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Introduction “Fundamentals of Clinical  
Data Science”

In the era of eHealth and personalized medicine, “big data” and “machine learning” 
are increasingly becoming part of the medical world. Algorithms are capable of sup-
porting diagnostic and therapeutic processes and offer added value for both health-
care professionals and patients. The field of big data, machine learning, deep 
learning, and algorithm development and validation is often referred to as “data 
science,” and “data scientist” was mentioned in Harvard Business Review as “the 
sexiest job of the 21th century” (https://hbr.org/2012/10/data-scientist-the-sexiest-
job-of-the-21st-century). A commonly used visual representation of the field is 
Drew Conway’s Venn diagram (Fig. 1), which describes data science as a mix of 
content expertise, methodological knowledge, and IT skills.

Fig. 1 Data science Venn 
diagram by Drew Conway. 
(Reproduced with 
permission)

https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century
https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century


vi

Unfortunately, most healthcare professionals still consider the field of clinical 
data science as highly technical and something “for the IT whizzkids.” That leaves 
many interesting and valuable opportunities unexplored and could even contribute 
to serious flaws in developed algorithms. Chen and Asch described machine learn-
ing’s “peak of inflated expectations” and suggest that “we can soften a subsequent 
crash into a ‘trough of disillusionment’ by fostering a stronger appreciation of the 
technology’s capabilities and limitations” (Chen and Asch 2017). They conclude 
that “combining machine-learning software with the best human clinician ‘hard-
ware’ will permit delivery of care that outperforms what either can do alone.” We 
could not agree more.

This book is for you, the healthcare professional and “best human clinician hard-
ware” who would like to embrace the field of clinical data science but who is still 
looking for a resource that explains the topic in nonengineering terminology. This 
book’s promise is “no math, no code.” It contains three sections that help you under-
stand the transformation of data to model and to applications. It should be sufficient 
to give you a decent grasp on the topic for understanding and a solid foundation if 
you are to continue with active mastery of the field by taking programming courses 
online or in a classroom setting. Either way, we want you to get aboard.

Our thanks go to the NFU Citrienfonds who made it financially possible to pub-
lish this e-book as open access. Citrienfonds of the NFU and ZonMw helps to 
develop sustainable solutions in Dutch healthcare to all authors for their valuable 
time and  contributions, to Studio Piranha for the website, and to Springer for their 
help in the publishing process.

  

Pieter Kubben, Michel Dumontier, and André Dekker
www.clinicaldatasciencebook.com
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Chapter 1
Data Sources

Pieter Kubben

1.1  Data Sources

1.1.1  Electronic Medical Records

Electronic medical records (EMRs), often also referred to as electronic health 
records (EHRs), are a major source of clinical data (although EMR and EHR have 
subtle differences). (“EHR (electronic health record) vs. EMR (electronic medical 
record),” [6]) EMRs are computerized medical information systems that collect, 
store and display patient information. They are means to create legible and orga-
nized recordings and to access clinical information about individual patients. EMRs 
have been described as an important tool to reduce medical errors and improve 
information sharing among physicians [1]. Nevertheless, there are many barriers 
that limit EMR adoption, varying from time, cost, security concerns and vendor 
trust to absence of computer skills for the physician [1]. To some extent such barri-
ers can be lowered by using a framework for systematic EMR implementation [2]. 
On the other hand, expectations about using EHRs need to be tempered by practical 
considerations, recognizing that even those countries with relatively high rates of 
EHR penetration have achieved only limited successes in using EHR data for popu-
lation health [7]. To what extent EMRs effectively succeed in improving quality of 
care and patient safety, remains a matter of debate [12, 16].

EMRs contain different sources of data which are relevant for data science. Most 
obvious are data that are directly linked to personal health status, such as laboratory 
values (tabular data), medical imaging (audiovisual data) or physicians’ written 
notes (semi-structured or free text). Less obvious but definitely not less important 
are data that can be obtained from computerized physician order entry systems, 

P. Kubben  (*)
Department of Neurosurgery, Maastricht University, Maastricht, Limburg, The Netherlands
e-mail: p.kubben@mumc.nl
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clinical decision support systems or scheduling systems. The latter are more related 
to healthcare processes, that are later described in the chapters on operational excel-
lence and value-based healthcare.

Given the highly sensitive data stored in EMRs, security is a particularly 
important issue. Three types of safeguards have been described to limit the chance 
for adverse events: access control (technical safeguard), physical access control 
(physical safeguard) and administrative safeguards (such as local policies and 
procedures) [11].

1.1.2  Other Medical Information Systems

A laboratory information (management) system (LI(M)S)  isa software system that 
records, manages, and stores data for clinical laboratories. A LIS has traditionally 
been most adept at sending laboratory test orders to lab instruments, tracking those 
orders, and then recording the results, typically to a searchable database. The stan-
dard LIS has supported the operations of public health institutions (like hospitals 
and clinics) and their associated labs by managing and reporting critical data con-
cerning “the status of infection, immunology, and care and treatment status of 
patients” [3].

Radiology information systems (RIS) have been introduced much earlier than 
EMRs for efficient ordering and scheduling, and were later integrated with the 
Picture Archiving and Communication System (PACS) for increased workflow effi-
ciency in radiology departments [13]. For example, this integration saved 68 min 
per radiologist per day, and reduced the average uncorrected or missed errors by 21 
[10]. PACS will eventually be replaced by a Vendor Neutral Archive (VNA) [4] 
which can be used for more than only radiology imaging (e.g. also intraoperative 
video recordings or dermatology photos).

Another important source of information are the systems in use by external care 
and cure organizations, such as general practitioners. These systems are expected to 
have better integration or communication with hospitals’ EMRs which would facili-
tate data exchange and provide new approaches for a more complete overview of a 
patient’s individual journey including data collection at different time points and in 
different healthcare settings.

1.1.3  Mobile Apps

For many telemonitoring (telemedicine, telehealth) applications, mobile apps are a 
very important tool to measure health-related data independent of time and loca-
tion. Modern smartphones can capture various sorts of data and store them directly 
to a remote server using built-in wireless communication channels. Such data do 
not only consist of surveys, but can also be audiovisual (using the build-in camera 
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or microphone), movement data (accelerometer, gyroscope) or location (GPS). 
Using push-messages users can be reached immediately when a direct response is 
required. This allows for “real time” feedback, or experience sampling, in which 
momentary assessments can be obtained multiple times a day during activities of 
daily life [17, 18].

In the context of health-related data, Apple HealthKit (for iOS) and Google 
Fit (for Android) are of particular importance. These frameworks integrate all 
sorts of health-related data and provide a universal interface for external devel-
opers to acquire such data after explicit consent by the user. Dedicated frame-
works for scientific research (Apple ResearchKit and Google Study) take this 
process one step further and even allow for large scale studies using smartphone 
technology only.

1.1.4  Internet of Things and Big Data

Internet of Things (IoT) refers to the networked interconnection of everyday 
objects, which are often equipped with omnipresent intelligence. Such objects 
could be wearables (like smartwatches) but also shoe insoles or home domotics. 
IoT will increase the ubiquity of the Internet by integrating every object for inter-
action via embedded systems, which leads to a highly distributed network of 
devices communicating with human beings as well as other devices. Thanks to 
rapid advances in underlying technologies, IoT is opening tremendous opportuni-
ties for a large number of novel applications that promise to improve the quality of 
our lives [19]. By 2020, 40% of IoT-related technology will be health-related, 
more than any other category, making up a $117 billion market [5]. IoT is a major 
source for “Big Data”, which is often defined by “the four V’s”: Volume, Velocity, 
Variety, and Value / Veracity [8, 14]. More information on Big Data is provided in 
the next chapters.

An important concept to understand is that Big Data in itself is nothing more than 
a pile of bricks, it is not a house yet. In healthcare, Big Data are increasingly referred 
to as the solution for all sorts of problems. Although they are of fundamental impor-
tance, what matters is what we do with these data. That is covered later in this book 
in the sections on modelling.

1.1.5  Social Media

Social media such as Twitter, Facebook and blogs can also be an important source 
of data. Publicly available data (e.g. Twitter) can be used for several sorts of analy-
sis, like sentiment analysis or graph networks. They are also relevant media to 
recruit participants for studies that can take place completely online using frame-
works as Apple ResearchKit or Google Study.

1 Data Sources
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1.2  GDPR

The General Data Protection Regulation (GDPR) is a European regulation that 
became the standard for privacy in May 2018. All European organizations that pro-
cess privacy-sensitive data have to comply to the GDPR.  Therefore, the GDPR 
applies to all data sources mentioned above. Moreover, for scientific research most 
medical-ethical research committees now also require explicit attention to the 
GDPR when filing a new research protocol. A detailed description of the GDPR is 
provided in Chap. 5.

1.3  Data Types

1.3.1  Tabular Data

Tabular data are the most common and well known data for research and data sci-
ence. They are represented in a column-row format in which -most commonly- rows 
represent individual records and columns represent the relevant variables. For 
machine learning applications in which you try to predict one variable based on the 
others (supervised learning), the variable you try to predict is called the independent 
or class variable, and the others are the feature or predictor variables.

1.3.2  Time Series

Time series are an ordered sequence of values of a variable at equally spaced time 
intervals. They are a particular sort of tabular data in which (mostly) columns rep-
resent different time stamps in chronological order. In data science applications the 
goal is mostly to predict future events. Time series require specific sorts of prepro-
cessing as values (e.g. the mean) can -by definition- change over time. A particu-
larly relevant sort of time series are processes. Improving healthcare frequently 
means improving processes. Process mining refers to the automated analysis of 
processes and involves time series analysis. Another relevant sort of time series are 
discrete time signals (e.g. digitally recorded accelerometer or ECG data). Such sig-
nals can be analyzed in the time domain (in which they are recorded) but also in the 
frequency domain (after a Fourier transform) and using time-frequency analysis 
(e.g. wavelets) in case of non-stationary signals. In this case, features are extracted 
from the data before modelling takes place. For common machine learning applica-
tions, feature extraction is done explicitly by the researcher, but more advanced 
deep neural networks are capable of automated feature extraction nowadays. More 
information is available in Chaps. 6–9.

P. Kubben
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1.3.3  Natural Language

In many medical applications free text format is still frequently used by physicians 
(physician notes, radiology reports), but also surveys or daily logs by patients can 
contain free text. Besides, social media contain free text as their data source. 
Techniques are available for text mining, also called “natural language processing”, 
to extract meaning in an automated fashion from free text input. These techniques 
in particular fall outside the scope of this book, but general principles for modelling 
do still apply.

1.3.4  Images and Videos

Images are another important source of data for data science, and also requires spe-
cific processing techniques for feature extraction before modelling can take place. 
Also here, deep neural networks can perform automated feature extraction nowa-
days. A famous example is Google’s Deepmind project, in which a computer model 
was fed videos that were tagged as containing cats or not containing cats. The model 
came up with cat images, despite never being trained in recognizing the concept of a 
cat. The same deep learning platform was later used to defeat the world champion in 
the game of Go, and an improved version learned to play the game from scratch and 
defeated the previous (world champion beating) algorithm with 100-0 [15].

1.4  Data Standards

Standardizing health care data involves the following [9]:

• Definition of data elements—determination of the data content to be collected 
and exchanged.

• Data interchange formats—standard formats for electronically encoding the 
data elements (including sequencing and error handling). Interchange standards 
can also include document architectures for structuring data elements as they are 
exchanged and information models that define the relationships among data ele-
ments in a message.

• Terminologies—the medical terms and concepts used to describe, classify, and 
code the data elements and data expression languages and syntax that describe 
the relationships among the terms/concepts.

• Knowledge Representation—standard methods for electronically representing 
medical literature, clinical guidelines, and the like for decision support.

More detailed information on standards is available later in Chap. 3.

1 Data Sources
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1.5  Conclusion

A variety of data sources and data types are relevant for clinical data science. A 
general overview of such data sources has been provided, and the concepts of dif-
ferent data types were introduced. Next chapters will dive deeper on data and stan-
dards, and a toolkit for natural data stewardship will be provided.
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Chapter 2
Data at Scale

Alberto Traverso, Frank J. W. M. Dankers, Leonard Wee,  
and Sander M. J. van Kuijk

2.1  Introduction

Various data in hospital facilities is generated daily by different sources. Data is 
usually stored electronically and spread across different locations. For example, 
electronic reports reporting patients’ treatment information are usually stored 
within the oncology department of a hospital. Conversely, patient’s images are 
often stored into the radiology department within a different data platform (PACS, 
Pictures Archive Communication System). In addition, different departments within 
the same hospital might use different infrastructures (e.g. software’s, data formats) 
to store acquired clinical data. Very often, those systems and / or data formats might 
not be interoperable between each other’s. No matter, what the source of clinical 
data is, data fragmentation represents one of the biggest issues when dealing 
with clinical data in general [1]. Data fragmentation occurs when a collection 
of data in memory is broken up into many pieces that are not close together. The 
problem becomes even more enhanced when willing to perform multicenter studies 
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(e.g. developing and validating a model using data from different institutions). In 
fact, relevant information might be spread across the different institutions and, due 
to lack of standardization, data interoperability might be compromised.

In addition, in the last decade we have been facing a continuous and rapid expo-
nential growth of usage and production of clinical data, such as for example in the 
field of radiation oncology [2]. This growth has been affecting all the different 
sources of clinical data. For example, new technologies / scanners enabling the pos-
sibility to acquire images of a patient in less than a second have determined what 
has been called ‘data explosion’ [3] for medical imaging data. In general, techno-
logical developments associated with healthcare (new powerful imaging machines) 
on one side have improved the general healthcare quality. Nevertheless, on the other 
side they have produced much more data than expected. Conversely, our develop-
ments in data mining techniques have been growing much slower than expected or 
at least not as fast as the production of data.

In fact, this data volume has been increasing so rapidly, even beyond the 
capability of humans. This data represents then an almost unexplored source of 
potential information that can be used for example to develop clinical prediction 
models, using all the information (e.g. imaging, genetics banks, and electronic 
reports) available in medical institutions.

Some of the biggest problems associated with this unexplored data are presence 
of missing values, and absence of a pre-determined structure.

Missing values happen when no data value is stored for the variable in an 
observation [4]. Missing data is a common occurrence and can have a significant 
effect on the conclusions that can be drawn from the data common occurrence. 
Statistical techniques such as data imputation (explained later in the book) could be 
used to replace missing values.

Unstructured data is information that either does not have a pre-defined data 
model or is not organized in a pre-defined manner [5]. A data model is an agreement 
between several institutions on the format and database structure of storing data.

Unstructured information is typically text-heavy, but may contain data such 
as dates, numbers, and facts as well. But also audiovisual, locations, sensors data.

If we look at clinical data, we can recognize both the presence of missing values and 
its absence of predetermined structure. For these reasons, clinical data is still not ready 
to be mined (i.e. processed) automatically by machines (e.g. artificial intelligence).

Therefore, the terms big (clinical) data refers to not only a large volume of 
data, but on a large volume of complex, unstructured and fragmented data 
coming from different sources.

We will explain this concept in the next section.

2.2  ‘Big’ Clinical Data: The Four ‘Vs’

As we already mentioned in the introduction, the problem of clinical data is not only 
its increased and growing volume, but also that data is collected in different formats 
and stored in various separated databases (fragmentation), together with the 
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absence of an agreed data format (not structured). Now, why we use the term 
‘big’ and what makes big data ‘big’?

We performed a literature research and we tried to summarize the most common 
definitions of big data.

The community agrees that big data can be summarized by the four ‘V’ con-
cepts: volume, variety, velocity, and veracity.

 1. Volume: volume of data exponentially increases every day, since not only 
humans, but also and especially machines are producing faster and faster new 
information (refer to previous example of ‘data explosion’ in medical imaging, 
but also “Internet of Things”). In the community, data of the order of Terabyte 
and larger is considered as ‘big volume’. Volume contributes to the big issue that 
traditional storage systems such as traditional database are not suitable anymore 
to welcome a huge amount of data.

 2. Variety: big data comes from different sources and are stored in different formats:

 (a) Different types: in the past, major sources of clinical data were databases or 
spreadsheets. Now data can come under the form of free text (electronic 
report) or images (patients’ scans). This type of data is usually characterized 
by structured or, less often, semi-structured data (e.g. databases with some 
missing values or inconsistencies)

 (b) Different sources: variety is also used to mean that data can come from differ-
ent sources. These sources do not necessarily belong to the same institution.

Variety affects both data collection and storage. Two major challenges must be faced: 
(a) storing and retrieving this data in an efficient and cost-effective way, (b) aligning 
data types from different sources, so that all the data is mined at the same time.

There is also an additional complexity due to interaction between variety and 
volume. In fact, unstructured data is growing much faster than structured data. An 
estimation says that unstructured data doubles around every 3  months [1]. 
Therefore, the complexity and fragmentation of data is far from being slowed down: 
we will have to deal with much more unstructured data than we expected.

 3. Velocity: the production of big data (by machines or humans) is a continuous 
and massive flow.

 (a) Data in motion and real time big data analytics: big data are produced ‘real time’ 
and most of the time need to be analyzed ‘real time’. Therefore, an architecture 
for capturing and mining big data flows must support real-time turnaround.

 (b) Lifetime of data utility: a second dimension of data velocity is for how long 
data will be valuable. Understanding this additional ‘temporal’ dimension of 
velocity will allow to discard data that is not meaningful anymore when new 
up-to-date and more detailed information has been produced. The period of 
“data lifetime” can be long, but it some cases also short (days). For example, 
we might think that for a specific analysis we only need the results from a 
recent lab test (most recent data). However, for a more detailed analysis we 
might want to trace same measurements from the past (longer lifetime).

 4. Veracity: big data, due to its complexity, might present inconsistencies, such as 
missing values. More in general, big data has ‘noise’, biases and abnormality. 
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The data science community usually recognizes veracity as the biggest challenge 
compared to velocity and volume. For example, if we took three measurements 
of blood pressure, even if they can vary differently, reporting the average may be 
common practice, but it is also not a real measurement value.

Besides these four properties, additional four ‘Vs’ have been proposed by the 
community: validity, volatility, viscosity, and virality.

 5. Validity:  due to large volume and data veracity, we need to make sure data is 
accurate for the intended use. However, compared to other small datasets, in the 
initial stage of the analysis, there is no need to worry about the validity of each 
single data element. In fact, it is more important to see whether any relation-
ships exist between elements within this massive data source than to ensure 
that all elements are valid.

 6. Volatility: big data volatility refers to for how long data must be available and 
how long they should be stored, since concerns about the increasing storage 
capacity might be raised.

 7. Viscosity: viscosity measures the resistance to flow in the volume of data. This 
resistance can come from different data sources, friction from integration flow 
rates, and processing required turning the data into insight.

 8. Virality: defined as the rate at which the data spreads, for example it measures how 
often the data is picked and re-used by other users than the original owner of the data.

To see the presented main four ‘Vs’ in action, let us consider the case of imaging 
data (e.g. patient’s scans) collected within a hospital institution:

 1. Due to improvements in the hardware (e.g. scanning machines) a large amount 
of images are produced (and stored) within a short elapsed of time (Volume).

 2. Developments on hardware and in general in the imaging healthcare sector are 
producing machines able to produce much more images, combining different 
modality at the same time. This phenomenon is growing exponentially (Velocity).

 3. Different imaging modality are combined together (Variety).
 4. Despite there is a unified standard for storing and transmitting medical images 

(DICOM - Digital Imaging and Communications in Medicine), there is no agree-
ment on associated metadata, such as for example medical annotations of 
patient’s scans. So that, meta-data associated with imaging data can be of differ-
ent formats, without a unique agreed data model (Veracity).

Previous considerations apply to clinical data in general. We advise the reader to 
identify the eight ‘Vs’ through the different sources of data presented in the previ-
ous chapter.

2.3  Data Landscape

A good visualization of data scale is represented by the concept of data landscape, 
shown in Fig. 2.1.
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We can affirm that

 1. Data collections such as clinical data registries or clinical trial data cover only a 
small portion of the data landscape. In fact,

 (a) Cancer registry contains usually several information about a large number of 
patients (y-axis) or population, but the variables (or features, x-axis) col-
lected are limited.

 (b) Clinical trial data usually collect more information than cancer registries, 
but with respect to a selected and limited patients population

 2. Clinical routine data covers all the data landscape. Unfortunately, the figure 
shows how the data landscape is not fully covered by points in the clinical rou-
tine domain. These missing dots represent ‘missing’ values. ‘Real world’ clini-
cal data are characterized by a large amount (around 80%) of missing 
values.

When looking at Fig. 2.1, it is possible to identify again some of the six ‘Vs’ 
associated with big data:

 1. A vast volume of data is produced (large extension on x-axis and y-axis): 
Velocity + Volume.

 2. Data includes several information from different sources (‘features’): 
Veracity + Variety.

In the last part of this chapter, we will analyze some of the barriers that are 
currently limiting the share of big data across institutions (or sometimes even 
within different departments of the same institution). We will also provide the 
reader with some possible advanced data management techniques to solve men-
tioned issues.

Fig. 2.1 The data 
landscape. Missing dots 
represent missing values. 
The clinical routine data 
covers all the data 
landscape
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2.4  Barriers to Big Data Exchange

Even when reaching such an advanced level allowing to correctly mining and 
retrieving meaningful information from clinical big data, its exchange is still 
restrained by following issues:

 1. Administrative barriers: mining big clinical data might require additional 
effort, such as new dedicated figures in hospital facility, increasing cost of 
personnel.

 2. Ethical barriers: issues are mainly related to data privacy concerns. Several dif-
ferent privacy laws might apply leading to relevant differences in privacy expla-
nation, application of data confidentiality, and finally different legislations 
between countries exist [6].

 3. Political barriers: even if technical barriers have been overcome, very often 
people are not willing to share their data. A joint effort by the community is then 
required to prove the benefits associated with ‘big’ data exchange.

 4. Technical barriers: technical barriers are mainly related to scarce big data 
interoperability across different institutions. We saw that veracity is one of the 
cause of poor big data interoperability.

Secondly, lack of standardization and big data harmonization is still limiting the 
data exchange. More in general, technical barriers are determined by a lack of: sup-
port of internationally standardize protocols, formats and semantics.

We believe that all the community should collaborate for facing presented chal-
lenges. In fact, the success of effective clinical prediction models based on big 
clinical data depends much more on the curation of data used to develop / vali-
date the model, than on sophisticated choices for models development (e.g. the 
usage of very complicated machine learning algorithms).

Some of the key points for a large-scale collaboration using big data in the clini-
cal domain are:

 1. Accelerating the progress toward standardized and agreed data model for the 
clinical domain by making use of advanced techniques such as ontologies [7] 
and Semantic Web [8]. Ontologies provide a common terminology to over-
come for example language barriers. In fact, in an ontology, data is associated 
to universal concepts (classes) specifically determined by a Universe 
Resource Identifier (URI). By mean of Semantic Web, data and related meta-
data is published an accessible (via queries) by using the universal concepts 
defined by the ontology [9]. In this way, data and metadata can be queried 
without knowing a priori the original structures or data format of the original 
sources.

 2. Show the advantages the usage of real world clinical data by focusing on more 
high quality and published research articles that completely proves the benefits 
of data exchange (e.g., efficiency, robustness and security).

A. Traverso et al.
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2.5  Conclusion

 – Data volume has been increasing so rapidly, even beyond that capability of 
humans. This data represents then an almost unexplored source of potential 
information.

 – The term big (clinical) data refers to not only a large volume of data, but also 
more on a large volume of complex, unstructured and fragmented data com-
ing from different sources.

 – Big Clinical data are defined by the four ‘Vs’: volume, variety, velocity, and 
veracity.

 – Several issues limit that sharing and exchange of big clinical data: administra-
tive, ethical, political, and technical barriers.
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Chapter 3
Standards in Healthcare Data

Stefan Schulz, Robert Stegwee, and Catherine Chronaki

3.1  Introduction

Our industrialised societies are heavily dependent on standards. That we can safely 
assume that electric plugs of a certain kind, independently of their manufacturer, fit into 
certain sockets of certain types and not into sockets of other types is just one example 
how manufacturing is guided by standards. The benefit is obvious: complex technical 
artefacts can be assembled out of smaller components. Conformance to standards facil-
itates their exchange and substitutability, creates independence from manufacturers, 
eases competition and generates interoperability across borders. Standardisation of 
commodities and consumer goods makes them more easy to compare, to categorise 
and, consequently, to trade. In addition, compliance to safety standards will increase 
trust in the safe operation of components under predefined conditions. The authors of 
this chapter argue that standardisation is equally required for data in general and clini-
cal data in particular, for which safety, exchangeability and interoperability is a supe-
rior aim, in particular with regard to the emerging field of data science.

There are many definitions of standards. Our approach is pragmatic and committed 
to the view that standards are information artefacts developed in community- driven 
consensus processes that specify uniform features, criteria, methods, processes and 
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practices for a certain domain. Besides “de jure” standards, i.e. those developed by 
bodies endorsed by national or international legislation, we use  “standard” also in a 
broader sense for specifications that adopt a “de facto” or “industry” standard status, 
due to acceptance by a large public or by market forces. Where real standards do not 
exist quasi-standards may fill the gap. They are often defined as compatibility with a 
reference product. Some of us may remember that after IBM launched its Personal 
Computer in 1981, other manufacturers sold their PCs as “IBM compatible”. It meant 
that they closely followed the technical features of the IBM PC, and users could assume 
that software devised for the “original” one would also function on the “compatible” 
machines. In the following we will use the term “standard” in the most general way.

This chapter will shed light on clinical data standards, i.e. standards that govern 
the way how information in healthcare is encoded by machine-processable sym-
bolic representations. Such data standards address different aspects, from (i) single 
information artefacts, which may be huge (e.g. the full set of SNOMED Clinical 
Terms) or tiny ones (a single EN ISO-13606 or openEHR archetype), over (ii) pro-
cesses for creating artefacts that connect into a larger whole, to (iii) shells or tools 
that support the creation of (i) by (ii) by numerous distributed parties.

3.1.1  Data and Reality

Most people share a tacit understanding of the meaning of the term “data”. Nevertheless 
it is helpful to elucidate what data are and what they denote. We here understand data 
as abstract entities in information systems, which normally denote (classes of) real 
objects. The notion of denotation – derived from basic ideas of semiotics [1] – is cru-
cial for data communication and interoperability. Assuming a certain Universal 
Resource Identifier, URIp denotes a particular person P. First, this implies that URIp – 
the data item – is distinct from P – the referent. If an agent X uses URIp for passing 
information to agent Y, the latter one is supposed to refer to the same person P, as long 
as enough information is attached to this URI, which is sufficient to clearly identify 
that person. Knowledge is needed to further process that data: which other properties 
can this person P possess in reality and which inferences can we make from the data 
we can access on this person. Hence, knowledge is linked to a shared standard repre-
sentation of reality, which enables a common interpretation of the data that describe the 
objects in a given domain. In natural science and engineering (including healthcare and 
biomedical research) such a consensus on (physical) reality is mostly uncontroversial.

3.1.2  Desiderata for Clinical Data Standards

Clinical data denote patients, their complaints, signs, diseases, operations, drugs, lab val-
ues, etc. Recorded in information systems of different genres (electronic health records, 
disease registries, clinical trial documentations, mortality databases) they are heteroge-
neous, context-dependent, often incomplete and sometimes incorrect [2]. Clinical data 
are shaped according to the specific needs for which they are collected, such as reporting, 
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communicating, and billing. Wherever statistical analyses or case-based reimbursement 
are needed, data has to be in a structured form, with a trade-off regarding scope and 
granularity. Where communication between health professionals is paramount, poorly 
structured narratives tend to prevail over structured and coded data, because text is richer 
in detail and faster to create. As text just has to be understandable by humans, the use of 
a shared vocabulary and character set is sufficient, and tolerance regarding grammar and 
spelling variations and errors do not constitute major issues. Free text is semantically 
interoperable only if both parties use the words in exactly the same meaning and the 
same context. For instance, “Physical examination normal” allows the conclusion that 
all major neurological reflexes were examined and found normal only if documented 
by a neurologist, but not when it is found in a GP’s record. Full interoperability of clini-
cal narratives would require that a specialist uses different languages, i.e. to the direct 
peers within the speciality, to other physicians, to other healthcare workers and finally to 
patients and their family. The transformation of textual sources into structured output is 
a main driver for human language technologies [3]. The application of such techniques, 
alone, does not, however, guarantee interoperability and standardisation. Further data 
processing, e.g. so-called secondary use scenarios for clinical data like computerised 
decision support, retrospective and predictive data analysis, tends to be hampered by 
local data dictionaries and missing contextual descriptions. This problem has for long 
been known of scholarly data, for which the deficit of data reusability has recently been 
addressed by the FAIR guiding principles for scientific data management [4], with FAIR 
being an acronym for “findability”, “accessibility”, “interoperability” and “reusability”. 
Regardless whether primary or secondary use scenarios for clinical data are aimed at, 
we advocate the FAIR principles for clinical data, too, which imply that clinical data 
must follow shared standards. Such standards should describe:

• Data provenance, i.e. their originators, creation times and related processes;
• Information templates in which data are embedded;
• Vocabularies / terminologies / ontologies used to attach meaning to data;
• The semantic descriptors or representational units (codes, labels) in these 

vocabularies;
• Formal or textual definitions of these representational units;
• The formal languages used for the above.

Up until now, the adoption of data standards for clinical data has been low. 
Clearing this backlog will be crucial for unleashing the potential of clinical data for 
diverse scenarios of (re-) use. This requires major efforts by all stakeholders 
involved, creators and maintainers of standards, as well as their users.

3.1.3  Aspects of Terminology, Syntax, Semantics 
and Pragmatics

The following concepts, borrowed from human language studies, also seem useful 
to describe different aspects of clinical data and, in consequence, different types of 
standards to address them. It requires that we see the application of data standards 
as governed by similar principles as are natural or synthetic languages:
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• Reference terminology: A set of symbols, both standardised terms from natural 
language and abstract symbols from coding systems. Symbols should be unique 
and follow Web standards (IRIs  – International Resource Identifiers, URIs). 
Standardised terms should be human–understandable, unique, self–explaining 
and non–ambiguous labels. Ideally, terminology items carry formal or textual 
definitions. Example: The SNOMED CT fully specified name “Primary malig-
nant neoplasm of lung (disorder)”, the semantically equivalent identifier 
SCTID:93880001, the URI http://snomed.info/id/93880001 and an ontological 
description that states that it equals a lung structure with a primary neoplasm 
morphology. However, it is rather unlikely to find “primary malignant neoplasm 
of lung” in a medical text. Physicians prefer shorter terms like “lung cancer”, 
“lung carcinoma”, “Bronchialkarzinom”, “Cáncer de pulmón” etc. This is the 
reason that, for practical considerations, reference vocabularies need to be linked 
to interface terminologies, i.e. collections of language expressions as used in 
clinical and scientific practice [5]. Interface terminologies describe dynamic lan-
guage in use and are therefore not standards. Multilingualism, lexical ambiguity, 
change of meaning and synonymy have to be accounted for.

• Syntax: the set of rules, principles, and processes that govern the structure of 
sentences in a given language [6]. In a data standard, syntactic rules determine 
how items in a vocabulary can be combined. As an example, a standard for ana-
tomical entities and clinical findings has to provide syntactic rules how to com-
bine laterality terms (right / left / bilateral) with anatomical terms. A standard for 
lab results has to define how analytes, values and units are combined. Advanced, 
ontology-based terminology standards like SNOMED CT come with a set of 
rules for term composition [7].

• Semantics: the relation between symbols and what they stand for in reality 
(denotation) [8]. Here we have to take care not to mix up different artefacts, 
especially if they are similarly labelled. E.g., an information model standard 
on arterial blood pressure [9] standardises a data structure to be filled when 
arterial blood pressure is recorded. An ontology entry on arterial blood pres-
sure (e.g. Arterial blood pressure (observable entity)), provides, instead, a 
definition of what a blood pressure is, viz. a physical measure in an arterial 
structure of the type pressure. The need of precisely distinguishing informa-
tional entities from domain entities is increasingly addressed by so-called 
(domain) upper-level ontologies like BFO [10], DOLCE [11], UFO [12] or 
BTL2 [13].

• Pragmatics: The situational context in which symbols are used. A typical 
case is the embedding of a disease mention in a composed expression. 
“Suspected asthma” has a completely different meaning compared to “asthma 
prevention”, “check for asthma” or “severe asthma”. Only in the latter case it 
can be safely assumed that there is an instance of asthma; and this informa-
tion can be safely used, e.g. for computerised decision support for asthma 
patients.
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3.1.4  Representational Artefacts for Standardising Clinical 
Data

These categories are related to the following genres of clinical data standards. 
Probably the most relevant family of data standards are clinical terminology sys-
tems [14], which exhibit a broad range of characteristics. Their sheer number and 
content size is best seen when browsing meta-repositories like the Unified Medical 
Language System (UMLS) Metathesaurus [15, 16] and BioPortal [17]. We can 
roughly distinguish between (i) thesauri, which relate pre-existing terms using 
close-to-language semantic relations, (ii) aggregation terminologies or classifica-
tions, which use rules to pigeon-hole individual entities into non-overlapping classes 
[18], and (iii) ontologies, which categorize objects and describe their relations by 
logic-based axioms. Prominent examples are the Medical Subject Headings (MeSH) 
[19] for thesauri, ICD-10 [20] for aggregation terminologies, and SNOMED CT 
[21] or the Open Biomedical Ontologies (OBO) Foundry [22] for ontologies.

Roughly, thesauri provide the terminology and some simple semantic relations 
between terminology items like synonymy, whereas ontologies aim at giving pre-
cise mathematical formulations of the properties and relations of entities [23], i.e. 
they provide formal semantics together with syntactic rules for composition.

However, the use of a code from a terminology standard is not sufficient, as long 
as pragmatic or contextual aspects are missing. The asthma example in the previous 
section demonstrates that, like words in natural language need to be embedded in 
pieces of text, codes from terminology standards need to be embedded into informa-
tion models in order to complete the picture. Unfortunately, many data sources lack 
exactly this. The default reading, viz. that a code in a clinical data set represents an 
existing instance at the time of creation of this dataset is often not sufficient. Take 
“fever” as simple example: Using just the SNOMED CT concept Fever (finding) 
leaves open whether the fever was reported by the patient or measured by a health 
professional. In addition, it does not specify the process of measurement.

The provision of such contextual and provenance information is the domain of 
(clinical) information models. Several standards for clinical models and their speci-
fications have been proposed, in order to prevent data silos which, even if they are 
well structured, are buried in proprietary and non-interoperable formats. However, 
the adoption of such standards (e.g. detailed clinical models (DCMs [24], ISO/TS 
13972:2015)) by manufacturers and the embedding of standardised terminologies 
within them has been low until now.

The difference between ontologies and information models has been phrased by 
Alan Rector as models of meaning vs. models of use [25]. Whereas ontologies 
express and define what is universally true for all members of a class (or, in other 
words the instances of a concept), clinical models express all kinds of contextual 
statements about the individuals who are the primary referents of the clinical infor-
mation. The proper delineation between terminology / ontology standards and 
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information model standards is known as the boundary problem. Whereas, in the-
ory, this difference has been equated to the contrast between ontology and episte-
mology [26], the overlap between standards of either kind poses major challenges 
to prevent so-called iso-semantic models, which tend to arise e.g. when using termi-
nologies and information models (e.g. SNOMED CT and HL7) together [27].

Table 3.1 gives an overview of the most important health data standards.

Table 3.1 Important medical data standards

Standards development 
organisation Standard Scope

Federative Committee on 
Anatomical Terminology 
(FCAT)

Terminologia 
Anatomica 
(TA)

Anatomy terms in English and Latin

Health Level Seven (HL7) v2 Messaging protocol; several of the chapters of 
this standard cover clinical content

v3 (RIM) Information ontology; especially the “Clinical 
Statement” work aims to create reusable clinical 
data standards

CDA
Level 1–3

Information model for clinical documents 
(embedding of terminology standards in level 2 
and 3); especially the Continuity of Care 
Document (CCD) specifications and the 
Consolidated CDA (C-CDA) specifications add 
detail to standards for clinical documents

FHIR Information and Document model; several parts 
of the core specification deal with clinical content

Integrating the Healthcare 
Enterprise (IHE)

Several 
Integration 
profiles

Clinical workflows including references to 
clinical data standards to be used

International Organization 
for Standardization (ISO)

TS22220:2011 Identification of subjects of care
21090:2011 Harmonized data types for information exchange
13606 High-level description of clinical information 

models
23940
(ContSys)

Health care processes for continuity of care

14155 Clinical investigations
IDMP Medicinal products

National Electrical 
Manufacturers Association 
(NEMA)

DICOM Medical imaging and related data

openEHR foundation openEHR Clinical information model specification
Regenstrief Institute LOINC Terminology for lab and other observables

UCUM Standardised representation of units of measure 
according to the SI units (ISO 80000)

PCHAlliance (Personal 
Connected Health Alliance)

Continua 
Design 
Guidelines

Collecting data from personal health devices
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3.1.5  Quality and Usability of Standards

Standards for clinical data are better the more they support semantic interoperabil-
ity. Data items are semantically interoperable [28] if the meaning intended by the 
creator is fully understood by the receiver of the data. Assuming two data items that 
describe age groups: D1 consists of the English word “adolescent”, D2 consists of 
the attribute – value pair: age in years: [14.0; 17.999]. As long as there is no agree-
ment to which age interval D1 maps to (according to different sources there are dif-
ferent intervals), misunderstandings may arise regarding of whether D1 and D2 are 
equivalent.

This case is very typical for human communication with natural language as 
the main vehicle of communication. Only if the creator and the receiver share the 
same vocabulary with the same underlying meaning of terms and within the same 
contexts, misunderstandings like the abovementioned can be avoided. The unifi-
cation of meaning in healthcare is the main rationale for clinical data standards. In 
our example above, this should mean that there is a standard that attaches a defini-
tion to the word “adolescent” such as “human age 14 and more but less than age 
18”. However, there is the problem that words do not belong to standards organ-
isations, and that with the same right a second standard may define it otherwise. 
And finally, many language users may use the word “adolescent” in many other 
ways. This is why, in some clinical models, users are always obliged to provide 
not only the value (e.g. “adolescent”), but also a reference to the standard that 
attaches a specific definition to that value. Other clinical models prescribe the use 
of specific terminologies as part of their definition, which overcomes the burden 
of referencing that particular standard in each instance of that clinical model. But 
even in this case, standards often do not do their job if the meaning of values are 
not specified. For example, SNOMED CT’s transition from a nomenclature to an 

Table 3.1 (continued)

Standards development 
organisation Standard Scope

SNOMED International, 
formerly knowns as the 
International Health 
Terminology Standards 
Development Organisation

SNOMED CT Terminology / Ontology for representing the 
electronic health record (“context 
model” = Information model for SNOMED CT)

World Health Organization 
(WHO)

ICD-10 / 
ICD-11

Disease classification

ICF Classification of functioning, disability and health
ICHI Health procedure classification
INN Generic names for pharmaceutical substances
ATC Drug ingredient classification

World Organization of 
Family Doctors (WONCA)

ICPC Primary care classification
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ontological standard is not yet completed, so that the concept Adolescent (person) 
with the SCTID 133937008 lacks both formal and textual definitions, which 
makes it insufficient for a standard because its interpretation by the users is only 
guided by their individual understanding of the term “adolescent”, which differs 
between languages and jurisdictions.

3.2  Implementation of Standards

Standards will only be implemented if they serve an agreed and observable purpose. 
Such a purpose can be derived from different sources, such as commercial benefits 
in the marketplace, economic benefits within an organization, or societal benefits as 
laid down in laws and regulations. For healthcare data the benefits of implementing 
standards is not always obvious to the individual user recording the data, which 
makes it hard to establish a common purpose.

In healthcare, implementation of data standards will take place with one (or a 
combination) of three very distinct purposes in mind:

 1. To improve the outcome of the diagnostic and treatment process of the individual 
patient involving (a team of) healthcare professionals, e.g.: Computer-based 
clinical guidance based on patient characteristics has prompted the standardised 
recording of several parameters in breast cancer diagnostics to support the cre-
ation of optimal personal treatment plans.

 2. To serve the purpose of the local/national health system (including reimburse-
ment, quality reporting, public health, health technology assessment, clinical 
research, etc.), e.g.: Monitoring the quality of care provided to diabetes patients 
has led to structured recording of key process indicators, as well as proximal and 
distal outcomes.

 3. To create an opportunity for enhanced commercial interest in investing in solu-
tions needed by patients and/or professionals in health management and the 
delivery of healthcare services, e.g.: The diversity of equipment in a typical radi-
ology department has led to the early and almost full implementation of DICOM 
standards for digital imaging, so that multiple vendors have access to the market 
for medical imaging modalities.

In practice, implementation of health data standards often requires changes to be 
made at various levels of the socio-technical system, consisting of people, processes 
and technology. Software (and sometimes hardware) needs to be developed in order 
to handle the recording, processing and exchange of standardised data. Developers 
need to demonstrate that their implementation conforms with the specification, 
which can range from a simple conformity statement in which conformance is 
claimed to specific (parts of) standards, up to a full-blown conformance audit. An 
intermediate form has been developed by IHE in so-called “Connectathons” [29], 
face-to-face events in which the ability to connect a technology with components 
from other developers and vendors is demonstrated, using predefined scenarios and 
test data, assessed by independent monitors.
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Processes may need to be changed because of a different workflow around the 
now structured recording, use and exchange of clinical data. E.g., in cases where 
discharge letters used to be produced by dictation and transcription and signed off 
days after the patient left the hospital, direct capture of findings will produce a struc-
tured discharge summary that can be signed off at discharge. This requires people to 
be educated both in the use of the system and in the purpose of the new require-
ments for structured data recording and the possibilities this brings to improving 
their own clinical performance.

Practical use of data standards often gives rise to questions, comments and sug-
gestions and/or immediate needs for improvement. The dynamics can vary greatly, 
depending on the type of standard being implemented. The typical administrative 
details of a patient are not that much in flux, whereas the genetic markers for per-
sonalized medicine seem to change on a daily basis.

3.2.1  Tools and Standards for Standards

Interoperability tools play a critical role in this context as they hold promise of opti-
mizing the entire interoperability standards lifecycle as introduced in the eHealth 
Interop report [30]:

• Identification of a use case or set of requirements
• Selection of supporting interoperability standards, with the selection of options
• Implementation, conformance testing, certification
• Deployment in projects, which closes the feedback loop from the real world.

In support of the standards development life-cycle (cf. Fig. 3.1), tools and data 
need to be shared across standards organizations and implementers. It is still com-
mon that standards bring their own tools, which is especially visible with browsing 
tools for terminologies where each terminology comes with its own browser. When 
standards sets and tooling provide software components for interoperability, an 
open source licensing model along with data is advised. Moreover, monitoring of 
the usage of standards sets in terms of implementation and adoption can be incorpo-
rated in the tooling to ensure quality and maturity of standards. In support of inno-
vation, tools for standards require stakeholder involvement in continuous 
collaborative development, deployment, evaluation, and refinement of interopera-
bility specifications. The current processes, publishing formats, and organisation of 
standardisation need to be revisited with a view to embracing open innovation, 
practice-driven improvement, and seamless integration with the tools employed in 
the development and deployment of eHealth solutions and services (Fig. 3.1).

Shared tools must be based on shared standards for standards: E.g. ISO/TC 37 
defines principles, methods and applications relating to terminology, language and 
content resources. W3C standards specify languages for thesauri (SKOS) [31], 
ontologies (OWL) [32], based on other W3C standards like RDF and XML. Many 
clinical data standards have not yet adopted these standards, or are on the way to 
embrace at least fundamental concepts like URIs as mechanisms to create world- 
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wide unique identifiers. Proprietary formats prevail, e.g. the SNOMED CT tabular 
format, despite increasing efforts to comply with the ontology standard OWL.

3.2.2  The eHealth Standards Roadmap

The eStandards initiative (2015–2017), was funded by the European Commission 
to develop a roadmap fostering the development and adoption of eHealth stan-
dards and specifications. Stakeholders in Europe and beyond joined forces to 
build consensus on how to advance interoperability across health-related data 
standards in order to accelerate knowledge sharing and to promote wide and rapid 
adoption of standards and profiles. Driven by the vision of a global eHealth eco-
system, where navigation tools lead to safer and more informed healthcare and 
interoperability assets fuel creativity, entrepreneurship, and innovation, a new 
generation of ‘live’ standards, called eStandards was proposed. eStandards aim to 
drive large-scale eHealth deployment and to support the digital transformation of 
health and care delivery.

In an evidence-based roadmap, the eStandards initiative elaborated clinical use 
cases for different paradigms and embedded a quality management system for 
interoperability testing and certification of eHealth systems [33].

Supported by a large community of stakeholders, the eStandards project team 
first collected evidence and provided guidance on the coexistence of competing or 
overlapping standards in large-scale eHealth deployments. Using this information, 
it articulated barriers and challenges for advancing implementation of interoperable 
health systems [34] and addressed the incorporation of clinical content in profiles 
[35]. This work fed into the eStandards roadmap aiming to bridge standards devel-
opment with standards deployment, monitoring and improvement [36]. The pro-
posed methodology targets the sustainable adoption and evolution of eStandards, 
embraces trust and flow as the basis of well-functioning health systems, and adopts 

Base Standards

Use Case based
Standards Sets

Assurance and 
Testing

Live
Deployment

Feedback and 
Maintenance

Tooling and 
Education

Forums and 
Monitoring

eStandards

Fig. 3.1 The Health 
Informatics Standards 
Life Cycle
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an eStandards compass to respect the different perspectives of stakeholders. In addi-
tion, it introduces a model of co- creation, governance, and alignment in the design 
of eHealth systems, building upon a repository of standardised artefacts for refine-
ment and reuse.

Trust is a prerequisite for all parties involved in a dynamic flow of data for gen-
eral and personal health information, to be used safely at the point of care and 
throughout health systems. The eStandards compass reinforces that respect for the 
differing perspectives of the stakeholders that contribute to such trusted flow of data 
is a critical success factor. Furthermore, dynamic flow of data is enabled by a reus-
able set of standardised eHealth artefacts; otherwise data will not flow between 
eHealth solutions and the people and organisations that use them, at least not at a 
reasonable cost. Finally, stakeholders co-create, govern and align their solutions 
along the eStandards life cycle. The next sections describe these four core concepts 
in more detail.

3.2.2.1  Trust and Flow: The Basis of Well-Functioning Health Systems

The flow of trusted data is the basis of well-functioning health systems, driving 
healthcare delivery based on relevant information and knowledge at the point of 
need. The role of standards is here seen as core to achieving those dual needs.

Trust and flow are grounded in the acceptance of the following key changes 
future healthcare systems have to embrace:

• Increasing need, expectation, and cost of healthcare resulting from ageing popu-
lations, increased medical competence, and high investment in new drugs and 
technologies;

• Change in doctor-patient relationship, in which patients play a much more active 
role in their care, which requires better access to information about their health 
and the preferred options for care and treatment;

• Increased demand for home-based and mobile care available ‘just in time’;
• A pressing need to extend the capacity of the healthcare workforce as the num-

bers of those remaining in workforce or indeed entering the healthcare workforce 
reduce.

The role of eHealth in addressing these demands with judicious use of technol-
ogy can be a core component of a health services change business case, as it can 
provide for better use of human resources, support greater patient compliance, 
reduce bed demand and prevent acute episodes. However, for such eHealth solu-
tions to be more than local pilots and small home-grown solutions, a trusted flow of 
data is required so that services can interoperate, be scaled-up and remain sustain-
able within a healthcare system. This way, not only developers are able to bring 
solutions to the healthcare market that meet the needs of patients and the healthcare 
workforce, but also comply with regulations and good practice guidelines so as to 
fit into the governance structures of health systems.
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3.2.2.2  eStandards Compass to Respect Different Perspectives 
of Stakeholders

If the development and full adoption of eHealth tools and solutions in healthcare 
delivery in Europe is described as a journey, it requires a map – hence the Roadmap. 
In this journey, the eStandards compass helps Standards Developing Organizations 
and their constituencies of eHealth stakeholders to actively consider the differing 
perspectives of the key players involved in production, regulation and use of stan-
dards. Thus, standards developers and users may orient themselves to the unique but 
interrelated perspectives of the health system, the workforce, the citizens, and the 
market for digital health solutions.

By serving and balancing the needs of the different perspectives, organisations 
that maintain standards engage directly or indirectly with a much richer set of activ-
ities forming productive relations with a broad set of stakeholders, as it plots the 
course of the standard’s life cycle. The compass is also integral to the roadmap-
ping process, which helps organizations better understand the needs of the people 
who will ultimately use the standard. Keeping the compass up-to-date, calibrated to 
global trends and local needs, standards creators and end users must be supported 
to engage together with the four perspectives of the compass and the associated 
dynamics. Therefore the CGA model of co-creation, explained below, is important 
not only in standards development, but also in the constant evaluation of the tools 
(including the compass) used in standards lifecycle of development, testing, deploy-
ment and evaluation.

3.2.2.3  eStandards Roadmap Components: Reusing eHealth Artefacts

Reusable standards artefacts address how to meet the demands of the Refined 
eHealth European Interoperability Framework [37]. An overview of the state-of- 
the-art and development needs in specific areas of eHealth identified fifteen reusable 
roadmap components that matter in the collaborative development, deployment, and 
gradual refinement of standards sets, helping identify “waypoints” that mark an 
essential point of the journey. The proposed road mapping methodology is based on 
the understanding that to a certain extent these fifteen core component areas fulfil 
present needs from the four perspectives explored with the Compass. Several gaps 
need to be filled and standardised artefacts will be refined based on the changing 
realities of the users’ needs, the technological trends, the regulatory frameworks and 
the governance systems in which they operate.

3.2.2.4  CGA Model: Co-creation, Governance and Alignment

A compass and a set of waypoints is however of little use without a map. To start a 
successful journey, we need to understand not only the prevailing winds of demand 
(the often competing demands the four perspectives on the eStandards compass), 

S. Schulz et al.



31

but also to understand the key modes of travel needed along the journey. A model 
for inclusive and responsive standards life cycle favours efficient and dynamic use 
of standards with the goal to make best use of data at the point of care and to drive 
an efficient patient-centred healthcare system based on robust governance, trust and 
innovation.

The methodology for standards development – and for the creation of a specific 
roadmap for adopting a specific set of standards – is based upon the idea of continu-
ous flow between three acts of design, development, and interaction: Co-creation, 
Governance and Alignment.

Co-creation involves notably all actors represented under the four primary per-
spectives of the eStandards Compass: citizens (including patients), the health work-
force, the health system, and vendors. Co-creation includes:

• Co-design of services – co-planning of health and social policy, co-prioritisation 
of services and co-financing of services, co-commissioning;

• Co-delivery of services – co-managing and co-performing services
• Co-assessment – co-monitoring and co-evaluation of services.

The concept of co-creation goes beyond “working together” to acknowledg-
ing the difficulties in healthcare to work together across a wide spectrum of 
players building provisions to address conflicts of interests and opinions up 
front. It does so by having the participants in the process learn to understand 
each other’s perspective in developing a product, work method, or indeed a stan-
dard [38].

Governance Standards are very often closely linked to the governance of health-
care systems and healthcare workflows. ‘Governance’ is used in a wide sense, much 
as it is used by the WHO, who describes governance in the health sector as covering 
a wide range of steering and rule-making related functions carried out by govern-
ments and decisions makers as they seek to achieve national health policy objectives 
that are conducive to universal health coverage. Governance is therefore both a 
regulatory and a political process that involves balancing competing influences and 
demands. It includes:

• Maintaining the strategic direction of policy development and implementation
• Detecting and correcting undesirable trends and distortions
• Articulating the case for health in national development
• Regulating the behaviour of a wide range of health and care actors
• Establishing transparent and effective accountability mechanisms.

The WHO notes that beyond the formal health system, governance means 
collaborating across the public, private and civil society sectors, to promote and 
maintain population health. Governance should also be concerned with manag-
ing resources in ways that promote leadership and contribute to agreed policy 
goals strengthening health systems through legislative support. Regulators 
should also be involved in the standards life cycle activities and standards devel-
opers be fully aware of the regulations, which impact upon the use of standards. 

3 Standards in Healthcare Data



32

Finally,  governance assumes a constant process of monitoring and evaluation to 
gradually achieve the alignment needed with standards or regulatory and gover-
nance frameworks in the road towards interoperability.

The concept of alignment within the CGA model is the element, which drives 
the cyclical and flowing nature of CGA. It is the element that ensures that changes 
in the perceptions of stakeholders or changes in governance are accommodated into 
projects and initiatives already underway. Within standards development work, the 
alignment element requires activity principally on the part of the standards develop-
ing organisations which musts remain vigilant to potential changes in governance or 
stakeholder concerns and needs. A key requirement of including alignment activi-
ties is to ensure that appropriate monitoring and feedback systems have been set up 
to make sure that relevant changes can be captured and addressed. Alignment is 
arguably not a separate element of the CGA model, but defines the process as a 
whole, in which all relevant actors are able to bring their needs, desires and achieve-
ments to the table in order that solutions are identified and discussed, collectively 
and collaboratively. It is worth noting however that the alignment element may also 
be used to describe the negotiated relationships between actors, in which they seek 
to align to one another for best outcomes.

3.2.3  The eStandards Roadmap Methodology at Work

Figure 3.2 visualises three core steps of the application of the eStandards Roadmap 
Methodology:

 1. Based on the eStandards Compass concept, the actors from across the healthcare 
spectrum are identified who may have an interest in the way in which a specific 
set of standards- based solutions is used. Appropriate ways of educating them 
about the value of standards are developed as well as suitable ways of capturing 
and addressing their needs. Feedback and acknowledgement is crucial, other-
wise the well of co- operation may dry up.

 2. Existing Use Cases, Roadmap Components, and standardised artefacts are 
assessed as well as the extent to which they are able to drive trust and flow of 
data, anticipating what is needed to move to the next stage and beyond.

 3. Once the needs have been identified and the compass points calibrated, a co- 
creation- governance-alignment process is developed. This requires the develop-
ment of co-creation tools, looking beyond the usual players to identify fields where 
lessons may be learned and finding ways of collaborative work and development. 
The validity of the governance frameworks on which an organisation is built and 
runs has to be examined. If no longer fit for purpose, they need to be challenged 
and rules have to be sought and adapted to fit needs and capacity in dynamic flex-
ible ways. All this requires engagement in a constant flow of alignment, where the 
parties in co-creation are adapted to fit the needs, where governance structures are 
challenged and where new models of alignment can be embraced (Fig. 3.2).
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3.3  Conclusion

Above all, clinical data have always been shaped by specific requirements like com-
munication between healthcare professionals, billing, or quality management. As a 
result, interpretation of clinical data is highly dependent on – often implicit – con-
texts, is, to a large extent, unstructured and semi-structured, and even standardised 
data collected for a certain purpose e. g. billing, is difficult to repurpose, e. g. for 
clinical epidemiology, data analysis or decision support. Only recently, data interop-
erability has been given more attention due to great expectations regarding the value 
of large scale predictive data analysis.

This chapter highlighted the need of data standards for making clinical data 
interoperable and shareable in a virtuous cicle of continuous improvement. The dif-
ferent kinds of standards like terminologies, ontologies and information models 
were introduced. An overview of existing standards was given and quality and 
implementation issues were addressed.

The eStandards methodology combined the principles of trust and flow as the 
basis of well-functioning health systems, a compass of perspectives to inform the 
needs for trusted flow of data, roadmap components to identify supporting stan-
dardised artefacts, and the co-creation, governance, alignment (CGA) model to 
define the actions to be taken or supported by Standards Developing Organisations. 
It is expected that the application of the eStandards methodology in an iterative way, 
aligning reusable interoperability components, specification and tools, with dynamic 
governance, will advance health data interoperability at a lower cost.
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Chapter 4
Research Data Stewardship for Healthcare 
Professionals

Paula Jansen, Linda van den Berg, Petra van Overveld, 
and Jan-Willem Boiten

4.1  Data Stewardship: What, Why, How, and Who?

Data stewardship is the long-term, sustainable care for research data. This has 
become an indispensable part of clinical research. This chapter provides an over-
view of the aspects of data stewardship that you should consider when you are 
involved in clinical research. The majority of these aspects should be addressed 
before you start collecting data. The chapter is a condensed version of the Handbook 
of Adequate Natural Data Stewardship (HANDS), which is a living document on 
the website of the Data 4lifesciences programme of the Netherlands Federation of 
University Medical Centres (NFU). Please consult the full web version of HANDS 
for more detailed information and a toolbox.
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4.1.1  Definitions

Data stewardship involves all activities required to ensure that digital research data are 
findable, accessible, interoperable, and reusable (FAIR) in the long term, including 
data management, archiving, and reuse by third parties. The precise definition of data 
stewardship and its distinction from data management is a topic of ongoing expert 
discussions. The Dutch National Coordination Point Research Data Management 
(LCRDM) has developed a glossary of research data management terms.

4.1.2  Why?

Adequate data stewardship is a crucial part of Open Science. Promoting optimal (re)
use of research data through open science is one of the goals of the European Union 
(EOSC Declaration) and corresponding national initiatives. Scientists, patients, and 
the general public will benefit from new scientific knowledge, treatments, and appli-
cations that result from sharing high-quality data. In addition, data stewardship is 
required to protect the scientific integrity of research and to meet the requirements 
of research funders, scientific journals, and laws (e.g., the General Data Protection 
Regulation, GDPR).

As a clinical researcher, you will benefit from adequate data stewardship in sev-
eral ways. Your data will be robust and free from versioning errors and gaps in docu-
mentation and will be safe from loss or corruption. In addition, the data will remain 
accessible and comprehensible in the future, allowing you to share the final dataset 
with others, for scientific research, commercial development, validation, or health-
care. Good data stewardship planning also ensures that you will have timely access 
to resources such as storage space and support staff time.

4.1.3  FAIR Principles

This chapter describes the fundamentals of research data stewardship according to 
the FAIR Principles [1, 2], which have been adopted worldwide. The FAIR Principles 
state that research data should be:

• Findable: The data should be uniquely and persistently identifiable and other 
researchers should be able to find the data.

• Accessible: The conditions under which the data can be used should be clear to 
humans and computers.

• Interoperable: Interoperability is the ability of data or tools from non- 
cooperating resources to integrate or work together with minimal effort. Data 
should be machine-readable and use terminologies, vocabularies, or ontologies 
that are commonly used in the field.
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• Reusable: Data should be compliant with the above and sufficiently well- 
described with metadata and provenance information so that the data sources can 
be linked or integrated with other data sources and enable proper citation.

4.1.4  Responsibilities

As a clinical researcher, you are the principal data steward. In practice, this means 
that you are responsible for the complete scientific process: from study design to 
data collection, analysis, storage, and sharing. Protecting the privacy of study sub-
jects is also your responsibility. The formal responsibility for personal data lies 
with your research institute, which is accountable for having adequate policies, 
facilities, and expertise around data stewardship. According to the principle of 
accountability in the GDPR, it is the institute’s responsibility to ensure that the 
fundamental principles relating to processing of personal data are respected, as 
well as the ability to demonstrate compliance. Your research institute should 
appoint a Data Protection Officer that monitors GDPR compliance at the institute. 
Possible consequences of not adhering to these principles include reputation dam-
age, liability, and losing or having to refund a research grant. Some institutions 
have appointed formal data stewards that promote or can advise on data steward-
ship. Researchers can delegate tasks to these data stewards. Table 4.1 provides an 
overview of the responsibilities of the main people involved in data stewardship for 
clinical research.

Table 4.1 Responsibilities of people involved in data stewardshipa

Who? Responsibilities

Researcher Is accountable for research data;
Is in control of the complete research data flow;
Reuses existing data when possible;
Collaborates with patient organisations throughout the research 
project;
Protects the privacy and safety of study subjects;
Applies the FAIR principles;
Protects research quality and reproducibility;
Uses available expertise and recommended infrastructure;
Thinks ahead about intellectual property rights;
Shares data responsibly

Research institution Employs professionals that provide the procedures and technical 
systems for data stewardship (e.g., data stewards, data managers, 
IT-specialists, statisticians);
Has institute managers, who govern and facilitate the professionals;
Has supervisory bodies such as medical-ethical review committees 
and privacy officers;
Engages with patients and citizens from whom data is collected;
Offers facilities to protect data according to the GDPR

(continued)
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4.2  Preparing a Study

Decisions on data stewardship will affect how you can process, analyse, preserve, 
and share your research data in the future. This section explains what decisions 
researchers need to make when preparing a study. It is recommended to consult an 
expert on these topics.

4.2.1  Study Design and Registration

Careful study design is required to ensure that your research question can be 
answered in the end. For instance, you should select the most appropriate technique 
and determine the sample size required to get statistically meaningful results. Study 
design is the domain of specialists, who can be consulted in the design phase of the 
study. In addition, researchers can follow basic courses on study design, good clini-
cal practice, and research data management. Randomized controlled trials need to 
be registered before they start, for instance at clinicaltrials.gov. At many institu-
tions, this is also required for observational research.

4.2.2  Re-using Existing Data

Before starting to collect new data, you should ask yourself whether it is possible to 
use existing data to answer your research question or to enrich your own dataset. 
Reusing data may be more efficient, reducing inconvenience for study subjects and 
saving resources. In addition, the chances of getting funded are significantly better 

Who? Responsibilities

Manager of research 
institution

Establishes facilities for data stewardship (e.g., data protection, 
storage, interoperability);
Provides financial means for data stewardship and expert employees;
Is responsible for organisation, policy, standard procedures, practical 
measures;
Ensures training for employees that work with data

Professional that 
supports data 
stewardship

Provides, gives advice on, and supports the use of terminologies, 
IT-standards, and e-infrastructure which promote data sharing and 
integration;
Gives advice on writing data management sections and plans, 
metadata standards, repositories, and data handling
Supports data curation and archiving

aNote that the majority of items in this table constitute guidelines mentioned in HANDS rather than 
formal rules

Table 4.1 (continued)
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if you show that you have considered reusing data. Potential sources of reusable data 
include reference data, data on reference cohorts, similar data collected in a previ-
ous study, healthcare systems (clinical data), biobanks, the biomedical literature, 
and digital repositories. The toolbox in HANDS lists several sources of existing data 
and biobank material. HANDS also addresses what to consider before using exist-
ing data or starting a scientific collaboration. You should also consider re-using 
metadata from other studies as a template for your own study (see Sect. 4.4.3).

4.2.3  Collaborating with Patients

Clinical researchers are strongly encouraged to involve patients and patient organisa-
tions in their research, from design until completion. Patient representatives can suggest 
research questions, help recruit study participants, select relevant outcome measures, help 
design the informed consent procedure, provide advice on policies (e.g., regarding inci-
dental findings), and help to communicate research results back to study participants [3].

4.2.4  Data Management Plan and Statistical Analysis Plan

A data management plan (DMP) shows that you have thought about how to create, 
store, archive, and give access to your data and samples during and after the research 
project. Nowadays, many research funders and academic institutions demand DMPs 
from researchers. The responsibility for creating a DMP lies primarily with princi-
pal investigators. Examples of DMPs and practical tools such as a Data Stewardship 
Wizard can be found in HANDS’ toolbox.

Statistical analysis plans are obligatory for randomised controlled trials. It is 
preferable to create this plan before collecting data because this facilitates proper 
study design (e.g., in-and exclusion criteria, number of study subjects needed, deci-
sions with regard to statistical power, choice of data items to be collected). This is 
discussed further in Sect. 4.5.2.

4.2.5  Describing the Operational Workflow

Clinical researchers should be able to describe the complete operational workflow 
for their research data, from data capture, to data analysis, archiving, and sharing. 
They are responsible for answering questions about the origin of their data, data 
manipulations, the location where the data is analysed and archived, and with whom 
it is shared under what conditions. A research institution is responsible for provid-
ing infrastructure which is compliant with current regulations and guidelines (e.g., 
on privacy and data integrity) (Fig. 4.1).
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In smaller studies, the data capturing system (whether manual data entry from 
paper, via electronic forms, or sophisticated real-time connections between the pri-
mary source data and the study database) should be able to assess and report the 
logical consistency and the clinical probability of data values. For large datasets, it 
is important to think ahead about:

• storage capacity;
• when the raw data will become available;
• backups to safeguard against system failure and human error;
• the location where various data processing steps will be carried out (e.g., the 

capacity of the network should be sufficient if the data must be transported from 
the measurement location to the analysis location);

• access policies (e.g., whether web-based or multi-user access is required);
• procedures for data documentation and anonymisation or pseudonymisation;
• protection against unauthorised access (see Sect. 4.4.4);
• costs (e.g., for storage and compute capacity).

4.2.6  Choosing File Formats

Ensuring that your data is FAIR requires care in selecting file formats. For instance, 
it is important to consider how the data can be accessed in 10 years from now: will 
software still exist that can read the information? Data formats should preferably be 
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Fig. 4.1 Example of  an operational workflow chart. This shows which functionality is involved 
as well as the typical activities around clinical data, including repositories. (Adapted by the NFU 
from an original illustration created at Radboudumc, Nijmegen)
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open (i.e., formats that can always be implemented, so not ‘.doc’ and ‘.xls’ or 
instrument- specific data formats), well-documented (i.e., rigorous like ‘xml’ with a 
schema description and not open to multiple interpretations like ‘.csv’ without 
schema descriptions), flexible (i.e., self-describing formats which can adapt to 
future needs without breaking old data), and frequently used (i.e., for which conver-
sion tools will be created and maintained if necessary). DANS (Data Archiving and 
Network Services) has made a useful overview of preferred file formats.

4.2.7  Intellectual Property Rights

Failure to think about Intellectual Property Rights at the start of your study may 
cause legal dispute and it can lead to limitations to the research, its dissemination, 
future related research projects, and associated profit or credit. Designing a study 
may already lead to protectable ideas. Ask yourself questions like ‘Is the outcome 
usable for further research? Is it usable for a product or service? Does it need addi-
tional protection (e.g., with a patent or copyright)?’ On the other hand, if you wish to 
allow others to reuse your data, it may be advisable to make this explicit, e.g., through 
a Creative Commons license, giving the public permission to share and use your 
work on conditions of your choice. It is advisable to contact a Technology Transfer 
Office (TTO) at the start of your study and before sharing data. They can help create 
written agreements on when to share what data with whom under what circum-
stances. Such agreements should also be included in a consortium agreement.

4.2.8  Data Access

Clinical researchers are responsible for describing the data access and sharing policy of 
their study. This policy should be tailored to the project and devised prior to collecting 
data, allowing some room for later adaptations. According to the FAIR principles, all 
research datasets should at least be findable (including non-sensitive data, metadata, 
and aggregated data about the study) and the conditions under which the data are acces-
sible should be clear. Clinical researchers are obliged to share their data with monitor-
ing bodies upon request (e.g., internal audits). A data access policy should take into 
account a number of considerations (see Sect. 4.7). Many research institutions have 
their own Data Governance Policy, which may include the instalment of a Data Access 
Committee that plays a role in the permission of sharing data with third parties.

4.3  Privacy and Autonomy

Clinical research calls for careful attention to the privacy and autonomy of the peo-
ple involved.
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4.3.1  Informed Consent

Informed consent aims at informing potential study subjects of all aspects of 
participation, including the procedures for data handling, data access, and ano-
nymity. An informed person can freely decide to participate or not. If someone 
does participate, he or she understands and accepts the risks and burdens involved 
in that participation. Informed consent also is a crucial aspect of the 
GDPR.  Regarding data management, the informed consent should include the 
person’s wishes about:

• the use and reuse of the data for research in the current and future projects 
(including the options for data filtering: which data may be used for research);

• notification about incidental research findings (special concern is required for 
results that cannot be interpreted now, but may be interpretable in the near 
future);

• which data he/she can access, if applicable;
• the possibility to withdraw certain aspects of informed consent and the 

consequences;
• data use by commercial parties.

In general, it is very difficult to re-contact patients or study subjects to extend or 
change the consent. So, it is best to obtain informed consent for storing clinical and 
personal data for the purpose of both healthcare and future scientific research, each 
with a separate informed consent. In addition, patients should always be able to 
retract their consent, so your system should allow for data to be removed. Consent 
should be documented along with the collected data, so subsequent users of the data 
are aware of the conditions agreed to by study subjects. Most research institutions 
have access to an ethical committee that can help design your informed consent 
procedure.

4.3.2  Care and Research Environment

It is important to distinguish between the care environment (i.e., data that is used for 
diagnosis and treatment of patients or self-evaluation of healthcare providers) and 
the research environment (i.e., data that is used to answer scientific questions). 
Nowadays, these two data environments are increasingly integrated. However, the 
distinction is important because different laws and guidelines apply to the two envi-
ronments and these laws may even conflict.

Having said that, healthcare and scientific research can reinforce each other. For 
instance, data collected in a care environment may be used to answer research ques-
tions. Data collected in a research environment may travel back to the care environ-
ment as ‘unexpected incidental findings’ crucial to be communicated to the study 
subject. Data collected in a research environment may also be used in the clinic to 
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avoid double data collection (e.g., collection of quality of life data in intervention 
trials). You should take special measures when you reuse data collected in the care 
environment for scientific research and vice versa. For instance, research data usu-
ally undergoes less stringent quality control than clinical data and extra checks are 
required before using research data in the clinic, including an extra verification of 
the identity of the study subject.

4.3.3  Preparing Sensitive Data for Use

Processing your data for scientific research or statistical analysis should be subject 
to appropriate safeguards for the rights and freedoms of the data subjects, in accor-
dance with the GDPR. Those safeguards should ensure that technical and organisa-
tional measures are in place, in particular in order to ensure respect for the principle 
of data minimisation. Any research data should be anonymised or pseudonymised. 
Anonymisation means processing data with the aim of irreversibly preventing the 
identification of the person to whom it relates. Pseudonymisation means replacing 
any identifying characteristics of data with a pseudonym, i.e., a value which does 
not allow the person to be directly identified. Pseudonymisation only provides lim-
ited protection for the identity of data subjects as it still allows identification using 
indirect means. You may consider involving a trusted third party (TTP) to encrypt 
and decrypt identifiers. In all cases, the translation table between the research code 
and the identifying patient information should be stored and managed separately 
from the research database.

4.4  Collecting Data

Two key principles should guide research data stewardship in the data collection 
phase: ensuring the scientific integrity of the study and protecting the privacy of 
study subjects and researchers. This includes ensuring data quality, protecting the 
data from malicious access, and safeguarding the ability to interpret the data cor-
rectly. You can ensure all of this by:

• implementing a suitable data management infrastructure;
• implementing a data validation step after initial data entry;
• including documentation (metadata) to add context to the data;
• taking data protection measures.

In addition, you should use a standardised protocol for data collection in order to 
allow others to reuse your data in the future, using the terminologies and standards 
that are accepted your research field. The best time to consider and describe all these 
issues is at the start of your research project.

4 Research Data Stewardship for Healthcare Professionals
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4.4.1  Data Management Infrastructure

An adequate data management infrastructure can help you work more flexibly, eas-
ily, and quickly. It can also simplify version control and collaboration. As soon as 
(in)direct identification of human study subjects is possible, you should use a profes-
sional data management system. The system and its environment should preferably 
be ISO27001 certified, or at least meet the underlying goals (i.e., protection, account-
ability, privacy, documentation, risk assessment, quality management). Experts can 
help you select an appropriate data management infrastructure, which allows for:

• the collection, storage, and analysis of research data; this is often called a 
‘database’;

• sufficient data protection measures (discussed in Sect. 4.4.4);
• accurate management and logging of data access (discussed in Sects. 4.4.4 

and 4.7);
• storage of metadata, process flow description, data provenance description, data 

extraction documentation, and data modification logs (see Sect. 4.4.3);
• support for data interpretation (this crucially depends on knowledge of the data 

collection process and methodology; see HANDS for information that needs to 
be documented).

4.4.2  Monitoring and Validation

You can protect the scientific integrity of your study by consistently documenting 
the data entry process, i.e., who enters or modifies a particular data element at what 
location and time. This is mandatory for formal clinical trials. You should preferably 
store this information within the software that you are using. Many software pack-
ages do this automatically in the so-called audit trail. In addition, it is advisable to 
implement a method for validating and cleaning the data after initial entry and to 
decide when a dataset will be locked for the start of analysis. This may be done by 
having a second person check entered data, producing data quality reports, exten-
sive internal consistency logic, double data entry, or by comparing the data with the 
primary source (e.g., an electronic patient file).

4.4.3  Metadata

Metadata is ‘data about data’, i.e., all information that is required to interpret, under-
stand, and (re)use a dataset [4, 5]. Metadata include:

• the name of the dataset or research project that produced it;
• names and addresses of the organisation or people who created the data;
• identification numbers of the dataset, even if it is just an internal project refer-

ence number;
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• key dates associated with the data, including project start and end date, data 
modification dates, release date, and time period covered by the data;

• the origin of all data (i.e., data provenance description; the origin of the data 
should be verifiable);

• the protocols that were used including experimental aspects and study setup 
(e.g., persons, standard operating procedures, conditions, instrument settings, 
calibration data, data filters and data subset selections), since this is all essential 
for data reuse and data quality verification;

• unambiguous descriptions of all major entities in the study, such as samples, 
individuals, panels, or genotypes.

Collecting metadata will help you and your collaborators to understand and interpret 
the data. In addition, other people need metadata to find, use, properly cite, or repro-
duce the data, ensuring the long-lasting usability of the data. To improve reusability, 
you should consider collecting more metadata than required for your own research 
question, such as the geographical area of data collection, instruments used, demo-
graphics, and the time between collecting samples and performing measurements. In 
addition, you should consider interoperability and therefore use standardised termi-
nologies in your metadata. There are many minimal metadata standards for this purpose 
(e.g., the MIT Libraries’ guidelines). Metadata and data should be stored close to each 
other to make sure that the association between the two is clear. Metadata can be stored 
as embedded documentation, supporting documentation, or as catalogue metadata.

4.4.4  Security

You should implement state-of-the-art safety measures to preventing unauthorised 
and unnecessary access to your research data by:

• setting internal and external access policies at the start of your study (i.e., who 
gets access to which data);

• protecting your data with passwords (use a proper password management 
system);

• protecting your data from computer viruses (ask your institution’s ICT 
helpdesk);

• using firewalls, encrypted data transport, and backups;
• installing a Data Access Committee to review all data and sample requests.

4.4.4.1  Access Policy

Access policies are part of your DMP, so they should be described before starting 
data collection. One reason for this is that, in many cases, patients have to give 
informed consent on data sharing before you start collecting data. In case of a clini-
cal trial, a substantial change in access policies should lead to an amendment of the 
ethical protocol. Important aspects are:
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• never allowing access to personal or clinical data to unauthorised people;
• under no circumstances granting access to (in)directly identifiable data via com-

puter accounts shared by multiple persons;
• verifying the identity of the user logging into a database with (in)directly identi-

fiable data preferably by at least one other method than just password security 
(‘2-factor authentication’);

• not providing more information in a data extraction than needed for a particular 
analysis;

• making sure that access to the database is logged properly.

Any access outside the authorisations in the access policy should be considered 
unauthorised access. You should be able to detect unauthorised access timely. Note 
that there is a legal obligation to report personal data leaks in most countries.

4.4.4.2  Protecting Research Data

You should think of these safety measures to protect your data:

• Storage of research data has to be safeguarded primarily under the regulations 
that apply in your country. The system and its environment should preferably 
be ISO27001 certified, or at least meet the underlying goals of this 
legislation.

• A database manager should be able to differentiate data access to parts of the 
collection per individual via role-based accounts.

• Databases connected to the internet should not contain identifiable data unless 
the infrastructure has taken sufficient measures to reduce the risk of access to the 
identity of a subject to an extremely low level.

• Storage that could legally be traced back to a non-EU owner or any non-EU party 
with access to the data or its physical location requires additional measures such 
as including it in the informed consent.

4.5  Analysing Data

Properly preparing your research data for analysis and working with a statistical 
analysis plan will result in a transparent analysis and interpretation process and 
reproducible results. In addition, it will make your data, intermediate results, and 
end results suited for archiving and sharing.

4.5.1  Raw Data Preparation

Prepare your research data for analysis by following these steps:
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 1. Create a data dictionary (i.e., metadata).
 2. Create a working copy of the dataset and securely archive the raw data.
 3. Clean the data in the working file and document all cleaning steps in a separate 

file that is archived.
 4. Create an analysis file and preserve the cleaned dataset for archiving purposes.
 5. Preserve your raw and (if needed) intermediate datasets.

When your data cannot be traced back to individuals (i.e., anonymised data), it is 
possible to use any decent statistical package as the management tool for your data. 
However, you should make sure that the entire process is well-documented and that 
all data manipulations are documented in libraries of syntax files. It is important to 
name and organise files in a well-structured way because the files can easily become 
disorganised. A naming convention saves time and prevents errors. If you have a 
large number of files or very large files, you should keep a master list with critical 
information. The master list should be properly versioned, so that all changes are 
registered over time along with their reason.

It is advised to store the raw data and all versions after meaningful processing 
steps that you cannot easily repeat. At least store the raw data that you use as the 
basis for your publications, including the descriptions of how you obtained these 
data and how you processed them (i.e., the metadata). You can consider deleting 
intermediate files to save storage space and to reduce the risk of inadvertent privacy 
violations. They can also be excluded from a backup scheme to save time on a pos-
sible restore after hardware failure. However, it may be useful to keep intermediate 
data for trace-back reasons.

4.5.2  Analysis Plan

In more complex studies, you should make a data analysis plan prior to starting the 
analysis, but it is preferable to already make the plan before you even start collect-
ing data. The plan should at least address the following topics:

• the research question in terms of population, intervention, comparison, and 
outcomes;

• a description of the (subgroup of the) population that is to be included in the 
analyses (in-and exclusion criteria);

• which datasets are used and if applicable, how datasets are merged;
• data from which time point (T1, T2, etc.) will be used, if applicable;
• variables to be used in the analyses and how these will be analysed (e.g., continu-

ous or categorical);
• variables to be investigated as confounders or effect modifiers and how these will 

be analysed;
• missing value treatment;
• which analyses are to be carried out in which order.
• structuring of folders and files, and managing of file version control
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You may need to consult a statistician about the choice of statistical methods. 
You may also consider a workflow system rather than running each analysis step by 
hand. In addition, you may consider distributed analysis, where data remains at its 
original location.

4.6  Archiving Data

Scientific data archiving refers to the long-term storage of scientific data and meth-
ods. The FAIR principles recommend archiving research data in a trusted and secure 
environment at your institution or at an external data service or domain repository.

4.6.1  Archiving: What and How?

How much data and methods you must store in a public archive varies widely 
between scientific disciplines, scientific journals, and research funders. Nowadays, 
many scientific journals demand open access of the raw research data. The Horizon 
2020 programme of the European Commission has recently developed Guidelines 
to the rules on Open Access to Scientific Publications and Open Access to Research 
Data (Fig. 4.2). Clinical trial data should always be accessible to monitoring bodies 
(e.g., internal audits). Research data should be preserved as long as the potential 
value is higher than the archival and maintenance costs.
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Fig. 4.2 From: Guidelines to the rules on Open Access to Scientific Publications and Open Access 
to Research Data in Horizon 2020
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4.6.2  Archiving: Where?

The existence of research data should be clear to potential re-users. To this end, you 
should at least archive the data at your home institution. Frequently used data types 
may be submitted to worldwide archives (repositories). Please consult HANDS for 
a list of institutions that offer general data repositories as well as domain specific 
repositories (e.g., for genomics and microarray data, or the BBMRI catalogue for 
data and sample collections). Data that is archived outside your own institution 
(e.g., at an international data service or domain repository) should be registered at 
your home institution and the data should be listed in an open data catalogue.

4.7  Sharing Data

Clinical researchers should always share their data with monitoring bodies upon 
request. In addition, many research funders request that researchers share some or 
all of their data with the public and other researchers. Sharing with third parties can 
range from ‘data is findable, but not accessible’ to ‘data is findable and accessible 
for everybody for all purposes’. Sharing policies cannot lead to open medical data, 
unless the data is truly anonymous. The guiding principle is responsible data shar-
ing and protecting the privacy of study subjects.

4.7.1  General Considerations

Your data sharing policy should be tailored to your research project and is affected 
by the following questions:

• Did the study subjects give permission to share or combine their data? Does the 
consent mention specific conditions for data sharing?

• How were the data created and how does this affect data sharing (e.g., methodol-
ogy, protocols, and publications)?

• What type of data will be released? Is there a procedure for data release with, for 
example, a committee?

• Who would be the recipient of the data?
• What warranties will the recipient give about responsible use of the data?

External access most often means the transfer of datasets under certain condi-
tions (restricted access). If you will obtain the data as part of a research collabora-
tion, the Intellectual Property Rights and openness of the resulting data should be 
discussed between the partners before you start collecting data. Relevant factors are:

• the consent modality (i.e., is there informed consent and what does it state?);
• the approval of the research by the designated competent body;
• the conditions of the funders of research data;
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• the conditions under which data were released by the original creator of the data;
• the conditions of the journal to which the data is submitted (more and more jour-

nals demand open access to the underlying data).

4.7.1.1  Anonymity

Anonymity is an important condition of biomedical research, making it impossible 
to identify the person behind the data. Anonymous data may become identifiable 
when datasets are combined; you should consider this before sharing data. The solu-
tions to this issue are:

• aggregate the data to such a level that they are never identifiable, irrespective of 
how you combine the data with other data.

• give access only within the data infrastructure of the original researcher. The new 
researcher may add data to this infrastructure, but data are only exported when 
meeting strict, previously determined conditions.

• create a balanced system of Data Transfer Agreements, corresponding to the type 
of data that are released, legally obligating the receiver to take responsibility to 
not re-identify the data.

Having said that, complete anonymity seems almost impossible in the age of digi-
tal information technology. By combining data from different sets, it is according to 
some only a matter of time until every individual can be identified in a so- called 
anonymous set. In addition, personal data sometimes need to be part of a dataset in 
order to allocate later events to the same person. In that case, you need to take extra 
measures to secure the privacy of the study subjects to be GDPR-compliant.

4.7.2  Sharing with Commercial Parties

Research data may only be shared with an external commercial party if the patient 
has provided informed consent for this. You should not hand over exclusive rights to 
reuse or publish your research data to commercial publishers or agents without 
retaining the rights to make the data openly available for reuse.

4.8  Conclusion

Adequate research data stewardship has become an indispensable part of clinical 
research. It is not a goal in itself, but it leads to high quality data and increased data 
sharing, thus promoting knowledge discovery and innovation. Hence, research 
funders and scientific journals have formulated guidelines on data stewardship. In 
addition, adequate data stewardship is necessary to meet legal and ethical 
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requirements. With the growing role of patients as important stakeholders in clinical 
research, it is expected that the (re)use of data will become a more transparent and 
democratic process in the years to come.
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Chapter 5
The EU’s General Data Protection 
Regulation (GDPR) in a Research Context

Christopher F. Mondschein and Cosimo Monda

5.1  Introduction

The EU’s General Data Protection Regulation (GDPR).1 has entered into force on 
25 May 2018.2 It replaces the EU’s previous legal framework that dates back to 
1995; while retaining the overall regulatory approach of its predecessor, the GDPR 
also introduces a number of new compliance obligations, including higher sanctions 
than those available under the previous framework.3 This Chapter introduces the key 
concepts of data protection law and specifically those of the GDPR to the readership 
in order to sensitize the readership to this matter. A basic understanding of the telos 
of the GDPR and the way it strives to achieve the regulatory goals set therein can 
help researchers understand what compliance tasks will become necessary. The 
importance of data protection and compliant research has become apparent: the lack 

1 Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the 
protection of natural persons with regard to the processing of personal data and on the free move-
ment of such data, and repealing Directive 95/46/EC (General Data Protection Regulation) (Text 
with EEA relevance), [2016] OJ L 119/1.
2 Article 99 GDPR.
3 Directive 95/46/EC of the European Parliament and of the Council of 24 October 1995 on the 
protection of individuals with regard to the processing of personal data and on the free movement 
of such data, [1995] OJ L 281/31.
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of compliance will inevitably lead to problems with obtaining funding for research, 
especially through European Union grants.4

This chapter will hardly succeed in making the reader an expert on data pro-
tection law or the GDPR, given that volumes of books could be filled on this 
topic. Nevertheless, awareness of the compliance goals and a basic understanding 
of the functioning of the GDPR can give researchers an edge in identifying and 
flagging issues at an early stage in their research endeavours. It also aids research 
organizations in assessing their internal procedures. Here, the presence of a sup-
porting infrastructure for researchers that is able to support them in achieving 
legal compliance and through which issues can be address at an early stage is an 
important factor; researchers by themselves hardly can be expected to be GDPR 
experts.

Considering data protection issues at an early stage of a research project is of 
great importance specifically in the context of large-scale research endeavours that 
make use of personal data. In clinical settings, this often includes special categories 
of personal data, also referred to as sensitive data, that are collected from a wide 
array of sources (see Chap. 1 of this book) and which can be combined to gain novel 
insights. In this context, the development of clinical data standards – as described in 
Chap. 3 of this book – supporting the FAIR principles5 and ensuring interoperability 
and shareability pose a potential risk for a data protection perspective, if legal com-
pliance is not assured.

We approach these issues in the following manner:

 (i) we introduce the basic tenets of EU data protection law;
 (ii) we give a broad overview of the GDPR and its principles, actors and 

mechanisms;
 (iii) we contextualize the research exemption included in Article 89 of the GDPR.

5.2  Data Protection Law in the EU

EU data protection law stands on a dual footing: on the one hand, it strives to facili-
tate the free flow of personal data; on the other hand, it makes the free flow of per-
sonal data subject to conformity with legal requirements that are derived from the 
fundamental rights character of the right to privacy and the right to the protection of 
personal data of individuals.6 The fundamental rights character of EU data protec-
tion law is anchored in the Charter of Fundamental Rights of the European Union 

4 See Frischhut [1]. In the context of the Horizon 2020 framework, data protection plays a crucial 
role in the ethics assessment, see European Commission DG Research & Innovation, ‘Horizon 
2020 Programme: Guidance. How to complete your ethics self-assessment’. Version 5.3. 21 
February 2018, http://ec.europa.eu/research/participants/data/ref/h2020/grants_manual/hi/ethics/
h2020_hi_ethics-self-assess_en.pdf
5 Wilkinson et al. [2, 3].
6 Article 1(2) and (3) GDPR. Lynskey [4], Ch. 3.
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(the Charter), which provides for the right to privacy (Article 7 of the Charter) and 
the right to the protection of personal data (Article 8 of the Charter).7

The right to the protection of personal data demands that personal data be only 
processed in a lawful and transparent manner, following a set of principles that 
ensure that the data subject (i.e. the individual whose data is processed) can effec-
tively make use of a number of rights vis-á-vis the entities processing his/her 
personal data. This is ensured through supervision by independent supervisory 
authorities at the national level.

The fundamental rights nature of this right necessitates a case-by-case analysis 
of each processing operation, balancing a wide array of fundamental rights and 
the interests of the data subject and other stakeholders. This explains the general 
complexity surrounding data protection when viewed through a regulatory com-
pliance lens.

5.3  The GDPR

The GDPR operationalizes data protection under the dual footing described above. 
It retains many elements contained in its predecessor and adds certain elements, 
most notably a more severe sanctioning regime, the right to be forgotten and the 
mandatory assignment of a Data Protection Officer (DPO) for certain processing 
situations.

The GDPR takes  an‘omnibus’ approach,8 meaning that it applies as a general 
law encompassing a wide scope of processing operations and actors (both public 
bodies and private organizations) and applies a wide definition of what constitutes 
the processing personal data. This can be contrasted with the US legal framework, 
which takes a sectoral approach, for example by separately regulating children’s 
privacy or insurance and health privacy, yet lacking an overall (federal) data protec-
tion law.9

The EU legislator chose to continue the use of a principle- and rights-based 
approach for the GDPR, which takes a technological neutral perspective. This is 
connected with the omnibus nature of the GDPR: in order to retain its wide scope, 
the GDPR utilizes general principles from which compliance has to be deduced by 
the processing entities under a so-called ‘risk-based approach’; this means that orga-
nizations must self-assess their operations and take the necessary steps to comply 
with the GDPR on an on-going basis, a ensuring that the level of compliance is 
proportional to the level of risk inherent to the processing operations carry. This is 
not to say that there is no guidance, as there are various sources that aid with the 
interpretation of the principles such as guidance issued by supervising authorities, 
case law, established practices and so on that should be used for the legal assessment 

7 For the distinction between the two rights, especially for Big Data application in the health sector, 
see Mostert et al. [5].
8 Lynskey [4], p. 15 ff.
9 Schwartz and Pfeifer [6].
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of processing operations. Where this is not the case, this approach introduces a sense 
of legal uncertainty and requires expertise to ensure compliance. This effect is in 
part amplified where new technologies or processing approaches are introduced: the 
GDPR takes a technological-neutral approach, stating that “in order to prevent 
 creating a serious risk of circumvention, the protection of natural persons should be 
technologically neutral and should not depend on the techniques used.”10 This 
potentially poses a factor of uncertainty.

The GDPR is said to introduce a higher level of harmonization of data protection 
law throughout the European Union. However, the fact that it contains a substantial 
number of opening clauses which create space for Member States to take decisions 
on the implementation of the GDPR at national level may undermine this attempt. 
Most notably, Member States may introduce specific derogation for the research 
exemptions under Article 89(2) GDPR, which may lead to a fragmentation of the 
rules governing research (see further below). It remains to be seen what level of 
harmonization will be reached as at the point of writing, not even all Member States 
have finalized the national laws implementing the GDPR.11

A hallmark of the GDPR is the introduction of the principle of accountability. 
The principle of accountability calls for entities processing personal data to take a 
proactive and holistic stance towards compliance with the GDPR. An accountable 
organization is able to prove upon request that they have taken all necessary steps to 
be in compliance with the GDPR.

5.4  Scope of Application of the GDPR

Temporal Scope The GDPR entered into force on 25 May 2018 (Article 99 
GDPR). Any new processing operations started after this date must be considered to 
fall under the scope of the GDPR if they fulfil the material and territorial scope set 
out in Articles 4(7) and 4(8) GDPR respectively. Ongoing processing operations 
that were commenced before the entry into force of the GDPR are not grandfathered 
under the old legal regime and hence the GDPR also applies to these processing 
operations. Regarding the reuse data collected prior to the entry into force of the 
GDPR, an assessment whether the lawfulness criteria of the GDPR are still fulfilled 
is necessary (especially regarding the collection of consent).

Material Scope The GDPR applies to both public bodies as well as private organi-
zations. However, distinct rules for the EU institutions, bodies and agencies exist 
(Article 2(3) GDPR). The GDPR applies to the processing of personal data (Article 
2 GDPR).12 Two notions have to be considered here: (i) the notion of personal data 
and (ii) the notion of processing. The GDPR makes use of four distinct categories to 

10 Recital 15 GDPR.
11 See e.g. Alston & Bird, ‘GDPR Tracker’, https://files.alston.com/files/Uploads/gdprtracker/
index.html (last visited: 03.07.2018).
12 Article 29 WP Opinion on the concept of personal data, WP136, 20.6.2007.
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make sense of the notion of personal data and to delineate legal obligations for the 
processing of these data:

 i) Personal data
 ii) Special categories of personal data
 iii) Pseudonymous data
 iv) Anonymous data

The notion of personal data in this context possesses a wide scope: it encom-
passes any information relating to an identified or identifiable individual. This 
includes names, identification numbers, location data and so on. An example of the 
wide scope of this notion is that dynamic IP addresses13 fall under the definition of 
personal data as there are means to potentially identify the data subject through 
legal means that are realistic to achieve. When looking at the data sources described 
in Chap. 1 of this book, it becomes clear that in almost any context of clinical data 
science, personal data as defined by the GDPR is used.

According to Article 9 GDPR, special categories of personal data, also referred 
to as ‘sensitive personal data’, include (i) racial or ethnic origin, (ii) political opin-
ions, (iii) religious or philosophical beliefs, (iv) trade union membership, (v) genetic 
data, (vi) biometric data, (vii) data concerning health, (viii) sex life or sexual orien-
tation. These data carry a higher degree of risk for the data subject, thus necessitat-
ing further compliance steps for any entity processing them. Data points that can be 
used as proxies for certain characteristics fall within in the scope of the definition of 
special categories of personal data. For example, certain dietary requirements in 
passenger name records were deemed to be sensitive data as data subjects’ religious 
beliefs could be inferred from them.14 In the research context, Article 9(1)(j) GDPR 
offers derogations that may be introduced by virtue of EU or Member State’s 
national law. However, Member States may also maintain or introduce hurdles in 
the form of specific limitations to the processing of genetic, biometric or health data 
(Article 9(4) GDPR). Hence, Member States have leeway to open or restrict the 
processing of these categories of data under the GDPR, which is something that has 
a potentially large impact on the way research is conducted.

Pseudonymization of personal data refers to the act of altering personal data to 
the extent that the data subject cannot be directly identied without having further 
information, which is stored separately (Article 4(4) GDPR). The Article 29 WP 
gives a number of examples for pseudonymisation techniques, including where data 
is (i) encrypted with a secret key; (ii) hashing and salting data; (iii) keyed-hash func-
tions with stored key; (iv) deterministic encryption or keyed-hash functions with 
deletion of the key; or (v) tokenization.15 It is important to note that pseudonymised 
personal  data still falls within the scope of the GDPR and it is viewed as a security 
safeguard under the notion of technical and organizational measures (Article 32(1)
(a) GDPR) but these technologies cannot be used to circumvent compliance obliga-
tions pursuant to the GDPR (see Recitals 26 and 28 GDPR).

13 Case C-582/12 Breyer, EU:C:2016:779.
14 Opinion 1/15 EU-Canada PNR, EU:C:2016:656.
15 Article 29 WP Opinion on anonymisation techniques, WP216, 10.4.2014, p. 20.
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The GDPR does not contain a definition of what constitutes anonymous data. 
However, the fifth and sixth sentence of Recital 26 provide that the “principles of 
data protection should (…) not apply to anonymous information, namely informa-
tion which does not relate to an identified or identifiable natural person or to per-
sonal data rendered anonymous in such a manner that the data subject is not or no 
longer identifiable. This Regulation does not therefore concern the processing of 
such anonymous information, including for statistical or research purposes.” Hence, 
the GDPR does not apply to anonymous data (Fig. 5.1).

This leaves the question where to draw the line between anonymous and pseud-
onymous data, thus determining when the GDPR applies, and when not. Spindler 
and Schmeichel highlight the tension between an absolute approach and a relative 
approach towards encrypted data and the identifiability of the data subject.16 The 
former qualifies that the criterium for identifiability for encrypted data is fulfilled as 
long as even the remotest possibility of identifying the data subject based on the 
encrypted data exists, whereas the latter considers the scope of identifiability some-
what narrower, relying on the existence of a realistic opportunity of identifying the 
data subject. From a legal perspective, it remains to be seen how technological 
advancements such as fully homomorphic encryption (FHE) or secure multi-party 
computing (SMC) will be received, albeit it being unlikely that utilizing these tech-
nologies will create an exemption to the application of the GDPR due to the wide 
interpretation of the scope of personal data.17

When contemplating secondary use of data for research, one must take into 
account that the combination of different data points from different categories might 
lead to a shift in the classification of a processing operation. Here, a functional 
approach is required to make an assessment of the legal nature of the data pro-
cessed, which is important in a research setting, especially when applying a Big 
Data approach and obtaining data from a wide array of sources for secondary use. 
Here, the temporal aspect of technological change must also be taken into account 
by asking what changes can be realistically expected in the future and how these 
changes might impact the processing operation.

In summary, the GDPR grants the notion of personal data a wide scope and it is 
difficult to argue that the GDPR does not apply by virtue of data not qualifying as 
personal data. The legal definition of pseudonymization under the GDPR is consider-
ably far-ranging and circumventing compliance obligations under the GDPR by vir-
tue of utilizing anonymous data is rather unlikely, as the usefulness of data for research 
purposes stands in contrast to the stringent criteria of anonymisation under the GDPR.

16 Spindler and Schmechel [7].
17 Spindler and Schmechel [7], p. 174–176.

Pseudonymous data Special categories of 
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Personal data within the scope of the GDPR 
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Fig. 5.1 Categories of 
personal data under the 
GDPR
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The Notion of Processing Article 4(2) GDPR  refers to processing as “[a]ny oper-
ation or set of operations which is performed on personal data or on sets of personal 
data, whether or not by automated means, such as collection, recording, organisa-
tion, structuring, storage, adaptation or alteration, retrieval, consultation, use, dis-
closure by transmission, dissemination or otherwise making available, alignment or 
combination, restriction, erasure or destruction.” This complements the broad defi-
nition the GDPR gives to the notion of personal data. In short, the notion of process-
ing covers everything one does with personal data.

Territorial Scope By virtue of Article 3 of the GDPR, the GDPR applies to all 
processing operations of controllers or processors that are established within the 
EU. Here, it is not important whether the processing activities take place within the 
EU or not; the connecting factor triggering the application of the GDPR is the fact 
that the entities have a legal establishment in the EU. Next to that, the GDPR applies 
where personal data of data subjects located within the EU is processed by entities 
without an establishment in the EU if (i) it pertains to offering goods or services to 
data subjects within the EU, independent of whether payment is required, or (ii) the 
behaviour of data subjects within the EU is monitored. Lastly, the GDPR might 
apply where public international law so dictates. It is important to highlight that the 
applicability of the GDPR is not linked to nationality of a Member State or to EU 
citizenship but applies to all data subjects located within the EU. Within the research 
context it is also important to highlight that datasets imported to the EU for further 
processing fall within the scope of the GDPR.

5.5  Key Concepts of the GDPR

Controller and Processor The notions of controller and processor are used to 
delineate and assign the tasks, responsibilities and liability of entities that processes 
personal data under the GDPR.  The notions were already present in the 1995 
Directive; however, the GDPR has assigned more responsibilities to data proces-
sors. The controller is the entity which decides (or jointly together with another 
controller) on the purpose and the means of the processing (Article 4(7) GDPR). 
The processor is the entity that processes the data on behalf of the controller (Article 
4(8) GDPR). These notions are used to identify obligations and liability of entities 
processing personal data. Numerous different combinations of controllership and 
processor relations are possible (controller and processor are one entity; controller 
and processors are separate entities; joint controllers; sub-processors; etc.). Here, it 
is best map the dataflow and check which entities have what role. It is important to 
note that as soon as a processor deviates from the instructions of a controller, the 
processor becomes a controller and incurs the higher level of responsibilities and 
liability attached to this notion. The setup and due diligence in identifying the roles 
in this context is of utmost importance prior to starting data processing operations.

Principles Relating to Lawful Processing Article 5 GDPR lays down the princi-
ples allowing for lawful processing of personal data. These principles are:
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 i) Lawfulness, fairness and transparency: processing of personal data is lawful 
when it is based on one of the six legal bases listed in Article 6 GDPR. The 
principles of fairness and transparency relate to the fact that data subjects must 
be informed in a comprehensive manner about the purpose and scope of the 
processing as laid down is Articles 12–14 GDPR.

 ii) Purpose limitation: In line with the principle of transparency, data can only be 
processed for a specific purpose, which has to be communicated to the data 
subject. In the context of research, Article 89 GDPR provides for certain dero-
gations if the requirements under that article are fulfilled, allowing for further 
processing (see further below).

 iii) Data minimisation: this principle requires controllers to minimize the data they 
collect and keep.

 iv) Accuracy: the controller is obliged to ensure the accuracy of the data.
 v) Storage limitation: this principle requires controllers to specify the time limit 

for after which data is deleted. In the context of research, Article 89 GDPR 
provides for certain derogations if the requirements under that article are ful-
filled (see further below).

 vi) Integrity and confidentiality: this principle requires that the integrity and con-
fidentiality of personal data is ensured. It links with the obligations of data secu-
rity, having in place adequate technical and organizational measures as well as 
the requirement to report data breaches to the supervisory authority and/or data 
subjects under certain circumstances as specified in Articles 33–34 GDPR.

Legal Basis In order to be able to process personal data in a lawful manner, the 
controller must specify a legal basis for the data processing operation. There is a 
closed list of six legal bases to be found in Article 6 GDPR:

 i) Consent: to be a lawful legal basis, consent by the data subject must fulfil the 
conditions listed in Article 7 GDPR. Consent must be (i) freely given, (ii) spe-
cific, (iii) informed, (iv) unambiguous, (v) and the age of consent must be ful-
filled (this can vary in Member States from 13 to 16 years).18 The consent must 
be given through a clear affirmative act (for example, pre-ticked boxes on a 
consent form are prohibited). The burden of proof to demonstrate that consent 
was lawfully obtained lies with the controller. Hence, good documentation and 
archiving of consent forms is required.

 ii) Performance of a Contract
 iii) Compliance with a legal obligation
 iv) Vital interest of the data subject: the scope of vital interest must be interpreted 

narrowly. This legal basis for example pertains to life-threatening situations in 
which a data subject cannot consent to the transfer of vital medical data.

 v) Performance of a task carried out in the public interest or in the exercise of 
official authority vested in the controller

 vi) Legitimate interest of the controller or by a third party: this legal basis requires 
an assessment of the necessity and the purpose of the processing operation as 

18 See further Article 29 WP, Guidelines on consent under Regulation 2016/679, WP259 rev.01, 
10.4.2018. Kosta [8].
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well as a balancing test between the interests of the data subject against those of 
the controller and third parties: this means that the legitimate interest of the con-
troller and that of any stakeholder must be weighed against the interests and 
fundamental rights – especially data protection and privacy – of the data subject. 
The outcome of the balancing exercise must be that the legitimate interest of the 
controller or any third party outweighs the interests and fundamental rights of 
the data subject in order for the processing to be lawful under this legal basis.19 
This legal basis is not available to public authorities when fulfilling a public task.

In case the same personal data is collected for different purposes, this must be speci-
fied in a transparent way and communicated to the data subject. A granular approach 
is necessary in order to give effect to the data subject rights.

Regarding the choice of a legal basis, generally, consent and legitimate interest 
may seem as an attractive option, yet, choosing either entails a number of caveats 
which must be addressed. As outlined above, legitimate interest requires a prior 
assessment and weighing of interests and front-loads the risk (it is up to the control-
ler to make the assessment and this assessment might be challenged at a later time, 
hence, when dealing with complex situations and uncertainty the risk level is 
increased). Consent might seem as an attractive legal basis in many situations due to 
the perceived ease with which it can be applied; however, consent is a volatile legal 
basis in the sense that consent can be withdrawn by the data subject at any time. In 
practice, this necessitates a consent tracking and management solution as the con-
troller must also be able to prove that valid consent was given by the data subject. If 
possible, other legal bases should be given priority over consent – however, for the 
purpose of research, consent will most likely be the only choice as a legal basis.

Sensitive Data and Explicit Consent Where sensitive data are processed, the 
GDPR requires explicit consent from the data subject (Article 9(2)(a) GDPR). 
Explicit consent requires a stronger affirmative action by the data subject: “The term 
explicit refers to the way consent is expressed by the data subject. It means that the 
data subject must give an express statement of consent. An obvious way to make 
sure consent is explicit would be to expressly confirm consent in a written statement. 
Where appropriate, the controller could make sure the written statement is signed by 
the data subject, in order to remove all possible doubt and potential lack of evidence 
in the future.”20 However, the controller can also rely on other means such as a two-
step verification or the “data subject may be able to issue the required statement by 
filling in an electronic form, by sending an email, by uploading a scanned document 
carrying the signature of the data subject, or by using  anelectronic signature”.21

Data Subject Rights Data subjects have a number of rights vis-à-vis entities pro-
cessing personal data.

19 Article 29 WP Opinion on the notion of legitimate interests of the data controller under Article 7 
of Directive 95/46/EC, WP217, 9.4.2014.
20 Article 29 WP, Guidelines on consent under Regulation 2016/679, WP259 rev.01, 10.4.2018, 
p. 18.
21 Article 29 WP, Guidelines on consent under Regulation 2016/679, WP259 rev.01, 10.4.2018, 
p. 18–19.
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 i) Right to transparent information, communication and modalities to exercise 
rights

 ii) Right to information relating the processing (both where data is obtained by 
first and third parties)

 iii) Right to access of one’s personal data
 iv) Right to rectification, erasure and restriction of processing
 v) Right to data portability
 vi) Right to object

Compliance In order to be accountable, entities processing personal data must fulfil 
a set of compliance criteria. Most fundamentally, they must adhere to the data pro-
tection principles when processing personal data. In relation to the data subject, the 
entities processing personal data must enable and effectuate data subject rights; this 
includes responding to data subject requests for access and informing data subjects 
on the processing in a fair and transparent manner. According to Article 30 GDPR, 
controllers and processor are required to keep documentation of the processing oper-
ations and must be able to demonstrate compliance on request of the supervisory 
authority. In line with the risk-based approach taken by the GDPR, it might become 
necessary to consult the supervisory authority prior to commencing a risky processing 
operation (Article 36 GDPR). In case a processing operation is deemed to have a high 
risk, the controller must conduct a data protection impact assessments (DPIAs) prior 
to commencing processing (Article 35 GDPR). Processing operations that potentially 
have a high risk attached to them include operations where new technologies are 
used (e.g. Big Data approaches), and based on factors such as the nature, the scope, 
the context and purpose of the processing. Article 35 GDPR specifically mentions 
the processing and systematic and extensive evaluation of persons, including profil-
ing as well as the large-scale monitoring of public areas. Important for the research 
context is that the large-scale processing of sensitive data requires a DPIA (Article 
35(3)(b) GDPR). Such risky operation potentially must be notified to the supervisory 
authority. In line with the principle of integrity and confidentiality, controllers and 
processors must ensure security of the personal data (Article 32 GDPR): the extent 
of the technical and organizational measures that will be required to secure personal 
data depends on a number of factors as the entities processing personal data must take 
“into account the state of the art, the costs of implementation and the nature, scope, 
context and purposes of processing as well as the risk of varying likelihood and sever-
ity for the rights and freedoms of natural persons”. Next to this, the GDPR introduces 
the notions of privacy by design and privacy by default (Article 25 GDPR).

Appointment of a DPO Controllers and processors must appoint a DPO under 
certain conditions (Article 37 GDPR): (i) In case the processing operation is carried 
out by a public body, (ii) “the core activities of the controller or the processor con-
sist of processing operations which, by virtue of their nature, their scope and/or their 
purposes, require regular and systematic monitoring of data subjects on a large 
scale”, (iii) the processing of special categories of personal data (Article 9 GDPR) 
or data relating to criminal offences (Article 20 GDPR). The Article 29 WP issued 
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guidelines on these matters.22 An example to contrast where the designation of a 
DPO becomes necessary in the medical field: a DPO is necessary for processing of 
patient data in the regular course of business by a hospital; a DPO is not necessary 
where patient data is processed by an individual physician; where there is a joint 
practice of physicians, the appointment of a DPO becomes necessary.23

Regarding the position of the DPO, it is important to note that the DPO has an 
advisory function and is not personally responsible for non-compliance with the 
GDPR. Regarding the appointment of a DPO, a possible conflict of interest must be 
avoided where the DPO also holds another position in the organization; to that 
extent, a DPO cannot at the same time hold a leadership role (for example, “chief 
executive, chief operating, chief financial, chief medical officer, head of marketing 
department, head of Human Resources or head of IT departments”).24

Transfers to Third Countries The general approach regarding the transfer of per-
sonal data from the EU to any third country is that it is prohibited unless there is one 
of the following measures in place:

 i) Adequacy decision
 ii) Binding Corporate Rules (BCRs)
 iii) Model Contract Clauses
 iv) Explicit Consent
 v) (Derogations)

Since this provision functions as a prohibition with a closed list of exemptions, 
any transfer of personal data from the EU to a third country must fall within the 
scope of one of these exemptions in order to be deemed lawful (Fig. 5.2).

5.6  The GDPR’s Research Exemption

The GDPR acknowledges the need to facilitate different types of research, citing 
scientific and historical research, statistical research, and archiving in the public 
interest (Article 89 GDPR).

The GDPR does not contain a formal definition of what constitutes scientific 
research. It applies a wide definition to the notion of research, stating that “the pro-
cessing of personal data for scientific research purposes should be interpreted in a 
broad manner including for example technological development and demonstration, 
fundamental research, applied research and privately funded research.”25 In the clin-
ical research context, the relation between the GDPR and the Clinical Trials 

22 Article 29 WP, Guidelines on Data Protection Officers (‘DPOs’), WP243 rev.01, 5.4.2018.
23 Article 29 WP, Guidelines on Data Protection Officers (‘DPOs’), WP243 rev.01, 5.4.2018, p. 16.
24 Article 29 WP, Guidelines on Data Protection Officers (‘DPOs’), WP243 rev.01, 5.4.2018, p. 24.
25 Recital 159 GDPR.
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Regulation (CTR)26 has to be specified: the CTR contains specific rules for a wide 
variety of clinical trial settings (Article 2(2)(1)–(4) CTR). In this context, the CTR 
requirement to collect informed consent for clinical trials falling within the scope of 
the CTR applies as lex specials to the GDPR. The CTR allows for broad consent for 
clinical trials that fall within the scope of the CTR and if so permitted at in the 
Member States.27

Regarding the secondary or further use of data collected during clinical trials,  
the CTR states that “[i]t is appropriate that universities and other research institu-
tions, under certain circumstances that are in accordance with the applicable law on 
data protection, be able to collect data from clinical trials to be used for future sci-
entific research, for example for medical, natural or social sciences research pur-
poses. In order to collect data for such purposes it is necessary that the subject gives 
consent to use his or her data outside the protocol of the clinical trial and has the 
right to withdraw that consent at any time. It is also necessary that research projects 
based on such data be made subject to reviews that are appropriate for research on 
human data, for example on ethical aspects, before being conducted.”28 Here, the 
CTR  makes reference to EU data protection law as the framework for further pro-
cessing of personal data, now being the GDPR.

The GDPR adds to this by the stating in Recital 33 GDPR that “it is often not 
possible to fully identify the purpose of personal data processing for scientific 
research purposes at the time of data collection. Therefore, data subjects should be 
allowed to give their consent to certain areas of scientific research when in keeping 
with recognised ethical standards for scientific research. Data subjects should have 
the opportunity to give their consent only to certain areas of research or parts of 
research projects to the extent allowed by the intended purpose.”29

The GDPR provides for  aresearch exemption in Article 89 GDPR, inter alia for 
scientific and research purposes. The exemption under the GDPR relies largely on 
the same discretionary framework as in the 1995 Directive.

As noted above, the scope of the notion of research under the GDPR is wide. 
Article 89 GDPR functions by setting a baseline in that requires that any derogation 
is subject to the existence of appropriate safeguards for the rights and freedoms of 
data subjects. Here, the GDPR stresses that safeguards shall include:

 i) Data minimization;
 ii) Technical and organizational measures;
 iii) Privacy by Design and by Default;
 iv) Pseudonymization/further processing.

26 Regulation (EU) No 536/2014 of the European Parliament and of the Council of 16 April 2014 
on clinical trials on medicinal products for human use, and repealing Directive 2001/20/EC Text 
with EEA relevance, [2014] OJ L 185/1.
27 Chassang [9], p. 10.
28 Recital 29 CTR.
29 Emphasis added.
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The respect of relevant and recognised ethical standards as well as the require-
ments for obtaining ethical approvals are part of these safeguards.30 This means that 
any research project has to fulfil the recognized quality standards and processes 
required for conducting research as this is inextricably linked to the research 
exemption.

If these safeguards are in place, derogations to the following points may be 
applied:

 i) Further processing and storage limitation (Articles 5(1)(b) and (e) GDPR);
 ii) Processing of special categories of data (Article 9(2)(j) GDPR);
 iii) Information provided by third parties (Article 14(5)(b) GDPR);
 iv) Right to erasure (Article 17(3)(d) GDPR);
 v) Right to object (Article 21(6) GDPR).

It is important to note that if any derogation to the points listed above is applied, 
this must be done by taking into account the principles of proportionality and neces-
sity. Such assessment must be conducted before the derogations are applied and 
must be documented.

Next to the derogations listed above, EU or Member State law may allow for 
derogations on the following points:

 i) The rights to access;
 ii) The right to rectification;
 iii) The right to restrict processing;
 iv) The right to object.

The application is restricted by the requirements to also apply the safeguards men-
tioned above. A further qualifier is added in that any derogation must be justified by 
the fact that the full application of any of the rights listed rights listed above “are 
likely to render impossible or seriously impair the achievement of the specific pur-
poses” and that such derogations “are necessary for the fulfilment of those purposes”.31

Lastly, where processing personal data serves multiple purposes, one of which 
falling within the ambit of derogations for research as per Article 89 GDPR, the 
processing operations that do not fall within the scope research cannot benefit from 
these derogations.

It becomes obvious that the research exemption in the GDPR is quite undefined 
and leaves much space for interpretation by Member States. This may have an 
adverse effect on the scope of research that can be conducted in different Member 
States and may impair the function of a European Research Area.32 Part of the 
 problematic lies in the fact that the EU does not possess the competency to create 
fully harmonized rules for health and research.33

30 Chassang [9], p. 11.
31 Article 89(2) GDPR.
32 Pormeister [10], p. 145–146.
33 Chassang [9], p. 11.
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5.7  Contentious Issues for Research Under the GDPR

A number of contentious issues regarding to the GDPR and research remain that we 
wish to discuss:

• Modes of consent in a research context: the scope of valid consent for research 
purposes under the GDPR is a contested issue. Generally, modes of consent often 
discussed in a research context include (i) specific, informed consent, (ii) demo-
cratic consent, (iii) dynamic consent management, (iv) sectoral consent, and (v) 
open/general/broad/blanket consent.34 Broad consent requires a single affirma-
tive action that will allow the data to be utilized for research purposes in general 
and without a strict temporal limitation. Especially, applying the notion of broad 
consent to any further processing for research purposes is a contested issue, as it 
clashes with the principle of purpose limitation and storage limitation. In the 
context of the research exemption of the GDPR, the lack of specificity arguably 
goes against the spirit of the GDPR and the text states that “[d]ata subjects should 
have the opportunity to give their consent only to certain areas of research or 
parts of research projects” (Recital 33 GDPR) under certain conditions.35 A fur-
ther factor of uncertainty is that the acceptance of broad consent in the research 
context is largely dependent on the Member State’s national implementation and 
in this respect may lead to a divergence within the EU. This may have a negative 
impact on the creation of a European Research Area as the utility of research data 
might vary tremendously within the EU.

• Research purposes as a legitimate interest: it is debated whether the legitimate 
interest legal basis (Article 9(1)(f) GDPR) is suitable for research purposes – 
bypassing the consent of the data subject when applied correctly. It is argued that 
the interpretation of the Article 29 WP in their Opinion on legitimate interest 
opens this possibility, referring to processing for research purposes – specifically 
marketing research  – as potentially falling within the scope of the legitimate 
interest legal basis.36 This is echoed in the GDPR in Recital 47, linking direct 
marketing and the legitimate  interestlegal basis. At the same time, the balancing 
test required “would need careful assessment including whether a data subject 
can reasonably expect at the time and in the context of the collection of the 
 personal data that processing for that purpose may take place.”37 The link between 
research and the legitimate interest legal basis is somewhat weak. Further, the 
lack of experience with the legal basis and the rather unclear scope of the balanc-
ing test lead to a rather high degree of legal uncertainty as the risk assessment has 
to be conducted by the controller prior to the processing and any mistake, espe-
cially in the research context, might have dire consequences.

34 Hallinan and Friedewald [11], p. 4–5.
35 Rumbold and Pierscionek [12].
36 G. Maldoff, ‘How GDPR changes the rules for research’, IAPP, https://iapp.org/news/a/how-
gdpr-changes-the-rules-for-research/ (last visited 3.7.2018).
37 Recital 49 GDPR.
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5.8  Checklists

Prior to commencing a processing operation, one should assess the following points 
as a starting point:

General:

• What kind of information is being processed (sensitive or general)?
• What is your purpose – what are you trying to achieve?
• Can you reasonably achieve it in a different way?
• Do you have a choice over whether or not to process the data?
• Are you a public authority?

When deciding to make use of the legitimate interest legal basis:

• Who does the processing benefit?
• What kind of impact could processing have on the data subject?
• Are they vulnerable?
• Would individuals expect this processing to take place?
• What is your relationship with the individual?
• Are some of the individuals concerned likely to object?
• Are you able to stop the processing at any time on request?

For the application of the research exemption:

• Are the conditions of Article 89 GDPR met?
• Would the application of any right from with there is a derogation seriously com-

promise the purpose and the use of the derogations are necessary and propor-
tional for achieving the purpose?

• Check if there are further requirements/derogations in EU or national law?
• Is the process and reasoning documented?

5.9  Conclusion

The GDPR requires that entities processing personal data define the personal data they 
wish to process as well as the purpose of the data processing operation. Processing of 
personal data is subject to lawfulness and entities processing data must meet compli-
ance obligations. Entities processing personal data must facilitate the fulfilment of 
data subject’s rights. Operating on this baseline, the processing of personal data for 
research purposes requires specific safeguards to ensure compliance with the 
GDPR. As outlined above, the secondary or further use of personal data for research 
is possible under certain circumstances set out in the GDPR.  In this respect, it is 
important to reflect on the growing scale and complexity of systems applied in research 
and compare this to compliance aspects. The underlying regulatory ideal is to scale 
compliance to ensure that potential externalities created by the processing of personal 
data are internalized by the entities conducting these processing operations.38

38 Baldwin et al. [13], p. 18.
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Chapter 6
Preparing Data for Predictive Modelling

Sander M. J. van Kuijk, Frank J. W. M. Dankers, Alberto Traverso, 
and Leonard Wee

6.1  Introduction

Predictive modelling is aimed at developing tools that can be used for individual 
prediction of the most likely value of a continuous measure, or the probability of the 
occurrence (or recurrence) of an event. There has been a huge increase in popularity 
of developing tools for prediction of outcomes at the level of the individual patient. 
For instance, a recent review identified a total of 363 articles that described the 
development of prediction models for the risk of cardiovascular disease in the gen-
eral population alone [1].

Such models are often developed using regression techniques that yield a predic-
tion model in the form of a regression formula (see Chap. 8). Such formulae are 
generally impractical to use and are therefore often simplified into a simple risk 
score that can easily computed by hand, or presented in such a way that calculation 
is made easier (such as the use of a nomogram for predicting survival in breast can-
cer patients with brain metastasis [2], see Fig. 6.1), incorporated in a web-based 
application or perhaps as an application on a smartphone.
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Two types of prediction tools for binary outcomes can be distinguished: (1) a tool 
that can be used to predict an individual’s probability of the presence of disease at 
the moment of prediction (i.e., a diagnostic prediction model) and (2) one that can 
be used to predict the probability of the future occurrence of an event (i.e., a prog-
nostic prediction model). An example of the former is a model to estimate the prob-
ability of Chlamydia trachomatis infection to aid selective screening of youth at 
high risk of an infection [3]. An example of a prognostic prediction model to esti-
mate an individual’s probability of a future event is a model that estimates the prob-
ability of a successful vaginal birth after previous caesarean section, which is 
subsequently included in a decision aid to discuss the intended mode of delivery [4, 
5]. Although the application may differ substantially, the methods that are employed 
to develop such models are similar.

Before any new prediction tool can be developed, patient-level data need to be 
collected retrospectively or prospectively. Considerations such as choosing the cor-
rect study design, determining the necessary sample size for developing a prediction 
model, transforming variables, and how to deal with incomplete data on potential 
predictor variables and outcome measures will be covered in this chapter. This 
chapter does not cover all possible steps that need to be undertaken before a predic-
tion tool can be developed, but focuses on the most important considerations and the 
most prevalent challenges.

6.2  Study Designs for Prediction Model Development

An important observation to make is that in the development of tools for individual 
prediction, we are generally not interested in unbiased estimates of causal associa-
tions between determinants and the presence of disease or the occurrence of a cer-
tain event in the future. In other words, we are not interested to unravel casual 
associations between predictors and the outcome. We are occupied with selecting 
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Fig. 6.1 Nomogram for the prediction of overall survival for patients with breast cancer brain 
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the best set of predictors and include those in a model in such a way that the predic-
tions that the model makes are as accurate as possible. Epidemiological phenomena 
such as confounding (i.e., bias is introduced in the estimation of coefficients because 
of a variable associated with both the predictor and the outcome, but is not con-
trolled for) and mediation (i.e., the presence of an intermediate variable that explains 
the association between the predictor and the outcome) are not relevant in the con-
text of prediction modelling. Interaction terms, which are variables that moderate 
the association between a predictor and the outcome, can be useful to increase the 
predictive performance of a model if associations between predictor variables and 
the outcome differ between subgroups, but are not used to aid causal interpretation. 
Hence, the estimated regression coefficients that are used for predictions for future 
patients may not reflect true causal associations but do lead to the best predictions. 
This is especially true for prediction models for recurrent events, as selecting only 
participants that experienced a first occurrence may introduce a phenomenon known 
as index-event bias [6, 7]. This has no effect on the performance of prediction mod-
els for future patients as the coefficients are estimated for the purpose of generating 
predictions, not for aetiological purposes. That being said, models that include pre-
dictor variables that show associations that are contradictory to expectations may 
lack face validity and their introduction in daily clinical practice may be hampered.

6.2.1  Retrospective and Prospective Data

The ideal study design for developing a prognostic prediction model is  the prospec-
tive cohort study. This way, candidate predictors that are not part of routine clinical 
care can be added to the patient work up. Additionally, the quality of data collection 
is in the hands of the researcher, and can be controlled during the course of the 
study. The retrospective cohort design, efficient as the use of readily available data 
may be, is often hampered by the fact that some candidate predictors are unmea-
sured as they are not part of routine clinical care or because the data were collected 
previously for other purposes than developing a prediction model. As a result, miss-
ing data can pose a serious problem in retrospective data. Although valid methods 
exist to handle missing data, prevention is preferred.

Naturally, when the prediction model is diagnostic in nature as opposed to prog-
nostic (i.e., to predict a state that is already present or absent), a cross-sectional 
design may suffice. In such a design, both the candidate predictors and the outcome 
are measured in one go. For diagnostic prediction models, the outcome is often a 
disease status, confirmed by a gold standard.

6.2.2  Alternative Study Designs

An alternative to the cohort study is making use of data of  a randomized controlled 
trial (RCT). Such a prediction model may serve to identify those patients that have 
the highest probability of responding to the intervention of interest, or to predict the 
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probability of experiencing an adverse event, but the data could also be used for 
predicting other types of events. The benefit of using RCT data is that these data are 
often of high quality as an RCT is designed to minimize the proportion of missing 
data and minimize measurement error. Nonetheless, data from an RCT are not with-
out challenges. Often, strict eligibility criteria result in a homogeneous sample ham-
pering generalizability to the population the prediction model will be applied to in 
the future. For example, many RCT’s exclude patients with comorbidities. These 
comorbidities may be very important prognostic factors that are best included as 
predictors in the prediction model. Another drawback may be that outcome mea-
sures in an RCT may be measured too close in time to the baseline measurement for 
prediction to be of interest.

Another alternative design is the case-control design. In a case-control design, 
for each patient who experienced the event (a case), a control patient (or more than 
one) is recruited for the study. Often, researchers use matching techniques to force 
the control group to be roughly similar to the group of cases. In case matching has 
been performed, the distribution of candidate predictors has changed to such an 
extent that it is unlikely that a useful prediction model can be derived from the data. 
However, if no matching has been performed, case-control data can be used to 
develop a prediction model. Regression coefficients (to compute predicted proba-
bilities for future patients) and odds ratios (to express the strength of the associa-
tion) can be estimated validly as if it were a cohort study. But there remains one 
major problem associated with case-control data. The prevalence of the event (i.e., 
the proportion of cases) is defined by design. In a case-control study with a 1-1 
ratio (i.e., a single control for each case), the prevalence is 50%. As case-control 
studies are usually performed for rare events, this prevalence may be completely 
different from the prevalence in the population of patients the model needs to pro-
vide predictions for. In this case, the predicted probability is likely to be severely 
overestimated for future patients. This can be prevented by adjusting the model 
intercept (i.e., the constant in a logistic regression model) so that the average pre-
dicted probability in the data used to train the model is similar to the prevalence of 
the event in the population of patients the model will be used. This could be done 
iteratively until similarity is reached, or estimated by including the linear predictor 
of the model (see Chap. 8) as an offset in a regression model without predictors. If 
the goal is not providing individual estimates of the probability of an event, but 
merely to stratify patients into risk-based groups, the actual intercept is of less 
concern.

6.2.3  Patient Selection

Patients  or subjects that are included in the study should reflect the population the 
model will be applied to in the future, and they should be at risk to develop the out-
come of interest. Preferably, the sample is heterogeneous, including a wide range of 
values on the predictors.
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6.3  Sample Size Considerations

6.3.1  Potential Predictor Variables and Model Overfitting

In most cases, the primary aim of predictive modelling is not null-hypothesis testing 
but determining the structure of a prediction model and estimating indicators of 
predictive performance (see Chap. 8). As a result, sample size formulas that include 
the statistical power (say, 80 or 90%) and the type-I error rate alpha (usually 5%) for 
null-hypothesis testing are generally not applicable. However, there is a limit as to 
how many candidate predictor variables can be included in the modelling phase. 
A model that consists of too many predictors is more likely to be overfitted (i.e., the 
model performs well on the data used to develop or train the model, but performs 
poor on new patients). One characteristic of the poor external performance of an 
overfitted model is that it produces too extreme predictions for future patients. Thus, 
predictions for future patients who are at low risk of the outcome are on average too 
low, and predictions for patients at high risk of the outcome are on average too high. 
This can easily be seen in the calibration plot (see Chap. 10). The slope of the cali-
bration plot of a well-calibrated model is close to 1 indicating perfect agreement 
between predicted probabilities and actual outcomes, but the slope is less than 1 for 
models that are overfit.

6.3.2  Sample Size Rules-of-thumb

A simulation study has examined the ratio between the number of events that need 
to be included in the study, and the number of candidate predictor variables that can 
validly be entered in the modelling step when using logistic regression [8]. They 
concluded that no major problems occurred for 10 events per variable or more. Note 
that an event is defined as the outcome that is least prevalent. E.g., if the majority of 
patients experience the event of interest, the number of patients who do not experi-
ence the event determine the minimum sample size (or the maximum number of 
candidate predictor variables if the sample size is fixed). For example, consider 
designing a study to develop a prediction model to estimate the probability of lymph 
node metastases in patients with non-small cell lung cancer. From previous experi-
ence you estimate that the outcome will be experienced in 1 in 6 (or in about 17%), 
and you plan to include 6 predictor variables in the modelling step. According to the 
rule of thumb, 60 events need to be observed in the data. Hence, 60/0.17 = 353 
patients need to be recruited for the study.

Similar rules of thumb exist for different regression models. For the Cox pro-
portional hazards regression model it is suggested to include at least 10 failures for 
each candidate predictor [9, 10], and for the linear regression model at least 2–10 
patients for each candidate predictor [11, 12]. However, there is no guarantee that 
overfitting does not occur when abiding by these rules of thumb. Other factors 
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may influence the ratio between candidate predictors and the number of events, 
such as the frequency of a binary predictor that is relatively rare. For models that 
include binary predictors that are rare, it is suggested to include at least 20 events 
per variable [13].

6.4  Pre-processing Your Data

The first step after collecting data is checking for inconsistencies and impossible 
values in the data. On the patient level, variables that are dependent on each other 
may be checked several ways. For instance, by computing the difference between 
systolic and diastolic blood pressure, the differences can be checked with a histo-
gram to rule out impossible values (e.g., values indicating higher diastolic blood 
pressure). On the variable level, computing ranges provides a first check of whether 
values beyond an acceptable range were entered in the data. Examine outliers and 
determine per outlier if this is likely due to an error in the data collection, or whether 
the outlier represents the true value of the patient. In the latter case, the value(s) 
should not be removed from the dataset before modelling.

6.4.1  Transforming Predictor Variables

Regression models that are employed to develop prediction models explicitly 
assume additivity and linearity of the associations between the predictors and the 
outcome (in linear regression), between the predictors and the log odds of the 
outcome (in logistic regression), or between the predictors and the log hazard or 
log cumulative hazard (in Cox proportional hazards regression). The linearity 
assumption implies that the slope of the regression line (or the estimated coeffi-
cient) is the same value over the whole range of the predictor, and the additivity 
assumption implies that effects of different predictor variables on the outcome are 
not dependent on the value of other predictors. Regression methods do not place 
assumptions on the distribution of the predictor variables, but severely skewed 
continuous variables (e.g, circulating levels of biomarkers) often perform better 
after transformation to a roughly normal distribution. A frequent transformation of 
right-skewed predictors that consist of only positive values is taking the natural 
logarithm. This compresses the long right tail and expands the short left tail. In 
addition to taking the logarithm of a predictor, other mathematical transformations 
may be performed as well (e.g., taking the square root). A drawback of including 
transformed predictors in the model is interpreting the effect of those predictors on 
the original scale.

There are other methods to account for non-linear associations between the pre-
dictor and the outcome, but those are strictly part of the regression modelling phase 
and do not fall within the scope of preparing data for predictive modelling. Examples 
of such methods include polynomial regression and spline regression.
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6.4.2  Categorizing Predictor Variables

If transforming does not yield the desired effect, or if easy interpretation of coef-
ficients is necessary, continuous predictor variables may be categorized into two 
or more categories. Keep in mind that when the assumptions of additivity and lin-
earity are met, categorization is likely to result in a decrease of predictive perfor-
mance compared to using the continuous predictor. Categorizing causes a loss of 
information and statistical power, but also underestimates the extent of variation 
in risk [14]. Categorization can be performed using data-driven cut-off values after 
visualization of the association between the determinant and the outcome, or using 
well- established cut-off values. For example, evidence suggests that the associa-
tion between body mass index (BMI) and mortality is U-shaped [15–17]. In this 
case, choosing cut-off values that are commonly accepted (e.g., below 18.5 kg/m2 
to define underweight and above 25  kg/m2 to define overweight) may not result 
in the best performing categories on the data used for development compared to 
data- driven determination of cut-off values, but it aids interpretation and practical 
implementation. Bear in mind that the number of categories that are made not only 
depends on the best fit of the predictor during the modelling phase, but also on the 
amount of predictors that can be studied using the sample at hand (see sample size 
considerations). A categorical variable with n categories results in the inclusion of 
n-1 dummy variables.

6.4.3  Visualizing Data

Associations between continuous predictor variables and the outcome (or log odds 
etc. of the outcome) can be visualized to check if non-linearity exists and if so, if 
there are clear indications for certain transformations, polynomials, or categoriza-
tion. For a continuous outcome, a simple plot can be made consisting of the predic-
tor on the x-axis and the outcome variable on the y-axis with a smooth local 
regression curve (or LOESS curve) to provide a visual representation of the associa-
tion. For binary outcomes, graphing the association becomes more tedious as the 
outcome variable consists only of zeroes and ones. A simple solution is to make 
groups based on quartiles of the predictor variable, and plot the average of the pre-
dictor values against the average of the outcome parameter.

6.5  Missing Data

6.5.1  Why You Should Bother About Missing Data

Most statistical and machine learning packages will omit patients that have one or 
more missing values on the variables that are used to develop the model. This results 
in less statistical precision in estimating regression coefficients and other statistics 
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of interest, reflected by larger standard errors, wider confidence intervals and thus 
p-values that are less likely to be lower than the alpha that is chosen for testing. Such 
complete case analysis or listwise deletion not only decreases the sample size, but 
may also introduce bias if the incomplete patients are not a random sample of all 
patients recruited for the study. The patients in the sample that are completely 
observed do not reflect the population of interest anymore. This mechanism that 
underlies the process of missing values is important for deciding how to handle 
missing data. Methods such as complete case analysis and proper imputation meth-
ods all have assumptions with respect to the mechanism that caused missing data.

When the incomplete patients are a random sample of the complete patients, or 
in other words when the probability of values to be missing is unrelated to any 
patient characteristic or response, the missing data are said to be missing completely 
at random (MCAR). Complete case analysis will provide unbiased estimates, but 
with less precision compared to a situation where all data are observed. When the 
probability of values to be missing is associated with the values of other, observed, 
patient characteristics or responses, the missing data are missing at random (MAR). 
For instance, if older male patients are less inclined to complete a questionnaire on 
socio-economic status, but both sex and age are recorded in the dataset. A third 
mechanism that can be identified is called missing not at random (MNAR). In this 
case, the probability of values to be missing is associated with the value of the vari-
able itself (such as when a ceiling effect is present), or when the probability is asso-
ciated with the value of other, unobserved, covariates.

Most methods to handle missing data assume that data are MCAR or MAR. 
However, there are no methods to discriminate between mechanisms using the data 
that were collected. Therefore, it is important to think thoroughly about the miss-
ing data problem and judge if MCAR or MAR is a likely explanation of the miss-
ing data. This makes transparent communication on the missing data problem in 
a manuscript very important. Sterne et al. have suggested guidelines for reporting 
analyses that are potentially affected by missing data [18]. Applied to prediction 
modelling research, the researcher should report the number of missing values per 
predictor variable and outcome variable, give reasons for missing data if these are 
known, compute difference in characteristics between patients that are completely 
observed and patients who are incomplete, and describe the method that was used to 
account for missing data, including a description of the assumptions that were made.

6.5.2  Handling Missing Data

To prevent a decrease in precision and a high likelihood of biased regression coef-
ficients, missing data can be imputed. Imputing is the replacing of the empty cells 
in the dataset with actual values. The goal of imputation is not adding new informa-
tion to the dataset, but to allow all other observations of incomplete patients to be 
used for the subsequent analysis.

There are numerous methods that can be used to impute missing data. A simple 
method to impute a continuous variable is to compute the mean of that variable 
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using data of patients that have an observed value of this variable, and replace every 
missing data point with this mean value. Simple as it is, imputation with the mean 
decreases the variance within a variable and distorts the association between the 
imputed variable and other covariates in the data. Proper imputation methods pro-
duce a synthetic part of the data that, when analysed, do not introduce bias in the 
estimation of regression coefficients (given certain assumptions, usually that data 
are MAR), and gives a correct estimate of uncertainty, reflected in confidence inter-
vals of parameters estimated in the study.

A very popular imputation method, and for good reasons, is multiple imputation. 
In multiple imputation, the incomplete variables are imputed using regression mod-
els based on other covariates that are used to estimate a likely value for each of the 
incomplete patients. However, not the estimated value is imputed, but the estimated 
value to which a random error term (which can be positive or negative) is added to 
preserve the variance in the dataset. This is performed multiple times so that the 
analyst ends up with more than 1 imputed dataset. Because of the randomness asso-
ciated with the error term that is added to the imputation, imputations differ between 
the imputed datasets. Analyses are performed on each of the imputed datasets, and 
regression coefficients are averaged to produce a pooled estimate, and the variance 
is computed using a combination of the within-dataset variance and the between- 
dataset variance. This way, the uncertainty introduced by having to impute the data 
is correctly accounted for. This method of producing pooled estimates after multi-
ple imputation is called Rubin’s Rules [19]. Although multiple imputation works 
well when the MAR assumption is met, it is likely to introduce bias in case the 
assumption is violated [20, 21]. In case data are known to be MNAR, the analyst 
needs to specifically define the mechanism that caused missing data to produce 
unbiased estimates. However, the alternative to imputing data (i.e., complete case 
analysis) assumes data are MCAR, which may be unrealistic for many incomplete 
medical datasets.
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Chapter 7
Extracting Features from Time Series

Christian Herff and Dean J. Krusienski

7.1  Time-Domain Processing

Raw time-series data, sometimes referred to as a signal, is inherently represented in 
the time-domain. Time-domain processing directly exploits the temporal relations 
between data points and generally provides an intuitive representation of these rela-
tionships. Time-domain techniques often aim to identify and detect the temporal 
morphology of transient or stereotyped information in the time series. When the 
information of interest repeats over regular or semi-regular intervals, straightfor-
ward transformations can be used to convert the time-domain information to the 
frequency-domain, which can isolate oscillatory information for comparison within 
and across oscillatory frequencies present in the time series. This section discusses 
some fundamental time-(no space) domain techniques and shows how oscillations 
in the time-domain data lead to frequency-domain representations.

7.1.1  Basic Magnitude Features and Time-Locked Averaging

Peak-picking and integration are two of the most straightforward and basic feature-  
extraction methods. Peak-picking simply determines the minimum or maximum 
value of the data points in a specific time interval (usually defined relative to a spe-
cific labeled event in the data) and uses that value (and possibly its time of 
occurrence) as the feature(s) for that time segment. Alternatively, the time series can 
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be averaged or integrated over all or part of the time interval to yield the feature(s) 
for the segment. Some form of averaging or integration is typically preferable to 
simple peak-picking, especially when the responses to the stimulus are known to 
vary in latency and/or when there is noise in the time series that can corrupt a simple 
peak estimation. These same methods can be applied for tracking transient magni-
tude peaks in the frequency domain.

When multiple observations of a noisy time series are available, the observations 
can be time-aligned (typically to an event onset or cyclic phase) and averaged across 
observations. The resulting average reduces the uncorrelated noise and can reveal 
the common time-series morphology across observations. For uncorrelated noise, 
the signal-to-noise ratio of the average increases by a factor of √K, where K is the 
number of observations in the average. When applicable, such averaging increases 
the reliability of feature estimates. Figure  7.1 shows an example of time-locked 
averaging relative to an event onset. These events can be, for example, external 
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Fig. 7.1 Example of time-locked averaging on EEG 
data. The individual observations are averaged to produce 
the bottom waveform. Note that, for noisy data, the 
individual observations may not exhibit obvious 
amplitude peaks that are characteristic of the underlying 
signal and clearly revealed in the average
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stimuli such as a flashing light or regular measurement intervals. As with many 
time-series processing approaches, time-locked averaging assumes that the time 
series remains stationary, meaning that the parameters of the underlying data distri-
bution (e.g., mean and variance) do not change over time. Additional considerations 
must be taken into account when dealing with non-stationary time series [1].

7.1.2  Template Matching

The similarity of portions of a time series to a predefined template can also be 
used as a feature. The similarity is generally computed by performing a sliding 
correlation of the matched filter template with the time series. The output of the 
filter template will be high for the segments that closely resemble the template and 
low for segments that differ from the template. Figure 7.2 illustrates an example 
of matched filtering for the electrocardiogram. Wavelet analysis (see Sect. 7.3 on 
Time- Frequency Features in this chapter) can be considered a variation of this 
method; it uses templates with specific analytical properties to produce a frequency 
decomposition related to the Fourier analysis.

Fig. 7.2 An example of template matching on ECG. The top trace shows the raw ECG time series. 
The middle trace shows the raw ECG plus uncorrelated random noise. The matched-filter template 
representing the QRS complex is shown in red. The bottom trace represents the squared output of 
the matched filter. Note that the peaks clearly and precisely align with each QRS complex in the 
raw signal, regardless of whether the added noise increases the amplitude beyond the original 
peaks. By utilizing the characteristic temporal morphology of the desired time-series event, the 
matched filter can provide a more reliable output than applying a simple amplitude threshold 
detection on the noisy time series
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7.1.3  Weighted Moving Averages: Frequency Filtering

The concept of frequency filtering of a time series is best understood by first explor-
ing how weighted moving averages can be used to manipulate the time series. The 
basic concept of frequency filtering is shown in Fig. 7.3, where moving average 
filters (highpass and lowpass) are applied to a time series containing the sum of a 
high-frequency and low-frequency sinusoidal component. For the lowpass filter, the 
low-frequency oscillation “passes through” the filter and is largely preserved while 
the high-frequency oscillation is largely suppressed. Likewise, for the highpass fil-
ter, the high-frequency oscillation passes through and is largely preserved while the 
low-frequency oscillation is partially suppressed. Note that the degrees of preserva-
tion/suppression are determined by the characteristics of the weighted moving aver-
age, for which the basic principles are outlined in this section.

The most basic form of a weighted moving average is the uniform moving aver-
age, where the current data point and the prior N-1 data points are summed and 
divided by N. This is equivalent to multiplying each data point by 1/N (i.e., weight-
ing by 1/N) and summing. The process is repeated for each subsequent data point, 
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Fig. 7.3 Effect of moving average filters on a time series consisting of a sum of two sinusoids. The 
high frequency component of the original signal (blue) is attenuated (orange) when using a uniform 
moving average lowpass filter. In this case a moving average filter of length 40 was used. Note the 
slight phase shift induced by the filtering process. When using an alternating moving average 
 highpass filter, lower frequency components in the original time series are attenuated (green), pri-
marily leaving the high-frequency component of the original time series. Note that filters attenuate 
the undesired frequencies (i.e., the stopband) and may not completely remove them, as can be seen 
in the low frequency oscillations still present in the green time series. Filters can be designed to 
increase the stopband attenuation by adjusting the filter coefficients and/or filter length
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forming a new time series. A uniform moving average with N = 4 is illustrated in 
the upper portion of Fig. 7.4 for a sinusoidal input time series. The left portion of 
Fig. 7.5 shows how the moving average output differs as the frequency of the sinu-
soidal input changes. Notice that this weighting perfectly preserves the output time 
series with no oscillation and progressively attenuates the amplitude of the output 
time series as the oscillation frequency increases. This is the most basic form of a 
lowpass filter, which preserves the amplitude of low frequency oscillations and 
attenuates the amplitude of higher frequency oscillations. As N increases, the range 
of low-end frequencies that are preserved decreases because a longer average covers 
more cycles of high-frequency oscillations, where the positive and negative half 
cycles are canceled in the average.

By simply alternating the sign of each weight in the moving average, the oppo-
site effect is observed as shown in the bottom of Fig. 7.4 and the left portion of 
Fig. 7.5. In this case, the amplitudes of the lower frequencies are attenuated and the 
higher frequencies are preserved. This is the most basic form of a highpass filter, 
which preserves the amplitude of high frequency oscillations and attenuates the 
amplitude of lower frequency oscillations. Just as with the lowpass filter, as N 
increases, the range of high-end frequencies that are preserved decreases because 
only the oscillation frequencies that are near the oscillation frequency of the weights 
are preserved.
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Fig. 7.4 The resulting output time series generated from applying a uniform moving average of 
length 4 (top) and alternating moving average of length 4 (bottom) to a 25 Hz sinusoidal input time 
series. At each time instant, the red filter weights overlapping with the input time series scale each 
input sample value according to the corresponding filter weight value. The sum of the resulting 4 
weighted values produce the output value at the rightmost filter time point. The red filter weights 
slide from left to right across the input time series to produce each subsequent output value. The 
top represents a lowpass filter that attenuates the amplitude at this particular input frequency less 
than it is attenuated by the bottom highpass filter
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Based on these two rudimentary filter types, it can be surmised that the weight 
values in the moving average (i.e., filter weights or coefficients) and length of the 
average (i.e., filter length) can be adjusted to preserve and attenuate arbitrary fre-
quency ranges, as well as to produce different output characteristics such as 
increased attenuation of undesired frequencies. In addition to lowpass and highpass 
filters, the two other basic filter designs are the bandpass and band-reject filters. A 
bandpass filter attenuates a range of low and high frequency oscillations, while pre-
serving an intermediate range of frequencies. In contrast, a band-reject filter pre-
serves a range of low and high frequency oscillations, while attenuating an 
intermediate range of frequencies.

The frequency response characteristic of a given filter, or the magnification/
attenuation factor (i.e., gain) produced with respect to input oscillation frequency, 
is typically visualized in a frequency-domain plot as shown for the 4 fundamental 
filter types in the right portion of Fig. 7.5. Notice that the time variable is removed 
and the plots merely track the attenuation for each input oscillation frequency as 
illustrated in the time domain in Fig. 7.4. The region of the frequency response that 
preserves the oscillations is referred to as the passband and the region that attenu-
ates the oscillations is referred to as the stopband. The region between the passband 
and stopband is referred to as the transition band. For practical filters, there is some 
finite slope to the transition band because a perfect threshold between frequencies 
(i.e., an ideal filter with infinite slope) requires an infinite length filter. Therefore, 
by convention, the threshold of the transition band is defined in the frequency 
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response characteristic as the point where the attenuation drops by 3 decibels (3 dB 
point) from the passband. This 3  dB point is referred to as the filter’s cutoff 
frequency.

Returning to Fig. 7.4, not only does the amplitude between the input and output 
time series change depending on the oscillation frequency, but the output time 
series may be shifted (i.e., delayed) in time. Note that, for moving average filters 
with symmetric weights about the center of the average, the time shift will be con-
stant for all input frequencies and equal to the length of the moving average divided 
by 2. This is known as linear phase response. Thus, for real-time applications, the 
length of the weighted moving average (i.e., filter length) impacts the delay 
between the input and output time series. Furthermore, because longer averages 
preserve/attenuate tighter frequency ranges, there is a trade-off between the preci-
sion of frequency discrimination and the amount of delay introduced for a given 
filter length.

The weighted moving average filters discussed to this point are more formally 
referred to as finite impulse response (FIR) filters because they will always produce 
a finite-length output time series if the input time series is finite in length. A com-
mon method to determine FIR filter weights to match a desired frequency response 
characteristic is known as the equiripple design, which minimizes the maximum 
error between the approximated and desired frequency response.

7.1.3.1  Weighted Moving Averages with Feedback

By taking an FIR filter structure and including weighted values of the past output 
values (i.e., feedback), a different filter structure is formed known as an infinite 
impulse response (IIR) filter. The basic idea is that, due to feedback, the output of 
the filter may continue infinitely in time even if the input time series is finite in 
length. The advantages of IIR filters over FIR filters is that they offer superior preci-
sion of frequency discrimination using fewer data points in the averaging (i.e., lower 
filter order). This also generally equates to shorter delay times. However, IIR filters 
tend to distort the output time series because, in contrast to symmetric FIR filters, 
all input frequencies generally do not experience the same time delay. This is know 
as nonlinear phase response. Additionally, unlike FIR filters, IIR filters can be 
unstable if not designed carefully. This occurs when there is a positive feedback 
loop that progressively increases the amplitude of the output until it approaches 
infinity, which is highly undesirable and potentially damaging to the system.

To determine the weights of an IIR filter to meet a desired frequency response 
characteristic, one of four common designs is typically selected (see Fig. 7.6 for the 
corresponding filter magnitude responses):

Butterworth: Provides a flat passband and stopband with the smallest transition- 
band slope for a given filter order.

Chebyshev I: Provides a flat passband and rippled stopband with greater transition- 
band slope for a given filter order compared to Butterworth.
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Chebyshev II: Provides a flat stopband and rippled passband with greater transition- 
band slope for a given filter order compared to Butterworth (equivalent to 
Chebyshev I).

Elliptic: Provides a rippled passband and stopband with greatest transition-band 
slope for a given filter.

A flat passband or stopband means that the oscillations in the band will be pre-
served or attenuated by a uniform gain factor. A rippled passband or stopband means 
that oscillations in the band will be preserved or attenuated by a factor that varies with 
frequency, which is generally undesirable and can be minimized using design con-
straints. Thus, if frequency discrimination (i.e., sharp transition bands) is paramount 
for the filter application and ripple can be tolerated in both bands, then an elliptic filter 
will provide the best result for a given filter order. If the application requires uniform 
frequency preservation and attenuation in the respective bands, then a Butterworth is 
warranted with the compromise of the sharpness of the transition band.

In summary, the main considerations when selecting/designing a filter are:

Filter Order Affects output delay for minimum-latency or real-time applications, lon-
ger orders are required for constraints approaching ideal filters such as transition band 
and stopband attenuation, elliptic IIR generally provides the lowest order for given 
constraints but other trade-offs must be considered (e.g., nonlinear phase and ripple).

Linear Phase Constant phase delay (no phase distortion), achieved by symmetic 
FIR and can be approximated with an IIR, particularly Butterworth.

Filter Precision the sharpness of the transition band for separating two adjacent 
oscillations, elliptic IIR generally provides the sharpest transition for a given filter 
order but other trade-offs must be considered (e.g., nonlinear phase and ripple).
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Passband/Stopband Smoothness Degree of amplitude distortion in the passband 
and stopbands. Butterworth IIR provides a smooth passband and stopband. The 
Chebychev variants can be used to obtain sharper transition bands if it is critical for 
only one band (passband or stopband) to be smooth.

Stopband Attenuation How well the filter will block the undesired oscillations in 
the stopband. For a fixed filter order, there will be a trade-off between filter preci-
sion and stopband attenuation.

7.2  Frequency-Domain Processing

Thus far, we have shown how weighted moving averages (i.e., FIR and IIR filters) 
can preserve/attenuate specific oscillatory frequencies present in an input time 
series. This forms the basis of frequency-domain processing. What has not yet been 
emphasized is that practical time series are comprised of a mixture of many (possi-
bly infinite) oscillations at different frequencies. Specifically, a time series can be 
uniquely represented as a sum of sinusoids, with each sinusoid having a specific 
oscillation frequency, amplitude, and phase shift (delay factor). The method of 
determining  these frequency, amplitude, and phase values for a given time series is 
known as the Fourier Transform. The Fourier transform converts the time series 
from the time-domain to the frequency-domain, similar to what is described in the 
previous section for the frequency response characteristic of a filter. The signifi-
cance of converting a time series to the frequency-domain is that the specific oscil-
lations present in the time series and their relative amplitudes and phases can be 
more easily identified, particularly compared to a time-domain visualization of a 
mixture of many different oscillations. By representing and visualizing in the fre-
quency domain, filter response characteristics can be better designed to preserve/
attenuate specific oscillations present in the time series. The filters described previ-
ously can operate on a time series that is comprised of a mixture of oscillations in a 
way that the mixture of oscillations observed at the output is completely defined by 
the frequency response characteristic of the filter. In other words, if a time series is 
a simple sum of a low- frequency oscillation and a high-frequency oscillation, an 
appropriately-designed lowpass filter would preserve only the low-frequency oscil-
lation at the output and sufficiently attenuate the high-frequency oscillation.

7.2.1  Band Power

One of the most straightforward and intuitive methods for tracking amplitude mod-
ulations at a particular frequency is to first isolate the frequency of interest by filter-
ing the signal with a bandpass filter. This produces a signal that is largely sinusoidal. 
Next, to estimate the positive amplitude envelope, the signal is rectified by squaring 
the signal or by computing its absolute value. Finally, the adjacent peaks are 
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smoothed together via integration or low-pass filtering. The effects of each of these 
steps are illustrated in Fig. 7.7. Although the smoothed signal (Fig. 7.7) tracks the 
magnitude envelope of the frequency of interest, the resulting instantaneous magni-
tude estimate will be slightly delayed due to the smoothing step. When tracking and 
comparing multiple frequency bands, it is typically preferable to use an FFT- or 
AR-based method rather than computing band power at multiple frequencies.

7.2.2  Spectral Analysis

7.2.2.1  Fast Fourier Transform (FFT)

The Fast Fourier Transform (FFT) is an efficient algorithm to transfer a time series 
into a representation in the frequency-domain. The FFT represents the frequency 
spectrum of a digital signal with a frequency resolution of sample-rate/FFT-points, 
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where the FFT-point is a selectable scalar that must be greater or equal to the length 
of the time series and is typically chosen as a base-2 value for computational effi-
ciency. Because of its simplicity and effectiveness, the FFT often serves as the base-
line method to which other spectral analysis methods are compared.

The FFT takes an N-sample time series and produces N frequency samples uni-
formly spaced over a frequency range of sampling rate/2, thus making it a one- to- one 
transformation that incurs no loss of information. The maximum frequency of sam-
pling rate/2 in this transformation is called Nyquist frequency and refers to the highest 
frequency that can be reconstructed using the FFT. These frequency domain samples 
are often referred to as frequency bins. Each bin of the FFT magnitude spectrum 
tracks the sinusoidal amplitude of the signal at the corresponding frequency. The FFT 
will produce complex values that can be converted to magnitude and phase. The FFT 
spectrum of a real signal has symmetry such that only half of the bins are unique, from 
zero to + sampling rate/2. The bins from zero to sampling rate/2 are a mirror image of 
the positive bins about the origin (i.e., zero frequency). Therefore, for an N-sample 
real signal, there are N/2 unique frequency bins from zero to sampling rate/2. Knowing 
this fact allows one to apply and interpret the FFT without a firm grasp of the complex 
mathematics associated with the notion of “negative frequencies.”

Finer frequency sampling can be achieved by appending M zeros to the N-sample 
signal, producing (M + N)/ 2 bins from zero to the sampling rate/2. This is known 
as zero padding. Zero padding does not actually increase the spectral resolution 
since no additional signal information is being included in the computation, but it 
does provide an interpolated spectrum with different bin frequencies.

Note that it is also common to refer to the power spectrum or power spectral 
density (PSD) rather than the magnitude spectrum. Signal power is proportional to 
the squared signal magnitude. A simple estimate of the power spectrum can be 
obtained by simply squaring the FFT magnitude. More robust FFT-based estimates 
of the power spectrum can be obtained by using variants of the periodogram [2]. 
Figure 7.8 illustrates the power spectral density obtained using the squared FFT on 
a time series consisting of the sum of two sinusoids. It is observed that the FFT 
resolves the frequency of each sinusoid.
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7.2.2.2  Windowing

Because N-sample signal blocks may section the signal abruptly to create false 
 discontinuities at the edges of the block, artificial ripples tend to be produced around 
the peaks of the spectrum. This can be mitigated by multiplying the block of sam-
ples by a tapering window function that tapers the samples at the edges of the sam-
ple block, thus reducing the ripples in the spectrum. Two of the most common 
tapering windows are the Hamming and Hanning windows, which both provide a 
good balance in terms of ripple attenuation and spectral resolution trade-offs pro-
duced by windowing. An example of a tapering window and the windowed signal is 
given in the top pane of Fig. 7.9. Although this acts to smooth the spectral ripples, 
it also expands the width of the frequency peaks, and thus lowers the overall spectral 
resolution as shown in the bottom pane of Fig. 7.9. In many cases, this is a tolerable 
trade-off for obtaining a smoother spectrum.

7.2.2.3  Autoregressive (AR) Modeling

Autoregressive (AR) modeling is an alternative to Fourier-based methods for com-
puting the frequency spectrum of a signal. AR modeling assumes that the signal 
being modeled was generated by passing white noise through an infinite impulse 
response (IIR) filter. The specific weights of the IIR filter shape the white noise 
input to match the characteristics of the signal being modeled. White noise is essen-
tially random noise that has the unique property of being completely uncorrelated 
when compared to any delayed version of itself. The specific IIR filter structure for 
AR modeling uses no delayed input terms and p delayed output terms. This struc-
ture allows efficient computation of the IIR filter weights. Because white noise has 
a completely flat power spectrum (i.e., the same power at all frequencies), the IIR 
filter weights are set so as to shape the spectrum to match the actual spectrum of the 
time series being analyzed.

Because the IIR filter weights define the signal’s spectrum, AR modeling can 
potentially achieve higher spectral resolution for shorter signal blocks than can the 
FFT. Short signal blocks are often necessary for real-time applications. Additionally, 
the IIR filter structure accurately models spectra with sharp, distinct peaks, which 
are common for biological signals such as ECG or EEG. [2] discusses the theory 
and various approaches for computing the IIR weights (i.e., AR model) from an 
observed signal.

The primary issue with AR modeling is that the accuracy of the spectral esti-
mate is highly dependent on the selected model order (p). An insufficient model 
order tends to blur the spectrum, whereas an overly large order may create artifi-
cial peaks in the spectrum, as illustrated in the bottom of Fig. 7.9. The complex 
nature of many time series should be taken into account for accurate spectral 
estimation, and this often cannot be reliably accomplished with such small model 
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orders. It should be noted that the model order is dependent on the spectral con-
tent of the signal and the sampling rate. For a given signal, the model order should 
be increased in proportion to an increased sampling rate. More information about 
AR modeling can be found in [3, 4].
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7.3  Time-Frequency Processing: Wavelets

For the conventional spectral-analysis techniques discussed thus far, the temporal 
and spectral resolution of the resulting estimates are highly dependent on the 
selected time series length, model order, and other parameters. This is particularly 
problematic when the time series contains transient oscillations that are localized 
in time. For instance, for a given time series observation length, the amplitude of 
a particular high-frequency oscillation (with respect to the observation length) has 
the potential to fluctuate significantly over each cycle within the observation. In 
contrast, the amplitude of a lower-frequency oscillation will not do so because a 
smaller number of cycles occur within the observation. For a given observation 
length, the FFT and AR methods produce only one frequency bin that represents 
these fluctuations at the respective frequency. By observing this bin in isolation, it 
is not possible to determine when a transient oscillation at that particular fre-
quency occurs within the observation. Wavelet analysis solves this problem by 
producing a time- frequency representation of the signal. However, as predicted by 
Heisenberg’s uncertainty principle, there is always a time/frequency resolution 
trade-off in time series analysis: it is impossible to precisely determine the instan-
taneous frequency and time of occurrence of an event. This means that longer 
observation lengths will produce spectral estimates having higher frequency reso-
lution, while shorter time windows will produce estimates having lower frequency 
resolution.

Conceptually, rather than representing a time series as a sum of sinusoids as 
with the FFT, wavelet analysis instead represents the time series as a sum of 
specific time-limited oscillatory pulses, known as wavelets. These pulses have 
an identical morphology, referred to as the mother wavelet. The set of wavelets 
used to represent the time series are simply time-scaled and shifted versions of 
the mother wavelet, as shown for one common type of mother wavelet 
(Daubechies 4) in the upper portion of Fig. 7.10. The various time scales of the 
mother wavelet are roughly analogous to the sinusoidal frequencies represented 
by the FFT. Thus, each member of the wavelet set effectively represents a spe-
cific oscillatory frequency over a specific time interval, resulting in a time-fre-
quency decomposition of the time-series. A comparison of the reconstructions 
achieved by wavelet and FFT representations is shown in the lower portion of 
Fig. 7.10.

There are a wide variety of mother wavelets, and each has specific time- frequency 
characteristics and mathematical properties. In addition, application-specific mother 
wavelets can be developed if general mother wavelet characteristics are known or 
desired. [5, 6] provide the theoretical details of wavelets.
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7.4  Conclusion

This chapter provided a broad overview of common techniques to extract meaning-
ful features from time-series data. The reader should be familiarized with the basic 
concepts of time-domain analysis and the transition to frequency domain using fil-
tering and Fourier and wavelet analyses. For a deeper understanding of the topic, 
dedicated textbooks are recommended (e.g. [7, 8]).

a

b

c

d

Fig. 7.10 Upper panel: Example mother wavelet (top row) and sinusoidal functions (bottom row) 
at different scales/frequencies used to decompose time series for the wavelet transform and the FFT, 
respectively. Note that the wavelets are time-limited while the sinusoids extend to t = ∞. Lower 
panel: Reconstructions (black) of the gold trace using (a) wavelet transform with 32 co- efficients (b) 
wavelet transform with 180 coefficients (c) FFT with 32 coefficients (d) FFT with 180 coefficients
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Chapter 8
Prediction Modeling Methodology

Frank J. W. M. Dankers, Alberto Traverso, Leonard Wee,  
and Sander M. J. van Kuijk

8.1  Statistical Hypothesis Testing

A statistical hypothesis is a statement that can be tested by collecting data and mak-
ing observations. Before you start data collection and perform your research, you 
need to formulate your hypothesis. An example hypothesis could be for instance:  
“If I increase the prescribed radiation dose to the tumor, this will also lead to an 
increase of side-effects in surrounding healthy tissues”. The purpose of statistical 
hypothesis testing is to find out whether the observations are meaningful or can be 
attributed to noise or chance.
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The null hypothesis (often denoted H0) generally states the currently 
accepted fact. Often it is formulated in such a way that two measured values 
have no relation with each other. The alternative hypothesis, H1, states that 
there is in fact a relation between the two values. Rejecting or disproving the 
null hypothesis gives support to the belief that there is a relation between the 
two values.

To quantify the probability that a measured value originates from the distribution 
stated under the null statistical hypothesis tests are used that produce a p-value 
(e.g., Z-test or student’s t-test). The p-value gives the probability of obtaining a 
value equal to or greater than the observed value if the null hypothesis is true. A high 
p-value indicates that the observed value is likely under the null assumption, vice 
versa a low p-value indicates that the observed value is unlikely given the null 
hypothesis, which can lead to its rejection.

There are common misconceptions regarding the interpretation of the p-value 
[1]:

• The p-value is not the probability that the null hypothesis is true
• The p-value is not the probability of falsely rejecting the null hypothesis (type I 

error, see below)
• A low p-value does not prove the alternative hypothesis

The p-value is to be used in combination with the α level. The α level is a pre-
defined significance level by the researcher which equals the probability of falsely 
rejecting the null hypothesis if it is true (type I error). It is the probability (s)he 
deems acceptable for making a type I error. If the p-value is smaller than the α level, 
the result is said to be significant at the α level and the null hypothesis is rejected. 
Commonly used values for α are 0.05 or 0.001 (Fig. 8.1).

Confidence levels serve a similar purpose as the α level, and by definition the 
confidence level + α level = 1. So an α level of 0.05 corresponds to a 95% confi-
dence level.

8.1.1  Types of Error

We distinguish between two types of errors in statistical testing [2]. If the null 
hypothesis is true but falsely rejected, this is called a type I error (comparable 
to a false positive, with a positive result indicating the rejection). The type I 
error rate, the probability of making a type I error, is equal to the α level since 
that is the significance level at which we reject the null hypothesis. Likewise, if 
the null hypothesis is false but not rejected, this is called a type II error (com-
parable to a false negative, with a negative result indicating the failed rejection) 
(Table 8.1).
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8.2  Creating a Prediction Model Using Regression 
Techniques

8.2.1  Prediction Modeling Using Linear and Logistic 
Regression

A prediction model tries to stratify patients for their probability of having a certain 
outcome. The model then allows you to identify patients that have an increased 
chance of an event and this may lead to treatment adaptations for the individual 

Fig. 8.1 Illustration of null hypothesis testing. The p-value represents the probability of obtaining 
a value equal or higher than the test value. The α level is predefined by the researcher and repre-
sents the accepted probability of making a type I error where the null hypothesis is falsely rejected. 
If the p-value of a statistical test is larger than the α level the null hypothesis is rejected

Table 8.1 The two types of errors that can be made regarding the acceptance or rejection of the 
null hypothesis

Null hypothesis truth
True False

Null hypothesis decision Fail to reject Correct Type II error
(false negative)

Reject Type I error
(false positive)

Correct
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patient. For instance, if a patient has an increased chance of a tumor recurrence the 
doctor may opt for a more aggressive treatment, or, if a patient has a high risk of 
getting a side-effect a milder treatment might be indicated.

The outcome variable of the prediction model can be anything, e.g., the risk of 
getting a side effect, the chance of surviving at a certain time point, or the probabil-
ity of having a tumor recurrence. We can distinguish outcome variables into con-
tinuous variables or categorical variables. Continuous variables are described by 
numerical values and regression models are used to predict them, e.g., linear 
regression. Categorical variables are restricted to a limited number of classes or 
categories and we use classification models for their prediction. If the outcome has 
two categories this is referred to as binary classification and typical techniques are 
decision trees and logistic regression (somewhat confusingly, this regression 
method is well suited for classification due to its function shape).

Fitting or training a linear or logistic prediction model is a matter of finding the 
function coefficients so that the model function optimally follows the data (Fig. 8.2).

8.2.2  Software and Courses for Prediction Modeling

There are many different software packages available for generating prediction 
models, all of them with different advantages and disadvantages. Some packages 
are code-based and programming skills are required, e.g., Python, R or Matlab. 
There are integrated development environments available for improved 

Fig. 8.2 Examples of predictive modeling (blue line) for a continuous outcome using linear 
regression and for a binary outcome using logistic regression. The predictions in the logistic 
regression are rounded to either class A or B using a threshold (0.5 by default)
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productivity, like RStudio for R, and Spyder for Python. Additionally, they can have 
rich open-source libraries tailored specifically towards machine learning, for 
instance Caret for R [3] and Scikit-learn for Python [4]. Other packages have graph-
ical user interfaces and being able to program is not mandatory, like SPSS, SAS or 
Orange. Some packages are only commercially available, but many are open-source 
and have a large user base for support.

Preference for a certain software package over others is very personal and the 
best advice is therefore to simply try several and find out for yourself. A special 
mention is reserved for the Anaconda Distribution [5], which hosts many of the 
most widely used software packages for prediction modeling in a single platform 
(RStudio, Spyder, Jupyter Notebook, Orange and more) (Table 8.2).

There is a wealth of freely available information on the Web to help you get 
going. Providing a comprehensive overview is therefore an impossible task, but 
some excellent online courses (sometimes referred to as Massive Open Online 
Courses or MOOCs) are listed below (Table 8.3).

Table 8.2 A non-exhaustive overview of available software packages for prediction modeling and 
some of their features

Name Reference
Coding 
required

Development 
environments Open-source

Learn more 
(books/tutorials)

R [6] Yes RStudio [7] Yes [8]
Python [9] Yes Spyder [10]

Jupyter notebooks 
[11]

Yes [12]

Matlab [13] Yes Matlab No [14]
SPSS [15] No N/A No [16]
SAS [17] No N/A Partly 

(students)
[18]

Orange [19] No Visual workflows Yes
Weka [20] No N/A Yes [21]
Rapidminer [22] No Visual workflows Partly

N/A not applicable

Table 8.3 Free online courses for prediction modeling and machine learning

Course Organizer/link

Machine learning Andrew Ng, Stanford University, Coursera
https://www.coursera.org/learn/machine-learning

Machine learning Tom Mitchell, Carnegie Mellon University
http://www.cs.cmu.edu/~tom/10701_sp11/

Learning from data Yaser Abu-Mostafa, California Institute of Technology
https://work.caltech.edu/telecourse.html

Machine learning Nando de Freitas, University of Oxford
https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/
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8.2.3  A Short Word on Modeling Time-to-Event Outcomes

Many studies are interested not only in predicting a certain outcome, but addition-
ally take into account the time it takes for this outcome to occur. This is referred to 
as time-to-event analysis and a typical example is survival analysis. Kaplan-Meier 
curves are widely used for investigation of the influence of categorical variables 
[23], whereas Cox regression (or sometimes called Cox proportional hazards 
model) additionally allows the investigation of quantitative variables [24].

8.3  Creating a Model That Performs Well Outside the 
Training Set

8.3.1  The Bias-Variance Tradeoff

The bias-variance tradeoff explains the difficulty of a generated prediction model to 
generalize beyond the training set, i.e. perform well in an independent test set (also 
called the out-of-sample performance). The error of a model in an independent test 
set can be shown to be decomposable into a reducible component and an irreducible 
component. The irreducible component cannot be diminished, it will always be 
present no matter how good the model will be fitted to the training data. The origin 
of the irreducible error can, for instance, be an unmeasured but yet important vari-
able for the outcome that is to be predicted.

The reducible error can be further decomposed into the error due to variance and 
the error due to bias [2]. The variance is the error due to the amount of overfitting 
done during model generation. If you use a very flexible algorithm, e.g., an advanced 
machine learning algorithm with lots of freedom to follow the data points in the 
training set very closely, this is more likely to overfit the data. The error in the train-
ing set will be small, but the error in the test set will be large. Another way to look 
at this is that a high variance will result in very different models during training if 
the model is fitted using different training sets.

Bias relates to the error due to the assumptions made by the algorithm that is 
chosen for model generation. If a linear algorithm is chosen, i.e. a linear relation 
between the inputs and the outcome is assumed, this may cause large errors (large 
bias) if the underlying true relation is far from linear. Algorithms that are more flex-
ible (e.g., neural networks) result in less bias since they can match the underlying 
true but complex relations more closely.

In general it can be said that:

• Flexible algorithms have low bias since they can more accurately match the under-
lying true relation, but have high variance since they are susceptible to overfitting.

• Inflexible algorithms have low variance since they are less likely to overfit, but 
have high bias due to their problems of matching the underlying true 
relationship.

F. J. W. M. Dankers et al.



107

From this we can conclude that the final test set error is a tradeoff between low 
bias and low variance. It is impossible to simultaneously achieve the lowest possible 
variance and bias. The challenge is to generate a model with (reasonably) low vari-
ance and low bias since that is most likely to generalize well to external sets. This 
model might have slightly decreased performance in the training set, but will have 
the best performance in subsequent test sets (Fig. 8.3).

8.3.2  Techniques for Making a General Model

As we collect and expand our datasets we often score many features (parameters) so 
that we minimize the risk of potentially missing important features, i.e. features that 
are highly predictive of the outcome. This means that generally we deal with wide 
sets containing many features. However, many of these features are in fact redun-
dant or not relevant for the outcome at all and can be safely omitted. Including a 
large number of features during model generation increases the possibility of chance 
correlations of features with the outcome (overfitting) and this results in models that 

Fig. 8.3 The bias-variance tradeoff. With increased model complexity the model can more accu-
rately match the underlying relation at the risk of increasing the variance (amount of overfitting). 
The bias-variance tradeoff corresponds to minimizing the total prediction error (which is the sum 
of bias and variance)
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do not generalize well. Dimensionality reduction [25], reducing the number of 
features, is therefore an important step prior to model generation. The main advan-
tages are:

• Lowered chance of overfitting and improved model generalization
• Increased model interpretability (depending on the method of dimensionality 

reduction)
• Faster computation times and reduced storage needs

There are many useful dimensionality reduction techniques. The first category of 
methods to consider is that of feature selection, where we limit ourselves to a sub-
set of the most important features prior to model generation. Firstly, if a feature has 
a large fraction of missing values it is unlikely to be predictive of the outcome and 
can often be safely removed. In addition, if a feature has zero or near zero variance, 
i.e. its values are all highly similar, this again indicates that the feature is likely to 
be irrelevant. Another simple step is to investigate the inter-feature correlation, e.g., 
by calculating the Pearson or Spearman correlation matrix. Features that are highly 
correlated with each other are redundant for predicting the outcome (multicollinear-
ity). Even though a group of highly correlated features may all be predictive of the 
outcome, it is sufficient to only select a single feature as the others provide no addi-
tional information.

Traditionally, further feature selection is then performed by applying stepwise 
regression. In each step a feature is either added or removed and a regression model 
is fitted and evaluated based on some selection criterion. There are many choices for 
the criterion to choose between models, e.g., the Bayesian information criterion or 
the Akaike information criterion, both of which quantify the measure of fit of mod-
els and additionally add a penalty term for complex models comprising more 
parameters [26]. In forward selection, one starts with no features and the feature that 
improves the model the most is added to the model. This process is repeated until no 
significant improvement is observed. In backward elimination, one starts with a 
model containing all features, and features are removed that decrease the model 
performance the least, until no features can be removed without significantly 
decreasing performance.

With feature selection we limit ourselves to a subset of features that are already 
present in the dataset and this is a special case of dimensionality reduction [27]. In 
feature extraction the number of features are reduced by replacing the existing 
features by fewer artificial features which are combinations of the existing features. 
Popular techniques for feature extraction are principle component analysis, linear 
discriminant analysis and autoencoders [25].

More advanced machine learning algorithms often contain embedded methods 
for reducing model complexity to improve generalizability. An example is regular-
ization where each added feature also comes with an added penalty or cost [8]. The 
addition of a feature may increase the model performance but, if the added cost is 
too high, it will not be included in the final model. This effectively performs feature 
selection and prevents overfitting. The severity of the cost is a hyperparameter that 
can be tuned (e.g., through cross-validation, see paragraph “Techniques for internal 
validation”). Popular regularization methods for logistic regression are LASSO (or 
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L1 regularization) [28], ridge (or L2 regularization), or a combination of both using 
Elastic Net [29]. The main difference between L1 and L2 regularization is that in L1 
regularization the coefficients of unimportant parameters shrink to zero, effectively 
performing feature selection and simplifying the final model.

8.4  Model Performance Metrics

8.4.1  General Performance Metrics

The performance of a prediction model is evaluated by the calculation of perfor-
mance metrics. We want our model to have high discriminative ability, i.e. high 
probabilities should be predicted for observations having positive classes (e.g., alive 
after 2  years or treatment) and low probabilities for negative classes (dead after 
2 years of treatment). There is no general best performance metric for model evalu-
ation as this depends strongly on the underlying data as well as the intended applica-
tion of the model.

Other often-used overall performance metrics are R-squared measures of good-
ness of fit (or R2, also called the coefficient of determination). The R2 can be inter-
preted as the amount of variance in the data that is explained by the model (explained 
variation). Higher R2s correspond to better models. Examples are Cox and Snell’s 
R2 or Nagelkerke’s R2. R-squared values are mainly used in regression models; for 
classification models it is more appropriate to look at performance metrics derived 
from the confusion matrix.

Another popular overall performance measure is the Brier score (or mean 
squared error) and it is defined as the average of the square of the difference between 
the predictions and observations. A low Brier score indicates that predictions match 
observations and we are dealing with a good model.

8.4.2  Confusion Matrix

The confusion matrix is a very helpful tool in assessing model performance. It lists 
the correct and false predictions versus the actual observations and allows for the 
calculation of several insightful performance metrics. If the output of your prediction 
model is a probability (e.g., the output of a logistic regression model), then it needs 
to be dichotomized first by applying a threshold (typically 0.5) before the confusion 
matrix can be generated. An exemplary confusion matrix is shown in Table 8.4.

True positives, called hits, are cases that are correctly classified. True negatives 
are correctly rejected. False positives, or false alarm, are equivalent to a type I error. 
False negatives, or misses, are equivalent to a type II error.

Prevalence is defined as the number of positive observations with respect to the 
total observations. A balanced dataset has a prevalence close to 0.5, or 50%. Often, 
we have to deal with imbalanced datasets and this can lead to difficulties when 
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interpreting certain performance metrics. Performance metrics can be high for poor 
models that are trained and tested on imbalanced datasets.

 
Prevalence TP FN TN TP FP FN= +( ) + + +( )/

 

8.4.3  Performance Metrics Derived from the Confusion Matrix

Accuracy, defined as the proportion of correct predictions, is often reported in lit-
erature. Care has to be taken when using this metric in highly imbalanced datasets. 
Consider a dataset with only 10% positive observations. If the prediction model 
simply always predicts the negative class it will be correct in 90% of the cases. The 
accuracy is high, but the model is useless since it cannot detect any positive cases.

 
Accuracy TN TP TN TP FP FN= +( ) + + +( )/

 

Another option is to look at the proportion of correct positive predictions for the 
total number of positive observations. This is called the Positive Predictive Value 
(PPV) or precision. Similarly, the proportion of correct negative predictions for the 
total number of negative observations is called the Negative Predictive Value 
(NPV), respectively. These metrics are of interest to patients and clinicians as they 
give the probability that the prediction matches the observation (truth) for a patient. 
PPV and NPV are dependent on the prevalence in the dataset making their 
 interpretation more difficult. A high prevalence will increase PPV and decrease 
NPV (while keeping other factors constant).

 
PPV TP TP FP= +( )/

 

 
NPV TN TN FN= +( )/

 

If we want to consider characteristics not of the population but of the prediction 
model when applied as a clinical test, we can evaluate sensitivity and specificity. 

Table 8.4 Confusion matrix showing predictions and observations. Many useful performance 
metrics are derived from the values in the confusion matrix

Observation
True False

Prediction True True positive
(TP)

False positive
(FP)

→ Positive predictive value (PPV)

False False negative
(FN)

True negative
(TN)

→ Negative predictive value
(NPV)

↓ ↓
Sensitivity
(TPR)

Specificity
(TNR)
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Sensitivity, or True Positive Rate (TPR, or sometimes called recall or probability of 
detection), is defined as the probability of the model to make a positive prediction 
for the entire group of positive observations. It is a measure of avoiding false nega-
tives, i.e. not missing any diseased patients.

Similarly, specificity is defined as the probability of the model to make a negative 
prediction for the entire group of negative observations. It is a measure of avoiding 
false positives, i.e. not including non-diseased patients.

 
TPR TP TP FN sensitivity= +( ) ( )/

 

 
TNR TN TN FP specificity= +( ) ( )/

 

Additionally, we can determine the False Positive Rate (FPR), or fall-out, and the 
False Negative Rate (FNR), which are the opposites of TPR and FPR, respectively. 
Note that FNR is used in the next paragraph for the construction of the Receiver 
Operating Characteristic curve.

 FPR TPR sensitivity= - = -1 1  

 FNR TNR specificity= - = -1 1  

The F1-score, or F-score, is a metric combining both PPV (precision) and TPR 
(recall or sensitivity). Unlike PPV and TPR separately, it takes both false positives 
and false negatives into account simultaneously. It does however still omit the true 
negatives. It is typically used instead of accuracy in the case of severe class imbal-
ance in the dataset.

 
F PPV TPR PPV TPR1 2= ( ) +( )· · /

 

8.4.4  Model Discrimination: Receiver Operating 
Characteristic and Area Under the Curve

The performance of a prediction model is always a tradeoff between sensitivity and 
specificity. By changing the threshold that we apply to round our model predictions 
to positive or negative classes, we can change the sensitivity and specificity of our 
model. By decreasing this threshold, we are making it easier for the model to make 
positive predictions. The number of false negatives will go down but false positives 
will go up, increasing sensitivity but lowering specificity. By increasing the thresh-
old, the model will make fewer positive predictions, the number of false negatives 
will go up and false positive will go down, decreasing sensitivity and increasing 
specificity (Fig. 8.4).

By evaluating different thresholds for rounding our model predictions, we can 
determine many sensitivity and specificity pairs. If we plot the sensitivity versus 

8 Prediction Modeling Methodology



112

(1 – specificity) for all these pairs, i.e. the true positive rate versus the false positive 
rate, we obtain the Receiver Operating Characteristic curve (ROC) [30]. This 
curve can give great insight into model discrimination performance. It allows for 
determining the optimal sensitivity/specificity pair of a model so that it can support 
decision making, and also allows comparison of different models with each other.

Powerful models have ROC curves that approach the upper left corner, which 
indicates that the model achieves the maximum of 100% sensitivity and 100% spec-
ificity simultaneously. Conversely, a poor model with no predictive value will have 
an ROC curve close to the y = x or 45 degree line. This has led to the use of the Area 

Fig. 8.4 Influence of the threshold that is used to round model prediction probabilities to 0 or 1. 
By using a low threshold the model will detect most of the patients with the outcome (high sensi-
tivity), but many patients without the outcome will also be included (low specificity). For each 
value of the threshold sensitivity and specificity values can be calculated
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Under the Curve (AUC) of the ROC curve (or concordance statistic, c) as a widely 
used metric for interpreting individual model performance but also for comparing 
between models. Strong performing models have higher ROC curves and thus larger 
AUC values. A perfect model making correct predictions for every patient has an 
AUC of 1, whereas a useless model giving random predictions results in an AUC of 
0.5. The AUC can be interpreted as the probability that the model will give a higher 
predicted probability to a randomly chosen positive patient than a randomly chosen 
negative patient (Fig. 8.5).

Fig. 8.5 ROC curve indicating discriminating performance of the model. Model predictions are 
rounded to 0 or 1 using many different thresholds resulting in the sensitivity and specificity pairs 
that form the curve. AUC is indicated by the gray area under the curve. Higher values correspond 
to better model discrimination performance
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8.4.5  Model Calibration

Historically, the focus in evaluating model performance has primarily been on dis-
criminative performance, e.g., by calculating R2 metrics, confusion matrix metrics 
and performing ROC/AUC analysis. Model calibration is however as important as 
discrimination and should always be evaluated and reported. Model calibration 
refers to the agreement between subgroups of predicted probabilities and their 
observed frequencies. For example, if we collect 100 patients for which our model 
predicts 10% chance of having the outcome, and we find that in reality 10 patients 
actually have the outcome, then our model is well calibrated. Since the predicted 
probabilities can drive decision-making it is clear that we want the predictions to 
match the observed frequencies.

A widely-used (but no so effective) way of determining model calibration is by 
performing the Hosmer-Lemeshow test for goodness of fit of logistic regression 
models. The test evaluates the correspondence between predictions and observa-
tions by dividing the probability range [0-1] into n subgroups. Typically, 10 sub-
groups are chosen, but this number is arbitrary and can have a big influence on the 
final p-value of the test.

A better approach is to generate a calibration plot [31–33]. It is constructed by 
ordering the predicted probabilities, dividing them into subgroups (again, typically 
10 is chosen) and then plotting the average predicted probability versus the average 
outcome for each subgroup. The points should lie close to the ideal line of y = x 
indicating agreement between predictions and observed frequencies for each sub-
group. Helpful additions are error bars, a trend line (often a LOESS smoother [34]), 
individual patient predictions versus outcomes and/or histograms of the distribu-
tions of positive and negative observations (the graph is then sometimes called a 
validation plot) (Fig. 8.6).

8.5  Validation of a Prediction Model

8.5.1  The Importance of Splitting Training/Test Sets

In the previous paragraphs different metrics for evaluation of model performance 
have been discussed. As briefly discussed in paragraph “The bias-variance tradeoff” 
it is important to compute performance metrics not on the training dataset but on data 
that was not seen during the generation of the model, i.e. a test or validation set. This 
will ensure that you are not mislead into thinking you have a good performing model, 
while it may in fact be heavily overfitted on the training data. Overfitting means that 
the model is trained too well on the training set and starts to follow the noise in the 
data. This generally happens if we allow too many parameters in the final model. The 
performance on the training set is good, but on new data the model will fail. 
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Fig. 8.6 Calibration plot indicating agreement between model predictions and observed frequen-
cies. Data points are subdivided into groups for which the mean observation is plotted against the 
mean model probability. Perfect model calibration corresponds with the y = x line. Additionally, 
individual data points are shown (with some added y-jitter to make them more clear), as well as 
histograms for the positive and negative classes [0,1]

Underfitting corresponds to models that are too simplistic and do not follow the 
underlying patterns in the data, again resulting in poor performance in unseen data.

Properly evaluating your model on new/unseen data will improve the generaliz-
ability of the model. We differentiate between internal validation, where the data-
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set is split into a training set for model generation and a test set for model validation, 
and external validation, where the complete dataset is used for model generation 
and separate/other datasets are available for model validation.

8.5.2  Techniques for Internal Validation

If you only have a single dataset available you can generate a test set by slicing of a 
piece of the training set. The simplest approach is to use a random split, e.g., using 
70% of the data for training and 30% for evaluation (sometimes called a hold-out 
set). It is important to stratify the outcome over the two sets, i.e. make sure the 
prevalence in both sets remains the same. The problem with this method is that we 
can never be sure that the calculated performance metric is a realistic estimate of the 
model performance on new data or due to a(n) ‘(un)lucky’ randomization. This can 
be overcome by repeating for many iterations and averaging the performance met-
rics. This method is called Monte Carlo cross-validation (Fig.8.7) [35].

Another approach is the method of k-fold cross-validation [36]. In this method 
the data is split into k stratified folds. One of these folds is used as a test set, the 
 others are combined and used for model training. We then iterate and use every fold 
as a test set once. A better estimate of the true model performance can be achieved 
by averaging the model performances on the test set. Typically, k = 5 or k = 10 is 
chosen for the number of folds (Fig. 8.8).

The advantage of k-fold cross-validation is that each data point is used in a test 
set only once, whereas in Monte Carlo cross-validation it can be selected multiple 
times (and other points are not selected for a test set at all), possibly introducing 
bias. The disadvantage of k-fold cross-validation is that it only evaluates a limited 
number of splits whereas Monte Carlo cross-validation evaluates as many split as 
you desire by increasing the number of iterations (although you could iterate the 
entire k-fold cross-validation procedure as well which is commonly called repeated 
k-fold cross-validation).

Note that in both Monte Carlo cross-validation and k-fold cross-validation we 
are generating many models instead of a single final model, e.g., because the feature 

Fig. 8.7 Schematic overview of a Monte Carlo cross-validation. A random stratified split is 
applied to separate a test set from the training set. A prediction model is trained on the training set 
and performance metrics on the test set are stored after which the process is repeated
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selection algorithm might select different features or the regression produces differ-
ent coefficients due to different training data. Cross-validation is used to identify the 
best method (i.e. data pre-processing, algorithm choice etc.) that is to be used to 
construct your final model. When you have identified the optimal method you can 
then train your model accordingly on all the available data.

A common mistake in any method where the dataset is split into training and test 
sets is to allow data leakage to occur [37]. This refers to using any data or informa-
tion during model generation that is not part of the training set and can result in 
overfitting and overly optimistic model performance. It can happen for example 
when you do feature selection on the total dataset before applying the split. In gen-
eral it is advised to perform any data pre-processing steps after the data has been 
split and using only information available in the training set.

8.5.3  External Validation

The true test of a prediction model is to evaluate its performance under external vali-
dation, or separate datasets from the training dataset. Preferably, this is performed 
on new data acquired from a different institution. It will indicate the generalizability 
of the model and show whether it is overfitted on the training data. If this can be 
performed on multiple external validation sets, this further strengthens the accep-
tance of the prediction model under evaluation.

It has to be noted that if the datasets intended to be used for external validation 
are collected by the same researchers that built the original prediction model, this is 
still not an independent validation. Independent external validation, by other 
researchers, is the ultimate test of the model generalizability. This requires open and 
transparent reporting of the prediction model, of inclusion and exclusion criteria for 
the training cohort and of data pre-processing steps. Additionally, it is encouraged 
to make the training data publicly available as this allows other researchers to verify 
your methodology and results and greatly improves reproducibility.

Fig. 8.8 Schematic overview of k-fold cross-validation. The dataset is randomly split into k strati-
fied folds. Each fold is used as a test set once, while the other folds are temporarily combined to 
form a training set for model generation. Performance metrics on the test set are calculated and 
stored, and the process is repeated for the number of folds that have been generated
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8.6  Summary Remarks

8.6.1  What Has Been Learnt

In this chapter you have learnt about the importance of the bias-variance tradeoff 
in prediction modeling applications. You have learnt how to generate a simple 
logistic regression model and what metrics are available to evaluate its perfor-
mance. It is important to not limit the evaluation to model discrimination only, but 
also include calibration as well. Finally, we have discussed the importance of 
separating training and test sets so that we protect ourselves from overfitting. 
Internal validation strategies such as cross-validation are discussed, and the ulti-
mate test of a prediction model, independent external validation, has been 
emphasized.

8.6.2  Further Reading

The field of prediction modeling and machine learning is extremely broad and in 
this chapter we have only scratched the surface. A good place to start with further 
reading on the many aspects of prediction modeling is the book “Clinical Prediction 
Models  – A Practical Approach to Development, Validation, and Updating” by 
Steyerberg [38]. If you are looking to improve your knowledge and simultane-
ously improve your practical modeling skills the book “An Introduction to 
Statistical Learning – with Applications in R” by James et  al. is highly recom-
mended [8]. Finally, if you want to go in-depth and understand the underlying 
principles of the many machine learning algorithms the go-to book is “The 
Elements of Statistical Learning  – Data Mining, Inference, and Prediction” by 
Hastie et al. [39].
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Chapter 9
Diving Deeper into Models

Alberto Traverso, Frank J. W. M. Dankers, Biche Osong, Leonard Wee, 
and Sander M. J. van Kuijk

9.1  Introduction

In the previous chapters of the book, you have been learning the major techniques 
to prepare your data, develop and validate a clinical prediction model. The work-
flow generally consists of selecting some input features and combining them to 
predict relevant clinical outcomes. The way in which features are combined and 
relationships between data are discovered are several. In fact, several algorithms 
used to relate features with expected outcome are available. However, in the previ-
ous chapters, the focus has been pointed on one specific algorithm: logistic regres-
sion. This chapter proposes you an additional list of algorithms that can be used to 
train a model.
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9.2  What Is Machine Learning?

Machine learning is an application of Artificial Intelligence (AI). AI refers to the 
ability to program computers (or more in general machines) that are able to 
solve complicated and usually very time-consuming tasks [1]. An example of a 
time consuming and complicated task is the extraction of useful information (data 
mining) from a large amount of unstructured clinical data (‘big data’).

9.3  How Do We Use Machine Learning in Clinical Prediction 
Modelling?

As you learned in previous chapters, after having prepared your data, you develop a 
clinical prediction model based on available data. In the model, particular properties 
of your data (‘features’) will be used to predict your outcome of interest. A particu-
lar statistical algorithm is used to learn the ‘features’ that are most representative 
and relate them to the predicted outcome. In the previous chapter, only the logistic 
regression algorithm has been presented to you. However, more complex machine 
learning-based algorithms exist. These algorithms can be divided into two catego-
ries: supervised and unsupervised [2].

9.4  Supervised Algorithms

These algorithms apply when learning from ‘labelled’ data to predict future out-
comes [3]. To understand what we mean by labelled data, let us considering the 
following example. Suppose we are building a model that takes as input some clini-
cal data from the patients (e.g. age, sex, tumor staging) and aims at predicting if a 
patient will be alive or not (binary outcome) 1 year after receiving the treatment 
therapy. In our training dataset, the clinical outcome (alive or dead after a certain 
elapse of time) information is available. These are labelled data. In supervised 
learning, the analysis starts from a known training dataset and the algorithm 
is used to infer the predictions. The algorithm compares its output to the ‘labels’ 
in order to modify it accordingly to match the expected values.

9.5  Unsupervised Algorithms

Unsupervised algorithms are used when the training data is not classified or labelled 
[4]. A common example of unsupervised learning is trying to cluster a population and 
see if the clusters share common properties (‘features’). This common approach is 
used in marketing analysis, to see for example if different products might be assigned 
to different clusters. In summary, the goal for unsupervised learning is to model 
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the underlying structure or distribution in the data in order to learn more about 
the data. Unsupervised problems can then still be divided into two subgroups:

 1. Clustering: the goal is to discover groups that share common features;
 2. Association: used to describe rules that explain large portions of data. For exam-

ple, still from the marketing analysis: people in a certain cluster buy a product X 
and more likely will also buy a certain product Y.

9.6  Semi-supervised Algorithms

We refer to semi-supervised algorithms when the number of input data is much 
greater than the number of output labelled data in the training set [5]. A good 
example could be a large data set of images, where only few of them are labelled 
(e.g. dog, cat). Despite this kind of learning problem is not often mentioned, most 
of the real life machine learning classification problems fall into this category. In 
fact, labelling data is a very time-consuming task. Imagine in fact a doctor that has 
to annotate (i.e. delineate anatomical or pathological structures) on hundreds of 
patients’ scans, which you would like to use as your training dataset.

We will now provide an overview of the main algorithms for each presented 
category.

9.7  Supervised Algorithms

9.7.1  Support Vector Machines (SVMs)

SVMs can used for both classification and regression, despite being mostly used in 
classification problems [6]. The SVM are based on an n-dimensional space where n 
is the number of features you would like to use as an input. Imagine plotting all your 
data in the hyperspace, where each point correspond to the n-dimensional feature 
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Fig. 9.1 SVMs examples. (a) Three different solutions of the problems are drawn. The solution 
that optimizes the separation betweeb the two clusters of data (stars vs circles) is line B. (b) the 
optimal solution is line C, by keeping into consideration the concept of margin. However, non 
linear solutions migth be needed as shown in (c)
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vector of your input data. Therefore, for example, if you have 100 input data and 10 
features, 100 vectors of dimension 10 will constitute the hyperspace.

The SVM will try to find the hyperplane / hyperplanes that separate your 
data into two (or more) classes.

How to find the best hyperplane? If we look at Fig. 9.1a, three possible hyper-
planes separate the classes. The key point to be considered is: “Choose the hyper-
plane that maximizes the separation between classes”. Now, in Fig. 9.1a it is 
easy to affirm that the correct answer is line B. However, what should we choose if 
we look at Fig. 9.1b?

The definition of margin will help us. In SVMs the margin is defined as the 
distance between the nearest data point or class (called the “support vector”) 
and hyper-plane. With this definition in mind, it becomes clear that the best solu-
tion in Fig. 9.1b is line C. However, we only have considered problems where the 
classes were easily separable by linear hyperplanes. What happens if the problem is 
more complicated like shown in Fig. 9.1c? It is clear that we cannot have a linear 
hyperplane to separate the classes, but visually it seems that a hyper-circle might 
work. This relates to the concept of kernel. A SVMs kernel function gives the pos-
sibility to transform non-linear spaces (Fig. 9.1c) into linear spaces (Figs. 9.1a 
and b). Most common available SVMs computational packages [7] [8] offer differ-
ent kernels from the most famous radial basis function-based kernel to higher order 
polynomials or sigmoid functions.

What are the most important parameters in a SVM?
 – Kernel: the kernel is one of the most important parameters to be chosen. SVMs 

offer easier and more complicated kernels. Our suggestion to choose the kernel, 
is to plot the data projected on some features axis in order to have a visual ideal 
if the problem can be solved by choosing a linear kernel. In general, we discour-
age to start using more complicated kernels from the beginning, since they 
can easily lead to high probability of overfitting. It could be a good idea to 
start with a quadratic polynomial and then increase in complexity. Please keep 
into consideration that, in general, complexity also increases computational 
time (and required computational power).

 – Soft margin constant (C): the “C” parameter tells the SVM optimization how 
much you want to avoid misclassifying each training example. For large values 
of C, the optimization will choose a smaller-margin hyperplane if that hyper-
plane does a better job of getting all the training points classified correctly. 
Conversely, a very small value of C will cause the optimizer to look for a larger-
margin separating hyperplane, even if that hyperplane misclassifies more points.

Advantages/disadvantages of SVMs

Advantages

 1. SVMs can be a useful tool in the case of non-regularity in the data, for example, 
when the data are not regularly distributed or have an unknown distribution, due 
to SVMs kernel flexibility.

 2. Due to kernels transformations, also not linear classification problems can be 
solved
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 3. SVM delivers an unique solution since the optimization problem is convex

Disadvantages

 1. SVM is a non parametric technique, so the results might lack transparency 
(“black box”). For example, using a Gaussian kernel each features have a differ-
ent importance (e.g. different weights in the kernel), therefore it is not trivial to 
find a straightforward relation between the features and the classification output, 
like what happens by using logistic regression

9.7.2  Random Forests (RF)

RFs are part of the algorithms called decision trees. In decision trees, the goal is to 
create a prediction model that predicts an output by combining different input vari-
ables [9]. In the decision tree, each node corresponds to one of the input variables, 
Each leaf represents a value of the target variable given the values of the input vari-
ables represented by the path from the root to the leaf. Why random forests are 
called random? The term random is justified by the fact that the random forest 
algorithm trains different decision trees by using different subsets of the training 
data. The RF algorithm is depicted in Fig. 9.2. In addition, each node in the decision 

All Data

random subset

tree

tree At each node:
choose some small subset of variables at random
find a variable (and a value for that variable)
which optimizes the split

tree tree tree

random subset random subset random subset

Fig. 9.2 Sketch representation of a RF workflow. RFs trained different algorithms by looking at 
random subsets of the data. The randomness generates models that are not correlated to each other

9 Diving Deeper into Models



126

tree is split by using random selected features from the data. Therefore, the ran-
domness generates models that are not correlated to each other.

What are the most important parameters in a RF?
 – Maximum features: this is the maximum number of features that a RF is allowed 

to try in each individual tree. To be noted: increasing the maximum number of 
features usually increases the models’ performance, but this is not always 
true since it decreases the diversity of individual trees in the RF.

 – Number of estimators: the number of built trees build before taking the maxi-
mum voting or averages of predictions. Higher number of trees give you better 
performance but makes your code slower. We suggest keeping this parameter 
as large as possible to optimize the performances.

 – Minimum sample leaf size: the leaf is the end of a decision tree. A smaller leaf 
makes the model more prone to capturing noise in train data. Most of the avail-
able studies suggest to keep a value larger than 50.

Advantages/disadvantages of RFs

Advantages

 – The chance of overfitting decreases, since several different decision trees are 
used in the learning procedure. This corresponds to train and combine different 
models.

 – RFs apply pretty well when a particular distribution of the data is not required. 
For example, no data normalization is needed.

 – Parallelization: the training of multiple trees can be parallelized (for example 
through different computational slots)

Disadvantages

 – RFs usually might suffer from smaller training datasets
 – Interpretability: RF is more a predictive tool than a descriptive tool. It is dif-

ficult to see or understand the relationship between the response and the indepen-
dent variables

 – The time to train a RF algorithms might be longer compared to other algorithms. 
Also, in the case of a categorical variable, the time complexity increases 
exponentially

9.7.3  Artificial Neural Networks (ANNs)

Finding an agreed definition of ANNs is not that easy. In fact, most of the literature 
studies only provided graphical representations of ANN. The most used definition 
is the one by Haykin [10], who defines an ANN architecture as a massively paral-
lelized combination of very simple learning units that acquire knowledge dur-
ing the training and store the knowledge by updating their connections to the 
other simple units.

Often, ANNs have been compared to biological neural networks. Again, activi-
ties of biological neurons can then compared to ‘activities’ in processing elements 
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in ANNs. The process of training an ANN becomes then very similar on the process 
of learning in our brain: some inputs are applied to neurons, which change their 
weights during the training to produce the most optimized output.

One of the most important concepts in ANNs is their architecture. With the word 
architecture we mean how the ANN is structured, meaning how many neurons 
are present and how they are connected.

A typical architecture of ANNs is shown in Fig. 9.3: the input layer is character-
ized by input neurons, in our case the number of features we would like to input for 
our model. The output layer corresponds to the desired output of our model. In case 
of binary classification problems, for example, the output layer will only have two 
output neurons, but in case of multiple classifications, the number of output neurons 
can increase up to number of classes. In between, there is a ‘hidden layer’, where 
the number of hidden neurons can vary from few to thousands. Sometimes, in more 
complicated architectures, there might be several hidden layers.

ANNs are also classified according to the flow of the information:

 1. Feed-forward neural networks: information travels only in one direction from 
input to output.

 2. Recurrent neural networks: data flows in multiple directions. These are the most 
common used ANNs due to their capability of learning complex tasks such as for 
example handwriting or language recognition.

There is a ‘hidden layer’, where the number of hidden neurons can vary from few 
to thousands. Sometimes, in more complicated architectures, there might be several 
hidden layers.

output
units

output
pattem

input
pattem

hidden
units

input
units

Fig. 9.3 Example 
architecture for an ANN. 
The standard architecture 
has one input layer, output 
units, and an intermediate 
layer called ‘hidden units’
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‘Deep learning’ or ‘Convolutional Neural Networks’ (CNN) represents an exam-
ple of very complicated ANNs [11]. The major feature of CNNs is that they can 
automatically learn significant features. In fact, each layer, during the training 
 procedure, learns which the most representative features are. However, this might 
lead to use ‘deep learning’ as a ‘black-box’. It is out of the topic of this chapter to 
dive into properties of CNNs. However, for the interested readers we suggest fol-
lowing references [12, 13].

What are the most important parameters in an ANN?
 – Architecture: this is surely the most important parameter to be chosen in your 

ANN. There are no prescribed rules for choosing the number of neurons in the 
hidden layer. However, please note that a very large number of neurons in 
the hidden layer (compared to the number of features) might increase the 
risk of overtraining. We suggest trying different configurations and choosing 
the one that maximizes the accuracy in the testing set. Conversely, following 
rules apply for input and output layer: the number of neurons in the input 
layer should be the same as the number of desired features, while the num-
ber of output neurons should be equal to the number of classes we want to 
classify.

 – Dropout: we suggest training an ANN always with dropout set to true. In fact, 
drop out is a technique to avoid overfitting [14]. We suggest setting dropout 
between 20% and 50%.

 – Activation function: activation functions are used to introduce nonlinearity to 
models. The most common activation function is the rectifier activation function, 
but we suggest to use the sigmoid function for binary predictions and the 
softmax function for multi class classification.

 – Network weight initialization: these are the weights used between neurons when 
starting the training. The most common used is to initiate weights from an 
uniform distribution.

Advantages/disadvantages of ANNs

Advantages

 – In principle, every kind of data can be used to feed an ANN. No particular 
pre-processing of the data is required, but it is still suggested to use data that are 
normalized [15]. In addition, due to the complex structure of their architectures, 
ANNs can catch complex non linear relationships between independent and 
dependent variables

 – Ability to detect all possible interactions between predictor variables: the 
hidden layer has the power to detect interrelations between all the input vari-
ables. For example, when important relations are not modelled directly into 
a logistic regression model, neural networks are expected to perform better 
than logistic regression.

Disadvantages

 – ‘Black box’ approach: in a logistic regression model, the developer is able to 
verify which variables are most predictable by looking at the coefficients of the 
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odds ratios. Neural networks, compared to logistic regression are black boxes. In 
fact, after setting up the training data and the network parameters, the ANNs 
‘learn’ by themselves which input variables are the most important. It is  therefore 
impossible to determine how the variables contribute to the output. There is 
interest in the community to develop regression-like techniques to examine the 
connection weights and the relations between input features [16].

 – Large computational power required: with a standard personal computer and 
with back propagation activated the training of a network might require from 
hours to some months compared to logistic regression.

 – Prone to overfitting: the ability of an ANN to model interactions and non- 
linearity implicitly might represent a risk of overfitting. Suggestions to limit 
overfitting are: limiting the number of hidden layers and hidden neurons, adding 
a penalty function to the activation function for large weights, or limiting the 
amount of training using cross validation [17].

9.8  Unsupervised Algorithms

9.8.1  K-means

The goal of this algorithm is to find groups (or clusters) in data. The number of 
chosen group is defined by the variable K. The basic idea of the algorithm is to itera-
tively assign the data point to one of the K groups based on the features used as 
input [18]. The groups are assigned by similarities in the features values. The out-
puts of the algorithm are the centroids of each cluster K, and the labels for training 
data (each data point).

The algorithm workflow can be summarized as:

 – data assignment step: each data is assigned to the nearest centroid based on the 
squared Euclidean distance

 – centroid update step: the centroids are recomputed by taking the mean of data 
points assigned to a specific centroid’s cluster.

The algorithm iterates between those two steps until the optimal solution (i.e. no 
data points change clusters) is found. Please note that there result is not a local opti-
mum. The algorithm workflow is depicted in Fig. 9.4.

What are the most important parameters in k-means?
 – Number of clusters K: there is no pre-defined rule to find the optimal number of 

K. Our suggestion is to iterate the algorithm several times and compare the results 
to find the best parameter. One of the most common metrics used to compare 
results is the mean distance between the data points and their corresponding 
cluster centroids. However, this metric cannot be used as only indicator. In 
fact, increasing the number of K will always decrease the distance until the 
extreme case where the distance is zero (K = number of data points). We suggest 
to plot the mean distance as a function of K; then the ‘elbow point’, where the 
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rate of decrease sharply shifts can used to determine K. Additional more advanced 
methods can be the silhouette method [19], and the G-means algorithm [20].

Advantages/disadvantages of k-means

Advantages

 – In case of a large amount of data, K-means is the faster algorithm between the 
families of unsupervised algorithms used for clustering problems. For exam-
ple, it is faster than hierarchical clustering. However, increasing K might increase 
the computational time.

 – K-means produce tighter clusters than the other algorithms in the category

Disadvantages

 – It is in general difficult to predict the optimal K and results might be strongly 
affected by different Ks

 – If there is a big unbalance between data (or high number of outliers) the algo-
rithm does not work well
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9.8.2  Hierarchical Clustering

Compared to k-means, hierarchical clustering starts by assigning all data points as 
their own cluster. The basic idea of the algorithm is to build hierarchies and then 
assign points to clusters [21]. The workflow can be summarized as:

 – Assign each data point to its own cluster
 – Find the closest pair of cluster using Euclidean distance and merge them into one 

single cluster
 – Calculate distance between two nearest clusters and combine until all items are 

clustered in to a single cluster.

What are the most important parameters in hierarchical clustering?
 – Number of clusters: again, there is no general recipe on how to find the optimal 

number of clusters. However, we suggest to notice which vertical lines can be cut 
by horizontal line without intersecting a cluster and covers the maximum dis-
tance. This can be done by building a dendrogram [22]. An example of dendro-
gram is shown in Fig. 9.5.

Advantages/disadvantages of hierarchical clustering

Advantages

 – The dendogram as algorithm output is quite understandable and easy to 
visualize it.
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Disadvantages

 – Compared to k-means, Time complexity of at least O(n2 log n) is required, where 
‘n’ is the number of data points

 – Much more sensitive to noise outliers

9.9  Conclusion

 – Two major classes of machine learning algorithms exist: supervised and unsu-
pervised learning. The first class is mainly used to predict outcomes by using 
some input features, the second class is used to cluster ‘unlabeled data’.

 – There is no recipe for choosing a specific algorithm and there is no perfect 
algorithm. You have been presented to major advantages and disadvantages of 
all the listed algorithms. It is useful to remember that an extreme complexity 
of the algorithm might increase the risk of overfitting

 – We recommend the user to focus on a very careful preparation of the data 
before building a model (see previous chapters). In fact, a recent review [23] 
pointed out how classification algorithms suffer from quality of the input 
data.
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Chapter 10
Reporting Standards and Critical 
Appraisal of Prediction Models

Leonard Wee, Sander M. J. van Kuijk, Frank J. W. M. Dankers, 
Alberto Traverso, Mattea Welch, and Andre Dekker

10.1  Introduction

In the practice of modern medicine, it is often useful to be able to look into the 
future. Here are two illustrative situations that readers of this book chapter may 
already be familiar with:

 (i) When meeting a patient in the consultation room, a physician may wish to fore-
tell, given the presence of a certain combination of risk factors, what is the 
likely long-term outcome (i.e. prognosis) of this particular disease?

 (ii) When faced with a choice of multiple feasible interventions to offer, a physician 
may wish to forecast, given the particular characteristics of this patient and the 
specifics of their condition, what is the specific benefit that ought to be expected 
from each treatment option?
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We take as given that quantitative clinical prediction models do already, and will 
continue to, play an important clinical role. In the first example, one attempts to 
offer a prognosis, which is dependent on the etiology and evolution of the disease, 
but has nothing to say about what an optimal treatment might be. In the second 
example, a model is used to project from the present time to a probable future out-
come of treatment(s), and is useful for selecting an optimal treatment from a set of 
competing alternatives. For the purpose of reporting standards and critical appraisal, 
we shall not need to distinguish between predictions of prognosis (the former) and 
predictions of treatment outcome (the latter), since the subsequent discussions 
applies equally to both.

Transparent reporting is a necessary condition for taking prediction models from 
early development into widespread clinical use. The process involves progressive 
phases [1] from:

 (i) development; where you intend to inform others about the creation of your 
model,

 (ii) validation; where you demonstrate how your model performs in increasingly 
more generalizable conditions,

 (iii) updating/improving; where you add new parameters and/or larger sample 
sizes to your model in an attempt to improve its accuracy and 
generalizability,

 (iv) assessment; where you monitor the effect of the model on clinical workflows 
and assess health economic impacts within a controlled environment, and 
lastly,

 (v) implementation; where you would deploy the model into widespread use and 
observe its long term effects in routine clinical practice.

Critical appraisal is the systematic and objective analysis of descriptions in a 
piece of published scientific research in order to determine: (i) the methodological 
soundness of the steps taken in the study to address its stated objectives, (ii) assump-
tions and decisions made during the conduct of the study that may have introduced 
bias into the results, and (iii) the relevance and applicability of this study to the 
research question in the mind of the reader. The central purpose of the appraisal is 
therefore to evaluate the likelihood that a model will be just as accurate and as pre-
cise in other studies (e.g. different patient cohorts, different investigators, different 
clinical settings) as it was proved within its own study. This requirement for model 
generalizability is known as external validity. This is a perspective distinct from 
internal validity, where a study is shown to be logically self-consistent and meth-
odologically robust only within its own setting, using the guiding principles given 
in the previous chapters in Part 2.

Good quality of reporting about prediction models is essential at every step in 
translation to clinic, to adequately understand the potential risks of bias and poten-
tial generalizability of a model. Biased reporting could result in promising models 
not being brought rapidly into clinical practice, or worse, inappropriate models are 
used in clinical decision-making such that they cause harm to patients. Both ulti-
mately lead to wasted resources in healthcare because physicians and patients are 
either deprived of a useful clinical tool or sub-optimal clinical decisions are made 
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due using a non-valid model. A more common problem that has now come to light 
is inadequate reporting [2], where there is insufficient documentation to reproduce 
the model and/or understand the limits of its validity.

10.1.1  Chapter Overview

The previous chapters in this book have primarily focused on internal validity of 
prediction models. Here, we shall switch our focus towards understanding 
external validity and consider the general process of critically appraising a pub-
lished model. In the restricted scope of this chapter, we shall give attention to 
critical appraisal in development and validation studies. Issues pertaining to 
model update, impact assessment and clinical implementation are only briefly 
touched upon.

The content is organized as follows. We begin with a brief recapitulation of the 
methodological aspects of model development and model validation, emphasizing 
specific aspects that will be important for critical appraisal. We then introduce the 
TRIPOD (Transparent Reporting of a multivariable prediction model for 
Individual Prognosis Or Diagnosis) checklist [3, 4] for reporting and discuss the 
significance of its major elements in regards to reproducibility and validity. Our 
perspective next shifts towards critically appraising reports of predictive models 
that have been published in literature. There are common misunderstandings that 
TRIPOD can be either a checklist for designing a prediction modelling study or a 
checklist for critical appraisal, or both – it is in fact neither. We thus introduce the 
CHARMS (CHecklist for critical Appraisal and data extraction for systematic 
Reviews of prediction Modelling Studies) checklist [5], that was designed for 
critical appraisal and information extraction in evidence synthesis from multiple 
published studies.

Also given the restricted scope of this chapter, we will enter into a brief overview 
of systematic reviews of prediction modelling studies, however the specifics of 
quantitative meta-analysis of multiple models will be outside the current scope. 
References to methodological developments in this area and some guidelines on the 
topic will be provided.

10.2  Prediction Modelling Studies

Prediction modelling studies can be loosely categorized into development, valida-
tion, update, impact assessment and implementation studies. The quantity and 
robustness of clinically-derived evidence needed to support the model increases in 
roughly the same order. For reporting requirements and critical appraisal, we devote 
our attention on the first two – development and validation.

During model development, the primary focus is selecting from a measured set 
of characteristics (variously referred to as predictors, covariates, factors, features, 
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markers, etc.) and then combining them within a statistical framework in such a 
way as to yield dependable forecasts when new (hitherto unobserved) observa-
tions are given.

In contrast, model validation (with or without model update) refers to testing an 
already-developed model by exposing it to a diverse range of new inputs where the 
ground truth is already known, ideally as independently as possible using cohorts 
and clinical settings that are different from the one used to develop the initial model.

10.2.1  Development

We briefly recapitulate concepts that were discussed in previous chapters. In the 
main, our discussion is about multivariate predictive models, such that two or more 
predictors have a correlative mathematical relationship with some expected out-
come (of a diagnosis, or a prognosis or from a treatment intervention).

Other methodological studies have already pointed out the importance of defin-
ing in a study protocol, as far in advance as possible, key aspects of the prediction 
modelling study such as its objectives, study design, patient population, clinically 
relevant outcomes, selected predictors, sample size considerations, and the intended 
statistical methods to be used [6–10]. As with any other kind of clinical study, inter-
nal review and iterative refinement of the protocol is highly desirable, since poor ad 
hoc decisions made during model development may often lead to biased results.

Principal among the potential biases in multivariate prediction modelling is the 
phenomenon of “overfitting” (also known as over-training) of a model such that an 
excessive number of predictors have been fitted to random fluctuations in the devel-
opment cohort rather than to the true underlying signal. This caveat is of particular 
significance in an era of high throughput semi-automated measurements that extract 
very large numbers of potentially explanatory predictors (e.g., genomics, pro-
teomics, metabolomics, radiomics, etc.) from a single source (e.g., blood, biopsy 
sample or radiological images). overfitting will become apparent when the predic-
tive performance of the model in the development cohort is found to be generally 
over-optimistic when tested in fully independent cohorts; this often deals a fatal 
blow to the overall generalizability and widespread clinical utility to said model.

The risk of overfitting is exacerbated when multiple candidate predictors are 
combined with automatic predictor-selection algorithms that seek to optimize pre-
dictive performance within the development cohort [11]. This leads to rapid infla-
tion of the false positive association risk, thus also leading to poor generalizability 
of models.

There are some sound strategies to mitigate risk of overfitting. Among  
these,internal cross-validation is widely practiced; the development cohort is 
divided into a (relatively larger) sub-cohort for fitting the model and a (relatively 
smaller) sub-cohort for testing the performance of the model. To avoid vagaries of 
sub-sampling, “k-folds” can be used where the development cohort is split even 
further into k equally-sized factions, then each of the k factions may be used one 
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after another as the internal validation cohort for a model developed on the  remaining 
(k-1) factions. Repeated cross-validations may also be used simultaneously within 
k-fold cross-validation, such that investigators apply multiple random assignments 
of patients into the two initial sub-cohorts.

Dimensionality reduction is a powerful a priori method for reducing the risk of 
overfitting and increasing generalizability. If some predictors are known (by earlier 
experiments) to be highly irreproducible due to some unsolved instability in the 
measurement, or if the measured value differs greatly from one observer to another, 
it may turn out to be preferable to exclude these predictors from statistical analysis. 
This method sacrifices some potential explanatory power in favour of better repro-
ducibility and wider generalizability of the finished model. Note however, that a 
priori dimensionality reduction should not utilize the intended primary outcome as 
the basis of eliminating predictors, otherwise there will be an attendant risk of con-
taminating the selected predictors with some implicit information correlated to the 
desired outcome.

A further possibility to reduce overfitting is  toincrease the sample size, i.e. num-
ber of individual cases in the development cohort. An oft-quoted rule of thumb is “at 
least 10 events per predictor”. That is, there should be an order of magnitude rela-
tionship between sample size and the number of pre-selected predictors. Note that 
adherence to the rule of thumb does not imply guaranteed protection against overfit-
ting, merely that the risks of over-training one’s model is somewhat reduced.

Increasing sample size or widening the patient enrolment is not always feasible. 
In retrospective modelling studies, it may be possible to return to the original repos-
itory of data and “mine” for additional cases. Likewise, in prospective studies, there 
may be sufficient resources to run case enrolment over a longer time interval or to 
expand recruitment. However, one generally encounters some sort of practical, 
logistic, regulatory or political barrier that limit the possibilities on increasing the 
sample size. With indiscriminate loosening of the inclusion criteria, there is an 
inherent danger of injecting excessive clinical heterogeneity into the development 
sample, for which there is no way to account for these variations using the existing 
predictors.

10.2.2  Validation

During model development, especially when using automated predictor selection 
algorithms, it is usually unavoidable that predictive performance of the model will 
be assessed on the same data that was used to construct the model. Interim assess-
ments of performance in multivariate prediction models should at least test for cali-
bration [4, 12] and discrimination. An appropriate discrimination metric would be 
the area under a receiver-operator curve in the case of binary outcomes, and the 
hazard ratio in the case of time-to-event predictions. However, this will not be suf-
ficient to detect biases in the model; such interim evaluations will always be much 
too optimistic in regards to predictive performance.
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The primary function of validation is to determine the limits of generalizability 
and transportability of the model. Therefore, after finalizing a model that is well- 
calibrated and properly fitted to the development cohort data, it is necessary to eval-
uate this model in other data that has hitherto never been “seen” before, i.e. an 
independent validation cohort. The observed characteristics for every instance in the 
validation cohort must be put into the model and its predictions shall be compared 
with the actual outcome. The validation cohort may differ from the development 
cohort in the following ways:

 (i) Time-shifted; the validation cases may be collected by the same investigators 
as those that constructed the model, but the new cases were collected from a 
different time period;

 (ii) Institution-shifted; the validation cases are assembled by a different team of 
investigators operating in a different hospital/institution, but usually retaining 
the same definitions of the input predictive factors.

 (iii) Setting-shifted; the validation cases are collected in a different clinical prac-
tice setting on individuals with the same condition, but the definitions of the 
input predictive factors may be slightly different or slightly broader.

 (iv) Population-shifted;  thevalidation cases are from individuals presenting in an 
intentionally different medical context (e.g., different kind of index disease, or 
applying a model developed on adults to a paediatric population).

Each of these shifts progressively tests the validity of the model in increasingly 
generalized situations. A reason why model performance depends on time span, set-
tings and populations can be traced to the spectrum effect; since most external vali-
dation cohorts involve relatively small samples, it would be unlikely that the 
distribution of predictor values would match in both cohorts. The results in valida-
tion thus appear “compressed” towards one or the other extreme of predicted 
outcomes.

As in model development, a validation study should also describe predictive per-
formance in terms of calibration on the instances in the validation cohort and either 
discrimination (in the case of binary outcomes) or hazard ratios (in the case to 
time-to-event).

10.2.3  Updates

Following validation, a model might be shown to be transferable to a new situa-
tion, but this is generally not the case in the early history of model evolution. 
Updating a model (for example, adjusting the predictor coefficients) and/or re-
training the model on new data can be validly performed to improve overall per-
formance and increase generalizability. The caveat, however, is not to re-estimate 
the coefficients nor to re-calibrate the model using solely the validation data. In 
effect, this neglects the predictive potential contained in the development data. 
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Since validation cohorts typically contain fewer cases than development cohorts, 
doing so would risk rendering the updated model less generalizable and more 
susceptible to overfitting.

A model can be updated by shifting the baseline risk, rescaling the regression 
coefficients of the existing predictors, re-fitting the coefficients using added data or 
selecting a different set of predictors. Combinations of the above may also be 
applied. A suggested approach would be to first analyse the underlying statistical 
and clinical heterogeneities in the two data sets. Only if clinically meaningful, it 
would be advisable to combine individual records in both cohorts and re-develop a 
new model, either with or without fresh predictor selection. A new cohort would 
thus be required for independent validation.

10.2.4  Impact Assessment and Clinical Implementation

An assumption that needs to be challenged is that access to predictive models 
will lead to improved clinical care. The basis of the assumption is that predictive 
models could support medical decision-making and hence improve patient out-
comes. This can only be properly tested in impact and implementation studies. 
Such studies could, among other possible endpoints, compare physicians’ 
behavior, patient- centred outcomes and overall cost-effectiveness of care when 
using the predictive model versus without using such a model. This is only a 
reasonable prospect for models that have multiple validated and/or updated for 
better generalizability.

While the preferred study design may be individually randomized controlled 
clinical trials of long-term patient outcomes, there is indeed place for short-term 
process evaluation studies and cluster-randomized trials assessing health eco-
nomic impact and behavioural changes amongst physicians. Randomization of 
individuals can sometimes be problematic due to contamination between groups; 
physicians having to alternate between using or not using the model may still 
retain some memory of the model outcomes from previous patients. If the study 
considers behavioral changes on the patients’ side, as may be the case in model 
implementation studies in shared decision-making, one must be aware that 
patients are likely to exchange information about the model results with each 
other.

10.3  Reporting Your Own Work

It is assumed that the majority of readers will be interested in developing and inde-
pendently validating models pertinent to their area of expertise. Quality reporting of 
any work in development and validation has the twofold objective of: (i) informing 
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others in your area of expertise about what models did (or did not) perform ade-
quately under specifically constrained circumstances and, (ii) assists other investi-
gators who may be attempting to reproduce and/or validate your prior work. 
Unbiased reporting of all work helps avoid wasteful duplication of efforts and accel-
erates the evolution of a model towards widespread utilization.

10.3.1  Purpose of Transparent Reporting Guidelines

The TRIPOD statement [3] (and its related explanation and elaboration document 
[4]) was developed as a  consensusguideline for what a majority of investigators 
would consider essential for reporting of multivariate prediction modelling research. 
The statement contains 22 essential items, which are then summarized in a checklist 
that can be easily downloaded for use [13]. TRIPOD specifically focuses on studies 
involving development, validation or a mixture of both (with or without model 
updating). While most items are relevant to studies of both developmental and vali-
dation nature, a few items on the checklist are marked as only relevant to one or the 
other.

It is not productive here to examine each item in TRIPOD one by one. What we 
will focus on are the major themes that emerge from multiple items taken together, 
relating to methodological integrity and wider validity of your work.

10.3.2  Context

As in all other publication concerning clinical research, a clear explanation of con-
text is required such that the reader fully understands what kind of patients, dis-
eases, diagnoses or interventions and outcomes that the work will address. A 
summary of patient characteristics, eligibility, selection/inclusion method and any 
exclusion criteria is important to clarify the “case-mix” within which the model was 
developed/validated. A flow diagram detailing how many patients were lost and car-
ried over to the next step of the process is essential, rather than a solitary number 
stating sample size. This can help to clarify if there had been any patient selection 
or systematic exclusion biases that might restrict the potential applicability of the 
model to other situations. Pertaining to potential case mixture mismatch during vali-
dation, it is also essential to discuss and compare (for example, with a suitable 
hypothesis test of group difference) the characteristics of the development and vali-
dation cohorts.

Study design is a further essential component of the context. It needs to be 
stated as clearly and as early as possible what is the ultimate clinical objective/
outcome to be modelled (if building a model) and/or which specific model is 
being validated. If an update to an existing model is to be attempted, it should be 
stated whether the intention of the study was to attempt a model update, or whether 
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there had been a post hoc decision to introduce new data into the model. TRIPOD 
gives a classification system from Type 1 up to Type 4, akin of levels of evidence 
of external validity, based on whether all of the cohort data was used to construct 
the model, if there was in-cohort splitting or if an entirely separate data set was 
used to evaluate the model.

10.3.3  Sample Size, Predictors and Predictor Selection

Unlike conventional clinical trials with controls, there are no simple tools to calcu-
late the required sample size for a multivariate prediction modelling study. In gen-
eral, the number of predictors in the model has not been determined prior to 
conducting the statistical analysis for model building. In validation, the number of 
predictors in the existing model is known. In both cases, it will be necessary to jus-
tify whether the sample is sufficiently large in terms of the absolute number of target 
events. As a rough guide, it would prove difficult to defend or validate the perfor-
mance of a predictive model if there are fewer than 10 target events in total in the 
subject cohort. An aforementioned “rule of thumb” – at least 10 events per predic-
tor – will be a useful guide as to whether it is possible to develop/validate a model 
on a given cohort.

Therefore, it is essential to document the final number of target events available 
(after exclusion of unsuitable cases) and the number of predictors used. The source 
of the data should be clearly identified, be it retrospective data interrogation, pro-
spective case enrolment or extraction from a disease registry. The source of patient 
data and the final sample size should be justified in regards to the objective of the 
study and intended application of the finished model.

In model development, there should be a very clear statement of the number of 
predictors before and after any kind of automated predictor selection algorithm has 
been applied. In regards to potential overfitting, the number of predictors available 
before predictor selection is a better surrogate for risk of overfitting, since a model 
optimization algorithm will generally expose this number of predictors to the target 
outcome. Whenever used, the predictor selection algorithm and model optimization 
process should be clearly documented in the methods section. At the end, the 
selected predictors should be unambiguously defined, including how and when the 
predictor was measured.

If performing model validation, it is also essential to document the manner in 
which the existing predictors have been measured. Major deviations from the pre-
scribed predictor measurement method(s) must be clearly stated in the validation 
report. The method of calculating the predicted value must be reported. Furthermore, 
it is important to document whether or not the assessors of the actual outcome were 
blinded with respect to the calculated prediction. If assessors of outcome are aware 
of the individual prediction result, one should acknowledge that there is some risk 
of confirmation bias such that assessors may (without consciously intending to) bias 
their assessment towards (or against) the prediction.
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10.3.4  Missing Data

Missing data (including unobserved predictors in a validation cohort) occupies a 
single item in the TRIPOD checklist, yet it may have a disproportionately strong 
impact on the outcome of a study. It is often the case that potentially useful predic-
tors may contain some null values, either because information on some individuals 
was lost during data collection, was not measured or simply not disclosed in the 
source documents. In a validation cohort, it is possible that a required predictor has 
not been measured at all, or has been measured in an irreconcilable manner to the 
original work (for example, incompatible toxicity grading systems).

Previous chapters discussed in detail how data elements that are systematically miss-
ing can have a strong biasing effect on a model, therefore one must report how missing 
values (predictors) were managed, including any kind of data imputation method (if 
used). This applies equally to reports on model development and model validation.

10.3.5  Model Specification and Predictive Performance

The major portion of TRIPOD is concerned with reporting the performance of a 
prediction model or after update to an existing model. The model itself needs to be 
fully specified in terms of the type of statistical model used (e.g., Cox Proportional 
Hazards), the regression coefficients for all of the final predictors (also confidence 
intervals for each predictor) and an event rate at a fixed time point for each sub- 
group of individuals. If risk groups (stratification into different discrete categories 
based on result or time to event) are created, then it must also be clearly specified 
how the stratification was done.

Assuming the abovementioned details are easily located in your report, the read-
ers will wish to know how well your model performed at its assigned task. Metrics 
will be required to demonstrate how well calibrated a model is, and how well it 
serves to discriminate between different outcomes. A calibration plot is the pre-
ferred format for the former, where predicted versus actual probabilities of out-
comes are graphed against each other. There will be some choice in regards to a 
discrimination metric, where area under a receiver-operator curve is commonly 
reported for binary outcome classifications and hazard ratios derived from a Cox 
model is widely used for time to event models. The TRIPOD supplementary docu-
ment also cites other options for quantifying the discriminating power of a model.

10.3.6  Model Presentation, Ease of Interpretation 
and Intended Impact

Lastly, the developer of a prediction model should clearly explain how and when it 
is intended to be used. Complex models with several predictors are often unwieldy 
to use without the aid of a computer. For instance, if  amodel is meant to be used 
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on hospital ward rounds, then it needs to be presented in a form where it can be 
easily and unambiguously interpreted without the use of a computing device. 
Examples of suitable formats of model include nomogram charts and risk-score 
charts. If graphs or response curves are to be used as part of the model, discrete 
points on the curve should be made easily readable as a side table, since approxi-
mately interpolation from tabulated values is likely to be less error-prone that read-
ing a graph by eye alone. In the present age of web-browser enabled personal 
phones, the option also exists to publish predictive models as interactive electronic 
interfaces; a number of such models are available for public access at the website: 
www.predictcancer.org.

In the discussion section of the report, in addition to addressing the limitations 
and likely limitations of applicability of the model, it is also important to explore the 
clinical significance of the model. For instance, which aspect of clinical practice or 
medical decision-making is likely to be affected by the use of this model? 
Specifically, a model should attempt to re-direct the course of medical care or 
change the way in which an individual’s condition is being managed. Given this 
ambition, it is then possible to assess whether the predictive performance of the 
model and the intended context of use of the model will be fit for purpose. It is also 
important to consider how sensitive a model is to a particular measurement or obser-
vation  – for example, would the predicted outcome change in a counterintuitive 
direction or disproportionate magnitude, relative to small uncertainties in measure-
ment or rating of a given predictor? If the model is to intended to be used to support 
early diagnosis of a condition, then the reliable information needed to compute risk 
has to be available before the patient commences treatment or in-depth diagnostic 
investigation.

10.4  Critical Appraisal of Published Models

If we recall that the primary design principle of the TRIPOD checklist was to 
guide the reporting of prediction model development, validation and update stud-
ies, then it is clear that a complementary guidance document is required. The 
CHARMS checklist [5] was designed to provide guidance on how to search for 
multivariate modelling studies, how to select these on the basis of general validity 
and how to assess the applicability of a published model to a particular clinical 
problem.

There are two noteworthy distinctions between TRIPOD and CHARMS. First, 
TRIPOD does not prescribe how prediction modelling studies should be performed, 
merely how studies (regardless how well or poorly designed) ought to have  common 
reported elements. Second, using TRIPOD as a checklist for critical appraisal is not 
helpful, since the presence or absence of a particular reported element does not 
necessarily connect with a risk of bias in the model. Critical appraisal  emphasiz-
esrisk of bias and broad applicability of a model, thus one must assess a reported 
model on the basis of what alternative methodological choices could have been 
made by the model developers, and whether their actual choices had led to a com-
promised model.
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With a proliferation of predictive modelling papers, one could readily encounter 
multiple models all purporting to address the same target outcome. Some of these 
models may conflict with each other, and more than a few will suggest predictive 
power of quite divergent predictors for the desired outcome. Systematic search, 
assessment of bias and evidence synthesis from multiple published models is there-
fore an important, even necessary, effort to improving the state of clinical predic-
tions as a scientific discipline.

10.4.1  Relevant Context of Prediction Modelling Studies

The CHARMS document consists of 2 parts. The first relates to framing a research 
question about prediction models, then defining a search strategy and to develop 
inclusion/exclusion criteria for what kind of studies to put into a review. Critical 
appraisal implies that the reviewer already has a research question or a clinical prob-
lem in mind, therefore it is essential to match the search and selection of modelling 
studies to fit the context of the research or clinical issue. This connects with the 
contextual elements of TRIPOD, such as whether the target condition, patient popu-
lation, predictor measurements and primary outcomes of the published work actu-
ally match with the question in mind. This further includes considerations such as: 
(i) is the problem about making a diagnosis/prognosis or about selecting a particular 
intervention, (ii) at what time point in the clinical workflow is a prediction needed, 
and (iii) what kind of modelling study is required to answer the question – develop-
ment, validation or update.

Following a concrete formulation of a research question about predictive models, 
it is then possible to design a literature search strategy [14–16], and establish inclu-
sion/exclusion criteria for which papers to review.

10.4.2  Applicability and Risk of Bias

In addition to, but not mutually exclusive with, the abovementioned general assess-
ments about the contextual relevance of a published study, CHARMS denotes cer-
tain elements as addressing the applicability of the study outside of its original 
setting and other elements as addressing the potential for biased findings about 
model performance. Naturally, some elements of critical appraisal address both.

Elements that address applicability of the model to other settings include:

 (i) Did the modelling study select a representative source of individual data?
 (ii) Were there differences in the treatments administered (if any) that does not 

match your question?
 (iii) Will the predictors, its definitions and its methods of measurement match what 

you intend to do?
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 (iv) Does the desired outcome, its definition and its method of assessment match 
what you intend to do?

 (v) Does the time point of the predicted event match what you intend to use the 
model for?

 (vi) Is the performance of the model, in regards to calibration and discrimination, 
fit for purpose in regards to the clinical decisions that have to be made as a 
consequence of the prediction?

Some of the elements that address the risk of biased estimation of model behav-
ior include:

 (i) Was an appropriate study design used to collect information for model devel-
opment? For example, a prospective longitudinal cohort design would be ideal 
for prognostic/treatment outcome prediction model development, but random-
ized clinical trials data, retrospective cohorts or registry extractions are often 
selected as pragmatic alternatives. The concern with randomized trials is that 
excessive selectivity of patients may not represent the wider population. 
Retrospective cohorts are highly susceptible to problems concerning handling 
of missing data. Registry extractions may yield large numbers of individual 
cases, but one needs to be mindful of the total number of target events together 
with significantly reduced detail of the observations/measurements.

 (ii) Was the target outcome in the development and validation cohorts always 
defined the same way, objectively assessed in the same way and were the out-
comes assessors blinded to the values of the candidate predictors? If the answer 
to one or more of these is no, then there is a risk that the model performance 
has been affected to some degree by interpretation bias, measurement bias and/
or confirmation bias.

 (iii) Was the number of candidate predictors and manipulation of the predictors 
during statistical analysis (e.g. premature dichotomization of continuous, cat-
egorical or ordinal values) reasonable for the number of target events seen? 
The former specifically relates to the risk of overfitting of the model on the 
development cohort (as we have discussed above) and the latter pertains to 
sensitivity of the model to arbitrary threshold cut-offs used for 
dichotomization.

 (iv) Were missing values handled in an appropriate fashion? The risk of selection 
bias increases if a complete-cases analysis was used without testing whether 
the missing values were truly missing at random. If missing values had been 
imputed using surrogates of the target outcome, there is a risk of association 
bias since a correlation with the expected outcome has been introduced into the 
candidate predictors.

 (v) Was predictor selection and regression coefficient fitting performed in a rea-
sonable manner? There will be an elevated risk of predictor selection bias if 
single predictors with large (but spurious) correlation with the target outcome 
in univariate analysis are selected for inclusion into a multivariable model. A 
methodologically robust method is backwards stepwise multiple regression, 
such that predictors are recursively eliminated one by one to find the most 
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parsimonious model with the equivalent predictive performance as all the pre-
dictors. A modelling error occurs if the assumptions of the statistical model 
applied (e.g., constant hazard rate over time) is not actually met by the data.

 (vi) Was the evaluation of model performance done in a sufficiently independent 
dataset? It is well known that evaluating a model in the same development 
cohort least to over-optimistic estimates of predictive performance. A valida-
tion cohort may be temporally or contextually shifted with respected to the 
development cohort, but failure to understand how the cohorts differ will lead 
to a biased assessment of the model. A related concern is whether the distribu-
tion of observed predictor values are equivalent in the development and valida-
tion cohorts.

10.4.3  Systematic Reviews and Meta-analyses

Reporting guidelines for systematic reviews of clinical trials, such as the PRISMA 
(Preferred Reporting Items for Systematic Reviews and Meta-analyses) guidelines 
[17], are relatively mature and are being enforced by some journal editors. Similarly 
matured and widely applied guidelines for massed evidence synthesis on prediction 
modelling studies currently do not exist, but there is growing methodological 
research into the question [18].

Examples of systematic reviews of prediction models share a number of com-
mon themes as their clinical trials counterparts, chiefly: (i) a clear statement of the 
research question in terms of the population, context applicability and intended use 
of the models, (ii) a definitive search strategy for articles, with strict adherence to 
inclusion and exclusion criteria, (iii) assessment of the risk of bias in each included 
article and, (iv) an attempt at quantitative summary (i.e., meta-analysis) of perfor-
mance metrics across all included articles. The potential sources of bias for predic-
tion model development, validation and update stand quite distinctly apart from 
those in clinical trials, therefore the CHARMS checklist should still be used as the 
main conceptual component for formulating a systematic review of this kind. With 
rapid advances in “big data” and data sharing technologies, it becomes increasingly 
feasible that one may attempt to develop, validate and update predictive models 
using vast numbers of records gleaned either from electronic health records by 
accessing the individual cases in published models [12].

10.5  Conclusion

This chapter connects with the others by utilizing statistical concepts relating to 
model building and model testing that have been previously discussed, and acts as a 
bridge to further chapters that examine challenges and opportunities for bringing 
models into routine clinical use. This chapter may be used as a stand-alone source, 
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such that the reader understands the central matters in reporting on their own multi-
variable prediction models, and what key themes to look for when critically apprais-
ing published work on other models for validity and applicability to their own 
situation. Detailed checklists in the form of TRIPOD and CHARMS have been 
introduced, along with references to expansions and elaborations of such tools. 
Growing topics in methodological research such as clinical impact studies and evi-
dence synthesis of multiple models (with and without a connection to “big data”) 
have been briefly touched upon. Far from being a complete survey of reporting 
standards and critical appraisal, the driving motivation has been to equip the reader 
with insight of the most essential major themes, and to provide literature references 
where deeper detail on specific topics may be explored.
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Chapter 11
Clinical Decision Support Systems

A. T. M. Wasylewicz and A. M. J. W. Scheepers-Hoeks

11.1  Introduction on CDSS

11.1.1  What Is CDSS?

Clinical decision support includes a variety of tools and interventions, computer-
ized as well as non- computerized. Non-computerized tools include clinical 
guidelines or digital clinical decision support resources like ClinicalKey® or 
UpToDate ® [1, 2]. Such clinical decision support systems (CDSS) are character-
ized as tools for information management. Another category of CDSS sometimes 
also called basic or simple clinical decision support systems are tools to help 
focus attention. Examples of such CDSS include laboratory information systems 
(LISs) highlighting critical care values or pharmacy information systems (PISs) 
presenting an alert ordering a new drug and proposing a possible drug-drug inter-
action [3, 4]. Most focus in the past few decades however has gone to tools to 
provide patient-specific recommendations called advanced CDSS. Advanced 
CDSS  mayinclude, for example, checking drug disease interactions, individual-
ized dosing support during renal impairment, or recommendations on laboratory 
testing during drug use.
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11.1.2  Why CDSS?

The quantity and quality of clinical data are rapidly expanding, including elec-
tronic health records (EHRs), disease registries, patient surveys and information 
exchanges. Big data and digitalization however, does not automatically mean bet-
ter patient care. Several studies have shown that only implementing an  EHRand 
computerized physician order entry (CPOE) has rapidly decreased the incidence 
of certain errors, introducing however many more [5–7]. Therefore, high-quality 
clinical decision support is essential if healthcare organizations are to achieve the 
full benefits of electronic health records and CPOE. In the current healthcare set-
ting when facing a decision, healthcare providers often do not know that certain 
patient data are available in the EHR, do not always know how to access the data, 
do not have the time to search for the data or are not fully informed on the most 
current medical insights. It is said the healthcare providers often drown in the 
midst of plenty [8–10].

Moreover, decisions by healthcare professionals are often made during direct 
patient contact, ward rounds or multidisciplinary meetings. This means that many 
decisions are made in a matter of seconds or minutes, and depend on the healthcare 
provider having all patient parameters and medical knowledge readily available at 
that time of the decision. Consequently, current decisions are still strongly deter-
mined by experience and knowledge of the professional. Also, subtle changes in a 
patient’s condition taking place before hospital- or ward admission are often over-
looked because clinicians regularly perceive a patient in his current state without 
taking into account changes within normal range. A computer however, takes into 
account all data available making it also possible to notice changes outside the 
scope of the professional and notices changes specific for a certain patient, within 
normal limits.

11.1.3  Types of CDSS

To understand literature on the topic of CDSS and familiarize oneself on the subject 
it is important to categorize the vast array of CDSS. Categorization of CDSS is often 
based on the following characteristics: system function, model for giving advice, 
style of communication, underlying decision making process and human computer 
interaction which are briefly explained below [11].

The characteristic ‘System function’ distinguishes two types of functions. 
Systems determining: what is true?: These include purely diagnostic CDSS like 
many popular differential diagnosis websites like Diagnosaurus® or WebMD® [12, 
13]. These CDSS base their advices on a fixed set of data that is user inputted or 
readily available. The other type of CDSS determine: what to do?, advising which 
test to order with the purpose of further differential diagnosis or which drug to pre-
scribe for the patient’s current condition. However, this distinction is of limited 
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value as most current integrated CDSS almost always do both: first determine what 
is true about a patient and then suggest what to do.

Another parameter of CDSS is the approach to give advice, either passive or 
active. Passive CDSS require the user to do something to receive advice, for exam-
ple clicking a button or opening a tab. These passive types however, have been 
abandoned for most part because of their lack of efficacy and dependence of human 
involvement [14, 15]. A challenge of active systems is to avoid the generation of 
excessive amount of alerts, causing alert fatigue with the user. This topic is dis-
cussed further on in the paragraph on alert fatigue. A closely related characteristic 
commonly used to categorize CDSS is  thestyle of communication, distinguishing a 
consulting and critiquing model. In a consulting model the system is an advisor, 
asking questions and proposes subsequent actions. For example, when entering a 
medication order, the computer asks for the diagnosis and advises the right dose or 
an alternative treatment. A critiquing system lets the user decide the right dose for 
itself and only afterwards alerts the user that the dose prescribed for this therapy is 
too low.

Human computer interaction is another clinical decision support system charac-
teristic. How does a user interact with the computer? Historically CDSS were slow, 
difficult to access and difficult to use. However, modern day computing power, elec-
tronic health record integration and computer mobility have made these problems of 
the past. However, human computer interaction is still a good way to categorize 
CDSS describing EHR integration or overlay, keyboard or voice recognition and 
advice by means of pop-ups, acoustic alarms or messaging systems.

The last commonly used characterization of CDSS, and perhaps the most inter-
esting, is the underlying decision-making process  ormodel. The simplest models 
are problem-specific flowcharts encoded for computerized use, these are discussed 
further on. With the availability of additional statistical models, mathematical tech-
niques and increasing computing power, much more complex models have been 
researched and used since, like Bayesian models [16, 17], artificial neural networks 
[18], support vector machines [19] and artificial intelligence [20]. Many of these 
systems are used to improve prediction of outcome, prioritize treatment or help 
choosing the best course of action. Use of such systems in practice however is 
delayed mainly because of trust issues towards ‘black box’ systems. If a computer 
tells you to start drug A for a patient based solely on a mathematical model, without 
a guideline to back it up, are you convinced to do it? Linked to the major trust issue 
towards ‘black box’ systems is the current model of evidence based medicine and 
concurrent guidelines based on these studies. Are you willing to ignore an interna-
tional guideline saying you should start a patient on drug A only because your 
CDSS says you should start the patient on drug B?

Decision tree models are the oldest but still most used models in clinical practice 
today. These CDSS use a tree-like model of decisions consisting of multiple steps 
of ‘if then else’ logic. Figure 11.1 shows an example of such a decision tree model. 
These models have the advantage of being interpretable by humans and follow logi-
cal steps based on conventional medical guidelines. Such decision tree models are 
also called clinical rules (CRs), computer-interpretable guidelines (CIGs) or 
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Fig. 11.1 Part of the clinical rule gastric protection, represented in GLIF, created in CDSS Gaston 
(Medecs BV). (Picture adopted from Scheepers et al. 2009 [14])
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 decision support algorithms. [15] Instead of predicting outcome or best therapy, a 
CDSS only automatizes information gathering and provides advice in accordance to 
a guideline.

The next few paragraphs will focus on CDSS that determine both what is true? 
and what to do?, as well as the use of mainly active critiquing advice and the use of 
a decision tree model as underlying decision making process.

11.1.4  Medication Related CDSS

From a historical point of view, medication related CDSS seem to go the farthest 
back and are likely to have the largest potential for benefit [21]. They date back as 
long as the 1960s [22]. They supported pharmacists with drug allergy checking, 
dose guidance, drug-drug interaction checking and duplicate therapy checking. 
Medication related CDSS took further shape when directly linked to computer-
ized physician order entry (CPOE) [23]. CPOE being the system that enabled 
physicians to prescribe medication using electronic entry. The combination of 
CPOE and CDSS helped physicians choose the right drug in the right dose and 
alert the physician during prescribing if for example the patient is allergic. 
Combining CPOE with basic medication related CDSS meant a giant leap in safer 
medication prescribing [24, 25]. However, all of the checks mentioned above fol-
low simple ‘if then else’ logic and do not combine multiple patient characteristics 
when producing alerts. This addition came with the introduction of advanced 
medication related CDSS.

Such advanced CDSS follow decision tree based models and can assist the physi-
cian in dosing medication for patients with renal insufficiency, provide guidance for 
medication-related laboratory testing and perform drug – disease contraindication 
checking [23, 26]. Parameters incorporated into medication related CDSS rose 
steadily in the past few decades including pharmacogenetics and more and more 
drug disease interactions.

Many current EHRs with integrated CDSS however, still fail to provide guid-
ance relevant to the specific patient receiving care, poorly presenting data and 
causing alert fatigue to health care providers [27]. One of the main issues with 
these systems is that they combine only one or two parameters to provide alerts, 
thereby only increasing the number of alerts. For example, prescribing nortripty-
line to a patient with hepatorenal syndrome and being an intermediate metabolizer 
of CYP2D6 will generate a total of 3 alerts with different advices. An advice on 
how to dose nortriptyline in a patient with renal insufficiency, another alert with 
an advice how to dose nortriptyline in patients with liver failure and last but not 
least an advice how to start treatment in a patient being an CYP2D6 intermedi-
ate metabolizer. So which advice should we follow? Therefore, effort should be 
made into combining multiple parameters and clinical rules to provide one correct 
advice to the healthcare provider. Designs should incorporate the engagement of 
all clinicians involved in the delivery of health care and combine multiple patient 
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characteristics and context  simultaneously, to ensure that CDSS are actually help-
ful to clinicians, rather than interrupt health care delivery.

11.2  Challenges for Implementing a CDSS

CDSS are an evolving technology with potential for wide applicability, to individu-
alize and improve patient outcome and health care resource utilization [24, 28]. 
However, to make CDSS more helpful it requires thoughtful design, implementa-
tion and critical evaluation [29].

As mentioned earlier  thepromise of CDSS has been around since the 1960s. In 
2008, Simon et  al. still found that the vast majority of EHRs across the U.S.A. 
implemented little or any decision support [30]. A recent survey send out to all 
Dutch hospital pharmacies showed similar disappointing results, only 48% of them 
using some kind of advanced CDSS [31].

Such alarming results were one of the main reasons the American Medical 
Informatics Association (AMIA) published the Roadmap for National Action on 
Clinical Decision Support. The paper acknowledged six strategic objectives, divided 
into three main pillars, for achieving widespread adoption of effective clinical deci-
sion support system capabilities [32]. The three main pillars being: (1) High 
Adoption and Effective Use. (2) Best Knowledge Available When Needed. (3) 
Continuous Improvement of Knowledge and CDSS Methods [32]. In the following 
paragraphs these three pillars will be highlighted to give an overview of tasks and 
challenges that lay ahead.

11.2.1  High Adoption and Effective Use

To ensure high adoption and effective use, it is important to fine-tune the CDSS in 
order to suit end-users wishes. Only then alert fatigue can be minimized.

11.2.1.1  Alert Fatigue

Alert fatigue is the concept of poor signal to noise ratio caused by CDSS with an 
active alerting mechanism. Alert fatigue is defined as the “Mental fatigue experi-
enced by health care providers who encounter numerous alerts and reminders from 
the use of CDSS” [33]. Alert fatigue causes physicians to override 49–96% of the 
current medication safety alerts from basic CDSS as well as advanced medication 
related CDSS. The main reasons for overriding alerts are: low specificity, unneces-
sary workflow disruption and unclear information [34, 35]. Many of these aspects 
are caused by lack of user- and patient context. More on the subject of context can 
be read in the paragraph on context factors, later on.
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Because CDSS are offering more and more options characterization of the CDSS 
itself is not enough. Characterization of the clinical rules used by decision tree 
CDSS is also key to understand the background of alert fatigue. In the upcoming 
paragraphs the taxonomy of clinical rules is explained using two fundamental con-
cepts, being triggers and context factors.

11.2.1.2  Triggers

In an effort to characterize clinical rules, Wright et al. used four functional catego-
ries: triggers, input data, interventions and offered choices. Triggers were identified 
as one of the key functional dimensions of CDSS and are the start of each clinical 
rule. Wright and colleagues reviewed and analyzed their own extensive rule reposi-
tory, using these four functional dimensions to identify and quantify the use of dif-
ferent taxonomic groups. They identified nine different triggers. However, by far the 
trigger most often used is the ‘order entered’ trigger, accounting for 94% of all the 
studied clinical rules and 38% of all clinical rule types. Combined with the knowl-
edge that a patient’s drug list is also the most used ‘input data element’ in all of the 
studied rules, medication orders (MOs) and drug lists seem to play a key role in 
CDSS currently used [36, 37].

11.2.1.3  Context Factors

‘Context’, in computer science, refers to the idea that a system, in our case a clinical 
decision support system, is both capable of sensing and reacting, based on its envi-
ronment. An often provided definition of the term ‘context’ is the one provided by 
Dey, being: “Context is any information that can be used to characterize the situa-
tion of an entity. An entity is a person, place, or object that is considered relevant to 
the interaction between a user and an application, including the user and applica-
tions themselves”. Using this definition a system providing ‘context’ also tries to 
make assumptions about the current situation in relevance, dependent on the user’s 
task or patient’s status [38].

Riedmann et al. performed a review of literature and subsequently performed an 
international Delphi study to identify the most important context factors to medica-
tion related CDSS [39, 40]. The most important context factors found were ‘severity 
of the effect’, ‘clinical status of the patient’, ‘complexity of the case’ and ‘risk fac-
tors of the patient’. All of these context factors are gained from input data elements 
such as diagnosis, prior disease history, laboratory results and hospital unit [36].

Another study group of Berlin et al. found that the most targeted clinical tasks of 
clinicians were associated with drug dosing (46%) and drug treatment (22%) [41, 
42]. These findings are in agreement with the study of Wright et al. although using 
a completely different taxonomy [41].

When combining the results from the studies performed by Wright et  al. and 
Berlin et al., the most CDSS targeted clinical tasks were ‘start of treatment’ and 
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‘dose adjustment’. As stated earlier, medication ordering was the most frequently 
used trigger to a clinical rule and a patient’s drug list was the utmost used and most 
easily available input element. Therefore, providing the right context to medication 
orders using the drug list should be an important priority. Context factors like ‘sever-
ity of the effect’, ‘clinical status of the patient’, ‘complexity of the case’ and ‘risk 
factors of the patient’ found by Riedmann et al are logical context factors from a 
physician’s point of view. However, adding such context only adds value when trig-
ger related contexts like ‘start of treatment’ and ‘dose adjustment’ are also included. 
Moreover, data input like those described by Riedmann et al is not always distinct 
and readily available in the EHR [36, 39, 41].

In our own experience, gained in the Netherlands, integrated medication related 
CDSS are still unable to correctly interpret the simple contexts of medication orders. 
During development and validation of clinical rules, basic contexts like start of new 
treatment or dose adjustment proved to be elusive and are a frequent cause of sub-
optimal positive predictive value (PPV) and sometimes suboptimal negative predic-
tive value (NPV). Experts also frequently disagree upon the definitions and clinical 
relevance of these contexts [43, 44]. Is a medication order a dose adjustment or start 
of new treatment? An example is a digoxin order. If the clinical task would be start-
ing a patient on digoxin therapy, the CDSS should advice the prescriber on ordering 
serum potassium levels, perform therapeutic drug monitoring and review new drug- 
drug interactions. However, entering the same digoxin order to change drug admin-
istration time or change drug form, the above monitoring is not applicable. Providing 
the physician or pharmacist with notifications during this process would cause frus-
tration and alert fatigue [45].

11.2.2  Best Knowledge Available when Needed

The second pillar in the Roadmap provided by the AMIA is best knowledge avail-
able when needed. The pillar contains three key challenges:

• When needed: Integration in clinical workflow
• Knowledge is available: so it has to be written, stored and transmitted in a format 

that makes it easy to build and deploy CDSS interventions
• Best knowledge: Only CDSS which provides current and additional information 

has potential

11.2.2.1  When Needed: Integration in Clinical Workflow

A key success factor of CDSS is that they are integrated into the clinical workflow. 
CDSS not integrated into clinical workflow will have no beneficial effect and will 
not be used [46]. Messages should be presented at the moment of decision-making, 
though with as less disturbance for the physician as possible. Therefore, different 
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alert mechanisms (pop-up, automatic lab order, prescription order, emails, etc.) 
should be developed, suitable for different alerting priorities [47]. Understanding 
how to prompt physicians successfully at the point of care is a complex problem, 
and requires consideration of technological, clinical, and socio-technical issues. As 
mentioned earlier, interruptive (active) alerts show significantly higher effectiveness 
than non-interruptive (passive) reminders [48]. Additionally, a greater positive 
impact was observed when recommendations prompted an action and could not be 
ignored [49]. Thoroughly understanding the clinical workflow and users’ wishes 
strongly increases the probability for success [49]. One of the more recent attempts 
to incorporate CDSS into clinical workflow was to incorporate CDSS advice into 
checklists often used in ward rounds [50]. An example of such a particular system 
is Tracebook. This is a process-oriented and context-aware dynamic checklist, 
showing great promise and good user acceptability [51].

11.2.2.2  Knowledge Is Available

One of the other major challenges of effective CDSS adaptation is keeping  theclini-
cal rules up to date [49]. However, keeping these clinical rules up to date is a mas-
sive time and money-consuming task. Therefore, sharing clinical rules seems to be 
a sensible and financially attractive choice. One of the strategic objectives described 
in the roadmap was to create a way to easily distribute, share and incorporate clini-
cal knowledge and CDSS interventions into own information systems and pro-
cesses. With this concept clinical rules could be externally maintained, making a 
huge leap in efficacy of development and maintenance. A healthcare provider could 
then just subscribe to certain clinical rules. This should work in “such a way that 
healthcare organizations and practices can implement new state of the art clinical 
decision support interventions with little or no extra effort on their part” [32].

Today many clinical rule repositories exist, however none of them are fully func-
tioning. They rely on software vendors to rebuild them into their own CDSS mod-
ules. Progress on this objective has been especially problematic when attempting to 
make or share clinical rules outside an ecosystem of the software vendor [52]. The 
progress being made using integrated EHR systems, also called second phase 
CDSS, is commendable however; it strictly limits sharing clinical rules outside of 
the EHR ecosystem. Newer standards-based systems, third phase and service model 
systems like the Arden syntax, GLIF, SAGE and SEBASTIAN solve many issues 
concerning sharing clinical rules [53, 54]. Although all very good initiatives, none 
of the architectures have really found use in clinical practice.

One of the issues in sharing fully functioning clinical rules are the difference in 
clinical terms as well as language. Clinicians starting to program clinical rules 
should keep in mind using standardized terms to make exchange of their CDSS 
modules possible. Using standardized clinical health terminologies like SNOMED 
CT would resolve a lot of issues surrounding sharing CDSS [55].

One of the other challenges however is to standardize definitions of context, 
as these are essential to minimize signal to noise ratio. To study the obstacles 
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left to make sharing a reality, an initiative was started to develop clinical rules 
which would work across different EHRs, CPOEs, PISs and institutions using 
the GASTON framework [56]. The framework, derived from GLIF architecture, 
facilitates sharing guidelines and facilitates integration with institution specific 
medical knowledge sources and information systems such as EHRs and CPOEs 
without changing the clinical rules themselves. The most important lesson 
learned from this project was that despite consensus on the content of a clinical 
rule, local adaptation was always necessary to achieve sufficient specificity of 
the alerts.

11.3  Best Knowledge & Continuous Improvement 
of Knowledge and CDSS Methods

To ensure the best knowledge and retain continuous improvement, validation and 
verification is indispensable. Much research has been done on the validation of clin-
ical rules itself and focuses on clinical relevance of the recommendations produced 
by the CDSS. However, to assure correct clinical rules and recommendations we 
depend on data from the EHR and the correct functioning of the clinical decision 
support system. The next few paragraphs will give an overview over the levels of 
validation and verification of CDSS.

11.3.1  CDSS Verification and Validation

Successful adaption and functioning of clinical rules vastly depends on the 
CDSS used. Tendering, choosing or implementing a new CDSS requires a  com-
prehensiveuser requirement specification (URS) or user requirement documen-
tation (URD). A URS specifies what the users of the software expect the software 
to do. It is often seen as the contract between the user and the software supplier. 
Not explicitly or correctly stating user requirements for a software system is the 
major factor contributing to failed software implementations and massive bud-
get overruns. Maybe not a very appealing job for clinicians, we cannot stress 
enough the importance of working together with IT personnel to write an all-
encompassing URS. Adding or improving functionality afterwards is difficult 
and costly.

It is important to test all functions of software products such as CDSS. Deepening 
the topic of software verification and validation requires a book on its own. However, 
to prevent running into issues during clinical rule development and use of the CDSS 
in practice it is key to perform software verification and validation using the URS 
and lower level specifications. Software validation and verification can be per-
formed at many levels using many tools. If your hospital does not have IT personal 
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qualified to plan and perform software verification and validation it is highly recom-
mended to hire external help. Thorough verification and validation of the CDSS 
software can save expenses and spare frustration later on or even failure of 
implementation.

When using a CDSS we should keep in mind that a CDSS relies on high quality 
data to work. Assuring the correct collection of data and their quality is vital before 
starting to program the clinical rules themselves. A part of the requirements should 
therefore be a thorough description and testing of items to be used in the clinical 
rules. If you state: “the system must present the age of a patient” for example; the 
CDSS probably will present the age of the patient in years. Designing clinical rules 
using this parameter however for a neonatal care unit could be unwanted and unspe-
cific. Testing if items used in clinical rules result in the expected answer requires 
clinical knowledge, often scares IT personnel. Clinicians eager to program clinical 
rules themselves are therefore encouraged to assist in this stage of CDSS 
validation.

After the successful implementation of the CDSS itself we are ready to start 
building our own clinical rules.

11.3.2  Development and Validation Strategy

Key to preventing alert fatigue in active CDSS is structured development and vali-
dation of clinical rules. Much has been published on the validation of these clinical 
rules focusing on providing maximal clinical relevance of the recommendations 
outputted by the CDSS [47, 57–59].

Two key components of a good validation strategy described in most studies are: 
(1) the use of a multidisciplinary expert panel as well as (2) offline test and revision 
cycles [58].

A framework was published by McCoy, describing a potentially effective method 
for assessing clinical appropriateness of medication alerts. A key attribute of this 
framework is that it determines appropriateness at the time of a triggered alert and 
by applying expert knowledge [60]. Weingart et al. examined a subset of all dis-
played alerts to determine alert validity and expert agreement with overrides, 
although no measures of unintended adverse consequences were reported [58]. 
Sucher mentions factors that need to be tested, such as verification, validation and 
worst case testing, but these factors are not explained in detail [59]. A practical vali-
dation approach is described by Osherhoff et al., using cases and testing scenarios 
to validate clinical rules [47]. This method however has limited usefulness due to 
lack of a detailed description of the method and outcome. To prevent alert fatigue, 
CDSS implementers must monitor and identify situations that frequently trigger 
inappropriate alerts and take well-defined steps to improve alert appropriateness 
[60]. Studies examining CDSS content validation often lack a complete and repro-
ducible method that is demonstrably leading to appropriate alerts.
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11.3.2.1  Strategy for Development and Validation of Clinical Rules

Below we describe a four-step strategy to develop and implement clinical rules, 
which we ourselves use as part of development [57, 61].

Step 1: Technical Validation

The  objectiveof this step is to determine whether a clinical rule functions as we 
expect it to do. Are the parameters in the CDSS linked correctly to the EHR and 
are we using technically valid definitions. Of course the first step starts by design-
ing a clinical rule. Most often such a clinical rule is based on an evidence-based 
medicine (EBM) guideline. The EBM guideline is first translated into a computer- 
interpretable format with measurable and specific parameters. This regularly 
requires translating clinical terms used in guidelines to standardized clinical 
terms before use. For example, how to define diarrhea? Is it enough a patient has 
watery stool or should it also be more than 3 times a day? Such definitions are not 
solved using only standardized terms. After definitions are clear and build into 
the clinical rule the clinical rule is tested on a historical EMR database. 
Subsequently, results are analyzed to determine the amount of true positives 
(PPV) and true negatives (NPV). These results are discussed in a plenary meeting 
together with an expert team. Here possible improvements are identified, which 
could later on be implemented. When the objectives are met (positive predictive 
value >90% and negative predictive value >95%), the second step of the develop-
ment strategy is started.

Step 2: Therapeutic Retrospective Validation

The second step is intended to check whether the alerts produced by the CDSS 
are clinically relevant, useful and actionable. This step of therapeutic validation 
is of greatest importance for user acceptance further on. Although alerts at this 
stage are technically valid and based on evidence-based guidelines, health care 
professionals may not always consider them useful or relevant. This step starts 
with a meeting between the building team and the expert team to discuss the 
therapeutic value of the alerts. The expert team should include experts on the 
subject at hand from different medical disciplines. Moreover, opinion leaders 
from the clinic should also be included. The expert team reviews all of the alerts 
generated and classifies them as being relevant or not. Differences between 
theory and practice are discussed and the expert team formulates modifications 
to the clinical rule. After modifications are implemented, the clinical rule is 
tested in the same manner as in step 1 using the same set of patients from his-
torical EHR database. After this test, outcome is once again evaluated by the 
technical team and expert team together in order to maximize therapeutic PPV 
and NPV.
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Step 3: Pre-implementation Prospective Validation

The third step is used to prepare the CDSS and clinical rule for implementation in 
practice. The CDSS is linked to a real live EHR, allowing to generate alerts of actually 
admitted patients. Adaptations are made to assure timely alerting and integration into 
clinical workflow. The expert team is consulted once again however now focusing on 
the content of the message (e.g., proposal, command), the recipient of the message 
(e.g., nurse, physician, pharmacist), the frequency (e.g., once daily, continuously) and 
the alerting method (e.g., on-demand, automatic). When the rule is refined on these 
issues, it once again returns to step 1 to proceed through the validation cycle. After 
completing step one and two again, the rule is implemented into operation and made 
accessible to a selected group of users to do the final validation. Based on user feed-
back some final minor technical adjustments are mostly directed to optimize user 
satisfaction. Frequently, the issues requiring adjustment are the result of only testing 
the clinical rule in a retrospective setting on a static database instead of prospective on 
a dynamic real live EHR database. Depending on the frequency of alerting, usually 
after 2 months, the results from the prospective testing are evaluated by the technical 
and expert team together to calculate the final positive predictive value. Now the clini-
cal rule is ready for implementation in daily practice.

Step 4: Post-implementation Prospective Validation

The fourth step, after implementation of the clinical rule in daily practice, is continuous 
maintenance. This step corresponds to the third pillar of effective CDSS implementation 
suggested by Osherhof and colleagues in their Roadmap. In this step the clinical rule is 
monitored while operational. Monitoring consists on reviewing performance, follow-up 
and PPV. The step also encompasses technical and therapeutic maintenance to ensure 
continuous accuracy of the alerts. We found that every clinical rule needs adjustments 
after implementation in practice, which were not foreseen during the development 
phase (step 1–3). First, technical adjustments may be necessary due to updates or new 
functionalities in the CDSS or EHR. These technical adjustments are developed, vali-
dated and implemented by the technical team. When the changes also had therapeutic 
consequences, the expert team was consulted. Secondly, the content of the clinical rule 
should be updated regularly, due to changes in the underlying evidence-based medicine 
or end-users preferences. For example when a new version of the clinical guideline was 
available, clinical rules were checked and differences reviewed. This step finalizes the 
strategy, through continuously optimizing suitability of the rule in practice.

11.3.2.2  Adaption in Practice

The adaptation of a CDSS in practice is a key component to success. The validation 
strategy described above especially benefits from including experts in all of its 
development cycles. These experts and opinion leaders help support the adaptation 
of clinical rules in practice and are the main success factor of this strategy.
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11.4  Future Perspectives

This chapter shows that clinical decision support systems can definitely support the 
use of clinical data science in daily clinical practice. However, adoption in practice 
remains a slow process and many are still reinventing the wheel instead of support-
ing national initiatives. Decision support systems today mainly use the ‘if then else’ 
logic. And even using this method, validation is already very time-consuming and 
complex.

We are very curious to see combinations of systems using tree-based logic using 
current EBM guidelines and suggestions made using Bayesian models and artificial 
intelligence. It is a great and promising challenge to make healthcare really benefit 
more from big data, draw conclusions humans haven’t drawn themselves. However, 
validation, acceptance and adaptation of ‘black box’ systems will require a para-
digm shift, challenging the basic principles of current day EBM practice. 
Nevertheless, believe in decision support keeps attracting health care professionals 
to work with these powerful and promising systems.

References

 1. Kronenfeld MR, Bay RC, Coombs W. Survey of user preferences from a comparative trial of 
UpToDate and ClinicalKey. J Med Libr Assoc. 2013;101(2):151–4.

 2. Isaac T, Zheng J, Ashish J. Use of UpToDate and outcomes in US hospitals. J Hosp Med. 
2012;7(2):85–90.

 3. Tate KE, Gardner RM, Weaver LK. A computerized laboratory alerting system. MD comput. 
1990;7(5):296–301.

 4. Kuperman GJ, Teich JM, Tanasijevic MJ, Ma’Luf N, Rittenberg E, Jha A, et al. Improving 
response to critical laboratory results with automation: results of a randomized controlled trial. 
J Am Med Inform Assoc. 1999;6(6):512–22.

 5. Nebeker JR, Hoffman JM, Weir CR, Bennett CL, Hurdle JF. High rates of adverse drug events 
in a highly computerized hospital. Arch Intern Med. 2005;165(10):1111–6.

 6. Magrabi F, Ammenwerth E, Hypponen H, de Keizer N, Nykanen P, Rigby M, et al. Improving 
evaluation to address the unintended consequences of health information technology: a posi-
tion paper from the Working Group on Technology Assessment & Quality Development. Yearb 
Med Inform. 2016;1:61–9.

 7. Lehmann CU, Seroussi B, Jaulent MC. Troubled waters: navigating unintended consequences 
of health information technology. Yearb Med Inform. 2016;1:5–6.

 8. Mamlin BW, Tierney WM.  The promise of information and communication technology in 
healthcare: extracting value from the chaos. Am J Med Sci. 2016;351(1):59–68.

 9. Frost & Sullivan White Paper, “Drowning in Big Data? Reducing Information Technology 
Complexities and Costs For Healthcare Organizations”. 2012. Retrieved from http://www.
emc.com/collateral/analystreports/frost-sullivan-reducing-information-technology-complexi-
ties-ar.pdf.

 10. Bresnick J. The difference between big data and smart data in healthcare. Available from: https://
healthitanalytics.com/features/the-difference-between-big-data-and-smart-data-in-healthcare

 11. Musen MA, Shahar Y, Shortliffe EH.  Clinical decision-support systems. In: Shortliffe EH, 
Cimino JJ, editors. Biomedical informatics: computer applications in health care and biomedi-
cine. 4th ed. London/New York: Springer; 2014.

A. T. M. Wasylewicz and A. M. J. W. Scheepers-Hoeks

http://www.emc.com/collateral/analystreports/frost-sullivan-reducing-information-technology-complexities-ar.pdf
http://www.emc.com/collateral/analystreports/frost-sullivan-reducing-information-technology-complexities-ar.pdf
http://www.emc.com/collateral/analystreports/frost-sullivan-reducing-information-technology-complexities-ar.pdf
https://healthitanalytics.com/features/the-difference-between-big-data-and-smart-data-in-healthcare
https://healthitanalytics.com/features/the-difference-between-big-data-and-smart-data-in-healthcare


167

 12. Zeiger RF.  McGraw-Hill’s Diagnosaurus. 4.0 2018. Available from: http://accessmedicine.
mhmedical.com/diagnosaurus.aspx

 13. Smith M, Nazario B, Bhargava H, Cassoobhoy A. WebMD: WebMD LLC. 2018. Available 
from: https://www.webmd.com/

 14. Scheepers-Hoeks AM, Grouls RJ, Neef C, Korsten HH.  Strategy for implementation and 
first results of advanced clinical decision support in hospital pharmacy practice. Stud Health 
Technol Inform. 2009;148:142–8.

 15. Latoszek-Berendsen A, Tange H, van den Herik HJ, Hasman A.  From clinical practice 
guidelines to computer-interpretable guidelines. A literature overview. Methods Inf Med. 
2010;49(6):550–70.

 16. Stojadinovic A, Bilchik A, Smith D, Eberhardt JS, Ward EB, Nissan A, et al. Clinical decision 
support and individualized prediction of survival in colon cancer: bayesian belief network 
model. Ann Surg Oncol. 2013;20(1):161–74.

 17. Neapolitan R, Jiang X, Ladner DP, Kaplan B. A primer on bayesian decision analysis with an 
application to a kidney transplant decision. Transplantation. 2016;100(3):489–96.

 18. Jalali A, Bender D, Rehman M, Nadkanri V, Nataraj C. Advanced analytics for outcome pre-
diction in intensive care units. Conf Proc IEEE Eng Med Biol Soc. 2016;2016:2520–4.

 19. Shamir RR, Dolber T, Noecker AM, Walter BL, McIntyre CC. Machine learning approach 
to optimizing combined stimulation and medication therapies for Parkinson’s disease. Brain 
Stimul. 2015;8(6):1025–32.

 20. Tenorio JM, Hummel AD, Cohrs FM, Sdepanian VL, Pisa IT, de Fatima Marin H. Artificial 
intelligence techniques applied to the development of a decision-support system for diagnos-
ing celiac disease. Int J Med Inform. 2011;80(11):793–802.

 21. Garg AX, Adhikari NK, McDonald H, Rosas-Arellano MP, Devereaux PJ, Beyene J, et  al. 
Effects of computerized clinical decision support systems on practitioner performance and 
patient outcomes: a systematic review. JAMA. 2005;293(10):1223–38.

 22. Yamada RH. An overview of computers in medicine. Can Fam Physician. 1968;14(3):15–7.
 23. Kuperman GJ, Bobb A, Payne TH, Avery AJ, Gandhi TK, Burns G, et al. Medication-related 

clinical decision support in computerized provider order entry systems: a review. J Am Med 
Inform Assoc. 2007;14(1):29–40.

 24. Nuckols TK, Smith-Spangler C, Morton SC, Asch SM, Patel VM, Anderson LJ, et  al. The 
effectiveness of computerized order entry at reducing preventable adverse drug events and 
medication errors in hospital settings: a systematic review and meta-analysis. Syst Rev. 
2014;3:56.

 25. Wolfstadt JI, Gurwitz JH, Field TS, Lee M, Kalkar S, Wu W, et al. The effect of computerized 
physician order entry with clinical decision support on the rates of adverse drug events: a sys-
tematic review. J Gen Intern Med. 2008;23(4):451–8.

 26. Eppenga WL, Derijks HJ, Conemans JM, Hermens WA, Wensing M, De Smet PA. Comparison 
of a basic and an advanced pharmacotherapy-related clinical decision support system in a hos-
pital care setting in the Netherlands. J Am Med Inform Assoc. 2012;19(1):66–71.

 27. Nanji KC, Seger DL, Slight SP, Amato MG, Beeler PE, Her QL, et  al. Medication-related 
clinical decision support alert overrides in inpatients. J Am Med Inform Assoc. 2018;25(5): 
476–81.

 28. Moja L, Kwag KH, Lytras T, Bertizzolo L, Brandt L, Pecoraro V, et al. Effectiveness of com-
puterized decision support systems linked to electronic health records: a systematic review and 
meta-analysis. Am J Public Health. 2014;104(12):e12–22.

 29. Sittig DF, Wright A, Osheroff JA, Middleton B, Teich JM, Ash JS, et al. Grand challenges in 
clinical decision support. J Biomed Inform. 2008;41(2):387–92.

 30. Simon SR, McCarthy ML, Kaushal R, Jenter CA, Volk LA, Poon EG, et al. Electronic health 
records: which practices have them, and how are clinicians using them? J Eval Clin Pract. 
2008;14(1):43–7.

 31. Workgroup Clinical Rules of the Dutch Association of Hospital Pharmacists (NVZA). 
Questionare on current state of clinical rule implementation in hospital pharmacy. 2015. http://
www.nvza.nl.

11 Clinical Decision Support Systems

http://accessmedicine.mhmedical.com/diagnosaurus.aspx
http://accessmedicine.mhmedical.com/diagnosaurus.aspx
https://www.webmd.com/
http://www.nvza.nl
http://www.nvza.nl


168

 32. Osheroff JA, Teich JM, Middleton B, Steen EB, Wright A, Detmer DE. A roadmap for national 
action on clinical decision support. J Am Med Inform Assoc. 2007;14(2):141–5.

 33. U.S. National Library of Medicine. Medical Subject Headings (MeSH) [Alert fatigue, health 
personnel]. 2017. Retrieved from https://www.ncbi.nlm.nih.gov/mesh?term=alert%20fatigue. 
At 01 Oct 2018.

 34. van der Sijs H, Aarts J, Vulto A, Berg M. Overriding of drug safety alerts in computerized 
physician order entry. J Am Med Inform Assoc. 2006;13(2):138–47.

 35. van der Sijs H, Mulder A, van Gelder T, Aarts J, Berg M, Vulto A. Drug safety alert genera-
tion and overriding in a large Dutch university medical centre. Pharmacoepidemiol Drug Saf. 
2009;18(10):941–7.

 36. Wright A, Goldberg H, Hongsermeier T, Middleton B. A description and functional taxonomy 
of rule-based decision support content at a large integrated delivery network. J Am Med Inform 
Assoc. 2007;14(4):489–96.

 37. Wasylewicz ATM, Gieling E, Movig K, Grouls RJE, Egberts TCG, Korsten HHM. Clinical 
rules in Santeon Collaboration Pilot Study (CRISPS): an exploration of joint developement 
and sharing of CDS content. Unpublished. 2016.

 38. Dey AK. Understanding and using context. Pers Ubiquit Comput. 2001;5(1):4–7.
 39. Riedmann D, Jung M, Hackl WO, Ammenwerth E. How to improve the delivery of medication 

alerts within computerized physician order entry systems: an international Delphi study. J Am 
Med Inform Assoc. 2011;18(6):760–6.

 40. Jung M, Riedmann D, Hackl WO, Hoerbst A, Jaspers MW, Ferret L, et al. Physicians’ per-
ceptions on the usefulness of contextual information for prioritizing and presenting alerts in 
computerized physician order entry systems. BMC Med Inform Decis Mak. 2012;12:111.

 41. Berlin A, Sorani M, Sim I. A taxonomic description of computer-based clinical decision sup-
port systems. J Biomed Inform. 2006;39(6):656–67.

 42. Berlin A, Sorani M, Sim I. Characteristics of outpatient clinical decision support systems: a 
taxonomic description. Stud Health Technol Inform. 2004;107(Pt 1):578–81.

 43. van Wezel RAC, Scheepers-Hoeks AMJW, Schoemakers R, Wasylewicz ATM, ten Broeke R, 
Ackerman EW, et al. Application of clinical rules for therapeutic drug monitoring and their 
impact on medication safety. PW Wetenschappelijk Platform. 2011;5(11):183–6.

 44. Scheepers-Hoeks AMJW, Grouls RJE, Neef C, Ten broeke R, Ackerman EW, Korsten 
HHM. Compliance to alerts generated by clinical rules, applying three active alert presenta-
tion methods in clinical practice. PW Wetenschappelijk Platform. 2014;8:199–202.

 45. Phansalkar S, van der Sijs H, Tucker AD, Desai AA, Bell DS, Teich JM, et  al. Drug-drug 
interactions that should be non-interruptive in order to reduce alert fatigue in electronic health 
records. J Am Med Inform Assoc. 2013;20(3):489–93.

 46. Kawamoto K, Houlihan CA, Balas EA, Lobach DF. Improving clinical practice using clinical 
decision support systems: a systematic review of trials to identify features critical to success. 
BMJ. 2005;330(7494):765.

 47. Osheroff J, Pifer E, Teich J, Sittig D, Jenders R. Improving outcomes with clinical decision 
support: an implementer’s guide. Osheroff J, Pifer E, Teich J, Sittig D, Jenders R, editors. 
Chicago: Health Information Management and Systems Society; 2005.

 48. Scheepers-Hoeks AM, Grouls RJ, Neef C, Ackerman EW, Korsten EH. Physicians’ responses 
to clinical decision support on an intensive care unit – comparison of four different alerting 
methods. Artif Intell Med. 2013;59(1):33–8.

 49. Bates DW, Kuperman GJ, Wang S, Gandhi T, Kittler A, Volk L, et al. Ten commandments for 
effective clinical decision support: making the practice of evidence-based medicine a reality. J 
Am Med Inform Assoc. 2003;10(6):523–30.

 50. Nan S, Van Gorp PME, Korsten EHM.  Tracebook: a dynamic checklist support system. 
Comput Base Med Syst. 2014:48–51. https://research.tue.nl/en/publications/tracebook- 
a-dynamic-checklist-support-system-2.

 51. De Bie AJR, Nan S, Vermeulen LRE, Van Gorp PME, Bouwman RA, Bindels A, et  al. 
Intelligent dynamic clinical checklists improved checklist compliance in the intensive care 
unit. Br J Anaesth. 2017;119(2):231–8.

A. T. M. Wasylewicz and A. M. J. W. Scheepers-Hoeks

https://www.ncbi.nlm.nih.gov/mesh?term=alert fatigue
https://research.tue.nl/en/publications/tracebook-a-dynamic-checklist-support-system-2
https://research.tue.nl/en/publications/tracebook-a-dynamic-checklist-support-system-2


169

 52. McCoy AB, Wright A, Sittig DF. Cross-vendor evaluation of key user-defined clinical decision 
support capabilities: a scenario-based assessment of certified electronic health records with 
guidelines for future development. J Am Med Inform Assoc. 2015;22(5):1081–8.

 53. Wright A, Sittig DF. A framework and model for evaluating clinical decision support architec-
tures. J Biomed Inform. 2008;41(6):982–90.

 54. Wright A, Sittig DF, Ash JS, Sharma S, Pang JE, Middleton B.  Clinical decision support 
capabilities of commercially-available clinical information systems. J Am Med Inform Assoc. 
2009;16(5):637–44.

 55. International SNOMED.  SNOMED CT. 2018. Retrieved from https://www.snomed.org/
snomed-ct/get-snomed-ct/. At 01 Oct 2018.

 56. de Clercq PA, Hasman A, Blom JA, Korsten HH. Design and implementation of a framework 
to support the development of clinical guidelines. Int J Med Inform. 2001;64(2–3):285–318.

 57. Scheepers-Hoeks AMJW, Grouls RJE, Neef C, Ackerman EW, Korsten HHM. Strategy for 
development and pre-implementation validation of effective clinical decision support. Eur J 
Hosp Pharm. 2013;20:155–60.

 58. Weingart SN, Seger AC, Feola N, Heffernan J, Schiff G, Isaac T. Electronic drug interaction 
alerts in ambulatory care: the value and acceptance of high-value alerts in US medical prac-
tices as assessed by an expert clinical panel. Drug Saf. 2011;34(7):587–93.

 59. Sucher JF, Moore FA, Todd SR, Sailors RM, McKinley BA.  Computerized clinical deci-
sion support: a technology to implement and validate evidence based guidelines. J Trauma. 
2008;64(2):520–37.

 60. McCoy AB, Waitman LR, Lewis JB, Wright JA, Choma DP, Miller RA, et al. A framework 
for evaluating the appropriateness of clinical decision support alerts and responses. J Am Med 
Inform Assoc. 2012;19(3):346–52.

 61. Scheepers-Hoeks AM, Grouls RJ, Neef C, Wasylewicz ATM, van’t Geloof W, Korsten 
EH. Succesfull implementation of clinical rules in daily practice: two years follow-up by phar-
macy intervention. Thesis: Alert methods as success factors, influencing effectiveness of a 
clinical decision support system in clinical practice. Eindhoven. 2014.

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

11 Clinical Decision Support Systems

https://www.snomed.org/snomed-ct/get-snomed-ct/
https://www.snomed.org/snomed-ct/get-snomed-ct/
http://creativecommons.org/licenses/by/4.0/


171© The Author(s) 2019 
P. Kubben et al. (eds.), Fundamentals of Clinical Data Science, 
https://doi.org/10.1007/978-3-319-99713-1_12

Chapter 12
Mobile Apps

Pieter Kubben

12.1  Operating Systems

Two major operating systems are important for mobile apps: iOS (Apple) and 
Android (Google), a total market share of 99% (iOS 54% and Android 45% in May 
2018, measured in USA). (Mobile Operating System Market Share United States Of 
America|StatCounter Global Stats [21]) These two operating systems are not com-
patible, which means that programming for both requires a different approach. 
Developing native iOS apps is done using the programming language Objective-C 
or Swift, and native Android apps are developed in Java or Kotlin. As these lan-
guages, and more importantly the operating system-specific frameworks, are fairly 
different, hybrid app development has become increasingly popular. Hybrid apps 
are essentially “web apps” (mobile web pages) that are wrapped in a native binary 
(the file that is downloaded from the App Store or Google Play) and can access 
native device features such as the camera or the accelerometer. The main advantage 
is that the app only needs to be developed and maintained once. Potential disadvan-
tages are a lack of native look and feel (which is important from a usability perspec-
tive), and a lack of access to features that are not available in the hybrid framework 
(such as health- and research-frameworks as explained in Chap. 1). A hybrid frame-
work that is very popular at the time of writing is Ionic (www.ionicframework.
com), which is open source and available free of charge. Alternatives that can some-
times even offer a native look and feel for the app’s graphical user interface (e.g. 
Titanium Appcelerator) often come at a price.
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12.2  Collecting Health Data

Apple HealthKit and Google Fit are operating system-specific frameworks for users 
to collect and organize health data on their mobile device. With the addition of 
ResearchKit in 2015, Apple created an innovative open-source approach towards 
easily collecting data from large cohorts that give informed consent and provide 
data completely from the app. Successful applications have been described in 
Parkinson, asthma and spine disease [4, 5, 35]. An Android alternative for 
ResearchKit is the open-source initiative ResearchStack.org. Such frameworks 
open completely new ways to acquire scientific data, but require a shift in thinking 
from the researcher’s perspective from classic data collection methods to digital 
tools and correlated new opportunities (e.g. finger tapping task for Parkinson 
patients in a mobile app or uploading videos of walking patterns for deep learning 
applications).

12.3  Mobile Clinical Decision Support Systems

From the perspective of applications, mobile devices are excellent tools to imple-
ment decision support systems. A systematic review of the literature was performed 
to assess the current evidence on this topic. MEDLINE has been searched using the 
PubMed website and medical subject headings (MeSH) in combination with free 
text search. The combination (“Decision Support Systems, Clinical”[Mesh]) AND 
“Computers, Handheld”[Mesh], (“Decision Support Systems, Clinical”[Mesh]) 
AND smartphone and (“Decision Support Systems, Clinical”[Mesh]) AND “Cell 
Phones”[Mesh] revealed a total of 183 hits after removing duplicates. These were 
screened based on title and abstract. The inclusion criteria were: English, mobile, 
clinical decision support system, patient-related outcome parameters (including 
caregiver or guideline adherence), and focus on implementing guidelines. Exclusion 
criteria were: no abstract, no outcome parameters, case study, focus on telemonitor-
ing, or focus on (implementation) strategy. From this screening, 30 articles were 
included for full text screening. After full text screening, 7 articles were included for 
a qualitative synthesis of the literature on clinical decision support systems (mCDSS). 
Reasons for excluding articles based on full text screening are given in Table 12.1. 
An evidence table summarizing the included studies is presented in Table 12.2.

Samore (2005) performed a randomized clinical trial (RCT) in 12 rural commu-
nities represented by a total of 334 general physicians using a Palm OS based 
mCDSS with a cradle-based database synchronisation. The primary outcome was 
antimicrobial usage in acute respiratory tract infection. In the mCDSS group there 
was a 9% decrease in (false positive) prescriptions compared to a 1% decrease in the 
control group (p = 0.03) [27].

Sintchenko (2005) performed a prospective trial with historical cohorts amongst 
an unspecified number (at least 12) of intensive care unit physicians and residents, 
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using a Pocket PC platform with HL7-compatible web-based database synchronisa-
tion. The primary outcome was antibiotic use and patient outcome on the ICU. Use 
of the mCDSS resulted in a 17.5% decrease in defined daily doses per 1000 patient 
days (p  =  0.04) and a 13% decreased length of stay on the intensive care unit 
(p = 0.02) [28].

Berner (2006) performed a RCT amongst 68 internal medicine residents using a 
Palm OS based mCDSS. The primary outcome was NSAID-related gastrointestinal 
risk assessment in drug prescriptions. The study compares the ratio of unsafe pre-
scriptions in the mCDSS group (0.23) to the control group (0.45), which is statisti-
cally significant (p < 0.05). However, the same rates at baseline are 0.27 and 0.29 
for the mCDSS and control group respectively. Apparently in the control group the 
number of unsafe prescriptions increased compared to baseline, therefore clinically 
relevant conclusions are hard to draw from these data [2].

Lee (2009) performed a RCT amongst 20 nurses with a total of 1874 patient 
encounters, using a Palm OS based mCDSS.  The primary outcome was the 
 proportion of obesity-related diagnoses. The mCDSS led to a more than 10% 
increase in (true positive) diagnoses compared to the control group (p < 0.001) [19].

Table 12.1 Exclusion reasons after full tekst screening

Reference Reason for exclusion

Alexander, 2008 [1] Focus on clinical alerts and triggers
Bochicchio, 2006 [3] Focus on e-learning, knowledge tool for residents
Charani, 2013 [6] Strategic paper on app uptake
Chin, 2006 [7] Focus on usability without specific suggestions
Clauson, 2008 [8] PDA vs online database, no interactive CDSS
Cricelli, 2006 [9] Infomercial without scientific evaluation
Di Pietro, 2012 [10] Qualitative study on usability
Divall, 2013 [11] Review
Etchells, 2011 [12] Focus on alerts
Garrett, 2008 [13] Focus on implementation strategy
Gupta, 2016 [14] Focus on uptake and usage statistics
Johansson, 2010 [15] Focus on nurses’ usability/perception
Lapinsky, 2004 [16] Knowledge access, no interactive CDSS
Lapoint, 2013 [17] Focus on drug reference alerts (comparing different 

apps)
Laporta, 2012 [18] Not mobile (Windows 7)
Leung, 2003 [20] Focus on mobile info database, no interactive guideline
Payne, 2013 [22] Implementation strategy, no interactive guideline
Ray, 2006 [23] No interactive guideline
Rubin, 2006 [26] Overlap with Samore (2005)
Snooks, 2010 [30] Focus on trial design
Stephens, 2010 [32] Focus on PDA use by students
Van Belle, 2012 [33] Focus on mathematical model
Yu, 2007 [34] Focus on PDA/app usage by residents
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Table 12.2 Evidence table for mCDSS studies

Reference Population Study design
Technical 
platform

Primary 
outcome Results

Samore, 2005 
[27]

12 rural 
communities 
(334 GPs)

RCT Palm OS, 
cradle- 
based 
database 
sync

Antimicrobial 
usage in acute 
respiratory 
tract infection

9% decrease in 
prescription in 
CDSS arm vs 
1% increase in 
CG (p = 0.03)

Sintchenko, 
2005 [28]

ICU 
physicians 
(n =?)

Prospective 
trial with 
historical 
controls

Pocket PC 
with 
web-based 
syncing, 
HL7- 
compatible

Antibiotic use 
and patient 
outcome in 
ICU

17.5% decrease 
in DDD/1000 
patient days 
(p = 0.04) and 
13% decreased 
LOS (p = 0.02)

Berner, 2006 
[2]

68 internal 
medicine 
residents

RCT Palm OS NSAID-related 
GI risk 
assessment in 
prescribing

Decrease in 
ratio of unsafe 
prescriptionsa

Lee, 2009 
{Lee:2009iy}

20 nurses 
(1874 pt 
encounters)

RCT Palm OS Proportion of 
obesity-related 
diagnoses

>10% increase 
in (true positive) 
diagnoses 
compared to CG 
(p < 0.001)

Roy, 2009 [25] 20 
emergency 
departments 
(1645 pt)

Cluster RCT Palm OS Pulmonary 
embolism 
diagnosis

19.3% increase 
in correct 
diagnosis 
compared to CG 
(p = 0.023)

Snooks, 2014 
[29]

Paramedicsb Cluster RCT Tablet PC 
(forming 
part of 
EPR)

Fall emergency 
referrals in 
elderly 
population

9.6% referrals 
vs. 5.0% in CG 
(OR 2.04; CI95: 
1.12–3.72)

Spat, 2016 
{Spat:2016kd}

30 patients 
with type 2 
diabetes 
mellitus

Open, 
noncontrolled 
intervention 
study

iOS, 
Android

Glucose serum 
levels

Decrease in 
hypoglycemia 
compared to a 
historic CG 
(1.3% vs 3.0%, 
p = 0.01)

CG control group, CI95 95% confidence interval, DDD defined daily doses, EPR electronic patient 
record, GI gastrointestinal, ICU intensive care unit, LOS length of stay, NSAID non-steroid anti- 
inflammatory drugs, OR Odds ratio, pt patients, RCT randomized controlled trial
aThe study compares the ratio of unsafe prescriptions in the intervention group (0.23) to the control 
group (0.45), which is statistically significant (p < 0.05). However, the same rates at baseline are 
0.27 and 0.29 for the intervention and control group respectively. Apparently in the control group 
the number of unsafe prescriptions increased compared to baseline, therefore clinically relevant 
conclusions are hard to draw from these data
b17 out of 42 paramedics used the mCDSS for 54 out of 436 (12.4%) of the participants
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Roy (2009) performed a cluster RCT in 20 emergency departments with a total 
of 1645 patients, using a Palm OS based mCDSS.  The primary outcome was 
pulmonary embolism diagnosis, and use of the mCDSS led to a 19.3% increase 
in correct diagnosis compared to the control group (95% CI: 2.9–35.6%; 
p = 0.023) [25].

Snooks (2014) performed a cluster RCT amongst paramedics. A total of 17 out 
of 42 paramedics used the mCDSS for 54 out of 436 (12.4%) of the participants. 
The mCDSS was presented on a tablet PC forming part of the electronic patient 
record. The primary outcome was fall emergency referrals in the elderly population. 
The mCDSS led to 9.6% referrals compared to 5.0% in the control group (odds ratio 
2.04; 95% CI: 1.12–3.72) [29].

Spat (2016) performed an open, noncontrolled intervention study in 30 patients 
with type 2 diabetes mellitus in which a mCDSS for insulin dosing was provided to 
an interdisciplinary team of engineers, physicians and nurses. The mCDSS was a 
mobile app developed for both iOS and Android. The primary outcome was glucose 
serum levels. In comparison with a historic control group, there was a statistically 
significant decrease in hypoglycaemia (1.3% vs 3.0%; p = 0.01) [31].

Based on the available scientific literature it is safe to say that there is level I 
evidence that mCDSS can be beneficial in guideline implementation for diagnostic 
and therapeutic purposes. Adoption of mobile devices capable of data connectivity 
has increased throughout the years and availability should be not a problem nowa-
days, in particular in combination with a so-called “bring your own device” 
strategy.

Most of the excluded articles after full text screening were concerned with app 
usage, implementation strategy and usability issues. Recurring concerns on imple-
mentation are good institutional support, good wireless data connectivity and suf-
ficient technology skills by the end user [6, 13, 22]. A validated rating scale 
(Attitudes toward Handheld Decision Support Software Scale (H-DSS)) could be 
used to assess physician attitudes about handheld decision support systems ([23] 
but no recent articles mentioned the use of this tool. Another application of 
mCDSS is the opportunity to alert healthcare workers of relevant information 
immediately when it becomes available. In a prospective study by Etchells, the 
provision of real-time clinical alerts and decision support for critical laboratory 
abnormalities did not improve clinical management or decrease adverse events 
[12]. [12] A different study evaluating opioid prescribing in pharmacopoeietic 
apps found that multiple programs fail to prominently display drug safety infor-
mation. This may be an impediment to safe prescribing and may represent a 
missed opportunity to improve prescribing practices (Lapoint et al. 2013) [17].

A methodological challenge for future studies will be to evaluate outcome at a 
patient level. Many CDSS studies measure outcome on a healthcare provider level, 
whether that is correct diagnosis, drug usage or guideline adherence. Indirectly such 
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outcome parameters should be translatable to improved patient outcome, but this 
has not been measured directly. Obviously in a clinical setting where many param-
eters influence patient outcome, isolating the influence of the mCDSS is difficult 
and may require rather large study cohorts.

For the future, more complex models underlying mCDSS can be implemented. 
For example, Apple’s CoreML technology allows for applying machine learning 
models in iOS apps. Using the “coremltools” converter, or “turicreate” for model-
ling, Python-based models can be easily converted to CoreML-format for imple-
mentation in a mobile app. XCode 10 even allows to create machine learning models 
directly from within the development environment.

12.4  Software as a Medical Device

In May 2020, the new medical device regulations (MDR 2017/745 of the European 
Parliament) will become the standard for medical devices, including software appli-
cations such as mobile apps. The new Regulations contain a series of important 
improvements to modernise the current system. Among them are: (Regulatory 
framework – Growth – European Commission [24])

• stricter ex-ante control for high-risk devices via a new pre-market scrutiny mech-
anism with the involvement of a pool of experts at EU level

• the reinforcement of the criteria for designation and processes for oversight of 
Notified Bodies

• the inclusion of certain aesthetic devices which present the same characteris-
tics and risk profile as analogous medical devices under the scope of these 
Regulations

• the introduction of a new risk classification system for in vitro diagnostic medi-
cal devices in line with international guidance

• improved transparency through the establishment of a comprehensive EU data-
base on medical devices and of a device traceability system based on Unique 
Device Identification

• the introduction of an “implant card” containing information about implanted 
medical devices for a patient

• the reinforcement of the rules on clinical evidence, including an EU-wide coor-
dinated procedure for authorisation of multi-centre clinical investigations

• the strengthening of post-market surveillance requirements for manufacturers
• improved coordination mechanisms between EU countries in the fields of vigi-

lance and market surveillance

Mobile apps that are considered as a medical device will still need CE (Conformité 
Européenne) marking, but cannot be registered as a risk class 1 device anymore. As 
a consequence, self-certification will not be possible, and a notified body is 
required – a far more expensive necessity.
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12.5  Conclusion

Overall, these are exciting times for mCDSS applications. There is level 1 evidence 
for their effectiveness, and new opportunities both for collecting data and imple-
menting machine learning models in a mobile app create new horizons for scientific 
research and improving quality of health and healthcare.
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Chapter 13
Optimizing Care Processes 
with Operational Excellence & Process 
Mining

Henri J. Boersma, Tiffany I. Leung, Rob Vanwersch, Elske Heeren, 
and G. G. van Merode

13.1  Introduction

Providing high-quality and accessible health care is very important due to growing 
awareness and public pressure to do so [1]. However, this is becoming increasingly 
difficult as the demand for care continues to rise. Due to an aging population and 
increased patient demand for new services, technologies, and drugs, it is expected 
that healthcare expenditures will only continue to increase in the future [2]. 
Considering the burden of costs, healthcare has to be transformed in order to keep it 
available and accessible. To cope with this challenge, healthcare managers and pro-
fessionals have been looking for new methods of resource utilization and optimiza-
tion to potentially apply to health care. However, health care is not a standard 
manufactured product and a patient is not a simple widget in a manufacturing pro-
cess line. Each patient has needs unique to his or her physiology, genetics, social 
circumstances, and other characteristics, for which different management options 
may be appropriate. This uncertainty in both demand for care and the provision of 
care is visible at all levels of the healthcare system, from an individual consultation 
with a general practitioner to a complex care process in a very large hospital [3]. 
Because of this, a care process and the coordination of the process often becomes 
very complex and not efficient [4]. Using data, either measured manually or 
extracted from data systems, about these care processes is therefore very important 
in order to understand and, subsequently, improve and control the process. In this 
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chapter we will explore how Operational Excellence can optimize care processes 
and transform healthcare using these data. Among other, we will discuss how pro-
cess mining can be used in this regard.

13.2  Care Process

A basic care process consists of different steps but frequently follows a similar pat-
tern (Fig. 13.1). First, a patient seeks physician consultation regarding symptoms. 
Typically, further diagnostic or therapeutic decision-making is then needed to 
decide on next steps in care. This could involve another consultation, a procedure, 
or other additional steps added to the process. Follow-up consultation usually fol-
lows to close the loop on diagnosis, treatment, and management of the initial symp-
toms for which a patient sought care; this may be recurrent in complex or chronic 
conditions, and numerous variations in this basic process are possible.

Of course, not every care process is the same. For any given process, an analysis 
of the type of process and organization where the process takes place is essential to 
be able to optimize it. Johnston and Clark (2008) use two criteria to distinguish 
between different process types: [1] volume and [2] process variation and process 
complexity (Fig. 13.2) [5].

There can be variation in healthcare demand (what and how many of a given ser-
vice is asked for, at which time and place?), healthcare supply (what service, at what 
quality can be offered, at which time and place?) and the service itself (is it delivered 
according to the specifications?). Complexity can be related both to the case (medical 
complexity) and to the coordination of processes. Patients with multimorbidity, or 
multiple chronic conditions, and super-utilizers, or frequent users of high-cost ser-
vices, are examples of complex cases. Such cases inherently involve many persons 
and/or activities in care of the patient. This often results in a higher burden of care 
coordination, making it difficult to streamline processes in an efficient and standard-
ized way. In the next chapter, the concepts of multimorbidity, or patients with multiple 
chronic conditions, and super-utilizers of healthcare services will be explored further.

Due to the complexity and variation, it is difficult to predict what the demand 
will be and how much capacity is available to meet the demand. For example, wait-
ing time for a patient is a symptom of a process where demand and supply are 
mismatched. Managing waiting times is surprisingly complex, unless one accepts 
high overcapacity. Moreover, even in simple waiting systems there is a non-linear 
relationship between utilization rate of appointment capacity and waiting time. The 
relationship between utilization rate and waiting becomes more linear when there 
are more workstations and customers have no preference for one of them. For exam-
ple, a patient seeking an appointment at a practice with one general practitioner 

Consultation Consultation
Diagnostic

tests
Therapy

Fig. 13.1 The typical steps of a care process
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could have a high waiting time due to more limited appointment capacity; in a prac-
tice with two general practitioners, the patient may choose the first appointment 
available, resulting in a reduced waiting time (see Fig. 13.3). For the same utiliza-
tion of capacity this reduces waiting significantly.

Strong focus on sociotechnical systems
and information processing

Strong focus on
Lean Six Sigma

High

Low

Low

Volume

Simple

High

Process variation
and process
complexitity

Capability Complex

Commodity

Fig. 13.2 Volume-variety matrix adapted from Johnston et al. [5]
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By optimizing the processes, the waiting time can be reduced, but to be able to 
cope with the uncertainty of demand, which will always exist due to the nature of 
healthcare, flexibility of the resources is required. A low degree of flexibility can 
lead to a mismatch between supply and demand. Inflexibility determines the adapt-
ability of the production system to changes in the chain of activities. There are three 
types of inflexibility [3]:

 – Technical inflexibility: equipment can only be used in one way;
 – Economic inflexibility: extra costs are incurred when capacity is used in a differ-

ent way to that originally intended; for example, an operating room designed for 
certain operations can also be used for other operations, but then the equipment 
must be changed, which leads to switching costs;

 – Staff inflexibility: occurs due to limited knowledge, specialization, legal reasons, 
working times and motivation.

13.3  Operational Excellence

The main goal of Operational Excellence (OE) is to enable any organization to excel 
at the service it provides or product it produces. Within healthcare, OE is strongly 
focused on optimizing the care process and creating (more) value for  thepatient. 
Operational Excellence uses the data from these processes to continuously analyze, 
improve and control them. A process is defined as a specific ordering of work activi-
ties across time and space, with a beginning and an end, and clearly defined inputs 
and outputs: a structure for action [6]. Processes are the structure by which an orga-
nization does what is necessary to produce value for its customers. The methods and 
theories of OE are applicable in any health care setting by any type of healthcare 
provider, including small general practitioners’ offices or large multispecialty hos-
pitals with different departments, emergency rooms and operating rooms.

Operational Excellence works through the Define, Measure, Analyze, Improve 
and Control or DMAIC- Cycle as its continuous improvement framework to opti-
mize the care processes [7]. Data plays a very important in this cycle. At every step 
of the cycle, process data is needed to perform actions. The phases within the 
DMAIC are defined as [8]:

 – Define by identifying, prioritizing and selecting the right project;
 – Measure key process characteristics the scope of parameters and their 

performances;
 – Analyze by identifying key causes and process determinants;
 – Improve by changing the process and optimizing performance;
 – Control by sustaining the gain.

Operational Excellence has a wide range of optimization methods that can be 
used to improve the care process. OE is best known for its popular methods of Lean 
(Thinking), Six Sigma or the combination Lean Six Sigma (LSS). However, OE 
also relies on sociotechnical systems (STS) and leadership to transform care pro-
cesses, which we will briefly discuss at the end of this chapter. First, we will discuss 
the basis methodologies of Lean, Six Sigma and Lean Six Sigma.
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13.3.1  Lean Thinking

Lean (Thinking) is derived from the term ‘lean,’ introduced by Womack et al. who 
published their book ‘The machine that changed world’ [9]. Focusing on car manu-
facturing, the report described how Japanese production methods were superior to 
Western because they were able to produce cars efficiently without losing quality. 
This was in contrast to the mass production of cars then common in the West, which 
was very effective in producing large volumes, but had a lot of rework needed. 
Toyota, the first company that successfully implemented ‘Lean Manufacturing’ and 
to car production, was successful because of a deep business philosophy based on 
its understanding of people and human motivation. They implemented quality 
improvement methods and as a result created Operational Excellence. Toyota had 
successfully enriched leadership, teams, and culture to create strategy, built supplier 
relationships and maintained a learning organization [4].

The main purpose of using Lean is to eliminate waste in order to create more 
value. The approach describes seven types of waste: overproduction; waiting; 
unnecessary transport or conveyance; over processing or incorrect processing; 
excess inventory and unnecessary movement and defects [10] (Table 13.1). Later 
publications added an eighth type of waste: unused human potential [4].

Table 13.1 Overview of all types of waste according to Lean Thinking and a short description 
[3, 4]

Type of waste Brief description Healthcare examples

Overproduction Doing more than what is needed by 
the patient or doing it sooner than 
needed

Blood tests being done weeks 
before a consultation, so they are 
not recent when needed

Waiting Waiting for the next event to occur 
or next work activity

Patient waiting for an appointment 
or doctors waiting for a lab result

Transportation Unnecessary movement of the 
product in a system (patients, 
specimens, materials)

Cardiac catheterization lab being 
located far from the emergency 
department

Overprocessing or 
incorrect processing

Doing work that is not valued by the 
patient; or the result of care quality 
being defined in a way that is not 
aligned with patient needs

Buying the newest surgery robots to 
perform simple procedures with no 
benefit for the patient in terms of 
quality or outcome

Inventory Excess inventory cost, for example, 
due to added financial costs, storage 
and movement costs, spoilage, or 
wastage

Buying all surgical equipment in the 
same order of magnitude while not 
all equipment is being used as 
extensively

Motion Unnecessary movement by 
employees in the system

Lab employees walking between lab 
and their desk

Defects Time spent doing something 
incorrectly, inspecting for errors, or 
fixing errors

Surgical cart missing an item

Human potential Waste and loss due to not engaging 
employees, listening to their ideas, 
or supporting their careers

Employees being overworked and 
developing burnout
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13.3.2  Six Sigma

In this same period as Lean Thinking was gaining popularity, Six Sigma was intro-
duced. This approach was created at Motorola in the late 1980s [11]. Today, Six 
Sigma is a technique used to improve processes not only for manufacturing, but also 
for other sectors including healthcare. Six Sigma strategies seek to improve the 
quality of the output of a process by identifying and removing the causes of defects 
and minimizing variability in processes. It uses a set of quality management meth-
ods, mainly empirical, statistical methods; hypothesis testing is applied to empirical 
data, in order to find evidence for or against supposed causes of process problems. 
It also creates a special infrastructure of people within the organization who are 
experts in these methods. The term ‘six sigma’ comes from ultimate goal of this 
method: having only 3.4 defective features per million opportunities. This means 
that in a process 99.99966% of all opportunities to produce some feature of a part 
are statistically expected to be free of defects.

13.3.3  Lean Six Sigma

Lean Six Sigma describes the integration of Lean and Six Sigma philosophies [12]. 
A combination of Lean and Six Sigma can provide an effective framework as both 
are systematic approaches to facilitating process optimizations. Where Lean focuses 
more on standardization and production flow leveling, Six sigma has an approach 
where reduction of process variability is central. Because of this, Lean often has not 
consistent (changing) performance metrics. By combining the two methodologies, 
the more quantifiable methodology of Six Sigma, such as statistical process control, 
and the more cultural approach of Lean, such as Value stream mapping, a more 
complete analysis of an organization can be made. Six Sigma’s focus on statistical 
rigor and control of variation and Lean’s focus on reduction of non–value-added 
activities both require data collection and analysis to improve performance. [13].

DMAIC cycles can be performed by anyone in the organization, if trained and 
supported by leadership. Equipped with the skills to do so, healthcare professionals 
can improve their own process and, consequently, have a sense of ownership of the 
care process and its continuous improvement. This gives them an in-depth look on 
their process, which helps them to Analyze and Improve the process. Because it is a 
continuous improvement tool, the purpose is to keep measuring, also when the 
improvement is completed. A dashboard is an effective method to continuously 
visualize the process in real-time or close-to-real-time data.

One important process output is the access time, which is the number of days a 
patient has to wait to get an appointment (Fig. 13.4). When the access exceeds a 
certain limit, action is taken. Visualization, even in this primitive form, thus keeps 
health professionals attentive to indicators that are critical to a smooth care 
process.
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Because these optimizations are done in a cyclic, continuous way, processes are 
constantly changing and adapting. These changes are generally incremental and not 
seen as transformative in themselves. However, by continuously changing elements 
of the organization, Operational Excellence can transform entire organizations.

13.4  Process Mining

A more advanced technique that can be used in the context of DMAIC cycles is 
process mining. Process mining extracts process knowledge from so-called event 
logs which may originate from all kinds of software systems (Fig. 13.5) [14].

The example event log shown in Fig.  13.6 contains the typical information 
needed to perform process mining. Each event belongs to a single process case. 
Events are related to activities. The “case id” and “activity” columns are essential 
information for process mining. The “event id” can be used for ordering events 
within a care process. This is needed in order to see causal dependencies between 
events. An event log may also contain additional information, which can be used for 
calculating performance properties of the process. For instance, the “resource” (per-
former of the event) and the “cost” attribute (cost of the activity) can be used for 
discovering additional process knowledge. The table shown in Fig. 13.2 contains 12 
events for 2 cases. For case id “1”, subsequently the activities “First Visit”, 
“Surgery”, “Second Visit”, “Radiotherapy”, “Chemotherapy” and “Evaluate” have 
been performed. Here, the “First Visit” event has id “589,585”, is performed by 
“John” at “05/04/2017”, and has cost “150”.

Week of the year
Week 42 of 2016 through Week 48 of 2017
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Fig. 13.4 Visualization of access lead time to Orthopedics subspecialty outpatient clinics at the 
Maastricht UMC+
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Process mining applies specialized mining algorithms to gain insights into how 
process are actually executed based on stored event logs. So, where traditional mod-
eling techniques try to model a processor create a value stream map based on inter-
views with people working in the process, process mining makes use of stored data 
to model and analyze these processes automatically and overcomes human limita-
tions in reconstructing complex processes. There are three main types of process 
mining that can be distinguished: Discovery, Enhancement and Conformance [14].

“world”

people

business

supports/
controls

software
system

records
events, e.g.,
messages,

transactions,
etc.

specifies
configures
implements

analyzes

discovery

conformance
(process)

model

models
analyzes

enhancement

event
logs

processes

machines

components

organizations

Fig. 13.5 Basic objectives and types of process mining [14]

Caseid Eventid Properties
Timestamp Activity Resource Cost

1 589585 05/04/2017 FirstVisit John 150
589586 08/04/2017 Surgery Henri 55
589590 10/04/2017 SecondVisit John 150
589593 16/04/2017 Radiotherapy Peter 200
589595 21/04/2017 Chemotherapy Suzan 300
589601 28/04/2017 Evaluation John 175

2 748384 01/02/2018 FirstVisit Tom 150
748385 03/02/2018 Surgery Olivia 55
748386 10/02/2018 SecondVisit Tom 150
748400 16/02/2018 Radiotherapy Peter 200
748408 19/02/2018 Immunotherapy David 300
748412 22/02/2018 Evaluation Jack 175

Fig. 13.6 Example of an event log
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Discovery Here, event logs are used to model the different steps that are taken 
within a care process. From the example event log in Fig. 13.6, the following pro-
cess model will be discovered by making use of process mining (Fig. 13.7).

The discovered process model in Fig. 13.7 represents the behavior of all (in this 
case just two) cases. The model shows that cases have a first visit, a surgery, a sec-
ond visit and then receive radiotherapy successively. Subsequently, a case receives 
either chemotherapy or immunotherapy, before an evaluation is performed.

Discovering a process model by means of process mining can be very helpful in 
the Measure phase of the DMAIC cycle to gain insights into how the care process 
actually looks like. For care processes that are more complex than the one shown in 
Fig. 13.7, discovering a process model by means of process mining is less time- 
consuming than modeling a care process “by hand” based on interviews. Moreover, 
process mining will also shed light on less frequently executed process paths, which 
are easily overlooked by practitioners modeling processes “by hand”.

Conformance Conformance checking is used to check whether the observed steps 
in the event log conform to a desired care process (see Fig. 13.6). In case there are 
deviations between the desired situation and the event log, these are identified such 
that they can be further analyzed. In the Analyze phase of the DMAIC cycle, one 
might check to what extent processes comply with internal and external guidelines. 
For example, for certain patient groups, standards may exist in the form of clinical 
practice guidelines or protocols that can be translated to process models to be 
adhered to. By making use of process mining, deviations from guidelines and pro-
tocols can subsequently be identified and quantified, after which the desirability of 
deviations can be discussed. As part of the Improvement phase of the DMAIC cycle, 
process improvements are generated implemented based on the results of the 
Analyze phase leading to a new care process (model) to be adhered to [15]. 
Subsequently, process mining can be used once again during the Control phase. 
Then, healthcare professionals or managers can check adherence to this new care 
process (model) and identify deviations.

Enhancement This type of process mining extracts additional information from the 
log and enriches a process model with additional perspectives (times, costs,, 
resource usage, etc.). These enhancements facilitate a more in-depth measurement/
monitoring of the process (e.g. monitoring throughput times) during the Measure 
and Control phase in the DMAIC cycle. For example, average throughput times 
between the different steps might be automatically projected on the process model, 
as illustrated in Fig. 13.8.

First visit Surgery Second visit Radiotherapy Chemotherapy Evaluation

Immunotherapy

Fig. 13.7 Care process discovered from example event log
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13.5  Sociotechnical Systems & Leadership

As mentioned earlier, Operational Excellence also entails, besides process optimi-
zation, a sociotechnical systems approach (STS). The before-mentioned methods of 
improving processes are very powerful, but with more complex care processes that 
are very unpredictable or that need a higher level of coordination because several 
different professionals are involved, Operational Excellence relies on STS. Below, 
we will also briefly discuss the role of leadership in optimizing care processes with 
Operational Excellence.

13.5.1  Sociotechnical Systems

Sociotechnical systems, also called socio-technique, offers tools for analyzing 
which tasks within a care process should be performed by which people. Where 
processes are unpredictable, the capabilities and flexibility of people are needed, 
socio-technique can help in defining these decisions and functions. Karasek’s Job 
Demand Control Model (Fig. 13.9) is one of these tools that can help to define jobs 
and tasks in a care process [16].

The higher the variability of a care process, the more flexible and autonomous 
the employee should be. Low flexibility means reduced decision-making autonomy. 
Passive jobs, where there not much variability can be performed by employees with-
out a lot of flexibility and therefore more standardization and efficiency (Lean Six 
Sigma optimized processes). Active jobs, in the upper right quadrant, have high 
demands but also high levels of control. These challenging jobs lead to active learn-
ing and motivation to develop new behavior patterns. High strain jobs, in the lower 
right quadrant, have high demands and low control. These jobs have a high risk of 
psychological strain and physical illness. Low Strain jobs can lead to waste of 
human resources. Defining which tasks in care processes should be performed by 
which people is therefore essential to be ensure that the process is able to cope with 
the uncertainty of demand.

First visit Surgery Second visit Radiotherapy

AVG:
2.5 days

AVG:
4.5 days

AVG:
6 days

AVG:
5 days

AVG:
3 days

AVG:
5 days

Chemotherapy Evaluation

Immunotherapy

Fig. 13.8 Care process enriched with throughput times based on time-related logs in Fig. 13.6
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13.5.2  Leadership

Lastly, Operational Excellence requires a specific type of environment where people 
want to experiment and try to improve the processes. To create such an environment, 
leadership is needed. In times of change, such as in healthcare system transforma-
tions or even in small-scale process improvements, this is especially important. 
Research found that leaders use six styles: commanding, visionary, affiliative, dem-
ocratic, pacesetting and coaching [17]. The one that fits best for Operational 
Excellence is the coaching style¸ which is defined by a leader who develops people 
for the future and most importantly motivates employees to experiment. By encour-
aging employees to experiment, more DMAIC projects will be started and employ-
ees are not afraid to fail. The leader should be constantly stimulating their employees, 
helping them improve performance, and develop long- term strengths.

13.6  Conclusion

In conclusion, Operational Excellence can help healthcare professionals and man-
agers in transforming healthcare organizations towards processes that create more 
value for patients. Besides process optimization methods, Operational Excellence 
also involves sociotechnical systems and is most successful with a leader who has a 
coaching leadership style. Understanding the type of care process and organization 
where Operational Excellence is implemented is important in order to choose the 
right approach. Data is an essential part in the DMAIC cycle, which is central in 
Operational Excellence. Process mining can help in this improvement cycle by 
gaining insights into how care processes are actually performing and controlling 
processes after an improvement has been implemented.

High

High

Low Strain

High Strain

Active

Passive

Low

Low

Flexibility
of staff

Variability of demand

Fig. 13.9 Job Demand 
Control Model adapted 
from Karasek [16]

13 Optimizing Care Processes with Operational Excellence & Process Mining



192

References

 1. World Health Organization. Quality of care: a process for making strategic choices in health 
systems. Geneva: World Health Organization; 2006.

 2. Institute of Medicine Committee on Quality of Health Care in A. Crossing the Quality Chasm: 
A new health system for the 21st century. Washington, DC: National Academies Press (US). 
Copyright 2001 by the National Academy of Sciences. All rights reserved; 2001.

 3. van Merode F, Molema H, Goldschmidt H.  GUM and six sigma approaches positioned as 
deterministic tools in quality target engineering. Accred Qual Assur. 2004;10(1–2):32–6.

 4. Liker JK. The 14 principles of the Toyota way: an executive summary of the culture behind 
TPS. The Toyota Way. 2004;14:35–41.

 5. Johnston R, Clark G, Shulver M. Service operations management: improving service delivery. 
Pearson; 2012.

 6. Davenport TH.  Process innovation: reengineering work through information technology. 
Boston: Harvard Business Press; 1993.

 7. Tenera A, Pinto LC.  A Lean Six Sigma (LSS) project management improvement model. 
Procedia Soc Behav Sci. 2014;119:912–20.

 8. Sokovic M, Pavletic D, Pipan KK.  Quality improvement methodologies–PDCA cycle, 
RADAR matrix, DMAIC and DFSS. J Achiev Mater Manuf Eng. 2010;43(1):476–83.

 9. Womack JP, Womack JP, Jones DT, Roos D. Machine that changed the world. New York: 
Simon and Schuster; 1990.

 10. Womack J, Jones D. Lean thinking. Revised ed. New York: Free Press; 2003.
 11. Schroeder RG, editor. Six Sigma quality improvement: what is Six Sigma and what are the 

important implications. Proceeding of the Fourth Annual International POMS Conference, 
Seville; 2000.

 12. Sheridan JH. Lean Sigma synergy. Ind Week. 2000;249(17):81–2.
 13. Koning H, Verver JP, Heuvel J, Bisgaard S, Does RJ. Lean six sigma in healthcare. J Healthc 

Qual. 2006;28(2):4–11.
 14. Mans RS, van der Aalst WM, Vanwersch RJ. Process mining in healthcare: evaluating and 

exploiting operational healthcare processes. Cham: Springer; 2015.
 15. Vanwersch RJB, Shahzad K, Vanderfeesten I, Vanhaecht K, Grefen P, Pintelon L, Mendling J, 

Van Merode GG, Reijers HA. A critical review and framework of business process improve-
ment methods. Bus Inf Syst Eng. 2016;58:43–53.

 16. Karasek RA Jr. Job demands, job decision latitude, and mental strain: implications for job 
redesign. Adm Sci Q. 1979;24:285–308.

 17. Goleman D. Leadership that gets results. Harv Bus Rev. 2000;78(March–April):78–90.

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

H. J. Boersma et al.

http://creativecommons.org/licenses/by/4.0/


193© The Author(s) 2019 
P. Kubben et al. (eds.), Fundamentals of Clinical Data Science, 
https://doi.org/10.1007/978-3-319-99713-1_14

Chapter 14
Value-Based Health Care Supported 
by Data Science

Tiffany I. Leung and G. G. van Merode

14.1  Introduction

The value agenda encompasses the overall vision for optimizing healthcare value 
for patients. Value in health care is traditionally defined as health outcomes (quality 
of care) achieved per dollar spent (cost of care) [1, 2]. The value agenda was origi-
nally developed in 2006 with six primary components, including measurement of 
outcomes and costs for every patient as the second step [1]. A seventh component 
was added to customize the agenda in certain contexts, for example, in the 
Netherlands, culture change and leadership are added to the agenda (Fig. 14.1) [3]. 
The primary aim overall is to crystallize a vision and direction towards true north in 
providing health care to patients, and set our collective sights on this goal. In its 
simplest definition, value is increased when there is more care quality for less cost. 
Optimizing outcomes that matter for patients means aligning medical and health 
care services, supportive services, process optimization efforts, health information 
technology, research and innovation. By increasing value, patients primarily benefit 
as the central stakeholder, which thereby benefits healthcare providers, insurers, and 
healthcare systems in terms of effectiveness compared to costs. With greater effec-
tiveness per unit of cost achieved, healthcare costs may still continue to rise, albeit 
at a slowed rate [4, 5].

Regarding the first part of the value equation, quality measurement is easier said 
than done. Possibilities for measurements are virtually limitless, although in health 
care they have been derived traditionally from evidence-based clinical guidelines. 
Types of measurement frequently follow a Donabedian approach, first described in 
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1988, in which measures are classified in three categories: structures, processes, and 
outcomes [6]. Structural measures refer to supporting structures that enable care 
provision (e.g. having point-of-care hemoglobin A1c, or HbA1c, testing available in 
an outpatient clinic where patients seek management care for diabetes mellitus type 
2). Process measures refer to processes of care (e.g. measurement of HbA1c every 
3 months while actively managing medication doses for a patient with diabetes) [7]. 
Outcome measures include health status, clinical measures (e.g. HbA1c was at goal 
less than 7% for a healthy adult less than 65 years old), patient-reported outcomes 
(e.g. perceived diabetes control), patient experience (e.g. feeling engaged in deci-
sion making), and quality of life. However, even in 2016, outcome measurements 
were not measured as frequently as they should be; at that time, an analysis of 1,958 
measures from the U.S. National Quality Measurement Clearinghouse, a registry of 
measurements from various quality reporting organizations, showed that only 7% of 
the measures were actually outcomes and less than 2% were patient-reported out-
comes [8]. This is the result of interpreting quality of care as compliance with 
evidence- based guidelines, which emphasized process measurement, rather than 
outcome measurement and their improvement.

In the second part of the value equation, namely cost, the aim is to best estimate 
costs in order to reform healthcare financing, which is complicated and can vary 
widely by country. Uniformly, costs attributable to health care are rising and con-
suming a growing proportion of each developed country’s gross domestic product. 
The United States is the most costly healthcare system globally, spending about 
17.9% of the GDP on health care, which is nearly 5% higher than the next highest 
spending country, with a projected increase of 5.5% per year towards USD$5.7 tril-
lion by 2026 [9]. Primary drivers for persistently rising costs include prices of labor 
and goods, such as medications and devices, and administrative costs [10]. The 
value agenda aims to clearly define and focus on optimizing healthcare value to 
“solve the cost crisis” [11].

This chapter focuses on components of the value agenda pertaining to mea-
suring outcomes and costs, which is founded on building supportive  information 

1. Organize into integrated
practice units, with care
centered around a patient
condition or patient segment

2. Measure outcomes and
costs for every patient

3. move to bundled payments
for care cycles

Seven Components of the Value Agenda

4. Integrate care delivery
across separate facilities

5. Expand excellent services
across geography

• Cohort identification
• Process mapping or mining
  and optimization

• Knowledge translation and
  management
• Registration of computer-
  interpretable data to
  measure outcomes
• Auto-generation of outcome
  measures reports
• Cost data transparency

• Data standardization and
  transparency across the
  care cycle

in support of above components

6. Build an enabling information technology platform
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• Data standardization, interoperability, accessibility, etc. -- in support of all other
  components of the value agenda

• Clinical leadership of a multidisciplinary and/or multispecialty team, with engaged
  team members and patients -- in support of all other components of the value
  agenda

7. Change culture and stimulate leadership

• Process mapping or mining
  and optimization

• Data interoperability to
  enable data transfer
  between care service
  delivery sites
• Patient accessibility to their
  health information and about
  care services to guide
  choice

Fig. 14.1 Components of the Value agenda, with associated examples of data related tasks. 
Components 6 and 7 are supportive of all other components. (Adapted from Redefining Health 
Care: Creating Value-Based Competition on Results and The Value Agenda for The Netherlands: 
A Call for Action [1])
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Box 14.1 Measuring Outcomes and Costs for Every Patient Is a Big 
Data Challenge
The tasks of performing outcome and cost measurement involve working with 
big data and its 5 V’s: we aim to derive value from healthcare services pro-
vided (and data are our means of measurement), large volumes of data are 
generated with high velocity and are also inherently of high variety, ideally 
with high veracity. Beyond the complex healthcare data ecosystem, human 
components and interactions with information systems inherently require 
work with data in a sociotechnical context. That is, local organizational 
behavior and culture, as well as leadership and social aspects of a healthcare 
organization are significant determinants of the design, implementation and 
effectiveness of information systems.

 technology (IT) systems and stimulating leadership and culture change 
(Box 14.1). Offering a circumspect perspective on healthcare value, the chapter 
leaves the reader with key points to remember and for further dialogue about 
healthcare value and its role in healthcare transformation.

14.2  Measuring Outcomes

The first consideration in measuring healthcare value is outcome measurement, 
which is costly and complex. In one study, measuring outcomes cost medical prac-
tices an estimated USD$15.4 billion annually, and more than 15 h per physician per 
week, in only four common U.S. specialties, general medicine, family medicine, 
cardiology and orthopedics [12]. In this survey, much of the burden of time and cost 
was attributed to perform five activities that totalled 15.1 total hours of effort (physi-
cians and staff time) per week per physician: entering information into the medical 
record (12.5 h including 2.3 h of physician time), reviewing quality reports from 
external entities (0.5 h), tracking quality measure specifications (0.7 h), developing 
and implementing data collection processes (0.8 h), and collecting and transmitting 
data (0.7 h).

The paradigm of outcome measurement often takes a highly deterministic 
and also biomedical approach, being frequently condition-specific and multi-
dimensional [2]. That is, cohort identification is frequently done on the basis 
of a population with a specific medical condition and health status. Then, mea-
surement of care quality at the levels of each patient and for the population of 
all patients with the same condition can be done. Translating knowledge about 
clinical and diagnostic criteria for a condition into a computable format is cur-
rently a necessary step to be able to perform cohort identification (Box 14.2a). 
In Chap. 3, data standards in healthcare are governed by principles that apply 
to language: syntax (the rules and structure of sentences, consisting of a combi-
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nation of symbols, used to communicate), semantics (the relationship between 
symbols in a sentence), and pragmatics (the situational context of the sym-
bols). These principles are important in translating from the language of clini-
cal diagnosis from a practice guideline, for example, to computer-interpretable 
language.

Cohort identification may also use other types of data, such as service utilization 
or cost data (Box 14.2b). With only limited access to one’s own population data to 
a detailed enough degree, or with adequate customizability, quality of care per phy-
sician can be difficult to track and improve. Cohort identification supports popula-
tion health management, as well as potential research activities including, for 
example, facilitating clinical trials recruitment and collecting outcomes data and 
other measurements need for a clinical trial.

Box 14.2 Cohort Identification
 (a) By disease: The majority of current cohort identification systems in prac-

tice rely upon deterministic methods, such as identifying all patients reg-
istered in an electronic health record (EHR) as having a certain diagnosis 
code, or patients who may meet a certain laboratory or other criteria that 
serves as a surrogate for the presence of the diagnosis. For example, a 
patient with a provider-registered diagnosis code in the EHR of diabetes 
mellitus type 2 is a patient with diabetes, or a patient with a HbA1c ≥ 6.5% 
(48 mmol/mol) may also be included in this cohort [13]; therefore, out-
come measures applicable to diabetes would be expected to apply to these 
patients. Consideration should be given to patient attribution, meaning 
that such patients should be attributed to the physician providing diabetes 
care. For example, a patient may have a HbA1c that meets diagnostic 
criteria from 18 months ago but without further follow up due to moving 
out of the area or changing providers or healthcare systems. Another 
approach to cohort identification is electronic phenotyping, which is a 
statistical learning approach to identify patients with a condition of inter-
est or a certain phenotype [14]. This approach is potentially time-saving 
and less labor-intensive than rule-based approaches, however, is not yet 
routinely implemented in clinical practice. Predictive modeling and 
machine learning techniques, discussed in Chap. 8, can be applied to 
warehoused clinical data to perform the cohort identification task using 
such statistical approaches.

 (b) By service utilization: Another way to group patients, or identify the 
patient segment in value agenda terms, is to examine individual patients’ 
service utilization or use of high-cost services. This method has also been 
called hotspotting [15]. In the U.S., this approach is based upon data that 
show that a large proportion of healthcare costs are incurred by a small 
proportion of patients. Data on health service utilization can be used to 
identify super-utilizers, or patients who disproportionately utilize high- 
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In recent years, there is a greater shift towards measuring what matters to 
patients. Patient-reported outcomes, which aim to be both evidence-based and 
 patient- centered, offer an opportunity to engage the patient in measuring what 
matters to them, but also requires robust and lengthy processes to develop, vali-
date, and also implement them in a non-invasive manner [18]. Typically, there is 
an evidence basis that guides the development of patient-reported outcomes and 
their validation [19]. Patient-reported outcome measures (PROMs) are the tools, 
such as surveys or questionnaires, used to collect patient-reported outcomes. One 
international initiative to develop standardized patient outcome measures, the 
International Consortium of Healthcare Outcomes Measurement (ICHOM), is a 
large, multi-institutional effort that draws from international registries and pro-
vider best practices to implement PROMs in alignment with the value agenda 
[20]. Patient-reported experience measures (PREMs), including patient satisfac-
tion, are intended to ensure accountability for healthcare service provision that is 
appropriate, equitable, accessible, affordable, appropriate, and efficient [21]. 
Consumer Assessment of Healthcare Providers and Systems surveys, first devel-

cost services, such as emergency room visits and hospitalizations, or have 
high care needs. A typical approach to assessing patients’ service utiliza-
tion is to perform an analysis of claims data, which usually also includes 
certain demographic, geographic and health data. For example, one study 
of Camden health centers in New Jersey, where the hotspotting approach 
originated from, utilized hospital claims data from three facilities to per-
form a cluster analysis and classify pediatric patients into five subgroups 
of risk according to their asthma-related emergency department visits and 
hospitalizations [16]. The aim of this classification was to identify cohorts 
and potentially guide interventions tailored to each subgroup to optimally 
reduce asthma-related hospitalizations. More generally, cohort identifica-
tion based on service utilization aims to guide the design of multidisci-
plinary and community-based services, self-management support, and 
health care that can address medical and non-medical needs of patients, 
thereby reducing the need to utilize higher-cost services. These are ways 
to integrate care delivery and expand excellent service across geography, 
according to the value agenda summarized in Fig. 14.1. In another study, 
patients were identified by their provider as a patient with high-frequency 
healthcare system access or complex unresolved needs; these patients 
were then referred to a complex care center within the organization [17]. 
At this center, a root cause analysis was performed at the level of the 
patient by multidisciplinary team led by a master’s trained clinical nurse 
leader in order to discover root causes of patient instability. A combina-
tion of EHR data, insurance data, housing and employment information, 
institutional policies, and other information sources was used in this the-
matic analysis of determinants of patients’ service utilization. 
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oped in 1995 in the U.S. [22], and the Dutch Consumer Quality Index, which is 
disease- and provider-specific and also assesses patient priorities [23], are patient-
directed questionnaires that measure PREMs.

As already noted, outcome measurement is complex, easily extending well 
beyond the structure-process-outcomes approach. Scientific literature, medical 
knowledge, clinical practice guidelines, and outcome measurement specifications 
are constantly evolving, resulting in rapidly growing volume and variety of data and 
information. For  example,evidence-based clinical outcomes often are derived from 
the results of randomized control trial results, if available. Otherwise, outcomes 
may originate from other study types or expert consensus, and then selected and 
synthesized into clinical practice guidelines, with an indeterminate timeline or pro-
cess for revision as new scientific and medical knowledge becomes available.

When a single disease clinical guideline is implemented, the quantity of data and 
information needed to adhere to guideline recommendations is enormous. For 
example, consider a guideline update on early management of acute ischemic stroke 
published in 2018, in which 217 recommendations were made, citing 421 published 
references [24, 25]. Clinical comorbidities may further complicate translation and 
implementation of such guidelines; for example, a guideline on transient ischemic 
attack recommends aspirin to prevent ischemic stroke, but in a patient with peptic 
ulcer disease, this guideline recommends avoiding aspirin, which is a conflict 
between two concurrently applied guidelines. This clinical scenario is one example 
of a use case in which each clinical guideline was transformed into a computer- 
interpretable format, then conflicts were resolved using a computational method of 
conflict resolution [26, 27]. As a result, accurate quality measurement that ade-
quately accounts for such cases can become challenging.

Overall, the measurement of high-value health care should be able to account for 
clinical complexity, social determinants of health, and patient preferences. 
Multimorbidity is a classic example of clinical complexity (Box 14.3). In this case, 
the clinical complexity of multiple comorbid conditions arises from the numerous 
possible combinations of disease and types of relationships (e.g. chronology, etio-
logic association, or dominance) [28, 29]; furthermore, these relationships may 
change in strength or association over time, as can their associated treatment recom-
mendations and the potential synergies and conflicts between them. In settings 
involving clinical complexity, risk adjustment through case mix indices or comor-
bidity indices, such as the Charlson Index [30], can be applied, although the latter 
are more often used in clinical research rather than implemented in outcome 
measurements.

The simplest approaches to account for clinical complexity can be designed 
as alerts in an electronic health record (EHR) to allow for exclusion of a particu-
lar patient from a cohort; for example, if a patient has an incurable and terminal 
illness, an EHR may allow for this patient to be easily identified in a manner 
that would acknowledge that even though she may meet eligibility criteria for 
certain preventive services, such as cancer screening, these would be low-value 
services in this patient context. Knowledge management, discussed later in this 
chapter, and dealing with alert fatigue, discussed in Chap. 11 on clinical deci-
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sion support, become relevant in crafting an appropriate approach to developing 
and managing such alerts.

Social determinants of health are also important contextual factors in determin-
ing an outcome even if not explicitly measured. Moving away from solely a bio-
medical approach to medicine, a biopsychosocial model of medicine, first introduced 
by psychiatrist George Engel in 1977, centralizes the important roles of social, psy-
chological and behavioral determinants of health [38]. Numerous social determi-
nants of health are now known, including sociodemographic factors (e.g. race, 
ethnicity, employment, food and housing insecurity), psychological factors (e.g. 
health literacy, psychological assets such as self-efficacy and patient engagement or 
activation), behavioral factors (e.g. physical activity, tobacco use and exposure, 
alcohol use, and dietary patterns), individual-level social relationships and living 
conditions (e.g. social isolation), and neighborhoods (e.g. neighborhood composi-
tional characteristics) [39]. However, few are documented and in fact a subset of 
sociodemographic characteristics and social determinants in the behavioral domain 
are typically the most commonly documented in a structured manner in EHRs [39].

Additional determinants are usually not documented in a structured format that 
could enable cohort identification or other data analytical activities that would be 
supportive of a value agenda. For example, adverse childhood experiences, such as 
psychological, physical or sexual abuse, or exposure to violence against their mother 
(the original 1998 study did not investigate exposure to violence against all types of 
parents), can be important determinants and risk factors for certain mental health 
and chronic diseases [40]. Other patient characteristics that could be important 
determinants of health, such as positive intimate partner violence screening or 

Box 14.3 The Challenge of Multimorbidity
Multimorbidity, or the presence of multiple comorbid conditions in a patient, 
is increasingly recognized as a clinical condition, yet remains difficult to char-
acterize due to significant heterogeneity. Further, generalizability of the 
results of clinical trials, a traditional manner of evidence generation and the 
basis of clinical practice guidelines on single conditions, may be difficult, as 
81% of randomized control trials exclude patients with multimorbidity [31]. 
In fact, application of single-disease guidelines to patients with multimorbid-
ity can increase treatment and self-management complexity, risk of interac-
tions between guideline recommendations, potential adverse events, 
hospitalization and poorer health outcomes [32–35]. Consequently, quality 
measurement in the setting of multimorbidity is challenging—multimorbidity 
is not simply a count of conditions [36] and co-occurring conditions can be 
interrelated in a variety of ways [33], even in chronology [28, 37]. Intelligent 
information systems, given reliable data, could better be able to handle the 
complexity and probabilistic nature of potential outcomes for patients with 
multimorbidity, and thereby measure care quality in a more nuanced manner 
representative of the population.
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undocumented migrant status, may be purposefully left undocumented by clinicians 
in the electronic health record due to potential legal and social consequences.

Finally, patient preferences are essential to consider in shared decision making, 
as is a frank discussion of uncertainty in medicine. A probabilistic approach is often 
more appropriate approach to decision-making than a deterministic one, but such 
interpretation may be challenging to communicate and dependent on clinician 
knowledge and skills or numeracy (or numerical literacy) of the patient. Further, 
service overutilization, waste, and poorer patient outcomes can result from a com-
pulsion to “do something” [41]. Outcome measures should appropriately consider a 
variety of influencing factors, which may be difficult to measure or may not be 
formally registered in an electronic record or information system, to provide the 
best representation of true outcomes for a given patient or population.

14.3  Measuring Cost

Beyond the complexities of measuring outcomes, cost is also challenging to esti-
mate accurately. Costing analyses are conducted to estimate the cost of providing 
healthcare services. While there are many costing analysis methods, a popular 
approach coupled with the value-based healthcare framework is time-driven activity- 
based costing (TDABC). Traditional activity-based costing is typically isolated to 
an individual department, which becomes inadequate for cost estimation that 
involves further complexity, such as across multiple departments involved in a care 
pathway [11, 42].

The TDABC approach accounts for the cost of a particular supply per unit time; 
for example, the cost of 1 h of a neurosurgeon’s time differs greatly from the cost of 
1 h of a physician assistant’s time. Redistributing certain responsibilities appropri-
ately within the scope of each clinician’s practice (also known as working at the top 
of one’s license) becomes a potential opportunity for reducing cost, and is therefore 
a value-added change. Objects may also be time-dependent, for example, there is 
also a cost per hour of usage for an operating room. A shorter operating time that 
offers similar outcomes as longer operating times would also be value-added. In 
TDABC, the intent is to capture all costs incurred by the institution to provide care 
services in an entire care pathway, including costs of equipment, information tech-
nology, space, human labor in the form of health professionals, and additional sup-
portive services (Fig. 14.2). The methodology specifically distinguishes between 
these costs versus other costs, such as prices charged to insurers or patients for ser-
vices rendered and reimbursed costs for those services.

Expert interviews, focus groups, process mapping and mining, or event log data 
can be combined with accurate financial data, including itemized prices and labor 
costs (including benefits) to appropriately estimate true costs. Such approaches are 
intended to map the care pathway and value streams, highlighting key processes for 
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improvement and points of care as well as care inefficiencies. Process mining and 
event logs were described in Chap. 13 on Operational Excellence. Further descrip-
tion of how to perform a costing analysis, such as TDABC, is beyond the scope of 
this chapter and additional reading is supplied in the references at the end of this 
chapter.

14.4  Creating Value Through Innovation

With the foundation laid for measuring outcomes and costs, increasing value can 
follow. Innovation is a key component of healthcare transformation centered on 
increasing value for patients. A broad definition of innovation would encompass 
several domains, including the development and implementation of new informa-
tion technologies that enable remote disease monitoring or self-management care, 
as well as service delivery innovation or re-design that integrates traditionally dis-
parate services in a manner that increases value for patients. Further, device and 
information technology innovations (e.g. tools based on predictive analytic or 
machine learning technologies and artificial intelligence) can drive added value in 
health care.

E-Health is defined as any activity in which an electronic means is used to deliver 
information, resources and services related to health; domains include EHRs, tele-
health, mobile health (e.g. wearables, remote monitoring or connected devices, and 
app), and health-related use of e-Learning, social media, and health analytics [43]. 
With the explosive growth of e-Health, more technologies and platforms offer 
greater opportunities for data collection, management and processing. Information 
technology should be designed in support of increasing healthcare value for patients 
by enabling data capture and consumption in a manner that allows for outcomes and 
cost measurement, but e-health is not mandatory to increase value (Box 14.4).

Costing analysis

Estimate time
needed for
each step. For
more complex
processes,
record actual
duration.

1 Identify the
condition or
patient
segment.

2 Define the
care delivery
value chain.
What are the
principal
activities and
where?

3 Build process
maps
(including time)
of each care
activity.

4 Calculate the
total costs
over each
patient’s cycle
of care.

5 Estimate the
capacity (time
available) and
capacity cost
rate of each
resource.

6 Estimate the
cost of
supplying
each
resource.

Multiply direct
patient care
time (4) by
capacity cost
rate (6) to
calculate total
cost/patient

Divide total
cost of each
resource (5)
by capacity of
each resource (6)

Cost data
transparency,
including
equipment, IT
space, labor,
support
services

Process
mapping and
mining

Enabling information technology platform

Process
mapping and
mining,
including
value stream
mapping

Cohort
identification,
such as
electronic
phenotyping

Clinical
leadership and
engaged team
members
Tools to
record time,
as needed

Data-related tasks from the value agenda

7

Fig. 14.2 Steps involved in time-driven activity-based costing (TDABC) costing analysis and 
associated examples of data-related tasks. (Adapted from Kaplan and Porter [11])
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Box 14.4 Innovation and Value in Care for Specific Populations
 (a) A role for technology: Inflammatory bowel disease is a chronic condition 

that, with adherence to appropriate medications and close monitoring of 
response to therapies, can prevent disease complications and improve long-
term outcomes. At Maastricht University Medical Center, a multidisciplinary 
clinical research group developed MijnIBDcoach, a software platform that 
enables home monitoring and patient-provider communication about health 
status, tracking and response to disease activity, medication adherence, side 
effects, nutrition, fatigue, quality of life, life events, and behavioral health 
such as stress and anxiety levels [44]. For example, alerts were created to 
notify the care team of indicators for a possible disease flare; and during a 
disease flare, the platform allowed for intensified home monitoring. E-learning 
is also available to educate and engage patients in their care. In a randomized 
controlled trial, patients in the intervention group had a statistically signifi-
cantly lower mean number of outpatient office visits and mean number of 
hospitalizations compared to patients who received standard of care [45]. 
Patients with the intervention also demonstrated improved patient-reported 
outcomes, as measured by the My IBD At Home questionnaire, and quality 
of life, as measured by the Short Inflammatory Bowel Disease Questionnaire, 
although both without statistical significance. This intervention demonstrates 
potential added value to health care services offered for a specific patient 
population, enabled by information and communication technologies.

 (b) Technology not required: Oak Street Health offers innovative primary care 
service delivery in Chicago in a unique model that draws upon community 
features, providing medical and non-medical services to an elderly popula-
tion of patients in order to keep patients “happy, healthy, and out of the 
hospital” [46]. Instead of a traditional fee-for-service model, the Oak Street 
business model is globally capitated, which means the practice has financial 
responsibility for the entirety of their patients’ care. This results in alloca-
tions of financial resources towards prevention and out-of- hospital manage-
ment services, including in-house care management and longer primary 
care visits. Added-value services can even include transportation between 
home and primary care visits. Team-based primary care is also coupled with 
patient classification into four risk-based cohorts, or tiers, with re-evalua-
tion as patients may transition between tiers throughout the course of their 
care; these tiers guide primary care visit cadence and allocation of care 
management resources. While not studied in a randomized control trial, 
Oak Street Health has a high Net Promoter Score, a summary metric for 
patient satisfaction; achieved a 5-star rating in Healthcare Effectiveness 
Data and Information Set (HEDIS) metrics, which are sets of quality and 
performance measures utilized by more than 90% of American health care 
plans; and reduced hospitalizations in their population by 40%, compared to 
geographically matched cohorts with similar health insurance coverage. In 
this case, innovation in the form of service delivery and design with appro-
priate financial incentives drives increased healthcare value for patients.
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14.5  Increasing Value in a Learning Health System

Regardless of approach, robust measurement of outcomes and costs of care services 
depend on access to accurate health, administrative, and cost data. Traditional 
sources of data, for example, scientific literature and clinical guidelines, and admin-
istrative data, such as financial, insurance or claims data, continue to be important 
data sources in medicine. An evidence-based medicine approach [47] remains the 
current and more accepted driver of clinical and medical evidence generation to 
support synthesis into clinical practice guideline recommendations and best prac-
tices. However, studies have estimated that the time for transfer from research to 
practice is 17 years [48, 49]. Further, established medical practices may need to 
undergo reversal due to new evidence and medical knowledge discoveries, yet this 
also can be a slow process [50, 51].

This paradigm is evolving. A data-driven medicine, or practice-based evidence 
[52–54], approach is a newer paradigm that has become possible in light of the mas-
sive amounts of data now available for knowledge discovery. Together, evidence- 
based medicine and practice-based evidence could also be framed in the context of 
the learning health system, in which rapid translation of knowledge from “bench to 
bedside” can drive healthcare reform centered on increased value [55–59]. A learn-
ing health system embodies a virtuous cycle in which new scientific knowledge can 
translate into high-value healthcare practices and personalized patient services, 
additional knowledge from clinical practice can be gained from EHR and other 
patient data streams, which further enables scientific inquiry and so on. Additionally, 
the learning health system would also include infrastructure and policies supportive 
of secondary uses of EHR and other patient data, without undue burden on clini-
cians, such as basic and clinical research, public health surveillance and manage-
ment, quality improvement, and safety monitoring [60].

A related framework is network medicine, in which the network concept in medi-
cine can reveal a surprising number of connections between diseases [61]. Further, 
these diseases can vary in the types and strengths of their relationships to one 
another, as well as with other things in the world in which we live. The concept of 
clinical complexity was introduced earlier, highlighted in the context of multimor-
bidity. Clinical complexity is subsumed under the broader framework of complex 
systems and network medicine. That is, medical knowledge, the practice of medi-
cine and delivery of healthcare are best understood as dynamic networks, compo-
nents of a whole, which constantly evolves and adapts to change: these are social, 
technological, metabolic or molecular, and disease networks [62]. Network-based 
thinking addresses the complex relationships between human health or disease and 
all else, such as, for example, genetics, social determinants of health and other influ-
encing characteristics of a patient, and environmental factors. With deeper under-
standing of the local components and their interactions, is it then possible to 
understand how the whole complex system works in a way that is greater than a sum 
of each of its parts [63].

In the social network of medicine, physicians and other professionals are enabled 
to provide patient-centered continuous care, within an ecosystem of care that sup-
ports high-value care provision to patients with appropriate outcomes and cost mea-
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surements [64]. Medical specialists of the future would function collaboratively 
within this network of care, which is centered around the patient [65]. Care is 
enabled by technology and patient engagement, and their health beliefs and prefer-
ences are accounted for in care management decisions. The technological network 
of medicine includes information technologies and infrastructure, as well as new 
medical technologies in general, which enable patient-centered healthcare service 
delivery. This could include, for example, clinical decision support systems, e-health 
technologies, and virtual networks or services. Information technologies should 
also enable knowledge discovery and management. Metabolic and molecular net-
works relate to systems biology and human disease, such as drug discovery and 
disease classification, and increasing scientific knowledge and innovation [62]. A 
disease network involves understanding disease relationships, clinical complexity 
and multimorbidity [62, 66].

In the world of complex systems in which we live and deliver or receive health 
care, data science drives the aim which we seek to achieve: the creation of learning 
healthcare systems that optimize patient value with available resources.

14.6  Sociotechnical Considerations

As noted, outcome measurement should account for clinical complexity, social 
determinants of health, and patient preferences. Much of this work could be enabled 
by data management infrastructure and policies designed to address the needs of 
patients, clinicians, researchers and innovators [67]. Education also plays an impor-
tant role in developing a capable workforce to function in a redesigned healthcare 
system. A sociotechnical approach to health information technology has been 
developed that provides better context for health IT and therefore also health data 
[68, 69], are an important consideration in a learning health system that aims to 
increase healthcare value for patients. The sociotechnical approach to health IT sys-
tems consists of eight interdependent dimensions to address challenges involves in 
design, development, implementation, use, and evaluation of health IT (Box 14.5) 
[68]. All eight dimensions are relevant to the value agenda, but the organizational 
features, particularly culture and policies, include leadership, resource allocation of 
capital budgets, IT-related policies and procedures, and other core elements without 
which the value agenda would fail.

Box 14.5 Eight Dimensions of a Sociotechnical Approach to IT Systems

Hardware and software
Clinical content
Human computer interface
People

Workflow and communication
Internal organizational features
External rules and regulations
System measurement and monitoring
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Each healthcare setting and institution may employ different knowledge man-
agement processes, which can have a several potential consequences in implement-
ing the value agenda. For example, due to localized organizational structures and 
cultures, information systems, and processes, guideline-based care and outcome 
measurement for a condition can vary in their implementations, even though they 
may draw from exactly the same source guideline. Knowledge management is a 
process that involves the capture, storage and sharing of intellectual assets, thereby 
enabling knowledge access and reuse, potentially reducing costs, and allowing for 
company growth [70]. When applied to clinical information systems, knowledge 
management is subdivided into a three-part repeating cycle: knowledge asset man-
agement, knowledge application, and knowledge discovery (Table  14.1) [71]. 
Knowledge creation is a subcomponent of knowledge asset management and arises 
from social practices and social interactions, such as dialogue [72]. In healthcare 
settings, one common example is a clinical decision support committee where 
knowledge is created, applied, and managed, although the possibilities for knowl-
edge creation are indefinite within formal and informal healthcare organizational 
structures.

As an example of knowledge management between and within healthcare organi-
zations, a quality improvement collaborative (QIC) is an organizational model used 
to perform large-scale performance improvements and disseminate them efficiently. 
The QIC supports healthcare improvement efforts primarily by providing process 

Table 14.1 Components of knowledge management for clinical information systems

Knowledge 
management 
component Definition Clinical example

Knowledge 
asset 
management

A set of processes for 
creating (knowledge 
creation), validating, 
updating, and deploying 
knowledge

A healthcare organization’s clinical decision 
support committee evaluates and implements a 
proposed guideline-based alert from a medical 
director of the urgent care clinic. The proposal 
aims to reduce unnecessary radiologic imaging 
for uncomplicated low back pain. A timeline for 
future review is established.

Knowledge 
application

The art of leveraging 
knowledge at the right 
places in workflow to 
achieve a strategic objective

The guideline-based alert is activated when a 
clinician places an order for radiologic imaging 
concurrently with a diagnostic code for low back 
pain. The alert asks focused questions to help 
guide appropriate use, and includes an infobutton 
for the clinician to access optional additional 
continuing education.

Knowledge 
discovery

The process of analyzing 
data for the purpose of 
understanding performance, 
reporting, predicting, and/
or harvesting new 
knowledge

A periodic report is produced for review, 
identifying the cohort of patients with diagnostic 
codes for low back pain. The report includes 
responses to the focused questions in the alert 
and number of completed imaging studies to 
determine appropriate use. The urgent care 
medical director is involved in the review.

Adapted from Glaser and Hongsermeier [73]
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redesign educational material and guides, enabling knowledge sharing between par-
ticipant institutions, and providing support in the form of an external change agent. 
While these are considered strengths of a QIC approach, when evaluated in a set of 
Dutch hospitals, the standardized process redesign approach from QIC was difficult 
to localize [74]. Aligning various interests in existing clinical departmental structures 
was in some cases prohibitive to change. Knowledge sharing across participating 
institutions was not as fruitful as anticipated due to  variations in patient populations 
and processes targeted for improvement, as well as differences in local processes and 
structures. Revisiting data standardization principles of syntax, semantics, and prag-
matics, these also apply to the management of knowledge; in other words, even with 
the syntax and semantics provided by the QIC to guide process redesign, the lack of 
pragmatics—or poorly matching processes or patient selection between organiza-
tions—knowledge sharing could not be achieved [75, 76]. Lastly, in the QIC evalua-
tion, participants reported insufficiently enabling health information technologies to 
generate outcome data as well as intermediate and process measures [74].

Finally, education is also essential as healthcare delivery evolves. To promote 
future adoption and integration of the value agenda and related frameworks, organi-
zations are responsible for continuing education of their existing workforce. 
Undergraduate and graduate medical education integrating these concepts may also 
be needed to develop future generations of healthcare professionals from early 
stages in their careers. Informatics education and an introduction to data science for 
clinicians, as this book aims to accomplish, benefit future clinician executives or 
managers, as well as front-line clinicians. One such example of informatics educa-
tion integrated into medical school, residency and clinical informatics fellowship 
are curricula designed, implemented and evaluated at Oregon Health Sciences 
University in the United States [77–79].

14.7  Further Considerations in Measuring Value

The value agenda describes an overarching framework for re-strategizing and 
reforming healthcare. While aspirational in setting a vision and direction towards 
true north in patient care, further considerations about its context in the art and sci-
ence of medicine remain. Some are more directly related to data-dependent compo-
nents of a healthcare system than others.

First, outcome measures may not align fully with one another in the care of the 
whole patient, rather than from the perspective of a single condition or segment of a 
patient population. For example, there may be circumstances in which improving a 
patient experience measure does not align with improving outcome measures; if 
patient experience measures consists of a rating based in part on a patient’s ease of 
access to care, then reducing speed of access to care—any care—is incentivized. Then, 
to optimize access, on-demand care services are developed and offered in a manner 
that is not well-integrated with an established healthcare system: a patient may utilize 
telemedicine urgent care that is distinct from her primary care practitioner, leading to 
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overall care fragmentation. On-demand services, while desirable by patients, could 
lead to decreased quality of care, increased overutilization and inappropriate variabil-
ity in care, worse health outcomes, and increased service utilization [80, 81].

Also, social and political issues may influence the implementability of the value 
agenda and should be considered and potentially addressed in parallel to the 
 value- based efforts of an individual healthcare system. For example, vaccinations 
can be considered a high-value care service due to their high effectiveness in a 
population in preventing infectious diseases with high morbidity and mortality. 
Reducing vaccine- preventable disease could be best supported by government-
sponsored public health initiatives targeted towards educating the general public 
and providing vaccinations at low or no cost. However, vaccination policies and 
rates are variable attributable to the push and pull of individual choice versus social 
or public benefits—a frequently highly personal belief or opinion. As an example, 
pediatric vaccination is recommended and available free of charge in the Netherlands, 
but is not mandatory. In recent years, Dutch vaccination rates continue to decline 
[82, 83] and are also accompanied by outbreaks of vaccine-preventable illnesses 
such as measles [84]. Nonetheless, prevention of disease would seem to be a care 
service of the highest value, yet is not fully accepted in any society [83].

Next, humanistic clinical practice is immeasurable yet highly desirable in certain 
if not all patient care situations and is, arguably, a key element in certain clinical 
situations that is not accounted for explicitly in the traditional value definition. 
Humanism is demonstrated in the healthcare professional’s attitude and actions that 
show respect for a patient’s values and concerns, particularly their social, psycho-
logical and spiritual life domains [85]. While the value agenda may implicitly inte-
grate humanism into standard practice and trait of added-value activities, leading to 
improved patient outcomes and experiences, this may devalue the central impor-
tance of humanism in medicine [86]. Related to this, healthcare value may be diffi-
cult to measure in certain situations, such as palliative and end-of-life care contexts 
[87, 88]. Patient preferences, including possible preferences to withhold aggressive 
care, could mean clinical deterioration or poorer outcomes, which should not lead 
to reduced healthcare value as it could in a traditional definition of value.

Additionally, there are other frameworks not accounted for in the value agenda, 
despite their growing acceptance, such as The Quadruple Aim, which includes clini-
cian well-being as a fourth aim of quality improvement [89]. Clinician burnout, 
characterized by depersonalization, emotional exhaustion, and lack of personal 
accomplishment, has been connected to high costs related to turnover among physi-
cians and loss of productivity due to physicians dropping out of the workforce [90]. 
Increasing research on the growing administrative burdens on physicians and other 
healthcare professionals, including excessive data registration workload that are 
driven by the needs of the value agenda, especially with respect to outcome mea-
surement, are among key contributors to reduced clinician well-being and reduced 
quality of care provided [91–94]. Further, no outcome or cost measures in the value 
agenda account for physician and healthcare professional well-being, mental and 
physical health, and other unmeasured factors that are foundational for the potential 
success of implementing the value agenda [93].
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Key Points to Remember
 1. The value agenda involves measuring outcomes that matter and costs of 

care to achieve the most optimal outcomes per dollar spent. The primary 
aim overall is to describe a vision and direction towards true north in pro-
viding health care to patients.

 2. Outcome measurement is costly and complex, and measures are most 
often condition-specific and multidimensional. Examples include patient- 
reported outcomes and patient reported experience measures.

 3. Costing analyses are conducted to estimate the cost of providing health-
care services, and one popular approach coupled with the value-based 
healthcare framework is time-driven activity-based costing.

 4. Innovation is a key component of driving transformation towards high- 
value health care; importantly, innovation can involve technology, such as 
e-health, but can also involve novel service delivery design.

 5. The learning health system and network-based thinking are frameworks 
that are complementary to the value agenda and important for current and 
future clinicians to learn as clinical medicine evolves to involve growing 
amounts of data, knowledge, and information.
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