Primary Temperature

Color

Data Science
with Julia

Paul D. McNicholas
Peter A. Tait

CRC Press

Taylor & Francis Group
A CHAPMAN & HALL BOOK

Data Science with
Julia

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/
http://taylorandfrancis.com

Data Science with
Julia

By Paul D. McNicholas and Peter A. Tait

CRC Press
Taylor & Francis Group
Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway N'W, Suite 300
Boca Raton, FL 33487-2742

© 2019 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20191119

International Standard Book Number-13: 978-1-138-49998-0 (Paperback)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher
cannot assume responsibility for the validity of all materials or the consequences of their use. The
authors and publishers have attempted to trace the copyright holders of all material reproduced in
this publication and apologize to copyright holders if permission to publish in this form has not
been obtained. If any copyright material has not been acknowledged, please write and let us know
so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.
copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC),
222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that
provides licenses and registration for a variety of users. For organizations that have been granted a
photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks,
and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Names: McNicholas, Paul D., author. | Tait, Peter A., author.

Title: Data science with Julia / Paul D. McNicholas, Peter A. Tait.

Description: Boca Raton : Taylor & Francis, CRC Press, 2018. | Includes
bibliographical references and index.

Identifiers: LCCN 2018025237 | ISBN 9781138499980 (pbk.)

Subjects: LCSH: Julia (Computer program language) | Data structures (Computer
science)

Classification: LCC QA76.73.J85 M37 2018 | DDC 005.7/3--dc23

LC record available at https://lccn.loc.gov/2018025237

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/
http://www.crcpress.com
http://www.taylorandfrancis.com
https://lccn.loc.gov
http://www.copyright.com
http://www.copyright.com
http://www.copyright.com

For Oscar, who tries and tries.

PDM

To my son, Xavier,
Gettin’ after it does pay off.

PAT

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/
http://taylorandfrancis.com

Co

ntents

CHarTER 1 = Introduction 1
1.1 DATA SCIENCE 1
1.2 BIG DATA 4
1.3 JULIA 5
1.4 JULIA AND R PACKAGES 6
1.5 DATASETS 6

1.5.1 Overview 6
1.5.2 Beer Data 6
1.5.3 Coffee Data 7
1.5.4 Leptograpsus Crabs Data 8
1.5.5 Food Preferences Data 9
1.5.6 x2 Data 9
1.5.7 Iris Data 11
1.6 OUTLINE OF THE CONTENTS OF THIS
MONOGRAPH 11

CHapTER 2= Core Julia 13
2.1 VARIABLE NAMES 13
2.2 OPERATORS 14
2.3 TYPES 15

2.3.1 Numeric 15
2.3.2 Floats 17
2.3.3 Strings 19
2.3.4 Tuples 22
2.4 DATA STRUCTURES 23
2.4.1 Arrays 23

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

viii ® Contents

2.4.2 Dictionaries 26

2.5 CONTROL FLOW 28
2.5.1 Compound Expressions 28

2.5.2 Conditional Evaluation 29

2.5.3 Loops 30

2.5.3.1 Basics 30

2.5.3.2 Loop termination 32

2.5.3.3 Exception handling 33

2.6 FUNCTIONS 36
CHapter 3 = Working with Data 43
3.1 DATAFRAMES 43
3.2 CATEGORICAL DATA 47
3.3 INPUT/OUTPUT 48
3.4 USEFUL DATAFRAME FUNCTIONS 54
3.5 SPLIT-APPLY-COMBINE STRATEGY 56
3.6 QUERY.JL 59
CHapTER 4 = Visualizing Data 67
41 GADFLY.JL 67
4.2 VISUALIZING UNIVARIATE DATA 69
4.3 DISTRIBUTIONS 72
4.4 VISUALIZING BIVARIATE DATA 83
4.5 ERROR BARS 90
46 FACETS 91
4.7 SAVING PLOTS 91
CHaptER 5= Supervised Learning 93
5.1 INTRODUCTION 93
5.2 CROSS-VALIDATION 96
5.2.1 Overview 96

5.2.2 K-Fold Cross-Validation 97

5.3 K-NEAREST NEIGHBOURS CLASSIFICATION 99

5.4

CLASSIFICATION AND REGRESSION TREES 102

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

Contents W ix

5.4.1 Overview 102
5.4.2 Classification Trees 103
5.4.3 Regression Trees 106
5.4.4 Comments 108
5.5 BOOTSTRAP 108
5.6 RANDOM FORESTS 111
5.7 GRADIENT BOOSTING 113
5.7.1 Overview 113
5.7.2 Beer Data 116
5.7.3 Food Data 121
5.8 COMMENTS 126
CHaptER 6 = Unsupervised Learning 129
6.1 INTRODUCTION 129
6.2 PRINCIPAL COMPONENTS ANALYSIS 132
6.3 PROBABILISTIC PRINCIPAL COMPONENTS
ANALYSIS 135
6.4 EM ALGORITHM FOR PPCA 137
6.4.1 Background: EM Algorithm 137
6.4.2 E-step 138
6.4.3 M-step 139
6.4.4 Woodbury Identity 140
6.4.5 Initialization 141
6.4.6 Stopping Rule 141
6.4.7 Implementing the EM Algorithm for
PPCA 142
6.4.8 Comments 146
6.5 K-MEANS CLUSTERING 148
6.6 MIXTURE OF PROBABILISTIC PRINCIPAL COM-
PONENTS ANALYZERS 151
6.6.1 Model 151
6.6.2 Parameter Estimation 152
6.6.3 Ilustrative Example: Coffee Data 161
6.7 COMMENTS 162

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

x W Contents

CHapter 7 = R Interoperability 165
7.1 ACCESSING R DATASETS 165
7.2 INTERACTING WITHR 166
7.3 EXAMPLE: CLUSTERING AND DATA REDUC-

TION FOR THE COFFEE DATA 171
7.3.1 Coffee Data 171
7.3.2 PGMM Analysis 172
7.3.3 VSCC Analysis 175
7.4 EXAMPLE: FOOD DATA 176
7.4.1 Overview 176
7.4.2 Random Forests 176

Arpenpix A = Julia and R Packages Used Herein 185

AprpenpDIx B = Variables for Food Data 187

Appenpix C = Useful Mathematical Results 193
C.1 BRIEF OVERVIEW OF EIGENVALUES 193
C.2 SELECTED LINEAR ALGEBRA RESULTS 193
C.3 MATRIX CALCULUS RESULTS 194

Arpenpix D = Performance Tips 197
D.1 FLOATING POINT NUMBERS 197

D.1.1 Do Not Test for Equality 197
D.1.2 Use Logarithms for Division 198

D.1.3 Subtracting Two Nearly Equal Numbers 198

D.2 JULIA PERFORMANCE 199
D.2.1 General Tips 199

D.2.2 Array Processing 199

D.2.3 Separate Core Computations 201
Appenpix E = Linear Algebra Functions 203
E.1 VECTOR OPERATIONS 203
E.2 MATRIX OPERATIONS 204

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

Contents W xi

E.3 MATRIX DECOMPOSITIONS 205
References 208
Index 217

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/
http://taylorandfrancis.com

Foreword

The 21st century will probably be the century of the data revo-
lution. Our numerical world is creating masses of data every day
and the volume of generated data is increasing more and more (the
number of produced numerical data is doubling every two years
according to the most recent estimates). In such a context, data
science is nowadays an unavoidable field for anyone interested in
exploiting data. People may be interested in either understanding
a phenomenon or in predicting the future behavior of this phe-
nomenon.

To this end, it is important to have significant knowledge of
both the rationale (the theory) behind data science techniques and
their practical use on real-world data. Indeed, data science is a mix
of data, statistical/machine learning methods and software. Soft-
ware is actually the link between data and data science techniques.
It allows the practitioner to load the data and apply techniques on
it for analysis. It is therefore important to master at least one of
the data science languages.

The choice of the software language(s) mainly depends on your
background and the expected level of analysis. R and Python are
probably the two most popular languages for data science. On the
one hand, R has been made by statisticians. .. mostly for statisti-
cians! It is, however, an excellent tool for data science since the
most recent statistical learning techniques are provided on the R
platform (named CRAN). Using R is probably the best way to be
directly connected to current research in statistics and data science
through the packages provided by researchers. Python is, on the
other hand, an actual computer science language (with all appro-
priate formal aspects) for which some advanced libraries for data
science exist. In this context, the Julia language has the great ad-
vantage to permit users to interact with both R and Python (but
also C, Fortran, etc.), within a software language designed for effi-
cient and parallel numerical computing while keeping a high level
of human readability.

xiii

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

xiv W Foreword

Professor Paul McNicholas and Peter Tait propose in this book
to learn both fundamental aspects of data science: theory and ap-
plication. First, the book will provide you with the significant el-
ements to understand the mathematical aspects behind the most
used data science techniques. The book will also allow you to dis-
cover advanced recent techniques, such as probabilistic principal
components analysis (PPCA), mixtures of PPCAs, and gradient
boosting. In addition, the book will ask you to dive into the Julia
language such that you directly apply the learned techniques on
concrete examples. This is, in my opinion, the most efficient way
to learn such an applied science. In addition, the focus made by
this book on the Julia language is a great choice because of the
numerous qualities of this language regarding data science prac-
tice. These include ease of learning for people familiar with R or
Python, nice syntax, easy code debugging, the speed of the com-
piled language, and code reuse.

Both authors have extensive experience in data science. Profes-
sor Paul McNicholas is Canada Research Chair in Computational
Statistics at McMaster University and Director of the MacDATA
Institute of the same university. In his already prolific career,
McNicholas has made important contributions to statistical learn-
ing. More precisely, his research is mainly focused on model-based
learning with high-dimensional and skew-distributed data. He is
also a researcher deeply involved in the spreading of research prod-
ucts through his numerous contributions to the R software with
packages. Peter Tait is currently a Ph.D. student but, before re-
turning to academia, he had a professional life dedicated to data
science in industry. His strong knowledge of the needs of industry
regarding data science problems was really an asset for the book.

This book is a great way to both start learning data science
through the promising Julia language and to become an efficient
data scientist.

Professor Charles Bouveyron
Professor of Statistics
INRIA Chair in Data Science
Université Cote d’Azur

Nice, France

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

Preface

This is a book for people who want to learn about the Julia lan-
guage with a view to using it for data science. Some effort has
gone into making this book suitable for someone who has familiar-
ity with the R software and wants to learn about Julia. However,
prior knowledge of R is not a requirement. While this book is not
intended as a textbook for a course, some may find it a useful book
to follow for a course that introduces statistics or data science stu-
dents to Julia. It is our sincere hope that students, researchers and
data scientists in general, who wish to learn Julia, will find this
book beneficial.

More than twenty years have passed since the term data sci-
ence was described by Dr. Chikio Hayashi in response to a question
at a meeting of the International Federation of Classification So-
cieties (Hayashi, 1998). Indeed, while the term data science has
only gained notoriety over the past few years, much of the work
it describes has been practiced for far longer. Furthermore, what-
ever the precise meaning of the term, there is no doubt that data
science is important across virtually all areas of endeavour. This
book is born out of a mixture of experiences all of which led to
the conclusion that the use of Julia, as a language for data science,
should be encouraged.

First, part of the motivation to write this book came from expe-
rience gained trying to teach material in data science without the
benefit of a relatively easily understood base language that is effec-
tive for actually writing code. Secondly, there is the practical, and
related, matter of writing efficient code while also having access to
excellent code written by other researchers. This, of course, is the
major advantage of R, where many researchers have contributed
packages — sometimes based on code written in another language
such as C or Fortran — for a wide variety of statistics and data
science tasks. As we illustrate in this book, it is straightforward
to call R from Julia and to thereby access whatever R packages
are needed. Access to R packages and a growing selection of Julia

E-Books & Papers for Statisticians -

https://www.facebook.com/groups/stats.ebooksandpapers/

xvi M Preface

packages, together with an accessible, intuitive, and highly efficient
base language, makes Julia a formidable platform for data science.

This book is not intended as an exhaustive introduction to data
science. In fact, this book is far from an exhaustive introduction to
data science. There are many very good books that one can consult
to learn about different aspects of data science (e.g., Bishop, 2006;
Hastie et al., 2009; Schutt, 2013; White, 2015; Efron and Hastie,
2016), but this book is primarily about Julia. Nevertheless, sev-
eral important topics in data science are covered. These include
data visualization, supervised learning, and unsupervised learn-
ing. When discussing supervised learning, we place some focus on
gradient boosting — a machine learning technique — because we
have found this approach very effective in applications. However,
for unsupervised learning, we take a more statistical approach and
place some focus on the use of probabilistic principal components
analyzers and a mixture thereof.

This monograph is laid out to progress naturally. In Chapter 1,
we discuss data science and provide some historical context. Julia
is also introduced as well as details of the packages and datasets
used herein. Chapters 2 and 3 cover the basics of the Julia language
was well as how to work with data in Julia. After that (Chapter 4),
a crucially important topic in data science is discussed: visualiza-
tion. The book continues with selected techniques in supervised
(Chapter 5) and unsupervised learning (Chapter 6), before con-
cluding with details of how to call R functions from within Julia
(Chapter 7). This last chapter also provides further examples of
mixture model-based clustering as well as an example that uses
random forests. Some appendices are included to provide readers
with some relevant mathematics, Julia performance tips and a list
of useful linear algebra functions in Julia.

There is a large volume of Julia code throughout this book,
which is intended to help the reader gain familiarity with the lan-
guage. We strongly encourage readers to run the code for them-
selves and play around with it. To make the code as easy as possible
to work with, we have interlaced it with comments. As readers be-
gin to get to grips with Julia, we encourage them to supplement
or replace our comments with their own. For the reader’s con-
venience, all of the code from this book is available on GitHub:
github.com/paTait/dswj.

We are most grateful to David Grubbs of the Taylor & Francis
Group for his support in this endeavour. His geniality and pro-
fessionalism are always very much appreciated. Special thanks to

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/
http://github.com/paTait/dswj

Preface B xvii

Professor Charles Bouveyron for kindly agreeing to lend his ex-
pertise in the form of a wonderful Foreword to this book. Thanks
also to Dr. Joseph Kang and an anonymous reviewer for their very
helpful comments and suggestions. McNicholas is thankful to Ea-
monn Mullins and Dr. Myra O’Regan for providing him with a
solid foundation for data science during his time as an undergrad-
uate student. Dr. Sharon McNicholas read a draft of this book
and provided some very helpful feedback for which we are most
grateful.

A final word of thanks goes to our respective families; with-
out their patience and support, this book would not have come to
fruition.

Paul D. McNicholas and Peter A. Tait
Hamilton, Ontatio

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/
http://taylorandfrancis.com

About the Authors

Paul D. McNicholas is the Canada Research Chair in Computa-
tional Statistics at McMaster University, where he is a Professor
and University Scholar in the Department of Mathematics and
Statistics as well as Director of the MacDATA Institute. He has
published extensively in computational statistics, with the vast ma-
jority of his work focusing on mixture model-based clustering. He
is one of the leaders in this field and recently published a mono-
graph devoted to the topic (Mizture Model-Based Classification;
Chapman & Hall/CRC Press, 2016). He is a Senior Member of the
IEEE and a Member of the College of the Royal Society of Canada.
Peter A. Tait is a Ph.D. student at the School of Computational
Science and Engineering at McMaster University. His research in-
terests span multivariate and computational statistics. Prior to re-
turning to academia, he worked as a data scientist in the software
industry, where he gained extensive practical experience.

E-Books & Papers for Statisticians X

https://www.facebook.com/groups/stats.ebooksandpapers/

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/
http://taylorandfrancis.com

CHAPTER 1

Introduction

ATA SCIENCE is discussed and some important connec-

tions, and contrasts, are drawn between statistics and data
science. A brief discussion of big data is provided, the Julia lan-
guage is briefly introduced, and all Julia packages used in this
monograph are listed together with their respective version num-
bers. The same is done for the, albeit smaller number of, R packages
used herein. Providing such details about the packages used helps
ensure that the analyses illustrated herein can be reproduced. The
datasets used in this monograph are also listed, along with some
descriptive characteristics and their respective sources. Finally, the
contents of this monograph are outlined.

1.1 DATA SCIENCE

What is data science? It is an interesting question and one without
a widely accepted answer. Herein, we take a broad view that data
science encompasses all work related to data. While this includes
data analysis, it also takes in a host of other topics such as data
cleaning, data curation, data ethics, research data management,
etc. This monograph discusses some of those aspects of data sci-
ence that are commonly handled in Julia, and similar software;
hence, its title.

The place of statistics within the pantheon of data science is
a topic on which much has been written. While statistics is cer-
tainly a very important part of data science, statistics should not
be taken as synonymous with data science. Much has been written
about the relationship between data science and statistics. On the
one extreme, some might view data science — and data analysis,
in particular — as a retrogression of statistics; yet, on the other

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

2 B Data Science with Julia

extreme, some may argue that data science is a manifestation of
what statistics was always meant to be. In reality, it is probably an
error to try to compare statistics and data science as if they were
alternatives. Herein, we consider that statistics plays a crucial role
in data analysis, or data analytics, which in turn is a crucial part
of the data science mosaic.

Contrasting data analysis and mathematical statistics, Hayashi
(1998) writes:

... mathematical statistics have been prone to be re-
moved from reality. On the other hand, the method of
data analysis has developed in the fields disregarded
by mathematical statistics and has given useful results
to solve complicated problems based on mathematico-
statistical methods (which are not always based on sta-
tistical inference but rather are descriptive).

The views expressed by Hayashi (1998) are not altogether differ-
ent from more recent observations that, insofar as analysis is con-
cerned, data science tends to focus on prediction, while statistics
has focused on modelling and inference. That is not to say that pre-
diction is not a part of inference but rather that prediction is a part,
and not the goal, of inference. We shall return to this theme, i.e.,
inference versus prediction, several times within this monograph.

Breiman (2001b) writes incisively about two cultures in statis-
tical modelling, and this work is wonderfully summarized in the
first few lines of its abstract:

There are two cultures in the use of statistical modeling
to reach conclusions from data. One assumes that the
data are generated by a given stochastic data model.
The other uses algorithmic models and treats the data
mechanism as unknown. The statistical community has
been committed to the almost exclusive use of data
models. This commitment has led to irrelevant the-
ory, questionable conclusions, and has kept statisticians
from working on a large range of interesting current
problems.

The viewpoint articulated here leans towards a view of data analy-
sis as, at least partly, arising out of one culture in statistical mod-
elling.

In a very interesting contribution, Cleveland (2001) outlines a
blueprint for a university department, with knock-on implications
for curricula. Interestingly, he casts data science as an “altered

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

Introduction m 3

field” — based on statistics being the base, i.e., unaltered, field.
One fundamental alteration concerns the role of computing:

One outcome of the plan is that computer science joins
mathematics as an area of competency for the field of
data science. This enlarges the intellectual foundations.
It implies partnerships with computer scientists just as
there are now partnerships with mathematicians.

Writing now, as we are 17 years later, it is certainly true that
computing has become far more important to the field of statistics
and is central to data science. Cleveland (2001) also presents two
contrasting views of data science:

A very limited view of data science is that it is practiced
by statisticians. The wide view is that data science is
practiced by statisticians and subject matter analysts
alike, blurring exactly who is and who is not a statisti-
cian.

Certainly, the wider view is much closer to what has been observed
in the intervening years. However, there are those who can claim to
be data scientists but may consider themselves neither statisticians
nor subject matter experts, e.g., computer scientists or librarians
and other data curators. It is noteworthy that there is a growing
body of work on how to introduce data science into curricula in
statistics and other disciplines (see, e.g., Hardin et al., 2015).

One fascinating feature of data science is the extent to which
work in the area has penetrated into the popular conscience, and
media, in a way that statistics has not. For example, Press (2013)
gives a brief history of data science, running from Tukey (1962)
to Davenport and Patil (2012) — the title of the latter declares
data scientist the “sexiest job of the 21st century”! At the start of
this timeline is the prescient paper by Tukey (1962) who, amongst
many other points, outlines how his view of his own work moved
away from that of a statistician:

For a long time I have thought I was a statistician, in-
terested in inferences from the particular to the general.
... All in all, T have come to feel that my central inter-
est is in data analysis, which I take to include, among
other things: procedures for analyzing data, techniques
for interpreting the results of such procedures, ways
of planning the gathering of data to make its analysis
easier, more precise or more accurate, and all the ma-
chinery and results of (mathematical) statistics which
apply to analyzing data.

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

4 m Data Science with Julia

The wide range of views on data science, data analytics and
statistics thus far reviewed should serve to convince the reader
that there are differences of opinion about the relationship be-
tween these disciplines. While some might argue that data science,
in some sense, is statistics, there seems to be a general consensus
that the two are not synonymous. Despite the modern views ex-
pounded by Tukey (1962) and others, we think it is fair to say that
much research work within the field of statistics remains mathe-
matically focused. While it may seem bizarre to some readers, there
are still statistics researchers who place more value in an ability
to derive the mth moment of some obscure distribution than in an
ability to actually analyze real data. This is not to denigrate math-
ematical statistics or to downplay the crucial role it plays within
the field of statistics; rather, to emphasize that there are some who
value ability in mathematical statistics far more than competence
in data analysis. Of course, there are others who regard an ability to
analyze data as a sine qua non for anyone who would refer to them-
selves as a statistician. While the proportion of people holding the
latter view may be growing, the rate of growth seems insufficient
to suggest that we will shortly arrive at a point where a statistician
can automatically be assumed capable of analyzing data.

This latter point may help to explain why the terms data sci-
ence, data scientist and data analyst are important. The former
describes a field of study devoted to data, while the latter two
describe people who are capable of working with data. While it is
true that there are many statisticians who may consider themselves
data analysts, it is also true that there are many data analysts who
are not statisticians.

1.2 BIG DATA

Along with rapidly increasing interest in data science has come the
popularization of the term big data. Similar to the term data sci-
ence, big data has no universally understood meaning. Puts et al.
(2015) and others have described big data in terms of words that
begin with the letter V: volume, variety, and velocity. Collectively,
these can be thought of as the three Vs that define big data; how-
ever, other V words have been proposed as part of such a definition,
e.g., veracity, and alternative definitions have also been proposed.
Furthermore, the precise meaning of these V words is unclear. For
instance, volume can be taken as referring to the overall quantity
of data or the number of dimensions (i.e., variables) in the dataset.
Variety can be taken to mean that data come from different sources

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

Introduction m 5

or that the variables are of different types (such as interval, nom-
inal, ordinal, binned, text, etc.). The precise meaning of velocity
is perhaps less ambiguous in that it is usually taken to mean that
data come in a stream. The word veracity, when included, is taken
as indicative of the extent to which the data are reliable, trust-
worthy, or accurate. Interestingly, within such three (or more) Vs
definitions, it is unclear how many Vs must be present for data to
be considered big data.

The buzz attached to the term big data has perhaps led to
some attempts to re-brand well-established data as somehow big.
For instance, very large databases have existed for many years but,
in some instances, there has been a push to refer to what might
otherwise be called administrative data as big data. Interestingly,
Puts et al. (2015) draw a clear distinction between big data and
administrative data:

Having gained such experience editing large adminis-
trative data sets, we felt ready to process Big Data.
However, we soon found out we were unprepared for
the task.

Of course, the precise meaning of the term big data is less impor-
tant than knowing how to tackle big data and other data types.
Further to this point, we think it is a mistake to put big data on
a pedestal and hail it as the challenging data. In reality there are
many challenging datasets that do not fit within a definition of big
data, e.g., situations where there is very little data are notoriously
difficult. The view that data science is essentially the study of big
data has also been expounded and, in the interest of completeness,
deserves mention here. It is also important to clarify that we reject
this view out of hand and consider big data, whatever it may be, as
just one of the challenges faced in data analysis or, more broadly,
in data science. Hopefully, this section has provided some useful
context for what big data is. The term big data, however, will not
be revisited within this monograph, save for the References.

1.3 JULIA

The Julia software (Bezansony et al., 2017) has tremendous po-
tential for data science. Its syntax is familiar to anyone who has
programmed in R (R Core Team, 2018) or Python (van Rossum,
1995), and it is quite easy to learn. Being a dynamic programming
language specifically designed for numerical computing, software
written in Julia can attain a level of performance nearing that of

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

6 W Data Science with Julia

statically-compiled languages like C and Fortran. Julia integrates
easily into existing data science pipelines because of its superb lan-
guage interoperability, providing programmers with the ability to
interact with R, Python, C and many other languages just by load-
ing a Julia package. It uses computational resources very effectively
so that sophisticated algorithms perform extremely well on a wide
variety of hardware. Julia has been designed from the ground up
to take advantage of the parallelism built into modern computer
hardware and the distributed environments available for software
deployment. This is not the case for most competing data science
languages. One additional benefit of writing software in Julia is
how human-readable the code is. Because high-performance code
does not require vectorization or other obfuscating mechanisms,
Julia code is clear and straightforward to read, even months after
being written. This can be a true benefit to data scientists working
on large, long-term projects.

1.4 JULIA AND R PACKAGES

Many packages for the Julia software are used in this monograph as
well as a few packages for the R software. Details of the respective
packages are given in Appendix A. Note that Julia version 1.0.1 is
used herein.

1.5 DATASETS

1.5.1 Overview

The datasets used for illustration in this monograph are summa-
rized in Table 1.1 and discussed in the following sections. Note that
datasets in Table 1.1 refers to the datasets package which is part
of R, MASS refers to the MASS package (Venables and Ripley, 2002)
for R, and mixture refers to the mixture package (Browne and
McNicholas, 2014) for R. For each real dataset, we clarify whether
or not the data have been pre-cleaned. Note that, for our pur-
poses, it is sufficient to take pre-cleaned to mean that the data are
provided, at the source, in a form that is ready to analyze.

1.5.2 Beer Data

The beer dataset is available from www.kaggle.com and contains
data on 75,000 home-brewed beers. The 15 variables in the beer
data are described in Table 1.2. Note that these data are pre-
cleaned.

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/
http://www.kaggle.com

Introduction m 7

Table 1.1 The datasets used herein, with the number of sam-
ples, dimensionality (i.e., number of variables), number of
classes, and source.

Name Samples Dimensionality Classes Source
beer 75,000 15 — www.kaggle.com
coffee 43 12 2 pgmm
crabs 200 5 2o0r4 MASS
food 126 60 — www.kaggle.com
iris 150 4 3 datasets
x2 300 2 3 mixture

Table 1.2 Variables for the beer dataset.

Variable Description
ABV Alcohol by volume.
BoilGravity Specific gravity of wort before boil.
BoilSize Fluid at beginning of boil.
BoilTime Time the wort is boiled.
Colour Colour from light (1) to dark (40).
Efficiency Beer mask extraction efficiency.
FG Specific gravity of wort after fermentation.
IBU International bittering units.
Mash thickness Amount of water per pound of grain.
oG Specific gravity of wort before fermentation.
PitchRate Yeast added to the fermentor per gravity unit.
PrimaryTemp Temperature at fermentation stage.
PrimingMethod Type of sugar used for priming.
PrimingAmount Amount of sugar used for priming.
SugarScale Concentration of dissolved solids in wort.

1.5.3 Coffee Data

Streuli (1973) reports on the chemical composition of 43 coffee
samples collected from 29 different countries. Each sample is ei-
ther of the Arabica or Robusta species, and 12 of the associated
chemical constituents are available as the coffee data in pgmm (Ta-
ble 1.3). One interesting feature of the coffee data — and one which
has been previously noted (e.g., Andrews and McNicholas, 2014;
McNicholas, 2016a) — is that Fat and Caffeine perfectly separate
the Arabica and Robusta samples (Figure 1.1). Note that these
data are also pre-cleaned.

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/
http://www.kaggle.com
http://www.kaggle.com

8 M Data Science with Julia

Table 1.3 The 12 chemical constituents given in the coffee
data.

Water Bean Weight Extract Yield
pH Value Free Acid Mineral Content
Fat Calffeine Trigonelline

Chlorogenic Acid Neochlorogenic Acid Isochlorogenic Acid

Variety

o
=
K7}
=
©
O

Figure 1.1 Scatterplot of fat versus caffeine, coloured by variety,
for the coffee data.

1.5.4 Leptograpsus Crabs Data

The crabs data are available in the MASS library for R. Therein
are five morphological measurements (Table 1.4) on two species
of crabs (blue and orange), further separated into two sexes. The
variables are highly correlated (e.g., Figures 1.2-1.4). As noted
in Table 1.1, these data can be regarded as having two or four
classes. The two classes can be taken as corresponding to either
species (Figure 1.2) or sex (Figure 1.3), and the four-class solution
considers both species and sex (Figure 1.4). Regardless of how the
classes are broken down, these data represent a difficult clustering
problem — see Figures 1.2-1.4 and consult McNicholas (2016a) for
discussion. These data are pre-cleaned.

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

Introduction m 9

Table 1.4 The five morphological measurements given in the
crabs data, all measured in mm.

Frontal lobe size Rear width
Carapace length Carapace width
Body depth

Species

B
o

10 15

Frontal lobe size (mm)

Figure 1.2 Scatterplot for rear width versus frontal lobe, for the
crabs data, coloured by species.

1.5.5 Food Preferences Data

The food dataset is available from www.kaggle.com and contains
data on food choices and preferences for 126 students from Mercy-
hurst University in Erie, Pennsylvania. The variables in the food
data are described in Tables B.1-B.1 (Appendix B). Note that
these data are raw, i.e., not pre-cleaned.

1.5.6 x2 Data

The x2 data are available in the mixture library for R. The
data consist of 300 bivariate points coming, in equal proportions,
from one of three Gaussian components (Figure 1.5). These data
have been used to demonstrate clustering techniques (see, e.g.,
McNicholas, 2016a).

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/
http://www.kaggle.com

10 m

S
S
Q
o

Data Science with Julia

10 15

Frontal lobe size (mm)

Figure 1.3 Scatterplot for rear width versus frontal lobe, for the

crabs data, coloured by sex.

Species:Sex
B:M
B:F

uOo:M
O:F

1€ 15

Frontal lobe size (mm)

Figure 1.4 Scatterplot for rear width versus frontal lobe, for the
crabs data, coloured by species and sex.

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

Introduction m 11

Figure 1.5 Scatterplot depicting the x2 data.

1.5.7 Iris Data

The iris data (Anderson, 1935) are available in the datasets
library for R. The data consists of four measurements (Table 1.5)
for 150 irises, made up of 50 each from the species setosa, versicolor,
and wirginica. These data are pre-cleaned.

Table 1.5 The four measurements taken for the iris data, all
measured in cm.

Sepal length Sepal width
Petal length Petal width

1.6 OUTLINE OF THE CONTENTS OF THIS MONO-
GRAPH

The contents of this monograph proceed as follows. Several core
Julia topics are described in Chapter 2, including variable names,
types, data structures, control flow, and functions. Various tools
needed for working with, or handling, data are discussed in Chap-
ters 3, including dataframes and input-output (IO). Data visual-
ization, a crucially important topic in data science, is discussed in
Chapter 4. Selected supervised learning techniques are discussed

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

12 W Data Science with Julia

in Chapter 5, including K-nearest neighbours classification, classi-
fication and regression trees, and gradient boosting. Unsupervised
learning follows (Chapter 6), where k-means clustering is discussed
along with probabilistic principal components analyzers and mix-
tures thereof. The final chapter (Chapter 7) draws together Julia
with R, principally by explaining how R code can be run from
within Julia, thereby allowing R functions to be called from within
Julia. Chapter 7 also illustrates further supervised and unsuper-
vised learning techniques, building on the contents of Chapters 5
and 6. Five appendices are included. As already mentioned, the
Julia and R packages used herein are detailed in Appendix A,
and variables in the food data are described in Appendix B. Ap-
pendix C provides details of some mathematics that are useful for
understanding some of the topics covered in Chapter 6. In Ap-
pendix D, we provide some helpful performance tips for coding in
Julia and, in Appendix E, a list of linear algebra functions in Julia
is provided.

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

CHAPTER 2

Core Julia

HE PURPOSE of this chapter is to expose the reader to

the core parts of the Julia language. While it is intended
to serve as an introduction to the language, it should also prove
useful as a reference as the reader moves through the remainder of
the book. The topics covered can be considered under six headings:
variable names, operators, types, data structures, control flow, and
functions. Furthermore, the chapter is laid out so that the contents
build in a cumulative fashion, e.g., by the time one reaches the
material on functions, all of the other material is being, or could
usefully be, used. Accordingly, the material in this chapter is best
read in order upon first reading.

2.1 VARIABLE NAMES

In Julia, variable names are associated with a particular value. This
value is stored so it can be used in future computations or other
operations. Variable names are case sensitive and Unicode names
(in UTF-8 encoding) may be used. Specifically, Unicode math sym-
bols can be entered by using the IATEX2¢ symbol followed by a
tab. In general, variable names must begin with a letter (uppercase
or lowercase), an underscore _ or a Unicode code point > 00AO,
and subsequent characters can include the ! symbol, digits and
other Unicode points. It is also possible to redefine constants (e.g.,
7); however, built-in statements cannot be used as variable names
(example below).

Some playing around with variable names

These are all correct
z = 100

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

14 W Data Science with Julia

y = 10.0
s = "Data Science"
¥ = 5.0
p=1.2

datascience = true
data_science = true

These are incorrect and will return an error
if = true
else = 1.5

The recommended convention is that variable names are typed
in lowercase letters and words are separated by an underscore. In
general, this convention will be followed herein.

2.2 OPERATORS

In programming languages, operators are symbols used to do spe-
cific mathematical, logical or relational operations. Julia operators
will be familiar to R and Python users. There are four main cat-
egories of operators in Julia: arithmetic, updating, numeric com-
parison, and bitwise. Examples of the first three are given in the
following code block.

2
3
4

b
y
z

Arithmetic operators
X +y
#5

x7y
8
Updating operators

x += 2
4

Numeric Comparison
x =y
false

x !=y
true

X <=z
true

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

Core Julia m 15

When constructing expressions with multiple operators, the or-
der in which these operators are applied to the expression is known
as operator precedence. Operator precedence is an important prac-
tical consideration and can lead to unexpected results. The follow-
ing code block uses the variables instantiated above to evaluate
three different expressions. The first one is evaluated solely based
on the operator precedence. The following two are forced to eval-
uate in specific ways based on the parentheses () included in the
expression. Parentheses are evaluated first in the precedence hier-
archy. We recommend programming expressions with parentheses
to minimize bugs and improve code clarity.

Operator precedence
X*y+z"2
68

xx(y+(272))
260

(xxy)+(z"2)

68
2.3 TYPES
2.3.1 Numeric

Numeric literals are representations of numbers in code. Numeric
primitives are representations of numbers as objects in memory. Ju-
lia has many primitive numeric types, e.g., Int32, Int64, Float32,
and Float64. Julia offers full support for real and complex num-
bers. The internal variable Sys.WORD_SIZE displays the architec-
ture type of the computer (e.g., 32 bit or 64 bit). The minimum
and maximum values of numeric primitives can be displayed with
the functions typemin() and typemax (), respectively. They take
the name of numeric primitives as an argument and are detailed in
the following code block. The default size of the primitive depends
on the type of computer architecture.

Computer's architecture type
Sys.WORD_SIZE
64

Size of the default primitive

typemax (Int)
9223372036854775807

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

16 M Data Science with Julia

Size of a specific primitive
same as the default

typemax (Int64)

9223372036854775807

Note that the above results are machine-specific.

A signed type can hold positive or negative integers, and uses
the leftmost bit to identify the sign of the integer (e.g., Int64).
An unsigned type can hold positive values only and stores larger
values by using the leading bit as part of the value (e.g., UInt128).
Boolean values are 8-bit integers, with false being 0 and true be-
ing 1. When doing arithmetic with integers, occasionally one will
encounter overflow errors. This occurs when the result of an arith-
metic expression is a value outside the representable range of the
numeric primitive being used. This can happen if the result is larger
or smaller than its allowable size. Examples are given in the code
block below. If this is a possibility in a particular application, con-
sider using unsigned integers or arbitrary precision integers, avail-
able in Julia as the BigInt type.

Some examples of the Int type

Integers

literal_int = 1

println("typeof (literal_int): ", typeof(literal_int))
typeof (literal_int): Int64

**

Boolean values
x = Bool(0)
y = Bool(1)

Integer overflow error
x = typemax(Int64)

9223372036854775808

x +=1

-9223372036854775807

x == typemax(Int64)
#false

Integer underflow error
x = typemin(Int64)

-9223372036854775808

x =1

9223372036854775807

x == typemin(Int64)

#false

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

Core Julia m 17

2.3.2 Floats

Floats are similar to scientific notation. They are made up of three
components: a signed integer whose length determines the precision
(the significand); the base used to represent the number (usually
base 10); and a signed integer that changes the magnitude of the
floating point number (the exponent). The value of a float is de-
termined by multiplying the significand by the base raised to the
power of the exponent. Float64 literals are distinguished by having
an e before the power, and can be defined in hexadecimal. Float32
literals are distinguished by having an f in place of the e. There
are three Float64 values that do not occur on the real line:

1. Inf, positive infinity: a value larger than all finite floating
point numbers, equal to itself, and greater than every other
floating point value but NaN.

2. -Inf, negative infinity: a value less than all finite floating
point numbers, equal to itself, and less than every other float-
ing point value but NaN.

3. NaN, not a number: a value not equal to any floating point
value, and not ==, < or > than any floating point value, in-
cluding itself.

It is good practice to check for NaN, Inf and -Inf values in floating
point operations. The following code block gives some examples of
how to do this.

Some examples of floats

x1 =1.0
x64 15e-5
x32 = 2.5f-4

typeof (x32)
Float32

digit separation using an
9.2.4 == 9.24
true

isnan(0/0)

true

isinf (1/0)

true

isinf (-11/0)
true

yl = 2%3

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

18 M Data Science with Julia

#6
isnan(y1)
false
isinf (y1)
false

y2 = 2/0
Inf
isnan(y2)
false
isinf (y2)
true

The IEEE 754 standard (Zuras et al., 2008) sets out the tech-
nical standard for floating point arithmetic. The Julia Float type
and all operations performed on it adhere to this standard. Repre-
sentations of Float64 numbers are not evenly spaced, with more
occurring closer to zero on the real number line. This is due to
machine epsilon, an upper-bound on the rounding error in floating
point arithmetic. It is defined to be the smallest value of z such
that 142 # 1. In Julia, the value of epsilon for a particular machine
can be found via the eps () function. The spacing between floating
point numbers and the value of machine epsilon is important to
understand because it can help avoid certain types of errors. Inte-
ger overflow errors have been mentioned, but there are also float
underflow errors, which occur when the result of a calculation is
smaller than machine epsilon or when numbers of similar precision
are subtracted. We give more details in Appendix D, and readers
are directed to Higham (2002) if further reading on the topic is
desired.

Some examples of machine epsilon

eps()
2.220446049250313e-16

spacing between a floating point number x and adjacent number is
at most eps * abs(x)

nl =[1e-25, le-5, 1., leb, 1e25]

for i in ni

println(*(i, eps()))
end
2.2204460492503132e-41
.2204460492503133e-21
.220446049250313e-16
.220446049250313e-11
.2204460492503133e9

H H H HH
NN NN

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

Core Julia m 19

Note that, as is common in scientific notation,
2.2204460492503132e-41

represents
2.2204460492503132 x 10741,

2.3.3 Strings

In Julia, a string is a sequence of Unicode code points, using UTF-8
encoding. The first 128 Unicode characters are the ASCII charac-
ters. Characters in strings have an index value within the string.
It is worth noting that Julia indices start at position 1, similar to
R but different to Python, which starts its indices at position 0.
The keyword end can be used to represent the last index. Herein,
we will deal with ASCII characters only. Note that String is the
built-in type for strings and string literals, and Char is the built-in
type used to represent single characters. In fact, Char is a numeric
value representing a Unicode code point. The value of a string can-
not be changed, i.e., strings are immutable, and a new string must
be built from another string. Strings are defined by double or triple
quotes.

String examples

s1 = "Hi"
& i

s2 = """I have a "quote" character"""
"I have a \"quote\" character"

Strings can be sliced using range indexing, e.g., my_string[4:6]
would return a substring of my_string containing the 4th, 5th and
6th characters of my_string. Concatenation can be done in two
ways: using the string() function or with the * operator. Note
this is a somewhat unusual feature of Julia — many other lan-
guages use + to perform concatenation. String interpolation takes
place when a string literal is defined with a variable inside its in-
stantiation. The variable is prepended with $. By using variables
inside the string’s definition, complex strings can be built in a
readable form, without multiple string multiplications.

Some examples of strings
str = "Data science is fun!"

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

20 W Data Science with Julia

str1]

'D'

str[end]

#r0!

S1
strl4
"a

icing
:7]

sc"

str[end-3:end]
"fun!"

Concatenation
string(str, " Sure is :)")
#"Data science is fun! Sure is :)"

str *

" Sure is :)"

"Data science is fun! Sure is :)"

Interpolation
"1+ 2= $(1+ 2)"

#1 +

wordl
word2
word3

2= 3"

"Julia"
"data"
"science"

"$wordl is great for $word2 $word3"

#"Jul

St

ia is great for data science"

rings can be compared lexicographically using comparison

operators, e.g., ==, >, etc. Lexicographical comparison involves se-

quent

ially comparing string elements with the same position, until

one pair of elements falsifies the comparison, or the end of the
string is reached. Some useful string functions are:

findfirst(pat, str) returns the indices of the characters
in the string str matching the pattern pat.

occursin(substr, str) returns true/false depending on
the presence/absence of substr in str.

repeat(str, n) generates a new string that is the original
string str repeated n times.

length(str) returns the number of characters in the string
str.

replace(str, ptn => rep) searches string str for the pat-
tern ptn and, if it is present, replaces it with rep.

Julia fully supports regular expressions (regexes). Regexes in
Julia are fully Perl compatible and are used to hunt for patterns in

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

Core Julia m 21

string data. They are defined as strings with a leading r outside the
quotes. Regular expressions are commonly used with the following
functions:

e occursin(regex, str) returnstrue/false if the regex has
a match in the string str.

e match(regex, str) returns the first match of regex in the
string. If there is no match, it returns the special Julia value
nothing.

e cachmatch(regex, str) returns all the matches of regex in
the string str as an array.

Regexes are a very powerful programming tool for working with
text data. However, an in-depth discussion of them is beyond the
scope of this book, and interested readers are encouraged to consult
Friedl (2006) for further details.

Lexicographical comparison
sl = "abcd"
s2 = "abce"

sl == s2
false

sl < s2
true

sl > s2
#false

String functions
str = "Data science is fun!"

findfirst("Data", str)
1:4

occursin("ata", str)
true

replace(str, "fun" => "great")
"Data science is great!"

Regular expressions

match alpha-numeric characters at the start of the str
occursin(r"~[a-zA-Z0-9]", str)

true

match alpha-numeric characters at the end of the str
occursin(r" [a-zA-Z0-9]$", str)

false

matches the first non-alpha-numeric character in the string
match(r"[~a-zA-Z0-9]", str)

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

22 m Data Science with Julia

#RegexMatch(" ")

matches all the non-alpha-numeric characters in the string
collect (eachmatch(r" [Ta-zA-Z0-9]", str))

#4-element Array{RegexMatch,1}:

RegexMatch(" ")

RegexMatch(" ")

RegexMatch(" ")

RegexMatch("!")

2.3.4 Tuples

Tuples are a Julia type. They are an abstraction of function argu-
ments without the function. The arguments are defined in a specific
order and have well-defined types. Tuples can have any number of
parameters, and they do not have field names. Fields are accessed
by their index, and tuples are defined using brackets () and com-
mas. A very useful feature of tuples in Julia is that each element
of a tuple can have its own type. Variable values can be assigned
directly from a tuple where the value of each variable corresponds
to a value in the tuple.

A tuple comprising only floats
tupl = (3.0, 9.1, 0.8, 1.9)

tupl

(3.0, 9.1, 0.8, 1.9)

typeof (tupl)

NTuple{4,Float64}

A tuple comprising strings and floats
tup2 = ("Data", 2.5, "Science", 8.8)
typeof (tup2)

Tuple{String,Float64,String,Float64}

variable assignment
a,b,c = ("Fast", 1, 5.2)
a

#"Fast"

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

Core Julia m 23

2.4 DATA STRUCTURES
2.4.1 Arrays

An array is a multidimensional grid that stores objects of any type.
To improve performance, arrays should contain only one specific
type, e.g., Int. Arrays do not require vectorizing for fast array
computations. The array implementation used by Julia is written in
Julia and relies on the compiler for performance. The compiler uses
type inference to make optimized code for array indexing, which
makes programs more readable and easier to maintain. Arrays are
a subtype of the AbstractArray type. As such, they are laid out as
a contiguous block of memory. This is not true of other members of
the AbstractArray type, such as SparseMatrixCSC and SubArray.

The type and dimensions of an array can be specified using
Array{T}(D), where T is any valid Julia type and D is the dimen-
sion of the array. The first entry in the tuple D is a singleton that
specifies how the array values are initialized. Users can specify
undef to create an uninitialized array, nothing to create arrays
with no values, or missing to create arrays of missing values. Ar-
rays with different types can be created with type Any.

A vector of length 5 containing integers
al = Array{Int64}(undef, 5)

A 2x2 matrix containing integers
a2 = Array{Int64}(undef, (2,2))
#2x2 Array{Int64,2}:

#493921239145 425201762420
#416611827821 104

A 2x2 matrix containing Any type
a2 = Array{Any}(undef, (2,2))

#2x2 Array{Any,2}:

#undef #undef

#undef #undef

In Julia, [1 can also be used to generate arrays. In fact, the
Vector (), Matrix() and collect() functions can also be used.

A three-element row "vector"

a4 = [1,2,3]
A 1x3 column vector -- a two-dimensional array
as = [1 2 3]

A 2x3 matrix, where ; is used to separate rows
a6 = [80 81 82 ; 90 91 92]

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

24 m Data Science with Julia

Notice that the array a4 does not have a second dimension, i.e., it is
neither a 1x3 vector nor a 3x1 vector. In other words, Julia makes a
distinction between Array{T,1} and Array{T,2}.

-element Array{Int64,1}:

Arrays containing elements of a specific type can be constructed like:
a7 = Float64[3.0 5.0 ; 1.1 3.5]

Arrays can be explicitly created like this:
Vector (undef, 3)

#
#
#
#

3-element Array{Any,1}:
#undef
#undef
#undef

Matrix(undef, 2,2)

#
#
#

2x2 Array{Any,2}:
#undef #undef
#undef #undef

A 3-element Float array

a3

= collect(Float64, 3:-1:1)
-element Array{Float64,1}:
0
.0
0

Julia has many built-in functions that generate specific kinds

of arrays. Here are some useful ones:

e zeros(T, d1, ..) is a dl-dimensional array of all zeros.
e ones(T, d1, ..) is a di-dimensional array of all ones.

e rand(T, d1, ..): if T is Float, a di-dimensional array of
random numbers between 0 and 1 is returned; if an array is
specified as the first argument, d1 random elements from the
array are returned.

e randn(T, d1, ..) is a dil-dimensional array of random
numbers from the standard normal distribution with mean
zero and standard deviation 1.

e MatrixT(I, (n,n)) isthe nxn identity matrix. The identity
operator I is available in the LinearAlgebra. jl package.

fil11!' (A, x) is the array A filled with value x.

Note that, in the above, d1 can be a tuple specifying multiple
dimensions.

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

Core Julia m 25

Arrays can easily be concatenated in Julia. There are two func-
tions commonly used to concatenate arrays:

e vcat(Al, A2, ..) concatenates arrays vertically, i.e., stacks
A1 on top of A2.

e hcat(Al, A2, ..) concatenates arrays horizontally, i.e.,
adds A2 to the right of Al.

Of course, concatenation requires that the relevant dimensions
match.

The following code block illustrates some useful array functions
as well as slicing. Slicing for arrays works similarly to slicing for
strings.

Create a 2x2 identity matrix
using LinearAlgebra
imat = Matrix{Int8}(I, (2,2))

return random numbers between O and 1
rand(2)

#2-element Array{Float64,1}:

0.86398

0.491484

B = [80 81 82 ; 90 91 92]
2x3 Array{Int64,2}:

80 81 82
90 91 92

return random elements of B
rand(B,2)

#2-element Array{Int64,1}:

80

91

The number of elements in B
length(B)
6

The dimensions of B
size(B)
(2, 3)

The number of dimensions of B
ndims (B)
2

A new array with the same elements (data) as B but different dimensions
reshape(B, (3, 2))

3x2 Array{Int64,2}:

80 91

90 82

81 92

A copy of B, where elements are recursively copied

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

26 W Data Science with Julia

B2 = deepcopy(B)

When slicing, a slice is specified for each dimension
The first two rows of the first column done two ways
B[1:2,]

2-element Array{Int64,1}:

80

90

B[1:2,1]

The first two rows of the second column
B[1:2,2]

2-element Array{Int64,1}:

81

91

The first row

B[1,:]

3-element Array{Int64,1}:
80

81

82

The third element
B[3]
#81

Another way to build an array is using comprehensions
Al = [sqrt(i) for i in [16,25,64]]
lement Array{Float64,1}:

3-e
4.0
5.0
8.0
A2 = [i"2 for i in [1,2,3]]
3-element Array{Int64,1}:
1
4
9

From a couple of examples in the above code block, we can see
that Julia counts array elements by column, i.e., the kth element
of the n x m matrix X is the kth element of the nm-vector vec(X).
Array comprehensions, illustrated above, are another more sophis-
ticated way of building arrays. They generate the items in the array
with a function and a loop. These items are then collected into an
array by the brackets [] that surround the loop and function.

2.4.2 Dictionaries

In Julia, dictionaries are defined as associative collections con-
sisting of a key-value pair, i.e., the key is associated with a spe-
cific value. These key-value pairs have their own type in Julia,
Pairtypeof (key), typeof(value) which creates a Pair object.

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

Core Julia m 27

Alternatively, the => symbol can be used to separate the key and
value to create the same Pair object. One use of Pair objects is in
the instantiation of dictionaries. Dictionaries in Julia can be used
analogously to lists in R. Dictionaries are created using the key-
word Dict and types can be specified for both the key and the
value. The keys are hashed and are always unique.

Three dictionaries, DO is empty, D1 and D2 are the same
DO = Dict()

D1 = Dict(1 => "red", 2 => "white")

D2 = Dict{Integer, String}(1 => "red", 2 => "white")

Dictionaries can be created using a loop
food = ["salmon", "maple syrup", "tourtiere"]

food_dict = Dict{Int, String}()

keys are the foods index in the array

for (n, fd) in enumerate(food)
food_dict[n] = fd

end

Dictionaries can also be created using the generator syntax
wine = ["red", "white", "rose"]
wine_dict = Dict{Int,String}(i => wine[i] for i in 1:length(wine))

Values can be accessed using [] with a value of a dictionary
key inserted between them or get(). The presence of a key can
be checked using haskey() and a particular key can be accessed
using getkey (). Keys can also be modified, as illustrated in the
below code block. Here, we also demonstrate adding and deleting
entries from a dictionary as well as various ways of manipulating
keys and values. Note that the following code block builds on the
previous one.

Values can be accessed similarly to an array, but by key:
food_dict[1]

The get() function can also be used; note that "unknown" is the
value returned here if the key is not in the dictionary
get(food_dict, 1, "unknown")

get(food_dict, 7, "unknown")

We can also check directly for the presence of a particular key
haskey(food_dict, 2)

haskey(food_dict, 9)

The getkey() function can also be used; note that 999 is the

value returned here if the key is not in the dictionary

getkey(food_dict, 1, 999)

A new value can be associated with an existing key

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

28 HW Data Science with Julia

food_dict
food_dict[1] = "lobster"

Two common ways to add new entries:
food_dict[4] = "bannock"
get! (food_dict, 4, "bannock")

The advantage of get!() is that is will not add the new entry if
a value is already associated with the the key
get! (food_dict, 4, "toutiere")

Just deleting entries by key is straightforward
delete! (food_dict,4)

But we can also delete by key and return the value associated with
the key; note that 999 is returned here if the key is not present
deleted_fd_value = pop! (food_dict,3, 999)

Keys can be coerced into arrays
collect (keys(food_dict))

Values can also be coerced into arrays
collect (values(food_dict))

We can iterate over both keys and values
for (k, v) in food_dict

println("food_dict: key: ", k, " value: ", v)
end

We could also just loop over keys
for k in keys(food_dict)

println("food_dict: key: ", k)
end

Or could also just loop over values
for v in values(food_dict)

println("food_dict: value: ", v)
end

2.5 CONTROL FLOW

2.5.1 Compound Expressions

In Julia, a compound expression is one expression that is used to
sequentially evaluate a group of subexpressions. The value of the
last subexpression is returned as the value of the expression. There
are two ways to achieve this: begin blocks and chains.

A begin block
bl = begin
c = 20
d=5
c xd
end
println("bl: ", bl)

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

Core Julia m 29

100

A chain

b2 = (¢ =20 ;d=5; c *d)
println("b2: ", b2)

100

2.5.2 Conditional Evaluation

Conditional evaluation allows parts of a program to be evaluated,
or not, based on the value of a Boolean expression, i.e., an expres-
sion that produces a true/false value. In Julia, conditional evalua-
tion takes the form of an if-elseif-else construct, which is eval-
uated until the first Boolean expression evaluates to true or the
else statement is reached. When a given Boolean expression eval-
uates to true, the associated block of code is executed. No other
code blocks or condition expressions within the if-elseif-else
construct are evaluated. An if-elseif-else construct returns the
value of the last executed statement. Programmers can use as many
elseif blocks as they wish, including none, i.e., an if-else con-
struct. In Julia, if, elseif and else statements do not require
parentheses; in fact, their use is discouraged.

An if-else construct

k=1
if k == 0
"zero"
else
"not zero"
end

not zero

An if-elseif-else construct
k=11
if k% 3==0
0
elseif k % 3 == 1
1
else
2
end
2

An alternative approach to conditional evaluation is via short-
circuit evaluation. This construct has the forma ? b : c, where a
is a Boolean expression, b is evaluated if a is true, and c is evaluated
if a is false. Note that ? : is called the “ternary operator”, it asso-
ciates from right to left, and it can be useful for short conditional

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

30 m Data Science with Julia

statements. Ternary operators can be chained together to accom-
modate situations analogous to an if-elseif-else construct with
one or more ifelse blocks.

A short-circuit evaluation
b= 10; ¢ = 20;
println("SCE: b < c: ", b < ¢ ? "less than" : "not less than")

A short-circuit evaluation with nesting
d = 10; £ = 10;
println("SCE: chained d vs e:
d < f ? "less than " :
d > f 7 "greater than" : "equal")

"
B

Note that we do not use e in the above example because it is a literal
in Julia (the exponential function); while it can be overwritten, it is
best practice to avoid doing so.
e
#

ERROR: UndefVarError: e not defined
using Base.MathConstants
e
e = 2.7182818284590. ..

2.5.3 Loops
2.5.3.1 Basics

Two looping constructs exist in Julia: for loops and while loops.
These loops can iterate over any container, such as a string or
an array. The body of a loop ends with the end keyword. Vari-
ables referenced inside loops are typically in the local scope of the
loop. When using variables defined outside the body of the loop,
pre-append them with the global keyword inside the body of the
loop. A for loop can operate over a range object representing a
sequence of numbers, e.g., 1:5, which it uses to get each index to
loop through the range of values in the range, assigning each one
to an indexing variable. The indexing variable only exists inside
the loop. When looping over a container, for loops can access the
elements of the container directly using the in operator. Rather
than using simple nesting, nested for loops can be written as a
single outer loop with multiple indexing variables forming a Carte-
sian product, e.g., if there are two indexing variables then, for each
value of the first index, each value of the second index is evaluated.

str = "Julia"

A for loop for a string, iterating by index

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

Core Julia m 31

for i = 1:length(str)
print(str[il)
end

A for loop for a string, iterating by container element
for s in str

print(s)
end

A nested for loop
for i in str, j = 1:length(str)
println((i, j))

end
(J', 1D
('J', 2)
..
('a', 4)
('a', 5)

Another nested for loop

odd = [1,3,5]

even = [2,4,6]

for i in odd, j in even
println("ixj: $(ixj)")

end

ixj: 2

ixj: 4

..

ixj: 20

ixj: 30

A while loop evaluates a conditional expression and, as long as
it is true, the loop evaluates the code in the body of the loop. To
ensure that the loop will end at some stage, an operation inside the
loop has to falsify the conditional expression. Programmers must
ensure that a while loop will falsify the conditional expression,
otherwise the loop will become “infinite” and never finish execut-
ing.

Example of an infinite while loop (nothing inside the loop can falsify
the condition x<10)
n=0
x=1
while x<10:
global n
n=n+1
end

A while loop to estimate the median using an MM algorithm
using Distributions, Random
Random.seed! (1234)

iter = 0

N = 100

x = rand(Normal(2,1), N)

psi = £ill!(Vector{Float64}(undef,2), 1e9)

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

32 m Data Science with Julia

while(true)

global iter, x, psi

iter += 1

if iter == 25
println("Max iteration reached at iter=$iter")
break

end

num, den = (0,0)

elementwise operations in wgt

wgt = (abs.(x .- psil[2])). -1
num = sum(wgt .* x)
den = sum(wgt)

psi = circshift(psi, 1)
psil2] = num / den

dif = abs(psil[2] - psil1l)
if dif < 0.001
print ("Converged at iteration $iter")
break
end
end

gives an estimate of the median
median (x)
1.959

psil2]
1.956

2.5.3.2 Loop termination

When writing loops, it is often advantageous to allow a loop to
terminate early, before it has completed. In the case of a while
loop, the loop would be broken before the test condition is falsified.
When iterating over an iterable object with a for loop, it is stopped
before the end of the object is reached. The break keyword can
accomplish both tasks. The following code block has two loops, a
while loop that calculates the square of the index variable and
stops when the square is greater than 16. Note that without the
break keyword, this is an infinite loop. The second loop does the
same thing, but uses a for loop to do it. The for loop terminates
before the end of the iterable range object is reached.

break keyword

i=0
while true
global i
sq = i72
println("i: $i --- sq: = $sq")
if sq > 16

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

Core Julia m 33

-——= Sq:
-—= Sq:
—-== 8q:
sq:
-——— Sq:
-——= Sq:

L | S | B | B | B 1}
N = O P = O

g WN = O
I
|
I

for i = 1:10
sq = i72
println("i: $i --- sq: = $sq")
if sq > 16
break
end
end

In some situations, it might be the case that a programmer
wants to move from the current iteration of a loop immediately
into the next iteration before the current one is finished. This can
be accomplished using the continue keyword.

continue keyword

for i in 1:5
if i 4 2==0

continue

end

sq = i"2

println("i: $i --- sq: $sq")
end
#i: 1 --- sq: 1
#1i: 3 -—- sq: 9
i: b -—- sq: 25

In real world scenarios, continue could be used multiple times
in a loop and there could be more complex code after the continue
keyword.

2.5.3.3 Exception handling

Exceptions are unexpected conditions that can occur in a program
while it is carrying out its computations. The program may not
be able to carry out the required computations or return a sensi-
ble value to its caller. Usually, exceptions terminate the function
or program that generates it and prints some sort of diagnostic
message to standard output. An example of this is given in the

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

34 B Data Science with Julia

following code block, where we try and take the logarithm of a
negative number and the log() function throws an exception.

Generate an exception
log(-1)

ERROR: DomainError with -1.0:

log will only return a complex result if called with a complex argument.
Try log(Complex(x)).

Stacktrace:

[1] throw_complex_domainerror(::Symbol, ::Float64) at ./math.jl:31

[2] log(::Float64) at ./special/log.jl:285

[3] log(::Int64) at ./special/log.jl:395

[4] top-level scope at none:0

In the above code block, the log() function threw a
DomainError exception. Julia has a number of built-in exceptions
that can be thrown and captured by a Julia program. Any excep-
tion can be explicitly thrown using the throw() function.

throw()

for i in [1, 2, -1, 3]

if i <0
throw(DomainError())
else
println("i: $(log(i))")
end
end
#1i: 0.0
i: 0.6931471805599453
ERROR: MethodError: no method matching DomainError ()
Closest candidates are:
DomainError(::Any) at boot.jl:256
DomainError(::Any, ::Any) at boot.jl:257
Stacktrace:
[1] top-level scope at ./none:3
error
for i in [1, 2, -1, 3]
if i <0
error("i is a negative number")
else
println("i: $(log(i))™)
end
end

#1i: 0.0

i: 0.6931471805599453

ERROR: i is a negative number

Stacktrace:

[1] top-level scope at ./none:3

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

Core Julia m 35

In the previous code block, we throw the DomainError () excep-
tion when the input to log() is negative. Note that DomainError ()
requires the brackets () to return an exception object. Without
them, it is referring to the exception type. The error() func-
tion can be used in a similar way. It produces an object of type
ErrorException that will immediately stop all execution of the
Julia program.

If we want to test for an exception and handle it gracefully,
we can use a try-catch statement to do this. These statements
allow us to catch an exception, store it in a variable if required,
and try an alternative way of processing the input that generated
the exception.

try/catch

for i in [1, 2, -1, "A"]
try log(i)
catch ex
if isa(ex, DomainError)
println("i: $i --- Domain Error")
log(abs(i))
else
println("i: $i")
println(ex)
error("Not a DomainError")
end
end
end

i: -1 --- Domain Error
i: A
MethodError(log, ("A",), 0x00000000000061£0)
ERROR: Not a DomainError
Stacktrace:
[1] top-level scope at ./none:10

H OHE H H R

In the previous code block, the exception is stored in the ex
variable and when the error is not a DomainError(), its value
is returned along with the ErrorException defined by the call to
error (). Note that try-catch blocks can degrade the performance
of code because of the overhead they require. For high-performance
code, it is better to use standard conditional evaluation to handle
known exceptions.

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

36 W Data Science with Julia

2.6 FUNCTIONS

A function is an object that takes argument values as a tuple and
maps them to a return value. Functions are first-class objects in
Julia. They can be:

e assigned to variables;

e called from these variables;

e passed as arguments to other functions; and
e returned as values from a function.

A first-class object is one that accommodates all operations other
objects support. Operations typically supported by first-class ob-
jects in all programming languages are listed above. The basic syn-
tax of a function is illustrated in the following code block.

function add(x,y)
return(x+y)
end

In Julia, function names are all lowercase, without underscores,
but can include Unicode characters. It is best practice to avoid ab-
breviations, e.g., fibonacci() is preferable to £ib(). The body
of the function is the part contained on the lines between the
function and end keywords. Parenthesis syntax is used to call
a function, e.g., add(3, 5) returns 8. Because functions are ob-
jects, they can be passed around like any value and, when passed,
the parentheses are omitted.

addnew = add
addnew(3,5)
8

Functions may also be written in assignment form, in which case
the body of the function must be a single expression. This can be
a very useful approach for simple functions because it makes code
much easier to read.

add2(x, y) = xty

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

Core Julia m 37

Argument passing is done by reference. Modifications to the
input data structure (e.g., array) inside the function will be visible
outside it. If function inputs are not to be modified by a function, a
copy of the input(s) should be made inside the function before do-
ing any modifications. Python and other dynamic languages handle
their function arguments in a similar way.

Argument passing
function f1!(x)

x[1] = 9999
return(x)
end

ia = Int64[0,1,2]
println("Array ia: ", ia)
Array ia: [0, 1, 2]

f1!(ia)
println("Argument passing by reference: ", ia)
Argument passing by reference: [9999, 1, 2]

By default, the last expression that is evaluated in the body of a
function is its return value. However, when the function body con-
tains one or more return keywords, it returns immediately when a
return keyword is evaluated. The return keyword usually wraps
an expression that provides a value when returned. When used with
the control flow statements, the return keyword can be especially
useful.

A function with multiple options for return
function gt(gl, g2)

if (gl >g2)
return("$gl is largest")
elseif (g1<g2)
return("$g2 is largest")
else
return("$gl and $g2 are equal")
end
end
gt(2,4)

"4 1is largest"

The majority of Julia operators are actually functions and can
be called with parenthesized argument lists, just like other func-
tions.

These are equivalent

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

38 W Data Science with Julia

2%3
6
*(2,3)
6

Functions can also be created without a name, and such func-
tions are called anonymous functions. Anonymous functions can
be used as arguments for functions that take other functions as
arguments.

map() applies a function to each element of an array and returns a new
array containing the resulting values

a = [1,2,3,1,2,1]
mu = mean(a)
sd = std(a)

centers and scales a
b = map(x -> (x-mu)/sd, a)

Julia accommodates optional arguments by allowing function
arguments to have default values, similar to R and many other
languages. The value of an optional argument does not need to be
specified in a function call.

A function with an optional argument. This is a recursive function,
i.e., a function that calls itself, for computing the sum of the first n
elements of the Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,...

function fibonacci(n=20)
if (n<=1)
return 1
else
return fibonacci(n-1)+fibonacci(n-2)
end
end

Sum the first 12 elements of the Fibonacci sequence
fibonacci(12)
233

Because the optional argument defaults to 20, these are equivalent
fibonacci()
fibonacci (20)

Function arguments determine its behaviour. In general, the
more arguments a function has, the more varied its behaviour will
be. Keyword arguments are useful because they help manage func-
tion behaviour; specifically, they allow arguments to be specified
by name and not just position in the function call. In the be-

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

Core Julia m 39

low code block, an MM algorithm is demonstrated. Note that we
have already used an MM algorithm in Section 2.5.3.1, but now
we construct an MM algorithm as a function. MM algorithms are
blueprints for algorithms that either iteratively minimize a ma-
jorizing function or iteratively maximize a minorizing function —
see Hunter and Lange (2000, 2004) for further details.

A function with a keyword argument

Arguments after the ; are keyword arguments

The default values are evaluated from left-to-right.

This allows keyword arguments to refer to previously defined keywords
Keyword arguments can have explicit types

estimate the median of a 1D array using an MM algorithm
for clarity (too many m's!) we use an _ in the function name
function mm_median(x, eps = 0.001; maxit = 25, iter::Int64=Int(floor(eps)))

initalizations
psi = £ill!(Vector{Float64}(undef,2), le2)

while(true)
iter += 1
if iter == maxit
println("Max iteration reached at iter=$iter")
break
end

num, den = (0,0)

use map() to do elementwise operations in wgt
wgt = map(d -> (abs(d - psi[2]))°(-1), x)

num = sum(map(*, wgt, x))

den = sum(wgt)

psi = circshift(psi, 1)

psil2] = num / den

dif = abs(psil[2] - psil1])
if dif < eps
print ("Converged at iteration $iter")
break
end
end

return(Dict(
"psi_vec" => psi,
"median" => psil[2]

)
end
Run on simulated data
using Distributions, Random

Random.seed! (1234)

N = Int(1e3)
dat = rand(Normal(0,6), N)

Function calls using different types of arguments

median(dat)
0.279

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

40 m Data Science with Julia

mm_median(dat, 1e-9)["median"]
Max iteration reached at iter=25

mm_median(dat, maxit=50) ["median"]
Converged at iteration 26
0.296

mm_median(dat, le-9, maxit=100) ["median"]
Converged at iteration 36
0.288

Some general tips for using functions are as follows:

1. Write programs as a series of functions because: functions

are testable and reusable, they have well-defined inputs and
outputs, and code inside functions usually runs much faster
because of how the Julia compiler works.

Functions should not operate on global variables.

Functions with ! at the end of their names modify their argu-
ments instead of copying them. Julia library functions often
come in two versions, distinguished by the !.

. Pass a function directly, do not wrap it in an anonymous

function.

When writing functions that take numbers as arguments, use
the Int type when possible. When combined in numerical
computations, they change the resulting Julia type of the
result less frequently. This is known as type promotion.

If function arguments have specific types, the function call
should force its arguments to be the required type.

The aforementioned tips are illustrated in the following code block.

Tip3: Function with a ! in the name

al [2,3,1,6,2,8]
sort! (al)
al

#6-element Array{Int64,1}:

#

H H H HH
0 owNN

1

Tip 4

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

Core Julia

Do not wrap abs() in an anonymous function
A =1[1, -0.5, -2, 0.5]
map(x -> abs(x), A)

Rather, do this
abs() is not wrapped in an anonymous function
map (abs, A)

##Tip 5: Type promotion
timesla(y) = *(y, 1)
timesib(y) = *(y, 1.0)

println("timesla(1/2): ", timesla(1/2))
println("timesia(2): ", timesla(2)) ## preserves type
println("timesia(2.0): ", timesla(2.0))
println("times1b(1/2): ", times1b(1/2))
println("timesib(2): ", timesib(2)) ## changes type
println("timesib(2.0): ", timesl1b(2.0))

Tip6: Function with typed arguments
timesic(y::Float64) = *(y, 1)
timeslc(float(23))

E-Books & Papers for Statisticians

41

https://www.facebook.com/groups/stats.ebooksandpapers/

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/
http://taylorandfrancis.com

CHAPTER 3

Working with Data

HE PURPOSE of this chapter is to familiarize the reader

with some of the basics of working with data in Julia. As
would be expected, much of the focus of this chapter is on or around
dataframes, including dataframe functions. Other topics covered
include categorical data, input-output (I0), and the split-apply-
combine strategy.

3.1 DATAFRAMES

A dataframe is a tabular representation of data, similar to a spread-
sheet or a data matrix. As with a data matrix, the observations are
rows and the variables are columns. Each row is a single (vector-
valued) observation. For a single row, i.e., observation, each column
represents a single realization of a variable. At this stage, it may
be helpful to explicitly draw the analogy between a dataframe and
the more formal notation often used in statistics and data science.

Suppose we observe n realizations x1,...,x, of p-dimensional
random variables Xy, ...,X,,, where X; = (X;1, Xi2,..., X;p)’ for
i =1,...,n. In matrix form, this can be written

X}
X5
2 =(X,Xs,...,X,) = .
o
" (3.1)
X X - Xip
Xo1 Xog -0 Xy
an Xn2 o an
43

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

44 m Data Science with Julia

Now, X is called a random vector and %2 is called an n x p random
matrix. A realization of 2" can be considered a data matrix. For
completeness, note that a matrix A with all entries constant is
called a constant matrix.

Consider, for example, data on the weight and height of 500
people. Let x; = (x;1,zi2)" be the associated observation for the
tth person, ¢ = 1,2,...,500, where x;; represents their weight and
x;9 represents their height. The associated data matrix is then

!
X1 T11 T12
!
, X2 %21 T22
X = (x1,X2,...,X500) = . = . . . (3.2)
!
X500 T500,1 £500,2

A dataframe is a computer representation of a data matrix. In
Julia, the DataFrame type is available through the DataFrames. j1
package. There are several convenient features of a DataFrame,
including:

e columns can be different Julia types;

e table cell entries can be missing;

e metadata can be associated with a DataFrame;
e columns can be names; and

e tables can be subsetted by row, column or both.

The columns of a DataFrame are most often integers, floats or
strings, and they are specified by Julia symbols.

Symbol versus String
fruit = "apple"

println("eval(:fruit): ", eval(:fruit))
eval(:fruit): apple

println("""eval("apple"): """, eval("apple"))
eval("apple"): apple

In Julia, a symbol is how a variable name is represented as
data; on the other hand, a string represents itself. Note that
df [:symbol] is how a column is accessed with a symbol; specifi-
cally, the data in the column represented by symbol contained in
the DataFrame df is being accessed. In Julia, a DataFrame can be
built all at once or in multiple phases.

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

Working with Data B 45

Some examples with DataFrames

using DataFrames, Distributions, StatsBase, Random
Random.seed! (825)

N = 50

Create a sample dataframe

Initially the DataFrame has N rows and 3 columns

df1l = DataFrame(
x1 = rand(Normal(2,1), N),

x2 = [sample(["High", "Medium", "Low"],
pweights([0.25,0.45,0.30])) for i=1:N],
x3 = rand(Pareto(2, 1), N)

)

Add a 4th column, y, which is dependent on x3 and the level of x2
df1[:y] = [df1[i,:x2] == "High" ? *(4, df1[i, :x3])
df1[i,:x2] == "Medium" ? *(2, df1[i, :x3])
*(0.5, df1[i, :x3]) for i=1:N]

A DataFrame can be sliced the same way a two-dimensional
Array is sliced, i.e., via df [row_range, column_range]. These
ranges can be specified in a number of ways:

e Using Int indices individually or as arrays, e.g., 1 or [4,6,9].

e Using : to select indices in a dimension, e.g., x:y selects the
range from x to y and : selects all indices in that dimension.

e Via arrays of Boolean values, where true selects the elements
at that index.

Note that columns can be selected by their symbols, either indi-
vidually or in an array [:x1, :x2].

Slicing DataFrames
println("df1[1:2, 3:4]: ",df1[1:2, 3:4])
println("\ndf1[1:2, [:y, :x1]1]: ",df1[1:2, [:y, :x1]1)

Now, exclude columns x1 and x2
keep = setdiff (names(df1), [:x1, :x2])
println("\nColumns to keep: ", keep)

Columns to keep: Symbol[:x3, :yl]

println("df1[1:2, keepl: ",df1[1:2, keepl)

In practical applications, missing data is common. In
DataFrames. jl, the Missing type is used to represent missing val-
ues. In Julia, a singlton occurence of Missing, missing is used to
represent missing data. Specifically, missing is used to represent

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

46 MW Data Science with Julia

the value of a measurement when a valid value could have been
observed but was not. Note that missing in Julia is analogous to
NA in R.

In the following code block, the array v2 has type
Union{Float64, Missings.Missing}. In Julia, Union types are
an abstract type that contain objects of types included in its ar-
guments. In this example, v2 can contain values of missing or
Float64 numbers. Note that missings () can be used to generate
arrays that will support missing values; specifically, it will gener-
ate vectors of type Union if another type is specified in the first
argument of the function call. Also, ismissing(x) is used to test
whether x is missing, where x is usually an element of a data struc-
ture, e.g., ismissing(v2[1]).

Examples of vectors with missing values
vl = missings(2)

println("vi: ", vi)

vl: Missing[missing, missing]

v2 = missings(Float64, 1, 3)

v2[2] = pi

println("v2: ", v2)

v2: Union{Missing, Float64}[missing 3.14159 missing]

Test for missing

ml = map(ismissing, v2)
println("mi: ", mi)

ml: Bool[true false true]

println("Percent missing v2: ", *(mean([ismissing(i) for i in v2]), 100))
Percent missing v2: 66.66666666666666

Note that most functions in Julia do not accept data of type
Missings.Missing as input. Therefore, users are often required
to remove them before they can use specific functions. Using
skipmissing() returns an iterator that excludes the missing val-
ues and, when used in conjunction with collect (), gives an array
of non-missing values. This approach can be used with functions
that take non-missing values only.

calculates the mean of the non-missing values
mean (skipmissing(v2))
3.141592653589793

collects the non-missing values in an array
collect (skipmissing(v2))

1-element Array{Float64,1}:

3.14159

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

Working with Data B 47

3.2 CATEGORICAL DATA

In Julia, categorical data is represented by arrays of type
CategoricalArray, defined in the CategoricalArrays.jl pack-
age. Note that CategoricalArray arrays are analogous to factors
in R. CategoricalArray arrays have a number of advantages over
String arrays in a dataframe:

e They save memory by representing each unique value of the
string array as an index.

e Each index corresponds to a level.

e After data cleaning, there are usually only a small number
of levels.

CategoricalArray arrays support missing values. The type
CategoricalArray{Union{T, Missing}} is used to represent
missing values. When indexing/slicing arrays of this type, missing
is returned when it is present at that location.

Number of entries for the categorical arrays
Nca = 10

Empty array
v3 = Array{Union{String, Missing}}(undef, Nca)

Array has string and missing values
v3 = [isodd(i) ? sample(["High", "Low"], pweights([0.35,0.65])) :
missing for i = 1:Ncal

v3c is of type CategoricalArray{Union{Missing, String},1,UInt32}
v3c = categorical(v3)

Levels should be ["High", "Low"]
println("1. levels(v3c): ", levels(v3c))
1. levels(v3c): ["High", "Low"]

Reordered levels - does not change the data
levels! (v3c, ["Low", "High"l)

println("2. levels(v3c):", levels(v3c))

2. levels(v3c): ["Low", "High"]

println("2. v3c: ", v3c)

2. v3c: Union{Missing, CategoricalString{UInt32}}

["High", missing, "Low", missing, "Low", missing, "High",
missing, "Low", missing]

Here are several useful functions that can be used with
CategoricalArray arrays:

e levels() returns the levels of the CategoricalArray.

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

48 MW Data Science with Julia

levels! () changes the order of the array’s levels.
compress () compresses the array saving memory.
decompress () decompresses the compressed array.

categorical(ca) converts the array ca into an array of type
CategoricalArray.

droplevels! (ca) drops levels no longer present in the array
ca. This is useful when a dataframe has been subsetted and
some levels are no longer present in the data.

recode(a, pairs) recodes the levels of the array. New levels
should be of the same type as the original ones.

recode! (new, orig, pairs) recodes the levels in orig us-
ing the pairs and puts the new levels in new.

Note that ordered CategoricalArray arrays can be made and ma-
nipulated.

An integer array with three values

vb =

[sample([0,1,2], pweights([0.2,0.6,0.2])) for i=1:Ncal

An empty string array
vbb = Array{String}(undef, Nca)

Recode the integer array values and save them to vbb
recode! (vb6b, v6, 0 => "Apple", 1 => "Orange", 2=> "Pear")
vbc = categorical (v5Eb)

print (typeof (v5c))
CategoricalArray{String,1,UInt32,String,CategoricalString{UInt32},
Union{}}

print (levels(v5c))
["Apple", "Orange", "Pear"]

3.3

INPUT/OUTPUT

The CSV. j1 library has been developed to read and write delimited
text files. The focus in what follows is on reading data into Julia

with

CSV.read(). However, as one would expect, CSV.write()

has many of the same arguments as CSV.read() and it should be
easy to use once one becomes familiar with CSV.read(). Useful
CSV.read() parameters include:

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

Working with Data B 49

e fullpath is a String representing the file path to a delimited
text file.

e Data.sink is usually a DataFrame but can be any Data.Sink
in the DataStreams.jl package, which is designed to effi-
ciently transfer/stream “table-like” data. Examples of data
sinks include arrays, dataframes, and databases (SQlite.j1,
ODBC. j1, etc.).

e delim is a character representing how the fields in a file are
delimited (| or ,).

e quotechar is a character used to represent a quoted field
that could contain the field or newline delimiter.

e missingstring is a string representing how the missing val-
ues in the data file are defined.

e datarow is an Int specifying at what line the data starts in
the file.

e header is a String array of column names or an Int speci-
fying the row in the file with the headers.

e types specifies the column types in an Array of type
DataType or a dictionary with keys corresponding to the col-
umn name or number and the values corresponding to the
columns’ data types.

Before moving into an example using real data, we will illus-
trate how to change the user’s working directory. R users will be
familiar with the setwd () function, which sets the R session’s work-
ing directory to a user-defined location. The following code block
demonstrates how to set the user’s working directory in Julia using
the cd () function. We are using the function homedir () to prepend
the path. Note that Windows users have to “Escape” their back-
slashes when specifying the path.

Specify working directory
homedir ()

"/Users/paul"

cd("$ (homedir())/Desktop")

pwd ()
"/Users/paul/Desktop"

On Windows
cd("D:\\julia\\projects")

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

50 m Data Science with Julia

The following code block details how one could go about reading
in and cleaning the beer data in Julia. We start by defining some
Julia types to store the raw data. This was necessary as the raw
data contained missing values in addition to valid entries. The
column names that will be used by our dataframe are defined in
an array. These same names are used as keys for the dictionary that
defines the types for each column. The CSV. j1 package is used to
read the comma separated value (CSV) data into Julia and store
it as a dataframe called df_recipe_raw. From the raw data, a
cleaned version of the data is produced, with new columns for a
binary outcome and dummy variables produced from the levels of
the categorical variables.

using DataFrames, Query, CSV, JLD2, StatsBase, MLLabelUtils, Random
include ("chp3_functions.jl")
Random.seed! (24908)

Types for the files columns
IntOrMiss = Union{Int64,Missing}
F1tOrMiss = Union{Float64,Missing}
StrOrMiss = Union{String,Missing}

define variable names for each column

recipe_header = ["beer_id", "name", "url", "style", "style_id", "size",
"og", "fg", "abv", "ibu", "color", "boil_size", "boil_time", "biol_grav",
"efficiency", "mash_thick", "sugar_scale", "brew_method", "pitch_rate",
"pri_temp", "prime_method", "prime_am"]

dictionary of types for each column
recipe_types2 = Dict{String, Union}(
"beer_id" => IntOrMiss,
"name" => StrOrMiss,
"url" => StrOrMiss,
"style" => StrOrMiss,
"style_id" => IntOrMiss,
"size" => FltOrMiss,
"og" => FltOrMiss,
"fg" => F1tOrMiss,
"abv" => F1ltOrMiss,
"ibu" => F1tOrMiss,
"color" => FltOrMiss,
"boil_size" => F1ltOrMiss,
"boil_time" => F1ltOrMiss,
"biol_grav" => FltOrMiss,
"efficiency" => F1ltOrMiss,
"mash_thick" => FltOrMiss,
"sugar_scale" => StrOrMiss,
"brew_method" => StrOrMiss,
"pitch_rate" => F1ltOrMiss,
"pri_temp" => FltOrMiss,
"prime_method" => StrOrMiss,
"prime_am" => StrOrMiss

)

read csv file

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

Working with Data

df _recipe_raw = CSV.read("recipeData.csv",
DataFrame;
delim = ',' ,
quotechar = '"',
missingstring = "N/A",
datarow = 2,
header = recipe_header,
types = recipe_types2,
allowmissing=:all

Drop columns
delete!(df_recipe_raw, [:prime_method, :prime_am, :url])

#itHH#
Write the raw data dataframe
JLD2.@save "recipeRaw.jld2" df_recipe_raw

Create cleaned version

Create a copy of the DF
df _recipe = deepcopy(df_recipe_raw)

exclude missing styles
filter!(row -> !ismissing(row[:stylel), df_recipe)

println("-- df_recipe: ",size(df_recipe))
df_recipe: (73861, 19)

Make beer categories
df_recipel:y] = map(x ->

occursin(r"ALE"i, x) || occursin(r"IPA"i, x) || occursin(r"Porter"i, x)

|| occursin(r"stout"i, x) ? 0 :

51

occursin(r"lager"i, x) || occursin(r"pilsner"i, x) || occursin(r"bock"i, x)

|| occursin(r"okto"i, x) ? 1 : 99 ,
df _recipel[:stylel)

remove styles that are not lagers or ales
filter!(row -> row[:y] != 99, df_recipe)

remove extraneous columns
delete! (df _recipe, [:beer_id, :name, :style, :style_id])

create dummy variables - one-hot-encoding
onehot_encoding! (df _recipe, "brew_method" , trace = true)
onehot_encoding! (df _recipe, "sugar_scale")

describe(df _recipe, stats=[:eltype, :nmissing])

delete! (df _recipe, [:brew_method,:sugar_scale])

JLD2.@save "recipe.jld2" df_recipe

The following code block illustrates many of the same steps used
to read and clean the food data which is used for our regression

examples in Chapters 5 and 7.

using DataFrames, Query, CSV, JLD2, StatsBase, MLLabelUtils, Random
include("chp3_functions.j1")

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

52 B Data Science with Julia

Random.seed! (24908)

Types for the file columns
IntOrMiss = Union{Int64,Missing}
F1tOrMiss = Union{Float64,Missing}
StrOrMiss = Union{String,Missing}

define variable names for each column
food_header =
["gpa", "gender", "breakfast", "cal_ckn", "cal_day",
"cal_scone", "coffee", "comfort_food", "comfort_food_reason",
"comfoodr_codel", "cook", "comfoodr_code2", "cuisine", "diet_current",
"diet_current_code", "drink", "eating_changes", "eating_changes_coded",
"eating_ changes_codedl", "eating_out", "employment", "ethnic_food",
"exercise", "father_educ", "father_prof", "fav_cuisine",
"fav_cuisine_code", "fav_food", "food_child", "fries", "fruit_day",
"grade_level", "greek_food", "healthy_feeling", "healthy_meal",
"ideal_diet", "ideal_diet_coded", "income", "indian_food",
"italian_food", "life_reward", "marital_status", "meals_friend",
"mom_educ", "mom_prof", "nut_check", "on_campus", "parents_cook",
"pay_meal_out", "persian_food","self_perception_wgt", "soup", "sports",
"thai_food", "tortilla_cal", "turkey_cal", "sports_type", "veggies_day",
"vitamins", "waffle_cal", "wgt"]

dictionary of types for each column

food_types = Dict{String, Union}(
"gpa" => F1tOrMiss,
"gender" => IntOrMiss,
"breakfast" => IntOrMiss,
"cal_ckn" => IntOrMiss,
"cal_day" => IntOrMiss,
"cal_scone" => IntOrMiss,
"coffee" => IntOrMiss,
"comfort_food" => StrOrMiss,
"comfort_food_reason" => StrOrMiss,
"comfoodr_codel" => IntOrMiss,
"cook" => IntOrMiss,
"comfoodr_code2" => IntOrMiss,
"cuisine" => IntOrMiss,
"diet_current" => StrOrMiss,
"diet_current_code" => IntOrMiss,
"drink" => IntOrMiss,
"eating_changes" => StrOrMiss,
"eating_changes_coded" => IntOrMiss,
"eating_changes_codedl" => IntOrMiss,
"eating_out" => IntOrMiss,
"employment" => IntOrMiss,
"ethnic_food" => IntOrMiss,
"exercise" => IntOrMiss,
"father_educ" => IntOrMiss,
"father_prof" => StrOrMiss,
"fav_cuisine" => StrOrMiss,
"fav_cuisine_code" => IntOrMiss,
"fav_food" => IntOrMiss,
"food_child" => StrOrMiss,
"fries" => IntOrMiss,
"fruit_day" => IntOrMiss,
"grade_level" => IntOrMiss,
"greek_food" => IntOrMiss,
"healthy_feeling" = IntOrMiss,
"healthy_meal" => StrOrMiss,
"ideal_diet" => StrOrMiss,

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

Working with Data

"ideal_diet_coded" => IntOrMiss,
"income" => IntOrMiss,
"indian_food" => IntOrMiss,
"italian_food" => IntOrMiss,
"life_reward" => IntOrMiss,
"marital_status" => IntOrMiss,
"meals_friend" => StrOrMiss,
"mom_educ" => IntOrMiss,
"mom_prof" => StrOrMiss,
"nut_check" => IntOrMiss,
"on_campus" => IntOrMiss,
"parents_cook" => IntOrMiss,
"pay_meal_out" => IntOrMiss,
"persian_food" => IntOrMiss,
"self_perception_wgt" => IntOrMiss,
"soup" => IntOrMiss,
"sports" => IntOrMiss,
"thai_food" => IntOrMiss,
"tortilla_cal" => IntOrMiss,
"turkey_cal" => IntOrMiss,
"sports_type" => StrOrMiss,
"veggies_day" => IntOrMiss,
"vitamins" => IntOrMiss,
"waffle_cal" => IntOrMiss,
"wgt" => F1ltOrMiss

)

read csv file
df _food_raw = CSV.read("food_coded.csv",
DataFrame;

delim = ',"' ,

quotechar = '"',

missingstrings = ["nan", "NA", "na", ""],
datarow = 2,

header = food_header,

types = food_types,

allowmissing=:all

)

drop text fields which are not coded fields

53

delete! (df _food_raw, [:comfort_food, :comfort_food_reason, :comfoodr_code2,
:diet_current, :eating changes, :father_prof, :fav_cuisine, :food_child,

:healthy _meal, :ideal_diet, :meals_friend, :mom_prof, :sports_type

D

Change 1/2 coding to 0/1 coding

df_food_raw[:gender] = map(x -> x - 1, df_food_raw[:gender])

df _food_raw[:breakfast] = map(x -> x - 1, df_food_raw[:breakfast])
df_food_raw[:coffee] = map(x -> x - 1, df_food_raw[:coffee])

df _food_raw[:drink] = map(x -> x - 1, df_food_raw[:drink])

df _food_raw[:fries] = map(x -> x - 1, df_food_raw[:fries])

df _food_raw[:soup] = map(x -> x - 1, df_food_raw[:soup]l)

df _food_raw[:sports] = map(x -> x - 1, df_food_raw[:sports])

df _food_raw[:vitamins] = map(x -> x - 1, df_food_raw[:vitamins])

JLD2.@save "food_raw.jld2" df_food_raw

Create cleaned version

Create a copy of the DF
df _food = deepcopy (df_food_raw)

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

54 m Data Science with Julia

println("- df_food size: ", size(df_food))
- df _food size: (125, 48)

generate dummy variables
used string array bc onehot_encoding! () takes a string

change2_dv = ["cal_ckn", "cal_day", "cal_scone", "comfoodr_codel",
"cook", "cuisine", "diet_current_code", "eating_ changes_coded",
"eating_changes_codedl", "eating_ out", "employment", "ethnic_food",
"exercise", "father_educ", "fav_cuisine_code", "fav_food", "fruit_day",
"grade_level", "greek food", "healthy_feeling", "ideal_diet_coded",
"income", "indian_food", "italian_food", "life_reward", "marital_status",
"mom_educ", "nut_check", "on_campus", "parents_cook", "pay_meal_out",
"persian_food", "self_perception_wgt", "thai_food", "tortilla_cal",

"turkey_cal", "veggies_day", "waffle_cal"]

println("-- onehotencoding()")
for i in change2_dv
println("i: ", i)
onehot_encoding! (df _food, i)
delete! (df _food, Symbol(i))

end

remove NaNs
df_food[:gpal =

collect (F1tOrMiss, map(x -> isnan(x)?missing:x, df_food[:gpal))
df _food[:wgt] =

collect (F1tOrMiss, map(x -> isnan(x)?missing:x, df_food[:wgtl))

remove missing gpa
filter! (row -> !ismissing(row[:gpa]), df_food)

println("--- df_food: ", size(df_food))
-—- df_food: (121, 214)

JLD2.@save "food.jld2" df_food

3.4

USEFUL DATAFRAME FUNCTIONS

There are several dataframe functions that have not been men-
tioned yet but that are quite useful:

eltype() provides the types for each element in a
DataFrame.

head(df, n) displays the top n rows.
tail(df, n) displays the bottom n rows.

size(df) returns a tuple with the dimensions of the
DataFrame.

size(df, 1) returns the number of columns.

size(df, 2) returns the number of rows.

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

Working with Data B 55

e describe(df) returns statistical summary measures along
with column types for each column in the df.

e colwise(f, df) applies function f to the columns in df.

e delete! (df, col_symbol) removes one or more columns,
where columns are referenced by a symbol or an array of
symbols, e.g., :x1 or [:x1, :x2].

e rename! (df, :0ld_name => :new_name) uses a Pair data
structure to specify the existing name and its new name. The
Pair data structure can be created dynamically:

rename! (dfl, o => n for (o, n) = zip([:x1, :x2, :x3, :y],
X4, X2, cX3L YD)

e filter(f, df) filters the rows in dataframe df using the
anonymous function f and returns a copy of df with the
rows filtered by removing elements where f is false.

e filter!(f, df) updates the dataframe df; note that no
copy is created.

remove rows where the style column is missing.
filter!(row -> !ismissing(row[:style]), df_recipe)

e push!(df, item) adds one or more items item to the
dataframe df that are not already in a dataframe.

e append! (df1, df2) adds dataframe df2 to dataframe df1.

Several functions listed here have clear analogues in R. For exam-
ple, the describe() function in Julia is similar to the summary ()
function in R. Similarly, the size () function in Julia is similar to
the dim() function in R.

using the dataframe previously defined
describe(df1[:X1])

Summary Stats:
Mean: 2.078711

E-Books & Papers for Statisticians

https://www.facebook.com/groups/stats.ebooksandpapers/

56 MW Data Science with Julia

Minimum: -0.229097
1st Quartile: 1.262696
Median: 2.086254
3rd Quartile: 2.972752
Maximum: 4.390025

Length: 50

Type: Float64

number of rows and columns of df_1
size(df1)
(50, 4)

3.5 SPLIT-APPLY-COMBINE STRATEGY

Often data scientists need to extract summary statistics from the
data in dataframes. The split-apply-combine (SAC) strategy is a
convenient way to do this. This strategy for data analysis was out-
lined by Wickham (2011) and is implemented as the plyr pack-
age (Wickham, 2016) for R. The strategy involves partitioning the
dat