

Hands-On Data Science for Marketing

Improve your marketing strategies with machine learning using Python and
R

Yoon Hyup Hwang

BIRMINGHAM - MUMBAI

Hands-On Data Science for
Marketing
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or
reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the
information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or
its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this
book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this
book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Sunith Shetty
Acquisition Editor: Joshua Nadar
Content Development Editor: Chris D'cruz
Technical Editor: Sushmeeta Jena
Copy Editor: Safis Editing
Project Coordinator: Hardik Bhinde
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Graphics: Tom Scaria
Production Coordinator: Jisha Chirayil

First published: March 2019

Production reference: 1280319

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78934-634-3

www.packtpub.com

http://www.packtpub.com/

mapt.io

Mapt is an online digital library that gives you full access to over 5,000
books and videos, as well as industry leading tools to help you plan your
personal development and advance your career. For more information,
please visit our website.

https://mapt.io/

Why subscribe?
Spend less time learning and more time coding with practical eBooks
and Videos from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version
at www.packt.com and as a print book customer, you are entitled to a discount
on the eBook copy. Get in touch with us at customercare@packtpub.com for more
details.

At www.packt.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters, and receive exclusive discounts and
offers on Packt books and eBooks.

http://www.packt.com/
http://www.packt.com/

Contributors

About the author
Yoon Hyup Hwang is a seasoned data scientist in the marketing and
financial sectors with expertise in predictive modeling, machine learning,
statistical analysis, and data engineering. He has 8+ years' experience of
building numerous machine learning models and data products using
Python and R. He holds an MSE in computer and information technology
from the University of Pennsylvania and a BA in economics from the
University of Chicago.

In his spare time, he enjoys practicing various martial arts, snowboarding,
and roasting coffee. Born and raised in Busan, South Korea, he currently
works in New York and lives in New Jersey with his artist wife, Sunyoung,
and a playful dog, Dali (named after Salvador Dali).

I'd like to thank my wife, Sunyoung, for keeping me sane throughout the process of writing this book.
I cannot thank her enough for all the sacrifices she made over the past year. I'd also like to thank my
family, who were there when I needed mental support. Without them, I wouldn't even have had the
opportunity to work on this amazing book. Lastly, I'd like to thank all of my editors and reviewers for
pushing me hard to write quality content.

About the reviewer
Rohan Dhupar is in the final semester of his degree computer science and
engineering from the Rustamji Institute of Technology. Since November
2017, he has done a number of internships, mainly in relation to natural
language processing for both US and Indian companies, focusing on
machine and deep learning. He has undertaken numerous projects and
achieved much in his academic life. He ranks in the top 1% of Kaggle
experts, has been a Microsoft Student Partner since 2017, and has received
numerous invitations from established companies to join their data science
software engineering teams. He is currently working as a data scientist,
focusing mainly on image processing projects, for Innovations Labs, a US
firm based in India.

I would like to thank Ali Mehndi Hasan Abidi and Hardik Bhinde, who provided me with the support
required to write well-formatted and properly documented reviews.

Packt is searching for authors like
you
If you're interested in becoming an author for Packt, please visit authors.packt
pub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the
global tech community. You can make a general application, apply for a
specific hot topic that we are recruiting an author for, or submit your own
idea.

http://authors.packtpub.com/

Table of Contents
Title Page

Copyright and Credits

Hands-On Data Science for Marketing

About Packt

Why subscribe?

Packt.com

Contributors

About the author

About the reviewer

Packt is searching for authors like you

Preface

Who this book is for

What this book covers

To get the most out of this book

Download the example code files

Download the color images

Conventions used

Get in touch

Reviews

1. Section 1: Introduction and Environment Setup
1. Data Science and Marketing

Technical requirements

Trends in marketing

Applications of data science in marketing

Descriptive versus explanatory versus predictive analyses

Types of learning algorithms

Data science workflow

Setting up the Python environment

Installing the Anaconda distribution

A simple logistic regression model in Python

Setting up the R environment

Installing R and RStudio

A simple logistic regression model in R

Summary

2. Section 2: Descriptive Versus Explanatory Analysis
2. Key Performance Indicators and Visualizations

KPIs to measure performances of different marketing efforts

Sales revenue

Cost per acquisition (CPA)

Digital marketing KPIs

Computing and visualizing KPIs using Python

Aggregate conversion rate

Conversion rates by age

Conversions versus non-conversions

Conversions by age and marital status

Computing and visualizing KPIs using R

Aggregate conversion rate

Conversion rates by age

Conversions versus non-conversions

Conversions by age and marital status

Summary

3. Drivers behind Marketing Engagement
Using regression analysis for explanatory analysis

Explanatory analysis and regression analysis

Logistic regression

Regression analysis with Python

Data analysis and visualizations

Engagement rate

Sales channels

Total claim amounts

Regression analysis

Continuous variables

Categorical variables

Combining continuous and categorical variables

Regression analysis with R

Data analysis and visualization

Engagement rate

Sales channels

Total claim amounts

Regression analysis

Continuous variables

Categorical variables

Combining continuous and categorical variables

Summary

4. From Engagement to Conversion
Decision trees

Logistic regression versus decision trees

Growing decision trees

Decision trees and interpretations with Python

Data analysis and visualization

Conversion rate

Conversion rates by job

Default rates by conversions

Bank balances by conversions

Conversion rates by number of contacts

Encoding categorical variables

Encoding months

Encoding jobs

Encoding marital

Encoding the housing and loan variables

Building decision trees

Interpreting decision trees

Decision trees and interpretations with R

Data analysis and visualizations

Conversion rate

Conversion rates by job

Default rates by conversions

Bank balance by conversions

Conversion rates by number of contacts

Encoding categorical variables

Encoding the month

Encoding the job, housing, and marital variables

Building decision trees

Interpreting decision trees

Summary

3. Section 3: Product Visibility and Marketing
5. Product Analytics

The importance of product analytics

Product analytics using Python

Time series trends

Repeat customers

Trending items over time

Product analytics using R

Time series trends

Repeat customers

Trending items over time

Summary

6. Recommending the Right Products
Collaborative filtering and product recommendation

Product recommender system

Collaborative filtering

Building a product recommendation algorithm with Python

Data preparation

Handling NaNs in the CustomerID field

Building a customer-item matrix

Collaborative filtering

User-based collaborative filtering and recommendations

Item-based collaborative filtering and recommendations

Building a product recommendation algorithm with R

Data preparation

Handling NA values in the CustomerID field

Building a customer-item matrix

Collaborative filtering

User-based collaborative filtering and recommendations

Item-based collaborative filtering and recommendations

Summary

4. Section 4: Personalized Marketing
7. Exploratory Analysis for Customer Behavior

Customer analytics – understanding customer behavior

Customer analytics use cases

Sales funnel analytics

Customer segmentation

Predictive analytics

Conducting customer analytics with Python

Analytics on engaged customers

Overall engagement rate

Engagement rates by offer type

Engagement rates by offer type and vehicle class

Engagement rates by sales channel

Engagement rates by sales channel and vehicle size

Segmenting customer base

Conducting customer analytics with R

Analytics on engaged customers

Overall engagement rate

Engagement rates by offer type

Engagement rates by offer type and vehicle class

Engagement rates by sales channel

Engagement rates by sales channel and vehicle size

Segmenting customer base

Summary

8. Predicting the Likelihood of Marketing Engagement
Predictive analytics in marketing

Applications of predictive analytics in marketing

Evaluating classification models

Predicting the likelihood of marketing engagement with Python

Variable encoding

Response variable encoding

Categorical variable encoding

Building predictive models

Random forest model

Training a random forest model

Evaluating a classification model

Predicting the likelihood of marketing engagement with R

Variable encoding

Response variable encoding

Categorical variable encoding

Building predictive models

Random forest model

Training a random forest model

Evaluating a classification model

Summary

9. Customer Lifetime Value
CLV

Evaluating regression models

Predicting the 3 month CLV with Python

Data cleanup

Data analysis

Predicting the 3 month CLV

Data preparation

Linear regression

Evaluating regression model performance

Predicting the 3 month CLV with R

Data cleanup

Data analysis

Predicting the 3 month CLV

Data preparation

Linear regression

Evaluating regression model performance

Summary

10. Data-Driven Customer Segmentation
Customer segmentation

Clustering algorithms

Segmenting customers with Python

Data cleanup

k-means clustering

Selecting the best number of clusters

Interpreting customer segments

Segmenting customers with R

Data cleanup

k-means clustering

Selecting the best number of clusters

Interpreting customer segments

Summary

11. Retaining Customers
Customer churn and retention

Artificial neural networks

Predicting customer churn with Python

Data analysis and preparation

ANN with Keras

Model evaluations

Predicting customer churn with R

Data analysis and preparation

ANN with Keras

Model evaluations

Summary

5. Section 5: Better Decision Making
12. A/B Testing for Better Marketing Strategy

A/B testing for marketing

Statistical hypothesis testing

Evaluating A/B testing results with Python

Data analysis

Statistical hypothesis testing

Evaluating A/B testing results with R

Data analysis

Statistical hypothesis testing

Summary

13. What's Next?
Recap of the topics covered in this book

Trends in marketing

Data science workflow

Machine learning models

Real-life data science challenges

Challenges in data

Challenges in infrastructure

Challenges in choosing the right model

More machine learning models and packages

Summary

Other Books You May Enjoy

Leave a review - let other readers know what you think

Preface
The adoption of data science and machine learning for marketing has been
on the rise, from small to large organizations. With data science, you can
better understand the drivers behind the successes and failures of previous
marketing strategies and you can better understand customer behavior and
interaction with your products. With data science, you can also predict
customer behavior and create better targeted and personalized marketing
strategies for better cost per acquisition, higher conversion rates, and higher
net sales. With this book, you will be able to apply various data science
techniques to create data-driven marketing strategies.

This book serves as a practical guide to performing simple-to-advanced
tasks in marketing. You will use data science to understand what drives
sales and customer engagement. You will use machine learning to forecast
which customer is likely to engage with products more and has the highest
expected lifetime value. You will also use machine learning to understand
what data tells you about different customer segments and recommend the
right products for individual customers that they are most likely to
purchase. By the end of this book, you will be well-versed with various data
science and machine learning techniques and how they can be utilized for
different marketing goals.

Personally, I would have benefited from books such as this. When I was
embarking on my career in data science and marketing, there were abundant
resources on theories and details of different data science and machine
learning techniques, but not so much on how to use these technologies and
techniques for marketing specifically. Learning about the theories was
vastly different from actually utilizing and applying them to real-world
business use cases in marketing. In this book, I hope to share my experience
and the knowledge acquired through significant instances of trial and error
in applying data science and machine learning to different marketing goals.
By the end of this book, you will have a good understanding of what types

of technologies and techniques are used for different marketing use cases,
where to find additional resources, and what to study next after this book.

In this book, Python and R will be used for data science and machine
learning exercises. As you may already be aware, Python and R are two of
the most frequently used programming languages for data scientists, data
analysts, and machine learning engineers on account of their ease of use,
the abundant resources that are available in relation to data science and
machine learning, and the broad community of users. In each chapter, we
will guide you through the different packages and libraries used and how to
install them, so you do not need to worry about what to install on your
computer before you start this book.

Who this book is for
This book is for marketing professionals, data scientists and analysts,
machine learning engineers, and software engineers who have some
working knowledge of Python and R and some basic understanding of
machine learning and data science. Even if you do not have any in-depth
knowledge of the theory behind data science and machine learning
algorithms, don't worry! This book is for practitioners with a focus on the
practicality of machine learning, so that you can quickly pick things up and
start utilizing them in relation to your next marketing strategies. If you have
studied data science and machine learning previously, then this book will be
great for you. It will guide you through how to apply your knowledge and
experience of data science and machine learning in marketing to real-life
examples. If you are a marketing professional with a passion and interest in
data science, then great! This book will be perfect for you. You will learn
how data science can help you improve your marketing strategies and how
predictive machine learning models can be used to fine-tune targeted
marketing. This book will guide you through each step of utilizing data
science and machine learning to achieve your marketing goals.

This book is really designed for anyone with a passion for using data
science and machine learning for marketing. If you are interested in
building data-driven marketing strategies, making sense of customer
behavior from data, forecasting how customers will react, and predicting
what customers will respond do, then you have come to the right place!

What this book covers
Chapter 1, Data Science and Marketing, covers the basics of how data
science is used for marketing. It will briefly introduce frequently used data
science and machine learning techniques and how those techniques are
applied when it comes to creating better marketing strategies. It also covers
how to set up your Python and R environments for upcoming projects.

Chapter 2, Key Performance Indicators and Visualizations, goes over some of
the key performance indicators (KPIs) to track in marketing. This chapter
discusses how Python and R can be used to compute such KPIs and how to
build visualizations of those KPIs.

Chapter 3, Drivers behind Marketing Engagement, demonstrates how to use
regression analysis to understand what drives engagement from customers.
This chapter covers how to fit linear regression models in Python and R and
how to extract the intercept and coefficients from a model. With the insights
gathered from regression analysis, we will examine how we can potentially
improve a marketing strategy for a higher engagement rate.

Chapter 4, From Engagement to Conversion, discusses how to use different
machine learning models to understand what drives conversion. This
chapter introduces you to how to build decision tree models in Python and
R, as well as how to interpret the results and extract the drivers behind the
conversions.

Chapter 5, Product Analytics, guides you through exploratory product
analysis. This chapter walks you through various data aggregation and
analysis methods in Python and R to obtain further insights into the trends
and patterns in products.

Chapter 6, Recommending the Right Products, covers how to improve
product visibility and recommend the right products that individual
customers are most likely to purchase. It discusses how to use the

collaborative filtering algorithm in Python and R in order to build a
recommendation model. Then, it covers how these recommendations can be
used for marketing campaigns.

Chapter 7, Exploratory Analysis for Customer Behavior, dives deeper into
data. This chapter discusses various metrics that can be used to analyze how
customers behave and interact with the product. Using Python and R, this
chapter broadens your knowledge to encompass data visualization and
different charting techniques.

Chapter 8, Predicting the Likelihood of Marketing Engagement,
discusses how to build a machine learning model to predict the likelihood
of customer engagement. This chapter covers how to train machine learning
algorithms using Python and R. It then discusses how to evaluate the
performance of the model and how these models can be used to achieve
better target marketing.

Chapter 9, Customer Lifetime Value, covers how to get the lifetime value of
individual customers. This chapter discusses how to build regression
models using Python and R and how to evaluate them. It also covers how
the computed customer lifetime value can be used for building better
marketing strategies.

Chapter 10, Data-Driven Customer Segmentation, dives into segmenting the
customer base using a data-driven approach. This chapter introduces
clustering algorithms to build different customer segments from data using
Python and R.

Chapter 11, Retaining Customers, discusses how to predict the likelihood of
customer churn and focuses on building classification models using Python
and R and how to evaluate their performances. This chapter will cover how
to build an artificial neural network (ANN) model, which is the backbone
of deep learning, in Python and R using the keras library.

Chapter 12, A/B Testing for Better Marketing Strategy, introduces a data-
driven approach to making better decisions on marketing strategies. This
chapter discusses the concept of A/B testing and how to implement and

evaluate it using Python and R. It then discusses the real-life applications
and benefits of A/B testing in relation to better marketing strategies.

Chapter 13, What's Next?, summarizes what has been discussed in this book,
as well as real-life challenges in using data science for marketing. This
chapter also introduces other data science and machine learning packages
and libraries, as well as other machine learning algorithms that can be used
for your future data science projects.

To get the most out of this book
To get the most out of this book, I highly recommend that you work through
the programming exercises in each chapter thoroughly. Each exercise is
meant to lay a solid foundation for more advanced exercises, so it is critical
that you follow each and every step in the programming exercises. I also
recommend you be adventurous. Different technologies and techniques
discussed in each chapter can be mixed with those from other chapters. A
technique used in one chapter is not meant to be exclusively applicable to
that specific chapter. You can apply the technology and techniques learned
from one chapter to other chapters, so it will be beneficial for you to go
through the examples from the beginning again and try to mix up different
techniques learned from other chapters when you finish this book.

Download the example code files
You can download the example code files for this book from your account
at www.packt.com. If you purchased this book elsewhere, you can visit www.packt.
com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at www.packt.com.
2. Select the SUPPORT tab.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box and follow the onscreen

instructions.

Once the file is downloaded, please make sure that you unzip or extract the
folder using the latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/P
acktPublishing/Hands-On-Data-Science-for-Marketing. In case there's an update to
the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos
available at https://github.com/PacktPublishing/. Check them out!

http://www.packt.com/
http://www.packt.com/support
http://www.packt.com/
https://github.com/PacktPublishing/Hands-On-Data-Science-for-Marketing
https://github.com/PacktPublishing/

Download the color images
We also provide a PDF file that has color images of the
screenshots/diagrams used in this book. You can download it here: https://ww
w.packtpub.com/sites/default/files/downloads/9781789346343_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/9781789346343_ColorImages.pdf

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and
Twitter handles. Here is an example: "Mount the downloaded WebStorm-
10*.dmg disk image file as another disk in your system."

A block of code is set as follows:

total number of conversions
df.conversion.sum()
total number of clients in the data (= number of rows in the data)
df.shape[0]

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

total number of conversions
df.conversion.sum()
total number of clients in the data (= number of rows in the data)
df.shape[0]

Any command-line input or output is written as follows:

$ mkdir css
$ cd css

Bold: Indicates a new term, an important word, or words that you see on
screen. For example, words in menus or dialog boxes appear in the text like
this. Here is an example: "Select System info from the Administration
panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book,
mention the book title in the subject of your message and email us at
customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you have found a mistake in this book, we
would be grateful if you would report this to us. Please visit www.packt.com/sub
mit-errata, selecting your book, clicking on the Errata Submission Form link,
and entering the details.

Piracy: If you come across any illegal copies of our works in any form on
the internet, we would be grateful if you would provide us with the location
address or website name. Please contact us at copyright@packt.com with a link
to the material.

If you are interested in becoming an author: If there is a topic that you
have expertise in, and you are interested in either writing or contributing to
a book, please visit authors.packtpub.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/

Reviews
Please leave a review. Once you have read and used this book, why not
leave a review on the site that you purchased it from? Potential readers can
then see and use your unbiased opinion to make purchase decisions, we at
Packt can understand what you think about our products, and our authors
can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/

Section 1: Introduction and
Environment Setup
This section will introduce you to data science for marketing and setting up
Python and R environments for the upcoming projects.

This section consists of the following chapter:

Chapter 1, Data Science and Marketing

Data Science and Marketing
Welcome to the first chapter of Hands-On Data Science for Marketing! As
you may be familiar already, the importance and application of data science
in the marketing industry have been rising significantly over the past few
years. Yet, marketing data science is a relatively new field and the amount
of resources available for education and references lags behind the
momentum. However, the amount of data gathered and available to the
process has been growing exponentially each year, which opens up even
more opportunities to learn and bring insight from the data.

With the growing amount of data and applications of data science in
marketing, we can easily find examples of the usage of data science to
marketing efforts. Companies are starting to use data science to better
understand customer behaviors and identify different customer segments
based on their activity patterns. Many organizations also use machine
learning to predict future customer behaviors, such as what items are they
likely to purchase, which websites are they likely to visit, and who are
likely to churn. With endless use cases of data science for marketing,
companies of all sizes can benefit from using data science and
machine learning for their marketing efforts. After this brief introductory
chapter, we will learn about how to apply data science and machine learning
for individual marketing tasks.

In this chapter, we will cover the following topics:

Trends in marketing
Applications of data science in marketing
Setting up the Python environment
Setting up the R environment

Technical requirements
You will require Python and R installed to run most of the code throughout
this book, and you can find the installation code at the following link: http
s://github.com/PacktPublishing/Hands-On-Data-Science-for-Marketing/tree/master/Chapt

er01.

https://github.com/PacktPublishing/Hands-On-Data-Science-for-Marketing/tree/master/Chapter01

Trends in marketing
As the amount of data available and gathered increases exponentially every
year and access to such valuable datasets becomes easier, data science and
machine learning have become an integral part of marketing. The
applications of data science in marketing range from building insightful
reports and dashboards to utilizing complicated machine learning algorithms
to predict customer behaviors or engage customers with the products and
contents. The trends in marketing in recent years have been toward more
data-driven target marketing. We will discuss some of the trends we see in
the marketing industry:

Rising importance of digital marketing: As people spend more time
online than ever before, the importance and effectiveness of digital
marketing have been rising with time. Lots of marketing activities are
now happening on digital channels, such as search engines, social
network, email, and websites. For example, Google Ads helps your
brand to get more exposure to potential customers through its search
engine, Gmail, or YouTube. You can easily customize your target
audience, to whom you want your advertisements to be shown.
Facebook and Instagram are two of the well-known social networks,
where you can post your advertisements to reach your target customers.
In the era of the internet, these marketing channels have become more
cost-effective than traditional marketing channels, such as television
advertising. The following is an example of different digital marketing
channels that Google provides (https://ads.google.com/start/how-it-works/?s
ubid=us-en-ha-g-aw-c-dr_df_1-b_ex_pl!o2~-1072012490-284305340539-kwd-94527731):

https://ads.google.com/start/how-it-works/?subid=us-en-ha-g-aw-c-dr_df_1-b_ex_pl!o2~-1072012490-284305340539-kwd-94527731

Marketing analytics: Marketing analytics is a way of monitoring and
analyzing the performances of marketing efforts. Not only does it help
you to understand how much sales or exposure you gain from
marketing, but it can also help you gain deeper insights into more
individual level patterns and trends. In e-commerce businesses, you can
analyze and visualize the different types and segments of customers and
which type of customers drives the revenue for your business the most
with marketing analytics. In media businesses, with marketing
analytics, you can analyze which content attracts the users the most and
what the trends in keyword searches are. Marketing analytics also helps
you to understand the cost-effectiveness of your marketing campaigns.
By looking into the return on investment (ROI), you can further
optimize your future marketing campaigns. As the adoption and usage
of marketing analytics rise, it is not difficult to find various software
products for marketing analytics.
Personalized and target marketing: With the rising applications of
data science and machine learning in marketing, another trend in
marketing is individual-level target marketing. Various organizations of
different sizes utilize machine learning algorithms to learn from the
user history data and apply different and specialized marketing
strategies to smaller and more specific subgroups of their user base,
which results in lower cost per acquisition and higher return on

investment. In retail businesses, many companies implement artificial
intelligence and machine learning to predict which customers are more
likely to purchase and which items they are going to buy from their
stores. Using these predictions, they customize the marketing messages
to each of their customers. Many of media businesses also utilize
artificial intelligence and machine learning to drive higher engagement
from individual users to grow their user base. As these customized and
target marketing result in higher ROI, there are many SaaS companies,
such as Sailthru and Oracle, that provide platforms for personalized
marketing. Sailthru recently published a Retail Personalization Index
report, which analyzes how various retail companies use personalized
marketing in different marketing channels. In this report, we can find
that retail companies, such as Sephora, JustFab, and Walmart, use
personalized marketing heavily in their websites, emails, and other
marketing channels. This report can be found at this link: https://www.sai
lthru.com/personalization-index/sailthru100/.

The overall trends in marketing have been toward more data-driven and
quantitative approaches. Companies of all sizes have been investing in
marketing analytics and technologies more and more. According to the
February 2018 CMO survey, the reliance on marketing analytics has gone up
from 30% to 42% in the past 5 years. The reliance on marketing analytics is
even higher for B2C companies with a 55% increase. Also, the number of
firms using quantitative tools to demonstrate the impact of marketing has
increased by 28% in the past 5 years. Lastly, the CMO survey suggests that
the percentage of companies utilizing artificial intelligence and machine
learning is expected to increase to 39% over the next 3 years. You can find
more details on this February 2018 CMO survey report at the following
link: https://www.forbes.com/sites/christinemoorman/2018/02/27/marketing-analytics-an
d-marketing-technology-trends-to-watch/#4ec8a8431b8a.

https://www.sailthru.com/personalization-index/sailthru100/
https://www.forbes.com/sites/christinemoorman/2018/02/27/marketing-analytics-and-marketing-technology-trends-to-watch/#4ec8a8431b8a

Applications of data science in
marketing
We have discussed the trends in marketing and how the trend has been
toward more data-driven and quantitative marketing, often using data
science and machine learning. There are various ways to apply data science
and machine learning in the marketing industry and it will be beneficial for
us to discuss the typical tasks and usage of data science and machine
learning.

In this section, we will cover the basics of machine learning, the different
types of learning algorithms, and, typical data science workflow and
process.

Descriptive versus explanatory
versus predictive analyses
As we work through the exercises and projects in the upcoming chapters,
there are mainly three different types of analyses that we are going to
conduct throughout this book: descriptive, explanatory, and
predictive analyses:

Descriptive analysis: This is conducted to understand and describe the
given dataset better. The purpose of this analysis is to quantitatively
and statistically summarize the information that the data contains. For
example, if you are conducting a descriptive analysis on user purchase
history data, you will be answering such questions as What is the best
selling item? What were the monthly sales like in the past year? What
is the average price of the items that are sold? Throughout this book,
we will be conducting descriptive analysis, whenever we introduce a
new dataset. Especially, in Chapter 2, Key Performance Indicators and
Visualizations, we will be discussing in more detail how to use
descriptive analysis to analyze and compute key summary statistics, as
well as visualizing the analysis results.
Explanatory analysis: When the purpose of descriptive analysis is to
answer the what and how from the data, explanatory analysis is to
answer why using the data. This type of analysis is typically conducted
when you have a specific question that you want to answer. As an
example for e-commerce businesses, if you want to analyze what
drives your users to make purchases, you would conduct explanatory
analysis, not descriptive analysis. We will be discussing more detail
about this type of analysis with examples in Chapter 3, Drivers behind
Marketing Engagement; and Chapter 4, From Engagement to
Conversion, where we are going to use explanatory analyses to answer
such questions as What drives users to engage with our marketing
campaigns more? and What makes users purchase items from our
retail shop?

Predictive analysis: This analysis is conducted when there is a
specific future event that you would like to predict. The purpose of this
analysis is to build machine learning models that learn from the
historical data and make predictions about events that will happen in
the future. Similar to the previous examples of e-commerce and
purchase history data, one of the questions you can answer from this
type of analysis may be, Which user is the most likely to make a
purchase within the next seven days? Typically, in order to conduct
predictive analysis, you will have to first run descriptive and
explanatory analyses to have a better understanding of the data and
generate ideas on what types of learning algorithms and approaches to
use for the given project. We will be discussing in more detail
predictive analysis and its applications in marketing in Chapter 6,
Recommending the Right Products, Chapter 8, Predicting the Likelihood
of Marketing Engagement, and Chapter 11, Retaining Customers.

Types of learning algorithms
Let's now discuss more about machine learning and machine learning
algorithms. Broadly speaking, there are three types of machine learning
algorithms: supervised learning, unsupervised learning, and reinforcement
learning. Let's first learn how these three different types of machine
learning algorithms differ from each other:

Supervised learning algorithms: These algorithms are used when the
prediction target or outcome is known. For example, if we want to use
machine learning to predict who will make purchases in the next few
days, then we will use supervised learning algorithms. Here, the
prediction target or outcome is whether this person made a purchase
within the given time window or not. Based on the historical purchase
data, we will need to build features, which describe each data point,
such as a user's age, address, last purchase date, and then supervised
learning algorithms will learn from this data how to map these features
to the prediction target or outcome. We will be exploring how to use
such algorithms in marketing in Chapter 3, Drivers behind Marketing
Engagement; Chapter 4, From Engagement to Conversion; Chapter 8,
Predicting the Likelihood of Marketing Engagement, and, lastly, Chapter
11, Retaining Customers.
Unsupervised learning algorithms: Unlike supervised learning
algorithms, unsupervised learning algorithms are used when we do not
have a specific prediction target or outcome. This type of machine
learning algorithm is frequently used in clustering and
recommendation systems. As an example, you can use unsupervised
learning algorithms to cluster your customer base into different
subgroups or segments, based on their behaviors. In this case, we do
not have a specific target or outcome that we want to predict. We are
just grouping similar customers together into different segments. We
will be exploring how to use unsupervised learning algorithms in
marketing in Chapter 6, Recommending the Right Products, and Chapter 1
0, Data-Driven Customer Segmentation.

Reinforcement learning algorithms: These algorithms are used when
we want the model to continuously learn and train itself without prior
knowledge or experience. In the case of reinforcement learning, the
model learns how to make predictions after lots of trials and errors.
One example of the application of reinforcement learning in marketing
is when there are multiple marketing strategies you'd like to test and
choose the one that works the best. In this case, you can run a
reinforcement learning algorithm, where it randomly picks one
strategy at a time and gets rewarded when a positive outcome occurs.
After multiple iterations of trials and errors, the reinforcement learning
model will have learned to choose the best marketing strategy, based
on the total rewards each marketing strategies have earned.

Data science workflow
Now that we have covered the basics and different types of machine
learning algorithms, let's discuss the workflow in data science. A typical
workflow looks like the following:

1. Problem definition: Typically, any data science and machine learning
project starts with problem definition. In this first step, you need to
define the problems that you are trying to solve with data science, the
scope of the project, and the approaches to solving this problem. When
you are thinking about some of the approaches to solving your
problem, you will need to brainstorm on what types of analyses
(descriptive versus explanatory versus predictive) and types of
learning algorithms (supervised versus unsupervised versus
reinforcement learning) that we discussed previously will be suitable
for solving the given problem.

2. Data collection: Once you have a clear definition of the project, you
will then move on to the data collection step. This is where you gather
all the data you need to proceed with your data science project. It is not
uncommon that you will need to purchase data from third-party
vendors, scrape and extract data from the web, or use publicly
available data. In some cases, you will also need to collect data from
your internal systems for your project. Depending on the cases, the
data collection step can be trivial or it can also be tedious.

3. Data preparation: When you have gathered all of the data you need
from the data collection step, then the next step is data preparation.
The goal of this step is to transform your data and prepare it for future
steps. If the formats of the data sources are different, then you will
have to transform and unify the data. If the data doesn't have a certain
structure, then you will have to structure the data, typically in tabular
format, so that you can easily conduct different analyses and build
machine learning models.

4. Data analysis: When you are done with the data preparation step, then
you will have to start looking into the data. In the data analysis step,

typically, descriptive analyses are conducted to compute some
descriptive summary statistics and build visual plots to better
understand the data. Quite often, you can find some recognizable
patterns and draw some insight from data during this step. You may
also be able to find any anomalies in the data, such as missing values,
corrupted data, or duplicate records, from this step.

5. Feature engineering: Feature engineering is the most important part
of data science and machine learning, as it directly affects the
performance of predictive models. Feature engineering requires
expertise and good domain knowledge of the data, as it requires you to
transform the raw data into more informative data for your algorithms
to learn from. One good example of feature engineering is
transforming text data into numerical data. As the machine learning
algorithms can only learn from numerical data, you will need to come
up with an idea and strategy to translate textual data into numerical
data. As we work through this book and as we build machine learning
models, we will discuss and experiment with various feature
engineering techniques.

6. Model building: Once you are done with the feature engineering step,
then you can start training and testing your machine learning models.
In this step, you can experiment with various learning algorithms to
figure out which one works the best for your use case. One thing to
keep in mind in this step is the validation metrics. It is important to
have a good measure of your model performance, as machine learning
algorithms will try to optimize on the given performance measure. As
we start building machine learning models in the following chapters,
we will discuss more in detail regarding what metrics to use depending
on the type of problems that we are working on.

The following diagram shows the overall workflow for typical data science
projects:

As you can see from this diagram, quite often, the data science work does
not end in one iteration. You may have to repeat the data collection step
when you notice that the model is not performing well and when you notice
you can improve on the quality of the input data. You may have to revisit
the feature engineering step when you come up with better ideas and
strategies on building features from the raw dataset. You also may have to
repeat the model building step more than once, if you think you can
improve the model results by tuning the hyperparameters of the learning
algorithms. As we work through the following chapters and as we work on
actual projects and exercises in this book, we are going to discuss in more
detail certain steps and different techniques we can use.

Setting up the Python environment
Now that we have discussed some of the basics of data science and its
applications to marketing, let's start getting our development environments
ready for the upcoming chapters and projects. For those of you who will be
using the R language for the exercises, you can skip this section and move
to the Setting up the R environment section. For those of you who are
planning to use the Python language for the exercises, it will be beneficial
for you to follow these steps to install all the required Python packages and
get your Python environment ready, even if you are already familiar with
Python.

Installing the Anaconda
distribution
For data science and machine learning tasks in this book, we will be using
lots of different Python packages. To name a few, we will be using the pandas
package for data munging and data analysis. You can find more information
about this package at the following link: https://pandas.pydata.org/. We will
also be using the scikit-learn package for building machine learning models.
For more information about this package, you can visit the following page: h
ttp://scikit-learn.org/stable/. Another Python package that we will be using
frequently is numpy. This package will come in handy when we need to run
mathematical and scientific operations on multi-dimensional data. You can
find more information about this package at this page: http://www.numpy.org/.
Aside from these three packages we just mentioned, we will be using some
other Python libraries as well and will discuss them individually in more
detail when we use them.

Since we need various Python libraries for data science and machine
learning tasks, it can sometimes be cumbersome to install them separately.
Thanks to the Anaconda distribution, we can install all of the required
packages at once. In order to download the Anaconda distribution, visit http
s://www.anaconda.com/download/ to install it. When you follow this link, the
webpage should look as follows:

https://pandas.pydata.org/
http://scikit-learn.org/stable/
http://www.numpy.org/
https://www.anaconda.com/download/

In this book, we will be using Anaconda 5.2 in Python 3. Once you have
downloaded the Anaconda distribution, you can install all of the packages
using the installer. On macOS, the installer looks as follows:

Once you follow the steps in the installer and finish this Anaconda
distribution installation, we are now ready to start running data science and
machine learning tasks. In the following section, we will build a simple
logistic regression model to get familiar with how we can use the key Python
libraries that we just installed for future exercises.

A simple logistic regression model
in Python
Now that we have all of the packages installed, let's test to see if we can use
them. We will be using Jupyter Notebook for all future data analysis, data
visualization, and machine learning tasks. Jupyter Notebook is an open
source web application, where you can easily write code, display charts, and
share notebooks with others. You can find more information about Jupyter
Notebook at this link: http://jupyter.org/.

As the Jupyter Notebook is part of the Anaconda distribution that we just
installed in the previous section, you should have it installed in your
computer already.

To start the Jupyter Notebook, you can open a Terminal window and type in
the following command:

jupyter notebook

When you type in this command, you should see some output that looks
similar to the following screenshot:

http://jupyter.org/

In the end, it should open a web application on your browser. The web UI
should look like the following:

As you can see from this screenshot, you can create a new Jupyter Notebook
by clicking the New button on the top-right corner and then clicking on
Python 3. This will create a new empty notebook using Python 3 as the
choice of programming language. The new notebook should look like the
following:

In order to change the name of this notebook, you can simply click on the
top bar, where it says Untitled, and name it differently.

Now that we have created a notebook, let's start using some of the Python
libraries to build a simple logistic regression model. In the first cell, we are
going to import the numpy and scikit-learn packages. The code looks like the
following:

import numpy as np
from sklearn.linear_model import LogisticRegression

As you can see from this code snippet, we have imported the numpy package
and given it an alias of np. This is a standard alias for the numpy library. Also,
we are only importing the LogisticRegression module in the scikit-learn
package's linear_model module (sklearn.linear_model).

In order to build a model, we need data. For demo and test purposes in this
chapter, we will create two-dimensional input data and a binary output. The
following code shows how we created the input and output data:

input_data = np.array([
 [0, 0],
 [0.25, 0.25],
 [0.5, 0.5],
 [1, 1],
])

output_data = [
 0,
 0,
 1,
 1
]

As you can see from this code snippet, we created 4 x 2 input data with the
numpy array datatype. The output is binary, where it can only take 0 or 1.

With this data, we can train a logistic regression model, as shown in the
following code:

logit_model = LogisticRegression()
logit_model.fit(input_data, output_data)

As you can see from this code, we instantiated a model object with
LogisticRegression. Then, we used the fit function, where it takes the input and
output data, to train a logistic regression model. You can retrieve the
coefficients and intercept of this logistic regression model, as shown in the
following code:

logit_model.coef_ # output: array([[0.43001235, 0.43001235]])
logit_model.intercept_ # output: array([-0.18498028])

Our Jupyter Notebook up to this point looks as follows:

In order to make predictions on the new data, you can use the predict
function of the logistic regression model object, logit_model. This function
will return the predicted output class for each input. The code looks like the
following:

predicted_output = logit_model.predict(input_data)

So far, we have experimented with how to use the numpy and scikit-learn
packages for building a machine learning model. Let's familiarize ourselves
with one more package for data visualization. Throughout this book's
chapters, we will be heavily utilizing the matplotlib library to visualize any
data analysis results. For more information, you can visit this page: https://ma
tplotlib.org/.

Let's first look at the following code:

import matplotlib.pyplot as plt

plt.scatter(
 x=input_data[:,0],
 y=input_data[:,1],
 color=[('red' if x == 1 else 'blue') for x in output_data]
)
plt.xlabel('X')
plt.ylabel('Y')
plt.title('Actual')
plt.grid()
plt.show()

As you can see from this code snippet, you can easily import the matplotlib
package as in the first line of this code. In order to build a scatterplot, we are
using the scatter function, which takes x and y values, as well as the color of
each point. You can use the xlabel function to change the label of the x-axis
and the ylabel function to change the label of the y-axis. Using the title
function, you can change the title of the chart. The grid function will show
grids within the plot and you will need to call the show function to actually
display the plot.

The Jupyter Notebook should look like the following:

https://matplotlib.org/

One thing to note here is the following code:

%matplotlib inline

This is required to display the plots within the web applications. Without this
line of code, the plots will not be shown in the web UI. In order to compare
the actual output against the model's predictions, we built another scatterplot
with the predicted values.

The code and plot look like the following:

If you compare this chart with the previous one, you can see that the model
predicted the output correctly three out of four times and incorrectly
predicted one point.

You can download the full Jupyter Notebook that we used in this section from the
following link: https://github.com/yoonhwang/hands-on-data-science-for-marketing/blob/master/ch.1/python/Set
ting%20Up%20Python%20Environment.ipynb.

https://github.com/yoonhwang/hands-on-data-science-for-marketing/blob/master/ch.1/python/Setting%20Up%20Python%20Environment.ipynb

We will be using these three Python libraries, which we just experimented
with, frequently throughout this book. As we progress through the chapters,
we will be covering more advanced features and functions of these Python
libraries and how to fully utilize them for our data science and machine
learning tasks.

Setting up the R environment
For those of you who are planning to use the R language for the upcoming
exercises and projects, we will discuss how to get your R environment
ready for data science and machine learning tasks in this book. We will start
by installing R and RStudio and then build a simple logistic regression
model using R to familiarize ourselves with R for data science.

Installing R and RStudio
Along with Python, R is one of the most frequently used languages for data
science and machine learning. The fact that it is very easy to use, and that
there is a large number of R libraries for machine learning, attracts many
data scientists. In order to use this language, you will need to download it
from the following link: https://www.r-project.org/. If you go to this web page,
it will look something like the following screenshot:

https://www.r-project.org/

You can find more information about R on this web page. In order for you to
download, follow the download R link in this page. It will ask you to choose
a CRAN mirror. You can choose the location that is closest to you and
download R. Once you download it, you can follow the steps in the installer
and install R in your computer. The installer on macOS is shown in the
following screenshot:

Once you have finished installing R, we are going to install one more thing
for our R development environment. In this book, we will be using RStudio,
which is a popular IDE for the R programming language. You can download
RStudio at the following link: https://www.rstudio.com/products/rstudio/download/.
When you go to this RStudio download page, it should look like the
following screenshot:

https://www.rstudio.com/products/rstudio/download/

 We will be using the RStudio Desktop Open Source License version in this
book, but feel free to use other versions if you already have a license for
others. Once you download and install RStudio, you will see something like
the following screenshot when you open RStudio:

Now that we have our R environment ready, let's build a simple logistic
regression model to familiarize ourselves with R a little more.

A simple logistic regression model
in R
Let's test our environment setup by building a simple logistic regression
model in R. Open RStudio and create a new R Script file. You can create a
data frame in R, using the following code:

Input Data
data <- data.frame(
 "X"=c(0, 0.25, 0.5, 1),
 "Y"=c(0, 0.5, 0.5, 1),
 "output"=c(0, 0, 1, 1)
)

As you can see from this code snippet, we built a dataframe with columns X,
Y, and output. The X column takes values of 0, 0.25, 0.5, and 1. The Y
column has values of 0, 0.5, 0.5, and 1. output is a binary class, where it can be
either 0 or 1. data looks as follows:

Now that we have the data to train a logistic regression model with, let's take
a look at the following code:

Train logistic regression
logit.fit <- glm(
 output ~ X + Y,
 data = data,
 family = binomial
)

As shown in this code snippet, we are using the glm function in R to fit a
logistic regression model. Since the glm function is used to fit any linear

models, we need to define the variable family of the model we want to train.
In order to train a logistic regression, we use binomial for the family argument
in the glm function. The first argument, output ~ X + Y, defines the formula for
this model and the data argument is used to define the dataframe to use to
train the model with.

In R, you can use the summary function to get the details of the fitted logistic
regression model, as shown in the following code:

Show Fitted Results
summary(logit.fit)

This will output something like the following screenshot:

As you can see from this output, we can easily find the coefficients and the
intercept of the model. We will use this summary function frequently
throughout this book to better understand the trained models.

With a trained model, we can predict on new data with the following code:

Predict Class Probabilities
logit.probs <- predict(
 logit.fit,
 newdata=data,
 type="response"
)

Predict Classes
logit.pred <- ifelse(logit.probs > 0.5, 1, 0)
logit.pred # output: 0 0 1 1

As you can see from this code snippet, we are using the predict function to
make a prediction with the trained model, logit.fit, and with new data
defined in the argument, newdata. This predict function will output the
probabilities or likelihoods for each example in the new data; in order to
transform this output into a binary class, we can use the ifelse function to
encode any output that is above a threshold (in this case, 0.5) as 1 and the rest
as 0.

Lastly, let's quickly look at how we can build plots in R. We will be using an
R package, ggplot2, for plotting throughout this book. So, it will be beneficial
for you to get familiar with how to import this plotting library and use it for
data visualizations. If it is your first time using this package, then you will
most likely see the following error message when you try to import
the ggplot2 package:

As the message says, the package, ggplot2, is not yet installed on your
machine. In order to install any R package, you can simply run the following
command:

install.packages('ggplot2')

If you run this command, you will see output like the following:

Once the installation of this library is complete, then you can import and use
this library. We are going to build a simple scatterplot using the ggplot2
library, as shown in the following code snippet:

Plotting Library
library(ggplot2)

Simple Scatterplot
ggplot(data, aes(x=X, y=Y, color=output)) +
 geom_point(size=3, shape=19) +
 ggtitle('Actual') +
 theme(plot.title = element_text(hjust = 0.5))

As you can see from this code snippet, you can build a scatterplot with data,
using the ggplot function of ggplot2 package. In order to change the shape and
size of the points on the scatterplot, you can use the geom_point function. You
can also use the ggtitle function to change the title of the plot. When you run
this code, you will see the following chart:

We will run the same task for the prediction results. The code looks
as follows:

ggplot(data, aes(x=X, y=Y, color=logit.pred)) +
 geom_point(size=3, shape=19) +
 ggtitle('Predicted') +
 theme(plot.title = element_text(hjust = 0.5))

The output appears as follows:

We will be heavily utilizing these functions and the plotting library, ggplot2,
throughout this book, so you will get more and more comfortable coding in
R, as well as using these other libraries, as we progress through the chapters
and exercises.

You can view and download the full R code that was used for this section from the
following link: https://github.com/yoonhwang/hands-on-data-science-for-marketing/blob/master/ch.1/R/SettingU
pREnvironment.R.

https://github.com/yoonhwang/hands-on-data-science-for-marketing/blob/master/ch.1/R/SettingUpREnvironment.R
https://github.com/yoonhwang/hands-on-data-science-for-marketing/blob/master/ch.1/R/SettingUpREnvironment.R

Summary
In this chapter, we discussed the overall trends in marketing and learned the
rising importance of data science and machine learning in the marketing
industry. As the amount of data increases and as we observe the benefits of
utilizing data science and machine learning for marketing, companies of all
sizes are investing in building more data-driven and quantitative marketing
strategies.

We also learned different types of analysis methods, especially the three
types of analysis that we will be using frequently in this book—descriptive,
explanatory, and predictive —and different use cases of these analyses. In
this chapter, we covered different types of machine learning algorithms, as
well as the typical workflow in data science. Lastly, we spent some time
setting up our development environments in Python and R and testing our
environment setup by building a simple logistic regression model.

In the next chapter, we are going to go over some of the key performance
indicators (KPIs) and how to visualize these key metrics. We will learn
how to compute and build visual plots of these KPIs in Python, using
different packages, such as pandas, numpy, and matplotlib. For those of you who
are following the exercises in this book using the R language, we will also
discuss how to use R to compute and plot these KPIs in R, using various
statistical and mathematical functions in R and the ggplot2 package for
visualizations.

Section 2: Descriptive Versus
Explanatory Analysis
In this section, you will learn the Key Performance Indicators (KPIs) that
are commonly used in the marketing industry, how to use charting libraries
in Python and R to visualize metrics, and how to use machine learning
algorithms to understand what drives the successes and failures of
marketing campaigns.

This section consists of the following chapters:

Chapter 2, Key Performance Indicators and Visualizations
Chapter 3, Drivers behind Marketing Engagement
Chapter 4, From Engagement to Conversion

Key Performance Indicators and
Visualizations
When you run marketing campaigns or any other marketing efforts, you
would most likely want to know how well each of them performs and
understand the weaknesses and strengths of each of your marketing efforts.
In this chapter, we are going to discuss commonly used key performance
indicators (KPIs) that help you track the performances of your marketing
efforts. More specifically, we will cover such KPIs as sales revenue, cost
per acquisition (CPA), digital marketing KPIs, and site traffic. We will
learn how these KPIs can help you stay on track toward your marketing
goals.

After discussing some of the commonly used KPIs, we will then learn how
we can use Python and/or R to compute such KPIs and build visualizations
of those KPIs. In this chapter, we will use a bank marketing dataset that
showcases a real-world case of marketing campaigns for finance
organizations. For the Python project, we will learn how we can use
the pandas and matplotlib libraries to analyze data and build visualizations.
For the R project, we will introduce the dplyr and ggplot2 libraries to analyze
and manipulate data and build visualizations.

In particular, we will cover the following topics in this chapter:

KPIs to measure performances of different marketing efforts
Computing and visualizing KPIs using Python
Computing and visualizing KPIs using R

KPIs to measure performances of
different marketing efforts
Every marketing effort costs money to the company. When you run
marketing campaigns through emails, sending each email costs some
money. When you are running marketing efforts on social network services
or broadcast media, it also requires some capital. As every marketing effort
is associated with some costs, it is critical to look at the performances of
marketing campaigns and track the return on investments (ROI) of your
marketing campaigns. We will mainly discuss how to track sales revenue,
CPA, and digital marketing KPIs in this section.

Sales revenue
It is clear that the goal of every marketing effort is to generate and grow
more revenue for the company. No company wants to spend more money on
marketing than it generates. In order to correctly report the sales revenue,
you will need to clearly define how you want to attribute sales to each of
your marketing efforts. Some sales might come from email marketing
campaigns, while some others might come from advertisements placed on
TV or public transportation. Some sales could even come naturally, without
any attributions to any of your marketing campaigns.

In order to correctly report how much sales revenue each of your marketing
efforts drives, you will have to clearly define the rules to attribute your sales
to each of your marketing efforts. For example, if you are an ecommerce
company and promoting special offers through email and TV marketing
campaigns, you might want to put a different URL in the emails than the
URL in your TV commercials. This way, you can identify and differentiate
those sales from email marketing campaigns from those sales from
marketing efforts through TV.

Depending on your needs, you might also want to report time-series sales
revenue data. You can report it in a spreadsheet format, such as the
following:

You can also report time-series sales revenue data in a line chart, such as the
following:

We will discuss more about the different types of plots and data
visualizations you can use for reporting KPIs when we work through the
Python and R exercises toward the end of this chapter.

Cost per acquisition (CPA)
Another way to look at the effectiveness of your marketing efforts is CPA.
This KPI metric tells you how much it costs you to acquire a customer
through your marketing efforts. A high CPA means it costs more to acquire a
new customer, while a low CPA clearly means it costs less to acquire a new
customer. Depending on the type of business, you can still have a very
profitable marketing campaign with high CPA. For example, if you are
selling a very luxurious and high-end product, where the pool of targeted
customers is small and it costs more to acquire such customers, your CPA
might be high, but the value of each customer you acquired might be even
higher and result in a profitable marketing campaign.

We will take a look at the following hypothetical case:

If you look at this spreadsheet, Happy Hour Event was the most expensive
marketing event, in terms of both the total cost and CPA. However, it
generated the most Sales and Sales per Customer; thus, it was the most
valuable campaign. On the other hand, Radio Commercial was the lowest
CPA marketing campaign, even though the total cost is the second highest,
because it helped the business to acquire the most number of customers.
However, the total sales from these customers did not exceed the total cost
of this campaign and introduced a net loss to the company.

Even though this is a hypothetical situation, a similar case can happen in real
life. Marketing efforts, such as Happy Hour Event and Webinar have
better-targeted customers than Radio Commercial. The quality of customers
acquired through highly-targeted marketing campaigns is many times
better compared to non-targeted marketing campaigns.

Now that we have seen how we can break down the marketing campaign
results to analyze the cost-effectiveness in more depth, we will look at some
of the commonly used KPIs for digital marketing.

Digital marketing KPIs
As the choices of marketing channels grow into online space, such as on
social network services, blogs, and search engines, reporting the
performances of digital marketing efforts has become more and more
important. Previously discussed KPIs, sales revenue, and cost per
acquisition, apply in the digital marketing space as well.

As an example, based on individual attribution logic, you can analyze how
much sales are generated through different social network services, such as
Facebook, LinkedIn, and Instagram. You can also analyze how many
customers are acquired through such marketing channels and see what
individual digital marketing campaigns' CPAs and generated values are.
Let's discuss some more digital marketing KPIs:

Click-through rate (CTR) is another KPI that is commonly looked at
for digital marketing efforts. CTR is the percentage of people who
viewed your advertisement and then went on to click the
advertisement. The formula looks as follows:

CTR is an important measure in digital marketing channels, as it
measures how effective your online marketing is in bringing traffic
to your website.

Then, you can use lead ratio to measure how much of the website
traffic can be converted into leads. Typically, only a subset of website
traffic is a good fit to become your customers. These marketing
qualified leads (MQL) are the leads that are ready to be marketed to
and meet business-specific criteria to become customers who are likely
to make purchases, based on their characteristics. As you start

marketing to these qualified leads, you should also look at conversion
rates.
The conversion rate is the percentage of leads that are converted into
active customers. You can define what should be considered as
conversions, based on your marketing goals. If your goal is to see what
percentage of leads became paying customers, then you can compute
the conversion rate somewhat similar to the following formula:

If your goal is to see what percentage of leads signed up on your
website, then you can compute the conversion rate as in the
following formula:

We have looked at various KPIs so far and discussed how these KPIs can
help you track the progress and performances of your marketing efforts. We
will now look at how to use Python and/or R to compute such KPIs and
build visualizations. If you plan on using one of the two programming
languages, Python and R, used in this book, you can skip to the section that
you'd like to work on.

Computing and visualizing KPIs
using Python
In this section, we are going to discuss how we can use Python to compute
and visualize the KPIs we have discussed in the previous sections. We will
primarily focus on analyzing conversion rates using bank marketing data.
For those readers who would like to use R for this exercise, you can skip to
the next section. We will be using the pandas and matplotlib libraries in Python
to manipulate and analyze data and build various charts to accurately report
the progress and performances of marketing efforts.

For the exercise in this section, we are going to use the UCI's Bank
Marketing Data Set, which can be found at this link: https://archive.ics.uci.ed
u/ml/datasets/bank+marketing. You can follow this link and download the data by
clicking the Data Folder link in the top-left corner. For this exercise, we
downloaded the bank-additional.zip data and we will use the bank-additional-
full.csv file in that zipped file.

When you open this bank-additional-full.csv file, you will notice that a semi-
colon (;) is used as a separator, instead of a comma (,). In order to load this
data, you can use the following code to read in this data into a pandas
DataFrame:

import pandas as pd

df = pd.read_csv('../data/bank-additional-full.csv', sep=';')

As you can see from this code, we are importing the pandas library with the
alias, pd, and we are using the read_csv function to load the data. For
separators other than commas, you can define a custom separator with the sep
argument within the read_csv function.

If you look at the field description in the data download page (https://archive.
ics.uci.edu/ml/datasets/bank+marketing), the output variable, y, which has
information on whether a client has subscribed to a term deposit, is encoded

https://archive.ics.uci.edu/ml/datasets/bank+marketing
https://archive.ics.uci.edu/ml/datasets/bank+marketing

as 'yes' or 'no'. In order to simplify our conversion rate computations, we
will encode this variable as 1 for 'yes' and 0 for 'no'. You can use the
following code for this encoding:

df['conversion'] = df['y'].apply(lambda x: 1 if x == 'yes' else 0)

As you can see from this code snippet, we are using the apply function to
encode 'yes' as 1 and 'no' as 0 for the variable, y, and then adding this
encoded data as a new column, conversion. The code and the loaded data in
our Jupyter Notebook will look like the following:

Now that we have successfully read the data into a pandas DataFrame, we will
start looking at how to analyze and visualize conversion rates, using various
methods and plots.

Aggregate conversion rate
First, we are going to look at the aggregate conversion rate. We can calculate
this metric by dividing the total number of clients subscribed to a term
deposit by the total number of clients in the data. Since we have already
encoded the output variable as 1 for those who have converted and 0 for
those who have not, in a column named conversion, we can simply sum over
this column to get the total number of conversions.

The following code snippet shows how we can sum over the conversion
column and get the total number of clients in the data:

total number of conversions
df.conversion.sum()
total number of clients in the data (= number of rows in the data)
df.shape[0]

The following is what our code for conversion rate calculations in the
Jupyter Notebook look like:

As you can see from this code output in the Jupyter Notebook, we have 4640
converted clients out of a total of 41188 bank clients, which suggests the
aggregate conversion rate is 11.27%. In the following section, we are going to
analyze how these conversion rates vary by different age groups.

Conversion rates by age
Aggregate conversion rate tells us the overall performance of our marketing
campaign. However, it does not give us that much insight. When we are
reporting and tracking the progress of marketing efforts, we typically would
want to dive deeper into the data and break down the customer base into
multiple segments and compute KPIs for individual segments. We will first
break our data into smaller segments by age and see how the conversion rates
differ by different age groups.

We will look at the following code first:

conversions_by_age = df.groupby(
 by='age'
)['conversion'].sum() / df.groupby(
 by='age'
)['conversion'].count() * 100.0

As you can see from this code, we are using the groupby function to calculate
conversion rates by each age.

We first group by a variable name, age, and sum over the conversion column,
using the sum function, to get the total number of conversions by each age.
Then, we group by age again and count the number of records in each age
group by using the count function.

Using these two computations, we can calculate the conversion rates for
each age, as shown in the code. A part of the calculated conversion rates for
each age looks as follows:

Another way to look at conversion rates across client ages is by plotting a
line chart, as shown in the following screenshot:

The code to visualize conversion rates across different ages looks as follows:

ax = conversions_by_age.plot(
 grid=True,
 figsize=(10, 7),
 title='Conversion Rates by Age'
)

ax.set_xlabel('age')
ax.set_ylabel('conversion rate (%)')

plt.show()

As this code shows, we are using the conversions_by_age variable that we built
previously and the plot function for a line chart. As you can see from this

code, you can change the size of a figure by an argument, named figsize, and
the title of the chart with an argument, named title. In order to change the
labels of the x-axis and y-axis, you can use the set_xlabel and set_ylabel
functions.

One thing that is noticeable in the previous line chart is the fact that there
seems to be lots of noise in old age groups. Conversion rates for those who
are 70 or older vary a lot and if you look at the data, this is mostly because
the number of clients in this age group is relatively small, compared to other
age groups.

In order to reduce this unwanted noise, we can group multiple ages together.
In this exercise, we group bank clients into six different groups, based on
their age—between 18 and 30, between 30 and 40, between 40 and 50, between
50 and 60, between 60 and 70, and 70 and older. The following code can be
used to group the clients into their corresponding groups:

df['age_group'] = df['age'].apply(
 lambda x: '[18, 30)' if x < 30 else '[30, 40)' if x < 40 \
 else '[40, 50)' if x < 50 else '[50, 60)' if x < 60 \
 else '[60, 70)' if x < 70 else '70+'
)

If you look at this code, we are using the apply function on the column, age, to
group clients into six different age groups and add this data to a new column,
named age_group. In order to calculate the conversion rates for these newly
created age groups, we can use the following code:

conversions_by_age_group = df.groupby(
 by='age_group'
)['conversion'].sum() / df.groupby(
 by='age_group'
)['conversion'].count() * 100.0

Similar to the previous case, we are using the groupby, sum, and count functions
to calculate conversion rates for these six different age groups. The resulting
data looks like the following screenshot:

As you can see from this, the variations by each age group are much smaller
than before, especially in old age groups. We can visualize this data using a
bar plot, as shown in the following screenshot:

The code to build this bar plot looks like the following:

ax = conversions_by_age_group.loc[
 ['[18, 30)', '[30, 40)', '[40, 50)', '[50, 60)', '[60, 70)', '70+']
].plot(
 kind='bar',
 color='skyblue',
 grid=True,
 figsize=(10, 7),
 title='Conversion Rates by Age Groups'
)

ax.set_xlabel('age')
ax.set_ylabel('conversion rate (%)')

plt.show()

As you can see from this code, we are using the same plot function that we
used before to build a line plot. The only difference is the kind argument,
with which we can define different types of plots we would like to build.
Here, we are giving a value of bar to this kind argument to build a bar plot.

You can find the full code in the following repository: https://github.com/yoonhwang/hands-on-data-s
cience-for-marketing/blob/master/ch.2/python/ConversionRate.ipynb.

https://github.com/yoonhwang/hands-on-data-science-for-marketing/blob/master/ch.2/python/ConversionRate.ipynb

Conversions versus non-
conversions
One other thing we can look at is the demographic differences between the
converted clients and non-converted clients. This type of analysis can help
us identify what differentiates converted groups from non-converted groups
in our marketing campaigns and help us understand our target clients better
and what types of customers respond better to our marketing efforts. In this
exercise, we will compare the distributions of the marital status among the
conversions and non-conversions groups.

We will first count the number of conversions and non-conversions for each
marital status. The following code shows how we can compute this using
pandas functions:

pd.pivot_table(df, values='y', index='marital', columns='conversion', aggfunc=len)

As you can see from this code, we are using the pivot_table function in
the pandas library. We are grouping by the columns, marital and conversion,
where marital will become the index and conversion will become the column of
the new DataFrame. With the aggfunc argument, we can supply the type of
aggregation we want to perform. Here, we are using the len function to
simply count the number of clients for each group. The resulting data looks
like the following screenshot:

Another way to represent this data is by using pie charts, as follows:

The following code shows how we can build these pie charts:

conversions_by_marital_status_df.plot(
 kind='pie',
 figsize=(15, 7),
 startangle=90,
 subplots=True,
 autopct=lambda x: '%0.1f%%' % x
)

plt.show()

As you can see from this code, we are using the same plot function as before,
but using pie as the kind of plot that we would like to build. You can use
the autopct argument to format the label for each group in the pie charts.

Compared to the tabular format of the data output, pie charts make it much
easier to understand the overall distributions of the data. With pie charts, we
can easily see that the married group takes up the largest proportions in both
conversions and non-conversions groups, while the single group comes as the
second. Using pie charts, we can easily visualize the similarities and
differences between two groups.

Conversions by age and marital status
So far, we have aggregated our data by one criterion. However, there are cases where you
want to group the data by more than one column. In this section, we will discuss how we can
analyze and report conversion rates by more than one criterion. As an exercise, we will use
age groups that we have built in the previous section and the marital status as the two
columns to group by.

Let's first look at the code:

age_marital_df = df.groupby(['age_group', 'marital'])['conversion'].sum().unstack('marital').fillna(0)

age_marital_df = age_marital_df.divide(
 df.groupby(
 by='age_group'
)['conversion'].count(),
 axis=0
)

As you can see from this code, we are grouping our data by the two columns, age_group and
marital, and summing the number of conversions. Then, we divide this by the total number of
clients in each group. The resulting data looks like the following screenshot:

As you can see from this data, we can now see the distribution of conversion rates based on
two criteria, age group and martial status. For example, the conversion rate of clients who are
single and between 18 and 30 years old is 13.25%, while the conversion rate of clients who
are married and between 60 and 70 years old is 30.11%. Another way to visualize this data is
to use a bar plot that looks like the following:

In this bar chart, we can easily see the distributions of conversion rates for each of the age
and marital status groups. The code we used to build this bar plot looks is shown here:

ax = age_marital_df.loc[
 ['[18, 30)', '[30, 40)', '[40, 50)', '[50, 60)', '[60, 70)', '70+']
].plot(
 kind='bar',
 grid=True,
 figsize=(10,7)
)

ax.set_title('Conversion rates by Age & Marital Status')
ax.set_xlabel('age group')
ax.set_ylabel('conversion rate (%)')

plt.show()

Similar to previous cases, we are using the plot function of the pandas library and passing bar
to the kind argument of the function. Since the DataFrame, age_marital_df, has four columns for

each of the marital statuses and is indexed by age groups, the plot function builds a bar plot
with four bars for each of the marital statuses for each of the age groups.

If you would like to stack those four bars for each age group, then you can use the following
code for a stacked bar plot:

ax = age_marital_df.loc[
 ['[18, 30)', '[30, 40)', '[40, 50)', '[50, 60)', '[60, 70)', '70+']
].plot(
 kind='bar',
 stacked=True,
 grid=True,
 figsize=(10,7)
)

ax.set_title('Conversion rates by Age & Marital Status')
ax.set_xlabel('age group')
ax.set_ylabel('conversion rate (%)')

plt.show()

As you can see from this code, the only difference is the argument, stacked, that we used in
this code. When this argument is set to True, it will build a stacked bar plot, which looks like
the following:

As you can see from this stacked bar plot, different marital statuses are stacked on top of
each other for each of the age groups. This way, we can not only easily see the overall trends
in conversion rates across different age groups, but also the proportions of converted clients
with different marital statuses for each age group.

The full code and Jupyter Notebook that we used for this Python exercise can be found in the following
repository: https://github.com/yoonhwang/hands-on-data-science-for-marketing/blob/master/ch.2/python/ConversionRate.ipynb.

https://github.com/yoonhwang/hands-on-data-science-for-marketing/blob/master/ch.2/python/ConversionRate.ipynb

Computing and visualizing KPIs
using R
In this section, we are going to discuss how we can use R to compute and
visualize the KPIs we have discussed in the previous sections. We will
primarily focus on analyzing conversion rates using bank marketing data.
For those readers, who would like to use Python for this exercise, you can
find the Python exercise in the previous section. We will be using
the dplyr and ggplot2 libraries in R to manipulate and analyze data and build
various charts to accurately report the progress and performances of
marketing efforts. The dplyr library provides various functionalities for data
manipulation for data science and machine learning tasks.

For the exercise in this section, we are going to use the UCI's Bank
Marketing Data Set, which can be found at this link: https://archive.ics.uci.e
du/ml/datasets/bank+marketing. You can follow this link and download the data
by clicking the Data Folder link in the top-left corner. For this exercise, we
downloaded the bank-additional.zip data and we will use the bank-additional-
full.csv file in that zipped file.

When you open this bank-additional-full.csv file, you will notice that a semi-
colon (;) is used as a separator, instead of a comma (,). In order to load this
data, you can use the following code to read in this data into a DataFrame:

conversionsDF <- read.csv(
 file="~/Documents/data-science-for-marketing/ch.2/data/bank-additional-full.csv",
 header=TRUE,
 sep=";"
)

As you can see from this code, we are using the read.csv function to load the
data. For separators other than commas, you can define a custom separator
with the sep argument within the read.csv function. If your data file contains a
row for the header, you can set the argument, header, to TRUE. On the other

https://archive.ics.uci.edu/ml/datasets/bank+marketing

hand, if your data file does not contain a row for the header and the data
starts from the first row, you can set it to FALSE.

If you look at the field description in the data download page (https://archive.
ics.uci.edu/ml/datasets/bank+marketing), the output variable, y, which has
information on whether a client has subscribed to a term deposit, is encoded
as 'yes' or 'no'. In order to simplify our conversion rate computations, we
will encode this variable as 1 for 'yes' and 0 for 'no'. You can use the
following code for this encoding:

Encode conversions as 0s and 1s
conversionsDF$conversion <- as.integer(conversionsDF$y) - 1

As you can see from this code snippet, we are using the as.integer function to
encode 'yes' as 1 and 'no' as 0 for the variable, y, and then adding this
encoded data as a new column, conversion. Since the as.integer function will
use 1 and 2 for 'no' and 'yes' encodings by default, we are subtracting the
values by 1. The data now looks like the following in our RStudio:

https://archive.ics.uci.edu/ml/datasets/bank+marketing

Now that we have successfully read the data into an R DataFrame, we will start
looking at how to analyze and visualize conversion rates, using various
methods and plots.

Aggregate conversion rate
First, we are going to look at is the aggregate conversion rate. We can
calculate this metric by dividing the total number of clients subscribed to a
term deposit by the total number of clients in the data. Since we have already
encoded the output variable as 1 for those who have converted and 0 for
those who have not in a column, named conversion, we can simply sum over
this column to get the total number of conversions. The following code
snippet shows how we can sum over the conversion column and get the total
number of clients in the data:

total number of conversions
sum(conversionsDF$conversion)

total number of clients in the data (= number of records in the data)
nrow(conversionsDF)

As you can see from this code snippet, we are using the sum function in R to
calculate the total number of conversions and the nrow function to count the
number of rows in our dataset. On a side note, as with nrow, you can use
the ncol function to count the number of columns of a DataFrame.

The following screenshot shows what the code looks like on our RStudio:

As you can see from this code output in the RStudio, we have 4640 converted
clients out of a total of 41188 bank clients, which suggests the aggregate
conversion rate is 11.27%. In the following section, we are going to analyze
how these conversion rates vary by different age groups. We are using
the sprintf function to format a string with integers and floating point
numbers.

Conversion rates by age
Aggregate conversion rate tells us the overall performance of our marketing
campaign. However, it does not give us that much insight. When we are
reporting and tracking the progress of marketing efforts, we typically would
want to dive deeper into the data and break down the customer base into
multiple segments and compute KPIs for individual segments. We will first
break our data into smaller segments by age and see how the conversion
rates differ by different age groups.

We will look at the following code first:

conversionsByAge <- conversionsDF %>%
 group_by(Age=age) %>%
 summarise(TotalCount=n(), NumConversions=sum(conversion)) %>%
 mutate(ConversionRate=NumConversions/TotalCount*100.0)

The pipe operator, %>%, in this code, is the way you can apply different
functions sequentially. In this code snippet, we are passing conversionDF to a
group_by function, then passing the results of this group_by function to
the summarise function, and lastly to the mutate function.

In the group_by function, we are grouping the DataFrame by the column age.
Then, for each age group, we are counting the number of records in each
group, by using a function, n(), and naming it TotalCount. Also, we are
summing over the column, conversion, for each age group, by using the sum
function, and naming it NumConversions.

Lastly, we are using the mutate function, which adds new variables, while
preserving the original DataFrame, to compute conversion rates for each age
group. As you can see, we are simply dividing NumConversion by TotalCount and
multiplying it by 100.0 to get the conversion rates.

The resulting data is shown in the following screenshot:

Another way to look at conversion rates across client ages is by plotting a
line chart, as shown in the following screenshot:

The code to visualize conversion rates across different ages is shown here:

line chart
ggplot(data=conversionsByAge, aes(x=Age, y=ConversionRate)) +
 geom_line() +
 ggtitle('Conversion Rates by Age') +
 xlab("Age") +
 ylab("Conversion Rate (%)") +
 theme(plot.title = element_text(hjust = 0.5))

As you can see from this code, we are using the ggplot function to initialize a
ggplot object with conversionsByAge as the data and the column, Age, as the x-axis
and the column, ConversionRate, as the y-axis.

Then, we use geom_line function to connect the observations and create a line
chart. You can change the title of a plot, by using ggtitle function. Also, you
can use xlab and ylab functions to rename the x-axis label and y-axis label
respectively.

One thing that is noticeable in the previous line chart is the fact that there
seems to be lots of noise in older age groups. Conversion rates for those who
are 70 or older vary a lot and if you look at the data, this is mostly because
the number of clients in this age group is relatively small, compared to other
age groups.

In order to reduce this unwanted noise, we can group multiple ages together.
In this exercise, we group bank clients into six different groups, based on
their age—between 18 and 30, between 30 and 40, between 40 and 50, between
50 and 60, between 60 and 70, and 70 and older. The following code can be
used to group the clients into their corresponding groups:

b. by age groups
conversionsByAgeGroup <- conversionsDF %>%
 group_by(AgeGroup=cut(age, breaks=seq(20, 70, by = 10))) %>%
 summarise(TotalCount=n(), NumConversions=sum(conversion)) %>%
 mutate(ConversionRate=NumConversions/TotalCount*100.0)

conversionsByAgeGroup$AgeGroup <- as.character(conversionsByAgeGroup$AgeGroup)
conversionsByAgeGroup$AgeGroup[6] <- "70+"

As with the previous case, we are using the group_by function to group
the conversionsDF data by the age column. The difference here is how we used
the cut function to create the age range for each age group.

The breaks argument defines the points at which the cut function is going to
divide the DataFrame. The argument, seq(20, 70, by = 10), means we are going to
create a sequence from 20 to 70 in increments of 10. Once the data is grouped
by these age groups, the rest are the same as before. We are using
the summarise and mutate functions to compute for the TotalCount, NumConversions,
and ConversionRate columns.

The resulting DataFrame is shown in the following screenshot:

As you can see from this, the variations by each age group are much smaller
than before, especially in old age groups. We can visualize this data using a
bar plot, as shown here:

The code to build this bar plot is shown here:

bar chart
ggplot(conversionsByAgeGroup, aes(x=AgeGroup, y=ConversionRate)) +
 geom_bar(width=0.5, stat="identity") +
 ggtitle('Conversion Rates by Age Groups') +
 xlab("Age") +
 ylab("Conversion Rate (%)") +
 theme(plot.title = element_text(hjust = 0.5))

As you can see from this code, we are passing the conversionsByAgeGroup data to
the ggplot object with the AgeGroup column as the x-axis and the ConversionRate
column as the y-axis. We are using the geom_bar function to build a bar plot.

The width argument defines the width of each bar in the bar plot. Similar to
the previous line chart, you can use ggtitle to rename the title of the plot and
the xlab and ylab functions to rename the labels of the x-axis and y-axis.

You can find the full code in the following repository: https://github.com/yoonhwang/hands-on-data-s
cience-for-marketing/blob/master/ch.2/R/ConversionRate.R.

https://github.com/yoonhwang/hands-on-data-science-for-marketing/blob/master/ch.2/R/ConversionRate.R

Conversions versus non-
conversions
One other thing we can look at is the demographic differences between the
converted clients and non-converted clients. This type of analysis can help
us identify what differentiates converted groups from non-converted groups
in our marketing campaigns and helps us understand our target clients better
and what types of customers respond better to our marketing efforts. In this
exercise, we will compare the distributions of the marital status among the
conversions and non-conversions groups.

We will first count the number of conversions and non-conversions for each
marital status. The following code shows how we can compute this
using R functions:

conversionsByMaritalStatus <- conversionsDF %>%
 group_by(Marital=marital, Conversion=conversion) %>%
 summarise(Count=n())

As you can see from this code, we are using the pipe operator, %>%, in
the dplyr package to pass the DataFrame, conversionsDF to the group_by function and
then to the summarise function. In the group_by function, we are grouping by two
columns, marital and conversion. In the summarise function, we are simply
counting the number of records in each group, by using the n function.

The resulting data is shown in the following screenshot:

Another way to represent this data is by using pie charts:

The following code shows how we can build these pie charts in R:

pie chart
ggplot(conversionsByMaritalStatus, aes(x="", y=Count, fill=Marital)) +
 geom_bar(width=1, stat = "identity", position=position_fill()) +
 geom_text(aes(x=1.25, label=Count), position=position_fill(vjust = 0.5)) +
 coord_polar("y") +
 facet_wrap(~Conversion) +
 ggtitle('Marital Status (0: Non Conversions, 1: Conversions)') +
 theme(
 axis.title.x=element_blank(),
 axis.title.y=element_blank(),
 plot.title=element_text(hjust=0.5),
 legend.position='bottom'
)

For building a pie chart in R, we are using the same geom_bar function, just as
if we are building a bar chart. The difference here is coord_polar("y"), which
transforms a bar chart into a pie chart. Then, we are using the facet_wrap
function to create two columns of pie charts by the column, Conversion. This
builds two pie charts, one for the conversions group and another for the non-
conversions group.

Compared to the tabular format of the data output, pie charts make it much
easier to understand the overall distributions of the data. With pie charts, we
can easily see that the married group takes up the largest proportions in both
conversions and non-conversions groups, while the single group comes
second. Using pie charts, we can easily visualize the similarities and
differences between two groups.

Conversions by age and marital
status
So far, we have aggregated our data by one criterion. However, there are
cases where you want to group the data by more than one column. In this
section, we will discuss how we can analyze and report conversion rates by
more than one criterion. As an exercise, we will use the age groups that we
have built in the previous section and the marital status as the two columns
to group by.

Let's first look at the code:

5. Conversions by Age Groups & Marital Status
conversionsByAgeMarital <- conversionsDF %>%
 group_by(AgeGroup=cut(age, breaks= seq(20, 70, by = 10)), Marital=marital) %>%
 summarise(Count=n(), NumConversions=sum(conversion)) %>%
 mutate(TotalCount=sum(Count)) %>%
 mutate(ConversionRate=NumConversions/TotalCount)

conversionsByAgeMarital$AgeGroup <- as.character(conversionsByAgeMarital$AgeGroup)
conversionsByAgeMarital$AgeGroup[is.na(conversionsByAgeMarital$AgeGroup)] <- "70+"

Similar to when we built custom age groups, we are using the cut function in
group_by to create age groups from 20 to 70 in increments of 10. However, we
are grouping by the column, marital, as well this time.

Then, we are using the summarise function to compute the number of records
in each group Count, and the number of conversions in each group,
NumConversions. Then, using the mutate function, we calculate the total counts in
each age group, named TotalCount, and the conversion rates in each group,
named ConversionRate.

The resulting data is shown in the following screenshot:

As you can see from this data, we can now see the distribution of conversion
rates based on two criteria, age group and martial status. For example, the
conversion rate of clients who are single and between 20 and 30 years old is
11.10%, while the conversion rate of clients who are married and between
40 and 50 years old is 5.74%.

Another way to visualize this data is to use a bar plot:

In this bar chart, we can easily see the distributions of conversion rates for
each of the age and marital status groups. The code we used to build this bar
plot is shown here:

bar chart
ggplot(conversionsByAgeMarital, aes(x=AgeGroup, y=ConversionRate, fill=Marital)) +
 geom_bar(width=0.5, stat="identity", position="dodge") +
 ylab("Conversion Rate (%)") +
 xlab("Age") +
 ggtitle("Conversion Rates by Age and Marital Status") +
 theme(plot.title=element_text(hjust=0.5))

Here, we are creating a ggplot object with the conversionsByAgeMarital data. We
are using AgeGroup for the x-axis and ConversionRate for the y-axis, while we are

using Marital column to use different colors for different types of marital
status. Then, we are building a bar plot by using the geom_bar function. With
this configuration, ggplot builds a bar plot of conversion rates against age
groups with breakdowns by marital status, which we saw in the previous bar
chart.

If you would like to stack those four bars for each age group, then you can
use the following code for a stacked bar plot:

stacked bar chart
ggplot(conversionsByAgeMarital, aes(x=AgeGroup, y=ConversionRate, fill=Marital)) +
 geom_bar(width=0.5, stat="identity", position="stack") +
 ylab("Conversion Rate (%)") +
 xlab("Age") +
 ggtitle("Conversion Rates by Age and Marital Status") +
 theme(plot.title=element_text(hjust=0.5))

As you can see from this code, the only difference is the code,
position="stack", in the geom_bar function. If you pass the value, "dodge", to this
position argument of the geom_bar function, it will create an unstacked bar plot.
Whereas, if you pass the value, "stack", to this position argument of
the geom_bar function, it will build a stacked bar plot, which looks like the
following:

As you can see from this stacked bar plot, different marital statuses are
stacked on top of each other for each of the age groups. This way, we can not
only easily see the overall trends in conversion rates across different age
groups, but also the proportions of converted clients with different marital
statuses for each age group.

The full code that we used for this R exercise can be found in the following repository: ht
tps://github.com/yoonhwang/hands-on-data-science-for-marketing/blob/master/ch.2/R/ConversionRate.R.

https://github.com/yoonhwang/hands-on-data-science-for-marketing/blob/master/ch.2/R/ConversionRate.R

Summary
In this chapter, we have discussed how to use descriptive analysis for
reporting and analytics on the progress and performances of marketing
efforts. We have discussed various KPIs that are often used in marketing to
track the progress of marketing campaigns. We have learned how important
it is to look at how much sales revenue each marketing strategy
generates. When analyzing the sales revenue metrics, we have seen that it is
important to approach it from different angles. You might want to look at
not only the aggregate sales revenue, but also time-series (monthly,
quarterly, or yearly) sales revenue. You might also want to look at sales
attributed to each individual marketing campaigns and how much revenue
each campaign generated for your company. We have also discussed
CPA metrics, with which you can tell the cost-effectiveness of your
marketing strategies. We have learned various metrics to analyze for digital
marketing channels as well, such as CTR, lead ratio, and conversion rates.
As we have seen and experimented in the Python and R exercises, we can
go multiple levels deeper into these KPI metrics.

In the next chapter, we are going to learn how we can apply data science
and machine learning techniques for explanatory analysis. More
specifically, we will discuss how we can use regression analysis and models
to understand the drivers behind marketing engagement. We will also cover
how we can interpret the regression analysis results in the following
chapter.

Drivers behind Marketing
Engagement
When you run marketing campaigns, one of the important measures that
you will want to look at and analyze is customer engagement with your
marketing efforts. For example, in email marketing, customer engagement
can be measured by how many of your marketing emails were opened or
ignored by your customers. Customer engagement can also be measured by
the amount of website visits from individual customers. Successful
marketing campaigns will draw a lot of engagement from your customers,
while ineffective marketing campaigns will not only drive a lower amount
of engagement from your customers, but will also negatively impact your
business. Customers might mark emails from your business as spam or
unsubscribe from your mailing list.

In order to understand what affects customer engagement, in this chapter,
we will discuss how we can use explanatory analysis (more specifically,
regression analysis). We will briefly cover the definition of explanatory
analysis, what regression analysis is, and how to use a logistic regression
model for explanatory analysis. Then, we will cover how to build and
interpret regression analysis results in Python, using the statsmodels package.
For R programmers, we will discuss how we can build and interpret
regression analysis results with glm.

In this chapter, we will cover the following topics:

Using regression analysis for explanatory analysis
Regression analysis with Python
Regression analysis with R

Using regression analysis for
explanatory analysis
In Chapter 2, Key Performance Indicators and Visualizations, we discussed
what descriptive analysis is and how it is used to better understand a
dataset. We experimented using various visualization techniques and
building different types of plots in Python and R.

In this chapter, we are going to expand our knowledge and start to discuss
why, when, and how to use explanatory analysis for marketing.

Explanatory analysis and regression
analysis
As we briefly discussed in Chapter 1, Data Science and Marketing, the
purpose of explanatory analysis is to answer why we are using the data,
whereas the purpose of descriptive analysis is to answer what we are using
the data for, and how we are using it. When you run different marketing
campaigns, often times, you will notice that some marketing campaigns
perform much better than others; you might wonder why it is that some of
your marketing campaigns work so well, while others do not. For example,
you might want to understand what types and groups of customers typically
open your marketing emails more often than others. As another example,
you might want to analyze what attributes of the customer base are highly
correlated with higher conversion rates and item purchases.

With explanatory analysis, you can analyze and understand the key factors
that are highly and significantly correlated with the outcomes that you
want. Regression analysis and regression models are frequently used to
model the relationships between the attributes and the outcomes. Simply put,
regression analysis estimates the values of output variables by finding a
function of the attributes or features that best approximates the output
values. One of the frequently used forms of regression analysis is linear
regression. As the name suggests, in linear regression, we try to estimate the
output variables via linear combinations of the features. If we use Y for the
output variable and Xi for each of the features, where i is the ith feature, then
the linear regression formula will look as follows:

As you can see from the preceding formula, the output variable Y is
expressed as a linear combination of the features, Xi. The purpose of the
linear regression models is to find the intercept, a, and the coefficients, bi,

that best estimate the output variable, using the given features. A fitted linear
regression line will look something like the following (image from https://to
wardsdatascience.com/linear-regression-using-python-b136c91bf0a2):

The blue dots in this diagram are the data points, and the red line is the
fitted, or trained, linear regression line. As you can see in the graph, linear
regression tries to estimate the target variable through a linear combination
of the features.

In this chapter, we will discuss how we can use regression analysis, and,
more specifically, logistic regression models, to understand what drives
higher customer engagement.

https://towardsdatascience.com/linear-regression-using-python-b136c91bf0a2

Logistic regression
Logistic regression is a type of regression analysis that is used when the
output variable is binary (one for a positive outcome versus zero for a
negative outcome). Like any other linear regression models, logistic
regression models estimate the output from linear combinations of the
feature variables. The only difference is what the model estimates. Unlike
other linear regression models, logistic regression models estimate the log
odds of an event, or, in other words, the log ratios between the probabilities
of positive and negative events. The equation looks as follows:

The ratio on the left is the odds of success, which represents the ratio
between the probability of success and the probability of failure. The curve
of the log odds, also called the logit curve, looks as follows:

The logistic regression model output is simply the inverse of logit, which
ranges from zero to one. In this chapter, we are going to use regression
analysis to understand what drives customer engagement, and the output
variable will be whether a customer responded to marketing calls. Hence,
logistic regression fits perfectly in this case, as the output is a binary
variable that can take two values: responded versus did not respond. In the
following sections, we will discuss how we can use and build logistic
regression models in Python and R, and then we will cover how we can
interpret regression analysis results in order to understand what attributes of
customers are highly correlated with higher marketing engagement.

Regression analysis with Python
In this section, you will learn how to use the statsmodels package in Python to
conduct regression analysis. For those readers that would like to use R
instead of Python, for this exercise, you can skip to the next section. We will
start this section by looking at the data more closely, using the pandas and
matplotlib packages, and then we will discuss how to build regression models
and interpret the results by using the statsmodels library.

For this exercise, we will be using one of the publicly available datasets
from IBM Watson, which can be found at https://www.ibm.com/communities/analyt
ics/watson-analytics-blog/marketing-customer-value-analysis/. You can follow the
link and download the data file in a CSV format. In order to load this data
into your Jupyter Notebook, you can run the following code:

import matplotlib.pyplot as plt
import pandas as pd

df = pd.read_csv('../data/WA_Fn-UseC_-Marketing-Customer-Value-Analysis.csv')

Similar to what we did in Chapter 2, Key Performance Indicators and
Visualizations, we are importing the matplotlib and pandas packages first; using
the read_csv function in pandas, we can read the data into a pandas DataFrame.
We will use matplotlib later, for data analysis and visualizations.

The loaded DataFrame, df, looks as follows:

https://www.ibm.com/communities/analytics/watson-analytics-blog/marketing-customer-value-analysis/

As we discussed in Chapter 2, Key Performance Indicators and Visualizations,
a DataFrame shape attribute tells us the number of rows and columns in the
DataFrame, and the head function will display the first five records of the
dataset. Once you have successfully read the data into a pandas DataFrame,
your data should look like it does in the screenshot.

Data analysis and visualizations
Before we dive into regression analysis, we will first take a more detailed
look at the data, in order to have a better understanding of what data points
we have and what patterns we can see in the data. If you look at the data,
you will notice a column named Response. It contains information on whether
a customer responded to marketing calls. We will use this field as a measure
of customer engagement. For future computations, it will be better to
encode this field with numerical values. Let's take a look at the following
code:

df['Engaged'] = df['Response'].apply(lambda x: 0 if x == 'No' else 1)

As you can see in this code, using the apply function of a pandas DataFrame,
we are encoding those who did not respond to marketing calls (No) with a
value of 0 and those who did respond (Yes) with a value of 1. We are creating
a new field named Engaged with these encoded values.

Engagement rate
The first thing that we are going to look at is the aggregate engagement rate.
This engagement rate is simply the percentage of customers that responded
to the marketing calls. Take a look at the following code:

engagement_rate_df = pd.DataFrame(
 df.groupby('Engaged').count()['Response'] / df.shape[0] * 100.0
)

As you can see from this code, we are grouping by the newly created field,
Engaged, using the groupby function of a pandas DataFrame. Then, we are
counting the number of records (or customers) in each Engaged group with
the count function. By dividing by the total number of customers in the
DataFrame and multiplying by 100.0, we get the engagement rate. The
results are as follows:

To make this easier to read, we can transpose the DataFrame, meaning that
we can flip the rows and columns in the DataFrame. You can transpose a
pandas DataFrame by using the T attribute of a DataFrame. It looks as
follows:

As you can see, about 14% of the customers have responded to marketing
calls, and the remaining 86% of the customers have not responded.

Sales channels
Now, let's see whether we can find any noticeable patterns in the sales
channel and engagement. We are going to analyze how the engaged and non-
engaged customers are distributed among different sales channels. Let's first
look at the following code:

engagement_by_sales_channel_df = pd.pivot_table(
 df, values='Response', index='Sales Channel', columns='Engaged', aggfunc=len
).fillna(0.0)

engagement_by_sales_channel_df.columns = ['Not Engaged', 'Engaged']

As you can see in this code snippet, we are using the pivot_table function in
the pandas library to group by the Sales Channel and Response variables. Once you
run this code, engagement_by_sales_channel_df will have the following data:

As you will have noticed in the previous section, there are significantly more
customers that are not engaged with the marketing efforts, so it is quite
difficult to look at the differences in the sales channel distributions between
the engaged and non-engaged customers from raw numbers. To make the
differences more visually identifiable, we can build pie charts using the
following code:

engagement_by_sales_channel_df.plot(
 kind='pie',
 figsize=(15, 7),

 startangle=90,
 subplots=True,
 autopct=lambda x: '%0.1f%%' % x
)

plt.show()

Once you run this code, you will see the following pie charts, which show
the distributions of engaged and non-engaged customers across different
sales channels:

Compared to the previous table that shows raw counts of engaged and non-
engaged customers in each sales channel, these pie charts help us to visually
spot the differences in the distributions more easily. As you can see from
these charts, more than half of the engaged customers were from agents,
whereas non-engaged customers are more evenly distributed across all four
different channels. As you can see from these charts, analyzing and
visualizing data can help us to notice interesting patterns in the data, which
will further help when we run regression analysis in the later parts of this
chapter.

Total claim amounts
The last thing that we are going to look at before we dive into the regression
analysis are the differences in the distributions of Total Claim Amount between
the engaged and non-engaged groups. We are going to visualize this by using
box plots. Let's first look at how we can build box plots in Python, as
follows:

ax = df[['Engaged', 'Total Claim Amount']].boxplot(
 by='Engaged',
 showfliers=False,
 figsize=(7,5)
)

ax.set_xlabel('Engaged')
ax.set_ylabel('Total Claim Amount')
ax.set_title('Total Claim Amount Distributions by Engagements')

plt.suptitle("")
plt.show()

As you can see in this code, it is quite straightforward to build box plots
from a pandas DataFrame. You can simply call the boxplot function. Box plots
are a great way to visualize the distributions of continuous variables. They
show the min, max, first quartile, median, and third quartile, all in one view.
The following box plots show the distributions of the Total Claim Amount
between the engaged and non-engaged groups:

The central rectangle spans from the first quartile to the third quartile, and
the green line shows the median. The lower and upper ends show the
minimum and maximum of the distribution, respectively. One thing to note
from the previous code is the showfliers=False argument. Let's see what
happens when we set that argument to True, using the following code:

ax = df[['Engaged', 'Total Claim Amount']].boxplot(
 by='Engaged',
 showfliers=True,
 figsize=(7,5)
)

ax.set_xlabel('Engaged')
ax.set_ylabel('Total Claim Amount')
ax.set_title('Total Claim Amount Distributions by Engagements')

plt.suptitle("")
plt.show()

Using this code and the showfliers=True flag, the resulting box plots now look
as follows:

As you notice in these box plots, they plot many dots above the upper
boundary lines, which suggested maximum values in the previous box plots.
The dots above the upper boundary line show the suspected outliers that are
decided based on the Interquartile range (IQR). The IQR is simply the
range between the first and third quartiles, and the points that fall 1.5*IQR
above the third quartile or 1.5*IQR below the first quartile are suspected
outliers and are shown with the dots.

Regression analysis
So far, we have analyzed the types of fields that we have in the data and
how the patterns differ between the engaged group and the non-engaged
group. Now, we are going to discuss how to conduct and interpret
regression analysis in Python by using the statsmodels package. We will first
build a logistic regression model with continuous variables, and you'll learn
how to interpret the results. Then, we are going to discuss different ways to
handle categorical variables when fitting regression models, and what
impact those categorical variables have on the fitted logistic regression
model.

Continuous variables
In linear regression, including logistic regression, it is straightforward to fit a
regression model when the feature variables are continuous, as it just needs
to find a linear combination of feature variables with numerical values for
estimating the output variables. In order to fit a regression model with
continuous variables, let's first take a look at how to get the data types of the
columns in a pandas DataFrame. Take a look at the following:

As you can see from this Jupyter Notebook screenshot, the dtype attribute of
a pandas Series object tells you what type of data it contains. As you can see
from this snapshot, the Income variable has integers and the Customer Lifetime
Value feature has floating point numbers. In order to take a quick look at the
distributions of variables with numerical values, you can also do the
following:

As you can see in this Jupyter Notebook snapshot, the describe function of a
pandas DataFrame shows the distributions of all of the columns with
numerical values. For example, you can see that there are a total of 9134
records in the Customer Lifetime Value column, with a mean of 8004.94 and
ranges from 1898.01 to 83325.38.

We are going to store this list of the names of continuous variables in a
separate variable, named continuous_vars. Take a look at the following code:

continuous_vars = [
 'Customer Lifetime Value', 'Income', 'Monthly Premium Auto',
 'Months Since Last Claim', 'Months Since Policy Inception',
 'Number of Open Complaints', 'Number of Policies',
 'Total Claim Amount'
]

Now that we know which columns are continuous variables, let's start to fit a
logistic regression model. In order to do that, we need to first import
the statsmodels package, as shown in the following code:

import statsmodels.formula.api as sm

With the statsmodels package imported, the code to initiate a logistic
regression model is quite simple, and looks as follows:

logit = sm.Logit(
 df['Engaged'],
 df[continuous_vars]
)

As you can see from this code, we are using the Logit function within the
statsmodels package. We are supplying the Engaged column as the output
variable, which the model will learn to estimate, and the continuous_vars that
contain all of the continuous variables as the input variables. Once a logistic
regression object is created with the output and input variables defined, we
can train or fit this model by using the following code:

logit_fit = logit.fit()

As you can see in this code, we are using the fit function of the logistic
regression object, logit, to train a logistic regression model. Once this code is
run, the trained model, logit_fit, will have learned the optimal solution that

best estimates the output variable, Engaged, by using the input variables. In
order to get a detailed description of the trained model, you can use the
following code:

logit_fit.summary()

When you run this code, the summary function will display the following
output in the Jupyter Notebook:

Let's take a closer look at this model output. coef represents the coefficients
for each of the input variables, and z represents the z-score, which is the
number of standard deviations from the mean. The P>|z| column represents
the p-value, which means how likely it is to observe the relationship between
the feature and the output variable by chance. So, the lower the value of P>|z|
is, the more likely it is that the relationship between the given feature and the
output variable is strong and is not by chance. Typically, 0.05 is a good cut-
off point for the p-value, and any value less than 0.05 signifies a strong
relationship between the given feature and the output variable.

Looking at this model output, we can see that Income, Monthly Premium Auto,
Months Since Last Claim, Months Since Policy Inception, and Number of
Policies variables have significant relationships with the output variable,
Engaged. For example, Number of Policies variable is significant and is
negatively correlated with Engaged. This suggests that the more policies that
the customers have, the less likely they are to respond to marketing calls. As
another example, the Months Since Last Claim variable is significant and is
negatively correlated with the output variable, Engaged. This means that the
longer it has been since the last claim, the less likely that the customer is
going to respond to marketing calls.

As you can see from these examples, you can interpret the regression
analysis results quite easily by looking at the p-values and coefficients of the
features from the model output. This is a good way to understand which
attributes of customers are significantly and highly correlated with your
outcomes of interest.

Categorical variables
As you saw in the case of continuous variables in the previous section, it is
quite straightforward to understand the relationships between the input and
output variables from the coefficients and p-values. However, it becomes not
so straightforward when we introduce categorical variables. Categorical
variables often do not have any natural order, or they are encoded with non-
numerical values, but in linear regression, we need the input variables to
have numerical values that signify the order or magnitudes of the variables.
For example, we cannot easily encode the State variable in our dataset with
certain orderings or values. That is why we need to handle categorical
variables differently from continuous variables when conducting regression
analysis. In Python, there are multiple ways to handle categorical variables
when using the pandas package. Let's first look at factorizing categorical
variables, as shown in the following code:

gender_values, gender_labels = df['Gender'].factorize()

The pandas function, factorize, encodes categorical variables with numerical
values by enumerating through the values. Let's take a look at the following
output first:

As you can see from this output, the values of this Gender variable are
encoded with zeros and ones, where 0 symbolizes female (F) and 1
symbolizes male (M). This is a quick way to encode categorical variables with
numerical values. However, this function does not work when we want to

embed natural orderings into the encoded values. For example, the Education
variable in our dataset has five different categories: High School or Below,
Bachelor, College, Master, and Doctor. We might want to embed the orderings
when encoding different categories within this Education variable.

The following code shows another way to encode categorical variables with
orderings when using pandas:

categories = pd.Categorical(
 df['Education'],
 categories=['High School or Below', 'Bachelor', 'College', 'Master', 'Doctor']
)

As you can see in this code, we are using the pd.Categorical function to
encode the values of df['Education']. We can define the orderings that we
want with the argument, categories. In our example, we are giving values of 0,
1, 2, 3, and 4 for the High School or Below, Bachelor, College, Master, and Doctor,
categories respectively. The output looks as follows:

We will now add these encoded variables to the pandas DataFrame, df, as
shown in the following code:

df['GenderFactorized'] = gender_values
df['EducationFactorized'] = categories.codes

With these encodings for the two categorical variables, Gender and Education,
we can now fit a logistic regression model using the following code:

logit = sm.Logit(
 df['Engaged'],
 df[[
 'GenderFactorized',
 'EducationFactorized'
]]
)

logit_fit = logit.fit()

Similar to how we fit a logistic regression model with continuous variables
previously, we can fit a logistic regression model with the encoded
categorical variables, GenderFactorized and EducationFactorized, by using the Logit
function in the statsmodels package. Using the summary function of the fitted
logistic regression model object, we will get the following output:

As you can see in this output and by looking at the p-values in the P>|z|
column, both the GenderFactorized and EducationFactorized variables seem to have
significant relationships with the output variable Engaged. If we look at the
coefficients of these two variables, we can see that both are negatively
correlated with the output. This suggests that male customers, encoded with
1 in the GenderFactorized variable, are less likely to be engaged with marketing
calls, as compared to female customers, encoded with 0 in
the GenderFactorized variable. Similarly, the higher the customers' education
levels are, the less likely that they will be engaged with marketing calls.

We have discussed two ways of handling categorical variables in pandas,
using the factorize and Categorical functions. With these techniques, we can
understand how different categories of categorical variables are correlated
with the output variable.

Combining continuous and
categorical variables
The last Python exercise that we are going to do in this chapter involves
combining continuous and categorical variables for our regression analysis.
We can fit a logistic regression model by using both categorical and
continuous variables, as shown in the following code:

logit = sm.Logit(
 df['Engaged'],
 df[['Customer Lifetime Value',
 'Income',
 'Monthly Premium Auto',
 'Months Since Last Claim',
 'Months Since Policy Inception',
 'Number of Open Complaints',
 'Number of Policies',
 'Total Claim Amount',
 'GenderFactorized',
 'EducationFactorized'
]]
)

logit_fit = logit.fit()

The only difference from the previous codes is the features that we selected
to fit a logistic regression model. As you can see in this code, we are now
fitting a logistic regression model with the continuous variables, as well as
the two encoded categorical variables, GenderFactorized and EducationFactorized,
that we created in the previous section. The results look as follows:

Let's take a closer look at this output. The Income, Monthly Premium Auto, Months
Since Last Claim, Months Since Policy Inception, Number of Open Complaints, Number of
Policies, and GenderFactorized variable are significant at a 0.05 significance
level, and all of them have negative relationships with the output
variable, Engaged. Hence, the higher the income is, the less likely that the
customer will be engaged with marketing calls. Similarly, the more policies
that the customer has, the less likely that he or she will be engaged with
marketing calls.

Lastly, male customers are less likely to engage with marketing calls than
female customers, which we can see from looking at the coefficient of
GenderFactorized. From looking at this regression analysis output, we can
easily see the relationships between the input and output variables, and we
can understand which attributes of customers are positively or negatively
related to customer engagement with marketing calls.

The full code for the Python exercise in this chapter can be found at https://github.com/yoonhw
ang/hands-on-data-science-for-marketing/blob/master/ch.3/python/RegressionAnalysis.ipynb.

https://github.com/yoonhwang/hands-on-data-science-for-marketing/blob/master/ch.3/python/RegressionAnalysis.ipynb

Regression analysis with R
In this section, you are going to learn how to use the glm function in R to conduct regression
analysis. For those readers that would like to use Python instead of R for this exercise, the step-by-
step instructions for Python are in the previous section. We will start this section by analyzing the
data more closely, using the dplyr package, and then we will discuss how to build regression models
and interpret the results using the glm function.

For this exercise, we will be using one of the publicly available datasets from IBM Watson, which
can be found at https://www.ibm.com/communities/analytics/watson-analytics-blog/marketing-customer-value-anal
ysis/. You can follow this link and download the data file in a CSV format. In order to load this
data into your RStudio, you can run the following code:

library(dplyr)
library(ggplot2)

Load data
df <- read.csv(
 file="~/Documents/data-science-for-marketing/ch.3/data/WA_Fn-UseC_-Marketing-Customer-Value-Analysis.csv",
 header=TRUE,
 sep=","
)

Similar to what we did in Chapter 2, Key Performance Indicators and Visualizations, we will first
import the dplyr and ggplot2 packages for data analysis and plotting in the following sections. Using
the read.csv function in R, we can read the data into a DataFrame. Since this CSV file contains the
header in the first row and the fields are separated by commas, we are using the header=TRUE and
sep="," flags for the correct parsing.

The following screenshot shows how the raw data looks in the DataFrame:

https://www.ibm.com/communities/analytics/watson-analytics-blog/marketing-customer-value-analysis/

Now that we have loaded the data into a DataFrame, let's start to look at and analyze the data more
closely, so that we can better understand the structure of the data.

Data analysis and visualization
Before we dive into regression analysis, let's first take a more detailed look
at the data, in order to have a better understanding of what data points we
have and what patterns we can see in the data. If you look at the data, you
will notice a column named Response. It contains information on whether a
customer responded to their marketing calls. We will use this field as a
measure of customer engagement. For future computations, it will be better
to encode this field with numerical values. Let's take a look at the following
code:

Encode Response as 0s and 1s
df$Engaged <- as.integer(df$Response) - 1

As you can see in this code, using the as.integer function, we are encoding
those who did not respond to marketing calls (No) with a value of 0 and those
who did respond (Yes) with a value of 1. Because as.integer function encodes
values to 1 and 2 by default, we are subtracting the values by 1 to encode the
response values with zeros and ones. Then, we are creating a new field
named Engaged with these encoded values.

Engagement rate
The first thing that we are going to look at is the aggregate engagement rate.
This engagement rate is simply the percentage of customers who responded
to the marketing calls. Take a look at the following code:

engagementRate <- df %>%
 group_by(Engaged) %>%
 summarise(Count=n()) %>%
 mutate(Percentage=Count/nrow(df)*100.0)

As you can see in this code, we are grouping by the newly created
field, Engaged, using the group_by function. Then, we are counting the number
of records or customers in each Engaged group with the n() function. By
dividing by the total number of customers in the DataFrame, df, and
multiplying by 100.0, we get the engagement rate. The results look as
follows:

To make it easier to read, we can transpose the DataFrame, meaning that we
can flip the rows and columns in the DataFrame. You can transpose
a DataFrame by using the t function in R. The code looks as follows:

Transpose
transposed <- t(engagementRate)

colnames(transposed) <- engagementRate$Engaged
transposed <- transposed[-1,]

The transposed DataFrame appears as follows:

As you can see, it is easier to see the total number and percentage of
engaged and non-engaged customers by transposing the DataFrame. From
this data, we can see that about 14% of the customers have responded to
marketing calls, and the remaining 86% of the customers have not
responded.

Sales channels
Now, let's see if we can find any noticeable patterns in sales channels and
engagement. We are going to analyze how the engaged and non-engaged
customers are distributed among different sales channels. Let's first look at
the following code:

salesChannel <- df %>%
 group_by(Engaged, Channel=Sales.Channel) %>%
 summarise(Count=n())

As you can see in this code snippet, we are using the group_by function in R to
group by the Sales Channel and Engaged variables. Then, using the n() function,
we will count the number of customers in each group. Once you have run
this code, the salesChannel DataFrame will look as follows:

As you will have noticed from the previous section, there are significantly
more customers that are not engaged with the marketing efforts, so it is quite
difficult to compare and see the differences in the sales channel distributions
between the engaged and non-engaged customers with the raw numbers. To
make it easier to differentiate visually, we can build pie charts using the
following code:

pie chart
ggplot(salesChannel, aes(x="", y=Count, fill=Channel)) +
 geom_bar(width=1, stat = "identity", position=position_fill()) +
 geom_text(aes(x=1.25, label=Count), position=position_fill(vjust = 0.5)) +
 coord_polar("y") +
 facet_wrap(~Engaged) +
 ggtitle('Sales Channel (0: Not Engaged, 1: Engaged)') +
 theme(
 axis.title.x=element_blank(),
 axis.title.y=element_blank(),
 plot.title=element_text(hjust=0.5),
 legend.position='bottom'
)

Similar to what we did in Chapter 2, Key Performance Indicators and
Visualizations, we are using ggplot to build a chart in R. If you remember that
chapter, we can build pie charts by using geom_bar with coord_polar("y"). By
using face_wrap(~Engaged), we can split the pie charts in two: one for non-
engaged customers and another for engaged customers. Once you have run
this code, you will see the following pie charts, which show the distributions
of engaged and non-engaged customers across different sales channels:

Compared to the previous data table that shows raw counts of engaged and
non-engaged customers in each sales channel, these pie charts can help us to
visually see the differences in the distributions more easily. As you can see
from these charts, more than half of the engaged customers were from
agents, whereas non-engaged customers are more evenly distributed across
all four different channels. As you can see from these charts, analyzing and
visualizing data can help us to notice interesting patterns in the data, which
will further help us when we run regression analysis in the later parts of this
chapter.

Total claim amounts
The last thing that we are going to look at before we dive into the regression
analysis is are the differences in the distributions of Total Claim
Amount between the engaged and non-engaged groups. We are going to
visualize this by using box plots. Let's first look at how we can build box
plots in R:

ggplot(df, aes(x="", y=Total.Claim.Amount)) +
 geom_boxplot() +
 facet_wrap(~Engaged) +
 ylab("Total Claim Amount") +
 xlab("0: Not Engaged, 1: Engaged") +
 ggtitle("Engaged vs. Not Engaged: Total Claim Amount") +
 theme(plot.title=element_text(hjust=0.5))

As you can see in this code, it is quite straightforward to build box plots in
R. You can simply call the ggplot function with geom_boxplot. A box plot is a
great way to visualize the distributions of continuous variables. It shows the
min, max, first quartile, median, and third quartile, all in one view. The
following box plot shows the distributions of Total Claim Amount between the
engaged and non-engaged groups:

The central rectangle spans from the first quartile to the third quartile, and
the line within the rectangle shows the median. The lower and upper ends of
the lines from the rectangle show the minimum and maximum of the
distribution, respectively. Another thing that you will notice from these box
plots are the dots above the upper end of the line.

The dots beyond the end of the upper line show the suspected outliers, which
are decided based on the IQR. The IQR is simply the range between the first
and third quartiles, which is the same as the height of the rectangle in the
box plot that spans from the first quartile to the third quartile. The data
points that fall 1.5*IQR above the third quartile or 1.5*IQR below the first
quartile are suspected outliers, and are shown with the dots.

Depending on your analysis goals, you might not care about (or you might
not want to show) the outliers in box plots. Let's take a look at the following
code to see how we can remove those outliers from the box plots:

without outliers
ggplot(df, aes(x="", y=Total.Claim.Amount)) +
 geom_boxplot(outlier.shape = NA) +
 scale_y_continuous(limits = quantile(df$Total.Claim.Amount, c(0.1, 0.9))) +
 facet_wrap(~Engaged) +
 ylab("Total Claim Amount") +
 xlab("0: Not Engaged, 1: Engaged") +
 ggtitle("Engaged vs. Not Engaged: Total Claim Amount") +
 theme(plot.title=element_text(hjust=0.5))

As you will notice in this code snippet, the only difference between this code
and the previous one is outlier.shape=NA in the geom_boxplot function. Let's take
a look at how the box plots look now:

In these plots, we can no longer see the dots beyond the end of the upper
line. Depending on what you would like to show and analyze, having
outliers in box plots may or may not help.

Regression analysis
So far, we have analyzed the types of fields that we have in the data and
how the patterns differ between the engaged group and the non-engaged
group. Now, we are going to discuss how to conduct and interpret
regression analysis in R, using the glm function. We will first build a logistic
regression model with continuous variables, and you will learn how to
interpret the results. Then, we are going to discuss how to handle
categorical variables when fitting regression models in R, and what impact
those categorical variables have on the fitted logistic regression model.

Continuous variables
In linear regression, including logistic regression, it is straightforward to fit a
regression model when the feature variables are continuous, as it just needs
to find a linear combination of feature variables with numerical values for
estimating the output variable. In order to fit a regression model with
continuous variables, let's first take a look at how to get the data types of the
columns in an R DataFrame. Take a look at the following code:

get data types of each column
sapply(df, class)

Using the sapply function in R, we can apply the class function across the
columns in a DataFrame, and the class function tells us the types of data in
each column. The results of this code are as follows:

Shown in the preceding screenshot, we can easily see which columns have
numerical values and which do not. For example, the type of the
State column is "factor", which means that the variable is a categorical
variable. On the other hand, the type of the Customer.Lifetime.Value column is
"numeric", and this means that this variable is a continuous variable with
numeric values. Aside from this, we can also use an R function, summary, to get
the summary statistics for each column of a DataFrame, so that we can see
not only the types of each column, but can also take a look at a summary of
what the distributions for each column look like. The code is as follows:

summary statistics per column
summary(df)

When you run this code, you will get output that looks as follows:

In this output, we can easily see a snapshot of the distributions of each
column in an R DataFrame. For example, for the State variable, we can easily
see that there are 1703 records or customers from Arizona and 3150 customers
from California. On the other hand, we can easily see that the minimum value
for theCustomer.Lifetime.Value variable is 1898, whereas, the mean is 8005 and the
maximum value is 83325.

Given this information from the previous code, we can easily select only the
columns with numerical values, by using the following code:

get numeric columns
continuousDF <- select_if(df, is.numeric)
colnames(continuousDF)

As you can see in this code snippet, we are using the select_if function, and
the arguments for this function are the DataFrame, df, and a conditional
statement, is.numeric, to define the type of column that we want to sub-select
from the DataFrame. Using this function, only the numerical columns in the
DataFrame, df, are selected and stored as a separate variable, named
continuousDF. With the colnames function, we can see what columns are in the
newly created DataFrame, continuousDF. You should see an output that looks
like the following:

We are now ready to fit a logistic regression model with continuous
variables. Let's take a look at the following code first:

Fit regression model with continuous variables
logit.fit <- glm(Engaged ~ ., data = continuousDF, family = binomial)

In R, you can fit regression models by using the glm function, which stands
for generalized linear models. The R function glm can be used for various
linear models. By default, the value of the family argument is gaussian, which
tells the algorithm to fit a simple linear regression model. On the other hand,
like in our case, if you use binomial for family, then it is going to fit a logistic
regression model. For more detailed descriptions of the different values that
you can use for the family argument, you can refer to https://stat.ethz.ch/R-manu
al/R-devel/library/stats/html/family.html.

The other two arguments that we passed on to the glm function are formula and
data. The first argument, formula, is where you define how you want the model
to be fit. The variable on the left side of ~ is the output variable, and the one
on the right side of ~ is the input variable. In our case, we are telling the
model to learn how to estimate the output variable, Engaged, by using all of the
other variables as the input variables. If you want to use only a subset of the

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/family.html

variables as the input variables, then you can use something like the
following for the formula:

Engaged ~ Income + Customer.Lifetime.Value

In this formula, we are telling the model to learn how to estimate the output
variable, Engaged, by only using Income and Customer.Lifetime.Value as the
features. Lastly, the second argument in our glm function, data, defines which
data to use to train a regression model.

Now that we have a trained logistic regression model, let's take a look at the
following code, which shows how we can get the detailed regression
analysis results from this model object:

summary(logit.fit)

The summary function in R provides a detailed description of the regression
analysis results, which look as follows:

Let's take a more detailed look at this output. The Estimate column in
the Coefficients section gives us the computed value for each of the feature
coefficients. For example, the coefficient for the Income variable is 0.000002042,
and the coefficient for Number.of.Policies is -0.02443. We can also see that the
estimated Intercept value is -1.787. The column z value gives us the z-score,
which is the number of standard deviations from the mean of the population,
and the column Pr(>|z|) is the p-value, which means how likely it is to
observe the relationship between the feature and the output variable by
chance. So, the lower the value of Pr(>|z|) is, the more likely it is that the

relationship between the given feature and the output variable is strong and
is not by chance. Typically, 0.05 is a good cut-off point for the p-value, and
any value less than 0.05 signifies a strong relationship between the given
feature and the output variable.

As you can see from the Signif. codes section under the Coefficients section in
the output, the *** symbol, next to the p-value in the Coefficients section,
indicates the strongest relationship with the p-value at 0; ** means that the p-
value is less than 0.001; * means that the p-value is less than 0.05, and so
forth. If you look at the regression analysis output again, only three
variables, Income, Number.of.Policies, and Total.Claim.Amount, have significant
relationships with the output variable, Engaged, at a 0.1 significance level.
Also, we can see that Income and Total.Claim.Amount are positively correlated
with Engaged, meaning that the higher the income is or the higher the total
claim amount is, the more likely that a customer will be engaged with
marketing calls. On the other hand, the variable Number.of.Policies is
negatively correlated with Engaged, which suggests that the higher the number
of policies that a customer has, the less likely that the given customer will be
engaged with marketing calls.

As you can see in these examples, you can interpret the regression analysis
results quite easily, by looking at the p-values and coefficients of the features
from the model output. This is a good way to understand which attributes of
customers are significantly and highly correlated with your outcomes of
interest.

Categorical variables
As you saw in the case with continuous variables in the previous section, it is quite
straightforward to understand the relationships between the input and output
variables from the coefficients and p-values. However, it becomes not so
straightforward when we introduce categorical variables. Categorical variables
often do not have any natural order but, in linear regression, we need the input
variables to have numerical values that signify the orderings or magnitudes of the
variables. For example, we cannot easily encode the State variable in our dataset
with certain orders or values. That is why we need to handle categorical variables
differently from continuous variables when conducting regression analysis. In R,
the factor function helps you to handle these categorical variables easily when
running regression analysis. Take a look at the following code:

a. Education
Fit regression model with Education factor variables
logit.fit <- glm(Engaged ~ factor(Education), data = df, family = binomial)
summary(logit.fit)

As you can see in this code, we are fitting a logistic regression model with Engaged as
the output variable and the factorized Education as the input variable. Before we dive
deeper into what this means, let's first look at the following regression analysis
results:

As you can see in this output, the factor function created four additional variables:
factor(Education)College, factor(Education)Doctor, factor(Education)High School or Below,
and factor(Education)Master. These variables are encoded with 0 if the given customer
does not belong to the given category, or 1 if the given customer belongs to the
given category. This way, we can understand the positive or negative relationship
between each of the Education category and the output variable, Engaged. For example,
the factor variable, factor(Education)Doctor, has a positive coefficient, which suggests
that if a customer has a doctoral degree, then it is more likely that the given
customer will be engaged with marketing calls.

If you look closely, you will notice that this output does not have a separate factor
variable for the Bachelor category in the Education variable. This is because (Intercept)
contains the information for the Bachelor category. If a customer has a bachelor's

degree, then all of the other factor variables would have been encoded with 0s.
Hence, all of the coefficient values are cancelled out, and only the (Intercept) value
stays. Since the estimated (Intercept) value is negative, if a customer has a Bachelor
degree, then it is less likely that the given customer will be engaged with marketing
calls.

Let's take a look at another example:

b. Education + Gender
Fit regression model with Education & Gender variables
logit.fit <- glm(Engaged ~ factor(Education) + factor(Gender), data = df, family = binomial)

summary(logit.fit)

As you can see in this code, we are now fitting a regression model with the Education
and Gender variables, and the output looks as follows:

If you look closely at this output, you can only see one additional factor variable,
factor(Gender)M, for male customers, where the data clearly has female customers.

This is because the Bachelor category of the Education variable and the F (female)
category of the Gender variable are lumped together as (Intercept) of this regression
model. Thus, the base case, wherein the values of all of the factor variables are 0, is
for female customers with a Bachelor degree.

For male customers with a Bachelor degree, the factor variable factor(Gender)M will
now have a value of 1, and hence, the estimated value for the output variable,
Engaged, will be the value of (Intercept) plus the coefficient value of factor(Gender)M.

As we have discussed so far, we can handle categorical variables by using the factor
function in R. It is essentially the same as creating one separate input variable per
category for each of the categorical variables. Using this technique, we can
understand how different categories of categorical variables are correlated with the
output variable.

Combining continuous and
categorical variables
The last exercise that we are going to do in this chapter involves combining
continuous and categorical variables for our regression analysis. Let's first
factorize the two categorical variables, Gender and Education, that we discussed
in the previous section, and store them in a DataFrame by using the
following code:

continuousDF$Gender <- factor(df$Gender)
continuousDF$Education <- factor(df$Education)

The DataFrame, continuousDF, now contains the following columns:

Now, we are going to fit a logistic regression model with both the categorical
and continuous variables, using the following code:

Fit regression model with Education & Gender variables
logit.fit <- glm(Engaged ~ ., data = continuousDF, family = binomial)
summary(logit.fit)

You should get an output that looks as follows:

Let's take a closer look at this output. The Total.Claim.Amount variables and
EducationDoctor variables are significant at a 0.05 significance level, and both
of them have positive relationships with the output variable, Engaged. Hence,

the higher the total claim amount is, the more likely that the customer is
going to engage with the marketing calls. Also, customers with doctoral
degrees are more likely to engage with marketing calls than those with other
educational backgrounds. At a 0.1 significance level, we can see that Income,
Number.of.Policies, and EducationMaster now have significant relationships with
the output variable, Engaged. From looking at this regression analysis output,
we can easily see the relationships between the input and output variables,
and we can understand which attributes of customers are positively or
negatively related to customer engagement with marketing calls.

The full code for the R exercise can be found in the repository at https://github.com/yoonhwang/h
ands-on-data-science-for-marketing/blob/master/ch.3/R/RegressionAnalysis.R.

https://github.com/yoonhwang/hands-on-data-science-for-marketing/blob/master/ch.3/R/RegressionAnalysis.R

Summary
In this chapter, we discussed how to use explanatory analysis to draw
insight on customer behavior. We discussed how regression analysis can be
used to dive deeper into understanding customer behavior. More
specifically, you learned how to use logistic regression to understand what
attributes of customers drive higher engagement rates. In Python and R
exercises, we employed the descriptive analysis that we covered in Chapter
2, Key Performance Indicators and Visualizations, as well as regression
analysis for explanatory analysis. We started the exercises by analyzing the
data in order to better understand and identify noticeable patterns in the
data. While analyzing the data, you learned one additional way to visualize
the data, through box plots, using the matplotlib and pandas packages in
Python and the ggplot2 library in R.

While fitting regression models, we discussed the two different types of
variables: continuous and categorical. You learned about the challenges in
handling categorical variables when fitting logistic regression models, and
how to handle such variables. For Python, we covered two ways of
handling categorical variables: the factorize and Categorical functions from
the pandas package. For R, we discussed how we can use the factor function
to handle categorical variables when fitting a logistic regression model.
With the regression analysis results, we showed how you can interpret the
results and relationships between the input and output variables by looking
at the coefficients and p-values. By looking at the regression analysis
output, we can understand what attributes of customers show significant
relationships with customer marketing engagement.

In the next chapter, we are going to expand your knowledge of explanatory
analysis. We will analyze what drives conversions after customer
engagements. You will also learn about another machine learning algorithm,
decision trees, and how to use them for explanatory analysis.

From Engagement to Conversion
In this chapter, we will expand your knowledge of explanatory analysis and
show you how to use decision trees to understand the drivers behind
consumer behavior. We will start by comparing and explaining the
differences between logistic regression and decision tree models, and then
we will discuss how decision trees are built and trained. Next, we will
discuss how a trained decision tree model can be used to extract
information about the relationships between the attributes (or features) of
individual consumers and the target output variables.

For programming exercises, we will use the bank marketing dataset from
the UCI Machine Learning Repository to understand the drivers behind
conversions. We will start with some data analysis, so that you can better
understand the dataset; then, we will build decision tree models by using
the scikit-learn package in Python and the rpart package in R. Lastly, you
will learn how to interpret these trained decision tree models by visualizing
them using the graphviz package in Python and the rattle package in R. By
the end of this chapter, you will be familiar with decision trees and will
have a better understanding of when and how to use them with Python or R.

In this chapter, we will cover the following topics:

Decision trees
Decision trees and interpretations with Python
Decision trees and interpretations with R

Decision trees
In the previous chapter, we discussed explanatory analysis and regression
analysis. We are going to continue with that theme and introduce another
machine learning algorithm that we can use to draw insights on customer
behavior from data. In this chapter, we will be discussing a machine
learning algorithm called decision trees: how they learn from the data and
how we can interpret their results.

Logistic regression versus decision
trees
If you recall from the previous chapter, a logistic regression model learns
from the data by finding the linear combination of the feature variables that
best estimates the log odds of an event occurring. Decision trees, as the
name suggests, learn from the data by growing a tree. We are going to
discuss how decision tree models grow and to build trees in more detail in
the following section, but the main difference between the logistic regression
and decision tree models is the fact that logistic regression algorithms search
for a single best linear boundary in the feature set, whereas the decision tree
algorithm partitions the data to find the subgroups of data that have high
likelihoods of an event occurring. It will be easier to explain this with an
example. Let's take a look at the following diagram:

This is an example of a decision tree model. As you can see in this diagram,
it partitions the data with certain criteria. In this example, the root node is
split into child nodes by a criterion of previous < 0.5. If this condition is met
and true, then it traverses to the left child node. If not, then it traverses to the
right child node. The left child node is then split into its child nodes by a
criterion of age < 61. The tree grows until it finds pure nodes (meaning that all
of the data points in each node belong to one class) or until it meets certain
criteria to stop, such as the maximum depth of the tree.

As you can see in this example, the data are split into seven partitions. The
leftmost node or partition at the bottom is for those data points with values
less than 0.5 for the previous variable and with values less than 61 for the age
variable. On the other hand, the rightmost node at the bottom is for those

data points with values greater than 0.5 for the previous variable and with
values other than yes for the housing variable.

One thing that is noticeable here is that there are a lot of interactions
between different variables. No single leaf node in this example tree is
partitioned with one condition. Every partition in this tree is formed with
more than one criterion and interactions between different feature variables.
This is the main difference from logistic regression models. When there is
no linear structure in the data, logistic regression models will not be able to
perform well, as they try to find linear combinations among the feature
variables. On the other hand, decision tree models will perform better for
non-linear datasets, as they only try to partition the data at the purest levels
they can.

Growing decision trees
When we are growing decision trees, the trees need to come up with a logic
to split a node into child nodes. There are two main methods that are
commonly used for splitting the data: Gini impurity and entropy
information gain. Simply put, Gini impurity measures how impure a
partition is, and entropy information gain measures how much information
it gains from splitting the data with the criteria being tested.

Let's take a quick look at the equation to compute the Gini impurity
measure:

Here, c stands for the class labels, and Pi stands for the probability of a
record with the class label i being chosen. By subtracting the sum of
squared probabilities from one, the Gini impurity measure reaches zero, that
is, when all records in each partition or node of a tree are pure with a single
target class.

The equation to compute the entropy looks as follows:

Like before, c stands for the class labels, and Pi stands for the probability of
a record with the class label i being chosen. When growing the tree, the
entropy of each possible split needs to be calculated and compared against
the entropy before the split. Then, the split that gives the biggest change in
entropy measures or the highest information gain will be chosen to grow the

tree. This process will be repeated until all of the nodes are pure, or until it
meets the stopping criteria.

Decision trees and interpretations
with Python
In this section, you are going to learn how to use the scikit-learn package in
Python to build decision tree models and interpret the results via
visualizations using Python's graphviz package. For those readers that would
like to use R instead of Python for this exercise, you can skip to the next
section. We will start this section by analyzing the bank marketing dataset in
depth, using the pandas and matplotlib packages, and then we will discuss how
to build and interpret decision tree models.

For this exercise, we will be using one of the publicly available datasets
from the UCI Machine Learning Repository, which can be found at https://ar
chive.ics.uci.edu/ml/datasets/bank+marketing. You can follow the link and
download the data in ZIP format. We will use the bank.zip file for this
exercise. When you unzip this file, you will see two CSV files: bank.csv and
bank-full.csv. We are going to use the bank-full.csv file for this Python
exercise.

In order to load this data into your Jupyter Notebook, you can run the
following code:

%matplotlib inline

import matplotlib.pyplot as plt
import pandas as pd

df = pd.read_csv('../data/bank-full.csv', sep=";")

As you can see from this code snippet, we use the %matplotlib inline command
to show plots on the Jupyter Notebook. Then, we import the matplotlib and
pandas packages that we are going to use for the data analysis step. Lastly, we
can easily read the data file by using the read_csv function in the pandas
package. One thing to note here is the sep argument in the read_csv function. If
you look at the data closely, you will notice that the fields in the bank-full.csv
file are separated by semicolons (;), not commas (,). In order to correctly

https://archive.ics.uci.edu/ml/datasets/bank+marketing

load the data into a pandas DataFrame, we will need to tell the read_csv
function to use semicolons as the separators, instead of commas.

Once you have loaded the data, it should look like the following screenshot:

Data analysis and visualization
Before we start to analyze the data, we will first encode the output variable,
y, which has information about whether a customer has converted or
subscribed to a term deposit, with numerical values. You can use the
following code to encode the output variable, y, with zeros and ones:

df['conversion'] = df['y'].apply(lambda x: 0 if x == 'no' else 1)

As you can see from this code snippet, you can use the apply function to
encode the output variable. We stored these encoded values in a new
column, named conversion.

Conversion rate
Let's first take a look at the aggregate conversion rate. The conversion rate
is simply the percentage of customers that subscribed to a term deposit.
Take a look at the following code:

conversion_rate_df = pd.DataFrame(
 df.groupby('conversion').count()['y'] / df.shape[0] * 100.0
)

As you can see from this code snippet, we are grouping by a column,
conversion, which is encoded with 1 for those that have subscribed to a term
deposit, and with 0 for those that have not. Then, we are counting the
number of customers in each group and dividing it by the total number of
customers in the dataset. The result looks as follows:

To make it easier to view, you can transpose the DataFrame by using the T
attribute of the pandas DataFrame. As you can see, only about 11.7% were
converted or subscribed to a term deposit. From these results, we can see
that there is a large imbalance between the conversion group and the non-
conversion group, which is common and is frequently observed among
various marketing datasets.

Conversion rates by job
It might be true that certain job categories tend to convert more frequently
than others. Let's take a look at the conversion rates across different job
categories. You can achieve this by using the following code:

conversion_rate_by_job = df.groupby(
 by='job'
)['conversion'].sum() / df.groupby(
 by='job'
)['conversion'].count() * 100.0

Let's take a deeper look at this code. We first group by the column, job,
which contains information about the job category that each customer
belongs to. Then, we sum over the conversion column for each job category,
from which we get the total number of conversions for each job category.
Lastly, we divide these conversion numbers by the total number of
customers in each job category, in order to get the conversion rates for each
job category.

The results look as follows:

As you can see from these results, the student group tends to convert much
more frequently than the others, and the retired group comes next. However,
it is a bit difficult to compare these from the raw output, and we could
present this data better by using a chart. We can build a horizontal bar chart
by using the following code:

ax = conversion_rate_by_job.plot(
 kind='barh',
 color='skyblue',
 grid=True,
 figsize=(10, 7),
 title='Conversion Rates by Job'
)

ax.set_xlabel('conversion rate (%)')
ax.set_ylabel('Job')

plt.show()

If you look at this code, we are using the plot function of the pandas
DataFrame, and we defined the type of this plot to be a horizontal bar chart
by providing barh as the input to the kind argument. You can simply adjust the
color, size, and title of the chart with the color, figsize, and title arguments,
respectively. You can also easily change the x-axis and y-axis labels, using
the set_xlabel and set_ylabel functions.

The resulting chart looks as follows:

As you can see, it is much easier to spot the differences in the conversion
rates by each job category with a horizontal bar chart. We can easily see that
the student and retired groups are the two groups with the highest conversion
rates, whereas the blue-collar and entrepreneur groups are the two groups with
the lowest conversion rates.

Default rates by conversions
Another attribute of a customer that would be interesting to see is the default
rate, and how it differs between those who subscribed to a term deposit and
those who did not. We are going to use the pivot_table function in the pandas
library to analyze the default rates by conversions. Let's take a look at the
following code:

default_by_conversion_df = pd.pivot_table(
 df,
 values='y',
 index='default',
 columns='conversion',
 aggfunc=len
)

As you can see from this code, we are pivoting the DataFrame, df, by
the y and default columns. By using len as the aggregation function, we can
count how many customers fall under each cell of the pivot table. The results
look as follows:

It is a bit difficult to compare how the default rates differ between the
conversion and non-conversion groups by looking at these raw numbers.
One way to visualize this data is through a pie chart. You can use the
following code to build a pie chart:

default_by_conversion_df.plot(
 kind='pie',
 figsize=(15, 7),
 startangle=90,
 subplots=True,
 autopct=lambda x: '%0.1f%%' % x
)

plt.show()

As you can see from this code, we are simply passing 'pie' as input to the
kind argument of the plot function. The resulting pie chart appears as follows:

As you can see from these pie charts, it is much easier to compare the default
rates between the conversion and non-conversion groups. Although the
overall percentage of the previous default is low in both groups, the default
rate in the non-conversion group is about twice as high as the conversion
group.

Bank balances by conversions
Next, we will try to see if there are any differences in the distributions of
bank balances between the conversion and non-conversion groups. A box
plot is typically a good way to visualize the distribution of a variable. Let's
take a look at the following code:

ax = df[['conversion', 'balance']].boxplot(
 by='conversion',
 showfliers=True,
 figsize=(10, 7)
)

ax.set_xlabel('Conversion')
ax.set_ylabel('Average Bank Balance')
ax.set_title('Average Bank Balance Distributions by Conversion')

plt.suptitle("")
plt.show()

You should be familiar with this code by now, as we have discussed how to
build box plots using the pandas package. Using the boxplot function, we can
easily build box plots such as the following:

Because there are so many outliers, it is quite difficult to identify any
differences between the two distributions. Let's build another box plot
without outliers. The only thing that you need to change from the previous
code is the showfliers=True argument in the boxplot function, as you can see in
the following code:

ax = df[['conversion', 'balance']].boxplot(
 by='conversion',
 showfliers=False,
 figsize=(10, 7)
)

ax.set_xlabel('Conversion')
ax.set_ylabel('Average Bank Balance')
ax.set_title('Average Bank Balance Distributions by Conversion')

plt.suptitle("")
plt.show()

Using this code, you will see the following box plots for the distributions of
bank balances between the two groups:

From these box plots, we can see that the median of the bank balance is
slightly higher for the conversion group, as compared to the non-conversion

group. Also, the bank balances of converted customers seem to vary more
than those of non-converted customers.

Conversion rates by number of
contacts
Lastly, we will look at how the conversion rates vary by the number of
contacts. Typically, in marketing, a higher number of marketing touches can
result in marketing fatigue, where the conversion rates drop as you reach out
to your customers more frequently. Let's see whether there is any marketing
fatigue in our data. Take a look at the following code:

conversions_by_num_contacts = df.groupby(
 by='campaign'
)['conversion'].sum() / df.groupby(
 by='campaign'
)['conversion'].count() * 100.0

In this code snippet, you can see that we are grouping by the campaign column
(which has information about the number of contacts performed during the
marketing campaign for this customer) and computing the conversion rates
for each number of contacts. The resulting data appears as follows:

Like before, it would be easier to look at a chart, rather than raw numbers.
We can plot this data by using bar charts, with the following code:

ax = conversions_by_num_contacts.plot(
 kind='bar',
 figsize=(10, 7),
 title='Conversion Rates by Number of Contacts',
 grid=True,
 color='skyblue'
)

ax.set_xlabel('Number of Contacts')
ax.set_ylabel('Conversion Rate (%)')

plt.show()

The plot looks as follows:

There's some noise in a higher numbers of contacts, as the sample size is
smaller for them, but you can easily see the overall downward trend in this
bar chart. As the number of contacts increases, the conversion rates slowly
decrease. This suggests that the expected conversion rate decreases as you
contact a client more frequently for a given campaign.

Encoding categorical variables
There are eight categorical variables in this dataset: job, marital, education,
default, housing, loan, contact, and month. Before we start to build decision trees,
we need to encode these categorical variables with numerical values. We'll
take a look at how we can encode some of these categorical variables in this
section.

Encoding months
We all know that there can only be 12 unique values for the month variable. Let's take
a quick look at what we have in our dataset. Take a look at the following code:

df['month'].unique()

The pandas function, unique, helps you to quickly get the unique values in the given
column. When you run this code, you will get the following output:

As expected, we have 12 unique values for the month column, from January to
December. Since there is a natural ordering in the values of month, we can encode
each of the values with a corresponding number. One way to encode the string values
of month with numbers is shown as follows:

months = ['jan', 'feb', 'mar', 'apr', 'may', 'jun', 'jul', 'aug', 'sep', 'oct', 'nov', 'dec']

df['month'] = df['month'].apply(
 lambda x: months.index(x)+1
)

Using this code, the unique values for the column month look as follows:

To see how many records we have for each month, we can use the following code:

df.groupby('month').count()['conversion']

The results are as follows:

Encoding jobs
Next, let's look at how we can encode the different categories of the
job column. We will first look at the unique values in this column, using the
following code:

df['job'].unique()

The unique values in the job column look as follows:

As you can see in this output, there is no natural ordering for this variable.
One job category does not precede the other, so we cannot encode this
variable like we did for month. We are going to create dummy variables for
each of the job categories. If you recall from the previous chapter, a dummy
variable is a variable that is encoded with 1 if a given record belongs to the
category, and 0 if not. We can do this easily by using the following code:

jobs_encoded_df = pd.get_dummies(df['job'])
jobs_encoded_df.columns = ['job_%s' % x for x in jobs_encoded_df.columns]

As you can see from this code snippet, the get_dummies function in the pandas
package creates one dummy variable for each category in
the job variable, and encodes each record with 1 if the given record belongs
to the corresponding category, and 0 if not. Then, we rename the columns by
prefixing each column with job_. The result looks as follows:

As you can see from this screenshot, the first record (or customer) belongs to
the management job category, while the second record belongs to the technician
job category. Now that we have created dummy variables for each job
category, we need to append this data to the existing DataFrame. Take a look
at the following code:

df = pd.concat([df, jobs_encoded_df], axis=1)
df.head()

Using the concat function in the pandas package, you can easily add the newly
created DataFrame with dummy variables, jobs_encoded_df, to the original
DataFrame, df. The axis=1 argument tells the concat function to concatenate
the second DataFrame to the first DataFrame as columns, not as rows. The
resulting DataFrame looks as follows:

As you can see, the newly created dummy variables are added to the original
DataFrame as new columns for each record.

Encoding marital
Similar to how we encoded the categorical variable, job, we are going to
create dummy variables for each category of the marital variable. Like
before, we are using the following code to encode the marital column:

marital_encoded_df = pd.get_dummies(df['marital'])
marital_encoded_df.columns = ['marital_%s' % x for x in marital_encoded_df.columns]

The encoding results are as follows:

As you can see, three new variables are created for the original variable,
marital: marital_divorced, marital_married, and marital_single, representing
whether a given customer is divorced, married, or single, respectively. In
order to add these newly created dummy variables to the original
DataFrame, we can use the following code:

df = pd.concat([df, marital_encoded_df], axis=1)

Once you have come this far, your original DataFrame, df, should contain
all of the original columns, plus newly created dummy variables for the job
and marital columns.

Encoding the housing and loan
variables
The last two categorical variables that we are going to encode in this section
are housing and loan. The housing variable has two unique values, 'yes' and
'no', and contains information on whether a customer has a housing loan.
The other variable, loan, also has two unique values, 'yes' and 'no', and tells
us whether a customer has a personal loan. We can easily encode these two
variables by using the following code:

df['housing'] = df['housing'].apply(lambda x: 1 if x == 'yes' else 0)

df['loan'] = df['loan'].apply(lambda x: 1 if x == 'yes' else 0)

As you can see, we are using the apply function to encode yes as 1 and no as 0
for both the housing and loan variables. For those categorical variables that
we have not discussed in this section, you can use the same techniques that
we have discussed to encode them if you wish to explore beyond this
exercise.

Building decision trees
Now that we have encoded all of the categorical variables, we can finally
start to build decision tree models. We are going to use the following
variables as features in our decision tree models:

In order to build and train a decision tree model with Python, we are going
to use the tree module in the scikit-learn (sklearn) package. You can import
the required module by using the following line of code:

from sklearn import tree

Under the tree module in the sklearn package, there is a class
named DecisionTreeClassifier, which we can use to train a decision tree
model. Take a look at the following code:

dt_model = tree.DecisionTreeClassifier(
 max_depth=4
)

There are many arguments to the DecisionTreeClassifier class, aside from the
one that we are using here, max_depth. Themax_depth argument controls how
much a tree can grow, and here, we limit it to 4, meaning that the maximum
length from the root to a leaf can be 4. You can also use the criterion
argument to choose between the Gini impurity and the entropy information
gain measures for the quality of a split. There are many other ways to tune
your decision tree model, and we recommend that, for more information,
you take a closer look at the documentation at http://scikit-learn.org/stable/mo
dules/generated/sklearn.tree.DecisionTreeClassifier.html.

In order to train this decision tree model, you can use the following code:

dt_model.fit(df[features], df[response_var])

As you can see from this code, the fit function takes two arguments:
the predictor or feature variables and the response or target variables. In our
case, response_var is the conversion column of the DataFrame, df. Once you
have run this code, the decision tree model will learn how to make
classifications. In the following section, we will discuss how we can
interpret the results of this trained decision tree model.

http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html

Interpreting decision trees
Now that we have trained a decision tree model, we need to extract the
insights from the model. In this section, we are going to use a package called
graphviz. You can install this package by using the following command in
your Terminal:

conda install python-graphviz

Once you have installed this package correctly, you should be able to import
the package as follows:

import graphviz

Now that we have set up our environment with the new package, graphviz,
let's take a look at the following code to see how we can visualize the trained
decision tree:

dot_data = tree.export_graphviz(
 dt_model,
 feature_names=features,
 class_names=['0', '1'],
 filled=True,
 rounded=True,
 special_characters=True
)

graph = graphviz.Source(dot_data)

As you can see, we first export the trained decision tree model, dt_model,
using the export_graphviz function in the tree module of the sklearn package.
We can define the feature variables that we used to train this model by using
the feature_names argument. Then, we can define the classes (conversion
versus non-conversion) that this model is trained to classify. The
export_graphviz function exports the trained decision tree model in a DOT
format, which is a graphic description language. You can then pass dot_data
on to the graphviz Source class. The graph variable now contains a renderable
graph. The root node and its direct children look as follows:

The tree on the left half (or the children of the root node's left child) looks as
follows:

The tree on the right half (or the children of the root node's right child) looks
as follows:

Let's take a closer look at this diagram. Each node contains five lines that
describe the information that the given node has. The top line tells us the
criteria of the split. The root node, for example, is split into its child nodes
based on the value of the previous variable. If the value of this previous
variable is less than or equal to 0.5, then it goes to the left child. On the other
hand, if the value of this previous variable is larger than 0.5, then it goes to the
right child.

The second line tells us the value of the quality measure for the split. Here,
we selected the gini impurity measure for the criteria, so we can see the
changes in the impurity measures in each node from the second line. The
third line tells us the total number of records that belong to the given node.
For example, there are 45,211 samples in the root node, and there are 8,257
samples in the right child of the root node.

The fourth line in each node tells us the composition of the records in two
different classes. The first element stands for the number of records in the
non-conversion group, and the second element stands for the number of
records in the conversion group. For example, in the root node, there are
39,922 records in the non-conversion group and 5,289 records in the
conversion group. Lastly, the fifth line in each node tells us what the
prediction or classification will be for the given node. For example, if a

sample belongs to the leftmost leaf, the classification by this decision tree
model will be 0, meaning non-conversion. On the other hand, if a sample
belongs to the eighth leaf from the left, the classification by this decision tree
model will be 1, meaning conversion.

Now that we know what each of the lines in each nodes means, let's discuss
how we can draw insights from this tree graph. In order to understand the
customers that belong to each leaf node, we need to follow through the tree.
For example, those customers that belong to the eighth leaf node from the
left are those with a 0 value for the previous variable, age greater than 60.5,
a marital_divorced variable with a value of 1, and a job_self-employed variable
with a value of 1. In other words, those who were not contacted before this
campaign and who are older than 60.5, divorced, and self-employed belong
to this node, and have a high chance of converting.

Let's take a look at another example. Those customers that belong to the
second leaf node from the right are those with a value of 1 for the previous
variable, a value of 1 for the housing variable, age greater than 60.5, and balance
less than or equal to 4,660.5. In other words, those customers that were
contacted before this campaign and that have a housing loan, are older than
60.5, and have a bank balance less than 4,660.5 belong to this node and 20 out
of 29 that belong to this node have converted and subscribed to a term
deposit.

As you will have noticed from these two examples, you can draw useful
insights about who is more or less likely to convert from trained decision
tree models, by visualizing the trained tree. You simply need to follow
through the nodes and understand what kinds of attributes are highly
correlated with your target class. For this exercise, we restricted the tree to
only growing up to a depth of 4, but you can choose to grow a tree larger or
smaller than the one we used in this exercise.

The full code for this chapter's Python exercise can be found in the repository at https://gi
thub.com/yoonhwang/hands-on-data-science-for-marketing/blob/master/ch.4/python/From%20Engagement%20to%20Convers

ions.ipynb.

https://github.com/yoonhwang/hands-on-data-science-for-marketing/blob/master/ch.4/python/From%20Engagement%20to%20Conversions.ipynb

Decision trees and interpretations
with R
In this section, you are going to learn how to use the rpart package in R to
build decision tree models and interpret the results via visualizations with
the R rattle package. For those readers that would like to use Python instead
of R for this exercise, you can work through the Python examples in the
previous section. We will start this section by analyzing the bank marketing
dataset in depth, using the dplyr and ggplot2 libraries, and then we will discuss
how to build and interpret decision tree models.

For this exercise, we will be using one of the publicly available datasets
from the UCI Machine Learning Repository, which can be found at https://ar
chive.ics.uci.edu/ml/datasets/bank+marketing. You can follow the link and
download the data in ZIP format. We will use the bank.zip file for this
exercise. When you unzip this file, you will see two CSV
files: bank.csv and bank-full.csv. We are going to use the bank-full.csv file for
this exercise.

In order to load this data into your RStudio, you can run the following code:

df <- read.csv(
 file="../data/bank-full.csv",
 header=TRUE,
 sep=";"
)

As you can see from this code snippet, we can easily read the data file by
using the read.csv function in R. One thing to note here is the sep argument
in the read.csv function. If you look at the data closely, you will notice that
the fields in the bank-full.csv file are separated by semicolons (;), not commas
(,). In order to correctly load the data into a DataFrame, we will need to
tell the read.csv function to use semicolons as the separators, instead of
commas.

Once you have loaded this data, it should look like the following screenshot:

https://archive.ics.uci.edu/ml/datasets/bank+marketing

Data analysis and visualizations
Before we start to analyze the data, we will first encode the output
variable, y, which has information about whether a customer has converted
or subscribed to a term deposit, with numerical values. You can use the
following code to encode the output variable, y, with zeros and ones:

Encode conversions as 0s and 1s
df$conversion <- as.integer(df$y) - 1

As you can see from this code snippet, you can use the as.integer function to
encode the output variable. Since this function will encode no values in the
y variable as 1 and yes values in the y variable as 2, we subtract the values by
1 to encode them as 0 and 1, respectively. We stored these encoded values
into a new column, named conversion.

Conversion rate
The first thing that we are going to take a look at is the aggregate conversion
rate. The conversion rate is simply the percentage of customers that
subscribed to a term deposit, or those encoded with 1 in the
column conversion. Take a look at the following code:

sprintf("conversion rate: %0.2f%%", sum(df$conversion)/nrow(df)*100.0)

As you can see from this code snippet, we simply sum all of the values in the
conversion column and divide by the number of records or customers in the
DataFrame, df. Using the sprintf function, we format this conversion rate
number with two decimal point numbers. The result looks as follows:

As you can see from this output, only about 11.7% were converted or
subscribed to a term deposit. From these results, we can see that there is a
large imbalance between the conversion group and the non-conversion
group, which is quite common and is frequently observed among various
marketing datasets.

Conversion rates by job
It might be true that certain job categories tend to convert more frequently
than others. Let's take a look at the conversion rates across different job
categories. You can achieve this by running the following code:

conversionsByJob <- df %>%
 group_by(Job=job) %>%
 summarise(Count=n(), NumConversions=sum(conversion)) %>%
 mutate(ConversionRate=NumConversions/Count*100.0)

Let's take a more detailed look at this code. We first group by the
column, job, which contains information about the job category that each
customer belongs to. Then, we count the total number of customers in a
given job category by using the n() function, and sum over the conversion
column for each job category by using the sum function. Lastly, we divide the
total number of conversions, NumConversion, by the total number of customers
in each job category, Count, and multiply these numbers by 100.0 to get the
conversion rates for each job category.

The results look as follows:

As you can see from these results, the student group tends to convert much
more frequently than the others, and the retired group comes next. However,
it is a bit difficult to compare these with raw output, and we will be able to
better present this data by using a chart. We can build a horizontal bar chart
by using the following code:

ggplot(conversionsByJob, aes(x=Job, y=ConversionRate)) +
 geom_bar(width=0.5, stat="identity") +
 coord_flip() +
 ggtitle('Conversion Rates by Job') +
 xlab("Job") +
 ylab("Conversion Rate (%)") +
 theme(plot.title = element_text(hjust = 0.5))

If you look at this code, we are using the ggplot and geom_bar functions to build
a bar chart with the conversionsByJob data (which we built in the previous
code), and with the Job variable in the x-axis and the ConversionRate variable in
the y-axis. Then, we use the coord_flip function to flip the vertical bar chart to

a horizontal bar chart. You can use the ggtitle, xlab, and ylab functions to
change the title, x-axis label, and y-axis label as you wish.

The resulting chart looks as follows:

As you can see, it is much easier to see the differences in the conversion
rates by each job category with a horizontal bar chart. We can easily see that

the student and retired groups are the two groups with the highest conversion
rates, whereas, the blue-collar and entrepreneur groups are the two groups with
the lowest conversion rates.

Default rates by conversions
Another attribute of a customer that would be interesting to see is the default
rate, and how it differs between those who subscribed to a term deposit and
those who did not. Let's take a look at the following R code:

defaultByConversion <- df %>%
 group_by(Default=default, Conversion=conversion) %>%
 summarise(Count=n())

As you can see from this code, we are grouping the DataFrame, df, by the
two columns, default and conversion, using the group_by function. By
using n() as the aggregation function, we can count how many customers fall
under each cell of the four cases. Let's look at the following results:

It is a bit difficult to compare how the default rates differ between the
conversion and non-conversion groups from looking at these raw numbers.
One way to visualize this data is through a pie chart. You can use the
following code to build a pie chart:

ggplot(defaultByConversion, aes(x="", y=Count, fill=Default)) +
 geom_bar(width=1, stat = "identity", position=position_fill()) +
 geom_text(aes(x=1.25, label=Count), position=position_fill(vjust = 0.5)) +
 coord_polar("y") +
 facet_wrap(~Conversion) +
 ggtitle('Default (0: Non Conversions, 1: Conversions)') +
 theme(
 axis.title.x=element_blank(),
 axis.title.y=element_blank(),
 plot.title=element_text(hjust=0.5),
 legend.position='bottom'
)

As you can see, we are utilizing three functions here: ggplot, geom_bar, and
coord_polar("y"). With the coord_polar("y") function, we can get the pie chart
from a bar chart. Then, we can use the facet_wrap function to split it into two
pie charts: one for the conversion group and another for the non-conversion
group.

Take a look at the following pie chart:

As you can see from these pie charts, it is much easier to compare the default
rates between the conversion and non-conversion groups. Although the
overall percentage of previous default is low in both groups, the default rate
in the non-conversion group is about twice as high as the conversion group.

Bank balance by conversions
Next, we will try to see whether there are any differences in the distributions
of the bank balances between the conversion and non-conversion groups. A
box plot is typically a good way to visualize the distribution of a variable.
Let's take a look at the following code:

ggplot(df, aes(x="", y=balance)) +
 geom_boxplot() +
 facet_wrap(~conversion) +
 ylab("balance") +
 xlab("0: Non-Conversion, 1: Conversion") +
 ggtitle("Conversion vs. Non-Conversions: Balance") +
 theme(plot.title=element_text(hjust=0.5))

You should be familiar with this code by now, as we discussed how to build
box plots in the previous chapter, using the ggplot and geom_boxplot functions.
When you run this code, you will see the following box plot:

Because there are so many outliers, it is quite difficult to identify any
differences between the two distributions. Let's build another box plot
without outliers. The only thing that you need to change from the previous
code is the outlier.shape = NA argument in the geom_boxplot function, as you can
see in the following code:

ggplot(df, aes(x="", y=balance)) +
 geom_boxplot(outlier.shape = NA) +

 scale_y_continuous(limits = c(-2000, 5000)) +
 facet_wrap(~conversion) +
 ylab("balance") +
 xlab("0: Non-Conversion, 1: Conversion") +
 ggtitle("Conversion vs. Non-Conversions: Balance") +
 theme(plot.title=element_text(hjust=0.5))

Using this code, you will see the following box plots for the distribution of
bank balances between the two groups:

From these box plots, we can see that the median of the bank balance is
slightly higher for the conversion group, as compared to the non-conversion
group. Also, the bank balances of converted customers seem to vary more
than those of non-converted customers.

Conversion rates by number of
contacts
Lastly, we will look at how the conversion rates vary by the number of
contacts. Typically, in marketing, a higher number of marketing contacts can
result in marketing fatigue, wherein the conversion rates drop as you reach
out to your customers more frequently. Let's see whether there is any
marketing fatigue in our data. Take a look at the following code:

conversionsByNumContacts <- df %>%
 group_by(Campaign=campaign) %>%
 summarise(Count=n(), NumConversions=sum(conversion)) %>%
 mutate(ConversionRate=NumConversions/Count*100.0)

From this code snippet, you can see that we are grouping by the
 campaign column (which has information about the number of contacts
performed during the marketing campaign for this customer) and computing
the conversion rate for each number of contacts. The resulting data looks as
follows:

Like before, it would be easier to look at a chart rather than raw numbers.
We can plot this data with bar charts by using the following code:

ggplot(conversionsByNumContacts, aes(x=Campaign, y=ConversionRate)) +
 geom_bar(width=0.5, stat="identity") +
 ggtitle('Conversion Rates by Number of Contacts') +
 xlab("Number of Contacts") +
 ylab("Conversion Rate (%)") +
 theme(plot.title = element_text(hjust = 0.5))

The plot looks as follows:

There is some noise in higher numbers of contacts, as the sample size is
smaller for them, but you can easily see the overall downward trend in this
bar chart. As the number of contacts increases, the conversion rates slowly
decrease. This suggests that the expected conversion rate decreases as you
contact a client more frequently for a given campaign.

Encoding categorical variables
There are eight categorical variables in this
dataset: job, marital, education, default, housing, loan, contact, and month. Before
we start to build decision trees, we need to encode some of these categorical
variables with numerical values. We'll take a look at how we can encode
some of these categorical variables in this section.

Encoding the month
We all know that there can only be 12 unique values for the month variable.
Let's take a quick look at what we have in our dataset. Take a look at the
following code:

unique(df$month)

The unique function helps you to quickly get the unique values in the given
column. When you run this code, you will get the following output:

As we expected, we have 12 unique values for the month column, from
January to December. Since there is a natural order in the values of month, we
can encode each of the values with the corresponding number. One way to
encode the string values of month with numbers is as follows:

months = lapply(month.abb, function(x) tolower(x))
df$month <- match(df$month, months)

Let's take a closer look at this code. month.abb is a built-in R constant that
contains the three-letter abbreviated names for the month names, as follows:

As you can see, the first letters of each abbreviated month name are
capitalized. However, the month names in the month column of our data are
all in lowercase. That is why we use the tolower function to make all of the
values in the month.abb constant lowercase. Using the lapply function, we can
apply this tolower function across the month.abb list. Then, we use the match
function, which returns the position of the matching string in an array, to

convert the string values in the month column of the DataFrame to
corresponding numerical values.

Using this code, the unique values for the month column look as follows:

To see how many records we have for each month, we can use the following
code:

df %>%
 group_by(month) %>%
 summarise(Count=n())

The results are as follows:

Encoding the job, housing, and
marital variables
Next, we are going to encode the three variables: job, housing, and marital.
Since these variables do not have natural orders, we do not need to worry
about which category gets encoded with which value. The simplest way to
encode categorical variables with no orders in R is to use the factor
function. Let's take a look at the following code:

df$job <- factor(df$job)
df$housing <- factor(df$housing)
df$marital <- factor(df$marital)

As you can see from this code, we are simply applying the factor function
for these three variables, job, housing, and marital, and storing the encoded
values back to the DataFrame, df. For the categorical variables that we have
not discussed in this section, you can use the same techniques that we
discussed in this section to encode them if you wish to explore beyond this
exercise.

Building decision trees
Now that we have encoded all of the categorical variables, we can finally
start to build decision tree models. We are going to use these variables as
features for our decision tree
models: age, balance, campaign, previous, housing, job, and marital. In order to
build and train a decision tree model with R, we are going to use
the rpart package. You can import the required library by using the
following line of code:

library(rpart)

If you do not have the rpart package installed, you can install it by using the
following command:

install.packages("rpart")

Once you have imported the required library, you can use the following
code to build a decision tree model:

fit <- rpart(
 conversion ~ age + balance + campaign + previous + housing + job + marital,
 method="class",
 data=df,
 control=rpart.control(maxdepth=4, cp=0.0001)
)

As you can see, the first argument of the rpart model is formula, which
defines the features and the target variable. Here, we are using the
aforementioned variables as the features and conversion as the target variable.
Then, we define this decision tree model to be a classification model with
the method="class" input. Lastly, you can fine-tune the decision tree model
with the control input. There are many parameters that you can tune with the
control input. In this example, we are only restricting the maximum depth of
the tree to be 4 with the maxdepth argument, and setting the value for cp, which
is the complexity parameter, to be small enough for the tree to be able to be
split. There are many other ways to tune your decision tree model, and we

recommend that you take a closer look at the R documentation for more
information, by running the help(rpart) or help(rpart.control) commands.

Interpreting decision trees
Now that we have trained a decision tree model, we need to extract the
insights from the model. In this section, we are going to use a library
called rattle:

1. You can install this package by using the following command in your
RStudio:

install.packages("rattle")

2. Once you have installed this library correctly, you should be able to
import the library as follows:

library(rattle)

3. Once you have set up your R environment with this new library, rattle,
it requires just one line of code to visualize the trained decision tree.
Take a look at the following code:

fancyRpartPlot(fit)

4. As you can see, the fancyRpartPlot function takes in an rpart model
object. Here, the model object, fit, is the decision tree model that we
built in the previous step. Once you run this command, it will show the
following diagram:

Let's take a closer look at this tree diagram. Each node contains three lines
that describe the information that the given node has. The number on top of
the node is the label and the order of the node that was built. We will use this
label to refer to each of the nodes in this tree graph. Then, the top line in
each node tells us what the prediction or classification will be for the given
node. For example, if a sample belongs to the node that is labeled 4, the
classification by this decision tree model will be zero, meaning non-
conversion. On the other hand, if a sample belongs to the node labeled 23, the
classification by this decision tree model will be one, meaning conversion.

The second line in each node tells us the percentage of records in each class
for the given node. For example, 52% of the records in node 22 are in the class
0, or the non-conversion group, and the remaining 48% are in the class 1, or the
conversion group. On the other hand, 39% of the customers in node 13 are in
the class 0, and the remaining 61% of the customers in node 13 are in the class
1. Lastly, the bottom line in each node tells us the percentage of the total
number of records that belong to each node. For example, about 80% of the

customers fall under the category of node 4, while close to 0% of the
customers fall under the category of node 13.

Now that we know what each of the lines in each nodes means, let's discuss
how we can draw insights from this tree diagram. In order to understand the
customers that belong to each leaf node, we need to follow through the tree.
For example, those customers that belong to node 13 are those with values
greater than 0.5 for the previous variable, with a housing loan and age greater
than or equal to 61. In other words, those who were contacted before this
campaign and who are older than 61, with housing loans, belong to node 13
and have a high chance of converting.

Let's take a look at another example. In order to get to node 22 from the root
node, we need to have a 0 value for the previous variable, an age greater than
or equal to 61, a marital status other than married or single, and a job in one of
these categories: admin, blue-collar, entrepreneur, housemaid, retired, or unknown. In
other words, those customers that have not been contacted before this
campaign and who are older than 61, divorced, and have a job in one of the
previously mentioned categories, belong to the node 22 and have a
roughly 50% chance of converting.

As you will have noticed from these two examples, you can draw useful
insights on who is more or less likely to convert from trained decision tree
models, by visualizing the trained tree. You simply need to follow through
the nodes and understand what kinds of attributes are highly correlated with
your target class. For this exercise, we restricted the tree to only growing up
to a depth of 4, but you can choose to grow a tree larger or smaller than the
one that we used in this exercise.

The full code for this chapter's R exercise can be found in the repository at https://github.co
m/yoonhwang/hands-on-data-science-for-marketing/blob/master/ch.4/R/FromEngagementToConversions.R.

https://github.com/yoonhwang/hands-on-data-science-for-marketing/blob/master/ch.4/R/FromEngagementToConversions.R

Summary
In this chapter, we introduced a new machine learning algorithm, decision
trees, which we can use for marketing analytics in order to better
understand the data and draw insights on customer behaviors. We discussed
how decision tree models are different from logistic regression models,
which you learned about in the previous chapter. You saw that decision tree
models learn the data by partitioning the data points based on certain
criteria. We also discussed the two measures that are frequently used when
growing decision trees: the Gini impurity and entropy information gain.
Using either of these measures, decision trees can grow until all of the
nodes are pure, or until the stopping criteria are met.

During our programming exercises in Python and R, we used the bank
marketing dataset from the UCI Machine Learning Repository. We started
our programming exercised by analyzing the data in depth, using the pandas
and matplotlib packages in Python and the dplyr and ggplot2 libraries in R.
Then, you learned how we can train and grow decision trees, using
the sklearn package in Python and the rpart library in R. With these trained
decision tree models, you also learned how to visualize and interpret the
results. For visualizations, we used the graphviz package in Python and
the rattle library in R. Moreover, you saw how we can interpret the decision
tree results and understand the customer groups that are more likely to
convert or subscribe to a term deposit by traversing through the trained
decision trees, which is useful when we want to conduct an explanatory
analysis of customer behaviors.

In the following chapters, we are going to switch gears and focus on
product analytics. In the next chapter, we will discuss the kinds of
exploratory analysis that we can run to understand and identify patterns and
trends in product data. With the product analytics results from the next
chapter, we will show how we can build a product recommendation model.

Section 3: Product Visibility and
Marketing
In this section, you will learn how to draw insights from the product
purchase history data and how to use machine learning to recommend
products that are most likely to be purchased by customers.

This section consists of the following chapters:

Chapter 5, Product Analytics
Chapter 6, Recommending the Right Products

Product Analytics
From this chapter on, we are going to switch gears from conducting
analyses on customer behaviors and start discussing how we can use data
science for more granular, product-level analytics. There has been
increasing interest and demand from various companies, especially among
e-commerce businesses, for utilizing data to understand how customers
engage and interact with different products. It has also been proven that
rigorous product analytics can help businesses to improve user engagements
and conversions that ultimately leads to higher profits. In this chapter, we
are going to discuss what product analytics is and how it can be employed
for different use cases.

Once we familiarize ourselves with the concept of product analytics, we are
going to use the Online Retail Data Set from the UCI Machine Learning
Repository for our programming exercises. We are going to start by
analyzing the overall time series trends we can observe from the dataset.
Then, we will look into how the customer engagements and interactions
with individual products change over time with the goal of being able to
build a simple product recommendation logic or algorithm in the end. For
Python exercises, we will mainly utilize the pandas and matplotlib libraries for
data analyses and visualizations. For R exercises, we will mainly use
the dplyr and ggplot2 libraries and introduce two other R libraries, readxl and
lubridate.

In this chapter, we will cover the following topics:

The importance of product analytics
Product analytics using Python
Product analytics using R

The importance of product
analytics
Product analytics is a way to draw insights from data on how customers
engage and interact with products offered, how different products perform,
and what some of the observable weaknesses and strengths in a business
are. However, product analytics does not just stop at analyzing the data. The
ultimate goal of product analytics is really to build actionable insights and
reports that can further help optimize and improve product performance and
generate new marketing or product ideas based on the findings of product
analytics.

Product analytics starts by tracking events. These events can be customer
website visits, page views, browser histories, purchases, or any other
actions that customers can take with the products that you offer. Then, you
can start analyzing and visualizing any observable patterns in these events
with the goal of creating actionable insights or reports. Some of the
common goals with product analytics are as follows:

Improve customer and product retention: By analyzing what
customers viewed and purchased, you can identify what items
customers repeatedly purchase and who those repeat customers are. On
the other hand, you can also identify what items customers do not buy
and the customers who are at risk of churning. Analyzing and
understanding the common attributes of the repeatedly purchased
items and repeat customers can help you improve your retention
strategy.
Identify popular and trending products: As a marketer for retail
businesses, it is important to have a good understanding of popular and
trending products. These best-selling products are key revenue drivers
for the business and provide new selling opportunities, such as cross-
sells or bundle sales. With product analytics, you should be able to
identify and track these popular and trending products easily and

generate new strategies to explore different opportunities using these
best-selling products.
Segment customers and products based on their key attributes:
With the customer profile and product data, you can segment your
customer base and products based on their attributes using product
analytics. Some of the ways to segment your product data are based on
their profitability, volumes of sales, volumes of reorders, and numbers
of refunds. With these segmentations, you can draw actionable insights
on which product or customer segments to target next.
Develop marketing strategies with higher ROI: Product analytics
can also be used to analyze the return on investment (ROI) of your
marketing strategies. By analyzing the marketing dollars spent on
promoting certain items and the revenue generated from those
products, you can understand what works and what does not. Using
product analytics for marketing ROI analyses can help you create more
efficient marketing strategies.

With what we have discussed here about product analytics, we are going to
discuss how to achieve some of these product analytics goals using retail
business data in the following programming exercises. We are going to
discuss how we can use the data to analyze the patterns of repeat customers
and their contributions to overall revenue. Also, we will be covering how
we can use product analytics to analyze the behaviors of best-selling
products. More specifically, we are going to discuss how to track the trends
of popular items over time and then briefly discuss how we can utilize this
trending item data for product recommendations in your marketing
strategies.

Product analytics using Python
In this section, we are going to discuss how to conduct product analytics
using the pandas and matplotlib packages in Python. For those readers who
would like to use R, instead of Python, for this exercise, you can skip to the
next section. We will start this section by analyzing the overall time series
trends in the revenue and numbers of purchases, and the purchase patterns of
repeat purchase customers, and then we will move on to analyze the trends
in products being sold.

For this exercise, we will be using one of the publicly available datasets
from the UCI Machine Learning Repository, which can be found using this
link: http://archive.ics.uci.edu/ml/datasets/online+retail#. From this link, you
can download the data in Microsoft Excel format, named Online Retail.xlsx.
Once you have downloaded this data, you can load it into your Jupyter
Notebook by running the following command:

%matplotlib inline

import matplotlib.pyplot as plt
import pandas as pd

df = pd.read_excel(io='../data/Online Retail.xlsx', sheet_name='Online Retail')

Similar to the other Python exercises in previous chapters, we use
the %matplotlib inline command to display plots on the Jupyter Notebook.
Then, we can import the matplotlib and pandas packages that we will be using
for further product analytics. One thing to note in this code snippet is the
new function in the pandas package that we are using here, read_excel. This
function lets you load any Excel file into your pandas DataFrame. As you can see
from this code, we are passing two arguments to the read_excel function—io,
for the path to the data file, and sheet_name, for the name of the Excel sheet
that we want to load the data from.

Once you have loaded this data into a pandas DataFrame, it should look as shown
in the following screenshot:

http://archive.ics.uci.edu/ml/datasets/online+retail

Before we move on to the next step, there is one data-cleaning step we need
to take. Let's look quickly at the distribution of the Quantity column. We will
visualize the distributions of Quantity by using the following code:

ax = df['Quantity'].plot.box(
 showfliers=False,
 grid=True,
 figsize=(10, 7)
)

ax.set_ylabel('Order Quantity')
ax.set_title('Quantity Distribution')

plt.suptitle("")
plt.show()

As you can see from this code, we are visualizing the distribution of
the Quantity column, in a box plot, by using pandas DataFrame's plot.box function.
The resulting box plot looks as follows:

As you can see from this plot, some orders have negative quantities. This is
because the cancelled or refunded orders are recorded with negative values
in the Quantity column of our dataset. For illustration purposes in this
exercise, we are going to disregard the cancelled orders. We can filter out all
the cancelled orders in our DataFrame by using the following code:

df = df.loc[df['Quantity'] > 0]

Now, we are ready to conduct further analyses and dive into our data.

Time series trends
Before we look at product-level data, as a marketer for an e-commerce
business, it will be beneficial to have a better understanding of the overall
time series trends in the revenue and the numbers of orders or purchases.
This will help us understand whether the business is growing or shrinking in
terms of both the overall revenue and the numbers of orders we receive over
time.

First, we are going to look into the numbers of orders received over time.
Take a look at the following code:

monthly_orders_df = df.set_index('InvoiceDate')['InvoiceNo'].resample('M').nunique()

As you can see from this code, we are using the resample and nunique functions
that we have not used in the previous chapters. The resample function
resamples and converts time series data into the frequency we desire. In our
example, we are resampling our time series data into monthly time series
data, by using 'M' as our target frequency and counting the number of distinct
or unique invoice numbers. This way, we can get the number of unique
purchases or orders month-on-month. The resulting DataFrame looks like
the following screenshot:

Often, time series data is better visualized using line charts. Let's take a look
at the following code to see how we can visualize this monthly data in a line
chart:

ax = pd.DataFrame(monthly_orders_df.values).plot(
 grid=True,
 figsize=(10,7),
 legend=False
)

ax.set_xlabel('date')
ax.set_ylabel('number of orders/invoices')
ax.set_title('Total Number of Orders Over Time')

plt.xticks(
 range(len(monthly_orders_df.index)),
 [x.strftime('%m.%Y') for x in monthly_orders_df.index],
 rotation=45
)

plt.show()

As you can see from this code, we are using the plot function of a pandas
DataFrame. Using the xticks function of the matplotlib package, we can
customize the labels of the x-ticks. Let's take a look at the following plot
first:

As you may notice from this plot, the tick labels in the x axis are formatted
by month and year. If you look back at the previous code, we formatted them
using x.strftime('%m.%Y'), where x is the Python date object, %m is the placeholder
for the month value, and %Y is the placeholder for the year value. The strftime
function of the Python date object formats the date into the given format.

One thing that is noticeable from this chart is that there is a sudden radical
drop in the number of orders in December 2011. If you look closely at the

data, this is simply because we do not have the data for the full month of
December 2011. We can verify this by using the following code:

invoice_dates = df.loc[
 df['InvoiceDate'] >= '2011-12-01',
 'InvoiceDate'
]

print('Min date: %s\nMax date: %s' % (invoice_dates.min(), invoice_dates.max()))

In this code, we get a series of all invoice dates from December 1, 2011.
Then, we print out the minimum and maximum dates. When you run this
code, you will get the following output:

As you can see from this output, we only have the data from December 1, to
December 9, 2011. It would be a misrepresentation if we use this data for
analyzing December sales and revenue. For further analyses, we will
disregard any data from December 1, 2011. You can use the following code
to remove those data points:

df = df.loc[df['InvoiceDate'] < '2011-12-01']

Now that we have filtered out incomplete data for December 2011, we can
redraw the line chart using the previous codes. After removing those data
points from December 2011, the line chart looks like the following:

Let's take a closer look at this chart. The monthly number of orders seems to
float around 1,500 from December 2010 to August 2011, and then increases
significantly from September 2011, and almost doubles by November 2011.
One explanation for this could be that the business is actually growing
significantly from September 2011. Another explanation could be seasonal
effects. In e-commerce businesses, it is not rare to see spikes in sales as it
approaches the end of the year. Typically, sales rise significantly from

October to January for many e-commerce businesses, and without the data
from the previous year, it is difficult to conclude whether this spike in sales
is due to a growth in business or due to seasonal effects. When you are
analyzing your data, we advise you to compare the current year's data
against the previous year's data.

Let's take a quick look at the monthly revenue data by looking at the
following code:

df['Sales'] = df['Quantity'] * df['UnitPrice']

monthly_revenue_df = df.set_index('InvoiceDate')['Sales'].resample('M').sum()

As you can see from this code, the first thing we do here is to calculate the
aggregate sales amount from each order, which is simply the UnitPrice
multiplied by the Quantity. Once we have computed and created this Sales
column, we can use the resample function with an 'M' flag to resample and
convert our time series data into monthly data. Then, using sum as the
aggregate function, we can get the monthly sales revenue data. The resulting
data looks like the following:

We can visualize this data into a line plot, using the following code:

ax = pd.DataFrame(monthly_revenue_df.values).plot(
 grid=True,
 figsize=(10,7),
 legend=False
)

ax.set_xlabel('date')
ax.set_ylabel('sales')
ax.set_title('Total Revenue Over Time')

ax.set_ylim([0, max(monthly_revenue_df.values)+100000])

plt.xticks(
 range(len(monthly_revenue_df.index)),
 [x.strftime('%m.%Y') for x in monthly_revenue_df.index],
 rotation=45
)

plt.show()

As previously discussed, we can use the pandas DataFrame plot function to build
a line chart and the xticks function of the matplotlib package to rename the
labels of the ticks on the x axis. The line plot looks like the following:

We see a similar pattern to the previous monthly Total Number of Orders
Over Time chart in this monthly revenue chart. The monthly revenue floats
around 700,000 from December 2010 to August 2011 and then it increases
significantly from September 2011. As discussed before, to verify whether
this significant increase in sales and revenue is due to a growth in business
or due to seasonal effects, we need to look further back in the sales history
and compare the current year's sales against the previous year's sales.

These types of general and broad time series analyses can help marketers
gain a better understanding of the overall performance of the business and

identify any potential problems that might be occurring within the
business. It is generally a good idea to start with broader analyses, and then
drill down into more granular and specific parts of the business for further
product analytics.

Repeat customers
Another important factor of a successful business is how well it is retaining customers
and how many repeat purchases and customers it has. In this section, we are going to
analyze the number of monthly repeat purchases and how much of the monthly revenue
is attributable to these repeat purchases and customers. A typical strong and stable
business has a steady stream of sales from existing customers. Let's see how much of the
sales are from repeat and existing customers of the online retail business that we are
currently analyzing in this chapter.

We are going to look at the number of monthly repeat purchases. This means a customer
placed more than one order within a given month. Let's take a quick look at the data we
have:

As you might have noticed from this snapshot of the data, there are multiple records for
one purchase order (InvoiceNo). However, what we need is the aggregate data for each
order, so that one record in the DataFrame represents one purchase order. We can aggregate
this raw data for each InvoiceNo by using the following code:

invoice_customer_df = df.groupby(
 by=['InvoiceNo', 'InvoiceDate']
).agg({
 'Sales': sum,
 'CustomerID': max,
 'Country': max,
}).reset_index()

As you can see from this code, we are grouping the DataFrame, df, by InvoiceNo and
InvoiceDate and summing up all the Sales. This way, our new DataFrame, invoice_customer_df,
has one record for each purchase order. The resulting DataFrame looks like the following:

As you can see here, each record in the DataFrame now has all the information we need for
each order. Now, we need to aggregate this data per month and compute the number of
customers who made more than one purchase in a given month. Take a look at the
following code:

monthly_repeat_customers_df = invoice_customer_df.set_index('InvoiceDate').groupby([
 pd.Grouper(freq='M'), 'CustomerID'
]).filter(lambda x: len(x) > 1).resample('M').nunique()['CustomerID']

Let's take a closer look at the groupby function in this code. Here, we group by two
conditions—pd.Grouper(freq='M') and CustomerID. The first groupby
condition, pd.Grouper(freq='M'), groups the data by the index, InvoiceDate, into each month.
Then, we group this data by each CustomerID. Using the filter function, we can subselect
the data by a custom rule. Here, the filtering rule, lambda x: len(x) > 1, means we want to
retrieve those with more than one record in the group. In other words, we want to
retrieve only those customers with more than one order in a given month. Lastly, we
resample and aggregate by each month and count the number of unique customers in
each month by using resample('M') and nunique.

The resulting data looks like the following:

Let's now compare these numbers against the total number of monthly customers. You
can use the following code to compute the total number of monthly customers:

monthly_unique_customers_df = df.set_index('InvoiceDate')['CustomerID'].resample('M').nunique()

And the resulting data looks like the following:

If you compare these two sets of numbers, roughly about 20 to 30% of the customers are
repeat customers. You can use the following code to calculate the percentages of repeat
customers for each month:

monthly_repeat_percentage = monthly_repeat_customers_df/monthly_unique_customers_df*100.0

Let's visualize all of this data in one chart:

ax = pd.DataFrame(monthly_repeat_customers_df.values).plot(
 figsize=(10,7)
)

pd.DataFrame(monthly_unique_customers_df.values).plot(
 ax=ax,
 grid=True
)

ax2 = pd.DataFrame(monthly_repeat_percentage.values).plot.bar(
 ax=ax,
 grid=True,
 secondary_y=True,
 color='green',
 alpha=0.2
)

ax.set_xlabel('date')
ax.set_ylabel('number of customers')
ax.set_title('Number of All vs. Repeat Customers Over Time')

ax2.set_ylabel('percentage (%)')

ax.legend(['Repeat Customers', 'All Customers'])
ax2.legend(['Percentage of Repeat'], loc='upper right')

ax.set_ylim([0, monthly_unique_customers_df.values.max()+100])
ax2.set_ylim([0, 100])

plt.xticks(
 range(len(monthly_repeat_customers_df.index)),
 [x.strftime('%m.%Y') for x in monthly_repeat_customers_df.index],
 rotation=45
)

plt.show()

In this code, you will notice a new flag, secondary_y=True, to the plot function. As the name
suggests, if you set this secondary_y flag to True, then it will create a new y axis on the right
side of the chart. This is especially useful when you want to visualize two sets of data
with different scales. In our case, the scale for one set of our data is the number of users,
and the scale for another set of our data is the percentage. Using this secondary_y flag, we
can easily visualize data with different scales in one plot.

Once you run this code, you will see the following chart:

As you can see from this chart, the numbers of both repeat and all customers start to rise
significantly from September 2011. The percentage of Repeat Customers seems to stay
pretty consistent at about 20 to 30%. This online retail business will benefit from this
steady stream of Repeat Customers, as they will help the business to generate a stable
stream of sales. Let's now analyze how much of the monthly revenue comes from these
Repeat Customers.

The following code shows how to compute the monthly revenue from Repeat
Customers:

monthly_rev_repeat_customers_df = invoice_customer_df.set_index('InvoiceDate').groupby([
 pd.Grouper(freq='M'), 'CustomerID'

]).filter(lambda x: len(x) > 1).resample('M').sum()['Sales']

monthly_rev_perc_repeat_customers_df = monthly_rev_repeat_customers_df/monthly_revenue_df * 100.0

The only difference between this code and the previous code is the aggregate function,
sum, that follows resample('M'). In the previous case, when we were computing the number
of monthly repeat customers, we used the nunique function. However, this time we are
using the sum function to add all the sales from repeat customers for a given month. For
visualization, you can use the following code:

ax = pd.DataFrame(monthly_revenue_df.values).plot(figsize=(12,9))

pd.DataFrame(monthly_rev_repeat_customers_df.values).plot(
 ax=ax,
 grid=True,
)

ax.set_xlabel('date')
ax.set_ylabel('sales')
ax.set_title('Total Revenue vs. Revenue from Repeat Customers')

ax.legend(['Total Revenue', 'Repeat Customer Revenue'])

ax.set_ylim([0, max(monthly_revenue_df.values)+100000])

ax2 = ax.twinx()

pd.DataFrame(monthly_rev_perc_repeat_customers_df.values).plot(
 ax=ax2,
 kind='bar',
 color='g',
 alpha=0.2
)

ax2.set_ylim([0, max(monthly_rev_perc_repeat_customers_df.values)+30])
ax2.set_ylabel('percentage (%)')
ax2.legend(['Repeat Revenue Percentage'])

ax2.set_xticklabels([
 x.strftime('%m.%Y') for x in monthly_rev_perc_repeat_customers_df.index
])

plt.show()

One thing to note in this code is the line, ax2 = ax.twinx(). This essentially does the same
job as the secondary_y flag that we discussed previously. The twinx function simply creates
a twin y axis that shares the same x axis and has the same effect as the secondary_y flag.
The resulting graph looks like the following:

We see a similar pattern as before, where there is a significant increase in the revenue
from September 2011. One interesting thing to notice here is the percentage of the
monthly revenue from repeat customers. We have seen that roughly 20-30% of the
customers who made purchases are repeat customers. However, in this graph, we can see

that roughly 40-50% of the Total Revenue is from repeat customers. In other words,
roughly half of the revenue was driven by the 20-30% of the customer base who are
repeat customers. This shows how important it is to retain existing customers.

Trending items over time
So far, we have analyzed the overall time series patterns and how customers
engage with the overall business, but not how customers engage with individual
products. In this section, we are going to explore and analyze how customers
interact with individual products that are sold. More specifically, we will take a
look at the trends of the top five best-sellers over time.

For time series trending-item analysis, let's count the number of items sold for
each product for each period. Take a look at the following code:

date_item_df = df.set_index('InvoiceDate').groupby([
 pd.Grouper(freq='M'), 'StockCode'
])['Quantity'].sum()

As you can see from this code snippet, we are grouping the DataFrame, df, by
month with StockCode, which is the unique code for each product, and then
summing up the quantities sold for each month and StockCode. The first nine
records of the result look like the following:

With this data in data_item_df, let's see what items were sold the most on
November 30, 2011. Take a look at the following code:

Rank items by the last month sales
last_month_sorted_df = date_item_df.loc['2011-11-30'].sort_values(
 by='Quantity', ascending=False
).reset_index()

As you can see from this code, we can use the sort_values function to sort a pandas
DataFrame by any column we want by providing the column name in the input
argument, by. Here, we are sorting the data by the column, Quantity, in descending
order, by setting the ascending flag to False. The result looks like the following:

As you can see from this result, the products with the codes 23084, 84826,
22197, 22086, and 85099B were the top five best-sellers in the month of
November 2011.

Now that we know what the top five best-sellers were in November 2011, let's
aggregate the monthly sales data for these five products again. Take a look at the
following code:

date_item_df = df.loc[
 df['StockCode'].isin([23084, 84826, 22197, 22086, '85099B'])
].set_index('InvoiceDate').groupby([

 pd.Grouper(freq='M'), 'StockCode'
])['Quantity'].sum()

As you can see from this code, we are still grouping the data by each month and
StockCode, and summing up the quantities sold. However, one thing to note here is
the isin operator. The isin operator within the loc operator checks whether each
record matches with one of the elements in the array. In our case, we are
checking if the StockCode of each record matches with the top five best-sellers'
item codes. Using this code, we can aggregate the data by month and product just
for the top five best-sellers in November 2011. The first few records of the result
look like the following:

Now that we have this monthly sales data for the top five products, we need to
transform this data into a tabular format, where the columns are the individual
item codes, the row indexes are the invoice dates, and the values are the number

of items sold, so that we can visualize this data as a time series chart. The
following code shows you how you can transform this data into a tabular format:

trending_itmes_df = date_item_df.reset_index().pivot('InvoiceDate','StockCode').fillna(0)

trending_itmes_df = trending_itmes_df.reset_index()
trending_itmes_df = trending_itmes_df.set_index('InvoiceDate')
trending_itmes_df.columns = trending_itmes_df.columns.droplevel(0)

As you can see in this code, we are using the pivot function to pivot this DataFrame,
where the index is the InvoiceDate and the columns are individual codes in the
StockCode column. The result looks like the following:

With this time series data, we can now visualize the trends over time. You can
use the following code to build a time series plot for trending items:

ax = pd.DataFrame(trending_itmes_df.values).plot(
 figsize=(10,7),
 grid=True,
)

ax.set_ylabel('number of purchases')

ax.set_xlabel('date')
ax.set_title('Item Trends over Time')

ax.legend(trending_itmes_df.columns, loc='upper left')

plt.xticks(
 range(len(trending_itmes_df.index)),
 [x.strftime('%m.%Y') for x in trending_itmes_df.index],
 rotation=45
)

plt.show()

When you run this code, you should see the following chart:

Let's take a closer look at this time series plot. The sales of these five products
spiked in November 2011, especially, the sales of the product with the stock

code, 85099B, which were close to 0 from February 2011 to October 2011. Then,
it suddenly spiked in November 2011. It might be worth taking a closer look into
what might have driven this spike. It could be an item that is highly sensitive to
seasonality, such that this item becomes very popular during November, or it
could also be due to a genuine change in trends that led this item to become
suddenly more popular than before.

The popularity of the rest of the top five products, 22086, 22197, 23084, and
84826, seem to have built up in the few months prior to November 2011. As a
marketer, it would be worthwhile taking a closer look at the potential drivers
behind this buildup of rising popularity for these items. You could look at
whether these items are typically more popular in colder seasons or whether there
is a rising trend for these specific items in the market.

Analyzing the trends and changes in the popularity of products not only helps
you understand what your customers like and purchase the most, but also helps
you tailor your marketing messages. For example, you can recommend these
items with rising popularity in your marketing emails, calls, or advertisements to
improve customer engagement. As it has been shown that your customers are
more interested and more likely to purchase these items, you might get higher
marketing engagement from your customers when you market these items more
and you might eventually get higher conversion rates when you target your
customers with these trending items. Using these popular and trending items is
one way to build a product recommendation engine, which we are going to
expand on and experiment with thoroughly in the next chapter.

The full code for Python exercises in this section can be found at: https://github.com/yoonhwang/hands-o
n-data-science-for-marketing/blob/master/ch.5/python/Product%20Analytics.ipynb.

https://github.com/yoonhwang/hands-on-data-science-for-marketing/blob/master/ch.5/python/Product%20Analytics.ipynb

Product analytics using R
In this section, we are going to discuss how to conduct product analytics
using the dplyr and ggplot2 libraries in R. For those readers who would like to
use Python, instead of R, you can ignore this section and move to the
following section. We will start this section by analyzing the overall time
series trends in the revenue, numbers of purchases, and purchasing patterns
of repeat purchase customers, and then we will move on to analyzing the
trends in products being sold.

For this exercise, we will be using one of the publicly available datasets
from the UCI Machine Learning Repository, which can be found at: http://ar
chive.ics.uci.edu/ml/datasets/online+retail#. You can follow this link and
download the data in Microsoft Excel format, named Online Retail.xlsx. Once
you have downloaded this data, you can load it by running the following
code:

install.packages("readxl")
library(readxl)

1. Load Data
df <- read_excel(
 path="~/Documents/research/data-science-marketing/ch.5/data/Online Retail.xlsx",
 sheet="Online Retail"
)

As you may notice from this code, one thing we are doing differently here
from previous chapters is using the readxl library and the read_excel function.
Since our data is in Excel format, we cannot use the read.csv function that we
have been using so far. In order to load a dataset in Excel format, we need to
use the readxl library that you can install using the install.packages("readxl")
command in your RStudio. In the readxl library, there is a function named
read_excel, which helps you load an Excel file easily.

Once you have loaded this data into a DataFrame, it should look like the
following:

http://archive.ics.uci.edu/ml/datasets/online+retail

Before we move on to the next step, there is one data-cleaning step we need
to take. Let's look quickly at the distribution of the Quantity column. We will
visualize the distributions of Quantity by using the following code:

ggplot(df, aes(x="", y=Quantity)) +
 geom_boxplot(outlier.shape = NA) +
 ylim(c(-15, 25))+
 ylab("order quantity") +
 xlab("") +
 ggtitle("Quantity Distribution") +
 theme(plot.title=element_text(hjust=0.5))

As you can see from this code, we are visualizing the distribution of
the Quantity column, in a box plot, using geom_boxplot.

The resulting box plot looks like the following screenshot:

As you can see from this plot, some orders have negative quantities. This is
because the cancelled or refunded orders are recorded with negative values
in the Quantity column of our dataset. For illustration purposes in this
exercise, we are going to disregard the cancelled orders. We can filter out all
the cancelled orders in our DataFrame by using the following code:

filter out orders with negative quantity (cancel orders)
df <- df[which(df$Quantity > 0),]

Now, we are ready to conduct further analyses and dive into our data.

Time series trends
Before we look at product-level data, as a marketer for an e-commerce
business, it will be beneficial to have a better understanding of the overall
time series trends in the revenue and the numbers of orders or purchases.
This will help us understand whether the business is growing or shrinking in
terms of both its overall revenue and the numbers of orders it receives over
time.

First, we are going to look into the number of orders over time. Take a look
at the following code:

install.packages("lubridate")
library(lubridate)

timeSeriesNumInvoices <- df %>%
 group_by(InvoiceDate=floor_date(InvoiceDate, "month")) %>%
 summarise(NumOrders=n_distinct(InvoiceNo))

In this code, we are using the group_by function first to group the data by each
month. In order to group by each month, we are using the floor_date function
in the lubridate library. If you do not have this library installed already, you
can install it using the install.packages("lubridate") command. The floor_date
function simply takes the date and rounds it down by the provided unit. In
our case, we are rounding down the InvoiceDate column to the first day of the
month. Then, for each month, we are counting the number of unique
purchase orders by using the n_distinct function on the InvoiceNo column. The
resulting DataFrame looks like the following:

Often, time series data is better visualized using line charts. Let's take a look
at the following code to see how we can visualize this monthly data as a line
chart:

ggplot(timeSeriesNumInvoices, aes(x=InvoiceDate, y=NumOrders)) +
 geom_line() +
 ylim(c(0, max(timeSeriesNumInvoices$NumOrders) + 1000)) +
 ylab("number of orders") +
 xlab("date") +
 ggtitle("Number of Orders over Time") +
 theme(plot.title=element_text(hjust=0.5))

As you can see from this code, we are using the ggplot function in the ggplot2
library with the geom_line function to display the data using a line plot. Let's
take a look at the following plot first:

One thing that is noticeable from this chart is that there is a sudden, radical
drop in the number of orders in December 2011. If you look closely at the
data, this is simply because we do not have the data for the full month of
December 2011. We can verify this by using the following code:

summary(df[which(df$InvoiceDate >= as.Date("2011-12-01")),"InvoiceDate"])

In this code, we get a summary of all invoice dates from December 1, 2011
that looks like the following:

As you can see from this output, we only have the data from December 1,
to December 9, 2011. It would be a misrepresentation if we used this data for
analyzing December sales and revenue, as we cannot get the full picture of
this month from the dataset we have. For further analyses, we will disregard
any data from December 1, 2011. You can use the following code to remove
those data points:

df <- df[which(df$InvoiceDate < as.Date("2011-12-01")),]

Now that we have filtered out incomplete data for December 2011, we can
redraw the line chart using the previous codes. After removing those data
points in December 2011, the line chart looks like the following:

Let's take a closer look at this chart. The monthly number of orders seems to
float around 1,500 from December 2010 to August 2011, then increases
significantly from September 2011, and almost doubles by November 2011.
One explanation for this could be that the business is actually growing
significantly from September 2011. Another explanation could be seasonal
effects. In e-commerce businesses, it is not rare to see spikes in sales as it
approaches the end of the year. Typically, sales rise significantly from
October to January for many e-commerce businesses and, without the data
from the previous year, it is difficult to conclude whether this spike in sales
is due to a growth in business or due to seasonal effects. When you are
analyzing your data, we advise you to compare the current year's data
against the previous year's data.

Similar to the monthly number of orders, let's take a quick look at the
monthly revenue data. Take a look at the following code:

df$Sales <- df$Quantity * df$UnitPrice

timeSeriesRevenue <- df %>%
 group_by(InvoiceDate=floor_date(InvoiceDate, "month")) %>%
 summarise(Sales=sum(Sales))

As you can see from this code, the first thing we do here is calculate the
aggregate sales amount from each order, which is simply
the UnitPrice multiplied by the Quantity. Once we have computed and created
this Sales column, we can use the group_by function with the floor_date function
to group our data into monthly sales data. Using sum as the aggregate function
in the summarise function, we can get the monthly sales revenue data. The
resulting data looks like the following:

We can visualize this data as a line plot, using the following code:

ggplot(timeSeriesRevenue, aes(x=InvoiceDate, y=Sales)) +
 geom_line() +

 ylim(c(0, max(timeSeriesRevenue$Sales) + 10000)) +
 ylab("sales") +
 xlab("date") +
 ggtitle("Revenue over Time") +
 theme(plot.title=element_text(hjust=0.5))

As we have seen in previous chapters, we can use the geom_line function to
build a line chart. The line plot for the monthly revenue data looks like the
following:

We see a similar pattern to the previous monthly Number of Orders over
Time chart in this monthly Revenue over Time chart. The monthly revenue
floats around 700,000 from December 2010 to August 2011 and then it
increases significantly from September 2011. As discussed before, to verify
whether this significant increase in sales and revenue is due to a growth in
business or due to seasonal effects, we need to look further back in the sales
history and compare the current year's sales against the previous year's sales.

These types of general and broad time series analyses can help marketers
have a better understanding of the overall performance of the business and
identify any potential problems that might be occurring within the business.
It is generally a good idea to start with broader analyses and then drill down
into more granular and specific parts of the business for further product
analytics.

Repeat customers
Another important factor of a successful business is how well it is retaining customers
and how many repeat purchases and customers it has. In this section, we are going to
analyze the number of monthly repeat purchases and how much of the monthly revenue
is attributable to these repeat purchases and customers. A typical strong and stable
business has a steady stream of sales from existing customers. Let's see how many of the
sales are from repeat and existing customers for the online retail business that we are
currently analyzing in this chapter.

We are going to look at the number of monthly repeat purchases. This means a customer
has placed more than one order within a given month. Let's take a quick look at the data
we have:

As is noticeable from this snapshot of the data, there are multiple records for one
purchase order (InvoiceNo). However, what we need is the aggregate data for each order,
so that one record in the DataFrame represents one purchase order. We can aggregate this
raw data for each InvoiceNo by using the following code:

invoiceCustomerDF <- df %>%
 group_by(InvoiceNo, InvoiceDate) %>%
 summarise(CustomerID=max(CustomerID), Sales=sum(Sales))

As you can see from this code, we are grouping the DataFrame, df,
by InvoiceNo and InvoiceDate and summing up all the Sales, while taking one value for
CustomerID. This way, the new DataFrame, invoiceCustomerDf, has one record for each purchase
order. The resulting DataFrame looks like the following:

As you can see here, each record in the DataFrame represents all the information we need
for each order. Now, we need to aggregate this data for each month and compute the
number of customers who made more than one purchase in a given month. Take a look
at the following code:

timeSeriesCustomerDF <- invoiceCustomerDF %>%
 group_by(InvoiceDate=floor_date(InvoiceDate, "month"), CustomerID) %>%
 summarise(Count=n_distinct(InvoiceNo), Sales=sum(Sales))

Similarly to the previous section, we are using the group_by and floor_date functions to
aggregate the data into each month. We are also grouping by CustomerID, so that we can
count how many orders and how many sales each customer has brought in for each
month. This data now looks like the following:

Now, in order to get the number of repeat customers, all we need to do is filter out
customers who only have 1 in the Count column in this data. The code to perform this
operation looks like the following:

repeatCustomers <- na.omit(timeSeriesCustomerDF[which(timeSeriesCustomerDF$Count > 1),])

The newly created DataFrame, reapeatCustomers, now contains all the customers who have
made more than one purchase in each month. In order to get the aggregate monthly
repeat customer counts, we are going to run the following code:

timeSeriesRepeatCustomers <- repeatCustomers %>%
 group_by(InvoiceDate) %>%
 summarise(Count=n_distinct(CustomerID), Sales=sum(Sales))

As you can see from this code, we are simply grouping by InvoiceDate, which is a date
that is rounded down to the first day of each month, and then we are counting the
number of unique or distinct customers and summing up the total sales. The result looks
like the following:

Let's now compare these repeat customer numbers against the total number of monthly
customers. You can use the following code to compute the total number of monthly
customers:

Unique Customers
timeSeriesUniqCustomers <- df %>%
 group_by(InvoiceDate=floor_date(InvoiceDate, "month")) %>%
 summarise(Count=n_distinct(CustomerID))

The result looks like the following:

Lastly, we are going to analyze the percentage of monthly revenue that can be attributed
to the repeat customers. Take a look at the following code:

timeSeriesRepeatCustomers$Perc <- timeSeriesRepeatCustomers$Sales / timeSeriesRevenue$Sales*100.0
timeSeriesRepeatCustomers$Total <- timeSeriesUniqCustomers$Count

As you can see from this code, we are simply dividing the Sales column in the
timeSeriesRepeatCustomers DataFrame by the Sales column in the timeSeriesRevenue DataFrame that
we created in the previous section. Then, we are appending the number of monthly
unique customers to the new column, Total, of the timeSeriesRepeatCustomers DataFrame.

Let's visualize all of this data in one chart, using the following code:

ggplot(timeSeriesRepeatCustomers) +
 geom_line(aes(x=InvoiceDate, y=Total), stat="identity", color="navy") +
 geom_line(aes(x=InvoiceDate, y=Count), stat="identity", color="orange") +
 geom_bar(aes(x=InvoiceDate, y=Perc*20), stat="identity", fill='gray', alpha=0.5) +
 scale_y_continuous(sec.axis = sec_axis(~./20, name="Percentage (%)")) +
 ggtitle("Number of Unique vs. Repeat & Revenue from Repeat Customers") +
 theme(plot.title=element_text(hjust=0.5))

As you can see from this code, we are creating two line plots and one bar plot by using
the geom_line and geom_bar functions in the ggplot2 library. The first line plot represents the
total number of monthly customers, Total, and will be drawn with a navy color. The
second line plot is the number of monthly repeat customers, Count, which will be drawn
with an orange color. Lastly, we are drawing a bar plot with a gray color for the percentage
of revenue from repeat customers, Perc. One thing to note here is the scaling factor, 20,
for the secondary y axis. The sec_axis function defines the formula for the scale of the
secondary y axis. Here, we are using ~./20, which means the secondary y axis ranges
from 0 to 1/20th of the maximum value of the first axis. Since we are scaling down the
secondary y axis by a factor of 20, we are multiplying this number to Perc in the geom_bar
function to match the scale of our data to the range of the secondary y axis. The result
looks like the following:

As discussed from the code, we see three plots in this chart: a line of a navy color that
represents the total number of monthly customers, a line of an orange color that
represents the number of monthly repeat customers, and bars of a gray color that
represent the percentage of revenue from the repeat customers. As you can see from this
chart, the secondary y axis, labeled as Percentage (%), ranges from 0 to 1/20th of the
maximum of the primary y axis, labeled as Total, which matches with our scaling factor
of 20.

Let's now take a closer look at the chart. There seems to be an upward trend in both the
number of monthly customers and the number of repeat customers from September
2011, and repeat customers are roughly 20-30% of the total monthly customers.
However, if you look at the percentage of revenue from these repeat customers, you can
see that roughly 40-50% of the total revenue comes from repeat customers. In other
words, roughly half of the revenue is driven by the 20-30% of the customer base who
are repeat customers. As this online retail business has a large portion of revenue from
repeat customers, this business will benefit from this steady stream of revenue from
repeat customers. This shows how important it is to retain existing customers. As a
marketer, it will be important to keep in mind how to retain existing customers and build
up your repeat customer base.

Trending items over time
So far, we have analyzed the overall time series patterns and how customers
engage with the overall business, but not how customers engage with
individual products. In this section, we are going to explore and analyze how
customers interact with individual products that are sold. More specifically,
we will take a look at the trends of the top five best-sellers over time.

The first task for analyzing the time series trending items is to count the
number of items sold for each product for each period. Take a look at the
following code:

popularItems <- df %>%
 group_by(InvoiceDate=floor_date(InvoiceDate, "month"), StockCode) %>%
 summarise(Quantity=sum(Quantity))

As you can notice from this code, we are grouping the data by the month and
the StockCode, which is the unique code for each product. Then, we are adding
up all the quantities, Quantity, sold for the given month and product, by using
the sum function in the summarise function.

Since we are only interested in the top five best-sellers, we will need to
subselect those top five products from this DataFrame, popularItems. Take a look
at the following code:

top5Items <- popularItems[
 which(popularItems$InvoiceDate == as.Date("2011-11-01")),
] %>%
 arrange(desc(Quantity)) %>%
 head(5)

timeSeriesTop5 <- popularItems[
 which(popularItems$StockCode %in% top5Items$StockCode),
]

Here, we first sort the items in descending order by the number of items
sold, Quantity, in November 2011. Using the which function, we can subselect
the data from popularItems for November 2011 and then with the arrange
function, we can sort the data by the column we want, Quantity. By having
desc in the arrange function, we can sort the data in descending order. Lastly,

we are taking the top five items by using the head function. The newly
created variable, top5Items, now has the top five best-sellers in November
2011. The last thing we need to do is retrieve the time series data for these
five items. By using the which function and the %in% operator, we can subselect
the data for those items with StockCode in top5Items.

To visualize the time series trends of these five products, we can use the
following code:

ggplot(timeSeriesTop5, aes(x=InvoiceDate, y=Quantity, color=StockCode)) +
 geom_line() +
 ylab("number of purchases") +
 xlab("date") +
 ggtitle("Top 5 Popular Items over Time") +
 theme(plot.title=element_text(hjust=0.5))

The chart looks like the following:

Let's take a closer look at this time series plot. The sales of these five
products spiked in November 2011, especially the sales of the product with
stock code, 85099B, which were close to 0 from February 2011 to October
2011. Then, it suddenly spiked in November 2011. It might be worth taking
a closer look into what might have driven this spike. It could be an item that
is highly sensitive to seasonality, becoming very popular during November,
or it could also be that there was a genuine change in trends, which led to
this item becoming more popular than before.

The popularity of the other top five products, 22086, 22197, 23084,
and 84826, seems to have built up in the few months prior to November
2011. As a marketer, it would also be worthwhile taking a closer look at the
potential drivers behind this buildup and the rising popularity of these items.
You could look at whether these items are typically more popular in colder
seasons, or whether there is a growing trend for these specific items in the
market.

Analyzing the trends and changes in the popularity of products not only
helps you understand what your customers like and purchase the most, but it
also helps you tailor your marketing messages. For example, you can
recommend these items with rising popularity in your marketing emails,
calls, or advertisements to improve customer engagement. As your
customers are more interested and more likely to purchase these items, you
might get higher marketing engagement from your customers when you
market these items more, and you might eventually get higher conversion
rates when you target your customers with these trending items. Using these
popular and trending items is one way to build a product recommendation
engine, which we are going to expand on and experiment with thoroughly in
the next chapter.

The full code for the R exercise in this section can be found at: https://github.com/yoonhwang/han
ds-on-data-science-for-marketing/blob/master/ch.5/R/ProductAnalytics.R.

https://github.com/yoonhwang/hands-on-data-science-for-marketing/blob/master/ch.5/R/ProductAnalytics.R

Summary
In this chapter, we discussed the concepts and importance of product
analytics. We briefly discussed how product analytics starts from tracking
events and customer actions, such as website or app visits, page views, and
purchases. Then, we discussed some of the common goals of product
analytics and how it should be used to generate actionable insights and
reports. With these discussions on product analytics, we explored how we
can utilize product analytics for customer and product retention in our
programming exercises, using e-commerce business data. First, we
analyzed the time series trends in the revenue and the numbers of purchase
orders. Then, we drilled down to identify the patterns of monthly repeat
customers. We have seen from the data that even though monthly repeat
customers represent a relatively small portion of the overall customer base,
they drive roughly half of the total monthly revenue. This shows the
importance of retaining customers and how developing a retention strategy
should be taken seriously. Lastly, we discussed how to analyze popular and
trending items over time. In this section, we have discussed the potential
effects of seasonality and how the analysis of trending items can be used in
marketing strategies and in product recommendations.

In the next chapter, we are going to expand and apply our knowledge
gained from this chapter to build product recommendation engines. We will
learn about the collaborative filtering algorithm and how it can be used for
product recommendations.

Recommending the Right Products
In this chapter, we are going to dive deeper into building product
recommendation systems with which we can target customers better, using
product recommendations that are custom-tailored toward individual
customers. Studies have shown that personalized product recommendations
improve conversion rates and customer retention rates. As we have more
data available for utilizing data science and machine learning for target
marketing, the importance and effectiveness of customized product
recommendations in marketing messages have grown significantly. In this
chapter, we are going to discuss the commonly-used machine learning
algorithms for developing recommendation systems, collaborative filtering,
and the two approaches to implementing collaborative filtering algorithms
for product recommendations.

In this chapter, we will cover the following topics:

Collaborative filtering and product recommendation
Building a product recommendation algorithm with Python
Building a product recommendation algorithm with R

Collaborative filtering and product
recommendation
According to a study conducted by Salesforce, those customers who are
prompted with personalized product recommendations drive 24% of the
orders and 26% of the revenue. This signifies how much impact product
recommendation has on order volume and the overall sales revenue. In the
report that Salesforce published, they have also found that product
recommendations lead to repeat visits, purchases with recommendations
yield higher average-order value, and customers do buy recommended
items. You can view this report at: https://www.salesforce.com/blog/2017/11/person
alized-product-recommendations-drive-just-7-visits-26-revenue.

https://www.salesforce.com/blog/2017/11/personalized-product-recommendations-drive-just-7-visits-26-revenue

Product recommender system
A product recommender system is a system with the goal of predicting
and compiling a list of items that a customer is likely to purchase.
Recommender systems have gained lots of popularity in recent years and
have been developed and implemented for various business use cases. For
example, the music streaming service, Pandora, utilizes recommender
systems for music recommendations for their listeners. The e-commerce
company, Amazon, utilizes recommendater systems to predict and show a
list of products that a customer is likely to purchase. The media service
provider, Netflix, uses recommender systems to recommend movies or TV
shows for individual users that they are likely to watch. The usage of a
recommender system does not stop here. It can also be used to recommend
related articles, news, or books to users. With the potential of being used in
a variety of areas, recommender systems play a critical role in many
businesses, especially in e-commerce and media businesses, as they directly
impact the sales revenue and user engagements.

There are typically two ways to produce a list of recommendations:

Collaborative filtering
Content-based filtering

The collaborative filtering method is based on previous user behaviors,
such as pages that they viewed, products that they purchased, or ratings that
they have given to different items. The collaborative filtering approach then
uses this data to find similarities between users or items, and recommends
the most similar items or contents to the users. The basic assumption behind
the collaborative filtering method is that those who have viewed or
purchased similar contents or products in the past are likely to view or
purchase similar kinds of contents or products in the future. Thus, based on
this assumption, if one person purchased items A, B, and C and another
person purchased items A, B, and D in the past, then the first person is

likely to purchase item D and the other person is likely to purchase the item
C, as they share lots of similarities between them.

Content-based filtering, on the other hand, produces a list of
recommendations based on the characteristics of an item or a user. It
typically looks at the keywords that describe the characteristics of an item.
The basic assumption behind the content-based filtering method is that the
users are likely to view or purchase items that are similar to those items that
they have bought or viewed in the past. For example, if a user has listened
to some songs in the past, then the content-based filtering method will
recommend similar kinds of songs that share similar characteristics to those
songs that the user has already listened to.

In this chapter, we are going to use a collaborative filtering algorithm to
build a product recommendation system. Let's take a closer look at how a
collaborative filtering algorithm is built in the following section.

Collaborative filtering
As discussed in the previous section, a collaborative filtering algorithm is
used to recommend products based on the history of user behaviors and the
similarities between users. The first step to implementing a collaborative
filtering algorithm for a product recommendation system is building a user-
to-item matrix. A user-to-item matrix comprises individual users in the
rows and individual items in the columns. It will be easier to explain with an
example. Take a look at the following matrix:

The rows in this matrix represent each user and the columns represent each
item. The values in each cell represent whether the given user bought the
given item or not. For example, user 1 has purchased items B and D and user
2 has purchased items A, B, C, and E. In order to build a collaborative
filtering-based product recommendation system, we need to first build this
type of user-to-item matrix. We will discuss how to build such a matrix
programmatically in more detail with an example in the programming
exercises in the following section.

With this user-to-item matrix, the next step to building a collaborative
filtering-based product recommender system is to compute similarities
between users. To measure the similarities, cosine similarity is frequently
used. The equation for computing the cosine similarity between two users
looks as follows:

In this equation, U1 and U2 represent user 1 and user 2. P1i and P2i represent
each product, i, that user 1 and user 2 have bought. If you use this equation,
you will get 0.353553 as the cosine similarity between users 1 and 2 in the
previous example and 0.866025 as the cosine similarity between users 2 and 4.
As you can imagine, the larger the cosine similarity is, the more similar the
two users are. So, in our example, users 2 and 4 are more similar to each
other than users 1 and 2. We will discuss how we can compute cosine
similarities between users using Python and R in the following programming
exercise section.

Lastly, when using a collaborative filtering algorithm for product
recommendations, there are two approaches that you can take—a user-based
approach and an item-based approach. As the names suggest, the user-based
approach to collaborative filtering uses the similarities between users. On the
other hand, the item-based approach collaborative filtering uses the
similarities between items. This means that when we are calculating
similarities between the two users in user-based approach collaborative
filtering, we need to build and use a user-to-item matrix, as we have
discussed previously. However, for the item-based approach, we need to
calculate similarities between the two items, and this means that we need to
build and use an item-to-user matrix, which we can get by simply
transposing the user-to-item matrix. In the following programming exercise
section, we are going to discuss in more detail the differences between these
two approaches and how to build recommendation systems based on these
two approaches using Python and R.

Building a product
recommendation algorithm with
Python
In this section, we are going to discuss how to build a product
recommendation system using Python. More specifically, we will be
learning how to implement a collaborative filtering algorithm in Python
using a machine learning library, scikit-learn. For those readers who would
like to use R instead of Python for this exercise, you can skip to the next
section. We will start this section by analyzing some e-commerce business
data and then discuss the two approaches to building a product
recommendation system with collaborative filtering.

For this exercise, we will be using one of the publicly available datasets
from the UCI Machine Learning Repository, which can be found at this
link: http://archive.ics.uci.edu/ml/datasets/online+retail#. You can follow this
link and download the data in Microsoft Excel format, in a file named Online
Retail.xlsx. Once you have downloaded this data, you can load it into your
Jupyter Notebook by running the following command:

import pandas as pd

df = pd.read_excel(io='../data/Online Retail.xlsx', sheet_name='Online Retail')

Similar to Chapter 5, Product Analytics, we are using the read_excel function in
the pandas package to load the data in Excel format. We provide the path to
the data to the argument, io=, and the name of the Excel spreadsheet to the
argument, sheet_name.

Once you have loaded this data into a pandas DataFrame, it should look as in the
following screenshot:

http://archive.ics.uci.edu/ml/datasets/online+retail

If you recall from the previous chapter, there are records with negative
values in the Quantity column, which represent canceled orders. We are going
to disregard and remove these records. We can filter out all these records in
our DataFrame with the following code:

df = df.loc[df['Quantity'] > 0]

Data preparation
Before we dive into building a product recommender engine using a
collaborative filtering algorithm, we need to do the following couple of
things:

Handle NaN values in the dataset
Build a customer-to-item matrix

First, we need to handle NaN values in our dataset, especially those NaNs in the
CustomerID field. Without correct values in the CustomerID field, we cannot
build a proper recommendation system, since the collaborative filtering
algorithm depends on the historical item purchase data for individual
customers.

Second, we need to build customer-to-item matrix before we move onto
implementing the collaborative filtering algorithm for product
recommendation. The customer-item matrix is simply tabular data, where
each column represents each product or item, each row represents a
customer, and the value in each cell represents whether the given customer
purchased the given product or not.

Handling NaNs in the CustomerID
field
If you look closely at the data, you will notice that there are some records
with no CustomerID. As we need to build a customer-item matrix where each
row is specific to each customer, we cannot include those records with no
CustomerID in our data. Let's first take a look at how many records do not have
CustomerID.

Take a look at the following code:

df['CustomerID'].isna().sum()

The isna function that we are using here detects missing values and
returns True for each missing value. By summing over these values, we can
count the number of records with no CustomerID. The result looks as follows:

As you can see from this output, there are 133,361 records with no CustomerID.
And some of the data with missing CustomerID looks as follows:

Now that we know there are records with missing CustomerID entries, we need
to exclude them from further analysis. One way to drop them from our
DataFrame is by using the dropna function, as in the following:

df = df.dropna(subset=['CustomerID'])

The dropna function in the pandas package removes records with missing
values from a given DataFrame. As you can see from this code snippet,
using the subset parameter, we can drop missing values based on specific
columns. Here, we are dropping records for those without CustomerID. Once
you run this code, all the records in the DataFrame, df, will now have
CustomerID values. The dimensions of the DataFrame, df, before and after
dropping the missing values should look as in the following screenshot:

As you can see from this output, the 133,361 records with no CustomerID values
were dropped from the original DataFrame.

Building a customer-item matrix
The data we have now represents individual items purchased by customers.
However, in order to build a product recommendation system with a
collaborative filtering algorithm, we need to have data where each record
contains information on which item each customer has bought. In this
section, we are going to transform the data into a customer-item matrix,
where each row represents a customer and the columns correspond to
different products.

Let's take a look at the following code:

customer_item_matrix = df.pivot_table(
 index='CustomerID',
 columns='StockCode',
 values='Quantity',
 aggfunc='sum'
)

As you can see from this code snippet, we are using the pivot_table function
to transform our data into a customer-item matrix. Here, we define the
index as CustomerID, and use columns to represent each StockCode. By using sum as
the aggfunc and the Quantity field for values, we can sum all the quantities
bought for each item. A snapshot of the resulting customer_item_matrix looks as
follows:

Let's take a closer look at this data. The customer with CustomerID 12481 has
bought 36 of the item with StockCode 15036. Similarly, the customer with
CustomerID 12484 has bought 16 of the item with StockCode 11001, and the customer
with CustomerID 12488 has bought 10 of the item with StockCode 10135. As you can
see from this, we now have a matrix where each row represents the total
quantities bought for each product for each customer.

Now, let's 0-1 encode this data, so that the value of 1 means that the given
product was purchased by the given customer, and the value of 0 means that
the given product was never purchased by the given customer. Take a look at
the following code:

customer_item_matrix = customer_item_matrix.applymap(lambda x: 1 if x > 0 else 0)

As you can see from this code, we are using the applymap function, which
applies a given function to each element of a DataFrame. The Lambda
function that we are using in this code simply encodes all the elements
whose values are greater than 0 with 1, and the rest with 0. A snapshot of this
transformed DataFrame looks as follows:

We now have a customer-item matrix that we can use for the collaborative
filtering algorithm. Let's now move on to building product recommender
engines.

Collaborative filtering
In this section, we are going to explore two approaches to building a
product recommender engine—user-based versus item-based. In the user-
based approach, we compute similarities between users based on their item
purchase history. In the item-based approach, on the other hand, we
compute similarities between items based on which items are often bought
together with which other items.

To measure the similarity between users or between items, we are going to
use the cosine_similarity method in the scikit-learn package. You can import
this function using the following code:

from sklearn.metrics.pairwise import cosine_similarity

This cosine_similarity function in the sklearn package computes the pair-wise
cosine similarities in the given data. Let's dive in now!

User-based collaborative filtering
and recommendations
In order to build a user-based collaborative filtering algorithm, we need to
compute cosine similarities between users. Let's take a look at the following
code:

user_user_sim_matrix = pd.DataFrame(
 cosine_similarity(customer_item_matrix)
)

As is noticeable from this code, we are using the cosine_similarity function
from the sklearn package's metrics.pairwise module. This function computes
pairwise cosine similarities between the samples and outputs the results as
an array type. Then, we create a pandas DataFrame with this output array and
store it into a variable named user_user_sim_matrix, which stands for user-to-
user similarity matrix. The result looks as follows:

As you can see from this snapshot of the user-to-user similarity matrix, the
index and column names are not easy to understand. Since each column and
each row index stand for individual customers, we are going to rename the
index and columns using the following code:

user_user_sim_matrix.columns = customer_item_matrix.index

user_user_sim_matrix['CustomerID'] = customer_item_matrix.index
user_user_sim_matrix = user_user_sim_matrix.set_index('CustomerID')

Now the result looks as follows:

Let's take a closer look at this user-to-user similarity matrix. As you can
imagine, the cosine similarity between a customer to themselves is 1, and
this is what we can observe from this similarity matrix. The diagonal
elements in this user-to-user similarity matrix have values of 1. The rest
represents the pairwise cosine similarity between two customers. For
example, the cosine similarity measure between customers 12347 and 12348 is
0.063022. On the other hand, the cosine similarity between customers 12347 and
12349 is 0.046130. This suggests that customer 12348 is more similar to customer
12347 than customer 12349 is to the customer 12347, based on the products that
they purchased. This way, we can easily tell which customers are similar to
others, and which customers have bought similar items to others.

These pairwise cosine similarity measures are what we are going to use for
product recommendations. Let's work by picking one customer as an
example. We will first rank the most similar customers to the customer with
ID 12350, using the following code:

user_user_sim_matrix.loc[12350.0].sort_values(ascending=False)

When you run this code, you will get the following output:

These are the top 10 customers that are the most similar to customer 12350.
Let's pick customer 17935 and discuss how we can recommend products using

these results. The strategy is as follows. First, we need to identify the items
that the customers 12350 and 17935 have already bought. Then, we are going to
find the products that the target customer 17935 has not purchased, but
customer 12350 has. Since these two customers have bought similar items in
the past, we are going to assume that the target customer 17935 has a high
chance of purchasing the items that he or she has not bought, but
customer 12350 has bought. Lastly, we are going to use this list of items and
recommend them to the target customer 17935.

Let's first take a look at how we can retrieve the items that the
customer 12350 has purchased in the past. The code looks as follows:

items_bought_by_A = set(customer_item_matrix.loc[12350.0].iloc[
 customer_item_matrix.loc[12350.0].nonzero()
].index)

As you can see from this code, we are using the nonzero function in the pandas
package. This function returns the integer indexes of the elements that are
non-zero. Using this function on the customer_item_matrix for the given
customer 12350, we can get the list of items that the customer 12350 has
purchased. We can apply the same code for the target customer 17935, as in
the following:

items_bought_by_B = set(customer_item_matrix.loc[17935.0].iloc[
 customer_item_matrix.loc[17935.0].nonzero()
].index)

Now we have two sets of items that customers 12350 and 17935 have
purchased. Using a simple set operation, we can find the items that
customer 12350 has bought, but customer 17935 has not. The code looks like
the following:

items_to_recommend_to_B = items_bought_by_A - items_bought_by_B

Now the items in the items_to_recommend_to_B variable are the items that
customer 12350 purchased, but customer 17935 did not purchase (yet). Based
on our assumption, these are the items that customer 17935 is likely to
purchase. The list of items to recommend to customer 17935 looks like the
following:

In order to get the descriptions of these items, you can use the following
code:

df.loc[
 df['StockCode'].isin(items_to_recommend_to_B),
 ['StockCode', 'Description']
].drop_duplicates().set_index('StockCode')

As you can notice from this code, we are using the isin operator to get the
records that match with the items in the items_to_recommend_to_B variable.

Once you run this code, you will get the following output:

Using user-based collaborative filtering, we have discussed how we can do
targeted product recommendations for individual customers. You can
custom-tailor and include these products that each target customer is likely
to purchase in your marketing messages, which can potentially drive more
conversions from your customers. As discussed so far, using a user-based
collaborative filtering algorithm, you can easily do product
recommendations for target customers.

However, there is one main disadvantage of using user-based collaborative
filtering. As we have seen in this exercise, recommendations are based on
the individual customer's purchase history. For new customers, we are not
going to have enough data to compare these new customers against the
others. In order to handle this problem, we can use item-based collaborative
filtering, which we are going to discuss in the following section.

Item-based collaborative filtering
and recommendations
Item-based collaborative filtering is similar to the user-based approach,
except that it uses the similarity measures between items, instead of between
users or customers. We had to compute cosine similarities between users
before, but now, we are going to compute cosine similarities between items.
Take a look at the following code:

item_item_sim_matrix = pd.DataFrame(
 cosine_similarity(customer_item_matrix.T)
)

If you compare this code to the previous code, where we computed a user-to-
user similarity matrix, the only difference is the fact that we are transposing
the customer_item_matrix here, so that the row indexes represent individual
items and the columns represent the customers. We are still using the
cosine_similarity function of the sklearn package's metrics.pairwise module. In
order to correctly name the indexes and columns with product codes, you
can use the following code:

item_item_sim_matrix.columns = customer_item_matrix.T.index

item_item_sim_matrix['StockCode'] = customer_item_matrix.T.index
item_item_sim_matrix = item_item_sim_matrix.set_index('StockCode')

Now the result looks as follows:

As before, the diagonal elements have values of 1. This is because the
similarity between an item and itself is 1, meaning the two are identical. The
rest of the elements contain the similarity measure values between items
based on the cosine similarity calculation. For example, looking at the
preceding item-to-item similarity matrix, the cosine similarity between the
item with StockCode 10002 and the item with StockCode 10120 is 0.094868. On the
other hand, the cosine similarity between the item 10002 and the item 10125 is
0.090351. This suggests that the item with StockCode 10120 is more similar to that
with StockCode 10002, than the item with StockCode 10125 is to that with
StockCode 10002.

The strategy for doing product recommendation using this item-to-item
similarity matrix is similar to what we did using the user-based approach in
the previous section. First, for the given product that the target customer
bought, we are going to find the most similar items from the item-to-item
similarity matrix that we have just built. Then, we are going to recommend
these similar items to the customer, since those similar items were bought by
other customers who have bought the product that the target customer
initially bought. Let's work with an example.

Assume a new customer just bought a product with StockCode 23166, and we
want to include some products that this customer is the most likely to
purchase in our marketing emails. The first thing we need to do is find the
most similar items to the one with StockCode 23166. You can use the following
code to get the top 10 most similar items to the item with StockCode 23166:

top_10_similar_items = list(
 item_item_sim_matrix\
 .loc[23166]\
 .sort_values(ascending=False)\
 .iloc[:10]\
 .index
)

The result looks like the following:

We can get the descriptions of these similar items using the following code:

df.loc[
 df['StockCode'].isin(top_10_similar_items),
 ['StockCode', 'Description']
].drop_duplicates().set_index('StockCode').loc[top_10_similar_items]

As you can see from this code, we are using the isin operator to filter for the
items that match the list of similar items in the top_10_similar_items variable.
Once you run this code, you will see the following output:

The first item here is the item that the target customer just bought and the
other nine items are the items that are frequently bought by others who have
bought the first item. As you can see, those who have bought ceramic top
storage jars often buy jelly moulds, spice tins, and cake tins. With this data,
you can include these items in your marketing messages for this target
customer as further product recommendations. Personalizing the marketing
messages with targeted product recommendations typically yields higher
conversion rates from customers. Using an item-based collaborative filtering

algorithm, you can now easily do product recommendations for both new
and existing customers.

The full details for this Python exercise can be found at: https://github.com/yoonhwang/hands-on-da
ta-science-for-marketing/blob/master/ch.6/python/ProductRecommendation.ipynb

https://github.com/yoonhwang/hands-on-data-science-for-marketing/blob/master/ch.6/python/ProductRecommendation.ipynb

Building a product
recommendation algorithm with R
In this section, we are going to discuss how to build a product
recommendation system using R. More specifically, we will be learning how
to implement a collaborative filtering algorithm in R using the dplyr, reshape2,
and coop packages. For those readers who would like to use Python instead of
R for this exercise, you can go to the previous section. We will start this
section by analyzing some e-commerce business data and then discuss the
two approaches to building a product recommendation system with
collaborative filtering.

For this exercise, we will be using one of the publicly available datasets
from the UCI Machine Learning Repository, which can be found at: http://ar
chive.ics.uci.edu/ml/datasets/online+retail#. You can go to this link and
download the data, available in Microsoft Excel format, named Online
Retail.xlsx. Once you have downloaded this data, you can load it into your
RStudio by running the following command:

library(dplyr)
library(readxl)

df <- read_excel(
 path="~/Documents/research/data-science-marketing/ch.6/data/Online Retail.xlsx",
 sheet="Online Retail"
)

Similar to the previous chapter, we are using the read_excel function in
the readxl package to load the data in Excel format. We provide the path to
the data to the argument path, and the name of the Excel spreadsheet to the
argument sheet.

Once you have loaded this data into a DataFrame, it should look like the
following:

http://archive.ics.uci.edu/ml/datasets/online+retail

If you recall from the previous chapter, there are records with negative
values in the Quantity column, which represent canceled orders. We are going
to disregard and remove those records. We can filter out all these records in
our DataFrame with the following code:

ignore cancel orders
df <- df[which(df$Quantity > 0),]

Data preparation
Before we dive into building a product recommender engine using a
collaborative filtering algorithm, there are a couple of things we need to do.
First, we need to handle NaN values in our dataset, especially those records
with NA values in the CustomerID field. Without correct values in
the CustomerID field, we cannot build a proper recommendation system, since
the collaborative filtering algorithm depends on the historical item purchase
data for individual customers. Second, we need to build customer-to-item
matrix before we move onto implementing a collaborative filtering
algorithm for product recommendation. The customer-item matrix is simply
tabular data where each column represents each product or item, each row
represents a customer, and the value in each cell represents whether the
given customer purchased the given product or not.

Handling NA values in the
CustomerID field
If you look closely at the data, you will notice that there are some records
with no CustomerID. Since we need to build a customer-item matrix, where
each row is specific to each customer, we cannot include those records with
no CustomerID in our data. Let's first take a look at how many records do not
have a CustomerID.

Take a look at the following code:

there are 133,361 records with no CustomerID
sum(is.na(df$CustomerID))

The is.na function that we are using here detects missing values and
returns TRUE for each of the missing values. By summing over these values
using the sum function, we can count the number of records with no CustomerID.
The result looks as follows:

As you can see from this output, there are 133,361 records with no CustomerID.
In order to look at those records with no CustomerID, you can use the following
code:

sneak peek at records with no CustomerID
head(df[which(is.na(df$CustomerID)),])

And the output looks like the following code:

Now that we know there are records with missing CustomerID values, we need
to exclude them from further analysis. One way to drop them from
our DataFrame is by using the na.omit function, as in the following:

remove records with NA
df <- na.omit(df)

The na.omit function in R removes records with missing values (NA) from
a DataFrame. Once you run this code, all the records in
the DataFrame df will now have CustomerID values. The dimensions of the
DataFrame df before and after dropping the missing values should look as in
the following screenshot:

As you can see from the outputs of the dim(df) commands, the 133,361 records
with no CustomerID values were dropped from the original DataFrame.

Building a customer-item matrix
The data we have now represents individual items purchased by customers.
However, in order to build a product recommendation system with a
collaborative filtering algorithm, we need to have data where each record
contains information on which item each customer has bought. In this
section, we are going to transform the data into a customer-item matrix,
where each row represents a customer and the columns correspond to
different products.

In order to transform our data into a customer-item matrix, we are going to
use the dcast function in the reshape2 package. If you do not already have this
package installed in your R environment, you can run the following
commands to install and include this package in your R environment:

install.packages("reshape2")

library(reshape2)

Let's take a look at the following code:

customerItemMatrix <- dcast(
 df, CustomerID ~ StockCode, value.var="Quantity"
)

The dcast function of the reshape2 package uses a formula to reshape a
DataFrame into another form of DataFrame. In our case, we want our data to be
reshaped so that the rows represent individual customers and the columns
represent the different products. By defining the formula as CustomerID ~
StockCode, the dcast function is going to reshape the data, so that the individual
codes of the StockCode map to columns and each row represents an individual
customer. The value.var argument defines which value to take. Here, we are
telling the dcast function to take the values of the Quantity field as the values
of the elements in the reshaped DataFrame. The result looks like the following:

Let's take a closer look at this data. The customer with CustomerID 12731 has
bought 3 of the item with StockCode 10002. Similarly, the customer
with CustomerID 12748 has bought 2 of the item with StockCode 10080, and the
customer with CustomerID 12735 has bought 1 of the item with StockCode 10125. As
you can see from this, we now have a matrix where each row represents the
total quantities bought for each product for each customer.

Now, let's 0-1 encode this data, so that the value of 1 means that the given
product was purchased by the given customer, and a value of 0 means that
the given product was never purchased by the given customer. Take a look at
the following code:

0-1 encode
encode_fn <- function(x) {as.integer(x > 0)}

customerItemMatrix <- customerItemMatrix %>%
 mutate_at(vars(-CustomerID), funs(encode_fn))

As you can see from this code, we first define the encoding function,
encode_fn. This function simply encodes each value as 1 if it is greater than 0,
and as 0 if it is not. Then we are using the muate_at function of the dplyr
package, which applies the encode_fn encoding function to each element of the
matrix, except the CustomerID column. The result should look as in the
following:

We now have a customer-item matrix that we can use for a collaborative
filtering algorithm. Let's now move on to building product recommender
engines.

Collaborative filtering
In this section, we are going to explore two approaches to building a
product recommender engine—user-based versus item-based. In the user-
based approach, we compute similarities between users based on their item
purchase history. In the item-based approach, on the other hand, we
compute similarities between items based on which items are often bought
together with other items. To measure the similarity between users or
between items, we are going to use the cosine function in the coop library,
which is a library for fast implementation of cosine similarity computation
in R. You can install and this R library using the following code:

install.packages("coop")

library(coop)

The cosine function in the coop library computes the cosine similarity matrix
efficiently in R. Let's dive in now!

User-based collaborative filtering
and recommendations
In order to build a user-based collaborative filtering algorithm, we need to
compute cosine similarities between users. Let's take a look at the following
code:

User-to-User Similarity Matrix
userToUserSimMatrix <- cosine(
 as.matrix(
 # excluding CustomerID column
 t(customerItemMatrix[, 2:dim(customerItemMatrix)[2]])
)
)
colnames(userToUserSimMatrix) <- customerItemMatrix$CustomerID

As is noticeable from this code, using the cosine function from
the coop library, you can compute and build a cosine similarity matrix. One
thing to note in this code is the fact that we transpose the customerItemMatrix
before computing cosine similarities. This is to compute user-to-user
similarities. Without the transposition, the cosine function will be computing
item-to-item similarities. Lastly, we are renaming the columns with customer
IDs in the last line of this code.

The result looks as follows:

Let's take a closer look at this user-to-user similarity matrix. As you can
imagine, the cosine similarity between a customer to himself or herself is 1
and this is what we can observe from this similarity matrix. The diagonal
elements in this user-to-user similarity matrix have values of 1. The rest
represents the pairwise cosine similarity between two customers. For
example, the cosine similarity measure between
customers 12347 and 12348 is 0.06302187. On the other hand, the cosine
similarity between customers 12347 and 12349 is 0.04612963. This suggests that
customer 12348 is more similar to customer 12347 than customer 12349 to

customer 12347, based on the products that they purchased previously. This
way we can easily tell which customers are similar to which others and
which customers have bought similar items to which others.

These pairwise cosine similarity measures are what we are going to use for
product recommendations. Let's work by picking one customer as an
example. We will first rank the most similar customers to customer with
ID 12350 using the following code:

top10SimilarCustomersTo12350 <- customerItemMatrix$CustomerID[
 order(userToUserSimMatrix[,"12350"], decreasing = TRUE)[1:11]
]

As you can see from this code, we are using the order function to sort the
values in the column 12350 of userToUserSimMatrix. With the decreasing = TRUE
flag, we can sort the values in descending order.

When you run this code, you will get the following output:

These are the top 10 customers that are the most similar to customer 12350.
Let's pick customer 17935 and discuss how we can recommend products using
these results. The strategy is as follows. First we need to identify the items
that customers 12350 and 17935 have already bought. Then, we are going to
find the products that the target customer 17935 has not purchased, but
customer 12350 has. Since these two customers have bought similar items in
the past, we are going to assume that the target customer 17935 has high
chance of purchasing these items that he or she has not bought, but that
customer 12350 has bought. Lastly, we are going to use this list of items and
recommend them to the target customer 17935.

Let's first take a look at how we can retrieve the items that
customer 12350 has purchased in the past. The code looks as follows:

itemsBoughtByA <- customerItemMatrix[
 which(customerItemMatrix$CustomerID == "12350"),
]

itemsBoughtByA <- colnames(customerItemMatrix)[which(itemsBoughtByA != 0)]

As you can see from this code, we are using the which operator to find the
column indexes of the elements that are non-zero. The result of this code
looks as follows:

Using the following code, we can get the list of items that the
customer 17935 has purchased:

itemsBoughtByB <- customerItemMatrix[
 which(customerItemMatrix$CustomerID == "17935"),
]

itemsBoughtByB <- colnames(customerItemMatrix)[which(itemsBoughtByB != 0)]

The items that customer 17935 has bought are as follows:

Now we have two sets of items that customers 12350 and 17935 have
purchased. Using the simple set operation, we can find the items that
customer 12350 has bought, but customer 17935 has not. The code looks like
the following:

itemsToRecommendToB <- setdiff(itemsBoughtByA, itemsBoughtByB)

Now the items in the, itemsToRecommendToB variable, are the items that
customer 12350 purchased, but customer 17935 did not purchase yet. Based on
our assumption, these are the items that customer 17935 is likely to purchase.
The list of items to recommend to customer 17935 looks as in the following:

In order to get the descriptions of these items, you can use the following
code:

itemsToRecommendToBDescriptions <- unique(
 df[
 which(df$StockCode %in% itemsToRecommendToB),
 c("StockCode", "Description")
]
)
itemsToRecommendToBDescriptions <- itemsToRecommendToBDescriptions[
 match(itemsToRecommendToB, itemsToRecommendToBDescriptions$StockCode),
]

As you can notice from this code, we are using the %in% operator to get the
records that match with the items in the itemsToRecommendToB variable. Once you
run this code, you will get the following output that has descriptions of the
recommended items:

Using user-based collaborative filtering, we have discussed how we can do
targeted product recommendations for individual customers. You can
custom-tailor and include these products that each target customer is likely
to purchase in your marketing messages, which can potentially drive more
conversions from your customers. As discussed so far, using a user-based
collaborative filtering algorithm, you can easily create product
recommendations for target customers.

However, there is one main disadvantage of using user-based collaborative
filtering. As we have seen in this exercise, recommendations are based on
the individual customer's purchase history. For new customers, we are not
going to have enough data to compare them with the others. In order to
handle this problem, we can use item-based collaborative filtering that we
will be discussing in the following section.

Item-based collaborative filtering
and recommendations
Item-based collaborative filtering is similar to the user-based approach,
except that it is using the similarity measures between items, instead of
between users or customers. We had to compute cosine similarities between
users before, but now we are going to compute cosine similarities between
items. Take a look at the following code:

Item-to-Item Similarity Matrix
itemToItemSimMatrix <- cosine(
 as.matrix(
 # excluding CustomerID column
 customerItemMatrix[, 2:dim(customerItemMatrix)[2]]
)
)

If you compare this code to the previous code, where we computed user-to-
user similarity matrix, the only difference is the fact that we are not
transposing the customerItemMatrix this time. We are still using
the cosine function of the coop library.

The result looks as follows:

As before, the diagonal elements have values of 1. This is because the
similarity between an item and itself is 1, meaning the two are identical. The
other elements contain the similarity measure values between items based on
the cosine similarity calculation. For example, looking at the preceding item-
to-item similarity matrix, the cosine similarity between the item
with StockCode 10002 and the item with StockCode 10120 is 0.09486833. On the other
hand, the cosine similarity between item 10002 and item 10125 is 0.09035079.

This suggests that the item with StockCode 10120 is more similar to that
with StockCode 10002 than the item with StockCode 10125 is to that
with StockCode 10002.

The strategy to do product recommendation using this item-to-item
similarity matrix is similar to what we did using the user-based approach in
the previous section. First, for the given product that the target customer
bought, we are going to find the most similar items from the item-to-item
similarity matrix that we have just built. Then, we are going to recommend
these similar items to the customer, since those similar items were bought by
other customers who have bought the product that the target customer
initially bought. Let's work with an example.

Assume a new customer just bought a product with StockCode 23166, and we
want to include some products that this customer is most likely to purchase
in our marketing emails. The first thing we need to do is find the most
similar items to the one with StockCode 23166. You can use the following code
to get the top 10 most similar items to the item with StockCode 23166:

top10SimilarItemsTo23166 <- colnames(itemToItemSimMatrix)[
 order(itemToItemSimMatrix[,"23166"], decreasing = TRUE)[1:11]
]

Using the order function with the decreasing = TRUE flag, we can sort the similar
items in descending order. Then, with this reverse sorted list of indexes, we
can get the top 10 similar items to the item with StockCode 23166.

The result looks as in the following:

We can get the descriptions of these similar items using the following code:

top10SimilarItemDescriptions <- unique(
 df[
 which(df$StockCode %in% top10SimilarItemsTo23166),
 c("StockCode", "Description")
]
)

top10SimilarItemDescriptions <- top10SimilarItemDescriptions[
 match(top10SimilarItemsTo23166, top10SimilarItemDescriptions$StockCode),
]

As you can see from this code, we are using the %in% operator to filter for the
items that match the list of similar items in the
variable top10SimilarItemsTo23166. Once you run this code, you will see the
following output:

The first item here is the item that the target customer just bought, and the
remaining 10 items are the items that are frequently bought by others who
have bought the first item. As you can see, those who have bought ceramic-
top storage jars often buy jelly moulds, spice tins, and cake tins. With this
data, you can include these items in your marketing messages for this target
customer as further product recommendations. Personalizing the marketing
messages with targeted product recommendations typically yields higher
conversion rates from customers. Using an item-based collaborative filtering
algorithm, you can now easily do product recommendations for both new
and existing customers.

The full code for this R exercise can be found in this link: https://github.com/yoonhwang/hands-on-d
ata-science-for-marketing/blob/master/ch.6/R/ProductRecommendation.R

https://github.com/yoonhwang/hands-on-data-science-for-marketing/blob/master/ch.6/R/ProductRecommendation.R

Summary
In this chapter, we have discussed product recommender systems. We have
learned how personalized product recommendations improve conversion
and customer retention rates, according to a study conducted by Salesforce.
We have discussed the two approaches, collaborative filtering and content-
based filtering, to building product recommendation systems; how they
differ from one another; and what their assumptions are. Then, we dove
deeper into how we can build collaborative filtering-based recommender
systems. As you might recall, the first step to building a collaborative
filtering-based recommender system is to build a user-to-item matrix, and
then the next step is to use cosine similarity to compute the similarities
between the users. We have also discussed the two different approaches to
utilizing a collaborative filtering algorithm for product recommendations—
a user-based approach and an item-based approach.

From the next chapter, we are going to switch gears and focus on utilizing
customer behavior data to our advantage to improve our marketing
strategies. In the next chapter, we are going to discuss the benefits and
importance of conducting customer analytics.

Section 4: Personalized Marketing
In this section, you will learn how to use data to understand customer
behavior better, how to use machine learning to predict the likelihood of
marketing engagement and the value of individual customers over their
lifetime, and how to use data science for better customer retention.

This section consists of the following chapters:

Chapter 7, Exploratory Analysis for Customer Behavior
Chapter 8, Predicting the Likelihood of Marketing Engagement
Chapter 9, Customer Lifetime Value
Chapter 10, Data-Driven Customer Segmentation
Chapter 11, Retaining Customers

Exploratory Analysis for Customer
Behavior
In this chapter, as the first step toward future topics in the following
chapters, we are going to discuss what customer analytics is, the importance
and benefits of analyzing and having a better understanding of the customer
base, and the use cases of customer analytics in different aspects of
marketing. As we gather and track more data on customers and their
behavior regarding individual sales, marketing platforms, and channels, it
becomes easier for marketers to analyze and understand how different
customers react to different marketing strategies. Customer analytics helps
marketers understand their customers better by utilizing this data.
Furthermore, it can help marketers to form better marketing strategies that
can improve engagement, retention, and conversion rates.

In this chapter, we will cover the following topics:

Customer analytics: understanding customer behavior
Conducting customer analytics with Python
Conducting customer analytics with R

Customer analytics –
understanding customer behavior
Customer analytics is a process of understanding and gaining insights into
customer behavior through analyzing customer behavior data. It ranges
from simple data analysis and visualization to more advanced customer
segmentation and predictive analytics. The information and insights gained
through customer analytics can then be utilized in forming marketing
strategies, optimizing sales channels, and making other key business
decisions.

The importance of customer analytics is rising. Because access to customer
data became easier for many businesses and also because customers now
have easier access to data and information on similar products and contents
provided by other competitors, it is critical to many businesses to be able to
understand and predict what their customers are likely to purchase or view.
The deeper the understanding you have about your customers, the better
competitive power you will have against your competitors.

Customer analytics use cases
Customer analytics can be used at any point of the marketing process. It can
be used to monitor and track how customers interact with the products or
react to different marketing strategies. This typically requires using data
analysis and visualization techniques to build reports or dashboards that can
easily show key performance indicators (KPIs).

Sales funnel analytics
One of the common use cases of customer analytics is sales funnel
analytics. By analyzing sales funnel data, we can monitor and track the life
cycle of customers, gaining insights such as through which marketing
channel they sign up, how often they log into the system, what types of
products they browsed and purchased, or how they fall off from each step of
the funnel.

Customer segmentation
Customer analytics can also be used to identify different groups of
customers based on their behavior. Customer segmentation is a good
example and outcome of customer analytics. Through identifying subgroups
of similar customers, you can better understand the target populations. For
example, the marketing strategy for low-engagement customers should be
different from the marketing strategy for high-engagement customers. By
effectively segmenting the customer base by the level of engagement, you
can have a deeper understanding of how different groups of customers
behave and react to different marketing strategies. This further helps you
better target certain subgroups of customers.

Predictive analytics
Another good use case of customer analytics is using predictive analytics
on customer data. With customer data, you can have a deeper understanding
of what attributes and characteristics of customers are highly correlated
with the outcomes of your interest. For example, if you'd like to improve
the response and engagement rates, you can analyze the data to identify
those characteristics of customers that result in higher responses and
engagement rates. Then, you can build predictive models that predict how
likely it is that your customers are going to respond to your marketing
messages.

Another example of the usage of predictive analytics can be for marketing
channel optimization. With the insights gained from customer analytics,
you can build predictive models to optimize marketing channels. The
customers are going to respond differently to different marketing channels.
For instance, younger cohorts, who use smartphones more heavily than the
rest of the population, are more likely to respond to marketing via
smartphones. On the other hand, more senior cohorts are more likely to
respond better to marketing on more traditional media, such as TV or
newspaper advertisements. With customer analytics, you can identify
correlations between certain attributes of customers and the performances
of different marketing channels.

As we have discussed so far, the applications of customer analytics are
broad and can be used at any point of the marketing process. In the
following programming exercises, we are going to discuss how we can use
customer analytics to monitor and track different marketing strategies and
see some of the ways to segment and analyze the customer base to gain
insights. Then, in the following chapters, we are going to explore other use
cases of customer analytics, such as optimizing engagement and retention
rates, and customer segmentation.

Conducting customer analytics with
Python
In this section, we are going to discuss how to conduct customer analytics
using Python. We will be mainly using the pandas and matplotlib packages to
analyze and visualize the customer behavior observed in the dataset. For
those readers who would like to use R instead of Python for this exercise,
you can skip to the next section. We will start this section by analyzing and
understanding the behaviors of engaged customers and then discuss a simple
way to segment the customer base by certain criteria.

For this exercise, we will be using one of the publicly available datasets
from IBM, which can be found at this link: https://www.ibm.com/communities/analy
tics/watson-analytics-blog/marketing-customer-value-analysis/. You can follow this
link and download the data that is available in CSV format, named WA_Fn UseC_
Marketing Customer Value Analysis.csv. Once you have downloaded this data, you
can load it into your Jupyter Notebook by running the following command:

import pandas as pd

df = pd.read_csv('../data/WA_Fn-UseC_-Marketing-Customer-Value-Analysis.csv')

Similar to Chapter 6, Recommending the Right Products, we are using
the read_csv function in the pandas package to load the data in CSV
format. Once you have loaded this data into a pandas DataFrame, it should look
as in the following:

https://www.ibm.com/communities/analytics/watson-analytics-blog/marketing-customer-value-analysis/

As you can see from this data, there is a column named Response, which
contains information about whether a customer responded to the marketing
efforts. Also, the Renew Offer Type and Sales Channel columns represent the type
of the renewal offer presented to the customer and which sales channel was
used to contact the customer. There are numerous other columns that
represent the socio-economic backgrounds of the customers and types of
insurance coverage that the customers currently have. We will be utilizing
this information to analyze and understand the customer behavior better,
especially in regards to their responses and engagement with the marketing
and sales efforts.

Analytics on engaged customers
Now that we have loaded the data into our Python environment, we are
going to analyze it to understand how different customers behave and react
to different marketing strategies. We are going to follow these steps:

1. Overall engagement rate
2. Engagement rates by offer type
3. Engagement rates by offer type and vehicle class
4. Engagement rates by sales channel
5. Engagement rates by sales channel and vehicle size

Overall engagement rate
The first thing we are going to need to understand is the overall marketing
response or engagement rate. We can use the following code to get the total
number of customers who have responded:

df.groupby('Response').count()['Customer']

As you have seen from the data, the Response column contains information
about whether a customer responded to the marketing call or not (Yes for
those who have responded and No for those who have not). We are simply
grouping by this column by using the groupby function in a pandas DataFrame
and counting the number of customers in each category with the count
function in the pandas package.

The result looks as in the following:

In order to visualize this in a plot, you can use the following code:

ax = df.groupby('Response').count()['Customer'].plot(
 kind='bar',
 color='skyblue',
 grid=True,
 figsize=(10, 7),
 title='Marketing Engagment'
)

ax.set_xlabel('Engaged')
ax.set_ylabel('Count')

plt.show()

The plot looks as follows:

As you can see from these results, the majority of the customers did not
respond to the marketing calls. Let's take a look at these numbers in
percentages, using the following code:

df.groupby('Response').count()['Customer']/df.shape[0]

When you run this code, the result looks as follows:

From these results, we can see that only about 14% of the customers
responded to the marketing calls. Let's dive deeper into the customers who
responded and get a better understanding of what worked best for them.

Engagement rates by offer type
Different types of offers will work differently for the customers. In this
section, we are going to look into what types of offers worked best for the
engaged customers. Take a look at the following code:

by_offer_type_df = df.loc[
 df['Response'] == 'Yes'
].groupby([
 'Renew Offer Type'
]).count()['Customer'] / df.groupby('Renew Offer Type').count()['Customer']

As you can see from this code, we are grouping by the Renew Offer
Type column, where we have four different types of offers. We count the
number of engaged customers for each type of these renewal offers first by
filtering for those with Yes values in the Response column. Then, we are
dividing these numbers by the total number of customers in each renewal
offer type to get the engagement rates per renewal offer type. The result
looks as follows:

We can visualize these results in a bar plot, using the following code:

ax = (by_offer_type_df*100.0).plot(
 kind='bar',
 figsize=(7, 7),
 color='skyblue',
 grid=True

)

ax.set_ylabel('Engagement Rate (%)')

plt.show()

The bar plot looks as follows:

As you can easily notice from this plot, Offer2 had the highest engagement
rate among the customers. When conducting customer analytics, as
discussed earlier, we often want to know the demographics and attributes of
customers for each event, so that we can understand what works best for

which type of customers. This can lead to further improvements in the next
marketing campaign by better targeting those subgroups of customers. Let's
take a step further into this data.

Engagement rates by offer type and
vehicle class
In the previous section, we have learned that Renewal Offer Type 2 worked best
for the customers. The marketers can benefit from this information itself, as
this finding provides a useful insight into which type of offer worked best
and had the highest response rate from customers. However, we can gain
more insights on how different customers with different backgrounds or
characteristics react differently to each offer types. In this section, we will
show an example of what you can do as a marketer to understand how
customers with different attributes respond differently to different marketing
messages.

Let's see whether there is any noticeable difference in the response rates for
each offer type for customers with different vehicle classes. We are going to
look at the engagement rates by each offer type and Vehicle Class using the
following code:

by_offer_type_df = df.loc[
 df['Response'] == 'Yes'
].groupby([
 'Renew Offer Type', 'Vehicle Class'
]).count()['Customer']/df.groupby('Renew Offer Type').count()['Customer']

As you can see from this code, we are grouping the data by two columns,
Renew Offer Type and Vehicle Class, and computing the engagement rates for
each group.

The result looks as follows:

To make this more readable, we can transform this data by using the
following code:

by_offer_type_df = by_offer_type_df.unstack().fillna(0)

As you can see from this code, we are using the unstack function in a pandas
DataFrame to pivot the data and extract and transform the inner-level group to
columns. It will be easier to look at the result. The result looks as in the
following:

As you can see here, Vehicle Class now becomes the columns after applying
the unstack function. We can visualize this data as a bar plot, using the
following code:

ax = (by_offer_type_df*100.0).plot(
 kind='bar',
 figsize=(10, 7),
 grid=True
)

ax.set_ylabel('Engagement Rate (%)')

plt.show()

The plot looks as follows:

Let's take a closer look at this chart. We have seen that Offer2 had the highest
response rate among the customers in the previous section. Here, we can see
how customers with different vehicle classes engage differently with other
types of renewal offers. For example, customers with Four-Door Car respond
the most frequently for all offer types. However, customers with SUV respond
with a higher chance to Offer1 than to Offer2. As you can see from these
results, we can gain more insights by breaking down the customer
demographics further. If we see any significant difference in the response

rates among different customer segments, we can fine-tune who to target for
different sets of offers. In our example, if we believe customers with SUV
respond to Offer1 with a significantly higher degree of engagement than to
Offer2, then we can target SUV customers with Offer1. On the other hand, if we
believe customers with Two-Door Car respond to Offer2 with a significantly
higher degree of engagement than to other offer types, then we can target
Two-Door Car owners with Offer2.

Engagement rates by sales channel
Let's take a look at another example. We will analyze how engagement rates
differ by different sales channels. Take a look at the following code:

by_sales_channel_df = df.loc[
 df['Response'] == 'Yes'
].groupby([
 'Sales Channel'
]).count()['Customer']/df.groupby('Sales Channel').count()['Customer']

The result looks as follows:

It will be easier to look at this result with a visualization. You can use the
following code to visualize this data:

ax = (by_sales_channel_df*100.0).plot(
 kind='bar',
 figsize=(7, 7),
 color='skyblue',
 grid=True
)

ax.set_ylabel('Engagement Rate (%)')

plt.show()

The plot looks as follows:

As you can see from this plot, Agent works the best in terms of getting
responses from the customers. Then, sales through Web works the second best.
As before, let's break down this result deeper and analyze to see whether the
behavior change among customers with different characteristics.

Engagement rates by sales channel
and vehicle size
In this section, we will take a look at whether customers with various vehicle
sizes respond differently to different sales channels. Take a look at the
following code to compute the engagement rates per sales channel and
vehicle size:

by_sales_channel_df = df.loc[
 df['Response'] == 'Yes'
].groupby([
 'Sales Channel', 'Vehicle Size'
]).count()['Customer']/df.groupby('Sales Channel').count()['Customer']

The result looks as in the following:

As before, we can unstack this data into a more visible format, using the
following code:

by_sales_channel_df = by_sales_channel_df.unstack().fillna(0)

The result looks as follows:

We can visualize these results into a bar chart, using the following code:

ax = (by_sales_channel_df*100.0).plot(
 kind='bar',
 figsize=(10, 7),
 grid=True
)

ax.set_ylabel('Engagement Rate (%)')

plt.show()

The plot now looks as follows:

As you can see from this plot, customers with Medsize vehicles respond the
best to all sales channels. The engagement rates across different sales
channels differ slightly between Large and Small vehicle owners. For example,
Small vehicle owners respond better through Agent and Call Center channels,
while on the other hand, Large vehicle owners respond better through
the Branch and Web channels. As discussed previously, we can utilize this
insight in the next marketing efforts. For example, as Small car owners
respond with a higher chance through Agent and Call Center, we can utilize
those two channels more heavily for Small car owners.

Segmenting customer base
We are going to briefly discuss how we can segment the customer base in
this section. We are going to expand this concept and discuss further how we
can utilize machine learning for customer segmentation in Chapter 10, Data-
Driven Customer Segmentation, but this section will give you some basic
idea on what customer segmentation is and what it looks like.

In this section, we will be segmenting our customer base by Customer Lifetime
Value and Months Since Policy Inception. Feel free to try different features for
segmenting the customer base. Take a look at the following distribution of
the Customer Lifetime Value column:

Based on this information, we are going to define those customers with
a Customer Lifetime Value higher than the median as high-CLV customers and
those with a CLV below the median as low-CLV customers. You can use the
following code for encoding:

df['CLV Segment'] = df['Customer Lifetime Value'].apply(
 lambda x: 'High' if x > df['Customer Lifetime Value'].median() else 'Low'
)

We are going to go through the same process for the Months Since Policy
Inception field. Take a look at the following distribution for Months Since Policy
Inception:

Similarly, we are going to define those customers with Months Since Policy
Inception higher than the median as high Policy Age Segment customers and those
below the median as low Policy Age Segment customers. You can use the
following code for encoding:

df['Policy Age Segment'] = df['Months Since Policy Inception'].apply(
 lambda x: 'High' if x > df['Months Since Policy Inception'].median() else 'Low'
)

We can visualize these segments using the following code:

ax = df.loc[
 (df['CLV Segment'] == 'High') & (df['Policy Age Segment'] == 'High')
].plot.scatter(
 x='Months Since Policy Inception',
 y='Customer Lifetime Value',
 logy=True,
 color='red'
)

df.loc[
 (df['CLV Segment'] == 'Low') & (df['Policy Age Segment'] == 'High')
].plot.scatter(
 ax=ax,
 x='Months Since Policy Inception',
 y='Customer Lifetime Value',
 logy=True,
 color='blue'
)

df.loc[
 (df['CLV Segment'] == 'High') & (df['Policy Age Segment'] == 'Low')
].plot.scatter(
 ax=ax,
 x='Months Since Policy Inception',
 y='Customer Lifetime Value',
 logy=True,

 color='orange'
)

df.loc[
 (df['CLV Segment'] == 'Low') & (df['Policy Age Segment'] == 'Low')
].plot.scatter(
 ax=ax,
 x='Months Since Policy Inception',
 y='Customer Lifetime Value',
 logy=True,
 color='green',
 grid=True,
 figsize=(10, 7)
)

ax.set_ylabel('CLV (in log scale)')
ax.set_xlabel('Months Since Policy Inception')

ax.set_title('Segments by CLV and Policy Age')

plt.show()

Let's take a closer look at this code. In the first code block, we are creating a
scatter plot using the plot.scatter function in the pandas package for those
customers in the High CLV and High Policy Age segments. By using the logy=True
flag, we can easily transform the scale to log scale. Log scale is often used
for monetary values, as they often have high skewness in their values. We
repeat this process four times for the four segments we have created
previously.

The resulting scatter plot looks as follows:

As you can see from this scatter plot, the data points in red represent those
customers in the High CLV and High Policy Age segment. Those in orange
represent the High CLV and Low Policy Age group, those in blue represent the Low
CLV and High Policy Age group, and lastly, those in green represent the Low CLV
and Low Policy Age group.

Now that we have created these four segments, let's see whether there is any
noticeable difference in the engagement rates among these four segments.
Take a look at the following code:

engagment_rates_by_segment_df = df.loc[
 df['Response'] == 'Yes'
].groupby(
 ['CLV Segment', 'Policy Age Segment']
).count()['Customer']/df.groupby(
 ['CLV Segment', 'Policy Age Segment']
).count()['Customer']

As you can see from this code, we are grouping by the two newly-created
columns, CLV Segment and Policy Age Segment, and computing the engagement
rates for these four segments. The result looks as follows:

It will be easier to look at the differences in a chart. You can use the
following code to create a bar plot for this data:

ax = (engagment_rates_by_segment_df.unstack()*100.0).plot(
 kind='bar',
 figsize=(10, 7),
 grid=True
)

ax.set_ylabel('Engagement Rate (%)')
ax.set_title('Engagement Rates by Customer Segments')

plt.show()

Now the plot looks as follows:

As you can notice from this plot, High Policy Age Segment has higher
engagement than the Low Policy Age Segment. This suggests that those customers
who have been insured by this company longer respond better. It is also
noticeable that the High Policy Age and Low CLV segment has the highest
engagement rate among the four segments. By creating different customer

segments based on customer attributes, we can better understand how
different groups of customers behave differently. We are going to further
expand and experiment the concept of customer segmentation in more depth
in Chapter 9, Customer Lifetime Value.

The full code for this Python exercise can be found in this link: https://github.com/yoonhwang/han
ds-on-data-science-for-marketing/blob/master/ch.7/python/CustomerBehaviors.ipynb

https://github.com/yoonhwang/hands-on-data-science-for-marketing/blob/master/ch.7/python/CustomerBehaviors.ipynb

Conducting customer analytics with R
In this section, we are going to discuss how to conduct customer analytics using R. We will be
mainly using the dplyr and ggplot2 libraries to analyze and visualize the customer behavior observed
in the dataset. For those readers who would like to use Python instead of R for this exercise, you
can refer to the previous section. We will start this section by analyzing and understanding the
behaviors of engaged customers and then discuss a simple way to segment the customer base by
certain criteria.

For this exercise, we will be using one of the publicly available datasets from IBM, which can be
found at this link: https://www.ibm.com/communities/analytics/watson-analytics-blog/marketing-customer-value-a
nalysis/. You can follow this link and download the data that is available in CSV format
named WA_Fn UseC_ Marketing Customer Value Analysis.csv. Once you have downloaded this data, you can
load it into your RStudio by running the following command:

library(dplyr)
library(ggplot2)

1. Load Data
df <- read.csv(
 file="~/Documents/data-science-for-marketing/ch.7/data/WA_Fn-UseC_-Marketing-Customer-Value-Analysis.csv",
 header=TRUE
)

Similar to the previous chapter, we are using the read.csv function in R to load the data in CSV
format. Once you have loaded this data into a DataFrame, it should look as in the following:

https://www.ibm.com/communities/analytics/watson-analytics-blog/marketing-customer-value-analysis/

As you can see from this data, there is a column named Response, which contains information about
whether a customer responded to the marketing efforts. Also, the
Renew.Offer.Type and Sales.Channel columns represent the type of renewal offer presented to the
customer and which sales channel was used to contact the customer. There are numerous other
columns that represent the socio-economic backgrounds of the customers and types of insurance
coverages that the customers currently have. We will be utilizing this information to analyze and
understand the customer behavior better, especially in regards to their responses and engagements
with the marketing and sales efforts.

Before we dive into the data, we will encode the Response column into numeric values—0 for No and
1 for Yes. This will make our computations easier for future analyses. You can use the following
code for encoding:

Encode engaged customers as 0s and 1s
df$Engaged <- as.integer(df$Response) - 1

Analytics on engaged customers
Now that we have loaded the data into our environment, we are going to
analyze it to understand how different customers behave and react to
different marketing strategies. We are going to follow these steps:

1. Overall engagement rate
2. Engagement rates by offer type
3. Engagement rates by offer type and vehicle class
4. Engagement rates by sales channel
5. Engagement rates by sales channel and vehicle size

Overall engagement rate
The first thing we are going to need to understand is the overall marketing
response or engagement rate. We can use the following code to get the total
number of customers who have responded:

- Overall Engagement Rates
engagementRate <- df %>% group_by(Response) %>%
 summarise(Count=n()) %>%
 mutate(EngagementRate=Count/nrow(df)*100.0)

As you have seen from the data, the Response column contains information
about whether a customer responded to the marketing call or not (Yes for
those who have responded and No for those who have not). We are simply
grouping by this column by using the group_by function in the dplyr library and
counting the number of customers in each category with the n() function.
Then, using the mutate function, we compute the engagement rate by dividing
Count by the total number of records in the DataFrame.

The result looks as in the following:

In order to visualize this in a plot, you can use the following code:

ggplot(engagementRate, aes(x=Response, y=EngagementRate)) +
 geom_bar(width=0.5, stat="identity") +
 ggtitle('Engagement Rate') +
 xlab("Engaged") +
 ylab("Percentage (%)") +
 theme(plot.title = element_text(hjust = 0.5))

The plot looks as follows:

As you can see from these results, the majority of the customers did not
respond to the marketing calls. As shown from the data, only about 14% of
the customers responded to the marketing calls. We are going to now dive
deeper into the customers who responded and get a better understanding of
what worked best for them.

Engagement rates by offer type
Different types of offers will work differently for different customers. In
this section, we are going to look into what types of offers worked best for
the engaged customers. Take a look at the following code:

- Engagement Rates by Offer Type
engagementRateByOfferType <- df %>%
 group_by(Renew.Offer.Type) %>%
 summarise(Count=n(), NumEngaged=sum(Engaged)) %>%
 mutate(EngagementRate=NumEngaged/Count*100.0)

As you can see from this code, we are grouping by
the Renew.Offer.Type column, where we have four different types of offers.
Then, in the summarise function, we count the total number of records using
the n() function, and we count the number of engaged customers by
summing over the encoded column, Engaged. Lastly, in the mutate function, we
compute EngagementRate by dividing NumEngaged by Count and multiplying it by
100.0.

The result looks as in the following:

We can visualize these results in a bar plot, using the following code:

ggplot(engagementRateByOfferType, aes(x=Renew.Offer.Type, y=EngagementRate)) +
 geom_bar(width=0.5, stat="identity") +
 ggtitle('Engagement Rates by Offer Type') +
 xlab("Offer Type") +
 ylab("Engagement Rate (%)") +
 theme(plot.title = element_text(hjust = 0.5))

The bar plot now looks as follows:

As you can easily notice from this plot, Offer 2 had the highest engagement
rate among the customers. When conducting customer analytics, as
discussed earlier, we often want to know the demographics and attributes of
customers for each event, so that we can understand what works best for
which type of customers. This can lead to further improvements in the next
marketing campaign by better targeting those subgroups of customers. Let's
take a step further into this data.

Engagement rates by offer type and vehicle
class
In the previous section, we have learned that Renewal Offer Type 2 worked best for the customers. The
marketers can benefit from this information itself, as this finding provides a useful insight into
which type of offer worked best and had the highest response rate from customers. However, we can
gain more insights on how different customers with different backgrounds or characteristics react
differently to each offer types. In this section, we will show an example of what you can do as a
marketer to understand how customers with different attributes respond differently to different
marketing messages.

Let's see whether there is any noticeable difference in the response rates for each offer type for
customers with different vehicle classes. We are going to look at the engagement rates by each offer
type and vehicle class, using the following code:

- Offer Type & Vehicle Class
engagementRateByOfferTypeVehicleClass <- df %>%
 group_by(Renew.Offer.Type, Vehicle.Class) %>%
 summarise(NumEngaged=sum(Engaged)) %>%
 left_join(engagementRateByOfferType[,c("Renew.Offer.Type", "Count")], by="Renew.Offer.Type") %>%
 mutate(EngagementRate=NumEngaged/Count*100.0)

As you can see from this code, we are grouping the data by two
columns, Renew.Offer.Type and Vehicle.Class, and counting the number of engaged customers for each
group. Then, we join this data with the engagementRateByOfferType variable by the Renew.Offer.Type column
to get the total number of engaged customers for each offer type. Lastly, we compute the
engagement rate in the mutate function.

The result looks as follows:

To make this more readable, we can visualize this data using bar plots. Take a look at the following
code:

ggplot(engagementRateByOfferTypeVehicleClass, aes(x=Renew.Offer.Type, y=EngagementRate, fill=Vehicle.Class)) +
 geom_bar(width=0.5, stat="identity", position = "dodge") +
 ggtitle('Engagement Rates by Offer Type & Vehicle Class') +
 xlab("Offer Type") +
 ylab("Engagement Rate (%)") +
 theme(plot.title = element_text(hjust = 0.5))

Using this code, we can build a bar plot that looks as follows:

Let's take a closer look at this chart. We have seen that Offer2 had the highest response rate among
the customers in the previous section. Here, we can see how customers with different vehicle classes
engage differently with other types of renewal offers. For example, customers with Four-Door
Car respond the most frequently for all offer types. However, customers with SUV respond with a
higher chance to Offer1 than to Offer2. As you can see from these results, we can gain more insights
by breaking down the customer demographics further. If we see any significant difference in the
response rates among different customer segments, we can fine-tune who to target for different sets
of offers. In our example, if we believe customers with SUV respond to Offer1 with a significantly
higher chance than to Offer2, then we can target SUV customers with Offer1. On the other hand, if we
believe customers with Two-Door Car respond to Offer2 with a significantly higher chance than to other
offer types, then we can target Two-Door Car owners with Offer2.

Engagement rates by sales channel
Let's take a look at another example. We will analyze how engagement rates
differ by different sales channels. Take a look at the following code:

- Engagement Rates by Sales Channel
engagementRateBySalesChannel <- df %>%
 group_by(Sales.Channel) %>%
 summarise(Count=n(), NumEngaged=sum(Engaged)) %>%
 mutate(EngagementRate=NumEngaged/Count*100.0)

The result looks as follows:

It will be easier to understand this result with a visualization. You can use
the following code to visualize this data:

ggplot(engagementRateBySalesChannel, aes(x=Sales.Channel, y=EngagementRate)) +
 geom_bar(width=0.5, stat="identity") +
 ggtitle('Engagement Rates by Sales Channel') +
 xlab("Sales Channel") +
 ylab("Engagement Rate (%)") +
 theme(plot.title = element_text(hjust = 0.5))

The plot looks as follows:

As you can see from this plot, Agent works best in terms of getting responses
from the customers. Then, sales through Web works the second best. As
before, let's break down this result deeper and analyze it to see whether the
behavior changes among customers with different characteristics.

Engagement rates by sales channel and
vehicle size
In this section, we will take a look at whether customers with various vehicle sizes respond
differently to different sales channels. Take a look at the following code to compute the
engagement rates per sales channel and vehicle size:

- Sales Channel & Vehicle Size
engagementRateBySalesChannelVehicleSize <- df %>%
 group_by(Sales.Channel, Vehicle.Size) %>%
 summarise(NumEngaged=sum(Engaged)) %>%
 left_join(engagementRateBySalesChannel[,c("Sales.Channel", "Count")], by="Sales.Channel") %>%
 mutate(EngagementRate=NumEngaged/Count*100.0)

The result looks as in the following:

As before, we can visualize this data in a bar plot to make it easier to read. You can use the
following code to visualize this data:

ggplot(engagementRateBySalesChannelVehicleSize, aes(x=Sales.Channel, y=EngagementRate, fill=Vehicle.Size)) +
 geom_bar(width=0.5, stat="identity", position = "dodge") +
 ggtitle('Engagement Rates by Sales Channel & Vehicle Size') +
 xlab("Sales Channel") +
 ylab("Engagement Rate (%)") +
 theme(plot.title = element_text(hjust = 0.5))

The plot now looks as follows:

As you can see from this plot, customers with Medsize vehicles respond best to all sales channels.
The engagement rates across different sales channels differ slightly between Large and Small vehicle
owners. For example, Small vehicle owners respond better through Agent and Call Center channels,
while on the other hand, Large vehicle owners respond better through the Branch and Web channels.
As discussed previously, we can utilize this insight in the next marketing efforts. For example,
as Small car owners respond with a higher degree of engagement through Agent and Call Center, we
can utilize those two channels more heavily for Small car owners.

Segmenting customer base
We are going to briefly discuss how we can segment the customer base in this section. We are
going to expand this concept and discuss further how we can utilize machine learning for
customer segmentation in Chapter 9, Customer Lifetime Value, but this section will give you
some basic ideas on what customer segmentation is and what it looks like.

In this section, we will be segmenting our customer base
by Customer.Lifetime.Value and Months.Since.Policy.Inception. Feel free to try different features for
segmenting the customer base. Let's first take a look at the following distribution of the
Customer.Lifetime.Value column:

Based on this information, we are going to define customers with a CLV higher than the
median as high-CLV customers and those with a CLV below the median as low-CLV
customers. You can use the following code for encoding:

clv_encode_fn <- function(x) {if(x > median(df$Customer.Lifetime.Value)) "High" else "Low"}
df$CLV.Segment <- sapply(df$Customer.Lifetime.Value, clv_encode_fn)

As you can see from this code, we have defined the clv_encode_fn function, which encodes those
customers with a CLV higher than the median as High and those with a CLV lower than the
median as Low. Then, using the sapply function, we encode the values in the
Customer.Lifetime.Value column and store those encoded values as a new column named
CLV.Segment.

We are going to go through the same process for the Months.Since.Policy.Inception field. Take a
look at the following distribution for Months.Since.Policy.Inception:

Similarly, we are going to define those customers with a Months.Since.Policy.Inception value
higher than the median as high Policy.Age.Segment customers and those with a value below the
median as low Policy.Age.Segment customers. You can use the following code for encoding:

policy_age_encode_fn <- function(x) {if(x > median(df$Months.Since.Policy.Inception)) "High" else "Low"}
df$Policy.Age.Segment <- sapply(df$Months.Since.Policy.Inception, policy_age_encode_fn)

We can visualize these segments, using the following code:

ggplot(
 df[which(df$CLV.Segment=="High" & df$Policy.Age.Segment=="High"),],
 aes(x=Months.Since.Policy.Inception, y=log(Customer.Lifetime.Value))
) +
 geom_point(color='red') +
 geom_point(
 data=df[which(df$CLV.Segment=="High" & df$Policy.Age.Segment=="Low"),],
 color='orange'
) +
 geom_point(
 data=df[which(df$CLV.Segment=="Low" & df$Policy.Age.Segment=="Low"),],
 color='green'
) +
 geom_point(
 data=df[which(df$CLV.Segment=="Low" & df$Policy.Age.Segment=="High"),],
 color='blue'
) +
 ggtitle('Segments by CLV and Policy Age') +
 xlab("Months Since Policy Inception") +
 ylab("CLV (in log scale)") +
 theme(plot.title = element_text(hjust = 0.5))

Let's take a closer look at this code. We plot the High CLV and High Policy Age segment first in
red. Then, we repeat the same process to building scatter plots for the High CLV and Low Policy
Age group in orange, the Low CLV and Low Policy Age group in green, and lastly, the Low CLV and
High Policy Age group in blue. One thing to note here is how we define the y values in the aes
function. As you can see from this code, y=log(Customer.Lifetime.Value), we are transforming the
CLV values into log scale. Log scale is often used for monetary values, as they often have high
skewness in their values.

The resulting scatter plot looks as follows:

As you can see from this scatter plot, the data points in red represent those customers in
the High CLV and High Policy Age segment. Those in orange represent the High CLV and Low Policy
Age group, those in blue represent the Low CLV and High Policy Age group, and lastly, those in green
represent the Low CLV and Low Policy Age group.

Now that we have created these four segments, let's see whether there is any noticeable
difference in engagement rates among these four segments. Take a look at the following code:

engagementRateBySegment <- df %>%
 group_by(CLV.Segment, Policy.Age.Segment) %>%
 summarise(Count=n(), NumEngaged=sum(Engaged)) %>%
 mutate(EngagementRate=NumEngaged/Count*100.0)

As you can see from this code, we are grouping by the two newly-created
columns, CLV.Segment and Policy.Age.Segment, and computing the engagement rates for these four
segments. The result looks as follows:

It will be easier to understand the differences in a chart. You can use the following code to
create a bar plot for this data:

ggplot(engagementRateBySegment, aes(x=CLV.Segment, y=EngagementRate, fill=Policy.Age.Segment)) +
 geom_bar(width=0.5, stat="identity", position = "dodge") +
 ggtitle('Engagement Rates by Customer Segments') +
 ylab("Engagement Rate (%)") +
 theme(plot.title = element_text(hjust = 0.5))

Now the plot looks as follows:

As you can notice from this plot, High Policy.Age.Segment has a higher engagement than Low
Policy.Age.Segment. This suggests that those customers who have been insured by this company
longer respond better. It is also noticeable that the High Policy Age and Low CLV segment has the
highest engagement rate among the four segments. By creating different customer segments

based on customer attributes, we can better understand how different groups of customers
behave differently. We are going to further expand and experiment the concept of customer
segmentation in more depth in Chapter 9, Customer Lifetime Value.

The full code for this R exercise can be found at the following link: https://github.com/yoonhwang/hands-on-data-science-for-ma
rketing/blob/master/ch.7/R/CustomerBehaviors.R.

https://github.com/yoonhwang/hands-on-data-science-for-marketing/blob/master/ch.7/R/CustomerBehaviors.R

Summary
In this chapter, we have discussed customer analytics. We have learned
about what customer analytics is and the importance and benefits of
conducting customer analytics, as well as different use cases of customer
analytics. We have discussed how the rising accessibility of customer data
to businesses and the abundance of data available about customers is
resulting in higher competition, and we emphasized the importance of
having a good understanding of what customers like. Conducting customer
analytics is an important step to gain insights on the behavior of customers,
which helps in forming better marketing strategies, optimizing sales
channels, and making other key business decisions. Using customer
analytics, you can monitor and track KPIs on how customers react to
different products and marketing strategies, effectively build segments of
similar customers, and build predictive models to improve engagement and
retention rates, as well as optimize marketing channels.

In the next chapter, we are going to learn how we can use predictive
analytics to forecast the likelihood of marketing engagements. We will
discuss some of the machine learning algorithms that are frequently used to
build predictive models and experiment with their prediction performances
on the dataset.

Predicting the Likelihood of
Marketing Engagement
In this chapter, we are going to expand the knowledge we gained from the
previous chapter and the customer analytics exercise we conducted in Chapte
r 7, Exploratory Analysis for Customer Behavior. For successful and more
intelligent marketing strategies, we cannot stop at analyzing customer data.
With the advanced technology in data science and machine learning, we can
now make intelligent guesses and estimates on customers' future behaviors,
such as what types of customers are more likely to engage with marketing
efforts, the amount of purchases that customers are likely to make, or which
customers are likely to churn. These predictions or intelligent guesses that
are built based on historical customer data can help you improve your
marketing performance and further tailor your marketing strategies for
different target audiences. In this chapter, we are going to learn how we can
utilize data science and machine learning to predict future outcomes and
how this can help your future marketing efforts.

In this chapter, we will cover the following topics:

Predictive analytics in marketing
Evaluating classification models
Predicting the likelihood of marketing engagement with Python
Predicting the likelihood of marketing engagement with R

Predictive analytics in marketing
Predictive analytics is a process of analyzing and extracting information
from historical data to identify patterns and make predictions about future
outcomes. Numerous statistical and machine learning models are typically
used to find the relationship between the attributes or features in the dataset
and the target variable or behavior that you would like to predict. Predictive
analytics can be utilized and applied in many different industries.

For example, it is often used in the financial industry for fraud detection,
where machine learning models are trained to detect and prevent potential
fraudulent transactions. The healthcare industry can also benefit from
predictive analytics to help physicians in their decision-making processes.
Furthermore, there are various parts of marketing that can also benefit from
predictive analytics, such as customer acquisition, customer retention, and
up-selling and cross-selling, to name a few.

In predictive analytics, broadly speaking, there are two types of problems:

Classification problems: A classification problem is where there is a
set of categories an observation can belong to. For example, predicting
whether a customer is going to open a marketing email or not is a
classification problem. There are only two possible outcomes—
opening the marketing email or not opening the email.
Regression problems: A regression problem, on the other hand, is
where the outcome can take on any range of real numbers. For
example, predicting customer lifetime value is a regression problem.
One customer can have a lifetime value of $0 and another customer
can have a lifetime value of $10,000. This type of problem, where the
outcome can take continuous values, is called a regression problem.

In this chapter, we are going to focus on one of the common classification
problems in the marketing industry—predicting the likelihood of customer
engagement. In the following chapter, Chapter 9, Customer Lifetime Value,

we are going to tackle one of the frequently appearing regression problems
within the marketing industry.

Applications of predictive analytics
in marketing
As briefly mentioned previously, there are numerous ways of applying and
utilizing predictive analytics in marketing. In this section, we are going to
discuss four popular use cases of predictive analytics in marketing:

Likelihood of engagement: Predictive analytics can help marketers
forecast the likelihood of customer engagements with their marketing
strategies. For example, if your marketing happens a lot in the email
space, you can utilize predictive analytics to forecast which customers
have a high likelihood of opening your marketing emails and custom-
tailor your marketing strategies to those high-likelihood customers to
maximize your marketing results. For another example, if you are
displaying advertisements on social media, predictive analytics can
help you identify certain types of customers that are likely to click on
the ads.
Customer lifetime value: Predictive analytics can help you forecast
the expected lifetime values of your customers. Using historical
transactional data, predictive analytics can help you identify high-
value customers within your customer base. With these predictions,
you and your firm can focus more on building healthy relationships
with those high-value customers. We are going to discuss in
more detail how to build predictive models for customer lifetime value
forecasts in the following chapter.
Recommending the right products and contents: As we have
already discussed in Chapter 6, Recommending the Right Products, we
can use data science and machine learning to predict which customers
are likely to purchase products or view contents. Using these
predictions, you can improve customer conversion rates by
recommending the right products and contents for individual
customers.
Customer acquisition and retention: Predictive analytics has also
been heavily used for customer acquisition and retention. Based on the

profile data you gathered about your prospects or leads and the
historical data of your existing customers, you can apply predictive
analytics to identify high-quality leads or rank the leads by their
likelihood of being converted into active customers. On the other hand,
you can use the customer churn data and the historical data of your
existing customers to develop predictive models to forecast which
customers are likely to leave or unsubscribe from your products. We
are going to discuss in more detail applying predictive analytics for
customer retention in Chapter 11, Retaining Customers.

On top of these four common use cases of predictive analytics in marketing,
there are many other ways you can utilize predictive analytics for your
marketing strategies. You should get creative on how and where to use
predictive analytics for your future marketing strategies.

Evaluating classification models
When developing predictive models, it is important to know how to evaluate
those models. In this section, we are going to discuss five different ways to
evaluate the performance of classification models. The first metric that can
be used to measure prediction performance is accuracy. Accuracy is simply
the percentage of correct predictions out of all predictions, as shown in the
following formula:

The second metric that is commonly used for classification problems is
precision. Precision is defined as the number of true positives divided by the
total number of true positives and false positives. True positives are cases
where the model correctly predicted as positive, while false positives are
cases where the model was predicted as positive, but the true label was
negative. The formula looks as follows:

Along with precision, recall is also commonly used to evaluate the
performances of classification models. Recall is defined as the number of
true positives divided by the number of true positives plus false negatives.
False negatives are cases where the model was predicted as negative, but the
true label was positive. Recall can be thought of as a measure of how much
of the positive cases are retrieved or found by the model. The formula looks
as follows:

The final two metrics we are going to discuss are the receiver operating
characteristic (ROC) curve and the area under the curve (AUC). The
ROC curve shows how true positive rates and false positive rates change at
different thresholds. The AUC is simply the total area under the ROC curve.
The AUC ranges from 0 to 1 and a higher AUC number suggests better
model performance. A random classifier has an AUC of 0.5, so any classifier
with an AUC higher than 0.5 suggests that the model performs better than
random predictions. A typical ROC curve looks as in the following:

In the following programming exercise, we are going to use these five
metrics that we have just discussed to evaluate the performance of the model
we build in Python and R. Let's now dive into building machine learning
models to predict the likelihood of marketing engagement!

Predicting the likelihood of
marketing engagement with Python
In this section, we are going to discuss how to build predictive models using
machine learning algorithms in Python. More specifically, we will learn how
to build a predictive model using the random forest algorithm, as well as
how to tune the random forest model and evaluate the performance of the
model. We will be mainly using the pandas, matplotlib, and scikit-
learn packages to analyze, visualize, and build machine learning models that
predict the likelihood of customer marketing engagement. For those readers
who would like to use R instead of Python for this exercise, you can skip to
the next section.

For this exercise, we will be using one of the publicly available datasets
from IBM, which can be found at this link: https://www.ibm.com/communities/analy
tics/watson-analytics-blog/marketing-customer-value-analysis/. You can follow this
link and download the data that is available in CSV format, named WA_Fn UseC_
Marketing Customer Value Analysis.csv. Once you have downloaded this data, you
can load it into your Jupyter notebook by running the following command:

import pandas as pd

df = pd.read_csv('../data/WA_Fn-UseC_-Marketing-Customer-Value-Analysis.csv')

The df DataFrame looks as follows:

https://www.ibm.com/communities/analytics/watson-analytics-blog/marketing-customer-value-analysis/

As you might have noticed, this is the same dataset that we used in the
previous chapter, where we conducted customer analytics. With the
knowledge we gained about this dataset from the previous chapter, we are
going to first prepare our data by encoding the target variable and other
categorical variables that we are going to use as features for our machine
learning models.

Variable encoding
In order to build machine learning models using the scikit-learn package in
Python, all the features in the dataset need to have numerical values.
However, in the dataset, we have numerous columns that have non-
numerical values. For example, the target variable, Response, which is what
we are going to try to predict with machine learning models, is non-
numeric. It contains two string values—Yes and No. We will need to encode
this Response target variable with numerical values in order to be able to build
machine learning models. For another example, the column Gender, which
we can use as one of the features for our predictive model, also does not
have numerical values. It contains two string values—F for female and M for
male. In this section, we are going to discuss how we can encode these non-
numeric columns so that we can use them as features for machine learning
models.

Response variable encoding
The first thing we are going to do is encode the response variable Response.
We are going to encode Yes values with 1s and No values with 0s. Take a look
at the following code:

df['Engaged'] = df['Response'].apply(lambda x: 1 if x == 'Yes' else 0)

As you can see from this code, we are using the apply function of the pandas
DataFrame to apply our lambda function on the Response column, so that it
encodes Yes values with 1 and No values with 0. We then store these encoded
values in a newly-created column, Engaged. In order to get the overall
response or engagement rate using this newly-created column, you can use
the following code:

tdf['Engaged'].mean()

The overall engagement rate looks as follows:

Categorical variable encoding
If you look closely at the data, the following variables are categorical
variables:

columns_to_encode = [
 'Sales Channel', 'Vehicle Size', 'Vehicle Class', 'Policy', 'Policy Type',
 'EmploymentStatus', 'Marital Status', 'Education', 'Coverage'
]

These variables have a set of different values they can take and those values do
not necessarily have orders that differentiate one from another.

If you recall from Chapter 4, From Engagement to Conversion, there is more
than one way to encode categorical variables. In this chapter, the method we
are going to use is to create dummy variables for each category of individual
categorical variables, using the get_dummies function in the pandas package. Take
a look at the following code:

categorical_features = []
for col in columns_to_encode:
 encoded_df = pd.get_dummies(df[col])
 encoded_df.columns = [col.replace(' ', '.') + '.' + x for x in encoded_df.columns]

 categorical_features += list(encoded_df.columns)

 df = pd.concat([df, encoded_df], axis=1)

As you can see from this code snippet, we are iterating through the list of
column names of categorical variables, defined in columns_to_encode. Then, for
each column, we are using the get_dummies function in the pandas package to
build dummy variables. In order to make things clear and cause less confusion,
we are renaming the columns of the newly-created and encoded
DataFrame encoded_df, where each column contains information about the original
column name and the category it represents. As an example, for the Sale
Channel column, the newly-created DataFrame encoded_df will look as in the
following:

As you can see from this example, each column of this new DataFrame represents
each category in the original Sales Channel column and the values are one-hot
encoded, meaning it assigns a value of 1 if the given record belongs to the
given category, and 0 otherwise.

Once we have created dummy variables for the given column, we then store
the newly-created columns into a variable named categorical_features. Lastly,
we concatenate this newly-created DataFrame to the original DataFrame, by using
the concat function of the pandas package. One of the parameters in the concat
function, axis=1, tells pandas to concatenate the two DataFrames by the column.

By now, we have successfully encoded all the categorical variables except
Gender. Since we do not need to create two dummy variables for the Gender
column, as there can only be two genders, we are going to create one variable
that contains information about the gender of a given record. Take a look at the
following code:

df['Is.Female'] = df['Gender'].apply(lambda x: 1 if x == 'F' else 0)

categorical_features.append('Is.Female')

As you can see from this code, we are creating a new column named Is.Female.
We are using the apply function of the pandas DataFrame and encoding all females

with the value of 1 and all males with the value of 0.

Building predictive models
We are almost ready to start building and training machine learning models to predict customer
responses or engagements. There are a few things to clean up in our data. Take a look at the following
code:

all_features = continuous_features + categorical_features
response = 'Engaged'

sample_df = df[all_features + [response]]
sample_df.columns = [x.replace(' ', '.') for x in sample_df.columns]
all_features = [x.replace(' ', '.') for x in all_features]

As you can see from this code, we are creating a new DataFrame sample_df, which contains all the
features, all_features, and the response variable, response. Then, we are cleaning up the column and
feature names by replacing all the spaces in the names with dots. After these
cleanups, DataFrame sample_df now looks as in the following:

Now that we have a sample set that we can train and test our machine learning models with, let's split
this sample set into two subsets—one for training the models and another for testing and evaluating
the trained models. The Python machine learning package, scikit-learn, has a function that splits a
given sample set into train and test sets. Take a look at the following code:

from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split(sample_df[all_features], sample_df[response], test_size=0.3)

In the model_selection module of the scikit-learn package, there is a function named train_test_split. This
function takes the sample set and the desired breakdown between train and test set sizes as input
parameters and returns train and test sets that are randomly split. As you can see from this code
snippet, we are using 70% of the sample set for training and the remaining 30% for testing. The following
shows the breakdowns of train and test sets from the sample set:

As you can see here, there are a total of 9,134 records in sample_df, 6,393 records in x_train, and 2,741
records in x_test, meaning that roughly 70% of the sample set went into the train set and the
remaining 30% of the sample set went into the test set. We will be using these train and test sets for
building and evaluating models in the following sections.

Random forest model
With the data that we have prepared so far, we are going to build a
predictive model, using a random forest algorithm, which predicts whether
a customer is going to respond or engage with the marketing campaign. In
Python's scikit-learn package, the random forest algorithm is implemented
in the ensemble module and you can import the random forest class using the
following code:

from sklearn.ensemble import RandomForestClassifier

You can create a random forest classifier using the following code:

rf_model = RandomForestClassifier()

However, there are many hyperparameters you can tune for random forest
models. Hyperparameters are the parameters you define before you train a
machine learning model. For example, in the case of a random forest
algorithm, you can define the number of trees you want in your random
forest model. As another example, you can define the maximum depth of
each tree in the forest, so that you can limit how big each tree in the forest
can grow.

There are numerous hyperparameters you can define in scikit-learn's
RandomForestClassifier class. We will take a look at the following few
examples of hyperparameters:

n_estimators: This defines the number of trees you want to build in the
forest. Generally speaking, more trees mean better performance
results. However, the amount of performance gain for each additional
tree decreases as the number of trees in the forest increases. Since
having more trees in a forest means higher cost in computations for
training additional trees, you should try to find the balance and stop
adding trees when the computational cost from training additional trees
outweighs the performance gain.

max_depth: This parameter defines the maximum depth of individual
trees. The larger the depth is, the more information your tree can
capture from the train set, meaning larger trees learn the train set better
than smaller trees. However, the larger the tree grows, the more likely
it is going to overfit the train set. This means that the trained tree
performs and predicts well within the train set, but predicts poorly in
the dataset that it has not seen before. In order to avoid overfitting, we
would want to limit the depth of the tree to a point where it does not
overfit to the train set, but predicts the outcomes well enough.
min_samples_split: This defines the minimum number of data points
required to split a node of the tree. For example, if you defined
min_samples_split to be 50, but the node only has 40 records, then it will
not split the node any further. On the other hand, if the node has more
than the predefined minimum number of samples, then it will split the
node into child nodes. Similar to the max_depth hyperparameter, this
helps you manage the amount of overfitting happening in the tree.
max_features: This defines the maximum number of features to be
considered for splitting a node. This parameter creates the randomness
in random forest models. Given the maximum number of features to be
considered for a split, the random forest algorithm randomly chooses a
subset of the features up to the maximum number and decides how to
split a given node of a tree. This helps each tree of a random forest
model to learn different information from the train set. When these
trees that have learned the train set with slightly different set of
features are bagged or ensembled all together, then the resulting forest
will become more accurate and robust in its predictions.

For a more detailed description and information on other hyperparameters,
you can refer to their official documentation, which can be found at the
following link: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html.

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

Training a random forest model
Training a random forest model using scikit-learn is simple. Take a look at the
following code:

rf_model = RandomForestClassifier(
 n_estimators=200,
 max_depth=5
)

rf_model.fit(X=x_train, y=y_train)

Using the RandomforestClasifier class in the scikit-learn package's ensemble module, you
first need to create a RandomforestClasifier object with the hyperparameters. For
illustration purposes, we are instructing the model to build 200 trees, where each tree
can only grow up to the depth of 5. Then, you can train this model with the fit
function, which takes two parameters, X and y, where X is for the training samples
and y is for the training labels or target values.

When you run this code, you will see an output that looks as follows:

Once a random forest model is trained or fitted, the model object contains a lot of
useful information. One of the useful attributes you can extract from a trained
scikit-learn random forest model is the information about individual trees in the
forest. Using the estimators_ attribute, you can retrieve the individual trees that are
built within the forest. Take a look at the following output:

As you can see from this output, the estimators_ attribute returns a list of sub-
estimators, which are decision trees. With this information, you can simulate what
each of these sub-estimators predicts for each input. For example, the following
code shows how you can get the predictions from the first sub-estimator in the
forest:

rf_model.estimators_[0].predict(x_test)

The following output shows some of the predictions from the first five sub-
estimators:

As you can see from this output, different trees predict differently for each record of
the test set. This is because each tree is trained with different subsets of features that
are randomly selected. Let's take a quick look at the predictions of these individual
sub-estimators. The first tree predicts the 6th record in the test set to be a class of 1
and the rest to be a class of 0. On the other hand, the second tree predicts that the
first 10 records of the test set to be a class of 0. Using this information, you can see
how the final predictions from the random forest model are formed from these
individual sub-estimators or trees.

Other useful information that we can gain from the trained RandomForestClassifier
object is the feature importances, with which we can understand the importance or
the impact of each feature on the final predictions. You can get the feature
importances for each feature using the following code:

rf_model.feature_importances_

The output of this code looks as follows:

In order to associate these feature importances with the corresponding features, you
can use the following code:

feature_importance_df = pd.DataFrame(list(zip(rf_model.feature_importances_, all_features)))
feature_importance_df.columns = ['feature.importance', 'feature']

The result looks as follows:

As you can see from this output, the EmploymentStatus.Retired feature seems to be the
most important factor in making the final prediction and the Income, Total.Claim.Amount,
and Customer.Lifetime.Value features follow as the second, third, and fourth most
important features.

Evaluating a classification model
Earlier in this chapter, we have discussed five different ways to look at the performance of a classification
model. In this section, we are going to learn how we can compute and visualize the metrics for evaluating a
classification model in Python using the random forest model we have just built.

The first three metrics that we are going to look at are accuracy, precision, and recall. Python's scikit-learn
package has implemented functions for these three metrics. You can import these functions using the
following line of code:

from sklearn.metrics import accuracy_score, precision_score, recall_score

As you can see from this code snippet, the metrics module of the scikit-learn package has an accuracy_score
function for calculating the accuracy of a model, a precision_score function for the precision, and
a recall_score function for the recall.

Before we go ahead and evaluate the model performance, we will need the model prediction results. In order
to have the random forest model we have built in the previous section to make predictions on a dataset, we
can simply use the predict function of the model. Take a look at the following code:

in_sample_preds = rf_model.predict(x_train)
out_sample_preds = rf_model.predict(x_test)

With these prediction results, we are going to evaluate how well our random forest model performs in the
train and test sets. The following code shows how we can use the accuracy_score, precision_score, and
recall_score functions in the scikit-learn package:

accuracy
accuracy_score(actual, predictions)

precision
precision_score(actual, predictions)

recall
recall_score(actual, predictions)

As you can see from this code, the accuracy_score, precision_score, and recall_score functions all take two
parameters—truth labels and predicted labels. Take a look at the following output:

This output gives us a brief overview of how well our model performs at predicting the responses. For the
train set, the accuracy of the overall prediction was 0.8724, meaning the model prediction was correct for
about 87% of the time. For the test set, the accuracy of the overall prediction was 0.8818, which is roughly on
the same line with the prediction accuracy within the train set. You can also see that the precision for in-
sample and out-of-sample predictions were 0.9919 and 0.9423 respectively, and the recalls were 0.1311 and
0.1324. Due to the randomness and the different hyperparameters you might have used, you can get different
results.

The next set of metrics we are going to look at are the ROC curve and the AUC. The metrics module in
the scikit-learn package has handy functions for the ROC curve and the AUC. Take a look at the following
line of code:

from sklearn.metrics import roc_curve, auc

The roc_curve function in the metrics module of the scikit-learn package computes the ROC, and the
auc function computes the AUC. In order to compute the ROC and AUC using these functions, we need to
first get the prediction probabilities from our random forest model. The following code shows how we can
get the random forest model's prediction probabilities for both the train and test sets:

in_sample_preds = rf_model.predict_proba(x_train)[:,1]
out_sample_preds = rf_model.predict_proba(x_test)[:,1]

As you can see from this code, we are using the predict_proba function of the random forest model, rf_model.
This function outputs the predicted probabilities of the given record belonging to each class. Since we only
have two possible classes in our case, 0 for no responses and 1 for responses, the output of the predict_proba
function has two columns, where the first column represents the predicted probability of a negative class,
meaning no response for each record, and the second column represents the predicted probability of a
positive class, meaning a response for each record. Since we are only interested in the likelihood of
responding to the marketing effort, we can take the second column for the predicted probabilities of the
positive class.

With these predicted probabilities of the positive class for both the train and test sets, we can now compute
the ROC curve and AUC. Let's first take a look at how we can compute the ROC curve using the roc_curve
function in the following code:

in_sample_fpr, in_sample_tpr, in_sample_thresholds = roc_curve(y_train, in_sample_preds)
out_sample_fpr, out_sample_tpr, out_sample_thresholds = roc_curve(y_test, out_sample_preds)

As you can see from this code snippet, the roc_curve function takes two parameters—observed labels and
predicted probabilities. This function returns three variables, fpr, tpr, and thresholds. The fpr values represent
the false positive rates for each given threshold and the tpr values represent the true positive rates for each
given threshold. The thresholds values represent the actual thresholds at which fpr and tpr are measured.

Next, with these fpr and tpr values, we can compute the AUC using the following code:

in_sample_roc_auc = auc(in_sample_fpr, in_sample_tpr)
out_sample_roc_auc = auc(out_sample_fpr, out_sample_tpr)

print('In-Sample AUC: %0.4f' % in_sample_roc_auc)
print('Out-Sample AUC: %0.4f' % out_sample_roc_auc)

As you can see from this code, the auc function takes two parameters—fpr and tpr. Using the previously
calculated fpr and tpr values from the roc_curve function, we can easily compute the AUC numbers for both
the train and test sets. The output looks as follows:

Depending on the hyperparameters and the randomness within the random forest algorithm, your AUC
numbers can look different from these examples. However, in our case, the in-sample train set AUC was
0.8745 and the out-of-sample test set AUC was 0.8425. If you see a big gap between these two numbers, it is a
sign of overfitting and you should try to address it by pruning the trees in the forest by tuning the
hyperparameters, such as the maximum depth and minimum number of samples to split.

The last thing we are going to look at for evaluating machine learning models is the actual ROC curve. With
the output of the roc_curve function, we can plot the actual ROC curves using the matplotlib package. Take a
look at the following code:

plt.figure(figsize=(10,7))

plt.plot(
 out_sample_fpr, out_sample_tpr, color='darkorange', label='Out-Sample ROC curve (area = %0.4f)' % in_sample_roc_auc
)
plt.plot(
 in_sample_fpr, in_sample_tpr, color='navy', label='In-Sample ROC curve (area = %0.4f)' % out_sample_roc_auc
)
plt.plot([0, 1], [0, 1], color='gray', lw=1, linestyle='--')
plt.grid()
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('RandomForest Model ROC Curve')
plt.legend(loc="lower right")

plt.show()

As you can see from this code, we are plotting three line plots—one for the out-of-sample test set ROC
curve, another for the in-sample train set ROC curve, and lastly one for a straight line for the benchmark.
The result looks as in the following:

As you can see from this plot, it is easier to see and compare the overall performance of the model between
the train and test sets with ROC curves. The larger the gap between the in-sample ROC curve and the out-
of-sample ROC curve, the more the model is overfitting to the train set and fails to generalize the findings
for unforeseen data.

The full code for this Python exercise can be found at the following link: https://github.com/yoonhwang/hands-on-data-science-for-marketing/blob/ma
ster/ch.8/python/PredictingEngagement.ipynb

https://github.com/yoonhwang/hands-on-data-science-for-marketing/blob/master/ch.8/python/PredictingEngagement.ipynb

Predicting the likelihood of marketing
engagement with R
In this section, we are going to discuss how to build predictive models using machine learning
algorithms in R. More specifically, we will learn how to build a predictive model using a random
forest algorithm, as well as how to tune the random forest model, and evaluate the performance of
the model. We will be mainly using the caTools, ROCR, and randomForest packages to evaluate, visualize,
and build machine learning models that predict the likelihood of customer marketing engagement.
For those readers who would like to use Python instead of R for this exercise, you can refer to the
previous section.

For this exercise, we will be using one of the publicly available datasets from IBM, which can be
found at this link: https://www.ibm.com/communities/analytics/watson-analytics-blog/marketing-customer-value-a
nalysis/. You can follow this link and download the data that is available in CSV format,
named WA_Fn UseC_ Marketing Customer Value Analysis.csv. Once you have downloaded this data, you can
load it into your RStudio by running the following command:

1. Load Data
df <- read.csv(
 file="~/Documents/data-science-for-marketing/ch.8/data/WA_Fn-UseC_-Marketing-Customer-Value-Analysis.csv",
 header=TRUE
)

df looks as follows:

https://www.ibm.com/communities/analytics/watson-analytics-blog/marketing-customer-value-analysis/

As you might have noticed, this is the same dataset that we used in the previous chapter, where we
conducted customer analytics. With the knowledge we gained about this dataset from the previous
chapter, we are going to first prepare our data by encoding the target variable and other categorical
variables that we are going to use as features for our machine learning models.

Variable encoding
In order to build machine learning models in R, all the features in the
dataset need to have numerical values. However, in the dataset we have
numerous columns that have non-numerical values. For example, the target
variable, Response, which is what we are going to try to predict with our
machine learning models, is non-numeric. It contains two string values—
Yes or No. We will need to encode this Response target variable with numerical
values in order to be able to build machine learning models. For another
example, the Gender column, which we can use as one of the features for our
predictive model, also does not have numerical values. It contains two
string values—F for female and M for male. In this section, we are going to
discuss how we can encode these non-numeric columns, so that we can use
them as features in machine learning models.

Response variable encoding
The first thing we are going to do is encode the response variable, Response.
We are going to encode Yes values with 1s and No values with 0s. Take a look
at the following code:

2.1. Response Variable: Response
df$Engaged <- as.integer(df$Response) - 1

As you can see from this code, we are simply casting the values of the
Response column to integer values using the as.integer function. The reason
why we are subtracting by 1 is because it encodes values into 1 for No and
2 for Yes, instead of 0 for No and 1 for Yes, as we wanted. We then store these
encoded values in a newly-created column, Engaged. In order to get the
overall response or engagement rate using this newly-created column, you
can use the following code:

mean(df$Engaged)

The overall engagement rate looks as follows:

Categorical variable encoding
If you look closely at the data, the following columns are categorical
variables in our dataset:

2.2. Categorical Features

categoricalVars = c(
 'Sales.Channel', 'Vehicle.Size', 'Vehicle.Class', 'Policy', 'Policy.Type',
 'EmploymentStatus', 'Marital.Status', 'Education', 'Coverage', 'Gender'
)

These variables have a set of different values they can take and these values
do not necessarily have orders that differentiate one from another.

If you recall from Chapter 4, From Engagement to Conversion, we discussed
how we can create factor variables for such categorical variables in R. In this
chapter, the method we are going to use is to create dummy variables for
each category of individual categorical variables, using
the model.matrix function in R. Take a look at the following code:

encodedDF <- model.matrix(~.-1, df[categoricalVars])

As you can see from this code, it is simple to create dummy variables for
categorical variables in R. All you need to do is to apply the model.matrix
function on the R DataFrame's categorical variable columns. If you look closely
at the code, you will notice the ~.-1 formula that we are using here. Without
this formula, the model.matrix function will create an unnecessary column
named Intercept in the output matrix. In order to avoid having this
unnecessary column, we can use the formula in this code example. The first
few columns of the newly-created DataFrame encodedDf now look as in the
following:

As you can see from this output, each column of this new DataFrame represents
each category in the original column. For example, the first column,
Sales.ChannelAgent, is encoded with 1 if the given record or customer was
reached out by a sales agent and 0 otherwise. For another example, the fifth
column, Vehicle.SizeMedsize, is encoded with 1 if the given record or customer
has medium-size vehicles and 0 otherwise.

Now that we have successfully encoded all the categorical variables with
numerical values, we need to append the continuous variables to this newly-
created DataFrame, encodedDF. Take a look at the following code:

2.3. Continuous Features
continuousFeatures <- c(
 'Customer.Lifetime.Value', 'Income', 'Monthly.Premium.Auto',
 'Months.Since.Last.Claim', 'Months.Since.Policy.Inception',
 'Number.of.Open.Complaints', 'Number.of.Policies', 'Total.Claim.Amount'
)

encodedDF <- cbind(encodedDF, df[continuousFeatures])

As you can see from this code, we are using the cbind R function, which
combines two DataFrames by columns. We are combining the previously-
created DataFrame encodedDF, which contains all the encoded categorical
variables with the DataFrame with continuous variables. Then, we are
storing this combined DataFrame back to the encodedDF variable.

Building predictive models
We are almost ready to start building and training machine learning models
to predict customer responses or engagements. There is one thing we need
to do before we start training a random forest model. We need to split the
sample set, the encodedDF variable, into two subsets—one for training the
models and another for testing and evaluating the trained models. The
caTools R package has a handy function that splits a given sample set into
train and test sets. If you do not have this library installed in your R
environment, you can install it using the following command:

install.packages('caTools')

Now, take a look at the following code on how to split the sample set into
training and testing:

library(caTools)

sample <- sample.split(df$Customer, SplitRatio = .7)

trainX <- as.matrix(subset(encodedDF, sample == TRUE))
trainY <- as.double(as.matrix(subset(df$Engaged, sample == TRUE)))

testX <- as.matrix(subset(encodedDF, sample == FALSE))
testY <- as.double(as.matrix(subset(df$Engaged, sample == FALSE)))

Let's take a closer look at this code. The sample.split function in the caTools
package lets us split the dataset into a proportion we would like. As you can
see from this code, we defined SplitRatio to be 0.7, which means we are
taking 70% of the sample set as a training set and the remaining 30% of the
sample set as a test set. The resulting variable, sample, now has an array of
Boolean values, TRUE or FALSE, where 70% of the arrays are TRUE and the
remaining 30% are FALSE.

With this data, we can create train and test sets. As you can see from the
code, we are using the subset function in R to create train and test sets. First,
we take those records that correspond to TRUE values in the sample variable as
the train set. Then, we take those records whose indexes correspond to FALSE

values in the sample variable as the test set. The following shows the
breakdown of train and test sets from the sample set:

As you can see here, there are a total of 9,134 records
in encodedDF, 6,393 records in trainX, and 2,741 records in testX, meaning that
roughly 70% of the sample set went into the the train set and the
remaining 30% of the sample set went into the test set. We will be using these
train and test sets for building and evaluating models in the following
sections.

Random forest model
With the data that we have prepared so far, we are going to build a
predictive model using a random forest algorithm, which predicts whether a
customer is going to respond or engage with the marketing campaign. We
are going to use the randomForest R library. If you do not have this library
installed in your R environment, you can install it using the following
command:

install.packages('randomForest')

Once you have this package installed, you can use the following code to
build a random forest model:

library(randomForest)

rfModel <- randomForest(x=trainX, y=factor(trainY))

However, there are many hyperparameters you can tune for random forest
models. Hyperparameters are the parameters you define before you train a
machine learning model. For example, in the case of a random forest
algorithm, you can define the number of trees you want in your random
forest model. As another example, you can define the maximum number of
terminal nodes for each tree in the forest, so that you can limit how big each
tree in the forest can grow.

There are numerous hyperparameters you can define and fine-tune. We will
take a look at a few of these hyperparameters:

ntree: This defines the number of trees you want to build in the forest.
Generally speaking, more trees mean better performance results.
However, the amount of performance gain for each additional tree
decreases as the number of trees in the forest increases. Since having
more trees in a forest means higher cost in computations for training
additional trees, you should try to find the balance and stop adding

trees when the computational cost from training additional trees
outweighs the performance gain.
sampsize: This parameter defines the size of the sample to draw for
training each tree. This introduces randomness in the forest, while
training a random forest model. Having a high sample size results in a
less random forest and has a higher chance of overfitting. This means
that the trained tree performs and predicts well within the train set, but
predicts poorly in the dataset that it has not seen before. Decreasing the
sample size can help you avoid overfitting, but the performance of
your model usually decreases as you decrease the sample size.
nodesize: This parameter defines the minimum size of the terminal
nodes, which means how many samples each terminal node needs to
have at the very least. The larger this number is, the smaller the tree
can grow. As you increase this number, you can mitigate the
overfitting issues, but at the expense of the model performance.
maxnodes: This parameter defines the maximum number of terminal
nodes each tree in the forest can have. If you do not set this number,
the algorithm is going to grow the tree to the fullest. This can result in
overfitting the train set. Reducing the maximum number of terminal
nodes can help you overcome overfitting issues.

For a more detailed description and information on other hyperparameters,
you can refer to the official documentation that can be found at the
following link: https://www.rdocumentation.org/packages/randomForest/versions/4.6-1
4/topics/randomForest.

https://www.rdocumentation.org/packages/randomForest/versions/4.6-14/topics/randomForest

Training a random forest model
Training a random forest model using the randomForest package is simple.
Take a look at the following code:

rfModel <- randomForest(x=trainX, y=factor(trainY), ntree=200, maxnodes=24)

Using the randomForest function in the randomForest package, you can easily
train a random forest model. You just need to supply the train set to the
function. For illustration purposes, we are instructing the model to
build 200 trees, where each tree can only grow up to 24 terminal nodes.

When you run this code, your model object will look as follows:

Once a random forest model is trained or fitted, the model object contains a
lot of useful information. One of the useful attributes you can extract from a
trained random forest model is the information about individual trees in the
forest. Using the getTree function, you can retrieve how the individual trees
are built within the forest. Take a look at the following example:

Here we are looking at the information about the first tree in the forest. This
gives us some information about the structure of the tree. The left daughter
and right daughter columns tell us the location of this node in the given tree.
The status column tells us whether the node is terminal (-1) or not (1). The
prediction column tells us the prediction from this node.

Other information we can get from the fitted random forest model is the
prediction from each tree in the forest. Take a look at the following code:

predict(rfModel, trainX, predict.all=TRUE)

By using the predict.all=TRUE flag, the prediction function returns the
predictions from each tree in the forest. Take a look at the following output:

This output is showing the first 20 trees' predictions for the first five records
in the train set. As you can see from this output, the 10th tree in the forest
predicted the 5th record in the train set to be a class of 1, but all the other 19
trees predicted the 5th record in the train set to be a class of 0. As you can see
from this output, different trees predict differently for each record of the test
set. This is because each tree is trained with different subsets of features that
are randomly selected. Using this information, you can see how the final
predictions from the random forest model are formed from these individual
sub-estimators or trees.

Other useful information that we can gain from a trained randomForest object is
the feature importances, with which we can understand the importance or the
impact of each feature on the final predictions. You can get the feature
importances for each feature using the following code:

- Feature Importances
importance(rfModel)

Part of the output of this code looks as follows:

As you can see from this output, the EmploymentStatusRetired feature seems to
be the most important factor in making the final prediction and the
Income, Total.Claim.Amount, and Customer.Lifetime.Value features follow as the
second, third, and fourth most important features.

Evaluating a classification model
Earlier in this chapter, we discussed five different ways to look at the
performance of a classification model. In this section, we are going to learn
how we can compute and visualize the metrics for evaluating a classification
model in R using the random forest model we have just built.

The first three metrics that we are going to look at are accuracy, precision,
and recall. Before we go ahead and evaluate the model performance, we will
need the model prediction results. In order to have the random forest model
we have built in the previous section make predictions on a dataset, we can
simply use the predict function. Take a look at the following code:

inSamplePreds <- as.double(predict(rfModel, trainX)) - 1
outSamplePreds <- as.double(predict(rfModel, testX)) - 1

With these prediction results, we are going to evaluate how well our random
forest model performs in the train and test sets. The following code shows
how we can compute accuracy, precision, and recall in R:

- Accuracy
accuracy <- mean(testY == outSamplePreds)

- Precision
precision <- sum(outSamplePreds & testY) / sum(outSamplePreds)

- Recall
recall <- sum(outSamplePreds & testY) / sum(testY)

Using this method, we can compare the in-sample train set accuracy, precision,
and recall against the out-of-sample test set's accuracy, precision, and recall.
Take a look at the following output:

This output gives us a brief overview of how well our model performs at
predicting the responses. For the train set, the accuracy of the overall
prediction was 0.8756, meaning the model prediction was correct for
about 88% of the time. For the test set, the accuracy of the overall prediction
was 0.8636. You can also find that the precisions for in-sample and out-of-
sample predictions were 0.9717 and 0.8980 respectively, and the recalls
were 0.1151 and 0.1065. Due to the randomness and the different
hyperparameters you might have used, you might get different results.

The next set of metrics we are going to look at are the ROC curve and
the AUC. We are going to use the ROCR R package. If you do not have this
package installed in your R environment, you can install it using the
following command:

install.packages('ROCR')

Take a look at the following code for the ROC curve and the AUC number
first:

library(ROCR)

inSamplePredProbs <- as.double(predict(rfModel, trainX, type='prob')[,2])
outSamplePredProbs <- as.double(predict(rfModel, testX, type='prob')[,2])

pred <- prediction(outSamplePredProbs, testY)
perf <- performance(pred, measure = "tpr", x.measure = "fpr")
auc <- performance(pred, measure='auc')@y.values[[1]]

plot(
 perf,
 main=sprintf('Random Forest Model ROC Curve (AUC: %0.2f)', auc),
 col='darkorange',
 lwd=2
) + grid()
abline(a = 0, b = 1, col='darkgray', lty=3, lwd=2)

The first thing we need to do is to get the predicted probabilities from the
model we have built. Using the predict function and the type='prob' flag, we
can get the predicted probabilities from the random forest model. Then, we
are using the prediction function in the ROCR package. This function computes
the number of true positives and false positives at different probability
cutoffs that we need for the ROC curve. Using the output of the prediction
function, we can then get the true positive rates and false positive rates at
different probability cutoffs with the performance function in the ROCR package.
Lastly, in order to get the AUC number, we can use the same performance
function with a different flag, measure='auc'.

With this data, we can now plot the ROC curve. Using the plot function and
the perf variable, which is the output of the performance function, we can plot
the ROC curve. The plot looks as follows:

As you can see from this plot, the AUC of our random forest model was 0.76.
Compared to the benchmark straight line, which represents the random line,
the model performs much better, and this shows that the model predictions
are much better than random predictions.

The full code for this R exercise can be found at the following link: https://github.com/yoonhwan
g/hands-on-data-science-for-marketing/blob/master/ch.8/R/PredictingEngagement.R.

https://github.com/yoonhwang/hands-on-data-science-for-marketing/blob/master/ch.8/R/PredictingEngagement.R

Summary
In this chapter, we discussed predictive analytics and its applications in
marketing. We first discussed what predictive analytics is and how it is used
in various other industries, such as in the financial and healthcare industries.
Then we discussed four common use cases of predictive analytics in
marketing—likelihood of engagement, customer lifetime value,
recommending the right products and contents, and customer acquisition
and retention. There can be numerous other use cases of predictive analytics
in marketing, so we recommend you keep up with the latest news on how
predictive analytics can be used in marketing industries. We then discussed
five different ways to evaluate the performances of predictive models—
accuracy, precision, recall, the ROC curve, and the AUC.

In the following chapter, we are going to expand our knowledge of
predictive analytics. We are going to discuss the concept and importance of
measuring customer lifetime value, as well as building machine learning
models for customer lifetime value predictions.

Customer Lifetime Value
In this chapter, we are going to focus on the second use case of predictive
analytics in marketing, the customer lifetime value that we discussed in the
previous chapter. In marketing, it is always a challenge to budget for
marketing campaigns. We do not want to spend too much and result in a
negative ROI. However, we also do not want to spend too little and have no
visible impact or outcome. When determining the budget for a marketing
strategy, it is essential to know what the expected return will be from
running a given marketing campaign. Understanding what the customer
lifetime value (CLV) is for individual customers can help marketers justify
their marketing budget, as well as target potential high-value customers. In
this chapter, we are going to discuss in more detail the concept and the
advantage of calculating the CLV, as well as how to build a predictive
machine learning model to predict the expected CLV for individual
customers in Python and R.

In this chapter, we will cover the following topics:

CLV
Evaluation metrics for regression models
Predicting the 3 month CLV with Python
Predicting the 3 month CLV with R

CLV
In marketing, the CLV is one of the key metrics to have and monitor. The
CLV measures customers' total worth to the business over the course of
their lifetime relationship with the company. This metric is especially
important to keep track of for acquiring new customers. It is generally more
expensive to acquire new customers than to keep existing customers, so
knowing the lifetime value and the costs associated with acquiring new
customers is essential in order to build marketing strategies with a positive
ROI. For example, if the average CLV of your customer is $100 and it only
costs $10 to acquire a new customer, then your business will be generating
more revenue as you acquire new customers.

However, if it costs $150 to acquire a new customer and the average CLV
of your customer is still $100, then you will be losing money for each
acquisition. Simply put, if your marketing spend for new customer
acquisition exceeds the CLV, you will be losing money for each acquisition,
and it is better to just work with the existing customers.

There are multiple ways to calculate CLV. One way is to find the customer's
average purchase amount, purchase frequency, and lifetime span and do a
simple calculation to get the CLV. For example, think of a hypothetical
case, where a customer's average purchase amount is $100 and he or she
makes purchases five times every month on average. Then this customer's
average value per month is $500, which is simply multiplying the average
purchase amount with the average purchase frequency. Now, we need to
know this customer's lifetime span. One way to estimate a customer's
lifetime span is to look at the average monthly churn rate, which is the
percentage of customers leaving and terminating the relationship with your
business. You can estimate a customer's lifetime span by dividing one by
the churn rate. Assuming 5% of the churn rate in our hypothetical case, the
estimated customer's lifetime span is 20 years. Given the customer's
average value per month of $500 and lifetime span of 20 years, the CLV of
this customer turns out to be $120,000. This final CLV amount is calculated

by multiplying $500, the average value per month, by 12 months and the
lifetime span of 20 years.

Because we do not typically know the lifetime span of customers, we often
try to estimate CLV over the course of a certain period. It can be done by
estimating a customer's 12-month CLV, 24-month CLV, or can also be a 3-
month CLV. Aside from the method we discussed through an example, CLV
can also be estimated through building predictive models. Using machine
learning algorithms and customers' purchase history data, we can build
machine learning models that predict customers' CLV over the course of a
certain period. In the programming exercises in this chapter, we are going to
learn how to build a regression model that predicts customers' 3-month
CLV.

Evaluating regression models
We need to use a different set of metrics for evaluating regression models
from those for classification model evaluations. This is because the
prediction output of a regression model takes continuous values, meaning it
can take any value and is not restricted to taking from a predefined set of
values. On the other hand, as we have seen in Chapter 8, Predicting the
Likelihood of Marketing Engagement, the prediction output of a
classification model can only take a certain number of values. As was the
case for the engagement prediction, our classification model from the
previous chapter could only take two values—zero for no engagement and
one for engagement. Because of this difference, we need to use different
metrics to evaluate regression models.

In this section, we are going to discuss four commonly used methodologies
to evaluate regression models—mean squared error (MSE), median
absolute error (MAE), R2, and predicted versus actual scatter plot. As the
name suggests, MSE measures the average of the squared errors, where the
errors are the differences between the predicted and actual values. The
equation for MSE looks as follows:

The Y values in this equation are the actual values and Y' values are the
predicted values. Because MSE is an average of squared errors, this measure
is sensitive to and highly affected by outliers.

The MAE, on the other hand, is less sensitive to outliers and considered
more robust, as the median is affected by the outliers or values at the end
tails much less than the average. The equation, borrowed from this scikit-
learn documentation page, https://scikit-learn.org/stable/modules/model_evaluatio
n.html#median-absolute-error, looks as follows:

https://scikit-learn.org/stable/modules/model_evaluation.html#median-absolute-error

The y values in this equation represent the actual values and the values
represent the predicted values.

Another frequently used measure for regression models is R2, also called the
coefficient of determination. R2 measures the goodness of fit. In other
words, it measures how well a regression model is fitted to the data. Simply
put, R2 is the percentage of the explained variability of the target variable by
the regression model. The equation looks as follows:

R2 typically ranges between zero and one. The R2 value of zero means the
model does not explain or capture the target variable variability at all and is
not a good fit to the data. On the other hand, the R2 value of one means that
the model captures 100% of the target variable variability and is a perfect fit
to the data. The closer to one the R2 value is, the better the model fit is.

Lastly, a scatter plot of predicted values against actual values is also used to
visualize how closely the model fits. An example of this scatter plot looks
like the following:

For a good fit, you will see points in this scatter plot that are close to the
diagonal line. If the model's R2 is high, the points will be close to the
diagonal line. On the other hand, if the model's R2 is low, the points will be
dispersed away from the diagonal line. In the following programming
exercises, we will discuss how to compute and visualize these measures in
Python and R, and will use these measures to evaluate our regression model.

Predicting the 3 month CLV with
Python
In this section, we are going to discuss how to build and evaluate regression
models using machine learning algorithms in Python. By the end of this
section, we will have built a predictive model using a linear regression
algorithm to predict the CLV, more specifically, the expected 3 month
customer value. We will be mainly using the pandas, matplotlib, and scikit-
learn packages to analyze, visualize, and build machine learning models that
predict the expected 3 month customer value. For those readers who would
like to use R instead of Python for this exercise, you can skip to the next
section.

For this exercise, we will be using one of the publicly available datasets
from the UCI Machine Learning Repository, which can be found at this
link: http://archive.ics.uci.edu/ml/datasets/online+retail.

You can follow this link and download the data that is available in XLSX
format, named Online Retail.xlsx. Once you have downloaded this data, you
can load it into your Jupyter Notebook by running the following command:

import pandas as pd

df = pd.read_excel('../data/Online Retail.xlsx', sheet_name='Online Retail')

The DataFrame, df, looks as follows:

http://archive.ics.uci.edu/ml/datasets/online+retail

As you might have noticed, we have used this dataset a few times in the
previous chapters. With the knowledge we gained about this dataset from the
previous chapters, we are going to first prepare our data by cleaning it up.

Data cleanup
As you might recall, there are a few things we need to clean up in this dataset. The
clean-up steps are as follows:

1. Handling negative quantity: There are transactions with a negative Quantity
value, which represent canceled orders. We are going to ignore those
canceled orders for this exercise, so we will need to exclude them from our
pandas DataFrame. The code to exclude these negative values in the Quantity
column looks as follows:

 df = df.loc[df['Quantity'] > 0]

We are simply taking all of those rows with a positive Quantity value and
storing them back to the df variable.

2. Dropping NaN records: We need to drop records with no CustomerID. Since
we are going to build a machine learning model to predict the 3 month
customer value, we need to group the data by the CustomerID column. Without
it, we cannot properly build models for this project. The code to drop records
with no CustomerID values looks like the following code snippet:

 df = df[pd.notnull(df['CustomerID'])]

As you can see from this code, we are using the notnull function in the
pandas package. This function returns a list of arrays, where True values
indicate that the value in the given index is not null and False values
indicate that the value in the given index is null. We store these records
with not null values in the CustomerID column back to the df variable.

3. Handling incomplete data: Another cleanup we need to do is to handle
incomplete data. If you recall from previous chapters, the transaction data for
the last month is incomplete. Take a look at the following output:

As you can see from this output, the dataset has all of the transactions betwe
December 1, 2010 and December 9, 2011. The data for the last month, Decem

2011, is not complete. In order to properly build a model for the 3 month cus
value predictions, we are going to ignore the transactions in the last month. T
look at the following code that shows how to drop those records from our
DataFrame:

 df = df.loc[df['InvoiceDate'] < '2011-12-01']

We are simply taking all of the transactions that occurred before December
01, 2011 and storing them back to the df variable.

4. Total sales value: Lastly, we need to create a column for the total sales value
for each transaction. Take a look at the following code:

 df['Sales'] = df['Quantity'] * df['UnitPrice']

We are multiplying the Quantity column by the UnitPrice column to get the
total purchase amount for each transaction. Then, we store these values
into a column named Sales. We have now completed all of the clean-up
tasks.

Now we have cleaned up all of the transaction data, let's summarize this
data for each order or InvoiceNo. Take a look at the following code:

 orders_df = df.groupby(['CustomerID', 'InvoiceNo']).agg({
 'Sales': sum,
 'InvoiceDate': max
 })

As you can see from this code, we are grouping the DataFrame df by two
columns, CustomerID and InvoiceNo. Then, we are summing up all of
the Sales values for each customer and order, and taking the last transaction
time for the given order as InvoiceDate. This way we now have a DataFrame,
orders_df, as we need to know about each order that each customer placed.
The data looks like the following:

Before we dive into building models, let's take a closer look at this customer
purchase history data.

Data analysis
In order to calculate the CLV, we need to know the frequency, recency, and
total amount of purchases by each customer. We are going to compute basic
information about each customer's average and lifetime purchase amount, as
well as each customer's duration and frequency of purchases. Take a look at
the following code:

def groupby_mean(x):
 return x.mean()

def groupby_count(x):
 return x.count()

def purchase_duration(x):
 return (x.max() - x.min()).days

def avg_frequency(x):
 return (x.max() - x.min()).days/x.count()

groupby_mean.__name__ = 'avg'
groupby_count.__name__ = 'count'
purchase_duration.__name__ = 'purchase_duration'
avg_frequency.__name__ = 'purchase_frequency'

summary_df = orders_df.reset_index().groupby('CustomerID').agg({
 'Sales': [min, max, sum, groupby_mean, groupby_count],
 'InvoiceDate': [min, max, purchase_duration, avg_frequency]
})

We first group by the CustomerID column and aggregate the numbers by Sales
and InvoiceDate columns. If you look closely at the aggregation functions, we
are using four customer aggregation functions: groupby_mean, groupby_count,
purchase_duration, and avg_frequency. The first function, groupby_mean, simply
computes the average for each group and the second function, groupby_count,
simply counts the number of records in each group. The purchase_duration
function counts the number of days between the first and last invoice dates
in each group and the avg_frequency function calculates the average number of
days between orders by dividing purchase_duration by the number of orders.

The resulting DataFrame looks like the following:

This data gives us an idea of the purchases each customer has made. For
example, the customer with ID 12346 only made one purchase on January 18,
2011. However, the customer with ID 12347 has made six purchases that
range from December 7, 2010 to October 31, 2011, or over the course of 327
days. The average amount this customer spent on each order is 680 and, on
average, this customer made a purchase every 54.5 days.

Let's take a closer look at the distributions of the number of purchases that
the repeat customers have made.

Take a look at the following code:

summary_df.columns = ['_'.join(col).lower() for col in summary_df.columns]
summary_df = summary_df.loc[summary_df['invoicedate_purchase_duration'] > 0]

ax = summary_df.groupby('sales_count').count()['sales_avg'][:20].plot(
 kind='bar',
 color='skyblue',
 figsize=(12,7),
 grid=True
)

ax.set_ylabel('count')

plt.show()

As you can see from this code, we clean up the column names of the
DataFrame, summary_df, in the first line. Then, we are only taking the
customers who have made at least two or more purchases, which represents
repeat customers. Lastly, we group by the sales_count column and count how
many customers belong to each category. The resulting plot looks as follows:

As you can see from this plot, the majority of customers have made 10 or
less purchases historically. Let's take a look at the average number of days

between purchases for these repeat customers. Take a look at the following
code first:

ax = summary_df['invoicedate_purchase_frequency'].hist(
 bins=20,
 color='skyblue',
 rwidth=0.7,
 figsize=(12,7)
)

ax.set_xlabel('avg. number of days between purchases')
ax.set_ylabel('count')

plt.show()

We are building a histogram with the purchase frequency data using the hist
function in the pandas package. The bins parameter defines the number of
histogram bins to build. The result looks as follows:

This plot tells us the overall view of how frequently repeat customers made
purchases historically. As you can see from this plot, the majority of repeat
customers made purchases every 20 to 50 days.

Predicting the 3 month CLV
In this section, we are going to build a model that predicts the 3 month
customer value using the pandas and scikit-learn packages in Python. We are
going to first slice the data into chunks of 3 months and take the last 3
months' data as the target for predictions and the rest as the features. We
will first prepare our data for model building and then train a linear
regression model for the 3 month customer value predictions.

Data preparation
In order to build a predictive model, we need to prepare our data first, so that
we can feed the relevant data into the model. Take a look at the following
code:

clv_freq = '3M'

data_df = orders_df.reset_index().groupby([
 'CustomerID',
 pd.Grouper(key='InvoiceDate', freq=clv_freq)
]).agg({
 'Sales': [sum, groupby_mean, groupby_count],
})

data_df.columns = ['_'.join(col).lower() for col in data_df.columns]
data_df = data_df.reset_index()

Since we want to predict the 3 month customer value, we are breaking down
the data into chunks of 3 months for each customer. As you can see in the
groupby function, we group the previously built DataFrame orders_df by
CustomerID and a custom Grouper, which groups InvoiceDate by every 3 months.
Then, for each group of 3 month time windows, we sum up all of the sales to
get the total purchase amount, take the average of purchase amount and the
total number of purchases for the given period for each customer. This way
we have aggregate data that has purchase information for each customer for
every 3 months. Lastly, we do some cleanup for the column names. The data
in data_df now looks like the following:

In order to make things simpler, let's encode the InvoiceDate column values so
that they are easier to read than the current date format. Take a look at the
following code:

date_month_map = {
 str(x)[:10]: 'M_%s' % (i+1) for i, x in enumerate(
 sorted(data_df.reset_index()['InvoiceDate'].unique(), reverse=True)
)
}

data_df['M'] = data_df['InvoiceDate'].apply(lambda x: date_month_map[str(x)[:10]])

As you can see from this code, we are encoding date values into M_1, M_2, M_3,
and so forth, where the smaller number represents more recent dates. For
example, the date 2011-12-31 is now encoded as M_1 and the date 2011-09-30 is
now encoded as M_2. The result looks as follows:

We are now ready to build a sample set with features and target variables. As
briefly mentioned before, we are going to use the last 3 months as the target
variable and the rest as the features, meaning we are going to train a machine
learning model that predicts the last 3 months' customer value with the rest
of the data. In order to train such a model, we need to transform this data
into tabular data, where the rows represent the individual customers and the
columns represent each feature. Take a look at the following code:

features_df = pd.pivot_table(
 data_df.loc[data_df['M'] != 'M_1'],
 values=['sales_sum', 'sales_avg', 'sales_count'],
 columns='M',
 index='CustomerID'
)

features_df.columns = ['_'.join(col) for col in features_df.columns]

As you can see from this code, we use the pandas function, pivot_table, where
the index is going to be CustomerID and the columns are going to be sales_sum,
sales_avg, and sales_count for each 3 month period. The
DataFrame, features_df, that we created here looks like the following:

You might notice that this data has NaN values. We can encode these NaN
values with 0.0 using the following code:

features_df = features_df.fillna(0)

Now that we have built the features DataFrame, let's build the target
variables. Take a look at the following code:

response_df = data_df.loc[
 data_df['M'] == 'M_1',
 ['CustomerID', 'sales_sum']
]

response_df.columns = ['CustomerID', 'CLV_'+clv_freq]

As you can see from this code, we are taking the last 3 month period, the M_1
group, as the target variable. The target column will be sales_sum, as we want
to predict the next 3 month customer value, which is the total purchase
amount that a given customer is likely to make in the next 3 months. The
target variable looks like the following:

There is only one thing left to build, which is a sample set for building
machine learning models, combining features and response data together.
Take a look at the following code:

sample_set_df = features_df.merge(
 response_df,
 left_index=True,
 right_on='CustomerID',
 how='left'
)

sample_set_df = sample_set_df.fillna(0)

As you can see here, we are simply joining the two DataFrames on CustomerID,
using the merge function. By having the how='left' flag, we take all records in
the features data, even if there is no corresponding data in the response data.
This is a case where the given customer did not make any purchases in the

last 3 months, so we encode them as zero. The final sample set now looks as
follows:

With this data, we can now build a model that predicts the next 3 month
customer value with historical purchase data.

Linear regression
Similar to the previous chapter, we are going to split the sample set into train
and test sets, using the following code:

from sklearn.model_selection import train_test_split

target_var = 'CLV_'+clv_freq
all_features = [x for x in sample_set_df.columns if x not in ['CustomerID', target_var]]

x_train, x_test, y_train, y_test = train_test_split(
 sample_set_df[all_features],
 sample_set_df[target_var],
 test_size=0.3
)

As you can see from this code, we are taking 70% of the sample set for training
the model and the remaining 30% for testing and evaluating the model
performance. In this section, we will be using a linear regression model.
However, we recommend experimenting with other machine learning
algorithms, such as random forest and support vector machine (SVM).

More details on how to train these models with the scikit-learn package can be found at the
following links: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
and https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html.

In order to train a linear regression model with our dataset, you can use the
following code:

from sklearn.linear_model import LinearRegression

reg_fit = LinearRegression()
reg_fit.fit(x_train, y_train)

This is as simple as it gets. You import the LinearRegression class of the scikit-learn
package and initiate a LinearRegression object. Then, you can train a linear
regression model using the fit function with the x_train features and the
y_train targets.

Once a linear regression model is trained, there is some useful information that
you can find in the LinearRegression object. First, you can get the intercept of the
linear regression equation, using the intercept_ attribute of the LinearRegression
object, like the following:

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html

reg_fit.intercept_

Also, you can find the fitted linear regression model's coefficients, using the
coef_ attribute like the following code:

reg_fit.coef_

The coefficients of each feature of the fitted regression model look as follows:

As you can see from this coefficient output, you can easily find which features
have negative correlation with the target and which features have positive
correlation with the target. For example, the previous 3 month period's average
purchase amount, sales_avg_M_2, has negative impacts on the next 3 month
customer value. This means that the higher the previous 3 month period's
purchase amount is, the lower the next 3 month purchase amount will be. On the

other hand, the second and third most recent 3 month period's average purchase
amounts, sales_avg_M_3 and sales_avg_M_4, are positively correlated with the next 3
month customer value. In other words, the more a customer made purchases 3
months to 9 months ago, the higher value he or she will bring in the next 3
months. Looking at the coefficients is one way to gain insights on how the
expected value will change, given certain features.

Using the 3 month customer value prediction output, you can custom-tailor your
marketing strategies in different ways. Since you know the expected revenue or
purchase amount from individual customers for the next 3 months, you can set a
better informed budget for your marketing campaign. It should be set high
enough to reach your target customers, but low enough to be below the expected
3 month customer value, so that you can have a positive ROI marketing
campaign. On the other hand, you can also use these 3 month customer value
prediction output values to specifically target these high-value customers for the
next 3 months. This can help you to create marketing campaigns with a higher
ROI, as those high-value customers, predicted by this model, are likely to bring
in more revenue than the others.

Evaluating regression model
performance
Now that we have a machine learning model that is fitted to predict the 3
month customer value, let's discuss how to evaluate the performance of this
model. As discussed previously, we are going to use R2, MAE, and a scatter
plot of predicted versus actual to evaluate our model. We need to get the
prediction output from our model first, as shown in the following code:

train_preds = reg_fit.predict(x_train)
test_preds = reg_fit.predict(x_test)

The scikit-learn package has implemented the functions to compute the R2

and the MAE in their metrics module. You can use these functions by
importing them into your environment, like the following code:

from sklearn.metrics import r2_score, median_absolute_error

As the names suggest, the r2_score function computes the R2 and the
median_absolute_error function computes the MAE. You can compute the R2

and MAE numbers, using the following code:

r2_score(y_true=y_train, y_pred=train_preds)
median_absolute_error(y_true=y_train, y_pred=train_preds)

As you can see from here, both functions take two parameters, y_true and
y_pred. The y_true parameter is for the actual target values and the y_pred
parameter is for the predicted target values. Using these codes, the in-sample
and out-of-sample values for R2 and MAE in our case look like the
following output:

Due to the randomness in splitting the sample set into train and test sets,
your might differ from these results. In our case, the in-sample R2 was 0.4445
and the out-of-sample R2 was 0.7947. On the other hand, the in-sample MAE
was 178.2854 and the out-of-sample MAE was 178.7393. Looking at these
numbers, we do not necessarily see a hint of overfitting or a big gap between
the in-sample and out-of-sample performances.

Lastly, let's take a look at the scatter plot of predicted versus actual. You can
use the following code for this scatter plot:

plt.scatter(y_test, test_preds)
plt.plot([0, max(y_test)], [0, max(test_preds)], color='gray', lw=1, linestyle='--')

plt.xlabel('actual')
plt.ylabel('predicted')
plt.title('Out-of-Sample Actual vs. Predicted')
plt.grid()

plt.show()

The resulting plot looks as follows:

As you can see from this plot, the x-values are the actual values and the y-
values are the predicted values. As discussed earlier, the more the points that

are on the straight line, the better the predictions are. This is because points
on the straight line suggest that the actual values and the predicted values are
close to each other. Looking at this plot, the points seem to be positioned
around the straight line, which suggests that the predictions and the actual
values are not too far apart from each other.

The full code for this Python exercise can be found at the following repository: https://gith
ub.com/yoonhwang/hands-on-data-science-for-marketing/blob/master/ch.9/python/CustomerLifetimeValue.ipynb.

https://github.com/yoonhwang/hands-on-data-science-for-marketing/blob/master/ch.9/python/CustomerLifetimeValue.ipynb

Predicting the 3 month CLV with R
In this section, we are going to discuss how to build and evaluate regression
models using machine learning algorithms in R. By the end of this section,
we will have built a predictive model using a linear regression algorithm to
predict the CLV, more specifically, the expected 3 month customer value. We
will be using a handful of R packages, such as dplyr, reshape2, and caTools, to
analyze, transform, and prepare the data for building machine learning
models to predict the expected 3 month customer value. For those readers
who would like to use Python instead of R for this exercise, you can refer to
the previous section.

For this exercise, we will be using one of the publicly available datasets
from the UCI Machine Learning Repository, which can be found at this
link: http://archive.ics.uci.edu/ml/datasets/online+retail. You can follow this
link and download the data that is available in XLSX format, named Online
Retail.xlsx. Once you have downloaded this data, you can load it into your R
environment by running the following command:

library(dplyr)
library(readxl)

1. Load Data
df <- read_excel(
 path="~/Documents/data-science-for-marketing/ch.9/data/Online Retail.xlsx",
 sheet="Online Retail"
)

The DataFrame, df, looks as follows:

http://archive.ics.uci.edu/ml/datasets/online+retail

As you might have noticed, we have used this dataset a few times in the
previous chapters. With the knowledge we gained about this dataset from the
previous chapters, we are going to first prepare our data by cleaning up the
data.

Data cleanup
As you might recall, there are a few things we need to clean up in this dataset. The
clean-up steps are as follows:

1. Handling negative quantity: There are transactions with a negative Quantity
value, which represent canceled orders. We are going to ignore those
canceled orders for this exercise, so we will need to exclude them from
our DataFrame. The code to exclude these negative values in the Quantity column
looks as follows:

 df <- df[which(df$Quantity > 0),]

We are simply taking all of those rows with a positive Quantity value and
storing them back to the variable df.

2. Dropping NA records: We need to drop records with no value in
the CustomerID column. Since we are going to build a machine learning model
to predict the 3 month customer value, we need to group the data by
the CustomerID column. Without it, we cannot properly build models for this
project. The code to drop records with null values looks like the following
code snippet:

 df <- na.omit(df)

As you can see from this code, we are using the na.omit function in R. This
function returns an object with null or NA values removed. Then, we store
the output back to the original DataFrame, df variable.

3. Handling incomplete data: If you recall from previous chapters, the
transaction data for the last month is incomplete. Take a look at the following
output:

As you can see from this output, the dataset has all the transactions between
December 1st, 2010 and December 9, 2011. The data for the last month,
December of 2011, is not complete. In order to properly build a model for th
month customer value predictions, we are going to ignore the transactions in

last month. Take a look at the following code on how to drop those records f
our DataFrame:

 df <- df[which(df$InvoiceDate < '2011-12-01'),]

We are simply taking all of the transactions that occurred before December
1, 2011 and storing them back to the variable, df.

4. Total sales value: Lastly, we need to create a column for the total sales value
for each transaction. Take a look at the following code:

 df$Sales <- df$Quantity * df$UnitPrice

We are simply multiplying the Quantity column by the UnitPrice column to get the
total purchase amount for each transaction. Then, we store these values into a
column named Sales. We have now completed all the cleanup tasks.

Now we have cleaned up all the transaction data, let's summarize this data for each
order or InvoiceNo. Take a look at the following code:

per order data
ordersDF <- df %>%
 group_by(CustomerID, InvoiceNo) %>%
 summarize(Sales=sum(Sales), InvoiceDate=max(InvoiceDate))

As you can see from this code, we are grouping df by two
columns, CustomerID and InvoiceNo. Then, we are summing up all the Sales values for
each customer and order, and taking the last transaction time for the given order as
the InvoiceDate. This way we now have a DataFrame, ordersDF, that we need to know
about each order that each customer placed. The data looks like the following:

Before we dive into building models, let's take a closer look at this customer
purchase history data.

Data analysis
In order to calculate the CLV, we need to know the frequency, recency, and
total amount of purchases by each customer. We are going to compute basic
information about each customer's average and lifetime purchase amount, as
well as each customer's duration and frequency of purchases. Take a look at
the following code:

order amount & frequency summary
summaryDF <- ordersDF %>%
 group_by(CustomerID) %>%
 summarize(
 SalesMin=min(Sales), SalesMax=max(Sales), SalesSum=sum(Sales),
 SalesAvg=mean(Sales), SalesCount=n(),
 InvoiceDateMin=min(InvoiceDate), InvoiceDateMax=max(InvoiceDate),
 PurchaseDuration=as.double(floor(max(InvoiceDate)-min(InvoiceDate))),
 PurchaseFrequency=as.double(floor(max(InvoiceDate)-min(InvoiceDate)))/n()
)

We first group by the CustomerID column and aggregate the numbers
by Sales and InvoiceDate columns. Using the min, max, sum, mean, and n functions
in R, we can compute the minimum, maximum, and total purchase amount,
as well as the average amount and the number of purchases for each
customer. We also use the min and max functions to get the first and last order
dates for each customer. For PurchaseDuration, we are taking the number of
days between the last and the first order dates. For PurchaseFrequency, we are
dividing the PurchaseDuration number by the number of orders to get the
average number of days between purchases.

The resulting DataFrame, summaryDF, looks like the following:

This data gives us an idea of the purchases each customer has made. For
example, the customer with ID 12346 only made one purchase on January 18,
2011. However, the customer with ID 12347 has made six purchases that
range from December 7, 2010 to October 31, 2011, or over the course
of 327 days. The average amount this customer spent on each order is
about 681 and, on average, this customer made a purchase every 54.5 days.

Let's take a closer look at the distributions of the number of purchases that
the repeat customers have made. Take a look at the following code:

summaryDF <- summaryDF[which(summaryDF$PurchaseDuration > 0),]

salesCount <- summaryDF %>%
 group_by(SalesCount) %>%
 summarize(Count=n())

ggplot(salesCount[1:19,], aes(x=SalesCount, y=Count)) +
 geom_bar(width=0.5, stat="identity") +
 ggtitle('') +
 xlab("Sales Count") +
 ylab("Count") +
 theme(plot.title = element_text(hjust = 0.5))

We first exclude customers with only one purchase from our analysis in the
first line of code. Then, we count the number of customers for each

SalesCount. Lastly, we create a bar plot using ggplot and geom_bar to display this
data. The result looks as follows:

As you can see from this plot, the majority of customers have made 10 or
less purchases historically. Let's take a look at the average number of days
between purchases for these repeat customers. Take a look at the following
code first:

hist(
 summaryDF$PurchaseFrequency,
 breaks=20,
 xlab='avg. number of days between purchases',
 ylab='count',
 main=''
)

We are building a histogram with the purchase frequency data using
the hist function in R. The breaks parameter defines the number of histogram
bins to build. The result looks as follows:

This plot tells us the overall view of how frequently repeat customers made
purchases historically. As you can see from this plot, the majority of repeat
customers made purchases every 20 to 50 days.

Predicting the 3 month CLV
In this section, we are going to build a model that predicts the 3 month
customer value in R. We are going to first slice the data into chunks of 3
months and take the last 3 month data as the target for predictions and the
rest as the features. We will first prepare our data for model building and
then train a linear regression model for the 3 month customer value
predictions.

Data preparation
In order to build a predictive model, we need to prepare our data first, so that we can feed in the relevant
data into the model. Take a look at the following code:

group data into every 3 months
library(lubridate)

ordersDF$Quarter = as.character(round_date(ordersDF$InvoiceDate, '3 months'))

dataDF <- ordersDF %>%
 group_by(CustomerID, Quarter) %>%
 summarize(SalesSum=sum(Sales), SalesAvg=mean(Sales), SalesCount=n())

As you can see from this code, we are using the lubridate package that is going to help us to handle data
with dates more easily. Using the round_date function in the lubridate package, we first round InvoiceDate to
the nearest quarter. Then, we group the data by CustomerID and the newly-created column, Quarter, to get the
quarterly sales data for each customer. For each group of 3 month time window, we sum up all of the sales
to get the total purchase amount and take the average of purchase amount, and the total number of
purchases for the given period for each customer. This way we have aggregate data that has purchase
information for each customer for every 3 months. The data in dataDF now looks like the following:

In order to make things simpler, let's encode the Quarter column values to make them easier to read than the
current date format. Take a look at the following code:

dataDF$Quarter[dataDF$Quarter == "2012-01-01"] <- "Q1"
dataDF$Quarter[dataDF$Quarter == "2011-10-01"] <- "Q2"
dataDF$Quarter[dataDF$Quarter == "2011-07-01"] <- "Q3"
dataDF$Quarter[dataDF$Quarter == "2011-04-01"] <- "Q4"
dataDF$Quarter[dataDF$Quarter == "2011-01-01"] <- "Q5"

As you can see from this code, we are encoding the date values into Q1, Q2, Q3, and so forth, where the
smaller number represents more recent dates. For example, the date 2012-01-01 is now encoded as Q1 and the
date 2011-10-01 is now encoded as Q2. The result looks as follows:

We are now ready to build a sample set with features and target variables. As briefly mentioned before, we
are going to use the last 3 months as the target variable and the rest as the features, meaning we are going
to train a machine learning model that predicts the last 3 month customer value with the rest of the data. In
order to train such a model, we need to transform this data into tabular data, where the rows represent the
individual customers and the columns represent each feature. Take a look at the following code:

install.packages('reshape2')
library(reshape2)

salesSumFeaturesDF <- dcast(
 dataDF[which(dataDF$Quarter != "Q1"),],
 CustomerID ~ Quarter,
 value.var="SalesSum"
)
colnames(salesSumFeaturesDF) <- c("CustomerID", "SalesSum.Q2", "SalesSum.Q3", "SalesSum.Q4", "SalesSum.Q5")

salesAvgFeaturesDF <- dcast(
 dataDF[which(dataDF$Quarter != "Q1"),],
 CustomerID ~ Quarter,
 value.var="SalesAvg"
)
colnames(salesAvgFeaturesDF) <- c("CustomerID", "SalesAvg.Q2", "SalesAvg.Q3", "SalesAvg.Q4", "SalesAvg.Q5")

salesCountFeaturesDF <- dcast(
 dataDF[which(dataDF$Quarter != "Q1"),],
 CustomerID ~ Quarter,
 value.var="SalesCount"
)
colnames(salesCountFeaturesDF) <- c("CustomerID", "SalesCount.Q2", "SalesCount.Q3", "SalesCount.Q4", "SalesCount.Q5")

featuresDF <- merge(
 merge(salesSumFeaturesDF, salesAvgFeaturesDF, by="CustomerID"),
 salesCountFeaturesDF, by="CustomerID"
)
featuresDF[is.na(featuresDF)] <- 0

As you can see from this code, we are using the reshape2 package to pivot the data. For example, using
the dcast function in the reshape2 package, we first transform the SalesSum data, where the row index
represents each customer or CustomerID, the columns are each quarter, and the values are the total sales or
purchase amount for the given customer and quarter. We repeat this process three times for SalesSum,

SalesAvg, and SalesCount columns and merge the data in the end. Using the merge function, we can merge these
DataFrames by the CustomerID index. Lastly, we encode the null or NA values with 0, by using the is.na
function. The result looks like the following:

Now that we have built the features DataFrame, let's build the target variables. Take a look at the following
code:

responseDF <- dataDF[which(dataDF$Quarter == "Q1"),] %>%
 select(CustomerID, SalesSum)

colnames(responseDF) <- c("CustomerID", "CLV_3_Month")

As you can see from this code, we are taking the last 3 month period, Q1 group, as the target variable. The
target column will be SalesSum, as we want to predict the next 3 month customer value, which is the total

purchase amount that a given customer is likely to make in the next 3 months. The result looks like the
following:

There is only one thing left to build, which is a sample set for building machine learning models,
combining features and response data together. Take a look at the following code:

sampleDF <- merge(featuresDF, responseDF, by="CustomerID", all.x=TRUE)
sampleDF[is.na(sampleDF)] <- 0

As you can see here, we are simply joining the two DataFrames on CustomerID using the merge function. By
having the all.x=TRUE flag, we take all records in the features data, even if there is no corresponding data in
the response data. This is a case where the given customer did not make any purchases in the last 3
months, so we encode them as 0. The final sample set now looks as follows:

With this data, we can now build a model that predicts the next 3 month customer value with historical
purchase data.

Linear regression
Similar to the previous chapter, we are going to split the sample set into
train and test sets using the following code:

train/test set split
library(caTools)

sample <- sample.split(sampleDF$CustomerID, SplitRatio = .8)

train <- as.data.frame(subset(sampleDF, sample == TRUE))[,-1]
test <- as.data.frame(subset(sampleDF, sample == FALSE))[,-1]

As you can see from this code, we are taking 80% of the sample set for
training the model and the remaining 20% for testing and evaluating the
model performance. In this section, we will be using a linear
regression model. However, we recommend experimenting with other
machine learning algorithms, such as random forest and support vector
machine (SVM). You can train a random forest model with the randomForest
package and an SVM model with the e1071 package. We highly recommend
taking a look at their documentation on the usage.

In order to train a linear regression model with our dataset, you can use the
following code:

Linear regression model
regFit <- lm(CLV_3_Month ~ ., data=train)

This is as simple as it gets. You simply supply a formula, which is
CLV_3_Month ~ . in our case, and the data to train with, which is the
train variable in our case, to the lm function. This will instruct your machine
to train a linear regression model with the given data.

Once a linear regression model is trained, there is some useful information
you can find in the model object. You can use the following command to
get detailed information about the model:

summary(regFit)

The output looks as follows:

As you can see from this output, you can easily find the coefficients of each
feature and which features have negative or positive correlation with the
target. For example, the previous 3 month period's aggregate purchase
amount, SalesSum.Q2, has positive impacts on the next 3 month customer
value. This means that the higher the previous 3 month period's total

purchase amount is, the higher the next 3 month purchase amount will be.
On the other hand, the second and fourth most recent 3 month period's
aggregate purchase amounts, SalesSum.Q3 and SalesSum.Q5, are negatively
correlated with the next 3 month customer value. In other words, the more a
customer made purchases two quarters or four quarters ago, the lower the
value he or she will bring in the next 3 months. Looking at the coefficients
is one way to gain insights on how the expected value will change, given
certain features.

Using the 3 month customer value prediction output, you can custom-tailor
your marketing strategies in different ways. Since you know the expected
revenue or purchase amount from individual customers for the next 3
months, you can set a better informed budget for your marketing campaign.
It should be set high enough to reach your target customers, but low enough
to be below the expected 3 month customer value, so that you can have a
positive ROI marketing campaign. On the other hand, you can also use
these 3 month customer value prediction outputs to specifically target these
high-value customers for the next 3 months. This can help you to create
marketing campaigns with a higher ROI, as those high-value customers,
predicted by this model, are likely to bring in more revenue than the others.

Evaluating regression model
performance
Now that we have a machine learning model that is trained to predict the 3
month customer value, let's discuss how to evaluate the performance of this
model. As discussed previously, we are going to use R2, MAE, and a scatter
plot of predicted versus actual to evaluate our model. We first need to get
the prediction output from our model, like the following code:

train_preds <- predict(regFit, train)
test_preds <- predict(regFit, test)

We are going to use the miscTools package to compute the in-sample and out-
of-sample R2 values. Take a look at the following code:

R-squared
install.packages('miscTools')
library(miscTools)

inSampleR2 <- rSquared(train$CLV_3_Month, resid=train$CLV_3_Month - train_preds)
outOfSampleR2 <- rSquared(test$CLV_3_Month, resid=test$CLV_3_Month - test_preds)

The R2 values, in our case, look like the following output:

Due to the randomness in splitting the sample set into train and test sets,
your results might differ from these results. In our case, the in-sample
R2 was 0.4557 and the out-of-sample R2 was 0.1235. The rather big gap
between the in-sample and out-of-sample R2 values suggests that there is
some overfitting happening, where the model performs significantly better

in the train set and worse in the test set. In case of overfitting, you can try
different combinations of features or use more samples for training.

Next, let's take a look at the MAE for in-sample and out-of-sample
predictions. Take a look at the following code:

Median Absolute Error
inSampleMAE <- median(abs(train$CLV_3_Month - train_preds))
outOfSampleMAE <- median(abs(test$CLV_3_Month - test_preds))

As you can see from this code, we are using the median and abs functions to
get the median of absolute errors in the in-sample and out-of-sample
predictions. The result in our case looks like the following:

Lastly, let's take a look at the scatter plot of predicted versus actual. You can
use the following code for this scatter plot:

plot(
 test$CLV_3_Month,
 test_preds,
 xlab='actual',
 ylab='predicted',
 main='Out-of-Sample Actual vs. Predicted'
)
abline(a=0, b=1)

The resulting plot looks as follows:

As you can see from this plot, the x-values are the actual values and the y-
values are the predicted values. As discussed earlier, the more the points are
on the straight line, the better the predictions are. This is because points on
the straight line suggest that the actual values and the predicted values are
close to each other. Looking at this plot, the points do not seem to be
spread around the straight line, which suggest that the predictions are rather
poor. This is in line with the low out-of-sample R2 value that we observed
previously. Scatter plot of predicted versus actual values is a good way to
visualize the model performance.

The full code for this R exercise can be found at the following repo: https://github.com/yoonh
wang/hands-on-data-science-for-marketing/blob/master/ch.9/R/CustomerLifetimeValue.R

https://github.com/yoonhwang/hands-on-data-science-for-marketing/blob/master/ch.9/R/CustomerLifetimeValue.R

Summary
In this chapter, we have learned what CLV is and its importance and usage
in marketing. Particularly for justifying the cost of customer acquisition, it
is crucial to have a good understanding of how much value each new
customer is going to bring to the company. We discussed how CLV
calculations can help marketers to develop positive ROI marketing
strategies. Then, we went through a hypothetical example to show how we
can calculate the CLV, using average purchase amount, purchase frequency,
and customer lifetime span. We also mentioned another approach of using
machine learning and predictive models to estimate the CLV.

During the programming exercises, we have learned how to build
regression models that predict the CLV over the course of a 3 month period.
In Python, we used the scikit-learn package to build a LinearRegression model.
In R, we used the built-in lm function to train a linear regression model with
our data. For regression model evaluations, we have discussed four
commonly used measures, MSE, MAE, R2, and predicted versus actual
scatter plot, and what each of these metrics measures and tells us about the
performance of regression models. In our programming exercises, we
discussed how to compute and visualize MAE, R2, and predicted versus
actual scatter plot in Python and R.

In the following chapter, we are going to cover customer segmentation. We
will discuss how segmenting the customer base can help marketers better
understand their customers and come up with more efficient marketing
strategies.

Data-Driven Customer
Segmentation
In marketing, we often try to understand the behavior of certain subgroups
of the customer base. Especially in targeted marketing, marketers try to
segment the customer base in certain ways and focus on each target
segment or customer group. This concentration on certain target customer
segments results in better performance, as the needs and interests of those
customers in the target group align and match better with the business's
products, services, or content.

In this chapter, we are going to dive deeper into the concept of customer
segmentation. We will discuss what customer segmentation is, the
importance and benefits of having a good understanding of different
segments of the customer base, and how to utilize customer segment
analysis results for different marketing strategies. Aside from a more
traditional way of segmenting the customer base, which involves looking at
the key statistics of certain attributes of customers and manually cutting the
customer base into segments, we can also use machine learning to have
machines find the best ways to split the customer base into the desired
number of segments. In this chapter, we will learn how we can use the k-
means clustering algorithm to build customer segments based on the
historical data.

In this chapter, we will cover the following topics:

Customer segmentation
Clustering algorithms
Segmenting customers with Python
Segmenting customers with R

Customer segmentation
Given today's competition within the market, it is critical to understand the
different behaviors, types, and interests of customers. Especially in targeted
marketing, understanding and categorizing customers is an essential step in
forming effective marketing strategies. By segmenting the customer base,
marketers can focus on one segment of customers at a time. It also helps
marketers to tailor their marketing messages to one specific audience at a
time. Customer segmentation is the backbone of successful targeted
marketing, with which you can target specific groups of customers with
different pricing options, promotions, and product placements that capture
the interests of the target audience in the most cost-effective way.

Any business or industry can benefit from a better understanding of
different customer segments. For example, television advertisements that
are broadcast across all over the USA for an outerwear brand that sells
winter clothes, such as parkas, snow boots, and hats, would not be so cost-
effective. People residing in areas that never really get cold, such as Florida,
Southern California, or Hawaii, would most likely not be interested in
purchasing winter clothes. However, people residing in areas with cold
winters, such as Alaska, Minnesota, or North Dakota, would most likely
want to buy clothes that will keep them warm. So, for this outerwear brand,
instead of sending out marketing mails or emails to all of their customers, it
would be better to target those segments of customers, based on their
geographic information, that live in places where they would need winter
clothes more frequently than other customers.

As another example, if you own a rental building near a college, you might
want to target your customers based on their age and education. Marketing
to customers between 20 and 30 and who are attending surrounding
colleges will have higher return than marketing to others. For hotel
businesses, you might want to target those couples who have upcoming
anniversaries for romantic package deals. Using social media platforms,
such as Facebook or Instagram, you can target this segment of customers.

As we briefly discussed with these three cases, understanding your
customers and which segment describes them the best can help you develop
effective and efficient marketing strategies. When segmenting the customer
base into subgroups, you can use certain characteristics and their statistics,
as shown in Chapter 7, Exploratory Analysis for Customer Behavior.
However, when you are trying to segment your customers with multiple
attributes, it becomes exponentially more difficult. In the following
sections, we are going to discuss how we can use machine learning for
customer segmentation.

Clustering algorithms
Clustering algorithms are frequently used in marketing for customer
segmentation. This is a method of unsupervised learning that learns the
commonalities between groups from data. Unlike supervised learning,
where there is a target and a labeled variable that you would like to predict,
unsupervised learning learns from data without any target or labeled
variable. Among numerous other clustering algorithms, we are going to
explore the usage of the k-means clustering algorithm in this chapter.

The k-means clustering algorithm splits the records in the data into a pre-
defined number of clusters, where the data points within each cluster are
close to each other. In order to group similar records together, the k-means
clustering algorithm tries to find the centroids, which are the centers or
means of clusters, to minimize the distances between the data points and the
centroids within the clusters. The objective equation (from https://scikit-lear
n.org/stable/modules/clustering.html#k-means) looks like this:

Here n is the number of records in the dataset, xi is the ith data point, C is
the number of clusters, and µj is the jth centroid.

One downside or difficulty of using k-means clustering for customer
segmentation is the fact that you need to know the number of clusters
beforehand. However, quite often, you do not know what is the optimal
number of clusters to create. The silhouette coefficient can be used to
evaluate and help you make decisions on what the best number of clusters
will be for your segmentation problem. Simply put, the silhouette

https://scikit-learn.org/stable/modules/clustering.html#k-means

coefficient measures how close the data points are to their clusters
compared to other clusters. The equation is shown here:

Here b is the average of the distance between a point and its closest cluster
and a is the average distance among data points within the same cluster. The
silhouette coefficient value ranges from -1 to 1, where the closer the values
are to 1, the better they are. In the following programming exercises, we
will be segmenting the customer base from our dataset, using the k-means
clustering algorithm and the silhouette coefficient.

Segmenting customers with Python
In this section, we are going to discuss how to segment the customer base
into subgroups using the clustering algorithm in Python. By the end of this
section, we will have built a customer segmentation model using the k-
means clustering algorithm. We will be mainly using the pandas, matplotlib,
and scikit-learn packages to analyze, visualize, and build machine learning
models. For those readers, who would like to use R, instead of Python, for
this exercise, you can skip to the next section.

For this exercise, we will be using one of the publicly available datasets
from the UCI Machine Learning Repository, which can be found at this
link: http://archive.ics.uci.edu/ml/datasets/online+retail. You can follow this
link and download the data, which is available in XLSX format,
named Online Retail.xlsx. Once you have downloaded this data, you can load
it into your Jupyter Notebook by running the following command:

import pandas as pd

df = pd.read_excel('../data/Online Retail.xlsx', sheet_name='Online Retail')

The DataFrame, df, looks like this:

As you can notice, we have used this dataset a few times in the previous
chapters. As you might recall from previous chapters, there are a few things
we need to clean up before we proceed.

http://archive.ics.uci.edu/ml/datasets/online+retail

Data cleanup
Before we can start building clustering models, there are five tasks we need
to do to clean up our data and prepare it for modeling. The clean-up steps
are as follows:

1. Dropping canceled orders: We are going to drop records with
negative Quantity, using the following code:

 df = df.loc[df['Quantity'] > 0]

2. Dropping records with no CustomerID: There are 133,361 records with no
CustomerID and we are going to drop those records with the following
code:

 df = df[pd.notnull(df['CustomerID'])]

3. Excluding an incomplete month: As you might recall from previous
chapters, the data in the month of December, 2011, is incomplete. You
can exclude this data with the following code:

 df = df.loc[df['InvoiceDate'] < '2011-12-01']

4. Computing total sales from the Quantity and UnitPrice columns:
For our analyses, we need the total sales value, so we are going to
multiply the two Quantity and UnitPrice columns, to get the total sales, as
shown in the following code:

 df['Sales'] = df['Quantity'] * df['UnitPrice']

5. Per-customer data: In order to analyze customer segments, we need
to transform our data, so that each record represents the purchase
history of individual customers. Take a look at the following code:

 customer_df = df.groupby('CustomerID').agg({
 'Sales': sum,
 'InvoiceNo': lambda x: x.nunique()
 })

 customer_df.columns = ['TotalSales', 'OrderCount']

 customer_df['AvgOrderValue'] =
 customer_df['TotalSales']/customer_df['OrderCount']

As you can see from this code, we are grouping the DataFrame, df, by
CustomerID and computing the total sales and the number of orders for each
customer. Then, we also calculate the average per-order value, AvgOrderValue,
by dividing the TotalSales column by the OrderCount column. The result is
shown in the following screenshot:

Now, as you can see from this data, the three columns, TotalSales, OrderCount,
and AvgOrderValue, have different scales. TotalSales can take any values from 0
to 26,848, while OrderCount takes values between 1 and 201. Clustering
algorithms are highly affected by the scales of the data, so we need to

normalize this data to be on the same scale. We are going to take two steps
to normalize this data. First, we are going to rank the data, so that the values
of each column range from 1 to 4298, which is the total number of records.
Take a look at the following code:

rank_df = customer_df.rank(method='first')

The result is shown in the following screenshot:

Next, we are going to normalize this data to center around the mean and
have a mean of 0 and a standard deviation of 1. Take a look at the following
code:

normalized_df = (rank_df - rank_df.mean()) / rank_df.std()

The result is shown in the following screenshot:

Take a look at the statistics of each of these columns, shown in the
following screenshot:

You can see that the values are centered around at 0 and have a standard
deviation of 1. We are going to use this data for the following clustering
analyses.

k-means clustering
The k-means clustering algorithm is a frequently used algorithm for drawing insights
into the formations and separations within data. In marketing, it is often used to build
customer segments and understand the behaviors of these different segments. Let's
dive into building clustering models in Python.

In order to use the k-means clustering algorithm in the scikit-learn package, we need to
import the kmeans module, as shown in the following code:

from sklearn.cluster import KMeans

Then, you can build and fit a k-means clustering model, using the following code:

kmeans = KMeans(n_clusters=4).fit(normalized_df[['TotalSales', 'OrderCount', 'AvgOrderValue']])

As you can see from this code, we are building a clustering model that splits the data
into four segments. You can change the desired number of clusters with the n_clusters
parameter. Using the fit function, you can train a k-means clustering algorithm to
learn to split the given data. In this code, we are building four clusters, based on
the TotalSales, OrderCount, and AvgOrderValue values. The trained model object, kmeans,
stores the labels and centers of the clusters in the labels_ and cluster_centers_ attributes
of the model object. You can retrieve these values as shown in the following code:

kmeans.labels_
kmeans.cluster_centers_

Now that we have built our first clustering model, let's visualize this data. First, take a
look at the following code:

four_cluster_df = normalized_df[['TotalSales', 'OrderCount', 'AvgOrderValue']].copy(deep=True)
four_cluster_df['Cluster'] = kmeans.labels_

We store the cluster label information for each record into a newly created DataFrame,
four_cluster_df. With this DataFrame, we can visualize the clusters, using the following
code:

plt.scatter(
 four_cluster_df.loc[four_cluster_df['Cluster'] == 0]['OrderCount'],
 four_cluster_df.loc[four_cluster_df['Cluster'] == 0]['TotalSales'],
 c='blue'
)

plt.scatter(
 four_cluster_df.loc[four_cluster_df['Cluster'] == 1]['OrderCount'],
 four_cluster_df.loc[four_cluster_df['Cluster'] == 1]['TotalSales'],
 c='red'

)

plt.scatter(
 four_cluster_df.loc[four_cluster_df['Cluster'] == 2]['OrderCount'],
 four_cluster_df.loc[four_cluster_df['Cluster'] == 2]['TotalSales'],
 c='orange'
)

plt.scatter(
 four_cluster_df.loc[four_cluster_df['Cluster'] == 3]['OrderCount'],
 four_cluster_df.loc[four_cluster_df['Cluster'] == 3]['TotalSales'],
 c='green'
)

plt.title('TotalSales vs. OrderCount Clusters')
plt.xlabel('Order Count')
plt.ylabel('Total Sales')

plt.grid()
plt.show()

As you can see from this code, we are visualizing the data using scatter plots. The
result is shown in the following screenshot:

Let's take a closer look at this plot. The cluster in blue is the group of low-value
customers, who have not purchased our products so much. On the other hand, the
cluster in red is the group of high-value customers, who have purchased the greatest
amount and who have purchased products frequently. We can also visualize the
clusters with different angles, using the rest of the variables. Take a look at the
following plots:

The first plot shows the clusters visualized based on AvgOrderValue and OrderCount. On the
other hand, the second plot shows the clusters visualized based on AvgOrderValue and
TotalSales. As you can see from these plots, the cluster in blue has the lowest average
per-order value and the lowest number of orders. However, the cluster in red has the
highest average per-order value and the greatest number of orders. Visualizing clusters
helps you understand the characteristics of different clusters much more easily and
clearly.

Selecting the best number of
clusters
Often, we do not know what the best number of clusters to use is when
building k-means clustering models. As discussed in an earlier section of
this chapter, we can use the silhouette coefficient to determine what the best
number of clusters is to split the data. In the scikit-learn package, you can
use the silhouette_score function in the sklearn.metrics module to calculate the
silhouette score and measure the quality of clusters. Take a look at the
following code:

from sklearn.metrics import silhouette_score

for n_cluster in [4,5,6,7,8]:
 kmeans = KMeans(n_clusters=n_cluster).fit(
 normalized_df[['TotalSales', 'OrderCount', 'AvgOrderValue']]
)
 silhouette_avg = silhouette_score(
 normalized_df[['TotalSales', 'OrderCount', 'AvgOrderValue']],
 kmeans.labels_
)

 print('Silhouette Score for %i Clusters: %0.4f' % (n_cluster, silhouette_avg))

As you can see from this code, we are experimenting with five different
numbers of clusters: 4, 5, 6, 7, and 8. For each amount of clusters, we are
going to measure the silhouette score and choose the amount of clusters
with the highest score. The output of this code looks like this:

In our case, of the five different numbers of clusters we have experimented
with, the best number of clusters with the highest silhouette score was 4. In

the following section, we will use 4 as the number of clusters to show how
we can interpret the results of the clustering analysis.

Interpreting customer segments
In this section, we are going to discuss different ways to draw insights from the
results of the previous clustering analysis. Let's first build a k-means clustering model
with four clusters. You can use the following code:

kmeans = KMeans(n_clusters=4).fit(
 normalized_df[['TotalSales', 'OrderCount', 'AvgOrderValue']]
)

four_cluster_df = normalized_df[['TotalSales', 'OrderCount', 'AvgOrderValue']].copy(deep=True)
four_cluster_df['Cluster'] = kmeans.labels_

As you can see from this code, we are fitting a k-means clustering model with 4
clusters, based on three attributes: TotalSales, OrderCount, and AvgOrderValue. Then, we
store the cluster label information into a DataFrame, four_cluster_df. This DataFrame is
shown in the following screenshot:

The first thing we are going to look at is the centers of each cluster. You can get the
cluster centers using the following code:

kmeans.cluster_centers_

The output of this code is shown in the following screenshot:

Let's take a closer look at this. The fourth cluster has the lowest numbers for all three
attributes. This suggests that the fourth cluster contains customers with the smallest

amount of sales, smallest number of orders, and lowest average per-order value. This
group of customers is one of low-value customers. On the other hand, the third cluster
has the highest numbers for all three attributes. The customers in the third cluster
have the greatest amount of sales, greatest number of orders, and highest average per-
order value. So, these customers in the third cluster purchase expensive items and
give the business the highest revenue. You would typically want to focus your
marketing efforts on this segment of customers, as it will result in the highest return.

The customers in the second cluster are interesting. They make purchases relatively
frequently, as they have a medium-to-high cluster center value for OrderCount, but their
average per-order value is low, as the cluster center for AvgOrderValue is low. These are
the customers who make frequent purchases of low-value items. So, it would be
perfect to market items with low per-item prices to this segment of customers. The
customers in the first cluster are also interesting. Their contributions to the revenue
and number of orders are medium to low, looking at the centers of this cluster.
However, their average per-order value is high. These are the customers who buy
expensive items infrequently. Thus, it would be perfect to market expensive items to
this segment of customers.

As you can see from this example, looking at the centers of clusters helps us
understand different types and segments of customers and how to target them
differently. Lastly, we can also find out what the best-selling items are for each
customer segment. Take a look at the following code:

high_value_cluster = four_cluster_df.loc[four_cluster_df['Cluster'] == 2]

pd.DataFrame(
 df.loc[
 df['CustomerID'].isin(high_value_cluster.index)
].groupby('Description').count()[
 'StockCode'
].sort_values(ascending=False).head()
)

As we have seen before, the third cluster was the group of high-value customers, and
we are going to take a look at the top five best-selling items for this group. The output
of this code is as follows:

For this high-value segment, the best-selling item was JUMBO BAG RED RETROSPOT and the
second best-selling item was REGENCY CAKESTAND 3 TIER. You can utilize this information
in marketing strategies, when you target this customer segment. In your marketing
campaigns, you can recommend items similar to these best-selling items to this
segment of customers, as they are the most interested in these types of items.

You can find the full code for this exercise in the following repository: https://github.com/yoonhwang/hands-on-
data-science-for-marketing/blob/master/ch.10/python/CustomerSegmentation.ipynb.

https://github.com/yoonhwang/hands-on-data-science-for-marketing/blob/master/ch.10/python/CustomerSegmentation.ipynb

Segmenting customers with R
In this section, we are going to discuss how to segment the customer base
into subgroups using a clustering algorithm in R. By the end of this section,
we will have built a customer segmentation model using the k-means
clustering algorithm. For those readers who would like to use Python,
instead of R, for this exercise, see the previous section.

For this exercise, we will be using one of the publicly available datasets
from the UCI Machine Learning Repository, which can be found at this
link: http://archive.ics.uci.edu/ml/datasets/online+retail. You can follow this
link and download the data, which is available in XLSX format,
named Online Retail.xlsx. Once you have downloaded this data, you can load
it into your RStudio by running the following command:

library(readxl)

1. Load Data
df <- read_excel(
 path="~/Documents/data-science-for-marketing/ch.10/data/Online Retail.xlsx",
 sheet="Online Retail"
)

The DataFrame, df, is shown in the following screenshot:

http://archive.ics.uci.edu/ml/datasets/online+retail

As you may have noticed, we have used this dataset a few times in the
previous chapters. As you might recall from previous chapters, there are a
few things we need to clean up before we proceed.

Data cleanup
Before we can start building clustering models, there are five tasks we need to do to clean up our data and
prepare it for modeling. The clean-up steps are as follows:

1. Dropping canceled orders: We are going to drop records with negative Quantity, using the following
code:

 df <- df[which(df$Quantity > 0),]

2. Dropping records with no CustomerID: There are 133,361 records with no CustomerID and we are going to
drop those records with the following code:

 df <- na.omit(df)

3. Excluding an incomplete month: As you might recall from previous chapters, the data in the month of
December, 2011, is incomplete. You can exclude this data with the following code:

 df <- df[which(df$InvoiceDate < '2011-12-01'),]

4. Computing total sales from the Quantity and UnitPrice columns: For our analyses, we need the total
sales value, so we are going to multiply the Quantity and UnitPrice columns, to get the total sales, as shown
in the following code:

 df$Sales <- df$Quantity * df$UnitPrice

5. Per-customer data: In order to analyze customer segments, we need to transform our data, so that each
record represents the purchase history of individual customers. Take a look at the following code:

 # per customer data
 customerDF <- df %>%
 group_by(CustomerID) %>%
 summarize(TotalSales=sum(Sales),
 OrderCount=length(unique(InvoiceDate))) %>%
 mutate(AvgOrderValue=TotalSales/OrderCount)

As you can see from this code, we are grouping the DataFrame, df, by CustomerID and computing the total sales
and the number of orders for each customer. Then, we also calculate the average per-order value, AvgOrderValue,
by dividing the TotalSales column by the OrderCount column. The result is shown in the following screenshot:

Now, as you can see from this data, the TotalSales, OrderCount, and AvgOrderValue columns, have different
scales. TotalSales can take any values from 0 to 26,848, while OrderCount takes values between 1 and 201. Clustering
algorithms are highly affected by the scales of the data, so we need to normalize this data to be on the same
scale. We are going to take two steps to normalize this data. First, we are going to rank the data, so that the
values of each column range from 1 to 4298, which is the total number of records. Take a look at the following
code:

rankDF <- customerDF %>%
 mutate(TotalSales=rank(TotalSales), OrderCount=rank(OrderCount, ties.method="first"), AvgOrderValue=rank(AvgOrderValue))

The result is shown in the following screenshot:

Next, we are going to normalize this data to center around the mean, and have a mean of 0 and a standard
deviation of 1, using the scale function in R. Take a look at the following code:

normalizedDF <- rankDF %>%
 mutate(TotalSales=scale(TotalSales), OrderCount=scale(OrderCount), AvgOrderValue=scale(AvgOrderValue))

The result is shown in the following screenshot:

Take a look at the statistics of each of these columns, as shown in the following screenshot:

You can see that the values are centered around at 0 and have a standard deviation of 1. We are going to use this
data for the following clustering analyses.

k-means clustering
The k-means clustering algorithm is a frequently used algorithm to draw
insights on the formations and separations within the data. In marketing, it is
often used to build customer segments and understand the behaviors of these
different segments. Let's dive into building clustering models in R.

You can build and fit a k-means clustering model using the following code:

cluster <- kmeans(normalizedDF[c("TotalSales", "OrderCount", "AvgOrderValue")], 4)

As you can see from this code, we are building a clustering model that splits
the data into 4 segments. The first parameter of the kmeans function is for the
data to be used for k-means clustering and the second parameter is to define
the desired number of clusters. In this code, we are building 4 clusters, based
on the TotalSales, OrderCount, and AvgOrderValue values. The trained k-means
clustering model object, cluster, stores the labels and centers of the clusters
in the cluster and centers variables of the model object. You can retrieve these
values, as shown in the following code:

cluster$cluster
cluster$centers

Now that we have built our first clustering model, let's visualize this data.
First, we are going to store the cluster labels as a separate column, named
Cluster, in the normalizedDF variable, as shown in the following code:

cluster labels
normalizedDF$Cluster <- cluster$cluster

Then, we can visualize the clusters, using the following code:

ggplot(normalizedDF, aes(x=AvgOrderValue, y=OrderCount, color=Cluster)) +
 geom_point()

As you can see from this code, we are visualizing the data using scatterplots.
The result in shown in the following screenshot:

Let's take a closer look at this plot. The cluster in the bottom left is the group
of low-value customers, who have not purchased our products so much. On
the other hand, the cluster in the top right with the darkest color is the group
of high-value customers, who have purchased the greatest amount and who
have purchased products frequently. We can also visualize the clusters with
different angles, using the rest of the variables. Take a look at the following
plots:

The first plot shows the clusters visualized based on
AvgOrderValue and OrderCount. On the other hand, the second plot the clusters
visualized based on AvgOrderValue and TotalSales. As you can see from these
plots, the cluster in the bottom left with the second-lightest color has the
lowest average per-order value and the lowest number of orders. However,
the cluster in the top right with the darkest color has the highest average per-

order value and the greatest number of orders. Visualizing clusters helps you
understand the characteristics of different clusters much more easily and
clearly.

Selecting the best number of clusters
Quite often, we do not know what the best number of clusters to use is when building
k-means clustering models. As discussed in an earlier section of this chapter, we can
use the silhouette coefficient to determine what the best number of clusters is to split
the data. In R, you can use the silhouette function in the cluster library to calculate the
silhouette score and measure the quality of clusters. Take a look at the following
code:

Selecting the best number of cluster
library(cluster)

for(n_cluster in 4:8){
 cluster <- kmeans(normalizedDF[c("TotalSales", "OrderCount", "AvgOrderValue")], n_cluster)

 silhouetteScore <- mean(
 silhouette(
 cluster$cluster,
 dist(normalizedDF[c("TotalSales", "OrderCount", "AvgOrderValue")], method = "euclidean")
)[,3]
)
 print(sprintf('Silhouette Score for %i Clusters: %0.4f', n_cluster, silhouetteScore))
}

As you can see from this code, we are experimenting with five different number of
clusters: 4, 5, 6, 7, and 8. For each number of clusters, we are going to measure the
silhouette score and choose the number of clusters with the highest score. The output
of this code is shown in the following screenshot:

In our case, of the five different numbers of clusters we have experimented with, the
best number of clusters with the highest silhouette score was 4. In the following
section, we will use 4 for the number of clusters to show how we can interpret the
results of clustering analysis.

Interpreting customer segments
In this section, we are going to discuss different ways to draw insights from
the results of the previous clustering analysis. Let's first build a k-means
clustering model with 4 clusters. You can use the following code:

Interpreting customer segments
cluster <- kmeans(normalizedDF[c("TotalSales", "OrderCount", "AvgOrderValue")], 4)
normalizedDF$Cluster <- cluster$cluster

As you can see from this code, we are fitting a k-means clustering model
with 4 clusters, based on the three attributes: TotalSales, OrderCount,
and AvgOrderValue. Then, we store the cluster label information into
a DataFrame, normalizedDF. This DataFrame is shown in the following
screenshot:

The first thing we are going to look at is the centers of each cluster. You can
get the cluster centers using the following code:

cluster centers
cluster$centers

The output of this code is shown in the following screenshot:

Let's take a closer look at this. The third cluster has the lowest numbers for
all three attributes. This suggests that the third cluster contains customers
with the lowest amount of sales, lowest number of orders, and lowest
average per-order value. This group of customers is a group of low-value
customers. On the other hand, the fourth cluster has the highest numbers for
all three attributes. The customers in the fourth cluster have the highest
amount of sales, highest number of orders, and highest average per-order
value. This suggests that these customers in the fourth cluster purchase
expensive items and give the business the highest revenue. You would
typically want to focus your marketing efforts on this segment of customers,
as it will result in the highest return.

The customers in the first cluster are interesting. They make purchases
relatively frequently, as they have a medium to high cluster center value for
OrderCount, but their average per-order value is low, as the cluster center for
AvgOrderValue is low. These are the type of customers who make frequent
purchases of low-value items. So, it would be perfect to market items with
low per-item prices to this segment of customers. The customers in the
second cluster are also interesting. Their contributions to the revenue and
number of orders are low, looking at the centers of this cluster. However,
their average per-order value is high. These are the type of customers who

buy expensive items infrequently. Thus, it would be perfect to market
expensive items to this segment of customers.

As you can see from this example, looking at the centers of clusters helps us
understand different types and segments of customers and how to target
them differently. Lastly, we can also find out what the best-selling items are
for each customer segment. Take a look at the following code:

High value cluster
highValueCustomers <- unlist(
 customerDF[which(normalizedDF$Cluster == 4),'CustomerID'][,1], use.names = FALSE
)

df[which(df$CustomerID %in% highValueCustomers),] %>%
 group_by(Description) %>%
 summarise(Count=n()) %>%
 arrange(desc(Count))

As we have seen before, the fourth cluster was the group of high-value
customers and we are going to take a look at the best-selling items for this
group. The output of this code is shown in the following screenshot:

For this high-value segment, the best-selling item was JUMBO BAG RED
RETROSPOT and the second best-selling item was REGENCY

CAKESTAND 3 TIER. You can utilize this information in the marketing
strategies, when you target this customer segment. In your marketing
campaigns, you can recommend items similar to these best-selling items to
this segment of customers, as they are the most interested in these types of
items.

You can find the full code for this exercise in the following repository: https://github.com/yoon
hwang/hands-on-data-science-for-marketing/blob/master/ch.10/R/CustomerSegmentation.R.

https://github.com/yoonhwang/hands-on-data-science-for-marketing/blob/master/ch.10/R/CustomerSegmentation.R

Summary
In this chapter, we have learned more about customer segmentation. We
worked through three simple scenarios of how customer segmentation could
help different businesses to form better and more cost-effective marketing
strategies. We have discussed how having a good understanding of different
customer segments, how customers in different segments behave, and what
they need and are interested in can help you target your audience better. We
have also learned about the k-means clustering algorithm, which is one of
the most frequently used clustering algorithms for customer segmentation.
In order to evaluate the quality of clusters, we have shown how we can use
the silhouette coefficient.

During programming exercises, we have experimented with how we can
build a k-means clustering model in Python and R. In Python, we could use
the KMeans module in the scikit-learn package and in R, we could use
the kmeans function to build clustering models. Using the silhouette_score
function in Python and the silhouette function in R, we have seen how we
could use silhouette coefficients to evaluate the qualities of clusters and
have seen how looking at silhouette scores can help us determine the best
number of clusters. Lastly, we have discussed how to interpret clustering
analysis results, using scatter plots and cluster centroids, and we have seen
how to find out the best-selling items for each customer segment.

In the next chapter, we are going to discuss customers at risk of churn and
how to retain those customers. We will work together to build neural
network models in Python and R, using the keras package, to identify those
customers who are likely to churn.

Retaining Customers
As customers have more options for similar content to consume or similar
products and services to shop for, it has become more difficult for many
businesses to retain their customers and not lose them to other competitors.
As the cost of acquiring new customers is typically higher than that of
retaining and keeping existing customers, customer churn is becoming more
and more of a concern than ever before. In order to retain existing
customers and not lose them to competitors, businesses should not only try
to understand their customers and their customers' needs and interests, but
they should also be able to identify which customers are highly likely to
churn and how to retain these customers at churn risk.

In this chapter, we are going to dive deeper into customer churn and how it
hurts businesses, as well as how to retain existing customers. We will
discuss some of the common reasons for customers leaving businesses and
look at how data science can help reduce the risk of losing customers. As a
way of predicting customer churn, we will learn about what an artificial
neural network model is and its applications in different areas, as well as
how we can build one using Python and R.

In this chapter, we will cover the following topics:

Customer churn and retention
Artificial neural networks
Predicting customer churn with Python
Predicting customer churn with R

Customer churn and retention
Customer churn is when a customer decides to stop using services,
content, or products from a company. As we have briefly discussed in Chapte
r 7, Exploratory Analysis for Customer Behavior, when we discussed
customer analytics, it is much less expensive to retain existing customers
than to acquire new customers, and the revenue from repeat customers is
typically higher than that form new customers. In competitive industries,
where a business faces many competitors, the cost of new customer
acquisition is even higher, and retaining existing customers becomes more
important for such businesses.

There are many reasons behind customers leaving a business. Some of the
common reasons why customers churn are poor customer service, not
finding enough value in the products or services, lack of communications,
and lack of customer loyalty. The first step to retaining these customers is to
monitor customer churn rates over time. If the churn rate is generally high
or is increasing over time, then it will be a good idea to dedicate some
resources to improving customer retention.

In order to improve the customer retention rate, the top priority should be to
understand the customer better. You can survey customers who have already
churned to understand why they left. You can also survey existing
customers to understand what their needs are and what their pain points are.
A data science and data analytics approach would be to look into the data.
For example, you can look at customers' web activity data and understand
where they spend the most time, whether there were errors on the pages that
they were looking at, or whether their search results did not return good
content. You can also look into the customer service call logs to understand
how long their wait time was, what their complaints were, and how their
issues were handled. Conducting deep analyses on these data points can
reveal the problems that a business is facing in retaining its existing
customers.

When analyzing for customer churn, you can also utilize some of the topics
we have discussed in this book. You can apply what we have learned from C
hapter 5, Product Analytics, and Chapter 6, Recommending the Right
Products, to understand which products serve the customer needs and
interests the best, and recommend the right products so that you can deliver
more personalized content. You can also use what we have learned from Cha
pter 7, Exploratory Analysis for Customer Behavior, and Chapter 10, Data-
Driven Customer Segmentation, to understand the customer behavior better
and the different segments of customers. Another way is to build a machine
learning model that can predict which customers are likely to churn and
target and retain these specific customers that are at higher risk of churn. In
the following sections, we will discuss how to build a neural network model
to identify those customers with higher risk of churn for customer retention.

Artificial neural networks
The artificial neural network (ANN) model is a machine learning model
that is inspired by how a human brain functions. Recent successful
applications of ANN models in image recognition, voice recognition, and
robotics have proven their predictive power and usefulness in various
industries. You might have heard the term deep learning. This is a type of
ANN model where the number of layers between the input and output
layers is large. It is best explained with the following diagram:

This diagram shows a simple case of an ANN model with one hidden layer.
The circles in this diagram represent artificial neurons or nodes, which
model those neurons in human brains. The arrows represent how signals are
transmitted from one neuron to another. As this diagram suggests, an ANN

model learns by finding the patterns or the weights of signals from each
input neuron to the neuron in the next layer, which best predicts the output.

The specific type of an ANN model that we will be experimenting with in
the following programming exercises is a multilayer perceptron (MLP)
model. Simply put, an MLP model is a neural network model that has at
least one or more hidden layers of nodes. Including one layer for the input
and another layer for the output, the MLP model consists of at least three or
more layers of nodes. The diagram we just looked at is the simplest case of
an MLP model, where there is only one hidden layer.

ANN models can be utilized in many areas of marketing. Using neural
network models by BrainMaker, Microsoft increased its direct mail
response rate from 4.9% to 8.2%. This helped Microsoft to bring in the
same amount of revenue for 35% less cost. Similarly, for the marketing
engagement prediction problems we discussed in Chapter 8, Predicting the
Likelihood of Marketing Engagement, we could have used neural network
models, instead of random forest models. We can also use neural network
models for the customer segmentation problems that we discussed in Chapter
10, Data-Driven Customer Segmentation. In the following programming
exercises, we will discuss how we can use ANN models to predict which
customers are likely to churn.

Predicting customer churn with
Python
In this section, we are going to discuss how to use an ANN model to predict
the customers at the risk of leaving, or customers who are highly likely to
churn. By the end of this section, we will have built a customer churn
prediction model using an ANN model. We will be mainly using
the pandas, matplotlib, and keras packages to analyze, visualize, and build
machine learning models. For those readers who would like to use R, instead
of Python, for this exercise, you can skip to the next section.

For this exercise, we will be using one of the publicly available datasets
from the IBM Watson Analytics community, which can be found at this
link: https://www.ibm.com/communities/analytics/watson-analytics-blog/predictive-insi
ghts-in-the-telco-customer-churn-data-set/. You can follow this link and
download the data, which is available in XLSX format, named WA_Fn-UseC_-
Telco-Customer-Churn.xlsx. Once you have downloaded this data, you can load it
into your Jupyter Notebook by running the following command:

import pandas as pd

df = pd.read_excel('../data/WA_Fn-UseC_-Telco-Customer-Churn.xlsx')

The DataFrame, df, is shown in the following screenshot:

https://www.ibm.com/communities/analytics/watson-analytics-blog/predictive-insights-in-the-telco-customer-churn-data-set/

There are 21 variables in this dataset, where our goal is to predict the target
variable, Churn.

Data analysis and preparation
As you may notice by looking at the data, there are a few things we need to do before we
can start building machine learning models. In this section, we are going to transform
continuous variables that have monetary values and encode the target variable, Churn, as
well as other categorical variables. To do so, perform the following steps:

1. Target variable encoding: As you may have noticed from the data, the target
variable, Churn, has two values: Yes and No. We are going to encode these values as 1
for Yes and 0 for No. The code to encode the target variable looks like the following:

 df['Churn'] = df['Churn'].apply(lambda x: 1 if x == 'Yes' else 0)

To get the overall churn rate, you can simply run the following code:

 df['Churn'].mean()

The output of this code is around 0.27, which suggests that about 27% of
customers have churned. A 27% churn rate is not a small number; rather, it is high
enough for a business to worry about the overall customer churn and come up
with a solution to retain these customers. In the following modeling section, we
will discuss how to predict customers who are likely to churn with this data and
use these predictions to retain customers.

2. Handling missing values in the TotalCharges column: If you looked through the
TotalCharges column in the dataset, you may have noticed that there are some records
with no TotalCharges values. Since there are only 11 records with missing TotalCharges
values, we are going to simply ignore and drop those records with missing values.
Take a look at the following code:

 df['TotalCharges'] = df['TotalCharges'].replace(' ',
 np.nan).astype(float)

 df = df.dropna()

As you may notice from this code, we are simply replacing the blank space values
with nan values. Then, we are dropping all the records with nan values by using
the dropna function.

3. Transforming continuous variables: The next step is to scale the continuous
variables. Take a look at the following summary statistics for continuous variables:

You can get these summary statistics using the following code:
 df[['tenure', 'MonthlyCharges', 'TotalCharges']].describe()

As you can see from the summary statistics, the three tenure, MonthlyCharges, and
TotalCharges continuous variables all have different scales. The tenure variable,
ranges from 1 to 72, while the TotalCharges variable , ranges from 18.8 to 8684.8.
ANN models typically perform better with scaled or normalized features. Take a
look at the following code for normalizing these three features:

 df['MonthlyCharges'] = np.log(df['MonthlyCharges'])
 df['MonthlyCharges'] = (df['MonthlyCharges'] -
 df['MonthlyCharges'].mean())/df['MonthlyCharges'].std()

 df['TotalCharges'] = np.log(df['TotalCharges'])
 df['TotalCharges'] = (df['TotalCharges'] -
 df['TotalCharges'].mean())/df['TotalCharges'].std()

 df['tenure'] = (df['tenure'] - df['tenure'].mean())/df['tenure'].std()

As you can see from this code, we apply log-transform first and then normalize
the continuous variables by subtracting by the mean and dividing the values by
standard deviations. The results look like the following:

As you see from this output, all the variables now have a mean of 0 and a standard
deviation of 1. We are going to use these normalized variables for future model buil

4. One-hot encoding categorical variables: As you can see from the data, there are
many categorical variables. Let's first take a look at the number of unique values
each column has. Take a look at the following code:

 for col in list(df.columns):
 print(col, df[col].nunique())

You can use the nunique function to count the number of unique values in each
column. The output of this code looks like the following:

As this output suggests, there are 7032 unique customer IDs, 2 unique genders, 3 unique
values for MultipleLines, and 6530 unique values for TotalCharges. We have handled the tenure,
MonthlyCharges, and TotalCharges variables, in the previous step, so we are going to focus on
those variables with 2 to 4 unique values.
Let's take a look at the distributions of some of these categorical variables. First, to view
the distribution of the data between males and females, you can use the following code
for visualization:

df.groupby('gender').count()['customerID'].plot(
 kind='bar', color='skyblue', grid=True, figsize=(8,6), title='Gender'
)
plt.show()

The plot looks like the following:

As you can see from this bar plot, the distribution of the data across different genders is
roughly equally distributed. You can use the same code to view the distribution of the
data across different values of InternetService and PaymentMethod. Take a look at the
following plots:

The first plot shows the distribution of the data across three different categories of
the InternetService variable, and the second plot shows the distribution of the data across

four different categories of the PaymentMethod variable. As you can see from these plots, we
can easily visualize and understand what the distributions of categorical variables look
like using bar plots. We recommend that you draw bar plots for other categorical
variables to get a better understanding of the data distribution.
Now, we are going to apply one-hot encoding for these categorical variables. Take a look
at the following code:

dummy_cols = []

sample_set = df[['tenure', 'MonthlyCharges', 'TotalCharges', 'Churn']].copy(deep=True)

for col in list(df.columns):
 if col not in ['tenure', 'MonthlyCharges', 'TotalCharges', 'Churn'] and df[col].nunique() < 5:
 dummy_vars = pd.get_dummies(df[col])
 dummy_vars.columns = [col+str(x) for x in dummy_vars.columns]
 sample_set = pd.concat([sample_set, dummy_vars], axis=1)

As you can see from this code, we are using the get_dummies function in the pandas package
to create dummy variables for each categorical variable. Then, we concatenate these
newly created dummy variables back to the sample_set variable, which will be used for
training models in the following section. The results are shown in the following output:

Once you have completed these four steps, it is time to start building ANN models for
customer churn predictions. Move onto the next section for ANN modeling!

ANN with Keras
For building ANN models in Python, we are going to use keras package,
which is a high-level neural networks library. For more details, we
recommend you visit their official documentation at the following link: http
s://keras.io/. Before we can use this package for building ANN models, we
need to install two packages: tensorflow and keras. The keras package uses
tensorflow as a backend for building neural network models, so we need to
install tensorflow first. You can install these two packages using the following
pip commands in your Terminal:

pip install tensorflow
pip install keras

Once you have installed these two packages, we can finally start building
our first neural network models. In this exercise, we are going to build a
neural network model with one hidden layer. Take a look at the following
code first:

from keras.models import Sequential
from keras.layers import Dense

model = Sequential()
model.add(Dense(16, input_dim=len(features), activation='relu'))
model.add(Dense(8, activation='relu'))
model.add(Dense(1, activation='sigmoid'))

Let's take a closer look at this code. First, we are using a Sequential model
here, which is the type of model where the layers are stacked linearly and
looks similar to the diagram we saw in the earlier section about
the MLP model. The first layer is an input layer, where input_dim is simply the
number of features or columns in the sample set and the number of output
units is 16. We are using the relu activation function for this input layer. Then,
in the hidden layer, the number of output units is 8 and the activation
function to be used is relu. Lastly, the output layer has one output unit, which
is the probability of customer churn, and we use the sigmoid activation
function in this layer. You can experiment with different numbers of output
units and activation functions for your exercise.

https://keras.io/

The final step to build a neural network model with the keras package is to
compile this model. Take a look at the following code:

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

Here, we are using the adam optimizer, which is one of the most commonly
and frequently used optimization algorithms. Since our target variable is
binary, we are using binary_crossentropy as the loss function. Lastly, this model
will use the accuracy metric to evaluate model performance during training.

Before we start training this neural network model, we will need to split our
sample set into train and test sets. Take a look at the following code:

from sklearn.model_selection import train_test_split

target_var = 'Churn'
features = [x for x in list(sample_set.columns) if x != target_var]

X_train, X_test, y_train, y_test = train_test_split(
 sample_set[features],
 sample_set[target_var],
 test_size=0.3
)

As you can see from this code, we are using the train_test_split function of
the scikit-learn package. For our exercise, we will use 70% of the sample set
for training and 30% for testing. Now we can train our neural network model
using the following code:

model.fit(X_train, y_train, epochs=50, batch_size=100)

Here, we are using 100 samples as batch_size, from which the model is going
to learn to predict each time, and 50 as the number of epochs, which is the
number of complete passes through the entire training set. Once you run this
code, you will see output that looks like the following:

As you can see from this output, loss typically decreases and the accuracy
(acc) improves in each epoch. However, the rate of model performance
improvement decreases over time. As you can see from this output, there are
big improvements in the loss and accuracy measures in the first few epochs
and the amount of performance gain decreases over time. You can monitor
this process and decide to stop when the amount of performance gain is
minimal.

Model evaluations
Now that we have built our first neural network model, let's evaluate its performance. We are going to look
at the overall accuracy, precision, and recall, as well as the receiver operating characteristic (ROC) curve
and area under the curve (AUC). First, take a look at the following code for computing accuracy, precision,
and recall:

from sklearn.metrics import accuracy_score, precision_score, recall_score

in_sample_preds = [round(x[0]) for x in model.predict(X_train)]
out_sample_preds = [round(x[0]) for x in model.predict(X_test)]

Accuracy
print('In-Sample Accuracy: %0.4f' % accuracy_score(y_train, in_sample_preds))
print('Out-of-Sample Accuracy: %0.4f' % accuracy_score(y_test, out_sample_preds))

Precision
print('In-Sample Precision: %0.4f' % precision_score(y_train, in_sample_preds))
print('Out-of-Sample Precision: %0.4f' % precision_score(y_test, out_sample_preds))

Recall
print('In-Sample Recall: %0.4f' % recall_score(y_train, in_sample_preds))
print('Out-of-Sample Recall: %0.4f' % recall_score(y_test, out_sample_preds))

You should be familiar with this code, as we used the same evaluation metrics in Chapter 8, Predicting the
Likelihood of Marketing Engagement. The output of this code in our case looks like the following:

Due to some randomness in the model, your results might differ from these numbers. As you can see from
this output, the accuracy of predicting whether a customer will churn or not in the test set is about 0.79,
suggesting the model is correct roughly about 80% of the time. The out-of-sample precision suggests that
the model is correct about 66% of the time that it predicts that the customer is going to churn, and the out-
of-sample recall suggests that the model captures roughly 52% of the churn cases.

Next, we can compute the AUC numbers, using the following code:

from sklearn.metrics import roc_curve, auc

in_sample_preds = [x[0] for x in model.predict(X_train)]
out_sample_preds = [x[0] for x in model.predict(X_test)]

in_sample_fpr, in_sample_tpr, in_sample_thresholds = roc_curve(y_train, in_sample_preds)
out_sample_fpr, out_sample_tpr, out_sample_thresholds = roc_curve(y_test, out_sample_preds)

in_sample_roc_auc = auc(in_sample_fpr, in_sample_tpr)
out_sample_roc_auc = auc(out_sample_fpr, out_sample_tpr)

print('In-Sample AUC: %0.4f' % in_sample_roc_auc)
print('Out-Sample AUC: %0.4f' % out_sample_roc_auc)

The output of this code looks like this:

To visualize this data in the ROC curve, you can use the following code:

plt.figure(figsize=(10,7))

plt.plot(
 out_sample_fpr, out_sample_tpr, color='darkorange', label='Out-Sample ROC curve (area = %0.4f)' % in_sample_roc_auc
)
plt.plot(
 in_sample_fpr, in_sample_tpr, color='navy', label='In-Sample ROC curve (area = %0.4f)' % out_sample_roc_auc
)
plt.plot([0, 1], [0, 1], color='gray', lw=1, linestyle='--')
plt.grid()
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve')
plt.legend(loc="lower right")

plt.show()

And the output looks like this:

Along with the accuracy, precision, and recall measures that we looked at previously, the AUC and the ROC
curve also suggest that the model captures and predicts those customers at churn risk pretty well. As you can
see from these evaluation outputs, it is better to use the output of this model for identifying the customers
who are likely to churn than simply guessing who they will be. By focusing on those customers with high

churn probabilities from this model in your marketing strategies, you can try to retain those customers at
churn risks in a more cost-effective way.

The full code for this exercise can be found in this repository: https://github.com/yoonhwang/hands-on-data-science-for-marketing/blob/master/ch.11/pyt
hon/CustomerRetention.ipynb.

https://github.com/yoonhwang/hands-on-data-science-for-marketing/blob/master/ch.11/python/CustomerRetention.ipynb

Predicting customer churn with R
In this section, we are going to discuss how to use an ANN model to predict the
customers at risk of leaving or customers who are highly likely to churn. By the end of
this section, we will have built a customer churn prediction model using the ANN
model. We will be mainly using the dplyr, ggplot2, and keras libraries to analyze,
visualize, and build machine learning models. For those readers who would like to use
Python, instead of R, for this exercise, see the previous section.

For this exercise, we will be using one of the publicly available datasets from the IBM
Watson Analytics community, which can be found at this link: https://www.ibm.com/communi
ties/analytics/watson-analytics-blog/predictive-insights-in-the-telco-customer-churn-data-set/.
You can follow this link and download the data, which is available in XLSX format,
named WA_Fn-UseC_-Telco-Customer-Churn.xlsx. Once you have downloaded this data, you can
load it into your RStudio environment by running the following command:

library(readxl)

1. Load Data
df <- read_excel(
 path="~/Documents/data-science-for-marketing/ch.11/data/WA_Fn-UseC_-Telco-Customer-Churn.xlsx"
)

The DataFrame, df, should look as in the following screenshot:

There are 21 variables in this dataset, where our goal is to predict the target
variable, Churn.

https://www.ibm.com/communities/analytics/watson-analytics-blog/predictive-insights-in-the-telco-customer-churn-data-set/

Data analysis and preparation
As you may have noticed by looking at the data, there are a few things we need to
do before we start building machine learning models. In this section, we are going
to transform continuous variables that have monetary values and encode the target
variable, Churn, as well as other categorical variables. To do so, perform the
following steps:

1. Handling missing values in the data: If you looked through
the TotalCharges column in the dataset, you may have noticed that there are
some records with no TotalCharges values. Since there are only 11 records with
missing TotalCharges values, we are going to simply ignore and drop those
records with missing values. Take a look at the following code:

 library(tidyr)

 df <- df %>% drop_na()

As you may notice from this code, we are using the drop_na function in
the tidyr package, which drops all records with NA values.

2. Categorical variables: As you can see from the data, there are many
categorical variables. Let's first take a look at the number of unique values
each column has. Take a look at the following code:

 apply(df, 2, function(x) length(unique(x)))

You can use the unique function to get the unique values in each column. By
applying this function across all the columns in df, the output of this code
looks like the following:

As this output suggests, there are 7032 unique customer IDs, 2 unique genders
unique values for MultipleLines, and 6530 unique values for TotalCharges.
The tenure, MonthlyCharges, and TotalCharges variables, are continuous variables,
each variable can take any value and the rest are the categorical variables.
We are going to take a look at the distributions of some of these categorical
variables. First, to view the distribution of the data between male and female
can use the following code for visualization:

 ggplot(df %>% group_by(gender) %>% summarise(Count=n()),
 aes(x=gender, y=Count)) +
 geom_bar(width=0.5, stat="identity") +
 ggtitle('') +
 xlab("Gender") +
 ylab("Count") +
 theme(plot.title = element_text(hjust = 0.5))

The plot looks like this:

As you can see from this bar plot, the distribution of the data across the two
genders is roughly equally distributed. You can use the same code to view th
distribution of the data across different values of InternetService and PaymentMet
Take a look at the following plots:

The first plot shows the distribution of the data across three different categor
the InternetService variable and the second plot shows the distribution of the d
across four different categories of the PaymentMethod variable. As you can see fr
these plots, we can easily visualize and understand what the distributions of
categorical variables look like using bar plots. We recommend that you draw
plots for other categorical variables to get a better understanding of the data
distribution.

3. Transforming and encoding variables: The next step is to transform the
continuous variables and encode the binary-class categorical variables. Take
a look at the following code:

 # Binary & Continuous Vars
 sampleDF <- df %>%
 select(tenure, MonthlyCharges, TotalCharges, gender, Partner,
 Dependents, PhoneService, PaperlessBilling, Churn) %>%
 mutate(
 # transforming continuous vars
 tenure=(tenure - mean(tenure))/sd(tenure),
 MonthlyCharges=(log(MonthlyCharges) -
 mean(log(MonthlyCharges)))/sd(log(MonthlyCharges)),
 TotalCharges=(log(TotalCharges) -
 mean(log(TotalCharges)))/sd(log(TotalCharges)),

 # encoding binary categorical vars
 gender=gender %>% as.factor() %>% as.numeric() - 1,
 Partner=Partner %>% as.factor() %>% as.numeric() - 1,
 Dependents=Dependents %>% as.factor() %>% as.numeric() - 1,
 PhoneService=PhoneService %>% as.factor() %>% as.numeric() - 1,
 PaperlessBilling=PaperlessBilling %>% as.factor() %>% as.numeric() - 1,
 Churn=Churn %>% as.factor() %>% as.numeric() - 1
)

As you can see from this code, we are simply encoding those variables
with only two categories, gender, Partner, Dependents, PhoneService,
PaperlessBilling, and Churn, with 0s and 1s. Then, we apply log
transformations to the two continuous variables that have monetary values,
MonthlyCharges and TotalCharges. Also, we standardize all three continuous
variables, tenure, MonthlyCharges, and TotalCharges, so that these variables
center around 0 and have standard deviations of 1. This is because ANN
models typically perform better with scaled or normalized features. After
transformations, the distributions of these three continuous variables look
as in the following screenshot:

As you can see, the means of these three transformed variables are 0 and the
standard deviations are 1. Whereas, before this transformation, the distributio
looked like the following:

4. One-hot encoding categorical variables: There is one last set of variables
we need to transform: multi-class categorical variables that have three or
more categories. We are going to apply one-hot encoding and create dummy
variables for these variables. Take a look at the following code:

 # Dummy vars
 # install.packages('dummies')
 library(dummies)

 sampleDF <- cbind(sampleDF, dummy(df$MultipleLines, sep="."))
 names(sampleDF) = gsub("sampleDF", "MultipleLines", names(sampleDF))

As you can see from this code, we are using the dummies library to create
dummy variables. Using the dummy function of this package, we can apply
one-hot encoding and create dummy variables for each multi-class
categorical variable. Since the dummy function prepends sampleDF to the names
of the newly created dummy variables, we can replace it with
corresponding variable name by using the gsub function. We are going to
apply the same logic to the rest of the categorical variables, as shown in the
following code:

 sampleDF <- cbind(sampleDF, dummy(df$InternetService, sep="."))
 names(sampleDF) = gsub("sampleDF", "InternetService", names(sampleDF))

 sampleDF <- cbind(sampleDF, dummy(df$OnlineSecurity, sep="."))
 names(sampleDF) = gsub("sampleDF", "OnlineSecurity", names(sampleDF))

 sampleDF <- cbind(sampleDF, dummy(df$OnlineBackup, sep="."))
 names(sampleDF) = gsub("sampleDF", "OnlineBackup", names(sampleDF))

 sampleDF <- cbind(sampleDF, dummy(df$DeviceProtection, sep="."))
 names(sampleDF) = gsub("sampleDF", "DeviceProtection", names(sampleDF))

 sampleDF <- cbind(sampleDF, dummy(df$TechSupport, sep="."))
 names(sampleDF) = gsub("sampleDF", "TechSupport", names(sampleDF))

 sampleDF <- cbind(sampleDF, dummy(df$StreamingTV, sep="."))
 names(sampleDF) = gsub("sampleDF", "StreamingTV", names(sampleDF))

 sampleDF <- cbind(sampleDF, dummy(df$StreamingMovies, sep="."))
 names(sampleDF) = gsub("sampleDF", "StreamingMovies", names(sampleDF))

 sampleDF <- cbind(sampleDF, dummy(df$Contract, sep="."))
 names(sampleDF) = gsub("sampleDF", "Contract", names(sampleDF))

 sampleDF <- cbind(sampleDF, dummy(df$PaymentMethod, sep="."))
 names(sampleDF) = gsub("sampleDF", "PaymentMethod", names(sampleDF))

The results are shown in the following output:

Once you have completed these four steps, it is time to start building ANN models
for customer churn predictions. Move onto the next section for ANN modeling!

ANN with Keras
For building ANN models in R, we are going to use the keras package, which is a high-level neural
networks library. For more details, we recommend you visit their official documentation at the
following link: https://keras.io/. Before we can use this package for building ANN models, we need
to install two libraries:tensorflow and keras. The keras package uses tensorflow as a backend for building
neural network models, so we need to install tensorflow first. You can install these two packages
using the following commands in your RStudio:

install.packages("devtools")
devtools::install_github("rstudio/tensorflow")
library(tensorflow)
install_tensorflow()

devtools::install_github("rstudio/keras")
library(keras)
install_keras()

Once you have installed these two libraries, we can finally start building our first neural network
models. In this exercise, we are going to build a neural network model with one hidden layer. Take a
look at the following code first:

model <- keras_model_sequential()
model %>%
 layer_dense(units = 16, kernel_initializer = "uniform", activation = 'relu', input_shape=ncol(train)-1) %>%
 layer_dense(units = 8, kernel_initializer = "uniform", activation = 'relu') %>%
 layer_dense(units = 1, kernel_initializer = "uniform", activation = 'sigmoid') %>%
 compile(
 optimizer = 'adam',
 loss = 'binary_crossentropy',
 metrics = c('accuracy')
)

Let's take a closer look at this code. First, we are building a Sequential model here,
keras_model_sequential, which is the type of model where the layers are stacked linearly and looks
similar to the diagram we saw in the earlier section about the MLP model. The first layer, layer_dense,
is an input layer, where input_shape is simply the number of features or columns in the sample set and
the number of output units is 16. We are using the relu activation function for this input layer. Then,
in the hidden layer, the number of output units is 8 and the activation function to be used is relu.
Lastly, the output layer has one output unit, which is the probability of customer churn, and we use
the sigmoid activation function in this layer. You can experiment with different numbers of output
units and activation functions for your exercise. Lastly, we need to compile this model, using
the compile function. Here, we are using the adam optimizer, which is one of the most frequently used
optimization algorithms. Since our target variable is binary, we are using binary_crossentropy as the
loss function. Lastly, this model will use the accuracy metric to evaluate model performance during
training.

Before we start training this neural network model, we will need to split our sample set into train
and test sets. Take a look at the following code:

library(caTools)

sample <- sample.split(sampleDF$Churn, SplitRatio = .7)

train <- as.data.frame(subset(sampleDF, sample == TRUE))

https://keras.io/

test <- as.data.frame(subset(sampleDF, sample == FALSE))

trainX <- as.matrix(train[,names(train) != "Churn"])
trainY <- train$Churn
testX <- as.matrix(test[,names(test) != "Churn"])
testY <- test$Churn

As you can see from this code, we are using the sample.split function of the caTools package. For our
exercise, we will use 70% of the sample set for training and 30% for testing. Now we can train our
neural network model using the following code:

history <- model %>% fit(
 trainX,
 trainY,
 epochs = 50,
 batch_size = 100,
 validation_split = 0.2
)

Here, we are using 100 samples as batch_size, from which the model is going to learn to predict every
time, and 50 as the number of epochs, which is the number of complete passes through the entire
training set. Once you run this code, you will see the following output:

As you can see from this output, loss typically decreases and the accuracy (acc) improves in each
epoch. However, the rate of model performance improvements decreases over time. As you can see
from this output, there are big improvements in the loss and accuracy measures in the first few
epochs and the amount of performance gain decreases over time. You can monitor this process and
decide to stop when the amount of performance gain is minimal.

Model evaluations
Now that we have built our first neural network model, let's evaluate its
performance. We are going to look at the overall accuracy, precision, and
recall, as well as the ROC curve and AUC. First, take a look at the
following code for computing accuracy, precision, and recall:

Evaluating ANN model
inSamplePreds <- as.double(model %>% predict_classes(trainX))
outSamplePreds <- as.double(model %>% predict_classes(testX))

- Accuracy, Precision, and Recall
inSampleAccuracy <- mean(trainY == inSamplePreds)
outSampleAccuracy <- mean(testY == outSamplePreds)
print(sprintf('In-Sample Accuracy: %0.4f', inSampleAccuracy))
print(sprintf('Out-Sample Accuracy: %0.4f', outSampleAccuracy))

inSamplePrecision <- sum(inSamplePreds & trainY) / sum(inSamplePreds)
outSamplePrecision <- sum(outSamplePreds & testY) / sum(outSamplePreds)
print(sprintf('In-Sample Precision: %0.4f', inSamplePrecision))
print(sprintf('Out-Sample Precision: %0.4f', outSamplePrecision))

inSampleRecall <- sum(inSamplePreds & trainY) / sum(trainY)
outSampleRecall <- sum(outSamplePreds & testY) / sum(testY)
print(sprintf('In-Sample Recall: %0.4f', inSampleRecall))
print(sprintf('Out-Sample Recall: %0.4f', outSampleRecall))

You should be familiar with this code, as we used the same evaluation
metrics in Chapter 8, Predicting the Likelihood of Marketing Engagement.
The output of this code in our case looks like the following:

Due to some randomness in the model, your results might differ from these
numbers. As you can see from this output, the accuracy of predicting
whether a customer will churn or not in the test set is about 0.83, suggesting
the model is correct roughly about 83% of the time. The out-of-sample
precision suggests that the model is correct about 72% of the time it
predicts that the customer is going to churn, and the out-of-sample recall
suggests that the model captures roughly 58% of the churn cases.

Next, we can compute the AUC and plot the ROC curve, using the
following code:

- ROC & AUC
library(ROCR)

outSamplePredProbs <- as.double(predict(model, testX))

pred <- prediction(outSamplePredProbs, testY)
perf <- performance(pred, measure = "tpr", x.measure = "fpr")
auc <- performance(pred, measure='auc')@y.values[[1]]

plot(
 perf,
 main=sprintf('Model ROC Curve (AUC: %0.2f)', auc),
 col='darkorange',
 lwd=2
) + grid()
abline(a = 0, b = 1, col='darkgray', lty=3, lwd=2)

And the output looks like the following:

Along with the accuracy, precision, and recall measures that we looked at
previously, the AUC and the ROC curve also suggest that the model
captures and predicts those customers at churn risk pretty well. As you can
see from these evaluation outputs, it is better to use the output of this model
for identifying the customers who are likely to churn than simply guessing
who they will be. By focusing on those customers with high churn
probabilities from this model in your marketing strategies, you can try to
retain those customers at churn risk in a more cost-effective way.

The full code for this exercise can be found in this repository: https://github.com/yoonhwang/han
ds-on-data-science-for-marketing/blob/master/ch.11/R/CustomerRetention.R.

https://github.com/yoonhwang/hands-on-data-science-for-marketing/blob/master/ch.11/R/CustomerRetention.R

Summary
In this chapter, we have learned about customer churn and retention. We
have discussed the reasons why customer churn hurts businesses. More
specifically, we have learned how retaining existing customers is much less
expensive than acquiring new customers. We have shown some of the
common reasons why customers leave a company, such as poor customer
service, not finding enough value in products or services, lack of
communications, and lack of customer loyalty. In order to understand why
customers leave, we could conduct surveys or analyze customer data to
understand their needs and pain points better. We have also discussed how
we can train ANN models to identify those customers who are at risk of
churning. Through programming exercises, we have learned how to use
the keras library to build and train ANN models in Python and R.

In the following chapter, we are going to learn about A/B testing and how it
can be used to determine the best marketing strategy among different
options. We are going to discuss how to compute statistical significance in
Python and R to help marketers decide which marketing strategy to choose
among different ideas.

Section 5: Better Decision Making
In this section, you will learn a strategy for testing different marketing
strategies and choosing the one that works the best.

This section consists of the following chapters:

Chapter 12, A/B Testing for Better Marketing Strategy
Chapter 13, What's Next?

A/B Testing for Better Marketing
Strategy
When building different marketing strategies, whether your idea is going to
work or not. Typically, there is a lot of guesswork involved when coming
up with new marketing ideas, and often there is a lack of tools, resources, or
even motivation to test whether any of your marketing ideas will work.
However, this way of putting your marketing strategy ideas into work is
risky and can be very costly. What if you spent lots of money on your new
marketing campaign and it did not help you reach your marketing goal at
all? What if you spent hundreds of hours refining your marketing message
and it never attracted your prospects to engage with your marketing
message?

In this chapter, we are going to discuss a way of testing your marketing
ideas before you fully commit to them. More specifically, we are going to
learn about what A/B testing is, why running A/B tests is
important, and how it can help you reach your marketing goal in a more
efficient and less expensive way.

In this chapter, we will cover the following topics:

A/B testing for marketing
Statistical hypothesis testing
Evaluating A/B testing results with Python
Evaluating A/B testing results with R

A/B testing for marketing
A/B testing plays a critical role in decision-making processes across
various industries. A/B testing is essentially a method of comparing and
testing the effectiveness and benefits of two different business strategies. It
can be considered as an experiment where two or more variants are tested
for a set period of time and then the experiment results are evaluated to find
the strategy that works best. Running A/B testing before fully committing
to a single option helps businesses take the guesswork out of their decision-
making processes and saves valuable resources, such as time and capital,
that could have been wasted if the chosen strategy did not work.

In a typical A/B testing setting, you would create and test two or more
versions of marketing strategies for their effectiveness in achieving your
marketing goal. Consider a case where your goal is to improve marketing
email open rates. If your hypothesis is that email subject line B will result in
higher open rates than email subject line A, then you would run an A/B test
with these two subject lines. You will randomly select half of the users and
send out marketing emails with subject line A. The other half of randomly
selected users will receive emails with subject line B. You will run this test
for a predetermined period of time (which could be one week, two weeks,
or one month, for instance) or until a predetermined number of users
receive the two versions of emails (which is a minimum of 1,000 users to
receive each version of the subject line). Once your tests are complete, then
you analyze and evaluate the experiment results. When analyzing the
results, you will need to check whether there is a statistically significant
difference between the results of the two versions. We will cover more
about statistical hypothesis testing and statistical significance in the
following section. If your experiment results show a clear winner between
the two versions of subject line, you can use the winning subject line in
your future marketing emails.

Aside from the aforementioned email subject line scenario, A/B testing can
be applied in many different areas of marketing. For instance, you can run

A/B testing on your advertisements on social media. You can have two or
more variants of your ads and run A/B tests to see which variation works
better for click-through rates or conversion rates. As another example, you
can use A/B testing to test whether product recommendations on your web
page result in higher purchase rates. If you have built a different version of
your product recommendation algorithm, then you can use and expose the
initial version of your product recommendation algorithm to some
randomly selected users and the second version to some other randomly
selected users. You can gather the A/B test results and evaluate which
version of your product recommendation algorithm helps you bring in more
revenue.

As you can see from these example use cases, A/B testing plays an
important role in decision-making. As you test different scenarios before
you fully commit to one, it helps you save your energy, time, and capital
that you could have wasted if you had fully committed to it but failed. A/B
tests also help you take your guesswork away and quantify the performance
gains (or losses) of your future marketing strategy. Whenever you have a
new marketing idea that you would like to iterate on, you should consider
running A/B tests first.

Statistical hypothesis testing
When you run A/B tests, it is important to test your hypothesis and seek for
statistically significant differences among the test groups. Student's t-test, or
simply the t-test, is frequently used to test whether the difference between
two tests is statistically significant. The t-test compares the two averages
and examines whether they are significantly different from each other.

There are two important statistics in a t-test—the t-value and p-value. The
t-value measures the degree of difference relative to the variation in the
data. The larger the t-value is, the more difference there is between the two
groups. On the other hand, the p-value measures the probability that the
results would occur by chance. The smaller the p-value is, the more
statistically significant difference there will be between the two groups. The
equation to compute the t-value is as follows:

In this equation, M1 and M2 are the averages of group 1 and 2. S1 and S2 are
the standard deviations of group 1 and 2, and N1 and N2 are number of
samples in group 1 and 2 respectively.

There is a concept of the null hypothesis and the alternate hypothesis, which
you should be familiar with. Generally speaking, the null hypothesis is that
the two groups show no statistically significant difference. On the other
hand, the alternate hypothesis states that the two groups show a statistically
significant difference. When the t-value is larger than a threshold and the p-
value is smaller than a threshold, we say that we can reject the null
hypothesis and that the two groups show a statistically significant
difference. Typically, 0.01 or 0.05 are used as the p-value thresholds for

testing statistical significance. If the p-value is less than 0.05, then it
suggests that there is less than 5% probability that the difference between
the two groups occurs by chance. In other words, the difference is highly
unlikely to be by chance.

Evaluating A/B testing results with
Python
In this section, we are going to discuss how to evaluate A/B testing results to
decide which marketing strategy works the best. By the end of this section,
we will have covered how to run statistical hypothesis testing and compute
the statistical significance. We will be mainly using the pandas, matplotlib,
and scipy packages to analyze and visualize the data, and evaluate the A/B
testing results.

For those readers who would like to use R instead of Python for this exercise, you can
skip to the next section.

For this exercise, we will be using one of the publicly available datasets
from the IBM Watson Analytics community, which can be found at this
link: https://www.ibm.com/communities/analytics/watson-analytics-blog/marketing-campa
ign-eff-usec_-fastf/. You can follow this link and download the data, which is
available in XLSX format, named WA_Fn-UseC_-Marketing-Campaign-Eff-UseC_-
FastF.xlsx. Once you have downloaded this data, you can load it into your
Jupyter Notebook by running the following command:

import pandas as pd

df = pd.read_excel('../data/WA_Fn-UseC_-Marketing-Campaign-Eff-UseC_-FastF.xlsx')

The df DataFrame looks as follows:

https://www.ibm.com/communities/analytics/watson-analytics-blog/marketing-campaign-eff-usec_-fastf/

There are a total of seven variables in the dataset. You can find the
descriptions of these variables on the IBM Watson Analytics Community
page, but we will reiterate in the following:

MarketID: unique identifier for market
MarketSize: size of market area by sales
LocationID: unique identifier for store location
AgeOfStore: age of store in years
Promotion: one of three promotions that was tested

week: one of four weeks when the promotions were run
SalesInThousands: sales amount for specific LocationID, Promotion, and week

Data analysis
Let's take a deeper look at the data. In this section, we are going to focus on
understanding the distributions of sales, market sizes, store locations, and
store ages used to test different promotions. The goal of this analysis is to
make sure the controls and attributes of each of the promotion groups are
symmetrically distributed, so that the promotion performances among
different groups are comparable to each other.

The total sales distributions across different promotions can be visualized
using the following code:

ax = df.groupby(
 'Promotion'
).sum()[
 'SalesInThousands'
].plot.pie(
 figsize=(7, 7),
 autopct='%1.0f%%'
)

ax.set_ylabel('')
ax.set_title('sales distribution across different promotions')

plt.show()

As you can see from this code, we are grouping the data by the
Promotion column and aggregating the total sales amount by summing over the
SalesInThousands column. Using a pie chart, we can easily visualize how much
of the pie each group takes.

The resulting pie chart looks as follows:

As is easily visible from this pie chart, promotion group 3 has the largest
aggregate sales among the three groups. However, each promotion group
takes roughly about one third of the total sales during the promotion weeks.
Similarly, we can also visualize the compositions of different market sizes in
each promotion group. Take a look at the following code:

ax = df.groupby([
 'Promotion', 'MarketSize'
]).count()[
 'MarketID'
].unstack(
 'MarketSize'
).plot(
 kind='bar',
 figsize=(12,10),
 grid=True,
)

ax.set_ylabel('count')
ax.set_title('breakdowns of market sizes across different promotions')

plt.show()

The bar plot looks as follows:

If you think a stacked bar chart will be easier to view, you can use the
following code to display this data in a stacked bar plot:

ax = df.groupby([
 'Promotion', 'MarketSize'
]).sum()[
 'SalesInThousands'
].unstack(
 'MarketSize'
).plot(
 kind='bar',
 figsize=(12,10),
 grid=True,
 stacked=True
)

ax.set_ylabel('Sales (in Thousands)')
ax.set_title('breakdowns of market sizes across different promotions')

plt.show()

You may notice that the only difference between this code and the previous
code is the stacked=True flag. The result looks as follows:

As you can see from this bar chart, the medium market size occupies the
most among all three promotion groups, while the small market size
occupies the least. We can verify that the compositions of different market
sizes are similar among the three promotion groups from this plot.

Another attribute, AgeOfStore, and its overall distribution across all different
promotions groups, can be visualized by using the following code:

ax = df.groupby(
 'AgeOfStore'
).count()[
 'MarketID'
].plot(
 kind='bar',
 color='skyblue',
 figsize=(10,7),
 grid=True
)

ax.set_xlabel('age')
ax.set_ylabel('count')
ax.set_title('overall distributions of age of store')

plt.show()

And the result looks as in the following bar plot:

As you can see from this plot, a large number of stores are 1 year old and the
majority of stores are 10 years old or less. However, what we are more
interested in is whether the stores in the three different promotion groups
have similar store age profiles. Take a look at the following code:

ax = df.groupby(
 ['AgeOfStore', 'Promotion']
).count()[
 'MarketID'
].unstack(
 'Promotion'
).iloc[::-1].plot(
 kind='barh',
 figsize=(12,15),
 grid=True
)

ax.set_ylabel('age')
ax.set_xlabel('count')
ax.set_title('overall distributions of age of store')

plt.show()

Using this code, you will get the following output:

The store age distributions across the three different promotion groups seem
to align with each other, but it is quite difficult to digest the information
presented from this plot. It will be easier to look at the summary statistics of
store ages across the three promotion groups. Take a look at the following
code:

df.groupby('Promotion').describe()['AgeOfStore']

The output of this code looks as follows:

As you may notice from this output, it is much easier to understand the
overall store age distributions from these summary statistics. We can see that
all three test groups seem to have similar store age profiles. The average
ages of stores for the three groups are 8–9 years old and the majority of the
stores are 10–12 years old or younger.

By analyzing how each promotion or test group is comprised, we could
verify that the store profiles are similar to each other. This suggests that the
sample groups are well controlled and the A/B testing results will be
meaningful and trustworthy.

Statistical hypothesis testing
The ultimate goal of A/B testing of different marketing strategies is to find
out which strategy is the most efficient and works the best among the
others. As briefly discussed in an earlier section, a strategy having a higher
response number does not necessarily mean that it outperforms the rest. We
will discuss how we can use the t-test to evaluate the relative performances
of different marketing strategies and see which strategy wins over the others
with significance.

In Python, there are two approaches to computing the t-value and p-value in
a t-test. We will demonstrate both approaches in this section, and it is up to
you to decide which one works more conveniently for you. The two
approaches to compute the t-value and p-value for a t-test are as follows:

Computing t-value and p-value from the equations: The first
approach is to manually calculate the t-value using the equation we
have learned in the previous section. As you may recall, there are three
things we need to compute to get the t-value—the mean, the standard
deviation, and the number of samples. Take a look at the following
code:

 means = df.groupby('Promotion').mean()['SalesInThousands']
 stds = df.groupby('Promotion').std()['SalesInThousands']
 ns = df.groupby('Promotion').count()['SalesInThousands']

As you can see from this code, you can easily compute the mean,
the standard deviation, and the number of samples in each test group
by using the mean, std, and count functions respectively. With these,
we can compute the t-value using the previously discussed equation.
Take a look at the following code:

 import numpy as np

 t_1_vs_2 = (
 means.iloc[0] - means.iloc[1]
)/ np.sqrt(
 (stds.iloc[0]**2/ns.iloc[0]) + (stds.iloc[1]**2/ns.iloc[1])
)

Using this code, we can compute the t-value for comparing the
performances of promotion 1 and promotion 2. The t-value we get
from running the code is 6.4275. From this t-value, we can get the p-
value with the following code:

 from scipy import stats

 df_1_vs_1 = ns.iloc[0] + ns.iloc[1] - 2

 p_1_vs_2 = (1 - stats.t.cdf(t_1_vs_2, df=df_1_vs_1))*2

As you can see from this code, we first compute the degrees of
freedom, which is the sum of the number of samples in both groups
minus two. With the t-value calculated previously, we can compute
the p-value, using the t.cdf function from scipy package's stats
module. The p-value we get from running this code is 4.143e-10. This
is an extremely small number that is close to 0. As discussed earlier,
a p-value closer to 0 suggests that there is a strong evidence against
the null hypothesis and that the difference between the two test
groups is significant.

The average sales (in thousands) for promotion group 1 is about
58.1, and for promotion group 2 it's about 47.33. From our t-test, we
have shown that the marketing performances for these two groups
are significantly different and that promotion group 1 outperforms
promotion group 2. However, if we run a t-test between the
promotion group 1 and promotion group 3, we see different results.

On the surface, the average sales from promotion group 1 (58.1)
looks higher than those from promotion group 2 (55.36). However,
when we run a t-test between these two groups, we get a t-value of
1.556 and a p-value of 0.121. The computed p-value is much higher
than 0.05, which is a generally accepted cut-off line. This suggests
that the marketing performance from promotion group 1 is not
statistically different from the marketing performance from
promotion group 2. Thus, even though promotion group 1's average
sales number is higher than the promotion group 2's from the A/B
test, the difference is not statistically significant and we cannot

conclude that promotion group 1 performs much better than
promotion group 2. From these evaluation results, we can conclude
that promotion groups 1 and 3 outperform promotion group 2, but
the difference between promotion groups 1 and 3 is not statistically
significant.

Computing the t-value and p-value using scipy: Another approach
to computing the t-value and p-value is by using the stats module from
the scipy package. Take a look at the following code:

 t, p = stats.ttest_ind(
 df.loc[df['Promotion'] == 1, 'SalesInThousands'].values,
 df.loc[df['Promotion'] == 2, 'SalesInThousands'].values,
 equal_var=False
)

As you can see from this code, the stats module from the scipy
package has a function named ttest_ind. This function computes t-
value and p-value, given the data. Using this function, we can easily
compute t-values and p-values to compare the marketing
performances of different promotion or test groups. The results are
the same in both approaches. Whether we use the previous approach
of manually computing the t-values and p-values from the equation
or the approach of using the ttest_ind function in the scipy package,
the t-values we get to compare promotion group 1 against 2 and
promotion group 1 against 3 are 6.4275 and 1.556; whereas, the p-
values we get are 4.29e-10 and 0.121 respectively. And, of course, the
interpretations of these t-test results are the same as before.

We have shown two approaches to computing t-values and p-values. It may
look easier to use the scipy package's out-of-the-box solution to compute
those values, but it is always helpful to have the equation in the back in
your mind.

The full code for this Python exercise can be found at the following link: https://github.co
m/yoonhwang/hands-on-data-science-for-marketing/blob/master/ch.12/python/ABTesting.ipynb.

https://github.com/yoonhwang/hands-on-data-science-for-marketing/blob/master/ch.12/python/ABTesting.ipynb

Evaluating A/B testing results with R
In this section, we are going to discuss how to evaluate A/B testing results to decide which
marketing strategy works the best. By the end of this section, we will have covered how to run
statistical hypothesis testing and compute the statistical significance. We will be mainly
using dplyr and ggplot2 to analyze and visualize the data and evaluate the A/B testing results.

For those readers who would like to use Python instead of R for this exercise, you can refer to the previous section.

For this exercise, we will be using one of the publicly available datasets from the IBM Watson
Analytics community, which can be found at this link: https://www.ibm.com/communities/analytics/watson-a
nalytics-blog/marketing-campaign-eff-usec_-fastf/. You can follow this link and download the data, which
is available in XLSX format, named WA_Fn-UseC_-Marketing-Campaign-Eff-UseC_-FastF.xlsx. Once you have
downloaded this data, you can load it into your RStudio by running the following command:

library(dplyr)
library(readxl)
library(ggplot2)

1. Load Data
df <- read_excel(
 path="~/Documents/data-science-for-marketing/ch.12/data/WA_Fn-UseC_-Marketing-Campaign-Eff-UseC_-FastF.xlsx"
)

The df DataFrame looks as follows:

https://www.ibm.com/communities/analytics/watson-analytics-blog/marketing-campaign-eff-usec_-fastf/

There are a total of seven variables in the dataset. You can find the descriptions of these variables on
the IBM Watson Analytics Community page, but we will reiterate in the following:

MarketID: unique identifier for market
MarketSize: size of market area by sales
LocationID: unique identifier for store location
AgeOfStore: age of store in years
Promotion: one of three promotions that was tested
week: one of four weeks when the promotions were run
SalesInThousands: sales amount for a specific LocationID, Promotion, and week

Data analysis
Let's take a deeper look at the data. In this section, we are going to focus on
understanding the distributions of sales, market sizes, store locations, and store
ages used to test different promotions. The goal of this analysis is to make sure that
the controls and attributes of each promotion groups are symmetrically distributed,
so that the promotion performances among different groups are comparable to each
other.

The total sales distributions across different promotions can be visualized using the
following code:

salesPerPromo <- df %>%
 group_by(Promotion) %>%
 summarise(Sales=sum(SalesInThousands))

ggplot(salesPerPromo, aes(x="", y=Sales, fill=Promotion)) +
 geom_bar(width=1, stat = "identity", position=position_fill()) +
 geom_text(aes(x=1.25, label=Sales), position=position_fill(vjust = 0.5), color='white') +
 coord_polar("y") +
 ggtitle('sales distribution across different promotions')

As you can see from this code, we are grouping the data by the
Promotion column and aggregating the total sales amount by summing over the
SalesInThousands column. Using a pie chart, we can easily visualize how much of the
pie each group takes.

The resulting pie chart looks as follows:

As is easily visible from this pie chart, promotion group 3 has the largest aggregate
sales among the three groups. However, each promotion group takes roughly one
third of the total sales during the promotion weeks. Similarly, we can also visualize
the compositions of different market sizes in each promotion group. Take a look at
the following code:

marketSizePerPromo <- df %>%
 group_by(Promotion, MarketSize) %>%
 summarise(Count=n())

ggplot(marketSizePerPromo, aes(x=Promotion, y=Count, fill=MarketSize)) +
 geom_bar(width=0.5, stat="identity", position="dodge") +
 ylab("Count") +
 xlab("Promotion") +
 ggtitle("breakdowns of market sizes across different promotions") +
 theme(plot.title=element_text(hjust=0.5))

The bar plot looks as follows:

If you think a stacked bar chart will be easier to view, you can use the following
code to display this data in a stacked bar plot:

ggplot(marketSizePerPromo, aes(x=Promotion, y=Count, fill=MarketSize)) +
 geom_bar(width=0.5, stat="identity", position="stack") +
 ylab("Count") +
 xlab("Promotion") +
 ggtitle("breakdowns of market sizes across different promotions") +
 theme(plot.title=element_text(hjust=0.5))

You may notice that the only difference between this code and the previous code is
the position="stack" flag in the geom_bar function. The result looks as follows:

As you can see from this bar chart, the medium market size occupies the most
among all three promotion groups, while small market size occupies the least. We
can verify that the compositions of different market sizes are similar among the
three promotion groups from this plot.

Another attribute, AgeOfStore, and its overall distributions across all different
promotions groups, can be visualized by using the following code:

overallAge <- df %>%
 group_by(AgeOfStore) %>%
 summarise(Count=n())

ggplot(overallAge, aes(x=AgeOfStore, y=Count)) +
 geom_bar(width=0.5, stat="identity") +
 ylab("Count") +
 xlab("Store Age") +
 ggtitle("overall distributions of age of store") +
 theme(plot.title=element_text(hjust=0.5))

And the result looks like the following bar plot:

As you can see from this plot, a large number of stores are 1 year old and the
majority of stores are 10 years old or less. However, what we are more interested in
is whether the stores in the three different promotion groups have similar store age
profiles. Take a look at the following code:

AgePerPromo <- df %>%
 group_by(Promotion, AgeOfStore) %>%
 summarise(Count=n())

ggplot(AgePerPromo, aes(x=AgeOfStore, y=Count, fill=Promotion)) +
 geom_bar(width=0.5, stat="identity", position="dodge2") +
 ylab("Count") +

 xlab("Store Age") +
 ggtitle("distributions of age of store") +
 theme(plot.title=element_text(hjust=0.5))

Using this code, you will get the following output:

The store age distributions across the three different promotion groups seem to
align with each other, but it is quite difficult to digest the information presented
from this plot. It will be easier to look at the summary statistics of store ages across
the three promotion groups. Take a look at the following code:

tapply(df$AgeOfStore, df$Promotion, summary)

The output of this code looks as follows:

As you may notice from this output, it is much easier to understand the overall
store age distributions from these summary statistics. We can see that all three test
groups seem to have similar store age profiles. The average ages of stores for the
three groups are 8-9 years old and the majority of the stores are 10-12 years old or
younger.

By analyzing how each promotion or test group is comprised, we could verify that
the store profiles are similar to each other. This suggests that the sample groups are
well controlled and the A/B testing results will be meaningful and trustworthy.

Statistical hypothesis testing
The ultimate goal of A/B testing of different marketing strategies is to find out
which strategy is the most efficient and works the best among the others. As
briefly discussed in an earlier section, a strategy with a higher response number
does not necessarily mean that it outperforms the rest. We will discuss how we can
use the t-test to evaluate the relative performances of different marketing strategies
and see which strategy wins over the others with significance.

In R, there are two approaches to compute the t-value and p-value for a t-test. We
will demonstrate both approaches in this section, and it is up to you to decide
which one works more conveniently for you. The two approaches to compute the
t-value and p-value for a t-test are as follows:

Computing the t-value and p-value from the equations: The first approach
is to manually calculate the t-value using the equation we have learned in the
previous section. As you may recall, there are three things we need to
compute to get the t-value: the mean, the standard deviation, and the number
of samples. Take a look at the following code:

 promo_1 <- df[which(df$Promotion == 1),]$SalesInThousands
 promo_2 <- df[which(df$Promotion == 2),]$SalesInThousands

 mean_1 <- mean(promo_1)
 mean_2 <- mean(promo_2)
 std_1 <- sd(promo_1)
 std_2 <- sd(promo_2)
 n_1 <- length(promo_1)
 n_2 <- length(promo_2)

As you can see from this code, you can easily compute the mean, the standar
deviation, and the number of samples in each test group by using the mean, sd,
and length functions respectively. With these, we can compute the t-value usi
previously discussed equation. Take a look at the following code:

 t_val <- (
 mean_1 - mean_2
) / sqrt(
 (std_1**2/n_1 + std_2**2/n_2)
)

Using this code, we can compute the t-value for comparing the
performances of promotion 1 and promotion 2. The t-value we get from

running the code is 6.4275. From this t-value, we can get the p-value with
the following code:

 df_1_2 <- n_1 + n_2 - 2

 p_val <- 2 * pt(t_val, df_1_2, lower=FALSE)

As you can see from this code, we first compute the degrees of freedom,
which is the sum of the number of samples in both groups minus two. With
the t-value calculated previously, we can compute the p-value using
the pt function, which returns a probability value from the t-distribution,
given the t-value and degree of freedom. The p-value we get from running
this code is 4.143e-10. This is an extremely small number that is close to 0.
As discussed earlier, a p-value close to 0 suggests that there is strong
evidence against the null hypothesis and that the difference between the
two test groups is significant.

The average sales (in thousands) for promotion group 1 is about 58.1, and
for promotion group 2 it's about 47.33. From our t-test, we have shown that
the marketing performances for these two groups are significantly different
and that promotion group 1 outperforms promotion group 2. However, if
we run a t-test between promotion group 1 and promotion group 3, we see
different results.

On the surface, the average sales from promotion group 1 (58.1) looks
higher than those from promotion group 2 (55.36). However, when we run a
t-test between these two groups, we get a t-value of 1.556 and a p-value
of 0.121. The computed p-value is much higher than 0.05, which is a
generally accepted cut-off line. This suggests that the marketing
performance for promotion group 1 is not statistically different from the
marketing performance of promotion group 2. Thus, even though
promotion group 1's average sales number is higher than promotion group
2's from the A/B test, the difference is not statistically significant, and we
cannot conclude that promotion group 1 performs much better than
promotion group 2. From these evaluation results, we can conclude that
promotions groups 1 and 3 outperform promotion group 2, but the
difference between promotion groups 1 and 3 is not statistically significant.

Computing the t-value and p-value using t.test: Another approach to
compute the t-value and p-value is by using the t.test function in R. Take a
look at the following code:

 # using t.test
 t.test(
 promo_1,
 promo_2
)

As you can see from this code, R has a t.test function, which computes the
t-value and p-value, given data. Using this function, we can easily compute
t-values and p-values to compare the marketing performances of different
promotions or test groups. The results are the same in both approaches.
Whether we use the previous approach of manually computing the t-values
and p-values from the equation or the approach of using
the ttest_ind function in the scipy package, the t-values we get to compare
promotion group 1 against promotion group 2 and promotion group 1
against promotion group 3 are 6.4275 and 1.556; whereas, the p-values we
get are 4.29e-10 and 0.121 respectively. And, of course, the interpretations of
these t-test results are the same as before.

We have shown two approaches to computing t-values and p-values. It may look
easier to use the t.test function in R, but it is always helpful to have the equation
in the back of your mind.

The full code for this R exercise can be found at the following link: https://github.com/yoonhwang/hands-o
n-data-science-for-marketing/blob/master/ch.12/R/ABTesting.R.

https://github.com/yoonhwang/hands-on-data-science-for-marketing/blob/master/ch.12/R/ABTesting.R

Summary
In this chapter, we have learned about one of the most frequently used
testing methods in marketing for making decisions on future marketing
strategies. We have discussed what A/B testing is, why it is important to run
A/B tests before you fully commit to one marketing strategy, and how it can
help you reach your marketing goal in a more efficient and less expensive
way. By working through a sample use case, where your goal was to choose
the best email subject line, we learned what a typical process for running
A/B tests looks like. A/B testing does not need to happen only once. A/B
tests are best used when you consistently test your new ideas against
currently running strategies or against other ideas through experiments.
Simply put, whenever there is a new idea, it should be A/B tested. Using the
t-test and the Python and R tools that we have learned about in this chapter,
you should be able to easily evaluate A/B test results and identify which
strategy is the winning strategy.

This chapter was the last technical chapter with case studies and
programming exercises. In the next chapter, we are going to summarize and
review all the topics that we have covered throughout this book. Then, we
will discuss some common data science and machine learning applications
in marketing and some other Python and R libraries that you can benefit
from in your future projects that have not been covered in this book.

What's Next?
We have come a long way. We started this book with the basics of data
science and its applications in marketing and worked through numerous use
cases of data science in marketing. Along the way, we have conducted
descriptive analysis, where we used data science techniques to analyze and
visualize data to identify patterns. We have also conducted explanatory
analysis, where we used machine learning models to draw insights from
data, such as finding the drivers behind certain customers' activities and the
correlations between customer attributes and their actions. Lastly, we have
also looked at predictive analytics, where we trained various machine
learning algorithms to make forecasts on certain actions of customers.

The topics we have covered throughout this book are not trivial and were
geared toward the practical usage of data science in marketing. Each
chapter was meant to showcase how you can use data science and machine
learning techniques in actual marketing use cases and guide you through
how you might be able to apply the concepts discussed to your specific
business cases. As the field of marketing analytics is growing and
broadening its reach, we wanted to use this chapter to inform you of some
potential challenges you might face and look at some other commonly used
technologies, as well as review the topics that we have discussed in this
book.

In this chapter, we will cover the following topics:

Recap of the topics covered in this book
Real-life data science challenges
More machine learning models and packages

Recap of the topics covered in this
book
We have covered a large amount of material from the beginning of this
book, from discussing the trends in marketing and how data science and
machine learning have become a crucial part in building marketing
strategies, to building various predictive machine learning models for more
efficient marketing. It is worth reviewing what we have covered so far and
refreshing our memory before we close this book.

Trends in marketing
As you may recall, the first thing we discussed in Chapter 1, Data Science
and Marketing, was the recent trends in marketing. It is important to try to
understand and keep up with the trends that are occurring in the industry
that you are working and specializing in. Especially in marketing, there is a
lot of demand for more data-driven and quantitative marketing, and for the
use of the latest and most intelligent technologies for developing more cost-
effective marketing strategies.

According to the February, 2018, CMO survey (https://www.forbes.com/sites/ch
ristinemoorman/2018/02/27/marketing-analytics-and-marketing-technology-trends-to-wat

ch/#4ec8a8431b8a), reliance on marketing analytics has gone up from 30% to
42% in the past 5 years. The three main trends in marketing that can be
easily observed are the following:

Rising importance of digital marketing: Lots of marketing activities
are now happening more heavily on digital channels, such as search
engines, social media, email, and websites, rather than on more
traditional mass media, such as TV, radio, and banners at bus stations.
As various digital marketing channels are gaining popularity as the
choice of marketing channel, it has become more important to have a
good understanding of how audience targeting works on social
networks, such as Facebook and Instagram, or how to place
advertisements on search engines and video streaming services, such
as Google and YouTube.
Marketing analytics: Marketing analytics is a way of monitoring and
quantifying the results and performances of past marketing efforts. In C
hapter 2, Key Performance Indicators and Visualizations, we learned
about various key performance indicators (KPIs) that we can use to
track and quantify the returns from various marketing efforts.
Marketing analytics does not just stop at analyzing KPIs. It can also be
applied to product and customer analytics, which we discussed in Chapt

https://www.forbes.com/sites/christinemoorman/2018/02/27/marketing-analytics-and-marketing-technology-trends-to-watch/#4ec8a8431b8a

er 5, Product Analytics, and Chapter 7, Exploratory Analysis for
Customer Behavior.

Personalized and target marketing: As the accessibility of data
science and machine learning has become easier, another trend in
marketing has arisen: individual-level targeted marketing. Using
predictive analytics, we can now predict what types of products that
individual customers would like, which we have discussed in Chapter 6,
Recommending the Right Products. We have also seen how we can
target those customers who are likely to churn by building predictive
machine learning models in Chapter 11, Retaining Customers. As
targeted marketing results in higher ROI, there are many software-as-
a-Service (SaaS) companies, such as Sailthru and Oracle, that provide
platforms for personalized and target marketing.

As new strategies and technologies are developed, trends are destined to
change. The trends that we have discussed in this book might not be
applicable in 20-30 years, time. As a marketing professional, it is critical to
follow and understand what others in the same industry do and what other
approaches or technologies are being developed and used to achieve higher
ROI.

Data science workflow
As a marketing professional or an aspiring data scientist in marketing, it can
be challenging to figure out where to start for a data science project. In Chapt
er 1, Data Science and Marketing, we have discussed a typical workflow for
a data science project. It is worth reviewing the steps before you embark on
your future marketing data science projects. You should be familiar with the
following workflow diagram:

Let's talk a bit more in detail about these six steps:

1. Problem definition: Any data science and machine learning project
should have a clear problem definition. You will need to have an in-
depth understanding of the problem itself, the scope of the project, and
approaches to coming up with solutions. This is where you brainstorm
what types of analyses and data science techniques to use.

2. Data collection: As it is for any data science project, having data is
key for success. In this step, you will need to gather all the required
data for your data science project. It is common that you will need to
implement data collection processes for internal data, purchase third-
party data, or scrape data from different websites. Depending on the
cases, the data collection step can be trivial or it can also be tedious.

3. Data preparation: With the data from the data collection step, the
next step is to clean and prepare the data. As we have seen throughout
this book, our programming exercises always started with data cleanup
and preparation. In the data preparation step, we handled missing
values, encoded categorical variables, or transformed other variables,
so that this data can be understood by machine learning algorithms.

4. Data analysis: As you may recall, we have discovered useful insights
from this data analysis step in our programming exercises throughout
the book. Through analyzing data, we gain a better understanding of
the overall distributions of different variables, and it is often a good
idea to visualize data with different plots to identify any noticeable
patterns.

5. Feature engineering: As we have seen and discussed throughout the
book, there are many different ways to approach engineering the
features for machine learning models. For monetary values, we have
applied log transformations. In some cases, we have normalized the
data so that the variables are on the same scale. We have also used
one-hot encoding to encode categorical variables. Feature engineering
is one of the most important steps in building machine learning
models, as the algorithms are going to try to learn from these features
to correctly predict the target.

6. Model building: The final step in a typical data science workflow is,
of course, model building. With the clean data and features that we
have built from previous steps, this is where you train your machine
learning models. Throughout this book, we have discussed how to
evaluate the models. For classification models, we have often used
accuracy, precision, recall, the ROC curve, and the AUC. For
regression models, we have used MSE, R2, or a scatterplot of predicted
and actual values for model evaluations.

During our programming exercises, our workflow looked almost the same
as the workflow that we have just discussed. When unsure about what to do
next, we hope this workflow diagram gives you some hints on the next
steps.

Machine learning models
As you may recall, we built a number of machine learning models in this book.
For example, in Chapter 8, Predicting the Likelihood of Marketing Engagement, we
trained a random forest model to predict how likely each customer is to engage
with marketing calls. In Chapter 11, Retaining Customers, we used an artificial
neural network (ANN) model to identify which customers are likely to churn
from the business. In this section, we will review those machine learning models
that we have used in this book:

Logistic regression: In Chapter 3, Drivers behind Marketing Engagement, we
have used a logistic regression model to extract the insights on which factors
make customers more likely to engage with marketing campaigns. In Python,
we used the statsmodels package to build a logistic regression model, and the
code to train a logistic regression model looked like the following:

 import statsmodels.formula.api as sm

 logit = sm.Logit(
 target_variable,
 features
)

 logit = logit.fit()

From this trained model, we could look at the details and correlations
between the features and the target variable by running logit_fit.summary().
On the other hand, in R, we used the following command to train a logistic
regression model:

 logit.fit <- glm(Target ~ ., data = DF, family = binomial)

Similar to how we used the summary function in Python, we could run
the summary(logit.fit) command to get the details of the logistic regression
fit and the correlations between the features and the target variable.

Random forest: As you may recall, we used a random forest algorithm in Cha
pter 8, Predicting the Likelihood of Marketing Engagement, to predict which
customers are likely to respond to marketing calls. In Python, we used
the scikit-learn package to build random forest models. The code to train a
random forest model looked like the following:

 from sklearn.ensemble import RandomForestClassifier

 rf_model = RandomForestClassifier()

 rf_model.fit(X=x_train, y=y_train)

As you may recall, there were numerous hyperparameters you could tune
with the random forest algorithm. We have discussed how you can fine-
tune the number of estimators in the forest, n_estimators, the maximum
depth of the tree, max_depth, and the minimum of samples needed to be able
to split into branches, min_samples_split. On the other hand, in R, we used
the randomForest library to build random forest models. The code for training
a random forest model in R looked like the following:

 library(randomForest)

 rfModel <- randomForest(x=trainX, y=factor(trainY))

With the randomForest package, you could fine-tune the hyperparameters. You
use ntree to tune the number of trees in the forest, sampsize to tune the size of t
sample to draw for training each tree, and maxnodes to define the maximum nu
of terminal nodes in the tree.

ANN: As you may recall, in Chapter 11, Retaining Customers, we used an
ANN model to predict the customers who are likely to churn from the
business. In order to build an ANN model, we used the keras package for both
Python and R. In Python, training an ANN model looked like the following:

 from keras.models import Sequential
 from keras.layers import Dense

 model = Sequential()
 model.add(Dense(16, input_dim=
 len(features), activation='relu'))
 model.add(Dense(8, activation='relu'))
 model.add(Dense(1, activation='sigmoid'))

 model.compile(loss='binary_crossentropy',
 optimizer='adam', metrics=['accuracy'])

 model.fit(X_train, y_train, epochs=50, batch_size=100)

As you should know already, we first had to add input, hidden, and output
layers to the model. Then, we could compile and train an ANN model. In
R, the concept is the same, but the syntax looks a bit different. The R code
to train an ANN model using the keras package looked like the following:

 library(keras)

 model <- keras_model_sequential()
 model %>%
 layer_dense(units = 16, kernel_initializer =
 "uniform", activation = 'relu', input_shape=ncol(train)-1) %>%
 layer_dense(units = 8, kernel_initializer =
 "uniform", activation = 'relu') %>%
 layer_dense(units = 1, kernel_initializer =
 "uniform", activation = 'sigmoid') %>%
 compile(optimizer = 'adam',
 loss = 'binary_crossentropy',
 metrics = c('accuracy')
)

 history <- model %>% fit(
 trainX,
 trainY,
 epochs = 50,
 batch_size = 100,
 validation_split = 0.2
)

k-means clustering: In Chapter 10, Data-Driven Customer Segmentation, we
used a k-means clustering algorithm to programmatically build different
customer segments. We have seen how analyzing the attributes of these
different customer segments can help us understand the different behaviors of
the customers and find better ways to target different groups of customers. In
Python, we could use the scikit-learn package to build a k-means clustering
algorithm. The code looked like the following:

 from sklearn.cluster import KMeans

 kmeans = KMeans(n_clusters=4)
 kmeans = kmeans.fit(data)

As you may recall, you needed to define the number of clusters you would
like to build from the data, using the n_clusters parameter. In order to get
the cluster labels for each record and cluster centroids, we could
use kmeans.labels_ and kmeans.cluster_centers_. Similarly, in R, we used
the kmeans function to build a clustering model, as shown in the following
code:

 cluster <- kmeans(data, 4)

In order to get the labels and cluster centroids, we could use cluster$cluster
and cluster$centers.

With these algorithms, we were able to easily build various machine
learning models for different use cases in marketing. We hope these brief

reviews of the syntax of building these machine learning models helped to
refresh your memory.

Real-life data science challenges
Applying data science and machine learning in marketing would be all
glamorous and flawless if we were able to just build and use various
machine learning models for different marketing use cases. However, that
normally is not the case. Quite often, the end-to-end machine learning
model building process can be tedious, with lots of barriers and bottlenecks
on the way. We are going to discuss some of the most frequently appearing
data science challenges in real life, including the following:

Challenges in data
Challenges in infrastructure
Challenges in choosing the right model

Challenges in data
One of the most challenging factors in using data science and machine
learning for marketing is getting the right data. As may sound obvious to
you, without data, there is no data science or machine learning. Moreover, if
the quality of the data is not good, then the quality of your trained machine
learning is also going to be bad.

In this section, we are going to discuss some of the common challenges that
many data scientists face in getting the right data:

Existence of data: Sometimes you may come up with a great idea of
applying data science techniques to solve one of the problems you
have in marketing. However, the data you need might not even exist.
For example, say your idea was to identify trending web content, such
as which web pages are viewed the most and liked the most by your
users. However, you might not have the page view data, if the web
page tracking functionality was not implemented on your websites. In
this case, you will need to implement tracking functionality in your
websites to track which users viewed or liked which content. Then, it
is only possible to work on your idea after some period of time, when
you have gathered enough data for your analysis. This type of case
happens relatively frequently, so it is critical to have a good
understanding of how well you track user activities and which parts
you are missing. If possible, obtaining third-party data is also an
option, when the data does not exist internally. There are lots of data
vendors who sell data that you might need. If using a third-party data
vendor is an option, that can be a good solution when there is no data
for your project. Also, there is a lot of publicly available data that you
can use freely. It is always worthwhile to see whether the data you
need is publicly available or not.
Accessibility of data: Data accessibility can be a barrier for a data
science project. Especially in big corporations, access to certain sets of
data is strictly restricted to selected subgroups of teams. In this case,
even if the required dataset exists, it can be difficult or even impossible

for data scientists or marketing professionals to access and use the
data. Where the data is being generated from can also cause data
accessibility problems. For instance, if the data is streamed into other
applications without being stored or archived, then this data can be lost
after it has been streamed. The location of the data files can also be a
barrier to accessing the data you need. If the data cannot be shared
through a network or if you cannot reach the location that the data
lives in, then that can also keep you from using this data. This is why
the responsibility and importance of data engineering and data
engineers is rising. Data engineers work with other data scientists or
software developers to specifically work on building data pipelines
through which data with accessibility issues can move to other parts of
the business. If you are facing issues with data accessibility, it is
crucial to first find out what the barrier is and consider working with
data engineers to build data pipelines to make the data accessible for
your future projects.

Messy data: You can assume the majority of the data you will face in
real-life data science projects will be messy. It may be in a format that
you cannot easily understand. It may be segmented into smaller parts
that cannot easily be joined to each other. Or, there may also be too
many missing values or too many duplicate records in the data. The
degree of messiness of datasets can significantly increase the amount
of time you need to spend on cleaning up the raw data and making it
usable. Conducting in-depth data analysis on this messy data is crucial
in making the data usable for future steps. Sometimes, it may be
worthwhile to work with data engineers to fix the source that causes
the messiness in the data and make future data more clean.

Challenges in infrastructure
When working with different datasets for applying data science techniques
and using machine learning models for different projects in marketing, you
may face some challenges in the system infrastructure that you use for
developments. Quite often, datasets are too big to fit into your laptop or
computer. As the size of data is grows bigger and bigger everyday, it
becomes even more likely that sometime in the future, you will have issues
with developing data science models on your laptop, even if you currently
do not have this problem.

There are two main things that can slow you down when working on data
science projects: shortage of CPU or processing power and shortage of
RAM or memory. If you do not have enough processing power, your
analysis could take long time. Especially when training machine learning
models, it is not uncommon for model training to take days, weeks, or even
months. On the other hand, if you do not have enough memory, you might
end up getting Out of Memory errors while running your analysis. For example,
tree-based models, such as decision trees or random forests, can take a large
amount of memory, and training such models can fail after hours of training
because of shortage of memory.

With the emerging popularity of and developments in cloud computing,
there are solutions to these problems. Using one of the cloud computing
service providers, such as AWS, Google, or Microsoft Azure, you can,
theoretically, get an unlimited amount of computing power and memory. Of
course, everything comes with a price. Running large data science jobs on
these cloud platforms can cost a fortune, if you do not plan it right. When
working with large datasets, it is wise to consider the amount of processing
power and memory you would need to successfully run your tasks.

Challenges in choosing the right
model
Choosing a machine learning algorithm for a given data science project is
more difficult than it sounds. Some algorithms work more like a black box,
where you do not know how an algorithm makes predictions or decisions.
For example, it is quite difficult to understand how a trained random forest
model makes predictions on the output from the input. The decisions are
made from hundreds of different decision trees, where each tree works
differently with different decision-making criteria, and this makes it
difficult for a data scientist to fully understand what happens in between the
input and the output.

On the other hand, linear models, such as logistic regression models, tell us
exactly how they are making decisions. Once logistic regression models are
trained, we know the coefficients given to each feature, and from these
coefficients, we can deduce what the predicted output is going to be.
Depending on your use cases, you might need to have this kind of
explainability, where you need to be able to explain how each feature works
and affects the prediction output to your business partners. Quite often,
more advanced models work more like a black box, and you will need to
make a trade-off between prediction accuracy and explainability.

More machine learning models and
packages
In this book, we have mainly used the following five machine learning
algorithms that fit into and work the best for our marketing use cases:
logistic regression, random forests, ANN, k-means clustering, and
collaborative filtering. However, there are many more readily available
machine learning algorithms that you may find useful for your future data
science and machine learning projects. We will be covering some of the
other frequently used machine learning algorithms, what packages to use in
Python and R, and where to find more information on these algorithms.

Some of the other machine learning algorithms to consider in your future
projects are the following:

Nearest neighbors: This is a machine learning algorithm that finds the
pre-defined number of closest samples to a new data point. Even
though the concept of this algorithm sounds simple, the nearest
neighbors algorithm has been used successfully in various areas,
including image recognition. In the scikit-learn package of Python, you
can use the KNeighborsClassifier class in the neighbors module to build
classification models, or you can use the KNeighborsRegressor class to
build regression models. For more details on the usage, we recommend
you take a look at the following documentation page: https://scikit-lear
n.org/stable/modules/neighbors.html. On the other hand, in R, you can use
the knn function in the class library. For the documentation of this
function in R, you can refer to this documentation page: https://www.rdoc
umentation.org/packages/class/versions/7.3-15/topics/knn.
Support vector machine (SVM): SVM is another machine learning
algorithm that you may find useful. The SVM algorithm tries to find a
hyperplane that best splits the data into classes or groups. It is
especially effective in high-dimensional space. The scikit-learn
package has the SVC and SVR classes implemented in Python for

https://scikit-learn.org/stable/modules/neighbors.html
https://www.rdocumentation.org/packages/class/versions/7.3-15/topics/knn

classification and regression models. The documentation page can be
found at the following link: https://scikit-
learn.org/stable/modules/svm.html. In R, the e1071 library has the svm
function, which you can use to train SVM models. More
documentation on its usage can be found here: https://www.rdocumentatio
n.org/packages/e1071/versions/1.7-0.1/topics/svm.
Gradient-boosted trees (GBT): GBT is one of the tree-based machine
learning algorithms. Unlike the random forest algorithm, the GBT
algorithm learns and trains each tree sequentially, and each tree learns
from the mistakes that the previous trees made. It is well known and
frequently used for its prediction accuracy and robustness. In Python,
you can use the GradientBoostingClassifier class in the scikit-learn
package's ensemble module for classification problems and
the GradientBoostingRegressor class for regression problems. More details
about GBT in scikit-learn can be found here: https://scikit-learn.org/stab
le/modules/ensemble.html#gradient-tree-boosting. Similarly, in R, the gbm
package has the GBT algorithm implemented for classification and
regression problems. You can use the gbm function within the gbm
package to train a GBT model. More information can be found at the
following link: https://www.rdocumentation.org/packages/gbm/versions/2.1.5/to
pics/gbm

https://scikit-learn.org/stable/modules/svm.html
https://www.rdocumentation.org/packages/e1071/versions/1.7-0.1/topics/svm
https://scikit-learn.org/stable/modules/ensemble.html#gradient-tree-boosting
https://www.rdocumentation.org/packages/gbm/versions/2.1.5/topics/gbm

Summary
In this chapter, we reviewed the topics that we discussed in this book. We
briefly went through the trends that are observable in the marketing industry
and how data science and machine learning are becoming more and more
important in marketing. Then, we reviewed a typical data science workflow,
where you start with problem definition, then move onto data collection,
preparation, and analysis, and finally move to feature engineering and
model building. While working on future data science projects, it will be
worthwhile to keep the workflow diagram we looked at in the back of your
head and when stuck with what to do next, refer back to this diagram for
ideas. We have also shared some of the challenges you might face when
working with real-world datasets. The three main challenges we covered
were data issues, infrastructure issues, and choosing the right model. More
specifically, we discussed the trade-off between explainability and model
accuracy. We have suggested some workarounds and solutions to these
challenges, so we hope they help when you face similar challenges. Lastly,
we have discussed some other frequently used machine learning models
that you may find useful in your future projects. We have briefly showed
which Python and R packages to use for each of these models and where
you can find more information about the usage of those models.

Throughout the 13 chapters in this book, we have covered the various data
science and machine learning techniques you can use in marketing, with a
focus on practicality. As you have worked through numerous examples for
different use cases in marketing throughout this book, we hope you have
gained more confidence in applying data science techniques and building
machine learning models for developing more intelligent and efficient
marketing strategies. We hope your journey throughout this book was
worthwhile and rewarding and that you have gained many new and useful
skills.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by
Packt:

Data Science Algorithms in a Week - Second Edition
Dávid Natingga

ISBN: 978-1-78980-607-6

Understand how to identify a data science problem correctly
Implement well-known machine learning algorithms efficiently using
Python
Classify your datasets using Naive Bayes, decision trees, and random
forest with accuracy
Devise an appropriate prediction solution using regression
Work with time series data to identify relevant data events and trends
Cluster your data using the k-means algorithm

https://www.packtpub.com/big-data-and-business-intelligence/data-science-algorithms-week-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-data-science-essentials-third-edition

Python Data Science Essentials - Third Edition
Alberto Boschetti, Luca Massaron

ISBN: 978-1-78953-786-4

Set up your data science toolbox on Windows, Mac, and Linux
Use the core machine learning methods offered by the scikit-learn
library
Manipulate, fix, and explore data to solve data science problems
Learn advanced explorative and manipulative techniques to solve data
operations
Optimize your machine learning models for optimized performance
Explore and cluster graphs, taking advantage of interconnections and
links in your data

Leave a review - let other readers
know what you think
Please share your thoughts on this book with others by leaving a review on
the site that you bought it from. If you purchased the book from Amazon,
please leave us an honest review on this book's Amazon page. This is vital
so that other potential readers can see and use your unbiased opinion to
make purchasing decisions, we can understand what our customers think
about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of
your time, but is valuable to other potential customers, our authors, and
Packt. Thank you!

	Title Page
	Copyright and Credits
	Hands-On Data Science for Marketing

	About Packt
	Why subscribe?
	Packt.com

	Contributors
	About the author
	About the reviewer
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Download the color images
	Conventions used

	Get in touch
	Reviews

	Section 1: Introduction and Environment Setup
	Data Science and Marketing
	Technical requirements
	Trends in marketing
	Applications of data science in marketing
	Descriptive versus explanatory versus predictive analyses
	Types of learning algorithms
	Data science workflow

	Setting up the Python environment
	Installing the Anaconda distribution
	A simple logistic regression model in Python

	Setting up the R environment
	Installing R and RStudio
	A simple logistic regression model in R

	Summary

	Section 2: Descriptive Versus Explanatory Analysis
	Key Performance Indicators and Visualizations
	KPIs to measure performances of different marketing efforts
	Sales revenue
	Cost per acquisition (CPA)
	Digital marketing KPIs

	Computing and visualizing KPIs using Python
	Aggregate conversion rate
	Conversion rates by age
	Conversions versus non-conversions
	Conversions by age and marital status

	Computing and visualizing KPIs using R
	Aggregate conversion rate
	Conversion rates by age
	Conversions versus non-conversions
	Conversions by age and marital status

	Summary

	Drivers behind Marketing Engagement
	Using regression analysis for explanatory analysis
	Explanatory analysis and regression analysis
	Logistic regression

	Regression analysis with Python
	Data analysis and visualizations
	Engagement rate
	Sales channels
	Total claim amounts

	Regression analysis
	Continuous variables
	Categorical variables
	Combining continuous and categorical variables

	Regression analysis with R
	Data analysis and visualization
	Engagement rate
	Sales channels
	Total claim amounts

	Regression analysis
	Continuous variables
	Categorical variables
	Combining continuous and categorical variables

	Summary

	From Engagement to Conversion
	Decision trees
	Logistic regression versus decision trees
	Growing decision trees

	Decision trees and interpretations with Python
	Data analysis and visualization
	Conversion rate
	Conversion rates by job
	Default rates by conversions
	Bank balances by conversions
	Conversion rates by number of contacts

	Encoding categorical variables
	Encoding months
	Encoding jobs
	Encoding marital
	Encoding the housing and loan variables

	Building decision trees
	Interpreting decision trees

	Decision trees and interpretations with R
	Data analysis and visualizations
	Conversion rate
	Conversion rates by job
	Default rates by conversions
	Bank balance by conversions
	Conversion rates by number of contacts

	Encoding categorical variables
	Encoding the month
	Encoding the job, housing, and marital variables

	Building decision trees
	Interpreting decision trees

	Summary

	Section 3: Product Visibility and Marketing
	Product Analytics
	The importance of product analytics
	Product analytics using Python
	Time series trends
	Repeat customers
	Trending items over time

	Product analytics using R
	Time series trends
	Repeat customers
	Trending items over time

	Summary

	Recommending the Right Products
	Collaborative filtering and product recommendation
	Product recommender system
	Collaborative filtering

	Building a product recommendation algorithm with Python
	Data preparation
	Handling NaNs in the CustomerID field
	Building a customer-item matrix

	Collaborative filtering
	User-based collaborative filtering and recommendations
	Item-based collaborative filtering and recommendations

	Building a product recommendation algorithm with R
	Data preparation
	Handling NA values in the CustomerID field
	Building a customer-item matrix

	Collaborative filtering
	User-based collaborative filtering and recommendations
	Item-based collaborative filtering and recommendations

	Summary

	Section 4: Personalized Marketing
	Exploratory Analysis for Customer Behavior
	Customer analytics – understanding customer behavior
	Customer analytics use cases
	Sales funnel analytics
	Customer segmentation
	Predictive analytics

	Conducting customer analytics with Python
	Analytics on engaged customers
	Overall engagement rate
	Engagement rates by offer type
	Engagement rates by offer type and vehicle class
	Engagement rates by sales channel
	Engagement rates by sales channel and vehicle size

	Segmenting customer base

	Conducting customer analytics with R
	Analytics on engaged customers
	Overall engagement rate
	Engagement rates by offer type
	Engagement rates by offer type and vehicle class
	Engagement rates by sales channel
	Engagement rates by sales channel and vehicle size

	Segmenting customer base

	Summary

	Predicting the Likelihood of Marketing Engagement
	Predictive analytics in marketing
	Applications of predictive analytics in marketing

	Evaluating classification models
	Predicting the likelihood of marketing engagement with Python
	Variable encoding
	Response variable encoding
	Categorical variable encoding

	Building predictive models
	Random forest model
	Training a random forest model
	Evaluating a classification model

	Predicting the likelihood of marketing engagement with R
	Variable encoding
	Response variable encoding
	Categorical variable encoding

	Building predictive models
	Random forest model
	Training a random forest model
	Evaluating a classification model

	Summary

	Customer Lifetime Value
	CLV
	Evaluating regression models
	Predicting the 3 month CLV with Python
	Data cleanup
	Data analysis
	Predicting the 3 month CLV
	Data preparation
	Linear regression
	Evaluating regression model performance

	Predicting the 3 month CLV with R
	Data cleanup
	Data analysis
	Predicting the 3 month CLV
	Data preparation
	Linear regression
	Evaluating regression model performance

	Summary

	Data-Driven Customer Segmentation
	Customer segmentation
	Clustering algorithms
	Segmenting customers with Python
	Data cleanup
	k-means clustering
	Selecting the best number of clusters
	Interpreting customer segments

	Segmenting customers with R
	Data cleanup
	k-means clustering
	Selecting the best number of clusters
	Interpreting customer segments

	Summary

	Retaining Customers
	Customer churn and retention
	Artificial neural networks
	Predicting customer churn with Python
	Data analysis and preparation
	ANN with Keras
	Model evaluations

	Predicting customer churn with R
	Data analysis and preparation
	ANN with Keras
	Model evaluations

	Summary

	Section 5: Better Decision Making
	A/B Testing for Better Marketing Strategy
	A/B testing for marketing
	Statistical hypothesis testing
	Evaluating A/B testing results with Python
	Data analysis
	Statistical hypothesis testing

	Evaluating A/B testing results with R
	Data analysis
	Statistical hypothesis testing

	Summary

	What's Next?
	Recap of the topics covered in this book
	Trends in marketing
	Data science workflow
	Machine learning models

	Real-life data science challenges
	Challenges in data
	Challenges in infrastructure
	Challenges in choosing the right model

	More machine learning models and packages
	Summary

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

