agents in contexts not deeply investigated by researchers so far,
such as the daily life of patients in a domestic or hospital setting. In this sense, they
can be considered facilitator agents for data acquisition.
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Over the last decades, two relevant societal aspects seem to drive an incoming
transformation in this field: (1) the rapid improvement of technologies, especially
in the field of robotics, and (2) the elderly population projections. They are
strictly interconnected since the increased number of elderly people is the result of
better medical assistance, fostered by the availability of innovative treatments and
technological advances. As robotics continues to rapidly evolve, it is a reasonable
assumption to apply its innovative results to elderly care, and, actually, this is a
popular topic in the robotics community [40]. Furthermore, robot technologies for
healthcare [47] are nowadays considered as a fruitful market opportunity, and the
new trend of assistive robotics is becoming one of the most appealing robotic sectors
to invest in.

Recently, the rise of robots in healthcare influences another growing area of
interest in digital transformation, i.e., big data analytics. Indeed robots are ideal
technologies in this context. They can provide a simple way to generate data with the
classical attributes of the big data paradigms [13]. In fact, robots can generate data
in a continuous way, from various sources, producing big volumes of information
quickly generated directly on the spot (big data 5Vs, [28]).

Data generated by robots can be enabling factors to introduce correlation studies
investigating novel possible connections between variables inside (or outside) the
clinical domain and clinically relevant outcomes.

In the first part of the next section, an overview of the influence of robotics in
several social fields is briefly discussed along with its connection with the growth of
assistive robotics in healthcare. Later on, we discuss present evidence in this field
with the possible evolutions and some landmark projects. Eventually, we present
two relevant case studies coming from our experiences with assistive robots in a
hospital setting.

2 State of the Art

2.1 Service Robotics

A robot is a machine usually used to replace humans in performing tasks that
humans prefer not or are unable to do. The term “robot” comes from a Czech word,
robota, which means “forced labor” and made its first appearance to describe an
artificial automaton in a 1920 play named R.U.R. written by the Czech writer Karel
Čapek[9, 34].

Originally designed to substitute humans for repetitive and dangerous tasks,
today the use of robots is spread to many application fields. Indeed, there are robots
to perform tasks which humans cannot perform due to size limitations and very
dangerous or extreme operating environments. High specialization robot-assisted
surgeries and remote inspection of nuclear disaster sites are some examples of such
activities.
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Although military and industrial robotics represent the major traditional applica-
tion field, novel robotic challenges arise in many additional areas, for instance, in
the domestic field, where robots are designed to help people in doing housework, or
in education where robots are mainly used as stimulating and engaging tools.

Nevertheless, from an analysis of the recent robotic applications, it results that
beside substituting or supporting humans, robots can be considered as relevant
agents for automatic data gathering. Indeed, in the last decades, the use of robots
in healthcare has rapidly grown. In this sector, robots can be used for surgical
and social purposes. In the first case, robots allow executing minimally invasive
treatments that were not possible in other ways or improving traditional surgical
techniques in terms of efficiency and patients’ recovery time. In the second case,
there are robots that can assist the patient from a physical and cognitive point of
view (e.g., to improve the symptoms of developmental disorders like autism). Other
robots can also act as robotic assistants and companions, as detailed in the next
section.

2.2 Assistive Robotics for the Elderly

According to a general definition, an assistive robot is a particular type of robotic
device that is able to process information coming from several sensory paths and,
consequently, to help the elderly or people with disabilities to perform some actions.
In line with these assumptions, an assistive robot can be seen as a social mediator,
a tool for telepresence, a remote control device, or more broadly a supplier of
digital services. A brief classification of the robotic systems considered as assistive
technology has to include all devices that compensate for ability loss, performing
tasks to improve the quality of life. As defined in ISO 13482:2014 [25], it is possible
to identify:

• Mobile Servant Robots (MSRs): a subgroup of personal care robots (PCRs) able
to move, interacting with humans, to perform service actions for activities of
everyday life (e.g., cooking, grasping, drug delivery, handling objects, etc.).

• Physical Assistant Robots (PARs): robots which provide walking assistance and
physical support fall into this subgroup, in particular wearable devices such as
exoskeletons, prosthetics, manipulator arms, bionic devices, etc.

• Person Carrier Robots (PCaRs): a subgroup essentially constituted by transfer
devices (e.g., cars, wheelchairs, etc.) useful for mobility support.

2.2.1 From Assistive Robots to Social Robots

The above classification is rather simplistic as robotic technologies are becoming
increasingly a valid support in the daily activities at different, more complex
levels: for cognitive stimulation, against isolation and depression or to enhance
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Table 1 Classification of
assistive robots for the elderly

Assistive robots

Social robots

Rehabilitation robots Service robots Companion robots

Artificial limbs PEARL [43] Paro [50]

Wheelchairs Giraff [56] Aibo [23]

Exoskeletons iCat [41] Huggable [26]

Prosthetics Care-O-bot [37] Kuri [36]

Bionic devices Pepper [52] Jibo [27]

communication [18]. Nowadays, a prominent direction for healthcare technology is
the development of assistive social robots able to interact and communicate with the
user. The main difference between assistive social robots and rehabilitation robots
is that the latter does not exhibit communication skills and they are not perceived as
social entities.

From strictly assistive robots used for physical and technical assistance, nowa-
days an evolution to home companion robots is taking place. These robots, typically
robotic pets or with humanoid or semi-humanoid shape, are going to be validated in
their ability to reduce solitude, isolation, and depression.

More specifically, the literature distinguishes between (1) service robots to
support primary daily activities (e.g., taking a bath, eating, washing) and (2)
companion robots devoted to emotionally improve the health and psychological
well-being of the users [8]. Table 1 attempts to summarize this categorization giving
a list of some examples shown in Fig. 1.

2.2.2 Effectiveness of Assistive Robotics

Recent research activities report enthusiastic reactions from the elderly involved in
several experimentations with assistive robots, especially for their impact in terms
of raising the level of mood, in reducing loneliness and for cognitive stimulation
[24].

Based on these encouraging results, the introduction of robots in healthcare
appears helpful to improve the well-being of the elderly by reducing their depen-
dence and increasing social interactions to overcome feelings of loneliness.

Despite the possible benefits, some ethical concerns associated with the use of
robots for aging persons are growing. Mainly, ethical concerns are associated with
(1) the acceptance process, (2) the potential reduction of human contacts, (3) the
consequent feeling of humanization of robots, (4) loss of control, (5) deception, and
(6) infantilization [51].

The acceptance issues are related to the attitude of the subjects toward new
technologies. The adoption process requires two different steps: to become aware
of the specific technology and the conviction to use it in daily life, perceiving its
usefulness and ease of use.
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Fig. 1 Examples of assistive robots. R1: UPnRIDE wheelchair[58]. R2: LEA Personal Care
System [48]. R3: exoskeleton for human performance augmentation. R4: exoskeleton for reha-
bilitation and walking aid. R5: Levo standing wheelchair [32]. C1: Paro therapeutic robot [50].
C2: Kuri robot [36]. S1: Pepper robot [52]. S2: PEARL Nursebot [43]

Especially for the elderly, the psychological factors affecting accep-
tance/rejection of robots are not entirely clear, whereas the attribution of a mind to
inanimate objects is a well-known element. Some studies [53, 54] have shown how
the perception of robot minds influences the acceptance process. Namely, if the
robot is perceived to have a low ability to do something (a.k.a. agency constraints),
more attitude toward it is shown by the elderly. In particular, Tanibe et al. [54] argue
that the attitude of attributing a mind to a robot is stronger when people are involved
in some activities linked to helping the robot.

Interestingly, some technological limitations could be considered as facilitators
of the acceptance. For example, the difficulty to understand arduous oral expressions
or the awkwardness of motion behaviors in unknown environments could lead
clinical benefits in terms of acceptability or cognitive stimulation, involving the
elderly in the robot’s learning process.

There are some interesting new applications arising from the use of robotic sys-
tems, especially mobile interactive robots, in hospital settings and/or directly in the
homes of elderly persons. Continuous health monitoring is a powerful mechanism to
detect both short-term changes and long-term health trends. Remarkably, up to now,
real-time robotic platforms can predict with high accuracy the risk of falls in order to
send warnings and/or reveal falls and emergency situations [44]. Hence, alerts will
become increasingly automatic, and health monitoring will turn in an interesting
source of multimodal data. Robots can in fact autonomously extract huge volumes
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of different data coming from a variety of sources. They have the advantage of being
present when and where data are generated. Moreover, the exceptional variety of
data collected using multisensors data fusion, in conjunction with semantics-based
tools, will lead the way to the generation of new hypotheses on data correlation
which can, in turn, contribute to important medical breakthroughs.

In this respect, different kinds of personal and sensitive data are acquired
during human-robot interactions, and consequently ensuring privacy and security is
extremely important. Unfortunately, given their current stage of development, robots
may not have the capacity to discriminate information that can be diffused from
data that should not. Ethical approval and data anonymity, backed by legislation
in data protection, are both extremely relevant to ensure that there is no sensitive
data breaching. These risks can be mitigated through the adoption of specific data
management strategies when designing social robots.

2.3 Projects Overview

Among the several projects concerning the use of assistive robots for the care
of older adults, we cite ACCOMPANY[1], HOBBIT[22], ExCITE[17], and
RAMCIP[45]. Remarkable examples of recent research projects on socially assistive
robots are:

Robot-Era [49] The aim of the Robot-Era project was the implementation of a
set of advanced robotic services to improve the quality of life of elderly people.
Particular attention was paid to the demonstration of the general feasibility
and scientific/technical effectiveness as well as the social plausibility and
acceptability of robots by end users. It was a very ambitious European project,
facing fundamental scientific and technological challenges on robotics and taking
into account the elderly user needs and their acceptability as well as the present
legal regulations. The novelty of the project was the use of different commercial
robotic systems in cooperation and operating in several environments. Specifi-
cally, the idea was to have cooperative robots contemporarily acting in indoor and
outdoor environments in domestic and urban contexts. During the project, data
input was obtained considering user requirements, usability, and acceptability for
all the services.

Giraff+ [19] was a European project aimed to develop a system for monitoring
activities using sensor networks both around the home and on the user’s body.
The core of the system was a telepresence robot, named Giraff. Giraff is not an
autonomous robot primarily used to communicate with the elderly and combine
its telepresence capabilities with specific sensors to gather environmental and
physiological data. A special role in the project had the development of services
for the measurement of vital signs, the detection of critical situations together
with the evaluation and inputs from the end users. This has helped to promote
empathetic interactions strictly addressing the needs and abilities of the end
users.
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ENRICHME [16] The aim of this EU project was the development and testing
of technologies to support elderly people with mild cognitive impairment (MCI)
directly in their living environment. The core of the system was an interactive
mobile robot which interacts with the user providing advanced services and
with different levels of intelligence: navigation abilities, cognitive stimulation,
ambient sensing and long-term monitoring, and, finally, social interactions. The
ENRICHME robot is intended as an enhancing tool and not as a human substitute
in social interactions. The idea was to take advantage of the ability of the robot
to engage attention and to exploit the wider connectivity that it allows.
During the project, several observations, interviews, qualitative and quantitative
questionnaires, and video-recorded test sessions were used for analysis purposes.

3 Case Studies

In this section, we introduce two case studies, both stemmed from our recent
research projects. In them, the robots can be considered as key players in assistive
care processes. They were developed specifically for elderly people.

The first case study addresses MARIO (Managing active and healthy Aging with
use of caRing servIce rObots), a EU-funded project [35] which aims to support
patients with dementia, whereas the second case study concerns ACCRA (Agile
Co-Creation for Robots and Aging), a Euro-Japan project [2] developed with the
objective of building a reference co-creation methodology for the development of
robotics solutions for aging.

3.1 Case Study 1: MARIO Project

The MARIO project (Managing active and healthy Aging with use of caRing
servIce rObots) is a European-funded research project, led by a consortium of ten
partners from six different EU countries. The project aims to address and make
progress on the challenging problems of loneliness, isolation, and dementia in older
persons through multifaceted interventions delivered by service robots.

With these objectives in mind, specific technological tools are adopted to develop
the Mario Kompaï companion robot to (1) create real feelings and affections making
it easier for the patient with dementia to accept assistance from a robot, (2) assist
caregivers and physicians in delivering the tests required for the comprehensive
geriatric assessment (CGA) process, and (3) to encourage the development of novel
interaction pathways and interfaces to make MARIO more congenial, useful, and
accepted by end users.
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Fig. 2 Mario Kompaï robot

Up to now, the MARIO project gives one relevant example of a research study
which has evaluated and tested a companion robot developed with and for people
with dementia, over an extended period of time (3 years) and across three different
care contexts in three different countries. One of the main strengths of the project
was precisely the long period of time in which the applications were developed
following a continuous and regular feedback by both insiders and end users, directly
in the real context in which they would eventually be deployed.

3.1.1 MARIO Kompaï

MARIO builds upon the Kompaï 2 robot developed by Robosoft [31]. It is a robot
equipped with a camera, a Kinect, and two LiDAR sensors for indoor navigation,
object detection, and obstacle avoidance. A tablet PC is located on the robot torso
for interaction (Fig. 2).

MARIO’s controller and interface technologies support software easy plug and
play development; moreover, it includes a speech recognition system to interact
with natural voice during daily life. Novel IoT technologies are integrated to deliver
behavioral skills.

3.1.2 MARIO’s APPs

The novelty of the project is the idea to integrate, in a single robotic platform, several
capabilities which are well-known in the literature but tested so far in isolation.
Therefore, MARIO has been designed to support and manage “robotic applications”
which are similar to APPs currently developed for smartphones. The implemented
and assessed APPs developed in the project are listed in Fig. 3, grouped into three
main categories: cognitive stimulation, social interaction, and health assessment.

All applications were designed having in mind the evidence available in the
literature. For example, it has been proven that music has a positive effect on
neuropsychiatric symptoms in patients with dementia (PwD) [12, 14, 33], especially
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Fig. 3 Overview of APPs developed during MARIO project, categorized by functionalities

for reducing anxiety and agitation [12]. Lowering these symptoms improves quality
of life. Thus, MyMusic APP is focused on letting PwD listen to and remember
their favorite songs, whereas with MyNews APP the PwD can keep in touch with
the latest breaking news.

Moreover, a certain number of developed APPs try to promote entertainment
but also to activate a cognitive stimulation process. Indeed, cognitive stimulation is
encouraged by several games (MyGames APP), for example, the “Simon” game.
This is an electronic game on memory skills invented by Baer and Morrison [4].
During the run, a series of tones and lights are shown, and the user is asked to repeat
the series (if the user succeeds, the series becomes progressively longer and more
complex). Entertainment functions are provided by other games such as card games
(as Briscola, Scopa, and Tressette), chess, and ping-pong.

Isolation and loneliness are relevant risks for the health and well-being of
PwDs. Some apps (i.e., MyChat APP, MyFamily&Friends APP) were specifically
developed to keep the PwD in contact with their relatives and friends in order to
reduce isolation and improve their socialization. Additionally, MyReminiscence
APP is aimed to recall forgotten personal past experiences, feelings, self-concepts,
and subconscious memories [57] by displaying pictures of the patient life. This
app was developed according to the reminiscence therapy concepts and may be
able to improve communication skills between caregivers and people with dementia
[20] and enable caregivers to utilize older people’s crystallized intelligence (long-
term memory) to promote their social interaction and positive reflection abilities
[7]. Therefore, people with dementia may gain improved self-identity mobilizing
crystallized intelligence, which slows down the decline in performing the activities
of daily living. The app can display pictures of the user’s past, and, in conjunction,
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MARIO tries to engage a conversation about the specific content shown by the
photo, prompting the user to discuss the event which brings back happy memories.

Finally, the CGA APP is the most important example of an application with
a specific clinical focus hosted in MARIO. In older people, especially those
with multi-morbidity, the comprehensive geriatric assessment (CGA) approach
is recommended and validated worldwide to assess health status and develop
a tailored plan of care. One of the aims of the MARIO project is to develop
an innovative robotic module to perform an automated CGA exploring, through
specific clinically validated question-answer sessions, different health domains. A
health status index is thus obtained, integrating real-time measurements with the
automatic computation of a multidimensional prognostic index [42].

3.1.3 APPs Usage and Data Sources

The MARIO platform aims at becoming a pilot experience to design signifi-
cantly personalized robotic applications while reducing development costs and the
response time to address existing and emerging people needs. From a clinical point
of view, it is an enabler to collect data that can improve medical treatments and care
personalization.

Specifically, data coming from conversations (i.e., patients’ answers) are
extracted by MARIO through a speech-to-text module. Thus, it is possible to
convey the information into an ontology network. Although there is no standard
ontology that can be used as a base for robot semantics in this field, the MARIO
project has developed a specific MARIO Ontology Network (MON), evolved by
integrating ontologies emerging from interactions with humans and onboard and
external sensors [46].

The use of semantic data analytics and personal interaction has tailored the
applications to better connect older persons to their care providers, community, and
own social circle and also to their personal interests.

In particular, the integration of robot semantics with existing structured and
unstructured data leveraged on innovative data integration practices (e.g., W3C
Semantic Web, ontologies, etc.). The knowledge management is entity-centric,
that is, each entity and its relations have a public identity that provides a first
“grounding” to the knowledge used by robots. The networked ontologies are used
for organizing the stored data and support internal processes.

Analysis results revealed how in hospital settings people with dementia inter-
acted with MARIO robot essentially with voice rather than touchscreen, whereas
in both residential care settings and for participants with a high level of dementia,
the touchscreen was the preferred interaction mode. This is due to environmental
noise in speech-to-text subsystem as well as the severe level of patient’s disease.
The difficulty increased even more for people not familiar with technology [15].

The use of such diversified APPs gives the clinical team the opportunity to use
the MON with personal information to connect various aspects of the patient’s status
and recovery activities over time. The CGA APP shall use a dedicated ontology to
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represent the concepts aimed at assessing the clinical, functional, and nutritional
status of the patients. This ontology may store questionnaires, answers, and test
evaluations. The specific ability of the CGA APP is to use this ontology to retrieve
and store data in the shared knowledge base, as deeply described in [3].

Indeed, during the assessment session, the interaction (dialog management) is
driven by the robot through a question-answer schema. The patient’s answers
are provided by a speech-to-text module as textual representation. Thereafter,
regular expression patterns are used to match these sentences in order to capture
positive/negative answers. The patterns were built using the paraphrase database
(PPDB) [39], a well-known linguistic resource.

In light of this ability, a CGA report for any patient CGA interaction can be
produced for the clinicians. Moreover, the CGA data may be integrated with the
external wearable sensor Fitbit in order to integrate physiological data monitor-
ing, thus allowing for more customized analytics. This means that, besides the
advantages in terms of savings in staff time, the APP can potentially improve care
management and personalization. MyReminiscence APP and MyMusic APP are
devoted to smart entertainment. They leverage information about events, people,
places, mood, and others associated with ontology knowledge to generate music
playlists or show context-specific pictures.

In a future perspective, further functions could be implemented, and interesting
reports could be brought out by MARIO apps in order to obtain increasing
amounts of data in user behaviors. For example, MyCalendar APP could report how
many times the patient manifested the need to remember drug assumptions or his
scheduled appointments. In MyReminiscence, MyMusic, and MyNews APPs, correct
replies or number and type of played songs or number of news read by the patient
could produce more insight into his behavior and attitudes. These capabilities could
in the future foster new big data studies in the field of personalized healthcare.

3.1.4 Relevant Results

The final results of the project show how assistive robots are increasingly becoming
important in the social care of people with dementia.

Definitely, the main result of the MARIO project is a clear evidence that people
with dementia are inclined to accept social robots. They got profound enjoyment
interacting with the robot applications and felt valued to be involved in its evolution.
Their interactions with a robot, during the hospitalization time, contributed to
reducing people loneliness providing entertainment. In particular, the majority of
participants (with and without dementia) have shown a positive attitude toward
MARIO. Indeed, some qualitative data reveals the impact of the robot in terms
of distraction and point of interest by increasing social activity and cognitive
engagement. Of note, most participants with dementia were also positive toward
the robot, despite sometimes they refuse to use the MARIO robot; successively
they were happy and prone to engage with it. The quantitative analysis reveals high
levels of expressiveness, fully in line with the previous findings in the literature
[5, 11, 21, 29, 30, 55].
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The MARIO project experimentation, iterative development, and evaluation
involved a total of 107 participants (38 dementia patients, 28 formal carers, 28
informal carers/relatives, 13 managers) and, as far as we know, lasted for a period
of time longer than any previous study of the same type. Its important results can
provide a better dementia skill training to caregivers and operators. In the MARIO
experience, final results bring out how also relatives/caregivers were very positive
and accepting of MARIO robot. They give MARIO the faculty to increase social
participation and engagement for the person with dementia. This confirms the need
for developers to involve end users during the design process, which is the peculiar
aim of the next case study, described below.

Collected data confirm the benefits of the MARIO robot for both patients and
caregivers. Figure 4 summarizes some statistically significant results: a general
improvement of the resilience and quality of life in conjunction with a cognitive
and affective impairment reduction was shown after the use of MARIO. Together
with a good level of acceptability of the MARIO robot, a caregiver burden reduction
occurred. Indeed, during the experimentation period, it was shown that the following
parameters were significantly improved: Resilience aspect (RS-14, p < 0.0001),

Fig. 4 Statistically significant results on the basis of the data collected in the hospital setting.
Description of acronyms: 14-item Resilience Scale (RS-14), Quality of Life in Alzheimer’s
Disease (QoL-AD), Caregiver Burden Inventory (CBI), Mini-Mental State Examination (MMSE),
Neuropsychiatric Inventory (NPI), Cornell Scale for Depression in Dementia (CSDD), Short
Portable Mental Status Questionnaire (SPMSQ), Mini Nutritional Assessment (MNA)
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quality of life (QoL-AD patient, p = 0.04), caregiver burden level (CBI, p =
0.04), cognitive status (MMSE, p = 0.023, SPMSQ, p = 0.04), neuropsychiatric
symptoms (NPI, p < 0.0001), affective status (CSDD, p = 0.01), and nutritional
status (MNA, p = 0.01).

According to these results, an increasing number of healthcare professionals
ascribe to social and assistive robots an essential role in dementia care.

As from a more technical point of view, results have shown that a personalization
of the APPs, based on user preferences through an iterative design process, leads to
better engagement of the users themselves. Particularly, some observations found
that the participants involved during the development process felt valued since they
were actively contributing to the research.

The questionnaires and qualitative interviews have permitted to draw up a list of
the most commonly used applications selected by participants, in order of prefer-
ence: My Music, MyReminiscence and MyGames, MyChat, and MyFamily&Friends
APP. In particular, participants with dementia reported lovely and enjoyable
experiences with MyMusic APP, especially for the positive impact on their mood.
Indeed, the music was familiar as many participants with dementia were observed
dancing, clapping, and singing, since they remembered the words of the songs.
At the same time, relatives in both residential and hospital care setting agreed on
the positive impact of the MyMusic APP. Moreover, in the hospital setting, carers
commented on the benefits of the MyMusic APP in promoting physical activity.

The MyReminiscence APP was one of the widely and most popular applications
across all sites. This is both a reminiscence activity and a reminder of past happy
events. Both in the residential and hospital care settings, many participants with
dementia commented positively about it. The use of this application made them feel
good, and they reported a benefit looking at the memories proposed by MARIO.
Likewise, participants’ relatives appreciated the importance of this application
especially for people with dementia. Of note, some of them described their own
enjoyment in helping to compile the materials for the application. Moreover, they
ascribe to this app a fundamental role in preserving long-term memories, stimulate
the participant with dementia, and induce calm and enjoyment.

Finally, the CGA APP was specifically designed for hospitalized people with
dementia. Thanks to this app, MARIO is able to propose a specific number of
questions in order to lead the assessment. A robot able to autonomously undertake
the assessment process was well-accepted by participants and caregivers. Moreover,
the healthcare professionals recognized MARIO as a potential substitute, allowing
them to focus on other more meaningful patient activities.

In spite of these positive results, it is still difficult to draw categorical conclusions
regarding the impact of the robot: due to the small sample sizes, the lack of a
fully autonomous robot, the constant presence of the researcher, and the constrained
duration of the testing. Additionally, some technical issues arose. Most people with
dementia were able to manipulate the interface, but, when the dementia was severe,
participants failed to interact especially in manipulating the touchscreen. Moreover,
in a noisy setting, MARIO frequently failed in clearly hearing the person with
dementia and vice versa. This was further exacerbated due to local dialects. In this
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context, the engagement with MARIO seemed to work better when interaction was
based on the touchscreen only.

3.2 Case Study 2: ACCRA Project

The objective of the ACCRA project (Agile Co-Creation for Robots and Aging)
is to build a reference co-creation methodology for the development of robotics
solutions for aging, to act as a reference assessment framework to be used in
this field. ACCRA solutions will be designed and developed to be tested in three
different application contexts: walking support, housework, and conversation in
four pilot countries, namely, Italy, France, the Netherlands, and Japan. Application
development will be based on open solutions.

3.3 ACCRA Robots

Two different robotic platforms are involved in the ACCRA project: Astro (for
walking support) and Buddy (for housework and conversation).

Astro Astro [10] is an assistive smart robotic platform dedicated
to mobility and user interaction. It has been designed for
moving within unstructured homes and residential environ-
ments. It is a big robot, solid enough to become a smart
walker. It can identify the location of the user in a domestic
environment and interact with him using natural language,
touchscreen, and visual LED system. On its back, the robot
has an adaptable physical support to help people to stand
up. Along the ACCRA project, the work on Astro robot is
aiming at improving its smart walker capability and to offer
other services.

Buddy Buddy [6] is a small-size robot designed to be used as a
companion at home. It is physically the opposite of Astro
robot, and, thus, it cannot be physically a support for
walking. The SDK development tools are based on open-
source technologies such as Unity3D (typically used for
developing video games) and OpenCV (aimed at real-time
computer vision). Buddy will integrate new applications
and potentially new hardware in order to meet the use case
requirements. The Buddy robot can be connected to the
smart home and Internet environment in order to fulfill its
tasks.
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3.3.1 ACCRA Applications

Firstly, it is important to notice that (as remarked in [11]) the understanding of
stakeholders’ needs plays an essential role in the design of acceptable, usable, and
ready for the market research products. The needs of older citizens are mainly
related to the physiological and physical disorders due to functional decline,
chronic diseases, and consequent physical impairments. Older persons want to stay
independent and actively contribute to their families as they do not want to be
considered as a burden for society. Additionally, the elderly wish to reduce negative
feelings, like vulnerability and insecurity, loneliness, and depressions. Furthermore,
they want to increase their involvement in social activities as their degrading health
status could cause the reduction of social contacts and engagements.

In subjects with chronic diseases, compliance and adherence to therapy are really
important in determining the success of a specific intervention, but many times they
require to take more than seven drugs per day and use different devices making this
process really complex. On the basis of these outcomes, ACCRA will develop three
robotic applications:

(A1) Mobility: application focused on support and coach for walking;
(A2) Daily life: application focusing on help with the housework;
(A3) Socialization: application aimed to engage with users for conversation.

These applications aim at addressing the main needs of the elderly. The mobility
application will be addressed to people presenting reduced mobility with a high risk
of falls or returning home from hospitals after a fall has occurred. The application
will integrate features for physical support for walking as the robot will physically
sustain the patient while walking. Particularly, the primary goal of this application
will be related to the design and the development of the following features: detection
of lack of movement, mobility coaching, and support to maintain independent
mobility. Daily life application will be addressed to people with first signs of loss
of autonomy (pre-dependency) promoting behaviors favorable for aging as well
as mobility, good hydration, social links, medicine reminder, alerts, and diagnosis
management. The last application, socialization, is aimed to engage people in
conversational activities to induce both entertainment and challenging interactions
based on their intellectual curiosity (i.e., preferences and psychological profile)[12].
Additionally, in order to investigate how the cultural background could influence
the personal attitude toward the robotic service, each application will be refined and
tested in different countries.

ACCRA proposed methodology encompasses four main steps, outlined in Fig. 5.
In particular, the last step will investigate the following scientific and economic
aspects: (1) What are the differences between pilots experimenting with the same
robot, and what does that say about (cultural) contextual factors? (2) Is there a
potential market for the robot? (3) What could be the future effects of robots when
used more intensively in care organizations and at home?
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Fig. 5 ACCRA methodology phases

3.3.2 Relevant Data Sources

ACCRA solution is based on the FIWARE cloud platform. The FIWARE platform
is characterized by a simple set of APIs (application programming interfaces) that
ease the use of the platform and the development of smart applications. FIWARE
provides a multitude of FIWARE components (also referred to as enablers) that
can be easily combined to perform more complex tasks. FIWARE enablers cover
a wealth of applications in several domains, including IoT, big data, and cloud
computing. The application uses APIs to grant an access to the platform capabilities.
The capabilities are structured through simple enablers. The applications, APIs, and
platform capabilities can be located at different levels, i.e., cloud and network level
and device and IoT level. For instance, a robotics solution could run entirely at the
robot level, without any issues on networks or cloud accesses. It can as well run as
a distributed solution, with the application running at the network level and making
use of platform capabilities running at the network and robot levels.

3.3.3 Preliminary Results

Preliminary results show how several desires were raised from elderly and formal
and informal caregivers about the application of the technology into their life. Minor
concerns exist about privacy and real efficacy, but globally, a good attitude toward
the use of technologies arises. Indeed, the elderly engaged up to now showed interest
in being actively involved during the development process.

For this reason, starting from the needs analysis, a prioritization of the needs
and robot services of interest was performed, respectively, for the elderly, formal
caregivers, and informal caregivers. In detail, regarding the mobility scenario, the
results revealed essentially rehabilitation needs and personal safety for what concern
the elderly. For caregivers, their needs matched in rehabilitation monitoring and
check-up needs, entirely in line with the patients’ needs. From a robotic point
of view, the desired abilities deal with motion, interaction, manipulation, decision
support, and perception abilities. In daily life scenarios, many needs arose. There
were needs for companionship, communication, safety, entertainment, meal, and
dressing up needs. For socialization support, instead, the common needs were
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categorized essentially into different groups: communication, emotion detection,
and safety.

Starting from the needs analysis, the first co-creation sessions focused the
attention on the participants’ expectations. Hence, even if it was not asked explicitly,
from impressions emerges that the use of robots is considered useful to support
elderly and their caregivers. A large number of requirements and expectations con-
cerned high-level activities in which the elderly would appreciate some assistance
from robots. Mostly, it appears crucial to have a robot that assists in managing
medications and posology, maintaining contacts with family in order to ask for help
in case of emergency. Furthermore, communication or social interactions, playing
games, listening to music, and performing exercises are some of the activities
which people are interested in. Interesting observations arise from the use of
different robotic platforms. Indeed, the co-creation sessions revealed how the elderly
acceptance of robots is strongly influenced by the physical design. Thus, they are
attracted by the aspect of toylike robots (i.e., Buddy robot), whereas sometimes
they are frightened of bigger robots (i.e., Astro robot). Lastly, both older people
and caregivers agreed that an assistive robot shall have a head that makes it more
friendly and less inanimate.

4 Discussion and Future Scenarios

In the last decades, a number of exciting and promising advances have taken place
in the field of robotics. We are going to face a future in which the collection and
analysis of multimodal data, generated by robots from different sources and within
various measurement scenarios, will pave the way to the development of robust and
innovative computational models. The results of these advancements are not only
relevant from a technological point of view but particularly significant in clinical
terms, too. The real challenge will be how to best take advantage of large volumes
of the big data generated by robots or by the interaction between robots and human
subjects.

Following today’s trends, we expect systems in which artificial intelligence and
cognitive computing will play important roles in terms of establishing new forms
of interaction with humans, who will use these technologies in a more natural and
intuitive manner. A key enabler will be the personalization of robotic systems to user
needs through the acquisition of new skills so to build interaction patterns more
compliant with the physical and cognitive world of a specific patient. Eventually,
the progress that these technologies will surely produce in terms of acceptability
and usability will inform the debate on how robotics will better serve society as a
whole.

To achieve these objectives, robots need to be increasingly more robust and
autonomous for long periods of time in unknown dynamic environments. Hence,
the development of robots possessing adequate perceptual and motor capabilities
appears a critical challenge.
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Moreover, many questions to be addressed in the next future deal with privacy,
economic implications, and security. Indeed, nowadays the use of robotics in the
healthcare field has already become widespread, and many services provided by
robots have to manage large volumes of sensitive data. The analysis of security
and privacy risks is growing into a fundamental and mandatory part of robots
design. The main vulnerabilities regarding cybersecurity arise from the need for
robots to have an “always-active” connection to an IT network so that they are
directly exposed to external cyberattacks. In particular, the effect of this kind
of attacks can be very subtle, especially for assistive robots, which could give
incorrect or dangerous instructions to the patient. A robot under attack could allow
unauthorized activities mainly aimed at privacy breach or at producing injuries, and
data compromised by cyberattacks could undermine medical treatments. Indeed,
several attacks can be hypothesized, from the injection of malicious software to
intercept sensitive data (e.g., credentials, physical or mental health, style of life, sex
life data), resulting in privacy violation, to physical harm to the patient. These are the
main challenges that need to be overcome to fully take advantage of the introduction
of these disruptive technologies in healthcare.
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Overview of Data Linkage Methods
for Integrating Separate Health Data
Sources

Ana Kostadinovska, Muhammad Asim, Daniel Pletea, and Steffen Pauws

1 Introduction

Access to high-quality care partially determines the overall health of an individual.
Environmental, socioeconomic, behavioral, and genetic factors are even larger
determinants of health outcomes. Consequently, effectively managing the health
of an individual requires full commitment and coordination of care professionals
inside and outside of hospital walls, including community and social care, payers,
local governments, and wellness and healthcare service providers.

Data is key toward understanding an individual’s health, but unfortunately,
data related to these different health determinants mostly reside in siloed systems
managed by different players in the ecosystem across the health continuum. Usually
these datasets contain information about the same patient. Lastly, governmental
organizations or quangos (“quasi-autonomous nongovernmental organization”) col-
lect census, register, and survey data on health data such as outcomes and utilization,
societal data, and economic data such as population count, income, education,
employment, and religion.

The datasets need to be brought together in order to generate better insights about
the health status of individuals. The process of bringing together those records that
are perceived to belong to the same individual, entity, location, or event is called
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data linkage. Linked and extended datasets from various services across the health
continuum lead to more insights in comparison to a single dataset individually [24].

The data linkage can be performed exactly and faultlessly if at every source
identical uniquely identifiable information is associated with all data elements.
The process is more daunting if such information is not available; identifiers
are used that are not necessarily unique such as patient names and demographic
information. Unfortunately in many practices unique identifiers are missing. To
make the situation more difficult, the available non-unique linking variables very
often contain errors due to coding errors, spelling variations, or transcription
mistakes. These factors threaten the quality of the linked data as records can be
missed or wrong records can be linked, which can result in biased analysis of the
linked data.

This chapter provides a state-of-the-art survey in data linkage technology within
healthcare. It will give a tutorial overview of the various methods in data linkage
including deterministic and probabilistic approaches, a discussion on the challenges
of using data linkage in healthcare and a synthesis of a healthcare use case in which
data linkage is essential.

2 Overview of Data Linkage Methods

Data linkage is a process in which the same entities (individuals, location, and
events) should be identified in record pairs among two or more different datasets.
This section gives an overview (shown in Fig. 1.) of the steps in data linkage.

2.1 Data Delivery

Data delivery is the first required step for linkage. Data can be provided in various
schemes such as simple structured data (e.g., pairs of files) or semistructured

Fig. 1 Data linkage process steps
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data (e.g., a pair of XML documents) [1]. Before data can be delivered, consent
for sharing or processing the data needs to be in place. Data might need to be
anonymized before processing. In addition, different data regulations may apply in
different geographies, and data may not be allowed to leave a specific premise. The
data owner can constrain the processing to a specific computing environment with
strict security access for specific individuals only. The legal and regulatory aspects
of data delivery will be further discussed in Sect. 3.1.

2.2 Data Cleansing and Standardization

The data cleansing and standardization process can be quite labor intensive, so it
is recommended to assess whether the costs of labor are paid off by the benefits
of a cleansed dataset [22]. The process can be broadly divided into six steps: (1)
handle different input file formats, (2) handle unstructured data, (3) handle data
heterogeneity, (3) handle typographical errors, (4) handle missing data, (5) handle
data overlap, and (6) parse identifiers into separate pieces of information [9, 29, 32].
Further explanation of each step is given below.

2.2.1 Handle Different Input File Formats

In practice, input files can arrive in different formats such as csv or xlsx. Especially
when it concerns longitudinal data, data can be stored in a wide or long format. In a
wide format, all data collected over time for each entity (or individual) are in a single
row. In a long format, each row is one time point per entity or individual. Variables
that do not change over time will have the same value in all rows. Sizes of files can
differ substantially. Long formats can grow out of proportions as it stacks redundant
data (i.e., variables that do not change over time). It is recommended to convert
all files to a single standard format allowing to compare and match corresponding
columns containing candidate variables for linkage.

2.2.2 Handle Unstructured Data

When data arrives in an unstructured form such as nursing notes, it first needs
to be made searchable and retrievable. Natural language processing tools are
essential to fit unstructured freeform text into a predefined data record scheme. In
particular, named entity recognition (NER) in text identifies and annotates person
and organization names, geographical locations, events, and expressions of time,
date, and amounts in text that can act as a linking variable value [21, 25].
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Table 1 Data heterogeneity example

First name Last name Date of birth Address Enrollment date and time

Jessica ADAMS 10-8-1985 4257 Bart Ave 25-05-2017 12:05

THERESA Pratt December 4, 1965 West Davison
8100, 48238

12/1/2017 08:05:00

2.2.3 Handle Data Heterogeneity

The coding of linking variables can differ across input files [8]. For instance, they
can differ in their data type (e.g., an age variable can be of type integer or represented
as a string), in their format (e.g., dates can have many different formats as YMD,
DMY, and MDY with various separator signs, digits, and spellings of months).
Variables should comply in representation for matching.

Table 1 is an example of data heterogeneity. The table contains two (synthetically
created) records containing identifiable information of two patients. First and last
names, date of birth, enrollment date and time, and address are variables that differ
in their format, type, case, and content.

2.2.4 Handle Typographical Errors

Input files might contain typographical errors in the linking variables such as
transposed digits and misspellings. Table 2 shows some commonly found variations
that should be taken into account. Variation in spelling in proper names or geo-
graphical locations can be unintended misspellings but also due to transliterations
or transcription from one alphabet (Cyrillic, Chinese, Japanese, Korean, Arabic,
Greek, Hebrew, and Latin) to the other. Transliteration is the use of conversion
rules for each symbol from the source alphabet to a symbol of the target alphabet.
Transcription is the writing down the sound of the name or location in the source
language as accurately as possible in the target language. As an example, Oeladzis-
lau Smjahlikau and Vladislav Smjaglikov refer to one and the same person (a boxer)
from Belarus though the spelling of the person name is obtained via transliteration
and transcription, respectively, from the Cyrillic script. Due to migration, person
names in health data can come from various geographical locations, languages, and
cultures.

Special language technology tools are developed for overcoming variation in
spelling [17, 30], for which Soundex [9, 31] is a commonly used method. Soundex
is a system for coding and indexing family (proper) names by transcription.
Another solution for handling typographical errors can be done by comparing
strings using edit distance techniques to determine the minimum number of
operations (e.g., insertions, deletions, and transpositions) to get from string A to
string B.
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Table 2 Common variations found in selected linkage identifiers [9] FIPS federal information
processing standards, SSA social security administration

Field Type Examples

Names Case John Smith | JOHN SMITH

Nicknames Charles | Chuck

Synonyms William | Bill

Prefixes Dr. John Smith

Suffixes John Smith, II

Digits John Smi9th

Punctuation O’Malley | Smith-Taylor |
Smith, Jr.

Initials JA | J.A. | Jessica Adams

Transposition Jessica Adams | Adams Jessica

Transliteration and
transcription

Oeladzislau Smjahlikau |
Vladislav Smjaglikov

Addresses Abbreviations RD | Road | DR | Drive

Dates Format 01012013 | 01-01-2013 |
01JAN2013

Invalid values Month = 13 | Day = 32 | Birth
year = 2020 | Date =
29FEB2013

Social security number Format 999999999 | 999-99-9999 |
999 99 9999

Geographical location Abbreviations NC | North Carolina

ZIP codes 99999 | 99999-99999

Sex Format Male/Female | M/F | 1/2

2.2.5 Handle Missing Data

Input files might contain a large number of missing values in linking variables or
other variables that can affect the correctness of the data linkage. After investigating
a plausible reason for missing data, imputation is a method to fill in values for the
missing data [12]. Missing data can happen for various reasons. It is recommended
to use imputation only if missing data happen at random (MCAR or MAR). If
missing data is due to an informative reason, data cannot be imputed:

• Missing completely at random (MCAR) is due to administrative errors or
unfortunate incidents during measurement or collection. A missing value is
unrelated to any individual/center characteristics or outcome.

• Missing at random (MAR) is due to patient characteristics, time, place, or
outcome. The probability of a missing value depends on values of other variables.
For instance, a patient is too sick to perform a test, which may result in missing
values for the test at high severity of the disease.

• Missing not at random or informative missing (IM) is due to the value of
the variable itself, the hospital data collection protocol, or the de-identification
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procedure. For instance, a hospital may not order particular blood tests. This
kind of missing is hard to resolve.

Yuan [34] defines several multiple imputation methods depending on the type of
missing data pattern. For monotone missing data patterns (a dataset has monotone
missing pattern when a missing variable Xi implies that all subsequent variables
Xj , when j is greater than i, are as well missing for one individual), either a
parametric regression method or nonparametric one can be used. For an arbitrary
missing data pattern, a Markov chain Monte Carlo (MCMC) method is appropriate.
An overview of the methods, together with their basic concepts and applications,
can be found in [34].

2.2.6 Handle Data Overlap

Input files can contain multiple records that refer to the same entity in the real
world. Also, input files can contain referential overlap. For example, a zip code and
a house number refer to the same home as a full address, so there is full referential
overlap. A zip code and a city name, though referring to different entities, do have
some referential overlap as the geographical area of the ZIP code is contained in
the city referred to by the city name. If these overlaps are not excluded from the
input files, the credit assigned for links on these overlaps is redundant. Referential
overlap in data is helpful in iterative linking methods; in a first pass, an exact match
can be established on ZIP code to be extended on counties when ZIP codes do not
match exactly.

2.2.7 Parse Identifiers into Separate Pieces of Information

Some of the linking variables should be split into multiple parts. This allows the
linkage process to get the most out of all parts of available information. For example,
a street variable can contain street name and street number. Due to typographical
errors, a street or address number can be incorrect, while the street name is without
error. In this case, it is better to split the street variable into two variables: street
name and street address. Another example, personal information, can change over
time, such as a name change after marriage or an address change after a move.
In such cases, linking on the separate parts allows for partial agreement, when
combined with other information, which may provide evidence that the records
being compared refer to the same person.

2.3 Searching Data

Searching entails identifying the pairs of records from two datasets that have a high
probability of matching with each other on the basis of the linking variables. In this
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search, a compromise is sought between the number of record pairs to be evaluated
for matching and the number of true links needed. Evidently, it should exclude the
pairs that do not match from further comparison [31]. Searching can be done by
blocking, sorted-neighborhood method, bigram indexing, and canopy clustering.
We elaborate more on the first two as most prominent searching methods. More
information on the latter ones can be found here [2].

2.3.1 Blocking

Blocking consists of partitioning the two datasets into mutually exclusive subsets
and searching for links matching pairs within these subsets. These subsets are called
blocks. Typically, blocking is based on a blocking variable on which the partitioning
takes place. It limits the number of pairs being evaluated for matching. Without
blocking a Cartesian product of all pairs of records need to be evaluated.

A disadvantage of the blocking is that true links are potentially missed out
as they can end up in different blocks. A common remedy is to keep the block
sizes relatively small and run multiple blocking passes using different blocking
variables [20, 29, 31]. The best blocking variables are those that have an almost
uniform value distribution on records, are error-free, do not miss values, and do not
change over an individual’s lifetime. For example, month of birth is an example
of such a variable that would result in fairly even number of records in each
block [9, 29, 31]. According to Baxter et al. [2], the blocking method trades off
pairs’ completeness with reduction of the record pairs to be compared as the number
of blocks increases. More smaller blocks result in less comparisons but more true
match pairs are missed.

2.3.2 Sorted-NeighborhoodMethod

Sorted-neighborhood method starts with sorting the records of the input files.
Sorting is done using a sorting key made out of one or several existing variables that
have only few records with the same value. Then, comparison of pairs of records is
done on records that fall into a sliding fixed-sized window. If the size of the window
is w records, then every new record entering in that window is compared with the
previous w − 1 records. Hence, the number of comparisons is reduced from n2 to
w*n (where n is the size of the input files). After the comparison, a transitive closure
step is performed; if two records r1 and r2 are found to be similar, and records r2
and r3 are found to be similar, then r1 and r3 are also marked as similar. This allows
for a small window size, hence low time complexity but with an invariant accuracy
of the result [1].

Due to the various possible types of errors in the input files, some records might
be sorted out of the window boundaries from those records with which they should
be compared to. Running this method on a single sorting key (i.e., a single-pass)
usually does not produce the best results. Therefore, a multi-pass approach can be
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used, where a number of sorting keys with small windows sizes are used. The results
from the independent passes are then combined to provide the final set of linking
records [1, 31]. According to Baxter et al. [2], this method avoids the extremes in
performance of blocking, and its behavior changes predictably as the window size
w is increased. With larger windows, pairs’ completeness results improve, but the
number of record pairs to be compared increases.

2.4 Matching/Linking Data

The matching of record pairs can either be done deterministically or probabilis-
tically, dependent on the purpose and research question underpinning the data
linkage, time and effort available, and the quantity and quality of the linking or
identifiable variable available.

In situations in which identifiable variables are not released for inspection
and processing due to privacy concerns, a linkage on encrypted identifiers
may be employed. Identifiers are first encrypted by using cryptographic hash
functions and then shared with researchers for linkage and processing, without
compromising privacy [9]. Manual inspection of encrypted linked results cannot
be done for review. A discussion on encrypted methods can be found in
Sect. 3.1.

2.4.1 Deterministic Algorithm (Single-Pass Strategy)

A deterministic algorithm decides whether a pair of records agrees or disagrees
in a given set of linked or identifiable variables on the basis of an exact match
comparison. The outcome of the comparison is of binary nature, “all-or-nothing” [9]
and can be calculated in one or multiple passes.

A single-pass deterministic algorithm, better known as the “exact deterministic
method” [9], compares all pairs of records (within a block) at once using the
entire set of linking variables. A pair of records is classified as a match if the two
records agree on all variables and are uniquely identified. Note that two records
are uniquely identified if no other record in the input files matches on the same
values of the linking variables. A pair of records is classified as a non-match if the
records disagree on at least one linking variable or if the record pair is not uniquely
identified.

This algorithm is of straightforward use if the input files contain unique
identifiers of high quality without missing values; it has limitations in use for data
containing errors or missing values.
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2.4.2 Iterative Deterministic Algorithm (Multi-Pass Strategy)

A multi-pass strategy consists of records being linked using criteria for different
linking variables in multiple successive passes. Record pairs that do not link in one
pass are forwarded to a next pass. If a record pair meets the criteria in any of the
passes, the pair is classified as a match. Otherwise, it is classified as a non-match.
The method still requires an exact match in any of the passes. It is also known as
“approximate deterministic algorithm” [9].

The iterative deterministic approach can be used when the single-pass method
provides unsatisfactory results or if no single uniquely identifiable and complete
variable in the two input files is available. However, it still requires an exact match
and high-quality linking variables.

2.4.3 Probabilistic Approach

The deterministic approach does not take into account possible erroneous values
of linking variables as it is based on finding an exact match. If linking variables
happen to agree partially due to errors (e.g., misspellings), the record pair is
registered as a non-match. In addition, the deterministic approach also ignores that
linking variables and their values can have differential discriminatory power which
expresses to what extent variables are able to discern records to represent the same
entity (i.e., patient) or different entities. As defined by Blakely and colleagues,
probabilistic linkage is “record linkage of two (or more) files that utilizes the
probabilities of agreement and disagreement between a range of linking variables”
[3]. It is able to assess (1) the discriminatory power of each linking variable and
(2) the likelihood that two records are a true match based on whether they agree or
disagree on the various linking variables [5].

A probabilistic method is a good option, if linking variables are available
but incomplete, fraught with typographical errors, or imperfectly measured, or
when no unique identifiers are available. In these scenarios it can outperform
deterministic methods, albeit with more time and resources required for running
the method.

Calculating and Summing Up Probabilities as Weights

The record pairs identified in the search phase are compared on each linking
variable for producing an agreement pattern for their values [20]. Weights for each
value of the linking variable for every record pair are calculated to measure the
contribution of each linking variable to the probability of making a correct matching
judgment. The weight assigned to each linking variable is considered a likelihood
ratio comparing the proportion of agreements with the proportion of disagreement
for that linking variable. The weight compares two probabilities,m and u, associated
with every linking variable [5, 9].
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The m probability is the likelihood that the values of a linking variable agree
on a pair of records, given that the records refer to the same entity. It is calculated
as 1 minus the error rate of the linking variable. With fewer errors in its values,
the linking variable will be more reliable which is expressed by a larger m
probability [20]. For example, if gender disagrees 10% of the time due to a
typographical error, or due to being misreported, then the m probability for this field
is 1−0.1 = 0.9. The estimates for the m probability can be based on prior knowledge
or experience or through a supervised training procedure with data containing true
links as ground truth data. Estimation is usually done by using the EM (expectation-
maximization) algorithm [29] or the EpiLink algorithm [6].

The u probability is the likelihood that the values of a linking variable agree
on a pair of records, given that the two records refer to different entities. It is a
measure of the likelihood that the values of linking variables of any two records will
agree by chance. The u probability is often estimated by 1/n (where n is the number
of possible values of the linking variable). For instance, the probability that false
matches randomly agree on month of birth (u probability) is 8.3% (1/12).

Using them and u probabilities, we can estimate how closely the linking variables
agree on each record pair being compared. If a record pair agrees on a linking
variable, an agreement weight is calculated by log2(m/u), which is most often a
positive value. When a record pair disagree on an identifier, the disagreement weight
is calculated by log2((1 − m)/(1 − u)), which is most often a negative value.

For each possible record pair, the various agreement and disagreement weights
are summed over all linking variables to produce a composite score referred to as
the total weight score. The larger the total weight score, the more likely that both
records refer to the same entity and thus should be linked. The m probability must
always be greater than the u probability. If this is not the case, then the linking
variable does not aid in discriminating matched from non-matched record pairs and
should be discarded [20].

Determining Links Based on Cut-Off Threshold

The distribution or histogram of the total weight score is generally bimodal, as
shown in Fig. 2. Since most pairs of record are non-matched pairs, or true non-links,
the left-hand mode represents low total weight scores (also called the U region). The
other mode represents the larger total weight scores for the matched pairs, or true
links (also called the M region).

An optimal cut-off threshold needs to be calculated to determine which record
pairs should be treated as links (matches) and which pairs as non-links (non-
matches). Various manual and automated methods exist to determine the threshold
value based on the distribution of the weights. One way to calculate the cut-off value
is using the relationships between file sizes, identifiers, and match weights [5]. To
determine whether a pair of records should be consider a match or not, the total
weight score of that pair is compared with the cut-off threshold value. If the total
weight score is above the cut-off, the record pair is considered a match. Otherwise,
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Fig. 2 Histogram of total
weight scores for all
comparison pairs [27]
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it is not. Sometimes an upper and a lower cut-off threshold value are used, as shown
in Fig. 2.

The intersection of the U and M regions represent pairs that are seen as
matches but are in fact non-matches, or vice versa, for which a clerical review is
required [20]. Clerical review is discussed in Sect. 2.5.2.

Cut-Off Threshold from File Sizes, Identifiers, and Match Weights

By looking into the relationships between the sizes of the input files, expected
number of links, and desired probability of true links, we are able to quantify the cut-
off threshold needed to probabilistically link two files. Moreover, we can quantify
the extent of information in various linking variables in order to choose which ones
are at least necessary to reach a desired linkage performance [5].

The relationship between the input file sizes, the expected number of links, and
the desired probability of true links is expressed as

wt = log2(p/(1 − p)) − log2(E/(A ∗ B − E)) (1)

where wt is a match weight representing the log odds for a true link corrected for
finding a true link by chance: p is the desired probability of true links; A and B

denote the size of the first and second input files, respectively; and E is the expected
number of true links. The match weight wt can act as a cut-off threshold to tell which
records match with a probability of at least p of being a true link. For example, if A

and B are input files that count 1000 records each, where every record in A uniquely
matches a record in B (hence E=1000), and with desired probability of selecting
true match p equals 0.9, then the match weight is 13.13. This means that at least
weight of 13.13 is needed to overcome the current odds and produce matches with
probability of at least 0.9 being correct.
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2.4.4 Hybrid Solutions

A hybrid solution entails combining the advantages of deterministic and probabilis-
tic algorithms into a single one. A deterministic algorithm might miss out some
truly linked record pairs due to errors in the linking variables. A hybrid solution
tries to reduce this by conducting a probabilistic linkage on the record pairs that
are considered non-matches in the deterministic pass. Fewer pairs will be processed
and additional pairs will be linked during the probabilistic linkage phase; a hybrid
solution is deemed to be more efficient with better outcome than a probabilistic or a
deterministic method alone [9].

2.4.5 Other Data Linkage Algorithms

In Table 3, we summarize the different matching methods on their advantages,
disadvantages, and applicabilities. Probabilistic linkage (or a hybrid solution) is
recommended if exact agreement between linking variables cannot be established.
A disadvantage of probabilistic linkage is that it requires estimates on weights
and thresholds from data where true link status is available as ground truth.
Machine learning (ML) can be used to arrive at these estimates in which supervised
learning takes place on labeled ground truth data to obtain a model. Bayesian
methods including Naive Bayes are ML methods that arrive at good estimated
models [28, 33]. This model can then be used to discern the links from the
non-links using unseen, unlabeled data [1]. However, this training requirement is
time-consuming, requires ground truth data, and needs to take place for every new
domain. Therefore, new probabilistic techniques known as scaling methods try to
arrive at these estimates without the need of such a supervised training phase [13].

Missing out links (false negatives) can underestimate the number of truly linked
pairs, also in probabilistic methods. A reason is the so-called entity heterogeneity
problem that appears when the same entity (e.g., patient) is known under different
identifiers in the datasets to be linked. A Bayesian approach is seen as a solution
to that problem by using a distance-based measure in order to express the similarity
between the referred entities [8].

Another disadvantage is that probabilistic linkage chooses at most a single
matched link for any pair of records that has maximum weight above threshold
while ignoring all other potential matches with a lower weight, which may bias
linked datasets. By using multiple data imputation methods, we can allow for
several potentially matched links for record pairs in a subsequent analysis instead
of only the maximum one or no one which leads to unbiased and more efficient
analyses [12].
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Table 3 Comparison of various matching methods

Method Advantage Disadvantage Applicability

Single-pass
determinis-
tic

Straightforward Limitations of use
in erroneous and
missing data

High-quality data requiring
exact match

Iterative
determinis-
tic

Multiple linking criteria.
More resource and time
efficient than probabilistic
approach if the linking
identifiers are available

Limitations of use
in erroneous and
missing data. Less
time and resource
efficient than
single-pass
approach

High-quality data requiring
exact match If no single
unique linking identifier is
available, but multiple
high-quality attributes are
available, this approach
would fit better than the
single-pass approach

Probabilistic Better coping with erroneous
data. Can handle data that is
ignored in the deterministic
algorithm and classified as a
non-link. Can outperform
deterministic methods in
information-poor scenarios.
Compared to the
deterministic (both
single-pass and iterative)
approach, a better
combination of variables can
be selected by assigning
weights and linkage score.

Requires more
time, effort, and
technical resources
to implement than
the deterministic
algorithm.

No exact agreement due to
incomplete data or no unique
identifiers: if identifiers are
available but incomplete,
fraught with typographical
errors, or imperfectly
measured, or when no unique
identifiers are available, the
probabilistic approach comes
into place

Hybrid Combining advantages of
deterministic and
probabilistic approaches.
Fewer pairs will be processed
in the resource-intensive
linkage phase, so it can be
more efficient than only
applying a deterministic or
probabilistic algorithm

After applying the
deterministic algorithm, a
large number of record pairs
are incorrectly classified as
non-links due to errors in the
input files.

2.5 Evaluating Data Linkage

This section explains how to assess the quality of data linkage by means of metrics,
clerical review, and quality reporting.

2.5.1 Metrics

In evaluating data linkage algorithms, an identified match in a pair of records can
either be a true link or a false link, and an identified non-match can either be a true
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non-link or a missed link. Linkage errors expressed by false and missed links can
result in biases in the analyses for which the linkage was established [23].

1. A Type I linkage error occurs when a true non-link is identified as a match, which
is called a false positive or false match. This implies that the linked dataset will
contain linked information that should not have been linked.

2. A Type II linkage error occurs when a true link is identified as a non-match,
which is called a false negative or a missed link. This implies that the linked
dataset misses out information that should have been linked.

Four metrics are commonly used to evaluate the performance of a linkage algo-
rithm: sensitivity (recall), specificity, positive predictive value (PPV) (precision),
and negative predictive value (NPV) [9]. These metrics measure the ability of the
algorithm to correctly classify true links as identified matches and true non-links
as identified non-matches. Sensitivity or recall is the fraction of true links that
have been identified as match. Specificity is the fraction of true non-links that have
been identified as a non-match. Precision is the fraction of true links among the
identified matches. In practice, a trade-off between recall and precision takes place.
An algorithm can act liberally to find more matched pairs, resulting into high recall
and low precision. It can also act more conservatively in finding fewer non-matched
pairs, resulting into high precision and low recall. Greater recall produces more true
links identified at the cost of more non-matches. Greater precision leads to fewer
true links identified but also fewer non-matches [1]. To investigate the effect on
precision and recall, sensitivity analyses can be done by performing the linkage on
different sets of linking variables.

When data linkage is done for analyzing a rare disease, meaning that relatively
few individuals have the diagnosis, a high recall is preferred as we do not want to
miss out any diagnosis in the linked dataset. In case a common disease is subject to
the analysis, it is preferred to increase precision so we are assured that every match
identified is a true link [9].

To demonstrate the trade-off between precision and recall, one of them is often
displayed while fixing the other one. The F-measure, introduced by Christen and
Goiser [4], combines the two in a single metric; it represents the harmonic mean of
precision and recall. Although there is no absolute criterion, a data linkage algorithm
that is typified as well-performing should be able to report an F-measure of at least
95% [9].

2.5.2 Manual and Clerical Review

Manual or clerical review (i.e., human judgment) is usually performed to identify
opportunities to refine the linkage algorithm by accounting for complex cases,
such as ties, unforeseen erroneous data, or uncertainty about matches. Reviewing
a random sample of the linked dataset is a common method to perform a manual
review [9, 27]. A review of the full linked dataset is far too time-consuming and
resource intensive.
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For instance, ties are multiple pairs of records that have similar values for the
linking variables; so ties are all candidates for a link. Additional data may be
consulted to resolve these ties. One option is to generate all possible ties or pairs
of matched records in a single overview and pick out the ones that are true links [9].

As shown in Fig. 2, uncertainty about matches refers to a midrange of record
pairs which can be either a match or a non-match on the basis of how a cut-off
threshold is positioned [27].

2.5.3 Quality Reporting

Estimates on algorithmic performance on specific datasets should be reported to
characterize the validity and reliability of the linked dataset. It should be transparent
how and for what reason one metric (e.g., recall) is prioritized over another one
(e.g., precision) and reflected in optimizing the algorithms in its parameter settings.
Besides the standard metrics on sensitivity, specificity, precision, and NPV, it is
useful to report a tie statistics expressed as the number (or proportion) of records
that are linked with more than one record, a non-match statistics expressed as the
number (or proportion) of records that are not linked, and a cleansing factor telling
the number (or proportion) of records that can be linked before and after the step of
data cleansing.

When reporting results, it is also useful to conduct a subgroup analysis of the
linked records and non-linked records. Individuals with linked records may differ in
characteristics, such as diagnoses, demographics, or outcome, from individuals with
no linked records. Propensity analysis can be helpful in estimating the effect of the
linkage by accounting for all variables in the datasets (not only the linking variables)
that explain all linked records. Differences and commonalities (i.e., linkage bias)
between the original uncoupled dataset and the newly linked dataset can be essential
to understand what information has been added through the linkage.

3 Data Linkage Use Cases in Healthcare

This section is devoted to discuss the challenges of using data linkage in healthcare
and to draw up use cases in healthcare in which data linkage is required.

3.1 Legal and Privacy Challenges

One challenge when linking data in healthcare is to address privacy concerns and
restrictions. Privacy concerns are justified and necessary to protect individuals.
However, information governance for researchers can be overly complicated and
disproportionate to the risks involved in protecting patient data. Understanding and



232 A. Kostadinovska et al.

negotiating the legal, ethical, and governance frameworks and requirements may be
a barrier to data access for researchers unfamiliar with using linked datasets.

When data is collected, it is usually limited to a single purpose. On the other
hand, accessing linked data for a broader purpose would be more efficient and
hypothesis-agnostic (though there are regulatory limits to the breadth of consent
that can be given under the forthcoming General Data Protection Regulation—
GDPR) [10]. The easiest way to deal with such privacy concerns is to inform the
patients about the intention to link data and the intended use of the linked data,
along with any associated risks, and to ask for permission to use their data for these
secondary purposes.

Getting Patients’ Approval for Data Linkage A patient’s informed consent
provides language to allow an institute to have access to the patient’s data that are
captured under strict and well-defined conditions and purposes. Such consent does
not necessarily approve for linking the patient data to other data sources. Therefore,
either patient’s informed consent should contain language to include data linkage as
a purpose or the contract for data usage should be specified in terms to cover data
linkage as well.

Performing the Linkage Data linkage is based on coupling personal data residing
in different data sources. In most cases, the data linkage cannot be done by the
researchers since they are not allowed to access identifiable information of patients.
Hence, dedicated persons usually do the data linkage, who are persons authorized to
view identifiable data. In some cases, patient representatives (e.g., a nurse) are asked
to do the linkage. Lastly, a third trusted party can do the linkage (in the Netherlands,
i.e., ZorgTTP).

Transferring Data FromOne Location to Another Different regulations on legal
and privacy aspects apply and should be considered. Some example regulations
that outline restrictions on disclosure of personal or sensitive data are (1) the
Data-Matching Program Act in Australia [14], (2) EU General Data Protection
Regulation (GDPR, effective May 25, 2018) in Europe [10], and (3) Health
Insurance Portability and Accountability Act (HIPAA) in the USA [18].

• When data is transferred across the EU borders, adherence to the GDPR rules
attached to the data is required. Sufficient guarantees need to be implemented
regarding appropriate technical and organizational measures to ensure data
linkage is compliant with the GDPR requirements.

• A similar approach is taken for personal data collected in the USA, which is
HIPAA applicable. The HIPAA regulation puts limits and restrictions on uses
and disclosures without patient authorization. This requires data to be treated
(de-identified) before disclosing and or using data for secondary uses, or when it
is transferred outside the USA. Depending on the contracts in place, data linkage
can only take place after creating a limited dataset [7] or de-identifying a dataset.
HIPAA de-identification can be done in two ways: safe harbor which consists of
removal of HIPAA 18 identifiers [19] and using an expert determination method
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where the data is proven statistically to have a low reidentification risk attached
to it.

According to the GDPR, pseudonymization is a method of encrypted data
protection, and it may be used in acquiring consent for secondary purposes (e.g.,
research purposes). Pseudonymization is part of the de-identification process and
is performed by replacing real identifiers with pseudo-identifiers. This can be
done using a cryptographic hash function (e.g., SHA-256) using a secret key or
a lookup table. The use of only a “cryptographic hash function” (e.g., SHA-
256 (Name+Surname+DateOfBirth)) is not secure because the generated pseudo-
identifiers can be linked back to a pool of people. The option of using “cryptographic
hashing function with a secret key” is secure with the main requirement that the
key should be kept secure. The use of a lookup table is the most secure because the
generated pseudo-identifier is independent of the real identifiers. GDPR also defines
“anonymous information” as information which does not relate to an identified or
identifiable natural person or to personal data rendered anonymous in such a manner
that the data subject is not or no longer identifiable. This can be achieved using a
reidentification risk assessment (e.g., HIPAA expert determination method), but it
is highly dependent on context. De-identification and anonymization are methods
which are enabling data usage for secondary purposes.

An example of secondary purpose is research. Data linkage based on two or
more original datasets was explained in previous sections, but the resulting linked
dataset needs to be also de-identified. Data linkage on two de-identified datasets is
another challenge because the identifiers (direct and quasi) were replaced, removed,
or generalized. In this case probabilistic methods can be used for performing the
record linkage, but starting from de-identified datasets does not guarantee also a
de-identified linked dataset. Therefore, additional de-identification actions may be
needed. As we have seen in previous sections, probabilistic linkage can produce
linkage errors that can result in biases in the data analysis. The additional de-
identification step mentioned above may remove additional outlying data, which
may add to the bias of the analysis results. This depends on the nature of the data
and whether the data analysis is focused on outliers or not.

Data linkage within a single organization does not generally involve privacy
and confidentiality concerns. It is usually permitted if the patient consented the
secondary purpose for which the data is linked. An example application is the
deduplication of a customer database by a business using data linkage techniques
for conducting effective marketing activities. In this case the secondary purpose is
“marketing.” However, in many countries data linkage across several organizations,
as required in the above example, might not allow the exchange or the sharing
of database records between organizations due to laws or regulations. When
data linkage across organizations is needed, the informed consent should allow
explicit data linkage across organizations. Alternatively, the patient can be asked
retrospectively for consent of sharing the data with the new organization or system.

Bringing data together and analyzing it is not always possible, even if patient
consent is provided. Several heath organizations are reluctant in sharing their



234 A. Kostadinovska et al.

anonymized data with third parties, either because they fear that their data could
be de-anonymized or for proprietary reasons. Federated analysis techniques like
secure multiparty computation (SMC) could potentially help in overcoming such
issues[11]. In SMC, the objective is to jointly compute a function from the private
input of each party, without revealing such input to the other parties. That is, at
the end of the computation, all parties learn exclusively the output. This problem is
solved using secure data transfer protocols that also apply to the privacy-preserving
distributed computation[26].

3.2 Linking Data from Homecare Services

We demonstrate a use case of the data linkage process using two datasets from
homecare services. One homecare service is a personal emergency response service
(PERS) which enables subscribers at home to summon help from a 24/7 call center
after a personal incident that potentially require emergency transport to a hospital.
The other homecare service is a telehealth service which remotely manages patients
with a long-term condition at home, while there is clinical back office for close
watch and triage of patients. Data linkage of the homecare services can help in
improving the quality of service to those patients who use both services at the same
time.

Since the datasets contain de-identified data, we purposefully synthetically cre-
ated the identifiable information for which we know the truth and errors introduced.
One dataset contains 2729 records whereas the other one includes 369 records.
Along with the non-identifiable data, these two datasets contain information for the
zip code and the gender of the patients. Additional five variables are synthetically
created in order to have identifiable information: first name, last name, address
(address name and address number), age, and date of birth. For the purpose of
introducing errors to the data, we created several functions that cover misspellings
and typographical errors: (1) add a new character in a string, (2) remove the last
character of a string, (3) remove random character from a string, (4) swap two
characters in a string, and (5) swap values of two variables.

Following the relationship between file sizes, identifiers, and match weights,
we defined several test cases. For every test case, we used a probabilistic and
deterministic method to link the datasets. The test cases are shown in Table 4. For
every test case, we used the dataset with 396 records. Different input files are created
by using subsets of the second dataset counting 2729 records. Depending on the
errors introduced and the size of the subsets, the number of true links in every test
case varies. The true link status is known from ground truth data from the medical
record number of the patients involved in both datasets. We chose zip code as a
blocking variable and first name, last name, address, age, gender, and date of birth
as identifiers. The percentage of errors introduced in every test case is equal though
it reflects actual error levels occurring in practice [12].
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Table 4 Test case details

Deterministic

Probabilistic approach approach

# of record
datasets 1
and 2

# of true
links

# of
classified
true links

# of
classified
false links

Accuracy # of
classified
links

Test case 1 396 & 2729 365 364 1 0.9999 182

Test case 2 396 & 1000 121 121 0 1 68

Test case 3 396 & 396 40 40 1 0.996 23

Test case 4 396 & 396 40 40 1271 0.4682 23

Test case 5 396 & 396 40 23 0 0.9929 23
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Fig. 3 Histogram of the test cases

In Fig. 3, a histogram is shown where every test case is represented with a
green and blue bar, indicating the sensitivity and 1-specificity of the probabilistic
approach.

Test case 4 has the same settings as test case 3, but instead of installing an optimal
cut-off threshold, we used a significantly lower value. Lowering the threshold results
in more pairs to be wrongly classified as links and thus in lower accuracy. On the
other hand, if a threshold is set higher than its optimal value as in test case 5, record
pairs will be missed out as true links as can be observed by a higher Type II error
level and no Type I error though there is still high accuracy.

The test cases demonstrate a clear difference in the results of the deterministic
and probabilistic algorithm. For every test case, the deterministic algorithm reveals
about 50% of all true links, whereas the probabilistic algorithm reveals more
than 99% of the true links. Hence, the probabilistic algorithm outperforms the
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deterministic algorithm if data quality is poor due to typographical errors introduced
in the data.

4 Conclusion

Accessing and coupling data sources for combined analyses has proven itself
to be challenging [15]. First, various data sources containing data of the same
individual, event, or location need to be brought together under the appropriate
regulatory conditions, consent, and infrastructure. Second, data can amount to
staggering volumes which requires data linkage to be entrusted to computerized
methods allowing only little manual or clerical review. Third, a lack in unique and
corresponding identifiers across data sources can hamper linkage accuracy. Fourth,
data sources can come with incomplete and erroneous data that need to be cleansed
before linkage. Lastly, the actual linked result can contain errors which may bias
analyses of the linked datasets.

In this chapter, we have provided a brief overview of the state of the art on
deterministic and probabilistic methods for data linkage. Deterministic linkage
requires exact agreement of a specified set of unique identifiers between datasets,
either via a single step or successive incremental steps. It works best when identifiers
are complete and accurate. If a match for any pair of records has been identified, it
is typically a true link as a set of identifiers is unlikely to exactly match on all
identifiers at chance level. However, due to (spelling) errors in the identifiers, true
links might be missed if no precautions in data cleansing are taken.

Probabilistic linkage computes a weight for each pair of records on the basis of its
matching identifiers, expressing the likelihood that this pair is a true link. Whether
any pair of records is considered a link is based on a cut-off threshold on the weights
that is aimed at balancing false links with missed links.

Data linkage poses privacy concerns due to the possibility of misuse of patient
data and therefore should be allowed by patient consent. Consent for use of data
for secondary purposes is enough when data is linked within an organization, with
the condition that the linked dataset is de-identified. When data is linked across
organization, the record linkage must be explicit in patient’s consent. In both cases,
the data protection regulations that apply to the data (e.g., when transferred from
one location/jurisdiction to another one) are the ones applicable in the countries
where data was collected. Hashing can be used for data linkage, and it should be
done using a secret which is complex enough and stored in a secure way.

Future research on data linkage should be focused on identifying the bias
and impact on combined analyses due to linkage error in various healthcare
domains [16] and new algorithms that minimize linkage error either by better and
efficient probabilistic weight estimates [13] or by imputing the potential matches of
record pairs [12].



Overview of Data Linkage Methods for Integrating Separate Health Data Sources 237

References

1. Batini, C., Scannapieco, M.: Data and Information Quality. Data-Centric Systems and Appli-
cations, Chapter 8. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-24106-7_8

2. Baxter, R., Christen, P., Churches, T.: A comparison of fast blocking methods for record
linkage. In: First Workshop on Data Cleaning, Record Linkage and Object Consolidation,
CMIS Technical Report 03/139, KDD 2003, Washington DC, 24–27 Aug 2003

3. Blakely, T., Salmond, C.: Probabilistic record linkage and a method to calculate the positive
predictive value. Int. J. Epidemiol. 31, 1246–1252 (2002)

4. Christen, P., Goiser K.: Quality and complexity measures for data linkage and deduplication.
In: Guillet, F.J., Hamilton, H.J. (eds.) Quality Measures in Data Mining. Studies in Computa-
tional Intelligence, vol. 43, pp. 127–151. Springer, Berlin (2007)

5. Cook, L.J., Olson, L.M., Dean, J.M.: Probabilistic record linkage: relationships between file
sizes, identifiers and match weights. Methods Inf. Med. 40, 196–203 (2001)

6. Contiero, P., Tittarelli, A., Tagliabue, G., Maghini, A., Fabiano, S., Crosignani, P., Tessandori,
R.: The EpiLink record linkage software: presentation and results of linkage test on cancer
registry files. Methods Inf. Med. 44(1), 66–71 (2005)

7. Definition of limited data set. https://www.hopkinsmedicine.org/institutional_review_board/
hipaa_research/limited_data_set.html. Accessed 26 Jan 2016

8. Dey, D., Sarkar, S., De, P.: Entity matching in heterogeneous databases: a distance-based
decision model. Institute of Electrical and Electronics Engineers Computer Society (1998).
https://www.computer.org/csdl/proceedings/hicss/1998/8251/07/82510305.pdf. Accessed 21
Jan 2019

9. Dusetzina, S.B., Tyree S., Meyer, A.-M., Meyer, A., Green, L., Carpenter, W.R.: Linking Data
for Health Services Research: A Framework and Instructional Guide. The University of North
Carolina at Chapel Hill, Rockville (MD)/Agency for Healthcare Research and Quality (US),
report no.: 14-EHC033-EF (2014)

10. General Data Protection Regulation (GDPR) http://ec.europa.eu/justice/data-protection/
reform/files/regulation_oj_en.pdf. Accessed 26 Jan 2016

11. Goldreich, O., Warning, A.: Secure multi-party computation (1998)
12. Goldstein, H., Harron, K., Wade, A.: The analysis of record linked data using multiple

imputation with data value priors. Stat. Med. 31(28), 3481–3493 (2012)
13. Goldstein, H., Harron, K., Cortina-Borja, M.: A scaling approach to record linkage. Stat. Med.

36, 2514–2521 (2016). https://doi.org/10.1002/sim.7287
14. Government data-matching: Office of the Australian Information Commissioner—OAIC.

https://www.oaic.gov.au/privacy-law/other-legislation/government-data-matching. Accessed
26 Jan 2018

15. Harron, K., Goldstein, H., Dibben, C. (eds.): Methodological Developments in Data Linkage.
Wiley, Chichester (2015)

16. Harron, K., Doidge, J.C., Knight, H.E., Gilbert, R.E., Goldstein, H., Cromwell, D.A., Van
der Meulen, J.H.: A guide to evaluating linkage quality for the analysis of linked data. Int. J.
Epidemiol. 46(5), 1699–1710 (2017)

17. Hendriks, P., Reynaert, M., van der Sijs, N.: Transcriptor, language and speech technology
technical report series, Radboud University, Nijmegen (2016)

18. HIPAA for Professionals. https://www.hhs.gov/hipaa/for-professionals/index.html. Accessed
26 Jan 2016

19. HIPAA PHI: List of 18 Identifiers and Definition of PHI. https://cphs.berkeley.edu/hipaa/
hipaa18.html. Accessed 21 Jan 2019

20. Jaro, M.A.: Probabilistic linkage of large public health data files, Match Ware Technologies.
Stat. Med. 14, 491–498 (1995)

21. Jiang, R., Rafael, E., Li, B., Li, H.: Evaluating and combining named entity recognition
systems. In: Proceedings of the Sixth Named Entity Workshop, joint with 54th ACL, Berlin,
12 August 2016, pp. 21–27

https://doi.org/10.1007/978-3-319-24106-7_8
https://www.hopkinsmedicine.org/institutional_review_board/hipaa_research/limited_data_set.html
https://www.hopkinsmedicine.org/institutional_review_board/hipaa_research/limited_data_set.html
https://www.computer.org/csdl/proceedings/hicss/1998/8251/07/82510305.pdf
http://ec.europa.eu/justice/data-protection/reform/files/regulation_oj_en.pdf
http://ec.europa.eu/justice/data-protection/reform/files/regulation_oj_en.pdf
https://doi.org/10.1002/sim.7287
https://www.oaic.gov.au/privacy-law/other-legislation/government-data-matching
https://www.hhs.gov/hipaa/for-professionals/index.html
https://cphs.berkeley.edu/hipaa/hipaa18.html
https://cphs.berkeley.edu/hipaa/hipaa18.html


238 A. Kostadinovska et al.

22. Krewski, D.A., Wang, Y., Bartlett, S., et al.: The effect of record linkage errors on risk estimates
in cohort mortality studies. Surv. Methodol. 31(1), 13–21 (2005)

23. Kum, H.-C., Krishnamurthy, A., Machanavajjhala, A., et al.: Privacy preserving interactive
record linkage (PPIRL). J. Am. Med. Inform. Assoc. 21, 212–220 (2014)

24. Linking social care, housing & health data, Data linking: social care, housing & health: Paper
1, Data Linkage literature review (2010)

25. Marrero, M., Sánchez-Cuadrado, S., Lara, J.M., Andreadakis, G.: Evaluation of named entity
extraction systems. In: Advances in Computational Linguistics, Research in Computing
Science, pp. 41–47 (2009)

26. Mendes, R., Vilela, J.: Privacy-preserving data mining: methods, metrics, and applications.
IEEE Access. 5, 10562–10582 (2017). https://doi.org/10.1109/ACCESS.2017.2706947

27. Queensland Data Linkage Framework, Published by the State of Queensland (Queensland
Health) (2014)

28. Sadinle, M.: Bayesian estimation of bipartite matchings for record linkage. J. Am. Stat. Assoc.
112(518), 600–612 (2017). https://doi.org/10.1080/01621459.2016.1148612

29. Statistical Data Integration involving Commonwealth Data, National Statistical Service,
Australian Government. https://toolkit.data.gov.au/index.php/Statistical_Data_Integration.
Accessed 21 Jan 2019

30. Van der Sijs, N., Hendriks, P.: Al-Kadafi and Tsjechov: Waarom de spelling van namen ertoe
doet. Onze Taal 11, 10–14 (2017)

31. Verykios, V.S., Elmagarmid, A.K., Moustakides, G.V.: Cost optimal record/entity matching.
Purdue e-Pubs, Purdue University, report number: 01-014 (2001)

32. Winkler, W.E.: String Comparator Metrics and Enhanced Decision Rules in the Fellegi-Sunter
Model of Record Linkage, Bureau of the Census* Statistical Research Division, Rm 3000-4,
Washington, DC 20223 (1990)

33. Winkler, W.E.: Methods for record linkage and Bayesian networks. In: Proceedings of the
Section on Survey Research Methods, pp. 3743–3748. ASA, Boston (2002)

34. Yuan, Y.C.: Multiple imputation for missing data: concepts and new development. In: Statistics
and Data Analytics. SAS Institute, Rockville, Paper 267-25 (2000)

https://doi.org/10.1109/ACCESS.2017.2706947
https://doi.org/10.1080/01621459.2016.1148612
https://toolkit.data.gov.au/index.php/Statistical_Data_Integration


A Flexible Knowledge-Based
Architecture for Supporting the Adoption
of Healthy Lifestyles with Persuasive
Dialogs

Mauro Dragoni, Tania Bailoni, Rosa Maimone, Michele Marchesoni,
and Claudio Eccher

1 Introduction

Recent studies like [1] and [2] have shown that living a long and healthy life prevents
cognitive decline, obesity, disability, and death from major chronic diseases (like
diabetes, cardiovascular disease, and several forms of cancer). In the domain of
health and well-being, the use of information and communication technology (ICT)-
based motivational systems that produce user-tailored messages can be effective
tools to persuade and motivate people to change their behavior toward a healthier
lifestyle (adopting and maintaining correct diet and active living); the user-tailored
messages can be generated by reasoning on data gathered from the user, using
his/her personal devices and off-the-shelf wearable sensors [3].

However, engaging people in developing and maintaining healthier patterns
of living is a challenging task. To this end, generating effective personalized
recommendations implies, for example, the justification of given suggestions and
the adaptation of messages in response to the modification of the environment and
of the user status. For this reason, as opposed to hardwired persuasive features,
systems that apply general reasoning capabilities to provide flexible persuasive
communication based on rich and diverse linguistic outputs are required. In this
context, modeling persuasion mechanisms and performing flexible and context-
dependent persuasive actions are more ambitious than most current approaches on
persuasive technologies (see Captology [4]). In fact, the design of a flexible system,
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applicable to different domains, poses relevant challenges related to the imple-
mented persuasive strategies and the architecture that must ensure the independence
of the information processing machinery from both the domain of application and
the language in which messages are generated.

In this chapter, we present a motivational platform for supporting the monitoring
of users’ behaviors and for persuading them to follow healthy lifestyles. The
contribution of this chapter extends the work presented in [5–8]. The aim of our
research is to develop a general purpose persuasive architecture flexible and easily
portable to different domains of application and adaptable to new languages. To
this end, we first had to individuate the components that are domain and language
independent and those that are specific of a domain and language, so to reduce as
much as possible portability efforts. Then, we had to rely on the use of knowledge
referring to the different domains of discourse: like knowledge on food content
and nutrients, categorization and effort of physical activities, user attitudes and
preferences, linguistic knowledge, and environment information (places, weather,
etc.).

Semantic technologies are used for modeling all relevant information and
for fostering reasoning activities by combining user-generated data and domain
knowledge. Moreover, the integrated ontology supports the creation of the dynamic
interfaces used by domain experts for designing monitoring rules. Contextually, our
system aims at inducing the user to follow specific behaviors and to maintain them
over a certain timespan. The system takes into account the “social environment,”
exploits the situational context, and enhances emotional aspects of communication.
In this scenario, what really matters is not simply the content but the overall impact
of the communication. In order to validate the proposed architecture, we developed
mobile applications that a group of 119 users adopted for 7 weeks. Our aim was to
observe if the use of our platform would be able to support them in improving the
quality of their lifestyle.

2 Related Work

In recent years, persuasive technologies have been applied in multiple areas of
research. Healthcare is one of the most investigated fields, not least because it takes
advantage of the spread of ICT devices. In the literature, there are many studies
regarding health promotion and disease risk prevention, which address system
design and implementation. In general, these works can be developed using two
approaches: vertical and horizontal.

Many of the study published regard vertical approaches; these systems are
tailored for a specific domain and usually rely on ad hoc solutions such as canned
texts. These systems have the advantage of being effective on the domain, but their
flexibility is usually low, and an extensive reengineering is required to port them to
new domains.



A Flexible Knowledge-Based Architecture for Supporting Healthy Lifestyles 241

On the contrary, horizontal approaches are not bound to a particular domain,
and they try to address the problem of rich persuasive generation from a general
perspective; they have potential of being easily portable and adaptable but usually
remain at a theoretical or proof of concept level. In [9–11] and [12], the authors give
an important contribution defining a persuasive systems design model for behavior
change support systems; these works detail the concepts and methodology for the
design and evaluation of flexible persuasive behavior change systems. Focusing on
generative aspects, some seminal works on argumentation-based text generation
have been proposed [13, 14], but the authors focus on the validity of the generated
messages rather than their effectiveness. A more recent approach, presented in
[15], introduces a persuasion framework that combines generation with information
gathered from social media. In general, a thorough review and classification of
available persuasive natural language generation (NLG) horizontal systems can be
found in [16].

Turning to the specific task of generating motivational messages for health
promotion, in [17] the authors present a theoretical framework for representing
real-time tailored messages in behavior change applications that can be adapted
to different generation strategies ranging from canned text to deep generation. Four
important properties of a motivational message are considered: timing, intention,
content, and representation. This framework inspired the development of the
persuasive engine integrated into our platform. However, differently from our work,
it has not been instantiated in any real system.

The following studies based on vertical approaches give an objective validation
on the use of tailored and personalized persuasive messages in behavior change. In
[18], the authors present a systematic review of mobile phone and web-based text
messages (reminders, information provision, tailored and standardized supportive
messages, and self-monitoring instructions) to promote mental health. Considering
36 studies, 35 of them show the positive impact of text messaging on patient
motivation to improve their health and encourage treatment. Other studies, such
as [19] and [20], show that tailored and personalized messages with variety in
frequency are most effective, mainly in physical activity and smoke cessation
interventions. In [21], researchers conducted an exploratory study to evaluate the
tailored text messaging acceptability when used in the maintenance phase (i.e., the
phase where users already follow healthy lifestyles and they have to preserve them).
Women involved in the study received encouragement messages to adopt healthy
behavior and text messages to prompt self-reported weight, goal setting, and goal
monitoring. Also in this case, positive results show the importance of the tailored
content and scheduling of text messages. Finally, in [22] the authors investigate
about the use of well-being recommendation strategies on workplace. Our platform
improves the dynamic creation of the persuasive messages, which are based on the
profile of the specific user and the data he/she inputs.

To the best of our knowledge, there is no work that merges in a systematic way
both horizontal and vertical approaches, and our work is the first attempt in this
direction.
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3 The Requirements for Being Effectively Persuasive

To obtain an effective behavioral change, a persuasive system should meet several
requirements. Based on the analysis of the framework proposed in [17] combined
with the scenarios we want to address, the following requirements were identified:

• Sense and reason on the actual context of the interaction: so to be able to decide
whether to intervene or not given the current circumstances (e.g., avoid sending
messages during a meeting).

• Use different strategies connected to the intended outcome (pre, post, or dur-
ing):

– Pre strategies are meant to be used before an action takes place, and it is
forecast to happen in a short period of time (e.g., lunch). These strategies are
meant to drive the user into a desired behavior or to divert him/her from an
unwanted one.

– During strategies are meant to be used when a prolonged action is taking place
(e.g., working out) to support or modify it (e.g., keep on, there are only 100
steps left, or slow down, you are walking too fast).

– Post strategies are meant to be used after an action took place as a reinforce-
ment feedback or negative feedback in view of future actions of the same
kind (e.g., if a user ate too much meat).They can also be used to induce a
compensatory action [23].

• Choose the proper timing for its intervention so to maximize the likelihood to
obtain the desired effect (e.g., a message aiming at convincing the user to walk
home after work is more effective if sent right before the user leaves the office
rather than when he/she arrives in the morning).

• Use several persuasive techniques/strategies so to choose the most appropriate in
a given situation (e.g., the mood of the user can drive the selection of the available
strategies, or the history of the interactions can block the repetition of arguments
already used in favor of new ones).

• Plan complex messages and produce rich and natural linguistic outputs.

In general, language is the key mean for persuasion since it is the medium that
allows for a more versatile and richer expression of arguments for convincing users
to adopt the desired behavior. Virtually any persuasive strategy can be realized
linguistically, while this is not true for other media. Then, an additional challenge
is mapping persuasion strategies to linguistic realization suitable for the domain of
interest.
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4 Technological Challenges for Building a Flexible System

The challenges presented above for designing systems supporting an effective
behavior change call for a careful design and planning of strategies to be used. A
technological architecture has to support effectively their integration and use, using
diverse technologies and applications.

Figure 1 shows the diagram we propose for the realization of this kind of
platform. The diagram relies on four (4) layers:

• the Input Layer is responsible for receiving data from users or sensors, through
explicit input or by event detection.

• the Knowledge Layer, called HeLiS, contains (1) the structured knowledge
linking provided data with domain information and (2) the reasoner used for
elaborating such data.

• the Persuasive Layer, called PersEO, contains the linguistic strategies and
vocabularies for generating the feedback sent to users.

• the Output Layer is in charge of presenting the feedback to users.

In this section, we provide a brief introduction to all layers by highlighting which
are the main challenges they have to address. A focus on the Knowledge Layer and
on the Dialog-Based Persuasive Layer is provided in Sects. 5 and 6, respectively.

Fig. 1 The schema of the proposed platform architecture
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4.1 Input Layer

The Input Layer is responsible for detecting events triggering the platform activities
and accounts for the ability of a persuasive system of sensing the context of
interaction. These events can be of two types: (1) data input, where data are sent
from the Input Layer to the Knowledge Layer (presented in Sect. 4.2), and (2)
context communication, where contextual information is sent from the Input Layer
to the Persuasion Layer (presented in Sect. 4.3) that may exploit this information for
persuasive purposes.

Here the distinction between data input and context communications relies in
the use of parameters by the system. Input data represent facts of the world related
to the user’s behavior that trigger Knowledge Layer rules in the specific domain
(e.g., the assumption of meals encouraged or discouraged by the Mediterranean
diet recommendations). Context communication is related to the environment in
which the user is acting (e.g., timing or localization) and provides information to the
Dialog-Based Persuasion layer allowing the choice of the most appropriate message
generation strategy. For example, assuming to have the required knowledge and
network support, an example of exploitable context information is the localization
of a user in front of a vending machine at midmorning. Based on the history of past
violations, the system could suggest avoiding specific foods, for example, packaged
snacks.

The Input Layer includes the possibility of both, using human computer-based
solutions, like mobile applications, and connecting the platform to wearable devices
or external infrastructures (e.g., the city bus stop map or the weather forecasts)
enabling the automatic data transfer to the platform. One of the most prominent
challenges in the design of an effective and efficient Input Layer is to reduce as
much as possible the time-consuming activities on the user side. Indeed, when we
refer to the digital health domain and, in particular, when we consider the nutrition
and activity dimensions, the effort necessary for providing all information required
by the whole platform might be significantly time-consuming (i.e., the input of all
consumed foods).

4.2 Knowledge Layer

To support natural argumentation and (emotional) persuasion and to allow reasoning
on the possible arguments to be put forward, it is necessary to define new methods
for representing knowledge, for reasoning on it, and for generating natural language
and multimodal messages (both in monological and dialogical situations). All these
aspects are primarily driven by persuasion reasons rather than ontological ones.
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Based on this consideration, we propose a Knowledge Layer encompassing two
kinds of information:

• Augmented Domain Knowledge: the structured representation of the domain of
interest including those relations that are relevant for persuasion purposes, such
as the similar-taste relation or the categorization of food properties into negative
and positive ones. In general, it is necessary to model all the concepts supporting
the behavior change purpose and the relationships between them. These concepts
will furnish the basis for the arguments included in the feedback provided to
users.

• Monitoring Knowledge: the structured representation of the rules driving the
behavior change process. Here, it is necessary to define which aspects of users’
behaviors have to be monitored by the platform in order to produce proper
feedbacks.

4.3 Persuasion Layer

In modeling the Persuasion Layer, we tried to address the overall challenging
structure for building effective natural language generation (NLG) persuasive
systems. In particular we expanded on the idea presented in [24] of a classification
of basic persuasive strategies (what to say, how to say), supporting strategies (i.e.,
strategies that are meant to give support to a specific claim), and a meta-reasoning
model that works on these strategies (selection and ordering of basic strategies).
This model is built by taking into consideration studies coming both from social
psychology and philosophy and from the area of natural argumentation. The model
is neither domain nor language specific and it eases the portability of systems that
are based on it.

The role of the Persuasion Layer is not limited to the generation of single
messages. Indeed, the application of a persuasion strategy generally requires more
than one interaction with the user. Thus, the Persuasion Layer is also in charge of
managing the relationships between single messages and understanding information
provided by users in order to build a reasonable conversation with the user.

4.4 Output Layer

The last layer, the Output Layer, is in charge of closing the loop by providing the
feedback to users. It is represented by one of the many devices able to receive the
data produced by the Persuasion Layer and to convey the physical feedback to users
(textual or audio messages, graphics alerts, vibration, etc.)
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The main challenge this layer has to address is to find the best trade-off between
two dimensions:

• Type of feedback: it is necessary to determine the optimal way for communicat-
ing with users. This choice is strongly associated with the kind of device used for
providing the feedback.

• Presentation: how content generated by the Persuasion Layer is presented to users
is relevant for completing the process of supporting the behavior change.

The Output Layer is responsible of designing an effective presentation strategy
based on the hardware capabilities of the device used. Finally, the output provided
by the platform could also be a further request of inputs; thus, a connection between
the two layers has to be foreseen.

5 HeLiS: The Knowledge Layer

We presented in Sect. 4.2 the challenges related to the design of an effective Knowl-
edge Layer including (1) the modeling of an augmented domain ontology containing
specific concepts for supporting the monitoring activity, (2) the implementation of a
tool for supporting the work of domain experts, and (3) the realization of a reasoning
mechanism enabling the semantic analysis of the data input to the system.

Here, we provide further details about the Knowledge Layer integrated within
our platform. We provide an overview of the ontology branches describing the
monitoring rules associated with users (or profiles), the concepts that are instantiated
for storing data, and the concepts modeling detected violations. Then, we show how
the platform supports the domain experts in defining monitoring rules. Finally, we
describe how reasoning is implemented to evaluate the rules.

These three components allow to cope with the technological challenges con-
cerning the realization of a Knowledge Layer capable of providing a knowledge
artifact able to support the storage of user data by adopting a well-defined conceptual
model and to perform reasoning operation on them in order to enable the generation
of contextual message by the platform. Moreover, the development of software
facilities dedicated to the domain experts allows to make the overall reasoning and
message generation processes more flexible with respect to the context.

5.1 The Augmented HeLiS Ontology

The concepts of the HeLiS ontology of main interest for this chapter are shown in
Fig. 2 and are organized in four main branches: (1) food, (2) activity, (3) monitoring,
and (4) user. Further details about the ontology are provided in [25, 26] and online.1

1http://w3id.org/helis.

http://w3id.org/helis
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Fig. 2 The HeLiS ontology

The food branch is responsible for modeling the instances macro-grouped under
the BasicFood (986 instances) and Recipe (4408 instances) concepts. Instances
of the BasicFood concept describe foods for which micro-information concerning
Nutrients (carbohydrates, lipids, proteins, minerals, and vitamins) is available,
while instances of the Recipe concept describe the composition of complex dishes
(such as Lasagna) by expressing them as a list of 〈BasicFood, quantity〉 pairs.

The root concept of the activity branch is the PhysicalActivity concept
that contains 21 subclasses representing likewise categories and a total of 859
individuals each one referring to a different activity. For each activity, we provide
the amount of calories consumed in 1 min for each kilogram of user’s weight and the
MET (metabolic equivalent of task) value expressing the energy cost of the activity.

The monitoring branch models the knowledge enabling the whole monitor-
ing activity of users’ behaviors. This branch contains two main root concepts:
MonitoringRule and Violation. The MonitoringRule concept provides
a structured representation of the parameters inserted by the domain experts
for defining how users should behave, according to a fixed structure (aka “rule
template”). Monitoring rules operate either on (1) a single user’s meal or physical
activity event, e.g., to check if they exceeded expert prescriptions (QB-Rules), (2) on
user’s events collected during a whole day (DAY-Rules), or (3) on user’s events
of a whole week (WEEK-Rules), to account for misbehaviors defined on a longer
time scale.2 Violation instances describe the results of the reasoning activities,
and they can be exploited for generating users’ advises and recommendations. The
content of each Violation instance is computed according to the user data that
triggered the violation.

The user branch contains the conceptualization of user information. This branch
contains concepts enabling the representation of all users’ events (food consump-
tion and performed physical activities) and the linking of each violation to the
corresponding user. Users’ events are represented via the Meal, ConsumedFood,
and PerformedActivity concepts. The last two concepts are reified relations

2The system supports the definition of customized timespans if necessary.
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enriched with attributes for representing the facts that a user consumed a specific
quantity of a food or performed an activity for a specific amount of time.

The ontology is publicly available including both TBox and ABox (with the
exception of users’ personal data, for privacy reasons). A RESTful interface is
offered within HeLiS to query the ontology and ease its reuse within third-party
applications.

5.2 Experts Support Facilities

The discussed platform integrates a set of facilities supporting domain experts in
defining monitoring rules.

Here, it is necessary to clarify what we mean for rule. In logic, a rule (that in
our case corresponds to a semantic entailment) is represented as a set of premises
X that, if satisfied, lead to a conclusion Y : X |� Y . In our work, domain experts are
in charge of modeling what can be called domain rule. By considering as example
the Mediterranean diet, a domain rule is the quantity of vegetables that a person
should eat every day. If we translate a domain rule into the logical representation
shown above, it corresponds to the premises of the entailment. This means that
in our architecture the experts provide only the premises of the entailment. Indeed,
given the infinite combinations of data that can be provided by a user, the conclusion
of the entailment (i.e., a violation) cannot be exactly defined a priori. For simplicity,
hereafter with the term rule, we mean the premises of the entailment that are defined
by the experts.

Rules are represented through rule templates, and domain experts have only
to provide the parameters instantiating each rule template with the actual values.
This way, domain experts do not need to learn the formal language for writing the
monitoring rules. Here, we show the implemented facility supporting the conversion
of the parameters given as input by the domain experts into a MonitoringRule
instance.

5.3 Rule-Based Reasoning

Reasoning performed on the HeLiS ontology enriched with the data provided
by users has the goal of verifying if user’s lifestyle (i.e., eating behavior and
physical activity) is consistent with the monitoring rules defined by domain experts,
detecting, and possibly materializing violations in the knowledge base, upon which
further actions may be taken. Reasoning is triggered each time a user’s profile,
associated meals, or performed activity reports are added or modified in the system
and also at specific points in time (e.g., the end of a day or week), to check a user’s
behavior in such timespans. Although infrequent, changes to the monitoring rules,
food, or nutrient parts of the ontology also trigger reasoning.
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Fig. 3 Representation of the reasoning workflow

We implement reasoning using RDFpro,3 a tool that allows us to provide out-of-
the-box OWL 2 RL reasoning, supporting the fixed point evaluation of INSERT...
WHERE... SPARQL-like entailment rules that leverage the full expressivity of
SPARQL (e.g., GROUP BY aggregation, negation via FILTER NOT EXISTS,
derivation of RDF nodes via BIND).

We organize reasoning in two offline and online phases as shown in Fig. 3.
Offline, a one-time processing of the static part of the ontology (monitoring rules,
food, nutrients, and activities) is performed to materialize its deductive closure,
based on OWL 2 RL and some additional preprocessing rules that identify the
most specific types of each Nutrient individual (this information greatly helps
in aggregating their amounts).

Online, each time the reasoning is triggered (e.g., a new meal or performed
activity is entered), the user data is merged with the closed ontology and the
deductive closure of the expanded rules is computed. This process can be performed
both on a per-user basis and globally on the whole knowledge base. The resulting
Violation individuals and their RDF descriptions are then stored back in the
knowledge base.

The online reasoning activity is in turn split in two further sessions: a real-time
reasoning and a background reasoning. This is necessary due to the different kind
of rules that the experts integrated into the platform. For example, by considering
the Mediterranean diet, we have a total of 221 rules split in three different sets:

• QB-Rules: these rules define, for each food category contained in a rule, the right
amount that should be consumed in a meal (if the food is consumed during a
meal). These rules allow to monitor if a user exceeded the recommended amount
of a specific food during a meal or not.

• DAY-Rules: these rules define, for each food category contained in a rule,
the maximum (or minimum) amount (or number of portions) of the specified
category that can be consumed during a single day. These rules allow to monitor
the behavior of a user by aggregating foods consumed during an entire day.

• WEEK-Rules: these rules define, for each food category contained in a rule,
the maximum (or minimum) amount (or number of portions) of the specified

3https://rdfpro.fbk.eu.

https://rdfpro.fbk.eu
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category that can be consumed during a week. These rules allow to monitor the
behavior of a user by aggregating foods consumed during an entire week.

Similarly, concerning the physical activity domain, we integrated a set of QB-Rules
defining the minimum amount of time which physical activities should last, a set
of DAY-Rules defining the minimum amount of time that a user should dedicate
to physical activities during a day, and finally a set of WEEK-Rules defining the
minimum amount of time that a user should dedicate to physical activities during a
week.

The time necessary for completing the reasoning over the different sets of rules
is different based on the amount of data that has to be analyzed. Thus, in order to
maintain the system efficient, we scheduled the reasoning activity according to the
two sessions mentioned above. The real-time reasoning operates on the set of QB-
Rules enabling the possibility of providing an immediate feedback to users based
on the content of their last meal. This kind of reasoning suffers from the possibility
of high concurrency due to the amount of people providing their data during a small
time interval. Hence, by reducing as much as possible the number of rules evaluated
by the reasoner, we are able to manage potential bottlenecks in elaborating data.

On the contrary, the background reasoning is performed on rules that have to
be evaluated on aggregated sets of data in order to provide, eventually, violations
about incorrect behaviors monitored during a medium or a long period of time. The
background reasoning works on both the DAY-Rules and WEEK-Rules sets. The
evaluation of these rules implies the collection and aggregation of a relevant amount
of data requiring several time for being analyzed. The evaluation of these rule sets
has to be scheduled for time slots with a small number of requests to avoid affecting
the performance of the entire system.

The result of the reasoning activity is a set of structured packages, representing
instances of the Violation concept. These packages contain specific informa-
tion about the detected violations. Besides information directly inherited by the
MonitoringRule instance associated with the violation for each violation, the
package contains:

• the list of meals contributed to generate the violation. If the violated rule belongs
to the QB-Rules set, the list will contain only one meal’s reference, while if the
violated rule belongs to either the DAY-Rules or to the WEEK-Rules sets, the list
may contain more than one meal’s reference;

• the actual quantity provided by the user;
• the expected quantity;
• the violation level. This value gives a dimension of the violation. The higher the

gap between the actual and the expected values is, the higher the value of the
violation level parameter will be;

• the violation history. The reasoner computes this value in order to provide a
recidivism index about how a user is inclined to violate specific rules.

These information, together with the identifiers of rule and user, the rule priority,
and the reference of the food (or food category, or nutrient) violated by the user,
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are sent to the Dialog-Based Persuasive Layer that elaborates these packages and
decides which information to use for generating the feedback that has to be sent to
the user.

6 PersEO: The Dialog-Based Persuasive Layer

The goal of PersEO (Persuasive mEssage generatOr) is the generation of dialogs
for motivating users to adopt healthy lifestyles. This component is in charge
of composing contextualized messages based on the users’ data (both explicitly
provided and implicitly acquired from sensors) and managing the dialog unfolding
according to the responses provided by users to system utterances. This component
is based on a state machine implemented in Drools,4 the business rules management
system (BRMS) solution with a forward and backward chaining inference-based
rules engine. In this version of the platform, a dialog is represented as a directed
acyclic graph (DAG), in which the vertexes are the single text messages sent by
the system to the user (system utterance); see an example in Fig. 4. Each system
utterance can be either a motivational message, which does not require an answer,
or a question, possibly accompanied by a motivational part. In the former case, the
utterance can be a leaf vertex and the dialog ends, till the next interaction triggered

Fig. 4 A fragment of a DAG representing a dialog for profiling the user dialog regarding his/her
lifestyle habits, with question messages that require a categorical answer and a numeric one (in
yellow and green, respectively) and motivational messages (in red)

4https://www.drools.org/.

https://www.drools.org/
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Fig. 5 The Persuasive Layer model

by PersEO or by the user, or there can be an edge to the next message or question of
the same dialog. In the latter case, each possible answer to the question corresponds
to an edge that connects the message to the next system utterance to send to the user.
In this version, we modeled two kinds of answers to a question:

1. Closed-ended questions, which require the user to choose among a set of
predefined questions (e.g., Do you smoke? Yes/No). These will be represented
in the user interfaces by buttons or a list of possible choices.

2. Questions that require a numerical answer (e.g., How many cigarettes do you
smoke daily?). The answer is elaborated by PersEO using the comparison
operators (≤, ≥, =, etc.) to pick up the next message according to the conditions
formalized in the corresponding DAG vertex.

A motivational message (or the motivational part of a question) can be predefined
or context-dependent composed at runtime by the motivational engine. In particular,
a message can be generated according to the (1) timing of the message generation
trigger, (2) level of violation of the violated rules, (3) information that the user can be
interested in, and (4) history of previous messages sent to the user. The combination
of these elements represents the context of the message. Below, we describe more
in detail the persuasive model (Fig. 5) focusing on the four factors mentioned above
and on the meta-reasoning implemented for each of them.



A Flexible Knowledge-Based Architecture for Supporting Healthy Lifestyles 253

6.1 Timing

Timing represents the event promptingPersEO to create a new message. In our case
study, message generation is triggered by specific events detected by the mobile
application (Input Layer). Here we considered only system instantiated timing
[17]; contextualization, tailoring, and efficacy of the message depend heavily on
this aspect. For this reason, PersEO executes a meta-reasoning to evaluate if a
message generation is needed and which form of message is more appropriate in that
particular moment. There are three kinds of events detected by the Input Layer:

• Events related to user’s habits and behavior: in general a behavior is analyzed
when a user inputs data in the system, such as a new meal in the food diary
(Fig. 6a).

• Time scheduling: PersEO may need to send particular information to the user
at a specific time of the day or of the week (i.e., every Sunday at 18 p.m., the
user receives a report about weekly adherence to the Mediterranean diet) or to
perform a data input check to, eventually, send reminders to the user (e.g., if at
2 p.m. no lunch was added, PersEO invites the user to do it) (Fig. 6b). In this
case, scheduling is defined observing user routine.

• Localization: the third event triggering the intervention of PersEO is the mobile
application recognizing that the user is in a specific place (e.g., near a vending

Fig. 6 Examples of message generation workflow. On the left the generation of a message
triggered by a user-generated event (the recording of a meal). In this case the system controls the
presence of violations and generates the message according to violation type and message history.
On the right the message is triggered by a scheduled time. In this case, since the system does not
find information, the message is a reminder to insert a meal. (a) Persuasion Engine generates a post
feedback message. (b) Persuasion Engine generates a reminder message
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machine). Even in this case, the generation of a message depends on the event
time. For example, if the position in front of a vending machine is detected
midmorning, it is highly probable that the user is going to have a snack.

Timing type determines the form and the structure of the message. In the first
case, message is considered as a post strategy, while in the second and third,
messages could be generated as a pre strategy.

6.2 Choice of Violation

Messages should provide feedback to the user about his/her eating and physical
exercise behavior, according to modeled rules. Messages generated following the
detection of violations are, in general, those with negative feedback. Following an
event that triggered message generation, PersEO asks to the Knowledge Layer the
list of violations generated. The violation bean contains the information needed to
determine the behavior of a user. For example, a violation of a diet rule includes
the entities that generated an unhealthy behavior (meal and food), the rule priority,
and the number of times the same violation has been committed (history). If the
list of violations is empty, the system can conclude that the user adopted a healthy
behavior so it can decide to send messages with positive reinforcing feedback. If
the list of violations is not empty, we decided to send a message regarding only one
violation to avoid to annoy the user with repetitive information on one hand and
provide messages with varied content informing the user about different aspects of
correct behavior, on the other. The violation is chosen according to (1) its priority,
(2) the number of times it was committed (recorded in the history parameter), and
(3) the number of times the same violation was the object of a message. For example,
if a message discouraging user to drink fruit juice has been already sent in the last
4 days, the persuasive engine decides to consider another violation with the same
priority or the next highest present in the violation package but not sent recently. No
message is generated if no eligible violation is detected.

6.3 Message Composition

Continuing with the diet example, after the choice of the violation, PersEO has
the following information: (1) the user updated his/her food diary adding the list of
foods eaten during lunch (timing), and (2) there are no messages sent in the recent
past to the user that contained feedback about fruit juice (message history). Based
on this information, the system decides the structure and the text content of the
message.

The structure of the message, inspired by the work in [17] and expanded
taking into consideration additional strategies presented in [24], consists of several
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Fig. 7 Model for generating the text of feedback. The choices of template and message chunks
depend on the violation. Different languages entail different linguistic resources. This holds also
for both argument and suggestion

persuasion strategies that can be combined together to form a complex message.
Here we will focus on three main parts: feedback, argument, and suggestion. Their
generation follows the schema described in Sect. 4.3. For each part of the message,
there is a template instantiating it according to the desired language.5

Below we describe the strategies implemented to automate the message genera-
tion, focusing also on linguistic choices:

Feedback is the part of the message that informs the user about his/her unhealthy
behavior. Feedback is generated considering data included in the selected violation:
entity of the violation will represent the object of the feedback, while the level of
violation (e.g., deviation between food quantity expected and that actually taken
by the user) is used to represent the severity of the incorrect behavior. Feedback
contains also information about timing to inform the user about the moment in
which violation was committed (Fig. 7). From a linguistic point of view, choices
in the feedback are related to the verb and its tense: e.g., beverages imply use of
the verb to drink, while for solid food we used to eat. To increase the variety of the
message, the verbs to consume and to intake are also used. Simple past tense is used
when violation is related to a specific moment (e.g., You drank a lot of fruit juice
for lunch), while simple present continuous is used when the violation is related to a
period of time of more days and the period has not yet ended (e.g., You are drinking
a lot of fruit juice this week).

Argument is the part of the message that informs the user about the possible
consequences of a behavior. For example, in the case of diet recommendations,
argument consists of two parts: (1) information about nutrients contained in the
food intake that caused the violation and (2) information about consequences that

5The current version of PersEO supports the generation of messages in English and Italian.
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Fig. 8 Model for generating text of argument

nutrients have on human body and health. Consequences imply the positive or
negative aspects of nutrients. In this case, PersEO uses the rule constraint contained
in the selected violation to identify the type of argument to generate. Considering
the example of violation above, constraint less (fruitjuice <= 200 ml) implies that
an excess of this food can cause negative consequences on user health, due to
an excess of a particular nutrient of this food. Hence, the system needs to ask
for negative nutrients and negative consequences to the Knowledge Layer. On the
contrary, constraint greater (vegetables >= 200 g) implies that the body has many
advantages from getting nutrients contained in that food; so positive nutrients and
positive consequences are asked to the Knowledge Layer.

Moreover, PersEO analyzes the message history to decide if a property returned
by the Knowledge Layer in the violation bean can be used in the argument. Similar
to the approach followed in choosing a violation, properties are eligible for argument
text only if they were not in the text of a message sent in the past few days.
With respect to the linguistic choices, the type of nutrients and their consequences
influence the verb usage in the text. To emphasize negative aspects of the food, we
used the verb contain for nutrients and can cause for the consequences. Positive
aspects are highlighted by the phrase is rich in and the verb help used for nutrients
and consequences, respectively (Fig. 8).

Suggestion This part represents the solution that PersEO wants to deliver to users
in order to motivate them to change their behavior. The model for generating
a suggestion message is shown in Fig. 9. Exploiting the information available,
described at the beginning of this section, PersEO generates a post suggestion to
inform the user about the alternative and healthy behavior that he/she can adopt.
To do that, the data contained in the selected violation are not sufficient. PersEO
performs an additional meta-reasoning to identify the appropriate content that
depends on (1) qualitative properties of food, (2) user profile, (3) other specific
violations, and (4) history of messages sent.
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Fig. 9 Model for generating text of suggestion

First of all, the system asks the Knowledge Layer to provide a list of foods having
properties that render them valid alternatives to the consumed food (e.g., similar-
taste relation, list of nutrients, consequences on user health). These alternatives
are firstly filtered according to the user profile: the system will exclude all the
foods that cannot be consumed by people belonging to certain profiles. Considering
the vegetarians, for example, the system cannot invite this category of people to
consume fish as an alternative to legumes, even if the former is an alternative to
the latter when one considers only the nutrients. An additional filter is applied on
alternative foods. The system cannot suggest the consumption of foods that can
cause a violation of the type less or equal, because this can generate a contradiction
with healthy behavior rules. For example, the system cannot recommend meat as
alternative to cheese as a source of animal proteins, when a rule sets a maximum
quantity of meal.In general this control has more sense when pre-suggestion are
created. Finally, control on messages history is again executed, with the same rules
described above. Regarding the linguistic aspect, the system uses the verbs try and
alternate to emphasize the alternative behavior.

7 Platform Validation

The validation and evaluation of our platform have been tested through a user study
designed within Fondazione Bruno Kessler. The user study consisted in providing
to a group of users a mobile application we created based on the services included
into our platform. We analyzed the usage of a mobile application connected with
our platform for 7 weeks by monitoring information provided by the users and
the associated violations, if any. Our goal was to measure the effectiveness of the
persuasive messages generated by our platform by observing the evolution of the
number of detected violations. This analysis has been performed by considering the
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data provided by the 92 users participating in the user study all selected among the
employees of the Fondazione Bruno Kessler. In order to validate the effectiveness of
the persuasive messages, we also run a control group composed of further 27 users
that used the same mobile application for the same timespan. Users of the control
group did not receive feedback generated by PersEO but only canned text messages
notifying if a rule has been violated. The expectation was to find a higher decrease in
the number of violations through time by the users receiving persuasive messages.

All users have reported their meals on a regular basis (i.e., five times a day
for a period of 49 days), while their physical activities have been reported only
occasionally. For this reason, we focus our violation analysis only on the meal data.
The fact that physical activity data have been reported only occasionally was not
associated with a low usability aspect of the mobile application but the availability of
personal pedometer bracelets. Actually, those who had one of such devices provided
data on a regular basis, but their number was too low to allow for a significant
analysis (even if the trend on the number of detected violations in physical activity
is consistent with the dietary one). It will be part of the future work to improve data
collection about physical activities.

Table 1 shows main demographic information concerning the users involved in
the performed evaluation campaign. All users presented a healthy status. Indeed, in
this first pilot, we decided to do not involve people affected by chronic diseases or
other pathologies.

Results concerning the evolution of the violation numbers are presented in
Fig. 10. The three graphs show the average number of violations per user related to
the QB-Rules, DAY-Rules, and WEEK-Rules sets, respectively. Blue line represents
the number of violations while the red line the average standard deviation observed
for each single event. Then, the green line represents the average number of
violations generated by the control group and the orange line the associated standard
deviation. As mentioned earlier, QB-Rules are verified every time a user stores
a meal within the platform; DAY-Rules are verified at the end of the day, while
WEEK-Rules are verified at the end of each week. The increasing trend of the gap
between the blue and green lines demonstrates the positive impact of the persuasive

Table 1 Distribution of
demographic information of
the users involved in the
evaluation campaign

Dimension Property Value

Gender Male 57%

Female 43%

Age 25–35 12%

36–45 58%

46–55 30%

Education Master’s degree 42%

Ph.D. degree 58%

Occupation Ph.D. student 8%

Administration 28%

Researcher 64%



A Flexible Knowledge-Based Architecture for Supporting Healthy Lifestyles 259

4.00
3.50
3.00
2.50
2.00
1.50
1.00
0.50
0.00

14.00
12.00
10.00

8.00
6.00
4.00
2.00
0.00

18.50
16.00
13.50
11.00

8.50
6.00
3.50
1.00

1

1 2 3 4 5 6 7

1 8 15 22 29 36 43

21 41 61 81 101 121 141 161 181

Nu
m

be
r o

f v
io

la
�o

ns
Nu

m
be

r o
f v

io
la

�o
ns

Nu
m

be
r o

f v
io

la
�o

ns

Meal Sequence ID

QB-Rules Viola�ons

DAY-Rules Viola�ons

WEEK-Rules Vioa�ons StdDev Control Group StdDev Control Group

StdDev Control Group
Day

Week

StdDev Control Group

StdDev Control Group StdDev Control Group

Fig. 10 Evolution of the number of detected violations through the Key To Health project
timespan

messages sent to users. We can observe how for the QB-Rules the average number
of violations is below 1.0 after the first 7 weeks of the project. This means that some
users started to follow all the guidelines about what to consume during a single meal.
A positive result has been obtained also for the DAY-Rules and the WEEK-Rules. In
particular, for what concerns DAY-Rules, the average number of violations per user
at the end of the observed period is acceptable by considering that it drops of about
67%. For the WEEK-Rules, however, the drop remained limited. By combining
the evolution of the number of violations with the demographic information shown
in Table 1, we did not find any particular correlation worthy of discussion. By
considering the standard deviation lines, we can appreciate how both lines remain
contained within low bounds. Indeed after a more in-depth analysis of the data, we
did not observe the presence of outliers.

In order to deeply analyze this fact, we organized a focus group with the users.
During the discussion, we discovered that several users perceived the combination
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Fig. 11 A screenshot of the
interface with the history of
all messages received by the
user. The highlighted one is
the most recent message
received, and it is a “post”
message on an unhealthy
behavior

of some rules very hard to follow. Examples of such rules were the ones related
to vegetables (at least three times a day) and the consumption of milk and yogurt
(at least once a day). In the first case, many users found hard to introduce the
third portion of vegetables within their daily diet. In the second case, some users
experienced a psychological barrier concerning the consumption of such a food
category due to their fear of having some digestion problems. We reported these
feedbacks to the experts that took them into account for a new refinement iteration
of the monitoring rules that will be implemented in the future deployments of the
platform.

Figures 11 and 12 show a couple of screenshot of the mobile application available
to users. In particular here we show two examples of the textual interaction between
the users and the mobile application.
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Fig. 12 A screenshot of the
interface with the history of
all messages received by the
user. The highlighted one is
the most recent message
received, and it is a
“suggestion” message on a
desirable behavior

In addition to text-based realization, other representations have been integrated.
Graphical elements and charts are used to represent user adherence to a healthy
behavior. In particular, we used an HGraph-based representation6 (see Fig. 13)
and a score chart (see Fig. 14) to inform user about his weekly adherence to the
Mediterranean diet. Score is calculated considering all the violations committed by
the user during the week and their violation level.

Finally, we show in Table 2 examples of questions that have been submitted to
users after the pilot with some of the collected answers.

6www.hgraph.org.

www.hgraph.org
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Fig. 13 The HGraph in the
screenshot represents the
Mediterranean diet adherence
of the user over the
correspondent week

8 Conclusions

The contribution presented in this chapter focused on the design and implementation
of a persuasive platform able to monitor people’s habits from both the dietary and
physical activity perspectives. The platform had to motivate them to change their
behaviors through the interaction supported by messages automatically generated,
with the final goal of persuading them into following healthier lifestyles.

We presented and discussed the challenges that need to be addressed from both
the psychological and technological perspectives in order to build an effective
persuasive tool. In particular, we presented the overall architecture by describing
the main technological blocks and how they are connected.
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Fig. 14 A screenshot of the
history of weekly scores
achieved by the user. Scores
represent the Mediterranean
diet adherence of the user
over time

We described how the use of knowledge bases has been integrated in order to
provide a structured and precise representation of heterogeneous information for
supporting the generation of persuasive messages. Then, we presented how the
generation of persuasive conversations benefits from the output provided by the use
of knowledge bases and how these persuasive technologies have been deployed by
detailing the pipeline implemented for supporting the generation of the persuasive
messages delivered to users.

Finally, we introduced how the work presented in this chapter and the experience
collected from a pilot user study leave room to future enrichments of our platform.
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Table 2 Examples of questions submitted to users after the pilot with the related corrected
answers

Question Answers

How did your daily routine change during the
last 7 weeks?

I increased the consumption of vegetables

I discovered the importance of making a rich
breakfast

I appreciate the lightness of eating fish

Which aspect of the mobile application
encouraged you to continue the behavior
change path?

The content of the messages was varying

The HGraph is very useful for understanding
my adherence to the diet

Which facilities would you change in the
mobile application?

To include more education information into
the provided messages

To add graphs providing information about
single nutrients

Which were the difficulties encountered
during the usage of the mobile application?

In some cases the application did not provide
the feedback in reasonable time

Some recipes are not included in the
application
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Visual Analytics for Classifier
Construction and Evaluation
for Medical Data

Jacek Kustra and Alexandru Telea

1 Introduction

In the last decade, machine learning (ML) has made tremendous progresses and
inroads into a wide range of application areas, including image classification, time
series prediction, and text pattern mining, with application to several fields such as
social networks [43], automotive self-driving [30], and, last but not least, medical
science [1].

An important problem that ML addresses is that of classification: Given a set of
observations, the goal is to assign a label from a (typically small) predefined set to
each observation, based on the similarity of such observations with those from a so-
called training set. Classification is central to medical tasks such as diagnosis [29]
and prognosis [1] of various types of diseases based on clinical patient data.

Classification methods can be roughly divided into two main types, as follows:
Deep learning techniques based on artificial neural networks (ANNs) are the

more recent introductions to the field and have shown strong advantages for such
classification tasks, as they require minimal user intervention and fine-tuning [48].
In many cases, one can simply feed the training and/or test data at hand to
such a network and largely rely on the network’s inherent flexibility for learning
relevant features to perform the desired classification. Recent results show very high
classification accuracy for complex problems and datasets [20]. However, ANNs
also have fundamental limitations: They typically require a very high number of
labeled observations for training, in the order of tens of thousands or even more.
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Obtaining such labeled datasets can be impractical or even impossible in certain
medical contexts, e.g., where observations are patients having a rare condition
and/or when labeling incurs high manual effort [5]. In addition, the understanding
of the model’s intrinsic working and the assumptions underlying the relationships
between features can be of key importance to ensure human (domain) knowledge
and supervision are taken into account when constructing a model and also to convey
trust in how the model operates.

Explicit features are the more traditional classifier engineering methods. Here,
the classifier designer explicitly specifies how to extract several features (also called
dimensions or variables) from the input data, following established insights and
practices in a given field on which aspects of the data are discriminative for the
different classes of interest. Using classifiers based on explicit features can be more
effective than using ANNs. However, this approach has its own challenges: Simple
rule-based models (a subclass of explicit-feature classifiers) are usually defined
based on vague heuristics; and mixing domain expert knowledge with data insights
is a complex task as it requires “showing” the domain expert how the data is actually
used by the model. Applying all above in practice is hard as several questions need
to be answered, regarding what is the nature of hard-to-classify observations, which
classification technique is the best and why, and how to set its parameters. Exploring
the high-dimensional space spanned by all these choices, a process we next call
classifier engineering, is very challenging, time consuming, and error prone [26].

Visual analytics (VA) addresses the problem of understanding large amounts
of high-dimensional unstructured data by interactive and iterative exploration of
depictions of such data [24, 25]. As such, VA can be an important instrument
in the toolset of engineering classifiers based on explicit features. Recent efforts
indicate promising results for combining ML and VA techniques for classifier
engineering [45].However, to date, VA has been rarely documented in how it
supports this process end-to-end, i.e., covering all the steps of dataset structure
exploration, feature assessment and selection, classifier accuracy comparison, and
classifier improvement. One key reason for this is that ML and VA have evolved
historically separately, with limited cross-discipline dissemination.

In this work, we extend the recent VA approach and VA toolset of Rauber et al.
for explicit-feature classifier engineering [45] in two main directions:

• We extend the functionality of the abovementioned toolset with additional
classifiers, feature selection methods, and manual data clustering methods;

• We present a detailed step-by-step application of this toolset to the problem of
engineering a classifier for predicting biochemical recurrence, an indicator of
potential cancer relapse after prostate cancer treatment, from clinical patient data.
This presents concrete evidence of the added value of our approach and also
provides a practical example of how to cover all the steps required for effectively
and efficiently using VA in such a classifier engineering problem in a real-world
medical context.
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2 Related Work

We outline related work in ML and VA along two main axes: classifier design and
visual analytics for classifier design, as follows.

Classifier Design Let D = {di}, 1 ≤ i ≤ n be a set of observations, or
samples di = (d1

i , . . . , dm
i ) taken from a m-dimensional space D , where d

j
i are

the so-called dimensions, or features, of a sample. We denote by the feature vector
fj = (d

j

1 , . . . d
j
n ) the values of feature j over all samples and by F = {fj },

1 ≤ j ≤ m, the set of all m feature vectors. Feature values d
j
i can be either

quantitative (real) values or categorical values. Let L be a set of categorical labels or
classes. Briefly put, the problem of designing a classifier for D is to find a function
f : D → L which associates to any sample in D a label in L. To design f ,
one typically uses a training set of labeled samples Dt = {(di , li )} ⊂ D × L,
1 ≤ i ≤ n, to maximize the number of samples in Dt for which f (di ) = li .
Different optimization methods give birth to different classification techniques, such
as k nearest neighbors (KNN) [3], random forest classifiers (RFC) [12], support
vector machines (SVM) [8], and learning vector quantization (LVQ) [27]. To test f ,
one typically counts, for a test set of labeled samples DT |DT ∩Dt = ∅, the number
of correctly labeled samples di ∈ DT |f (di = li ). Besides this simple so-called
classifier accuracy, more complex measures can be used, such as the area under the
receiver operator curve (AUROC) [15].

The challenges of developing a good classifier—finding a f which yields high
accuracy and/or AUROC values—can be grouped into intrinsic and technical ones.
Intrinsic challenges relate to the availability of a “good” set of features fj which
capture differences between the different classes, the availability of a sufficient
number of diverse samples that cover well the underlying phenomenon that we wish
to classify, and the accuracy of feature measurements f

j

i and assigned labels in Dt .
We call these challenges intrinsic since one cannot typically alleviate such issues by
changing the classifier technique and/or its parameters. Technical challenges relate
to the choice of optimization method and optimization parameters used to compute
f —or, in more familiar words, how one preprocesses and/or selects the features,
samples the hyperparameter space of f , and chooses the actual classification
technique f . Intrinsic challenges are often outside the full control of the classifier
engineer. In contrast, the technical challenges can be seen as a meta-optimization
problem: How can we support the engineer in the process of design, training, and
testing a classifier, so as to obtain maximal accuracy results with minimal effort?

Visual Analytics for Classifier Design Aware of the abovementioned challenge
of classifier design, also called the “black art” of, or opening the “black box” of,
classifier design [11, 36, 38, 53, 57], several types of methods have been proposed
to help various steps of classifier engineering. The most common techniques include
correlation analysis, displayed, e.g., by matrix plots, to show the correlation of any
pair of features (fi , fj ); and ROC graphs to show how specificity and sensitivity
are related. Dimensionality reduction (DR) techniques, also called projections, such
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as PCA [22], LAMP [21], or, more recently, t-SNE [55], are used to show the so-
called structure of the input data D by means of 2D scatterplots where inter-point
distance reflects sample similarity in D , helping one to correlate sample clusters
with their assigned labels and thus detect the kind(s) of observations that are hard to
classify [4, 31, 32, 49, 56]. Given the recent popularity of ANNs, specialized visual
analytics techniques have been designed for these architectures, to explore, e.g., the
activation patterns of hidden-layer neurons [46] or to find problems in the network
design during training [44]. A recent survey of VA techniques for deep learning
is given in [19]. While being good examples of the added value of VA for machine
learning, such techniques are not applicable to more classical designs, such as KNN,
RFC, SVM, or LVQ, which we consider in our work.

For such architectures, features play a key role in the analysis, as one aims to
understand how they correlate with each other but also how their values affect
the similarity of and, ultimately, the labels assigned to samples. For these ends,
specific techniques have been designed. Confusion matrices are used to compare
the performance of different classifiers [52]. DR methods can be modified to
implicitly label unsupervised clusters with the identities of their most discriminative
features [9]. More involved toolsets aim to cover several of the classifier engineering
steps. Early on, RadViz [17] proposed a DR technique where one can see both
the data structure (clusters) and how all features affect their appearance. Atop of
this, clustering techniques are provided to explicitly segment D into sets of similar
observations; feature scoring, based on the t statistic, which ranks how important
a feature fj is to samples having a given class li as opposed to samples of all
other classes lk �=i , allows users to eliminate features which do not strongly help
classification. However, RadViz has several limitations: (1) its DR method preserves
sample similarity far less than state-of-the-art techniques such as LAMP or t-SNE;
(2) feature scoring is used only to order features, yielding different scatterplots of the
input data; mechanisms for actual feature selection are not provided; (3) visual data
exploration is not integrated with actual classifier construction, training, and testing,
which breaks end-to-end support for classifier engineering (Sect. 1). RadViz’s
limitation (1) above was alleviated by the VizRank [28] and FreeViz [10] tools which
added the ability to select DR scatterplots which best visually discriminate between
classes. However, limitations (2) and especially (3) are still present in these tools.

The above limitations of RadViz and its followers are alleviated by a recent
toolset for classifier engineering proposed by Rauber et al. [45]. The least square
projection (LSP) method [41] is used for constructing DR scatterplots, which gives
a better data structure preservation than the earlier techniques used in [10, 17, 28].
Instead of RadViz’s simple t test, more advanced feature scoring techniques
including univariate ones (χ2, one-way ANOVA), multivariate ones (IRelief [51]),
and classifier wrappers (ensembles of randomized decision trees [12], randomized
logistic regression [34], and recursive feature elimination [14]) are used. These
allow users to interactively select features which characterize well-specific sample
clusters. As demonstrated in [45], this toolset effectively supports reducing the
dimensionality of an input dataset (by feature elimination) before training a
classifier on it.
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3 Part 1: Visual Analytics Toolset and Workflow

We next describe the original toolset of Rauber et al. [45] and our implemented
extensions (Sect. 3.1) and outline the workflows supporting classifier engineering
that our extended toolset, called featured, supports (Sect. 3.2).

3.1 Featured Toolset

Original Tool The tool in [45] provides several interactive views for data explo-
ration and analysis—see all views in Fig. 1 except the Feature view, which we added
in this work. These work as follows. The tool reads as input a sample dataset D

stored in simple CSV matrix format (samples di are rows, features fj are columns).
Upon loading D, the observations di are displayed in the Observation view as text
items, or, if image tags are provided for these, as thumbnails, and the names of the
features fj are listed in the Feature selector view. Both these views allow selecting
a subset of samples SD ⊂ D or of features SF ⊂ F to work with next. The
Observation map displays all selected samples SD as a 2D scatterplot, using PCA
or LSP as projection technique. Samples can be colored by the value of a selected
feature fj , or class label. This allows seeing whether there is apparent structure in
D, e.g., in terms of clusters or outliers. To explain which features determine such
structure, one can next select SD in the Observation view (see the dark red points in
Fig. 1) and invoke the Feature scoring view, which displays, for all features fj ∈ F ,
a score indicating how much each fj contributes to the separation between S and
D \ S. Scores are computed by various scoring techniques, as explained in Sect. 2.
Features are shown in the Feature scoring view as bars scaled and sorted by score

feature selector observation view

group view
observation map feature map

feature score view

lowest
scoring
feature

highest
scoring
feature

sc
or

e

Fig. 1 featured toolset for classifier engineering using visual analytics (Sect. 3.1)
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and colored by the frequency of samples over the entire range of a given feature
using a green (low) to yellow (high) colormap. For instance, in Fig. 1 we see that the
highest scoring feature (rightmost bar) has mostly low and mid-range values (yellow
at the bottom and halfway that bar, green for the rest of the bar). The Feature scoring
view also allows selecting a subset of features SF to work with next, upon which
the Observation view updates to project D only considering these features. Finally,
the Group view allows saving selected sample subsets SD under given names, for
further analysis.

Tool Extensions Overall, the original tool [45] allows a flexible way to explore
the structure of a high-dimensional dataset D in terms of finding sample clusters
or outlier samples and explain these by means of relevant features and/or feature
values. While useful, however, such actions do not fully support the end-to-end
classifier engineering pipeline. To this end, we extended the tool in the following
three main directions:

• Classifiers: We integrated five types of classifier techniques in the tool: KNN,
RFC, SVM with linear and radial basis functions (SVM-L, SVM-R), logistic
regression (LR), and two LVQ variants. To use any of these, the user can
interactively select the training and test sets in the tool’s various views, run k-
fold cross-validation, examine the misclassifications in the Observation view,
and examine the overall accuracy and AUROC metrics. For small datasets (up
to 20,000 observations, 10–20 dimensions), the current implementation performs
such operations in under 10 s on a modern PC. All classifiers accept data which
can be normalized either by scaling or standardization (see next Sect. 4.5) and can
use various similarity metrics—Euclidean, cosine, or learned distances (LVQ).

• Projections: We extended the original tool by adding IDMAP [35], Sammon
mapping [47], LAMP [21], and t-SNE [55] as projection techniques. This is
important, since, as known in projection literature, no single projection technique
performs well (in terms of preserving the data structure) on any type of
dataset [4, 49, 56]. In particular, t-SNE has shown to be a very effective predictor
of the ease of classifying data [54].

• Feature map: To better understand how different features correlate with each
other and contribute to the data structure, we provide a new Feature map view
(see Fig. 1. Every point in here is a feature vector fj ∈ F . The points are placed
based on a 2D projection of the set F , using as similarity metric the Pearson
correlation or Spearman’s rank between these feature vectors. Hence, close points
in this plot indicate strongly similar features over the entire sample set D, while
far away points indicate independent features. Separately, points are colored to
depict the scoring of all features for the discrimination between a selected sample
set SD and the remaining samples D \ SD . In other words, this view enhances
the Feature scoring view by showing not only which features discriminate most
between SD and D \SD but also how these features are correlated. We show next
how this information is helpful in classifier engineering.
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3.2 Visual Analytics Workflow

Explaining a VA workflow is, in general, hard [24, 25]. Yet, in our classifier
engineering context, the key elements of our VA approach are as follows:

• Show the data at hand (D) and its classes L and how, where, and why these
do or do not correlate. This way, engineers can see whether and how D is
“partitioned” into different groups (clusters) of similar observations, and whether
there is a correlation between these clusters and their labels; lack of such (strong)
correlations indicates for which observations and/or which labels we will expect
classification problems;

• Show which features fj of our dataset D are most responsible for correlations of
observations with label values. This helps understanding the predictive power of
different features;

• Show how feature engineering effectively influences classification accuracy. This
way, one can navigate the design space of the classifier, understanding easier
which feature-engineering actions were useful (in increasing accuracy, and for
which observation or label types) and which not.

The way in which VA supports all the above tasks, and is therefore instrumental
in helping classifier engineering, is illustrated next via a concrete, real-world
application.

4 Part 2: Application in Predicting Biochemical Recurrence
After Prostate Cancer Treatment

4.1 Motivation

Predicting the evolution of medical conditions in terms of different metrics such as
relapse, survival, or quality of life following a given treatment can provide vital
information to select the optimal treatment for a particular patient. Having this
prediction available for several treatment options can provide insights into which
treatment is optimal for the specific patient. In particular, for a given treatment,
being able to infer the progression of a certain disease based on the patient’s clinical
and disease-specific diagnostic information can save large amounts of effort, cost,
and patient well-being especially in the early stages of the disease’s evolution. Such
is the case for prostate cancer. After patients diagnosed with this cancer type are
treated, a treatment (or lack of it, by assigning it with active surveillance) plan is
defined for the patient taking into account the available medical information and
patient preferences. Treatment options typically involve surgery (prostatectomy),
chemotherapy, radiation therapy, or a combination therapy involving two or more of
the above options. Following treatment, the increase in concentration of a prostate-
specific antigen (PSA), a phenomenon called biochemical recurrence (BCR), is a
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good indicator for potential cancer recurrence, either in the prostate or other parts
of the body. Since BCR typically appears earlier than other signals that diagnose
cancer relapse by several years, predicting its appearance can save precious time
for controlling, or preventing, the evolution of the disease [39, 50]. Therefore,
the measurement of BCR typically happens at discrete points in time following
treatment. Since BCR is a time-dependent outcome, for the purpose of this study, we
define two classes: 0—no recorded relapse after treatment, or 1—relapse recorded
after 5 years following treatment.

Given the influence a prediction of BCR can have on the medical decision
for a patient based on the information present prior to treatment, several research
questions emerge:

• Is it possible to reliably predict BCR values from the above measurements?
• Which of the above measurements are the most discriminative in predicting

specific BCR values?

If answered positively, the first question indicates that “standardized” decision-
support systems can be offered to physicians so that they profit from the knowledge
captured by such systems which, in general, can be wider and/or more diverse than
their personal experience. Separately, if we have ways to objectively and intuitively
answer the second question, this will increase the confidence (and ultimately the
adoption rate) of such automated decision-support systems by medical specialists.
All in all, this has the potential to increase the efficiency and/or effectiveness
of diagnosis and treatment of prostate cancer, with important cost savings and/or
quality improvement as outcomes.

In this section, we detail the engineering of a set of classifier systems for
predicting BCR values from clinical measurements for prostate cancer. Key to this is
our use, during the whole process, of the visual analytics (VA) techniques provided
by the featured toolset introduced in Sect. 3 for data exploration and classifier
construction, testing, and improvement. We next describe these steps, as well as
our obtained results. For each step, we outline the relevant questions to be solved
and how VA assisted in answering these to lead to the next step.

4.2 Data

The input data (used next for training and testing the classifier) consists of a
set D of prostate cancer patients where for each patient, a total of mtotal = 50
features are measured. The actual clinical measurements took place over different
periods in time and were performed by an unknown number of different medical
specialists. From these m = 50 values, we next manually selected a small subset of
m = 9 features (see Table 1) to use next in predicting the presence of biochemical
recurrence (BCR) within a period of 5 years from the measurement moment.
The selection was based on the type of features which are, to our knowledge,
widest available and easiest to measure in medical practice. Hence, ground truth
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Table 1 Input data for prostate cancer prediction (Sect. 4.2)

Feature name Feature type Feature range

Age at surgery Quantitative [37.6,78]

Prostate volume Quantitative [9,365]

Preoperative PSA level Quantitative [0.11,107.11]

Number of biopsy cores Integral [1 . . . 28]

Number of positive biopsy cores Integral [1 . . . 10]

Positive biopsy cores (%) Quantitative [10,90]

Primary biopsy Gleason score Integral [2 . . . 5]

Secondary biopsy Gleason score Integral [2 . . . 5]

Clinical stage Ordinal {T1, T1a, T1b, T1c, T2, T2, T2b,

T2c T3, T3a, T3b, T3c}

is available for the data in terms of two class labels—patients showing, respectively
not showing, BCR within 5 years from measuring the nine features. Given this data,
we want to construct a classifier able to accurately predict these two classes.

4.3 Preprocessing

To make the data directly usable, we first eliminate all samples (rows in D) where
at least one of the nine columns of interest (eight features plus class label) misses
the values. The second step regards the treatment of the clinical stage feature. As
shown in Table 1, this is an ordinal variable taking values over the three stages T1,
T2, and T3; the sub-labels (a, b, c) indicate gradations within each major stage;
values having no sub-label, e.g., T1, indicate that for that patient no finer-grained
information is available. We convert these ordinal values into quantitative ones by
using

T ij = α(i − 1) + βval(j), (1)

where val(a) = 1, val(b) = 2, val(c) = 3, and val(empty) = 0, where empty

designates entries for which we have no sub-label value, e.g., T1. The parameters
α > 0 and β > 0 with α > β control the relation between the importances of the
major stages (T1, T2, T3) to that of the importances of the sub-stages (a, b, c). We
set by default α = 10 and β = 1. The effect of these two parameters is discussed
in detail next in Sect. 4.6. With this conversion, we have now a fully quantitative
dataset which we can use for classifier engineering, as described next.
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4.4 First Exploration: How Hard Is the Classification
Problem?

Before actually aiming to build (train) a classifier, we want to assess how hard the
classification problem may be and how the available eight features contribute to
the separation of the two classes. For this, we project all the available samples
using t-SNE, as it is known that this method achieves a quite good separation
of existing data clusters [55], and color the projected samples by their two class
labels (Fig. 2a). We see that there is no clear separation between the blue (no BCR
within 5 years) and orange (BCR within 5 years) samples. This already indicates a
hard classification problem ahead of us. Next, we select all points of one class and
construct the feature map using as feature similarity the Pearson correlation and as
feature scoring technique the χ2 test, respectively (Sect. 3.1). The resulting image
(Fig. 2b) shows us three insights: (1) We see that there are no strongly correlated
features, except the total number and percentage of positive biopsy cores, whose
respective points are relatively close in the map. This indicates that, within our eight
feature set, there are no obviously redundant features. (2) The number of samples
is quite unbalanced—there are many more blue than orange ones. This will need to
be considered when engineering the classifier. (3) We next see that only a subset of
features have high scores (dark red points in the map). This suggests that we could
drop the other features (brighter-color points) from our dataset without reducing the
chances of building an accurate classifier. However, we need to further check this
hypothesis. For this, we use the feature scoring view, with ensembles of randomized
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Fig. 2 First visual exploration of the input data (Sect. 4.4). (a) Observation view, (b) feature map,
(c) feature score view
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decision trees [12] as scoring technique (Fig. 2c). As visible, the relative scores
of the most discriminating features are now very different as compared to the χ2

scoring technique used earlier. This indicates that we cannot, so far, drop any of
the available eight features for being not useful for classification. Separately, this
indicates that the type of considered scoring function, thus implicitly the distance
metric used to compare samples, is very important. We will revisit this insight later
on.

4.5 Classifier Design: First Experiments

Based on the insights learned during the first visual exploration (Sect. 4.4), we next
proceed to the actual training and testing a classifier, as follows. We first extract
a balanced dataset from the input data, based on insight (2) found earlier, using
random sample selection from the larger class. With this dataset, we next train and
test four different classifiers (KNN, RFC, SVM-R, SVM-L), and we also consider
a dummy classifier, for sanity checking. Optimal classifier parameters are found by
grid search using the classifier accuracy acc (number of correctly classified samples
divided by total sample count) as optimization criterion. For testing, we use fivefold
stratified cross-validation with a split of 66% to 33% between training and test
data. For normalization of the different features (columns), we use both scaling and
standardization.

Table 2 shows the obtained accuracy results from this first experiment. As visible,
the standardization normalization is slightly but consistently better than the scaling
normalization. As such, we use this next as default in our designs. As expected,
the dummy classifier returns an accuracy of 50%, which tells us that our testing
pipeline is correctly set up. Most importantly, we see that the classification accuracy
is quite independent on the classifier method and also relatively low. Hence, we ask
ourselves next which steps can be taken to improve this accuracy.

Table 2 Classifier accuracy for first design (Sect. 4.5)

Standardization normalization Scaling normalization

Classifier technique Accuracy Classifier technique Accuracy

KNN 69.853 KNN 69.345

RFC 66.878 RFC 66.369

SVM-R 66.666 SVM-R 66.634

SVM-L 65.423 SVM-L 65.201

Dummy 50.000 Dummy 50.000
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4.6 Classifier Refinement: What Can We Do Better?

To improve our accuracy results, several directions can be considered. A first and
quite obvious one relates to our initial decision of converting the categorical clinical
stage values into quantitative ones (Eq. (1)). Before actually trying to find better
values for the α and β parameters, let us see how the engineered quantitative clinical
stage feature given by Eq. (1) correlates with the class labels and classification
results. For this, we use the observation view to project our balanced dataset using
again t-SNE, and color the samples by classification correctness (Fig. 3a), next by
the ground-truth labels (Fig. 3b), and finally by the values of the clinical stage
feature computed with the defaults α = 10 and β = 1 (Fig. 3c). We find several
insights by studying these plots. First, we see that the data appears to be separated in
three large clusters Γ1–Γ3, each consisting of two smaller sub-clusters (see outlines
in Fig. 3a). However, these clusters do not correlate in any way with the class
labels (Fig. 3b). Moreover, the classification errors are equally spread over these
clusters (Fig. 3a). Yet, the clusters correlate quite well with the value of the clinical
stage feature—high values in the two top clusters Γ1 and Γ2, low values in the
bottom one Γ3 (Fig. 3c). This suggests that the engineered feature may influence the
data structure in a too strong, and actually undesired, way that does not help the
classification.

To further understand this, we test and train our classifiers using different values
for α and β in Eq. (1). As we aim to visually explore these results at near-interactive
rates, we do not perform now the more costly fivefold cross-validation used earlier
(Sect. 4.5), but run a single test-train experiment, which takes only a few seconds.
Figure 4 shows the observation views for five (α, β) combinations, for the RFC
classifier, ranging between very strong differences considered between the major
clinical stages T1, T2, and T3 (α = 100, β = 1), through moderate differences
(α ∈ {3, 10}, β = 1), no differentiation between sub-stages (α = 1, β = 0),
and completely dropping this feature (α = 0, β = 0). Similar results to Fig. 4

no BCR < 5 years
BCR < 5 years low high

clinical stage
a) b) c)

correctly classified
misclassification

Fig. 3 Understanding the distribution of the engineered clinical stage feature (Sect. 4.6)
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no BCR < 5 years
BCR < 5 years

a) b) c) d) e)

Fig. 4 Understanding the parameters α and β of the engineered clinical stage feature (Sect. 4.6).
(a) α = 100, β = 1; Tij ∈ [0, 1, 2, 3, 100, 110, 120, 130, 200, 210, 220, 230]; acc = 63.048%,
(b) α = 10, β = 1; Tij ∈ [0, 1, 2, 3, 10, 11, 12, 13, 20, 21, 22, 23]; acc = 63.048%,
(c) α = 3, β = 1; Tij ∈ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]; acc = 63.147%, (d) α =
1, β = 0; Tij ∈ [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2]; acc = 62.351%, (e) α = 0, β = 0; Tij ∈
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; acc = 62.849%

are obtained for the other considered classifiers (omitted here for brevity). These
images give us additional insights, as follows. First, we see that the obtained
accuracy values are lower—roughly 63 vs 66–69%—than those obtained when
using the more exhaustive evaluation discussed in Sect. 4.5. This is expected, given
the rapid training-testing procedure explained above. More interestingly, we see that
the α and β settings appear to not significantly affect the class separation nor the
classification accuracy. This suggests that the clinical stage feature is completely
non-discriminative for the two considered classes. However, we have seen that
this feature scores quite high discrimination-wise (χ2 test, Fig. 2b). Putting these
two insights together, we formulate the hypothesis that the problem (of relative
insensitivity of the RFC classifier to the clinical stage feature) is due not so much to
the engineering of this feature (α and β values), but to the distance metric that this
feature is next used with inside the classifier.

To test this hypothesis, we next examine how the range of the T ij values is
correlated to the classification accuracy. As we have seen in Fig. 3, the samples can
be split into three groups Γ1–Γ3, where only Γ1 has high T-value samples—more
precisely, T ij equal to values in the T2 and T3 stages. Let us now select all samples
in Γ1 having such high T-values (Fig. 5b) and remove these from the dataset, by
interactively selecting the dark-colored points in the observation view in featured.
The remaining points are shown in Fig. 5c. We now run the same classification
procedure on this subset of points and obtain a larger accuracy (acc = 65.379%
vs acc = 63.546%. Interestingly, the misclassifications are not correlated with the
T-value distribution in neither the initial dataset nor the dataset with removals—see
the uniform spread of blue and red points in both Fig. 5a, c. We have now a number
of interesting findings: (1) The analysis in Sect. 4.4 showed us that clinical stage
can be highly discriminative between our two classes, depending on the considered
distance function. (2) The current analysis showed us that samples with high T-
values confuse the classifier.
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correctly classified
misclassification

correctly classified
misclassificationlow high

clinical stage
a) b) c) d)

low high
clinical stage

select and
remove

Fig. 5 Understanding how different ranges of the engineered clinical stage feature affect classi-
fication accuracy for the RFC classifier (Sect. 4.6). (a) All data: acc = 63.546%, (b) find high
T-value samples, (c) remove these samples, (d) remaining data: acc = 65.379%

Taken together, we formulate the hypothesis that one issue with the current set-
up is a suboptimal distance function used internally by the considered classifiers. So
far, we have used the Euclidean m-dimensional distance metric (on the standardized
data values), which is the default in featured. We next run the same classification
experiment as in Fig. 5a, but using the cosine distance metric, and use all available
classifiers in our tool. We obtain the following accuracy values: 66.932% (KNN),
68.147% (RFC), 68.526% (SVM-R), and 68.825% (SVM-L). These are all (slightly)
higher than the accuracy obtained by using the Euclidean metric (63.546%, RFC).
Hence, we validate the hypothesis that the distance metric used has a clear effect on
classification accuracy.

This finding leads us to the final refinement in our classifier design: We consider
using Generalized Matrix Learning Vector Quantization (GMLVQ) [16], a variant of
the classical LVQ classifier [27] which is able to learn the distance function from the
training set. GMLVQ works as follows (for full details, we refer to [16]): We firstly
define a set of so-called prototypes wi ∈ R

m. Secondly, we associate a (typically
equal) number of prototypes with each class. Thirdly, during training, prototypes are
moved in R

m so that their nearest neighbors from the training set match their class
labels, using a gradient-descent optimization process. Atop this process offered by
LVQ, GMLVQ also allows learning the distance metric d(xj ,wi ) used to compare
a training sample xj with a prototype wi , defined as

d(xj ,wi ) = (xj − wi )
T A(xj − wi ), (2)

where A is a m-bym real-valued distance matrix whose entries are learned during
the aforementioned optimization process. If A is a diagonal matrix (as in classical
LVQ), we obtain the classical Euclidean distance metric. Other values for A model
distances where different features have different weights. Intuitively put, GMLVQ
resembles a KNN classifier where the prototypes are the centers of several m-
dimensional Voronoi cells, and all samples within a cell get the label of the cell’s
prototype. Given that A is not an identity matrix in GMLVQ, the boundaries of
these cells can take complex shapes and therefore are able to approximate decision
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boundaries better than the linear boundaries of LVQ. GMLVQ was shown in the past
to yield good results for problems (datasets) where other classifiers did not perform
well [16].

To assess the effectiveness of GMLVQ, we use again our balanced dataset
that we considered so far. We train GMLVQ using two prototypes, one for each
class. After training, we use the same dataset for testing, to assess the training
errors. Moreover, we now perform a more detailed analysis of the quality of the
classification, considering not only the aggregated accuracy but the finer-grained
receiver operator curve (ROC). Figure 6 shows the obtained results. The first three
images (a–c) show the evolution of the total training error, training error for the two
classes, and area under the ROC (AUROC) as a function of the gradient-descent
optimization iterations performed by GMLVQ, for 50 iterations. To construct the
ROC, during the test phase, we consider that, for a GMLVQ classifier using two
prototypes (w1 for class 1 and w2 for class 2), a test sample x is assigned to class
1 if

d(x,w1) ≤ d(x,w2) − θ, (3)

and else to class 2. Here, θ represents the bias given to class 1, and d is given
by Eq. (2). The fourth image (d) shows the final ROC obtained. We see how all
error metrics converge quickly after roughly 30 iterations. We obtain an average
error rate of 35% for the BCR within 5-year class and 25% for the no BCR within
5-year class, respectively (Fig. 6), yielding an aggregate average error of 30% for
both classes (Fig. 6a). The corresponding AUROC value reached by optimization is
0.7624 (Fig. 6c). We evaluate the accuracy acc by selecting the point on the ROC
corresponding to a bias θ = 0 (Eq. (3)), i.e., for which GMLVQ assigns to a sample
the label of the closest prototype (Fig. 6d, point marked θ = 0). We obtain acc =
75.2%. This is 10% higher than what we could obtain with all the earlier classifiers
which used the Euclidean or cosine distances.

As these findings are encouraging, we aim to strengthen them by a deeper
analysis. For this, we use again the balanced dataset, but perform now tenfolds of
training and testing, with a 66% vs 33% training vs testing data split. Figure 7 shows
the results. As visible, these are very similar to the training error analysis: GMLVQ
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Fig. 6 GMLVQ training errors for balanced dataset. (a) Total training error, (b) per-class training
error, (c) area under ROC (AUROC), (d) final ROC
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Fig. 7 GMLVQ training and testing errors for balanced dataset, tenfold cross-validation. (a) Total
training and test errors, (b) per-class training errors, (c) AUROC, training and test sets, (d) per-class
training errors, (e) final ROC (average, all folds)
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Fig. 8 GMLVQ training and testing errors for unbalanced (full) dataset, tenfold cross-validation.
(a) Total training and test errors, (b) per-class training errors, (c) AUROC, training and test sets,
(d) per-class training errors, (e) final ROC (average, all folds)

converges again quite quickly (25 iterations) and delivers an average error of 30%
for both the training and test set. As before, the per-class errors (training and testing)
are higher for the BCR within 5-year class (roughly 35% vs 25%, respectively). The
AUROC values for training and testing are both 75.5%. Choosing again the point on
the ROC in Fig. 7 for θ = 0 (Eq. (3)), we obtain a classification accuracy of 75.2%.

To further confirm these good results, we finally consider the entire unbalanced
dataset (see Sect. 4.4). We perform again tenfolds of training and testing, this time
with a 33% vs 66% training vs testing data split. The training set is always balanced,
randomly picked from the full dataset. In contrast to the previous experiments, we
now use four prototypes for each of the two classes, in order to assess whether
the performance of GMLVQ is affected by this choice. Figure 8 shows the results.
Comparing these with Fig. 7, we find a slightly slower convergence requiring about
40 of the 50 iterations used. The average error (over both classes) is the same,
roughly 30%, with a slightly different balance between the BCR within 5-year class
(35%) and the no BCR within 5-year class (5%). This is explained by the way in
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which the dataset is unbalanced. The average AUROC, however, is still quite good
(0.74). For the chosen point on the AUC (Fig. 8e, θ = 0), we obtain an accuracy of
77.1%, which is quite consistent (actually, slightly higher) than the value of 75.2%
obtained for the previously considered balanced dataset.

In conclusion, the GMLVQ delivers the best results (accuracy of just over 77%)
from all studied methods.

5 Discussion

We discuss next several relevant points related to our proposal of using visual
analytics (VA) for classifier engineering.

Added Value of VA A very important question to answer is: What has been
precisely the main added value of using VA in the process of classifier engineering
for our application? The answer to this question is twofold. Firstly, VA provides to
classifier designers insights on the consequences of all considered design choices
(feature engineering, feature selection, and classifier design, training, and testing).
This allows forming and testing hypotheses as to the optimality of a certain decision.
When such decisions test positively, the respective design choices can be frozen
and the design process advances to the next step. In the opposite case, the designer
literally sees which are the undesired consequences of a design decision and can
formulate hypotheses (new design choices) to next test. This way, VA “drives” the
design process in a simpler and more controlled way than if one had to blindly
choose directions for exploring the design space. Secondly, VA provides a way for
actual end users of a classification system to visually understand how the system
arrived at a given decision (label assignment) for a given observation. This can help
the acceptance of such a system in decision-support contexts, especially when the
end users are not machine learning experts.

Practically, using VA during our classifier engineering, we have been able
to solve the problems of converting the clinical stage values and choosing the
distance metric (and implicitly, classifiers that can handle this). Practically, all the
experimental work described in this chapter has spanned under 10 h. This is far less
than typically needed for refining classifier pipelines for similar contexts [13].

Related Workflows End-to-end workflow construction tools are becoming more
and more pervasive in ML. For instance, RapidMiner [18] and KNIME [6] aim at
roughly the same high-level end goal as our tool—to support the end-to-end data
inspection, preprocessing, classifier engineering, validation, and refinement for a
given problem domain. However, several differences exist between our tool and
these. First and foremost, our VA approach, where the user is tightly integrated in
an interactive sensemaking loop (observe the data, find patterns, change parameters
of the pipeline, repeat until obtaining the desired result), is less present in these two
tools, which advocate a more classical “waterfall” design. Second, our visualization
options heavily rely on the use of multidimensional projections, and in particular
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t-SNE, which have been found to be very well suited to explore high-dimensional
data, especially when one wants to reason about observation groups. RapidMiner
and KNIME, to our knowledge, do not offer t-SNE or such more advanced
projections (with the exception of Self-Organizing MAps). Finally, they also do
not incorporate some more advanced classification techniques, such as Generalized
Matrix Learning Vector Quantization (GMLVQ). More importantly, as already
explained, our main goal in this chapter is not to claim the superiority of any
particular type of feature engineering, feature selection, or classifier technique,
but to show how visual analytics can be the key element that efficiently binds all
engineering actions together when designing a non-trivial classification system.

Limitations While useful, our VA proposal and its support in the featured toolset
has several limitations, as follows. First and foremost, we do not explore in detail
the entire space of design possibilities spanned by the normalization and selection of
input features, possible distance metrics, classification techniques, and hyperparam-
eters. This is, we believe, unavoidable, since this space is simply too large to densely
sample along all its dimensions in an effective way. Nevertheless, we argue that the
visual feedback provided by VA, via the different views of featured (observation,
scoring, and features), coupled with the user’s ability of directly controlling all
aspects of the classification pipeline from within the tool, provides insights that
allow the designer to use his/her intuition to limit the search effort toward finding
a good design. We follow here the same rationale used earlier when coupling
scientific visualization with numerical computation in so-called computational
steering approaches [37]. Second, the ability of projections to accurately expose
high-dimensional data structure is well known to be imperfect [33]. However, we do
not use projections to predict actual classifier accuracy, but only to gain insights on
general trends, such as the correlation of clusters with specific features and feature
values, which next help our classifier engineering decisions.

Implementation featured is implemented mainly in Python, using Qt for the
graphics interface. Classifiers, feature scoring techniques, and the t-SNE projection
are provided via the scipy, scikit-learn, and mlpy Python packages [2, 23, 42]. Third-
party projection techniques such as LAMP, IDMAP, and Sammon mapping, and
LSP, are provided by the Java-based Projection Explorer framework [40] via Python
wrapping. For GMLVQ, we based our implementation on the open-source code
available at [7].

6 Conclusions

We foresee two types of effective extensions of this work, as follows. On the
technical side, we aim to extend featured with mechanisms that provide a consensus
outcome for its key dimensions (projections, feature scoring metrics, and classifi-
cation techniques). This way, users can decide much easier on the importance of
an obtained insight, e.g., based on a voting scheme. On the application side, we
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aim to perform a more in-depth study of the prediction accuracy of prostate cancer
relapse, based on more samples (patients), considering more dimensions (features),
and studying how the machine predictions match predictions performed by actual
medical specialists.
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1 Introduction and Related Work

Clinical decision support is an emerging area where the combination of information
systems and humans interacts to perform decisions on diagnostics or treatment
selection [1, 43]. In this interaction, previously collected data is processed by the
system, interfaced to the user, e.g., by means of visualization, and a final decision is
made by a human being [26].

In modern information systems, the available information is typically much
more than one single individual can interpret within the time constraints that make
information—and inferred knowledge—useful for a clinical task [24]. Therefore,
trade-offs need to be made on what information is presented and how it is presented
to best accomplish the target task.

With the amount of information being overwhelming for a single individual
to interpret, we need to limit the amount of information presented to the end-
user. Tailoring the presented information to the task at hand, e.g., deciding which
treatment is best for a patient, allows for selection of a subset of information
useful for that particular task. However, we can never assume that a certain piece
of information will not be useful. Hence, there is a trade-off in that potentially
useful information may be lost if we limit the amount presented to the end-user too
much, while interpretability can be severely compromised if too much information
is presented.
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The manner of presentation also involves a certain trade-off, as there is a wide
range of methods for presenting information to an end-user, ranging from tables
to risk scores arising from supervised learning methods correlating past data with
known outcomes, and visual summaries of data. Different representations may
disclose patterns in the data and as such provide the end-user with insights that
can influence the final decision. Consider, for example, the case presented in [7]. In
the search for a predictive model for death from pneumonia, a neural network and a
rule-based model were evaluated. While the neural network was more accurate, the
rule-based model was in the end preferred, as it gave more insight into the reasoning
of the predictive model. The rule-based model allowed the user of the model to
identify possibly useless and even risky relations in the model. In this particular
example, a relation was found between presence of asthma as a comorbidity and
risk of death, but the relation was not as expected. It was found that having asthma
decreased the risk of death. This is explained by the fact that patients with asthma
presenting with pneumonia were usually admitted directly to the intensive care unit.

Ideally, the information presented to the end-user should be transparent and
unbiased. This means that the source of the information should be transparent (how
was the raw data manipulated to extract that piece of information) and that any
operation that was performed to process the data before displaying it does not
introduce bias towards drawing conclusions that may not be valid. Consider, for
instance, the case of a mix of continuous and categorical features, such as age and
gender; many visual data representation techniques use the distance between feature
values. Commonly used distance measures are geometrical, such as the Euclidean
distance. Applying a geometrical distance measure to the combination of age and
gender with normalized values may lead to a distorted view of the impact of gender
compared to age, as the unidimensional distance between “male” and “female” is
the extreme value of 1, while the unidimensional distance between two different
(normalized) ages is typically much smaller than 1. This inevitably introduces a
bias into the data visualization, and it should therefore be made clear to the end-user
how the data was processed, so that the user may be aware of this bias.

In this chapter, we organize the sections as follows: In Sect. 2, we explore the
added value of flexible visualization methods as compared to validated prediction
models, as well as the challenges in data visualization. A data visualization approach
that aims at providing ease of interpretability, demonstrating transparency, and
reducing inherent bias to a minimum is presented in Sect. 3. We close this chapter
with a discussion and conclusion section along with future directions (Sect. 4).

2 Motivation

With the widespread adoption of electronic health records (EHRs), patient data
storage in clinical practice is becoming digital and standardized. While previously
predictive models and guidelines in health care would be developed on data from
clinical trials, which are set up to have both strong internal and external validity, now



Data Visualization in Clinical Practice 291

development of models and guidelines from data from clinical practice becomes
possible. This has the advantage that much more data is available and models can
be developed more quickly to keep up with the pace of development of better
diagnostics and measurements and improvements in treatment. However, the strong
requirements on internal and external validation are much more difficult to meet
in a clinical practice setting. Therefore, it is important to leverage the expertise of
the clinical user to ensure that valid conclusions are drawn, taking into account the
uncertainty, while still exploiting the knowledge available from such a large and
up-to-date data source.

In the remainder of this section, the practice of modeling from clinical trial data
will be evaluated and requirements imposed by the use of clinical practice data will
be explored, motivating the choice for investigation of visualization methods for
clinical practice data.

From the area of statistics as well as from the area of machine learning, a
multitude of methods is available to model data. Given the validity of the design
of the trial and the data collection executed in the trial, these methods allow the
development, interpretation, and validation of such models. Many of those methods
are implemented in modules, packages, or tools readily available on the web (e.g.,
R [17], SPSS [31], SciPy [28], and Weka [16]). The output generated from these
methods typically consists of:

• The model: a structure which may be applied to a new patient, generating a
prediction value;

• Training error: a measure of the error of the model in representing the data used
to train the model;

• Model performance: a measure of the performance of the model on validation
data (not used to train the model).

With some exceptions, these methods typically do not provide any human
interpretable description of the model itself. For example, the support vectors
provided by the support vector machine (SVM) method can be inspected, but they
are not easy to interpret even for a data analytics expert, let alone for a non-
expert user of the model. Methods such as decision trees or Bayesian networks do
generate visual representations of the model that can be inspected and interpreted
by a non-expert user. However, even these simple model representations can quickly
become too complex to interpret when the size of the network or decision tree
increases or when the number of node relations is high. In health care, data analytics
models that outperform treatment guidelines (such as the NCCN guidelines for
cancer treatment1) often do so because they encompass a larger set of features.
For example, in cancer treatment, models outperforming guideline diagnosis and
treatment selection often include complex imaging parameters and/or genomic
features; see, for example, [38, 45]. Data analytics techniques model the data in
a finer granularity than guidelines do. For example, in non-small cell lung cancer

1See https://www.nccn.org/, last accessed: 2018-06-14.

https://www.nccn.org/
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staging, the guidelines score tumor size in three categories, smaller than 3 cm,
between 3 cm and 7 cm, and larger than 7 cm [13], while a prediction algorithm
such as a regression model may take into account the exact tumor size.

The purpose of clinical prediction models usually is to support a doctor in
the decision-making process regarding diagnosis or treatment. In the past, such
predictive models were typically developed on a large set of patients from clinical
trials, ideally from multiple sites, and subsequently validated externally in separate
clinical trials, ideally also at multiple sites. Models that are nowadays used in
clinical practice, such as the Framingham risk score for coronary heart disease [41],
usually have been developed and extensively validated in this manner. They are
widely accepted due to this extensive validation.

Data collection in clinical research has always been aimed at data analysis; it is
digitized and standardized. As data collection in clinical practice is also becoming
digital and standardized, it becomes possible to do additional data analysis on
clinical practice data. This allows for types of explorative analysis where it is not
necessary to define a hypothesis and the type of data that needs to be collected to
test the hypothesis beforehand, as is the case with clinical trials. This in turn allows
for earlier insight generation from new data arising, e.g., from new treatments,
improvements on devices for imaging, better image analysis techniques, or new
diagnostic tests. However, acceptance of such models in practice is more than just
a matter of reporting sufficient quality on a validation set. Lack of understanding of
a model has been reported as a barrier in adopting a model in clinical practice [20].
Furthermore, less extensively validated models require the doctor to have a better
understanding of the limits of the applicability of the model; i.e., the doctor must be
able to answer questions such as What is the level of uncertainty in the predictions?
and Do the predictions from this model apply in my current context (e.g., using an
improved diagnostic imaging device)?. As medicine is becoming more personalized,
the number of features in a model increases, resulting in increasingly complex
models. It is therefore important to pay attention to the presentation of a model
to the user.

Visualization techniques can help provide more insight into complex models.
Visual dominance in humans shows that information processing in the visual domain
is much faster and more developed than any other modality [34]. While there is a
large variety in data visualization techniques, in general the visual domain allows
for more ease of interpretation than, for example, numerical representations of risk
scores and confidence intervals. However, even though visual representations may
improve ease of interpretation, we should beware that the other requirements are
also satisfied. Instilling in the user a sense of awareness of the uncertainty in the
data is a challenging task that will trade off against ease of interpretation.

In this chapter, focus will be on visualization techniques that are meant to
visualize relations in the data without drawing any inference on, e.g., causality.
This should force the user to leverage on his or her own clinical knowledge and
to consider the uncertainty in the data. For example, visualization of a dataset may
show a strong correlation between tumor size and 2-year survival, but it is still up to
the doctor looking at that visualization to conclude whether there is a causal relation



Data Visualization in Clinical Practice 293

between the two, or whether there may be some other explanation of why they
are correlated, such as the difference in treatment between small and large tumors.
In that sense, these visualization techniques are related to the philosophy behind
unsupervised learning. Unsupervised machine learning is the machine learning
task of inferring a function to describe hidden structure from “unlabeled” data
(a classification or categorization is not included in the observations). Popular
approaches include clustering [11] (e.g., K-means [29], mixture models [3], and
hierarchical clustering [37]); anomaly detection [8]; neural networks [35] (e.g.,
Hebbian learning [21] and generative adversarial networks [39]); approaches for
learning latent variable models [12] (e.g., expectation-maximization algorithm [4]
and method of moments [18]); blind signal separation techniques [3] (e.g., principal
component analysis [19], independent component analysis [9], non-negative matrix
factorization [25], and singular value decomposition [2]).

Unsupervised learning techniques exploit correlations in the data, without mak-
ing any inferences on outcome. As such, unsupervised models provide insights into
the data such as which patients are similar or dissimilar to each other, allowing the
doctor to make an inference on what is the expected outcome for the patient.

An on-screen display of an unsupervised model is typically done through
mapping data points onto a two-dimensional graph, using color and/or shape to
indicate which data points are grouped together, e.g., through a dimensionality
reduction technique such as principal component analysis (see, e.g., [42]). An
example is shown in Fig. 1 [32]. An advantage of such a method is that it exploits
methods of processing that humans are very good at. Current research has shown
that certain salient features such as color, shape, motion, and spatial position are
easily detected and discriminated from each other. In early selection theories of
attentional processing, this is termed “preattentive processing.” The term refers
to a kind of effortless processing for which no attention is needed. Evidence for
preattentive processing was found in visual search tasks, where subjects are asked
to locate a certain target stimulus among a set of non-target (distracting) stimuli. It

Fig. 1 An example of a
graphical display of
clustering [32],
demonstrating detection of
lung, breast, colorectal, and
prostate cancer from exhaled
breath using nanosensors
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was found that search times for stimuli defined by a single salient feature such as
a red shape among green shapes or a circle among squares were much lower than
search times for a target stimulus defined by a combination of features such as a
red circle among green circles and red and green squares. Search for a single salient
feature appears to be effortless; the target subjectively “pops out”[10].

A disadvantage of the type of representation shown in Fig. 1 is that it is difficult
to retrace what the feature values of a point are. Knowing the feature values of the
groups of patients that belong together is however a strong requirement for helping
the user make sense of the clustering. In the next section (Sect. 3), we present data
visualization methods accepted for clinical practice that demonstrate correlations
and groupings among patients in a dataset while also allowing for inspection of
individual feature values.

3 Data Visualization Techniques in Clinical Practice

In this section, we provide an example of a visualization technique for decision
support accepted for use in clinical practice. It has the aim of selecting the best
treatment for a given patient. This is achieved by providing a visual representation
comparing patient characteristics to (local) similar patients, who have already been
treated.

The parallel coordinates plot is a straightforward and ready to use visualization
of multivariate data and has been around for many decades [14]. Figure 2 shows an
example of a parallel coordinates plot with patient data. In the parallel coordinates
plot, every observation (i.e., a patient) in a dataset is represented with a polyline that
crosses a set of parallel vertical axes corresponding to features in the dataset. Parallel
coordinates plots readily reveal patients who appear most similar with respect
to their characteristics from the “tightness” of their polylines. The competitive
advantage of parallel coordinates plots lies in the fact that this tightness can be
easily identified in the 2D pattern, while separate multivariate feature values are also
still readily recognizable, as opposed to plots derived from dimensionality reduction
techniques, such as the one shown in Fig. 1.

Fig. 2 Example of a parallel coordinates plot displaying clinical characteristics of prostate cancer
patients. The plot displays thousands of patients, represented by polylines. One particular patient
currently under observation is represented by a red line
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However, the interpretation of parallel plots is dependent on the layout of the
parallel coordinates plot. The most important factors are the order of variables
and scaling of the axes. The order of variables has an impact on the capability to
find relations between the variables; relations between variables that are presented
in successive order are more easily seen than relations between variables that are
separated from each other by other variable axes that are in between. Furthermore,
as the variables are ordered in a linear fashion, a relationship among neighboring
variables is implied through the Gestalt principle of proximity (see, e.g., [22]); items
that are closer together are perceived as more related than items that are further
apart. Proper ordering and selection of the proper subset of variables is therefore
essential [44].

Another important factor is the scaling of the variable per axis. Typically, such
scaling will be a (linear) normalization such that all axes are of the same length.
Consider, for instance, a dataset that contains age and gender. Age typically has a
large range of values, while gender only has two unique values. This means that
values “male” and “female” will be mapped onto the bottom and the top of an axis
that has the same length as the axis which shows age. Furthermore, reversing the
values for “male” and “female” results in a different plot. One can also imagine that
when a variable has a logarithmic distribution, e.g., many patients have a low blood
test value for presence of cancer, mapping to a linear scaled axis will limit the ability
to observe patterns.

Parallel coordinates plots become hard to read, when there are many data records
included. In the example of Fig. 2, thousands of patients are included, resulting in a
vast overlap of lines. This makes it hard to single out sub-populations or to detect
patterns in the data. Stratified coloring of the polylines improves the readability and
is therefore often applied.

The example of the mapping of age and gender onto an axis in a parallel
coordinates plot also makes it clear that parallel coordinates plots display this
particular limitation of reduced readability even more so in rendering categorical
data. In the example of gender, with just two unique values, all polylines will cross
the axis of gender in one of two places.

A data visualization that is better equipped for dealing with categorical data is
a parallel sets plot [23]. In the parallel sets technique, the concept of individual
lines per patient is substituted for a frequency-based representation. In such a
representation, a line represents a subset of patients that have the same categorical
feature values. The width of the line is proportional to the size of the subset. See
Fig. 3 for an example parallel sets plot based on the Titanic survival data (image
generated using R software package Alluvial [5]).

While parallel sets plots are better equipped for dealing with categorical data,
they are not suitable for dealing with continuous data. Categorization is there-
fore often applied as a remedy which may lead to loss of information. Parallel
coordinates/sets techniques are therefore limited in use when dealing with hetero-
geneous data.

Another limitation of parallel sets/parallel coordinates plots is that missing
values cause a distortion of the plot. Particularly, in the parallel coordinates plot, a
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1st

2nd

3rd

Crew

Male

Female

Child

Adult

No

Yes

Class Sex Age Survived

Fig. 3 Example of a parallel sets plot showing categorical data, where instead of drawing multiple
lines, each drawn line represents a different stratification of the Titanic passengers. The width of
the line is proportional to the number of passengers

missing value would result in a missing line segment. Research into psychology and
attention has shown that humans tend to automatically fill in gaps in a contour [40].
So rendering a line with a missing segment may lead to misleading conclusions
regarding the missing values that may not be warranted by the plot itself. The end-
user may even be unaware of having made this inference.

Another important consideration from human information processing is that
short-term memory generally has a capacity of around 7 (plus or minus 2)
items [27]. This means that the number of features that can be included in a parallel
coordinates plot such that they can still be reasonably expected to be compared with
each other by a user is around 7.

The mentioned limitations are addressed by the circular layout approach
described in the next section.

3.1 An Extension Towards a Chord Diagram

Chord diagrams are gaining in popularity for several applications ranging from
large software package visualization to visualization of biological data [15]. In
the circular layout of a chord diagram, such as provided by Circos,2 connections
between objects or between positions become readily recognizable, while in a linear

2Introduction to Circos, Features, and Uses http://www.circos.ca/, last accessed: 2018-01-03.

http://www.circos.ca/
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Fig. 4 A circular layout data visualization of a cohort of prostate cancer patients, showing the
clinical parameters age (blue), PSA density (orange), biopsy Gleason score (green), and prostate
volume (red) that are commonly used variables to decide which treatment should be provided to
the patient

layout, organization of the chart such that multiple connections in a large dataset
become easily recognizable is often extremely difficult. It has been shown that
pairwise comparisons are efficient in relation-finding [36]. The circular approach
exploits this property by connecting pairs of variables. An example of a circular
plot with a clinical application is shown in Fig. 4. Here the chord diagram displays
prostate cancer patients with the four most prominent variables in the decision-
making process of clinicians, i.e., patient age, prostate-specific antigen (PSA)
density, biopsy Gleason score, and prostate volume [30].

Note that each colored arc corresponds to a variable. The length of each arc is
proportional to the range of values relative to each clinical measure. As such, the
extent of each continuous variable domain is mapped to an arc length such that each
individual attribute value assumes an equal angle. In this way, outliers are readily
recognized.
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Fig. 5 Zoom in of the circular plot. Note that the opacity and the thickness of each connecting
curve depicts the frequency of occurrence for each tuple

The biopsy Gleason score is an important measure of prostate cancer aggres-
siveness and is therefore set as the primary measure to which all other features
are paired. For each patient, a curve is drawn between the primary measure value
and the respective attribute value, i.e., the patient age, the PSA density, and the
prostate volume. This promotes the detectability of relations between pairs of
clinical measures. Furthermore, opacity and thickness of each connecting curve is
used as a means of depicting the frequency of occurrence for each tuple, as shown
in Fig. 5. In other words, the more frequently a particular combination of values
appears in the dataset, the brighter and wider the curve. Another advantage of the
chord diagram is that patients with incomplete data will still be visualized in the
figure for pairs of variables that are complete.

The circular layout presented in this chapter also reveals another advantage
over parallel coordinates plots: its compact design allows to add several layers of
information and detail by adding outer rings. For example, as demonstrated in Fig. 6,
a density graph per feature is added to the outside of the ring. This way, clinicians are
able to inspect exact feature values of individual patients, as well as the distribution
of feature values in one graph, allowing them to draw their own conclusions on the
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Fig. 6 Distribution of values
along a clinical measure.
Note that the count of patients
with a certain variable value
is displayed as a vertical ray
of proportional length
perpendicular to the attribute
arc. The gray area is the result
of filtering of another
variable, indicating that this
part of the distribution is
outside the selected cohort

correlations and variance of respective attributes. Binning of continuous variables is
avoided, such that the clinician is in control of evaluating the distribution of variable
values to promote unbiased conclusions.

An interactive filtering mechanism is added to the chord diagram by means of
brushes alongside each arc. This allows the clinician to select a range of values
of interest for a certain variable. The selection results in a subset of patients that
match the filtering criteria being highlighted. Such a comparison is also depicted
on the distribution of patients alongside each arc, as indicated in Fig. 7. Figures 6
and 5 show the effect of making a selection on a range in one variable on the other
variables. In Fig. 7, it can be seen that a range of values for PSA density (orange) is
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Fig. 7 Interaction with the circular plot allows for filtering on a specific range of variable values,
such that pairs are visualized within the subselection only

selected. In Figs. 6 and 5, the density graph for the variable age (blue) highlights the
patients that are within this selected ranges for PSA density, while patients who are
outside this range are shown in gray.

This circular approach serves as a means of comparing an individual patient
with the population of patients that already have been treated and is well suited
for identifying trends and outliers. Figure 8 demonstrates the case of an outlier.
The thick black curves refer to a particular patient record with low biopsy Gleason
score, low PSA density value, and high prostate volume and a more senior age. Even
without the exact numbers depicted on the graph, it is readily recognizable that the
patient in question does not fit the general distribution. Upon examining the graph in
Fig. 8, clinicians may be prompted to rethink whether these outlier patients should
receive the same recommendation for treatment as the general population.

4 Discussion and Conclusions

In this chapter, we have discussed the need for more flexible clinical decision
support as the fast pace of development of new techniques and treatments causes any
extensively validated model to be outdated by the time it is ready for deployment
in clinical practice. Data visualization techniques support generation of insight
from data without presenting precalculated conclusions to the user. By leaving the
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Fig. 8 Example of a patient under investigation (black line) of which the variable prostate volume
(red arc) does not fit the general distribution. This should alert the clinician that this is probably an
exceptional patient and care should be taken in the decision-making

decision power in the hands of the human expert, we can provide decision support
that is able to keep up with the fast generation of new data.

However, this presents several challenges since, even with the most simple
visualization techniques, data is being processed before it is put on the screen
and, in that processing, bias may be introduced. Therefore, transparency of which
operations were executed on the data to translate it to an on-screen visualization is
key. Furthermore, it is important for the user to be aware of the level of uncertainty
inherent in the data, as we are sacrificing extensive external validation for flexibility
and speed. Finally, leaving the power to draw conclusions in the hands of the doctor
also requires ease of interpretation so that the visualization helps the doctor to gain
the right insight into the data. Transparency, clarity of the level of uncertainty, and
ease of interpretation together should help doctors make informed decisions while
staying aware of the risks.

We have discussed that these are not all-or-none end goals in the search for the
best possible visualization method; there are trade-offs to be made on the amount of
information that is displayed (and the amount that is left out) and the way in which
information is presented. We have described how the presented circular approach
incorporates these trade-offs. The method offers ease of interpretation through
exploitation of the human psychological strength in comparing pairs of features.
This may come at a cost of identification of more global patterns among multiple
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features, but due to ease of interpretation, it does become possible to incorporate
more features compared to any method that focusses more on global patterns. Yet, it
is still advised to make a pre-selection of incorporated features through application
of clinical domain knowledge, as was done in the example for prostate cancer.

The method is transparent in that it is clear that the range of features corresponds
to the length of the arc, the distribution of the data is shown perpendicular to the
arc, and the width and brightness of the curves corresponding to the patient data
corresponds to the frequency of occurrence. However, it should still be noted that
the distances along the arcs can be arbitrarily chosen and particularly the distances
between values of categorical features should be carefully interpreted. Integration
of the data distribution into the same graph allows for assessment of uncertainty in
any conclusions that may be drawn. It can be easily seen how wide the spread is
among feature values and whether distributions on a certain feature are skewed to
the upper or the lower end.

Future experiments should investigate to what extent the circular approach allows
for inclusion of multiple features: how many features can be included without too
much loss of ease of interpretation? However, as the amount of data collected is
increasing, selective display of information will remain inevitable. This selectivity
may be automated, through employing data analytics methods such as clustering
or classification to achieve, for example, smart feature selection. However, besides
taking away a certain amount of control from the clinician, such automation also
comes at the cost of a steeper regulatory path towards incorporation of visualizations
in clinical practice.

While selective display will remain an inevitable part of the trade-off between
the amount of information displayed and the ease of interpretation, we have shown
in this chapter that the trade-off can be softened through choosing the right manner
of displaying information. We have shown that a circular approach increases the
amount of information we can display without sacrificing ease of interpretation.
Additions of solutions such as graph bundling [33] can be explored in the future to
allow for even greater increase in the amount of data that can be displayed without
sacrificing ease of interpretation.

Finally as the famous quote of George Box explains: “All models are wrong
but some are useful” [6]. The more data is collected, the more heterogeneous it
will become, thereby inherently requiring a greater amount of simplification and
therefore uncertainty in any model we create from that data, be it a machine learning
model or a visualization. It therefore becomes important to focus on the second
part of the quote and investigate how any model that can still be interpreted by a
doctor can be as useful as possible. This requires tuning any model to the correct
clinical needs as well as to the strengths and limitations of human information
processing.
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Using Process Analytics to Improve
Healthcare Processes

Bart Hompes, Prabhakar Dixit, and Joos Buijs

1 Introduction

Processes are omnipresent and can generally be defined as a series of actions,
changes, or functions that bring about a result. They act as guidelines that support
daily operations in every domain. In healthcare, clinical pathways are often used
as a means to standardize (multidisciplinary) protocols [1] and are usually based
on the domain knowledge of medical experts. Their goal is to support daily care
by improving effectiveness, risk management, and traceability of care processes by
reducing variability. Although the clinical guidelines provide a proposed way of
working, deviations will occur as physicians have different experiences, training,
and preferences, and patients have multiple conditions and do not always adhere
to the prescribed process. Therefore, deviations from the “ideal-scenario” clinical
pathways are bound to happen. As such, multiple challenges arise in the documen-
tation and execution of healthcare processes.

In recent years, data has become abundantly available, giving rise to initiatives
such as the value-based healthcare-paradigm [2] and evidence-based medicine [3].
These approaches use data to quantify the value of healthcare and to analyze the
efficiency of the operations in healthcare organizations. Extensive data records
are required in order to analyze these processes. Healthcare organizations such as
hospitals already measure and record a variety of information on a daily basis. The
Electronic Health Record [4, 5], for instance, contains detailed health information
on individual patients. Healthcare providers use several information systems to track
patients, doctors, appointments, lab results, scan images, etc.
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Healthcare organizations are under a constant pressure to reduce cost while
improving effectiveness and quality of care. This fact combined with the ever-
growing prevalence of data opens up new opportunities for the analysis of healthcare
processes. Process mining is a relatively new area of research that combines
model-based process analysis with data-driven analysis techniques. In the following
sections, we introduce the key concepts of process mining and its challenges in the
healthcare domain. We then demonstrate its value through the application of two
recent process mining techniques using a publicly available healthcare data set.

2 Process Mining

Process mining is a series of techniques that are able to analyze event data [6].
In general, existing techniques focus on three main areas: process discovery,
conformance checking, and enhancement, as shown in Fig. 1a. Process discovery
techniques aim at discovering a process model (describing, e.g., a clinical pathway)
from event data, usually without any further information. Typical challenges here
are dealing with noisy and incomplete data, as well as dealing with big and complex
processes. Given a process model (or at least process rules) and event data, one can
apply conformance checking techniques to analyze adherence to the described way
of working. This is, for instance, used in auditing [7] and compliance verification.
Finally, using both a process model and an event log, the data can be replayed to
enhance the process model. This can, for instance, be used to project timing and
performance information on a process model in order to analyze bottlenecks [8] or
to “repair” or extend the model with new pathways.

Fig. 1 (a) Positioning of process mining (taken from [6]). (b) The ProM process mining
framework after loading an event log
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2.1 ProM: The Open-Source Process Mining Framework

Besides several commercial process mining tools,1 there is also a free and open-
source process mining framework ProM [9]. Over the years, ProM has been used
by the research community for the development and implementation of new as well
as tried-and-tested techniques, and consequently, it has well over 1000 plug-ins
related to the analysis of process-related event data. In this chapter we use ProM
to demonstrate some of the features of process mining, as well as the more recent
techniques we developed. Note that commercial tools are often designed to be more
user-friendly while providing a limited set of features in comparison to ProM.

We recommend to download and use ProM Lite2 as this contains the key process
mining techniques and the most stable plug-ins. Once ProM is started, you are
presented with an empty workspace. On the right-hand side, you can import data
files (or drag and drop files in the workspace), as shown in Fig. 1b. You can then
perform actions such as visualizing the data or apply a plug-in with the object as
input. Most objects can also be exported back to disk for later use. Event logs serve
as the basis for most process mining techniques and the main type of object used in
ProM.

2.2 Event Logs

Event data recorded in so-called event logs contains records of what happened,
when it happened, and for which case (patient) this happened. In essence, events
recorded in event logs describe atomic events (i.e., without duration) that may
contain additional process-related meta-data. Generally speaking, the minimal
required meta-data attributes for each event are a case identifier (e.g., patient name
or number), an activity that was performed (e.g., consult, blood test), and the
timestamp at which the event occurred. Additionally, further information may be
recorded about the resource, roles, or groups involved in the event and the lifecycle
state of the activity (e.g., was the activity started or completed at the recorded time).
Next to these default attributes, additional data attributes can be included on the case
level, such as patient gender, age, or blood type, as well as on the individual event
level, such as the blood pressure or the heart rate of the patient recorded at a certain
moment in time. Oftentimes event logs are stored in a standardized way for process
mining. For example, the IEEE Standard for eXtensible Event Streams (XES) has
recently been accepted as a standard format [10].3

1For a list of commercial process mining software, see http://processmining.org.
2See http://www.promtools.org.
3See also http://www.xes-standard.org.

http://processmining.org
http://www.promtools.org
http://www.xes-standard.org
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Table 1 Example event log L1 with a limited set of recorded attributes

Patient ID Activity Resource Timestamp Blood pressure

123 First consult Dr. Anna 2018-01-05 11:15 100/65

789 First consult Dr. Anna 2018-01-05 11:30 134/89

123 Blood test Lab 2018-01-09 15:30 105/66

123 Physical test Dr. Ben 2018-01-09 16:30 102/64

123 X-ray scan Team 1 2018-01-11 09:30

789 X-ray scan Team 1 2018-01-11 10:30

123 Second consult Dr. Anna 2018-01-12 12:45 102/63

123 Surgery Dr. Charlie 2018-01-24 13:00 97/67

456 First consult Dr. Ben 2018-01-24 13:40 95/62

123 Final consult Dr. Anna 2018-01-27 10:20 100/65

789 Physical test Dr. Anna 2018-01-30 08:30 124/67

An example event log L1 is shown in Table 1. In this table, events are shown
concerning three patients (with IDs “123,” “456,” and “789”) for which some
activities (first consult, surgery, etc.) have been observed in January 2018. These
activities are executed by a resource (e.g., Dr. Anna, Team 1, Lab). The blood
pressure was also measured at each encounter, as an example of data that can be
used during the process analysis. Note that during X-ray scans, no blood pressure is
recorded. Using this event log, for example, a correlation between the control flow
(the order of activities) and one or more of the data attributes (which resource was
involved, what was the blood pressure, or how much time was there between the
first and second consult) may be analyzed.

2.3 Event Log Analysis

Event data can be visualized using an array of different techniques. These visual-
izations provide an initial overview of the recorded process. For instance, it can be
seen how many cases and distinct activities are included and how many events have
been observed over what period of time.

One of the key visualizations for event logs is the dotted chart, as shown in
Fig. 2a. In a dotted chart, each event is represented by a single dot, and by default
each line contains all events for a single case, and time progresses from left to
right. Different sorting and coloring options can be selected. For example, dots can
be colored according to the activity name or the resource recorded by the event,
and dots can be shown using an absolute or relative timescale. Additionally, the
event log can be filtered to only show events of a certain type (e.g., referring to
a selection of cases, activities, resources, or time period). Dotted charts provide a
useful visualization of the distribution of events and can, for instance, be used to
quickly find batch work. Another key visualization is the trace variant view. This
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(a) Dotted chart. (b) Trace variants.

Fig. 2 Two ProM visualizations of event log L1. Colors represent activity names. (a) Dotted chart.
(b) Trace variants

visualization shows the different trace variants present in the event log, i.e., all
unique observed orderings of activities, also called the control-flow variants. For
instance, in Fig. 2b, the top variant is present 18 times in the event log, indicating
that for 18 patients, this order of activities was observed. The corresponding cases
are shown on the right. Using this visualization one can obtain insights about the
possible sequences of activities and the frequency at which certain behavior is
observed.

Different event log visualizations provide different analysis perspectives. For
more complex, variable processes and bigger event logs, however, using event
log visualizations provides limited insights. To further analyze recorded behavior,
process models are often used.

2.4 Process Models

Process models are often used as a visual description of the process at hand, i.e.,
a description of how things must or should happen. Oftentimes however, process
modeling notations contain clear semantics and can therefore be used in formal
analysis methods as well. A process model that describes event log L1 of Table 1
is shown in Fig. 3 in the form of a Petri net [11]. Alternatively, the same process
can also be represented by other modeling notations such as BPMN [12], which is
more commonly used in business environments. A Petri net consists of four types of
objects: transitions (represented by boxes), places (circles), arrows (from transitions
to places and vice versa), and tokens (black dots inside places). The rule of the so-
called token game is that a transition can only fire if there is a token in each of the
input places. After firing a transition, the input tokens are consumed, and a token is
produced in each of the output places. In essence, the Petri net in Fig. 3 describes a
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Fig. 3 Petri net explaining the control flow between the activities of L1. The following abbre-
viations have been applied: A = First consult, B = X-ray scan, C = Blood test, D = Physical test,
E = Second consult, F = Surgery, G = Medicine, and H = Final consult

process which starts with the activity first consult (A). Then three possible activities
can be executed in parallel (i.e., in any order): X-ray scan (B), Blood test (C),
and Physical test (D). Alternatively, this last activity D can be skipped. During a
second consult (E), a decision is made on the follow-up action: either a surgery (F)
or medicine (G) is chosen. During a final consult (H), the patient and the doctor
review the process and plan possible further appointments. In Fig. 3, currently only
transition A is enabled. After firing, the token in the leftmost place is consumed, and
three tokens are produced, one in each output place of transition A. This enables
activities B, C, and D and the black transition. A black or silent transition indicates
an action that cannot be observed in the data (i.e., no corresponding event). In this
example, the fact that activity D is not executed is not explicitly recorded in the data.
Also note that activities B, C, and D can execute in any order; in other words, they
are in parallel branches. Only once each of these three activities has fired (or B andC
have fired and D is skipped), E is enabled. After E fires, a choice is enabled between
F and G. After either one is executed, H can fire and then the process terminates.

2.5 Process Model Discovery

After visualizing recorded event data, we can apply a process discovery algorithm,
in order to get a better feeling for the captured process. Several techniques are
available (see [6] for an overview). Process discovery algorithms take as input an
event log and produce as output a process model describing the recorded behavior.

Using the Inductive Visual Miner discovery algorithm [13] on event log L1
presented in Table 1 yields the process model (Petri net) shown in Fig. 4. The
discovered process model is equal to the Petri net shown in Fig. 3. Next to
discovering a process model from the event log, the Inductive Visual Miner can
replay the event data on the process model in order to show how often certain
activities and paths were taken. It also provides an animation of the recorded event
data over the process model, giving a “snapshot view” of the process state at a
certain moment in time. Using such animations, a visual analysis of bottlenecks and
frequent pathways is enabled. The implementation of the Inductive Visual Miner
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Fig. 4 The process model generated by the Inductive Visual Miner. The discovered model is equal
to the model shown in Fig. 3

(available in ProM) provides two sliders that act as filters (see right-hand side of
Fig. 4). The leftmost slider may be used to reduce the number of activities included,
while the rightmost slider may be used to reduce the number of paths/behavior
covered by the process model. Both sliders may be used to simplify the process
model for easier interpretation, at the cost of reducing the fit between the process
model and the data. The fit between process models and event data recorded in event
logs is quantified using several quality dimensions.

2.6 Process Model Quality

As explained in the previous section, process discovery algorithms aim to discover
a model that accurately describes the behavior recorded in the event log. Often,
however, the event log contains mixed behavior and may contain data quality issues
(e.g., missing or erroneously recorded attributes or events). This is an especially
challenging problem for event data that is recorded by an unstructured, highly
variable process, such as those seen in the healthcare domain. The quality of the
fit between a process model and event data can be measured to verify the quality
of a discovered process model or to find non-conforming behavior with regard to a
de-facto process model. In order to quantify how well a process model fits an event
log, we typically use four quality dimensions [14], as shown in Fig. 5:
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replay fitness

precisiongeneralization

simplicity
“able to replay event log” “Occam’s razor”

“not overfitting the log” “not underfitting the log”

process
discovery

Fig. 5 The four quality dimensions quantifying the quality of a process model with relation to the
event data [15]

1. Replay fitness evaluates how well the event data can be replayed by the process
model (similar to recall in data mining);

2. Precision evaluates how much additional unseen behavior the process model
allows for;

3. Generalization evaluates how generalizing the process model is, i.e., whether the
process model is not trying to only capture the observed behavior;

4. Simplicity evaluates how easy the process model is to understand.

It can be argued that optimization on one dimension could have a negative impact
on some other dimension, as displayed in Fig. 5. Replay fitness and precision are
quantifiable entirely based on the information available in the event logs. Contrarily,
generalization and precision are trickier to quantify, especially as they aim to address
the subjectivity of users or some unseen future possible behavior. Owing to reliable
quantification of these dimensions, in practice, replay fitness and precision are the
most researched and important quality dimensions to take into account. If either
of these two is (too) low, then this indicates that the discovered process model has
little descriptive value with respect to reality. In the next subsection, we discuss a
predominant approach for quantifying these dimensions.

2.7 Process Conformance Checking

The predominant method to analyze process conformance which includes evaluating
replay fitness calculates so-called alignments between the process model and the
event data [8]. In essence there are two types of deviations:

1. Extra observations (also called “log moves”), which indicate that behavior was
observed in the event log but was not expected in the current state of the model;

2. Missing observations (also called “model moves”), which indicate that behavior
that was expected according to the current state in the process model was not
observed in the event log.
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Table 2 Example of conformance alignment moves using Fig. 3. Steps 1, 2, 3, 4, 7, and 8 are
synchronous moves. Steps 5 and 6 are a move on log and move on model, respectively, and are
represented by 〉〉
Trace in event data A B C D C 〉〉 G H

Possible run of model A B C D 〉〉 E G H

Steps 1 2 3 4 5 6 7 8

Additionally, synchronous moves indicate that behavior that was expected
according to the current state in the process model was indeed observed in the
event log. Conformance checking using alignments aims to minimize the number
of extra or missing observations and to optimize the number of synchronous moves
between any given event log and process model in order to best explain the observed
behavior. In other words, alignments aim to find an optimal execution path in
the process model for a given case. Alignment information can also be projected
back onto the process model, indicating where the observed and modeled behaviors
deviate. For example, consider the following sequence of activities followed for a
patient as recorded in the event data: 〈first consult (A), X-ray scan (B), blood test
(C), physical test (D), blood test (C), medicine (G), final consult (H)〉. One possible
alignment for this trace and the process model from Fig. 3 is shown in Table 2.
Note that multiple optimal alignments may be possible, dependent on the penalty,
or “cost,” associated with non-synchronous and synchronous moves [8].

Figure 6 demonstrates how alignment information can be projected back on a
process model. Here, the event data of Table 1 (event log L1) was aligned with a
process model using ProM. This alignment information indicates that for activity X-
ray scan there are some missing observations (model moves). This is indicated by
the small purple part in the green bar inside the transition. More detailed statistics
can be shown by clicking on the transition. We can observe that activity X-ray scan
is executed correctly 90 times (“move log+model”) and that 10 times a “move model
only” is shown, indicating that for 10 cases the X-ray scan activity was not recorded
in the data when it was expected according to the model. As in this process cases
represent patients, the conformance information shows that for ten patients there
was no X-ray scan performed where it was supposed to happen. An alternative
explanation is that the scan was performed but was not recorded. Deviations of the
extra observation type are indicated with yellow-marked places, but are absent in
this example. The dialog also provides process-level characteristics such as the trace
fitness. In this example the trace fitness is 0.99 indicating relatively few deviations
are observed.

2.8 Process Performance Analysis

Besides measuring conformance between process models and event logs in terms
of the four quality dimensions, alignment information may also be used to generate
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Fig. 6 Projection of alignment information of the event log L1 on a process model missing the
skip of the physical test activity. Ten missing observations of activity X-ray scan are shown

performance-related statistics for processes. As discussed in Sect. 2.2, events
recorded in event logs often have a timestamp associated with them. Alignment
results could thus be combined with timestamp information in order to deduce any
performance-related issues in the process. For example, this could be used to answer
questions as where in the process do we spend most time? and what are the biggest
bottlenecks? Moreover, other available data attributes may also be used to analyze
and compare different variants of the process [16] or to find causal dependencies
between them [17]. Visualizations such as the one discussed earlier can be used to
show how performance evolves over time.

2.9 Process Mining in Healthcare

In [18], the authors give an overview of applications and challenges of process
mining in the healthcare sector. A healthcare reference model is presented that
outlines all the different classes of data that are potentially available for process
mining and the relationships between these classes. The model can be used in
formulating questions that may be answered with process mining and aids in
locating data and generating event logs. The input side of data-based analytics
such as process mining is often neglected [19], and event data is usually seen as
a by-product of existing systems such as EHR, HIS, etc. This often leads to data
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quality issues which complicate analysis. In [20], 27 event data quality issues were
identified. According to [18], data quality issues can be categorized into four groups:
missing data, incorrect data, imprecise data, and irrelevant data. Consequently, [18]
provides guidelines for logging and gathering event data in the healthcare setting.

One of the main research topics in process mining is the discovery of a process
model that accurately describes the process captured by the event data, in terms of
the quality metrics defined earlier. However, existing process discovery algorithms
have issues discovering such process models from event logs in the healthcare
domain as these processes are typically complex and often exhibit a high degree
of variability. Additionally, due to changing conditions and circumstances, these
processes continuously evolve over time. For example, advances in medicine trigger
changes in diagnoses and treatment processes. Several process mining techniques
have been proposed to deal with this complexity, most notably are trace clustering
techniques that aim to cluster cases that share behavior in order to obtain better
quality process models for each discovered cluster [21–23] and the techniques which
use the available domain knowledge from the medical experts and combine it with
the information from the event logs [24, 25].

Given the difficulty faced by process discovery techniques in healthcare and
similar settings, recent research has focused on techniques that provide valuable
insights despite these difficulties. In the remainder of this chapter, we therefore
highlight two such techniques developed recently using a case study. First we
show how event data combined with a process model can be used to interactively
analyze process conformance. We then demonstrate how performance insights can
be discovered from event data without the specific need for process models.

3 Case Study: Sepsis Protocol Analysis

In this section we apply two novel process mining techniques on a publicly available
event data set from the healthcare domain to demonstrate how some of the common
pitfalls of process mining described above can be overcome.

3.1 Sepsis Data Set

The data set used in this chapter is taken from [26] and is publicly available [27].
The event log contains data for some 1050 patients who exhibit symptoms of sepsis.
Sepsis is a life-threatening blood-poisoning condition for which clear medical
protocols have been developed. This data is collected from the hospital information
systems of a Dutch hospital over a period of 1.5 years and describes the trajectories
of patients from their registration in the emergency room until their discharge. For
every event in the event log, the case (patient) for which an activity has been per-
formed is recorded together with the time at which the event took place. No lifecycle
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information is recorded for the activities, and resource information is recorded on
the group level. Additionally, the event data is enriched with data from laboratory
tests and triage checklists. Furthermore, the authors of [26] manually modeled a
process model after discussions with domain experts and used insights obtained
from the event log. We used this process model as the expected process behavior.

As sepsis is a life-threatening condition, there are some strict medical protocols
that must be followed. For example, after the triage, antibiotics should be admin-
istered in less than 1 h. We use this and the other relevant questions as specified in
[26] in order to guide our analysis in the following subsections.

3.2 Initial Insights

By loading and visualizing the event log in ProM, we can obtain a general overview
of the recorded data. In Fig. 7a, we can see that there have been 15,241 events
recorded for 1050 patients over a period of 1.5 years. Additionally, 16 distinct
activities are present in the event log. In Fig. 7b, it can be seen that there are 841
unique trace variants in the data, indicating that indeed this event log contains a lot
of variability in the behavior of patients. We can also see that 31 event attributes
have been recorded that can be used to analyze the process in further detail. Using
the Inductive Visual Miner process discovery algorithm, we can discover a process
model that closely resembles the a-priori model from [26] (Fig. 8). However, note
that by default, only the 80% most frequent paths are included. When we move up
the path slider, the model becomes more complex.

Fig. 7 (a) Sepsis event log overview visualized in ProM. A total of 15,241 events are recorded for
1050 cases over a period of 1.5 years. (b) Sepsis event log trace variants visualized by ProM. A
total of 841 unique trace variants are present
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Fig. 8 The process model discovered from the sepsis event log by the Inductive Visual Miner
(filtered to show 80% of paths). Alignment information is overlaid on the model. More frequent
paths and activities are colored darker

3.3 Interactive Process Analysis

As described in Sect. 2, in most healthcare scenarios, clinical care pathways define
the steps followed by a patient in the hospital. These pathways are typically specified
using process models, which try to encapsulate all possible behavior of every
patient. Typically, various information associated with a patient determines the
actual steps followed in the process. Hence, there may be scenarios which lead
to deviations. Moreover, a hospital typically has to adhere to standard protocols
specific to a disease, KPI, etc. in order to meet certain objectives. When a process
model is available, it is interesting to investigate which patients deviate from the
expected behavior described in the model. As described in Sect. 2.7, alignments
provide a basis to match behavior from the event log with the process model. Various
techniques that use alignments and visualizations of process models to analyze
deviations, explore non-compliance of protocols, perform bottleneck analysis, etc.
have been proposed [28–30]. Here, we highlight one such approach in order to
investigate the sepsis process using interactive process analytics (InterPretA) [30].

We briefly describe the InterPretA tool and use it in the context of sepsis to
explore and answer some clinically relevant questions. When using InterPretA, the
first step is to select a process model and an event log in order to calculate an
alignment. Other than merely projecting the alignment information on the process
model as in the more traditional alignment visualization shown in Fig. 6, InterPretA
allows interactive analysis of the process based on event data using visual analytics.

The visual aspect of InterPretA can be divided into two parts: (1) interaction with
the activities from the process model and (2) graph views showing various bar charts
and/or stacked line charts based on the interaction. Figure 9 shows the frequency
distribution of each activity in the process. It is clearly visible that some activities
are highly frequent (colored dark blue), whereas others are not (light blue). This
gives a high-level overview of the common trajectories of the care pathway. One
important question raised in [26] was how many patients returned to the ER and
what was the timeline for them to return. As shown in the bottom part of Fig. 9,
the highest number of patients returned within the fifth week. However, there were
some patients who returned to the ER even after the 60th week.
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Fig. 9 Views of the InterPretA tool which uses alignments and enables interactive exploration of
real process behavior based on event logs. The top part displays the process modeled as Petri net,
and the lower part displays various configurable graphical functionalities

Figure 10 shows the distribution of number of events over a period of time. Here,
each color represents an activity from the process model, and the horizontal axis
shows the number of weeks starting from the date of the first event from the event
log. Only those activities which are selected in the process model are shown in this
stacked area graph. If no activity is chosen in the process model, then all activities
in the process model are considered, as is the case in Fig. 10. Insights can be gained
even from high-level views such as these, and trends in process behavior can be
spotted. For example, around week 46, there was a sudden and short drop in the
number of performed activities. Furthermore, it is interesting to note that some of
the activities were not performed at all. Spotting such patterns is important as they
can be analyzed in further detail by focusing only on the activities involved, filtering
the event log to the problematic time window, etc. Furthermore, the horizontal axis
is configurable and hence could be specified in any unit of time. It can also be set
relative to the start of each case or the start of the first event from the event log.

Interacting with the process model also allows users to compare the time between
different activities visualized as bar charts as well as the number of occurrences
of different activities. Furthermore, the user can select a particular pathway by
selecting related activities in the process model and perform conformance analysis
for that particular aspect of the process. This can also be combined with traditional
classification techniques to understand which patients follow a particular pathway
and what are the common characteristics of those patients.

We can use InterPretA to verify the adherence to two specific sepsis protocols
listed in [26]: (i) the time between the activities ER sepsis triage and IV antibiotics
should be less than 1 h, and (ii) the time between the activities ER sepsis triage
and lactic acid should be less than 3 h. We interactively select the corresponding
activities from the process model and look at the corresponding distributions. By
selecting activities in the process model, we obtain the bar charts shown in Figs. 11
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Fig. 10 Number of occurrences of the different activities over a period of time. Color indicates
the activity, and the height indicates the frequency of the activity in the corresponding week

Fig. 11 Distribution of the number of cases showing the time between the activities ER sepsis
triage and the first occurrence of IV antibiotics

and 12. Here, the horizontal axis shows the number of hours after ER sepsis triage,
and the vertical axis shows the number of cases. From Fig. 11 it is clear that in many
cases, protocol (i) is violated, i.e., IV antibiotics is not executed within 1 h after
activity ER sepsis triage. It should be noted that although this is a clear violation of
the stated protocol, there could be multiple reasons causing this issue. For example,
IV antibiotics may have been administered within the hour while the recording in
the information system was done at a later point. According to [26], in this case, the
non-adherence of this protocol could be due to bad data quality or unclear sepsis
symptoms. Contrarily, protocol (ii) is followed in almost all cases, as can be seen in
Fig. 12. Moreover, in almost 800 cases the lactic acid was measured within the first
hour of performing the activity ER sepsis triage.

3.4 Context-Aware Performance Analysis

As explained above, the authors of [26] manually modeled a process model based on
domain knowledge. Alternatively, as discussed in Sect. 2.5, a process model could
be learned directly from the data using process discovery techniques. However, as
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Fig. 12 Distribution of the number of cases showing the time between the activities ER sepsis
triage and the first occurrence of lactic acid

indicated in Sect. 2.9, in many cases, an a-priori process model is not available,
and no high-quality process model can be automatically discovered from event logs
due to any number of data quality issues or simply because the process is highly
dynamic. This is often the case in the healthcare domain.

From most real-life event logs, we can gain information about different perfor-
mance characteristics. Typically, we are interested in characteristics such as activity
and case durations, waiting times, throughput times, and utilization rates. Existing
process performance analysis techniques, however, are limited to describing the
overall behavior, such as mean waiting times and durations. In the InterPretA tool
discussion in the previous subsection, for example, we have shown to be able to
interactively obtain overall distributions which can lead to actionable insights. In
order to analyze specific patterns or deviations, manual efforts are still required.

The second technique used for the analysis of the sepsis process considers the
context-aware process performance analysis technique presented in [16]. Often
times, performance characteristics of a specific activity, case, or entire process
highly depend on the context. For example, patient information, medical history,
resources involved and their workload, or even the weather and traffic can have big
effects on performance. In this technique, contextual information about the process
execution is taken into account when analyzing process performance. It is important
to note that the term performance as it is used here refers to a relatively broad
definition. In general, any numerical metric or KPI can be used in this analysis.
Furthermore, process models are not required for the analysis, yet can be considered
as additional input in order to take, for example, the replay fitness as a performance
measure. As an example, assuming resource information is available in a given event
log, we can test the hypothesis that the resource involved in the execution of an
activity leads to statistically significant differences in the duration of that activity. A
second hypothesis could be that the age of a patient leads to significant differences
in throughput time, etc. The technique presented in [16] automatically tests such
hypotheses for a broad selection of contextual and performance functions.

Given the available data, we configured the ProM plug-in to take as performance
functions the case duration, the activity sojourn time (representing the time between
the completion of consecutive activities, as only complete lifecycle state changes are
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recorded), the time between activities ER sepsis triage and IV antibiotics (protocol
(i)), and the time between activities ER sepsis triage and lactic acid (protocol (ii)).
As context we considered the different values for the 31 attributes recorded in the
data. No additional pre-processing was applied (for instance, the age of patients was
not binned). The context-aware process performance analysis technique discovered
a total of 17 statistically significant differences between different values for context
and performance. However, here we discuss only a selection of the results.

The first result shows a difference in case duration between patients that exhibit
two or more SIRS criteria compared to patients that exhibit less than two. As SIRS
criteria are used to check for sepsis suspicion, this makes sense. In total there are six
SIRS criteria, and patients are flagged as sepsis suspicious when two or more are
evident. As a result, those patients with less than two criteria will exit the process
early. Many similar results are discovered for other criteria and measurements, as
only patients that actually are suspected to have sepsis continue the process.

More surprisingly, there are several results that indicate significant differences
related to the two sepsis-specific protocols. Regarding the first protocol (time
between ER sepsis triage and IV antibiotics), it was found that those patients that
did not exhibit the SIRS criteria tachypnea (an abnormal respiratory rate) on average
waited more than 2 h before receiving antibiotics after having been through sepsis
triage, compared to patients that did show signs of tachypnea, which waited on
average around 1 h and 20 min (see Fig. 13). This is in clear violation of protocol, as
protocol (i) indicates the time should be less than 1 h. Note that also not all patients
that did exhibit tachypnea adhered to protocol.

Next to the difference regarding protocol (i), seven different context attributes
have been found to show significant differences in the time between ER sepsis

Fig. 13 Patients that do not exhibit the SIRS criteria tachypnea on average wait longer before
receiving IV antibiotics after having been through ER sepsis triage
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Fig. 14 Patients that did not receive a diagnostic blood test on average wait several minutes longer
before having lactic acid measurements after ER sepsis triage

triage and lactic acid (protocol (ii)). These attributes are DiagnosticBlood, Diagnos-
ticXThorax, DiagnosticLacticAcid, DiagnosticIC, DiagnosticECG, Infusion, and
InfectionSuspected. Figure 14 shows the difference in time between patients that
have had a blood test and those that did not. As we have shown in Sect. 3.3, this
protocol is practically never violated. As such, no big differences are found, i.e.,
all differences are in the order of several minutes, and do not seem to be of as
big of an impact as the violation of protocol (i). The authors of [26] indicate that
not all patients in the event log show symptoms of a severe sepsis and it is not
always possible to administer antibiotics within the hour. As such, protocol (i) can
be considered very strict.

This analysis shows the applicability of process mining techniques even when no
high-quality process model is available. Additionally, more complex process-related
aspects can be taken into account, e.g., the order of activities, the number of times
an activity has been executed before for a patient, the resources involved, the time
of day or the day in the week, etc.

4 Conclusion

Processes are omnipresent and are supported by a myriad of process-aware infor-
mation systems that record more and more event data in so-called event logs which
in turn serve as input for process mining techniques. This chapter introduced the
key concepts and contributions of process mining and how it can be used to gain
insights from such event data. The current open challenges and the opportunities of
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process mining in the healthcare domain were discussed, and references to advanced
material were given. Process conformance and performance analysis are arguably
two of the most promising directions for data-driven analysis in healthcare. We
demonstrated two recently developed process analysis techniques that focus on these
perspectives, and by means of a case study using publicly available data and tools,
the application and added value of process mining in the healthcare setting was
shown.

More information regarding process mining techniques, process discovery algo-
rithms, modeling notations, conformance checking techniques, etc. can be found
in [6]. Additionally, several massive online open courses (MOOCs) have been
created around the topic on the platforms Coursera and FutureLearn.4 News, related
publications, and research projects can be found online.5 In [18], the application of
process mining to the healthcare domain is analyzed in great detail, and steps are
presented to aid in healthcare-based process mining projects.
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AMulti-Scale Computational Approach
to Understanding Cancer Metabolism

Angelo Lucia and Peter A. DiMaggio

This chapter is divided into two parts. In the first part, an overview of the Nash
equilibrium approach to metabolic pathway modeling, simulation, and analysis is
presented, showing the reader the basic formulations and key modeling consid-
erations. Small examples are used to elucidate key ideas, including the explicit
use of enzyme reactions, up-/downregulation of enzymes, and allosteric inhibition.
In the second part of this chapter, the Nash equilibrium approach is applied to
the methionine salvage pathway (MSP) to highlight the predictive capabilities
of the approach and to help in building an understanding of cancer metabolism.
Experimental data is used to validate the proposed Nash equilibrium MSP model.

1 The Fundamentals of Nash Equilibrium and Metabolic
Pathway Analysis

A rigorous, multi-scale Nash equilibrium model based on first principles (i.e.,
chemical reaction equilibrium thermodynamics and element mass balancing) is
presented.
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1.1 Introduction

In recent work, Lucia, DiMaggio, and co-workers [1–3] have introduced the idea of
treating metabolic pathways as Nash equilibria using first principles (i.e., rigorous
chemical reaction equilibrium and elemental mass balancing involving charged and
electrically neutral species). The key ideas behind the Nash equilibrium approach to
metabolic pathway analysis are as follows:

1. Enzymes are players in a multi-player game.
2. The objective or payoff function for each player results in a constrained nonlinear

programming (NLP) problem. That is, each player (enzyme) minimizes the
Gibbs free energy of the reaction it catalyzes subject to element mass balances.

3. The goal of the metabolic network is to find the best overall solution given the
natural competition for nutrients among enzymes.

The Nash equilibrium approach has many advantages over methods such as flux
balance analysis (FBA) and its many variants, constraint-based modeling (CBM),
and kinetic approaches to determining fluxes and other information throughout a
metabolic network. More specifically, treating any metabolic pathway as a Nash
equilibrium allows one to:

1. include co-factors in modeling sub-networks.
2. model electrolyte solution behavior and incorporate charge balancing.
3. include feedback, allosteric, and other forms of inhibition.
4. explicitly include enzyme-substrate reactions as part of the model.
5. upscale genetic information and consider mutations and/or re-engineered

enzymes.
6. model up-/downregulation of enzymes.

Modeling metabolic pathways using Nash equilibrium is purely predictive and to
date has been used to model a number of common pathways including glycolysis,
the Krebs cycle, acetone-butanol-ethanol (ABE) production, and the mevalonate
pathway. In cases where experimental data are available, numerical predictions, to
date, show remarkably good agreement with experimental metabolite concentrations
and other biological metrics such as turnover number.

1.2 Nash Equilibrium Formulation of a Metabolic Network

In this section, the basic Nash equilibrium formulation for metabolic pathway
analysis is described. Metabolite, co-factor, and enzyme-substrate reactions are
included. Simple illustrative examples are presented to make key ideas clear to the
reader.

Let the unknown variables, v, be partitioned into N subsets, v =
[v1, v2, . . . , vN ], in which each variable partition, vj , has nj unknown variables.
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While the FBA formulation for metabolic pathway analysis is a linear program
with an arbitrary objective not based in first principles, the Nash equilibrium (NE)
formulation for an arbitrary metabolic network is quite different and is given by a
collection of j = 1, 2, . . . , N nonlinear programming (NLP) sub-problems of the
form

min
Gj (vj )

RT
(1)

subject to conservation of mass

v∗−j

where
Gj

RT
, the dimensionless Gibbs free energy, is the objective function associated

with the appropriate enzyme that catalyzes one or more reactions at a given node
j in the network, R is the universal gas constant, and T is the temperature. The
conservation of mass constraints are elemental mass balances and can involve
charged species, and vj represents the flux of metabolic material in and out of
any node. Finally, the vector, v∗−j , denotes the minima of all other sub-problems,
k = 1, 2, . . . , j − 1, j + 1, . . . , N . In this chapter sub-problem and node mean the
same thing. The Gibbs free energy for sub-problem j is given by

Gj

RT
=

Cj∑
i=1

xij

[
ΔG0

ij

RT
+ ln xij + ln φij

]
(2)

where ΔG0
ij are the standard Gibbs free energies of reaction at 25 ◦C for the

metabolic reactions associated with sub-problem j , xij are mole fractions which
are related to the fluxes, φij are fugacity coefficients, i is a component index, and
Cj and Rj are the number of components and number of reactions associated with
a sub-problem j in the network. For example, it is not uncommon to have coupled
metabolite and co-factor reactions at a given node.

Temperature effects in the NE formulation are taken into account using the van’t
Hoff equation, which is given by

ΔG0
ij (T )

RT
= ΔG0

ij (T0)

RT0
+ ΔH 0

ij (T0)

R

[
T − T0

T T0

]
(3)

where T0 is the reference temperature (usually 25 ◦C), T is the temperature at which
the reaction takes place (usually 37 ◦C), and ΔH 0

ij (T0) is the standard enthalpy
change of reaction i at node j in the network. All standard Gibbs free energy
changes due to reaction, ΔGR0

ij (T0), and the enthalpy changes due to reaction,

ΔHR0
ij (T0), can be computed from Gibbs free energies and enthalpies of formation

and reaction stoichiometry

ΔGR0
ij =

np(ij)∑
k=1

skΔG0
f,ijk −

nr (ij)∑
k=1

skΔG0
f,ijk (4)
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where the sk’s are the stoichiometric numbers and np(ij) and nr(ij) are the number
of products and number of reactants, respectively, associated with reaction i and
node j . The Gibbs free energy of formation data for metabolites and co-factors
used in this chapter can be found on the eQuilibrator website (http://equilibrator.
weizmann.ac.il/). Enzyme-substrate binding energies can be found in Appendix 1.

The network objective is given by

G(v)

RT
=

N∑
j=1

min
Gj(vj )

RT
(5)

The key attribute that distinguishes the proposed NE approach from other formu-
lations and makes the problem challenging is that the objective functions in all
sub-problems are nonlinear.

1.3 Metabolite/Co-factor Reactions, Mass, and Charge
Balances

Most biological reactions involve metabolites, co-factors, and enzymes. Element
mass balances in the Nash equilibrium formulation are written in the following
matrix-vector form

Av = b (6)

and correct element mass balancing guarantees that charge balances will be satisfied.

Illustrative Example 1: Mass and Charge Balancing Consider the example of
the dehydration of S-methyl-5-thio-D-ribulose 1-phosphate (MTRu-1P) to form
2,3-diketo-5-methylthiopentyl-1-phosphate (DK-MTP-1P) and water. The chemical
reaction is

C6H11O7PS−2 � C6H9O6PS−2 + H2O (7)

which is balanced, both with respect to elemental masses (i.e., carbon, hydrogen,
oxygen, phosphorous, and sulfur) and electrical charge. The element mass balances
for all species involved in this reaction are

⎛
⎜⎜⎜⎜⎜⎝

2 11 9
1 7 6
0 6 6
0 1 1
0 1 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎝ vH2O

vMTRu-1P

vDK-MTP-1P

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎝

H
O
C
P
S

⎞
⎟⎟⎟⎟⎟⎠

hydrogen
oxygen
carbon

phosphorous
sulfur

(8)

http://equilibrator.weizmann.ac.il/
http://equilibrator.weizmann.ac.il/
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Table 1 Minimum Gibbs free energy solution for MTRu-1P � DK-MTP-1P + H2O

Species Initial metabolic pool (nmols) Equilibrium fluxes (nmol/s)

Water 0.84073 0.84076

MTRu-1P 0.07226 0.07207

DK-MTP-1P 0.08702 0.08718

However, element mass balances must be linearly independent; otherwise numer-
ical difficulties can arise. First note that rows 3, 4, and 5 in Eq. (8) are linearly
dependent because carbon, phosphorous, and sulfur are in the same ratio (6:1:1) in
MTRu-1P and DK-MTP-1P and are absent from water. Next, note that the sum of
columns 1 and 3 is linearly dependent with column 2 and thus the matrix has column
rank of 2. Since row and column rank of any matrix must be equal, this means that
only two element mass balances can be linearly independent.

Illustrative Example 2: Linearly Independent Constraints In the previous
illustration, the correct choice of linearly independent mass balances is hydrogen
and oxygen. This choice is based on the fact that only hydrogen and oxygen
are transferred from MTRu-1P during dehydration. Equation (9) gives the correct
linearly independent constraints for converting MTRu-1P to DK-MTP-1P and
water; the resulting minimum Gibbs free energy (equilibrium) solution is shown
in Table 1.

(
2 11 9
1 7 6

) ⎛
⎝ vH2O

vMTRu-1P

vDK-MTP-1P

⎞
⎠ =

(
H
O

)
=

(
3.25933
1.86857

)
hydrogen
oxygen

(9)

1.4 Enzymatic Reactions

The general reaction sequence for enzyme-substrate reactions is

E + S � E − S (binding) (10)

E − S � E + P (unbinding) (11)

where E, S, E − S, and P denote enzyme, substrate, enzyme-substrate complex,
and product, respectively. Enzyme-substrate reactions can be included in the Nash
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equilibrium framework in much the same way as metabolite and co-factor reactions
with two key assumptions:

1. Enzymes may have charged fragments but have no net charge.
2. There is no mass transfer of carbon, hydrogen, etc. to or from enzymes.

These assumptions result in the following mass balances for single binding and
unbinding events between an enzyme, a substrate, and a product

(
a11 0 a12

0 1 1

) ⎛
⎝vM

vE

vC

⎞
⎠ =

(
M
E

)
(12)

where the subscripts M, E, and C in Eq. (12) denote metabolites (substrate or
product), enzyme, and enzyme complex (i.e., E − S), respectively, and M and E
on the right-hand side are molar amounts of metabolite and enzyme, respectively.

Illustrative Example 3: Including Enzymes To illustrate, consider the conversion
of oxaloacetate and acetyl CoA to citrate and co-enzyme A by the enzyme E =
citrate synthase, which is the first step in the tricarboxylic acid (Krebs) cycle. The
reaction sequence consists of two binding reactions, the main reaction and then one
unbinding reaction, and is given by

E + C4H2O−2
5 � E − C4H2O−2

5 (binding of oxaloacetate) (13)

E + C23H34N7O17P3S−4 �
E − C23H34N7O17P3S−4 (binding of acetyl CoA)

(14)

E − C4H2O−2
5 + E − C23H34N7O17P3S−4 + H2O � (15)

E + C6H5O−3
7 + C21H32N7O16P3S−4 + H+ (unbinding of citrate and CoA)

There are five linearly independent element mass balances and six fluxes in this
example, as shown below:

⎛
⎜⎜⎜⎜⎜⎝

2 32 5 0 2 34
0 7 0 0 0 7
1 16 7 0 5 17
0 21 6 0 4 23
0 0 0 1 1 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

vH2O

vCoA

vcitrate

vE

vE-AcCoA

vE-oxalo

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

H
N
O
C
E

⎞
⎟⎟⎟⎟⎟⎠

(16)



A Multi-Scale Computational Approach to Understanding Cancer Metabolism 333

Table 2 gives numerical results for an initial metabolic pool containing 0.5 μM
oxaloacetate and acetyl CoA plus 0.05µM native citrate synthase (PDB # 4G6B).

1.5 Up-/Downregulation of Enzymes

The amounts of proteins (enzymes) in a cell are usually controlled by gene
regulation in response to internal or external factors (e.g., a drug). The net result
is either an increase (upregulation) or decrease (downregulation) of the amount
of protein (or protein expression). It is straightforward to study the impact of
up-/downregulation of enzymes in the Nash equilibrium framework by simply
increasing/decreasing the amount of enzyme in the initial metabolic pool.

Illustrative Example 4: Upregulation of Citrate Synthase To illustrate upreg-
ulation, consider the impact of increasing the amount of citrate synthase in
the metabolic pool in Table 2 from 0.0001 to 0.00015 nmols while keeping all
metabolite concentrations fixed. A comparison of the equilibrium concentrations
for nominal (0.0001 nmols) and upregulated (0.00015 nmols) amounts of citrate
synthase is shown in Table 2. Note that the model predictions are at the very
least qualitatively correct. Increasing the amount of enzyme results in a decrease
in the equilibrium concentrations of reactants and an increase in the equilibrium
concentrations of products. More specifically, the concentrations of citrate and
co-enzyme A increase by ∼5%. In addition, all enzyme complexes increase in
concentration.

1.6 Allosteric Inhibition

It is well known that the co-factor NADH is a strong allosteric inhibitor of
citrate synthase. In fact, Yim et al. [4] describe a specific genetically engineered
mutation (PDB # 1OWB) used in the production of 1,4-butanediol from E. coli
that significantly reduces NADH inhibition of citrate synthase. The specific genetic
modification used by Yim et al. has leucine in place of arginine on residue 163 of
the enzyme.

Illustrative Example 5: Allosteric Inhibition Continuing with the behavior of
citrate synthase, consider the nominal metabolic pool shown in Table 2, which in this
illustration contains 0.0001 nmols of citrate synthase and 0.001 nmols of NADH.
If the Nash equilibrium approach correctly captures allosteric inhibition, then the
concentrations of citrate and co-enzyme A produced should decrease in the presence
of NADH. A comparison of the third column from the right with the last column of
Table 2 bears this out. Citrate and co-enzyme A concentrations decrease by 84.4%.
Note also that the equilibrium concentration of free citrate synthase available for
catalysis is reduced by 7% while the binding of NADH to the enzyme is significant.
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Table 2 Equilibrium concentrations for citrate production: citrate synthase (4G6B)

Metabolic pool Nominal Upregulated Inhibited

Species (nmols) (μM) (μM) (μM)

Oxaloacetate 0.0001 0.342912 0.331124 0.526544

Acetyl CoA 0.0001 0.289517 0.289517 0.289517

Citrate synthase (E) 0.0001, 0.00015 4.08927 4.10640 3.80270

E-oxaloacetate 0.133417 0.126567 0.248045

E-acetyl CoA 0.012089 0.013603 ∼0

Citrate 0.181155 0.190287 0.028317

Co-enzyme A 0.135866 0.142715 0.021237

NADH 0.001 4.68262

E-NADH 0.905379

Table 3 Impact on equilibrium concentrations from genetic modification of citrate synthase
inhibition

Species Metabolic pool (nmols) PDB # 4G6B (µM) PDB # 1OWB (µM)

Oxaloacetate 0.0001 0.526544 0.517328

Acetyl CoA 0.0001 0.289517 0.289518

Citrate synthase (E) 0.0001 3.80270 3.18897

E-oxaloacetate 0.248045 0.241539

E-acetyl CoA ∼0 ∼0

Citrate 0.028317 0.036991

Co-enzyme A 0.021237 0.027744

NADH 0.001 4.68262 5.64453

E-NADH 0.905379 0.143040

Both of these facts clearly show that NADH inhibits the conversion of oxaloacetate
and acetyl CoA to citrate and CoA.

Illustrative Example 6: Genetic Modification To illustrate that the Nash equilib-
rium approach captures the impact of genetic modification, the previous illustration
is re-solved by replacing the native citrate synthase structure (PDB # 4G6B) with
the re-engineered structure (PDB # 1OWB) used by Yim et al. [4]. Table 3 shows
a comparison of the equilibrium concentrations that are predicted for both citrate
synthase structures, PDB # 4G6B and 1OWB.

Note that the re-engineered citrate synthase structure (PDB # 1OWB) results in a
significant increase in the equilibrium concentrations of citrate and co-enzyme A of
∼30% and a decrease in the equilibrium concentrations of the reactants oxaloacetate
and acetyl CoA when compared to the native structure (PDB # 4G6B). Moreover,
the amount of NADH bound to the enzyme is reduced by 84%, and this, in turn,
results in an increase in the equilibrium concentration of citrate synthase available
for converting oxaloacetate and acetyl CoA to citrate and CoA.
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2 Understanding Cancer Metabolism: The Methionine
Salvage Pathway

Methionine is an essential amino acid that cannot be produced de novo in mammals
and must be ingested through food and/or supplementation. S-Adenosyl methionine
(SAM) is a derivative of methionine and serves as a methyl donor group for
methylation of DNA, RNA, and proteins such as histones. The methionine salvage
pathway and the associated metabolites and co-factors are important in understand-
ing cancer metabolism. Key among those metabolites and co-factors are methionine,
SAM, methylthioadenosine (MTA), and S-methyl-5-thio-D-ribose (MTR-1P). The
methionine salvage pathway is shown in Fig. 1, and the corresponding biochemical
reactions are given in Appendix 2.

It is now well established that the gene encoding S-methyl-5′-thioadenosine
phosphorylase (MTAP), the enzyme that converts MTA to MTR-1P in the methio-
nine salvage pathway, is often co-deleted in many types of cancers (e.g., glioblas-
toma, leukemia, lung, lymphoma, mesothelioma, osteosarcoma, pancreatic) since
it is adjacent to the tumor suppressor CDKN2a on the chromosome 9p21 locus
[6]. While this deletion affects methionine metabolism by effectively eliminating
the methionine salvage pathway, it also leads to an accumulation of MTA, which

B.3

B.4

B.5

B.6

B.7

B.8

B.9

B.1B.2

DC-SAM

Fig. 1 Methionine salvage pathway adapted from [5]. The complete set of biochemical reactions
are provided in Appendix 2
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is toxic to cells due to feedback inhibition of spermidine synthase. Recent work by
Kirovski et al. [7] and Chang et al. [8] has also shown that other types of cancer cells,
such as hepatocellular carcinoma (HCC), exhibit loss of MTAP activity resulting
from hyper-methylation of its gene promoter, and this also leads to accumulation
of intracellular MTA. Additionally, Kamatani and Carlson [9] provide evidence that
increased levels of MTA result in increased concentration of putrescine but inhibit
spermidine synthetase. Finally, attempts to inhibit MTAP in order to starve cancer
cells of SAM and kill them have only met with marginal success [8], showing only
slight improvement in prolonging life in cancer patients.

2.1 Baseline Simulations of the Methionine Salvage Pathway

To provide some basis for comparison, baseline steady-state equilibrium concentra-
tions for the methionine salvage pathway for a model consisting of metabolite/co-
factor-only reactions were computed using the Nash equilibrium approach. Two
separate initial pools were used—one corresponding to very low methionine (or
a vegan diet) and the other to normal levels of methionine (or a diet consisting of
meat and dairy). The primary interest here is to determine if the Nash equilibrium
approach can provide good quantitative predictions of equilibrium concentrations in
the physiological range.

Table 4 gives results for two separate initial metabolic pools containing some, but
not all, metabolites. Note that all metabolite concentrations fall within the normal
physiological range and in some cases match almost perfectly with experimentally
reported values in Table 4, particularly for the normal methionine diet.

As mentioned above, the amount of intracellular methionine is primarily depen-
dent upon the available food source. Early work by Eagle [17] identified 100 μM
as a suitable concentration of methionine for culturing mammalian cells and is
currently used in several media formulations (e.g., RPMI, MEM). Recent studies
have shown that concentrations of methionine above 25 μM are required for cell
proliferation [10] as well as maintenance and growth of undifferentiated stem cells
[11]. The equilibrium methionine concentrations predicted by the Nash equilibrium
approach based entirely on first principles fall within the physiological range
and are impressively close to reported experimental values, as shown in Fig. 2.
Similarly, the equilibrium concentrations predicted for SAM and MTA by the Nash
equilibrium approach are remarkably close to reported experimental values from a
variety of sources, as shown in Table 4. As discussed in [14], the impact of MTA
concentrations on tumor cells remains a controversial topic since [0.5–5] μM MTA
reportedly promotes tumor progression while higher concentrations have been found
to impede cell proliferation and tumor development, so this has been referenced as
an upper bound in MTA concentration.

It is important to note that there are several other studies that report the
intracellular concentrations for SAM and MTA on a relative basis such as nmol per
million cells or per mg of protein. However, these values cannot be used as absolute
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Table 4 Methionine salvage pathway baseline equilibrium concentrations starting from an initial
metabolite pool (nmol) of 0.2 glutamate, 1 water, 2 ATP, 1 H+, 0.05 putrescine, 0.075 MTA, 1 O2,
1 KMTB

NE Conc 1 NE Conc 2 Experimental

Species (μM) (μM) (μM) References

Initial Met poola 34.92 69.84

Methionine (Met) 57.97 108.00 >25 [10]

[11]

83.6 [11]

SAM 35.45 42.31 59 [12]

46.2 [11]

50 [13]

MTA 0.23 0.23 0.264 [11]

<5 [14]

Putrescine 0.38 0.39 [0.05, 0.3] [15]

ATP 1325 1319 [1290, 1790] [15]

Adenineb 2.10 2.10 [0.5, 3] [16]
aCorresponds to 0.005 and 0.1 nmols in initial pool
bAdenine is regulated at 0.003 nmols in metabolite pool; regulation results in 0.123 nmols of
adenine output
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Fig. 2 Comparison between experimental and predicted intracellular concentrations for methion-
ine and SAM

quantities since they are found to differ by several orders of magnitude between
sources and even between studies performed by the same authors. While such
values cannot be used to infer absolute concentrations, they are useful for computing
relative concentrations between metabolites that were measured by the same assay.
Figure 3 presents the ratios in concentrations for methionine/SAM and SAM/MTA
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Fig. 3 Comparison between experimental and predicted ratio of equilibrium concentrations
between methionine/SAM and SAM/MTA

for several experimental studies. The ratio of methionine/SAM predicted by the
Nash equilibrium approach is found to be in good agreement with all studies, in
which approximately half of the methionine pool is used toward production of SAM.
Interestingly the ratio of SAM/MTA as predicted by the Nash equilibrium approach
most closely matches the values reported by Shiraki et al. [11]; Table 4 further shows
that the absolute concentrations for SAM and MTA are strikingly close between the
predicted and experimental values in that study.

The Nash equilibrium solution in column 2 of Table 4 required 30 outer loop
iterations to converge and 0.05 s on a Dell Inspiron laptop using the Lahey-Fujitsu
LF95 DOS compiler. The solution shown in column 3 took 38 outer loop iterations
and 0.09 s.

2.2 Inclusion of the Key Enzyme S-Methyl-5′-Thioadenosine
Phosphorylase (MTAP)

As noted earlier, the enzyme MTAP is deleted in approximately 15% of all human
cancers [18] or is reduced in expression in other types of cancer such as HCC. Thus,
studying the impact of MTAP activity on the regulation of the methionine salvage
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pathway is of great importance. In this work, only binding of MTA to MTAP is
considered. See Appendix 2. Correct inclusion of any enzyme must not change the
associated chemical equilibrium. When MTAP is added to the previous metabolic
pool and regulated at 0.07 μM, the calculated results shown in Table 4 remain the
same.

2.3 Loss of MTAP Activity

Loss of catalytic activity of MTAP is studied using the Nash equilibrium approach.
Loss of enzyme activity can be interpreted in many ways; however, regardless
of whether the loss of activity is the result of gene deletion or reduced levels of
expression, there is simply less effective (or no) catalytic activity.

Numerous reports have examined the effect of MTAP knock-down or deletions in
a variety of cell models, and the results for a number of these studies are summarized
in Fig. 3 alongside the predictions for the Nash equilibrium model incorporating loss
of MTAP activity (Table 5).

There is a striking resemblance in the decrease in the SAM/MTA ratio between
the findings of Marjon et al. [19] for colon carcinoma and the predictions of the Nash
equilibrium model (unregulated) in Fig. 3. Furthermore, there are reports that while
a loss of MTAP activity does result in a general increase in MTA levels, the levels
of SAM are not altered [7]. These findings are consistent with our predictions in
which intracellular SAM remains at approximately 50 μM (see Fig. 2 and compare
Tables 4 and 5).

Table 5 Loss of MTAP activity in methionine salvage pathway

Pool Regulated Unregulated Experimental Reference

Species (nmols) (μM) (μM) (μM) number

Glutamate 0.2

Methionine 0.075 94.47 97.41 100 [17]

KMTB 1

ATP 2 1323 1327 [1290,1790] [15]

H+ 1

Putrescine 0.005 0.090 1.23 [0.05, 0.3] [15]

MTA 0.25 0.928 20.12 <5 [14]

MTAP 0.015 10.85 7.81

MTR-1P 0 22.34 20.36

Adeninea 0.01 6.99 158.79 [0.5, 3] [16]

Oxygen 1

SAM 0 53.23 49.88 50 [12]

Spermidine 0 3.74 2.49 [0.03, 10]
aAdenine flux regulated at the value given in table



340 A. Lucia and P. A. DiMaggio

Importantly, our results elucidated a definitive connection between intracellular
adenine flux regulation and MTA accumulation within the cell. This claim is
supported by the results given in Table 5, which shows numerical results for the
methionine salvage pathway using the proposed Nash equilibrium framework for
two separate cases—one in which the adenine flux in the pathway is regulated and
one in which it is not regulated. In Fig. 3, the results clearly show that when adenine
flux is regulated, the value for the predicted ratio of SAM/MTA is in excellent
agreement with the hepatoma and melanoma cancer cell models.

According to our predictions, MTA is observed to increase fourfold in concen-
tration under loss of MTAP activity when adenine is regulated (compare Tables 4
and 5) and increases substantially when adenine is not regulated. Experimental
studies have reported a sevenfold increase in intracellular MTA levels upon MTAP
deletion, resulting in MTA secretion from the cell [13]. However, other studies have
also shown markedly higher increases in MTA upon MTAP deletion (e.g., over 20-
fold [19]).

In general, when adenine flux in the pathway is not regulated, then:

1. The adenine concentration becomes significantly higher and reaches a level that
can slow cell growth [20].

2. There is a 20-fold increase in the concentration of MTA from ∼1 to 20 μM.
3. The putrescine concentration increases by an order of magnitude 0.09 to >1 μM.
4. There is a 10% decrease in the concentration of S-methyl-5-thio-D-ribose 1-

phosphate (MTR-1P) within the cell.

Figure 4 provides further evidence of the importance of adenine flux regulation
within the methionine salvage pathway. Note that for adenine pathway fluxes

Fig. 4 Impact of regulating adenine flux in the methionine salvage pathway
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regulated between 0.001 and 0.01 nmol/h, adenine transport (out of the pathway)
remains constant at 0.2536 nmol/h while MTA concentration increases linearly in
the range 0.1–1 μM.

Finally, it is important to note that the calculated results shown in Table 5 require
very little computational work. Both Nash equilibrium solutions were computed in
20–30 iterations and in less than 0.1 s on a Dell Inspiron laptop.

2.4 Discussion of Methionine Salvage Pathway Results

As noted, many types of cancer cells show loss of MTAP activity, accumulation of
MTA, and increased synthesis of the polyamines putrescine and/or spermidine [8].
Nash equilibrium computations performed in this work predict that loss of MTAP
activity results in accumulation of MTA, and the level of accumulation is dependent
upon whether the adenine flux within the methionine pathway is regulated.

As previously mentioned, some cancers such as hepatocellular carcinoma (HCC)
have a loss in MTAP activity rather than complete deletion of the gene. In a study
comparing the SAM and MTA levels in melanoma vs. hepatoma cell lines, it was
found that the hepatoma line (PLC) exhibited adenine levels that were 56- to 79-
fold higher than the melanoma lines [21]! Similarly, in Table 5 it is shown that
not regulating adenine in the Nash equilibrium results in a 23-fold increase in
adenine concentration. This potentially points to a cancer-specific effect involving
adenine (mis)regulation and intracellular MTA accumulation. Furthermore, if the
adenine flux is not regulated by the cell, adenine will be overproduced and can
result in cell toxicity (e.g., toxic levels of putrescine). Also note that regulation
of adenine flux avoids overproduction of polyamines and results in putrescine and
spermidine concentrations in the “normal” range, in agreement with data in the
Human Metabolome Database (see [15]) and elsewhere.

Interestingly, since adenine is a key metabolite in the rapid regeneration of AMP,
cancer cells containing MTAP deletions should be entirely dependent upon de novo
purine synthesis of AMP to support growth (rather than the salvage of intracellular
adenine pools), which in theory would make them susceptible to inhibitors of this
pathway. However, studies have shown that these types of cancer cells resort to
salvaging adenine from plasma and adjacent tissues to survive [6], which further
complicates the relationship between cancer phenotype and adenine regulation.

3 Conclusions

A Nash equilibrium approach to metabolic pathway modeling, simulation, and
analysis was presented. In the first part of this chapter, the Nash equilibrium
framework was described and small examples were presented in order to provide
a tutorial for the reader. In the second part, the behavior of the methionine salvage
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pathway was studied with the intent of demonstrating that the Nash equilibrium
framework has the capability to predict metabolic behavior using first principles.
Results clearly showed that the Nash equilibrium approach predicts that loss of
MTAP activity results in accumulation of MTA and that MTA accumulation is
coupled to tight adenine regulation.

Appendix 1

See Table 6.

Table 6 Enzyme-substrate binding energies

Enzyme Substrate Binding energy (kJ/mol)

Citrate synthase (4G6B) Oxaloacetate −23.01

Acetyl CoA −10.37

NADH −30.54

Citrate synthase (1OWB) Oxaloacetate −23.01

Acetyl CoA −10.37

NADH −29.29

MTAP MTA −29.07

Appendix 2

Methionine salvage pathway biochemical reactions (see Fig. 1).

Reactions Involving Metabolites and Co-factors

C3H7O3S−1 + C5H8NO−1
4 � C5H11NO2S + C5H4O−2

5 (17)

C10H12N5O13P−4
3 + C5H11NO2S + H2O �

HPO−2
4 + H2P2O−3

7 + C15H23N6O5S+ (18)

C15H23N6O5S+ + H+ � C14H24N6O3S+2 + CO2 (19)

C14H24N6O3S+2 + C4H14N+2
2 � C11H15N5O3S + C7H22N+3

3 + H+ (20)
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C11H15N5O3S + HPO−2
4

MTAP−−−⇀↽−−− C5H5N5 + C6H11O7PS−2 (21)

(MTR-1P) C6H11O7PS−2 � C6H11O7PS−2 (MTRu-1P) (22)

C6H11O7PS−2 � C6H9O6PS−2 + H2O (23)

C6H9O6PS−2 + H2O � C6H10O3S + HPO−2
4 (24)

C6H10O3S + O2 � C5H7O3S−1 + CHO−1
2 + 2H+ (25)

The overall reaction is given by

C5H8NO−1
4 + C10H12N5O13P−4

3 + C4H14N+2
2 + O2 � (26)

C5H4O−2
5 + H2P2O−3

7 + CO2 + C7H22N+3
3 + C5H5N5 + HPO−2

4

+ CHO−1
2 + 2H+

and is clearly element and charge balanced.

MTAP = S-methyl-5′-thioadenosine phosphorylase

MTR-1P = S-Methyl-5-thio-D-ribose 1-phosphate

MTRu-1P = S-Methyl-5-thio-D-ribulose 1-phosphate

Key Enzyme-Substrate Reactions

MTAP + C11H15N5O3S � MTAP − C11H15N5O3S (27)

MTAP − C11H15N5O3S + HPO−2
4 � C5H5N5 + C6H11O7PS−2 (28)

Equations (27) and (28) replace Eq. (21) when the enzyme MTAP is included
explicitly.
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Leveraging Financial Analytics
for Healthcare Organizations
in Value-Based Care Environments

Dieter Van de Craen, Daniele De Massari, Tobias Wirth, Jason Gwizdala,
and Steffen Pauws

1 Introduction to Financial Analytics for Population Health
Management

Almost all healthcare systems worldwide are currently struggling with rising costs
and uneven quality despite numerous efforts to overcome these challenges. To bend
the cost curve, healthcare systems are in a transition towards value-based healthcare
[27], aiming at maximizing the value of care for the patient and reducing healthcare
costs. One of the key elements is to introduce innovative payment schemes that are
not based on the long-standing fee-for-service (FFS) model. In the recent past of
FFS, healthcare provider organizations had the ease to send a bill to a payer for
every service rendered, which hardly requires financial accounting and planning
but rather creates a financial incentive to provide more services irrespective of
their necessity or quality. New reimbursement, incentive, and penalty schemes
make healthcare provider organizations financially accountable for their patient
population which does require periodical financial planning and reporting, health
plan and fee schedule negotiation with commercial and governmental insurers,
internal cost optimization for in- and outpatient services, and budget reservations for
provider network engagement and community outreach. Consequently, understand-
ing financial performance, identifying opportunities for improvement, and assessing
the efficacy of implemented programs are among the key needs for any healthcare
provider organization that grows along the path of value-based care.

D. Van de Craen (�) · D. De Massari · T. Wirth · S. Pauws
Philips Research, Eindhoven, The Netherlands
e-mail: dieter.van.de.craen@philips.com; daniele.de.massari@philips.com; tobias.wirth@philips.
com; steffen.pauws@philips.com

J. Gwizdala
Philips Wellcentive, Alpharetta, GA, USA
e-mail: jason.gwizdala@philips.com

© Springer Nature Switzerland AG 2019
S. Consoli et al. (eds.), Data Science for Healthcare,
https://doi.org/10.1007/978-3-030-05249-2_14

347

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05249-2_14&domain=pdf
mailto:dieter.van.de.craen@philips.com
mailto:daniele.de.massari@philips.com
mailto:tobias.wirth@philips.com
mailto:tobias.wirth@philips.com
mailto:steffen.pauws@philips.com
mailto:jason.gwizdala@philips.com
https://doi.org/10.1007/978-3-030-05249-2_14


348 D. Van de Craen et al.

1.1 Health Systems Financing

Developed countries have arranged the financing of their healthcare system in
various basic forms to meet the goals for keeping a healthy population, providing
care in case of sickness, and covering costs involved. Most countries have settled
down to a basic arrangement of public or private providers and payers, though they
have added their own variation to the basic form. In so-called Bismarck countries
such as Germany, the Netherlands, and Belgium, both providers and multiple payers
are private entities; they are linked to each other by various health insurance plans
that are financed by employers and employees primarily through payroll deduction.
In Beveridge countries such as the UK, Italy, and Spain, the government acts as a
single public payer to governmentally owned providers delivering healthcare as a
public service that is financed through tax payments. In countries with a National
Health Insurance (NHI) such as Canada and Australia, the providers are private
entities but the government acts as the single public payer with an insurance plan
that is financed by a monthly premium collection. According to the OECD health
statistics database, the amount spent on health per person in the USA summed to
$9892 in 2016 [24]. The healthcare cost per capita in the USA is almost double the
average health expenditure of comparable countries. For that reason, we will focus
on the US healthcare system as an example case to introduce the methodology of
population health management in the field of financial management of healthcare
organizations which in turn is adaptable to other countries’ healthcare systems and
data governance. The USA has not settled to a single basic form of healthcare
financing, but uses different ways of insurance for different parts of its population
[3]:

• Medicare is the health insurance paid by the federal government for people over
65, certain younger people with disabilities, and people with end-stage renal
disease. Medicare covers 58 million people and 20% of the total cost of care.
Essentially, Medicare acts as a NHI model in the same vein as in its neighboring
country Canada. Medicare is the central focus of this chapter.

• Medicaid is the insurance for the 68 million “vulnerable” people with low
incomes and disabilities and living in care homes with no property. The criteria
to qualify for Medicaid vary by state. Medicaid is partially paid by state, but
supplemented by the federal government. Also, Medicaid follows a NHI model.

• The Army or Department of Veterans Affairs (VA) insures 18 million military
personnel, veterans, and Native Americans. The VA offers basically all necessary
care to its own insured and acts therefore according to a Beveridge model.

• Private insurance is in place for working people through their employer by a
health plan (156 million Americans) or for the 22 million people who have and
pay their own health insurance (the non-group market). The private insurance is
run like a Bismarck model.

• At present, around 28 million of the 320 million Americans are uninsured (about
9%).
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1.2 Medical Claims Data

Generally, medical claims data refers to the information within medical billing
claims forms. These forms are submitted by medical providers to health insurers
for payment and contain valuable information such as procedure codes and their
associated diagnosis codes. In order to support healthcare organizations in monitor-
ing their financial performance, it is a necessity to realize software that processes
medical claims data and computes financial key performance indicators (KPIs).
In this section we provide an example on how to analyze medical claims data.
We choose an Accountable Care Organization participating in a Medicare Shared
Savings Program to describe necessary steps in the pre-processing of claims data
and computation of financial KPIs.

This type of medical claims data is typically not freely available for research.
However, notable examples of curated US healthcare administrative data sources
are the Healthcare Cost and Utilization Project (HCUP) [14] and the Research
Data Assistance Center (ResDAC) [29]. HCUP is a source of hospital care data,
including information on inpatient stays, ambulatory surgery and services visits, and
emergency department encounters which can be used to study healthcare delivery
and patient outcomes over time, and at the national, regional, state, and community
levels. Via ResDAC researchers can access the Centers for Medicare and Medicaid
Services (CMS) Medicare and Medicaid claims data.

1.2.1 Medicare Shared Savings Program

CMS established the Medicare Shared Savings Program (MSSP) on January 1,
2012, as required by the Affordable Care Act [11]. The MSSP is a voluntary
program designed to provide better care for patients, better health for the communi-
ties, and lower costs through improvements in the healthcare system. Participating
entities, referred to as Medicare Accountable Care Organizations (ACOs), that meet
quality and performance standards, are eligible to receive payments for shared
savings. An ACO is a group of healthcare providers, such as physicians and
hospitals, that work together to manage and coordinate care for a group of patients
across the entire spectrum of care for those patients and accept responsibility for the
quality and cost of that care. Medicare ACOs may choose to participate in different
tracks which differ in requirements and have either one-sided or two-sided financial
risk. Under the one-sided model (Track 1), an ACO may receive shared savings if it
meets the applicable requirements, but it will not be liable for shared losses. Under
the two-sided models (Track 1+, Track 2, and Track 3), the ACO may share both
savings and losses. For a comparison of the different tracks, we refer to [9].

In the remainder of this chapter, we will assume that we are operating under the
conditions of a MSSP Track 1. It must be noted that most risk-based contracts tend
to have similar conditions and as such the descriptions will be valid for these types
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of contracts as well. However, different benchmarking methods and data formats
will apply and must be handled in order to make the descriptions applicable.

1.2.2 Medical Claims Data: The CCLF Format

ACOs receive from CMS aggregated information on their assigned population and
financial performance at the start of the agreement period and quarterly during
the performance year, as well as following the conclusion of each performance
year. Next to this, CMS provides ACOs with monthly Claim and Claim Line Feed
(CCLF) data as beneficiary-identifiable claims data to assist ACOs in enabling their
practitioners to better coordinate and manage care strategies towards the individual
beneficiaries who may ultimately be assigned to them. The CCLF data provides
monthly data feeds to each ACO, including:

• Medicare Part A (Hospital Insurance) and B (for Supplemental Medical Insur-
ance) data for the appropriate beneficiaries who have not opted out of data
sharing. Data related to substance abuse claims and diagnoses are not included
in the feeds.

• Medicare Part D data (Pharmaceuticals) is provided for individuals enrolled in a
private part D plan.

The CCLF data is an important supplement to an ACO’s own data as the CCLF also
contains claims data for services received by the ACO beneficiaries but delivered
by providers not participating in the ACO. This gives ACOs a broader picture of the
services each beneficiary in the CCLF files has received from Medicare providers.
However, the CCLF data cannot be used as a source of truth as there are a number
of shortcomings in the data (for a detailed description about the limitations, we refer
to [18]). As a result, the CCLF data only allows to create similar but not exactly the
same numbers as CMS.

CMS provides the ACO with nine separate CCLF files; see Table 1 for an
overview.

Table 1 Claim files

Group Code Name

Part A (patient’s hospital and institutional
related activity)

CCLF1 Claims header file

CCLF2 Claims revenue center detail file

CCLF3 Procedure code file

CCLF4 Diagnosis code file

Part B (services delivered by physicians,
practitioners, and suppliers)

CCLF5 Physician file

CCLF6 Durable medical equipment (DME) file

Part D CCLF7 Pharmaceutical prescriptions

Beneficiary data CCLF 8 Beneficiary demographics file

CCLF9 Beneficiary XREF (cross reference) file
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1.2.3 ACO Membership Files: The QASSGN Files

Crucial for an ACO is to know who are its patients or beneficiaries. Financial
performance in terms of number, cost, and quality of services offered and reimburse-
ments received depend on the patient population an ACO is held accountable for.
Beneficiary attribution lists are required to generate quarterly reports on financial
and quality performance; it determines whether an ACO can share in savings or
losses in Medicare programs.

For ACOs in MSSP Tracks 1 and 2, beneficiary assignment is determined
retrospectively at the end of the year for each benchmark and performance year.
For these ACOs, Medicare provides each quarter so-called QASSGN files listing
the attributed and assignable beneficiaries to the ACO. Variation in retrospectively
assigned beneficiaries throughout the year can be about 20 to 30%. Likewise, it
is common for the final attributions to vary with the same amount from year to
year. To make up these lists, CMS uses a two-step attribution process to associate
beneficiaries with providers [7]. In the first step, a beneficiary is assigned to the
ACO whose primary care physician or non-physician practitioner has rendered more
primary care services than all other ACOs to the selected beneficiary. The second
step applies for those beneficiaries who have not received any primary care services
of an ACO and is similar to the first step but rather looks at services rendered by
specialist physicians. For Track 1+ and Track 3 ACOs, beneficiary assignment is
determined prospectively prior to the start of each benchmark and performance year,
and hence it is much easier for these ACOs to keep track of their population.

1.2.4 Physician Roster File

ACO lists their affiliated organizations and physicians in an ACO roster file or
provider hierarchies in which provider organizations are listed by their National
Provider Identification (NPI) and legal name. This data is needed to identify those
organizations and physicians that are referred to in the claims record as part of the
ACO network or as out-of-network.

1.3 Previous Work

Previous research studies examining and understanding the US healthcare system
through analyzing healthcare administrative or insurance claims data are numer-
ous. They are primarily focused on unraveling health disparities in population,
understanding health risk factors, curbing rising costs, and identifying the most
effective treatments, the best providers, and the most efficient health plans within
a healthcare delivery system for a population [17]. These studies have resulted in
profound insights in healthcare practice. Already in 1973, it led to findings on wide
variations in rates of costly medical treatments in similar patient populations [34].
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Some recent studies report on the evidence on favorable outcome of value-based
care mechanisms in healthcare finance [19], the variation in spending across
physicians [31], or the drivers of healthcare spending, utilization, and health
outcome in the USA compared to other high-income countries [25].

2 Healthcare Financial Analytics on Medicare Claims Data

In the second part of this chapter, we will introduce a basic framework for
healthcare data scientists to help healthcare organizations achieve financial success
in an accountable or value-based care environment. The reader will learn the key
components of translating clinical and financial information contained in raw claims
data into actionable insights for financial performance dashboards that inform C-
suite executives on decision-making and the development of best practices. The
prerequisite for getting started with financial analytics is to identify final action
claims from the raw claim feed which the payer for an insured patient population
shares with the healthcare organization. Though this step may need to be adapted
to other sources of healthcare insurance claims, we exemplify the pre-processing
by Medicare data. We describe how KPIs can help healthcare organizations
participating in risk-based contracts identify areas of concern across the three
main domains of assigned patient population, clinical care and patient utilization,
and financial performance. We then explain how to construct selected high-level
KPIs, what specific use case each KPI targets and what data is needed to measure
performance, and finally how to visualize the output on C-level dashboards. The
final section focuses on selected drill downs that allow moving from the high-level
summary information of a KPI towards more actionable information by focusing on
specific attributes. Finally, the healthcare data scientist is equipped with the skills
to leverage population health management techniques to monitor performance and
identify areas of improvement for defined use cases with impact on quality, revenue,
and satisfaction of patients and healthcare professionals.

2.1 Curated Pre-processing of Claims Data

Monthly CCLF data feeds, beneficiary attribution lists, and physician roster files
need to be ingested into a claims data pre-processing pipeline for data linkage and
cleansing. In general, it entails appending claims records across feeds, grouping
claims for the same beneficiary and service, removing duplicate claims, validating
primary key prerequisites, identifying final claims, attributing beneficiaries to an
ACO, and selecting a time period for reporting.
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When handling monthly CCLF data feeds in a claims pre-processing pipeline, a
number of attention points need to be taken into account. The following list provides
an overview of the key attention points:

• Benchmark set. The very first data feed is a benchmark feed containing CCLF
files providing an ACO with data back to 1 year prior to the start of its agreement
period for each beneficiary;

• Update set. The monthly updates represent claims during the prior month. These
should be appended to previously received data feeds;

• Time lag. The feeds are provided monthly and lag by roughly 45 days. This means
that a feed from June contains data through the end of April;

• Claim lag. Every feed will have claims which are several months old at various
stages of payment. This means that historical numbers change from month to
month and a specific claims run-out time is selected for the generation of financial
reports;

• Claim availability. Not all claims are included in the CCLFs as CMS does
not share any claims that identify drug and alcohol treatment information and
beneficiaries may have opted out for data sharing.

• Beneficiary attribution. As said, attributions or assignments are sent from up to
six times per year. First the prospective attribution for the coming year is sent to
be followed by four quarterly attributions and the final attribution. The latter is
provided along with cost savings and performance results.

Specific software resilience measures need to be incorporated in the pipeline,
as CCLF and QASSGN formats happen to change over time or have different
specifications from various insurance organizations when handling commercial
value-based contracts. For instance, the CCLF specification is currently at version
18.0 (published on January 25, 2017) [1]. New versions are not published at regular
intervals. Changes to the QASSGN and CCLF file layout and codes used will
impact the validity of our data model and algorithms. For the QASSGN files, the
specification is however part of the provided files. Next to this, an ACO will need
to provide an overview of the participants in their network. This provider roster file
can be customer specific and also change over time. As a result of these issues, a
number of sanity checks will be necessary when these types of files are received to
identify and accommodate for the inconsistencies detected.

Next to these attention points, a number of practical challenges need to be taken
into account with respect to CCLF claims pre-processing:

• History. A claim history spans multiple months: from billing to settlement
through negotiation. Each change on a claim is reported in the monthly feed
when the change occurred; therefore, one cannot determine a priori at any
given moment in time if other changes will (or not) occur for the claim under
investigation. As data feeds come in on a monthly basis, history of every claim
needs to be re-created by appending claim records from successive feeds and
indexing each record with its originating feed;
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• Matching Health Insurance Claim Number. A HICN is a Medicare beneficiary’s
identification number consisting of a 9-digit Social Security Number (SSN)
followed by an alpha or alphanumeric suffix containing Beneficiary Identification
Code (BIC). However, retirement, disablement, change in marriage status, and
age or death of a spouse can change a HICN in its BIC. Different HICN that
actually refer to the same beneficiaries need to be identified and updated for all
monthly and historic claim records;

• Claim Duplicate Removal. Exact duplicates of claims records identified during
pre-processing should be removed based on all original columns, hence exclud-
ing the columns added during pre-processing;

• Duplicate primary keys. Duplicated primary keys are found in different and
successive CCLF files, which corrupt the data integrity of the CCLF data model
instance. Duplicated keys need to be resolved;

• Final Claim Identification. A history chain of claims can consist of multiple
original, cancellation, and adjustment claims. Hence a process needs to be
followed to determine the final claim which refers to the actual settlement on
payment or rejection or the end of a care episode. There are several methods
to identify a final claim, though a debit/credit adjustment method has been
recommended by CMS which helps understand the net payment of the claim
chain [1].

2.2 Required Linkage with External Data and Information
Sources

Besides the CCLF data feeds, QASSGN, and provider roster file, the pre-processing
pipeline and performance calculations require a number of external data and
information sources which are regularly updated. Table 2 provides an overview of
these sources.

2.3 Methods of Financial Performance Assessment in Total
Cost, Utilization, and Patient Leakage

A few financial KPIs are fundamental for ACOs, especially for their C-suite
executives (e.g., chief financial officer) or financial managers, to keep track of
their organization’s financial performance. Based on knowledge from financial field
experts and information extracted from financial reports, we arrived at the following
minimal set of eight measures: beneficiary count measures, total and per member per
month (PMPM) cost measures, admission measures, avoidable admission measures,
ED visit measures, avoidable ED visit measures, readmission measures, and patient
leakage measures.
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Table 2 External data and information sources

Name Description

ICD10 The International Statistical Classification of Diseases (ICD) and Related Health
Problems is an internationally uniform and standard list of medical conditions
[35].

CCS Clinical Classifications Software is a diagnosis and procedure categorization
scheme that can be used to analyze data on diagnoses and procedures [16].

PQI Prevention Quality Indicators are a set of measures that can be used with hospital
inpatient discharge data to identify “ambulatory care sensitive conditions”
(ACSCs). These ACSCs are conditions for which good outpatient care can
potentially prevent the need for hospitalization [28].

Readmission
rule

A hospital readmission is an episode when a patient who had been discharged
from a hospital after an (index) admission is admitted again within a specified
time interval [10].

NYU alg. The NYU algorithm for ED visit classification assesses the level of emergency
department (ED) use in the general population and its association with hospital
admission and mortality [4, 5, 23].

MS-DRGs The Medicare Severity Diagnosis Related Groups is a system for classifying a
Medicare patient’s hospital stay into clinically similar groups in order to facilitate
payment of services [8].

It is key to have a common understanding and agreement on these KPI definitions
to allow for valid comparison over time and across ACOs. Therefore, we have,
if available, settled on CMS-endorsed definitions for the KPIs as these CMS
definitions are well documented and, in general, well accepted and used in the
healthcare domain.

2.3.1 KPI 1: Beneficiary Count

Especially for ACOs participating in a program with retrospective beneficiary
assignment such as MSSP Tracks 1 and 2, it is crucial to track their currently
attributed and attributable beneficiaries as these sets can change substantially over
time. For all ACOs it is key to understand their financial performance in terms of
number, cost, and quality of services offered and reimbursements received for their
attributed population.

We use the following definitions for beneficiary count indicators:

• Attributed beneficiaries: the number of beneficiaries attributed to the ACO.
• Assignable (or potentially attributed) beneficiaries to the ACO.
• Total eligible member months: the sum of the number of Medicare eligible

beneficiaries per month over a pre-selected time period.
• Total eligible member years: total eligible member months divided by 12.
• Number of deaths of attributed patients: number of beneficiaries deceased in the

selected time period.
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2.3.2 KPI 2: Total and PMPM Cost (Parts A and B)

If an organization is financially responsible for a group of beneficiaries, it is
crucial for the organization to track the cost of care incurred by the attributed
population. Besides the traditional fee-for-service model, several emerging new
payment models (e.g., one-sided or two-sided shared savings programs, partial or
full capitation, global budget) are being adopted that implement to a different degree
value-based reimbursement strategies. Depending on the specific value-based or
risk-shared contract, at the end of each financial year, an organization will receive
incentives, penalties, shared savings, or shared losses depending on, among other
criteria, the comparison between the total cost of care incurred by the attributed
population and a specific benchmark. As the total cost of care focuses on the entire
population, the PMPM cost is used to track the average cost spent per beneficiary in
a month which can be used to identify high-cost beneficiaries, for instance. A cost-
saving opportunity exists by improving the coordination of care among specialists
or designing tailored intervention programs for reducing under- and over-treatment
of these high-cost beneficiaries. This opportunity can be significant as typically a
relatively small group of the top 5% of high-cost beneficiaries make up about 50%
of the total spending [20].

We use the following definitions for the cost indicators:

• The total cost of care is considered as the sum of all the healthcare expenses
incurred by the beneficiaries attributed to a specific organization within a specific
period (e.g., fiscal year). The current definition comprises Part A and Part B
claims.

• The PMPM is equal to the total cost of care for the selected time period divided
by the total eligible member months.

2.3.3 KPI 3: Admission

Admissions are the largest cost factor for Medicare. Currently, the average paid
amount by Medicare for an admission is exceeding $12k [21]. With 10 million
annual inpatient admissions US-wide, the annual cost of inpatient admission sums
up to more than 100 billion dollars. For any healthcare delivery system, it is
important to get insights in the underlying clinical diagnosis for an admission, most
common procedures for surgical admissions, inpatient hospitalizations admitted via
the ED, and certainly avoidable admissions and readmissions.

We use the following definitions for the admission indicator:

• An admission is defined as any patient admitted to a hospital indicated
by an inpatient claim. Such admissions are identified by claim type code
(“IJCLM_TYPE_CD”) of the Part A header CCLF1 file: 60 for an Inpatient
claim and 61 for an Inpatient “Full-Encounter” claim;
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• Total number of hospital admissions is counted from claims of the following
care units: Short-Term Stay Hospital, Long-Term Stay Hospital, Rehabilitation
Hospital or Unit, and Psychiatric Hospital or Unit;

• The length of stay (LoS) is defined as the difference in days between the
claim through (CLM_THR_DT, hospital discharge date) and claim from
(CLM_FROM_DT, hospital admission date) dates as given in the CCLF1 Part A
header file. In case the claim from and through dates are the same, the admission
is assigned with a LoS of 1 day.

2.3.4 KPI 4: ED Visits

The increase of emergency department utilization is alarming in the USA; in 2011,
over 131 million ED visits took place, and that increased to 141 million in 2014
[22, 33]. On a yearly basis, 45 ED visits happen per 100 US citizens. About half of
the inpatient admissions originate from an ED visit. Patients who cannot afford the
cost of a normal primary care visit, as they might be uninsured, or who are unwilling
to wait for care often consult the ED for primary care. In particular, ED visits are
the only readily available care for the uninsured [13, 30]. For a good insight in ED
utilization, we refer to two types of ED visits:

• treat-and-release outpatient ED visits which are ED visits resulting in discharge
at the same day, which includes patients who are sent home possibly after
stabilization, transferred to another hospital;

• inpatient ED admissions which are ED visits resulting in an admission to the
same hospital.

For identifying ED visits from Medicare claims data, we use the CMS Research
Data Assistance Center (ResDAC) method. There are about four different opera-
tional definitions of ED visits from claims data in use [32]. They indeed produce
different estimates on hospital-based emergency care, calling for the need of a
standard method of estimating number and cost of ED visits from claims data for
consistent reporting and comparison. Adjustment of ED visit identification from
claims data is needed if additional care sites such as freestanding EDs or urgent care
centers with a different billing system—for example, via physician claims—getting
increased utilization.

We define treat-and-release ED visits as outpatient ED visits. Such an ED visit is
identified from outpatient claims using claim type code (CLM_TYPE_CD) equal
to “40” given in the CCLF1 Part A header file. The Revenue Center Code for
emergency department, to which a claim charge is billed, is identified by the codes
0450–0459 or 0981 in the CCLF 2 field (CLM_LINE_PROD_REV_CTR_CD).
A treat-and-release ED visit is classified on its level of emergency by the NYU
algorithm by assigning a probability for each possible category based on the primary
diagnosis.

ED inpatient admissions are ED visits that lead to hospitalizations on the same
day. They are also identified by the revenue codes listed above in the CCLF 2
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field (CLM_LINE_PROD_REV_CTR_CD). These codes flag utilization of services
from the ED department and indicate that the patient was admitted through the ED.

Note that no cost unit can be assigned to the ED utilization in case of an ED
admission because any cost is already absorbed in the bundled DRG bill for the
hospital admission.

Total ED utilization is defined as the sum of treat-and-release ED visits and ED
inpatient admissions.

2.3.5 KPI 5: Readmissions

In the USA, reimbursement of a medical treatment has started to be linked to the
quality of the treatment delivered by a hospital. In particular for six medical condi-
tions, hospitals are penalized by withholding up to 3% of Medicare reimbursement
if they have a higher-than-expected 30-day readmission statistic. For a US hospital
or an ACO, it is therefore key to focus on the readmission reduction programs for
not losing revenues. The event of a readmission is therefore costly but sometimes
a potential preventable event. Some readmissions are unavoidable and result from
inevitable progression of disease or worsening of chronic conditions or are simply
planned readmissions. However, readmissions may also result from poor quality of
care or inadequate transitional care. Transitional care includes effective discharge
planning, transfer of information at the time of discharge, patient assessment and
education, and coordination of care and monitoring in the post-discharge period.

We count readmissions as unplanned all-cause 30-day readmission as defined by
CMS [2]. It is based on the Yale hospital wide readmission measure used for quality
performance standard ACO #8 [2]. According to this definition, a readmission is a
subsequent inpatient admission (to short-stay acute-care or critical access hospitals)
which occurs within 30 days of the discharge date of an eligible index admission.
Because planned readmissions are not a signal of quality of care, we do not count
planned or potentially planned readmissions. The measure uses an algorithm to
identify “planned readmissions” in claims data that will not count as readmissions
in the measure.

The readmission rate is the percentage of index admissions that are readmitted
within 30 days of discharge. So, the denominator is the number of index admissions
discharged. To arrive at a readmission rate, we can either use a prospective or
retrospective method. In the prospective method, we count the number of index
admissions that had an unplanned readmission for any cause within 30 days; it lacks
an accurate estimate for the last running month. In the retrospective method, we
count the actual number of unplanned readmissions; it requires a 1-month prior
period from the CCLF feeds.

A readmission may in turn serve as an index admission for a next readmission, if
it meets particular eligibility criteria. This allows capturing recurrent (re)admissions
events for the same patient, whether at the same hospital or another.
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There are various eligibility criteria whether or not an admission can act as an
index admission in the denominator of the measure. Admissions are excluded as an
index admission if:

• no post-discharge data is available;
• discharge happened against medical advice;
• cancer, psychiatric, or a rehab treatment took place;
• patients were younger than 65 years of age;
• an in-hospital death happened;
• a transfer to another acute-care facility upon discharge or to another hospital is

within 1 day;
• multiple hospitalizations within single acute episode of care took place.

Likewise, admissions can act as a readmission, if they are unplanned admissions
to a Short-Term (General and Specialty) Hospital or a Critical Access Hospital,
as identified by the four last digits in their CMS Certification Number: 0001–
0879 for a short-term hospital and 1300–1399 for a critical access hospital. A
few specific types of care are always considered planned (e.g., obstetrical delivery,
transplant surgery, chemotherapy, radiotherapy, immunotherapy, rehabilitation). A
readmission is excluded if it includes a procedure that is potentially planned.
Readmissions for acute illness or for complications of care are always unplanned.
Admissions to one of the eleveen CMS-indicated cancer hospitals exempted for a
Prospective Payment System are excluded to count as a readmission [22].

2.3.6 KPI 6: Probable Avoidable ED Visits (Not Leading to Admission)

As said, 45 ED visits happen per 100 US citizens amounting to a staggering number
of 141 million ED visits in 2014 [22]. An ED is the most expensive healthcare
resource in a hospital making overutilization and inappropriate use of the ED costly
and an overload for the ED staff capacity. Especially the treat-and-release ED visits
are marked as being partly and potentially avoided; it is remarkable that 32.2% of
all ED visits take place with patients seen in fewer than 15 min [22]. It is estimated
that about 20–40% of all ED visits are generated by patients with non-emergent
concerns [6].

Identifying appropriate and inappropriate ED use is key to understand the
emergency need of an ED visit and its potential preventability. The New York
University Emergency Department severity algorithm attempts to classify ED visits
on its level of clinical emergency [4, 5, 23]. The algorithm has been adapted for use
by the Centers for Disease Control and Prevention to describe the characteristics
of high safety-net burden EDs. The algorithm was developed with the advice of a
panel of ED and primary care physicians. It is based on an examination of a sample
of almost 6000 full ED records. Data abstracted from these records included the
initial complaint, presenting symptoms, vital signs, medical history, age, gender,
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diagnoses, procedures performed, and resources used in the ED. Based on this
information, each case can be classified into one of the following categories:

• Non-emergent. The patient’s initial complaint, presenting symptoms, vital signs,
medical history, and age indicate that immediate medical care was not required
within 12 h;

• Emergent/primary care treatable. Based on information in the record, treatment
was required within 12 h, but care could have been provided effectively and safely
in a primary care setting. The complaint did not require continuous observation,
and no procedures were performed or resources used that are not available in a
primary care setting (e.g., CAT scan or certain lab tests);

• Emergent—ED care needed—preventable/avoidable. Emergency department
care was required based on the complaint or procedures performed/resources
used, but the emergent nature of the condition was potentially pre-
ventable/avoidable if timely and effective ambulatory care had been received
during the episode of illness (e.g., the flare-ups of asthma, diabetes, congestive
heart failure);

• Emergent—ED care needed—not preventable/avoidable. Emergency department
care was required and ambulatory care treatment could not have prevented the
condition (e.g., trauma, appendicitis, myocardial infarction).

• Unclassified. Cases involving a primary diagnosis of injury, mental health
problems, and alcohol or substance abuse are separated out.

Treat-and-release ED visits are identified using claims data as presented for KPI
4 on ED visits in Sect. 2.3.4. Based on the primary diagnosis, each ED visit is
assigned a set of probabilities into three categories from the list above classified
as (potentially) avoidable: non-emergent, emergent/primary care treatable, and
emergent—ED care needed—preventable/avoidable.

2.3.7 KPI 7: Avoidable Admissions

There is a long-standing tradition to reduce the number of unplanned admissions.
It is believed that early interventions or outpatient care for particular medical
conditions can decrease the demand in admissions. Ambulatory care sensitive
conditions (ACSCs) are conditions for which appropriate outpatient care can take
away the need for an admission, or an early intervention can prevent complication or
deterioration. We use prevention quality indicators (PQIs), which were developed by
AHRQ, to identify such ACSCs in hospital discharge data and ED visits [28]. High
rates of hospitalization for these ACSCs in a defined population of beneficiaries
could indicate that the beneficiaries are not receiving high-quality outpatient or
ambulatory care. Therefore, measuring these outcomes can provide clear, actionable
information on how healthcare systems could improve the care they provide to their
beneficiaries.

PQIs are typically measured as admission rates for chronic and acute conditions
such as diabetes, chronic obstructive pulmonary disease (COPD) or asthma, hyper-
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tension, heart failure, bacterial pneumonia, or dehydration. PQI admission rates are
subject to certain exclusion criteria, such as a minimum age of 18 years and exempt
transfers, for example, from another hospital.

2.3.8 KPI 8: Leakage

Leakage is the process of beneficiaries seeking out-of-network care or being referred
out-of-network by in-network healthcare providers. This means that patients will
receive care outside of the network of providers that their health insurance or plan
has arranged for. In some cases this cannot be avoided, for example, when a specific
type of specialist is not part of the network. However, in many cases, leakage could
have been avoided and rather occurs due to reasons such as the patient’s preference
or because an in-network provider actually refers a patient to a provider outside the
network, for example, due to their reputation or due to the patient’s choice.

Leakage is a huge barrier to ACOs to accomplish the triple aim in improving care
for the individual, improving population health, and reducing per capita costs. This
is because once beneficiaries leave the ACO network, they are effectively obtaining
unmanaged care. Health providers outside the network do not necessarily adhere to
the same quality or cost standards, and it furthermore becomes a huge challenge
to coordinate care among the ACO and the out-of-network providers. Additionally,
the ACO loses out on the revenue that offering those medical services would have
provided, while on the other hand the fees for out-of-network services may be much
higher than those inside the network, hence increasing the total cost of care figures.

We define the annualized or total leakage rate as the total cost spent out-
of-network by the attributed beneficiary patient population divided by the total
cost of the attributed beneficiary patient population. Next to leakage, we define
retention as the complementary of leakage: the total cost minus the spending due to
leakage. Retention hence refers to all in-network services provided to the attributed
beneficiary patient population.

2.3.9 KPI Dashboard

Figure 1 shows an example of a KPI C-level dashboard where all the KPIs described
above are computed for a fictitious ACO and graphically presented in a single
dashboard. The latter would allow a financial manager to have a quick and compact
overview on the financial status of his or her organization.
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Fig. 1 Example of a KPI C-level dashboard reporting all the described KPIs and corresponding
values for a fictitious ACO

2.4 Methods to Drill Down into the Results of the Financial
Performance Assessment

The KPIs described in Sect. 2.3 are fundamental to keep an eye on the financial
performance of a healthcare organization involved in a value-based contract. How-
ever, in order to better understand these KPIs and come to actionable information for
these organizations to improve the care they provide to their beneficiaries, one needs
to be able to dive deeper. Therefore, we have identified a number of drill downs that
allow moving from summary information towards more actionable information by
focusing on specific attributes. The following list shows a number of drill-down
categories and examples:

• Patient demographics: patient demographics such as age, gender, ethnicity, and
postal code form a basic way to categorize our statistics.

• Clinical conditions: manageable, clinically meaningful categories offer a great
tool to investigate the results while focusing on the conditions of patients.
Examples of categorizations used include the Clinical Classifications Software
(CCS) developed by the Agency for Healthcare Research and Quality [15],
Diagnosis Related Group categories, and Major Diagnostic Categories (MDC)
[12]. For example, the MDC allows classifying hospitalizations based on the
principal diagnosis into 27 categories compared to thousands of ICD-10 codes.

• Points of care: this type of classification offers insights into the different settings
in which healthcare services are provided. On the highest level, we make a
distinction based on the claim type code (CLM_TYPE_CD), which allows us
to classify each claim as either being a home health, skilled nursing facility,
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outpatient, hospice, inpatient, professional, or durable medical equipment claim.
These categories can then again be more refined by the exact type of facility (e.g.,
rural health clinic or federally qualified health center) which again can be refined
by looking at the level of departments within a hospital.

• Services: a classification for the services/procedures provided can be used to
investigate the procedure utilization and identify the most utilized or costly
procedures during hospitalizations. An example of such a classification is
the CCS for procedures which allows grouping the procedures into clinically
meaningful procedure categories.

• Risk scores: a risk model assigns a risk score for each patient at a particular point
in time which is then used to categorize patients into a number of risk levels. An
example of such a risk model is the CMS-HCC Classification System [26]. This
system is used to adjust Medicare capitation payments to Medicare Advantage
healthcare plans for the health expenditure risk of their enrollees. Its intended
use is to pay plans appropriately for their expected relative costs. The risk levels
created by such models represent a group of similar patients which can be a good
starting point for another deep dive. For example, one can apply any of the other
drill downs to zoom into the high-risk patient level.

As can be seen from the examples, the use case of the different drill downs is
providing more clarity into the organization’s financial performance. It supports
the process of determining the main performance drivers of an organization. As
an example, Fig. 2 shows that the inpatient costs are the largest contributor to the
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total cost of care of the attributed population and increased by almost one quarter
compared to last month. However, in order to find pointers towards potential actions
that can reduce these costs, one needs to have a deeper understanding of these
expenses. Using the Major Diagnostic Categories drill down for the hospitalizations,
which is illustrated in Fig. 3, we can now see that the costs related to the MDC
“Diseases and Disorders of the Circulatory System” is a large contributor to this
increase. This MDC includes conditions such as myocardial infarction, heart failure,
coronary artery disease, angina, deep vein thrombosis, cardiac arrhythmia, and
hypertension. As a result, one could now zoom into these conditions, investigate
whether there are any clear signs of waste, benchmark the results against other
organizations, and find new more effective interventions.

3 Conclusions

In this chapter we have provided a basic framework for measuring outcomes and
costs in a value-based payment environment. As part of the transition towards value-
based care, healthcare organizations are held more and more financially accountable
for the outcomes of their patient population. As a result, understanding financial
performance, identifying opportunities for improvement, and assessing the efficacy
of implemented programs in real time will be key focus for any healthcare provider
organization that grows along the path of value-based care. For financial reporting
with respect to value-based contracts in healthcare, the following KPIs were found
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to be fundamental: beneficiary count, total and PMPM cost, admissions, avoidable
admissions, ED visits, avoidable ED visits, readmissions, and leakage. These KPIs
offer insights in the organization’s financial performance and gives direction with
respect to actions for further improvements.

In order for any financial reporting to be transferable and trustworthy, it must be
based on widely adopted standards. In order to address this, we have, if available,
used CMS-endorsed definitions for the KPIs. These CMS definitions are well
documented and, in general, well accepted and used in the healthcare domain. These
standardized definitions allow for valid comparison of the KPIs over time and across
ACOs.

As it can be seen from the descriptions in this chapter, the computation of
the financial KPIs requires different data sources and linkage with external data
and information sources. Furthermore, software management and maintenance of
coding schemes and data formats used in healthcare reimbursement are prerequisites
as they are updated and adapted over time, while financial performance calculation
depends on these coding and formats. Especially when processing claims data
originating from different entities (e.g., CMS versus commercial payers), one cannot
assume the same data formats and conventions, and hence the underlying data model
needs to be able to handle these differences. Finally, the medical claims data need
to be pre-processed and cleansed to ensure data quality and result validity.

Next to the standard skillset data scientists working in the field of healthcare
organizations need to have specific domain knowledge and in this chapter we have
shown how a KPI dashboard for financial reporting can be composed to evaluate
cost and utilization patterns from claims data.
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