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Foreword

In 2001, William S. Cleveland has been the first to define data science as a new
field of study, in his Bell Labs technical report intended as an action plan for the
practicing data analyst.1 More than a decade later, society has embraced this call for
experts who combine a strong mathematical background with a solid understanding
of computer science.

Data scientists are experts in machine learning and its mathematical underpin-
nings as well as the computer science necessary to process data at scale. To
illustrate the challenge to train those experts, a majority of the recent Turing
Awards has recognised breakthrough ideas that are crucial in understanding data
science. Leslie Valiant (2010) and Judea Pearl (2011) received this honour for their
contributions to the theory of computation and learning; Leslie Lamport (2013) for
distributed and concurrent systems; Mike Stonebraker (2014) for modern database
systems; and, of course, we should not overlook the invention of the Web by Tim
Berners-Lee (2016). This year, 2018, David Patterson has been lauded for his
contributions to computer architecture. Yes, the hardware itself is important too: at
Google, for example, Patterson helped design Tensor Processing Units (TPUs) that
enable 15–30x faster execution of machine learning algorithms at orders of mag-
nitude lower energy consumption [1]. We can only conclude that the data scientist
needs a solid foundation to grasp the key concepts in all of these sub-areas of maths
and computing.

Myself a researcher with a background in data management and information
retrieval, I have long been intrigued by the idea that data powers insight to help
improve science and society. I recall being excited by the wonderful bundle of
essays titled ‘The Fourth Paradigm: Data-Intensive Scientific Discovery’,2 edited by
Microsoft Research, that showcases a kaleidoscope of scientific progress enabled by
the use of computers to gain understanding from data created and stored

1https://web.archive.org/web/20060111162626/http://cm.bell-labs.com/cm/ms/departments/sia/
doc/datascience.pdf.
2https://web.archive.org/web/20091223044640/http://research.microsoft.com/en-us/collaboration/
fourthparadigm/4th_paradigm_book_complete_lr.pdf.
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electronically. But, the impact of data science reaches far beyond science itself. Can
you name one organisation, public or private, that is not looking to hire data
scientists?

The fact that I highlighted scientific contributions to our area from three different
industry laboratories in the introduction of this academic textbook is not a coinci-
dence—the immediate value of hands-on experience necessary to be successful in
this new domain is such that it really is the industry that pushes us forward, asking us
to deliver graduates that develop smoothly into capable data scientists. Already five
years have passed since the Harvard Business Review put the spotlight on this
exciting field3—and predicted a shortage of qualified people! Higher education,
however, has not reached a definite answer to the question what should be the
curriculum of the data scientist, or evenwhere it should be taught in the institution [2].

The book you have in front of you is a very welcome contribution to resolve this
situation that needs a response so urgently. Grounded in the data science master’s
programme offered at the University of Skövde, the authors cover the topics that
every data scientist should be intimately familiar with. I especially appreciate that
the book explores both theory and practice; it does not ignore the societal and
organisational context the data scientist will work in and includes ample material to
develop practical skills—exactly what has been missing in curricula in the past. I
believe this to be the main motivation for Cleveland to define data science as a new
field, and I expect that students mastering this book have not only acquired a
future-proof foundation to follow developments in this fast-pacing area of study but
at the same time will be ready to apply their analytic skills in real-life problems.

Now read this book cover to cover, develop your programming skills, and find
yourself ready to help shape this bright future that realises the promise of data
science!

Nijmegen, The Netherlands
May 2018

Arjen P. de Vries
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Chapter 1
Data Science: An Introduction

Alan Said and Vicenç Torra

Abstract This chapter gives a general introduction to data science as a concept and
to the topics covered in this book. First, we present a rough definition of data science,
and point out how it relates to the areas of statistics, machine learning and big data
technologies. Then, we review some of the most relevant tools that can be used in
data science ranging from optimization to software. We also discuss the relevance of
building models from data. The chapter ends with a detailed review of the structure
of the book.

1.1 Introduction

Science has as its goal to explain the universe. This explanation is intended to be
objective, built from observation, and suitable to base predictions on. Reproducibility
of the experiments1 is a cornerstone in science and an essential part of the scientific
method itself.

As Richard C. Brown puts it, “Scientists, by careful observation and rational
reflection, accumulate evidence and formulate theories in order both to explain known
and to predict new phenomena” ([2] p. 5).

Data science is the science of data. Its goal is to explain processes and objects
through the available data. The explanation is expected to be objective and accu-
rate enough to make predictions. The ultimate goal of the explanations is to make
informed decisions based on the knowledge extracted from the underlying data.

1The difficulty of reproducing/replicating some experiments is a cause of concern in the scien-
tific literature. See e.g. [1].
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1.2 Related Areas

Data science has a strong connection with other fields and can be seen as a way
to integrate these. Although often discussed, there is a consensus that these fields
include: statistics, machine learning, and big data technology. Let us discuss these
connections briefly.

• Statistics. Statistics has a similar goal of analyzing data and make inferences from
data. Recall the distinction between descriptive and inferential statistics. Some (as
e.g. Wu [6]) even say that data science is just a new term used for traditional
statistics.

• Machine learning and data mining. Definitions of artificial intelligence (AI) are
rooted since the origin of the field in the 1940s on the idea that systems need to
learn. Machine learning is the field of AI devoted to these studies. Some machine
learningmethods can be used to buildmodels from data (i.e., to build explanations)
and tomake predictions (classification and regression problems). Some of the tools
developed within machine learning are closely linked or overlap with statistical
methods.

• Big data and database technologies. While the size of a database is not necessar-
ily a crucial aspect for building a model and making a decision, the relevance of
data science in business lies in the fact that data is pervasive, and terabytes of data
are stored for their analysis. Then, methods need to be implemented. This means
that algorithms need to be efficiently programmed and lead to solutions in reason-
able time. To achieve this, software developers need to master the technologies for
big data.

While there is a reasonable consensus on the fields that data science integrates,
there is no full agreement on the names. Data mining is often used instead of machine
learning, and hacking skills or just computing is used for the latter. Considering
machine learning and data mining as a part of computer science, and considering
computer science as a broader field than just what is required for data science, we
prefer not to use this term here.

On the top of the three fields mentioned above, as data science is about to build
explanations and make predictions, any data scientist needs expert knowledge. E.g.,
it may be inappropriate to build models for pharmacological responses based on
biomarkers without any prior knowledge in the area. The same applies if the area
of application is in business data. Because of that, some add expertise or expert
knowledge to the three items above.
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1.3 Tools

In the previous section we have connected data science with the three related areas
of statistics, machine learning, and big data technologies. In this section we will list
some of the tools that are commonly used within data science.

• Optimization. Quite a fewmethods for modeling can be formulated in terms of an
optimization problem [4]. That is, there is an objective function to be maximized
(or minimized) and a set of constraints to be considered. The goal is to find an
object or a combination of objects that satisfy the constraints, and are optimal in
terms of the objective function. Optimization methods study approaches to solve
this type of problems. Metaheuristics is a related area, and is about finding good
heuristics to solve effectively optimization problems.

• Probability theory. Quite a few ways to model data are based on probability
theory. Graphical models, and Bayesian networks, are some of them.

• Linear algebra. A simple multivariate linear regression model can be better (or
more easily) represented and solved using matrices and vectors, and solved using
linear algebra. Optimization problems are typically formulated using linear alge-
bra. E.g., linear equality constraints are represented as the product of a matrix and
a vector of variables equal to a vector. Some other machine learning and statistical
models are also represented and solved (at least for some instances) using linear
algebra. This is the case of support vector machines.

• Graphs. Some of the information available is conveniently represented in terms
of graphs. This is the case of social networks. Graph theory provides concepts
and tools to analyze this type of data. Complex networks is the term to denote
a network with non-trivial topological structure. Trees are also graphs with the
constraint that they should not contain cycles. In addition, some of the tools for
data modeling, as the graphical models, also rely on graphs for the representation
of knowledge.

• Topology. The field of topological data analysis [3, 5] has emerged recently as a
way to extract relevant characteristics from data. Chazal and Michel [3] outlines
a pipeline that stresses the role of topology and geometry in the analysis. This
pipeline consists of (i) input data consisting on a finite set of points coming with
a notion of distance; (ii) a “continuous shape” is built on top of the data: this
results into an structure over the data; (iii) topological and geometric information
is extracted from the structures; (iv) the topological and geometric information are
the output of the approach and correspond to the new features of the data.

• Visual analytics. It is difficult to understand big data. Data visualization provides
tools for a more effective understanding of the data, and visual analytics addition-
ally provides tools for analyzing large data sets and helping in decision making
processes.

• Programming languages and software. Appropriate programming languages
for big data include R, Scala, and Python. Programming language frameworks
commonly used in this field include Apache Spark, MapReduce, Hadoop, Flink,
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to mention a few. Specific toolkits for data visualization tools include, e.g. Tableau
and Spotfire.

• Other mathematical tools. The type of data we can encounter can be of any type:
from images to time series, and from documents to data for weather forecasting.
Because of that, the type of tools we may need to analyze data can be very diverse.
Just to consider these four types mentioned, depending on the application we
may need tools for image processing, for time series analysis and forecasting,
for natural language processing (and possibly ontologies), and tools from fluid
dynamics. Given the variety of the application domains, the tools are varied and
often very tailored to a specific problem or scenario.

1.4 On Models

One of the major questions in data science projects is how to build models for
explaining data and being able tomake accurate predictions. For this, we usemachine
and statistical learning.

Models are abstractions, they are typically built to establish relationships between
variables and features. There are quite a few types of models. For example, statistical
models, logical models, and models based on differential equations. Statistical and
machine learning provides tools for learning models (model determination) from the
data itself.

Some argue that the process of defining a model and evaluating it needs to be in
agreement with the scientific method. This is an iterative process, where we observe
and gather data, we formulate a question, formulate an explanatory hypothesis, test
the hypothesis, draw conclusions, and finally take an informed action. Iteration is
due to the fact that the test and its conclusions may require the reformulation of the
hypothesis.

1.5 The Structure of This Book

This book gives an overview of the area of data science from a computer science
perspective. We have structured the book into three parts. The first past includes the
core concepts of data science, in the second part we focus on application domains,
and in the third and last part we focus on specific tools for data science.

In the part covering core concepts, the first chapter is an introduction to artificial
intelligence, briefly describing its major four subfields. This includes machine learn-
ing and tools for reasoning under uncertainty. The chapter finishes with a discussion
of some ethical dilemma we find in relation to artificial intelligence. Some of them,
are applicable to data science in general.

Thenext chapter dives deeper intomachine learning. It presents a concise overview
of machine learning methods. It includes sections on supervised machine learning
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(with regression and classification methods) and on unsupervised machine learning
methods. There is also a description of some methods for neural networks and deep
learning. Issues related to model evaluation and dimensionality reduction are also
described.

The second part on application domains includes three chapters. The first one is
about information fusion. Information fusion is the process of linking and combining
of information into a unified representation for the purposes of decision making.
Information fusion uses machine learning methods and exploits tools from reasoning
under uncertainty (as information is usually uncertain).

Then, there is a chapter on information retrieval and recommender systems. The
chapter describes two of the most common end user applications of data science
techniques. Information retrieval is the primary driver behind modern online search
engines whereas recommender approaches are found in e.g. streaming services for
music and video as well as on online shopping portals.

The next chapter covers business intelligence. Data science is applied to business
data in order to make sense of what is happening in a business organization. The
ultimate goal is to make informed decisions taking as much advantage as possible
of the data available.

The last part of the book, on tools for data science, starts with a chapter on data
privacy. It gives a brief account of commonprivacymodels (computational definitions
of privacy), and some data protection mechanisms to achieve appropriate levels of
privacy.

The second chapter of this part is on visual analytics. The chapter explains the
importance of information visualization and visual analytics within data science. We
review perceptual and cognitive aspects, as well as design and evaluation method-
ologies.

The chapter on complex data analysis follows. Complex data analysis refers to
data that do not fit into entity-attribute-value model. We focus on three types of data:
text, images and graphs (as a way to model e.g. social media). We present examples
of tools that can be used for these type of data to extract relevant information.

The last chapter of the book focuses on applied data science in the form of an
introduction to Apache Spark. This is a Big Data programming framework with
many applications in data science. We describe core aspects of this framework and
challenges of parallel and distributed computing. Some examples using Scala are
provided.

References
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Chapter 2
Artificial Intelligence

Vicenç Torra, Alexander Karlsson, H. Joe Steinhauer and Stefan Berglund

Abstract This chapter gives a brief introduction to what artificial intelligence is.
We begin discussing some of the alternative definitions for artificial intelligence and
introduce the four major areas of the field. Then, in subsequent sections we present
these areas. They are problem solving and search, knowledge representation and
knowledge-based systems, machine learning, and distributed artificial intelligence.
The chapter follows with a discussion on some ethical dilemma we find in relation
to artificial intelligence. A summary closes this chapter.

2.1 Introduction

The term Artificial Intelligence (AI) was first used in 1955 when J. McCarthy pre-
pared a proposal to organize in summer 1956 the first meeting of researchers working
on this research area: The “Dartmouth Summer Research Conference on Artificial
Intelligence”. The roots of the area are older than that. At that time, therewere already
works on models for neural networks, search and games, and machine learning.

There is no definition of artificial intelligence accepted for all. Instead, there are
different points of view. We can begin recalling H. A. Simon [20] statement “The
moment of the truth is a running program”. Thus, AI is about building programs.
Then, the discussion can be focused on the goals of these programs.

A well-known classification of competing definitions on what artificial intelli-
gence is was given by Russell and Norvig [17]. They consider two dimensions. The
first one is about the ultimate objectives of the program: either we are interested in the
results of the program (its behavior or how the system acts), or we are interested in
how these results are obtained (the reasoning or way of thinking). The second dimen-
sion is related to the measurement of performance or correctness. That is, related to
how we can establish that the program is achieving its goals. We can compare with
people, or we can establish an ideal correctness. We use rationality to refer to this
ideal objective. The two dimensions define four types of systems.

V. Torra (B) · A. Karlsson · H. J. Steinhauer · S. Berglund
University of Skövde, Skövde, Sweden
e-mail: Vicenc.Torra@his.se; vtorra@ieee.org
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• Acting humanly. The Turing test is a paradigmatic definition of artificial intel-
ligence under this assumption. McCarthy’s proposal for the Darmouth meeting
includes a similar definition.

• Thinking humanly. Here artificial intelligence wants to reproduce the way people
think. Most work on cognitive models fall in this area. See e.g. [23].

• Thinking rationally. Models are built focusing on what is correct. Logics is
paradigmatic of this approach. Logical inference establishes what can be inferred
and what cannot. Similarly, in decision theory we have the maximum expected
utility principle.

• Acting rationally. In this casemodels focus on the behavior and their performance
is based on a correctness measure. The rationale of this approach is that perfor-
mance should not be compared with human beings, as humans err. So, systems
consider an independent and objective measure that wants to be maximized. The
book on artificial intelligence by Russell and Norvig [17] follows this approach.

These different approaches to artificial intelligence compete with each other. It
is clear that humans make errors, and thus acting rationally is different than acting
humanly. Similarly, black-box approaches (as neural networks and deep learning)
can lead to good results but they process data in a quite different manner than systems
following a cognitive approach. This may cause that even in the case that a black-
box approach is better with respect to performance, we prefer systems that make
inferences in a more human way. For example, medical support systems that make
diagnoses following a cognitive approach can explain the reasons of the diagnoses.
These explanations can be used by physicians to make a more informed decision.

2.1.1 Is Artificial Intelligence Possible?

The field of artificial intelligence is based on the assumption that this question can
be answered in a positive way, at least in some extent. Thus, this position is rooted
on materialism.

The most important argument in this discussion is probably the Chinese room
argument. John Searle described his position in [18], where he distinguished between
weak AI and strong AI. Strong AI, the one that he considers impossible, is not
only about behavior but also about understanding. For example, Searle states the
following: “According to weak AI, the principal value of the computer in the study
of the mind is that it gives us a very powerful tool. (. . .) But according to strong AI,
the computer is not merely a tool in the study of the mind; rather, the appropriately
programmed computer really is a mind, in the sense that computers given the right
programs can be literally said to understand and have other cognitive states”.

However, assuming that artificial intelligence is possible, there are also different
points of view on how artificial intelligence can be built.
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Most research in the field of artificial intelligence is based on the physical symbol
system hypothesis. This hypothesis was formulated by A. Newell and H. A. Simon in
a work published in 1976 [15]. The hypothesis reads as follows: “A physical symbol
system has the necessary and sufficient means for general intelligent action”.

So, this means that we can build artificial intelligence solely processing symbols.
Nevertheless, as this processing can be expensive from a computational point of view
(in short, too many options to consider), they added a second hypothesis. It is called
the heuristic search hypothesis. It reads as follows: “The solutions to problems are
represented as symbol structures. A physical symbol system exercises its intelligence
in problem solving by search—that is, by generating and progressively modifying
symbol structures until it produces a solution structure”.

This position is discussed by people working on biologically-inspired models.
For example, those working on neural networks and deep learning, where symbols
are not explicit in a system. Systems can be designed so that they react and make
conclusions using symbolic data as input and output, but internally there are no
symbolic structures. In neural networks, knowledge is distributed within the system.
We are not able to isolate concepts within the network.

Another trend in artificial intelligence that discusses the physical symbol hypoth-
esis comes from people working on emergent intelligence [3]. They discuss the fact
that a single physical symbol is necessary and sufficient. They advocate that intel-
ligence emerges from the interactions of independent agents. A parallelism is made
with the mind as a set of specialized functional units.

Another related point of view is the one that considers that intelligence needs
situatedness and embodiment [3]. That is, we need systems to sense and act the
world (the real world) and not pieces of software independent of it. This line of
research opposes low reactive systems to higher level reasoning systems. In other
words, we may have a system with a few rules that control the effectors of a robot
based on stimuli from sensors, and no symbolic reasoning. The social embedding [4],
is a related theory that claims that the situatedness in terms of sensors and actuators
is not required. Systems need interaction with the environment and socialization, and
that is enough because the conceptual world is already situated.

2.1.2 Areas of Artificial Intelligence

Artificial intelligence has been structured from the beginning of the field into four
different areas. We will enumerate them here, and then we will develop each of them
in the next sections. They are the following ones.

• Problem solving and search. In order to solve problems effectively, we formulate
them in terms of an initial state (where the system is), a goal test (that given a state
informs if the goal is satisfied), and a set of operators (that permit to transform
a state into another one). Then, given a problem formulated in this way, search
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algorithms are to find a set of operators that from the initial state lead to another
one that satisfies the goal conditions.

• Knowledge representation andknowledge-based systems. Systems need to rep-
resent information and knowledge. There is an area that focuses on this, and also
on building systems that use knowledge extensively. This type of systems are
knowledge-based systems.

• Machine learning. An important characteristic of intelligent systems is that they
are able to learn. Machine learning is the area of AI that focuses on this problem:
how to use previous experiences tomake systems perform better.Machine learning
is also used to build systems from data.

• Distributed artificial intelligence. Tasks to achieve intelligence are time con-
suming, because of that methods have been developed that exploit parallelism and
distributed architectures. In addition, there are problems that can only be solved
in a distributed manner, because it is not possible to build a centralized system
as there is no central authority with all the data, information, and decision power.
Multi-agent systems permit to formulate and solve the latter. Distributed artificial
intelligence studies these types of systems.

These four core areas are tightly related with four other areas in which artifi-
cial intelligence plays an important role. In fact, some think that they are also a
fundamental part of AI. These areas are the following: (i) natural language, (ii) com-
puter vision, (iii) robotics, and (iv) speech recognition. We will not discuss them in
this chapter. For data science, natural language processing is the most relevant one.
Observe that a large portion of currently available data is text. See e.g. all posts in
social networks. A brief account of an application of text analysis to topic modeling
is given in Sect. 2.2 of [1] (a chapter in this book).

2.1.3 Innovative Applications of AI

A large number of applications using AI techniques have been developed in the last
50years. Games have been considered a testbed for artificial intelligence and for
search algorithms. In fact, the first mechanisms for playing chess predates AI. The
most recognized game players are Chinook for Checkers, that won theMan-Machine
World Championship in 1994, Deep Blue for Chess, that won G. Kasparov in 1997,
and AlphaGo for Go, that beat L. Sedol in 2016.

In the area of knowledge-based systems, first expert systems were developed in
the 1970s. Mycin and Prospector being among the first ones. Since then, there are a
large number of deployed systems that make decisions and recommendations based
on AI techniques. In 1987 the first automatic train was deployed in Japan. It was
operated with a fuzzy rule-based system. That is, a rule base system in which the
terms that appear in the rules were described by means of fuzzy sets (see Sect. 2.3.4).
Nowadays, there are automatic trains running in several cities in the world. The
current major challenge in automatic driving is about self-driving cars. In 2005 the
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DARPA Grand Challenge demonstrated that a car, Stanley, was able to complete a
212km drive in the Mojave desert (USA). Now, we have the Tesla autopilot in the
market. Most car companies are working to provide cars with self-driving options.

2.2 Problem Solving and Search

The area of search provides tools to solve problems in an abstract way. That is,
we establish some principles that can be used to solve a large number of different
problems. Then, algorithms have been developed that permit to solve any type of
problem that can be represented according to these principles.

We will consider four examples for this purpose: the shortest path, the n-queen
problem, a scheduling problem, and a symbolic integration problem. The shortest
path is about finding the shortest path between two points in a graph (e.g., find theway
with minimal distance from a city a to another b in a map). The n-queen problem
consists on placing n queens in a chess board of dimension n × n. Naturally, the
queens should be placed so that they do not attack each other (i.e., we should not
have two queens in the same row, column, or diagonal). Our scheduling problem
consists of assigning professors to rooms for teaching taking into account a set of
constraints. Constraints are about the number of lecturing hours, hours per course,
and e.g. that professors can only give one lecture at a time. The integration problem
is about finding the solution of the integral of a function. The integral is computed
symbolically and not numerically (i.e., we look for a mathematical expression that
is the integral of another given mathematical expression).

In order to solve a problem we consider states (possible configurations of the
world) and then solving the problem is to move from the initial state to a state that
satisfies our objectives. An important aspect is therefore to define what a state is. In
the case of the shortest path, we can define the state as being in a certain town. In
the case of the n-queen problem we can define a state as a set of queens (less than or
equal to n) and their position with the requirement that they do not attack each other.
In the scheduling problem, a state can be a list with the lectures assigned to a subset
of all professors.

Then, we can represent a problem to be solved in terms of the following elements:

• An initial state. It is usual to consider as the initial state the state where the system
finds itself before running the algorithm. In the case of building the shortest path
between towns a and b, it corresponds to be in town a. In the n-queen problem,
we can define it as no queen on the board. Similarly, in the case of the scheduling
problem, we can define it as all professors have no teaching duties. In the case
of the integral problem, we have the expression to be integrated and we have not
performed any operation on that expression.

• Operators. They are the options that the system can consider at a given state. They
permit to transform a state into another state. In the case of the shortest path, as a
state is a given town, we usually consider as operators the fact of moving to the
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next town (that is directly connected in a map). In the case of the n-queen problem,
an operator is adding one additional queen in the board in such a way that does
not attack the ones already there. This is usually done at a row-level. Assuming
that we have already n queens in the first n rows, we will consider adding the new
queen in the row n + 1 at any of the n columns (checking that the position does
not attack queens already on the board). Similarly, in the case of the scheduling
problem, operators assign a professor a lecture in a room. In the case of integrating
an expression, we would have as operators those procedures we study in calculus
that permit to integrate some basic expressions (e.g., integration of polynomials,
of trigonometric functions, etc.).

• Goal test.We need a function that testswhether a state is a goal state or not. In some
cases, as in the case of the shortest path there is only a single state that satisfies our
goals (the destination). In other cases there are several states that satisfy the goals
(the case of the n-queen problem). In some cases we do not even know which is
the goal state and we can only test if a state is a goal state or not. This is the case in
symbolic integration. The solution is an expression without the integral symbol,
but we do not know which expression we are going to obtain (otherwise we would
already know the solution!).

Note that the definition of states and operators are closely linked. Operators need
to permit to transformone state into another, and should be able to permit to transform
the original state into one that satisfies the requirements. For example, in the case of
the n-queen problem we can consider a state as a board with all the queens already
located (but maybe attacking each other). In this case operators would rearrange
already located queens.

Once initial state, operators, and goal test are definedwe can use search algorithms
to solve the problem. There are a few of them. Depth-search, A∗ are some of them.
They all proceed in a similar way.

At any point of execution, assuming that we are still unaware of the solution,
there is a list of states to be considered. Initially this list is just the initial state. Then,
we select one state from the list and we check if this state satisfies the conditions
of a goal state. If this is the case, the search is finished. We have reached the goal.
Otherwise, we apply to this state all applicable operators. In this way we get a list
of states (i.e., the application of an operator to a state gives a new state), and we add
this list to the ones still open for posterior analysis. Algorithms differ on how we
select a state for its expansion. See e.g. [17] for details on the algorithms.

2.3 Knowledge Representation and Knowledge-Based
Systems

When we develop an intelligent system, it is usual that we need to represent some
background knowledge (some knowledge that is necessary for its operation and that
is needed before its initial deployment), or knowledge acquired during its operation.
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Knowledge needs to be accessed and to be used for inference and reasoning.
As different systems have different requirements on access and inference, as well
as on the type of knowledge they need to store, different knowledge representation
formalisms have been defined. Most of them include a knowledge base (where we
represent the knowledge at a given time) and an inference engine (that permits to
compute new pieces of knowledge from the ones in the knowledge base taking into
account input data as well as system’s internal states).

The main types of knowledge representation formalisms are (i) logics, and lan-
guages based on logics; (ii) rules; (iii) semantic networks and frames; and (iv) neural
networks and related mechanisms. An ontology is the term used for the knowledge
represented in the system. The discussion of these formalisms is outside the scope
of this chapter. See e.g. [12] for details on ontologies and knowledge representation
formalisms.

Systems need to operate in the real world, and the information on the real world
is usually uncertain and incomplete. Because of that, systems need representation
formalisms that cope with this type of information. The area of reasoning under
uncertainty and approximate reasoning studies and developes tools for this purpose.
We review some of the main concepts in the next section.

2.3.1 Reasoning Under Uncertainty

Uncertainty can appear under different forms. Because of that, there are concepts
to express different types of uncertainty. We review them in this section. We also
discuss some of the tools to represent uncertainty.

We have incompleteness when our knowledge does not cover all the needs the
system has on the domain. Uncertainty can appear in different flavors. It is usual to
classify uncertainty in different types. The main types are randomness, ignorance,
imprecision, and vagueness.

We have randomness when the outcome of an experiment is different when we
repeat it. Tossing dice and coins are examples of randomness. Randomness is usually
modeled using probability measures and reasoning on tools based on the Bayes
theorem. e.g., in the case of a fair dice, we assign a probability of 1/6 to each of the
possible outcomes (i.e., 1, 2, 3, 4, 5, and 6).

We have ignorance when we have a lack of knowledge. In some applications, it
is usual to model ignorance on a set of events by means of a uniform distribution on
them. For example, when we take a new die we assign to each outcome a probability
of 1/6, even if we do not know whether the die is fair or not. Nevertheless, it is
important to distinguish ignorance and fairness. It is quite different to know that
the die is fair that not knowing anything about it. Belief functions are an alternative
formalism to represent ignorance, and has the advantage that permits us to represent
in a unified formalism both randomness and ignorance. In the case of a die this means
that we can distinguish the case that the die is fair and the case that we have no idea
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about the fairness of the die. This difference can not be expressed in probability
distributions.

Imprecision is when a statement is made true by more than one value. It is precise,
of course, when there is only one that makes true. Let us consider the statement that
the temperature is larger than 15. This statement is imprecise. We have uncertainty
as any value larger than 15 can be the current temperature.

Vagueness is when truth is amatter of degree. It is usual to consider that statements
can only be true or false. This is also the assumption behind probability theory and
randomness. In that case, wemay not know the outcome of an experiment (e.g. heads
or tails), but once known, any statement (as e.g. heads) is either true or false. Vague
information and statements as e.g. “the station is near” or “the temperature is high”
challenge this approach. The (degree of) possibility of a given distance (say 100
meters) when we know that the station is near is not true or false (formally, 1 or 0),
but a value in [0,1]. Fuzzy sets are used to represent vagueness.

In the following sections we present three of the theories to represent uncertainty.

2.3.2 Bayesian Theory

Probability theory has been used extensively tomodel uncertainty. There exist several
competing interpretations of probability (see e.g., [9] and Chap.1 in [26]). Under the
Bayesian interpretation, probabilities represent and agent’s degree of belief regarding
an uncertain outcome X , i.e., a variable of interest. Let us assume that the state space
for X is denoted by ΩX and also assume that specific instantiations of X are denoted
by x (i.e., x ∈ ΩX ).

One way to measure degrees of belief is considering the prices one is willing to
pay for gambles (see e.g., [5]). That is, one can think of an agent’s degree of belief
regarding the instantiation x ∈ ΩX as the fair price p(x) at which one is both willing
to buy and sell. Let gX (X) be a function we call gamble defined in terms of the true
outcome in the following way:

gx(X) �
{
1, if x is the outcome ofX

0, otherwise
.

Given the information represented in this function, it would be unreasonable to buy
gx(X) at a more expensive price than 1, since that would incur a sure loss (due to
the fact that the maximum return of the “investment” cannot be higher than 1) and
it would also be unreasonable to sell gx(X) for less than 0 since one would in that
case end up with a debt (in comparison to at least a reward of 0 from the output of
the gamble). This line of reasoning provides us with the traditional boundaries for
probabilities, i.e., p(x) ∈ [0, 1], x ∈ ΩX . Furthermore by the assumption that the
state space ΩX is mutually exclusive, i.e., only one element of ΩX can be the true
instantiation of X , it is unreasonable to have an aggregated buying price of gambles
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gx1(X) + · · · + gxn (X) > 1, |ΩX | = n, since one would then effectively have a net
negative reward. This line of reasoning summarises the following axioms of degree
of belief as represented by a probability distribution:

p(x) ≥ 0 for allx ∈ ΩX

p(x) ≤ 1 for allx ∈ ΩX∑
x∈ΩX

p(x) = 1.

The most important feature of Bayesian theory is its mechanism to update an agents’
belief when a new observation regarding the variable of interest becomes available,
denoted as Bayesian updating.

Bayesian Updating

In order to infer an updating mechanism within Bayesian theory, we will use that
for two variables X and Y , with state spaces ΩX and ΩY , we have the following
relations:

p(X |Y ) � p(X, Y )

p(Y )
(2.1)

p(Y |X) � p(X, Y )

p(X)
, (2.2)

where p(X |Y ) denotes the conditional probability of observing instantiations of X
given that we have certain instatiations of Y (and the other way around for p(Y |X))
and where p(Y, X) denotes the joint probability of observing certain joint instantia-
tions of X and Y . Hence, given that we have made the observation y ∈ ΩY as the true
value of Y , i.e. we instantiate Y with y, we can infer the following from Eqs. (2.1)
and (2.2), also known as Bayes’ theorem:

p(X |y) � p(y|X)p(X)

p(y)
,

= p(y|X)p(X)∑
x∈ΩX

p(y|x)p(x)
,

where p(X) is referred to as the prior distribution, i.e., the distribution that reflects
an agents’ degree of belief before the observation y was made, and where p(y|X) is
the likelihood function reflecting the likelihood of observing y for certain values of
X . Note that the likelihood is not a probability distribution since:

∑
x∈ΩX

p(y|x) �= 1 .
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The distribution p(X |y) is denoted as the posterior distribution and is the result of
updating the prior given the observation y into the new distributions that reflects the
agent’s new updated degree of belief.

As an example, assume the state space ΩX = {x1, x2} for a random variable X of
interest and that some information are available regarding the true state in the form of
another randomvariableY , e.g., ameasurement,with a state spaceΩY = {y1, y2, y3}.
Given a uniform prior:

p(x1) = 0.5,

p(x2) = 0.5,

and a likelihood function:

p(y1|x1) = 0.8, p(y2|x1) = 0.1, p(y3|x1) = 0.1

p(y1|x2) = 0.1, p(y2|x2) = 0.8, p(y3|x2) = 0.1,

we observe that y1 constitute an increase in degree of belief for x1, y2 for x2 while
y3 does not change the posterior since using the Bayes’ rule we obtain the following
results:

p(x1|y1) = 0.89, p(x2|y1) = 0.11

p(x1|y2) = 0.11, p(x2|y2) = 0.89

p(x1|y3) = 0.5, p(x2|y3) = 0.5

2.3.3 Evidence Theory

Evidence Theory [6, 19] which is also known as Dempster-Shafer theory, like
Bayesian theory, provides an ability to express uncertainty but in a different way.

The uncertainty regarding an unknown random variable X for a given frame of
discernment ΩX is presented in the form of a so called mass function m, that is
defined as:

m : 2ΩX �→ [0, 1]
m(∅) = 0∑

A⊆ΩX

m(A) = 1

where any subset A of elements of ΩX is called a focal element whenever its corre-
sponding mass m(A) is non-zero.

In addition to the mass function m, two important functions of m have been
defined that are used to measure uncertainty. They are belief and plausibility and are
defined [19] as:
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Bel(A) =
∑
B⊆A

m(B)

Pl(A) =
∑

B∩A �=∅
m(B).

The belief function Bel states to what extent the evidence supports A and the
plausibility Pl states to what degree the evidence does not contradict A, where A ⊆
ΩX . In the same way that there are several interpretations for what a probability is,
there are different interpretations for belief functions. For one of these interpretations,
belief and plausibility define an upper and a lower bound for the probability of A
respectively. That is,

Bel(A) ≤ p(A) ≤ Pl(A)

Note that when m(A) = 0 for any set A with cardinality larger than 1, then
P({x}) = m({x}) for all x ∈ ΩX define a probability distribution and Bel(A) =
p(A) = Pl(A) for all A.

Let us reconsider the case of a die. Using evidence theory we can distinguish the
case of a fair die and the case of absolute ignorance about the fairness of the die. We
would represent a fair die establishing a mass of 1/6 to each of the possible outcomes
of the die. UsingΩX = {1, 2, 3, 4, 5, 6} as the frame of discernment (i.e., the possible
outcomes), we would represent fairness with the following mass function m f :

m f ({1}) = m f ({2}) = m f ({3}) = m f ({4}) = m f ({5}) = m f ({6}) = 1/6,

and m f (A) = 0 for all other A subsets ofΩX . In particular, we define m f ({1, 2, 3, 4,
5, 6}) = 0. This probability defines a probability because, as discussed above, it is
zero for sets of cardinality larger than 1. It is easy to check that for this mass function,
we have that Bel(A) = Pl(A) for all A. Note also that these functions are additive
(Bel(A ∪ B) = Bel(A) + Bel(B) for all A ∩ B = ∅) and that Bel(ΩX ) = 1.

In contrast, we can represent ignorance usingm f (ΩX ) = 1 andm f (A) = 0 for all
A �= ΩX . Observe that in this casewe candeduce that Bel(A) = 0 for all A �= ΩX but
that Pl(A) = 1 for all A �= ∅. Note also that neither Bel or Pl satisfy the additivity
condition.

The topic of evidence theory is further developed in another chapter of this book.
See [22].

2.3.4 Fuzzy Sets

In standard sets membership of an element to a set is Boolean. This means that either
the element belongs to the set or it does not belong to it. Fuzzy sets relax this property.
We have partial membership. In order to distinguish standard sets and fuzzy sets, we
use the term crisp sets for the former.
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Fig. 2.1 Fuzzy set
representing nearness, the
reference set is R and
corresponds to a signed
distance to a reference point.
It is signed as we consider
whether we reach the point
from the left or the right
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There exist several ways to define crisp sets, one of them is in terms of character-
istic functions. Given a reference set X , the characteristic function of a set A ⊆ X
is a function from X into {0, 1}. Naturally, μA(x) = 0 when the element x does not
belong to A and μ(x) = 1 when the element x belongs to A.

Fuzzy sets are defined in terms of membership functions. They are similar to
characteristic functions but in this case they are functions from X into the interval
[0, 1]. Then we have that μ(x) = 0 when the element x does not belong to the set,
μ(x) = 1 when the element belongs to the set, and μ(x) in (0, 1) when we have a
partial membership.

Fuzzy sets permit us to represent vague concepts. For example, we can define
the concept near to zero in terms of the following membership function (Fig. 2.1
represents this function in the interval [−5, 5]). Presume that units are kilometers.

μ(x) = 1

1 + x2
.

This membership function shows that the maximum nearness to zero is of course
when x = 0. In this case, μ(0) = 1. Then, the farther we go either on the positive
numbers or on the negative numbers, the lower the satisfaction of nearness. When
we are at 0.5Km from the zero, we have still a high membership (i.e., μ(0.5) = 0.8)
but then membership decays rapidly (μ(1) = 0.5 and μ(2) = 0.2).

This example illustrates that with fuzzy sets we can represent a soft transition
between those elements that belong to a set and those that do not belong to the set.
Observe that whenwe use a crisp set to represent nearness to a certain reference point,
we need to establish a point from which membership is 0. Say that we establish this
point to be 0.5km, then all positions at less than 0.5Km will be absolutely near and
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all positions at more than 0.5Km will be not near. It does not matter whether we are
at 0.51km, at 1km, or at 10Km from the point.

Fuzzy sets theory [13] studies how to operate with fuzzy sets. For example, basic
questions include how to compute the union, the intersection, the complement of
fuzzy sets. Then, the relation between set theory and logics has been exploited in
fuzzy sets theory to develop fuzzy logic as well as the theory behind fuzzy rule based
systems.

Fuzzy rule based systems are probably the most successful application of fuzzy
set theory. They have been used extensively in control and modelling. A fuzzy rule
based system is defined in terms of rules of the form

If < antecedent > then < consequent >

where < antecedent > is defined in terms of conjunctions and disjunctions of
expressions involving the variables of the systems and terms defined in terms of
fuzzy sets.

For example, in a system to control the temperature of a device we may have a
rule of the form

If ε is near zero and �ε is decreasing

then control − variable to zero.

For details on fuzzy sets and systems, see e.g. [13]. Fuzzy systems, their construc-
tion and its application to fuzzy control is described in [7].

2.4 Machine Learning

Intelligent systems need to be built, and once built we expect them to improve their
performance. Machine learning provides methods for building intelligent systems
and also for improving the performance of existing systems. There is naturally a
dependence on the machine learning methods and the knowledge representation
formalism used by a system (e.g., learning methods for logical expressions, for rules,
or for neural networks).

Methods are usually classified into three main categories: supervised, unsuper-
vised and reinforcement learning. The categories are built taking into account the
amount of information we have about what is to be learnt. Most of the methods
assume that we have as input a database. We understand it as a set of examples that
are used in the learning process. When the database is defined in terms of a set of
records, each record is considered as an example.

In supervised learning, we have the set of examples to be used in the learning
process and for each of them we have an attribute that is distinguished from the
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others and that we want to learn. For example, consider a bank database with data
from customers loans, each loan includes a Boolean attribute informing whether the
loan was paid back. Then, we can use this data to build a model for analysing new
applications. In this case the distinguished attribute is the Boolean attribute, and the
goal of a machine learning methods is to make e.g. a set of rules that establish when
it is safe (for the bank) to accept a new application. In this example, the decision
is Boolean, and thus we build a system with a Boolean output. Other systems may
have other types of variables as output. Typically, we distinguish between regression
and classification problems. In regression problems the output attribute is numerical,
and in classification the attribute is categorical. There are quite a few methods for
supervised learning. The most well known ones are decision trees and support vector
machines (SVM). Neural networks and deep learning can also be seen as belonging
to supervised learning.

In unsupervised learning there is no such distinguished attribute in the database.
In this case, algorithms try to find patterns in the data. Clustering algorithms are
an example of supervised learning. These algorithms look for sets of examples that
are similar and well separated from others, and build partitions (clusters) of records
or taxonomies (dendrograms) so that data scientists can visualize the similarities
and differences between examples. Methods for association rule mining also belong
to unsupervised learning. They are used in market basket analysis, and their goal
is to find sets of items that were bought together. Methods to find latent variables
as principal components and singular-value decomposition (SVD) can also be seen
as belonging to unsupervised learning. There are some methods related to neural
networks that are for unsupervised learning. See e.g., self-organizing maps [14].

Reinforcement learning is based on the fact that there is no complete informa-
tion on the output, but only partial knowledge. More specifically, a system receives
rewards and penalties in relation to its actions.

For details on machine learning, we recommend the chapter in this book [8, 10].

2.5 Distributed Artificial Intelligence

Parallel machines have influenced artificial intelligence, and new methods and
approaches have been developed. We can distinguish two categories.

• Parallel artificial intelligence. This category encompasses those methods that
exploit computational power to solve classical AI problems. This is the case of
parallel algorithms for search problems and for centralized planning. That is, there
is a single description of a problem and use a distributed approach to compute the
solution of the problem, or a distributed system to solve the problem. In this case,
a kind of central authority organizes how to find or solve the problem. The systems
Deep Blue and Watson can be seen from this perspective.

• Distributed artificial intelligence. We model and solve a problem by means of
a set of autonomous agents. Solutions are found by means of interaction and
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cooperation between agents. We do not have a central authority that have all the
information of a problem, neither a central authority that finds and organizes the
computation of the solution. The area of multi-agent systems [27] focuses on this
type of problems. They can be used for example, for problems related to decen-
tralized optimization under uncertainty. In a decentralized optimization problem
there is no central authority that knows all constraints. Instead, different compa-
nies have different constraints, and they do not want to share them. Because of that
the solution should be found by means of interaction and cooperation between the
agents that represent these companies. For example, through auctions and where
the agents bid according to their interests. Another type of problem considered
in distributed artificial intelligence corresponds to simulation (e.g. agent-based
simulation).

2.6 Ethics and Artificial Intelligence

Virtually all areas of human activity are susceptible of being affected by AI and intel-
ligent systems are today widely used by banks, hospitals, and telecom companies.
They can also be found in smartphones and personal computers, in traffic regulation
systems and driving autonomous cars. Since the beginning of the Industrial Revolu-
tion, automation has had in impact on the physical aspects of human work. AI is now
having a similar impact on intellectual work and sophisticated cognitive tasks (as
those performed by lawyers or psychotherapists) are likely to be partially, some say
even entirely, substituted by artificial systems. These intelligent systems make (or
assist humans to make) decisions that may have ethically significant consequences.
From the banks approval of a mortgage loan to the choices made by the computer
that flies an airplane, decisions made by AI systems can have serious, both positive
and negative, effects on peoples lives. Since these systems work partially or totally
unmonitored by humans, they should be designed and/or trained to take into consid-
eration ethically relevant constraints. Otherwise, there is a risk that they make (or
contribute to make) ethically wrong decisions [16]. Some problems generated by the
use of AI systems are related to the three central ethical areas of personal autonomy,
justice and maximization of wellbeing.

Autonomy and Privacy
AI systems may seriously limit our autonomy, i.e. our capacity to decide what we
want to dowith our lives. The principle of autonomy implies, among other things, that
people have a right to choosewhichprivate information should be accessible to others.
Intelligent systems, especially those processing Big Data, handle large amounts of
private information as, for example, emailing, Internet surfing, geographic position,
Google searches, economic transactions, home appliances, mobile phone use, etc. In
order to respect personal autonomy, people must be able to give informed consent
to the commercial and/or public use of the data that concerns them. However, for
consent being informed, people must clearly understand the potential risks derived
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from disclosing to third parties their personal data and how it may negatively affect
their private and professional lives and civil rights. Today, there are serious doubts
about the efficacy of the methods being used to guarantee that consumers really
understand what they are giving consent to [16]. The principle of autonomy also
requires that people understand that AI systems can be used to manipulate them
psychologicallywith political and commercial purposes [11]. There are vast potential
societal benefits derived from the use of private data but these have to be balanced
with the risk of weakening the ethically crucial respect for personal autonomy.

Justice and Non-discrimination
Justice, as an ethical principle, implies that all humans have the same rights and duties
and deserve to be treated fairly. FromGoogle automatically labeling pictures of black
people as gorillas [21] to women not getting the same quantity of advertisements of
high-income jobs as men, there has been a large array of cases that show that AI
systems sometimes treat people in discriminatory ways (racist, sexist, etc.). In order
to avoid the problem, it ought to be possible to understand the reasons why AI
systems, that in theory ought to be immune from discriminatory biases, make such
prejudiced decisions. However, depending on the technology used to develop the
AI systems (e.g. systems based on complex neural networks) [2], it may be nearly
technically impossible to identify the causes of the problem, while in other cases the
systems may have been trained using input chosen according to unconscious human
biases. Creating systems that do not treat people in a discriminatory way is hence a
serious technical and ethical challenge for the developers of non-discriminatory AI
systems.

Maximizing Wellbeing and Social Responsibility
The use of AI systems has unmistakable societal benefits (e.g. better medical diag-
noses and treatments, more secure traffic, better research, less poverty. . .) but it may
also generate negative effects on both individual and societal wellbeing. One of the
main concerns is that many employments are likely to disappear because of the use of
systems able to simulate sophisticated human cognitive capacities [16]. The potential
losses will affect both lowly qualified jobs (e.g. because of fully automated facto-
ries and restaurants) and highly qualified professions (e.g. in accounting, education,
financial analysis. . .). There is also a risk of loss of ethically valuable features of
some professions. Intelligent systems may outperform humans at the cognitive level
but they lack genuine emotional capacities. Many professions (health care, educa-
tion, etc.) have essential emotional elements, as empathy and compassion, that may
disappear when people are substituted by artificial systems. Substituting a human
employee by cheaper, and cognitively more efficient, intelligent systems may there-
fore have unexpected negative emotional consequences that have ethical relevance.

Artificial Moral Agents
The key ethical principle of non-maleficence (“do no harm”) is of crucial relevance
for the design of intelligent artificial agents. The AI system of a self-driving vehicle
may either protect the car but damage pedestrians or do the opposite, depending on
its decision-making algorithms. Therefore, the design and/or training of the algo-
rithms that regulate the vehicles behavior have high ethical relevance. Many of the
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problems discussed in this section are caused by the current amorality of existing
AI systems. One of the main challenges in AI research is to build artificial moral
artificial agents [24, 25]. Those who are skeptical against the philosophical or tech-
nical possibility (or the genuine will) to develop such moral intelligent systems tend
to be pessimistic about the benefits of AI [2] and fear the collapse of civilization if
malevolent artificial general intelligence (AGI) takes over. However, some current
projects [25], may indicate that Friendly AI, or Machine Ethics, is a real possibility.

2.7 Summary

In this chapter we have given an overview of artificial intelligence and its four major
subfields: problem solving and search, knowledge representation, machine learning
and distributed artificial intelligence. The chapter finishes with a discussion on the
ethical dimensions of AI. Machine learning is discussed in more detail in another
chapter of this book [8]. Some of the concepts presented here about representation of
uncertainty will be resumed in the chapter [22] of this book on information fusion.
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Chapter 3
Machine Learning: A Concise Overview

Denio Duarte and Niclas Ståhl

Machine learning is a sub-field of computer science that aims to make computers
learn. It is a simple view of this field, but since the first computer was built, we have
wondered whether or not they can learn as we do. In 1959, Samuel [40] proposed
some procedures to build an algorithm intending to make computers play better
checkers than novice players. It was an audacious goal mainly at that time when the
available hardware was very limited. However, that shows the importance ofmachine
learning since the first computers were introduced.

Nowadays, users demand computers to perform complex tasks and solve several
kinds of new problems, while data are being produced from many devices (e.g.,
satellites, cell phones, sensors, among others). Researchers in all fields (e.g., statisti-
cians, computer scientists, engineers, to cite some) have started the quest for making
computers learn by proposing news techniques to meet the new users demands.

Data are the input of any machine learning system. Data contain examples from a
given domain, and machine learning algorithms generalize the examples in the data
to build mathematical models. The models can be used to predict new outputs from
new examples. The data used as input in the training model are called training data.

This chapter aims to present an overview of machine learning and to serve as
a road map to guide interested readers in applying machine learning to everyday
problems and giving skills to become a data scientist. It is organized as follows: next
section provides an overview of general issues in the field of machine learning. It
also presents some examples to help readers to get through to the whole chapter.
Section3.2 discusses supervised machine learning algorithms: algorithms applied
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when the training data have labels associated with every example. We present two
common supervised learning techniques: regressors and classifiers. Some supervised
algorithms for both techniques are also presented. The following section introduces
another class of machine learning algorithms: unsupervised learning. The training
data for unsupervised algorithm have no labels, so the learner aims at partitioning
them into groups. Deep leaning is a new trend in machine learning and it is based on
different architectures of artificial neural networks.We dedicate the entire Sect. 3.4 to
these. Section3.5 presents an overview of model assessment approaches. The model
assessment is critical to validate the model regarding the quality of the prediction
outputs.Another important issue inmachine learning is the number of attributes in the
training dataset. This issue is called dimension of the dataset. Section3.6 presents
some techniques to reduce the dimensionality to enhance the performance of the
algorithms and help to visualize the data. The following section presents some final
remarks about machine learning: data preprocessing (feature selection and scaling,
missing values), bias, variance, over and underfitting. Finally, Sect. 3.8 concludes
this chapter.

3.1 Introduction

Learning is a very complex process, and we cannot say, currently, that a computer
can learn.With this inmind, our first definition of machine learningmust be carefully
reviewed. There is no general agreement about what is learning, however for human
beings learning can be defined as (i) functionally as changes in behavior that result
from experience, or (ii) mechanistically as changes in the organism that result from
experience [6].

Computers are mathematical machines; thus, we have to consider learning as a
computer program. Figure3.1 presents pictorially traditional programming (a) and
machine learning (b). Notice that, while traditional programming is concerned with
finding the right output based on given inputs and a program, machine learning is
concerned with finding a right program (later we call it a model) given a set of inputs
and outputs (possibly empty). The learned program can now propose new outputs
given new inputs.

(a) (b)

Fig. 3.1 Traditional programming (a) and Machine learning (b)
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Based on Fig. 3.1, we can see how different learning means in human beings and
computers. Machine learning algorithms try to create a model that represents the
input to propose new outputs. This is the type of learning concerned in this chapter.

Back to themachine learning definition, we point out two definitions. The first one
proposed by Samuel [40] who said that machine learning is a field of study that gives
computers the ability to learn without being explicitly programmed. Remark that
Samuel’s definitionwas one of the first proposed definitions. Almost forty years later,
Mitchell [32] proposed a more mathematical view of machine learning: a computer
program is said to learn from experience E with respect to some task T and some
performance measure P, if its performance on T , as measured by P, improves with
experience E.

Example 3.1.1 Assume we want to learn whether or not a given email is spam. In
this case, we give to the algorithm a set of emails Se and divide it into two subsets: not
spam (Snse) and spam (Sse). This step is the experience (E) we give to the algorithm.
Based on E, our algorithm classifies emails as spam (and consequently as not spam).
This step is related to the task (T ). Finally, we want to know how well our algorithm
performs in classifying spam emails. This step is related to the performance of our
algorithm (P). Our goal is, then, to find a T with as good P as possible. Of course, T
and P depend on the quality of E, e.g., if we have a good informative Se, our machine
learning algorithm may classify all our input emails correctly.

Figure3.2 changes a little bit of the representation of Fig. 3.1. Firstly, we call
Training Set (X ) the input of our machine learning algorithm. Depending on the
task we want to accomplish, X may have a label for every example. So, X can be
represented as {(x(1), y(1)), . . . , (x(m), y(m))} or {x(1), . . . , x(m)}, where m is the size
of X (training set), and y(j) is the label of x(j) (1 ≤ j ≤ m). The learning algorithm
(we have thousand of options) takes X as input and builds aModel (also known as a
hypothesis). After assessing our model (i.e., verify how good our P is), we can feed it
with new examples (X ′) to have predicted outputs. Take into account that, depending
on our target task, the predicted outputs can be a class (discrete value), continuous
values, clusters, among others. This will be further elaborated in this chapter.

Based on what we have already seen, the machine learning process can be divided
into four steps: (i) get the training set X , (ii) choose and implement a learning task
based on X , (iii) build a model, and (iv) assess the model with new inputs. Remark
that these four steps may be repeated until we have reached a good P. Keep in

Fig. 3.2 Pictorial representation of the machine learning process
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mind that when we have a machine learning problem to solve, the first challenge we
face is which machine learning algorithm to use. There are thousands available, and
each year other hundreds are proposed [8]. The set of possible available learning
algorithms for a given machine learning problem is called hypothesis space. To not
get lost in this huge set of choices, the learning components can be divided into
three [8]:

1. Representation: a task must be represented by some algorithm. We must know
what kind of learning we are interested in, and so, the hypothesis space is
decreased based on the type of task.

2. Evaluation: the predicted outputs must be evaluated (assessed) to know how good
the chosen representation is. Depending on the task, different evaluation functions
can be used.

3. Optimization: based on the results of the evaluation component, optimization
must be done. The aim of the learning algorithm is to maximize a given perfor-
mance measure.

Table3.1 presents some examples for each of the three components. For example,
a Decision Tree may classify a training set into predefined classes. An evaluation
component canbeaccuracy, i.e. howmany classes are correctly classified.An entropy
function can be used to measure the purity of the attributes within the tree, that is,
the amount of information that would be needed to classify an example. Table3.1
gives a little idea of the options we have when we design a machine learning system.
Remark that we cannot pick an example for each column to design our system.
Each representation has its own set of optimization and evaluation approaches. For
example,we can useGreedyRecursive Partitioning forDecision Trees, and themodel
can be evaluated by Accuracy.

Although there does not exist a simple recipe to choose the best approach from
one of the three components, the success (or not) of a learner depends on how well
the problem is defined, as well as the quality of the training set. The former helps to
find a representation that fits better to the problem, and the latter can be considered
an essential ingredient of a learning system.

We illustrate what we have seen so far through a running example.

Table 3.1 Instances of the three components of learning algorithms

Representation Evaluation Optimization

Logistic regression Accuracy Gradient descent

Neural networks Precision/Recall Greedy search

Linear regression Squared error Beam search

Decision tree Cost function Linear programming

K-means Root mean square error Greedy steepest descent

Random forest Stochastic approximation

Naive bayes Greedy recursive partitioning
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Table 3.2 Wind and
temperature affecting pace

Wind speed (km/h) Temperature (◦C) Pace (min)

10.5 12.3 3.5

8.9 15.4 3.2

20.2 13.7 5.5

5.10 3.1 4.0

Example 3.1.2 Table3.2 presents an extract of a dataset about running performance
(columnPace—thenumber ofminutes it takes to cover a kilometer) based on thewind
speed and the temperature. Suppose wewant to predict a pace based on new informa-
tion about the weather.X can be seen as (<10.5, 12.3>,<8.9, 15.4>,<20.2, 13.7>,
<5.10, 3.1>) and y as (3.5, 3.2, 5.5, 4.0). The size of X is 4 and number of features
is 2 (i.e., wind speed and temperature), and we want to predict a continuous value:
the pace.

The number of features is usually known as the dimensionality of the dataset. The
notion of dimensionality leads to a well-known problem in machine learning: the
curse of dimensionality [21]. Considering a dataset as a set of points in a plane, the
curse of dimensionality can be stated as follows: (i) learning algorithms generally
work with interpolation to build models, (ii) interpolation is only possible if points
are close to each other, (iii) if points are spread throughout a high dimensional space,
the distance between them is large, and (iv) interpolation-based algorithms cannot
build a model.

Besides, high dimensional dataset also leads to two problems: increase of com-
putation cost and non-informative features. Suppose that we have, in our example,
the following features: the running shoes price and quality. Although, quality and
price are related to each other, in our dataset we can easily discard the feature price
without losing essential information for our machine learning system. Notice that if
we have a dataset with 200 features, discarding or merging some of them would not
be an easy task. We deal with the dimensionality problem later in Sect. 3.6.

Example 3.1.3 Given Example 3.1.2 and x′ = <11.2, 10.0>, we want to predict a
new ŷ such that ŷ represents a valid pace value for the wind speed and tempera-
ture given. To accomplish the prediction, we have to build a model that describes
well enough our training set (X ). We show how to build a model using a simple
linear regression (notice that from Table3.1 we are choosing a representation for our
problem). A model can be

θ0 + θ1 × xi1 + θ2 × xi2 = ŷi

where θj are the weights or parameters (sometimes denoted by W ), xik represents
the kth feature of the ith example in X and ŷi is the predicted output of the ith
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example, and we want a ŷi ≈ yi. θ0 represents the bias of the model (aka intercept).
The challenge is to find θ0, θ1, and θ2 such that our ŷi value is as close as possible to yi.
Given the matrix Xm×d and the column vector Θd+1×1, we can implement our model
using matrix multiplication. However, X4×2 andΘ3×1 are not dimension-compatible.
Remark that, in our representation, Θ will always have one more column in relation
to X , and we can solve this problem adding a 1’s column in X . As 1 is the identity
element under multiplication, so, if we multiply θ0 by 1, its value remains the same.
Now, we can represent our model as:

⎡
⎢⎢⎣
1 10.5 12.3
1 8.9 15.4
1 20.2 13.7
1 5.10 3.1

⎤
⎥⎥⎦ ×

⎡
⎣

θ0
θ1
θ2

⎤
⎦ =

⎡
⎢⎢⎣
ŷ1
ŷ2
ŷ3
ŷ4

⎤
⎥⎥⎦

and, so, ŷ = X · Θ .
The next step is to find suitable values for the Θ . If ΘT=[0, 0.5,−0.2] then

ŷ=[2.79, 1.37, 7.36, 1.93]. Our Θ values made a fair prediction for the first example
(y1 = 3.5), but they failed for the others. To find fair values to Θ is an optimization
problem (our third component). Ifwe are using linear regression to represent our prob-
lem and an error function to evaluate it, we can use an optimization algorithm for find-
ing theminimumof a function (e.g.,Gradient Descent), andwe get the following val-
ues ΘT = [3.4, 0.192,−0.132], and, then, ŷ = [3.8, 3.1, 5.5, 4.0]. Finally, to verify
if ourmodel is performingwell, we have to evaluate it (second component). For linear
regression, we can use Root Mean Squared Error (RMSE), and the error is 0.16 (see
Sect. 3.5 for details). The smallest the value of RMSE, the closer ourmodel is tomake
good predictions. Given x′, we have 3.4 + 0.192 × 12.0 + −0.132 × 11.0 = 4.2,
that is, when the wind speed is 12.0 and the temperature is 11.0, the probably pace
would be 4.2.

We can evaluate our model using the same set used for training. However, the best
way to test our model is against unseen examples. Later in this chapter, we describe
some strategies on how to train and test machine learning models.

In this section, we presented an overview ofmachine learning. In the next sections,
we describe approaches for implementing a range of types of algorithms to solve
machine learning problems. We consider a broad classification of a learning task
(i.e. machine learning algorithm): supervised and unsupervised.1

1There are other classes of machine learning algorithms: semi-supervised, reinforcement learning,
recommender system. In this chapter, we focus on the two most popular ones. We refer [32] to the
readers for classes not covered here.
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3.2 Supervised Learning

Supervised learning can be applied when the dataset contains a set of labels (possibly
unitary) for every example. Therefore, the dataset is divided into X , the features of
the examples, and y, the labels. The labels help a learning algorithm to build the
predicting model and act as a guide to the learners.

Labels may be discrete (classes) or continuous (numeric values). Depending on
the type of label, we can apply classifiers or regressors. Besides, labels make the
evaluation of a model easier since we have the ground-truth to compare with the
predicted values. Table3.2 shows a dataset that can be used for supervised algorithms.
Remark that the label (Pace) represents continuous values, and, so, the dataset can be
used as input for regression supervised algorithms. If we change the pace to discrete
values (e.g., fast, slow, normal, etc.), our problem becomes a classification problem.
Note that any regression problem can be turned into a classification problem by
binning the continuous target values. Therefore, the first step of machine learning
system design is to analyze the dataset to identify which representation must be used.
In the following, we describe both regression and classification.

3.2.1 Regression

Regression is a type of supervisedmachine learning algorithmwhose target variables
are continuous values. Predicting currency exchange rates, temperatures, and the time
when an event may occur are examples of regression problems since the predicted
outputs are continuous values. In this section, we present some regression algorithms.

3.2.1.1 Linear Regression

When we face a machine learning problem with continuous target variables, we have
to choose a representation based on regression algorithms. Linear regression is the
most common algorithm used in regression and serves as the base to understand all
other regression algorithms [42].

The mathematical definition of linear regression is given by the following equa-
tion:

hΘ(X ) = θ0 + θ1 × x(i)
1 + · · · + θm × x(i)

m (3.1)

where θj are weights (θ0 is the bias, and θk is the weight for the kth feature of x(i),
1 ≤ k ≤ m), and x(i)

j is the jth feature of the ith example in X (dataset).
The best way to understand how linear regression works is to plot a graph with the

features× label. However, most of the time the dataset is multidimensional, that is, it
has more than one feature. Later in this chapter, we discuss dimensionality reduction,
but, for the sake of simplicity, we consider only the feature Temperature from our
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dataset (Table3.2). Table3.3 shows the original dataset from Table3.2 extended with
some new examples to have more points in the graph. Figure3.3 shows the new
dataset plotted in a 2D graph (X × y).

Remark that, in Fig. 3.3a, there is a line drawn by hΘ(X ) with weights that do not
represent the data points very well. However, in Fig. 3.3b, the average distance of
the points to the line shows that hΘ(X ) better describes the dataset. We can verify
whether or not our model fits the training dataset well by measuring the (Euclidean)
distances between the points and the line. In Fig. 3.3, the red lines show pictorially
some distances. Remark that oneway to evaluate ourmodel is to calculate the average
distance between the points and the line.

Example 3.2.1 Based on Fig. 3.3b, we have h([2.3,0.222])([10]) = 4.52, that is, when
the temperature is 10 degrees, the runner will take 4.52 minutes to run 1 kilometer.
For a temperature of 12.3, our model outputs a pace of 5.03 which is higher than the
ground-truth value of 3.5 (see Table3.3).

So far, we have chosen the representation of our model (i.e., Linear Regres-
sion), and we still need to choose approaches to evaluate and optimize the model.
In Sect. 3.5, we present some approaches for model evaluation. However, if we use
Mean Square Error, our model Θ = [2.3, 0.222] gets a score of 0.641. Knowing

Table 3.3 Table3.2 with just
one feature and new examples

Temperature (◦C) Pace (min)

12.3 3.5

15.4 3.2

13.7 5.5

3.1 4.0

11.3 4.6

10.8 4.3

9.7 4.0

4.5 3.5

5.3 3.3

5.2 3.8

7.4 3.4

6.2 4.2

7.8 4.3

8.5 3.8

12.3 5.3

14.3 5.2

13.2 4.4

9.8 4.6

8.3 4.6
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(a) (b)

Fig. 3.3 Perform (the drawn line) of two regression models in the same dataset

that close to 0 is better, our model should be optimized. The optimization is the third
component of our hypotheses space (see Table3.1). Gradient Descent is a common
solution to optimize (or train) a Linear Regression Model.

Gradient Descent updates theweights (Θ) based on a cost function. Equation (3.2)
shows an implementation of a cost function.

J (Θ) = 1

2m

m∑
i=1

(hΘ(x(i)) − y(i))2 (3.2)

where m is the number of observations in the training dataset. Remark that hΘ(x(i))

may be replaced by ŷ. The mathematical definition for the gradient descent is shown
in Eq. (3.3).

Θ = Θ − α
∂

∂Θ
J (Θ) (3.3)

where α is the learning rate. Equation (3.4) shows Eq. (3.3) with the partial derivative
computed for J (Θ).

Θ = Θ − α
1

m

m∑
i=1

(hΘ(x(i)) − y(i))x(i) (3.4)

The gradient descent works as follows: (i) we randomly initialize Θ (for linear
regression all Θ can be initialized to 0),2 (ii) define a value to α,3 and (iii) we run
gradient descent until it converges.We can use J (Θ) to stop the looping.When J (Θ)

stabilizes, we consider that the gradient descent has converged.
Remark that the parameters (called hyper parameters) are essential for building

good machine learning systems. The ordinary linear regression needs only a good

2For some representations, zero is not a good initial value. Random values from 0 to 1 work in most
of cases.
3Select a small value to α, say 0.01, plot J (Θ) to identify how the gradient is converging, increase
α (e.g., doubling its value) up to have an expected convergence.
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value for the learning rate, but it is not always the case. There are some more sophis-
ticated algorithms that we have to choose values for all the hyper parameters needed.

Sometimes the data points cannot be described by one straight line. In this case,
we can still apply linear regression to the dataset.We just need to change ourmodel. If
the points are not linearly organized, we can apply polynomial models (in this case, a
linear regression may be called a polynomial regression). Suppose we have a dataset
with just one feature, and the data points represent a quadratic function. We could
build a model as hΘ(X ) = Θ0 + Θ1 × x1 + Θ2 × x21. It is not hard to implement
since we insert a new column representing the squared feature. Therefore, the model
becomes hΘ(X ) = Θ0 + Θ1 × x1 + Θ2 × x2, where x2 = x21. Any polynomial func-
tion can be used to build a non-linear model. The characteristics of the dataset are
the guide for choosing the best one. However, the cost function must be convex to be
optimized with gradient descent (the cost function in Eq.3.2 happens to be convex).

An alternative to training a learning model (i.e., solve the parameters Θ) is to
use normal equation. Equation (3.5) gives the mathematical definition of normal
equations.

Θ = (X T · X )−1 · X · y (3.5)

There are two advantages of normal equation over gradient descent: there is no
learning rate and no iteration. However, the matrix that represents the dataset must
be invertible, and the computational cost to multiple and invert matrix is high.4

Remark that J (Θ) guides gradient descent in finding the best weights for the
model. However, sometimes J (Θ) fits well the training set (J (Θ) ≈ 0) but fails to
generalize the test set (J (Θ) � 0). This situation (aka overfitting) indicates that our
model has been specialized for the training dataset, i.e., the noise in the dataset has
been taken into account during the learning process. Overfitting may happen when
the dataset is highly dimensional, and some features may be irrelevant in the training
step.

There are several techniques to combat the overfitting, the most popular is to add
regularization to the (cost) function. The regularization penalizes the function using
the weights and some other parameters (see Sect. 3.7.2 for more details).

The algorithm described here for regression problems represents a small part of
the hypotheses space for solving this kind of problem, but it can be used as the basis
for understanding other regression algorithms.

3.2.2 Classification

Classification problem is similar to a regression problem; the only difference is
the labels that are discrete values. With this in mind, a regression dataset may be
transformed into a classification dataset. We have just to discretize the values, that is,
group the continues values into classes. The label (Pace) inTable3.2, for example, can

4Multiplication is O(n2), and inverse is O(n3).
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Table 3.4 The dataset from Table3.4 with Pace having discrete values

Wind speed (km/h) Temperature (◦C) Pace #Class

10.5 12.3 Fast 0

8.9 15.4 Fast 0

20.2 13.7 Normal 1

5.10 3.1 Normal 1

be discretized resulting in a new dataset shown in Table3.4. The continuous values
are transformed into discrete values as follows: (i) fast (Pace ≤ 3.5), and (ii) normal
(Pace > 3.5). As we are working with mathematical representations, the classes of
the labels should be represented as numerical values. Therefore, fast is represented by
0, and normal by 1 (column #Class). Classesmay be binary (as our example) ormulti-
classes (we could represent the Pace as fast, regular, normal, slow, among others).
In the first case, we have y ∈ {0, 1}, and in the second case, y ∈ {0, 1, . . . , k − 1}
(where k is the number of classes). We focus this section on binary classification
since they are more intuitive to understand. Besides, binary classifiers are applied
to several situations: classification emails as spam or not, fraudulent transactions,
problems regarding winners or losers, among others. In addition, any multi-class
problem may be solved by dividing up the problem into many binary classification
problems in a so-called one versus all classifications.

3.2.2.1 Logistic Regression

Logistic regression is one of the simplest and most efficient classifiers. The intuition
behind logistic regression is similar to linear regression.We extend Eq. (3.1) to output
ŷ such that ŷ in [0, 1]. Equation (3.6) presents a sigmoid (or logistic) function that
always returns values between 0 and 1 inclusive and the logistic regression can be
defined as σ(hΘ(X )).

σ(z) = 1

1 + e−z
(3.6)

Sigmoid functions behavior as follows:σ(z = 0) = 0.5, 0 ≤ σ(z < 0) < 0.5, and
0.5 < σ(z > 0) ≤ 1 (Fig. 3.4 shows pictorially this behavior). Remark that we may
interpret the output of Eq. (3.6) as the probability of y = 1 (or y = 0). Therefore,
the binary classifier can output 1 or 0 based on a threshold defined by the user. If
we want an equal distribution, the value returned by σ(z) can be rounded, and so we
have y = 1 when σ(z) > 0.5, or y = 0, otherwise.

Ifwe use the previous cost function in the logistic regression,wewould have a non-
convex function which could not be optimized with steepest gradient descent. If we
try it anyhow, we would risk to find a local minimum instead of the global minimum
(Fig. 3.5 shows pictorially this situation: solid circles represent local minima and the
open one represents the global minimum). To avoid this, we consider the cost for
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Fig. 3.4 The behavior of a sigmoid function

Fig. 3.5 Plot of a nonlinear
cost function

(ŷ, y) as follows:

cost(ŷ, y) =
{−log(ŷ) if y = 1

−log(1 − ŷ) if y = 0
(3.7)

Remark that the cost is 0 if y and ŷ are equal to 1, and increases when ŷ → 0. It is
the behavior we want since the penalty has to increase when the distance of y and ŷ
increases. The same reasoning may be applied to when y = 0. Note that the Eq. (3.7)
can be rewritten as y × (−log(ŷ)) + (1 − y) × (−log(1 − ŷ)). Thus, we can define
the cost function of linear regression as:

J (Θ) = − 1

m
[

m∑
i=1

y(i)log(hΘ(x(i))) + ((1 − y(i))log(1 − hΘ(x(i))))] (3.8)

Notice that when y = 0, the first part of the summation (the left side of the addition)
is canceled since y multiplies the log value, and the same reasoning can be applied
to the right side when y = 1. The gradient descent remains the same as shown in
Eq. (3.3).
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If we plot our dataset in a vector space, logistic regression draws a line that
separates the data points based on their classes. This separation is called a decision
boundary. However, sometimes the classes cannot be separated by a straight line, and
in this case, one solution is to transform the feature matrix into a higher dimensional
space by adding new featureswith higher degree. Another solution is to apply another
algorithm to the problem, for example, Support Vector Machines (SVM) [15].

One-versus-all is one of the approaches to deal with multi-class classification.
This approach learns one class at a time, and thus, a dataset with k classes has k sets
of Θs. For example, in a dataset with three classes (0, 1, and 2), we keep the label
of first class and update the others to 1; we do the same for the second class, update
the others to 0, and so on. To verify in which class an example ei belongs, we apply
every learned Θ to ei, and the highest one corresponds to the predicted class of ei.

3.2.2.2 Decision Trees

Decision trees are another representation for solving classification problems. The
model is based on decision rules implemented in the nodes of a tree. This model is
more understandable for humans than logistic regression. See a pictorial representa-
tion below:

Rule
Action1 ...

Actionn

. . .

Basically, every node represents a test to be performed on a single attribute, and a
child node is accessed depending on the result of the test. The testing is repeated until
it reaches a leaf node, and finally the class is found. Figure3.6 presents a decision tree
for the dataset from Table3.4. Remark that the tree covers all cases of the dataset, and
we may conclude that a runner will have a normal pace under temperatures below
12.3.

The choice of the attributes for each rule and node has a major role in the success
of a decision tree. The criterion is based on the information gain of the attributes
(features). The attribute that gives the greatest information gain becomes the root of
the tree, and the internal nodes follow the ranking of the information gain. Entropy
calculates the (im)purity of an attribute regarding the classes, and it may be used
to calculate the information gain (i.e. how well an attribute can describe a given
class) [3]. Equation (3.9) gives the mathematical definition of an entropy for a
subset Xi:

H (Xi) = −p+
i log2(p

+
i ) − p−

i log2(p
−
i ) (3.9)
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Fig. 3.6 A decision tree built from dataset in Table3.4

where p+
i is the probability that a randomly taken example in Xi is positive and

can be estimated by the relative frequency p+
i =

n+
i

n+
i +n−

i
; the same reasoning is used to

calculate p−
i .

The entropy for every value i of an attribute attr in X is calculated as follows
(considering the attr has K different values):

H (X , attr) =
K∑
i=1

P(Xi) × H (Xi)

where P(Xi) is the probability of an example belonging to Xi and can be estimated by
the relative size of subset Xi in X : P(Xi) = |Xi |

|X | . Finally, the mathematical definition
of a knowing attribute attr information gain is given by Eq. (3.10).

I(X , attr) = H (X ) − H (S, attr) (3.10)

where H (X ) is the entropy of the whole dataset. Remark that if X is well balanced
for the classes, H (X ) will be close to its maximum (≈1).

Example 3.2.2 Let X be the dataset from Table3.4, the result from Eq. (3.9) is:
H (X ) = 2

2+2 × log2(
2

2+2 ) − 2
2+2 × log2(

2
2+2 ) = 1. This means that X is well bal-

anced. It is easy to see since X is composed of two positive and two negative exam-
ples. Let t1 be the temperature greater or equal to 12.3 and the class normal be
a positive example, the entropy is: H (X , t1) = 1

3 × log2(
1
3 ) − 2

3 × log2(
2
3 ) = 0.92.

For the temperate below 12.3, the entropy is by definition 1 since there is no negative
example, and logarithm of zero is not defined. The total entropy of the attribute tem-
perature isH (X , temperature) = 1

4 × 1 + 3
4 × 0.92 = 0.94. Finally, the information

gain is I(X , temperature) = 1 − 0.94 = 0.06. If we calculate the information gain
for a wind speed less or equal to 10.5, we will have the same result. That is, both
attribute have the same information gain, and so both can be the root of the decision
tree. Remember that the tree is organized by following the information gain of the
attributes in descending order.
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The equations and formulas above consider that the attribute values are discrete,
but it is not always the case: decision tree can be induced from numerical attributes
as well. An approach to discretize the values follows: an attribute attr is sorted, the
range of each class for attr is calculated, and the ranges are ranked by information
gain. Each range corresponds to a discrete value of attr. A range for an attribute attr
can be [10, 20], i.e., attr > 10 ∧ attr < 20.

Decision trees are the basis for lots of other tree classifiers. One of the most
effective one is the random forest. Roughly, random forest trees combine into an
ensemble. N random samples are selected from the dataset X ; each sample is used
to build a decision tree with some samples of X . Therefore, random forest trees use
N decision trees to build the best model for a given dataset.

Decision trees are proposed to deal with classification problems. However, there
are several approaches to adapt decision tree algorithms to regression problems [26].
A regression tree is similar to a classification tree, except that the label y takes
continuous numerical values and a regression model is fitted to each node to give the
predicted values of y.

3.3 Unsupervised Learning

When the dataset has no labels, that is, there is no previous classification of the
examples, we apply an unsupervised learning algorithm. The goal is to infer classes
or groups from the dataset without the help of the labels. In this case, the dataset
is in the form X = {x(1), . . . , x(m)}. Unsupervised learning is less objective than
supervised learning, since there are no labels to guide the user for the analysis. The
domain of the dataset must be known by the user to build useful models, otherwise,
the results may not be understandable.

Although, unsupervised learning is harder to model than a supervised learning,
the importance of such techniques is growing since there are more unlabeled data
than the labeled ones. Besides, many learning problems are related to unsupervised
problems: recommendation, classification of customer behaviors in awebsite,market
segmentation, among others. Clustering is the most popular technique for unsuper-
vised learning.

Clustering is about discovering semantically related groups in an unlabeled
dataset. The number of groups (aka clusters) is defined by the user based on his/her
knowledge of a dataset X . For example, let’s say X represents examples of heights
and weights of people, and we want to separate them into 3 T-shirts sizes (e.g., S, M,
and L). The dataset can be split into 3 clusters, and, based on the user knowledge,
each cluster represents the height × weight characteristic for each T-shirts size.

Data clustering has been used for [18] (i) gaining insight into data, generate
hypotheses, detect anomalies, and identify salient features, (ii) identifying the degree
of similarity among forms or organisms, and (iii) for organizing the data and sum-
marizing it through cluster prototypes.
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K-means is one of the most popular and easy to understand clustering algo-
rithms [19]. The basic idea is to define k centroids that help to build the clusters.
Every example in the dataset will be associated to one of the k centroids. The dataset
is seen as a set of data points in a plane, and the algorithm tries to group them into
clusters by measuring the distance between a given data point and a centroid.

Data: X = {x(1), . . . , x(m)}, K centroids μ1, . . . , μK

Result: A set of K centroids for X
Initialize the centroids (either K ⊂ X or data points picking from the plane);
repeat

for each x(i) in X do
c(i) = argmin

k
(
∑K

k=1 ||x(i) − μk ||2); // assign x(i) to the closest centroids

end
for each μi in K do

// update the centroids with the average of the points associated to them
μi = 1

|c(i)|
∑

x(j)∈c(i) x(j);

end
until K converge;

Algorithm 1: K-means pseudo code

Algorithm 1 presents a K-means pseudo-code. The two internal loops are themain
parts of the algorithm. The first one associates each data point (an example from X )
to a given centroids. The second loop updates the centroids positions by averaging
the points associated to them. The main loop is repeated until the data points get
stable in relation to their centroids.

Figure3.7 shows pictorially the above steps of K-means (rounded points are cen-
troids, and diamonds represent the data points). First, three centroids are picked from
the hyperplane ((a), points black, red, and yellow). Next, all data points are associated
to a centroid (b), new centroids are calculated ((c), the dotted arrow shows the source
and target of each centroid), and finally, the data points are updated (d). Those steps
are repeated until the centroids do not change anymore. The initial centroids play
an essential role in K-means algorithms, and the resulting clusters may be different
depending on the initial centroids.

Although, there are methods for selecting the so-called correct number of clusters
(e.g., Silhouette and CH index methods [11]), the user knowledge plays an essential
role to define the number of centroids (the number of clusters). Each cluster will
have a semantic meaning in relationship to the domain of the dataset for the expert
in the domain.

The K-means algorithm is a clustering algorithm based on partition, i.e., the idea
behind is to consider the center of data the points as the center of the corresponding
cluster. Another category of clustering algorithms are those based on a hierarchy.
This kind of algorithm builds a hierarchical relationship among data to cluster them.
Each data point, in the beginning, is a cluster itself. The closest clusters are merged.
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Fig. 3.7 First steps of K-means algorithm

The merge operation builds a dendrogram representing the nested clusters. The den-
drogram shows the pattern and similarities of the clusters. Dendrograms can be seen
as a hierarchical representation of the clusters showing the similarity or dissimilarity
of them.

3.4 Artificial Neural Networks and Deep Learning

Deep learning is a type of representation learning where the machine itself learn
several internal representations from raw data to perform regression or classification
[23]. This is in contrast to more classical machine learning algorithms which often
require carefully engineered features that are based on domain expertise [1]. Deep
learning models are built up in a layer-wise structure where each layer learn a set of
hidden representations, that inmany cases cannot be understood by a humanobserver.
The representations in each layer are non-linear compositions of the representations
in the previous layer. This allows the model to first learn very simple representations
in the first layers which are then combined into more and more complex and abstract
representations for each layer. An example of this is that when deep learning models
are used on images, they often start by learning to detect edges and strokes [44].
These are then combined into simple objects, objects that then are combined into
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even more complex objects for each layer. Since each layer only learns from the
representation of the previous layer, a general purpose learning algorithm, such as
back propagation [22], can be used to train a given network.

3.4.1 Artificial Neural Networks

Most algorithms in deep learning are based on artificial neural networks [23]. In
contrast to deep learning the field of artificial neural networks has been around
for some time. It all started in 1943 when McCulloch and Pitts, a neuroscientist and
mathematician, defined a mathematical model of how they believed a neuron worked
in a biological brain [28]. The next step came in 1949 when Hebb came upwith a rule
that made it possible to train an artificial neuron to learn and subsequently recognize
a set of given patterns [16]. In 1958 Rosenblatt, a psychologist, further generalised
the works of McCulloch and Pitts and proposed a model, called the perceptron, for
an artificial neuron [39]. The mathematical definition of a perceptron is given in
Eq. (3.11), and a graphical representation is shown in Fig. 3.8.

y = f

((∑
i

xi ∗ wi

)
+ b

)
(3.11)

The perceptron was then further analysed and developed by Minsky and Papert
[30]. In the analysis of the perceptron, Minsky and Papert showed that a single
perceptron was not sufficient to learn certain problems (e.g., nonlinear problems),
for example, the XOR problem. Instead, they argued that multi-layered perceptrons
were needed to solve such problems. However such networks were not possible to
train at that time, this lead to an AI winter and very little research on ANNs were
conducted on neural networks for some time. This has changed during the years,

Fig. 3.8 A graphical
illustration of a perceptron.
The output of a perceptron is
an activation function
applied to the weighted sum
of the inputs plus a bias. The
mathematical definition of a
perceptron is given by
Eq. (3.11)
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thanks to the increase in computational and improvements to the methodology, such
as the introduction of the backpropagation algorithm, unsupervised pre-training [9]
and the rectified linear unit [34]. These improvements have allowed researchers to
build networks with many hidden layers, so called deep neural networks [23]. In
the following sections, we present several different architectures of artificial neural
networks used in deep learning.

3.4.2 Feedforward Neural Networks

A feedforward neural network is an artificial neural network where information only
moves in one direction; thus feedforward networks are acyclical and therefore free
of loops. The layout of a typical feedforward network is shown in Fig. 3.9. The most
basic feedforward network is the perceptron [39] where the output is an activation
function applied to the weighted sum of the input plus a bias. If the sigmoid function,
described in Eq. (3.6), is used as the activation function a single perceptron performs
exactly the same task as logistic regression (see Sect. 3.2.2). A standard architecture
of feedforward networks is to arrange multiple neurons in interconnected layers.
Each neuron in any layer, except the final output layer, has directed connections to
all neurons in the subsequent layer. This types of networks are called multilayer
perceptrons. As with the perceptron, the output that each neuron will propagate to
the next layer is an activation function applied to the weighted sum of all inputs plus
a bias. As long as the activation function is differentiable, it is possible to calculate
how the output will change if any of the weights is changed, and thus the network
can be optimized with gradient based methods.

Fig. 3.9 The layout of a multilayer perceptron with two hidden layers, each having 5 neurons
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3.4.3 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a special type of neural networks that
are mainly used in image analysis [25], but some researchers have used CNNs for
natural language processing [24]. The main idea behind the CNN architecture is
that basic features in a small area of an image can be analysed independently of its
position and the rest of the image. Thus an image can be split up into many small
patches. Each patch can then be analysed in the same way and independently of the
other patches. The information from each patch can then be merged, to create a more
abstract representation of the image.

This scheme is implemented in a CNN using two different steps; convolutional
and sub-sampling steps. In a convolutional step, a feedforward neural network is
applied to all small patches of the image, generating several maps of hidden features.
In the sub-sampling step, the size of the feature map is reduced. This is often done
by reducing a neighborhood of features to a single value. The most common way
for this reduction is to either represent the neighborhood with the maximum or the
average value. These two steps are then combined into a deep structure with several
layers.

It has been shown that a CNN learns to detect general and simple patterns in
the first layers, such as detecting edges, lines, and dots [44]. The abstraction of the
learned features will increase in each layer. If, for example, the first layer detects
edges and dots, the next layer may combine these edges and dots into simple patters.
These patterns may then be combined into more complex and abstract objects in the
next layer. One of themain benefits of this approach is that the CNN learns translation
invariant features. Thus a CNN can learn general features about objects in an image
independently of their position within the image.

3.4.4 Recurrent Neural Networks

A recurrent neural network (RNN) is a type of artificial neural network where there
are cyclical connections between neurons, unlike feedforward networks which are
acyclical [37]. This allows the network to keep an inner state allowing it to act
on information from previous input to the network, thus exhibit dynamic temporal
behaviour. This makes RNNs optimal for the analysis of sequential data, such as text
[29] and time series [5]. One big problem with recurrent neural networks, which also
occurs in deep feedforward networks, is that the gradients in the backpropagation
will either go to zero or infinity [36]. This has however been partially solved by the
introduction of special network architectures, such as the long short term memory
(LSTM) [14] and the gated recurrent unit (GRU) [4].
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3.4.5 Generative Adversarial Networks

Generative adversarial networks (GANs) were introduced by Ian Goodfellow in
2014 [13]. The idea behind a GAN is that we have two artificial neural networks
that compete. The first network, called the generator, tries to generate examples
following the same distribution as the collected data. While the second network,
called the discriminator, tries to distinguish between the examples that are generated
by the generator and the data that are sampled from the real data distribution.

The training of these two networks consists of two phases where the first part aims
to train the generator and the second to train the discriminator. In the first phase, the
generator creates several examples and gets information about how the discriminator
would judge these examples, and in which direction to change these examples so that
they are more likely to pass as real data to the discriminator. In the second phase,
several generated and real examples are presented to the discriminator, that classifies
them as real or generated. The discriminator is then given the correct answers and
how to change its settings to preform better when classifying future examples. This
can be compared to the competition between a money counterfeiter and a bank. The
task of the counterfeiter is to generate fake money, and the bank should be able to
determine if money is faked or not. If the counterfeiter gets better at creating new fake
money, the bank must take new measures to discover the fake money and if the bank
gets better at discovering fake money, the counterfeiter must come up with better
and creative ways to create new money. The hope when training a GAN is that the
generating network and the discriminating network will reach a stalemate where they
are both good at their tasks. Successful works including GANs, are the generation of
images of human faces [12], images of hotel rooms [38] and the generation of text
tags to images [31].

3.5 Model Evaluation

There are many representations to build models from data. In the previous sections,
we have seen some of them. However, we need to evaluate the built model to check
howwell it performs on unseen examples, that is, howwell it generalizes the training
dataset. The design of machine learning system, as stated before, is composed of
several steps: (i) the choice of a dataset as input, (ii) the choice of a representation
for a learner, (iii) an approach to optimize the model, and, finally, (iv) an evaluation
of the model. The evaluation (or assessment) must be done in a dataset not used for
training. Basically, the original dataset is split into two subsets: the training and the
test sets. The usual approach to dividing the dataset is as follows: 70% for training
and 30% for testing. Remark that the number of examples in each subset depends
on the number of example in the original dataset, and the selection of examples for
each subset must be balanced (mainly in classification problems), that is, each subset
must have representative information of the domain to be modeled.
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Another important remark is that, during the training phase, we have to test our
algorithm (or algorithms) using different hyper parameters (e.g., learning rate, node
purity, number of clusters, etc.). In this scenario, we may also divide the training
set into cross-validation sets (or split the original dataset into three subsets: training,
validation, and test). Therefore, the training data is used to training some learning
algorithms. In the validation set, the performance of trained algorithms are evaluated,
and thus, the best one is chosen to model our problem. Moreover, the test data is
used to evaluate the chosen model against new examples.

In the training set, we use a loss function (or another similar function) to verify
whether or not our model is converging. When we are satisfied with the results in the
training set, ourmodel is run against the test set, and, depending on the representation
used, we choose a metric to evaluate the predictions made by the model. It is clear
that a metric for classification is different from a metric for regression, and it is not
the same for unsupervised approaches. In the following, we present some metrics
for the representations discussed in the previous sections.

3.5.1 Regression

The regression learners predict continuous values, and the metrics find how close a
predicted value is to the real value (the ground-truth value). Therefore, most of the
approaches are based on the distance between the ground-truth and predicted values
(represented by y − ŷ).

Some popular metric functions for regression are:

• R2 score (aka coefficient of determination) is a number that indicates the proportion
of the variance in the predicted output from the real output. It is calculated as

follows: R2 = 1 −
∑m

i=1(y
(i)−ŷ(i))2∑m

i=1(y
(i)−ȳ(i))2

, where m is the size of the (test) dataset, ŷ is the

predict value, and ȳ is the average of ground-truth values. The closer R2 is to one,
the better.

• Mean square error (MSE) measures the average of the squares of the errors of
the predict and real value. The error means the difference between the two values
(predicted and truth). The differences are also called residuals. The mathematical
definition is given as follows: MSE = 1

m

∑m
i=1(y

(i) − ŷ(i))2. The closer MSE is to
zero, the better.

• Root mean square error (RMSE) is a measure of the differences between values
(sample and population values) predicted by a model or an estimator and the truth-
ground values. RMSE is the square root of the value calculated by MSE. So, its
mathematical definition is RMSE = √

2MSE. The closer RMSE is to zero, the
better.
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• Mean absolute error (MAE) is similar to MSE, but it does not square the error.
The absolute value of the difference is used instead. It is defined as follows:
MSE = 1

m

∑m
i=1 |y(i) − ŷ(i)|.

• Mean absolute percent error (MAPE) is another metric to evaluate regression
models, and the error expressed in generic percentage terms is:
MAPE = ( 1n

∑m
i=1

|y(i)−ŷ(i)|
|y(i)| ) × 100

MAPE and MAE are less sensitive to the occasionally very large error because
they do not square the errors. Therefore, if wewant ourmodel to ignore big prediction
errors, MAPE and MAE may be used. However, the metric which is considered as
one size fits all is RMSE [43].

3.5.2 Classification

The metrics for classification problems are a little bit easier to apply on the model
than the regression ones. Roughly speaking, the metrics are based on counting how
many predicted classes equals to the observed ones. We use the binary classification
to present the metrics since it is more intuitive to understand. The same reason is
applied to multi-class prediction.

The simpler way to evaluate a classifier is when the classes are well balanced in
the dataset (training and test). Accuracy is the metric for this scenario. The predicted
classes are matched against to the observed ones, and the number of matched ones
is divided by the size of the dataset: 1

m

∑m
i=1 y

(i) == ŷ(i), considering that false is 0,
and true is 1.

In most of the cases, the classes in a dataset are skewed, that is, the number
of classes is not balanced. For instance, in a dataset with examples of benign and
malignant tumors, maybe most of the examples are labeled as benign tumors. If 96%
of the tumors are labeled as benign, and the model outputs benign for every example,
its accuracy will be 96% (a very good accuracy); however, we know that the model
is not able to predict malignant tumors.

To overcome this problem, several metrics have been proposed, and we discuss
three of them: precision, recall, and F1-score.5 First, we present some definitions to
help present the metrics above. Table3.5 presents a taxonomy of class classification
that is used to classify the predicted classes in relation to the ground-truth ones.
The true positive (TP) means that the classifier matches the positive classes, and
the false positive (FP) implies that the classifier outputs negative classes as positive
ones. The same reasoning for negative classes: true negative (TN) indicates negative
classes are predicted correctly, and false negative (FN) indicates positive classes are
predicted as negative ones. We remark that the confusion matrix can be extended for
the multi-class problem [2].

5F1-score is a specialization of Fβ -score that is not covered in this chapter.
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Table 3.5 The confusion
matrix

Positive Negative

Positive True positive (TP) False positive (FP)

Negative False negative
(FN)

True negative (TN)

Precision, recall, and F1-score can be defined as follows:

precision = TP

TP + FP

recall = TP

TP + FN

F1-score = 2 × precision × recall

precision + recall

The precisionmetric is usedwhenwewant exactness, that is, our classifier is covering
the positive classes confidently. On the other hand, recall means completeness, that
is, how many positive examples our classifier has missed. If we want to balance
between recall and precision, F1-score gives the harmonic mean of precision and
recall.

Remark that accuracy can be also calculated as follows: TP+ TN
TP+FP+ TN +FN .

3.5.3 Clustering

The evaluation of the clusters resulted from a clustering algorithm is a not easy task
since there are no true labels to compare with the clusters. The evaluation can be
divided into two categories: internal and external. The internal category measures
the quality using the training data, and the external category uses the external data
(test set). However, the external evaluation is not completely accurate as compared
to the methods for supervised learning [10].

Silhouette Coefficient is a (internal) metric to measure the quality of the built
clusters. It is a popular method that combines both cohesion (similarity between
an object and its cluster) and separation (similarity between an object and other
clusters). The silhouette coefficient for an individual object (example or data point)
can be computed as follows: (i) given an example ei, calculate its average distance to
the other examples in the same cluster (aei), (ii) do the same using the other clusters
(bei), and (iii) the silhouette coefficient for ei is si = bi − ai

max(bi,ai)
. The average of all

coefficients sk can be calculated to find the clustering coefficient.
Remark that the coefficient can be a value between −1 and 1. A negative value

of si is not desirable since it indicates that the average distance of ei to its cluster is
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greater than to the other clusters. On the other hand, a positive value of si is an ideal
value, and si = 1 indicates that the the average distance of aei is 0.

Rand Index (RI) is a metric for external evaluation. It compares the predicted
clusters to the real clusters (manually assigned by an expert user), and it is similar to
the accuracy metric for supervised algorithms. Here is how to calculate RI:

1. Let X be a dataset, Cp be a clustering (set of clusters) build by the clustering
algorithm (predicted), and Cr be a set of ground-truth clusters;

2. TP is the number of examples (data points) belonging to the same clusters in Cp

and Cr;
3. TN is the number of examples (data points) belonging to different clusters in Cp

and Cr;
4. FP is the number of examples (data points) belonging to a cluster in Cp but to a

different cluster in Cr;
5. FN is the number of examples (data points) belonging to a different cluster in Cp

but the same cluster in Cr

6. Rand Index is calculated as follows: RI = TP+ TN
TP+ TN +FP+FN .

We remark that RI is calculated exactly as accuracy.
Metrics are essential tools to evaluate a machine learning system. Each one must

be carefully studied to understand the behavior of the built model. Some metrics can
be affected by noise in the data (aka outliers), and others may smooth the effects of
noise.

3.6 Dimensionality Reduction

Dimensionality reduction plays an essential role in machine learning. Its goal is to
decrease the number of features of a dataset. As an example, let’s suppose that we
want to identify objects in a set of images. Each image is a 100 × 100 pixels, thus
we have 10, 000 features. An approach to reduce the dimensionality can bring the
number of feature to 1000. Therefore, dimensionality reduction may be applied to:

• Compress data in the main and secondary storage.
• Speed up learning algorithms.
• Visualize the dataset in 2D or 3D planes.

The reductionmay alsomerge themore correlated features into one (or more). For
instance, a dataset can have a feature f1 that represents the height in centimeters and
another feature f2 that also represents the height but in inches. Based on the correlation
of f1 and f2, a dimensionality reduction technique may merge both features to form
a new one.

Given a dataset X = {(x(1), y(1)), . . . , (x(m), y(m))} (possibly without labels y(i)),
the dimensionality reduction aims to transform x(i) ∈ R

d into z(i) ∈ R
k (where k <

d ), resulting in X ′ = {(z(1), y(1)), . . . , (z(m), y(m))}. Figure3.10 shows a 3D dataset
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Fig. 3.10 A 3D dataset reduced to 2D dataset

(three features a) reduced to a 2D dataset (two features b). The reduction was done
using the PCA technique.

3.6.1 Principal Component Analysis (PCA)

PCA reduces the dimensionality of a dataset by projecting vectors onto the plane and
minimizing the projection distance error between the points and the projected vector.
It can be described as follows: given a dataset with d dimensions, find k vectorsμ(1),
. . ., μ(k) onto which to project the data, so as to minimize the projection squared
error.

To find the vectors the following steps must be done: (i) find the covariance
matrix of the dataset: � = 1

m

∑m
i=1 x

(i) · x(i)T (� is a d × d matrix), calculate the
eigenvector6 U of � (U is a d × d matrix), and reduce X to k-dimensions based on
U as followsXreduced = U [:, 1 : k]T · X T . Remark that the newnumber of dimensions
is taken fromU which represents the vectorsμ(i). We can approximately reconstruct
X from Xreduced and U [:, 1 : k] as follows Xapp = U [:, 1 : k] · Xreduced

The ideal number of newdimensions (k) is found giving the percentage of variance
to retain. If we want to retain 99% of variance, the threshold ϕ must be set to 0.01.

We find the threshold as follows:
1
m�m

i=1|x(i)−x(i)
app|2

1
m�m

i=1|x(i)| ≤ ϕ. To find the best k, we test the

variance retained with k = 1, . . . , d − 1 until we reach the desired threshold.
PCA performs a linear mapping to merge points in the plane. However, some fea-

tures in a dataset may have more complex polynomial relationships. Therefore, there
are some techniques to deal with nonlinear dimensionality reduction. t-Distributed
Stochastic Neighbor Embedding (t-SNE) is an approach based on probability distri-
butions with a random walk on neighborhood graphs to find the structure within the
data [27]. t-SNEconverts distances between data in the original space to probabilities.

6Definition of eigenvectors can be found in traditional books of linear algebra.
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Another approach that works with nonlinear dimensionality is an extension of PCA:
nonlinear PCA. Nonlinear PCA is performed using a five-layer neural network [35]
that captures the complex nonlinear relationship between the features.

The decision in using a linear or nonlinear approach must be based on the char-
acteristic of the dataset; however, sometimes it is not easy to identify whether or not
features are linearly or nonlinearly correlated. A rule of thumb is to start with PCA.
If it does not work well, use more sophisticated techniques.

3.7 Final Remarks

The design of amachine learning system is composed of several steps: from choosing
a domain (dataset) to building a model to accurately predict new information about
the given domain. This section closes this chapter by presenting some issues that are
orthogonal to the subjects discussed so far. An essential step in machine learning is to
prepare the dataset as a proper input of a learning algorithm. The quality of the dataset
has a high impact on the performance of machine learning-based methods. Thus, in
this section, we present some issues about preprocessing the data and checking the
behavior of the learning algorithm.

3.7.1 Data Preprocessing

Some characteristic of a dataset may have adverse influence on the learning results
or even may be not suitable for certain learning algorithm classes. Several learning
algorithms deal with only numerical values, and, in this case, features that are not
numerical must be either discarded or transformed into numerical values (discretiza-
tion may be applied). For example, a feature that stores gender as m and f may have
the values replaced by the numerical values 1 and 2, respectively. The contrary is also
true: a numerical value can be transformed into a string to speed up some learning
algorithms (e.g., decision trees).

A dataset can also have features on very different scales, that is, one feature can
store values on the order of thousands, and another on the order of ten. An example
is the price of an apartment and number of bathrooms. In this case, we can use a
technique called feature scaling, that is, all features are scaled to a same range of
values. The two most common technique are: standardization (X − X̄

σ
) and rescaling

( X −min(X )

max(X ) −min(X )
) feature rescaling. The former makes all features to have the average

close to 0, and the latter the features will have values between 0 and 1. The feature
scaling helps an optimizer to converge faster.
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Missing data is another problem that must be solved during the preprocessing
stage.7 Three approaches may be used to address it: analyze only the available data,
impute missing values in the dataset, and use a learning algorithm that deals with
missing data.

For the first case, examples or features are deleted from the dataset. This is recom-
mended when there are not manymissing values. The dataset size allows the removal
of some examples or features, and the values are randomly missing.

Missing values’ imputation aims to replace missing values with some plausible
values. The new values are calculated based on some traditional statistic methods
(e.g., mean, the most frequent value, or median), or some other more sophisticated
approaches (e.g., Expectation Maximization [7], Shell Neighbor Imputation [45]).

The third approach is to use a learning algorithm that integrates components to deal
withmissing values. Probably, these extensions of traditional learning algorithms use
some statistical methods cited previously, e.g., [41].

In the dataset preprocessing step, we can also drop unnecessary features (aka
attribute or feature selection) or create new features based on the existing ones (aka
attribute or feature transformation). Imagine a datasetwith characteristics of cars, and
wewant to learn the safety of the cars (e.g., low,medium, high). A feature like license
plate will be not important for the learning algorithm. On the other hand, we can build
new features from existing ones to improve the learning algorithm performance, e.g.,
based on the weight of the car and its horsepower, a new feature power-to-weight
ratio can be created. The feature creation is very useful, for example, when we want
to build a polynomial model for linear regression (as we saw in Sect. 3.2.1.1).

Future selection is a largely used tool in preprocessing dataset to improve a learn-
ing algorithm’s performance, and there are many approaches to accomplish it. Most
of them identify the relevance of a feature in relationship to the others. Based on the
relevance, a subset of features can be extracted from the original dataset [33].

The preprocessing step plays an essential role to build good machine learning
systems. There is no good rule of thumb to guide during this step. However, the
best thing to do is to test several approaches by assessing the results. Another issue
to consider is that an approach may fit very well in one dataset but may have poor
performance in another one.

3.7.2 Bias, Variance, Under, and Overfitting

During the learning step, the model may suffer from some learning problems. The
most two common ones are under and overfitting. They are intimately related to the
bias and the variance of the model. Bias and variance are used to identify some issues
in assessing the ability of a learning method to generalize.

7For the sake of simplicity, we consider an invalid value (e.g., mixed characters and numerical
values) for a feature as missing data too.
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Roughly speaking, variancemeans howmuch structure from the dataset themodel
has learned, while bias means howmuch structure from the dataset the model has not
learned. That is, bias is a learner tendency to learn the same wrong thing consistently,
and variance is the tendency to learn random things regardless the dataset [8]. Intu-
itively, a biased model has a poor performance in the training set and in the test set
(as expected) while, a model with variance has good performance in the training set
but poor performance in the test set. When a model has high variance, it means that
the model has caught all the details of the training set (including noise and outliers),
thus cannot be generalized to unseen examples.

Bias and variance can be identified by verifying the performance of the model
in both the training and test set. Considering that a model performs better in the
training set, the behavior in the test set must follow the performance in the test sets.
The ideal scenario would be with low bias and low variance, that is, neither does
the model make a strong assumption regarding the dataset nor does it learn useless
characteristics from the dataset.

The overfitting and underfitting problems are usually fixed using a (cross) vali-
dation dataset. Models and their parameters are trained in the training set, ranked in
the validation set, and the best model is evaluated in the test set. Another tool widely
used to combat the over/underfitting is to add a regularization term to the evalua-
tion function. For example, we can add to the gradient descent equation (Eq.3.4) a
regularization term:

Θ = Θ − α[ 1
m

m∑
i=1

(hΘ(x(i)) − y(i))x(i) + λ

m∑
j=1

Θj] (3.12)

where λ represents the strength of the regularization. Clearly, if λ is equal to 0 then
there is no regularization (or penalty).

Multi-label andmulti-target8 algorithms are classifiers that learn a vector of values
from the observed data (examples). Most traditional supervised learning algorithms
are extended to deal with multi-label or multi-target values. We do not cover these
extensions in this chapter, and details can be found in [17].

3.8 Conclusions

In this chapter, we presented a comprehensive overviewof various aspects ofmachine
learning. The subjects introduced are widely discussed in the literature; however, this
chapter intends to be a starting point for those who are interested in applyingmachine
learning techniques to the real-world problems.

8Also known as multivariate or multi-output regression.
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Even though, we find many researches on machine learning, it still remains a
young field with many under-explored research opportunities. In addition, it has a
lot of folk wisdom that can be hard to come by, but helps its development [8, 20].

Besides,machine learning plays an important role for data science. The knowledge
brought by machine learning in building models for prediction makes it an essential
tool for those wanting to extract information and knowledge from data.
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Chapter 4
Information Fusion

H. Joe Steinhauer and Alexander Karlsson

Abstract The study of information fusion comprises methods and techniques to
automatically or semi-automatically combine information stemming from homoge-
neous or heterogeneous sources into a representation that supports a human user’s
situation awareness for the purposes of decision making. Information fusion is not
an end in itself but studies, adapts, applies and combines methods, techniques and
algorithms provided bymany other research areas, such as artificial intelligence, data
mining, machine learning and optimization, in order to customize solutions for spe-
cific tasks. There are many different models for information fusion that describe the
overall process as tasks building upon each other on different levels of abstraction.
Information fusion includes the analysis of information, the inference of new infor-
mation and the evaluation of uncertainty within the information. Hence, uncertainty
management plays a vital role within the information fusion process. Uncertainty
can be expressed by probability theory or, in the form of non-specificity and discord,
by, for example, evidence theory.

4.1 Introduction

A typical task for a data scientist is to make new discoveries form data. This data can
stem from one or several sources; it can be homogeneous or heterogeneous, represent
a snapshot of a situation, a time series, etc. The data might include inconsistencies
or might be uncertain, e.g. is probabilistic or fuzzy. The study of information fusion
comprises methods and techniques to automatically or semi-automatically combine
information stemming from homogeneous or heterogeneous sources into a repre-
sentation that supports a human user’s understanding of the observed situation. The
general idea behind this is that better informed decisions can be made on the basis
of more and better information. Hence, information fusion includes the analysis
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of information, the inference of new information and the evaluation of uncertainty
within the information. Information fusion is not an end in itself but studies, adapts,
applies and combines methods, techniques and algorithms provided by many other
research areas, such as artificial intelligence, data mining, machine learning and
optimization, in order to customize solutions for specific tasks. It has many different
application areas, such as computer vision, forensics, biometrics, robotics, network
security, diagnosis, surveillance, smart cities, autonomous vehicles and networked
mobile devices.

An example of information fusion occurring in nature is a human keeping its
balance while walking. Here, the sensory input from vision (sight), proprioception
(touch) and the vestibular system (motion, equilibrium, spatial orientation) are inte-
grated together with previously learned information (e.g. that icy roads are slippery)
before the brain will send the information to the various body parts about how to
make adjustments of the body’s position [1].

In comparison, an autonomous vehicle needs to integrate information from the
camera with that it follows the lanes on the street, the GPS system with that it
tracks its overall position, a thermometer that measures the temperature of the road,
several proximity sensors giving information how close by the nearest objects are,
the speedometer and several more devices in order to be able to drive safely through
urban territory.

A system that applies information fusion might do this on many different levels of
abstraction and for many different tasks. Consequently, the purposes of information
fusion are depended on the respective tasks, but they can often be identified to be
one of the following:

1. To increase the dimensionality of available information by inferring new infor-
mation when previously obtained information is brought together.

2. To increase accuracy in information by utilizing numerous information sources.

3. To decrease uncertainty in order to provide better grounds for decision making.

4. To decrease dimensionality of relevant data in order to provide a, for a human
user, cognitively easy to comprehend abstraction of a situation. This effort is
closely related to visual data analysis that is described in [4] (a chapter this
book).

This chapter presents a short introduction to the area of information fusion. As the
area is complex and comprises many different aspects we cannot provide a complete
overview within the scope of this book but have chosen some of the major aspects of
information fusion. In Sect. 4.2 several models that illustrate the information fusion
process and its different stages are explained. As information fusion is often used
within decision support systems where one challenge is to improve a human user’s
situation understanding, the achievement of situation awareness, that is described in
Sect. 4.3, goes hand in hand with the information fusion task.Manymethods used for
information fusion originate from the area of machine learning such as, clustering
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and classification which are closer described in [10] (a chapter in this book). They
are frequently used by data scientists for data mining purposes which, in turn can aid
the information fusion process and vice versa, as described in Sec. 4.4. A typical task
in information fusion is to fuse information stemming from different sources in order
to describe or predict the state of a situation or object. The information form each
source can hence be regarded as evidence towards a certain state. How evidence can
be expressed and combined is therefore described in Sect. 4.5. Information might be
uncertain, hence, to be able to express, handle and measure uncertainty is a relevant
aspect of information fusion and is discussed in Sect. 4.6.

4.2 Models for Information Fusion

The Joint Directory of Laboratories (JDL) (e.g. [13]) has developed a model for
information fusion, shown in Fig. 4.1, that is often used to illustrate the different
tasks within the information fusion system. Themodel divides the information fusion
process into five different types of tasks, each taking place at an assigned abstract
level within the process. These levels are:

Level 0: Signal assessment: Raw data stemming from sensors is preprocessed at
the sub-object level, e.g. at pixel or signal level. Signal processing, bias corrections
and unit conversion are situated at this level.

Level 1: Object assessment: Data is combined to identify objects and their features,
e.g. their location, track, identity, and type.

Level 2:Situationassessment:Relationships between identifiedobjects are inferred.

Level 3: Impact assessment: Based on the identified situation on Level 2, it is
predicted how the situation might develop in the future.

Level 4: Process refinement: Resource management for the ongoing information
fusion process itself, including what sources are to be used and how they are to be
configured.

As information fusion processes are often used to empower human decision mak-
ers to make better informed decisions, a fifth level, explicitly dealing with user
interaction, was proposed by [14].

Level 5: User refinement: Improves user interaction, e.g. by considering specific
user needs and adapting to individual users.

Often, a distinction is made between low level and hight level information fusion.
Low level information fusion (LLIF) subsumes the tasks situated at level 0 and
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Fig. 4.1 The JDL model of information fusion (adapted from Steinberg et al. [28])

level 1 in the JDL model. This includes dealing with numerical data and concerns
source processing, identification of objects, their locations and their tracks (e.g.
when observing moving vehicles). High level information fusion (HLIF), on the
other hand, subsumes the tasks situated at level 2 and level 3; hence, it deals with
symbolic information and is concerned with how the information, detected by low
level information fusion, can be interpreted and what impact they have (i.e. how they
influence the situation) [31].

The purpose of information fusion is often to provide information in a way that a
human user can gain a good awareness of the ongoing situation in the real word. The
user should be able to interact with the system not only at the end of the information
fusion process but on all levels of it during the ongoing process. This is represented
in the User Fusion Model [6] shown in Fig. 4.2. According to this model, the user
can influence the information fusion process after their own needs depending on

Fig. 4.2 The User Fusion Model model (adapted from Blasch [6])
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the circumstances in any situation present. Thereby, the users’ experience, context
knowledge and their specific requirements of information in themoment can be taken
into account.

Many other models for information fusion and the related area of situation aware-
ness, which will be addressed in the next section, can be found in the literature, e.g.
in [5, 6].

4.3 Situation Awareness

A person who needs to act timely and appropriately in a given situation needs to have
the best possible understanding of the situation, the actions possible in this situation
and their consequences. To provide the means for this awareness is, therefore, a
vital task within a semi-automated system. Human situation awareness, as described
further in [11], consists of:

1. Perceiving the relevant elements and their attributes in the environment.

2. Comprehending the situation by understanding in what way the elements and
their relationships are of importance.

3. Being able to project the situation into the relevant future and being able to
anticipate what will happen when certain actions were to be applied.

Human decision making is said to be based on the human’s mental model of a
situation, which is the human’ s internal representation of the situation. It is needless
to say, that the better thismodel represents the crucial elements of the actual situation,
the better grounds the human has for decision making. A model often used to illus-
trate the human decisionmaking process is the extended Observe-Orient-Decide-Act
(OODA) loop [7] presented in Fig. 4.3. According to this model human decision
making consists of:

Observe: During the observe phase information is taken in.

Orient: During the orient phase it is understood what the observed information
means in the context of the situation. Newly observed information is integrated with
information that has been observed during previous observe phases and with other
internally represented knowledge.

Decide: During the decide phase it is determined which of the available actions is
most appropriate in the situation.

Act: During the act phase the chosen action is executed.

Situation awareness and information fusion go hand in hand, hence, the four
phases of the OODA loop can be matched on the information fusion process, e.g. in
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Fig. 4.3 The OODA loop (adapted from Boyd [7])

the JDL model including level 5 for user refinement (or the DFIG model that can be
found in e.g. [5, 6].). Level 1 fusion can be regarded as Observe, where objects are
assessed; level 2 fusion can be seen as Orient where the situation is assessed. Level
5 fusion incorporates Decide, and finally, level 4 fusion contains Act [5].

4.4 Information Fusion Versus Data Mining

As previously mentioned, information fusion is not an end in itself, but uses methods
and techniques from several other areas, such as artificial intelligence, data mining
and machine learning, depending on what kind of information needs to be fused.
The area of data mining and information fusion show some similarities, but they
also complement each other [30]. The main difference is that data mining takes
data as input and outputs a model or a pattern that describes the data [15], whereas
information fusion combines data and/or information to estimate and/or predict the
states of entities [13].

Traditionally, data mining is an off-line process that deals with large amounts
of data using batch processing. The process is inductive and the results describe
properties of the data in form of models or patterns, e.g. in the form of rules or
clusters. Information fusion is instead traditionally, an on-line and often real time
process that usually works on relatively small sets of data using sequential processing
to achieve a deductive and momentary detection, estimation or classification of the
situation. It can be seen as a representation of a snapshot of the environment.

Information fusion and data mining complement each other in two ways: Firstly,
information fusion can be used to pre-process data before the application of data
mining techniques. It can, for example, be used to reduce the error and/or the uncer-
tainty in data, or to increase the dimensionality of the data. It can also be applied
after the data mining process to fuse different models that have been established
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Fig. 4.4 Data mining and information fusion (based on [30])

by different data mining techniques, into one model. Secondly, data mining can be
used to extract information from the data that then builds the input for the informa-
tion fusion process. The latter can take place for different levels of the information
fusion process, as predictive and descriptive models can potentially be used for data
filtering (level 0), object recognition (level 1), situation recognition (level 2), and
impact assessment (level 3). Figure4.4 illustrates how data mining and data fusion
can support each other.

4.5 Evidence

A central part of information fusion is the combination of information from different
sources in order to identify which of several possible alternatives (e.g. situations or
objects) is currently observed. The frame of discernment represents the predefined
set of alternatives to chose from. Evidence combination starts with collecting the
evidence and expressing it using a, for the task suitable, uncertainty management
method (UMM). In this chapter, probability theory and evidence theory are consid-
ered, while others, as listed above and in [29] (a chapter in this book), can be found
in the literature.
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The information stemming from each source itself can be interpreted on its own
and can be said to provide evidence to one or more of the alternatives. Consider, for
example, a traffic surveillance system that must determine if the observed object is
a pedestrian, a cyclist, or a car. A source that can roughly obtain the length of the
object, might consider it to be a cyclist or a small car. A second source, estimating the
width of the object, would suggest it is either a pedestrian or a cyclist. A third source
might also regard it to be a pedestrian or cyclist, based on the object’s position on the
road. Lastly, a fourth information source would, due to the object’s slow movement,
emphasize that it should be a pedestrian, but that it could also be a slow moving
bicycle or car.

Exactly how the observed information is translated into a probability distribution
(for probability theory) or mass distribution (for evidence theory) is dependent on
the task at hand, and is often based on the knowledge of human experts and/or
statistics. The main difference between probability theory and evidence theory is that
in probability theory the probability mass must be distributed between the singletons
within the frame of discernment whereas in evidence theory it is also possible to
assign a probability mass to sets of singletons. For example, when tossing a coin,
there are two scenarios: either it is known whether the coin is fair or not, or there is
nothing known about the coin. For both cases the frame of discernment is:

ΩX = {heads, tails}

Here, X denotes the variable in question, in this case the coin that can take the state
of either x1 = heads, or x2 = tails. The frame of discernment ΩX therefore can
also be called a state space. The most appropriate probability distribution utilizing
probability theory in both cases, when it either is known that the coin is fair, but also
when nothing about the coin’s fairness is known, would be:

p(heads) = 0.5

p(tails) = 0.5

In the first case this is intuitively correct as it is known that each alternative has a
probability of 50%. However, in the second case nothing is known about the coin’s
fairness, and hence, nothing is known about the probability distribution. In proba-
bility theory this case is handled in the way that all probability is equally divided
between all possible alternatives. On the contrary, utilizing evidence theory, it can
be distinguished between these two cases. In case it is known that the coin is fair the
mass function would be:

m({heads}) = 0.5

m({tails}) = 0.5

m({heads, tails} = 0.0
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but in the case where nothing about the coin’s fairness is known the mass function
becomes:

m({heads}) = 0.0

m({tails}) = 0.0

m({head, tails}) = 1.0

The latter expresses that, as there is nothing known about the coin’s fairness,
there is no reason to particularly believe that the coin will land heads up, therefore
m({heads}) = 0; neither is there any reason to particularly believe it will land tails
up, hence m({tails}) = 0. However, it is known that the coin will land on one side
or the other, which are the only alternatives that the frame of discernment allows for,
hencem({head, tails}) = 1. This expresses ambiguity in the formof non-specificity.
It alsomeans that it is possible in evidence theory to explicitly express “I don’t know”
by assigning all mass to the complete frame of discernment.

In the following example, regarding crime investigation, assigning evidence mass
to subsets of the frame of discernment appears to be more intuitive than to establish
a probability distribution from what is known. Let the frame of discernment denote
three potential suspects as:

ΩX = {Mary, John,Carol}

Assume that both, Mary and John, have each an individual motive for the crime.
A witness report states that a female person was seen at the crime scene. A second
witness report states that a person with dark hair was seen at the crime scene, and we
know that both Mary and John have dark hair whereas Carol is blond. These pieces
of evidence can be transformed into a mass distribution e.g. as:

m({Mary}) = 0.1

m({John}) = 0.1

m({Carol}) = 0.0

m({Mary, John}) = 0.1

m({Mary,Carol}) = 0.2

m({John,Carol}) = 0.0

m({Mary, John,Carol}) = 0.5

Note, the mass assigned to Mary in m({Mary}) only reflects the evidence that
points directly to her, so does the evidence assigned to m({John}) only reflect the
evidence directly pointing at John. The evidence that points to Mary or Carol is
only assigned tom({Mary,Carol}), as is the evidence towards Mary or John solely
represented in m({Mary, John}). It is intuitively clear that the evidence provided
is not enough to identify the villain and there is still the chance any one of them has
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committed the crime. Hence, there is still a lot that is not known, which is reflected
in the probability mass assigned to ({Mary, John,Carol}).

After the probability mass has been distributed, belief and plausibility, as defined
in [29], can be used to establish how much evidence there is against each person.
The belief, for example Bel({Mary}), states how strongly the evidence supports the
theory thatMary has committed the crime. The plausibility Pl({Mary}) denotes how
much evidence there is that does not contradict the theory that Mary has committed
the crime.

Bel({Mary}) = m({Mary}) = 0.1

Pl{(Mary}) = m({Mary}) + m({Mary,Carol}) + m({Mary, John})+
m({Mary, John,Carol}) = 0.9

The analysis of the evidence for all three suspects provides:

Bel({Mary}) = 0.1

Bel({John}) = 0.1

Bel({Carol}) = 0.0

Pl({Mary}) = 0.9

Pl({John}) = 0.7

Pl({Carol}) = 0.7

Together, belief and plausibility provide an interval of probability mass. The real
probability for each person to have committed the crime lies somewhere within this
interval but, based on the provided evidence, it cannot be determined any further.

Mary = [0.1, 0.9]
John = [0.2, 0.7]
Carol = [0.0, 0.7]

However, if probabilistic values are needed, the pignistic transformation, as
described in [29], provides a way to calculate a probability distribution based on
the mass distribution. Note, that this is only an estimation of the real probability
value that is called the pignistic probability (BetP) (e.g. [27]). In this example it
provides:

Bet P(Mary)≈0.42

Bet P(John)≈0.32

Bet P(Carol)≈0.26
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4.5.1 Evidence Combination Within Evidence Theory

Often, evidence stemming from different sources needs to be combined. In the above
example of crime investigation, this could be the case when several investigators
decide to work together. Combining evidence in the form of mass functions can be
done by Dempster’s rule of combination [9]:

m1,2(A) =

∑

B∩C=A
B,C⊆ΩX

m1(B)m2(C)

1 − K
(4.1)

where K is a measure of the conflict between the two mass functions and is defined
as:

K =
∑

B∩C=∅
m1(B)m2(C) (4.2)

Dempster’s rule of combination is both, commutative and associative and builds
on the assumption that all sources of evidence (the mass functions that are to be
combined) are conditionally independent of each other. For the crime investigation
example this means that the two investigators must base their respective mass func-
tions on completely different information sources and, for example, cannot use the
same witness reports. As a demonstration of the formula consider the two mass
functions m1 and m2 that relate to:

m1({Mary}) = 0.1

m1({John}) = 0.1

m1({Carol}) = 0.0

m1({Mary, John}) = 0.1

m1({Mary,Carol}) = 0.2

m1({John,Carol}) = 0.0

m1({Mary, John,Carol}) = 0.5

m2({Mary}) = 0.2

m2({John}) = 0.1

m2({Carol}) = 0.0

m2({Mary, John}) = 0.2

m2({Mary,Carol}) = 0.1

m2({John,Carol}) = 0.0

m2({Mary, John,Carol}) = 0.4
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The conflict K between the two is: 0.06 which leads the nominator in Dempster’s
rule of combination to be 1−K = 0.94. With Dempster’s rule of combination the
combined evidence expressed in the mass function m1,2 is:

m1,2({Mary})≈0.3

m2,1({John})≈0.1

m1,2({Carol})≈0.0

m1,2({Mary, John})≈0.2

m1,2({Mary,Carol})≈0.2

m1,2({John,Carol})≈0.0

m1,2({Mary, John,Carol})≈0.2

The pignistic transformation on this results in:

Bet P(Mary)≈0.57

Bet P(John)≈0.27

Bet P(Carol)≈0.16

It can be interesting to compare this with the results from Bayesian fusion, given
in the next section. In order to do that the underlying mass and probability functions
must be comparable. This can be achieved, when the values for the probability
functions match the BetP values established from the mass functions, as is the case
in the example.

Dempster’s rule strongly emphasizes the agreement between the different sources.
However, depending on the task at hand, this might not always be the appropriate
way to combine evidence. Hence, there exist some examples in the literature where
the operator yields counter intuitive results, e.g. [33]. However, there also are ways
to handle the problematic situations as has been shown by [12]. Furthermore, several
alternative combination rules have been developed (see for example [23]) that rep-
resent and/or combine evidence in a slightly different way than originally presented
by Dempster [9] and Shafer [24] and thereby avoid the problem. In the example (e.g.
[33]), the frame of discernment consists of three possible illnesses:

ΩX = {meningitis, concussion, tumor}

Two medical experts each provide a diagnosis based on some evidence that they
collected according to their diagnosis methods. The diagnosis of expert 1 (m1)
strongly indicates that the patient has meningitis, whereas expert 2’s diagnosis (m2)
suggest that the patient most likely has a concussion.
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m1({meningitis}) = 0.99

m1({concussion}) = 0.00

m1({tumor}) = 0.01

m2({meningitis}) = 0.00

m2({concussion}) = 0.99

m2({tumor}) = 0.01

The combined result with Dempster’s rule of combination yields:

m1,2({meningitis}) = 0.0

m1,2({concussion}) = 0.0

m1,2({tumor}) = 1.0

This result appears to be counterintuitive, as common sense would indicate that
the patient has either a concussion or meningitis. However, in other scenarios, this
way of fusing evidencemight be exactly what is needed, for instance when themotto:

Once you eliminate the impossible, whatever remains, no matter how improbable, must be
the truth.

by Sir Arthur Conan Doyle is applicable as, for example, in the crime investigation
example from above. If two investigators come to the following evidence distribu-
tions:

m1({Mary}) = 0.99

m1({John}) = 0.00

m1({Carol}) = 0.01

m2({Mary}) = 0.00

m2({John}) = 0.99

m2({Carol}) = 0.01

where the assignment of 0.00 could represent that the person in question has a definite
aliby and the combined result becomes:

m1,2({Mary}) = 0.0

m1,2({John}) = 0.0

m1,2({Carol}) = 1.0

this is what is expected.
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Hence, in this application area a result like this, stemming from a so called con-
junctive combination rule that emphasizes the agreement between the sources and
eliminates the alternatives where the two sources are in conflict, is wanted. In another
application area the conflict between the two sources might need to be treated in a
different way, which can be done using a different fusion rule.

A cumulative fusion rule does not exclude any evidence in the combination and
can, for example, be useful when information from different sensors need to be
integrated, e.g. in order for a robot to keep its balance. An averaging fusion rule
is applicable when information from homogeneous sources is combined to achieve
an overall better accuracy. In the medical diagnosis example above it would be
reasonable to apply an averaging fusion rule.

4.5.2 Evidence Combination with Bayesian Theory

Bayesian theory can also be utilized to fuse evidence stemming fromdifferent sources
[2, 3, 19]. Here, the evidence is presented in the form of likelihoods (as described in
[29]). Assuming that investigator 1 has made an observation y, with a corresponding
likelihood p(y|X), and investigator 2 hasmade an observation zwith a corresponding
likelihood p(z|X), the joint likelihood of the two observations can be formulated by:

p(y, z|X) = p(z|X)p(y|X), (4.3)

which utilizes the assumption of conditional independence between y and z given
that the true state of X is known. In order to obtain a probability function as a result,
the above equation can be normalized to:

p̂(y, z|X) = p(z|X)p(y|X)
∑

x∈ΩX

p(z|x)p(y|x)
(4.4)

In terms of the previous example, the frame of discernment is defined as:

ΩX = {Mary, John,Carol}

Assuming that the two investigators have made the following observations and con-
structed normalized likelihoods according to:

p(y|Mary) = 0.5

p(y|John) = 0.3

p(y|Carol) = 0.2
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p(z|Mary) = 0.4

p(z|John) = 0.3

p(z|Carol) = 0.3

Taken together these observations intuitively constitute that most evidence is
pointing towards Mary since the likelihoods for her are the highest in both observa-
tions. Using Eq. (4.4), the following combined result can be obtained:

p̂(y, z|Mary) ≈ 0.57

p̂(y, z|John) ≈ 0.26

p̂(y, z|Carol) ≈ 0.17

This can be seen as a reinforcement of the evidence towardsMary when compared
to the two original operand likelihoods p(y|·) and p(z|·). Hence, Bayesian fusion is
a conjunctive combination rule that reinforces the agreement of the obtained obser-
vations.

4.6 Uncertainty

Uncertainty management plays a vital role within the information fusion process
where performance is oftenmeasured in terms of accuracy, confidence and timeliness
[8]. Uncertainty arises at many different places in the process and for many different
reasons and is often distinguished into epistemic uncertainty andaleatory uncertainty.

Epistemic uncertainty describes uncertainty that originates form a lack in accu-
racy, e.g. of a measuring process. It is also called subjective uncertainty, reducible
uncertainty, state of knowledge uncertainty, ignorance, or type B uncertainty [23].
Epistemic uncertainty is often known and can be articulated, e.g. themeasured length
of an objectmight be off by±5millimeters. It could, in principle, be reduced by using
a more accurate measuring tool. Aleatory uncertainty refers to uncertainty that stems
from a randomprocess, hence it is also called randomness as in [29], stochastic uncer-
tainty, type A uncertainty, irreducible uncertainty, variability or objective uncertainty
[23]. Rolling a die is one example. Aleatory uncertainty can not be eliminated.

Depending on both, the type of uncertainty and the task to fulfill, uncertainty
is often interpreted differently, and the distinction of different types of uncertainty
makes it convenient for humans to quickly describe where the uncertainty originated
from [32]. However, from a mathematical perspective, all uncertainty stems from a
lack of knowledge and can therefore, mathematically, be treated the same [32].

Nevertheless, depending on the application tasks, different ways in that the uncer-
tainty is represented and handled are necessary [26]. Hence, it needs to be carefully
chosen which of the uncertainty management methods will be used to model, com-
bine, and reason with uncertainty. Some of the most popular methods are proba-
bility theory (Bayesian theory), fuzzy sets, evidence theory (belief functions), non-
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Fig. 4.5 Types of
uncertainty (adapted from
Klir and Yuan [22])

Uncertainty

Fuzziness Ambiguity

Discord Non-specificity

monotonic logic, and possibility theory. The foundations of Bayesian theory, fuzzy
set theory and evidence theory are described in another chapter in this book ([29])
and evidence combination within evidence theory and Bayesian theory are described
in the previous section. An overview of which type of uncertainty is supported by
which type of theory can be found in [26].

There are several taxonomies of uncertainty to be found in the literature and a
review of many of them is presented in [18]. In this chapter the taxonomy by Klir
and Yuan [22] shown in Fig. 4.5 is adopted. Here, uncertainty is subdivided into two
main types: fuzziness and ambiguity. Uncertainty is referred to as fuzziness when
sharp distinctions between different alternatives are lacking. For example, the dis-
tinction between a chair and an armchair could be regarded as being fuzzy.Ambiguity
describes the situation when there are more than one alternatives, but it is unclear
which of the alternatives is the truth. Ambiguity can further be divided into non-
specificity and discord [22]. Non-specificity describes a set of known alternatives,
e.g. the outcome of the rolling of the die, but it cannot, beforehand, be said which of
those alternatives it will be. Discord, also known as conflict or entropy, on the other
hand, describes the case where the uncertainty stems from conflicting information.

The task of handling uncertainty is twofold. Firstly, despite the incoming infor-
mation being uncertain, the best and as correct as possible assessment of the situation
at hand is what the process should arrive at. Secondly, it is of interest how certain
or uncertain this assessment is. In order to assure that the fused result of incoming
information is as good as possible, it also might be of interest to know how uncertain
the incoming pieces of information are before they are fused. That way, it would
be possible to disregard incoming information and exclude them from the fusion
process if they are considered to be too uncertain.

Uncertainty is usually expressed by an uncertainty function such as the probability
measure p in probability theory, the mass function m, the believe function Bel or
the plausibility function Pl in evidence theory, which have all been defined in [29].
In order to measure uncertainty, a so called uncertainty measure that assigns a non-
negative real number to the uncertainty function can be used [21].

The uncertaintywithin the probability function p can bemeasured by the Shannon
entropy [25]:

H(p(X)) = −
∑

x∈ΩX

p(x) log2(p(x)) (4.5)
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The function H reaches a maximum of uncertainty at the uniform probability
distribution and a minimum of uncertainty when all probability mass resides on a
single state.

Within evidence theory, the uncertainty of the mass function m can, for example,
be measured by the Aggregate Uncertainty (AU ). As it is possible in evidence theory
to measure discord and non-specificity separately, the name Aggregated Uncertainty
reflects that AU measures both taken together; hence, it is also called a measure for
the total uncertainty (TU ). There are several measures for total uncertainty available
in the literature, e.g. [17, 20, 21], but AU is the only one that fulfills all requirements
proposed by [16] to be necessary for an uncertainty measure to fulfill. Formally, AU
is defined as in [16]:

AU (m) = max
p(X)∈P (X)

H(p(X)), (4.6)

where H denotes the Shannon entropy as defined by Eq. (4.5) and where:

P(X) =
{
p(X) :Bel(A) ≤ p(A) ≤ Pl(A),

∑

x∈ΩX

p(x) = 1, A ⊆ ΩX

}
,

(4.7)

is the set of all probability distributions that are consistent with Bel and Pl defined
on m.
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Chapter 5
Information Retrieval and Recommender
Systems

Alejandro Bellogín and Alan Said

Abstract This chapter provides a brief introduction to two of the most common
applications of data science methods in e-commerce: information retrieval and rec-
ommender systems. First, a brief overview of the systems is presented followed by
details on some of the most commonly applied models used for these systems and
how these systems are evaluated. The chapter ends with an overview of some of
the application areas in which information retrieval and recommender systems are
typically developed.

5.1 Introduction

Information retrieval is the process of retrieving information relevant to a query from
an information source, e.g. a book from a library based on a title, or a relevant search
result based on a query posted to aweb search engine. Recommender systems, closely
related to information retrieval systems, however work without a query. Instead, the
recommender system attempts to identify the most relevant piece of information
solely based on an implicitly expressed information need and intent—i.e., the user
profile.

In the Information Retrieval (IR) community, information retrieval often means
text retrieval by default, either intentionally or unintentionally. This might be due to
historical reasons [40] or simply because text retrieval has been themost predominant
information retrieval application. But, nonetheless, there exist many other forms of
information retrieval applications. A typical example is collaborative filtering, which
aims at finding information items a target user is likely to like by taking into account
other users’ preferences or tastes. Unlike text retrieval, collaborative filtering (CF)
does not necessarily need textual descriptions of information items and user needs.
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It makes personalized recommendations by aggregating the opinions and preferences
of previous users. Originally, the idea of collaborative filtering was derived from
heuristics and coined by Goldberg and colleagues when developing an automatic
filtering system for electronic mail [17]. Due to the uniqueness of the problem, it has
beenmodeled and studied differently since then, mainly drawing from the preference
prediction and machine learning view point [6].

In this chapter, we introduce the main concepts and models from Information
Retrieval and Recommender Systems, paying special attention to one problemwhere
there are several connections between these two areas: evaluation. We also present
some of the most important applications for each community.

5.2 Models

5.2.1 Information Retrieval Models

Text retrieval techniques have been widely used in many different areas such as web
retrieval [2], image and video retrieval [41], or content-based recommendation [42].
Among many techniques, one of the most commonly used are the term weighting
functions, from which several extensions and probabilistic adaptations have been
proposed throughout the years; the most representative methods are reviewed in the
next sections.

5.2.1.1 Classical Retrieval Models: Boolean, TFIDF, Vector Models

The Boolean retrieval model was used in the first search engines and is still in use
today [13]. Documents are retrieved if they exactly match the query terms, however,
this does not generate a ranking, since this model assumes that all documents in the
retrieved set are equivalent in terms of relevance. Nonetheless, this simple model
has some advantages: it is very predictable and easy to explain to users; from an
implementation point of view, it is also very efficient because documents can be
directly removed from the retrieved set if they do not include any query features.

The major drawback of this approach, however, is the lack of a proper ranking
algorithm. Because of this, the vector space model (VSM) was proposed [38], where
documents and queries are assumed to be part of the term space. In such space, term
weighting functions and similarities between documents can be defined. Usually,
the terms are weighted according to their frequency in the document (TF, or term
frequency) or normalizedwith respect to the number of documentswhere they appear
(IDF, or inverse document frequency). Cosine similarity is typically used to compute
the similarity between the document and query vectors, generated based on a specific
term weighting function. This is used because, even though there is no explicit
definition of relevance in the VSM, there is an implicit assumption that relevant



5 Information Retrieval and Recommender Systems 81

documents are located closer in the termspace to thequery—i.e., the distancebetween
their corresponding vectors should be small.

5.2.1.2 Probabilistic Models: Probabilistic Model, BM25, Language
Models

Probabilistic models, in contrast with the previously described retrieval models, pro-
vide some levels of theoretical guarantees that the models will perform well, as long
as the model assumptions are consistent with the observed data. The Probability
Ranking Principle or PRP [35] states that ranking the documents by probability of
relevancewillmaximize the precision at any given rank—assuming that the relevance
of a document to a query is independent of other documents. Since the PRP does
not tell us how to calculate or estimate such probability of relevance, each different
probabilistic model proposes a different method for that which, at the end, could
produce better or worse documents for a given query.

One of the first methods to calculate the probability of relevance using document
termswas proposed in [36].Other approaches estimate text statistics in the documents
and queries and then build up the term weighting function through them [3]. The
BM25 ranking algorithm extends the scoring function to include document and query
term weights [34]:

∑

ti∈Q
log

(ri + 0.5)/(R − ri + 0.5)

(ni − ri + 0.5)/(N − ni − R + ri + 0.5)
· (k1 + 1) fi

K + fi
· (k2 + 1)q fi

k2 + q fi
(5.1)

where fi is the frequency of term ti in the document, q fi is the frequency of the
term ti in the query, ni (ri ) is the number of (relevant) documents that contain term
ti , N (R) is the number of (relevant) documents in the collection, and k1, k2, K
are free parameters. While this extension is based on probabilistic arguments and
experimental validation, it is not a formal model. Nonetheless, it performs very well
in many different tasks.

More sophisticated approaches like the Relevance-Based Language Models (or
RelevanceModels for short, RM) are among the best-performing ranking techniques
in text retrieval [22]. They were devised with the aim of explicitly introducing the
concept of relevance, intrinsic to the probabilistic model, in statistical Language
Models (LM) [30]. In common IR settings, the exact and complete set of relevant
documents is generally unknown; relevance feedback techniques work with approx-
imations to this set, which can be obtained by a wide variety of approaches, such
as asking the user (explicit relevance feedback), or just taking the initial output of
a well-performing IR system as a good guess (pseudo relevance feedback). Given a
query and such an approximation to the set of relevant documents, RM selects good
expansion terms from those present in the pseudo-relevant documents in order to
formulate and run a better query.
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5.2.1.3 Models for the Web: PageRank and Learning to Rank

Ranking documents in theWeb is substantially different from ranking a static collec-
tion, since other aspects besides the relevance to a query should be considered: spam
should be avoided, pages with higher quality should be presented before (authori-
ties), new content is created every day (hence, the models should be efficient so they
are executed fast and able to manage huge amounts of data), and so on [5].

One of the most important signals available in the Web is the links between Web
pages. The link structure of the Web allows to classify the pages into authorities,
hubs, sinks, and normal pages by simply checking whether they are linked by many
pages (authority), link to important pages (hubs), do not have further links (sinks),
and the rest. PageRank and HITS algorithms exploit these ideas and compute a score
for every page in the Web graph, by simulating a random surfer that navigates the
Web [7, 20].

Another important signal that is typically exploited by search engines is the infor-
mation about which documents are being clicked for each query. Once enough infor-
mation is collected (click logs), standard machine learning algorithms can be used to
learn a ranking based on some training data. The loss function to minimize is either
the number of mistakes done by the algorithm or the (negative) average precision,
see [12, 24] for a more comprehensive overview of these techniques.

5.2.2 Recommender System Models

Recommender Systems (RS) are ubiquitously used on the World Wide Web and are
increasingly being put to use in more application scenarios. Even though recom-
mender systems have grown to prominence in the online world, the techniques for
many of today’s systems were developed prior to the Internet breakthrough. Tradi-
tionally, recommender systems have been closely linked with information retrieval
systems as they use similarmodels to identify relevant data. However, in recent years,
with the rapid developments of recommender systems, the two fields have come to
grow more separate.

In general, recommender systems approaches are categorized as collaborative
filtering-based, content-based, or as hybrid models which blend both collaborative
and content information into one unified approach.

5.2.2.1 Collaborative Filtering Recommender Systems

Collaborative Filtering (CF) was initially developed as a means of filtering out rel-
evant news posts on Usenet [32]. The intuition behind the initial user-based CF
algorithm is that people with similar preferences to each other have not all seen the
same items. Thus, by looking at the items that users similar to oneself have seen, we
can find items which should be of interest to us.
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The traditional user-based collaborative filteringmethod uses the k-nearest neigh-
bor algorithm in order to find themost suitable recommendations by predicting rating
scores that will be given to items by users, i.e.

r̃ui ∝
∑

v∈Nk (u)

sim(u, v)r(v, i) (5.2)

where rui refers to the predicted rating that user u will assign to item i , Nk(u) is
the set of the k most similar users (nearest neighbors) to user u, and sim(u, v) the
similarity between user u and neighbor v. The similarity method sim(u, v) can be
chosen freely. Common methods are cosine similarity or Pearson correlation.

Cosine similarity measures the cosine angle between two users where each user
is represented by a vector of their ratings, i.e.

cos(u, v) = u · v
||u||||v|| =

|I |∑

i=1

uivi

√∑

i

ui
2
√∑

i

vi
2

(5.3)

where u and v are the two user respectively, and ui and vi the ratings to item i . Sim-
ilarly, the Pearson correlation measures the linear correlation between two vectors,
where each vector represents the ratings of a user, i.e.

P(u, v) =

∑

i∈Iuv
(rui − r̄u) (rvi − r̄v)

√∑

i∈Iuv
(rui − r̄u)

2
√∑

i∈Iuv
(rvi − r̄v)

2
(5.4)

where u and v are two, Iuv the intersection of user u’s and v’s rated items, and rui
and rvi the rating given to item i by user u and user v respectively.

Analog to user-based collaborative filtering, item-based collaborative filtering
instead looks at similarities between items. Instead of identifying similarities between
users, this method attempts to find the most similar items to those the candidate user
has already rated (or otherwise interacted with).

User-based and item-based collaborative filtering belong to the memory-based
family of recommendation approaches. As the name implies, memory-based
approaches keep the entire database of user-item interactions in memory in order
to find the most appropriate recommendations. Model-based recommendation
approaches instead create a recommendation model from the available data, when
providing recommendations to users, recommendations can be accessed from the pre-
computedmodel. There is a wide variety of memory-based recommendationmodels,
some of themost commonly ones fall into the category known asmatrix factorization,
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e.g. Bayesian Personalized Ranking [31], SVD++ [21]. Somewhat related, proba-
bilistic topic modeling approaches like Latent Dirichlet Annotation [4] also fall in
the model-based category.

5.2.2.2 Content-Based Recommender Systems

Content-based recommender systems (CB) analyze the items the user liked in the
past and recommend items having similar features. The main process of making
recommendations using a content-based approach consists in matching users pref-
erences and interests obtained in the users’ record, with the attributes of the items
[25]. Since CB systems recommend items analyzing the user profile, they aim to
maximize the similarity between the user profile and the content of the item, that
is, sim(User Prof ile(u),Content (i)), where Content (i) will be the item profile
(attributes that characterize item i).

As CB recommenders tend to use articles represented by text, the content is
normally represented by keywords using simple retrieval models such as the ones
presented before, the most representative example being the Vector Space Model,
where cosine similarity with weights computed using either TF or TFIDF are the
most popular techniques.

Nonetheless, there are other techniques for CB recommendation. One of the most
important techniques is Bayesian classifiers. These approaches estimate the posterior
probability P(c | d) of a document belonging to a specific class c based on the prior
probability of the class P(c), the probability of observing the document in class c
(i.e., P(d | c)) and the probability of observing the document d denoted as P(d) [16].
The estimation of P(d | c) is complicated, thus it is common to use the naïve Bayes
classifier, as shown in [27] for book recommendation and in [28] for classifying
unrated web pages. With the naïve Bayes classifier, the document is replaced by
a vector of keywords over the system vocabulary. Each component of the vector
indicates whether that keyword appeared in the document or not. If we work with
binary values, we are using a multivariate Bernoulli approach and if we count how
many times the word appeared in the document, we are making use of multinomial
naïve Bayes [16].

5.2.2.3 Hybrid Recommender Systems

Hybrid recommendation takes advantage of the techniques from two or more rec-
ommender systems to achieve a higher performance while limiting the potential
drawbacks that each system may obtain separately. Although there are hybrids that
combine implementations of recommendations of the same type (for example, two
content-based techniques), the most interesting ones are those that are able to work
with different recommenders. There are different strategies for hybrid recommenda-
tion which [9] summarized in the seven methods shown in Table5.1.
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Table 5.1 Hybrid recommendation methods from [9]

Hybrid technique Description

Weighted Each recommender obtains a score for each candidate item and
these scores are combined using a linear formula

Switching It switches between recommenders depending on the situation

Mixed Each recommender makes its own recommendations and the
final output is a combination of them

Feature combination Features derived from various sources are combined and sent to
the recommendation scheme

Feature augmentation Similar to feature combination but instead of deriving, the
recommenders augment (compute) new features and send them
to the final recommendation scheme

Cascade They normally use a weak and a strong recommender. The weak
recommender is only used when breaking ties in the ranking

Meta-level A recommender produces a model, which is the input for the
second recommender. Similar to feature augmentation but the
second recommender does not work with raw data, only with
the model provided by the first recommender

5.3 Evaluation

The evaluation of IR and RS is seemingly similar, but has stark conceptual differ-
ences. IR evaluation measures howwell a system is able to retrieve relevant results to
a certain query, whereas evaluation of RS looks into how relevant each recommended
item is to the user it gets recommended to. Evaluation of recommender systems has,
to a large extent, been based on information retrieval concepts such as precision,
recall, F-measure, etc. These measures represent some form of quality of the system,
e.g. the higher the precision and/or recall value is, the more accurate the system is.
However, even though information retrieval systems and recommender systems are
similar both in their use and implementation, there is a distinct contextual difference;
whereas retrieving a known (but sought for) item is positive, recommending a known
item has far lower utility [19].

There exist a few key concepts in evaluation of both information retrieval and
recommender systems that are as relevant to both. One of these, and very likely the
most important aspect of both information retrieval and recommendation results, is
the relevance of the information presented to the end user. Any piece of information
retrieved or recommended to the user should exhibit a certain relevance to the users
information need. In general, evaluation of both type of systems focuses onmeasuring
the relevance (through some metric) of the items presented to the user.

In order to measure the relevance of items, we need to know the ground truth, i.e.
we need to knowwhich items are relevant to which users. It is using this ground truth
that we can gauge howwell a recommender or retrieval system performs. The ground
truth is specified by a dataset, for recommendation purposes, this often consists of
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historical interactions between items and users, for information retrieval it is often
found in a document collection which consists of e.g. a set of documents, search
queries used on the set of documents, and relevance assessments which tell how
relevant a document is to each query.

5.3.1 Metrics

Recommendation qualities are commonly expressed through a number of metrics
and methods. The choice of these is often based on the type of dataset used in the
system, the use case, expected outcome, etc. Arguably the most common metrics in
both recommender systems and information retrieval is the precision (P) and recall
(R) pair [19]. These metrics are usually applied in offline training/test scenarios,
where algorithms are trained using a portion of the available data and then evalu-
ated by comparing predictions to a withheld portion of the data, i.e. true positive
recommendation.

Precision is the fraction of relevant retrieved documents. In a recommender system
evaluation setting it corresponds to the true positive fraction of recommended items.
Recall is the fraction of all relevant items which are retrieved. The formula for
calculating precision is shown in Eq.5.5 while recall is shown in Eq.5.6. In both
equations, relevant refers to the complete set of relevant items, and retrieved refers
to the complete set of retrieved items.

P = |{relevant} ∩ {retrieved}|
|{retrieved}| (5.5)

R = |{relevant} ∩ {retrieved}|
|{relevant}| (5.6)

Commonly, precision is expressed as precision at k where k is the length of
the list of recommended items, e.g. P@1 = 1 would indicate that one item was
recommended, and the item was deemed to be a true positive recommendation,
P@2 = 0.5 would indicate that two items were recommended and one them was
deemed a true positive, etc.

Variants of precision used for recommender evaluation include Average Precision
(AP) and Mean Average Precision (MAP). Both these metrics are used when more
than one item is recommended. They extend the precision metric by taking into
consideration the position of true positive recommendations in a list of recommended
items, i.e. the position k in a list of n recommended items in Eq.5.7. rel(k; q) is a
binary classifier taking the value 1 if the item at position k is relevant for query q and
0 otherwise. Mean Average Precision additionally averages the scores at each query
(or user, in recommendation), as shown in Eq.5.8.
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AP(q) =
∑n

k=1 (P@k(q) × rel(k; q))
|{relevant}| (5.7)

MAP =
∑Q

q=1 AP(q)

Q
(5.8)

Other common metrics, used in the context of rating prediction, are the Root-
Mean-Square Error (RMSE) and normalized Discounted Cumulative Gain (nDCG).
In contrast to precision-based metrics, RMSE attempts to estimate the recommenda-
tion algorithm’s rating prediction error, e.g. by comparing predicted ratings to actual
ratings. The lower the error, the better the algorithm performs. RMSE is calculated
as shown in Eq.5.9, where X,Y are two rating vectors (e.g. predicted item ratings
vs. actual item ratings), where each position in the vector corresponds to the rating
of a specific movie and n the size of the intersection of nonzero elements in both
vectors.

RMSE(X,Y ) =
√∑n

i=1 (xi − yi )
2

n
(5.9)

nDCG and DCG on the other hand measures the usefulness (relevance) of a
document based on its position in the list of recommended items. In a rating scenario,
this corresponds to how high the predicted ratings of the top-k items are, the formula
is shown in Eq.5.10 where the gain (the predicted rating) of each item i for each user
u in a list of J items is represented by gui j . nDCG is the DCG over the true DCG,
i.e. ideal DCG (IDCG)—the actual ratings, as shown in Eq.5.11.

DCG = 1

N

N∑

u=1

J∑

j=1

gui j
max(1, log2 j)

(5.10)

nDCG = DCG

I DCG
(5.11)

5.3.2 Collections

As briefly noted in the beginning of this section, document and data collections are
a necessity in order to be able to evaluate information retrieval and recommender
systems. Even though there are similarities between the collections used for infor-
mation retrieval and for recommender systems, there are clear differences. Below,
we present document collections and historical interaction datasets used for search
and recommendation respectively.
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5.3.2.1 Document Collections

To ensure fair experimental comparisons and repeatable experimental settings, the
data used in such experiments should be fixed. In information retrieval, test collec-
tions are assembled consisting of documents, queries, and relevance judgements (for
some query-document pairs). Differently to other areas such asMachine Learning, in
IR, the queries and the relevance judgments are gathered specifically for a particular
search task, at the same time as the documents [13].

In this context, creating relevance judgments require a considerable investment
of manual effort. When collections were very small, most of the collections could be
evaluated for relevance, hence, the relevance judgments for eachquerywere relatively
exhaustive. In larger collections, a technique called pooling is used, where the top k
results from different rankings are merged into a pool, duplicates are removed, and
these documents are then presented to the assessors or judges to produce the relevance
judgments. This technique is based on two assumptions: most of the documents in
the pool are relevant (because they were retrieved high in the ranking by different
methods) and those documents not in the pool can be considered not relevant. Both
assumptions have been verified to be accurate for some specific IR tasks [5], however,
whenever a new retrieval algorithm (that did not contribute to the pool) is evaluated
in this way, the effectiveness of this method could be underestimated if it mostly
retrieves documents not in the original pool.

Following this evaluation paradigm, information retrieval researchers have built
many test collections, ranging from thousands to millions of documents. The Text
Retrieval Conferences (TREC) have been the main events around which IR exper-
iments have been designed, usually involving the creation of queries and relevance
judgments under a specific track or task (ad hoc, filtering, high precision, diversity,
etc.). Other important document collections have been generated in the context of
INEX (Initiative for the Evaluation ofXMLRetrieval), theNTCIRproject, andCLEF
(Workshop on Cross-Language IR and Evaluation), oriented respectively to XML
retrieval, Japanese and cross-lingual retrieval, and different multilingual tasks.

5.3.2.2 Interaction Datasets

When evaluating recommender systems, traditionally, the underlying data that is
used contains user-item interactions or relations, these relations can be e.g. a rating
given to an item by a user, a record of a user purchasing a product, a record of a
user clicking on an item in a list of recommended items, the number of times a user
has played a specific song, or how many minutes of a video a specific user played,
etc. This type of data is commonly referred to as a user-item matrix U where the
rows and columns correspond to users and items respectively. Each cell in the matrix
holds the interaction information between the user and the item, i.e. in a movie
recommendation scenario each cell will contain either the rating the user has given
to the movie or be empty if the user has not rated the movie, in an e-commerce
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Table 5.2 A basic example
of a user-item matrix where
each cell in the matrix
corresponds to the rating
given by the users to items

u1 u2 u3 u4 u5

i1 1 3 5

i2 1 3 5

i3 2 2 4

i4 3 4 1

i5 4 1 5

i6 3 5

interaction matrix each cell will contain e.g. whether or not the user has purchased
the item.

Table5.2 shows an example of a user-item matrix where each cell contains either
a rating given to an item by a user, or is empty in the cases where the user has no
interaction history with the item—these cases represent the target user-item pairs to
be predicted by our recommender system. Note an important difference with respect
to how the document collections are built as described before: whereas the relevance
of a document with respect to a query can be assessed by any judge (since relevance
is usually assumed to be an inherent property of the document, and, hence, it is to
some extent universal), in recommendation this assessment is personal, and cannot
be inferred by a different user. This leads to a much sparse scenario, where typical
values for the density of this matrix (ratio between the number of known cells with
respect to the total number of cells) is below 6% [18].

5.4 Applications

Information retrieval and recommender systems have many application domains and
are frequently becoming increasingly more intertwined. Below follows an overview
of some of the traditional and common application areas of both types of systems.

5.4.1 Information Retrieval

In the Information Retrieval community, information retrieval often means text
retrieval by default, either intentionally or unintentionally. This might be due to his-
torical reasons [40] or simply because text retrieval has been the most predominant
information retrieval application. But, nonetheless, there exist many other forms of
information retrieval applications. In this section we briefly review some of the most
important or well-known applications that fall under the umbrella of Information
Retrieval [5].
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Web search is today the most important application of IR and its techniques [5].
According to [5], there are at least five issues that have impacted how IR methods,
technologies, and processes have adapted to the Web: (a) characteristics of the doc-
ument collection (large, unstructured, connected through hyperlinks, distributed, it
has to be collected or crawled), (b) size and volume of submitted queries, (c) very
large document collection thatmakes relevance predictionmuch harder (also because
there are many noisy documents), (d) new search tasks and user needs have emerged,
together with structured data in both queries and documents, (e) the increasingly per-
vasive presence of spam on the Web due to new incentives such as advertising and
electronic commerce content.

Relevance feedback is the most popular query reformulation strategy. In a rel-
evance feedback cycle, the user is presented with a list of the retrieved documents
which are later marked as relevant or not relevant. Themain idea consists of selecting
important terms from the selected documents and enhance or decrease the importance
of these terms in a new query formulation, together with expanding the query with
new terms. When using a vector space model, this technique is simply defined as a
term reweighting strategy, where different formulations exist to calculate the mod-
ified query depending on assumptions on the user behavior regarding the feedback
cycle [5, 37].

Before the Web, the design of search tools was targeted to help people write
good queries, implying the query language being adopted was usually complex.
However, nowadays search engines are used not only to find information but to
achieve other goals [5]. The first categorization of queries was done in [8] into
three classes: informational, navigational (finding a Web site for browsing), and
transactional (interactive tasks such as buying goods or downloading a file). This
taxonomy was later refined; moreover, now the focus is on automatically predicting
the query intent, so that different query attributes are analyzed and selected to derive
which of them may be linked to each intent. However, ambiguous queries present a
scenario where the user intent is harder to be predicted correctly, as expected. In this
context, several proposals have been studied to measure the query difficulty, closely
related to its ambiguity. More specifically, the clarity score measures how closely
related are the documents returned for a query with respect to a particular document
collection, which aims to measure the ambiguity of a query towards a collection [11].

Text classification corresponds to a broad problem—mostly addressed by
Machine Learning researchers—where a collection of documents is assigned one
(or more) class/label out of a predefined number of classes/labels. A particular, and
one of the most important, variant of this problem is the topic classification task,
where each class describes a topic referred to in the documents. There have been
proposed several algorithms to address this problem, either for the multi-label or
the single-label scenario—the latter is acknowledged to be harder, because it is also
necessary to decide which class is the best one to a given document. Regarding the
algorithms, both supervised (decision trees, nearest neighbors, naive Bayes, SVMs)
and unsupervised (clustering, direct match) techniques can be applied, although in
general supervised algorithms achieve better results, at the expense of requiring
available training data.
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Text compression allows to represent the text in fewer bits or bytes. Compression
methods create a reduced representation, that can be later used to reconstruct the
original text, by identifying and using patterns that exist in the text. These techniques
help reducing costs associated with space requirements, input/output overhead, and
communication delays, since compressed text requires less storage space, takes less
time to be transmitted over a communication link, and takes less time to search
directly the compressed text. All these advantages come at the expense of more time
needed to code and decode the text. One of the most important challenges that appear
when text compression techniques are applied in IR systems is the necessity of this
type of systems to access text randomly, since most compression methods need to
decode the entire text to find a match.

Rank fusion or rank aggregation is needed when you want to combine various
result lists from different sources into one list, with no knowledge neither of the
process followed by each source to produce those lists nor the data that has been used
or the score rank for each element. Examples where rank fusion takes place include,
for instance, metasearch, personalized retrieval (combine personalized results with
query-based results), multi-criteria retrieval, etc. [39].

Enterprise search refers to the application of information retrieval technolo-
gies to information finding within organizations; in particular, of digital documents
owned by the organization, such as their external Web site, the company intranet,
and any other electronic text (email, database records, reports, shared documents,
etc.). According to [5], a far-from-complete list of search-supported tasks that can
be found in an enterprise is the following: approving an employee travel request,
responding to calls in a call center, responding in the course of a dispute, writing a
proposal, obtaining and defending patents, selling to an existing customer, expertise
finding, and operating an E-commerce site.

Indexing is the process of creating the data structures needed to enable fast
searching. Index creation must be efficient, both in terms of time and space, where
usually a tradeoffmust bemet. Furthermore, indexesmust also be able to be efficiently
updated when new documents are found. Inverted files are the most common—and
best choice for most applications—form of index used by search engines. They
contain a list for every index term of the documents that contain such index term.
Other techniques not so popular nowadays are suffix arrays and signature files.

Web crawling allows to automatically download Web pages, by means of pro-
grams usually called web crawlers, spiders, or bots. The order in which the URLs are
traversed in theWeb (by following the hyperlinks available in the pages) is important.
In general, it is advised to do it using a breadth first strategy, since this is linked to
finding good sites (i.e., those with higher Pagerank values) sooner in the process;
however, depending on the final application and goal of the crawling, other prefer-
ences might be considered [23]. One of the main challenges on this topic is how
to process efficiently as many pages as possible while preserving resource policies
(collectively referred as crawler etiquette, e.g., comply with the Robot Exclusion
Protocol) and ethical considerations.

XML (structured) retrieval supports querying and manipulating XML data by
using languages that describe the hierarchical structure of XML data instead of
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simpler models, enough to work with relational databases and unstructured docu-
ments [13].Hence, the focus of thesemethods is on exploiting the document structure,
thanks to the definition of a complex query language, XQuery. It is worth mentioning
that the INEX1 project has allowed to study the extent to which structure is useful in
queries, by defining several tasks and building test collections for further evaluation,
in a similar way as TREC did for Web search.

Multimedia retrieval is widely recognized as one of the most promising fields
in the area of information management [5]. The most important characteristic of this
type of systems is the variety of data it must be able to support, such as text, images
(still and moving), graphs, and sound. For this reason, the corresponding data model,
query language, and access and storage mechanisms should support objects with a
very complex structure.

5.4.2 Recommender Systems

In the recommender systems community, recommendation was traditionally sepa-
rated into two distinct use-cases, top-N recommendation and rating prediction. Top-N
recommendation, as the name suggests focuses on generating a list of the N most
relevant items to recommend to a specific user, whereas rating prediction focuses on
predicting the rating a user will give to a certain item. The rating prediction task was
very extensively researched in the past, this was in part due to theNetflix Prize2 which
focused on rating prediction and took place between 2006 and 2009. Today, vari-
ous top-N aspects of recommendation are at the focus of the recommender systems
research and practitioner communities.

Movie recommendation was the primary application of RS systems previously.
In part due to theNetflixPrizementioned above, but also due to the availability of open
research datasets such as Movielens [18] and, more recently, MovieTweetings [14].
Traditionally, movie recommendation focused on rating prediction but has gradually
shifted to a top-N recommendation use case based on implicit data and models.
The shift occurred as movie recommendation become increasingly more applied in
streamed video use cases.

Music recommendation is a common application scenario for recommendation.
Similar to multimedia retrieval, a music recommender system must be able to sup-
port not only collaborative data (the user-item interactions) but also information
such as timbre, tempo, genre, etc. making the data and recommendation models
more complex. Music recommendation traditionally focuses on one of two tasks:
recommendation of a single song or artist, where the recommendation is seen as
a standalone action; and playlist recommendation where recommendations should
meet requirements posed by the playlist that is being extended and the user who is
listening.

1Initiative for the Evaluation of XML Retrieval, http://inex.mmci.uni-saarland.de.
2http://www.netflixprize.com.

http://inex.mmci.uni-saarland.de
http://www.netflixprize.com
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User recommendation has become very common with the rise of social media.
Recommending acquaintances, colleagues, potential romantic partners, and similar
applications differ from traditional recommendation of items in one very significant
respect, namely reciprocity. When recommending a social connection to a user, the
recommendation should be of value for both of the involved parties [29]. This require-
ment, although not unique for user recommendation, is a key factor of importance
in this setting.

Context-aware recommendation attempts to tailor recommendations for the
user’s current situation, or context, taking into consideration aspects such as the rel-
evance variability of certain items in certain situations. Consider, for example, an
e-commerce recommender system recommending clothing. When recommending
clothing in summer, the recommendation could take into consideration the outdoor
temperate, and similarly so in winter. Themethods for using context in recommenda-
tion are generally considered to be either based on contextual filtering or contextual
modeling [1], filtering referring to the concept of applying a filter to the list of recom-
mended items to only show the items valid in the specific context, whereas modeling
refers to when the recommendation algorithm takes the context into consideration
when identifying items to recommend.

Explanations of recommendations tell the user why a certain item is recom-
mended. Recommendation explanation can be generated in variousways, commonly,
the explanations are high-level enough to be understood by users who have no insight
into how recommendation algorithms work. A simple example could be, e.g. telling
the user that an item is recommended because “people similar to you liked this item”.
Similarity in this case could be based on any number of factors, commonly this can
refer to e.g. the collaborative similarity presented in Sect. 5.2.2 of this chapter.

Recommender systems in education is the application of recommendations in
order to enhance learning by supporting students through tailored educational mate-
rials and exercises according to their learning preferences, knowledge levels, goals,
etc. [26]. Recommendation models in this application space must adhere to learning-
oriented requirements specified by teachers and educators, e.g. learning materials,
expected attained knowledge, and course curricula among others.

Recommendations for groups specifically attempt to tailor recommendation for
a group of people at the same time, instead of the regular approachwhere personalized
recommendations are delivered to a single user. Approaches for group recommen-
dations take into consideration issues regarding the group satisfaction with a certain
recommendation, e.g. whether it is, say, better to recommend very suitable items
for the majority of the group at the cost of leaving certain group members unhappy
(maximize happiness), or whether it is better to recommend items that the whole
group will be comfortable with, albeit not specifically happy (minimize discontent)
[15].

Cross-domain recommendations capture the preferences users express about
items in one domain, e.g. movies, and use these preferences to identify relevant rec-
ommendations in a separate domain, e.g. music. Given that items, interactions, and
preferences can be expressed differently across different domains, cross-domain rec-
ommender systems attempt to leverage and transfer the knowledge in other domains
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and apply on the current one [10]. A well-known example of cross-domain recom-
mendation is e-commerce, e.g. recommendations at Amazon or eBay are often sets
of items from various domains, e.g. books, electronics, clothing, etc.

5.5 Summary

This chapter has presented a brief overview of Information Retrieval and Recom-
mender Systems, two very common, if not the most common, applications of data
science methods. While information retrieval and recommender systems share many
similarities, there are certain differences that need to be addressed when planning,
implementing, and deploying them.

Information retrieval and recommender systems are ubiquitously present on the
WorldWideWeb supporting users to find, retrieve, and suggest information. Services
ranging from search engines (Google), multimedia delivery (Netflix, Spotify), e-
commerce (eBay, Amazon), and social networks (LinkedIn, Facebook, Twitter) have
business models closely intertwined with howwell their search and recommendation
systems work. This very direct connection to commercial real-world applications
makes research and development of information retrieval and recommender systems
very tightly connected with industry.
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Chapter 6
Business Intelligence

Carl Anderson

Abstract Business intelligence is the combination of data, appropriate metrics, and
the relevant skills, tools, and processes to make sense of what is happening in a
business, and to make recommendations as to what should change or happen next.
Most organizations attempt to leverage analytics to drive decision making. However,
few of them are able to access the full value of what business intelligence has to
offer. In this chapter, we will cover the most important skills, tools, and processes
that will enable organizations to enhance their use of data and analytics. We cover
types of analytical outputs or “levels of analytics” and how they relate to business
intelligence and data science.We then detail fourmajor types of analysis: descriptive,
exploratory, inferential, and predictive. This is followed by a discussion on metric
design, data dictionaries, and key performance indicators. We end by reviewing
the role of business intelligence teams and some of the current trends in business
intelligence.

6.1 Introduction

In order to respond to changing market conditions, all businesses need to make
strategic, tactical, and operational decisions [13]. Should we increase our marketing
spend? If so, in which channels, and targeting which segments?Which type of user is
most likely to provide a referral? Which is our worst performing product, and should
we cut it from our catalog? How many new call center support staff should we hire
to support our growing demand? What should be our sales goals for next quarter?
Did we meet our goals last quarter? If not, why? To be able to do all of these in an
objective and data-driven manner requires business intelligence.

Business intelligence’s (hereafter, BI) primay goal is to produce actionable intelli-
gence. As such, that will tend to focus on aspects of the business that they can directly
control—such as price, discounts, hiring/firing, inventory, product offerings, replen-
ishment, and financial, marketing, and sales strategy—although it can also relate to
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assessing impact or risk of externalities—such as interest rates, competition, and
weather.

Such intelligence requires the right combination of quality, relevant, and timely
data (i.e., the raw ingredients for information and insight), the appropriate metrics
(so as to track change), as well as the analytical skills, tools, and processes so that
the business can not only make sense as to what is happening but adopt, rather than
ignore, the recommended changes and actions.

Typically, BI attempts to answer questions such as:

• Descriptive analytics: What happened?
• Diagnostic analytics: Why did it happen?
• Predictive analytics: What will happen, if we do nothing and trends continue?
• Prescriptive analytics: What should we do? What will happen, if we do X?

For instance, imagine a large supermarket where a big snow storm is predicted to
hit in 5days, which is sufficient advance warning such that they could modify their
restocking deliveries. Should they change their orders and if so, how? BI allows them
to analyze their historical data and determine that in the last three big snowstorms,
customers tended to stock up on milk, bread, batteries, flashlights and lanterns, and
snow shovels. However, in those storms, milk and bread sold out early and thus
the store did not capture all the demand, i.e. lost sales, and it also lead to unhappy
customers who complained on social media, which is bad for the brand. Thus, maybe
they should order more units this time.

Referring back to our five questions, using the milk example:

What happened? Sold out of milk 12h earlier than anticipated; Customers
complained on social media

Why did it happen? We did not meet customer demand
What will happen, if we
do nothing and trends con-
tinue?

We will run out again and not maximize sales; We will see
same pattern of customers complaining on social media

What should we do? Increase regular milk order by 235%
What will happen, if we
increase the milk order by
235%?

We predict that we will sell out just as storm hits, maximiz-
ing sales, minimizing spoilage (by not over-ordering), and
minimizing complaints

In this case, it is clear how BI directly impacts the business, affecting top-line rev-
enue (by capturing additional sales), bottom-line margins (by minimizing spoilage),
and reducing risk to the brand (by minimizing complaints).

To answer those types of questions and provide those types of insights requires
extracting information from the data. To achieve that, BI tends to determine and
examine features such as:
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Fig. 6.1 A schematic of Davis’s [7] “levels of analytics” and their relationship to business intelli-
gence and data science. In general, BI is more associated with the lower descriptive and diagnostic
levels while data science has greater association with the higher, more predictive and prescriptive
levels. In this figure, Davis’s two levels “forecasting” and “predictive modeling” are combined into
a single level

• Point estimates: what were sales last month? What is the average session time on
our website?

• Comparisons among subsets of data: how do sales patterns differ between this
month and last? How does annual spends differ between men and women?

• Association and correlation: howdoes conversion percentage varywith user age?
• Distribution: what is the 95th percentile of shipping time? What is the median
call waiting time?

• Trends and forecasts: how seasonal is our business? What is the overall trend in
sales, controlling for seasonality? What are our predicted sales for Q3?

These facts, relationships, insights, and predictions feed into a number of outputs
such as dashboards, reports, and analyses.

6.2 Levels of Analytics

To achieve the kind of intelligence illustrated above requires a set of different types
of activities, coined “levels of analytics” by Davis [7], that try to address various
types of questions (Fig. 6.1).



100 C. Anderson

These levels are:

• Standard reports: a relatively fixed set of questions, metrics, and views (typically
in tables, charts, and dashboards) that the business wants to see on a regular basis
such as monthly financial reports or quarterly sales performance reports. These
tend to report what happened and when.

• Ad hoc reports: “one-off” reports that answer individual questions that arise
during the course of business. They are typically descriptive reports, requested by
business users, that address questions such as how many, how often, or where?

• Query drill down (or online analytical processing, OLAP):more analytical activi-
ties diving down into underlying causes for a phenomenon.Why did we see a spike
in sales last week?What is driving the increase in ship time to our customers? This
is where individual analysts may spend a lot of their time.

• Alerts: proactive communications that alert the business of some change in key
metrics allowing them tomake some operational change. For instance, alerts might
trigger if a metric exceeds some threshold, such as if average call waiting time at
a call center exceeds 10min or if inventory for product X has dropped below Y
units. This is the basis of “management by exception,” a best practice that brings
issues to the attention of business users when they deviate from some expectation
or norm.

• Statistical analysis: objective but probabilistic analysis that attempts to quantify
signal versus noise. Is this really a trend or just random variation? How much of
this pattern is driven by seasonality? This would be tackled by analysts and data
scientists, such as for analyzing results of A/B tests (discussed in Sect. 6.3.5 in this
chapter).

• Forecasting and predictive modeling: models that analyze historical data to
predict what is likely to happen.What if these trends continue and howwill it affect
my business? Howmuch is needed?Whenwill it be needed? For instance, retailers
can predict demand for products from store to store and casinos may predict which
VIP customers will be more interested in particular vacation packages. This would
be tackled by analysts and data scientists in a variety of departments, such as supply
chain, marketing, or sales.

• Optimization: more complex models that attempt to maximize some objective,
such as sales, retention, or time. How do we do things better? What is the best
decision given that this is a multidimensional problem? For instance, what is the
best way to optimize IT infrastructure given multiple, conflicting business and
resource constraints? This would typically be the domain of data scientists or
other specializations such operations research.

These levels range from reporting which is backwards-looking (what happened?),
alerts (what is currently happening?), analysis (why is this happening?; what should
we do?) to more forward-looking predictions and optimizations (what will happen
if we do X?; what is our optimal strategy?). See Table6.1.
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Table 6.1 Aligning levels of analytics with types of questions and a temporal perspective: past,
present, and future

Pespective Past Present Future

Questions What happened? What is happening? What will happen?

Why did this happen? Why is this
happening?

What should we do?

Activities Ad hoc reports Alerts Statistical analysis

Query drill down Query drill down Forecasting

Standard reports Optimization

All of these are important. However, many organizations get stuck on the
backwards-looking components, churning out dashboards and reports without a
clear reason and without being tied to a particular business decision. More data-
driven organizations, though, are likely to be involved in true analysis (will attempt
to answer why) and the more forward-looking predictive and prescriptive activities.
They provide concrete recommendations of what to do, why, andwhat is the expected
result [1].

6.2.1 Relationship to Data Science

What is the relationship between BI and data science? In practice, there is significant
overlap between the two. BI tends to focus more on the backwards-looking compo-
nents, such as scheduled reports, ad hoc reports, and query drill downs. Data science
tends to focus on the more forward-looking components such as predictive models
and optimization. However, there are certainly common methods and, in industry,
blurry roles withmany BI analysts doing data science, andmany data scientists doing
BI.

For instance, BI, like data science, certainly can cover regression and other data
mining tools such as clustering and tree-based models (covered in Chap. 3). On
the other hand, data science, like BI, typically needs to start with descriptive and
exploratory data analysis (both detailed below) to understand the scale, scope, and
quality of datasets that they plan to use. Further, some specialties such as text analytics
and sentiment analysis, whichwere once domain of data scientists have becomemore
democratized and are now more likely to be found in BI.

Overall, there are common types of data, tooling, and methodologies that both
use. For instance, both BI analysts and data scientists often require familiarity with
databases and query languages such as SQL. However, data scientists tend (with
many exceptions) to be more self-sufficient and more “full stack” than BI analysts
in terms of coding skills, often possessing skills ranging from extracting data from
sources (whether it be web-scraping, a database, or an application programming
interface [API]), loading it in some data store (such as SQL, NoSQL, hadoop, or

http://dx.doi.org/10.1007/978-3-319-97556-6_3
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a filestore), developing models, data visualization, and building out some frontend
interface or API to deliver the results. While it is possible to be a productive business
intelligence analyst who does not code, that is far less likely to be the case with a
data scientist. Data scientists tend to be stronger in algorithms, statistics andmachine
learning, and linear algebra.

6.3 Types of Analysis

Given the levels of analytics, what are the types of analysis and how is it actually
performed? Leek claims that there are six types of analysis (see [1]), although we
will focus primarily on the first four, which are the most common in a BI and data
science business context:

• Descriptive Analysis
• Exploratory Data Analysis
• Inferential
• Predictive
• Causal
• Mechanistic.

6.3.1 Descriptive Analysis

The most basic analysis is descriptive. This summarizes a dataset quantitatively, and
rather than predict attributes of the population from which the data came, it simply
characterizes the data at hand. Descriptive analysis, especially counts and means,
forms the basis of many reports, alerts, and dashboards, a core component of BI.

Inmany cases, descriptive analysis summarizes a single variable, that is, univariate
distributions. This means generating summary metrics that map a set of raw values
into a few individual values that cover attributes of the distribution such as sample
size, location, spread, and shape.

Location metrics include:

Mean Arithmetic mean
Median 50th percentile
Mode Most frequently occurring value
Geometric mean Average when there are multiplicative effects at play, such as

compound interest
Harmonic mean Arithmeticmean of the reciprocals, typically usedwhen deal-

ing with rates, such as velocity
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Dispersion metrics include:

Minimum Smallest value (0th percentile)
Q1 25th percentile
Q3 75th percentile
Maximum Largest value (100th percentile)
Interquartile range Q3–Q1
Range Maximum–minimum
Standard deviation Dispersion about the arithmetic mean
Variance Square of standard deviation
Standard error Standard deviation divided by square root of sample size
Gini coefficient Typically a measure of the inequality of income among indi-

viduals within a population but can be used more broadly.

Shape measures include:

Skew measure of the asymmetry of a distribution. If it has a larger
tail to the right, that is towards larger value, it has positive
skew. For instance, time spent onwebsite per session or house
prices are positively skewed

Kurtosis measure of the sharpness or flatness of a distribution.
Platykurtic distributions tend to have “fatter” tails while lep-
tokurtic distributions have thinner tails and stronger, shaper
peaks.

Many variables of course are categorical. For these, simple summary tables show-
ing raw counts, or normalized metrics such as percentages, are a very common and
yet powerful component of BI. Further, to understand the relationship among cat-
egorical variables, one might cross-tabulate counts for a contingency table such as
Table6.2 which exhibits an association among gender and product preference.

6.3.2 Exploratory Data Analysis

Descriptive analysis while simple, intuitive, and easy to implement can be dangerous
if that is all that one considers. Reducing a sample or distribution to a few summary
numbers can be very misleading and does not tell the whole story. For instance, a
bimodal distribution may have the same mean as a unimodal distribution. Varying

Table 6.2 An example cross
tabulation of two categorical
variables, gender and product
preference, illustrating an
association between the two

Gender Preferred product
A (%)

Preferred product
B (%)

Male 76 24

Female 43 57



104 C. Anderson

Fig. 6.2 Matejka and Fitzmaurice’s [12] “datasaur dozen” illustrating that different bivariate
arrangements or distributions (13 scatterplot panels above) can have the same summary metrics
(metric panel at top right). (Reproduced with permission from https://www.autodeskresearch.com/
publications/samestats)

degrees of kurtosismight result in the samemean value. That is,multiple distributions
can give rise to the same summary metric values.

Anscombe [4] illustrated this point well by generating a carefully-crafted fake
dataset, his well-known “Anscombe’s quartet,” of four widely different bivariate
samples in variables x and y that had the same sample size, means, variances, corre-
lations, and regression equations. More recently, Majejka and Fitzmaurice [12] used
simulated annealing to generate their “datasaur dozen” making the same point. Their
panels in Fig. 6.2, including the dinosaur, all have the same mean(x), mean(y),
sd(x), sd(y), and corr(x, y) and yet on inspection we can see that the samples
vary significantly.

The point here is that analysts have to study, inspect, and plot the data, a process
termed exploratory data analysis (EDA) by Tukey [18]. Summary metrics alone will
not suffice. While this seems obvious, it is often overlooked.

There are several reasons to perform EDA and plot the data, detailed in the fol-
lowing sections.

https://www.autodeskresearch.com/publications/samestats
https://www.autodeskresearch.com/publications/samestats
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6.3.2.1 Understand Shape

Suppose that the following descriptive statistics of sample of house sales prices [8]
were provided: min = $12k, median = $160k, max = $755k, skew = 1.74, and
kurtosis = 5.1. It is hard to imagine the shape. While the median− min,
max− median, and skew might give you a sense of the positive skew, the best
way to inspect the data is visually (Fig. 6.3). A picture says a thousand words.

6.3.2.2 Check Data Quality

Another reason to plot data is to check data quality. Outliers, duplicates, and missing
data are often obviouswhen plotting the datawith a histogram, scatterplot, or boxplot.
See Fig. 6.4. Our eyes and brains are incredible pattern detectors and we can often
pick our anomalies which are hard to define metrics for. Moreover, it might be easier,
in fact, to spot bad data than imagine good data.

6.3.2.3 Check High-Level Trends

When plotting data, one can more easily spot high-level trends, check the general
ranges in numbers, and see whether they match one’s intuition. Figure6.5 shows the
price of Bitcoin (in US dollars) during its meteoric rise during 2017. If an analyst had

Fig. 6.3 House sales price from the Ames dataset [8]. Plotting the histogram of the data provides
a richer way to understand the distribution, such as the degree of skewness, than summary metrics
alone
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Fig. 6.4 Example of the sorts of errors and features that can be detected with a simple histogram: a
default values, such as 1, 0, or 1900-01-01; b incorrectly entered or duplicate data; c missing data;
and d default values, such as 999. Reproduced from [1]

Fig. 6.5 The price of Bitcoin in US dollars during 2017. Data from https://charts.bitcoin.com/
chart/price

some expectation or prior knowledge about the data, say that they knew it reached
around $20k/coin in the autumn and then crashed, then they can check that the chart
does indeed shows the same pattern and that they did not receive other similar data
such as Bitcoin market cap instead (where the max would have been around $321B).
Developing some prior expectations about what the data might show before they
inspect it, using EDA to explore and to confirm, and then questioning the situation
when something differs, are one the hallmarks of a good analyst.

https://charts.bitcoin.com/chart/price
https://charts.bitcoin.com/chart/price
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6.3.2.4 Generate Hypotheses

The previous three uses cases for EDA cover getting an overall sense of the data,
such as what variables are present, what distributions or associations do they have, as
well as checking data quality. However, BI can use EDA to generate hypotheses and
explore opportunities. By highlighting trends, associations, and other patterns, BI
analysts can then question what might be causing the patterns that they see, bringing
us to the second question that we outlined in the introduction (Why did it happen?).

By focussing on variables that the business can control, they can suggest exper-
iments to find out more or suggest changes. For instance, suppose that a chart of
number of ad conversions (i.e. number of people who bought an item from an ad)
versus advertising spend for a certain channel (such as Facebook) shows ad satura-
tion and diminishing returns. An analyst might realize that spending more money
on the channel is futile and the business might do better by diverting some of that
money to a different, unsaturated channel (such as TV or Twitter), or to a different
segment (subset of potential customers).

6.3.3 Inferential Analysis

Descriptive analysis and EDA are both aspects of descriptive statistics. That is, they
describe properties of a sample. The other major branch of statistics is inferential
statistics. Here, one infers the properties of the source of the data—the population—
and one can use its probabilistic framework to answer questions or make inferences
about different samples. Importantly, inferential statistics provides a much more
objective way to analyze differences, associations, and trends, and provides a much
stronger context with which the business can make a decision.

For instance, suppose that in a monthly subscription business, one set of people
were given an initial discount or “teaser” rate for 3months, and then switched to the
regular rate, while another set of people had to pay the regular rate from day 1. If
the churn rate at the end of months 1 and 2 are different, say those with the higher
rate have a 2% higher churn rate, how likely is it that this is noise versus some real
difference among the groups? Rather than simply report the difference (descriptive
analysis), it is much more powerful to a decision maker to report that while the
non-teaser group had a 2% higher churn rate, there is a 56% chance we would have
seen those results by chance alone (if the null hypothesis were true). From this, the
business might conclude that if there is no underlying difference in the churn rate,
and given than the teaser rates costs the company money in terms of lower revenue,
they might get rid of the discount.

The types of questions that one can answer with statistical inference include (but
are not limited to):
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• Standard error, confidence intervals, and margin of error: how much confi-
dence can one have in this particular sample mean or sample proportion? How
much might it vary due to chance if one were to repeat the experiment?

• Expectedmean of single sample: is this sample mean significantly different from
the expected value?

• Difference of means from two sample: are the means from these two samples
significantly different from each other? More technically: what is the likelihood
that we would observe this difference of means, or greater, if the null hypothesis
were true that there is no difference in the population means for the two samples?

• Sample size calculations and power analysis: what is the minimum sample size
needed, given what is currently known about the process, to achieve a certain level
of confidence in the data? These types of statistical tools are important for planning
A/B testing.

• Distributions: is the distribution of values in this sample consistent with a normal
(bell-shaped) distribution? Do these two samples likely have the same underlying
distribution?

• Regression: suppose that a well-designed experiment is conducted in which one
(independent) variable is controlled systematically while controlling as much as
possible for all others factors, and then regression is fitted. How much confidence
can we have in that trend line? How much is it likely to vary (in both gradient and
intercept) if we were to repeat the experiment many times?

• Goodness of fit and association: given a categorical variable (say, product cat-
egory), do the frequencies or counts (say, purchases) match a set of expected
relative frequencies? Is there a relationship among two variables, one of which is
categorical?

6.3.4 Predictive Analysis

It is within predictive analysis that there is the greatest overlap with data science.
Some predictive models are very common in BI. For instance, retail organizations
will need to forecast demand, primarily to ensure that there is sufficient inventory
to sell but also for warehousing, customer support, and setting appropriate company
goals. In addition, most organizations will need to forecast financials. Often these
forecasts involve simple regressions or time series analysis, such as as ARIMA or
exponential smoothing [11].

Many products and services exhibit strong seasonality due to weather (say, beach
towel sales), religious holidays (Christmas or Hanukkah decorations), or government
deadlines (tax season). Many websites exhibit very strong weekly seasonality with
traffic patterns on theweekend very different fromweekdays. For all these, onemight
decompose the data (say using LOESS [6]) to separate out the seasonal component
from the general trend. This then provides a clearer view into the business.

Many businesses will also perform some sort of segmentation of their customers.
This is especially true ofmarketing teamswhowant to understandwho the customers
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are, how they find “look alikes” (other customers similar to current customers), and
how best to target them. This too falls squarely within BI.

However, there are many other predictive models that fall more within the realm
of data science (reviewed by [16]; see also Chaps. 2, 3, 5, and 6 of this book). For
instance, predicting who to date (dating apps), which movie to watch or shirt to buy
(recommender systems), and who to approve for a loan (banking).

6.3.5 Causal and Mechanistic Analysis

While descriptive, exploratory, inferential, and predictive comprise most of BI, for
completeness, there two additional types of analysis, which we will not cover in
detail.

Causal analysis refers to situations with controlled experimental conditions,
intended to isolate individuals factors or effects. The most common cases in busi-
ness are those of A/B testing (reviewed in [1, 17]) in which experiments are run to
optimize website metrics, such as sign ups, check outs, or other engagement. Imag-
ine a website has a button with text “sign up” and that the business hypothesizes
that different messaging such as “learn more” might increase the click through rate.
They create two versions of the website, one set of visitors get to see “sign up” and
the other visitors get to see “learn more”. After a week or two, they analyze which
version had a higher rate. If “learn more” exhibits a statistically significant higher
rate of clicks, then the company will roll out “learn more” messaging to all visitors.

Mechanistic analysis is associated less with BI and more with fundamental sci-
entific research and development, and the term “modeling” more than “analysis.”
Mechanistic modeling and analysis represents a very deep understanding of a sys-
tem, which comes from studying a stable system in a very controlled manner with
many experiments over many years—hence the association with basic science. This
situation does not tend to occur within most businesses, with some exceptions, such
as R&D departments in pharmaceuticals and engineering.

6.4 Metric Design

The last section discussed types of analysis. Just as important is deciding which
data one should track or analyze. Choosing an appropriate set of metrics with the
right characteristics is crucial. They effectively become the lens through which the
executives, staff, and investors view the business. If they are poor metrics which are
biased, indirect, or they do not reflect the goals and strategy of the leadership, the
business can optimize for the wrong thing or otherwise be lead astray and fail. As
such, metric design and selection is a key responsibility of BI.

BI can consist of some simple metrics such as counts and averages of raw data:
the number of users who churned last month, the average basket size of an order,

http://dx.doi.org/10.1007/978-3-319-97556-6_2
http://dx.doi.org/10.1007/978-3-319-97556-6_3
http://dx.doi.org/10.1007/978-3-319-97556-6_5
http://dx.doi.org/10.1007/978-3-319-97556-6_6
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or the highest number of contracts won by a salesperson. However, many metrics
are derived metrics, a combination of two or more other values. Bounce rate is the
proportion of website visitors that leave the site after visiting a single page (i.e.,
# that leave / # total). Net revenue is total sales minus returns, allowances, and
discounts. These rates, differences, ratios, and other more complex metrics need to
be designed to have the appropriate properties. If they do not, then they might cause
some confusion or, more importantly, they might give an inaccurate or biased view
of the business.

6.4.1 Metric Traits

When choosing or designing a metric, it should posses the following traits:

• Simple
• Standardized
• Accurate
• Precise
• Robust
• Direct.

6.4.1.1 Simple

Do not make metrics unnecessarily complex; that is, design them to be “as simple as
it can be, but not simpler” (Einstein). A metric such as “Sales(Units)” is much more
easily understood if it is simply the “numbers of units sold within some time frame”
than say “number of units sold within some time frame, excepting those returned
or exchanged with 45days, or which were found to be fraudulent transactions, or
which. . . ”

There are several benefits to such simplicity. First, simple metrics are easier to
define and explain to a colleague; thus, there is less chance of confusion and staff
are more likely to use the information for their decision making. Second, simple
metrics are easier to implement. This means that there is less chance of errors and
also is easier to maintain and document. Third, simple metrics are more likely to be
comparable to other teams or organizations.

6.4.1.2 Standardized

Standard metrics should be adopted unless there are very good reasons to deviate
from them. If a standard definition is used, such as for bounce rates, net revenue, or
sessions, then it becomes possible to compare one’s performance with other teams,
competitors, or other industry benchmarks. For instance, for “active users,” Facebook
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only considers users that are logged in, whereas Yelp considers both logged in users
as well as guests. As such, they are not comparable.

Using standards will help avoid confusion. It will also make it easier for staff new
to a team or organization to get up to speed. The key, however, is to make sure that the
definition is standardized across the whole organization. While it sounds obvious, it
is much more common than one would expect for different teams to deviate from the
norm and have their own variants. Two different dashboards might appear to show
the same metric but if they have different underlying logic, confusion will reign.

6.4.1.3 Accurate

One should strive for metrics that are accurate. Accuracy refers to a metric’s ability
to track the truemean value. If you compare to archery, it is the equivalent to being on
target (Fig. 6.6). “Sales(Units)” accurately captures demand and the number of units
that customers checked out in their baskets. Other metrics, however, might exhibit
some bias. For instance, in surveys, there is often response bias in which especially
happy or unhappy customers, or other segments such asmen versus women, aremore
likely to complete a survey providing a set of responses that are unrepresentative of
the whole population.

An example of bias comes from Coca Cola’s testing and introduction of New
Coke in the 1980s [19]. They ran user tests that showed very positive results, even

Fig. 6.6 Precision (being stable or clustered) and accuracy (being on target) illustrated with two-
dimensional data. Inaccurate metrics have a bias such that their mean differs from the true mean in
a systematic way. Precision captures the variability: how much the mean value would differ if one
were to repeat the experiment multiple times and collect new samples of the same size. (Reproduced
from [1])
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compared to regular Coke. When it launched, however, the product tanked. Why?
Users found it too sweet. The problem is that testing involved “sip tests,” and we
tolerate greater sweetness in sips than in gulps. Had they tested a “normal” user
experience (gulping a mouthful on a hot day), they would have been able to optimize
for the real-world taste, experience, and preference.

One should try to understand the processes generating the data and any biases
that it might contain. Sometimes there is no choice other than use a biased metric
but it might be possible to do an analysis and determine some correction factor. If a
correction factor is used, bear in mind that conditions change and that it may need
to recalibrated periodically.

6.4.1.4 Precise

Metrics should be precise. That is, they should return similar values if repeated with
the same conditions. Returning to the archery analogy, it is the equivalent of a set of
arrows being close to each other (Fig. 6.6).

One tool or lever to control precision is sample size. The larger the sample size,
the smaller is the standard error. The relationship is not linear, however. Because
standard error of the mean equals the standard deviation divided by the square root
of the sample size, to halve the standard error, we need to quadruple the sample
size [9].

Unless there is some validated reference data, we are not always going to know
whether our metrics are inaccurate. However, we will likely soon discover if our
metrics are imprecise (unstable).

6.4.1.5 Robust

Define metrics that are statistically “robust,” that is, they are relatively insensitive to
individual extremal values. Consider this example from the San Francisco Chronicle:

The average tech wage on the mid-Peninsula (San Mateo County) last year was $291,497...
A likely explanation for the distortion: Facebook chief executive Mark Zuckerberg took
only a dollar in salary but reaped $3.3 billion exercising Facebook stock options in 2013...
if you remove $3.3 billion from the total, you end up with an average tech wage of roughly
$210,000.

Using an average here is inappropriate given the high degree of positive skew of
the salary data. The average is increased significantly (more than 35%) by a single
outlier value. In this case, a median is a far better choice because it is robust to
extremal outliers and better captures the location or middle of the data.

It should be noted that there are times when one wants to design a metric that
is specifically sensitive to boundary values. For instance, peak load on a website is
meant to capture the rare maximal values encountered.
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It is possible to estimate or visualize robustness by resampling. Take a subset of
the data and compute the metric. Repeat many times (with replacement) to get a set
of metric values and plot their distribution.

6.4.1.6 Direct

Try to define or use metrics that directly measure the underlying process. Sales
(units) is direct: 1 unit checked out in basket = 1 unit in the metric. However,
consider student performance in a school.We do not have a good, direct performance
measure and so educators and governments often rely on the proxy of test scores.
The number of phone calls to a customer service line might be a proxy for customer
happiness. Thus, proxy metrics are indirect measures.

Proxies are not necessarily correlated 100% with the underlying process. They
may also be more easily subject to “gaming the system” (say, bad teachers teaching
just what will appear on the test), subject to external influences that affect the proxy
but not the underlying process, and subject to biases.

Proxies are used when it can be hard or impossible to measure the underlying
process. However, they might also be used because that is the only data available. In
the example of customer happiness, while number of phone numbers might be quick
and easy to compute, a better and more direct measure—even though it requires
more effort—would be to survey customers and ask them directly, and translate their
responses to a standard metric such as net promoter score [15].

6.4.2 Absolute Versus Relative

One last, but important, aspect of metric design is to consider whether to use absolute
or relative metrics as they can paint a very different picture. Imagine a business in
which 25% of their members are designated as VIPs. They run a successful campaign
to grow the number of new members. Assuming that that none of these are VIPs, the
absolute number of VIPs is unchanged and the number of non-VIPs has increased.
However, suppose that a dashboard used the metric of the proportion of members
that are VIPs. That value will have decreased. An executive watching the numbers
but unaware of the campaign might be alarmed that behavior of VIPs has changed—
perhaps they are churning more or spending less, she worries. Conversely, suppose
that the campaignwas to focus on increasing repeat customers. Here, the total number
of members might not change but the proportion of VIPs might increase.
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Table 6.3 Example of a data dictionary

Field Description Type Example

MemberId The unique ID of the
member

integer 1463463

FirstName First name of the
member

varchar(255) John

LastName Family name of the
member

varchar(255) Smith

JoinDate Date that member
joined

date 2018-01-03

MemberLevel Type of member: one
of regular or VIP

string VIP

6.5 Data Dictionary

We mentioned earlier that using simple and standard metrics will result in less con-
fusion among staff. However, a well-run BI team will also publish a data dictionary.
This is a glossary, a list of all the key business terms and metrics with clear, unam-
biguous definitions and examples. An example data dictionary is shown in Table6.3.

At WeWork (a global provider of flexible, physical workspaces), prospective
members check out facilities by signing up for a tour. Importantly, some people
may tour different locations, or come back for a second tour to show other members
of their organization before signing off on their new space. While their various dash-
boards had a metric called “tours,” that term did not align across teams. The process
of creating a data dictionary fleshed out two different metrics [3]:

• Tours completed–Volume captures the absolute number of tours taken,
which our Community team, who staff such tours, monitor.

• Tours completed–People captures theuniquenumber of peoplewho signed
up for a tour. This can then feed into a lead conversion metric, which our sales and
marketing teams track.

To get to those definitions required lots of discussions and alignment among
teams. However, once there is agreement, the data dictionary can be created and
published where all staff can access it (such as an internal wiki). When the BI team
implement those metrics in dashboards and reports matching those definitions, it can
be incredibly powerful—so much so that Randall Grossman (Chief Data Officer for
Fulton Financial) says “A trusted data dictionary is the most important thing that a
[Chief Data Officer] can provide to business users” (pers. comm.) [2].
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6.6 KPIs

Having a set of good metrics, a set of dashboards to report them over time, and a data
dictionary, will afford some level of business intelligence. They might show what is
happening but offer no guidance whether any changes are good or bad, or whether
this is what the business needs to achieve. It is for this reason that businesses often
set goals using a set of KPIs.

A KPI, or key performance indicator (sometimes known as Key Success Indi-
cators) is a high-level metric tied to some strategic goal of the company. Examples
might include “increase online conversion by 5% in Q3,” “increase brand awareness
by 20% by year end,” or “decrease capital expenditure per square foot by $100.”

KPIs need to exhibit a number of traits:

• Clearly defined: they need to associate a goal, a time frame, and a metric, all of
which are clear and unambiguous.

• Measurable: they need to be quantifiable, i.e. generate a number that can be
tracked over time, and ideally be direct and not a proxy. If you cannot measure it,
you cannot track it.

• Have targets: a target of “increase annual revenue” is insufficient for a KPI. The
business does not want a sales team stopping work as soon as revenue is one Euro
more than last year. The goal must be specific, a stretch goal, and also achievable.
Either too low (easily achieved) or too high (unachievable), and people will give
up.

• Visible: a set of KPIs are often called a strategic dashboard. Those metrics should
be clearly visible and accessible to all the staff, such as on a dashboard on amonitor.
These metrics should be on the top of everyone’s mind so that people can assess
performance and know what is and is not working.

• Reflect what the organization is trying to achieve: do not fall into the trap of just
tracking what is easily measurable. If the goal is to improve customer satisfaction,
then design a metric that reflects that—likely direct questions through customers
surveys—and not using some proxy or inaccurate metrics that your BI system
happens to have available.

In short, KPIs should be SMART: Specific, Measurable, Achievable, Result-
oriented, and Time-bound [10].

6.7 Trends and Tools

What are some of the trends and tools in BI? First off, despite the significant devel-
opments in analytical tools, Microsoft’s spreadsheet application, Excel, is still by far
the most common BI tool in use today. It is a tool that is relatively easy to grasp and
yet has significant power user functionality. It is also accessible in terms of price and
ability to install to even the smallest business. The downside is that data and models
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tend to reside in files on individuals’ computers, or in forgotten email threads, rather
than on a sanctioned, shared, and versioned space. As such Excel data is often “dark
data.”

In small organizations, individual analysts may have to perform a number of
BI tasks themselves such as data gathering, cleaning, and visualization in order to
perform business intelligence. In larger organizations, however, dedicated BI teams
will support the rest of the staff. A BI team’s responsibilities are generally broad:

1. vet new data sources.
2. work with the data engineering team to define the data warehouse data models

such as database views, dimension, and fact tables that will make downstream
analysis easier.

3. work with the business to define the key metrics and then implement them in the
databases and/or BI tools.

4. either the BI or data engineering team will implement ETLs (Extract, Trans-
form, Load) which are processes to consume and transform data, such as data
warehouse tables with KPIs that are often rebuilt or refreshed each night.

5. implement data quality processes to alert their team if individual metrics are
going out of range. (This is in addition to data quality checks on the raw data
landed in the database.)

6. help define, implement, and publish a data dictionary.
7. determine appropriate access to data.
8. provide business intelligence tools (such as Tableau, Looker, Domo, QlikView,

Spotfire, Pentaho, and Alteryx) to those that need it and provide general support
and training.

9. in some companies, dashboarding and report generation are centralized in a
BI team, i.e. the BI team create all the reports, while in other companies, it
is more distributed to analysts across other teams, especially if the BI tool is
“self-service.”

10. be a general resource for BI and data visualization best practices.
11. keep up to date with latest trends and vet new BI technologies.

At the enterprise level, where a BI team supports a set of users ideally with
clean, high-quality, and curated data, a data dictionary, and a “single source of truth”
(a central location to get data such that all staff are using the same data) there
has been significant innovation over the last decade. Such tools are increasingly
becomingdemocratized. These tools,whichwere once only in the hands of executives
and the formal analysts, are increasingly getting out to non-analysts at the front
lines of the organization who become empowered to make real time operational
decisions. The BI tools are becoming cheaper, more intuitive, and easier to use.
They offer more types of visualizations, can hook into other libraries such as D3
(https://d3js.org/), and provide APIs so that the metrics can be consumed in more
ways. BI is increasingly “mobile first” so that tools are designed to work well on
mobile devices such as phones and tablets. They are also becoming integrated into
more channels. For instance, Looker, a BI tool vendor, provides a slackbot (a tool

https://d3js.org/
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within the messaging and collaboration platform Slack) in which analysts, decision
makers and other operational staff can bring up key charts or provide answers by
asking questions using simple natural language.

Increasingly, customers interact with businesses via mobile, such as smartphone
apps that have access to the phone’s GPS, and so businesses have ever richer data
about where customers are, where they go, and when. Consequently, location intel-
ligence is becoming a powerful component of BI, allowing businesses to analyze
spatial temporal patterns, optimize products, pricing, marketing campaigns, and even
geo-target individual customers.

The last decade has also seen significant developments in database technologies.
There are now many more, and more performant, databases and technologies tai-
lored for unstructured data (MongoDB, PostgreSQL), big data (Hadoop, Cassandra),
graphs (Neo4j, Aster), or time series (Influx, Riak) which in turn drive innovation
in the tools used to visualize such data at scale or in near real time. Advances in
data science, such as natural language processing, mean that BI analysts can now
access processed stream of customer-generated or other text and analyze previously
out of reach metrics such as sentiment. While there are many tools to alert users for
certain types of patterns, such as anomalies from fraud or spikes in server load, we
are beginning to see innovation in automated machine learning (AutoML), where
interesting trends, patterns, or charts are discovered by algorithms and surfaced for
an analyst to review. An example is the explore tab in Google sheets [14]. Thus, data
science functionality and products are increasingly become democratized to BI.

6.8 Conclusion

Business intelligence is an important staple of almost all businesses. While organi-
zations might differ greatly in terms of the volume of their data, the degree of data
quality and centralization, or the sophistication of their tooling, the fact is that exec-
utives and other decision-makers rely on and demand BI, using at least some basic
metrics about the business to make strategic, tactical, and operational decisions. BI
provides a way to track the pulse of a business, to surface the key metrics, trends,
and changes, and to track progress against goals.

The BI community has responded to such demands and there is a rich set of tools,
both open source and proprietary, that provide powerful exploratory data analysis,
dashboarding, and ways to execute ad hoc investigative queries.

There is also an increasing awareness that being data-driven provides a com-
petitive advantage. One report, controlling for other factors, found that data-driven
organizations have a 5–6% greater output and productivity than their less data-driven
counterparts [5]. Business intelligence is at the heart of being data-driven. It provides
a way to surface what is happening, and to help decisions makers. However, it can
also be a source of innovation itself. As Todd Holloway, former head of data science
at Trulia, remarked (pers. comm.), “the best ideas come from the guys closest to the
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data…they often come up with the good product ideas.” Business intelligence is the
window to the data.
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Chapter 7
Data Privacy

Vicenç Torra, Guillermo Navarro-Arribas and Klara Stokes

Abstract In this chapter we present an overview of the topic data privacy.
We review privacy models and measures of disclosure risk. These models and mea-
sures provide computational definitions ofwhat privacymeans, andof how to evaluate
the privacy level of a data set. Then, we give a summary of data protection mecha-
nisms. We provide a classification of these methods according to three dimensions:
whose privacy is being sought, the computations to be done, and the number of data
sources. Finally, we describe masking methods. Such methods are the data protec-
tion mechanisms used for databases when the data use is undefined and the protected
database is required to be useful for several data uses. We also provide a definition
of information loss (or data utility) for this type of data protection mechanism. The
chapter finishes with a summary.

7.1 Introduction

The amount of information gathered by organizations, both in the public and the
private sector, makes privacy at stake. Organizations keep track of all products and
services we have bought, places we have visited, and where we are at any time.
Databases also store information of our finances and even public offenses.

Although human rights and international legislation establish that privacy is a
fundamental right, the application of this right is in tension with our interest in
personalized services, in business and government interest in big data to increase
profits and planning (e.g., city planning), and in public interest for high levels of
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security. In fact, privacy is often considered as a bargaining chip for security, and
data privacy is claimed to be opposed to personalisation.

While it is true that more data can be useful for increasing security and personal-
ization levels, it is also true that privacy permits us to enforce some security policies
(as e.g., privacy in communication), and some studies show that the application of
privacy mechanisms to data do not always degrade the quality of personalized ser-
vices [29]. In addition to this, privacy friendly services can stand for an economic
advantage.

The research on data privacy studiesmethods and procedures that avoid the disclo-
sure of sensitive information. A large number of approaches exist based on different
assumptions on the type of process that needs to be protected, the type of privacy
model, and so on. Methods and measures also exist to evaluate data utility and to
quantify the trade-off between privacy and utility.

In this chapter we present a short overview of the area. We focus on the aspects
related to data science. For additional information see e.g., [36]. Some additional
references are given in the conclusions section.

The structure of the chapter is as follows. In Sect. 7.2 we review privacy models
and measures of disclosure risk. In Sect. 7.3 we give a summary of data protection
mechanisms. In Sect. 7.4 we focus on differential privacy. In Sect. 7.5 we review
maskingmethods and information lossmeasures to evaluate inwhat extent amasking
method decreases data utility. The paper finishes with a summary and conclusions.

7.2 Privacy Models and Disclosure Risk Assessment

The literature discusses different types of disclosure that may occur when we release
or publish a database. We can distinguish among two families of disclosure.

• Identity disclosure. When we release or publish a database we have identity dis-
closure when an intruder is able to locate the record of a certain individual in the
database.

• Attribute disclosure. When we release some information, the intruder is able to
learn something about some property attributed to some individuals.

It is important to underline that having identity disclosure does not mean that the
intruder gets additional information on the individual identified in the database. In
other words, identity disclosure does not always imply attribute disclosure. Consider
the case that the intruder has more information on a person than what is available
in the database. Nevertheless, it is expected that identity disclosure leads to attribute
disclosure.

There are a number of different privacy models available in the literature. We
discuss some of them below.

• Secure multiparty computation. We consider a set of parties that want to compute
a joint function of their databases. The only information they want to share is the
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output of the function, but they neither want to share the data nor partial results.
Cryptographic protocols are often used to implement this privacy model.

• Privacy from reidentification. This privacy model focuses on identity disclo-
sure. When a database is released the goal is to avoid identity disclosure.
Re-identification is the process of finding a record in the database. Given a file,
masking methods modify this file in order to produce another file in which reiden-
tification is not possible (or difficult).

• k-Anonymity [30, 31, 35]. This privacy model also focuses on identity disclo-
sure. It is a special case of privacy from re-identification. A database satisfies
k-anonymity when for each record in the database there are other k − 1 records
that are indistinguishables. As in the case of re-identification, masking methods
modify the original database to obtain one that satisfies the privacy model. For
example, if we have a database X that includes information on age and town of
some patients in a hospital, a k-anonymized version X ′ of this database X may
use ages in ranges and counties instead of towns so that the change in granularity
allow to have at least k patients for any combination of (age range, county).

• Differential privacy [12, 13]. This privacy model focuses on queries on a database.
It wants to ensure that the output of a query does not depend (much) on the presence
or absence of a record in the database. That is, f (X) and f (X ′) are similar when
X and X ′ only differ in one record. Similarity is defined probabilistically. For
example, if we want to compute the mean of X , f will be a randomized version
of the mean so that for any record added or removed from X the mean does not
change significantly.

• Integral privacy [37]. Let X and X ′ be a database and a version of this database after
some editions (addition, suppression, and editing). Then, given functions f (X) and
f (X ′) the goal is to avoid inferences on the databases and on the editions on these
databases. Different assumptions are considered on the prior knowledge of the
intruder. The definition is extended to the case of just X and f (X).

Variations of these privacy models exist. Some add additional constraints
(e.g., l-diversity adds attribute disclosure to k-anonymity) and others generalize these
models (n-confusion). If we consider that k-anonymity is about building anonymity
sets of cardinality k, n-confusion is a generalization in which the records of such
anonymity sets are not required to be all equal.

Some of these approaches can be combined. For example, we can use a cryp-
tographic protocol to compute a function satisfying differential privacy in a secure
multiparty way. Similarly, several parties can decide to jointly compute a database
compliant with k-anonymity or with reidentification privacy. Integral privacy can be
combined with differential privacy (to define differintegral privacy).
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7.2.1 Disclosure Risk Assessment

We have seen that there are different privacy models. Some of them define privacy
as a Boolean condition. That is, the privacy model is either satisfied or not. Secure
multiparty computation, k-anonymity and differential privacy follow this approach.
Given k and a database,we can state if the database satisfies or not k-anonymity. Then,
we can define data protection methods that given an arbitrary database build one that
satisfies the privacy requirement. In this case, methods are compared with respect to
the data utility. That is, given two methods that return a database compliant with the
k-anonymity criteria, the best method is the one that modifies less the data and, thus,
there is less information loss. Differential privacy follows a similar approach. It is
based on a parameter ε, and then given ε we define a data protection method that
answers the query in a way that the result is compliant with the differential privacy
model. Again, the goal is to minimize the perturbation on the result.

Reidentification privacy does not follow this approach. It considers privacy as
a measurable condition. Given a (protected) database, we can define a measure of
risk in relation to the proportion of reidentifications that an intruder can obtain from
the database. That is, if the intruder can reidentify half of the records, then we
have a risk of 50%. In this case, data protection mechanisms (masking methods)
are required to minimize the perturbation in a way that the risk is low. This results
into a multicriteria optimization problem. Uniqueness is another way of assessing
disclosure risk. In this case, risk is defined as the probability that rare combinations
of attribute values in the protected data set are also rare in the original data set.
Uniqueness was defined considering sampling as the data protection mechanism.
Measures for reidentification and uniqueness are for assessing identity disclosure.
There are also measures for assessing attribute disclosure. Rank-based and standard
deviation-based interval disclosure are examples of such measures.

7.3 Data Protection Mechanisms

A large number of data protection mechanisms have been defined up to now. There
are different ways to classify these methods.

• On whose privacy is being sought. In the usual scenario in data privacy we can
distinguish three roles. The data respondents (the individuals that supply vol-
untarily or not their data), the data holder (or data controller, that accumulates
and keeps the data from several individuals), and the data user. Here we under-
stand the data users as the individuals that supply the data, but are concerned
on their own privacy and, thus, proactively look for privacy solutions. For exam-
ple, the user sends an email and in order to avoid any one accessing its content,
encrypts it.
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Fig. 7.1 Classification of data protection mechanisms according to the three dimensions: (i) whose
privacy is being sought, (ii) what computation is being done, and (iii) number of data sources. For
user privacy, classification is done according to (1) type of application, and (2) what we want to
protect

Based on these three roles, we can consider respondent privacy, holder privacy, and
user privacy. Note that both respondent and holder privacy are to be implemented
by the data holder, but their interests are typically different. A client does not want
others to know that she has bought 25 L of liquor in a week. While a supermarket
director (data holder) may be interested for legal reasons to avoid disclosure of
respondent’s data (the shopping cart of this particular client), the real interest of the
director is that competitors cannot use supermarket’s data to increase their market
share. Market shares do not depend on a particular client.

• On the computations to be done. The application of a data protection procedure
can be tailored by the type of analysis to be applied to the data. Nevertheless,
the analysis is not always known. We distinguish three cases. Computation-driven
or specific purpose protection methods, which corresponds to the case that the
function to be computed is known with detail. Data-driven or general purpose
protection procedure, which corresponds to the case that the function is not known.
In addition,we distinguish also result-driven protectionmethodswhich correspond
to the case thatwe know the function (a dataminingmethod) to be applied andwhat
wewant to protect is part of the results of this function. E.g., the supermarket wants
to avoid that when researchers apply a rule mining algorithm to their database they
mine a particular rule that give them a high competitive advantage.

• On the number of data sources. Some data protection procedures are defined for
a single data source (a database) while others are about computing a function
from several data sources (two or more databases). By taking time into account,
the same database can give rise to several data sources, as is the case of multiple
releases of the same database.

Existing data protection mechanisms can be classified according to these proce-
dures. We describe them below. Figure7.1 summarizes this classification.

Masking methods are the usual approach for data-driven methods for respondent
and holder privacy. They correspond to methods to protect a database by means of
reducing the quality of the database. That is, instead of the original database X a
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database X ′ is published with less quality. The masked database X ′ is published and,
for example, researchers will be able to apply any machine learning algorithm to
this data X ′. This quality reduction is done by means of perturbative methods (that
is, methods that change values introducing some kind of error) or non-perturbative
methods (that is, methods that change the granularity of the data). Perturbative meth-
ods include noise addition andmultiplication, rank swapping, microaggregation, and
PRAM. Non-perturbative methods include generalization and suppression. In this
latter case, the typical privacy model is reidentification or k-anonymity.

Methods for securemultiparty computation are used for computation-drivenmeth-
ods for respondent and holder privacy when multiple sources are considered. In this
case, first we need to know in detail what function needs to be computed, and then
we write a cryptographic protocol to compute this function ensuring that none of the
parties (none of the data holders) learn anything but the final function. For example,
a few supermarket directors want to compute which type of chocolate is the most
popular. Nevertheless, they don’t want to put the data of their sales together. In this
case, the secure multiparty computation model is an adequate privacy model.

Methods to achieve differential privacy are used for computation-driven methods
for respondent and holder privacy when a single source is considered. Differential
privacy is typically either implemented by means of a perturbation of the original
database and then computing the function from this perturbed data, or directly apply-
ing a perturbation to the output of the function. In this case, the privacy model is
differential privacy.

User privacy methods are methods that empower the users of a system that is a
data holder to protect the data that is produced from their actions within the system.
For example, the users of a network can go together and form a mix network which
will empower them with privacy over their connection history. Note that the com-
munication history of a network is often stored as a database, therefore anonymous
communication is a means for the users of a network to gain power over their privacy.
User privacy can protect from identity disclosure or attribute disclosure. Methods
for anonymous communication like mix networks [5] and Crowds [28] typically
protect the identity of a user in a communication network, that is, identity disclo-
sure. Attribute disclosure in anonymous communication can happen as in any other
database. An example of an attribute is for example the connection time. Secrecy of
the transmitted data could perhaps be considered protection from attribute disclosure,
by considering the transmitted data to be the sensitive attribute. In any case, secrecy
in communication is typically achieved by the use of cryptography. Another inter-
esting application of user privacy is in information retrieval. For example, queries
posted by P2P communities as in [33, 34] permit to protect identities in information
retrieval. Agents that add noise to queries (as TrackMeNot [15] and GooPIR [10])
and systems that dissociate an identity into different virtual identities (as DisPA [17])
permit to protect the data (the queries) in information retrieval.
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7.4 Differential Privacy

Differential privacy is to avoid inferences on the participation of an individual when
computing a query. Then, the goal is that the output of this query is independent of
the participation of an individual. Formally, it is defined in terms of the output of
this query, which is supposed to be modeled in terms of a probability distribution.
Then, given two databases that differ in one record, the corresponding probability
distributions should be similar enough. The formal definition follows.

Definition 7.1 A function Kq for a query q gives ε-differential privacy if for all data
sets D1 and D2 differing in at most one element, and all S ⊆ Range(Kq),

Pr [Kq(D1) ∈ S]
Pr [Kq(D2) ∈ S] ≤ eε .

In this definition, ε corresponds to the level of privacy required. The smaller
the ε, the greater the privacy we have. The selection of an appropriate parameter ε is
an open problem, although some suggestions have been given in the literature. See
e.g. [20] were the value of ε is discussed in relation to a reidentification context.

Differential privacy for numerical queries is often implemented in terms of adding
noise to the actual output of the query. More specifically, the Laplace mechanism
defines Kq in terms of the correct answer of query q and a random variable drawn
from the Laplace distribution. The noise is based on the global sensitivity of the
query.

Definition 7.2 [12] Let D denote the space of all databases; let q : D → R
d be a

query; then, the sensitivity of q is defined

ΔD(q) = max
D,D′∈D

||q(D) − q(D′)||1.

where || · ||1 is the L1 norm, that is, ||(a1, . . . , ad)||1 = ∑
i |ai |.

Then, Kq(D) = q(D) + X where X is a random variable that follows a Laplace
distribution of the form L(0, δ(q)/ε).

This approach to differential privacy (i.e., that we have all the data, we compute
q and then add some noise to correct answer to q) is also known as the centralized
approach to differential privacy. In this case the data holder is the only one with
access to the whole database, who computes q(D) and introduces some noise into
the output. Note that the data user does not have access to the database, only to the
protected answer to a query.

An alternative to the centralized approach is local differential privacy. In this case,
the data collector has data that has already been anonymized, and then computes the
output from this anonymized data set. Or, equivalently, the data collector applies first
an anonymization method to the original data set, deletes the original data set, and
then computes the output from the anonymized data set. Local differential privacy
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for categorical data is often implemented in terms of randomized response. Given
a binary attribute a randomized response is defined in terms of a probability of
not modifying a and the probability of changing the value of a. Then, given any
response for a, we will mask the value of a according to these probabilities. As
randomized response change values, we have plausible deniability. Implementation
of local differential privacy by means of randomized response is equivalent to the
masking method PRAM discussed in the next section (see e.g. [39]). In general,
local differential privacy for a query q is implemented as Kq(D) = q(M(D)) where
M(D) correspond to the application of a masking method.

7.5 Masking Methods

Given a database X , masking methods build another database X ′ which is similar
to X in the sense that inferences from X and X ′ are similar. In addition, X ′ should
avoid disclosure risk. Disclosure risk can be defined according to the privacy models
discussed in Sect. 7.2. More particularly, masking methods are used with privacy
from reidentification, k-anonymity, and differential privacy. Note that in this case,
the data user has access to a protected database.

Masking methods are often classified into three main classes. They are the fol-
lowing ones.

• Perturbative methods. The database X ′ is defined as X and some noise that
modifies the original values in X . That is, we can see X ′ as following the next
equation: X ′ = X + ε. Different perturbative methods exist. Noise addition is the
simplest one [2]. In this case ε follows a normal distribution with zero mean and
appropriate covariance. Noise multiplication [18], microaggregation [6, 9], rank
swapping [23], post-randomization method (PRAM) [19], transformation-based
methods are other examples of perturbative methods. The rationale for perturba-
tive methods is that introducing some error the probability that an intruder finds a
record decreases.

Microaggregation is about finding sets of records that are similar and then replace
their value by their average. The minimum number of records that need to con-
tribute to the average is our privacy guarantee. PRAM is a method for categorical
data and is defined in terms of a Markov matrix. Then, each category in the data
set is replaced by another one (or not replaced) according to the probabilities in
the Markov matrix. The Markov matrix is our privacy guarantee. As explained in
Sect. 7.4, PRAM and randomized response can be seen as equivalent.

• Non-perturbative methods. In this case, given a database X , the new database X ′
is obtained by means of changes of granularity of the elements in X . For example,
a number is replaced by an interval, or a term is replaced by a more general one
(for example, a town is replaced by a county or a province, and the term widow
is replaced by widow-or-divorced). Generalization (as in the previous examples)
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and suppression (i.e., replace a value by an indication that the value has been
suppressed) are two approaches of non-perturbative methods [35]. The rationale
for non-perturbative methods is the same as for perturbative ones. In this case, one
expects that reducing granularity reidentification is more difficult.

• Synthetic data generators. This approach consists of replacing X by data that
has been generated artificially [4, 14, 27]. Partially synthetic and fully synthetic
approches exist. The rationale of this approach is that synthetic data is not real data
and, thus, reidentification cannot take place. Nevertheless, when the fit between
the synthetic and the original data is too tight, then there may be disclosure risk
anyway. This is certainly the case on partially synthetic data when only some
attributes are synthetic, and also when each attribute is made synthetic by means
of a model with respect to the others. In both cases, we will have one synthetic
record for each original record, and both original and synthetic records may be
similar.

7.5.1 Information Loss Measures

Given a database X and a protected version X ′ of this database, we need to know
if X ′ is still useful for analysis. A few measures have been proposed to evaluate in
what extent information has been lost in the masking process.

Information loss measures are defined in terms of a function of X and X ′ and the
divergence between the values of this function. Formally, an information loss (I L)
measure for function f and databases X and X ′ has the form

I L f (X, X ′) =divergence( f (X), f (X ′)).

Different measures information loss measures have been defined in the literature,
which differ in the type of function computed. Some try to give an evaluation of the
divergence independent of the data use. They were based on some statistics for X as
e.g. mean, variance, covariance, and correlations in the case of numerical data, and
based on contingency tables for subsets of attributes in X or based on probabilities and
entropies computed from X . Other measures have been defined with a particular data
use. For example, there are measures that evaluate in what extent clusters in X and X ′
differ (using e.g. Rand and Jaccard indices) andmeasures that evaluate in what extent
classifiers built from X and X ′ have the similar accuracy. For example, we can define
I Lmean(X, X ′) = √

(1/n)
∑

i (meani (X) − meani (X ′))2 if meani corresponds to
the mean of the i th attribute and there are n attributes in X .

In [7, 8] the authors propose a general use of statistical divergences between X
and X . For example, the mean variation of the aggregation of the distance between
records from X and X ′, their mean, and covariance with numeric data. This is very
common for data-driven or general purposedmaskeddata (cf. Sect. 7.3).Other similar
generic information loss measure can be the use of entropy-based measures for
discrete data [40] or other common statistical approaches (see discussion in [41]).
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Similar approaches have also been translated to other types of data such as graphs
or networks [3].

Depending on the type and purpose of the data to be masked, data specific infor-
mation loss measures can be used. As previously mentioned, a common approach
is to compare directly the outcome of the expected analysis to be performed in the
data. Some examples are web mining [22], user profiling from query logs [25], graph
mining [24, 26], or natural language processing [1, 32].

We note that although there are some generic information loss measures, there
are no widely used information loss models such as there are for disclosure risk (see
Sect. 7.2). Information loss is very dependent on the type of data to be protected and
the purpose of such data.

7.6 Summary

In this chapter we have given an overview of different aspects related to data privacy.
We have discussed privacy models, ways to evaluate disclosure risk and information
loss measures.

From a data science point of view, respondent and holder privacy is more rele-
vant than user privacy. Methods to deal with the former type of privacy will be the
ones that data scientists may need to take into account and implement. Because of
that, masking methods, methods for secure multiparty computation and methods to
achieve differential privacy may be needed in applications.

Additional information on data privacy can be found in e.g. [11, 16, 21, 36, 38].
The first reference [36] gives a general perspective of the whole area of data privacy.
Then, [11, 16] focus on privacy for statistical databases. In contrast, [38] is on privacy
for data mining with a focus on the secure multiparty computation model. Finally, a
suitable reference for further reading on differential privacy is [21].
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Chapter 8
Visual Data Analysis

Juhee Bae, Göran Falkman, Tove Helldin and Maria Riveiro

Abstract Data Science offers a set of powerful approaches for making new dis-
coveries from large and complex data sets. It combines aspects of mathematics,
statistics, machine learning, etc. to turn vast amounts of data into new insights and
knowledge. However, the sole use of automatic data science techniques for large
amounts of complex data limits the human user’s possibilities in the discovery pro-
cess, since the user is estranged from the process of data exploration. This chapter
describes the importance of Information Visualization (InfoVis) and visual analytics
(VA) within data science and how interactive visualization can be used to support
analysis and decision-making, empowering and complementing data science meth-
ods. Moreover, we review perceptual and cognitive aspects, together with design and
evaluation methodologies for InfoVis and VA.

8.1 Introduction—Why Visualization?

The access to ever increasing amounts of data comes with the promise of more
accurate and effective decisions. However, the dream of automating the analysis
processes is hindered by factors such as noisy and uncertain data, together with the
fact that many problems are ill-defined, making fully automatic solutions unsuitable
or even infeasible. Information visualization enables human analysts to analyze data
without knowing exactly which questions to pose in advance, enabling exploratory
analyses to take place. Through visualization, the analyst is aided in the process of
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detecting patterns and trends in the data, something we as humans are very good
at through our visual apparatus, leaving the complex computations necessary to be
performed by the computer, thus combining the strengths of humans and computers.

Visualizations can be used at different stages in the analysis process. In a first
step, it can be used to better understand the data dealt with, aiding in the process of
choosing analysis strategies and methods. Visualizations can also be used to refine
the analysismethod used by exploring the effects of, for example, parameter changes.
Of course, visualizations are often used to aid end-users make decisions based on
the data, where factors such as the validity of the analysis results play an important
role.

In this chapter, we first outline important aspects of the human visual system,
enabling the effective usage of information visualization techniques. Moreover, we
present the research areas of Information Visualization (InfoVis) and visual analytics
(VA), outlining important aspects of how data scientists can use visualizations to in-
corporate human expert knowledge in the analysis process. The chapter is concluded
with guidance how you as a data scientist can evaluate your visual solutions.

8.2 Perception and Cognitive Aspects of Viusalization

“A picture is worth ten thousand words” the famous proverb says, and visualizations,
or graphic representations, can indeed be seen as information highways that enable
very fast transformation of what we visually perceive into information, knowledge
and insight. Before we continue, we need a basic understanding of the infrastructure
of these highways: howwe constantly pose visual queries in order to solve tasks using
visual perception, how our visual apparatus supports this, how answers are found
through a visual search process, and the important roles our channels of attention
and our perception of color play in this.

8.2.1 Visual Queries

We do not build and maintain a coherent and comprehensive mental picture of our
environment. Instead, we constantly sample the visual space surrounding us on a
“need-to-know” basis. This means that we have mechanisms for quickly getting
access to visual information that might be of interest and comparing this to what
we are looking for as given by the goals or tasks at hand. The first part has much
to do with attention and our ability to operate our body to acquire the information
that interests us. The second part has much to do with our ability to quickly test and
recognize visual patterns.

In [70], “visual thinking” was described as a series of visual queries that guide
our visual apparatus. As an example, using a roadmap, our task is to find the quickest
way from Skövde to Stockholm. Unconsciously, our eyes are drawn to certain parts
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of the map that immediately captures our attention, such as larger dots (cities) and
lines (roads). At the same time, our task makes us start forming visual queries, such
as “where are the heaviest lines?” (major highways) and “where is the text pattern
‘Stockholm’?” (the destination). This way, the queries prime our visual apparatus to
focus on finding the desired patterns. If we find a match, part of the solution has been
found, and we move on forming a new query. If not, we move our eyes (and head)
to look at other parts of the map. Eventually, all queries have been answered and we
have found a way from Skövde to Stockholm.

8.2.2 The Visual Apparatus

Starting with what would correspond to the image sensor of a digital camera, the
eye consists of roughly 125 million photoreceptor cells. There are two types of
photoreceptors: rods and cones. Rods are more sensitive to luminance and motion
but not at all to color, they have lower spatial acuity but have shorter response time,
and they are much more numerous, especially at the perimeter of the retina. Cones
have lower light sensitivity but are chromatic and have higher spatial resolution, they
constitute only about 5% of the total number or receptors but are the only ones to be
found in the very focus of the eye—the fovæ centralis. As a consequence, to perceive
the color of objects at a high level of detail the objects must be in the center of the
visual field. To best perceive flickering or moving objects with low contrast relative
to the background the objects should be near the edge of the visual field.

The different amounts of light and color data captured by the eye do not, however,
directly correspond to the sizes of the areas of the brain cortex where this data is
processed. There is a step of data compression, or data fusion, when the signals from
∼125 million receptors are mapped to the approximately 1 million fibres of the optic
nerve. The degree of compression is much lower in the fovæ area (∼5 cells per fibre)
compared to the perimeter of the retina (thousands of cells per fibre). This means
that more than 50% of the brain’s processing power is devoted to less than 5% of
the captured optic data. As a result, at arm’s length, we only see sharply in an area
corresponding to the size of a thumb’s nail, but at the very center of that area we can
perceive 100 dots on the head of a needle. In contrast, at the edge of our peripheral
vision we can only perceive objects the size of a fist at arm’s length.

Visual thinking as a series of visual queries means that we do not look at our
environment in fixed steadiness; instead, the eyes constantly move around, looking
for regions and details of interest. These jumps from one eye position to another—
referred to as a saccade—are extremely fast, reaching angular speeds up to 900◦/s.
A saccade normally takes ∼200 ms to initiate, and then takes about 20–200 ms to
execute, depending on the amplitude, but, aswewill see, initiation time can be greatly
reduced by priming the visual apparatus. This is important since during a saccade
we are subject to so called saccadic masking, rendering us effectively blind (effects
that would result in blurriness or gaps in visual perception are suppressed).
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Fig. 8.1 The visual pathways for “what” and “where” queries. (Anatomy and Physiology, Con-
nexions Web site. http://cnx.org/content/col11496/1.6/, Jun 19, 2013, by OpenStax College Data
is licensed under CC Attribution 3.0 Unported.)

The signals from the optic nerve ends up at the back of the brain, in the primary
visual cortex, also referred to as visual area 1, V1, from which information is fur-
ther relayed to subsequent visual areas, V2–V6. V1 and V2 are concerned with the
detection of basic features of the visual space, such as size, edges, color, motion,
orientation, form and depth. The further up in the chain of visual areas, the more
complex visual representations, or patterns, are formed. For instance, the lateral
occipital complex (LOC) is where general shape detection occurs, which the infe-
rior temporal cortex (IT) subsequently uses for recognizing objects, such as faces,
number and letters. There are two general pathways of visual processing, and which
is used depends on the visual query in question: “What” queries, i.e., queries asso-
ciated with form recognition, object representation and long-term memory, follow
the ventral pathway; “where” and “how” queries, i.e., queries associated with object
location and motion, or requiring controlling the body in the answering of the query
(especially movement of the eyes and the head), follow the dorsal pathway. See
Fig. 8.1.

For a more detailed account on the visual apparatus and its influence on visual
perception we refer to [70].

8.2.3 The Visual Search Process

The visual processing pathways described above are actually two parallel processes:
In a bottom-up process, visual information in the form of light patterns on the retina
drives pattern building from basic features. In a top-down process, the visual queries
at hand and their corresponding need for attention in terms of objects and patterns of

http://cnx.org/content/col11496/1.6/
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interest reinforce perceptual actions (e.g., eye movements) and prime (tune) signals
in the bottom-up chain.

At a conceptual level, the visual search process can be described in terms of three
nested loops [69]:

Pattern testing In the innermost loop, information from the current area of fixa-
tion—the period between saccations—is tested against patterns of interest, at a
speed of approximately 20 patterns per second. Given that a fixation normally
lasts for about 0.2 s, this means that ∼4 patterns are tested in each iteration.

Search for patterns If we fail to find the pattern of interest in the current fixation
area, the second loop starts by priming the bottom-up process towards relevant
features. It also reinforces eye movements by remembering fixation points al-
ready visited in the area in order to avoid repeated testing. As a final step, a new
nearby fixation candidate is identified in the area and eye movements are made to
acquire it.

Identify candidates If the second loop fails to find a fixation candidate, the search
for visual elements (patterns, objects etc.) of relevance to the visual queries at
hand must be extended. The outermost loop starts by priming the top-down pro-
cess towards relevant patterns and objects, using task and domain knowledge and
experience from similar visual queries. It also reinforces actions needed to per-
ceive new, more peripheral, parts of the environment in order to identify candidate
areas. Finally, eye, head and possibly also body movements are made to acquire
a new area of fixation.

8.2.4 Channels of Attention

An important part of the visual search process is the constant tuning of visual signals
in order to strengthen our attention to objects and patterns of interest. What guides
and influences the processing in visual areas V1 and V2 is coupled to what features
“stand out” or “distract”—what draws our perceptual attention—in the visual space.
Research (cf. [64]) has shown that the following pre-attentive features are tunable
in V1 and V2, in the meaning that they can be used to reinforce the forthcoming eye
movements and the search for and testing of patterns:

• Color (hue and lightness).
• Elementary shape (size; elongation; curvature; sharpness/fuzziness).
• Orientation (direction; angulation; alignment/misalignment).
• Motion (direction and phase of motion; blinking).
• Spatial grouping (proximity; joined lines; enclosing contours or color region).
• Depth (shadow; convex/concave).

How well an object or pattern stands out—the pop-out effect it generates—does not
depend on the number of distractive features it exhibits. It is the relative contrast to
other objects or patterns that is decisive for our attention being drawn to the object or
not, and the relative contrast must be above a certain threshold value for the pop-out
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Fig. 8.2 Non-symmetrical pop-out effect: Left image: The area of the central dot is half the area
of the rest of the dots. Right image: The area of the central dot is double the area of the rest of the
dots. The resulting pop-out effect is clearly larger in the right image as compared to the left image

effect to occur. Also, the generated pop-out effect is often not symmetric: an increase
in, e.g., shape size, will make an object stand out more clearly from other objects
than an equally large decrease in shape size would have made (see Fig. 8.2).

The above features are “hard-coded” in V1 and V2, both in the sense of our
attention automatically and unconsciously being drawn to patterns and objects that
stand out in terms of these features (we cannot train ourselves not to immediately
see the single red dot in a large collection of otherwise black dots, or directly notice
the single outlier of an otherwise dense cluster of objects), and in the sense that these
features are processed separately in V1 and V2, thus forming separate channels of
attention. In everymoment, V1 andV2 can be tuned to a pre-attentive feature,making
it easy to, e.g., find all squares in a collection of circles and squares by priming the
elementary shape channel or to find all green objects in a collection of red and
green objects by priming the color channel. Although some conjuncts of features are
tunable, most conjuncts are not pre-attentive (does not generate a pop-out effect).
This explains why it is much harder to find all green squares in a collection of red or
green circles and squares, since that would require priming two different channels
of attention at the same time, and shape ∩ color is not a pre-attentive conjunct.

By encoding objects and patterns using visual features from different channels we
can simultaneously pay attention to several objects and patterns: one type of object
could be encoded using color, another using shape, a third usingmotion and so on. To
this we can add the variants within each channel: one type of object can be encoded
using hue, another using lightness and so on. Experience show that a handful of
channel features can be combined this way, but it is very hard to effectively use more
than 8–10 features within a single visualization or graphic representation.

8.2.5 Perception of Color

As described in Sect. 8.2.2, cones are sensible to color: some cones are sensitive
to mostly long wavelength light (reds), some to mostly medium wavelength light
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(greens), while other cones are sensible to mostly short wavelength light (blues). The
information from the cones (and the rods) are processed in V1, where the signals
are added and subtracted in several steps, thereby forming three color-opponent
channels: red–green, blue–yellow and black–white (the last one being achromatic,
only detecting luminance). A strong signal in one direction on one channel and
neutral signals on the other two channels result in the six psychological primary
colors black, white, red, green, yellow and blue, so called because any other color
could be described in terms of some combination of these. Researchwithin linguistics
has shown that there seems to be a consensus among different cultures on these being
“true” primary colors, and also that there is no ordering of these colors (i.e., black
does not “come before” white, blue is not “larger than” green etc.).

Compared to the other two channels, the black–white channel has much higher
capacity to encode detailed visual information (much higher resolution), especially
regarding spatial information, but also when it comes to motion and depth. Thus, a
high-density visualization or graphic representation should use grayscale to encode
objects and patterns, as opposed to any other coloring scheme.

An important observation is that the interpretation of color is context sensitive,
and is influenced both by nearby colors, nearby difference in luminance, nearby
shadows and nearby textures. As a consequence, two objects that, according to the
color-opponent channel model, have exactly the same color, but are situated in two
different context, might be perceived to have two very different colors.

8.3 Information Visualization

Visual representations help people to understand abstract data. For instance, tracing
the flight [33] uses live data to visualize thousands of commercial flights on a ge-
ographical map. If displayed in simple text and numerical information, it would be
much more difficult to identify hub areas with high traffic volumes. According to
manydefinitions of information visualization, it uses the computer support to enhance
human’s cognition. Two early definitions of Information Visualization (InfoVis) are:

• The use of computer-supported interactive, visual representation of abstract data
to amplify cognition [13].

• Information visualization utilizes computer graphics and interaction to assist hu-
mans in solving problems [21].

This section gives an overview of the research area of information visualization,
providing the reader with references for further exploration.
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8.3.1 InfoVis Tools and Applications

A lot of tools are now available online with the help of practitioners and researchers
providing open source code together with tutorials. Some of the examples are d3.js
[11], javascript infovis toolkit [7], vega [53], prefuse [23], plotly [24], gephi [5],
and raw [38]. And surely, we have been using histograms, pie charts, bar graphs,
scatter plots, radial graphs, and treemaps [56] in many areas such as in industry and
academia.

The areas that apply information visualization, to name some, are scientific re-
search, digital libraries, data mining, information graphics, financial data analysis,
marketing, manufacturing production control, crime mapping, etc. [6].

8.3.2 InfoVis as a Research Field

Information visualization is a method to visually communicate the information effi-
ciently and effectively, both aesthetically and functionally. It can be used to explore
the knowledge field, to support the decision-making process, to confirm a model and
certain dataset, or to simply present results.

A renowned work in the early days is hold by Bertin [8, 9], when his theory
obtained a significant position in the information design area. He describes the use
of signs and symbols for two-dimensional static presentations based on practical
experience, but unfortunately not thoroughly evaluated. The concept of information
visualization has evolved from static presentations to more dynamic representations
since then. Bederson and Shneiderman [6] remark that the field of information vi-
sualization has emerged “from research in human-computer interaction, computer
science, graphics, visual design, psychology, and business methods. It is increasingly
applied as a critical component in scientific research, digital libraries, data mining,
financial data analysis, market studies, manufacturing production control, and drug
discovery”.

Nowadays, it is encouraged to communicate with more intuitive and even insight-
ful visuals. Amongmany surveys within the field, Tufte [65] provides inspiring cases
of various graphical examples. Few [19] introduces practical data visualizations for
analysis and Ware [70] guides the ways to design visuals and the relations to human
perception. Recently, Munzner [44] offers a synthesis view on the visualization field
with extensive models and frameworks during the past 15 years. With the knowl-
edge we gained over the decades, the beginners are able to learn from a collection
of existing visuals where some of the tools are open-source and already available
online.

We are used to techniques such as tables, histograms, pie charts, bar graphs
(Fig. 8.4j), and scatter plots (Fig. 8.4b). However, there is a higher demand on
more intuitive and insightful visuals using interactions. In fact, with the informa-
tion flood and easier accessibility, we face even higher needs to communicate with
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Fig. 8.3 Multiple visualization techniques displayed in the same dataset. a Node-link diagram, b
matrix view, c quilts [4]

multi-dimensional and heterogeneous dataset. Some of the examples are time-series
data (using i.e. index charts, stacked/stream graphs (Fig. 8.4l)), statistical distribu-
tions (using i.e. scatter plot matrices, parallel coordinates (Fig. 8.4i)), maps (using i.e.
flow maps, choropleth maps), hierarchies (using i.e. node-link (Fig. 8.3a), adjacency
diagrams) and networks (using i.e. force-directed layouts (Fig. 8.4e), matrix views
(Fig. 8.3b)) [22].

Information visualization can be grouped based on data characteristics, tech-
niques, and dimension management. A dataset can include only numbers, only text,
graphs, or a combination of them. Ward et al. [68] provide pseudocode and algo-
rithms of various types of visualization techniques with a bottom-up viewpoint on
visualization. The authors divide techniques based on the data types: spatial, geospa-
tial, multivariate, trees/graphs/networks, and text/document. They also demonstrate
interaction concepts and related interaction techniques. In Liu et al. [35] work on
visualization is categorized in four categories based on the data used: graph, text,
map, andmultivariate data visualizations. They further present a taxonomyof InfoVis
techniques used during recent years.

In addition, users and viewers are able to visualize multiple visuals in one frame
with the help of greater accessibility to open source codes and various techniques
and tools. For instance, relationships of automobile features [22] on horsepower,
weight, acceleration, and displacement can be represented in a scatter plot matrix
and parallel coordinates. Also, a code package hierarchy [22] can be viewed in a
tree diagram, a cartesian node-link diagram, a sunburst (radial space-filling), and
a treemap. Figure8.3 illustrates an example of a synthetic dataset displayed with a
node-link diagram (Fig. 8.3a), a central matrix view (Fig. 8.3b), and quilts (Fig. 8.3c)
with the same dataset [4]. Using the linking and brushing interaction techniques, i.e.
where a change in one visualization is also reflected in the others, thus connecting
multiple visualizations, can help to overcome the limitations of a single visualization
technique [28].

To date, there are numerous venues for InfoVis research. The main resources
within the field are:
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Fig. 8.4 Information visualization examples. a Convex hull, b scatter plot, c box plot, d circular
dendrogram, e clustered force layout, f sunburst, g treemap, h alluvial diagram, i parallel coordi-
nates, j bar chart, k bump chart, l streamgraph. Adapted from Mauri et al. [38]

• Journals: ACM SIGGRAPH, IEEE Transactions on Visualization and Computer
Graphics, Computer Graphics Forum, IEEEComputer Graphics andApplications,
Information Visualization.

• Conferences: IEEE Symposium on Information Visualization (InfoVis) (pub-
lished as a special issue of IEEE TVCG since 2006), IEEE Pacific Visualization
Symposium (PacificVis), EuroVis, International Conference on Information
Visualization.
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8.3.3 InfoVis Research Challenges

Below, we summarize InfoVis research challenges (which are also relevant to recent
visual analytics, see Sect. 8.4). Since visualization and visual analytics are compre-
hensively connected, establishing and measuring evaluation methods and trustwor-
thiness are challenges in both areas.

• Structure new methodologies for evaluation metrics and obtain better understand-
ing of users and tasks.

There has been criticism on using only time and errormetrics to validate the perfor-
mance of a visualization tool or system. Kosara [34] demonstrates memorability
and engagement as potential new metrics. Yet, how can we measure these in an
effective way and what are the tradeoffs? We find that there is an increasing num-
ber of publications performing data exploration and analysis as well as follow-up
user studies and empirical evaluations [35]; however, there still remain unsolved
issues [35]. Moreover, Chen [16] describes the need for more attention to better
understand the elementary perceptual-cognitive tasks. In addition, it is not clear
how the users’ prior knowledge affects in an effective dialog between information
visualization and its users.

• Enhance trust and interpretability.

As viewers or users are more involved throughout the visual interaction and anal-
ysis process, incorporating visual trust [37, 39] is becoming more important to
enhance user knowledge and cognition ability. However, there seems to be differ-
ent levels and meanings of trust which can also be measured differently. Endert et
al. [18] provide views on both qualitative and quantitative levels.

• Perform interdisciplinary research with other areas, i.e. machine learning.

There is an increased trend to perform interdisciplinary research [18, 30]. For
instance, final results are rendered in a static way in machine learning, but we
see more research work to incorporate visualization and interaction mechanisms
for a better understanding. Recently, there has been more communication among
researchers in different areas in order to solve problems together (i.e. render in-
termediate results (TensorFlow [1], t-SNE [66]) and mechanisms to manipulate
algorithm parameters).

• Others

Other issues include integrating heterogenous data and displaying visual scalabil-
ity and streaming data [35]. Visualizing causality [3] and uncertainty, measuring
intrinsic quality, and gaining visual inference and prediction [16] are also issues
to be solved.
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8.4 Visual Analytics

Exploring and analyzing large amounts of data is becoming more and more difficult.
The data is often disparate, dynamic and conflicting, as well as stemming from vari-
ous heterogeneous sources. The sole use of automatic analysis methods reduces the
human analysts possibilities to understand the data, as well as to input his/her exper-
tise in the analysis. Further, automatic analyses only work well for well-defined and
specific problems [32], making such approaches unsuitable for explorative analyses
where analysts are searching for insights from data without predefined hypotheses.
Moreover, today it is not only trained data scientists who are to analyze this data,
but domain experts and decision makers with various backgrounds. Visual Analyt-
ics (VA) has been recognized as a way of enabling more effective understanding
and analysis of large datasets, based on the assumption that interactive visual rep-
resentations can augment the human capabilities of detecting patterns and making
inferences [26]. By taking advantage of the analytical capabilities of the computer
and the creativity of the human analyst, VA sets the foundation for enabling novel
and unexpected discoveries.

This section provides a short overview of the research field of VA, outlining its
importance within data science.

8.4.1 VA Definition and Process Model

VA strives to facilitate the analytical process by creating software that enables the
human analyst to make use of his/her capability to perceive, understand and reason
about the data. The VA process is characterized by the interaction between data,
visualizations, data models, and the analysts to discover knowledge [27]. Figure8.5
gives an overview of the stages (ovals) and their transitions (arrows) in the VA
process. The first step is to pre-process and transform the data through data cleansing,
grouping and normalization activities. After the data transformation stage, the analyst
can choose to apply automatic or visual analysis methods. If an automatic approach
is chosen, the analyst may choose among various data mining methods to analyze
the input data and create a model of it. After the model creation, the analyst needs
to evaluate and refine the model, often through interactive means where input data,
parameters and/or analysis algorithms can be altered. Through model visualizations,
the analyst can evaluate the findings of the generated models, ultimately leading
to more and more knowledge about the data and problem at hand. If visual data
exploration had been chosen first, the analyst has to confirm the generated hypotheses
by an automated analysis. Misleading results at an early stage in the analysis can
thus be detected, leading to better and more transparent results where the analyst
can zoom in on different data areas or consider different visual views of the data. As
such, compared with fully automatic analyses, the human analyst is in control of the
analytical process.
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Fig. 8.5 The visual analytics process (adapted from [27]). Data is collected, transformed and
analyzed by automatic and manual means, incorporating the human analyst in the reasoning
carried out

VAhas grown from information visualization, but includes areas such as analytical
reasoning, decision-making, data analysis and human factors. According to Thomas
and Cook [62], VA involves the following areas:

• Analytical reasoning techniques that let users obtain deep insights which support
assessment, planning and decision-making,

• Visual representations and interaction techniques that exploit the human eyes broad
bandwidth pathway into the mind to let users see, explore and understand large
amounts of information simultaneously,

• Data representations and transformation that convert all types of conflicting and
dynamic data in ways that support visualization and analysis, and

• Techniques to support production, presentation and dissemination of analytical
results to communicate to audiences.

As such, VA is highly interdisciplinary, focusing on the integration of all of these
diverse areas. Due to its multi-disciplinary nature, defining VA is not easy. An early
definition was “the science of analytical reasoning facilitated by interactive human-
machine interfaces” [61]. However, based on its current practice, a more specific
definition would be: ”visual analytics combines automated analysis techniques with
interactive visualizations for an effective understanding, reasoning and decision-
making on the basis of very large and complex datasets” [26].

Central to VA is Shneiderman’s [57] famous visual information seeking mantra
“overview first, zoom/filter, details on demand”. This mantra was extended by Keim
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et al. [29] to depict the VA process framework: “analyze first, show the important,
zoom/filter, analyze further, details on demand”, indicating that it is not sufficient
to just collect and display the data visually, but rather that is necessary to analyze
the data according to its value of interest, to show the most relevant aspects of the
data, as well as to allow the user to get details of the data when needed through the
provided interactions.

8.4.2 VA Tools and Applications

To support the VA process, several tools and applications have been developed which
incorporate data mining and visualization functionalities. Examples of general, com-
mercial tools are Tableau (www.tableau.com), Spotfire (www.spotfire.com), SAS
(www.sas.com) and Datameer (www.datameer.com), whereas a myriad of applica-
tion specific tools also can be found related to, for instance, biology [14], security
[20, 36] and geography [58]. As a result, VA is gaining more and more attention
from both industry and academia.

8.4.3 VA As a Research Field

The formal beginning of VA is often marked by the publication “Illuminating the
Path: The R&DAgenda for Visual Analytics” [61] in 2005, where researchers within
the field identified challenges and main VA science areas: the science of analytical
reasoning, visual representations and interaction techniques, data representations
and transformations and presentation, production and dissemination. Forums for VA
publications are, amongst others, IEEE Visual Analytics Science and Technology
(VAST) Symposium (www.ieeevis.org), information visualization journals, confer-
ences and related workshops.

The initial domain driving the development of VA was homeland security where
the focus was on supporting the detection of, response to and recovery from man-
made and natural disasters. Consequently, some of the first deployments for VA
technology have been for the public safety and emergency response communities.
However, other fields rapidly gained interest in VA, especially in domains where
increasing data volumes, complex data analysis and the need to communicate ana-
lytic outcomes were prevalent, such as human and environmental health, economics,
and commerce [63]. In a recent survey of VA applications and research [59], it was
concluded that the main efforts are conducted regarding the design of intuitive user
interactions and the visual mappings of existing algorithms, than regarding the in-
teraction with the models used in the analysis.

www.tableau.com
www.spotfire.com
www.sas.com
www.datameer.com
www.ieeevis.org
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8.4.4 VA Research Challenges

Several researchers within the VA community have listed a range of different chal-
lenges that need to be addressed to guide the future development of VA applications
(see for instance [26, 29, 59, 63]). A summary is provided below:

• Scalability and data management: a great challenge lies in the ability to visualize
big data interactively. Many existing VA techniques and tools are able to handle
small/medium sized data, but are not scalable to extreme-scale data.Many analytic
applications use in-memory storage rather than a database approach, making the
analysis a tedious process. Dealing with streaming data also presents challenges,
and much time and effort is often needed to deal with low quality, missing, in-
complete and/or erroneous data, which adds to the complexity of integrating data
from many sources.

• Black-box models: to communicate the findings from complex models to enable
sensemaking and insight is not easy.Many datamining andmachine learning algo-
rithms are considered black-boxes, meaning that they are difficult to understand,
which hinders their effective use and makes their results difficult to trust. How to
make the models transparent and easy to use remains a great challenge within the
VA community.

• Trustworthiness and provenance: Not only the models used in the VA process need
to be transparent, but also the data used and refined. For example, uncertainty may
arise and spread in different steps of an analytics process and to keep track of
the uncertainty is important for producing reliable and trustworthy results. Many
techniques for uncertainty visualization exist, but due to the complexity of different
VA applications, there are still no widely accepted techniques.Moreover, to enable
the analyst to keep track of theVAprocess and the intermediate results is important,
especially in collaborative scenarios, to promote understanding and transparency.
However, more research is needed how to retrieve and visualize important partial
results.

• Tool design and evaluation: VA has been applied in a wide range of domains and
many application-specific tools have been developed. Due to the heterogeneity of
the applications and users, it is not easy to accommodate for all needs and pref-
erences. For example, experts may require flexibility, whereas novices guidance
regarding appropriate analysis tools and visualizations for the task at hand. VA
practitioners have used various approaches such as case studies, expert reviews,
formal/informal user studies etc. to evaluate the usability and effectiveness of the
systems, and more guidance is needed how to perform good evaluations.

8.5 Design and Evaluation

This section presents basic guidelines and processes for the design and evaluation of
InfoVis and VA techniques, methods and systems.
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Fig. 8.6 Design process adapted from Offermann et al. [47]

8.5.1 Design

The design space of possible ways to design visualization systems and techniques is
vast [44]. There are design processes in the areas of system design and user-centered
design (that involve capturing the user’s needs and preferences) that can be used
for InfoVis and VA design, for instance, Vredenburg et al. [67] and Offermann et
al. [47]. As shown in Fig. 8.6, the process established the following phases: iden-
tify the problem, pre-evaluate relevance, design artifact, refine hypothesis, expert
survey/laboratory experiment/case study/action research and summarise. A practical
example of the application of this design process can be found in [51].

A design that does well by one measure might rate poorly on another, hence, the
characterization of trade-offs in the visualization design space is an open problem
in visualization research [44]. A suggested process for the design and validation of
visualizations is the one presented by Munzner in [43], see Figs. 8.7 and 8.8. This
model splits visualization design into levels; the four levels are: characterize the tasks
and data in the vocabulary of the problem domain, abstract into operations and data
types, design visual encoding and interaction techniques, and create algorithms to
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Fig. 8.7 Four levels of the
nested model and four kinds
of threats to validity adapted
from Munzner [43]

Fig. 8.8 Nested model for visualization design and validation, adapted from Munzner [43]

execute these techniques efficiently. Munzner [43] shows four kinds of threats to
validity:

• wrong problem (they do not do that),
• wrong abstraction (you are showing them the wrong thing),
• wrong encoding/interaction technique (the way you show it does not work),
• wrong algorithm (your code is too slow).

The top level characterizes the problems and data of a particular domain, the next
level maps those into abstract operations and data types, the third level is to design
the visual encoding and interaction to support those operations, and the innermost
fourth level is to create an algorithm to carry out that design automatically and
efficiently. The three inner levels are all instances of design problems, although it
is a different problem at each level. These levels are nested, so the output from an
upstream level above is input to the downstream level below, hence an upstream error
inevitably cascades to all downstream levels. That is, if a poor choice was made in
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the abstraction stage, then even perfect visual encoding and algorithm design will
not create a visualization system that solves the intended problem. The model shows
iterative refinement and the levels don’t need to be done in strict order. The InfoVis
design process illustrated in Figs. 8.7 and 8.8 has been revisited and improved in
several later publications [41, 42, 55]. Examples of design papers from our own
research are presented in [50, 51]; other examples of InfoVis and VA design papers
are for instance, [40, 45].

8.5.2 Evaluation

The proliferation of InfoVis and VA techniques has also highlighted the need for
principles and methodologies for their empirical evaluation [17]. Research in in-
formation visualization has largely focused on the development of innovative vi-
sualization techniques but their evaluation has often been relegated to a secondary
role. However, the evaluation of InfoVis and VA techniques, methods and systems
is crucial for guaranteeing that they actually support users carrying out analytical
tasks. Evaluation is a crucial part of the design process. When talking about evalua-
tion of InfoVis and VA is necessary that we refer to other disciplines, e.g. HCI and
usability. The international standard, ISO 9241-11, defines usability as the extent
to which a product can be used by specified users to achieve specified goals with
effectiveness, efficiency, and satisfaction in a specified context of use. According to
its purpose, there are three general types of usability evaluation: exploratory (how is
it or will be used?), formative (how can it be made better?) and summative (how good
is it?) 1 (see notes by Andrews [2]).

Exploratory evaluation examines current usage and the potential design space
for new designs. It is normally carried out before the interface design; learning
which software is used, how often and what for. Normally, usage data is collected—
statistical summaries and observations of usage.

→ Use observation, interviews, surveys and automated logging.
Formative evaluation informs the design process and helps improving and in-

terface during the design process. It learns why something went wrong, not just that
it went wrong. Process data is collected during this kind of evaluation—qualitative
observations of what happened and why.

→Heuristic evaluations and thinking aloud tests should be run at regular intervals.
Summative evaluation assess the overall quality of an interface. It is done once an

interface is more or less finished. Either compare alternative designs, or tests definite
performance requirements. It collects bottom-line data—quantitative measurements

1Soup analogy:
“When the cook tastes other cook’s soups, that’s exploratory.
When the cook tastes his own soup while making it, that’s formative.
When the guests (or food critics) taste the soup, that’s summative.”
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of performance: how long did users take, were they successful, how many errors did
they make.

→ Running formal experiments that measure, for example: time to complete
specific tasks, number of tasks completed within a given time, accuracy of task
completion, number of errors, number of commands/features used.

There are three challenging aspects when evaluating InfoVis and VA techniques
and systems that deserve special consideration: how to measure insight, evaluation
tasks and evaluation metrics.

Insight. Providing insight is considered to be the main purpose of InfoVis and
VA [46, 61]. However, there is no comprehensive evaluation methodology to de-
termine the real value of visualization in terms of its goals of facilitating insight,
discovering knowledge, or supporting analytical reasoning. Part of the problem of
designing and developing adequate evaluation methodologies resides in the fact that
it is difficult to define insight or knowledge discovery, and even if definitions exist
(see an exhaustive discussion in [15], there is not one that is commonly accepted by
the research community [71]. How do the newly designed visual environments assist
users in gaining insight, acquiring knowledge, or reasoning analytically?

The approaches taken to study insight and analytical reasoning stem from cog-
nitive acience theories, sense-making, activity theory, problem solving or human
computer interaction. For instance, in [60], the authors demonstrate that cognitive fit
theory, along with the proximity compatibility principle, can be used as a basis to
evaluate the effectiveness of information visualizations to support a decision-making
task. The cognitive fit theory proposes that when the problem representation fits the
problem-solving task, a preferable mental representation of the problem will be cre-
ated, resulting in improving the accuracy and speed of the problem-solving process
[60].

Evaluation tasks. The lack of task models and taxonomies of tasks makes the
assessment of visual environments for researchers and developers that are not ex-
perienced in evaluation more difficult. Which tasks should be used when evaluating
InfoVis and VA environments?

There are several classifications of tasks for evaluation purposes in the literature,
a recent review that covers such classifications and a discussion of their terminology,
nature andvalidity is presented in [31],while an example classificationwith particular
tasks to use during the evaluation can be found in [12, 54]. For instance, a visual
task can be ‘to categorize’, ‘to distinguish’, ‘to compare’, ‘to identify’, ‘to locate’,
‘to rank’, ‘to cluster’, ‘to associate’, etc.

Nevertheless, Saraiya et al. [52] argue that most visualization tools are evaluated
in short-term and controlled studies, using preselected data sets and benchmark
tasks. Therefore, in [52], the authors present a long-term study of the use of certain
VA tools (such as Spotfire, PathwayAssist and GenMapp) during the analysis of a
bioinformatics data set. To keep the experiment as close to a real-world data analysis
as possible, no predefined tasks were used, and the bioinformaticians were requested
to keep a diarywith the insights gained from the data analyzed.One of the conclusions
drawn is that longitudinal studies can provide insight into the VA process, practices,
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and actual data analysis tasks that can guide evaluators and visualization designers
in constructing tools that better match this analytic process.

Evaluation metrics. The usage and definition of quality metrics for visualization
techniques are, as yet, immature fields and there is no common understanding ofmet-
rics [10]. Bertini and Santucci [10] propose a classification for visual metrics based
on three main categories: size metrics (e.g., number of data items, density, and screen
occupation percentage), visual effectiveness metrics (measures of occlusion, colli-
sions, and outliers), and features preservation metrics (intended for measuring how
correctly an image represents some data characteristic, e.g., number of identifiable
points compared to number of actual data items).

Papers dealing with InfoVis and VA evaluation that can be used as examples for
how to carry out this kind of work are [25, 48, 49].
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Chapter 9
Complex Data Analysis

Juhee Bae, Alexander Karlsson, Jonas Mellin, Niclas Ståhl and Vicenç Torra

Abstract Data science applications often need to deal with data that does not fit
into the standard entity-attribute-value model. In this chapter we discuss three of
these other types of data. We discuss texts, images and graphs. The importance of
social media is one of the reason for the interest on graphs as they are a way to
represent social networks and, in general, any type of interaction between people. In
this chapter we present examples of tools that can be used to extract information and,
thus, analyze these three types of data. In particular, we discuss topic modeling using
a hierarchical statistical model as a way to extract relevant topics from texts, image
analysis using convolutional neural networks, and measures and visual methods to
summarize information from graphs.

9.1 Introduction

Traditional databases consist of tables where data is represented in terms of the
entity-attribute-value model and has a rigid structure. That is, data is represented in
terms of a set of records where each record describes an entity by means of values
for each attribute. Nevertheless, there is information that can be represented in an
easier way in other formats. NoSQL databases, for not only SQL, permit efficient
storage and retrieval of other types of data. This is the case of text documents and
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images, key-value objects (collection in which different objects may have different
sets of fields) and graphs.

Big data introduces additional challenges to storage, processing and analysis.
Big data is usually defined in terms of the well known 3Vs: Volume (data in large
quantities), Variety (from text to images, geolocations and all kinds of logs), Velocity
(data comes fast and needs to be processed also fast, and sometimes data life time
is short). Sometimes additional sets of Vs (5Vs or even 7Vs) are used to define big
data. 5Vs include Veracity (trustworthiness, quality and accuracy of the data) and
Value (as the goal is to turn data into value). 7Vs include Variability (data constantly
changing) and Visualization (to stress the need of tools to help understanding the
data). N.B., we are not addressing the legal and organizational sources of complexity
that are prevalent in the public sector [8, 15] where two S’s and 1V are considered:
Silos, Security, and Variety.

Taking all this into account and in order to be operational, we can distinguish
three main subclasses within big data: (i) large volumes, (ii) streaming data, and
(iii) dynamic data. Large volumes refers to data that is of large volume but with a
low variability. Streaming data is when data arrives continuously and we need to
process it in real time. Dynamic data is when data continuously changes. Methods
and algorithms for data storage and processing are defined taking into account these
types of data.

Whenwe take a snap-shot of a part of a social network for its analysis, we have big
data in the sense of (i). That is, we have data of large volume but without variability.
On the contrary, when we are interested in posts in a social network and how their
content changes with respect to time, we are stressing variability.

Methods for streaming data, (ii) above, are often based on sliding windows (see
e.g., [5]). That is, data is buffered and processed in memory. It is clear that the
size of the window influences the quality of the processing. Larger windows usually
improve the quality of the data processing at the cost of computational time and
memory. Adaptive windowing [5] has also been proposed to improve results.

Dynamic data, (iii) above, means that the result of any analysis change over time.
We can repeat the analysis or revise previous results and conclusions.

In this chapter we focus on the analysis of data of type (i). We focus on three types
of data and discuss some analyses for these types. In particular, we present examples
of tools to analyze text documents, images and graphs.

It is important to stress that in the analysis of complex data, the selection of the
problem and the methods to be used are of crucial importance. They are in fact
more relevant than in the analysis of non-complex data. This is so because there
are more standardized methods for the analysis and for sketching the latter type of
data. Another important issue for any data scientist is whether complex data can be
transformed into a non-complex data set to apply standard methods. For example,
extracting features. Transformation of text documents into bags of words and then
apply a machine learning method to these bags of words is an example of this type
of transformation.

The structure of this chapter is as follows. We will begin in Sect. 9.2 showing how
to build a hierarchical statistical model to find the topics of a text. In Sect. 9.3 we
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consider image analysis using convolutional neural networks. Then, in Sect. 9.4 we
discuss graphs and discuss some of the measures used to extract information from
them, and also the use of quilts for their visualization. The chapter finishes with a
discussion and summary.

9.2 Text Analysis and Topic Modeling

Topic models [6, 7] is a modeling technique used for text analysis where the aim is
to capture the contents of the text in the form of patterns in word distributions of
the documents, denoted as topics. The method constitutes an unsupervised learning
approach to text analysis. When a topic model is a good “fit” to a given corpus,
i.e., set of documents, and if one possesses domain knowledge regarding the text,
it is often possible to label the topics by exploring the words found in the topics.
As an example, assuming that a topic model has been trained on a corpus about
programming, one might find a topic with the top five most probable words: divide,
dynamic, conquer, algorithm, complexity, which one could then label as “design
paradigms of algorithms”.Note that there is nomentioning of anywords like “design”
or “paradigm” in the above words, nevertheless, by using domain knowledge, the
label of the topic can still be inferred.

More formally, a topic model is a hierarchical statistical model where the topics,
i.e., word distributions T = {p(w|t1), . . . , p(w|tn)}, reside on the top level within
themodel, i.e., the corpus levelD, where each document D ∈ D consists of wordsw,
according to some pre-defined vocabulary of wordsV . This means that any document
D ∈ D is reduced to the words found in V and that each such word is assumed
to originate, or be generated, from a topic found in T . Hence, one can think of a
document as having a proportion of each topic. An illustration of such line of thinking
can be seen in Fig. 9.1.

In order to define a vocabulary V , it is necessary to perform some pre-processing
on the documents. We reduce each word into its “base form” (so different versions of
the same word are not counted as different words) denoted as stemming, and remove
so called stop words (words like “the” etc. that do not provide much information),
numbers and short words [1, 13]. After this one constructs a so called document-
term matrix that contains the frequencies of each word type. This matrix can be
furthered used to filter out important words according to a weighting schema, e.g.,
term-frequency inverse-document frequency [18].

In order to learn a topic model, one needs to resort to approximate inference
algorithms, e.g., Gibbs sampling [12]. An illustration of the learning phase of the
topic model is seen in Fig. 9.2.
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Fig. 9.1 The figure shows that each document is transformed to a set of words (bottom part)
according to a vocabulary V and then this information is used in order to learn a topic model, shown
in the upper half section of the figure. We can see that the words in each document are modeled as
if they were originating from a proportion of different topics on the corpus level

Fig. 9.2 The figure illustrates that words have been assigned to topics and by iterating through
each word w and sample from the conditional distribution given the word-to-topic assignment for
all other words, besides w, one can eventually obtain a sample that is representative for the topic
model
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9.3 Image Analysis with Convolutional Neural Networks

Computer vision ormachine vision is one of the oldest and most studied fields within
AI [21]. The aim of computer vision is to mimic the human visual system and let
computers extract high-level understanding from images. Even if computer vision
systems have been developed a lot in the last decades many challenges are still to be
solved. A major problem is to understand the contextual structure of the image, that
is, to understand the relationships and interactions among the objects in the image.

In this section, we will look at more specific image analysis tasks in which com-
puters have excelled, such as object detection in images [19] and image classifica-
tion [16]. One of the reasons for why image analysis has advanced somuch in the last
decades is due to the introduction of convolutional neural networks. Yet much of the
advancements are also driven by practical improvements such as the vast increase
in available data and the increase of computational performance. In this section, we
describe how to perform an image analysis using convolutional neural networks. See
also the chapter on machine learning in this book [10].

Even if it is not strictly required in all uses for convolutional neural networks, it
is often a appropriate to scale or crop images so that all images in the dataset have
the same shape and number of pixels.

The idea behind convolutional neural networks is that each small area in an image
may be analyzed separately and in the same way. This analysis, called the convolu-
tional step, finds hidden features describing the content of the given small area. The
found hidden features may then be combined into matrices, called feature maps, that
can be analyzed in the same way as the image was analyzed. When the hidden fea-
tures are combined it is common to use some kind of subsampling, such as average
or max pooling, representing an area with either its average or maximum value. This
is called the pooling step. Convolutional and pooling steps are the main building
blocks of a convolutional neural network and will be described with greater detail in
this section. Finally, it will be described how these are combined into a convolutional
neural network.

9.3.1 Convolutional Step

In the convolutional step the image or map is split up in several small squares, often
arranged in a grid and overlapping each other (see Fig. 9.3). A single layered neural
network is applied to these small areas and the output is defined as:

f

⎛
⎝θ0 +

m∑
i=0

n∑
j=0

θi, j xi

⎞
⎠ (9.1)
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Fig. 9.3 A square of size 2 × 2 is being analyzed by a network with three neurons. The square that
are analyzed are highlighted. All possible square of size 2 × 2 in the image will then be analyzed
separately, but by the same network, having the same weights

where θi, j are the weight parameters that should be learned by the network, θ0 is the
bias that also should be learned and f is the activation function. The rectified linear
function defined in Eq. (9.2) is often used as activation function [9].

frelu(x) =
{
x if x > 0

0 otherwise
(9.2)

In Eq. (9.1)m represent the number of columns in the small square and n the number
of rows. An illustration of this is shown in Fig. 9.3.

To further illustrate this process the results of applying convolutional neural net-
works with different weights to all possible squares of size 6 × 6 pixels of the image
shown in Fig. 9.4a is shown in Fig. 9.4b and c. The first network that we apply to this
image is designed to recognize a horizontal transformation from dark to light. The
weights of this network is defined as:

θ(1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 −1 −1 −1
1 1 1 −1 −1 −1
1 1 1 −1 −1 −1
1 1 1 −1 −1 −1
1 1 1 −1 −1 −1
1 1 1 −1 −1 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

(9.3)

The second network is designed to detect the opposite transformation and is thus
defined as θ(2) = −θ(1). The result of applying the first network is shown in Fig. 9.4b
and the result from the second network is shown in Fig. 9.4c. In both examples the
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Fig. 9.4 The output of a convolutional neural network with two different weight settings applied
to the image in Fig. 9.4a. The weights θ(1) are defined in Eq. (9.3) and θ(2) is defined as −θ(1)

Fig. 9.5 Max pooling applied to the two features maps shown in Fig. 9.4

bias (θ0) is equal to zero. This process could be equated with applying the filter to
each small square.
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Fig. 9.6 A combination of convolutional and pooling layers forming a convolutional neural net-
work. Note that the last layers are fully connected feed forward layers

9.3.2 Pooling Step

In the pooling step the dimension of the feature maps is reduced, while the important
information is preserved. Several ways of pooling can be used, such as average
pooling or max pooling, where max pooling is the most commonly used. When
applying max pooling only the maximum value of a given neighborhood is kept.
The result of applying maximum pooling on 4 × 4 squares of the images in Fig. 9.4b
and c is shown in Fig. 9.5.

9.3.3 Putting It All Together

A full convolutional neural network is built up by combining convolutional steps and
pooling steps. It is also common to have some fully connected networks layers at the
end of the convolutional neural network. An example of the layout of a convolutional
neural network is shown in Fig. 9.6.

In the examples above all values are hand crafted to give an intuitive understanding
of how a convolutional neural network works. This is not the case in reality where
the weights are learned byminimizing a given cost function over a data set with input
values and target values or classes. However, it has been shown that a convolutional
neural network often learn to detect the same things as common hand crafted filters,
such as edge detection [25].

9.4 Graph Analysis

Graphs can be used to model a large number of systems. They permit to represent the
interaction between objects. Social networks are a typical example of systems that
can be represented in terms of graphs. In this case, the nodes represent the people and
the edges represent the relationships between the people. Communication networks
(roads or internet) are another example. Therefore, we need to explore graphs to
understand the relationship between the objects.
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When a graph consists only of a few nodes, we can represent it using a node-
link diagram and then understand the relationships between the nodes by visual
inspection. In general, however, this is not possible. In the era of big data, and when
social networks have millions of users, this type of visualization is naturally out of
the question. Another way to analyze a graph is visualizing the adjacency matrix.
Similar problems arise with large graphs. In addition, current graphs include many
attributes and features (both related to the nodes and to the edges).

Because of that a few approaches have been considered for graph analysis. On the
one hand a few measures have been defined to give summaries of the information in
a graph. These are, for example, degree, centrality, and clustering coefficients. On
the other hand visual methods have been developed to see graphically the structure
and the properties (e.g., attributes for nodes and edges) of the graph.

Popular multi-dimensional visualizations include parallel coordinates [14] and
scatterplot matrices [11]. Researchers are now integrating these visualizations
together, orwith network diagrams so that people can interpret the relations in various
perspectives.

9.4.1 Measures

Let G = (V, E) denote a graph in terms of the set of nodes V and the set of edges
E . As edges connect two nodes, it is clear that E ⊆ V × V . A path is a set of edges
that connect two nodes. We will use d(u, v) to denote the distance of the shortest
path between nodes u and v. Note that the shortest path is also called geodesic.

Several measures have been proposed in the literature for graphs. Some of them
are defined for the graph itself (e.g., the graph diameter, the girth), others are defined
for nodes (e.g., the degree, the eccentricity, and most centrality measures), or for the
edges (e.g., the edge betweenness centrality).

The following measures are defined for nodes:

• Eccentricity, denoted by ε(v), is the greatest distance between v and any other
node in the graph. That is, ε(v) = maxu∈V d(u, v).

• Degree, denoted by δ(v), is the number of edges that connect v with any other
node.

• Centrality measures are to find those nodes in the graph that are influential or
important in the graph. The meaning of influential and importance, of course, is
application dependent, and that iswhy, several of suchmeasures have been defined.
Degree centrality, betweenness, and closeness are examples of such measures:

– Degree centrality of a node corresponds to the degree of the node.
– Closeness of a node is the reciprocal of the average shortest path from the given
node. That is,

c(u) =
(∑

v∈V d(u, v)

|V | − 1

)−1

.
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In this way, when all nodes are at a distance 1, the average shortest path is 1
and the c(u) is also 1. Otherwise, when there are very long shortest paths, the
average will be large and the closeness can be near to zero.

– Betweenness of a node counts the number of shortest paths that go through
the node. Let σnm(v) be the number of shortest paths from node n to node m
through v, and σnm the number of shortest paths from n tom. Then, betweenness
is defined by

B(u) =
∑

n∈V,m∈V,n �=u �=m

σnm(v)

σnm
.

The concept of betweenness centrality is defined for edges in a similar way to the
one for edges.

• Edge betweenness centrality for an edge is defined as the number of shortest paths
that go through the edge.

Finally, we review some other measures for graphs.

• The diameter of a graph is the maximum eccentricity or equivalently the longest
shortest path. That is,

diameter = max
v∈V max

u∈V d(u, v).

• The radius of a graph is the minimum eccentricity. That is,

radius = min
v∈V max

u∈V d(u, v).

• The girth of a graph is the length of the shortest cycle. A cycle is a path that
connects a node with itself.

9.4.2 Visualization

As stated above, traditional graph depictions such as node-link diagrams are widely
used every day. However, the legibility of these depictions is limited as the graph
grows larger and more complex.

9.4.2.1 Quilts and Geneaquilts

Quilts [2] are interactive matrix based depictions for layered graphs designed to
address these problems. As the graphs grow larger, node-link diagrams have cross-
ing edges issues while matrices take a lot of space but quilts provide a compact
version of relationships. However, quilts primary challenge are their depiction of
skip links, links that do not simply connect to a succeeding layer. It addresses this
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Fig. 9.7 Apart of the royal family genealogy.Adapted fromGeneaquilts [4]. Each F icon represents
a family consisting of parents and children

issue by reinforcing color and other display elements (e.g., text) and making it inter-
active tomanage the path-finding task. The researchers compared the effectiveness of
quilts using the most effective skip link depiction to node-link diagrams and centered
matrices. The studies vary the number of nodes, links and skip links, and record time
and accuracy as participants find paths. Eventually, as the graph complexity grows,
quilts enable participants to maintain better performance than node-link diagrams
and centered matrices. Furthermore, quilts have been applied to a genealogical appli-
cation which is called Geneaquilts [4], a specialization of quilts that takes advantage
of the bipartite nature of genealogical graphs. See Fig. 9.7.

9.4.2.2 Integration of Methods

Many researchers have attempted to integrate multi-dimensional visualizations with
scatterplots and parallel coordinates [22, 24], instead of multi-view methods to per-
form visual analysis. In fact, scattering points performs well in parallel coordinates
when the distribution is distinguishable and meaningful by taking the advantages of
both scatterplots and parallel coordinates. It may be useful in finding more sensi-
tive variables than others so that the researchers can focus on the more important
variables in the model [22].

Bezerianos et al. [3] exploit scatterplot matrices and node-link diagrams to visu-
alize a multi-dimensional graph. Especially, they focus on the graph attributes from
the space of edges, and objects with its degree, centrality, and clustering coefficients.
The users can interact with the display to navigate through multiple projections of
the data set.

Similarly, Viau et al. [23] introduce a graph-based interface which enables select-
ing features within a multi-dimensional data set and compare graph metrics. They
integrate a scatterplot matrix, a node-link diagram, and transitions to parallel coor-
dinates.



168 J. Bae et al.

9.5 Summary and Conclusions

In this chapter we have seen examples of tools for extracting and analyzing informa-
tion in three types of data: documents, images and graphs. There are a large number
of techniques to deal and analyze these types of data and, as stated in the introduction,
there are quite a few other types of complex data. Key-value databases and streaming
data, among others.

Analysis of complex data is related to context-enhanced and soft information
fusion (e.g., [20, Chap. 14]). That is, fusion of data streams that are not based on
sensor data and can be delivered out of the current time scope (e.g., weeks later).
In this case, the complexity stems not only from combining different types of data,
but also from the problem of using the same context for analysis as well as how
to resolve conflicting data. In these situations, ensemble-based techniques [17] for
combination of data can be employed, where the techniques addressed in this chapter
can serve to obtain fingerprints or digests that can be employed by basic classification
mechanisms.

Combination of data based on complex data types is also more complex than non-
complex data types, since we cannot employ standard techniques such as principal
component analysis for dimensionality reduction directly on the complex data.
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Chapter 10
Big Data Programming with Apache
Spark

Elio Ventocilla

In this chapter we give an introduction to Apache Spark, a Big Data programming
framework. We describe the framework’s core aspects as well as some of the chal-
lenges that parallel and distributed computing entail. No statistical background is
required and neither are any other data analysis skills. It is, however, encouraged for
the reader to be familiarized with a functional programming language (e.g. Scala)
or with the concept of lambda functions (anonymous functions)—for these are used
across most examples. Spark is built on the Scala programming language,1 hence
Scala is the language of choice for the examples given.

10.1 Introduction and Overview

Spark is a framework for simplified, distributed and parallel data processing and
querying. In other words, it abstracts the complexity of distributed and parallel data
computations, so that you can more easily make faster operations on your data. It can
be deployed on a personal computer as well as on clusters (two or more computers
working together). Some reasons that make Spark increasingly popular are:

• It leverages from in-memory storage (RAM) for faster access to data. When it
cannot (because data is bigger than memory) it leaks to hard drive without losing
what has been computed so far.

1See “Scala: From a Functional Programming Perspective” [3] for a quick introduction to the
programming language; and/or “Programming in Scala” [2] for a more thorough description of
the language.
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• It can be deployed on a personal computer providing easy access for learning
purposes. When deployed on a personal computer it makes use of CPU cores for
parallel computing.

• It supports four programming languages: Scala (language inwhich Spark iswritten
in), Java, Python and R. It could also be said to support SQL-like queries, as later
shown.

• It supports parsing and loading different data formats such as plain text, CSV,
JSON, Parquet and others—whether compressed (e.g. gzip) or not. It also supports
connections to relational databases (e.g. MySQL) and to NoSQL databases (e.g.
Cassandra).

• It enables the possibility to create standalone applications, do interactive querying
through the command line, as well as processing data streams.

• It provides aMachine Learning library built to leverage from Spark’s engine which
makes it scalable to large amounts of data.

These are some of the benefits of using Spark. It is also good, however, to know
its limitations. Spark might not be appropriate as:

• A transactional database. Spark is a batch processing framework which is not suit-
able for inserting, updating or deleting single rows of data. This is better handled
by SQL or NoSQL databases.

• A cluster manager. Spark does provide a standalone deployment mode (i.e. it can
be setup on a cluster without a cluster manager such as Hadoop YARN), however,
it does not provide all the benefits of a dedicated cluster manager such as resource
management. This can come in handy if you are deploying other applications
within the same cluster.

10.1.1 Installation

As of the writing of this book, the latest version of Spark is 2.2.0. We will not
describe how to install it since the project web page provides a thorough—and up
to date—guideline on how to do so. The installation package can be found at http://
spark.apache.org/downloads.html. Installation documentation can be found at http://
spark.apache.org/documentation.html.

As previously said, no cluster is needed to install and try Spark. Current distribu-
tions can be deployed on personal computers with Linux-based operating systems,
Windows and Mac.

10.1.2 Quick Hands On

The quickest way to see Spark in action (after installation) is to open a terminal
(command prompt), change directory to the Spark home and type:

http://spark.apache.org/downloads.html
http://spark.apache.org/downloads.html
http://spark.apache.org/documentation.html
http://spark.apache.org/documentation.html
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Fig. 10.1 Output on a terminal after running the spark-shell script. Bold words (Web UI, sc,
local[*] and spark) have been purposely highlighted

./bin/spark-shell

This will output some messages and leave you at scala> (see Fig. 10.1) where
you can start typing code as in the Scala REPL.2 If Python is your language of choice,
then use ./bin/pyspark instead. In this context, using a REPL for making ad
hoc queries on your data is referred to as interactive querying. The alternative to it
are self-contained applications (an example is given in Sect. 10.5.1).

Highlighted in bold font in Fig. 10.1 we find:

• Web UI: a monitoring interface that can be accessed using the given URL (in our
example is http://127.0.0.1:4040). There it is possible to see Spark’s
environment configuration as well as ongoing, completed and failed computations.
We will not go through the UI interface in this short introduction to Spark.

• Spark context (sc): this variable is the main entry point to Spark’s functionali-
ties. Through it, Resilient Distributed Datasets (see Sect. 10.3), accumulators and
broadcast variables can be created. The sc variable is automatically created with
the spark-shell (and pyspark) command.Wewill work with it in the exam-
ples following in this chapter.

• Master (local [*]): the master refers to the environment where Spark is run-
ning, which, in this case, is the local computer. The asterisk specifies the amount
of CPU cores that will be used when working in a local setting. This number can
be set using the master option3 e.g.

spark-shell --master local[4]\\

When working on a cluster the master should be set to a cluster URL e.g.

spark-shell --master mesos://HOST:PORT

2Read, Eval, Print and Loop. See http://docs.scala-lang.org/overviews/repl/overview.html.
3See more options by running spark-shell --help.

http://docs.scala-lang.org/overviews/repl/overview.html
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• Spark session (spark): this variable is an entry point to theDataset andDataFrame
API, which is an optimized way of working with tabular data. We give some
examples after working with RDDs.

Our first example loads Spark’s README.md file (hosted in Spark’s home direc-
tory) using the Spark context variable:

val rdd = sc.textFile("path/to/README.md")

An instance of a Resilient Distributed Dataset (RDD) is created with the name
rdd, which references the README.md file that, in this case, exists in the local file
system. If you are working on a cluster managed by e.g. YARN, then accessing a
file would be the same but with a cluster URL (e.g. hdfs://path/to/file).
An RDD is a collection whose elements are distributed in a cluster. The elements of
our rdd are strings, where each string is a line in the README.md file. As with
other collections in Scala such as Lists, RDDs have operations for working with
its elements. For example:

rdd.first // res0: String = # Apache Spark
rdd.count // res1: Long = 104

The first method returns the first element in the RDD which, in this case, is
the first line in the README.md file. The count method returns the number of
elements in theRDDwhich in our example is the number of lines in theREADME.md
file. It is also possible to read directories as follows:

val rdd = sc.wholeTextFiles("path/to/directory")

Here the RDD will not be a collection of strings but a collection of tuples, where
each tuple has one string element with the name of a file and one string element with
the whole content of the file. Calling the countmethod on such RDD would return
the number of files in the directory. Before diving into more elaborated examples of
what can be done, let us have a look at the overall picture of Spark’s architecture.

10.2 Architecture

Figure10.2 represents an outline of how the framework looks like in a cluster. Spark is
software which optimizes computations on a cluster architecture. There are hardware
concepts of a cluster that are good to know so as to tell them apart from Spark’s own
software concepts. A worker or node is a computer dedicated to data processing
and/or file storage. A worker, like any computer, has a CPU with one or more cores
(C1, C2, etc.), a RAM memory, and a hard drive (HD)—or solid-state drive (SSD).
A set of workers placed in a tower-like structure is called a rack. Figure10.2 depicts
three racks with five workers each, and each worker with their own CPU, RAM
and HD. This type of hardware architecture tells us something about levels of speed
access to data:
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Fig. 10.2 The Spark software architecture when working on a cluster

1. The first and fastest (leaving cachememory aside) level of access to data is RAM.
Any data taken from the RAM within the same computer will be retrieved at a
much faster rate than at any of the levels described below.

2. The second fastest level of access is that from theHD. In spite of being the second
fastest level, HD can be more than 10.000 times slower than RAM [1]. An SSD
can improve performance compared to HD but would still remain slower than
RAM.

3. The third level of speed access is within workers in the same rack, for example,
a given node A reads data from another node B, where both A and B are in the
same rack. In other words, access that requires network traffic.

4. Finally, the fourth speed level is access to data within workers from different
racks. This can be seen as the final level assuming that the cluster is working
solely in a local network.

Why know this? It is all about performance. When running a query or a Machine
Learning algorithm on petabytes of data you would probably like to wait seconds
rather thanminutes or hours. Having a picture on where performance bottlenecks can
happen gives a better hint on where improvements can be made. This also illustrates
why Spark is fast: it leverages from RAM access as much as possible.

Having seen the hardware architecture of a cluster, we now move to the Spark’s
software architecture concepts: the executor programs, the driver program, and the
application. The executor programs—one for each worker/node—are the ones in
charge of carrying out jobs (computations). In this sense, jobs in Spark are physically
divided among workers and logically managed by their executors (a job is further
divided by executors into logical pieces called tasks which are units of work for
handling data). The driver program coordinates the computations carried out by the
executors. The Spark context and Spark session variables live in the driver. Finally, a
Spark application is a term used to refer to a single driver program and its executors.
It is important to note that, in a cluster setting, the driver and the executors all
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run on different workers. This is exemplified better later on (in Sect. 10.3.1) but it
basicallymeans that references to variables created in the driver are not shared among
executors. In other words, be careful with variables!

When working on a personal computer the driver and an executor will run on
the same machine sharing resources. It might also be the case they both run within
the same Java Virtual Machine (JVM), thus making it tricky at times to prove the
previous statement on non-shared variable references.

10.3 Resilient Distributed Datasets

The main abstraction through which Spark achieves reliable computations across
workers is called Resilient Distributed Dataset (RDD).4 Distributed because data is
partitioned5 into more than one physical—or virtual—workers/nodes; and resilient
because they can recover computations from node failures as later shown in this
section. RDDs can be seen as a simple Scala collection with the main difference that
it abstracts the complexity of performing parallel computations of distributed data.
Its class definition is RDD[T], where T denotes the type of elements the collection
contains (e.g. String, Double, Array, etc). The following is equivalent to our first
code example:

import org.apache.spark.rdd.RDD
val rdd: RDD[String] = sc.textFile("path/to/README.md")

RDDs are immutable6 structures like Scala List, and they provide two types of
operations over data: transformations and actions.

Transformations are lazy operations over the data i.e. operations that are not exe-
cuted until needed or, in this case, until an action is called. These types of operations
result in a new RDD being created, where the new RDD has in its “plan” all trans-
formations from the old RDD plus the transformation that created it. Two examples
of transformations7 are map and filter. Let us do a word count example over the
README.md file:

val rddWords = rdd.flatMap(_.split(" "))
val rddLongWords = rddWords.filter(_.size > 3)

4A more technical description of RDDs can be found in [4].
5The number of partitions in which a file is divided is, if not stated otherwise, decided by Spark
based on file block size. File block size is 32MB on a local file system, and 128MB on YARN. The
minimum number of partitions is 2, which would be the case of small files such as README.md
(3.8 K).
6Immutability is a key concept in functional programming, and an important aspect for reliable
parallel programming.
7List of transformations: http://spark.apache.org/docs/latest/rdd-programming-guide.html#
transformations.

http://spark.apache.org/docs/latest/rdd-programming-guide.html#transformations
http://spark.apache.org/docs/latest/rdd-programming-guide.html#transformations
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Fig. 10.3 Lineage (or DAG) for each RDD transformation

val rddTuples = rddLongWords.map((_, 1))
val rddWordCounts = rddTuples.reduceByKey(_ + _)

Step by step, our code: flat maps file lines into words by splitting them by spaces;
filters (keeps) those words with more than 3 characters; maps the remaining words
into tuples in the form of (<word>, 1); and reduces the collection by key (first
element of the tuple) by adding ones (second element of the tuple).

None of these transformations have actually taken place. All we have done is to
create a plan of execution (Fig. 10.3)—or lineage8 in the form of a directed acyclic
graph (DAG). The lineage is the key for RDDs’ resilience: if a node fails in the
middle of a computation, another node takes over using the lineage as a guideline to
recompute whatever was lost.

Since each transformation returns a new RDD, the code can be rewritten as a
chain of calls so as to have a more compact view. The following is equivalent to the
previous:

val rddWordCounts = rdd
.flatMap(_.split(" ")) // RDD[String]
.filter(_.size > 3) // RDD[String]
.map((_, 1)) // RDD[(String, Int)]
.reduceByKey(_ + _) // RDD[(String, Int)]

Actions are operations that translate to actual computations. Two examples of
actions9 are count and first. When an action is called on an RDD, the lin-
eage/DAG is sent to the executors in order to start computing all transformations
in parallel. When transformations are done, partial results from each executor are—

8Lineage is the official name given in the Spark documentation.
9List of actions: http://spark.apache.org/docs/latest/rdd-programming-guide.html#actions.

http://spark.apache.org/docs/latest/rdd-programming-guide.html#actions
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depending on the action—sent back to the driver where the final output is computed.
Some actions might not require partial computations to be sent back to the driver;
some, for example, can request for processed data to be stored within each executor.

As a continuation of the previous code snippet, we can compute the number
different words—or space-separated chunks of characters—with more than three
characters length:

rddWordCounts.count // = 240 words

Or can we also take the first five most frequent words:

rddWordCounts
.sortBy(_._2, false)
.take(5) // (Spark,16), (using,5), (build,4),...

The sortBy call is a transformation that orders the list of words based on their
counts (_._2 i.e. second element of the tuple) in a descending manner (false
parameter). A full list of operations, both transformations and actions, can be found
in the RDD API documentation.10

10.3.1 Implications of Distributed Computations

Doing distributed computations with Spark implies that, among other things: some
transformations might be recomputed unnecessarily if not stated otherwise (i.e. if
not persisted); all operations will run on different executors; variables and methods
might be encapsulated (i.e. closure) and sent to the executors in order to run the
lineage; data might have to travel from one worker to another in order to make
groupings and aggregations (i.e. shuffle).

The first implication regardspersisting results inmemory in order to avoid recom-
putations. Our last two code snippets computed rddWordCounts’s whole lineage,
twice: once when we called count and a second time when we called take(5). In
order to avoid this and have these transformations computed only once, we have to
tell Spark to persist a lineage transformations into memory. This is done by calling
persist:

rddWordCounts.persist()

This will lift a flag telling Spark to save in memory the results of reduceByKey
(which is the final transformation in rddWordCounts’s lineage) when it is com-
puted for the first time (when calling count). The persistence flag can be seen as
the only mutable attribute of RDDs. To lower the flag call unpersist().

For the second implication, having Spark hiding the complexity of the underlying
architecture, we might forget that some commands will not behave the same as if
working on a personal computer. For example, the println command.

10http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.rdd.RDD.

http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.rdd.RDD
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rddWordCounts
.foreach(line => println(s"Words: ${line.size}")

Running this code on a simple Scala collection such as a List would output
all 240 tuples in the terminal. However, our collection is an RDD, meaning that the
println command is run on different executors and workers. This code would not
give any output on the driver and not, therefore, on the terminal where the command
was given. This code, nonetheless, outputs to the stdout of each executor—which
could be the intended instruction.

Another example is reading files or directories. It is not enough for the driver to
have access to the path given through e.g. sc.textFile("path"); the workers
also need access to the path given by the driver in order to load the file and run
transformations over it—e.g. access to a shared network drive or an Amazon S3
bucket.

The third implication regards a process called closure. When an action is called
on an RDD, variables and methods declared on the driver, and which are used within
the RDD operations, are wrapped up in a JAR file and sent to the executors. This
wrap up process is called closure, and what it means is that variables declared on the
driver will not be the same as the ones sent to the executors—their initial values will
be the same, but updates will happen on different variables. Say that, for example,
instead of calling rddWordCounts.count to get the number of different words,
we decide to use an auxiliary variable called count:

var count = 0
rddWordCounts.foreach(_ => count += 1)
count // = 0

The count variable, which was declared in the driver, will remain unchanged
after running this code. count variables sent to the executors will be updated but
we will not be able to see them. If shared variables (across executors) are needed,
then have a look at accumulator and broadcast variables.11 The following snippet
yields the intended result:

val accum = sc.longAccumulator
rddWordCounts.foreach(_ => accum.add(1))
accum.value // = 240

Finally, the fourth implication is about a process called shuffle.12 In our word
count example, when performing the reduceByKey operation, we might find that
instances of a word (e.g. Spark) exists in more than one worker (see Fig. 10.4). In
order to perform this operation, Spark needs to compute word counts within each
worker and then, taking these partial results, compute the overall word count from
all workers by moving data from one to another. The process of moving data is called
shuffle and transformations such as reduceByKey are called shuffle operations.

11http://spark.apache.org/docs/latest/rdd-programming-guide.html#shared-variables.
12http://spark.apache.org/docs/latest/rdd-programming-guide.html#shuffle-operations.

http://spark.apache.org/docs/latest/rdd-programming-guide.html#shared-variables
http://spark.apache.org/docs/latest/rdd-programming-guide.html#shuffle-operations
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Fig. 10.4 A rack of two workers with a dataset partitioned among both. Together they conform the
README.md file after the last map transformation. The Spark word is found on both machines

These types of operations are expensive and time consuming because they require
not only network traffic, but also disk I/O and data serialization.

Using shuffle operations is probably inevitable but we should be conscious about
it and use them when fewer data needs to be moved around. The following code is a
suboptimal version of the previous because the shuffle happens before the filtering—
which shuffles the whole dataset instead of the filtered chunks:

val rddWordCounts = rdd
.flatMap(_.split(" "))
.map((_, 1))
.reduceByKey(_ + _)
.filter(_._1.size > 3)

10.3.2 Types of RDDs

This is a brief overview of a couple of special RDDs: Pair and Double RDDs.
Pair RDDs are those whose elements are tuples in the form (<K>,<V>), where

K denotes a key and V a value. Our word count example worked with a pair RDD,
where the key was a word and the value a 1. This type of RDDs provide special func-
tions for traversing and grouping elements by their key element e.g.reduceByKey,
groupByKey, foldByKey, join and others.13

Double RDDs are those whose elements are of type Double. This type of RDDs
give access to functions such as mean, variance, histogram and others.14 A
way to compute the mean frequency of words would be:

13http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.rdd.
PairRDDFunctions.
14http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.rdd.
DoubleRDDFunctions.

http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.rdd.PairRDDFunctions
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.rdd.PairRDDFunctions
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.rdd.DoubleRDDFunctions
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.rdd.DoubleRDDFunctions


10 Big Data Programming with Apache Spark 181

rddWordCounts
.map(_._2) // RDD[Double]
.mean

10.4 Datasets and DataFrames

Datasets are abstractions over RDDs. They provide better performance (in terms
of processing times) with (hopefully) less coding effort for the programmer/analyst.
This is achieved thanks to a so called Catalyst Optimizer which, in a broad sense,
takes high level queries and assembles RDD transformations in an optimized way.

Datasets are collections which contain either elements of specific Scala data types
(e.g. String, Double, Array) or elements of a case class. DataFrames, on the other
hand, are an alias to Datasets with elements of type Row; that is, collections of
elements of typeAny (i.e. Row[Any]). Objects fromDatasets can, in contrast to Rows
in Dataframes, be serialized15 in a way that does not require their later deserialization
for certain operations (e.g. sorting and filtering), thus further improving performance.
DataFrames are Datasets with elements of type Row. Row objects are basi-

cally collections of any type of elements (Row[Any]). DataFrames provide less
information about the type of data that is to be transformed, therefore optimizations
from the Catalyst Optimizer become limited. Datasets, on the other hand, provide
the types of data they hold (e.g. String, Double, a case class, etc.) so the
Catalyst Optimizer can perform further optimizations.

Loading data as a DataFrame can be done in two ways: using the spark variable
or from existing RDDs. Let us do an example with a simple CSV dataset that looks
like this:

date,amount
2016-06-30,-169.79
2016-06-28,-55.70
2016-06-27,-56.30
...

We load this data into a DataFrame using the spark variable as follows:

val dfExpenses = spark
.read // DataFrameReader
.option("header", true)
.option("inferSchema", true)
.csv("/path/to/expenses.csv")

TheDataFrameReader16 allows us to read different file formats such as JSON,
Parquet, etc. For CSV files we can give some options/guidelines to the reader so that

15Serialization occurs when data is sent over the network e.g. when a shuffle operation takes place.
16http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.
DataFrameReader.

http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrameReader
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrameReader


182 E. Ventocilla

it can parse the file better: the “header” option states whether the first line of the
file contains column names; the “inferSchema” option requests the parser to try and
determine columns’ data types (e.g. double, string, date, etc.). If the delimiter between
columns in your data is other than commas, then use option("delimiter",
" "). We can see the schema by calling:

dfExpenses.printSchema

root
|-- date: timestamp (nullable = true)
|-- amount: double (nullable = true)

We can see that Spark has inferred the type of data we have. If we had left the
options out, the schema would look like this:

root
|-- _c0: string (nullable = true)
|-- _c1: string (nullable = true)

Calling the show method prints out the first ten records of the DataFrame in a
structured manner:

dfExpenses.show

+--------------------+--------+
| date| amount|
+--------------------+--------+
|2016-06-30 00:00:...| -169.79|
|2016-06-28 00:00:...| -55.7|
|2016-06-27 00:00:...| -56.3|
...

Querying DataFrames has a similar syntax to that of SQL. For example, we can
select those expenses higher than 100—i.e. transactions below –100—and sort them
from highest to lowest:

dfExpenses
.select($"amount")
.where($"amount" < -100)
.orderBy($"amount")

The dollar sign in front of strings is syntactic sugar for instantiating a Column17

object for the given column name. Another way to get columns is by using the
DataFrame variable instead:

dfExpenses.select(dfExpenses("amount"))

17http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.Column.

http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.Column
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Column objects gives us access to expression methods such as less than (<),
equal (===), plus (+), and many others. The following is an example of an average
aggregation:

dfExpenses
.groupBy(month($"date").as("month"))
.agg(avg($"amount"))
.orderBy($"month")
.show

+-----+------------------+
|month| avg(amount)|
+-----+------------------+
| 1|-319.1927450980392|
| 2|-117.9860465116279|
| 3| -232.450243902439|
...

The functions month and avg are provided by Spark as a part of an off-the-shelf
set of operations18 for Datasets.

Let us do a more elaborated example with a weather data set19 from the NOAA
institution.We will parse the data using RDDs and transform them into Datasets in
order to perform aggregations. In that sense, we need a case class to represent
the structure of each record in the data set:

case class Temperature(
ts: java.sql.Timestamp, // recorded timestamp.
value: Double, // temperature.
quality: String // temperature measurement quality.

)

There are many more fields that can be taken from the dataset but, for simplicity
purposes, we use only three. Next step is to create functions to parse string records
to Temperature objects:

val dateFormat = new java.text.SimpleDateFormat("yyyyMMddhhmm")

def stringToTimestamp(s: String): java.sql.Timestamp =
new java.sql.Timestamp(dateFormat.parse(s).getTime())

def stringToTemperature(s: String): Temperature =
Temperature(
stringToTimestamp(s.substring(15, 27)),
s.substring(87, 92).toDouble,
s.substring(92, 93)

)

18http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.functions$.
19Weather from 2012: http://academictorrents.com/details/16be344abd95d58afd4860445f4a927b
7eb1a89d.

http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.functions
http://academictorrents.com/details/16be344abd95d58afd4860445f4a927b7eb1a89d
http://academictorrents.com/details/16be344abd95d58afd4860445f4a927b7eb1a89d
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By using these functions it is now fairly straightforward to load data into a
Dataset:

val ds = sc
.textFile("/path/to/weather/NOAA")
.map(stringToTemperature) // RDD[Weather]
.toDS

Now we can make the following query: retrieve the average, minimum and max-
imum recorded temperatures per month, where measurement quality is 1 (good):

ds
.where("quality = 1") // equivalent to $"quality" === "1"
.groupBy(month($"ts").as("month"))
.agg(avg($"value"), max($"value"), min($"value"))
.orderBy("month")
.show

+-----+------------------+----------+----------+
|month| avg(value)|max(value)|min(value)|
+-----+------------------+----------+----------+
| 1| 43.67431049241436| 450.0| -597.0|
| 2| 62.22730350319569| 467.0| -553.0|
| 3| 87.10457422783658| 450.0| -464.0|
...

Many of the grouping and aggregating functions provided by Spark
accept columns names as strings e.g. avg("value") as an alternative to
avg($"value"). Not all, however, accept this, so it might be convenient to just
stick to $ column instantiation.

10.5 Streaming

Streaming regards handling data that arrives continuously. A common example is that
of tweets from Twitter. The current version of Spark is able to deal with streaming
data in micro batches i.e. small sets of data. There are two ways of working with
streams: using RDDs and using DataFrames (called structured streaming). We will
start with RDDs.

10.5.1 RDD Streaming

When dealing with streams a new actor takes part in the Spark software architec-
ture: receivers. These are a special type of executors that are only concerned with
assembling batches of data into RDDs for other executors to process (see Fig. 10.5).
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Fig. 10.5 Spark streaming outline. The Receiver listens to incoming data and produces RDDs
with partitions of data distributed across conventional executors for their processing

The collection of RDDs produced by the receiver (or receivers) is called Dis-
cretized Stream (DStream).20 DStreams are our data type abstraction through
which streams of data are handled.

There are two types of transformations that can be done over DStreams: stateless
and stateful. The former are transformations that only take into account data from
the last assembled batch (i.e. newly arrived data); the latter, on the other hand, are
transformations that also take into account data from previously assembled batches
(i.e. both new and old data). We begin with an example of stateless transformations.

Let us say we have access to live weather data from the devices that provide
data to the National Oceanic and Atmospheric Administration (NOAA) agency. The
recorded data arrives every 10 s to a repository to which we have access. As in
our DataFrame example, we are interested in the average temperature but, in this
case, for each 10 s window. For our streaming examples let us use self-contained
applications.21 The basic project file structure is the following:

<project-folder>
| build.sbt
| src
| main
| scala
| App.scala

The build.sbt file defines project library dependencies.22 For the streaming
example, we need spark-sql and spark-streaming. The sbt file should
look like:
name := "RDD streaming"
version := "1.0"

20A DStream is collection of RDDs, which are collections of distributed elements. This might
sound confusing but bear with us.
21How to build self-contained applications: http://spark.apache.org/docs/latest/quick-start.html#
self-contained-applications.
22Library dependencies can be found in the Maven repository: https://mvnrepository.com/.

http://spark.apache.org/docs/latest/quick-start.html#self-contained-applications
http://spark.apache.org/docs/latest/quick-start.html#self-contained-applications
https://mvnrepository.com/
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scalaVersion := "2.11.8"

libraryDependencies += "org.apache.spark" %% "spark-sql" % "2.2.0"
libraryDependencies += "org.apache.spark" %% "spark-streaming" % "2.2.0"

Through these dependencies we get access to Spark’s core and streaming libraries.
The rest of our work will take place in the App.scala file, which will have the
following structure:

import org.apache.spark.sql.SparkSession
import org.apache.spark.streaming._

object App {
def main(args: Array[String]) {
// Rest of our code goes here.

}
}

In Scala, unlike in Java, the name of the class/object does not have to be the same as
the name of the file. It is, however, a good practice for them to be the same. In this case
we named them both App, but we might as well have named them HelloWorld
(just keep the name in mind when deploying). Now we can start doing actual Spark
streaming programming.

Within our application we create a spark session variable and, with its Spark
context, we instantiate a streaming context (ssc) variable:

val spark = SparkSession
.builder
.appName("Streaming example")
.getOrCreate()

val ssc = new StreamingContext(spark.sparkContext, Seconds(10))

Unlike in the REPL, in self-contained applications we need to instantiate the
spark session variable ourselves. The streaming context variable (ssc) is like the
Spark context variable in the sense that it provides an entry point for creating collec-
tions (DStreams in this case). When creating it we need to specify the frequency
with which batches of data will be computed (e.g. every 10 s). Before continuing
with the main streaming code, we will reuse/copy-paste classes and parsers used in
the Datasets example:

case class Temperature(...)
val dateFormat = new java.text.SimpleDateFormat...
def stringToTimestamp(s: String): Timestamp = ...
def stringToTemperature(s: String): Temperature = ...

Through the ssc variable we instantiate an input DStream:

val streamInput = ssc.textFileStream("/path/to/weather/data")
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The streamInput variable is of type DStream[String], in spite of having
RDDs underneath. These sort of collections can be handled almost like RDDs but they
have some different transformations and actions. In the next step wemap each record
to an object of type Temperature, and filter them so as to keep only those with
measurement quality of 1:

val streamTemperature = streamInput
.map(stringToTemperature)
.filter(_.quality == "1")

The only difference (code-wise) so far with RDDs and static data is the call
ssc.textFileStream. Under the hood, however, things will be less alike: with
an RDD all data is mapped and filtered at once; with DStreams, mapping and fil-
tering is applied to incoming data every batch interval (e.g. 10 s, as defined in the
instantiation of the ssc variable) for as long as we let it.

Moving on, we will now compute some statistics over our cleaned, structured
data. For that purpose we make use of the following helper case class:

case class Statistic
(sum: Double, count: Int, min: Double, max: Double) {

def +(other: Statistic): Statistic =
Statistic(
sum + other.sum,
count + other.count,
min.min(other.min),
max.max(other.max))

def avg(): Double = sum / count

override def toString(): String =
s"count: $count, min: $min, max: $max, avg: $avg"

}

The case class is used as a structure for holding the sum of temperatures,
their count, and their minimum and maximum values. It has a method + for “adding”
another Statistic object, which will become convenient in the reduce trans-
formation later. The avg method computes the division between sum and count;
and the toString method is overridden in order to have an output to console that
includes the average. Let us now define the operations for computing the statistics
for every batch:

val streamStats = streamTemperature
.map(w => Statistic(w.temp, 1, w.temp, w.temp))
.reduce(_ + _) // DStream[Statistic] with count = 1

Using reduce on a DStream returns a new DStream with a single element
as a result of the reduce operator (_ + _). In that sense, the reduce operation is
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a transformation and not an action as in RDDs. In order for Spark to compute the
defined transformations we need, therefore, an action. In this case, we use print
to display results in the console/terminal:

streamStats.print()

The print method belongs to DStream type objects and it is not the same as
the inbuilt one from Scala. The final required steps for stream computations to run
are the following:

ssc.sparkContext.setLogLevel("WARN") // optional
ssc.start()
ssc.awaitTermination()

Setting the log level to "WARN" keeps Spark’s logging output to a minimum,
making it easier to read the results. To run our application we first have to package
it using sbt in the command line, inside the project folder:

sbt package

And then submit it to Spark as follows:

spark-submit \
--class "App" \
--master local[*] \
target/scala-2.11/rdd-streaming_2.11-1.0.jar

This outputs the following example result every 10 s, where each output represents
statistics for the last 10 s window of newly arrived data:

-------------------------------------------
Time: 1501684810000 ms
-------------------------------------------
count: 90323, min: -430.0, max: 442.0, avg: 36.354...

In this first example we used: files as a streaming source; stateless transformations
that do not take previous batches into account; and print in order to display results
in console. There are other streaming sources to which Spark can connect23 such as
sockets; and also other ways to handle results such as e.g. saving them as text files:

streamStats.saveAsTextFiles("path/and/prefix", "suffix")

In order to compute transformations that take into account results from previous
batches (i.e. stateful transformations) we have two alternatives: windowed transfor-
mations and the updateStateByKey methods.

All windowed transformations take (at least) the following two parameters:
windowLength and slideInterval. The former basically defines the num-
ber of RDDs to be computed every given slide interval. Both, windowLength and
slideInterval, are to be given in time units that are divisible by the batch time

23http://spark.apache.org/docs/latest/streaming-programming-guide.html#basic-sources.

http://spark.apache.org/docs/latest/streaming-programming-guide.html#basic-sources
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frequency defined in the streaming context. In our example, the batch frequency is
10 s, hence window and slide can be e.g. 10, 20, 30 s, etc. If batch frequency is 5
min, then window and slide can be 5, 10, 15, ... minutes. Following our streaming
example, we can compute the following window operation:

streamTemperature
.map(w => Statistic(w.temp, 1, w.temp, w.temp))
.reduceByWindow(_ + _, Seconds(30), Seconds(20))
.print()

The reduceByWindow operation can be translated to “sum elements (of type
Statistic) in windows of 30 s, every 20 s”, or “sum elements of every 3 batches
(RDDs), every 20 s”. Sum every 3 batches (or RDDs) because we are requesting 30
s windows over 10 s batch frequency (defined in the instantiation of the streaming
context ssc). Having 20 s slide interval will mean that the last RDD in our first
window will also be the first of our second window (plus two newly arrived), and so
on.

Windowed operations will take into account previous batches but they will not
truly keep aggregations over time (e.g. statistics per week over the course of a year).
For this –when using RDD streaming– we have to implement a function that will
handle the aggregates for every batch. Let us do an example for computing tempera-
ture statistics per week of the year. Mainly we define a function that will handle the
aggregates, which we named updateState:

def updateState(
newValues: Seq[Double],
state: Option[Statistic]): Option[Statistic] = {

val oldState = state match {
case Some(s) => s
case None => Statistic(0, 0, Double.MaxValue, Double.MinValue)

}
val newState = newValues
.map(t => Statistic(t, 1, t, t))
.foldLeft(oldState)(_ + _)

Some(newState)
}

This function takes two parameters: the first one (newValues) is a sequence of
newly arrived elements (in this case temperatures) corresponding to a given key (in
this case week of the year); the second (state) represents the aggregate computed
from previous batches/sequences (in this case temperature statistics of the past 3
batches) for the same key. The actual key is not of our interest in this case so we
just trust that Spark will provide the correct parameters per key. In the body of the
function we first retrieve the old state (case Some(s)). If no previous state exists
(case None), we instantiate a new one. Thereafter we map Temperature into
Statistic objects and do a foldLeft using the oldState as an initial value.
This provides an aggregate of the newly arrived temperature values, with the old
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aggregate/state from previous batches. Finally, we return this value as Some (which,
like None, is a subclass of Option), so that Spark can provide it in the next call as
the parameter state; and so on.

For aggregating statistics per week of the year we need a pair DStream (similar
to pair RDDs), with elements in the form of (Int, Double). The first element of
typeIntwill represent theweekof the year, and the secondof typeDouble, the tem-
perature. For this purpose we define the following function to map Temperature
objects to tuples:

def temperatureToTuple(t: Temperature): (Int, Double) = {
val c = java.util.Calendar.getInstance()
c.setTime(t.ts)

(c.get(java.util.Calendar.WEEK_OF_YEAR), t.value)
}

With these two functions, updateState and temperatureToTuple, we
can now define our stateful transformation:

weatherStream
.map(weatherToTuple) // DStream[(Int, Double)]
.updateStateByKey(updateState _)
.print()

This type of stateful transformations can only be done on pair DStreams. More-
over, in order to guarantee resilience, these transformations require that Spark has a
place to make checkpoints (backups). This can be any path executors have access to:

ssc.checkpoint("/path/to/checkpoint")

Running our code would yield the following example output:

-------------------------------------------
Time: 1501762640000 ms
-------------------------------------------
(52,count: 913, min: -249.0, max: 300.0, avg: 63.216...)
(4,count: 669, min: -319.0, max: 293.0, avg: -32.18...)
(16,count: 671, min: -92.0, max: 390.0, avg: 83.3815...)
...

10.5.2 Structured Streaming

Structured streaming was added in Spark 2.1 and, as of the writing of this book, has
undergoing improvements. The intention is to provide developers with an API that
works consistently with Datasets, regardless of the source (static or streaming).
Let us redo the weather streaming example from scratch using Datasets. In the
self-contained applicationwe start by importing the following (build.sbt remains
the same):
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import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions._
import org.apache.spark.sql.streaming.ProcessingTime
import scala.concurrent.duration._

Asbefore,SparkSessionwill provide themeans to create thespark variable;
functions._ will give us access to aggregation functions (e.g. avg, min, etc.);
and the last two imports will be used to define how often computations should
be triggered (i.e. batch windows). In the RDD streaming example we did not give
importance to where case classes were defined as long as they were accessible to our
self-contained application. In this case, however, we have to define them outside of
the object where the main function is defined:

case class Temperature
(ts: java.sql.Timestamp, temp: Double, quality: String)

object App {
def main(args: Array[String]) {
...
}

}

This is because of a bug in Spark that fires when it tries to encode the contents of
a DataFrame object, so as to have a typed Dataset. Do not worry much about
it. Just leave case classes that are used to define the type elements of DataFrames
outside of the object scope. What follows does go within the main function.

val spark = SparkSession
.builder
.appName("Structured streaming")
.getOrCreate()

import spark.implicits._

Whendoing structured streamingwe do not need a streaming context variable as in
the RDD streaming example. The spark session variable will do. The implicits
import is needed so that Spark can encode contents of DataFrames to e.g.String
to Temperature objects. We again reuse the following parsing code:

val dateFormat = new java.text.SimpleDateFormat...
def stringToTimestamp(s: String): Timestamp = ...
def stringToTemperature(s: String): Temperature = ...

And now we can write the core code for structured streaming:

val streamTemperature = spark
.readStream
.textFile("/path/to/weather/data")
.map(stringToTemperature)
.filter(_.quality == "1")
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This code creates a Dataset with Temperature elements that have a mea-
surement quality of 1. The only difference with a static data source comes from the
.readStream command. If we use read instead, we tell Spark that data is static.
Other types of file streams can be loaded. To do so, instead of calling textFile,
use parquet, json or csv. If you wish to connect to a socket then you need to
do something like the following:

val streamSocket = spark
.readStream
.format("socket")
.option("host", "localhost")
.option("port", 9999)
.load()

More examples on input sources can be found in Spark’s structured streaming
guide.24

Since the streamTemperature object is a Dataset it can be treated as such:

val dsStatistics = streamTemperature
.groupBy(weekofyear($"ts").as("week"))
.agg(
count($"temp").as("count"),
min($"temp").as("min"),
max($"temp").as("max"),
avg($"temp").as("avg"))

Here we compute the same statistics as in the RDD streaming example. The
weekofyear function is provided by Spark. We now have to define an action
or “sink” to which computed data should be poured into.

val queryStream = dsStatistics
.writeStream
.trigger(ProcessingTime(10.seconds))
.outputMode("complete")
.format("console")
.start

queryStream.awaitTermination()

Now we have some new elements:

• The trigger call defines the batch processing frequency. This is equivalent to
the frequency defined in the instantiation of the ssc variable, for RDD streaming.

• The outputMode call defines what is to be “poured” into the sink. In this case,
"complete"means that the whole table contained in dsStatistics will be
displayed in console. Two other options are "append" and "update". The

24http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#input-
sources.

http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#input-sources
http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#input-sources
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former means that results from new batches are added to results from previous
batches. This would be the common output mode when doing non-aggregative
transformations—i.e. for simpler operations such as map and filter—because
no old values are being updated (e.g. update statistics for week 3, when we are
already in week 4, but some data arrived late). It is also the common mode when
pouring the results to the file system because, at each trigger, new files are created,
which Spark cannot update. The latter output mode, "update", states that only
updates on old records (e.g. the update week 3 statistics) should be outputted to
the sink.

• Finally, the format call defines the “sink” i.e. where data is to be poured
into. Options are "console", "memory" and file formats e.g. "parquet",
"json", etc. Console, as the name states, prints out to console. Memory,
on the other hand, creates a temporary table in the driver’s memory—so use
with caution—which can be queried through the Spark session variable (e.g.
spark.sql("select * from <table name>")). For this to work it
is compulsory to provide a query name (or table name) to which queries can
be made e.g. queryName("temperature"). For file format sinks it is
necessary to provide folder and checkpoint locations through the
option method e.g. option("path", "/path/to/folder") and
option("checkpointLocation", "/path/to/other/folder").
One last “sink” is to call forEach, in which case, through a ForeachWriter
object, you define what to do with the transformed data.

Leaving our code as it is, we are ready to deploy it. We compile it using sbt
and then submit it using spark-submit, as we had done in the RDD streaming
example. The output, in this case, will have a more structured format:

-------------------------------------------
Batch: 0
-------------------------------------------
+----+-----+------+-----+------------------+
|week|count| min| max| avg|
+----+-----+------+-----+------------------+

| 31|64388|-695.0|517.0| 216.5921755606635|
| 34|65513|-665.0|490.0|205.55906461313023|
...

The complete code for streaming examples seen here can be found in Github as
weather-streaming.
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10.6 Other Big Data Tools

There are many other programming frameworks that help dealing with large datasets
and/or streaming data. Aswith Spark, these frameworks seek to abstract the complex-
ities of parallel and distributed computing, while reliably boosting data crunching
tasks.

We will give a brief description to each, leaving the details to other dedicated
documentations.

• Apache Flink is focused on streaming, real-time data. A difference with Spark
streaming is that it handles data elements as soon as they arrive i.e. it does not
assemble batches. This is, however, an aspect of Spark that seems to be improving
as of the writing of this book.25 In general Flink comes with two promises: lower
latency (i.e. faster) and better memory management. If latency is a critical issue,
then probably Flink is the solution for you.

• Apache Kafka is also focused on streaming, real-time data. It provides tools for
creating data processing pipelines as well as interfaces through which external
apps can publish or subscribe to data streams.

• Apache Lucene deals with text data. It provides indexing for fast, high-level
querying over large text corpora. Built on top of Lucene you find other popular
solutions such as Elasticsearch and Apache Solr, each with their own pros and
cons.

• Logstash aims at making it easy to congregate and transform data in different
formats and from multiple sources. Similar, but maybe less popular, is Solr.

This is far from being an exhaustive list of frameworks and it is only meant to
provide an idea of what is out there. To choose the right solution depends greatly on
the needs of the problem at hand.
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